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Interprocess Commun ica t i ons  I 
Well-implemented interprocess communications (IPC) are  key to the performance of 
virtually every non-trivial UNIX program. In UNIX Network Programming, 
Udnme 2, Seeond Edition, legendary UNIX expert W. Richard Stevens presents 
a comprehensive guide to every form of IPC. including message passing. synchronization. 
shared memory, and Remote Procedure Calls (RPG. - 

Stevens heglns with a basic: introduction to IPC and the problems it is intended to solve 

Slep-by-step you'll learn how to maximize both System V IPC and the new Posix standards. 

which offer dramatic improvements in convenience and performance. You'll find extensive 

coverage of Pthreads. with many examples rrflecting multiple threads instead of multiple 

processes. Alongthe way. you'll master every current IPC technique and technology. including: 

Pipes and FlFOs POSIX and System V Semaphores 

Posix and System V Message Queues Poslx and System V Shared Me 
t -C 

Sbiaris Doors and Sun RPC 
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of five! You won't just learn about IPC 
"from the outside." You'll actually create implemkntatiom of Posix message queues. 
read-write locks, and semaphores, gaining an in-de@h understanding of these 
capabilities you simply can't get awwhere else. 

The book contains extensive new source code--all caqfully optimized and available 
on the Web. You'll even find a complete guide to mesuring IPC performance 
with message passing bandwidth and laterfcy progrMns, and thread and process 
synchronization programs. 

The better you understand IPC. the better your UNIX software will run. This book 
contains all you need to know. 
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Function prototype Page 

boolLt clnt-control (CLIENT *d, unsigned int request, char *ptr )  ; 418 

CLIENT *clnt-create (const char *host, unsigned long prognum, 
unsigned long versnum, const char *protocol) ; 

void clnt-destroy(CL1ENT * c ! ) ;  420 

int door-bind ( int f d )  ; 390 

int door-call ( int fd ,  door-arg-t *argp) ; 361 

int door-create (Door-serverqroc *proc, void *cookie, u-int attr)  ; 363 

int door-cred (door-cred-t *cred) ; 365 

int door-info (int fd ,  door-in£ o-t *info) ; 365 

int dooryeturn (char *dataptr, size-t datasize, door-desc-t *descptr. size-t ndesc) ; 365 

int door-revoke (int fd) ; 390 

Door-createqroc *door~server~create(Door~createqroc *prOc); 384 

int door-unbind(void); 390 

void err-durn (const char * f i t ,  . . . ) ; 
void err-msg (const char * f i t ,  . . . ) ; 
void err-quit (const char * f i t ,  . . . ) ; 
void err-rot (const char * f i t ,  . . . ) ; 
void err-sys (const char * f i t ,  . . . ) ; 
int fcntl (int f d ,  int cmd,  . . . / *  struct flock *arg * /  ) ; 

int fstat(int fd ,  struct stat *buf ) ;  

key-t ftok(const char *pathname, int i d ) ;  

int ftruncate (int f d ,  of f-t length) ; 

int qclose (mqd-t mqdes) ; 

int qgetattr (mqd-t mqdes, struct mpattr *attr)  ; 

int -notify (mqd-t mqdes, const struct sigevent *notification) ; 

mqd-t qopen(const char *name, int oflag, . . . 
/ *  mode-t mode, struct mq-attr *attr * /  ) .  

int -unlink (const char *name) ; 77 

int msgctl(int msqid, int cmd,  struct msqid-ds *buff); 
int msgget (key-t key,  int oflag) ; 

FILE *popen (const char *command, const char *type)  ; 52 
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int pthread-cancel (pthread-t tid) ; 187 

void pthread-c leanupgop ( int execute) ; 187 

void pthread-cleanupgush(void (*function) (void * )  , void *a%) ; 187 

int pthreahcreate (pthread-t *tid, const pthread-attr-t *attr, 
void * (*fu?tc) (void * )  , void *a%) ; 502 

int pthread-detach (pthread-t tid) ; 504 

void pthread-exit (void *status) ; 504 

int pthread-join(pthread-t tid, void **status) ; 503 

pthread-t pthread-self(void); 503 

int pthread-condattr-destroy(pthread-condattr-t *attr); 172 

int pthread-condattr-getpshared(const pthread-condattr-t 'attr, int *valptr) ; 173 

int pthread-condattr-init(pthread-condattr-t *attr); 172 

int pthread-condattr-setpshared(pthread-condattr-t *attr, int value); 173 

int pthread-cond-broadcast(pthread-cond-t *cptr); 171 

int pthreahcond-destroy(pthread-cond-t *cptr); 172 

int pthread-cond-init(pthread-cond-t *cptr, const pthread-condattr-t *attr); 172 

int pthread-cond-signal(pthread-cond-t *cptr); 167 

int pthread-cond-timedwait(pthread-cond-t *cptr, pthread-mutex-t *mptr, 
const struct timespec *abstime) ; 171 

int pthread-cond-wait(pthread~cond-t *cptr, pthread-mutex-t *mptr); 167 

int 

int 

int 

int 

int 

int 

int 

int 

int 

pthread-mutaxattr-destroy(pthread-mutexattr-t *attr); 

pthread-mutaxattr-getpsharrd ( const pthread-mutexattr-t *attr, int "valptr) ; 

pthread-mutaxattr-init (pthread-mutexattr-t *attr) ; 

pthread-mutaxattr-setpshared(pthread-mutexattr-t *attr, int value); 

pthread-mutex-destroy(pthread-mutex-t *mptr); 

pthread-mutex-init(pthread-mutex-t *mptr, const pthread-mutexattr-t *attr); 

pthread~mutex~lock(pthread~mutex~t *mptr) ; 

pthrea~mutex~trylock(pthread~mutex~t *mptr); 

pthread~mutex~unlock(pthread~mutex~t *mptr);  

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

int 

pthread~rwlockattr~destroy(pthread~rwlockattr~t *attr); 

pthread-rwlockattr-getpshared(const pthread-rwlockattr-t *attr, int *Va!ptr) ; 

pthread-rwlockattr-init(pthread-rwlockattr-t *attr); 

pthread-rwlockattr-setpshared (pthread-rwlockattr-t *attr, int value) ; 

pthread-rwlock_destroy(pthread-rwlock-t *noptr); 

pthread-rwlock-init (pthread-rwlock-t *noptr, 
const pthread-rwlockattr-t *attr); 

pthread~rwlock~rdlock(pthread~rwlock~t *noptr); 

pthread~rwlock~tryrdlock(pthread~rwlock~t *noptr); 

pthread~rwlock~trywr1ock(pthread~rwlock~t *noptr); 

pthrea~rwlock~unlock(pthread~rwlock~t *nu@'); 

pthread~rw1ock~wrlock(pthread~rwlo~k~t * q t r ) ;  
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Preface 

Introduction 

Most nontrivial programs involve some form of IPC or Interprocess Communication. This 
is a natural effect of the design principle that the better approach is to design an applica- 
tion as a group of small pieces that communicate with each other, instead of designing 
one huge monolithic program. Historically, applications have been built in the follow- 
ing ways: 

1. One huge monolithic program that does everything. The various pieces of the 
program can be implemented as functions that exchange information as func- 
tion parameters, function return values, and global variables. 

2. Multiple programs that communicate with each other using some form of IPC. 
Many of the standard Unix tools were designed in this fashion, using shell 
pipelines (a form of IPC) to pass information from one program to the next. 

3. One program comprised of multiple threads that communicate with each other 
using some type of IPC. The term IPC describes this communication even 
though it is between threads and not between processes. 

Combinations of the second two forms of design are also possible: multiple processes, 
each consisting of one or more threads, involving communication between the threads 
within a given process and between the different processes. 

What I have described is distributing the work involved in performing a given 
application between multiple processes and perhaps among the threads within a pro- 
cess. On a system containing multiple processors (CPUs), multiple processes might be 

xiii 
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able to run at the same time (on different CPUs), or the multiple threads of a given pro- 
cess might be able to run at the same time. Therefore, distributing an application 
among multiple processes or threads might reduce the amount of time required for an 
application to perform a given task. 

This book describes four different forms of IPC in detail: 

1. message passing (pipes, FIFOs, and message queues), 

2. synchronization (mutexes, condition variables, read-write locks, file and record 
locks, and semaphores), 

3. shared memory (anonymous and named), and 

4. remote procedure calls (Solaris doors and Sun RPC). 

This book does not cover the writing of programs that communicate across a computer 
network. This form of communication normally involves what is called the sockets API 
(application program interface) using the TCP/IP protocol suite; these topics are cov- 
ered in detail in Volume 1 of this series [Stevens 19981. 

One could argue that single-host or nonnetworked IPC (the subject of this volume) 
should not be used and instead all applications should be written as distributed appli- 
cations that run on various hosts across a network. Practically, however, single-host IPC 
is often much faster and sometimes simpler than communicating across a network. 
Techniques such as shared memory and synchronization are normally available only on 
a single host, and may not be used across a network. Experience and history have 
shown a need for both nonnetworked IPC (this volume) and IPC across a network 
(Volume 1 of this series). 

This current volume builds on the foundation of Volume 1 and my other four books, 
which are abbreviated throughout this text as follows: 

UNPv1: UNIX Network Programming, Volume 1 [Stevens 19981, 
APUE: Advanced Programming in the UNIX Environment [Stevens 19921, 
TCPv1: TCPIIP Illustrated, Volume 1 [Stevens 19941, 
TCPv2: TCPIIP Illustrated, Volume 2 [Wright and Stevens 19951, and 
TCPv3: TCPIIP Illustrated, Volume 3 [Stevens 19961. 

Although covering IPC in a text with "network programming" in the title might 
seem odd, IPC is often used in networked applications. As stated in the Preface of the 
1990 edition of UNIX Network Programming, "A requisite for understanding how to 
develop software for a network is an understanding of interprocess communication 
(IPC)." 

Changes from the First Edition 

This volume is a complete rewrite and expansion of Chapters 3 and 18 from the 1990 
edition of UNlX Network Programming. Based on a word count, the material has 
expanded by a factor of five. The following are the major changes with this new edi- 
tion: 



UNIX Network Programming Preface xv 

In addition to the three forms of "System V IPC" (message queues, semaphores, 
and shared memory), the newer Posix functions that implement these three 
types of IPC are also covered. (I say more about the Posix family of standards in 
Section 1.7.) In the coming years, I expect a movement to the Posix IPC func- 
tions, which have several advantages over their System V counterparts. 

The Posix functions for synchronization are covered: mutex locks, condition 
variables, and read-write locks. These can be used to synchronize either threads 
or processes and are often used when accessing shared memory. 

This volume assumes a Posix threads environment (called "Pthreads"), and 
many of the examples are built using multiple threads instead of multiple pro- 
cesses. 

The coverage of pipes, FIFOs, and record locking focuses on their Posix defini- 
tions. 

In addition to describing the IPC facilities and showing how to use them, I also 
develop implementations of Posix message queues, read-write locks, and Posix 
semaphores (all of which can be implemented as user libraries). These imple- 
mentations can tie together many different features (e-g., one implementation of 
Posix semaphores uses mutexes, condition variables, and memory-mapped 1/01 
and highlight conditions that must often be handled in our applications (such as 
race conditions, error handling, memory leaks, and variable-length argument 
lists). Understanding an implementation of a certain feature often leads to a 
greater knowledge of how to use that feature. 

The RPC coverage focuses on the Sun RPC package. I precede this with a 
description of the new Solaris doors API, which is similar to RPC but on a single 
host. This provides an introduction to many of the features that we need to 
worry about when calling procedures in another process, without having to 
worry about any networking details. 

Readers 

This text can be used either as a tutorial on IPC, or as a reference for experienced pro- 
grammers. The book is divided into four main parts: 

message passing, 
synchronization, 
shared memory, and 
remote procedure calls 

but many readers will probably be interested in speafic subsets. Most chapters can be 
read independently of others, although Chapter 2 summarizes many features common 
to all the Posix IPC functions, Chapter 3 summarizes many features common to all the 
System V IPC functions, and Chapter 12 is an introduction to both Posix and System V 
shared memory. All readers should read Chapter 1, especially Section 1.6, which 
describes some wrapper functions used throughout the text. The Posix IPC chapters are 
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independent of the System V IPC chapters, and the chapters on pipes, FIFOs, and record 
locking belong to neither camp. The two chapters on RPC are also independent of the 
other IPC techniques. 

To aid in the use as a reference, a thorough index is provided, along with sum- 
maries on the end papers of where to find detailed descriptions of all the functions and 
structures. To help those reading topics in a random order, numerous references to 
related topics are provided throughout the text. 

Source Code and Errata Availability 

The source code for all the examples that appear in this book is available from the 
author's home page (listed at the end of this Preface). The best way to learn the IPC 
techniques described in this book is to take these programs, modify them, and enhance 
them. Actually writing code of this form is the only way to reinforce the concepts and 
techniques. Numerous exercises are also provided at the end of each chapter, and most 
answers are provided in Appendix D. 

A current errata for this book is also available from the author's home page. 

Acknowledgments 

Although the author's name is the only one to appear on the cover, the combined effort 
of many people is required to produce a quality text book. First and foremost is the 
author's family, who put up with the long and weird hours that go into writing a book. 
Thank you once again, Sally, Bill, Ellen, and David. 

My thanks to the technical reviewers who provided invaluable feedback (135 
printed pages) catching lots of errors, pointing out areas that needed more explanation, 
and suggesting alternative presentations, wording, and coding: Gavin Bowe, Allen 
Briggs, Dave Butenhof, Wan-Teh Chang, Chris Cleeland, Bob Friesenhahn, Andrew 
Gierth, Scott Johnson, Marty Leisner, Larry McVoy, Craig Metz, Bob Nelson, Steve Rago, 
Jim Reid, Swamy K. Sitarama, Jon C. Snader, Ian Lance Taylor, Rich Teer, and Andy 
Tucker. 

The following people answered email questions of mine, in some cases many ques- 
tions, all of which improved the accuracy and presentation of the text: David Bausum, 
Dave Butenhof, Bill Gallmeister, Mukesh Kacker, Brian Kernighan, Larry McVoy, Steve 
Rago, Keith Skowran, Bart Smaalders, Andy Tucker, and John Wait. 

A special thanks to Larry Rafsky at GSquared, for lots of things. My thanks as 
usual to the National Optical Astronomy Observatories (NOAO), Sidney Wolff, Richard 
Wolff, and Steve Crandi, for providing access to their networks and hosts. Jim Bound, 
Matt Thomas, Mary Clouter, and Barb Glover of Digital Equipment Corp. provided the 
Alpha system used for most of the examples in this text. A subset of the code in this 
book was tested on other Unix systems: my thanks to Michael Johnson of Red Hat Soft- 
ware for providing the latest releases of Red Hat Linux, and to Dave Marquardt and 
Jessie Haug of IBM Austin for an RS/6000 system and access to the latest releases of 
AIX. 



UNIX Network Programming Preface xvii 

My thanks to the wonderful staff at Prentice Hall-my editor Mary Franz, along 
with Noreen Regina, Sophie Papanikolaou, and Patti Guerrieri-for all their help, espe- 
cially in bringing everything together on a tight schedule. 

Colophon 

I produced camera-ready copy of the book (Postscript), which was then typeset for the 
final book. The formatting system used was James Clark's wonderful groff package, 
on a SparcStation running Solaris 2.6. (Reports of troff's death are greatly exaggerated.) 
I typed in all 138,897 words using the vi editor, created the 72 illustrations using the 
gpic program (using many of Gary Wright's macros), produced the 35 tables using the 
gtbl program, performed all the indexing (using a set of awk scripts written by Jon 
Bentley and Brian Kernighan), and did the final page layout. Dave Hanson's loom pro- 
gram, the GNU indent program, and some scripts by Gary Wright were used to 
include the 8,046 lines of C source code in the book. 

I welcome email from any readers with comments, suggestions, or bug fixes. 

Tucson, Arizona 
July 1998 

W. Richard Stevens 
rstevens@kohala.com 

http://www.kohala.com/-rstevens 



Part  7 

Introduction 



Introduction 

1 .I lntroduction 

IPC stands for interprocess communication. Traditionally the term describes different 
ways of message passing between different processes that are running on some operating 
system. This text also describes numerous forms of synchronization, because newer 
forms of communication, such as shared memory, require some form of synchronization 
to operate. 

In the evolution of the Unix operating system over the past 30 years, message pass- 
ing has evolved through the following stages: 

Pipes (Chapter 4) were the first widely used form of IPC, available both within 
programs and from the shell. The problem with pipes is that they are usable 
only between processes that have a common ancestor (i.e., a parent-child rela- 
tionship), but this was fixed with the introduction of named pipes or FIFOs (Chap- 
ter 4). 

System V message queues (Chapter 6)  were added to System V kernels in the early 
1980s. These can be used between related or unrelated processes on a given 
host. Although these are still referred to with the "System V" prefix, most ver- 
sions of Unix today support them, regardless of whether their heritage is 
System V or not. 

When describing Unix processes, the term related means the processes have some ancestor 
in common. This is another way of saying that these related processes were generated 



4 Introduction Chapter 1 

from this ancestor by one or more forks. A common example is when a process calls 
fork  twice, generating two child processes. We then say that these two children are 
related. Similarly, each child is related to the parent. With regard to IPC, the parent can 
establish some form of IPC before calling fork  (a pipe or message queue, for example), 
knowing that the two children will inherit this IPC object across the fork. We talk more 
about the inheritance of the various IPC objects with Figure 1.6. We must also note that 
all Unix processes are theoretically related to the init process, which starts everything 
going when a system is bootstrapped. Practically speaking, however, process relation- 
ships start with a login shell (called a session) and all the processes generated by that shell. 
Chapter 9 of APUE talks about sessions and process relationships in more detail. 

Throughout the text, we use indented, parenthetical notes such as this one to describe 
implementation details, historical points, and minutiae. 

Posix message queues (Chapter 5) were added by the Posix realtime standard 
(1003.1b-1993, which we say more about in Section 1.7). These can be used 
between related or unrelated processes on a given host. 

Remote Procedure Calls (RPCs, which we cover in Part 5) appeared in the 
mid-1980s as a way of calling a function on one system (the server) from a pro- 
gram on another system (the client), and was developed as an alternative to 
explicit network programming. Since information is normally passed between 
the client and server (the arguments and return values of the function that is 
called), and since RPC can be used between a client and server on the same host, 
W C  can be considered as another form of message passing. 

Looking at the evolution of the various forms of synchronization provided by Unix 
is also interesting. 

Early programs that needed some form of synchronization (often to prevent 
multiple processes from modifying the same file at the same time) used quirks of 
the filesystem, some of which we talk about in Section 9.8. 

Record locking (Chapter 9) was added to Unix kernels in the early 2980s and then 
standardized by Posix.1 in 1988. 

System V semaphores (Chapter 11) were added along with System V shared memory 
(Chapter 14) at the same time System V message queues were added (early 
1980s). Most versions of Unix support these today. 

Posix semaphores (Chapter 10) and Posix shared memory (Chapter 13) were also 
added by the Posix realtime standard (1003.1b-1993, which we mentioned with 
regard to Posix message queues earlier). 

Mutexes and condition variables (Chapter 7) are two forms of synchronization 
defined by the Posix threads standard (1003.1~-1995). Although these are often 
used for synchronization between threads, they can also provide synchroniza- 
tion between different processes. 

Read-write locks (Chapter 8) are an additional form of synchronization. These 
have not yet been standardized by Posix, but probably will be soon. 
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1.2 Processes, Threads, and the Sharing of Information 

In the traditional Unix programming model, we have multiple processes running on a 
system, with each process having its own address space. Information can be shared 
between Unix processes in various ways. We summarize these in Figure 1.1. 

filesystem e 
Figure 1.1 Three ways to share information behveen Unix processes. 

1. The two processes on the left are sharing some information that resides in a file 
in the filesystem. To access this data, each process must go through the kernel 
(e.g., read, wri te ,  lseek, and the like). Some form of synchronization is 
required when a file is being updated, both to protect multiple writers from each 
other, and to protect one or more readers from a writer. 

2. The two processes in the middle are sharing some information that resides 
within the kernel. A pipe is an example of this type of sharing, as are System V 
message queues and System V semaphores. Each operation to access the shared 
information now involves a system call into the kernel. 

3. The two processes on the right have a region of shared memory that each pro- 
cess can reference. Once the shared memory is set up by each process, the pro- 
cesses can access the data in the shared memory without involving the kernel at 
all. Some form of synchronization is required by the processes that are sharing 
the memory. 

Note that nothing restricts any of the IPC techniques that we describe to only two pro- 
cesses. Any of the techniques that we describe work with any number of processes. We 
show only two processes in Figure 1.1 for simplicity. 

Threads 

Although the concept of a process within the Unix system has been used for a long time, 
the concept of multiple threads within a given process is relatively new. The Posix.1 
threads standard (called "Pthreads") was approved in 1995. From an IPC perspective, 
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all the threads within a given process share the same global variables (e.g., the concept 
of shared memory is inherent to this model). What we must worry about, however, is 
synchronizing access to this global data among the various threads. Indeed, synchro- 
nization, though not explicitly a form of IPC, is used with many forms of IPC to control 
access to some shared data. 

In this text, we describe IPC between processes and IPC between threads. We 
assume a threads environment and make statements of the form "if the pipe is empty, 
the calling thread is blocked in its call to read until some thread writes data to the 
pipe." If your system does not support threads, you can substitute "process" for 
"thread in this sentence, providing the classic Unix definition of blocking in a read of 
an empty pipe. But on a system that supports threads, only the thread that calls read 
on an empty pipe is blocked, and the remaining threads in the process can continue to 
execute. Writing data to this empty pipe can be done by another thread in the same 
process or by some thread in another process. 

Appendix B summarizes some of the characteristics of threads and the five basic 
Pthread functions that are used throughout this text. 

1.3 Persistence of IPC Objects 

We can define the persistence of any type of IPC as how long an object of that type 
remains in existence. Figure 1.2 shows three types of persistence. 

process-persistent IPC: 
exists until last process with 
IPC object open closes the object 

kernel-persistent IPC: 
exists until kernel reboots 
or IPC object is explicitly deleted 

filesystem-persistent IPC: 
exists until IPC object is 
explicitly deleted 

Figure 1.2 Persistence of IPC objects. 

1. A process-persistent IPC object remains in existence until the last process that 
holds the object open closes the object. Examples are pipes and FIFOs. 

2. A kernel-persistent IPC object remains in existence until the kernel reboots or 
until the object is explicitly deleted. Examples are System V message queues, 
semaphores, and shared memory. Posix message queues, semaphores, and 
shared memory must be at least kernel-persistent, but may be file- 
system-persistent, depending on the implementation. 
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3. A filesystem-persistent IPC object remains in existence until the object is explicitly 
deleted. The object retains its value even if the kernel reboots. Posix message 
queues, semaphores, and shared memory have this property, if they are imple- 
mented using mapped files (not a requirement). 

We must be careful when defining the persistence of an IPC object because it is not 
always as it seems. For example, the data within a pipe is maintained within the kernel, 
but pipes have process persistence and not kernel persistence-after the last process 
that has the pipe open for reading closes the pipe, the kernel discards all the data and 
removes the pipe. Similarly, even though FIFOs have names within the filesystem, they 
also have process persistence because all the data in a FIFO is discarded after the last 
process that has the FIFO open closes the FIFO. 

Figure 1.3 summarizes the persistence of the IPC objects that we describe in this 
text. 

Type of IPC 

Pipe 
FIFO 
Pcsix mutex 
Posix condition variable 
Posix read-write lock 
f cn t l  record locking 
Posix message queue 
Pcsix named semaphore 
Pcsix memory-based semaphore 
Posix shared memorv 
System V message queue 
System V semaphore 
System V shared memory 
TCP socket 
UDP socket 
Unix domain socket 

Persistence 

process 
process 
process 
process 
process 
process 
kernel 
kernel 
process 
kernel 
kernel 
kernel 
kernel 
process 
process 
process 

Figure 1.3 Persistence of various types of IPC objects. 

Note that no type of IPC has filesystem persistence, but we have mentioned that the 
three types of Posix IPC may, depending on the implementation. Obviously, writing 
data to a file provides filesystem persistence, but this is normally not used as a form of 
IPC. Most forms of IPC are not intended to survive a system reboot, because the pro- 
cesses do not survive the reboot. Requiring filesystem persistence would probably 
degrade the performance for a given form of IPC, and a common design goal for IPC is 
high performance. 

1.4 Name Spaces 

When two unrelated processes use some type of IPC to exchange information between 
themselves; the IPC object must have a name or identifier of some form so that one 
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process (often a server) can create the IPC object and other processes (often one or more 
clients) can specify that same IPC object. 

Pipes do not have names (and therefore cannot be used between unrelated pro- 
cesses), but FIFOs have a Unix pathname in the filesystem as their identifier (and can 
therefore be used between unrelated processes). As we move to other forms of IPC in 
the following chapters, we use additional naming conventions. The set of possible 
names for a given type of IPC is called its name space. The name space is important, 
because with all forms of IPC other than plain pipes, the name is how the client and 
server connect with each other to exchange messages. 

Figure 1.4 summarizes the naming conventions used by the different forms of IPC. 

Posix m u t e  I .  
Posix condition variable 
Posix read-write lock 

1 f c n t l  record locking 

Type of IPC 

Pipe 
FIFO 

Posix message queue mqd-t value 
Posix named semaphore I Posix POsixIPcname IPC name 1 sem-t pointer 

Name space 
to open or create 

(no name) 
pathname 

(no name) 
(no name) 
(no name) 
pathname 

Figure 1.4 Name spaces for the various forms of IPC. 

Identification 
after IPC opened 

descriptor 
descriutor 

p thread-mutex-t ptr 
pthread-cond-t ptr 

pthread-rwlock-tptr 
descriptor 

1 Posix memory-based semaphore 
Posix shared memory 

System V message queue 
System V semaphore 
System V shared memory 

~ Zk 
TCP socket 

1 E z n  socket 

Unix 98 
Posix.1- 
1996 

. 

We also indicate which forms of IPC are standardized by the 1996 version of Posix.1 and 
Unix 98, both of which we say more about in Section 1.7. For comparison purposes, we 
include three types of sockets, which are described in detail in UNPvl. Note that the 
sockets API (application program interface) is being standardized by the Posix.lg work- 
ing group and should eventually become part of a future Posix.1 standard. 

Even though Posix.1 standardizes semaphores, they are an optional feature. Fig- 
ure 1.5 summarizes which features are specified by Posix.1 and Unix 98. Each feature is 
mandatory, not defined, or optional. For the optional features, we specify the name of 
the constant (e.g., -POSIX-THREADS) that is defined (normally in the <unistd.h> 
header) if the feature is supported. Note that Unix 98 is a superset of Posix.1. 

(no name) 
Posix IPC name 

key-t key 
key-t key 
key-t key 
pathname 

progratdversion 

IF addr & TCP port 
IP addr & UDP port 

pathname 

sem-t pointer 
descriptor 

System V IPC identifier 
System V IPC identifier 
System V IPC identifier 

descriptor 
RPC handle 

descriptor 
descriptor 
descriptor 

.I g 
% 
.If3 
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Type of IPC - - 
Pipe 
FIFO 

Posix mutex 
Posix condition variable 

processshared mutex/CV 
Pcsix read-write lock 

Posix.1 1996 

f cn t  1 record locking 

l'osix message queue 
Pcsix semaphores 

System V semaphore (not defined) I mandatory 
System V shared memory (not defined) mandatow 

Unix 98 

mandatory 
mandatory 

- POSIX-THREADS 
- POSIX-THREADS 

-POSIX-THREAD-PROCESS-SHARED 
(not defined) 

Posix shared memory I - POSIX-SHARED-MEMORY-OBJECTS I SOPEN-REALTIME 

mandatory 
mandatory 

mandatory 
mandatory 
mandatory 
mandatory 

mandatory 

- POSIX-MESSAGE-PASSING 
- POSIX-SEMAPHORES 

System V message queue 

mandatory 

- XOPEN-REALTIME 
- XOPEN-REALTIME 

Doors 
Sun RPC 

map 

Effect of fork, exec, and exit on IPC Objects 

(not defined) 

I Realtime signals 

We need to understand the effect of the fork, exec, and -exit  functions on the vari- 
ous forms of IPC that we discuss. (The latter is called by the e x i t  function.) We sum- 
marize this in Figure 1.6. 

Most of these features are described later in the text, but we need to make a few 
points. First, the calling of fork from a multithreaded process becomes messy with 
regard to unnamed synchronization variables (mutexes, condition variables, read-write 
locks, and memory-based semaphores). Section 6.1 of [Butenhof 19971 provides the 
details. We simply note in the table that if these variables reside in shared memory and 
are created with the process-shared attribute, then they remain accessible to any thread 
of any process with access to that shared memory. Second, the three forms of System V 
IPC have no notion of being open or closed. We will see in Figure 6.8 and Exercises 11.1 
and 14.1 that all we need to know to access these three forms of IPC is an identifier. So 
these three forms of IPC are available to any process that knows the identifier, although 
some special handling is indicated for semaphores and shared memory. 

mandatory 

(not defined) 
(not defined) 

- POSIX-MAPPED-FILES or 
- POSIX-SHARED-MEMORY-OBJECTS 

(not defined) 
(not defined) 

mandatory 

Figure 1.5 Availability of the various forms of IPC. 

- POSIX-REALTIME-SIGNALS - XOPEN-REALTIME 
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Type of IPC fork  

Pipes child gets copies of all 
and parent's open descriptors 
FIFOs 
Posix child gets copies of all 
message parent's open message 
aueues aueue descrivtors 
System V 1 1  no effect 
message 
queues 

Posix shared if in shared 
mutexes and memory and process- ==+==== 
condition I I shared attribute 
variables 

read-write memory and process- 
locks shared attribute 

Posix all open in parent remain 
named open in child 
sema~hores 
System V I I all sernad j values in child 
semaphores are set to 0 I I 
fcntl locks held by parent are 
record not inherited by child 
locking 

memory mappings in 
memory parent are retained by 
mappings 11  child 
Posix I I memory mappings in 
shared parent ire retained by 
memory /I child 
System V attached shared memory 
shared segments remain attached 
memory by child 
Doors child gets copies of all 

parent's open descriptors 
but only parent is a server 
for door invocations on 
door descriptors 

exec 

all open descriptors remain 
open unless descriptor's 
FD CLOEXEC bit set 
all open message queue 
descriptors are closed 

no effect 

vanishes unless in shared 
memory that stays open 
and process-shared 
attribute 
vanishes unless in shared 
memory that stays open 
and process-shared 
attribute 
vanishes unless in shared 
memory that stays open 
and process-shared 
attribute 

any open are closed 

all semad j values carried 
over to new program 

locks are unchanged as 
long as descriptor remains 

"Pen 
memory mappings are 
unmapped 

memory mappings are 
unmapped 

attached shared memory 
segments are detached 

all door descriptors should 
be closed because they are 
created with FD-CLOEXEC 
bit set 

- exit 

all open descriptors closed; 
all data removed from pipe 
or FIFO on last close 
all open message queue 
descriptors are closed 

no effect 

vanishes unless in shared 
memory that stays open 
and process-shared 
attribute 
vanishes unless in shared 
memory that stays open 
and process-shared 
attribute 
vanishes unless in shared 
memory that stays open 
and process-shared 
attribute 
any open are closed 

all semad j values are 
added to corresponding 
semaphore value 
all outstanding locks 
owned by process are 
unlocked 

memory mappings are 
unmapped 

memory mappings are 
unmapped 

attached shared memory 
segments are detached 

all open descriptors closed 

Figure 1.6 Effect of calling fork, exec, and -exit on IPC. 
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1.6 Error Handling: Wrapper Functions 

In any real-world program, we must check every function call for an error return. Since 
terminating on an error is the common case, we can shorten our programs by defining a 
wrapper function that performs the actual function call, tests the return value, and termi- 
nates on an error. The convention we use is to capitalize the name of the function, as in 

Sern jos t  ( p t r )  ; 

Our wrapper function is shown in Figure 1.7. 

lib/wrapunix.c 
387 void  
388 Sem_post(sem-t *sem) 
389 { 

390 i f  (sern_post(sem) == -1) 
391 err-sys("sem_post e r r o r " ) ;  
392 ) 

lib/wrapunix.c 
Figure 1.7 Our wrapper function for the s e m s o s t  function. 

Whenever you encounter a function name in the text that begins with a capital let- 
ter, that is a wrapper function of our own. It calls a function whose name is the 
same but begins with the lowercase letter. The wrapper function always terminates 
with an error message if an error is encountered. 

When describing the source code that is presented in the text, we always refer to the 
lowest-level function being called (e.g., semjost) and not the wrapper function 
(e.g., Semjost). Similarly the index always refers to the lowest level function 
being called, and not the wrapper functions. 

The format of the source code just shown is used throughout the text. Each nonblank line is 
numbered. The text describing portions of the code begins with the starting and ending line 
numbers in the left margin. Sometimes the paragraph is preceded by a short descriptive bold 
heading, providing a summary statement of the code being described. 

The horizontal rules at the beginning and end of the code fragment specify the source code 
filename: the file wrapunix. c in the directory l i b  for this example. Since the source code for 
all the examples in the text is freely available (see the Preface), you can locate the appropriate 
source file. Compiling, running, and especially modifying these programs while reading this 
text is an excellent way to learn the concepts of interprocess communications. 

Although these wrapper functions might not seem like a big savings, when we dis- 
cuss threads in Chapter 7, we will find that the thread functions do not set the standard 
Unix errno variable when an error occurs; instead the errno value is the return value 
of the function. This means that every time we call one of the pthread functions, we 
must allocate a variable, save the return value in that variable, and then set errno to 
this value before calling our err-sys function (Figure C.4). To avoid cluttering the 
code with braces, we can use C's comma operator to combine the assignment into 
errno and the call of err-sys into a single statement, as in the following: 
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i n t  n; 

i f  ( (n  = pthread~mutex~lock(&ndone~mutex)) != 0)  
e r rno  = n ,  err-sys("pthread~mutex~1ock e r r o r " ) ;  

Alternately, we could define a new error function that takes the system's error number 
as an argument. But we can make this piece of code much easier to read as just 

by defining our own wrapper function, shown in Figure 1.8. 

1iblwrappthread.c 
125 void 
126 ~thread~mutex~lock(pthread~mutex~t *mptr) 
127 { 

12 8 i n t  n; 

129 if ( (n  = pthread-mutex-lock(mptr)) == 0)  
130 re tu rn ;  
131 e r rno  = n; 
132 err~sys("pthread~mutex~1ock e r r o r " ) ;  

Figure 1.8 Our wrapper function for pthread-mutex-lock. 

With careful C coding, we could use macros instead of functions, providing a little run-time 
efficiency, but these wrapper functions are rarely, if ever, the performance bottleneck of a pro- 
gram. 

Our choice of capitalizing the first character of the function name is a compromise. Many 
other styles were considered: prefixing the function name with an e (as done on p. 182 of 
[Kernighan and Pike 1984]), appending -e to the function name, and so on. Our style seems 
the least distracting while still providing a visual indication that some other function is really 
being called. 

This technique has the side benefit of checking for errors from functions whose error returns 
are often ignored: c l o s e  and pthread-mutex-lock, for example. 

Throughout the rest of this book, we use these wrapper functions unless we need to 
check for an explicit error and handle it in some form other than terminating the pro- 
cess. We do not show the source code for all our wrapper functions, but the code is 
freely available (see the Preface). 

Unix errno Value 

When an error occurs in a Unix function, the global variable errno is set to a positive 
value, indicating the type of error, and the function normally returns -1. Our err-sys 
function looks at the value of errno and prints the corresponding error message string 
(e.g., "Resource temporarily unavailable" if errno equals EAGAIN). 

The value of errno is set by a function only if an error occurs. Its value is unde- 
fined if the function does not return an error. All the positive error values are constants 
with an all-uppercase name beginning with E and are normally defined in the 
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<sys /errno. h> header. No error has the value of 0. 
With multiple threads, each thread must have its own errno variable. Providing a 

per-thread errno is handled automatically, although this normally requires telling the 
compiler that the program being compiled must be reentrant. Specdying something 
like -D-REENTRANT or -D-POSIX-C_SOURCE=19 9 5 0 6L to the compiler is typically 
required. Often the <errno. h> header defines errno as a macro that expands into a 
function call when -REENTRANT is defined, referencing a per-thread copy of the error 
variable. 

Throughout the text, we use phrases of the form "the m ~ s e n d  function returns 
EMSGSIZE" as shorthand to mean that the function returns an error (typically a return 
value of -1) with errno set to the specified constant. 

1.7 Unix Standards 

Most activity these days with regard to Unix standardization is being done by Posix and 
The Open Group. 

Posix is an acronym for "Portable Operating System Interface." Posix is not a single 
standard, but a family of standards being developed by the Institute for Electrical and 
Electronics Engineers, Inc., normally called the IEEE. The Posix standards are also 
being adopted as international standards by IS0 (the International Organization for 
Standardization) and IEC (the International Electrotechnical Commission), called 
ISO/IEC. The Posix standards have gone through the following iterations. 

IEEE Std 1003.1-1988 (317 pages) was the first of the Posix standards. It specified 
the C language interface into a Unix-like kernel covering the following areas: process 
primitives (fork, exec, signals, timers), the environment of a process (user IDS, pro- 
cess groups), files and directories (all the 1 / 0  functions), terminal I/O, the system 
databases (password file and group file), and the t a r  and cpio archive formats. 

The first Posix standard was a trial use version in 1986 known as "IEEEIX." The name Posix 
was suggested by Richard Stallman. 

IEEE Std 1003.1-1990 (356 pages) was next and it was also International Standard 
ISO/IEC 9945-1: 1990. Minimal changes were made from the 1988 version to the 
1990 version. Appended to the title was "Part 1: System Application Program Inter- 
face (API) [C Language]" indicating that this standard was the C language API. 

IEEE Std 1003.2-1992 was published in two volumes, totaling about 1300 pages, and 
its title contained "Part 2: Shell and Utilities." This part defines the shell (based on 
the System V Bourne shell) and about 100 utilities (programs normally executed 
from a shell, from awk and basename to v i  and yacc). Throughout this text, we 
refer to this standard as Posix.2. 
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IEEE Std 1003.1b-1993 (590 pages) was originally known as IEEE P1003.4. This was 
an update to the 1003.1-1990 standard to include the realtime extensions developed 
by the P1003.4 working group: file synchronization, asynchronous I/O, semaphores, 
memory management (mmap and shared memory), execution scheduling, clocks and 
timers, and message queues. 

IEEE Std 1003.1,1996 Edition [IEEE 19961 (743 pages) includes 1003.1-1990 (the base 
API), 1003.1b-1993 (realtime extensions), 1003.1~-1995 (Pthreads), and 1003.1i-1995 
(technical corrections to 1003.lb). This standard is also called ISO/IEC 9945-1: 1996. 
Three chapters on threads were added, along with additional sections on thread syn- 
chronization (mutexes and condition variables), thread scheduling, and synchroniza- 
tion scheduling. Throughout this text, we refer to this standard as Posix.1. 

Over one-quarter of the 743 pages are an appendix titled "Rationale and Notes." This ratio- 
nale contains historical information and reasons why certain features were included or omit- 
ted. Often the rationale is as informative as the official standard. 

Unfortunately, the IEEE standards are not freely available on the Internet. Ordering informa- 
tion is given in the Bibliography entry for IIEEE 19961. 

Note that semaphores were defined in the realtime standard, separately from mutexes and 
condition variables (which were defined in the Pthreads standard), which accounts for some of 
the differences that we see in their APIs. 

Finally, note that read-write locks are not (yet) part of any Posix standard. We say more about 
this in Chapter 8. 

Sometime in the future, a new version of IEEE Std 1003.1 should be printed to 
include the P1003.lg standard, the networking APIs (sockets and XTI), which are 
described in UNPvl. 

The Foreword of the 1996 Posix.1 standard states that ISO/IEC 9945 consists of the 
following parts: 

Part 1: System application program interface (API) [C language], 
Part 2: Shell and utilities, and 
Part 3: System administration (under development). 

Parts 1 and 2 are what we call Posix.1 and Posix.2. 
Work on all of the Posix standards continues and it is a moving target for any book 

that attempts to cover it. The current status of the various Posix standards is available 
fromhttp://www.pasc.org/standing/sdll.html. 

The Open Group 

The Open Group was formed in 1996 by the consolidation of the X/Open Company 
(founded in 1984) and the Open Software Foundation (OSF, founded in 1988). It is an 
international consortium of vendors and end-user customers from industry, govem- 
ment, and academia. Their standards have gone through the following iterations: 
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X/Open published the XIOpen Portability Guide, Issue 3 (XPG3) in 1989. 

Issue 4 was published in 1992 followed by Issue 4, Version 2 in 1994. This latest ver- 
sion was also known as "Spec 1170," with the magic number 1170 being the sum of 
the number of system interfaces (9261, the number of headers (70), and the number 
of commands (174). The latest name for this set of specifications is the "X/Open Sin- 
gle Unix Specification," although it is also called "Unix 95." 

In March 1997, Version 2 of the Single Unix Specification was announced. Products 
conforming to this specification can be called "Unix 98," which is how we refer to 
this specification throughout this text. The number of interfaces required by Unix 98 
increases from 1170 to 1434, although for a workstation, this jumps to 3030, because 
it includes the CDE (Common Desktop Environment), which in turn requires the X 
Window System and the Motif user interface. Details are available in [Josey 19971 
andhttp://www.UNIX-systems.org/version2. 

Much of the Single Unix Specification is freely available on the Internet from this URL. 

Unix Versions and Portability 

Most Unix systems today conform to some version of Posix.1 and Posix.2. We use the 
qualifier "some" because as updates to Posix occur (e.g., the realtime extensions in 1993 
and the Pthreads addition in 1996), vendors take a year or two (sometimes more) to 
incorporate these latest changes. 

Historically, most Unix systems show either a Berkeley heritage or a System V her- 
itage, but these differences are slowly disappearing as most vendors adopt the Posix 
standards. The main differences still existing deal with system administration, one area 
that no Posix standard currently addresses. 

Throughout this text, we use Solaris 2.6 and Digital Unix 4.OB for most examples. 
The reason is that at the time of this writing (late 1997 to early 19981, these were the only 
two Unix systems that supported System V IPC, Posix IPC, and Posix threads. 

1.8 Road Map to IPC Examples in the Text 

Three patterns of interaction are used predominantly throughout the text to illustrate 
various features: 

1. File server: a client-server application in which the client sends the server a 
pathname and the server returns the contents of that file to the client. 

2. Producer<onsumer: one or more threads or processes (producers) place data 
into a shared buffer, and one or more threads or processes (consumers) operate 
on the data in the shared buffer. 
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3. Sequence-number-increment: one or more threads or processes increment a 
shared sequence number. Sometimes the sequence number is in a shared file, 
and sometimes it is in shared memory. 

The first example illustrates the various forms of message passing, whereas the other 
two examples illustrate the various types of synchronization and shared memory. 

To provide a road map for the different topics that are covered in this text, Figures 
1.9, 1.10, and 1.11 summarize the programs that we develop, and the starting figure 
number and page number in which the source code appears. 

1.9 Summary 

IPC has traditionally been a messy area in Unix. Various solutions have been imple- 
mented, none of which are perfect. Our coverage is divided into four main areas: 

1. message passing (pipes, FIFOs, message queues), 
2. synchronization (mutexes, condition variables, read-write locks, semaphores), 
3. shared memory (anonymous, named), and 
4. procedure calls (Solaris doors, Sun RPC). 

We consider IPC between multiple threads in a single process, and between multiple 
processes. 

The persistence of each type of IPC as either can be process-persistent, kernel- 
persistent, or filesystem-persistent, based on how long the IPC object stays in existence. 
When choosing the type of IPC to use for a given application, we must be aware of the 
persistence of that IPC object. 

Another feature of each type of IPC is its name space: how IPC objects are identified 
by the processes and threads that use the IPC object. Some have no name (pipes, 
mutexes, condition variables, read-write locks), some have names in the filesystem 
(FIFOs), some have what we describe in Chapter 2 as Posix IPC names, and some have 
other types of names (what we describe in Chapter 3 as System V IPC keys or identi- 
fiers). Typically, a server creates an IPC object with some name and the clients use that 
name to access the IPC object. 

Throughout the source code in the text, we use the wrapper functions described in 
Section 1.6 to reduce the size of our code, yet still check every function call for an error 
return. Our wrapper functions all begin with a capital letter. 

The IEEE Posix standards-Posix.1 defining the basic C interface to Unix and 
Posix.2 defining the standard commands-have been the standards that most vendors 
are moving toward. The Posix standards, however, are rapidly being absorbed and 
expanded by the commercial standards, notably The Open Group's Unix standards, 
such as Unix 98. 
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Figure 1.9 Different versions of the file server client-server example. 

Figure 

4.8 
4.15 
4.16 
4.18 
4.23 
4.25 
6.9 
6.15 
6.20 

15.18 

I Figure I Page I Description - - 
7.2 1 162 1 Mutex onlv, multiple producers, one consumer 

Page 

47 
53 
55 
57 
62 
68 

141 
144 
148 
381 

Description 

Uses two pipes, parent-child 
Uses popen and c a t  
Uses two FIFOs, parent-child 
Uses two FIFOs, stand-alone server, unrelated client 
Uses FIFOs, stand-alone iterative server, multiple clients 
Uses pipe or FIFO: builds records on top of byte stream 
Uses two System V message queues 
Uses one System V message queue, multiple clients 
Uses one System V message queue per client, multiple clients 
Uses descriptor passing across a door 

7.6 

Figure 1.10 Different versions of the producer-consumer example. 

10.20 
10.21 
10.24 
10.33 

Figure ( Page I Description 

9.1 1 194 1 Seq# in file, nolocking 

10.17 1 236 1 Posix named semaphores, one producer, one consumer 

168 

- 
Seq# in file, f c n t l  locking 
Seq# in file, filesystem locking using open 
Seq# in file, Posix named semaphore locking 
Seq# in mmap shared memory, Posix named semaphore locking 
Seq# in mmap shared memory, Posix memory-based semaphore locking 
Seq# in 4.48%) anonymous shared memory, Posix named semaphore locking 
Seq# in SVR4 /dev/zero shared memory, Posix named semaphore locking 
Seq# in Posix shared memory, Posix memory-based semaphore locking 

Performance measurement: mutex locking between threads 
Performance measurement: read-write locking between threads 
Performance measurement: Posix memory-based semaphore locking between threads 
Performance measurement: Posix named semaphore locking between threads 

. . 
Mutex and condition variable, multiple producers, one consumer 

242 
243 
246 
254 

494 Performance measurement: System V semaphore locking between threads 
496 1 Performance measurement: f c n t l  record locking between threads 
499 Performance measurement: mutex locking between processes 

Posix memory-based semaphores, one producer, one consumer 
Posix memory-based semaphores, multiple producers, one consumer 
Posix memory-based semaphores, multiple producers, multiple consumers 
Posix memory-based semaphores, one producer, one consumer: multiple buffers 

Figure 1.11 Different versions of the sequence-number-increment example. 
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Exercises 

1.1 In Figure 1.1 we show two processes accessing a single file. If both processes are just 
appending new data to the end of the file (a log file perhaps), what kind of synchronization 
is required? 

1.2 Look at your system's <errno.  h> header and see how it defines ermo.  

1.3 Update Figure 1.5 by noting the features supported by the Unix systems that you use. 
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Introduction 

The three types of IPC, 

Posix message queues (Chapter 5), 
Posix semaphores (Chapter lo), and 
Posix shared memory (Chapter 13) 

are collectively referred to as "Posix IPC." They share some similarities in the functions 
that access them, and in the information that describes them. This chapter describes all 
these common properties: the pathnames used for identification, the flags specified 
when opening or creating, and the access permissions. 

A summary of their functions is shown in Figure 2.1. 

IPC Names 

In Figure 1.4, we noted that the three types of Posix IPC use "Posix IPC names" for their 
identification. The first argument to the three functions mq_open, sem-open, and 
s h x o p e n  is such a name, which may or may not be a real pathname in a filesystem. 
All that Posix.1 says about these names is: 

It must conform to existing rules for pathnames (must consist of at most 
PATH-MAX bytes, including a terminating null byte). 

If it begins with a slash, then different calls to these functions all reference the 
same queue. If it does not begin with a slash, the effect is implementation 
dependent. 
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Header I <mqueue.h> I <semaphore.h> I <sys/mman.h> 

Message 
queues 

Functions to create, open, or delete meopen 
m ~ c l o s e  
mq-unlink 

Semaphores Shared 
memory 

The interpretation of additional slashes in the name is implementation defined. 

Functions for control operations 

Functions for IPC operations 

So, for portability, these names must begin with a slash and must not contain any other 
slashes. Unfortunately, these rules are inadequate and lead to portability problems. 

Solaris 2.6 requires the initial slash but forbids any additional slashes. Assuming a 
message queue, it then creates three files in / trnp that begin with . MQ. For example, if 
the argument to mq_open is /queue. 1234, then the three files are 
/tmp/.MQDqueue.1234, /tmp/.MQLqueue.1234, and /tmp/.MQPqueue.1234. 
Digital Unix 4.OB, on the other hand, creates the specified pathname in the filesystem. 

The portability problem occurs if we specify a name with only one slash (as the first 
character): we must have write permission in that directory, the root directory. For 
example, / tmp .12 3 4 abides by the Posix rules and would be OK under Solaris, but 
Digital Unix would try to create this file, and unless we have write permission in the 
root directory, this attempt would fail. If we specify a name of /tmp/test .1234, this 
will succeed on all systems that create an actual file with that name (assuming that the 
/ tmp directory exists and that we have write permission in that directory, which is nor- 
mal for most Unix systems), but fails under Solaris. 

To avoid these portability problems we should always #define the name in a 
header that is easy to change if we move our application to another system. 

This case is one in which the standard tries to be so general (in this case, the realtime standard 
was trying to allow message queue, semaphore, and shared memory implementations all 
within existing Unix kernels and as stand-alone diskless systems) that the standard's solution 
is nonportable. Within Posix, this is called "a standard way of being nonstandard." 

Figure 2.1 Summary of Posix IPC functions. 

m ~ g e t a t t r  
mq-se ta t t r  
m ~ s e n d  
%receive 
mq-notify 

Posix.1 defines the three macros 

S-TYPE1 SMQ ( b ~ f  ) 

S-TYPEISSEM ( b ~ f  ) 

S-TY PEI SSHM ( b ~ f  ) 

sem-wait 
sem-trywait 
s e m s o s t  
sem-getvalue 

f t runcate  
f s t a t  

m a p  
munmap 
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that take a single argument, a pointer to a stat structure, whose contents are filled in 
by the f stat, lstat, or stat functions. These three macros evaluate to a nonzero 
value if the specified IPC object (message queue, semaphore, or shared memory object) 
is implemented as a distinct file type and the stat structure references such a file type. 
Otherwise, the macros evaluate to 0. 

Unfortunately, these macros are of little use, since there is no guarantee that these three types 
of IPC are implemented using a distinct file type. Under Solaris 2.6, for example, all three 
macros always evaluate to 0. 

All the other macros that test for a given file type have names beginning with S-1s and their 
single argument is the st-mode member of a s t a t  structure. Since these three new macros 
have a different argument, their names were changed to begin with S-TYPEIS. 

px-ipc-name Function 

Another solution to this portability problem is to define our own function named 
px-ipc-name that prefixes the correct directory for the location of Posix IPC names. 

I #include "unpipc.h" 
I 
I 
I char  *px-ipcpame(const char  *name); 
I 

This is the notation we use for functions of our own throughout this book that are not standard 
system functions: the box around the function prototype and return value is dashed. The 
header that is included at the beginning is usually our unpipc . h header (Figure C.1). 

The name argument should not contain any slashes. For example, the call 

px-ipc-name ( " t e s t l "  ) 

returns a pointer to the string /test1 under Solaris 2.6 or a pointer to the string 
/ tmp / tes t 1 under Digital Unix 4.OB. The memory for the result string is dynamically 
allocated and is returned by calling free. Additionally, the environment variable 
PX-IPC-NAME can override the default directory. 

Figure 2.2 shows our implementation of this function. 

This may be your first encounter with snpr in t f .  Lots of existing code calls s p r i n t f  instead, 
but s p r i n t f  cannot check for overflow of the destination buffer. snpr in t f ,  on the other 
hand, requires that the second argument be the size of the destination buffer, and this buffer 
will not be overflowed. Providing input that intentionally overflows a program's sp r in t f  
buffer has been used for many years by hackers breaking into systems. 

snpr in t f  is not yet part of the ANSI C standard but is being considered for a revision of the 
standard, currently called C9X. Nevertheless, many vendors are providing it as part of the 
standard C library. We use snpr in t f  throughout the text, providing our own version that 
just calls s p r i n t f  when it is not provided. 
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2 char * 
3 px-ipc-name(const char *name) 
4 { 

5 char *dir, "dst, *slash; 

6 if ( (dst = malloc(PATH-MAX) ) == NULL) 
7 return (NULL) ; 

8 / *  can override default directory with environment variable * /  
9 if ( (dir = getenv("PX-IPC-NAME")) == NULL) { 

10 #ifdef POSIX-IPC-PREFIX 
11 dir = POSIX-IPC-PREFIX; / *  from "config.hn * /  
12 #else 
13 dir = " /tmp/" ; 
14 #endif 
15 1 
16 / *  dir must end in a 
17 slash = (dir [strlen (dir) 

/ *  default * /  

18 snprintf (dst, PATH-MAX, "%s%s%sN , dir, slash, name) ; 

19 return (dst) ; / *  caller can free0 this pointer " /  

20 1 
liblpx-ipc-name.c 

Figure 22 Our px-ipc-name function. 

Creating and Opening IPC Channels 

The three functions that create or open an IPC object, mq_open, sem-open, and 
s-open, all take a second argument named oflag that specifies how to open the 
requested object. This is similar to the second argument to the standard open function. 
The various constants that can be combined to form this argument are shown in Fig- 
ure 2.3. 

Description 

read-only 
write-only 
read-write 

Figure 23 Various constants when opening or creating a Posix IPC object. 

create if it does not already exist 
exclusive create 

nonblocking mode 
truncate if it alreadv exists 

The first three rows specify how the object is being opened: read-only, write-only, or 
read-write. A message queue can be opened in any of the three modes, whereas none 

m ~ o p e n  

0-RDONLY 
0-WRONLY 
0-RDWR 

0-CREAT 
0-EXCL 

0-NONBLOCK 

sem-open shxopen 

0-RDONLY 

0-RDWR 

0-CREAT 
0-EXCL 

0-CREAT 
0-EXCL 

0-TRUNC 
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of these three constants is specified for a semaphore (read and write access is required 
for any semaphore operation), and a shared memory object cannot be opened write- 
only. 

The remaining 0-xxx flags in Figure 2.3 are optional. 

0-CREAT Create the message queue, semaphore, or shared memory object if it 
does not already exist. (Also see the 0-EXCL flag, which is 
described shortly.) 

When creating a new message queue, semaphore, or shared mem- 
ory object at least one additional argument is required, called mode. 
This argument specifies the permission bits and is formed as the bit- 
wise-OR of the constants shown in Figure 2.4. 

Figure 2.4 mode constants when a new IPC object is created. 

These constants are defined in the <sys/ stat. h> header. The 
specified permission bits are modified by the fde mode creation mask 
of the process, which can be set by calling the umask function 
(pp. 83-85 of APUE) or by using the shell's umask command. 

As with a newly created file, when a new message queue, 
semaphore, or shared memory object is created, the user ID is set to 
the effective user ID of the process. The group ID of a semaphore or 
shared memory object is set to the effective group ID of the process 
or to a system default group ID. The group ID of a new message 
queue is set to the effective group ID of the process. (Pages 77-78 of 
APUE talk more about the user and group IDS.) 

This difference in the setting of the group ID between the three types of Posix 
IPC is strange. The group ID of a new file created by open is either the effec- 
tive group ID of the process or the group ID of the directory in which the file is 
created, but the IPC functions cannot assume that a pathname in the filesystem 
is created for an IPC object. 

0-EXCL If this flag and 0-CREAT are both specified, then the function creates 
a new message queue, semaphore, or shared memory object only if 
it does not already exist. If it already exists, and if 0-CREAT I 
0-EXCL is specified, an error of EEXIST is returned. 
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The check for the existence of the message queue, semaphore, or 
shared memory object and its creation (if it does not already exist) 
must be atomic with regard to other processes. We will see two simi- 
lar flags for System V IPC in Section 3.4. 

0-NONBLOCK This flag makes a message queue nonblocking with regard to a read 
on an empty queue or a write to a full queue. We talk about this 
more with the m c r e c e i v e  and m c s e n d  functions in Section 5.4. 

O-TRUNC If an existing shared memory object is opened read-write, this flag 
specifies that the object be truncated to 0 length. 

Figure 2.5 shows the actual logic flow for opening an IPC object. We describe what we 
mean by the test of the access permissions in Section 2.4. Another way of looking at 
Figure 2.5 is shown in Figure 2.6. 

start here 
OK 

create new object 

no 

system tables full ? 
error return, 

er rno = ENOSPC 

new object 
is created 

does object no no error return, 
0-CREAT set ? 

already exist ? - errno = ENOENT 

are both 0-CREAT yes error return, 
and 0-EXCL set ? 
' errno = EEXIST 

existing 
object is no 

referenced 
are the access no error return, 

permissions OK ? 
' errno = EACCES 

OK 

Figure 25 Logic for opening or creating an IPC object. 

Figure 2.6 Logic for creating or opening an IPC object. 

oflag argument 

no special flags 
0-CREAT 

0-CREAT I 0-EXCL 

Object does not exist 

error, e r rno = ENOENT 
OK, creates new object 
OK, creates new object 

Object already exists 

OK, references existing object 
OK, references existing object 

error, e r rno  = EEXIST 



Section 2.4 IPC Permissions 25 

Note that in the middle line of Figure 2.6, the 0-CREAT flag without 0-EXCL, we do not 
get an indication whether a new entry has been created or whether we are referencing 
an existing entry. 

2.4 IPC Permissions 

A new message queue, named semaphore, or shared memory object is created by 
mcopen, sem-open, or shm-open when the oflag argument contains the 0-CREAT 
flag. As noted in Figure 2.4, permission bits are associated with each of these forms of 
IPC, similar to the permission bits associated with a Unix file. 

When an existing message queue, semaphore, or shared memory object is opened 
by these same three functions (either 0-CREAT is not specified, or 0-CREAT is specified 
without O-EXCL and the object already exists), permission testing is performed based 
on 

1. the permission bits assigned to the IPC object when it was created, 

2. the type of access being requested (0-RDONLY, 0-WRONLY, or 0-RDWR), and 

3. the effective user ID of the calling process, the effective group ID of the calling 
process, and the supplementary group IDS of the process (if supported). 

The tests performed by most Unix kernels are as follows: 

1. If the effective user ID of the process is 0 (the superuser), access is allowed. 

2. If the effective user ID of the process equals the owner ID of the IPC object: if the 
appropriate user access permission bit is set, access is allowed, else access is 
denied. 

By appropriate access permission bit, we mean if the process is opening the IPC 
object for reading, the user-read bit must be on. If the process is opening the 
IPC object for writing, the user-write bit must be on. 

3. If the effective group ID of the process or one of the supplementary group IDS of 
the process equals the group ID of the IPC object: if the appropriate group 
access permission bit is set, access is allowed, else permission is denied. 

4. If the appropriate other access permission bit is set, access is allowed, else per- 
mission is denied. 

These four steps are tried in sequence in the order listed. Therefore, if the process owns 
the IPC object (step 2), then access is granted or denied based only on the user access 
permissions-the group permissions are never considered. Similarly if the process 
does not own the IPC object, but the process belongs to an appropriate group, then 
access is granted or denied based only on the group access permissions-the other per- 
missions are not considered. 
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We note from Figure 2.3 that sem-open does not use the 0-RDONLY, 0-WRONLY, or 0-RDWR 
flag. We note in Section 10.2, however, that some Unix implementations assume 0-RDWR, since 
any use of a semaphore involves reading and writing the semaphore value. 

2.5 Summary 

The three types of Posix IPC-message queues, semaphores, and shared memory-are 
identified by pathnames. But these may or may not be real pathnames in the filesystem, 
and this discrepancy can be a portability problem. The solution that we employ 
throughout the text is to use our own px-ipc-name function. 

When an IPC object is created or opened, we specify a set of flags that are similar to 
those for the open function. When a new IPC object is created, we must specify the per- 
missions for the new object, using the same s-xxx constants that are used with open 
(Figure 2.4). When an existing IPC object is opened, the permission testing that is per- 
formed is the same as when an existing file is opened. 

Exercises 

2.1 In what way do the set-user-ID and set-group-ID bits (Section 4.4 of APUE) of a program 
that uses Posix IPC affect the permission testing described in Section 2.4? 

2.2 When a program opens a Posix IPC object, how can it determine whether a new object was 
created or whether it is referencing an existing object? 
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3.1 Introduction 

The three types of IPC, 

System V message queues (Chapter 61, 
System V semaphores (Chapter ll), and 
System V shared memory (Chapter 14) 

are collectively referred to as "System V IPC." This term is commonly used for these 
three IPC facilities, acknowledging their heritage from System V Unix. They share 
many similarities in the functions that access them, and in the information that the ker- 
nel maintains on them. This chapter describes all these common properties. 

A summary of their functions is shown in Figure 3.1. 

Header I <svs/msa.h> I <svs/sem.h> I <sys/shm.h> 

Shared 
memory 

Message 
queues 

Figure 3.1 Summary of System V IPC functions. 

Semaphores 

-- 

Function to create or open 

Function for control operations 

Functions for IPC operations 

Information on the design and development of the System V IPC functions is hard to find. 
[Rochkind 19851 provides the following information: System V message queues, semaphores, 
and shared memory were developed in the late 1970s at a branch laboratory of Bell 

msgget 

msgct 1 

msgsnd 
msgrcv 

semget 

semctl 

s emop 

shmge t 

shmctl 

shmat 
shmdt 
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Laboratories in Columbus, Ohio, for an internal version of Unix called (not surprisingly) 
"Columbus Unix" or just "CB Unix." This version of Unix was used for "Operation Support 
Systems," transaction processing systems that automated telephone company administration 
and recordkeeping. System V IPC was added to the commercial Unix system with System V 
around 1983. 

key-t Keys and ftok Function 

In Figure 1.4, the three types of System V IPC are noted as using key-t values for their 
names. The header <sys/ types. h> defines the key-t datatype, as an integer, nor- 
mally at least a 32-bit integer. These integer values are normally assigned by the f tok 
function. 

The function f tok converts an existing pathname and an integer identifier into a 
key-t value (called an IPC key). 

#include <sys / ipc .h>  

I key-t f tok (const char *pathname, i n t  id) : I 
I Returns: IPC key if OK, -1 on error 

This function takes information derived from the pathname and the low-order 8 bits of 
id, and combines them into an integer IPC key. 

This function assumes that for a given application using System V IPC, the server 
and clients all agree on a single pathname that has some meaning to the application. It 
could be the pathname of the server daemon, the pathname of a common data file used 
by the server, or some other pathname on the system. If the client and server need only 
a single IPC channel between them, an id of one, say can be used. If multiple IPC chan- 
nels are needed, say one from the client to the server and another from the server to the 
client, then one channel can use an id of one, and the other an id of two, for example. 
Once the pathname and id are agreed on by the client and server, then both can call the 
f tok function to convert these into the same IPC key. 

Typical implementations of f tok call the stat function and then combine 

1. information about the filesystem on which pathname resides (the st-dev mem- 
ber of the stat structure), 

2. the file's i-node number within the filesystem (the st-ino member of the stat 
structure), and 

3. the low-order 8 bits of the id. 

The combination of these three values normally produces a 32-bit key. No guarantee 
exists that two different pathnames combined with the same, id generate different keys, 
because the number of bits of information in the three items just listed (filesystem iden- 
tifier, i-node, and id) can be greater than the number of bits in an integer. (See Exer- 
cise 3.5.) 
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The i-node number is never 0, so most implementations define IPC-PRIVATE (which we 
describe in Section 3.4) to be 0. 

If the pathname does not exist, or is not accessible to the calling process, f t o k  
returns -1. Be aware that the file whose pathname is used to generate the key must not 
be a file that is created and deleted by the server during its existence, since each time it 
is created, it can assume a new i-node number that can change the key returned by 
f tok  to the next caller. 

Example 

The program in Figure 3.2 takes a pathname as a command-line argument, calls stat, 
calls ftok, and then prints the st-dev and st- ino members of the stat  structure, 
and the resulting IPC key. These three values are printed in hexadecimal, so we can eas- 
ily see how the IPC key is constructed from these two values and our id of 0x57. 

2 int 
3 rnain(.int argc, char **argv) 

4 { 

5 struct stat stat; 

6 if (argc !=  2) 
7 err-quit("usage: ftok <pathname>"); 

8 Stat(argv[ll, &stat); 
9 printf("st-dev: %lx, st-ino: %lx, key: %x\nU, 
10 (u-long) stat.st-dev, (u-long) stat.st-ino, 
11 Ftok(argv[l], 0x57)); 

12 exit (0) ; 

13 I 
svipc/ftok.c 

Figure 3.2 Obtain and print filesystem information and resulting IPC key. 

Executing this under Solaris 2.6 gives us the following: 

solaris % ftok /etc/system 
st-dev: 800018, st-ino: 4alb. key: 57018alb 
solaris % ftok /usr/tmp 
st-dev: 800015, st-ino: 10b78, key: 57015b78 
solaris % ftok /home/rstevens/Mail.out 
st-dev: 80001f. st-ino: 3b03, key: 5701fb03 

Apparently the id is in the upper 8 bits, the low-order 12 bits of st-dev in the next 
12 bits, and the low-order 12 bits of st- ino in the low-order 12 bits. 

Our purpose in showing this example is not to let us count on this combination of 
information to form the IPC key but to let us see how one implementation combines the 
pathname and id. Other implementations may do this differently. 

FreeBSD uses the lower 8 bits of the id, the lower 8 bits of st-dev, and the lower 16 bits of 
s t-ino. 



30 System V IPC Chapter 3 

Note that the mapping done by f tok is one-way, since some bits from st-dev and st- ino 
are not used. That is, given a key, we cannot determine the pathname that was used to create 
the key. 

3.3 i gc~erm Structure 

The kernel maintains a structure of information for each IPC object, similar to the infor- 
mation it maintains for files. 

s t r u c t  i p c q e r m  { 

uid-t u id ;  / *  owner's u se r  i d  * /  
gid-t g id ;  / *  owner's group i d  * /  
uid-t cuid;  / *  c r e a t o r ' s  u se r  i d  * /  
gid-t cgid;  / *  c r e a t o r ' s  group i d  * /  
mode-t mode; / *  read-write permissions * /  
ulong-t seq;  / *  s l o t  usage sequence number * /  
key-t key; / *  I P C  key * /  

I ;  

This structure, and other manifest constants for the System V IPC functions, are defined 
in the <sys/ipc .h> header. We talk about all the members of this structure in this 
chapter. 

3.4 Creating and Opening IPC Channels 

The three getXXX functions that create or open an IPC object (Figure 3.1) all take an 
IPC key value, whose type is key-t, and return an integer identifier. This identifier is 
not the same as the id argument to the f tok  function, as we see shortly. An application 
has two choices for the key value that is the first argument to the three getXXX func- 
tions: 

1. call f tok, passing it a pathname and id, or 

2. specify a key of IPC-PRIVATE, which guarantees that a new, unique IPC object 
is created. 

The sequence of steps is shown in Figure 3.3. 

'% msgger ( ) 
i n t  identifie 

Imsgctl() , msgsnd( ) , msgrcv( ) 

key of IPC-PRIVATE Semget ( ) ' s e m c t l o ,  semop0 - shmget ( ) shmct lo  , s h m a t 0 ,  shmdt0 

open or create access IPC channel 
IPC channel 

Figure 3.3 Generating IPC identifiers from IPC keys. 
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All three getXXX functions (Figure 3.1) also take an oflag argument that specifies the 
read-write permission bits (the mode member of the i p c j e r m  structure) for the IPC 
object, and whether a new IPC object is being created or an existing one is being refer- 
enced. The rules for whether a new IPC object is created or whether an existing one is 
referenced are as follows: 

Specifying a key of IPC-PRIVATE guarantees that a unique IPC object is created. 
No combinations of pathname and id exist that cause f t o k  to generate a key value 
of IPC-PRIVATE. 

Setting the IPC-CREAT bit of the oflag argument creates a new entry for the 
specified key, if it does not already exist. If an existing entry is found, that entry 
is returned. 

Setting both the IPC-CREAT and IPC-EXCL bits of the oflag argument creates a 
new entry for the specified key, only if the entry does not already exist. If an 
existing entry is found, an error of EEXIST is returned, since the IPC object 
already exists. 

The combination of IPC-CREAT and IPC-EXCL with regard to IPC objects is 
similar to the combination of 0-CREAT and 0-EXCL with regard to the open 
function. 

Setting the I PC-EXCL bit, without setting the I PC-CREAT bit, has no meaning. 

The actual logic flow for opening an IPC object is shown in Figure 3.4. Figure 3.5 shows 
another way of looking at Figure 3.4. 

Note that in the middle line of Figure 3.5, the IPC-CREAT flag without IPC-EXCL, 
we do not get an indication whether a new entry has been created or whether we are 
referencing an existing entry. In most applications, the server creates the IPC object and 
specifies either IPC-CREAT (if it does not care whether the object already exists) or 
IPC-CREAT I IPC-EXCL (if it needs to check whether the object already exists). The 
clients specify neither flag (assuming that the server has already created the object). 

The System V IPC functions define their own IPC-xxx constants, instead of using the 
0-CREAT and 0-EXCL constants that are used by the standard open function along with the 
Posix IPC functions (Figure 2.3). 

Also note that the System V IPC functions combine their IPC-xxx constants with the perrnis- 
sion bits (which we describe in the next section) into a single oflag argument. The open func- 
tion along with the Posix IPC functions have one argument named oflag that specifies the 
various 0-xxx flags, and another argument named mode that specifies the permission bits. 
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start here 

OK 
create new entry 
return identifier 

key == IPC-PRIVATE ? system tables full ? 
error return, 

er rno = ENOSPC 

new entry 
is created ' 

no 
does key already exist ? ---+ IPC-CREAT set ? & 

no error return, 
e r rno  = ENOENT 

are both IPC-CREAT yes error return, 
and1PC-EXCLset? ' errno = EEXIST 

existing 
entry is no 

referenced 
are the access no error return, 

permissions OK ? e r rno  = EACCES 

return identifier 

Figure 3.4 Logic for creating or opening an IPC object. 

Figure 3.5 Logic for creating or opening an IPC channel. 

oflag argument 

no special flags 
IPC-CREAT 

IPC-CREAT I IPC-EXCL 

3.5 IPC Permissions 

Whenever a new IPC object is created using one of the getXXX functions with the 
IPC-CREAT flag, the following information is saved in the i pc se rm structure (Sec- 
tion 3.3): 

key does not exist 

error, e r rno = ENOENT 
OK, creates new entry 
OK, creates new entry 

1. Some of the bits in the oflag argument initialize the mode member of the 
ipcaerm structure. Figure 3.6 shows the permission bits for the three different 
IPC mechanisms. (The notation >> 3 means the value is right shifted 3 bits.) 

key already exists 

OK, references existing object 
OK, references existing object 

error, e r rno = EEXIST 
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I 1 Svmbolic values I 
Numeric 
(octal) 

I 

- -  
1 0 02 0 1 MSG-W z> 3 1 SEM-A 22 3 1 SHM-W 22 3 1 write by group 

0400 1 MSG-R 
0200 

Description 
Message 
queue 

Figure 3.6 mode values for IPC read-write permissions. 

SEM-R 

0040 1 MSG-R 22 3 1 SEM-R 22 3 1 S H M R  22 3 1 readbygroup 

MSG-W 

0004 
0002 

2. The two members c u i d  and cgid are set to the effective user ID and effective 
group ID of the calling process, respectively. These two members are called the 
creator IDS. 

Semaphore 

S H N R  I read by user 

3. The two members u i d  and gid in the i p c x e r m  structure are also set to the 
effective user ID and effective group ID of the calling process. These two mem- 
bers are called the owner IDS. 

Shared 
memory 

SEM-A 

MSG-R 22 6 
MSG-W 22 6 

The creator IDS never change, although a process can change the owner IDS by calling 
the c t l X X X  function for the IPC mechanism with a command of IPC-SET. The three 
c t l X X X  functions also allow a process to change the permission bits of the mode mem- 
ber for the IPC object. 

S H M W  I write by user 

Most implementations define the six constants MSG-R, MSG-W, SEM-R, SEM-A, SHM-R, and 
SHM-w shown in Figure 3.6 in the <sys /msg . hz, <sys / sem. hz, and <sys / shm. hz headers. 
But these are not required by Unix 98. The suffix A in SEM-A stands for "alter." 

SEM-R 22 6 
SEM-A 22 6 

The three getXXX functions do not use the normal Unix file mode creation mask. The permis- 
sions of the message queue, semaphore, or shared memory segment are set to exactly what the 
function specifies. 

Posix IPC does not let the creator of an IPC object change the owner. Nothing is like the 
IPC-SET command with Posix IPC. But if the Posix IPC name is stored in the filesystem, then 
the superuser can change the owner using the chown command. 

S H M R  22 6 
SHM-W 22 6 

Two levels of checking are done whenever an IPC object is accessed by any process, 
once when the IPC object is opened (the g e t X X X  function) and then each time the IPC 
object is used: 

read by others 
writeby others 

Whenever a process establishes access to an existing IPC object with one of the 
g e t X X X  functions, an initial check is made that the caller's oflag argument does 
not specify any access bits that are not in the mode member of the i p c j e r m  
structure. This is the bottom box in Figure 3.4. For example, a server process 
can set the mode member for its input message queue so that the group-read 
and other-read permission bits are off. Any process that tries to specify an oflag 
argument that includes these bits gets an error return from the m s g g e t  function. 
But this test that is done by the g e t X X X  functions is of little use. It implies that 
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the caller knows which permission category it falls into-user, group, or other. 
If the creator specifically turns off certain permission bits, and if the caller speci- 
fies these bits, the error is detected by the getXXX function. Any process, how- 
ever, can totally bypass this check by just specifying an oflag argument of 0 if it 
knows that the IPC object already exists. 

2. Every IPC operation does a permission test for the process using the operation. 
For example, every time a process tries to put a message onto a message queue 
with the msgsnd function, the following tests are performed in the order listed. 
As soon as a test grants access, no further tests are performed. 

a. The superuser is always granted access. 

b. If the effective user ID equals either the uid value or the cuid value for the 
IPC object, and if the appropriate access bit is on in the mode member for the 
IPC object, permission is granted. By "appropriate access bit," we mean the 
read-bit must be set if the caller wants to do a read operation or, the IPC 
object (receiving a message from a message queue, for example), or the 
write-bit must be set for a write operation. 

c. If the effective group ID equals either the gid value or the cgid value for 
the IPC object, and if the appropriate access bit is on in the mode member for 
the IPC object, permission is granted. 

d. If none of the above tests are true, the appropriate "other" access bit must be 
on in the mode member for the IPC object, for permission to be allowed. 

3.6 Identifier Reuse 

The ipcjerm structure (Section 3.3) also contains a variable named seq, which is a 
slot usage sequence number. This is a counter that is maintained by the kernel for every 
potential IPC object in the system. Every time an IPC object is removed, the kernel 
increments the slot number, cycling it back to zero when it overflows. 

What we are describing in this section is the common SVR4 implementation. This implemen- 
tation technique is not mandated by Unix 98. 

This counter is needed for two reasons. First, consider the file descriptors main- 
tained by the kernel for open files. They are small integers, but have meaning only 
within a single process-they are process-specific values. If we try to read from file 
descriptor 4, say, in a process, this approach works only if that process has a file open on 
this descriptor. It has no meaning whatsoever for a file that might be open on file 
descriptor 4 in some other unrelated process. System V IPC identifiers, however, are 
systemwide and not process-specific. 

We obtain an IPC identifier (similar to a file descriptor) from one of the get func- 
tions: msgget, semget, and shmget. These identifiers are also integers, but their 
meaning applies to all processes. If two unrelated processes, a client and server, for 
example, use a single message queue, the message queue identifier returned by the 
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msgget function must be the same integer value in both processes in order to access the 
same message queue. This feature means that a rogue process could try to read a mes- 
sage from some other application's message queue by trying different small integer 
identifiers, hoping to find one that is currently in use that allows world read access. If 
the potential values for these identifiers were small integers (like file descriptors), then 
the probability of finding a valid identifier would be about 1 in 50 (assuming a maxi- 
mum of about 50 descriptors per process). 

To avoid this problem, the designers of these IPC facilities decided to increase the 
possible range of identifier values to include all integers, not just small integers. This 
increase is implemented by incrementing the identifier value that is returned to the call- 
ing process, by the number of IPC table entries, each time a table entry is reused. For 
example, if the system is configured for a maximum of 50 message queues, then the first 
time the first message queue table entry in the kernel is used, the identifier returned to 
the process is zero. After this message queue is removed and the first table entry is 
reused, the identifier returned is 50. The next time, the identifier is 100, and so on. 
Since seq is often implemented as an unsigned long integer (see the ipcxerm struc- 
ture shown in Section 3.3), it cycles after the table entry has been used 85,899,346 times 
(232/50, assuming 32-bit long integers). 

A second reason for incrementing the slot usage sequence number is to avoid short 
term reuse of the System V IPC identifiers. This helps ensure that a server that prema- 
turely terminates and is then restarted, does not reuse an identifier. 

As an example of this feature, the program in Figure 3.7 prints the first 10 identifier 
values returned by msgge t. 

2 i n t  
3 m a i n ( i n t  argc, char * * a r g v )  

4 { 
5 i n t  i, m s q i d ;  

6 f o r  ( i  = 0 ;  i < 1 0 ;  i + + )  { 

7 m s q i d  = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT); 

8 p r i n t f ( " m s q i d  = %d\nn,  m s q i d ) ;  

9 M s g c t l  ( m s q i d ,  IPC-RMID, NULL) ; 
1 0  1 
11 e x i t ( 0 )  ; 

1 2  1 
svrnsg/slot.c 

Figure 3.7 Print kernel assigned message queue identifier 10 times in a row. 

Each time around the loop msgget creates a message queue, and then msgctl with a 
command of IPC-WID deletes the queue. The constant SVMSG-MODE is defined in our 
unpipc . h header (Figure C.l) and specifies our default permission bits for a System V 
message queue. The program's output is 

so lar i s  % slot 
m s q i d  = 0 
m s q i d  = 5 0  
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msqid = 100 
msqid = 150 
msqid = 200 
msqid = 250 
msqid = 300 
msqid = 350 
msqid = 400 
msqid = 450 

If we run the program again, we see that this slot usage sequence number is a kernel 
variable that persists between processes. 

solaris % slot 
msqid = 500 
msqid = 550 
msqid = 600 
msqid = 650 
msqid = 700 
msqid = 750 
msqid = 800 
msqid = 850 
msqid = 900 
msqid = 950 

3.7 ipcs and ipcrm Programs 

Since the three types of System V IPC are not identified by pathnarnes in the filesystem, 
we cannot look at them or remove them using the standard 1s and r m  programs. 
Instead, two special programs are provided by any system that implements these types 
of IPC: ipcs, which prints various pieces of information about the System V IPC fea- 
tures, and ipcrm, which removes a System V message queue, semaphore set, or shared 
memory segment. The former supports about a dozen command-line options, which 
affect which of the three types of IPC is reported and what information is output, and 
the latter supports six command-line options. Consult your manual pages for the 
details of all these options. 

Since System V IPC is not part of Posix, these two commands are not standardized by Posix.2. 
But these two commands are part of Unix 98. 

3.8 Kernel Limits 

Most implementations of System V IPC have inherent kernel limits, such as the maxi- 
mum number of message queues and the maximum number of semaphores per 
semaphore set. We show some typical values for these limits in Figures 6.25, 11.9, and 
14.5. These limits are often derived from the original System V implementation. 

Section 11.2 of [Bach 19861 and Chapter 8 of [Goodheart and Cox 19941 both describe the 
System V implementation of messages, semaphores, and shared memory. Some of these limits 
are described therein. 
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Unfortunately, these kernel limits are often too small, because many are derived 
from their original implementation on a small address system (the 16-bit PDP-11). For- 
tunately, most systems allow the administrator to change some or all of these default 
limits, but the required steps are different for each flavor of Unix. Most require reboot- 
ing the running kernel after changing the values. Unfortunately, some implementations 
still use 16-bit integers for some of the limits, providing a hard limit that cannot be 
exceeded. 

Solaris 2.6, for example, has 20 of these limits. Their current values are printed by 
the sysdef command, although the values are printed as 0 if the corresponding kernel 
module has not been loaded (i.e., the facility has not yet been used). These may be 
changed by placing any of the following statements in the / e t c / system file, which is 
read when the kernel bootstraps. 

4et msgsys:msginfo~msgseg 
set msgsys:msginfo~msgssz 
set msgsys:msginfo~msgtq1 
set msgsys:msginfo~msgmap 
set msgsys:msginfo~msgmax 
set msgsys:msginfo~msgrnnb 
set msgsys:msginfo~msgmni 

set semsys:seminfo~semopm 
set semsys:seminfo~semurne 
set semsys:seminfo~sernaem 
set semsys:seminfo-semmap 
set semsys:seminfo~semvmx 
set semsys:seminfo~semms1 
set semsys:seminfo-semi 
set semsys:seminfo~semmns 
set semsys:seminfo~semmnu 

set shmsys:shminfo-shin 
set shmsys:shminfo-shmseg 
set shmsys:shminfo-shmmax 
set shmsys:shminfo-shmmni 

= value 
= value 
= value 
= value 
= value 
= value 
= value 

= value 
= value 
= value 
= value 
= value 
= value 
= value 
= value 
= value 

= value 
= value 
= value 
= value 

The last six characters of the name on the left-hand side of the equals sign are the vari- 
ables listed in Figures 6.25,11.9, and 14.5. 

With Digital Unix 4.OB, the sysconf i g  program can query or modify many kernel 
parameters and limits. Here is the output of this program with the -q option, which 
queries the kernel for the current limits, for the ipc subsystem. We have omitted some 
lines unrelated to the System V IPC facility. 

alpha % /.sbin/.sy.sconfig -q ipc 
ipc : 
msg-rnax = 8192 
msg-mnb = 16384 
msg-mni = 64 
msg-tql = 40 

shm-rnax = 4194304 
shm-min = 1 
shun-mni = 128 
shm-seg = 32 
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sem-mni = 16 
sem-msl = 25 
sem-opm = 10 
sem-ume = 10 
sem-vmx = 32767 
sem-aem = 16384 
nun-of-sems = 60 

Different defaults for these parameters can be specified in the / e t c  / sysconf i g t a b  
file, which should be maintained using the sysconf igdb program. This file is read 
when the system bootstraps. 

3.9 Summary 

The first argument to the three functions, msgget, semget, and shmget, is a System V 
IPC key. These keys are normally created from a pathname using the system's f tok 
function. The key can also be the special value of IPC-PRIVATE. These three functions 
create a new IPC object or open an existing IPC object and return a System V IPC identi- 
fier: an integer that is then used to identify the object to the remaining IPC functions. 
These integers are not per-process identifiers (like descriptors) but are systemwide iden- 
tifiers. These identifiers are also reused by the kernel after some time. 

Associated with every System V IPC object is an i p c s e r m  structure that contains 
information such as the owner's user ID, group ID, read-write permissions, and so on. 
One difference between Posix IPC and System V IPC is that this information is always 
available for a System V IPC object (by calling one of the three XXXc t l  functions with 
an argument of IPC-STAT), but access to this information for a Posix IPC object 
depends on the implementation. If the Posix IPC object is stored in the filesystem, and 
if we know its name in the filesystem, then we can access this same information using 
the existing filesystem tools. 

When a new System V IPC object is created or an existing object is opened, two 
flags are specified to the getXXX function (IPC-CREAT and IPC-EXCL), combined 
with nine permission bits. 

Undoubtedly, the biggest problem in using System V IPC is that most implementa- 
tions have artificial kernel limits on the sizes of these objects, and these limits date back 
to their original implementation. These mean that most applications that make heavy 
use of System V IPC require that the system administrator modify these kernel limits, 
and accomplishing this change differs for each flavor of Unix. 

Exercises 

3.1 Read about the m s g c t l  function in Section 6.5 and modify the program in Figure 3.7 to 
print the seq member of the i p c q e r m  structure in addition to the assigned identifier. 
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Immediately after running the program in Figure 3.7, we run a program that creates two 
message queues. Assuming no other message queues have been used by any other applica- 
tions since the kernel was booted, what two values are returned by the kernel as the mes- 
sage queue identifiers? 

We noted in Section 3.5 that the System V IPC getXXX functions do not use the file mode 
creation mask. Write a test program that creates a FtFO (using the mkfifo function 
described in Section 4.6) and a System V message queue, specifying a permission of (octal) 
666 for both. Compare the permissions of the resulting FIFO and message queue. Make 
certain your shell umask value is nonzero before running this program. 

A server wants to create a unique message queue for its clients. Which is preferable-using 
some constant pathname (say the server's executable file) as an argument to f tok, or using 
IPC-PRIVATE? 

Modify Figure 3.2 to print just the IPC key and pathname. Run the find program to print 
all the pathnames on your system and run the output through the program just modified. 
How many pathnames map to the same key? 

If your system supports the sar program ("system activity reporter"), run the command 

sar -m 5 6 

This prints the number of message queue operations per second and the number of 
semaphore operations per second, sampled every 5 seconds, 6 times. 



Part 2 

Message Passing 



Pipes and FlFOs 

4.1 Introduction 

Pipes are the original form of Unix IPC, dating back to the Third Edition of Unix in 1973 
[Salus 19941. Although useful for many operations, their fundamental limitation is that 
they have no name, and can therefore be used only by related processes. This was cor- 
rected in System I11 Unix (1982) with the addition of FIFOs, sometimes called named 
pipes. Both pipes and FIFOs are accessed using the normal read and w r i t e  functions. 

Technically, pipes can be used between unrelated processes, given the ability to pass descrip- 
tors between processes (which we describe in Section 15.8 of this text as well as Section 14.7 of 
UNPvl). But for practical purposes, pipes are normally used between processes that have a 
common ancestor. 

This chapter describes the creation and use of pipes and FIFOs. We use a simple file 
server example and also look at some client-server design issues: how many IPC chan- 
nels are needed, iterative versus concurrent servers, and byte streams versus message 
interfaces. 

4.2 A Simple Client-Server Example 

The client-server example shown in Figure 4.1 is used throughout this chapter and 
Chapter 6 to illustrate pipes, FIFOs, and System V message queues. 

The client reads a pathname from the standard input and writes it to the P C  chan- 
nel. The server reads this pathname from the IPC channel and tries to open the file for 
reading. If the server can open the file, the server responds by reading the file and writ- 
ing it to the IPC channel; otherwise, the server responds with an error message. The 
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pathname 
pathname - - - - - - - - - - - - -  

client m stdou t or file error contents message file contents - - - - - - - - - - - - -  
or error message 

Figure 4.1 Client-server example. 

client then reads from the IPC channel, writing what it receives to the standard output. 
If the file cannot be read by the server, the client reads an error message from the IPC 
channel. Otherwise, the client reads the contents of the file. The two dashed lines 
between the client and server in Figure 4.1 are the IPC channel. 

4.3 Pipes 

Pipes are provided with all flavors of Unix. A pipe is created by the p ipe  function and 
provides a one-way (unidirectional) flow of data. 

#include <unistd.h> 

int pipe (int fd121) ; 

I Returns: 0 if OK, -1 on error I 

Two file descriptors are returned: fd[Ul, which is open for reading, and fdLl1, which is 
open for writing. 

Some versions of Unix, notably SVR4, provide full-duplex pipes, in which case, both ends are 
available for reading and writing. Another way to create a full-duplex IPC channel is with the 
socketpair function, described in Section 14.3 of UNPvl, and this works on most current 
Unix systems. The most common use of pipes, however, is with the various shells, in which 
case, a half-duplex pipe is adequate. 

Posix.1 and Unix 98 require only half-duplex pipes, and we assume so in this chapter. 

The S-ISFIFO macro can be used to determine if a descriptor or file is either a pipe 
or a FIFO. Its single argument is the s t-mode member of the s ta t  structure and the 
macro evaluates to true (nonzero) or false (0). For a pipe, this structure is filled in by the 
f s t a t  function. For a FIFO, this struc- is filled in by the f s ta t ,  1s t a t ,  or s ta t  
functions. 

Figure 4.2 shows how a pipe looks in a single process. 
Although a pipe is created by one process, it is rarely used within a single process. 

(We show an example of a pipe within a single process in Figure 5.14.) Pipes are typi- 
cally used to communicate between two different processes (a parent and child) in the 
following way. First, a process (which will be the parent) creates a pipe and then forks 
to create a copy of itself, as shown in Figure 4.3. 
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process 

m 

pipe w -+ flow of data + 

Figure 4.2 A pipe in a single process. 

parent child 
fork 

I + flow of data + 

Figure 4.3 Pipe in a single process, immediately after fork. 

Next, the parent process closes the read end of one pipe, and the child process closes the 
write end of that same pipe. This provides a one-way flow of data between the two p r e  
cesses, as shown in Figure 4.4. 

+ flow of data + 

Figure 4.4 Pipe between two processes. 

When we enter a command such as 

who I sort I lp 

to a Unix shell, the shell performs the steps described previously to create three 
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processes with two pipes between them. The shell also duplicates the read end of each 
pipe to standard input and the write end of each pipe to standard output. We show this 
pipeline in Figure 4.5. 

who process sort process lp process 

-t flow of data -t -+ flow of data -+ 

Figure 4.5 Pipes between three processes in a shell pipeline. 

All the pipes shown so far have been half-duplex or unidirectional, providing a one- 
way flow of data only. When a two-way flow of data is desired, we must create two 
pipes and use one for each direction. The actual steps are as follows: 

1. create pipe 1 ( f d l f O l  and fdlfll), create pipe 2 (fd2101 and fd2111), 
2. fork, 
3. parent closes read end of pipe 1 ( f d l f o l ) ,  
4. parent closes write end of pipe 2 (fd2[11), 
5. child closes write end of pipe 1 ( f d l f l  I ) ,  and 
6. child closes read end of pipe 2 ( fd2[0]) .  

We show the code for these steps in Figure 4.8. This generates the pipe arrangement 
shown in Figure 4.6. 

parent child 

-t flow of data 4 

t flow of data t 

Figure 4.6 Two pipes to provide a bidirectional flow of data. 
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Example 

Let us now implement the client-server example described in Section 4.2 using pipes. 
The main function creates two pipes and forks a child. The client then runs in the par- 
ent process and the server runs in the child process. The first pipe is used to send the 
pathname from the client to the server, and the second pipe is used to send the contents 
of that file (or an error message) from the server to the client. This setup gives us the 
arrangement shown in Figure 4.7. 

pathname 

file contents 
or error messag 

Figure 4.7 Implementation of Figure 4.1 using two pipes. 

Realize that in this figure we show the two pipes connecting the two processes, but each 
pipe goes through the kernel, as shown previously in Figure 4.6. Therefore, each byte of 
data from the client to the server, and vice versa, crosses the user-kernel interface twice: 
once when written to the pipe, and again when read from the pipe. 

Figure 4.8 shows our main function for this example. 

2 void client (int, int ) , server (int , int) ; 

3 int 
4 main(int argc, char **argv) 
5 ( 
6 int pipel [2 I , pipe2 [2 I ; 
7 pid-t childpid; 

/ *  create two pipes * /  

10 if ( (childpid = Fork ( )  ) == 0) ( / *  child * /  
11 Close (pipe1 [l I ) ; 
12 Close (pipe2 [ 01 ) ; 

13 server (pipel [ 0 I , pipe2 [ 11 ) ; 
14 exit (0) ; 
15 1 
16 / *  parent * /  
17 Close (pipe1 [ 0 I ) ; 
18 Close (pipe2 [11 ) ; 

19 client (pipe2 [O] , pipel [I] ) ; 

2 0 Waitpid(childpid, NULL, 0); / *  wait for child to terminate * /  
21 exit(0) ; 
22 1 

pip el main pipe.^ 
Figure 4.8 main function for client-server using two pipes. 
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Create pipes, fork 

8-19 Two pipes are created and the six steps that we listed with Figure 4.6 are performed. 
The parent calls the client function (Figure 4.9) and the child calls the server func- 
tion (Figure 4.10). 

waitpid for child 

20 The server (the child) terminates first, when it calls exit after writing the final data 
to the pipe. It then becomes a zombie: a process that has terminated, but whose parent is 
still running but has not yet waited for the child. When the child terminates, the kernel 
also generates a SIGCHLD signal for the parent, but the parent does not catch this signal, 
and the default action of this signal is to be ignored. Shortly thereafter, the parent's 
client function returns after reading the final data from the pipe. The parent then 
calls waitpid to fetch the termination status of the terminated child (the zombie). If 
the parent did not call waitpid, but just terminated, the child would be inherited by 
the init process, and another SIGCHLD signal would be sent to the init process, 
which would then fetch the termination status of the zombie. 

The c 1 i ent function is shown in Figure 4.9. 

2 void 
3 client(int readfd, int writefd) 
4 ( 
5 size-t len; 
6 ssize-t n; 
7 char buff[MAXLINEI; 

8 / *  read pathname * /  
9 Fgets (buff, MAXLINE, stdin) ; 

10 len = strlen(buf f) ; / *  £gets() guarantees null byte at end * /  
11 if (buff [len - 11 == '\n' ) 
12 len--; / *  delete newline from £gets() * /  

13 / *  write pathname to IPC channel * I  
14 write(writefd, buff, len); 

15 / *  read from IPC, write to standard output * /  
16 while ( (n = Read(readfd, buff, MAXLINE)) > 0) 
17 Write(STD0UT-FILENO, buff, n): 

Figure 4.9 client function for client-server using two pipes. 

Read pathname from standard input 

8-14 The pathname is read from standard input and written to the pipe, after deleting 
the newline that is stored by f gets. 

Copy from pipe to standard output 

15-17 The client then reads everything that the server writes to the pipe, writing it to 
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standard output. Normally this is the contents of the file, but i f  the specified pathname 
cannot be opened, what the server returns is an error message. 

Figure 4.10 shows the server function. 

2 void 
3 server(int readfd, int writefd) 
4 
5 int fd; 
6 ssize-t n; 
7 char buff [MAXLINE + 1 I ; 

8 / *  read pathname from IPC channel * /  
9 if ( (n = Read(readfd, buff, MAXLINE) ) == 0) 
10 err-quit("end-of-file while reading pathname"): 
11 buff[n] = '\O1; / *  null terminate pathname */  

12 if ( (fd = open(buff, 0-RDONLY)) < 0) [ 
13 / *  error: must tell client * /  
14 snprintf(buff + n, sizeof(buff) - n, " :  can't open, %s\nn, 
15 strerror(errn0)); 
16 n = strlen(buf f) ; 
17 Write(writefd, buff, n) ; 

18 1 else [ 

19 / *  open succeeded: copy file to IPC channel * /  
2 0 while ( (n = Read(fd, buff, MAXLINE)) > 0) 
21 Write(writefd, buff, n); 
22 Close ( f d) ; 
23 1 
24 1 

pip el server.^ 
Figure 4.10 server function for client-server using two pipes. 

Read pathname from pipe 

The pathname written by the client is read from the pipe and null terminated. Note 
that a read on a pipe returns as soon as some data is present; it need not wait for the 
requested number of bytes (MAXLINE in this example). 

Open file, handle error 

12-17 The file is opened for reading, and if an error occurs, an error message string is 
returned to the client across the pipe. We call the strerror function to return the error 
message string corresponding to errno. (Pages 690-691 of UNPvl talk more about the 
strerror function.) 

Copy file to pipe 

18-23 If the open succeeds, the contents of the file are copied to the pipe. 

We can see the output from the program when the pathname is OK, and when an 
error occurs. 
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solaris % mainpipe 
/etc/inet/ntp.conf a file consisting of two lines 
multicastclient 224.0.1.1 
driftfile /etc/inet/ntp.drift 
solaris % mainpipe 
/etc/shadow a file we cannot read 
/etc/shadow: can't open, Permission denied 
solaris % mainpipe 
/no/such/file a nonexistent file 
/no/such/file: can't open, No such file or directory 

4.4 Full-Duplex Pipes 

We mentioned in the previous section that some systems provide full-duplex pipes: 
SVR4's pipe function and the socketpair function provided by many kernels. But 
what exactly does a full-duplex pipe provide? First, we can think of a half-duplex pipe 
as shown in Figure 4.11, a modification of Figure 4.2, which omits the process. 

Figure 4.11 Half-duplex pipe. 

A full-duplex pipe could be implemented as shown in Figure 4.12. This implies that 
only one buffer exists for the pipe and everything written to the pipe (on either descrip- 
tor) gets appended to the buffer and any read from the pipe (on either descriptor) just 
takes data from the front of the buffer. 

write 
full-duplex pipe 

write 

Figure 4.12 One possible (incorrect) implementation of a full-duplex pipe. 

The problem with this implementation becomes apparent in a program such as Fig- 
ure A.29. We want two-way communication but we need two independent data 
streams, one in each direction. Otherwise, when a process writes data to the full-duplex 
pipe and then turns around and issues a read on that pipe, it could read back what it 
just wrote. 

Figure 4.13 shows the actual implementation of a full-duplex pipe. 

Figure 4.13 Actual implementation of a full-duplex pipe. 

write + half-duplex pipe + 
fdllI=----- 

t half-duplex pipe t 

Here, the full-duplex pipe is constructed from two half-duplex pipes. Anything written 

- read 

-a it 
- fdlO1 



Section 4.4 Full-Duplex Pipes 51 

to fdfll will be available for 
able for reading by fdfll. 

The program in Figure 

a reading by fdfOl, and anything written to fdfO1 will be avail- 

4.14 demonstrates that we can use a single full-duplex pipe 
for two-way communication. 

2 int 
3 main(int argc, char **argv) 
4 ( 

5 int fd[21. n; 
6 char c; 
7 pid-t childpid; 

Pipe ( f d) ; / *  assumes a full-duplex pipe (e.g., SVR4) * /  
if ( (childpid = Fork() ) == 0) I / *  child * /  

sleep(3) ; 
if ( (n = Read(fd[Ol, &c, 1)) !=  1) 

err-quit("chi1d: read returned %d", n); 
printf("chi1d read %c\n", c); 
Write(fd[Ol , "c", 1) ; 
exit (0) ; 

1 
/ *  parent * /  

Write(fd[l] , "p",  1) ; 
if ( (n = Read(fd[l], &c, 1)) !=  1) 

err-quit("parent: read returned %dm, n); 
printf ('parent read %c\n" , C) ; 
exit(0); 

Figure 4.14 Test a full-duplex pipe for two-way communication. 

We create a full-duplex pipe and fork. The parent writes the character p to the 
pipe, and then reads a character from the pipe. The child sleeps for 3 seconds, reads a 
character from the pipe, and then writes the character c to the pipe. The purpose of the 
sleep in the child is to allow the parent to call read before the child can call read, to see 
whether the parent reads back what it wrote. 

If we run this program under Solaris 2.6, which provides full-duplex pipes, we 
observe the desired behavior. 

solaris % fduplex 
child read p 
parent read c 

The character p goes across the half-duplex pipe shown in the top of Figure 4.13, and 
the character c goes across the half-duplex pipe shown in the bottom of Figure 4.13. 
The parent does not read back what it wrote (the character p). 

If we run this program under Digital Unix 4.OB, which by default provides half- 
duplex pipes (it also provides full-duplex pipes like SVR4, i f  different options are speci- 
fied at compile time), we see the expected behavior of a half-duplex pipe. 
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alpha % fduplex 
read error: Bad file number 
alpha % child read p 
write error: Bad file number 

The parent writes the character p, which the child reads, but then the parent aborts 
when it tries to read from Mil, and the child aborts when it tries to w r i t e  to fdfO1 
(recall Figure 4.11). The error returned by read is EBADF, which means that the 
descriptor is not open for reading. Similarly, w r i t e  returns the same error if its 
descriptor is not open for writing. 

4.5 popen and pclose Functions 

As another example of pipes, the standard 1 /0  library provides the popen function that 
creates a pipe and initiates another process that either reads from the pipe or writes to 
the pipe. 

#include <stdio.h> 

FILE *popen (const char *command, const char *type) ; 

Returns: file pointer if OK, on error 

int pclose (FILE *stream) ; 

Returns: termination status of shell or -1 on error 

command is a shell command line. It is processed by the s h  program (normally a Bourne 
shell), so the PATH environment variable is used to locate the command. A pipe is cre- 
ated between the calling process and the specified command. The value returned by 
popen is a standard I/O F I L E  pointer that is used for either input or output, depend- 
ing on the character string type. 

If type is r, the calling process reads the standard output of the command. 

If type is w, the calling process writes to the standard input of the command. 

The pclose function closes a standard 1 / 0  stream that was created by popen, waits 
for the command to terminate, and then returns the termination status of the shell. 

Section 14.3 of APUE provides an implementation of popen and pclose. 

Example 

Figure 4.15 shows another solution to our client-server example using the popen func- 
tion and the Unix c a t  program. 
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2 int 
3 main(int argc, char **argv) 
4 I 
5 size-t n; 
6 char buff [MAXLINE] , command [MAXLINE] ; 
7 FILE *fp; 

8 / *  read pathname * /  
9 Fgets (buff, MAXLINE, stdin) ; 
10 n = strlen(buff); / *  £gets0 guarantees null byte at end * /  
11 if (buff[n - 11 == '\nl) 
12 n-- ; / *  delete newline from £gets() * /  

13 snprintf(command, sizeof(command), "cat %s", buff); 
14 fp = Popen(command, "r"); 

15 / *  copy from pipe to standard output */  
16 while (Fgets(buff, MAXLINE, fp) !=  NULL) 
17 Fputs (buff , stdout) ; 

18 Pclose (fp) ; 
19 exit (0) ; 
20 1 

pipelmainpopen.~ 
Figure 4.15 Client-server using popen. 

8-17 The pathname is read from standard input, as in Figure 4.9. A command is built 
and passed to popen. The output from either the shell or the cat program is copied to 
standard output. 

One difference between this implementation and the implementation in Figure 4.8 
is that now we are dependent on the error message generated by the system's cat pro- 
gram, which is often inadequate. For example, under Solaris 2.6, we get the following 
error when trying to read a file that we do not have permission to read: 

solaris % cat /etc/shadow 
cat: cannot open /etc/shadow 

But under BSD/OS 3.1, we get a more descriptive error when trying to read a similar 
file: 

bsdi % cat /etc/master.pasd 
cat: /etc/master.passwd: cannot open [Permission denied] 

Also realize that the call to popen succeeds in such a case, but fgets just returns an 
end-of-file the first time it is called. The cat program writes its error message to stan- 
dard error, and popen does nothing special with it-only standard output is redirected 
to the pipe that it creates. 
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Pipes have no names, and their biggest disadvantage is that they can be used only 
between processes that have a parent process in common. Two unrelated processes can- 
not create a pipe between them and use it for IPC (ignoring descriptor passing). 

FIFO stands for first in, first out, and a Unix FIFO is similar to a pipe. It is a one-way 
(half-duplex) flow of data. But unlike pipes, a FIFO has a pathname associated with it, 
allowing unrelated processes to access a single FIFO. FIFOs are also called named pipes. 

A FIFO is created by the mkf i f o function. 

I int mkf if o (const char *pathname, mode-t mode) ; 

Returns: 0 if OK, -1 on error 

The pathname is a normal Unix pathname, and this is the name of the FIFO. 
The mode argument specifies the file permission bits, similar to the second argument 

to open. Figure 2.4 shows the six constants from the <sys / s tat. h> header used to 
specify these bits for a FIFO. 

The rnkf if o function implies 0-CREAT I 0-EXCL. That is, it creates a new FIFO or 
returns an error of EEXIST if the named FIFO already exists. If the creation of a new 
FIFO is not desired, call open instead of mkf i f o. To open an existing FIFO or create a 
new FIFO if it does not already exist, call mkf if o, check for an error of EEXIST, and if 
this occurs, call open instead. 

The mkf i f o command also creates a FIFO. This can be used from shell scripts or 
from the command line. 

Once a FIFO is created, it must be opened for reading or writing, using either the 
open function, or one of the standard 1 /0  open functions such as f open. A FIFO must 
be opened either read-only or write-only. It must not be opened for read-write, because 
a FIFO is half-duplex. 

A write to a pipe or FIFO always appends the data, and a read always returns 
what' is at the beginning of the pipe or FIFO. If lseek is called for a pipe or FIFO, the 
error ESPIPE is returned. 

Example 

We now redo our client-server from Figure 4.8 to use two FIFOs instead of two pipes. 
Our client and server functions remain the same; all that changes is the main func- 
tion, which we show in Figure 4.16. 

4 void client (int, int) , server (int, int) ; 
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5 int 
6 main(int argc, char **argv) 
7 I 
8 int readfd, writefd; 
9 pid-t childpid; 

/ *  create two FIFOs; OK if they already exist * /  
((mkfifo(FIFO1, FILE-MODE) < 0) && (errno !=  EEXIST)) 
err-sys("can't create %s", FIFO1); 
((mkfifo(FIFO2, FILE-MODE) c 0) && (errno !=  EEXIST)) { 

unlink(FIFO1) ; 
err-sys("canft create %s", FIFOZ); 

( (childpid = Fork() ) == 0) { / *  child * /  
readfd = Open(FIFO1, 0-RDONLY, 0); 
writefd = Open(FIFO2, 0-WRONLY, 0); 

20 server(readfd, writefd); 
21 exit (0) ; 
2 2 1 
2 3 / *  parent * /  
2 4 writefd = Open(FIFO1, 0-WRONLY, 0); 
25 readfd = Gpen(FIFO2, 0-RDONLY, 0); 

26 client (readfd, writefd) ; 

2 7 Waitpid(childpid, NULL, 0); / *  wait for child to terminate */  

28 Close (readfd) ; 
29 Close (writefd) ; 

30 Unlink(FIFO1); 
31 Unlink (FIFO2 ) ; 
3 2 exit (0) ; 
33 

pipelmainfifo.~ 
Figure 4.16 main function for our client-server that uses two FIFOs. 

Create two FlFOs 

10-16 TWO FIFOs are created in the / tmp filesystem. If the FIFOs already exist, that is OK. 
The FILE-MODE constant is defined in our unpipc . h header (Figure C.l) as 

#define FILE-MODE (S-IRUSR I S-IWUSR I S-IRGRP I S-IROTH) 
/ *  default permissions for new files * /  

This allows user-read, user-write, group-read, and other-read. These permission bits are 
modified by the file mode creation mask of the process. 

fork 

17-27 We call fork, the child calls our server function (Figure 4.10), and the parent calls 
our c 1 ient function (Figure 4.9). Before executing these calls, the parent opens the first 
FIFO for writing and the second FIFO for reading, and the child opens the first FIFO for 
reading and the second FIFO for writing. This is similar to our pipe example, and Fig- 
ure 4.17 shows this arrangement. 



56 Pipes and FIFOs Chapter 4 

parent child 

/tmp/fifo.l 

4 flow of data 4 

/tmp/fifo.Z 

FIFO 2 
I I 

t flow of data t 

Figure 4.17 Client-server example using two FIFOs. 

The changes from our pipe example to this FIFO example are as follows: 

To create and open a pipe requires one call to pipe. To create and open a FIFO 
requires one call to mkf i f o followed by a call to open. 

A pipe automatically disappears on its last close. A FIFO's name is deleted from 
the filesystem only by calling unlink. 

The benefit in the extra calls required for the FIFO is that a FIFO has a name in the file- 
system allowing one process to create a FIFO and another unrelated process to open the 
FIFO. This is not possible with a pipe. 

Subtle problems can occur with programs that do not use FIFOs correctly. Consider 
Figure 4.16: if we swap the order of the two calls to open in the parent, the program 
does not work. The reason is that the open of a FIFO for reading blocks if no process 
currently has the FIFO open for writing. If we swap the order of these two opens in the 
parent, both the parent and the child are opening a FIFO for reading when no process 
has the FIFO open for writing, so both block. This is called a deadlock. We discuss this 
scenario in the next section. 

Example: Unrelated Client and Server 

In Figure 4.16, the client and server are still related processes. But we can redo this 
example with the client and server unrelated. Figure 4.18 shows the server program. 
This program is nearly identical to the server portion of Figure 4.16. 

The header f i f  o . h is shown in Figure 4.19 and provides the definitions of the two 
FIFO names, which both the client and server must know. 

Figure 4.20 shows the client program, which is nearly identical to the client portion 
of Figure 4.16. Notice that the client, not the server, deletes the FIFOs when done, 
because the client performs the last operation on the FIFOs. 
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2 void server (int, int) ; 

3 int 
4 main(int argc, char **argv) 

5 I 
6 int readfd, writefd; 

/ *  create two FIFOs; OK if they already exist * /  
if ((mkfifo(FIFO1, FILE-MODE) c 0) && (errno != EEXIST)) 

err-sys ("can't create %s" , FIFO1) ; 
if ( (mkfifo(FIFO2, FILE-MODE) c 0) && (errno !=  EEXIST) ) I 

unlink (FIFO1) ; 
err-sys("can't create %s", FIF02); 

1 
readfd = Open(FIFO1, 0-RDONLY, 0); 
writefd = Open(FIFO2, 0-WRONLY, 0); 

16 server (readfd, writefd) ; 
17 exit (0) ; 
18 1 

pipelserver-main.c 
Figure 4.18 Stand-alone server main function. 

Figure 4.19 f if o . h header that both the client and server include. 

2 void client (int, int) ; 

3 int 
4 main(int argc, char **argv) 
5 I 
6 int readfd, writefd; 

7 writefd = Open(FIFO1, 0-WRONLY, 0); 
8 readf d = Open (FIFO2 , 0-RDONLY, 0) ; 

9 client (readfd, writefd) ; 

10 Close (readfd) ; 
11 Close (writef d) ; 

12 Unlink(FIFO1) : 
13 Unlink (FIFOZ) ; 
14 exit(0) ; 

Figure 4.20 Stand-alone client main fundion. 
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In the case of a pipe or FIFO, where the kernel keeps a reference count of the number of open 
descriptors that refer to the pipe or FIFO, either the client or server could call unlink without 
a problem. Even though this function removes the pathname from the filesystem, this does not 
affect open descriptors that had previously opened the pathname. But for other forms of IPC, 
such as System V message queues, no counter exists and if the server were to delete the queue 
after writing its final message to the queue, the queue could be gone when the client tries to 
read the final message. 

To run this client and server, start the server in the background 

% server-fifo & 

and then start the client. Alternately, we could start only the client and have it invoke 
the server by calling fo rk  and then exec. The client could also pass the names of the 
two FIFOs to the server as command-line arguments through the exec function, instead 
of coding them into a header. But this scenario would make the server a child of the 
client, in which case, a pipe could just as easily be used. 

4.7 Additional Properties of Pipes and FlFOs 

We need to describe in more detail some properties of pipes and FIFOs with regard to 
their opening, reading, and writing. First, a descriptor can be set nonblocking in two 
ways. 

1. The 0-NONBLOCK flag can be specified when open is called. For example, the 
first call to open in Figure 4.20 could be 

writefd = Open(FIFO1, 0-WRONLY I 0-NONBLOCK, 0); 

2. If a descriptor is already open, f cntl can be called to enable the 0-NONBLOCK 
flag. This technique must be used with a pipe, since open is not called for a 
pipe, and no way exists to specify the 0-NONBLOCK flag in the call to pipe. 
When using f cntl, we first fetch the current file status flags with the F-GETFL 
command, bitwise-OR the 0-NONBLOCK flag, and then store the file status flags 
with the F-SETFL command: 

int flags; 

if ( (flags = fcntl(fd, F-GETFL, 0)) c 0) 
err-sys ( "FGETFL error" ) ; 

flags ) =  0-NONBLOCK; 
if (fcntl(fd, F-SETFL. flags) < 0) 

err-sys("F-SETFL error"); 

Beware of code that you may encounter that simply sets the desired flag, 
because this also clears all the other possible file status flags: 

/ *  wrong way to set nonblocking */  
if ( f cntl ( f d, F-SETFL, 0-NONBLOCK) < 0 ) 

err-sys("F-SETFL error"); 
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Figure 4.21 shows the effect of the nonblocking flag for the opening of a FIFO and 
for the reading of data from an empty pipe or from &I empty FIFO. 

Current 
operation 

open FIFO 
read-only 

open FIFO 
write-only 

read 
empty pipe 
or 
empty FIFO 

write to 
pipe or FIFO 

Existing opens 
of pipe or FIFO 

FIFO 
open for writing 
FIFO not 
open for writing 

FIFO 

Return 

open for reading 
FIFO not 
open for reading 

pipe or FIFO 
open for writing 

pipe or FIFO not 

Figure 4.21 Effect of 0-NONBLOCK flag on pipes and FIFOs. 

Blocking (default) 

blocks until FIFO is opened for 
writing 

returns OK 

open for writing 

pipe or FIFO 
open for reading 
pipe or FIFO not 
open for reading 

Note a few additional rules regarding the reading and writing of a pipe or FIFO. 

O-NONBLO~K set 

returns OK 

returns OK 

blocks until FIFO is opened for 
reading 

blocks until data is in the pipe or 
FIFO, or until the pipe or 
FIFO is no longer open for 
writing 

read returns 0 (end-of-file) 

If we ask to read more data than is currently available in the pipe or FIFO, only 
the available data is returned. We must be prepared to handle a return value 
from read that is less than the requested amount. 

returns OK I returnsOK 

returns an error of ENXIO 

returns an error of EAGAIN 

read returns 0 (end-of-file) 

(see text) 

SIGPIPE generated for thread 

If the number of bytes to w r i t e  is less than or equal to PIPE-BUF (a Posix limit 
that we say more about in Section 4.11), the w r i t e  is guaranteed to be atomic. 
This means that if two processes each write to the same pipe or FIFO at about 
the same time, either all the data from the first process is written, followed by all 
the data from the second process, or vice versa. The system does not intermix 
the data from the two processes. If, however, the number of bytes to w r i t e  is 
greater than PIPE-BUF, there is no guarantee that the w r i t e  operation is 
atomic. 

(see text) 

SIGPIPE generated for thread 

Posix.1 requires that PIPE-BUF be at least 512 bytes. Commonly encountered values 
range from 1024 for BSD/OS 3.1 to 5120 for Solaris 2.6. We show a program in Sec- 
tion 4.11 that prints this value. 

The setting of the 0-NONBLOCK flag has no effect on the atomicity of wr i tes  to a 
pipe or FIFO-atomicity is determined solely by whether the requested number 
of bytes is less than or equal to PIPE-BUF. But when a pipe or FIFO is set non- 
blocking, the return value from w r i t e  depends on the number of bytes to write 
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and the amount of space currently available in the pipe or FIFO. If the number 
of bytes to w r i t e  is less than or equal to PIPE-BUF: 

a. If there is room in the pipe or FIFO for the requested number of bytes, all the 
bytes are transferred. 

b. If there is not enough room in the pipe or FIFO for the requested number of 
bytes, return is made immediately with an error of EAGAIN. Since the 
0-NONBLOCK flag is set, the process does not want to be put to sleep. But the 
kernel cannot accept part of the data and still guarantee an atomic wri te ,  so 
the kernel must return an error and tell the process to try again later. 

If the number of bytes to w r i t e  is greater than PIPE-BUF: 

a. If there is room for at least 1 byte in the pipe or FIFO, the kernel transfers 
whatever the pipe or FIFO can hold, and that is the return value from 
write .  

b. If the pipe or FIFO is full, return is made immediately with an error of 
EAGAIN. 

If we w r i t e  to a pipe or FIFO that is not open for reading, the SIGPIPE signal 
is generated: 

a. If the process does not catch or ignore SIGPIPE, the default action of termi- 
nating the process is taken. 

b. If the process ignores the SIGPIPE signal, or if it catches the signal and 
returns from its signal handler, then w r i t e  returns an error of EPIPE. 

SIGPIPE is considered a synchronous signal, that is, a signal attributable to one 
specific thread, the one that called write. But the easiest way to handle this 
signal is to ignore it (set its disposition to SIG-IGN) and let write return an 
error of EPIPE. An application should always detect an error return from 
write, but detecting the termination of a process by SIGPIPE is harder. If the 
signal is not caught, we must look at the termination status of the process from 
the shell to determine that the process was killed by a signal, and which signal. 
Section 5.13 of UNPvl talks more about SIGPIPE. 

4.8 One Server, Multiple Clients 

The real advantage of a FIFO is when the server is a long-running process (e.g., a dae- 
mon, as described in Chapter 12 of UNPvl) that is unrelated to the client. The daemon 
creates a FIFO with a well-known pathname, opens the FIFO for reading, and the client 
then starts at some later time, opens the FIFO for writing, and sends its commands or 
whatever to the daemon through the FIFO. One-way communication of this form 
(client to server) is easy with a FIFO, but it becomes harder if the daemon needs to send 
something back to the client. Figure 4.22 shows the technique that we use with our 
example. 

The server creates a FIFO with a well-known pathname, / tmp/ f i f  o . s e r v  in this 
example. The server will read client requests from this FIFO. Each client creates its own 
FIFO when it starts, with a pathname containing its process ID. Each client writes its 
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PID 1234 PID 9876 
Figure 4.22 One server, multiple clients. 

request to the server's well-known FIFO, and the request contains the client process ID 
along with the pathname of the file that the client wants the server to open and send to 
the client. 

Figure 4.23 shows the server program. 

Create well-known FIFO and open for read-only and write-only 

10-15 The server's well-known FIFO is created, and it is OK if it already exists. We then 
open the FIFO twice, once read-only and once write-only. The readf i f  o descriptor is 
used to read each client request that arrives at the FIFO, but the dummy£ d descriptor is 
never used. The reason for opening the FIFO for writing can be seen in Figure 4.21. If 
we do not open the FIFO for writing, then each time a client terminates, the FIFO 
becomes empty and the server's read returns 0 to indicate an end-of-file. We would 
then have to close the FIFO and call open again with the 0-RDONLY flag, and this will 
block until the next client request arrives. But if we always have a descriptor for the 
FIFO that was opened for writing, read will never return 0 to indicate an end-of-file 
when no clients exist. Instead, our server will just block in the call to read, waiting for 
the next client request. This trick therefore simplifies our server code and reduces the 
number of calls to open for its well-known FIFO. 

When the server starts, the first open (with the 0-RDONLY flag) blocks until the first 
client opens the server's FIFO write-only (recall Figure 4.21). The second open (with 
the 0-WRONLY flag) then returns immediately, because the FIFO is already open for 
reading. 

Read client request 

16 Each client request is a single line consisting of the process ID, one space, and then 
the pathname. We read this line with our readline function (which we show on p. 79 
of UNPvl). 
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2 void server (int, int) ; 

3 int 
4 main(int argc, char **argv) 
5 I 

int readfifo, writefifo, dummyfd, fd; 
char *ptr, buff [MAXLINE] , f if oname [MAXLINE] : 
pid-t pid; 
ssize-t n; 

/ *  create server's well-known FIFO; OK if already exists * /  
if ((mkfifo(SERV-FIFO, FILE-MODE) < 0) && (errno !=  EEXIST)) 

err-sys("can't create %s", SERV-FIFO); 

/ *  open server's well-known FIFO for reading and writing */  
readfifo = Open(SERV-FIFO, 0-RDONLY, 0); 
dummyfd = Open(SERV-FIFO, 0-WRONLY, 0); / *  never used * /  

while ( (n = Readline(readfif0, buff, MAXLINE)) > 0) { 

if (buff[n - 11 == '\n') 
n-- ; / *  delete newline from readline() * /  

buff [n] = '\0'; / *  null terminate pathname * /  

if ( (ptr = strchr(buf f, ' ' )  ) == NULL) ( 

err-msg("bogus request: %s", buff); 
continue; 

1 
*ptr++ = 0; / *  null terminate PID, ptr = pathname * /  
pid = at01 (buff) ; 
snprintf(fifoname, sizeof(fifoname), "/tmp/fifo.%ld", (long) pid); 
if ( (writefifo = open(fifoname, 0-WRONLY, 0)) < 0) { 

errmsg("cannot open: %s", fifoname); 
continue; 

1 
if ( (fd = open(ptr, 0-RDONLY)) < 0) I 

/ *  error: must tell client * /  
snprintf (buff + n, sizeof (buff) - n, " : can't open, %s\nn, 

strerror(errn0) ) ;  

n = strlen(ptr) ; 
~rite(writefif0, ptr, n); 

1 else { 

/ *  open succeeded: copy file to FIFO * /  
while ( (n = Read(fd, buff, MAXLINE)) > 0) 

Write(writefif0. buff, n) ; 
Close ( f d) ; 
Close (writefifo) ; 

1 
1 

46 1 fifocliserv/mainserver~ 

Figure 4.23 FIFO server that handles multiple clients. 
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Parse client's request 

17-26 The newline that is normally returned by readline is deleted. This newline is 
missing only if the buffer was filled before the newline was encountered, or if the final 
line of input was not terminated by a newline. The strchr function returns a pointer 
to the first blank in the line, and ptr is incremented to point to the first character of the 
pathname that follows. The pathname of the client's FIFO is constructed from the pro- 
cess ID, and the FIFO is opened for write-only by the server. 

Open file for client, send file to client's FlFO 

27-44 The remainder of the server is similar to our server function from Figure 4.10. 
The file is opened and if this fails, an error message is returned to the client across the 
FIFO. If the open succeeds, the file is copied to the client's FIFO. When done, we must 
close the server's end of the client's FIFO, which causes the client's read to return 0 
(end-of-file). The server does not delete the client's FIFO; the client must do so after it 
reads the end-of-file from the server. 

We show the client program in Figure 4.24. 

Create FlFO 

10-14 The client's FIFO is created with the process ID as the final part of the pathname. 

Build client request line 

15-21 The client's request consists of its process ID, one blank, the pathname for the server 
to send to the client, and a newline. This line is built in the array buff, reading the 
pathname from the standard input. 

Open server's FlFO and write request 

22-24 The server's FIFO is opened and the request is written to the FIFO. If this client is 
the first to open this FIFO since the server was started, then this open unblocks the 
server from its call to open (with the 0-RDONLY flag). 

Read file contents or error message from server 

25-31 The server's reply is read from the FIFO and written to standard output. The 
client's FIFO is then closed and deleted. 

We can start our server in one window and run the client in another window, and it 
works as expected. We show only the client interaction. 

solaris % mainclient 
/etc/shadow a file we  cannot read 
/etc/shadow: can't open, Permission denied 
solaris % mainclient 
/etc/inet/ntp.conf a 2-linefile 
multicastclient 224.0.1.1 
driftfile /etc/inet/ntp.drift 

We can also interact with the server from the shell, because FIFOs have names in the 
filesystem. 
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fifocliserv/mainclient.c 
l#include "fifo.hW 

2 int 
3 main(int argc, char **argv) 
4 I 

int readfifo, writefifo; 
size-t len; 
ssize-t n; 
char *ptr, f ifoname [MAXLINE] , buff [MAXLINE] ; 
pid-t pid: 

/ *  create FIFO with our PID as part of name * /  
pid = getpid ( ) ; 
snprintf(fifoname, sizeof(fifoname), "/tmp/fifo.%ld", (long) pid); 
if ((mkfifo(fifoname, FILE-MODE) c 0) && (errno !=  EEXIST)) 

err-sys ("can' t create %s" , f ifoname) ; 

/ *  start buffer with pid and a blank * /  
snprintf(buff, sizeof(buff), "%ld ", (long) pid); 
len = strlen (buf f) ; 
ptr = buff + len; 

/ *  read pathname */  
Fgets(ptr, MAXLINE - len, stdin); 
len = strlen(buff); / *  £gets() guarantees null byte at end */  

/ *  open FIFO to server and write PID and pathname to FIFO */  
writef if o = Open (SERV-FIFO, 0-WRONLY, 0) ; 
Write(writefif0, buff, len); 

/ *  now open our FIFO; blocks until server opens for writing * /  
readfifo = Open(fifoname, 0-RDONLY, 0); 

/ *  read from IPC, write to standard output * /  
while ( (n = Read(readfif0, buff, MAXLINE)) > 0) 

Write(STD0UT-FILENO, buff, n); 

Close(readfifo); 
Unlink(fifoname); 
exit (0) ; 

Figure 4.24 FIFO client that works with the server in Figure 4.23. 

solaris % Pid=$$ process ID of this shell 
solaris % mkfifo /tw/fifo.$Pid make the client's FIFO 
solaris % echo "$Pid /etc/inet/ntp.conf" > /tmp/fifo.serv 
solaris % cat < /tmp/fifo.$Pid and read server's reply 
multicastclient 224.0.1.1 
driftfile /etc/inet/ntp.drift 
solaris % rm /tw/fifo.$Pid 

We send our process ID and pathname to the server with one shell command (echo) 
and read the server's reply with another (cat). Any amount of time can occur between 
these two commands. Therefore, the server appears to write the file to the FIFO, and 
the client later executes cat to read the data from the FIFO, which might make us think 
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that the data remains in the FIFO somehow, even when no process has the FIFO open. 
This is not what is happening. Indeed, the rule is that when the final c lose  of a pipe or 
FIFO occurs, any remaining data in the pipe or FIFO is discarded. What is happening in 
our shell example is that after the server reads the request line from the client, the server 
blocks in its call to open on the client's FIFO, because the client (our shell) has not yet 
opened the FIFO for reading (recall Figure 4.21). Only when we execute c a t  sometime 
later, which opens the client FIFO for reading, does the server's call to open for this 
FIFO return. This timing also leads to a denial-of-service attack, which we discuss in the 
next section. 

Using the shell also allows simple testing of the server's error handling. We can 
easily send a line to the server without a process ID, and we can also send a line to the 
server specifying a process ID that does not correspond to a FIFO in the / tmp directory. 
For example, if we invoke the client and enter the following lines 

solaris % cat > /tmp/fifo.serv 
/no/process/id 
999999 /invalid/process/id 

then the server's output (in another window) is 

solaris % server 
bogus request: /no/process/id 
cannot open: /tmp/£i£o.999999 

Atomicity of FIFO writes 

Our simple client-server also lets us see why the atomicity property of wri tes  to pipes 
and FIFOs is important. Assume that two clients send requests at about the same time 
to the server. The first client's request is the line 

and the second client's request is the line 

If we assume that each client issues one w r i t e  function call for its request line, and that 
each line is less than or equal to PIPE-BUF (which is reasonable, since this limit is usu- 
ally between 1024 and 5120 and since pathnames are often limited to 1024 bytes), then 
we are guaranteed that the data in the FIFO will be either 

The data in the FIFO will not be something like 
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FlFOs and NFS 

FIFOs are a form of IPC that can be used on a single host. Although FIFOs have names 
in the filesystem, they can be used only on local filesystems, and not on NFS-mounted 
filesystems. 

solaris % mkfifo /nfs/bsdi/usr/rstevens/fifo.temp 
mkfifo: 1/0 error 

In this example, the filesystem /nf s /bsdi/usr is the /usr filesystem on the host 
bsdi. 

Some systems (e.g., BSD/OS) do allow FIFOs to be created on an NFSmounted file- 
system, but data cannot be passed between the two systems through one of these FIFOs. 
In this scenario, the FIFO would be used only as a rendezvous point in the filesystem 
between clients and servers on the same host. A process on one host cannot send data to 
a process on another host through a FIFO, even though both processes may be able to 
open a FIFO that is accessible to both hosts through NFS. 

4.9 Iterative versus Concurrent Servers 

The server in our simple example from the preceding section is an iterative server. It iter- 
ates through the client requests, completely handling each client's request before pro- 
ceeding to the next client. For example, if two clients each send a request to the server 
at about the same time-the first for a 10-megabyte file that takes 10 seconds (say) to 
send to the client, and the second for a 10-byte file-the second client must wait at least 
10 seconds for the first client to be serviced. 

The alternative is a concurrent server. The most common type of concurrent server 
under Unix is called a one-child-per-client server, and it has the server call fork to create 
a new child each time a client request arrives. The new child handles the client request 
to completion, and the multiprogramming features of Unix provide the concurrency of 
all the different processes. But there are other techniques that are discussed in detail in 
Chapter 27 of UNPvl: 

create a pool of children and service a new client with an idle child, 
create one thread per client, and 
create a pool of threads and service a new client with an idle thread. 

Although the discussion in UNPvl is for network servers, the same techniques apply to 
IPC servers whose clients are on the same host. 

Denial-of-Service Attacks 

We have already mentioned one problem with an iterative server-some clients must 
wait longer than expected because they are in Line following other clients with longer 
requests-but another problem exists. Recall our shell example following Figure 4.24 
and our discussion of how the server blocks in its call to open for the client FIFO if the 
client has not yet opened this FIFO (which did not happen until we executed our cat  
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command). This means that a malicious client could tie up the server by sending it a 
request line, but never opening its FIFO for reading. This is called a denial-of-service 
(DoS) attack. To avoid this, we must be careful when coding the iterative portion of any 
server, to note where the server might block, and for how long it might block. One way 
to handle the problem is to place a timeout on certain operations, but it is usually sim- 
pler to code the server as a concurrent server, instead of as an iterative server, in which 
case, this type of denial-of-service attack affects only one child, and not the main server. 
Even with a concurrent server, denial-of-service attacks can still occur: a malicious client 
could send lots of independent requests, causing the server to reach its limit of child 
processes, causing subsequent forks to fail. 

10 Streams and Messages 

The examples shown so far, for pipes and FIFOs, have used the stream I/O model, 
which is natural for Unix. No record boundaries exist-reads and writes do not exam- 
ine the data at all. A process that reads 100 bytes from a FIFO, for example, cannot tell 
whether the process that wrote the data into the FIFO did a single write of 100 bytes, 
five writes of 20 bytes, two writes of 50 bytes, or some other combination of writes that 
totals 100 bytes., One process could also write 55 bytes into the FIFO, followed by 
another process writing 45 bytes. The data is a byte stream with no interpretation done 
by the system. If any interpretation is desired, the writing process and the reading pro- 
cess must agree to it a priori and do it themselves. 

Sometimes an application wants to impose some structure on the data being trans- 
ferred. This can happen when the data consists of variable-length messages and the 
reader must know where the message boundaries are so that it knows when a single 
message has been read. The following three techniques are commonly used for this: 

1. Special termination sequence in-band: many Unix applications use the newline 
character to delineate each message. The writing process appends a newline to 
each message, and the reading process reads one line at a time. This is what our 
client and server did in Figures 4.23 and 4.24 to separate the client requests. In 
general, this requires that any occurrence of the delimiter in the data must be 
escaped (that is, somehow flagged as data and not as a delimiter). 

Many Internet applications (ETP, SMTP, HTTP, NNTP) use the 2-character 
sequence of a carriage return followed by a liiefeed (CR/LF) to delineate text 
records. 

2. Explicit length: each record is preceded by its length. We will use this technique 
shortly. This technique is also used by Sun RPC when used with TCP. One 
advantage to this technique is that escaping a delimiter that appears in the data 
is unnecessary, because the receiver does not need to scan all the data, looking 
for the end of each record. 

3. One record per connection: the application closes the connection to its peer (its 
TCP connection, in the case of a network application, or its IPC connection) to 
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indicate the end of a record. This requires a new connection for every record, 
but is used with HTTP 1.0. 

The standard 1 /0  library can also be used to read or write a pipe or FIFO. Since the 
only way to open a pipe is with the pipe function, which returns an open descriptor, 
the standard 1 /0  function f dopen must be used to create a new standard I/O stream 
that is then associated with this open descriptor. Since a FIFO has a name, it can be 
opened using the standard I/O f open function. 

More structured messages can also be built, and this capability is provided by both 
Posix message queues and System V message queues. We will see that each message 
has a length and a priority (System V calls the latter a "type"). The length and priority 
are specified by the sender, and after the message is read, both are returned to the 
reader. Each message is a record, similar to UDP datagrams (UNPvl). 

We can also add more structure to either a pipe or FIFO ourselves. We define a mes- 
sage in our mesg . h header, as shown in Figure 4.25. 

2 / *  Our own "messages" to use with pipes, FIFOs, and message queues. * /  

3 / *  want sizeof(struct mymesg) <= PIPE-BUF * /  
4 #define MAXMESGDATA (PIPE-BUF - 2*sizeof(long)) 

5 / *  length of mesg-len and mesg-type * /  
6 #define MESGHDRSIZE (sizeof(struct mymesg) - MAXMESGDATA) 

7 struct mymesg ( 

8 long mesg-len; / *  #bytes in mesg-data, can be 0 * /  
9 long mesg-type; / *  message type, must be > 0 * /  
10 char mesg-data [MAXMESGDATAI ; 

11 1; 

12 ssize-t mesg-send(int, struct mymesg * ) ;  

13 void Mesg-send(int, struct mymesg * ) :  

14 ssize-t mesg-recv(int, struct mymesg * ) ;  

15 ssize-t Mesg-recv(int, struct mymesg * ) ;  
pipernesg/rnesg.h 

Figure 4.25 Our mymesg structure and related definitions. 

Each message has a mesg-type, which we define as an integer whose value must be 
greater than 0. We ignore the type field for now, but return to it in Chapter 6, when we 
describe System V message queues. Each message also has a length, and we allow the 
length to be zero. What we are doing with the mymesg structure is to precede each mes- 
sage with its length, instead of using newlines to separate the messages. Earlier, we 
mentioned two benefits of this design: the receiver need not scan each received byte 
looking for the end of the message, and there is no need to escape the delimiter (a new- 
line) if it appears in the message. 

Figure 4.26 shows a picture of the mymesg structure, and how we use it with pipes, 
FIFOs, and System V message queues. 
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second argument for write and read 

I second argument for msgsnd and msgrcv 

I 

I mesg-len I mesg-type / mesg-data I 
System v message: msobuf { 1, 

used with System V message queues, 
msgsnd and msgrcv functions 

L 

used with pipes and FIFOs, 
write and read functions 

Figure 4.26 Our mymesg structure. 

We define two functions to send and receive messages. Figure 4.27 shows our 
mesg-send function, and Figure 4.28 shows our mesg-recv function. 

2 ssize-t 
3 mesg-send(int fd, struct mymesg *mptr) 
4 ( 

5 return (write(fd, mptr, MESGHDRSIZE + mptr->mesg-len) ) ;  

6 1 
pipemesglmesg-send.c 

Figure 4.27 mesg-send function. 

2 ssize-t 
3 mesg-recv(int fd, struct mymesg *mptr) 
4 ( 

5 size-t len; 
6 ssize-t n; 

7 / *  read message header first, to get len of data that follows * /  
8 if ( (n = Read(fd, mptr, MESGHDRSIZE) ) == 0) 
9 return (0) ; / *  end of file * /  
10 else if (n !=  MESGHDRSIZE) 
11 err-quit("message header: expected %d, got %dm, MESGHDRSIZE, n); 

12 if ( (len = mptr->mesg-len) > 0) 
13 if ( (n = Read(fd, mptr-smesg-data, len)) !=  len) 
14 err-quit("message data: expected %d, got %dm, len, n); 
15 return (len); 
16 1 pipemesglrnesg-recv.c 

Figure 4.28 mesg-recv function. 
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It now takes two reads for each message, one to read the length, and another to read 
the actual message (if the length is greater than 0). 

Careful readers may note that mesg-recv checks for all possible errors and terminates if one 
occurs. Nevertheless, we still define a wrapper function named Mesg-recv and call it from 
our programs, for consistency. 

We now change our client and server functions to use the mesg-send and 
mesg-recv functions. Figure 4.29 shows our client. 

2 void 
3 client(int readfd, int writefd) 

4 ( 

5 size-t len; 
6 ssize-t n; 
7 struct mymesg mesg; 

8 / *  read pathnarne * /  
9 Fgets(mesg.mesg-data, MAXMESGDATA, stdin); 
10 len = strlen(mesg.mesg-data); 
11 if (mesg.mesg-data[len - 11 == '\nl) 
12 len-- : / *  delete newline from fgets() * /  
13 mesg.mesg-len = len; 
14 mesg.mesg-type = 1; 

15 / *  write pathnarne to IPC channel * /  
16 Mesg-send(writefd. &mesg): 

17 / *  read from IPC, write to standard output * /  
18 while ( (n = Mesg-recv(readfd, &mesg) ) > 0) 
19 Write(STDOUT-FILENO, mesg.mesg-data, n); 

Figure 4.29 Our client function that uses messages. 

Read pathname, send to server 

8-16 The pathnarne is read from standard input and then sent to the server using 
mesg-send. 

Read file's contents or error message from server 

17-19 The client calls mesg-recv in a loop, reading everything that the server sends back. 
By convention, when mesg-recv returns a length of 0, this indicates the end of data 
from the server. We will see that the server includes the newline in each message that it 
sends to the client, so a blank line will have a message length of 1. 

Figure 4.30 shows our server. 
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2 void 
3 server(int readfd, int writefd) 
4 ( 
5 FILE *fp; 
6 ssize-t n; 
7 struct mymesg mesg; 

8 / *  read pathname from IPC channel * /  
9 mesg.mesg-type = 1; 
10 if ( (n = Mesg-recv(readfd, &mesg)) == 0) 
11 errquit("pathname missing"); 
12 mesg.mesg-data[nl = '\Of; / *  null terminate pathname * /  

13 if ( (fp = fopen(mesg.mesg-data, "r")) == NULL) ( 

14 / *  error: must tell client * /  
15 snprintf(mesg.mesg-data + n. sizeof(mesg.mesg-data) - n, 
16 I, _ . can't open, %s\nU, strerror(errn0)); 
17 mesg-mesg-len = strlen(mesg.mesg-data); 
18 Mesg-send (writefd, &mesg) ; 

19 1 else { 

20 / *  fopen succeeded: copy file to IPC channel * /  
21 while (Fgets(mesg.mesg-data, MAXMESGDATA, fp) !=  NULL) { 

2 2 mesg.mesg-len = strlen(mesg.mesg-data); 
2 3 Mesg-send(writefd, &mesg); 
2 4 1 
25 Fclose (fp) ; 
26 1 

2 7 / *  send a 0-length message to signify the end * /  
28 mesg.mesg-len = 0; 
29 Mesg-send(writefd, &mesg); 
30 1 

pipemesglserver.~ 
Figure 4.30 Our server function that uses messages. 

Read pathname from IPC channel, open file 

8-18 The pathname is read from the client. Although the assignment of 1 to mesg-type 
appears useless (it is overwritten by mesg-recv in Figure 4.28), we call this same func- 
tion when using System V message queues (Figure 6.10), in which case, this assignment 
is needed (e.g., Figure 6.13). The standard 1 /0  function fopen opens the file, which 
differs from Figure 4.10, where we called the Unix 1 /0  function open to obtain a 
descriptor for the file. The reason we call the standard 1 /0  library here is to call f gets 
to read the file one line at a time, and then send each line to the client as a message. 

Copy file to client 

19-26 If the call to f open succeeds, the file is read using f gets and sent to the client, one 
line per message. A message with a length of 0 indicates the end of the file. 
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When using either pipes or FIFOs, we could also close the IPC channel to notify the 
peer that the end of the input file was encountered. We send back a message with a 
length of 0, however, because we will encounter other types of IPC that do not have the 
concept of an end-of-file. 

The main functions that call our client and server functions do not change at 
all. We can use either the pipe version (Figure 4.8) or the FIFO version (Figure 4.16). 

4.11 Pipe and FIFO Limits 

The only system-imposed limits on pipes and FIFOs are 

OPEN-MAX the maximum number of descriptors open at any time by a process 
(Posix requires that this be at least 16), and 

PIPE-BUF the maximum amount of data that can be written to a pipe or FIFO 
atomically (we described this in Section 4.7; Posix requires that this be 
at least 512). 

The value of OPEN-MAX can be queried by calling the sysconf function, as we show 
shortly. It can normally be changed from the shell by executing the ul imi t command 
(Bourne shell and KornShell, as we show shortly) or the limit command (C shell). It 
can also be changed from a process by calling the setrlimi t function (described in 
detail in Section 7.11 of APUE). 

The value of PIPE-BUF is often defined in the <limits . h> header, but it is consid- 
ered a pathname variable by Posix. This means that its value can differ, depending on the 
pathname that is specified (for a FIFO, since pipes do not have names), because differ- 
ent pathnames can end up on different filesystems, and these filesystems might have 
different characteristics. The value can therefore be obtained at run time by calling 
either pathconf or fpathconf. Figure 4.31 shows an example that prints these two 
limits. 

2 int 
3 main(int argc, char **argv) 
4 ( 

5 if (argc !=  2 )  
6 errquit("usage: pipeconf <pathname>"); 

7 printf("P1PE-BUF = %Id, OPEN-MAX = %1d\nw. 
8 Pathconf(argv[l], -PC-PIPE-BUF), Sysconf(_S~-0~EN-W) ) ;  

9 exit(0) ; 

10 1 
pipel pipec0nf.c 

Figure 4.31 Determine values of PIPE-BUF and OPEN-W at run time. 
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Here are some examples, specifying different filesysterns: 

s o l a r i s  % pipeconf / Solaris 2.6 default values 
PIPE-BUF = 5120,  OPEN-MAX = 64 
s o l a r i s  % pipeconf /home 
PIPE-BUF = 5120,  OPEN-MAX = 64 
s o l a r i s  % pipeconf / t m  
PIPE-BUF = 5120, OPEN-MAX = 64 

alpha % pipeconf / Digital Unix 4.OB default values 
PIPE-BUF = 4096,  OPEN-MAX = 4096 
alpha % pipeconf /usr 
PIPE-BUF = 4096, OPEN-MAX = 4096 

We now show how to change the value of OPEN-mX under Solaris, using the Korn- 
Shell. 

s o l a r i s  % ulimit -nS display max # descriptors, soft limit 
6 4 
s o l a r i s  % ulimit - n ~  display max # descriptors, hard limit 
1024  
s o l a r i s  % ulimit -nS 512 set soft limit to 512 
s o l a r i s  % pipeconf / verify that change has occurred 
PIPE-BUF = 5120,  OPEN-MAX = 512 

Although the value of PIPE-BUF can change for a FIFO, depending on the underlying file- 
system in which the pathname is stored, this should be extremely rare. 

Chapter 2 of APUE describes the fpathconf, pathconf, and sysconf functions, which pro- 
vide run-time information on certain kernel limits. Posix.1 defines 12 constants that begin with 
- PC- and 52 that begin with -SC-. Digital Unix 4.OB and Solaris 2.6 both extend the latter, 
defining about 100 run-time constants that can be queried with sysconf. 

The getconf command is defined by Posix.2, and it prints the value of most of 
these implementation limits. For example 

alpha % getconf 0PEN-W 
4096 
alpha % getconf PIPE-BUF I 
4096 

4.12 Summary 

Pipes and FIFOs are fundamental building blocks for many applications. Pipes are 
commonly used with the shells, but also used from within programs, often to pass infor- 
mation from a child back to a parent. Some of the code involved in using a pipe (pipe, 
fork, close, exec, and waitpid) can be avoided by using popen and pclose, 
which handle all the details and invoke a shell. 
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FIFOs are similar to pipes, but are created by m k f  i f  o and then opened by open. 
We must be careful when opening a FIFO, because numerous rules (Figure 4.21) govern 
whether an open blocks or not. 

Using pipes and FIFOs, we looked at some client-server designs: one server with 
multiple clients, and iterative versus concurrent servers. An iterative server handles 
one client request at a time, in a serial fashion, and these types of servers are normally 
open to denial-of-service attacks. A concurrent server has another process or thread 
handle each client request. 

One characteristic of pipes and FIFOs is that their data is a byte stream, similar to a 
TCP connection. Any delineation of this byte stream into records is left to the applica- 
tion. We will see in the next two chapters that message queues provide record bound- 
aries, similar to UDP datagrams. 

Exercises 

In the transition from Figure 4.3 to Figure 4.4, what could happen if the child did not 
c l o s e ( f d [ l l ) ?  

In describing mkf i f o  in Section 4.6, we said that to open an existing FIFO or create a new 
FIFO if it does not already exist, call mkfifo, check for an error of EEXIST, and if this 
occurs, call open. What can happen if the logic is changed, calling open first and then 
mkf i f  o if the FIFO does not exist? 

What happens in the call to popen in Figure 4.15 if the shell encounters an error? 

Remove the open of the server's FIFO in Figure 4.23 and verify that this causes the server to 
terminate when no more clients exist. 

In Figure 4.23, we noted that when the server starts, it blocks in its first call to open until 
the first client opens this FIFO for writing. How can we get around this, causing both 
opens to return immediately, and block instead in the first call to readl ine?  

What happens to the client in Figure 4.24 if it swaps the order of its two calls to open? 

Why is a signal generated for the writer of a pipe or FIFO after the reader disappears, but 
not for the reader of a pipe or FIFO after its writer disappears? 

Write a small test program to determine whether f s t a t  returns the number of bytes of data 
currently in a FIFO as the s t- s ize  member of the s t a t  structure. 

Write a small test program to determine what s e l e c t  returns when you select for writabil- 
ity on a pipe descriptor whose read end has been closed. 



Posix Message Queues 

Introduction 

A message queue can be thought of as a linked list of messages. Threads with adequate 
permission can put messages onto the queue, and threads with adequate permission 
can remove messages from the queue. Each message is a record (recall our discussion of 
streams versus messages in Section 4.10), and each message is assigned a priority by the 
sender. No requirement exists that someone be waiting for a message to arrive on a 
queue before some process writes a message to that queue. This is in contrast to both 
pipes and FIFOs, for which it having a writer makes no sense unless a reader also exists. 

A process can write some messages to a queue, terminate, and have the messages 
read by another process at a later time. We say that message queues have kernel persis- 
tence (Section 1.3). This differs from pipes and FIFOs. We said in Chapter 4 that any 
data remaining in a pipe or FIFO when the last close of the pipe or FIFO takes place, is 
discarded. 

This chapter looks at Posix message queues and Chapter 6 looks at System V mes- 
sage queues. Many similarities exist between the two sets of functions, with the main 
differences being: 

A read on a Posix message queue always returns the oldest message of the high- 
est priority, whereas a read on a System V message queue can return a message 
of any desired priority. 

Posix message queues allow the generation of a signal or the initiation of a 
thread when a message is placed onto an empty queue, whereas nothing similar 
is provided by System V message queues. 
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Every message on a queue has the following attributes: 

an unsigned integer priority (Posix) or a long integer type (System V), 
the length of the data portion of the message (which can be O), and 
the data itself (if the length is greater than 0). 

Notice that these characteristics differ from pipes and FIFOs. The latter two are byte 
streams with no message boundaries, and no type associated with each message. We 
discussed this in Section 4.10 and added our own message interface to pipes and FIFOs. 

Figure 5.1 shows one possible arrangement of a message queue. 

mLmaxmsg priority = 30 

mq-msgsize length = 1 

Figure 5.1 Possible arrangement of a Posix message queue containing three messages. 

We are assuming a linked list, and the head of the list contains the two attributes of the 
queue: the maximum number of messages allowed on the queue, and the maximum 
size of a message. We say more about these attributes in Section 5.3. 

In this chapter, we use a technique that we use in later chapters when looking at 
message queues, semaphores, and shared memory. Since all of these IPC objects have at 
least kernel persistence (recall Section 1.3), we can write small programs that use these 
techniques, to let us experiment with them and learn more about their operation. For 
example, we can write a program that creates a Posix message queue, write another pro- 
gram that adds a message to a Posix message queue, and write another that reads from 
one of these queues. By writing messages with different priorities, we can see how 
these messages are returned by the m ~ r e c e i v e  function. 

-en, mgclose, and mgunlink Functions 

The m L o p e n  function creates a new message queue or opens an existing message 
queue. 

#include <mqueue.h> 

mqd-t mq-open(const char *name, int oflag, . . . 
/ *  mode-t mode, struct mLattr *attr * /  ) ;  

I Returns: message queue descriptor if OK, -1 on error 
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We describe the rules about the name argument in Section 2.2. 
The oflag argument is one of 0-RDONLY, 0-WRONLY, or 0-RDWR, and may be bit- 

wise-ORed with 0-CREAT, 0-EXCL, and 0-NONBLOCK. We describe all these flags in 
Section 2.3. 

When a new queue is created (0-CREAT is specified and the message queue does 
not already exist), the mode and attr arguments are required. We describe the mode val- 
ues in Figure 2.4. The attr argument lets us specify some attributes for the queue. If this 
argument is a null pointer, the default attributes apply. We discuss these attributes in 
Section 5.3. 

The return value from mLopen is called a message queue descriptor, but it need not 
be (and probably is not) a small integer like a file descriptor or a socket descriptor. This 
value is used as the first argument to the remaining seven message queue functions. 

Solaris 2.6 defines mqd-t as a void* whereas Digital Unix 4.08 defines it as an i n t .  In our 
sample implementation in Section 5.8, these descriptors are pointers to a structure. Calling 
these datatypes a descriptor is an unfortunate mistake. 

An open message queue is closed by mLc 10s e. 

I i n t  m ~ c l o s e ( m q d - t  mqdes); I 
Returns: 0 if OK, -1 on error 

The functionality is similar to the c lose  of an open file: the calling process can no 
longer use the descriptor, but the message queue is not removed from the system. If the 
process terminates, all open message queues are closed, as if mLclose were called. 

To remove a name that was used as an argument to mLopen from the system, 
m ~ u n l i n k  must be called. 

i n t  m ~ u n l i n k ( c o n s t  char  *name) ; I 
I Returns: 0 if OK, -1 on error I 

Message queues have a reference count of how many times they are currently open (just 
like files), and this function is similar to the unlink function for a file: the name can be 
removed from the system while its reference count is greater than 0, but the destruction 
of the queue (versus removing its name from the system) does not take place until the 
last m ~ c l o s e  occurs. 

Posix message queues have at least kernel persistence (recall Section 1.3). That is, 
they exist along with any messages written to the queue, even if no process currently 
has the queue open, until the queue is removed by calling m ~ u n l i n k  and having the 
queue reference count reach 0. 
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We will see that if these message queues are implemented using memory-mapped files (Sec- 
tion 12.2), then they can have filesystem persistence, but this is not required and cannot be 
counted on. 

Example: -create1 Program 

Since Posix message queues have at least kernel persistence, we can write a set of small 
programs to manipulate these queues, providing an easy way to experiment with them. 
The program in Figure 5.2 creates a message queue whose name is specified as the 
command-line argument. 

pxmsg lmqcreatel .c 
1 #include "unpipc.hW 

2 int 
3 main(int argc, char **argv) 
4 { 

5 int c, flags; 
6 mqd-t mqd; 

flags = 0-RDWR 1 0-CREAT; 
while ( (c = Getopt(argc, argv. "en)) != -1) { 

switch (c) { 
case 'e' : 

flags I =  0-EXCL; 
break; 

I 
1 
if (optind !=  argc - 1) 

err-quit("usage: mqcreate [ -e I <name>"); 

17 mqd = Mcopen(argv[optindl, flags, FILE-MODE, NULL); 

Figure 5.2 Create a message queue with the exclusive-create flags specified. 

8-16 We allow a -e option that specifies an exclusive create. (We say more about the 
getopt function and our Getopt wrapper with Figure 5.5.) Upon return, getopt 
stores in optind the index of the next argument to be processed. 

17 We call mcopen with the IPC name from the command-line, without calling our 
px-ipc-name function (Section 2.2). This lets us see exactly how the implementation 
handles these Posix IPC names. (We do this with all our simple test programs through- 
out this book.) 

Here is the output under Solaris 2.6: 

solaris % mqcreatel /temp.l234 first create works 
solaris % 1s -1 /tqp/.*l234 
-rw-rw-rw- 1 rstevens otherl 132632 Oct 23 17:08 /tmp/.MQDtemp.1234 
-rw-rw-rw- 1 rstevens other1 0 Oct 23 17:08 /tmp/.MQLtemp.l234 
-m-r--r-- 1 rstevens other1 0 Oct 23 17:08 /tmp/.MQPtemp.l234 

solaris % mqcreatel -e /temp.l234 second create with -e fails 
mLopen error for /temp.1234: File exists 
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(We call this version of our program mqcreatel, because we enhance it in Figure 5.5 
after describing attributes.) The third file has the permissions that we specify with our 
FILE-MODE constant (read-write for the user, read-only for the group and other), but 
the other two files have different permissions. We guess that the filename containing D 
contains the data, the filename containing L is some type of lock, and the filename con- 
taining P specifies the permissions. 

Under Digital Unix 4.OB, we can see the actual pathname that is created. 

alpha % mqcreatel /tmp/myq.1234 
alpha % 1s -1 /tm,~/myq.1234 
-rW-r--r-- 1 rstevens system 11976 Oct 23 17:04 /tmp/myq.1234 

alpha % mqcreatel -e /tmp/myq.1234 
mLopen error for /tmp/myq.1234: File exists 

mpk: mgunlink Program 

Figure 5.3 is our mqunlink program, which removes a message queue from the system. 

pxmsg/mqunlink.c 
1 #include "unpipc.h" 

2 int 
3 main(int argc, char **argv) 
4 { 

5 if (argc !=  2) 
6 err-quit("usage: mqunlink <name>"); 

7 M~unlink(argv[ll); 

8 exit(0) ; 
9 1 

pxmsg/mqunlink.c 
Figure 5.3 m ~ u n l  ink a message queue. 

We can remove the message queue that was created by our mqcreate program. 

solaris % mqunlink /tenlp.1234 

All three files in the / tmp directory that were shown earlier are removed. 

m c g e t a t t r  and msetattr Functions 

Each message queue has four attributes, all of which are returned by m ~ g e t a t t r  and 
one of which is set by m L s e t a t t r .  

#include <mqueue.h> 

int m~getattr (mqd-t mqdes, struct mLattr *attr) ; 

int m~setattr(mqd-t mqdes, const struct mLattr *attr, struct mq-attr *oattr); 

Both return: 0 if OK, -1 on error 
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The m L a t  t r  structure contains these attributes. 

struct m ~ a t t r  { 
long mq-flags; / *  message queue flag: 0, 0-NONBLOCK * /  
long memaxmsg; / *  max number of messages allowed on queue * /  
long m~msgsize; / *  max size of a message (in bytes) * /  
long mq-curmsgs; / *  number of messages currently on queue * /  

1;  

A pointer to one of these structures can be passed as the fourth argument to mLopen, 
allowing us to set both mLmaxmsg and m ~ m s g s i z e  when the queue is created. The 
other two members of this structure are ignored by mLopen. 

m ~ g e t a t t r  fills in the structure pointed to by attr with the current attributes for 
the queue. 

m ~ s e t a t t r  sets the attributes for the queue, but only the m ~ f  l a g s  member of 
the m ~ a t t r  structure pointed to by attr is used, to set or clear the nonblocking flag. 
The other three members of the structure are ignored: the maximum number of mes- 
sages per queue and the maximum number of bytes per message can be set only when 
the queue is created, and the number of messages currently on the queue can be fetched 
but not set. 

Additionally, if the oattr pointer is nonnull, the previous attributes of the queue are 
returned ( m ~ f  lags, mLmaxmsg, and m ~ m s g s i z e ) ,  along with the current status of 
the queue (m~curmsgs) .  

Example: mqgetattr Program 

The program in Figure 5.4 opens a specified message queue and prints its attributes. 

2 int 
3 main(int argc, char **argv) 
4 
5 mqd-t mqd; 
6 struct m ~ a t t r  attr; 

7 if (argc != 2) 
8 err-quit ("usage: mqgetattr <name>" 1 ; 

9 mqd = Meopen (argv [ 1 I , 0-RDONLY) ; 

10 Megetattr(mqd, &attr); 
11 printf("max #msgs = %Id, max #bytes/msg = %Id, " 
12 "#currently on queue = %1d\nn, 
13 attr.memaxmsg, attr.memsgsize, attr.mq-curmsgs); 

14 Mq-close (mqd) ; 
15 exit (0) ; 

Figure 5.4 Fetch and print the attributes of a message queue. 

We can create a message queue and print its default attributes. 
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solaris % mqcreatel /hello.world 
solaris % mqgetattr /hello.world 
max #msgs = 128, max #bytes/msg = 1024, #currently on queue = 0 

We can now see that the file size listed by 1s when we created a queue with the default 
attributes following Figure 5.2 was 128 x 1024 + 1560 = 132,632. The 1560 extra bytes are 
probably overhead information: 8 bytes per message plus an additional 536 bytes. 

Example: mcreate Program 

We can modify our program from Figure 5.2, allowing us to specify the maximum num- 
ber of messages for the queue and the maximum size of each message. We cannot spec- 
ify one and not the other; both must be specified (but see Exercise 5.1). Figure 5.5 is the 
new program. 

pxmsg/mqcrea te.c 
1 #include "unpipc.hW 

2 struct m ~ a t t r  attr; / *  mq-mamsg and m~msgsize both init to 0 * /  

3 int 
4 main (int argc, char **argv) 
5 { 

int c, flags: 
mqd-t mqd; 

flags = 0-RDWR I  0-CREAT; 
while ( (c = Getopt(argc, argv,   em:^:")) !=  -1) { 

switch (c) { 
case 'e': 

flags I=  0-EXCL; 
break; 

case 'ml : 
attr.mq-mamsg = atol(optarg): 
break; 

case ' z ' : 
attr.m~msgsize = atol(optarg); 
break; 

1 
1 
if (optind !=  argc - 1) 

err-quit("usage: mqcreate [ -e I [ -m mamsg -z msgsize I <name>"); 

if ((attr.mcmamsg !=  0 && attr.m~msgsize == 0) I  I  
(attr.mcmamsg == 0 && attr.mpmsgsize !=  0)) 
err-quit("must specify both -m maxmsg and -z msgsize"); 

mqd = Mq~open(argv[optindl, flags, FILE-MODE, 
(attr.mcmamsg != 0) ? &attr : NULL); 

M~close (rnqd) ; 
exit (0) ; 

Figure 5.5 Modification of Figure 5.2 allowing attributes to be specified. 
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To specify that a command-line option requires an argument, we specify a colon fol- 
lowing the option character for the m and z options in the call to getopt.  When pro- 
cessing the option character, optarg points to the argument. 

Our Getopt wrapper function calls the standard library's ge topt  function and terminates the 
process if ge topt  detects an error: encountering an option letter not included in the third 
argument, or an option letter without a required argument (indicated by an option letter fol- 
lowed by a colon). In either case, ge topt  writes an error message to standard error and 
returns an error, which causes our Getopt wrapper to terminate. For example, the following 
two errors are detected by getopt: 

solaris  % mqcreate -e 
mqcreate: option requires an argument -- z 
solaris  % mqcreate -q 
mqcreate: i l legal  option -- q 

The following error (not specifying the required name argument) is detected by our program: 

solaris  % mqcreate 
usage: mqcreate [ -e I [ -m maxmsg -z msgsize I <name> 

If neither of the two new options are specified, we must pass a null pointer as the 
final argument to mLopen, else we pass a pointer to our a t t r  structure. 

We now run this new version of our program, specifying a maximum of 1024 mes- 
sages, each message containing up to 8192 bytes. 

s o l a r i s  % mqcreate -e -m 1024 -2 8192 /foobar 
s o l a r i s  % 1s -a1 /tmp/.*foobar 
- rw- rw- rw-  1 r s t evens  o t h e r l  8397336 Oct 25 11:29 /tmp/.MQDfoobar 
-rw-rw-rw- 1 r s t evens  o the r1  0 Oct 25 11:29 /tmp/.MQLfoobar 
-rW-r--r-- 1 r s t evens  o the r1  0 Oct 25 11:29 /tmp/.MQPfoobar 

The size of the file containing the data for this queue accounts for the maximum number 
of maximum-sized messages (1024 x 8192 = 8,388,608), and the remaining 8728 bytes of 
overhead allows room for 8 bytes per message (8 x 1024) plus an additional 536 bytes. 

If we execute the same program under Digital Unix 4.OB, we have 

alpha % mqcreate -m 256 -2 2048 /tmp/bigq 
alpha % 1s -1 /tmg/bigq 
-rW-r--r-- 1 r s t evens  system 537288 Oct 25 15:38 /tmp/bigq 

This implementation appears to allow room for the maximum number of maximum- 
sized messages (256x2048 = 524,288) and the remaining 13000 bytes of overhead 
allows room for 48 bytes per message (48 x 256) plus an additional 712 bytes. 

5.4 -send and -receive Functions 

These two functions place a message onto a queue and take a message off a queue. 
Every message has a priority, which is an unsigned integer less than MQ-PRIO-MAX. 
Posix requires that this upper limit be at least 32. 

Solaris 2.6 has an upper limit of 32, but this limit is 256 with Digital Unix 4.08. We show how 
to obtain these values with Figure 5.8. 
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m ~ r e c e i v e  always returns the oldest message of the highest priority from the 
specified queue, and the priority can be returned in addition to the actual contents of 
the message and its length. 

This operation of mq-receive differs from that of the System V msgrcv (Section 6.4). 
System V messages have a type field, which is similar to the priority, but with msgrcv, we can 
specify three different scenarios as to which message is returned: the oldest message on the 
queue, the oldest message with a specific type, or the oldest message whose type is less than or 
equal to some value. 

i n t  m~send(mqd-t  mqdes, const  char  *ptr, s ize- t len, unsigned i n t  prio) ; I 
I Returns: 0 if OK, -1 on error 

ssize-t  m~rece ive (mqd- t  mqdes, char  *ptr, s ize- t  len, unsigned i n t  *priop); I 
Returns: number of bytes in message if OK, -1 on error 

The first three arguments to both functions are similar to the first three arguments for 
w r i t e  and read, respectively. 

Declaring the pointer argument to the buffer as a char* looks like a mistake. void* would be 
more consistent with other Posix.1 functions. 

The value of the len argument for m ~ r e c e i v e  must be at least as big as the maxi- 
mum size of any message that can be added to this queue, the m q - m s g s i z e  member of 
the m ~ a t t r  structure for this queue. If lm is smaller than this value, EMSGSIZE is 
returned immediately. 

This means that most applications that use Posix message queues must call mq-getattr after 
opening the queue, to determine the maximum message size, and then allocate one or more 
read buffers of that size. By requiring that the buffer always be large enough for any message 
on the queue, m ~ r e c e i v e  does not need to return a notification if the message is larger than 
the buffer. Compare, for example, the MSG-NOERROR flag and the EZBIG error possible with 
System V message queues (Section 6.4) and the MSG-TRUNC flag with the recvmsg function 
that is used with UDP datagrams (Section 13.5 of UNPvl). 

prio is the priority of the message for m ~ s e n d ,  and its value must be less than 
MQ-PRIO-MAX. If priop is a nonnull pointer for mareceive, the priority of the 
returned message is stored through this pointer. If the application does not need mes- 
sages of differing priorities, then the priority can always be specified as 0 for mcsend,  
and the final argument for m ~ r e c e i v e  can be a null pointer. 

A 0-byte message is allowed. This instance is one in which what is important is not what is 
said in the standard (i.e., Posix.l), but what is not said: nowhere is a 0-byte message forbidden. 
The return value from m ~ r e c e i v e  is the number of bytes in the message (if OK) or -1 (if an 
error), so a return value of 0 indicates a 0-length message. 

One feature is missing from both Posix message queues and System V message queues: accu- 
rately identifying the sender of each message to the receiver. This information could be useful 
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in many applications. Unfortunately, most IPC messaging mechanisms do not identify the 
sender. In Section 15.5, we describe how doors provide this identity. Section 14.8 of UNPvl 
describes how BSD/OS provides this identity when a Unix domain socket is used. Sec- 
tion 15.3.1 of APUE describes how SVR4 passes the sender's identity across a pipe when a 
descriptor is passed across the pipe. The BSD/OS technique is not widely implemented, and 
although the SVR4 technique is part of Unix 98, it requires passing a descriptor across the pipe, 
which is normally more expensive than just passing data across a pipe. We cannot have the 
sender include its identity (e.g., its effective user ID) with the message, as we cannot trust the 
sender to tell the truth. Although the access permissions on a message queue determine 
whether the sender is allowed to place a message onto the queue, this still does not identify the 
sender. The possibility exists to create one queue per sender (which we talk about with regard 
to System V message queues in Section 6.8), but this does not scale well for large applications. 
Lastly, realize that if the message queue functions are implemented entirely as user functions 
(as we show in Section 5.8), and not within the kernel, then we could not trust any sender 
identity that accompanied the message, as it would be easy to forge. 

Example:  send Program 

Figure 5.6 shows our program that adds a message to a queue. 

2 i n t  
3 ma in ( in t  a rgc ,  char  **argv) 
4 { 

5 mqd-t mqd; 
6 void *p t r ;  
7 size- t l en ;  
8 uint-t  p r i o ;  

9 i f  (argc  !=  4) 
10 er r -qui t ("usage:  mqsend <name> <#bytes> < p r i o r i t y > " ) ;  
11 l e n  = a t o i ( a r g v [ 2 1 ) ;  
12 p r i o  = a t o i  (argv[31) ; 

13 mqd = M ~ o p e n  (argv [ 1  ] , 0-WRONLY) ; 

14 p t r  = Cal loc ( l en ,  s i z e o f ( c h a r ) ) ;  
15 M~send(mqd ,  p t r ,  l e n ,  p r i o )  ; 

16 e x i t  (0)  ; 
17 1 pxrnsglmqsendc 

Figure 5.6 mqsend program. 

Both the size of the message and its priority must be specified as command-line 
arguments. The buffer is allocated by calloc, which initializes it to 0. 

Example: mqreceive Program 

The program in Figure 5.7 reads the next message from a queue. 
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int 
main(int argc, char **argv) 
{ 

int c, flags; 
mqd-t mqd; 
ssize-t n; 
uint-t prio; 
void *buff; 
struct m ~ a t t r  attr; 

flags = 0-RDONLY; 
while ( (c = Getopt (argc, argv, "n") ) !=  -1) { 

switch (c) { 

case 'n' : 
flags I =  0-NONBLOCK; 
break; 

1 
1 
if (optind !=  argc - 1) 

err-qui t ( "usage : mqreceive [ -n I <name>" ) ; 

mqd = Mq-open (argv [optindl , flags) : 
Mq-getattr(mqd, &attr); 

buff = Malloc(attr.mq-msgsize); 

n = M~receive(mqd, buff, attr.mq-msgsize, &prio); 
printf("read %Id bytes. priority = %u\nU, (long) n 

exit (0) ; 

prio) ; 

1 
pxrnsg/rnqreceive.c 

Figure 5.7 mqreceive program. 

Allow -n option to specify nonblocking 

14-17 A command-line option of -n specifies nonblocking, which causes our program to 
return an error if no messages are in the queue. 

Open queue and get attributes 

21-25 We open the queue and then get its attributes by calling mcgetattr. We need to 
determine the maximum message size, because we must allocate a buffer of this size for 
the call to m~receive. We print the size of the message that is read and its priority. 

Since n is a size-t datatype and we do not know whether this is an int or a long, we cast 
the value to be a long integer and use the %Id format string. On a @-bit implementation, int 
will be a 32-bit integer, but long and size-t will both be @-bit integers. 

We can use these two programs to see how the priority field is used. 
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solaris % mqcreate /teat1 create and get attributes 
solaris % mqgetattr /teat1 
max #msgs = 128. max #bytes/msg = 1024, #currently on queue = 0 

solaris % mqaend /teat1 100 99999 
mq-send error: Invalid argument 

solaris 8 mqaend /teat1 100 6 
solaris % mqaend /teat1 50 18 
solaris % mqaend /teat1 33 18 

send with invalid priority 

ZOO bytes, priority of 6 
50 bytes, priority of 18 
33 bytes, priority of 18 

solaris % mqreceive /teat1 
read 50 bytes, priority = 18 oldest, highest priority message is returned 
solaris % mqreceive /teetl 
read 33 bytes, priority = 18 
solaris % mqreceive /teat1 
read 100 bytes, priority = 6 
solaris % mqreceive -n /teat1 specify nonblocking; queue is empty 
rnq-receive error: Resource temporarily unavailable 

We can see that m ~ r e c e i v e  returns the oldest message of the highest priority. 

5.5 Message Queue Limits 

We have already encountered two limits for any given queue, both of which are estab- 
lished when the queue is created: 

mq-maxmsg the maximum number of messages on the queue, and 

m ~ m s g s i z e  the maximum size of a given message. 

No inherent limits exist on either value, although for the two implementations that we 
have looked at, room in the filesystem must exist for a file whose size is the product of 
these two numbers, plus some small amount of overhead. Virtual memory require- 
ments may also exist based on the size of the queue (see Exercise 5.5). 

Two other limits are defined by the implementation: 

MQ-OPEN-MAX the maximum number of message queues that a process can have 
open at once (Posix requires that this be at least 81, and 

MQ-PRIO-MAX the maximum value plus one for the priority of any message (Posix 
requires that this be at least 32). 

These two constants are often defined in the <unistd.h> header and can also be 
obtained at run time by calling the sysconf function, as we show next. 

Example: mqsysconf Program 

The program in Figure 5.8 calls sysconf and prints the two implementation-defined 
limits for message queues. 
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2 i n t  
3 main( in t  a rgc ,  char  **argv) 
4 { 
5 p r i n t f  ("MQ-OPEN-MAX = %1d, MQ-PRIO-MAX = %ld\n l ' ,  
6 Sysconf(-SC-MQ-OPEN-MAX), S~~CO~~(-SC-MQ-PRIO-MAX)); 
7 e x i t  (0) ; 

Figure 5.8 Call sysconf to obtain message queue limits. 

If we execute this on our two systems, we obtain 

s o l a r i s  % mqayaconf 
MQ-OPEN-MAX = 3 2 ,  MQ-PRIO-MAX = 32 

alpha % mqayaconf 
MQ-OPEN-MAX = 64, MQ-PRIO-MAX = 256 

mgnot i fy  Function 

One problem that we will see with System V message queues in Chapter 6 is their 
inability to notify a process when a message is placed onto a queue. We can block in a 
call to msgrcv, but that prevents us from doing anything else while we are waiting. If 
we specify the nonblocking flag for msgrcv (IPC-NOWAIT), we do not block, but we 
must continually call this function to determine when a message arrives. We said this is 
called polling and is a waste of CPU time. We want a way for the system to tell us when 
a message is placed onto a queue that was previously empty. 

This section and the remaining sections of this chapter contain advanced topics that you may 
want to skip on a first reading. 

Posix message queues allow for an asynchronous event notification when a message is 
placed onto an empty message queue. This notification can be either 

the generation of a signal, or 
the creation of a thread to execute a specified function. 

We establish this notification by calling mcnot i f y. 

I i n t  m p n o t i f y  (rnqd-t mqdes, const  s t r u c t  s igevent  *notifiation) ; I 
I Returns: 0 if OK, -1 on error 

This function establishes or removes the asynchronous event notification for the speci- 
fied queue. The sigevent structure is new with the Posix.1 realtime signals, which we 
say more about in the next section. This structure and all of the new signal-related con- 
stants introduced in this chapter are defined by <signal. h>. 
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union s i g v a l  { 

i n t  s iva l - in t  ; 
void  * s i v a l q t r ;  

1 ; 

/ *  i n t e g e r  value  * /  
/ *  p o i n t e r  value  * /  

s t r u c t  s igevent  { 

i n t  sigev-notify;  / *  SIGEV-{NONE,SIGNAL,THREAD) * /  
i n t  sigev-signo; / *  s i g n a l  number i f  SIGEV-SIGNAL * /  
union s i g v a l  sigev-value; / *  passed t o  s i g n a l  handler  o r  thread * /  

/ *  following two i f  SIGEV-THREAD * /  
void  (*sigev-notify-function) (union s i g v a l ) ;  
pthread-attr- t  *sigev-notify-attributes; 

1 ; 

We will show some examples shortly of the different ways to use this notification, but a 
few rules apply in general for this function. 

1. If the notification argument is nonnull, then the process wants to be notified 
when a message arrives for the specified queue and the queue is empty. We say 
that "the process is registered for notification for the queue." 

2. If the notification argument is a null pointer and if the process is currently regis 
tered for notification for the queue, the existing registration is removed. 

3. Only one process at any given time can be registered for notification for a given 
queue. 

4. When a message arrives for a queue that was previously empty and a process is 
registered for notification for the queue, the notification is sent only if no thread 
is blocked in a call to m c r e c e i v e  for that queue. That is, blocking in a call to 
m c r e c e i v e  takes precedence over any registration for notification. 

5. When the notification is sent to the registered process, the registration is 
removed. The process must reregister (if desired) by calling m c n o t  i f y again. 

One of the original problems with Unix signals was that a signal's action was reset to 
its default each time the signal was generated (Section 10.4 of APUE). Usually the 
first function called by a signal handler was s ignal ,  to reestablish the handler. This 
provided a small window of time, between the signal's generation and the process 
reestablishing its signal handler, during which another occurrence of that signal 
could terminate the process. At first glance, we seem to have a similar problem with 
m ~ n o t i f y ,  since the process must reregister each time the notification occurs. But 
message queues are different from signals, because the notification cannot occur 
again until the queue is empty. Therefore, we must be careful to reregister before 
reading the message from the queue. 

Example: Simple Signal Notification 

Before getting into the details of Posix realtime signals or threads, we can write a simple 
program that causes SIGUSRl to be generated when a message is placed onto an empty 
queue. We show this program in Figure 5.9 and note that this program contains an 
error that we talk about in detail shortly. 
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2 mqd-t mqd; 
3 void *buff; 
4 struct mq-attr attr; 
5 struct sigevent sigev; 

6 static void sig-usrl(int); 

7 int 
8 main(int argc, char **arm) 
9 I 
10 if (argc !=  2) 
11 err-quit("usage: mqnotifysigl <name>"); 

12 / *  open queue, get attributes, allocate read buffer * /  
13 mqd = M ~ o p e n  (arm [ 1 I , 0-RDONLY) ; 
14 Mq-getattr (mqd, &attr) ; 
15 buff = Malloc(attr.mq-msgsize); 

16 / *  establish signal handler, enable notification * /  
17 Signal (SIGUSR1, sig-usrl) ; 
18 sigev.sigev-notify = SIGEV-SIGNAL; 
19 sigev.sigev-signo = SIGUSR1: 
20 M~notify(mqd, &sigev): 

21 for ( ; ; ) 

2 2 pause ( ) ; 
23 exit (0) ; 
24 1 

/ *  signal handler does everything * /  

25 static void 
26 sig-usrl(int signo) 
27 { 
28 ssize-t n; 

29 Mq-notify (mqd, &sigev) ; / *  reregister first * /  
30 n = Mq-receive (mqd, buff, attr.mq-msgsize, NULL) ; 
31 printf("SIGUSR1 received, read %Id bytes\nM, (long) n); 
3 2 return; 

Figure 5.9 Generate SIGUSRl when message placed onto an empty queue (incorrect version). 

Declare globals 

2-6 We declare some globals that are used by both the main function and our signal 
handler (sig-usrl). 

Open queue, get attributes, allocate read buffer 

12-15 We open the message queue, obtain its attributes, and allocate a read buffer. 

Establish slgnal handler, enable notiflcatlon 

16-20 We first establish our signal handler for SIGUSRl. We fill in the sigev-notify 
member of the sigevent structure with the SIGEV-SIGNAL constant, which says that 
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we want a signal generated when the queue goes from empty to not-empty. We set the 
sigev-signo member to the signal that we want generated and call mcnot if y. 

Infinite loop 

21-22 Our main function is then an infinite loop that goes to sleep in the pause function, 
which returns -1 each time a signal is caught. 

Catch signal, read message 

25-33 Our signal handler calls m c n o  t i f y, to reregister for the next event, reads the mes- 
sage, and prints its length. In this program, we ignore the received message's priority. 

The re tu rn  statement at the end of sig-usrl is not needed, since there is no return value 
and falling off the end of the function is an implicit return to the caller. Nevertheless, the 
author always codes an explicit r e tu rn  at the end of a signal handler to reiterate that the 
return from this function is special. It might cause the premature return (with an error of 
EINTR) of a function call in the thread that handles the signal. 

We now run this program from one window 

s o l a r i s  % mqcreate /teat1 create queue 
s o l a r i s  % mqnotifyaigl /teat1 start program from Figure 5.9 

and then execute the following commands from another window: 

s o l a r i s  % mqaend /teat1 50 16 send 50-byte message with priority of 16 

As expected, our mqnotifysigl program outputs SIGUSRl received, read 50 
bytes. 

We can verify that only one process at a time can be registered for the notification, 
by starting another copy of our program from another window: 

s o l a r i s  % mqnotifyaigl /teat1 
mq-notify e r r o r :  Device busy 

This error message corresponds to EBUSY. 

Posix Signals: Async-Signal-Safe Functions 

The problem with Figure 5.9 is that it calls mcnotify, mcreceive, and printf 
from the signal handler. None of these functions may be called from a signal handler. 

Posix uses the term async-signal-safe to describe the functions that may be called 
from a signal handler. Figure 5.10 lists these Posix functions, along with a few that are 
added by Unix 98. 

Functions not listed may not be called from a signal handler. Note that none of the 
standard I/O functions are listed and none of the pthread-XXX functions are listed. 
Of all the IPC functions covered in this text, only semsost, read, and write are 
listed (we are assuming the latter two would be used with pipes and FIFOs). 

ANSI C lists four functions that may be called from a signal handler: abort ,  ex i t ,  longjmp, 
and s ignal .  The first three are not listed as async-signal-safe by Unix 98. 
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access 
aio-return 
aio-suspend 
alarm 
cfgetispeed 
cfgetospeed 
cfsetispeed 
cfsetospeed 
chdir 
chmod 
chown 
clock-gettirne 
close 
creat 

dup 
dup2 
execle 
execve 
- exit 
fcntl 
f datasync 
fork 

fpathconf 
fstat 
f sync 
getegid 
geteuid 
getgid 
getgroups 
getpgrp 
getpid 
getppid 
getuid 
kill 
link 
lseek 
mkdir 
mkfifo 
open 
pathconf 
pause 
pipe 
raise 
read 

rename 
rmdi r 
semsost 
setgid 
setpgid 
setsid 
setuid 
sigaction 
sigaddset 
sigdelset 
sigemptyset 
sigfillset 
sigismember 
signal 
sigpause 
sigpending 
sigprocmask 
sigqueue 
sigset 
sigsuspend 
sleep 
stat 

Figure 5.10 Functions that are async-signalsafe. 

mple: Signal Notification 

sysconf 
tcdrain 
tcf low 
tcf lush 
tcgetattr 

tcgetPgrP 
tcsendbreak 
tcsetattr 
tcsetpgrp 
time 
timer-getoverrur 
timergettime 
timer-settime 
times 
urnask 
uname 
unlink 
ut ime 
wait 
waitpid 
write 

One way to avoid calling any function from a signal handler is to have the handler just 
set a global flag that some thread examines to determine when a message has been 
received. Figure 5.11 shows this technique, although it contains a different error, which 
we describe shortly. 

Global variable 

2 Since the only operation performed by our signal handler is to set mqf lag nonzero, 
the global variables from Figure 5.9 need not be global. Reducing the number of global 
variables is always a good technique, especially when threads are being used. 

Open message queue 

:-18 We open the message queue, obtain its attributes, and allocate a receive buffer. 

Initialize signal sets 

-22 We initialize three signal sets and turn on the bit for SIGUSRl in the set newmask. 

Establish signal handler, enable notification 

-27 We establish a signal handler for SIGUSRl, fill in our sigevent structure, and call 
mq-notify. 
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pxrnsg/mqnotifysig2.c 
1 #include "unpipc.h" 

2 volatile sig-atomic-t mqflag; / *  set nonzero by signal handler * /  
3 static void sig-usrl(int); 

4 int 
5 main(int argc, char **argv) 
6 ( 

mqd-t mqd: 
void *buff; 
ssize-t n; 
sigset-t zeromask, newmask, oldmask; 
struct mq-attr attr; 
struct sigevent sigev; 

if (argc != 2) 
err-quit("usage: mqnotifysig2 <name>"); 

/ *  open queue, get attributes, allocate read buffer * /  
mqd = Maopen ( argv [ 1 I , 0-RDONLY ) ; 
Mcgetattr (mqd, &attr) ; 
buff = Malloc(attr.m~msgsize); 

Sigemptyset(&zeromask); / *  no signals blocked * /  
Sigemptyset(&newmask); 
Sigemptyset(&oldmask) : 
Sigaddset(&newmask, SIGUSR1); 

/ *  establish signal handler, enable notification * /  
Signal(SIGUSR1, sig-usrl); 
sigev.sigev-notify = SIGEV-SIGNAL; 
sigev.sigev-signo = SIGUSRl; 
Manotify (mqd, &sigev) ; 

f o r ( ; ; )  { 
Sigprocmask(S1G-BLOCK, &newmask, &oldmask); / *  block SIGUSRl * /  
while (mqflag == 0) 

sigsuspend(&zeromask); 
mqflag = 0; / *  reset flag * /  

Mq-notify(mqd, &sigev); / *  reregister first * /  
n = Mq-receive(mqd, buff, attr.mq_msgsize, NULL); 
printf("read %Id bytes\nW, (long) n); 
Sigprocmask(S1G-UNBLOCK, &newmask, NULL); / *  unblock SIGUSRl * /  

1 
exit (0) ; 

39 1 

40 static void 
41 sig-usrl(int signo) 
42 I 
4 3 mqf lag = 1; 
44 return; 
45 } 

pxrnsg/mqnotifysig2.c 

Figure 5.11 Signal handler just sets a flag for main thread (incorrect version). 
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Wait for signal handler to set flag 

28-32 We call sigprocmask to block SIGUSRl, saving the current signal mask in 
oldmask. We then test the global mqf lag in a loop, waiting for the signal handler to 
set it nonzero. As long as it is 0, we call sigsuspend, which atomically puts the calling 
thread to sleep and resets its signal mask to zeromask (no signals are blocked). Sec- 
tion 10.16 of APUE talks more about sigsuspend and why we must test the mqf lag 
variable only when s1GusR1 is blocked. Each time sigsuspend returns, SIGUSRl is 
blocked. 

Reregister and read message 

33-36 When mqf lag is nonzero, we reregister and then read the message from the queue. 
We then unblock SIGUSRl and go back to the top of the for loop. 

We mentioned that a problem still exists with this solution. Consider what happens 
if two messages arrive for the queue before the first message is read. We can simulate 
this by adding a sleep before the call to mcnot i f y. The fundamental problem is that 
the notification is sent only when a message is placed onto an empty queue. If two mes- 
sages arrive for a queue before we can read the first, only one notification is sent: we 
read the first message and then call sigsuspend waiting for another message, which 
may never be sent. In the meantime, another message is already sitting on the queue 
waiting to be read that we are ignoring. 

Example: Signal Notification with Nonblocking -receive 

The correction to the problem just noted is to always read a message queue in a non- 
blocking mode when mcnotify is being used to generate a signal. Figure 5.12 shows 
a modification to Figure 5.11 that reads the message queue in a nonblocking mode. 

Open message queue nonblocking 

15-18 The first change is to specify 0-NONBLOCK when the message queue is opened. 

Read all messages from queue 

34-38 The other change is to call m~receive in a loop, processing each message on the 
queue. An error return of EAGAIN is OK and just means that no more messages exist. 

Example: Signal Notification Using simait instead of a Signal Handler 

Although the previous example is correct, it could be more efficient. Our program 
blocks, waiting for a message to arrive, by calling sigsuspend. When a message is 
placed onto an empty queue, the signal is generated, the main thread is stopped, the 
signal handler executes and sets the mqf lag variable, the main thread executes again, 
finds m c f  lag nonzero, and reads the message. An easier approach (and probably 
more efficient) would be to block in a function just waiting for the signal to be deliv- 
ered, without having the kernel execute a signal handler just to set a flag. This capabil- 
ity is provided by s igwai t . 
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pxmsg/mqnotifysig3.c 
1 #include "unpipc. h" 

2 volatile sig-atomic-t mqflag; / *  set nonzero by signal handler * /  
3 static void sig-usrl (int) ; 

4 int 
5 main(int argc, char **argv) 
6 (: 

mqd-t mqd; 
void *buff; 
ssize-t n; 
sigset-t zeromask, newmask, oldmask; 
struct mq-attr attr; 
struct sigevent sigev; 

if (argc ! = 2) 
err-quit("usage: mqnotifysig3 <name>"); 

/ *  open queue, get attributes, allocate read buffer " /  
mqd = Mq-open(argv[ll, 0-RDONLY I 0-NONBLOCK); 
Mq-getattr(mqd, &attr); 
buff = Malloc(attr.mq_msgsize); 

Sigemptyset (&zeromask) ; / *  no signals blocked * /  
Sigemptyset(&newmask); 
Sigemptyset(&oldmask); 
Sigaddset(&newmask, SIGUSR1) ; 

/ *  establish signal handler, enable notification */  
Signal (SIGUSR1 , sig-usrl ) ; 
sigev.sigev-notify = SIGEV-SIGNAL; 
sigev.sigev-signo = SIGUSRl; 
Mq-notify(mqd, &sigev); 

for ( ;  ; 1 (: 
Sigprocmask(S1G-BLOCK, &newmask, &oldmask); / *  block SIGUSRl * /  
while (mqflag == 0) 

sigsuspend(&zeromask); 
mqflag = 0; / *  reset flag * /  

Mq_notify(mqd, &sigev); / *  reregister first * /  
while ( (n = mq-receive(mqd, buff, attr.mq_msgsize, NULL) ) >= 0) { 

printf("read %Id bytes\nU, (long) n); 
1 
if (errno !=  EAGAIN) 

err-sys("mq-receive error"); 
Sigprocmask(S1G-UNBLOCK, &newmask, NULL); / *  unblock SIGUSRl * /  

1 
exit (0) ; 

43 static void 
44 sig-usrl(int signo) 
45 I 
46 mqf lag = 1; 
4 7 return; 

Figure 5.12 Using a signal notification to read a Posix message queue. 
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i n t  s igwai t  (const  s igse t - t  *set, i n t  *sig) ; I 
Returns: 0 if OK, positive ~ x x x  value on error 

Before calling sigwait ,  we block some set of signals. We specify this set of signals as 
the set argument. sigwai t then blocks until one or more of these signals is pending, at 
which time it returns one of the signals. That signal value is stored through the pointer 
sig, and the return value of the function is 0. This is called "synchronously waiting for 
an asynchronous event": we are using a signal but without an asynchronous signal han- 
dler. 

Figure 5.13 shows the use of m a n o t i f y  with sigwait .  

Initialize signal set and block SIGUSR~ 

18-20 One signal set is initialized to contain just SIGUSR1, and this signal is then blocked 
by sigprocmask. 

Wait for signal 

26-34 We now block, waiting for the signal, in a call to s igwait .  When SIGUSRl is 
delivered, we reregister the notification and read all available messages. 

s igwai t  is often used with a multithreaded process. Indeed, looking at its function proto- 
type, we see that its return value is 0 or one of the EXXX errors, which is the same as most of the 
Pthread functions. But sigprocrnask cannot be used with a multithreaded process; instead, 
pthread-sigmask must be called, and it changes the signal mask of just the calling thread. 
The arguments for pthread-sigmas k are identical to those for sigprocmask. 

Two more variants of s igwai t  exist: s igwai t info  also returns a siginfo-t  structure 
(which we define in the next section) and is intended for use with reliable signals. 
sigtimedwait also returns a siginfo- t structure and allows the caller to specify a time 
limit. 

Most threads books, such as [Butenhof 19971, recommend using s igwai t  to handle all signals 
in a multithreaded process and never using asynchronous signal handlers. 

Example: Posix Message Queues with select 

A message queue descriptor (an mqd-t variable) is not a "normal" descriptor and can- 
not be used with either s e l e c t  or p o l l  (Chapter 6 of UNPvl). Nevertheless, we can 
use them along with a pipe and the m a n o t  i f y  function. (We show a similar technique 
in Section 6.9 with System V message queues, which involves a child process and a 
pipe.) First, notice from Figure 5.10 that the w r i t e  function is async-signal-safe, so we 
can call it from a signal handler. Figure 5.14 shows our program. 
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2 int 
3 main(int argc, char **argv) 
4 { 

int signo; 
mqd-t mqd; 
void *buff; 
ssize-t n; 
sigset-t newmask; 
struct maattr attr; 
struct sigevent sigev; 

if (argc !=  2) 
err-quit("usage: mqnotifysig4 <name>"); 

/ *  open queue, get attributes, allocate read buffer * /  
mqd = Mq_open(argv[ll, 0-RDONLY ( 0-NONBLOCK); 
Mq_getattr(mqd, &attr); 
buff = Malloc(attr.m~msgsize); 

Sigemptyset(&newmask); 
Sigaddset (&newmask, SIGUSRl) ; 
Sigprocmask(S1G-BLOCK, &newmask, NULL); / *  block SIGUSRl * /  

/ *  establish signal handler, enable notification * /  
sigev.sigev-notify = SIGEV-SIGNAL; 
sigev.sigev-sign0 = SIGUSRl; 
Manotify (mqd, &sigev) ; 

f o r ( ; ; ) {  
Sigwait(&newmask, &signo); 
if (signo == SIGUSR1) { 

Manotif y (mqd, &sigev) ; / *  reregister first * /  
while ( (n = mq_receive(mqd, buff, attr.mq_msgsize, NULL)) >= 0) { 

printf("read %Id bytes\nn, (long) n); 
I 
if (errno !=  EAGAIN) 

err-sys("mereceive error"); 
I 

I 
exit (0) ; 

37 I 
pxmsg/mqnotifysig4.c 

Figure 5.13 Using menotify with sigwait. 

2 int pipefd[2] ; 
3 static void sig-usrl(int); 
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4 int 
5 main(int argc, char **argv) 
6 { 

int nfds; 
char c; 
fd-set rset; 
mqd-t mqd; 
void *buff; 
ssize-t n; 
struct mq_attr attr; 
struct sigevent sigev; 

if (argc != 2) 
err-quit("usage: mqnotifysig5 <name>"); 

/ *  open queue, get attributes, allocate read buffer * /  
mqd = Mq-open(argv[ll, 0-RDONLY I 0-NONBLOCK); 
M~getattr (rnqd, &attr) ; 
buff = Malloc(attr.mq_msgsize); 

/ *  establish signal handler, enable notification * /  
Signal(SIGUSR1, sig-usrl); 
sigev.sigev-notify = SIGEV-SIGNAL; 
sigev.sigev-signo = SIGUSRl; 
Mq_notify (rnqd, &sigev) ; 

FD-ZERO(&rset); 
f o r ( ; ; ) {  

FD-SET(pipefd[O]. &rset); 
nfds = Select (pipefd[Ol + 1, &rset, NULL, NULL, NULL) ; 

if (FD-ISSET(pipefd[O], &rset)) { 

Read(pipefd[O], &c, 1); 
Mq_notify (mqd, &sigev) ; / *  reregister first * /  
while ( (n = mq-receive (rnqd, buff, attr .mq-msgsize, NULL) ) >= 0) { 

printf("read %Id bytes\nW, (long) n); 
1 
if (errno !=  EAGAIN) 

err-sys("mq_receive error"); 
1 

1 
exit (0) ; 

43 static void 
44 sig-usrl(int signo) 
45 { 
46 Write(pipefd[l] , " ", 1) ; / *  one byte of 0 * /  
47 return; 

Figure 5.14 Using a signal notification with a pipe. 
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Create a pipe 

21 We create a pipe that the signal handler will write to when a notification is received 
for the message queue. This is an example of a pipe being used within a single process. 

Call select 

27-40 We initialize the descriptor set r s e t  and each time around the loop turn on the bit 
corresponding to p ipefd  [ 0 ] (the read end of the pipe). We then call s e l e c t  waiting 
for only this descriptor, although in a typical application, this is where input or output 
on multiple descriptors would be multiplexed. When the read end of the pipe is read- 
able, we reregister the message queue notification and read all available messages. 

Signal handler 

43-48 Our signal handler just wr i tes  1 byte to the pipe. As we mentioned, this is an 
async-signal-safe operation. 

Example: Initiate Thread 

Another alternative is to set sigev-notify to SIGEV-THREAD, which causes a new 
thread to be created. The function specified by the s igev-no t i f y-f unc t i on is called 
with the parameter of sigev-value. The thread attributes for the new thread are 
specified by sigev-notify-attributes, which can be a null pointer if the default 
attributes are OK. Figure 5.15 shows an example of this technique. 

We specify a null pointer for the new thread's argument (sigev-value), so noth- 
ing is passed to the thread start function. We could pass a pointer to the message queue 
descriptor as the argument, instead of declaring it as a global, but the new thread still 
needs the message queue attributes and the s igev  structure (to reregister). We specify 
a null pointer for the new thread's attributes, so system defaults are used. These new 
threads are created as detached threads. 

Unfortunately, neither of the systems being used for these examples, Solaris 2.6 and Digital 
Unix 4.OB, support SIGEV-THREAD. Both require that sigev-notify be either SIGEV-NONE 

or SIGEV-SIGNAL. 

Posix Realtime Signals 

Unix signals have gone through numerous evolutionary changes over the past years. 

1. The signal model provided by Version 7 Unix (1978) was unreliable. Signals 
could get lost, and it was hard for a process to turn off selected signals while 
executing critical sections of code. 

2. 4.3BSD (1986) added reliable signals. 

3. System V Release 3.0 (1986) also added reliable signals, albeit differently from 
the BSD model. 

4. Posix.1 (1990) standardized the BSD reliable signal model, and Chapter 10 of 
APUE describes this model in detail. 
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pxmsglmqnotifythreadl .c 
1 #include " unpipc . h" 
2 mqd-t mqd; 
3 struct mq-attr attr; 
4 struct sigevent sigev; 

5 static void notify-thread(union sigval); / *  our thread function * /  

6 int 
7 main(int argc, char **argv) 

if (argc != 2) 
err-quit("usage: mqnotifythreadl <name>"); 

mqd = Mq_open(argv[ll, 0-RDONLY I 0-NONBLOCK); 
Mq-getattr (rnqd, &attr) ; 

sigev.sigev-notify = SIGEV-THREAD; 
sigev.sigev~value.sival_ptr = NULL; 
sigev.sigev~notify~function = notify-thread; 
sigev.sigev-notify-attributes = NULL; 
M~notify(mqd, &sigev); 

for ( ; ; 

pause ( ; / *  each new thread does everything * /  

exit (0) ; 

22 static void 
23 notify-thread(union sigval arg) 
24 I 
2 5 ssize-t n; 
2 6 void *buff; 

27 printf("notify-thread started\nm); 
28 buff = Malloc(attr.mq-msgsize); 
29 Mq_notify(mqd, &sigev); / *  reregister * /  

30 while ( (n = mq-receive (mqd, buff, attr .mq-msgsize, NULL) ) >= 0) { 

3 1 printf ( "read %Id bytes\n" , (long) n) ; 
32 1 
3 3 if (errno != EAGAIN) 
3 4 err-sys("mq_receive error"); 

Figure 5.15 mq-notify that initiates a new thread. 

5. Posix.1 (1996) added realtime signals to the Posix model. This work originated 
from the Posixlb realtime extensions (which was called Posix.4). 

Almost every Unix system today provides Posix reliable signals, and newer systems are 
providing the Posix realtime signals. (Be careful to differentiate between reliable and 
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realtime when describing signals.) We need to say more about the realtime signals, as 
we have already encountered some of the structures defined by this extension in the 
previous section (the s i gval and s igevent structures). 

Signals can be divided into two groups: 

1. The realtime signals whose values are between SIGRTMIN and SIGRTMAX, 
inclusive. Posix requires that at least RTSIG-MAX of these realtime signals be 
provided, and the minimum value for this constant is 8. 

2. All other signals: SIGALRM, SIGINT, SIGKILL, and so on. 

On Solaris 2.6, the normal Unix signals are numbered 1 through 37, and 8 realtime signals are 
defined with values from 38 through 45. On Digital Unix 4.OB, the normal Unix signals are 
numbered 1 through 32, and 16 realtime signals are defined with values from 33 through 38. 
Both implementations define SIGRTMIN and SIGRTMAX as macros that call sysconf, to allow 
their values to change in the future. 

Next we note whether or not the new SA-SIGINFO flag is specified in the call to 
sigaction by the process that receives the signal. These differences lead to the four 
possible scenarios shown in Figure 5.16. 

1 1  Call to s iqact ion I 

all other signals realtime behavior realtime behavior I unspecified unspecified 

Signal 

SIGRTMIN through 
SIGRTMAX 

Figure 5.16 Realtime behavior of Posix signals, depending on SA-SIGINFO. 

What we mean in the three boxes labeled "realtime behavior unspecified" is that some 
implementations may provide realtime behavior and some may not. If we want real- 
time behavior, we must use the new realtime signals between SIGRTMIN and 
SIGRTMAX, and we must specify the SA-SIGINFO flag to sigaction when the signal 
handler is installed. 

The term realtime behavior implies the following characteristics: 

SA-SIGINFO 
specified 

realtime behavior 
guaranteed 

Signals are queued. That is, if the signal is generated three times, it is delivered 
three times. Furthermore, multiple occurrences of a given signal are queued in a 
first-in, first-out (FIFO) order. We show an example of signal queueing shortly. 
For signals that are not queued, a signal that is generated three times can be 
delivered only once. 

SA-SIGINFO 
not specified 

realtime behavior 
uns~ecified 

When multiple, unblocked signals in the range SIGRTMIN through SIGRTMAX 
are queued, lower-numbered signals are delivered before higher-numbered sig- 
nals. That is, SIGRTMIN is a "higher priority" than the signal numbered 
SIGRTMIN+l, which is a "higher priority" than the signal numbered 
SIGRTMIN+2, and so on. 
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When a nonrealtime signal is delivered, the only argument to the signal handler 
is the signal number. Realtime signals carry more information than other sig- 
nals. The signal handler for a realtime signal that is installed with the 
SA-SIGINFO flag set is declared as 

void  func ( i n t  signo, s i g i n f  o-t *info, void *context) ; 

signo is the signal number, and the siginfo-t structure is defined as 

typedef s t r u c t  { 

i n t  si-signo; / *  same value  a s  signo argument * /  
i n t  si-code; / *  SI-{USER,QUEUE,TIMER,ASYNCIO,MESGQ} * /  
union s i g v a l  si-value; / *  i n t ege r  o r  p o i n t e r  value  from sender * /  

) s ig info- t ;  

What the context argument points to is implementation dependent. 

Technically a nonrealtime Posix signal handler is called with just one argument. 
Many Unix systems have an older, three-argument convention for signal handlers 
that predates the Posix realtime standard. 

s ig in f  o-t is the only Posix structure defined as a typedef of a name ending in 
- t .  In Figure 5.17 we declare pointers to these structures as s ig in f  o-t * without 
the word s t r u c  t. 

Some new functions are defined to work with the realtime signals. For example, 
the sigqueue function is used instead of the kill function, to send a signal to 
some process, and the new function allows the sender to pass a sigval union 
with the signal. 

The realtime signals are generated by the following Posix.1 features, identified by 
the si-code value contained in the siginf o-t structure that is passed to the signal 
handler. 

SIPSYNCIO The signal was generated by the completion of an asynchronous 
I/O request: the Posix aio-XXX functions, which we do not 
describe. 

SI-MESGQ The signal was generated when a message was placed onto an 
empty message queue, as we described in Section 5.6. 

SI-QUEUE The signal was sent by the sigqueue function. We show an exam- 
ple of this shortly. 

SI-TIMER The signal was generated by the expiration of a timer that was set 
by the t imer-set time function, which we do not describe. 

SI-USER The signal was sent by the ki 11 function. 

If the signal was generated by some other event si-code will be set to some value 
other than the ones just shown. The contents of the si-value member of the 
siginf o-t structure are valid only when si-code is SI-ASYNCIO, SI-MESGQ, 
SI-QUEUE, Or S I-TIMER. 
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Example 

Figure 5.17 is a simple program that demonstrates realtime signals. The program calls 
fork, the child blocks three realtime signals, the parent then sends nine signals (three 
occurrences each of three realtime signals), and the child then unblocks the signals and 
we see how many occurrences of each signal are delivered and the order in which the 
signals are delivered. 

Print realtime signal numbers 

10 We print the minimum and maximum realtime signal numbers, to see how many 
realtime signals the implementation supports. We cast the two constants to an integer, 
because some implementations define these two constants to be macros that call 
sysconf, as in 

#define SIGRTMAX (sysconf(-SC-RTSIG-MAX)) 

and sysconf returns a long integer (see Exercise 5.4). 

fork: child blocks three realtime signals 

11-17 A child is spawned, and the child calls sigprocmask to block the three realtime 
signals that we are using: SIGRTMAX, SIGRTMAX- 1, and SIGRTMAX-2. 

Establish signal handler 

18-21 We call our s igna l - r t  function (which we show in Figure 5.18) to establish our 
function s ig - r t  as the handler for the three realtime signals. This function sets the 
SA-SIGINFO flag, and since these three signals are realtime signals, we expect realtime 
behavior. 

Wait for parent to generate the signals, then unblock the signals 

22-25 We wait 6 seconds to allow the parent to generate the nine signals. We then call 
sigprocmask to unblock the three realtime signals. This should allow all the queued 
signals to be delivered. We pause for another 3 seconds, to let the signal handler call 
p r i n t  f nine times, and then the child terminates. 

Parent sends the nine signals 

27-36 The parent pauses for 3 seconds to let the child block all signals. The parent then 
generates three occurrences of each of the three realtime signals: i assumes three values, 
and j takes on the values O , 1 ,  and 2 for each value of i .  We purposely generate the sig- 
nals starting with the highest signal number, because we expect them to be delivered 
starting with the lowest signal number. We also send a different integer value 
( s iva l - in t )  with each signal, to verify that the three occurrences of a given signal are 
generated in FIFO order. 

Signal handler 

38-43 Our signal handler just prints the information about the signal that is delivered. 

We noted with Figure 5.10 that print£ is not async-signal-safe and should not be called from 
a signal handler. We call it here as a simple diagnostic tool in this little test program. 
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rtsignals/testl.c 
1 #include "unpipc .h" 

2 static void sig-rt(int, siginfo-t *,  void * ) ;  

3 int 
4 main(int argc, char **argv) 
5 { 

int i, j; 
pid-t pid; 
sigset-t newset; 
union sigval val; 

printf("S1GRTMIN = %d, SIGRTMAX = %d\nn, (int) SIGRTMIN, (int) SIGRTMAX); 

if ( (pid = Fork() ) == 0) { 

/ *  child: block three realtime signals * /  
Sigernptyset(&newset); 
Sigaddset(&newset, SIGRTMAX); 
Sigaddset(&newset, SIGRTMAX - 1 
Sigaddset(&newset, SIGRTMAX - 2 
Sigprocmask(S1G-BLOCK, &newset, 

/ *  establish signal handler 
Signal-rt(SIGRTMAX, sig-rt); 

with SA-SIGINFO set * /  

1 ;  
1 : 
NULL) ; 

Signal-rt (SIGRTMAX - 1, sig-rt) ; 
Signal-rt(S1GRTMAX - 2, sig-rt); 

sleep(6) ; I *  let parent send all the signals * /  

Sigprocmask(S1G-UNBLOCK, &newset, NULL); / *  unblock * /  
sleep (3 ) ; / *  let all queued signals be delivered * /  
exit (0) ; 

1 
/ *  parent sends nine signals to child * /  

sleep(3) ; / *  let child block all signals * /  
for (i = SIGRTMAX; i >= SIGRTMAX - 2; i--) { 

for (j = 0; j <= 2; j++) { 
val.siva1-int = j; 
Sigqueue (pid, i, val) ; 
printf("sent signal %d, val = %d\nn, i, j); 

1 
1 
exit (0) ; 

38 static void 
39 sig-rt(int signo, siginfo-t *info, void *context) 
40 { 
41 printf("received signal #%d, code = %d, ival = %d\nM, 
42 signo, info->si-code, info->si-value.siva1-int); 

Figure 5.17 Simple test program to demonstrate realtime signals. 
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We first run the program under Solaris 2.6, but the output is not what is expected. 
solaris % testl 
SIGRTMIN = 38. SIGRTMAX = 45 

sent signal 
sent signal 
sent signal 
sent signal 
sent signal 
sent signal 
sent signal 
sent signal 
sent signal 
solaris % 

45, val = 0 
45, val = 1 
45, val = 2 
44, val = 0 
44, val = 1 
44, val = 2 
43, val = 0 
43, val = 1 
43, val = 2 

received signal #45, 
received signal #45, 
received signal #45, 
received signal #44, 
received signal #44, 
received signal #44, 
received signal #43, 
received signal #43, 
received signal #43, 

code = -2, 
code = -2, 
code = -2, 
code = -2, 
code = -2, 
code = -2, 
code = -2, 
code = -2, 
code = -2, 

8 realtime signals provided 
3-second pause in here 
parent now sends the nine signals 

parent terminates, shell prompt printed 
3-second pause before child unblocks the signals 

ival = 2 child catches the signals 
ival = 1 
ival = 0 
ival = 2 
ival = 1 
ival = 0 
ival = 2 
ival = 1 
ival = 0 

The nine signals are queued, but the three signals are generated starting with the high- 
est signal number (we expect the lowest signal number to be generated first). Then for a 
given signal, the queued signals appear to be delivered in LIFO, not FIFO, order. The 
si-code of -2 corresponds to SI-QUEUE. 

We now run the program under Digital Unix 4.08 and see different results. 
alpha % testl 
SIGRTMIN = 33, SIGRTMAX = 48 

sent signal 48, 
sent signal 48, 
sent signal 48, 
sent signal 47, 
sent signal 47, 
sent signal 47, 
sent signal 46, 
sent signal 46, 
sent signal 46, 
alpha % 

received signal 
received signal 
received signal 
received signal 
received signal 
received signal 
received signal 
received signal 
received signal 

val 
val 
val 
val 
val 
val 
val 
val 
val 

code = -1, 
code = -1, 
code = -1, 
code = -1, 
code = -1, 
code = -1, 
code = -1, 
code = -1, 
code = -1, 

16 realtime signals provided 
3-second pause in here 
parent now sends the nine signals 

parent terminates, shell prompt printed 
3second pause before child unblocks the signals 

ival = 0 child catches the signals 
ival = 1 
ival = 2 
ival = 0 
ival = 1 
ival = 2 
ival = 0 
ival = 1 
ival = 2 
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The nine signals are queued but are delivered in the order in which they were gener- 
ated, not the lowest-numbered-signal-first, as we expect. But for a given signal, the 
three occurrences are delivered in FIFO order. 

Both of these implementations appear to have bugs. 

signal-rt Function 

On p. 120 of UNPvl, we show our signal function, which calls the Posix sigaction 
function to establish a signal handler that provides realtime Posix semantics. We now 
modify that function to provide realtime behavior. We call this new function 
signal-rt and show it in Figure 5.18. 

2 Sigfunc-rt * 
3 signal-rt(int signo, Sigfunc-rt *func) 
4 I 
5 struct sigaction act, oact; 

6 act-sa-sigaction = func: / *  must store function addr here * /  
7 sigemptyset(&act.sa-mask); 
8 act.sa-flags = SA-SIGINFO; / *  must specify this for realtime * /  
9 if (signo == SIGALRM) { 

10 #ifdef SA-INTERRUPT 
11 act.sa-flags I =  SA-INTERRUPT; / *  SunOS 4.x * /  
12 #endif 
13 1 else I 
14 #ifdef SA-RESTART 
15 act.sa-flags I=  SA-RESTART; / *  SVR4, 4.4BSD * /  
16 #endif 
17 I 
18 if (sigaction(signo, &act, &oact) c 0) 
19 return ((Sigfunc-rt * )  SIG-ERR); 
20 return (oact.sa-sigaction); 
21 I 

lib/signal-rt.c 
Figure 5.18 signal-rt function to provide realtime behavior. 

Simplify function prototype using typedef 

1-3 In our unpipc . h header (Figure C.11, we define Sigf unc-rt as 

typedef void Sigfunc-rt(int, siginfo-t *, void * ) ;  

We said earlier in this section that this is the function prototype for a signal handler 
installed with the SA-SIGINFO flag set. 

Specify handler function 

5-7 The sigaction structure changed when realtime signal support was added, with 
the addition of the new sa-s igac t ion member. 
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struct sigaction { 

void (*saphandler)(); / *  SIG-DFL, SIG-IGN, or addr of signal handler * /  
sigset-t sa-mask; / *  additional signals to block * /  
int sa-flags; / *  signal options: SA-xxx * /  
void (*sa-sigaction) (int, siginfo-t, void * ) ;  

/ *  addr of signal handler if SA-SIGINFO set * /  
1 : 

The rules are: 

If the SA-SIGINFO flag is set in the sa-flags member, then the 
sa-s igac t i on member specifies the address of the signal-handling function. 

If the SA-SIGINFO flag is not set in the sa-flags member, then the 
sa-handler member specifies the address of the signal-handling function. 

To specify the default action for a signal or to ignore a signal, set sa-handler 
to either SIG-DFL or SIG-IGN, and do not set SA-SIGINFO. 

Set SA-SIGINFO 

8-17 We always set the SA-SIGINFO flag, and also specify the SA-RESTART flag if the 
signal is not SIGALRM. 

5.8 Implementation Using Memory-Mapped I10 

We now provide an implementation of Posix message queues using memory-mapped 
I/O, along with Posix mutexes and condition variables. 

We cover mutexes and condition variables in Chapter 7 and memory-mapped I/O in Chapters 
12 and 13. You may wish to skip this section until you have read those chapters. 

Figure 5.19 shows a layout of the data structures that we use to implement Posix 
message queues. In this figure, we assume that the message queue was created to hold 
up to four messages of 7 bytes each. 

Figure 5.20 shows our mqueue . h header, which defines the fundamental structures 
for this implementation. 

mud-t datatype 

1 Our message queue descriptor is just a pointer to an mcinf o structure. Each call 
to mcopen allocates one of these structures, and the pointer to this structure is what 
gets returned to the caller. This reiterates that a message queue descriptor need not be a 
small integer, like a file descriptor-the only Posix requirement is that this datatype 
cannot be an array type. 
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mq-flags 
mq-maxmsg 

mqh-free 
mqh-nwai t 

mqh-event 

mqh-lock 

mqh-wai t 

I 
rnsg-next 
msg-len 
m s g q r i o  

rnsg-next * 
msg-len 

-- 

msg-len 

m s g q r i o  

1 byte pad 

start of memory-mapped region 

1 
L 

one s t rudre  for each 
J 

mcopen of message queue 

1 one message 

one message 

1 one message 

1 one message 

J r-- end of memory-mapped region 
L 

V 
J 

one memory-mapped file per message queue 

Figure 5.19 Layout of data structures to implement Posix message queues using a memory-mapped file. 
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1 typedef struct meinfo *mqd-t; / *  

2  struct mcattr I 
3 long mq-flags; / * 
4  long mLmaxmsg; / * 
5 long mq-msgsize; / * 
6  long mccurmsgs ; / * 
7  1; 

8 / *  one mchdrI1 per queue, 
9 struct mchdr I 

myjxmsg-mmap/mqueue.h 
opaque datatype * /  

message queue flag: 0-NONBLOCK * /  
max number of messages allowed on queue * /  
max size of a message (in bytes) * /  
number of messages currently on queue * /  

at beginning of mapped file * /  

struct mcattr mqh-attr; 
long mqh-head; 
long mqh-free; 
long mqh-nwait ; 
pid-t mqhsid; 
struct sigevent mqh-event; 
pthread-mutex-t mqh-lock; 
pthread-cond-t mqh-wait; 

/ *  the queue's attributes * /  
/ *  index of first message * /  
/ *  index of first free message * /  
/ *  #threads blocked in mcreceive0 * /  
/ *  nonzero PID if mqh-event set * /  
/ *  for mcnotify0 * /  
/ *  mutex lock * /  
/ *  and condition variable * /  

19 / *  one msg-hdr{) at the front of each message in the mapped file * /  
20  struct msg-hdr I 
2 1 long msg-next ; / *  index of next on linked list * /  
22  / *  msg-next must be first member in struct * /  
23 ssize-t msg-len: / *  actual length * /  
24  unsigned int msgsrio; / *  priority * /  
25 1; 

2 6  / *  one mcinfo{) malloc'ed per process per maopen0 * /  
27  struct meinfo I 
28  struct mchdr *mqi-hdr; / *  start of mmap'ed region * /  
29 long mqi-magic ; / *  magic number if open * /  
3  0  int mqi-flags; / *  flags for this process * /  
3 1  1; 
32 #define MQI-MAGIC 0x98765432 

33 / *  size of message in file is rounded up for alignment * /  
34 #define MSGSIZE(i) ((((i) + sizeof(1ong)-1) / sizeof(1ong)) * sizeof(1ong)) 

myyxmsg-mmap/mqueue.h 
Figure 5.20 mqueue . h header. 

m d r  Structure 

8-18 This structure appears at the beginning of the mapped file and contains all the per- 
queue information. The mq_f lags member of the mqh-attr structure is not used, 
because the flags (the nonblocking flag is the only one defined) must be maintained on a 
per-open basis, not on a per-queue basis. The flags are maintained in the m c i n f o  
structure. We describe the remaining members of this structure as we use them in the 
various functions. 

Note now that everything that we refer to as an index (the mqh-head and 
mqh-f ree members of this structure, and the msg-next member of the next structure) 
contains byte indexes from the beginning of the mapped file. For example, the size of 
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the mehdr  structure under Solaris 2.6 is 96 bytes, so the index of the first message fol- 
lowing this header is 96. Each message in Figure 5.19 occupies 20 bytes (12 bytes for the 
msg-hdr structure and 8 bytes for the message data), so the indexes of the remaining 
three messages are 116,136, and 156, and the size of this mapped file is 176 bytes. These 
indexes are used to maintain two linked lists in the mapped file: one list (mqh-head) 
contains all the messages currently on the queue, and the other (mqh-f ree) contains all 
the free messages on the queue. We cannot use actual memory pointers (addresses) for 
these list pointers, because the mapped file can start at different memory addresses in 
each process that maps the file (as we show in Figure 13.6). 

mag-hdr Structure 

-2s This structure appears at the beginning of each message in the mapped file. All 
messages are either on the message list or on the free list, and the msg-next member 
contains the index of the next message on the list (or 0 if this message is the end of the 
list). msg-len is the actual length of the message data, which for our example in Fig- 
ure 5.19 can be between 0 and 7 bytes, inclusive. m s g j r i o  is the priority assigned to 
the message by the caller of mesend.  

-info structure 

26-32 One of these structures is dynamically allocated by meopen when a queue is 
opened, and freed by mec lose .  mqi-hdr points to the mapped file (the starting 
address returned by mmap). A pointer to this structure is the fundamental mqd-t 
datatype of our implementation, and this pointer is the return value from mq-open. 

The mqi-magic member contains MQI-MAGIC, once this structure has been initial- 
ized and is checked by each function that is passed an mqd-t pointer, to make certain 
that the pointer really points to an m c i n f  o structure. mqi-f l a g s  contains the non- 
blocking flag for this open instance of the queue. 

MSGSIZE macro 

33-34 For alignment purposes, we want each message in the mapped file to start on a long 
integer boundary. Therefore, if the maximum size of each message is not so aligned, we 
add between 1 and 3 bytes of padding to the data portion of each message, as shown in 
Figure 5.19. This assumes that the size of a long integer is 4 bytes (which is true for 
Solaris 2.6), but if the size of a long integer is 8 bytes (as on Digital Unix 4.01, then the 
amount of padding will be between 1 and 7 bytes. 

mchopen Function 

Figure 5.21 shows the first part of our meopen function, which creates a new message 
queue or opens an existing message queue. 

3 #include cstdarg.h> 
4 #define - T R I E S  10 / *  for waiting for initialization * /  

5 struct mq-attr defattr = 
6 (0, 128, 1024, 0); 
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7 mqd-t 
8 mcopen(const char *pathname, int oflag, . . . I  
9 I 

int i, fd, nonblock, created, save-errno; 
long msgsize, filesize, index; 
va-list ap; 
mode-t mode; 
int8-t *mptr; 
struct stat statbuff; 
struct mchdr *mqhdr; 
struct msg-hdr *msghdr; 
struct mcattr *attr; 
struct mcinfo *mqinfo; 
pthread-mutexattr-t rnattr; 
pthread-condattr-t cattr; 

created = 0; 
nonblock = oflag & 0-NONBLOCK; 
oflag &= "0-NONBLOCK; 
mptr = (int8-t * )  MAP-FAILED; 
mqinfo = NULL; 

again : 
if (oflag & 0-CREAT) I 

va-start(ap, oflag); / *  init ap to final named argument * /  
mode = va-arg(ap, va-mode-t) & "S-IXUSR; 
attr = v~arg(ap, struct mcattr * ) ;  

va-end ( ap ) ; 

/ *  open and specify 0-EXCL and user-execute * /  
fd = open(pathname, oflag I 0-EXCL I 0-RDWR, mode I S-IXUSR); 
if (fd c 0) { 

if (errno == EEXIST && (oflag & 0-EXCL) == 0) 
goto exists; / *  already exists, OK * /  

else 
return ( (mqd-t ) -1 ) ; 

1 
created = 1; 

/ *  first one to create the file initializes it * /  
if (attr == NULL) 

attr = &defattr; 
else I 

if (attr-zmcrnaxmsg c= 0 I I attr->mq_msgsize c= 0) I 
errno = EINVAL; 
goto err; 

1 
} 

my~xrnsg-mmap/mq-0pen.c 
Figure 5.21 meopen function: first part. 

Handle variable argument list 

29-32 This function can be called with either two or four arguments, depending on 
whether or not the 0-CREAT flag is specified. When this flag is specified, the third 



i.8 Implementation Using Memory-Mapped 1/0  111 

argument is of type mode-t, but this is a primitive system datatype that can be any 
type of integer. The problem we encounter is on BSD/OS, which defines this datatype 
as an unsigned s h o r t  integer (occupying 16 bits). Since an integer on this implemen- 
tation occupies 32 bits, the C compiler expands an argument of this type from 16 to 
32 bits, since all short integers are expanded to integers in the argument list. But if we 
specify mode-t in the call to va-arg, it will step past 16 bits of argument on the stack, 
when the argument has been expanded to occupy 32 bits. Therefore, we must define 
our own datatype, va-mode-t, that is an integer under BSD/OS, or of type mode-t 
under other systems. The following lines in our unpipc . h header (Figure C.l) handle 
this portability problem: 

#ifdef -- bsdi-- 
#define va-mode-t int 
#else 
#define va-mode-t mode-t 
#endif 

We turn off the user-execute bit in the mode variable (s-IXUSR) for reasons that we 
describe shortly. 

Create a new message queue 

A regular file is created with the name specified by the caller, and the user-execute 
bit is turned on. 

Handle potential race condition 

If we were to just open the file, memory map its contents, and initialize the mapped 
file (as described shortly) when the 0-CREAT flag is specified by the caller, we would 
have a race condition. A message queue is initialized by mcopen only if 0-CREAT is 
specified by the caller and the message queue does not already exist. That means we 
need some method of detecting whether the message queue already exists. To do so, we 
always specify 0-EXCL when we open the file that will be memory-mapped. But an 
error return of EEXIST from open becomes an error from mcopen, only if the caller 
specified 0-EXCL. Otherwise, if open returns an error of EEXIST, the file already exists 
and we just skip ahead to Figure 5.23 as if the 0-CREAT flag was not specified. 

The possible race condition is because our use of a memory-mapped file to repre- 
sent a message queue requires two steps to initialize a new message queue: first, the file 
must be created by open, and second, the contents of the file (described shortly) must 
be initialized. The problem occurs if two threads (in the same or different processes) 
call mcopen at about the same time. One thread can create the file, and then the sys- 
tem switches to the second thread before the first thread completes the initialization. 
This second thread detects that the file already exists (using the 0-EXCL flag to open) 
and immediately tries to use the message queue. But the message queue cannot be used 
until the first thread initializes the message queue. We use the user-execute bit of the 
file to indicate that the message queue ha~&een initialized. This bit is enabled only by 
the thread that actually creates the file (using the 0-EXCL flag to detect which thread 
creates the file), and that thread initializes the message queue and then turns off the 
user-execute bit. We encounter similar race conditions in Figures 10.43 and 10.52. 
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Check attributes 

4.2-so If the caller specifies a null pointer for the final argument, we use the default 
attributes shown at the beginning of this figure: 128 messages and 1024 bytes per mes- 
sage. If the caller specifies the attributes, we verify that mq-maxmsg and rn~msgsize 
are positive. 

The second part of our mq_open function is shown in Figure 5.22; it completes the 
initialization of a new queue. 

myjxmsg-mmaplmq-0pen.c 
/ *  calculate and set the file size * /  

msgsize = MSGSIZE(attr->mq-msgsize); 
filesize = sizeof(struct mq-hdr) + (attr->mq-maxmsg * 

(sizeof(struct msg-hdr) + msgsize)); 
if (lseek(fd, filesize - 1, SEEK-SET) == -1) 

goto err; 
if (write(fd, "" ,  1) == -1) 

goto err; 

/ *  memory map the file * /  
mptr = mmap(NULL, filesize, PROT-READ I PROT-WRITE, 

MAP-SHARED, f d, 0 ) ; 
if (mptr == MAP-FAILED) 

goto err; 

/ *  allocate one mq_info{) for the queue * /  
if ( (mqinfo = malloc(sizeof(struct mq-info))) == NULL) 

goto err; 

mqinfo->mqi-hdr = mqhdr = (struct mq-hdr * )  mptr; 
mqinfo-zmqi-magic = MQI-MAGIC; 
mqinfo-xnqi-flags = nonblock; 

/ *  initialize header at beginning of file * /  
/ *  create free list with all messages on it * /  

mqhdr-zmqh-attr-mq-flags = 0; 
mqhdr-zmqh-attr.mq_maxmsg = attr->mmaxmsg; 
mqhdr->mqh-attr.mq-msgsize = attr->mq-msgsize; 
mqhdr->mqh-attr.mq-curmsgs = 0; 
mqhdr->mqh-nwait = 0; 
mqhdr->mqh_pid = 0; 
mqhdr->rnqh-head = 0; 
index = sizeof(struct mq-hdr); 
mqhdr->mqh-free = index; 
for (i = 0; i < attr->mq-maxmsg - 1; i++) I 

msghdr = (struct msg-hdr * )  &mptr[indexl; 
index += sizeof(struct msg-hdr) + msgsize; 
msghdr-zmsg-next = index; 

1 
msghdr = (struct msg-hdr * )  &mptr[indexl; 
msghdr->msg-next = 0; / *  end of free list * /  

/ *  initialize mutex & condition variable * /  
if ( (i = pthread-mutexattr-init(&mattr)) != 0) 

goto pthreaderr; 
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91 pthread-mutexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED); 
9 2 i = pthread-mutex-init(&mqhdr->mqh-lock, &mattr); 
93 pthread-mutexattr-destroy(&mattr); / *  be sure to destroy * /  
94 if (i !=  0) 
95 goto pthreaderr; 

9 6 if ( (i = pthread-condattr-init(&cattr) ) !=  0) 
97 goto pthreaderr; 
9 8 pthread-condattr-setpshared(&cattr, PTHREAD-PROCESS-SHARED); 
99 i = pthread-cond-init(&mqhdr->mqh-wait, &cattr); 
100 pthread-condattr-destroy(&cattr); / *  be sure to destroy * /  
101 if (i != 0) 
102 goto pthreaderr; 

103 / *  initialization complete, turn off user-execute bit * /  
104 if (fchmod(fd, mode) == -1) 
105 goto err; 
106 close ( fd) ; 
107 return ( (mqd-t) mqinfo) ; 

Figure 5.22 Second part of mcopen function: complete initialization of new queue. 

Set the file size 

a - 5 s  We calculate the size of each message, rounding up to the next multiple of the size 
of a long integer. To calculate the file size, we also allocate room for the mchdr struc- 
ture at the beginning of the file and the msg-hdr structure at the beginning of each 
message (Figure 5.19). We set the size of the newly created file using lseek and then 
writing one byte of 0. Just calling f truncate (Section 13.3) would be easier, but we are 
not guaranteed that this works to increase the size of a file. 

Memory map the file 

59-63 The file is memory mapped by mmap. 

Allocate -info structure 

64-66 We allocate one mq-inf o structure for each call to mcopen. This structure is ini- 
tialized. 

Initialize m h d r  structure 

67-87 We initialize the mchdr structure. The head of the linked list of messages 
(mqh-head) is set to 0, and all the messages in the queue are added to the free list 
(mqh-f reel. 

Initialize mutex and condition variable 

8s- ioz  Since Posix message queues can be shared by any process that knows the message 
queue's name and has adequate permission, we must initialize the mutex and condition 
variable with the PTHREAD-PROCESS-SHARED attribute. To do so for the message 
queue, we first initialize the attributes by calling pthread-mutexat tr-ini t, then call 
pthread-mutexattr-setpshared to set the process-shared attribute in this struc- 
ture, and then initialize the mutex by calling pthread-mutex-ini t. Nearly identical 
steps are done for the condition variable. We are careful to destroy the mutex or 
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condition variable attributes that are initialized, even if an error occurs, because the calls 
to pthread-mutexattr-init or pthread-condattr-init might allocate memory 
(Exercise 7.3). 

Turn off user-execute bit 

103-107 Once the message queue is initialized, we turn off the user-execute bit. This indi- 
cates that the message queue has been initialized. We also close the file, since it has 
been memory mapped and there is no need to keep it open (taking up a descriptor). 

Figure 5.23 shows the final part of our mcopen function, which opens an existing 
queue. 

myjxmsg-mmaplmq-0pen.c 
exists: 

/ *  open the file then memory map * /  
if ( (fd = open(pathname, 0-RDWR) ) c 0) I 

if (errno == ENOENT && (oflag & 0-CREAT)) 
goto again; 

goto err; 
1 

/ *  make certain initialization is complete * /  
for (i = 0; i c -TRIES; i++) I 

if (stat(pathname, &statbuff) == -1) I 
if (errno == ENOENT && (oflag & 0-CREAT)) { 

close(fd); 
goto again; 

) 
goto err; 

1 
if ((statbuff.st-mode & S-IXUSR) == 0) 

break; 
sleep(1); 

1 
if (i == MAX-TRIES) { 

errno = ETIMEDOUT; 
goto err; 

1 
filesize = statbuff.st-size; 
mptr = mmap(NULL, filesize, PROT-READ I PROT-WRITE, MAP-SHARED, fd, 0); 
if (mptr == MAP-FAILED) 

goto err; 
close ( fd) ; 

/ *  allocate one mq_info{) for each open * /  
if ( (mqinfo = malloc(sizeof(struct mq-info))) == NULL) 

goto err; 

mqinfo-zmqi-hdr = (struct mq-hdr * )  mptr; 
mqinfo->mqi-magic = MQI-MAGIC; 
mqinfo-zmqi-flags = nonblock; 
return ( (mqd-t ) mqinfo) ; 
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Memory map file; ailocate and initiaiize -info structure 

133-144 The file is memory mapped, and the descriptor can then be closed. We allocate an 
m c i n f  o structure and initialize it. The return value is a pointer to the m c i n f  o struc- 
ture that was allocated. 

Handie errors 

145-15s When an error is detected earlier in the function, the label e r r  is branched to, with 
errno set to the value to be returned by meopen. We are careful that the functions 
called to clean up after the error is detected do not affect the errno returned by this 
function. 

q-close Function 

Figure 5.24 shows our m c c  1 os e function. 

2 #include "mqueue . h" 
3 int 
4 mq_close(mqd-t mqd) 
5 { 

6 long msgsize, filesize; 
7 struct mehdr *mqhdr; 
8 struct meattr *attr; 
9 struct meinfo *mqinfo; 

10 mqinfo = mqd; 
11 if (mqinfo->mqi-magic !=  MQI-MAGIC) { 

12 errno = EBADF; 
13 return (-1); 
14 1 
15 mqhdr = mqinfo->mqi-hdr; 
16 attr = &mqhdr->mqh-attr; 

17 if (menotify(mqd, NULL) !=  0) / *  unregister calling process * /  
18 return (-1) ; 

19 msgsize = MSGSIZE(attr->m~msgsize); 
2 0 filesize = sizeof(struct mehdr) + (attr->memaxmsg * 
21 (sizeof(struct msg-hdr) + msgsize) ) ;  

22 if (munmap(mqinfo->mqi-hdr, filesize) == -1) 
2 3 return (-1); 

24 mqinfo-zmqi-magic = 0; / *  just in case * /  
2 5 free (mqinf o 1 ; 
2 6 return ( 0 ) ; 
27 1 m~gxrnsg-mmaplmq-c1ose.c 

Figure 5.24 m~close function. 
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Get pointers to structures 

; The argument is validated, and pointers are then obtained to the memory-mapped 
region (mqhdr) and the attributes (in the m c h d r  structure). 

Unregister calling process 

I We call m c n o t  i f y to unregister the calling process for this queue. If the process is 
registered, it will be unregistered, but if it is not registered, no error is returned. 

Unmap region and free memory 

i We calculate the size of the file for munmap and then free the memory used by the 
m c i n f  o structure. Just in case the caller continues to use the message queue descrip- 
tor before that region of memory is reused by ma1 loc, we set the magic number to 0, so 
that our message queue functions will detect the error. 

Note that if the process terminates without calling m c c l o s e ,  the same operations 
take place on process termination: the memory-mapped file is unmapped and the mem- 
ory is freed. 

link Function 

Our m ~ u n l i n k  function shown in Figure 5.25 removes the name associated with our 
message queue. It just calls the Unix un l ink  function. 

3 int 
4 mq-unlink(const char *pathname) 
5 { 

6 if (unlink(pathname) == -1) 
7 return (-1); 
8 return ( 0 )  ; 

9 I 
my~xmsg-mmap/mq-un1ink.c 

Figure 5.25 meunlink function. 

tattr Function 

Figure 5.26 shows our m c r g e t a t t r  function, which returns the current attributes of the 
specified queue. 

Acquire queue's mutex lock 

I We must acquire the message queue's mutex lock before fetching the attributes, in 
case some other thread is in the middle of changing them. 
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mygxmsg-mmap/mq_getattr.c 
1 #include "unpipc.hU 
2 #include "mqueue.hU 

3 int 
4 megetattr(mqd-t mqd, struct mcattr *mqstat) 
5 ( 

int n; 
struct mchdr *mqhdr; 
struct mq-attr *attr; 
struct meinfo *mqinfo; 

mqinfo = mqd; 
if (mqinfo->mqi-magic != MQI-MAGIC) { 

errno = EBADF; 
return (-1); 

I 
mqhdr = mqinfo->mqi-hdr; 
attr = &mqhdr->mqh-attr: 
if ( (n = pthread-mutex-lock(&mqhdr->mqh-lock)) !=  0) I 

errno = n; 
return (-1); 

I 
mqstat->meflags = mqinfo->mqi-flags; / *  per-open * /  
mqstat->mq-maxmsg = attr->mq_maxmsg; / *  remaining three per-queue */  
mqstat->rnemsgsize = attr->mq-msgsize; 
mqstat->mq-curmsgs = attr->mccurmsgs; 

pthread-mutex-unlock(&mqhdr->mqh-lock); 
return (0) ; 

27 I 
mygxmsg-mmap /mq_getattr.c 

Figure 5.26 megetattr function. 

mseta t tr  Function 

Figure 5.27 shows our m ~ s e t a t t r  function, which sets the current attributes of the 
specified queue. 

Return current attributes 

22-27 If the third argument is a nonnull pointer, we return the previous attributes and cur- 
rent status before changing anything. 

Change -flags 

28-31 The only attribute that can be changed with this function is m q _ f  lags, which we 
store in the m c i n f  o structure. 
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3 int 
4 rnesetattr(mqd-t mqd, const struct mcattr *mqstat, 
5 struct meattr *omqstat) 
6 { 
7 int n; 
8 struct m ~ h d r  *mqhdr ; 
9 struct meattr *attr: 

10 struct m ~ i n f o  *mqinfo; 

mqinfo = mqd; 
if (mqinfo->mqi-magic != MQI-MAGIC) { 

errno = EBADF; 
return (-1); 

I 
mqhdr = mqinfo->mqi-hdr; 
attr = &mqhdr->mqh-attr; 
if ( (n = pthread-mutex-lock(&mqhdr->mqh-lock)) !=  0) { 

errno = n; 
return (-1) ; 

I 
if (omqstat !=  NULL) { 

omqstat->-flags = mqinfo->mqi-flags; / *  previous attributes * /  
omqstat->memaxmsg = attr->m~maxmsg; 
omqstat->memsgsize = attr->mq_msgsize; 
omqstat->rnecurmsgs = attr->mq-curmsgs; / *  and current status * /  

I 
if (mqstat->meflags & 0-NONBLOCK) 

mqinfo->mqi-flags ) =  0-NONBLOCK; 
else 

mqinfo->mqi-flags &= "0-NONBLOCK; 

32 pthread-mutex-unlock(&mqhdr->mqh-lock); 
3 3 return (0) ; 

Figure 5.27 mesetattr function. 

ify Function 

The mcnoti f y function shown in Figure 5.28 registers or unregisters the calling pro- 
cess for the queue. We keep track of the process currently registered for a queue by 
storing its process ID in the mqh_pid member of the mchdr structure. Only one pro- 
cess at a time can be registered for a given queue. When a process registers itself, we 
also save its specified sigevent structure in the mqh-event structure. 
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3 int 
4 menotify(mqd-t mqd, const struct sigevent *notification) 
5 ( 

int n; 
pid-t pid; 
struct m ~ h d r  *mqhdr; 
struct meinfo *mqinfo; 

mqinfo = mqd; 
if (mqinfo->mqi-magic != MQI-MAGIC) { 

errno = EBADF; 
return ( -1 ) ; 

1 
mqhdr = mqinfo->mqi-hdr: 
if ( (n = pthread-mutex-lock(&mqhdr->mqh-lock)) !=  0) ( 

return (-1 ) ; 
I 
pid = getpid ( ) ; 
if (notification == NULL) { 

if (mqhdr->mqhqid == pid) { 

mqhdr->mqhqid = 0; / *  unregister calling process * /  
I / *  no error if caller not registered * /  

I else ( 

if (mqhdr->mqhqid != 0) { 

if (kill(mqhdr->mqh_pid, 0) != -1 1 1  errno != ESRCH) { 

errno = EBUSY; 
goto err; 

1 
I 
mqhdr->mqhqid = pid; 
mqhdr->mqh-event = *notification; 

I 
pthread~mutex~unlock(&mqhdr->mqh~l~ck); 
return (0) ; 

err : 
pthread~mutex~unlock(&mqhdr-~mqh~lock); 
return (-1); 

40 I my~xmsg-mmaplmq-n0tIfy.c 
Figure 5.28 meno t i f y function. 

Unregister caliing process 

20-24 If the second argument is a null pointer, the calling process is unregistered for this 
queue. Strangely, no error is specified if the calling process is not registered for this 
queue. 
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Register caliing process 

4 If some process is already registered, we check whether it still exists by sending it 
signal 0 (called the null signal). This performs the normal error checking, but does not 
send a signal and returns an error of ESRCH if the process does not exist. An error of 
EBUSY is returned if the previously registered process still exists. Otherwise, the pro- 
cess ID is saved, along with the caller's s igeven t  structure. 

Our test for whether the previously registered process exists is not perfect. This process can 
terminate and then have its process ID reused at some later time. 

mnd Function 

Figure 5.29 shows the first half of our m e s e n d  function. 

lnitiaiize 

Pointers are obtained to the structures that we will use, and the mutex lock for the 
queue is obtained. A check is made that the size of the message does not exceed the 
maximum message size for this queue. 

Check for empty queue and send notification if applicabie 

If we are placing a message onto an empty queue, we check whether any process is 
registered for this queue and whether any thread is blocked in a call to mcrece ive .  
For the latter check, we will see that our m c r e c e i v e  function keeps a count 
(mqh-nwait) of the number of threads blocked on the empty queue. If this counter is 
nonzero, we do not send any notification to the registered process. We handle a notifi- 
cation of SIGEV-SIGNAL and call s igqueue to send the signal. The registered process 
is then unregistered. 

Calling sigqueue to send the signal results in an si-code of SI-QUEUE being passed to the 
signal handler in the siginfo-t  structure (Section 5.7), which is incorrect. Generating the 
correct si-code of SI-MESGQ from a user process is implementation dependent. Page 433 of 
[IEEE 19961 mentions that a hidden interface into the signal generation mechanism is required 
to generate this signal from a user library. 

Check for fuil queue 

8 If the queue is full but the 0-NONBLOCK flag has been set, we return an error of 
EAGAIN. Otherwise, we wait on the condition variable mqh-wait, which we will see is 
signaled by our m ~ r e c e i v e  function when a message is read from a full queue. 

Our implementation is simplistic with regard to returning an error of EINTR if this call to 
-send is interrupted by a signal that is caught by the calling process. The problem is that 
pthread-cond-wait does not return an error when the signal handler returns: it can either 
return a value of 0 (which appears as a spurious wakeup) or it need not return at all. Ways 
around this exist, all nontrivial. 

Figure 5.30 shows the second half of our m e s e n d  function. At this point, we know 
the queue has room for the new message. 
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my_pxmsgmmap/mq-send.c 
1 #include "unpipc.h" 
2 #include "mqueue.hU 

3 int 
4 mesend(mqd-t mqd, const char *ptr, size-t len, unsigned int prio) 
5 ( 

int n; 
long index, freeindex; 
int8-t *mptr: 
struct sigevent *sigev; 
struct mehdr *mqhdr; 
struct meattr *attr; 
struct msg-hdr *msghdr, *nmsghdr, *pmsghdr; 
struct meinfo *mqinfo; 

mqinfo = mqd; 
if (mqinfo->mqi-magic !=  MQI-MAGIC) { 

errno = EBADF; 
return (-1) ; 

1 
mqhdr = mqinfo->mqi-hdr; / *  struct pointer * /  
mptr = (int8-t * )  mqhdr; / *  byte pointer * /  
attr = &mqhdr->mqh-attr; 

( (n = pthread-mutex-lock(&mqhdr->mqh_lock)) != 0) { 

errno = n; 
return (-1); 

(len > attr->memsgsize) { 
errno = EMSGSIZE; 
goto err; 

(attr->mq-curmsgs == 0) { 

if (mqhdr->mqh_pid !=  0 && mqhdr->mqh-nwait == 0) { 

sigev = &mqhdr->mqh-event; 
if (sigev->sigev-notify == SIGEV-SIGNAL) { 

sigqueue(mqhdr->mqhqid, sigev->sigev-signo, 
sigev->sigev-value); 

1 
mqhdr->mqhqid = 0; / *  unregister * /  

1 
) else if (attr->mq-curmsgs >= attr->mq_maxmsg) { 

/ *  queue is full * /  
if (mqinfo->mqi-flags & 0-NONBLOCK) { 

errno = EAGAIN; 
goto err; 

1 
/ *  wait for room for one message on the queue * /  

while (attr->mecurmsgs >= attr-zmq-maxmsg) 
pthread-cond-wait(&mqhdr->mqh-wait, &mqhdr->mqh-lock) ; 

1 
myjxmsg-mmap/mq-send.c 

Figure 5.29 mesend function: first half. 
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myjxmsg-mmaplmq-send.c 
/ *  nmsghdr will point to new message * /  

if ( (freeindex = mqhdr->mqh-free) == 0) 
err-dump("mesend: curmsgs = %ld; free = 0". attr->m~curmsgs); 

nmsghdr = (struct msg-hdr * )  &mptr[freeindexl; 
nmsghdr->msgqrio = prio; 
nmsghdr->msg-len = len; 
memcpy(nmsghdr + 1, ptr, len); / *  copy message from caller * /  
mqhdr->mqh-free = nmsghdr->msg-next; / *  new freelist head * /  

/ *  find right place for message in linked list * /  
index = mqhdr->mqh-head; 
pmsghdr = (struct msg-hdr * )  &(mqhdr->mqh-head); 
while (index ! = 0) { 

msghdr = (struct msg-hdr * )  &mptr[indexl; 
if (prio > msghdr->msgqrio) { 

nmsghdr->msg-next = index; 
pmsghdr->msg-next = freeindex; 
break; 

I 
index = msghdr->msggext; 
pmsghdr = msghdr; 

(index == 0) { 

/ *  queue was empty or new goes at end of list * /  
pmsghdr->msg-next = freeindex; 
nmsghdr->msg-next = 0; 

I 
/ *  wake up anyone blocked in mereceive waiting for a message * /  

if (attr->mq-curmsgs == 0) 
pthread-cond-signal(&mqhdr->mqh-wait); 

attr->mq-curmsgs++; 

pthread~mutex~unlock(&mqhdr->mqh~lock) ; 

return (0 ) ; 

84 I 
myjxrnsgmmaplmq-send.c 

Figure 5.30 mesend function: second half. 

Get index of free biock to use 

52 Since the number of free messages created when the queue was initialized equals 
m c m a x m s g ,  we should never have a situation where m c c u r m s g s  is less than 
m c m a x m s g  with an empty free list. 

Copy message 

56 n r n s g h d r  contains the address in the mapped memory of where the message is 
stored. The priority and length are stored in its m s g- h d r  structure, and then the con- 
tents of the message are copied from the caller. 



124 Posix Message Queues Chapter 5 

Place new message onto iinked list in correct location 

57-74 The order of messages on our linked list is from highest priority at the front 
(mqh-head) to lowest priority at the end. When a new message is added to the queue 
and one or more messages of the same priority are already on the queue, the new mes- 
sage is added after the last message with its priority. Using this ordering, m c r e c e i v e  
always returns the first message on the linked list (which is the oldest message of the 
highest priority on the queue). As we step through the linked list, pmsghdr contains 
the address of the previous message in the list, because its msg-next value will contain 
the index of the new message. 

Our design can be slow when lots of messages are on the queue, forcing a traversal of a large 
number of l i t  entries each time a message is written to the queue. A separate index could be 
maintained that remembers the location of the last message for each possible priority. 

Wake up anyone blocked in -receive 

75-77 If the queue was empty before we placed the message onto the queue, we call 
pthread-cond-signal to wake up  any thread that might be blocked in 
m c r e c e i v e .  

78 The number of messages currently on the queue, mccurmsgs, is incremented. 

-receive Function 

Figure 5.31 shows the first half of our m e r e c e i v e  function, which sets up the pointers 
that it needs, obtains the mutex lock, and verifies that the caller's buffer is large enough 
for the largest possible message. 

Check for empty queue 

30-40 If the queue is empty and the 0-NONBLOCK flag is set, an error of EAGAIN is 
returned. Otherwise, we increment the queue's mqh-nwait counter, which was exam- 
ined by our m e s e n d  function in Figure 5.29, if the queue was empty and someone was 
registered for notification. We then wait on the condition variable, which is signaled by 
m c s e n d  in Figure 5.29. 

As with our implementation of m c s e n d ,  our implementation of m ~ r e c e i v e  is simplistic 
with regard to returning an error of EINTR if this call is interrupted by a signal that is caught 
by the calling process. 

Figure 5.32 shows the second half of our m c r e c e i v e  function. At this point, we 
know that a message is on the queue to return to the caller. 
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ssize-t 
mq-receive(mqd-t mqd, char *ptr, size-t rnaxlen, unsigned int *priop) 
( 

int n; 
long index; 
int8-t *mptr; 
ssize-t len; 
struct m ~ h d r  *mqhdr; 
struct m ~ a t t r  *attr; 
struct msg-hdr *msghdr; 
struct m ~ i n f o  *mqinfo; 

rnqinfo = rnqd; 
if (mqinfo->mqi-magic != MQI-MAGIC) ( 

errno = EBADF; 
return (-1); 

1 
rnqhdr = mqinfo->mqi-hdr; / *  struct pointer * /  
mptr = (int8-t * )  rnqhdr; / *  byte pointer */  
attr = Lmqhdr->mqh-attr; 
if ( (n = pthread-mutex-lock(&mqhdr->mqh-lock)) !=  0) { 

errno = n; 
return (-1); 

1 
if (rnaxlen < attr->mq_msgsize) ( 

errno = EMSGSIZE; 
goto err; 

1 
if (attr->m~curmsgs == 0) { / *  queue is empty * /  

if (rnqinfo->mqi-flags & 0-NONBLOCK) ( 

errno = EAGAIN; 
goto err; 

1 
/ *  wait for a message to be placed onto queue * /  

mqhdr->mqh-nwait++; 
while (attr->mq-curmsgs == 0) 

pthread-cond-wait(&mqhdr->mqh-wait, &mqhdr->mqh-lock); 
rnqhdr->mqh-nwait--; 

1 rny_pxmsg~rnmap/rnq~receive.c 

Figure 5.31 -receive function: first half. 



126 Posix Message Queues Chapter 5 

myjxrnsg-mmaplmq- receive.^ 
41 if ( (index = mqhdr->mqh-head) == 0) 
42 err-dump("mq_receive: curmsgs = %Id; head = O", attr->mq-curmsgs); 

43 msghdr = (struct msg-hdr * )  &mptr[index]; 
44 mqhdr->mqh-head = msghdr->msg-next; / *  new head of list * /  
45 len = msghdr->msg-len; 
46 memcpy(ptr, msghdr + 1, len); / *  copy the message itself * /  
4 7 if (priop != NULL) 

49 / *  just-read message goes to front of free list * /  
50 msghdr->mg-next = mqhdr->mqh-free; 
51 mqhdr->mqh-free = index; 

5 2 / *  wake up anyone blocked in -send waiting for room * /  
53 if (attr->m~curmsgs == attr->mq-mamsg) 
5 4 pthread-cond-signal(&mqhdr->mqh-wait); 
55 attr-zm~curmsgs--; 

56 pthread~mutex~unlock(&mqhdr->mqh-lock); 
5 7 return (len) ; 

58 err: 
59 pthread-mutex-unlock(&mqhdr->mqh-lock); 
60 return (-1); 

61 1 
myjxmsg-mmaplmq- receive.^ 

Figure 5.32 m~receive function: second half. 

Return message to caller 

43-51 msghdr points to the msg-hdr of the first message on the queue, which is what we 
return. The space occupied by this message becomes the new head of the free list. 

Wake up anyone blocked in -send 

52-54 If the queue was full before we took the message off the queue, we call 
pthread-cond-signal, in case anyone is blocked in m ~ s e n d  waiting for room for a 
message. 

5.9 Summary 

Posix message queues are simple: a new queue is created or an existing queue is opened 
by mLopen; queues are closed by ms_close, and the queue names are removed by 
m ~ u n l i n k .  Messages are placed onto a queue with mcsend  and read with 
m ~ r e c e i v e .  Attributes of the queue can be queried and set with m ~ g e t a t t r  and 
m L s e t a t t r ,  and the function m ~ n o t i f y  lets us register a signal to be sent, or a 
thread to be invoked, when a message is placed onto an empty queue. Small integer 
priorities are assigned to each message on the queue, and m ~ r e c e i v e  always returns 
the oldest message of the highest priority each time it is called. 
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Using m a n o t i f y  introduced us  to the Posix realtime signals, named SIGRTMIN 
through SIGRTMAX. When the signal handler for these signals is installed with the 
SA-SIGINFO flag set, (1) these signals are queued, (2) the queued signals are delivered 
in a FIFO order, and (3) two additional arguments are passed to the signal handler. 

Finally, w e  implemented most of the Posix message queue features in about 500 
lines of C code, using memory-mapped I/O, along with a Posix mutex and a Posix con- 
dition variable. This implementation showed a race condition dealing with the creation 
of a new queue; we  will encounter this same race condition in Chapter 10 when imple- 
menting Posix semaphores. 

Exercises 

With Figure 5.5, we said that if the attr argument to m e o p e n  is nonnull when a new queue 
is created, both of the members m c m a x m s g  and m c m s g s i z e  must be specified. How 
could we allow either of these to be specified, instead of requiring both, with the one not 
specified assuming the system's default value? 

Modify Figure 5.9 so that it does not call m ~ n o t i f y  when the signal is delivered. Then 
send two messages to the queue and verify that the signal is not generated for the second 
message. Why? 

Modify Figure 5.9 so that it does not read the message from the queue when the signal is 
delivered. Instead, just call m ~ n o t i f y  and print that the signal was received. Then send 
two messages to the queue and verify that the signal is not generated for the second mes- 
sage. Why? 

What happens if we remove the cast to an integer for the two constants in the first pr int  f 
in Figure 5.1 7? 

Modify Figure 5.5 as follows: before calling m e o p e n ,  print a message and sleep for 30 
seconds. After m e o p e n  returns, print another message, sleep for 30 seconds, and then 
call m e c l o s e .  Compile and run the program, specifying a large number of messages (a 
few hundred thousand) and a maximum message size of (say) 10 bytes. The goal is to cre- 
ate a large message queue (megabytes) and then see whether the implementation uses 
memory-mapped files. During the first 30-second pause, run a program such as ps and 
look at the memory size of the program. Do this again, after m e o p e n  has returned. Can 
you explain what happens? 

What happens in the call to m e m c p y  in Figure 5.30 when the caller of m e s e n d  specifies a 
length of O? 

Compare a message queue to the full-duplex pipes that we described in Section 4.4. How 
many message queues are needed for two-way communication between a parent and child? 

In Figure 5.24, why don't we destroy the mutex and condition variable? 

Posix says that a message queue descriptor cannot be an array type. Why? 

Where does the m a i n  function in Figure 5.14 spend most of its time? What happens every 
time a signal is delivered? How do we handle this scenario? 
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5.11 Not all implementations support the PTHREAD-PROCESS-SHARED attributes for mutexes 
and condition variables. Redo the implementation of Posix message queues in Section 5.8 
to use Posix semaphores (Chapter 10) instead of mutexes and condition variables. 

5.12 Extend the implementation of Posix message queues in Section 5.8 to support 
S IGEV-THREAD. 



System V Message Queues 

Introduction 

System V message queues are identified by a message queue identifier. Any process with 
adequate privileges (Section 3.5) can place a message onto a given queue, and any pro- 
cess with adequate privileges can read a message from a given queue. As with Posix 
message queues, there is no requirement that some process be waiting for a message to 
arrive on a queue before some process writes a message to that queue. 

For every message queue in the system, the kernel maintains the following struc- 
ture of information, defined by including <sys /msg . h>: 

struct msqid-ds ( 

struct ipcserm 
struct msg 
struct msg 
msglen-t 
msgqnum-t 
msglen-t 
pid-t 
pid-t 
time-t 
t ime-t 
time-t 

msgqerm; 
*msg-first; 
*msg-last; 
msg-cbytes 
msg-mum; 
msg-qbytes 
msg-lspid; 
msg-lrpid; 
msg-stime; 
msg-rtime; 
msg-ctime; 

read-write perms: Section 3.3 * /  
ptr to first message on queue * /  
ptr to last message on queue * /  
current # bytes on queue * /  
current # of messages on queue * /  
m a x  # of bytes allowed on queue * /  
pid of last msgsndo * /  
pid of last msgrcvo * /  
time of last msgsndo * /  
time of last msgrcvo * /  
time of last msgctlo 
(that changed the above) " /  

Unix 98 does not require the msg-f irst, msg-last, or msg-cbytes members. Neverthe- 
less, these three members are found in the common System V derived implementations. Natu- 
rally, no requirement exists that the messages on a queue be maintained as a linked list, as 
implied by the msg-f irst and msg-last members. If these two pointers are present, they 
point to kernel memory and are largely useless to an application. 
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We can picture a particular message queue in the kernel as a linked list of messages, 
as shown in Figure 6.1. Assume that three messages are on a queue, with lengths of 1 
byte, 2 bytes, and 3 bytes, and that the messages were written in that order. Also 
assume that these three messages were written &th types of 100, 200, and 300, respec- 
tively. 

msqid --c 
msqid-ds(1 

next -- next -- NULL 

ipcgerd 1 type = 100 type = 200 type = 300 

length = 1 length = 2 length = 3 

msg-first -J data 
data 

msg-last - data 

. . .  
msg-c t ime 

Figure 6.1 System V message queue structures in kernel. 

In this chapter, we look at the functions for manipulating System V message queues 
and implement our file server example from Section 4.2 using message queues. 

6.2 msgget Function 

A new message queue is created, or an existing message queue is accessed with the 
msgget function. 

I int msgget (key-t key, int oflag) ; I 
I Returns: nonnegative identifier if OK, -1 on error I 

The return value is an integer identifier that is used in the other three msg functions to 
refer to this queue, based on the specified key, which can be a value returned by f tok  or 
the constant IPC-PRIVATE, as shown in Figure 3.3. 

oflag is a combination of the read-write permission values shown in Figure 3.6. This 
can be bitwise-ORed with either IPC-CREAT or IPC-CREAT I IPC-EXCL, as discussed 
with Figure 3.4. 

When a new message queue is created, the following members of the msqid-ds 
structure are initialized: 
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The uid and cuid members of the msgserm structure are set to the effective 
user ID of the process, and the gid and cgid members are set to the effective 
group ID of the process. 

The read-write permission bits in oflag are stored in msgserm .mode. 

msg-qnum, msg-lspid, msg-lrpid, msg-stime, and msg-rtime are set to 0. 

msg-ct ime is set to the current time. 

msg-qby tes is set to the system limit. 

msgsnd Function 

Once a message queue is opened by msgget, we put a message onto the queue using 
msgsnd. 

int msgsnd(int msqid, const void *ptr ,  size-t length, int flag); I 
Returns: 0 if OK, -1 on error 

msqid is an identifier returned by msgget. ptr is a pointer to a structure with the follow- 
ing template, which is defined in <sys /msg . h>. 

struct msgbuf { 

long mtype; / *  message type, must be > 0 * /  
char mtext[l]; / *  message data * /  

1; 

The message type must be greater than 0, since nonpositive message types are used 
as a special indicator to the msgrcv function, which we describe in the next section. 

The name mtext in the msgbuf structure definition is a misnomer; the data portion 
of the message is not restricted to text. Any form of data is allowed, binary data or text. 
The kernel does not interpret the contents of the message data at all. 

We use the term "template" to describe this structure, because what ptr points to is 
just a long integer containing the message type, immediately followed by the message 
itself (if the length of the message is greater than 0 bytes). But most applications do not 
use this definition of the msgbuf structure, since the amount of data (1 byte) is normally 
inadequate. No compile-time limit exists to the amount of data in a message (this limit 
can often be changed by the system administrator), so rather than declare a structure 
with a huge amount of data (more data than a given implementation may support), this 
template is defined instead. Most applications then define their own message structure, 
with the data portion defined by the needs of the application. 

For example, if some application wanted to exchange messages consisting of a 
16-bit integer followed by an 8-byte character array, it could define its own structure as: 
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#define MY-DATA 8 

typedef struct m m s g b u f  ( 

long mtype; / *  message type */  
intl6-t mshort; / *  start of message data */  
char mchar [MY-DATA] : 

} Message; 

The length argument to msgsnd specifies the length of the message in bytes. This is 
the length of the user-defined data that follows the long integer message type. The 
length can be 0. In the example just shown, the length could be passed as 
sizeof (Message) - sizeof (long). 

The flag argument can be either 0 or IPC-NOWAIT. This flag makes the call to 
msgsnd nonblocking: the function returns immediately if no room is available for the 
new message. This condition can occur if 

too many bytes are already on the specified queue (the msg-qbytes value in 
the msqid-ds structure), or 

too many messages exist systemwide. 

If one of these two conditions exists and if IPC-NOWAIT is specified, msgsnd 
returns an error of EAGAIN. If one of these two conditions exists and if IPC-NOWAIT is 
not specified, then the thread is put to sleep until 

room exists for the message, 

the message queue identified by rnsqid is removed from the system (in which 
case, an error of EIDRM is returned), or 

the calling thread is interrupted by a caught signal (in which case, an error of 
EINTR is returned). 

6.4 m s g r c v  Function 

A message is read from a message queue using the msgrcv function. 

#include isys/msg.h> 

ssize-t msgrcv(int msqid, void *ptr, size-t length, long type, int flag); 

Returns: number of bytes of data read into buffer if OK, -1 on error 

The ptr argument specifies where the received message is to be stored. As with 
msgsnd, this pointer points to the long integer type field (Figure 4.26) that is returned 
immediately before the actual message data. 

length specifies the size of the data portion of the buffer pointed to by ptr. This is 
the maximum amount of data that is returned by the function. This length excludes the 
long integer type field. 
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type specifies which message on the queue is desired: 

If type is 0, the first message on the queue is returned. Since each message queue 
is maintained as a FIFO list (first-in, first-out), a type of 0 specifies that the oldest 
message on the queue is to be returned. 

If type is greater than 0, the first message whose type equals type is returned. 

If type is less than 0, the first message with the lowest type that is less than or 
equal to the absolute value of the type argument is returned. 

Consider the message queue example shown in Figure 6.1, which contains three mes- 
sages: 

the first message has a type of 100 and a length of I, 
the second has a type of 200 and a length of 2, and 
the last message has a type of 300 and a length of 3. 

Figure 6.2 shows the message returned for different values of type. 

Type of message returned 

100 
100 
200 
300 
100 
100 
100 

Figure 6.2 Messages returned by msgrcv for different values of type. 

The flag argument specifies what to do if a message of the requested type is not on 
the queue. If the IPC-NOWAIT bit is set and no message is available, the msgrcv func- 
tion returns immediately with an error of ENOMSG. Otherwise, the caller is blocked until 
one of the following occurs: 

1. a message of the requested type is available, 

2. the message queue identified by msqid is removed from the system (in which 
case, an error of EIDm is returned), or 

3. the calling thread is interrupted by a caught signal (in which case, an error of 
EINTR is returned). 

An additional bit in the flag argument can be specified: MSG-NOERROR. When set, 
this specifies that if the actual data portion of the received message is greater than the 
length argument, just truncate the data portion and return without an error. Not speci- 
fying the MSG-NOERROR flag causes an error return of E2BIG if length is not large 
enough to receive the entire message. 



134 System V Message Queues Chapter 6 

On successful return, msgrcv returns the number of bytes of data in the received 
message. This does not include the bytes needed for the long integer message type that 
is also returned through the ptr argument. 

6.5 rnsgctl Function 

The msgct 1 function provides a variety of control operations on a message queue. 

int msgctl (int msqid, int cmd, struct msqid-ds *buff) ; 

Returns: 0 if OK, -1 on error 

Three commands are provided: 

I PC-RMID 

I PC-SET 

I PC-STAT 

Example 

Remove the message queue specified by msqid from the system. Any 
messages currently on the queue are discarded. We have already seen 
an example of this operation in Figure 3.7. The third argument to the 
function is ignored for this command. 

Set the following four members of the msqid-ds structure for the 
message queue from the corresponding members in the structure 
pointed to by the buff argument: msgserm . uid, msgserm. gid, 
msg_perm.mode,andmsg~qbytes. 

Return to the caller (through the buff argument) the current msqid-ds 
structure for the specified message queue. 

The program in Figure 6.3 creates a message queue, puts a message containing 1 byte of 
data onto the queue, issues the IPC-STAT command to msgctl, executes the ipcs 
command using the system function, and then removes the queue using the 
IPC-RMID command to msgc t 1. 

We write a 1-byte message to the queue, so we just use the standard msgbuf struc- 
ture defined in <sys /msg . h>. 

Executing this program gives us 

solaris % ctl 
read-write: 664, cbytes = 1, qnum = 1, qbytes = 4096 
IPC status from <running system> as of Mon Oct 20 15:36:40 1997 
T ID KEY MODE OWNER GROUP 
Message Queues: 

9 1150 00000000 --rw-rw-r-- rstevens other1 

The values are as expected. The key value of 0 is the common value for IPC-PRIVATE, 
as we mentioned in Section 3.2. On this system there is a limit of 4096 bytes per mes- 
sage queue. Since we wrote a message with 1 byte of data, and since msg-cbytes is 1, 
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2 int 
3 main(int argc, char **argv) 
4 { 
5 int rnsqid; 
6 struct rnsqid-ds info; 
7 struct rnsgbuf buf; 

8 rnsqid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT); 

9 buf .rntype = 1 ; 
10 buf.rntext[Ol = 1; 
11 Msgsnd(rnsqid, &buff 1, 0) ; 

12 Msgctl (rnsqid, IPC-STAT, &info) : 
13 printf("read-write: %030, cbytes = %lu, qnum = %lu, qbytes = %lu\nn, 
14 info.rnsg_perm.rnode & 0777, (ulong-t) info.rnsg-cbytes, 
15 (ulong-t) info.rnsg-qnum, (ulong-t) info.rnsg-qbytes); 

16 system( "ipcs -qW ) ; 

17 Msgctl (rnsqid, IPC-RMID, NULL) ; 
18 exit (0) : 
19 1 

svmsg/ctl.c 
Figure 6.3 Example of rnsgctl function with IPC-STAT command. 

this limit is apparently just for the data portion of the messages, and does not include 
the long integer message type associated with each message. 

Simple Programs 

Since System V message queues are kernel-persistent, we can write a small set of pro- 
grams to manipulate these queues, and see what happens. 

,eate Program 

Figure 6.4 shows our msgcreate program, which creates a message queue. 
2 We allow a command-line option of -e to specify the IPC-EXCL flag. 

The pathname that is required as a command-line argument is passed as an argu- 
ment to f tok. The resulting key is converted into an identifier by msgget. (See Exer- 
cise 6.1.) 

d Program 

Our msgsnd program is shown in Figure 6.5, and it places one message of a specified 
length and type onto a queue. 
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2 int 
3 rnain(int argc, char **argv) 
4 { 
5 int c, oflag, rnqid; 

7 while ( (c = Getopt(argc, argv, "en)) !=  -1) { 

8 switch (c) ( 
9 case 'e': 
10 oflag I= IPC-EXCL; 
11 break; 
12 1 
13 1 
14 if (optind !=  argc - 1) 
15 err-quit("usage: rnsgcreate [ -e ] <pathname>"); 

16 rnqid = Msgget(Ftok(argv[optindl, O), oflag); 
17 exit (0) ; 
18 1 

svrnsg/rnsgcreate.c 

Figure 6.4 Create a System V message queue. 

2 int 
3 rnain(int argc, char **argv) 
4 { 
5 int rnqid; 
6 size-t len; 
7 long type; 
8 struct rnsgbuf *ptr; 

9 if (argc !=  4) 
10 err-quit("usage: rnsgsnd <pathname> <#bytes> <type>"); 
11 len = atoi (argv [2] ) ; 
12 type = atoi(argv[3]) ; 

13 rnqid = Msgget(Ftok(argv[ll, 0). MSG-W); 

14 ptr = Calloc(sizeof(1ong) + len, sizeof(char)); 
15 ptr->rntype = type; 

16 Msgsnd(rnqid, ptr, len, 0); 

17 exit (0) ; 
18 1 

svrnsg/rnsgsnd.c 

Figure 6.5 Add a message to a System V message queue. 

We allocate a pointer to a generic msgbuf structure but then allocate the actual 
structure (e.g., the output buffer) by calling calloc, based on the size of the message. 
This function initializes the buffer to 0. 
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:CV Program 

Figure 6.6 shows our msgrcv function, which reads a message from a queue. An 
optional -n argument specifies nonblocking, and an optional - t argument specifies the 
type argument for msgrcv. 

svrnsg/rnsgrcv.c 
1 #include "unpipc . h" 

2 #define MAXMSG (8192 + sizeof(1ong)) 

3 int 
4 main(int argc, char **argv) 
5 { 

int c, flag, rnqid; 
long type ; 
ssize-t n; 
struct rnsgbuf *buff; 

type = flag = 0; 
while ( (c = Getopt(argc, argv, "nt: " 1 )  != -1) { 

switch (c) { 
case 'n': 

flag I= IPC-WAIT;  
break; 

case 't': 
type = atol(optarg); 
break; 

1 

optind !=  argc - 1) 
err-quit ("usage: rnsgrcv [ -n ] [ -t type ] <pathname>" ) ; 

rnqid = Msgget(Ftok(argv[optind], 0), MSG-R); 

buff = Malloc (MAXMSG) ; 

n = Msgrcv(mqid, buff, MAXMSG, type, flag); 
printf("read %d bytes, type = %1d\nM, n, buff-mtype); 

exit (0) ; 

Figure 6.6 Read a message from a System V message queue. 

! No simple way exists to determine the maximum size of a message (we talk about 
this and other limits in Section 6.10), so we define our own constant for this limit. 

mid Program 

To remove a message queue, we call msgctl with a command of IPc-RMID, as shown 
in Figure 6.7. 
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2 int 
3 main(int argc, char **argv) 
4 { 

5 int rnqid; 

6 if (argc !=  2) 
7 errquit("usage: rnsgrmid <pathname>"); 

8 rnqid = Msgget (Ftok(argv[ll. 0) 8 0) ; 
9 ~sgctl (mqid, IPC-MID, NULL) ; 

10 exit (0) ; 

Figure 6.7 Remove a System V message queue. 

Examples 

We now use the four programs that we have just shown. We first create a message 
queue and write three messages to the queue. 

solaris % rnsgcreate /tmp/no/such/file 
ftok error for pathname "/trnp/no/such/file" and id 0: No such file or directory 
solaris % touch /tmp/testl 
solaris % magcreate /tmp/testl . 
solaris % msgsnd /tmp/testl 1 100 
solaris % msgsnd /tmp/testl 2 200 
solaris % msgsnd /tmp/testl 3 300 
solaris % ipcs -qo 
IPC status from <running system> as of Sat Jan 10 11:25:45 1998 
T ID KEY MODE OWNER GROUP CBYTES QNUM 
Message Queues: 

9 100 0x0000113e --rw-r--r-- rstevens other1 6 3 

We first try to create a message queue using a pathname that does not exist. This 
demonstrates that the pathname argument for f tok must exist. We then create the file 
/tmp/testl and create a message queue using this pathname. Three messages are 
placed onto the queue: the three lengths are 1, 2, and 3 bytes, and the three types are 
respectively 100,200, and 300 (recall Figure 6.1). The ipcs program shows 3 messages 
comprising a total of 6 bytes on the queue. 

We next demonstrate the use of the type argument to msgrcv in reading the mes- 
sages in an order other than FIFO. 

solaris % rnsgrcv -t 200 /tmp/testl 
read 2 bytes, type = 200 
solaris % msgrcv -t -300 /tmp/testl 
read 1 bytes, type = 100 
solaris % msgrcv /tmp/testl 
read 3 bytes, type = 300 
solaris % rnsgrcv -n /tmp/testl 
rnsgrcv error: No message of desired type 
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The first example requests the message with a type field of 200, the second example 
requests the message with the lowest type field less than or equal to 300, and the third 
example requests the first message on the queue. The last execution of our msgrcv pro- 
gram shows the IPC-NOWAIT flag. 

What happens if we specify a positive type argument to msgrcv but no message 
with that type exists on the queue? 

solaris % ipcs -qo 
IPC Status from <running system> as of Sat Jan 10 11:37:01 1998 
T ID KEY MODE OWNER GROUP CBYTES QNUM 
Message Queues: 

9 100 0x0000113e --rw-r--r-- rstevens other1 0 0 
solaris % msgsnd /tmp/testl 1 100 
solaris % rnsgrcv -t 999 /-/test1 
^? type our interrupt key to terminate 
solaris % rnsgrcv -n -t 999 /tmp/testl 
msgrcv error: No message of desired type 
solaris % grep desired /usr/include/sys/errno.h 
#define ENOMSG 35 / *  No message of desired type * /  
solaris % rnsgrmid /tmp/testl 

We first execute i p c s  to verlfy that the queue is empty, and then place a message of 
length 1 with a type of 100 onto the queue. When we ask for a message of type 999, the 
program blocks (in the call to msgrcv), waiting for a message of that type to be placed 
onto the queue. We interrupt this by terminating the program with our interrupt key. 
We then specify the -n flag to prevent blocking, and see that the error ENOMSG is 
returned in this scenario. We then remove the queue from the system with our 
msgrmid program. We could have removed the queue using the system-provided com- 
mand 

solaris % ipcrm -q 100 

which specifies the message queue identifier, or using 

solaris % ipcrm -Q Ox113e 

which specifies the message queue key. 

vid  Program 

We now demonstrate that to access a System V message queue, we need not call 
msgget: all we need to know is the message queue identifier (easily obtained with 
ipcs) and read permission for the queue. Figure 6.8 shows a simplification of our 
msgrcv program from Figure 6.6. 

We do not call msgget. Instead, the caller specifies the message queue identifier on 
the command line. 
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svrnsg/rnsgrcvid.c 
1 #include "unpipc.hn 

2 #define MAXMSG (8192 + sizeof (long)) 

3 int 
4 main(int argc, char **argvl 
5 { 
6 int mqid; 
7 ssize-t n; 
8 struct msgbuf *buff; 

9 if (argc !=  2) 
10 err-quit("usage: msgrcvid <mqid>"); 
11 mqid = atoi(argv[ll); 

12 buff = Malloc(MAXMSG); 

13 n = Msgrcv(mqid, buff, MAXMSG, 0, 0) ; 
14 printf("read %d bytes, type = %1d\nM, n, buff->mtype); 

15 exit (0) : 
16 1 

svrnsg/rnsgrcvid.c 

Figure 6.8 Read from a System V message queue knowing only the identifier. 

Here is an example of this technique: 

solaris % touch /tmp/testid 
solaris % rnsgcreate /tmp/testid 
solaris % msgsnd /tmp/testid 4 400 
solaris % ipcs -qo 
IPC status from <running system> as of Wed Mar 25 09:48:28 1998 
T ID KEY MODE OWNER GROUP CBYTES QNUM 
Message Queues: 
9 150 0x0000118a --rw-r--r-- rstevens other1 4 1 
solaris % rnsgrcvid 150 
read 4 bytes, type = 400 

We obtain the identifier of 150 from ipcs, and this is the command-line argument to 
our msgrcvid program. 

This same feature applies to System V semaphores (Exercise 11.1) and System V 
shared memory (Exercise 14.1). 

6.7 Client-Server Example 

We now code our client-server example from Section 4.2 to use two message queues. 
One queue is for messages from the client to the server, and the other queue is for mes- 
sages in the other direction. 

Our header svmsg . h is shown in Figure 6.9. We include our standard header and 
define the keys for each message queue. 



5.7 Client-Server Example 141 

svmsgcliserv/svmsg.h 
1 #include "unpipc . h" 

Figure 6.9 svmsg . h header for client-server using message queues. 

The main function for the server is shown in Figure 6.10. Both message queues are 
created and if either already exists, it is OK, because we do not specify the IPC-EXCL 
flag. The server function is the one shown in Figure 4.30 that calls our mesg-send 
and mesg-recv functions, versions of which we show shortly. 

2 void server(int, int); 

3 int 
4 main(int argc, char **argv) 
5 { 
6 int readid, writeid; 

7 readid = Msgget(MQ-KEYI, SVMSG-MODE I IPC-CREAT); 
8 writeid = Msgget(MQ-KEYZ, SVMSG-MODE 1 IPC-CREAT); 

9 server(readid, writeid); 

10 exit (0) ; 

svmsgcliserv/server_main.c 

Figure 6.10 Server main function using message queues. 

2 void client(int, int); 

3 int 
4 main(int argc, char **argv) 
5 { 
6 int readid, writeid; 

7 / *  assumes server has created the queues * /  
8 writeid = Msgget(MQ-KEY1, 0); 
9 readid = Msgget(MLKEY2, 0); 

10 client(readid, writeid); 

11 / *  now we can delete the queues * /  
12 Msgctl(readid, IPC-RMID, NULL); 
13 Msgctl (writeid, IPC-RMID, NULL) ; 

15 1 svmsgcliserv/client_main.c 

Figure 6.11 Client main function using message queues. 
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Figure 6.11 shows the main function for the client. The two message queues are 
opened and our client function from Figure 4.29 is called. This function calls our 
mesg-send and mesg-recv functions, which we show next. 

Both the client and server functions use the message format shown in Fig- 
ure 4.25. These two functions also call our mesg-send and mesg-recv functions. The 
versions of these functions that we showed in Figures 4.27 and 4.28 called write and 
read, which worked with pipes and FIFOs, but we need to recode these two functions 
to work with message queues. Figures 6.12 and 6.13 show these new versions. Notice 
that the arguments to these two functions do not change from the versions that called 
write and read, because the first integer argument can contain either an integer 
descriptor (for a pipe or FIFO) or an integer message queue identifier. 

2 ss ize-t  
3 rnesg-send(int i d ,  s truct  rnymesg "rnptr) 
4 { 

5 return (rnsgsnd(id, & (rnptr-xnesg-type) , rnptr-srnesg-len, 0 ) ) ; 

Figure 6.12 rnesg-send function that works with message queues. 

svmsgcliserv/mesg~recu.c 
1 #include "rnesg.hm 

2 ss ize- t  
3 mesg-recv(int i d ,  s truct  rnymesg *rnptr) 
4 { 
5 ss ize-t  n; 

6 n = rnsgrcv(id, &(rnptr-xnesg-type), MAXMESGDATA, rnptr->rnesg-type, 0 ) ;  
7 rnptr-xnesg-len = n; / *  return #bytes of data * /  

8 return ( n ) ;  / *  -1 on error, 0 a t  EOF, e l s e  > O  * /  
9 1 

svmsgcliserv/mesg~recu.c 

Figure 6.13 rnesg-recv function that works with message queues. 

Multiplexing Messages 

Two features are provided by the type field that is associated with each message on a 
queue: 

1. The type field can be used to identify the messages, allowing multiple processes 
to multiplex messages onto a single queue. One value of the type field is used 
for messages from the clients to the server, and a different value that is unique 
for each client is used for messages from the server to the clients. Naturally, the 
process ID of the client can be used as the type field that is unique for each 
client. 
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2. The type field can be used as a priority field. This lets the receiver read the mes- 
sages in an order other than first-in, first-out (FIFO). With pipes and FIFOs, the 
data must be read in the order in which it was written. With System V message 
queues, we can read the messages in any order that is consistent with the values 
we associate with the message types. Furthermore, we can call msgrcv with the 
IPC-NOWAIT flag to read any messages of a given type from the queue, but 
return immediately if no messages of the specified type exist. 

le: One Queue per Application 

Recall our simple example of a server process and a single client process. With either 
pipes or FIFOs, two IPC channels are required to exchange data in both directions, since 
these types of IPC are unidirectional. With a message queue, a single queue can be 
used, having the type of each message signify whether the message is from the client to 
the server, or vice versa. 

Consider the next complication, a server with multiple clients. Here we can use a 
type of 1, say, to indicate a message from any client to the server. If the client passes its 
process ID as part of the message, the server can send its messages to the client pro- 
cesses, using the client's process ID as the message type. Each client then specifies its 
process ID as the type argument to msgrcv. Figure 6.14 shows how a single message 
queue can be used to multiplex these messages between multiple clients and one server. 

type = 1234 or 9876: server replies type = 1: client requests u 

- 
PID 1234 

- 
PID 9876 

Figure 6.14 Multiplexing messages between multiple clients and one server. 

A potential for deadlock always exists when one IPC channel is used by both the clients and 
the server. Clients can fill up the message queue (in this example), preventing the server from 
sending a reply. The clients are then blocked in rnsgsnd, as is the server. One convention that 
can detect this deadlock is for the server to always use a nonblocking write to the message 
queue. 
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We now redo our client-server example using a single message queue with different 
message types for messages in each direction. These programs use the convention that 
messages with a type of 1 are from the client to the server, and all other messages have a 
type equal to the process ID of the client. This client-server requires that the client 
request contain the client's process ID along with the pathname, similar to what we did 
in Section 4.8. 

Figure 6.15 shows the server main function. The svmsg . h header was shown in 
Figure 6.9. Only one message queue is created, and if it already exists, it is OK. The 
same message queue identifier is used for both arguments to the server function. 

svmsgmpxl qlserver-maim 
1 #include "svmsg.h" 

2 void server(int, int); 

3 int 
4 main(int argc, char **argv) 

5 { 
6 int msqid; 

7 rnsqid = Msgget(MQ-KEY1, SVMSG-MODE I IPC-CREAT); 

8 server (rnsqid, rnsqid) ; / *  same queue for both directions * /  

9 exit (0) ; 

10 1 svmsgmpxl q/server-rnain.c 
Figure 6.15 Server main function. 

The server function does all the server processing, and is shown in Figure 6.16. 
This function is a combination of Figure 4.23, our FIFO server that read commands con- 
sisting of a process ID and a pathname, and Figure 4.30, which used our mesg-send 
and mesg-recv functions. Notice that the process ID sent by the client is used as the 
message type for all messages sent by the server to the client. Also, this server is an 
infinite loop that is called once and never returns, reading each client request and send- 
ing back the replies. Our server is an iterative server, as we discussed in Section 4.9. 

Figure 6.17 shows the client main function. The client opens the message queue, 
which the server must have already created. 

The client function shown in Figure 6.18 does all of the processing for our client. 
This function is a combination of Figure 4.24, which sent a process ID followed by a 
pathname, and Figure 4.29, which used our mesg-send and mesg-recv functions. 
Note that the type of messages requested from mesg-recv equals the process ID of the 
client. 

Our client and server functions both use the mesg-send and mesg-recv 
functions from Figures 6.12 and 6.13. 
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2 void 
3 server (int readfd, int writefd) 
4 f 

FILE *fp; 
char *ptr; 
pid-t pid; 
ssize-t n; 
struct mymesg mesg; 

for ( ;  ; )  

/ *  read pathname from IPC channel * /  
mesg-mesg-type = 1; 
if ( (n = Mesg-recv (readfd, &mesg) ) == 0) ( 

err-msg("pathname missing"); 
continue; 

1 
mesg.mesg-data[nl = '\0'; / *  null terminate pathname * /  

if ( (ptr = strchr(mesg.mesg-data, ' ' ) )  == NULL) ( 

err-msg("bogus request: %sU, mesg.mesg-data); 
continue; 

1 
*ptr++ = 0; / *  null terminate PID, ptr = pathname * /  
pid = atol(mesg.mesg-data); 
mesg.mesg-type = pid; / *  for messages back to client * /  

if ( (fp = fopen(ptr, "r")) == NULL) ( 

/ *  error: must tell client * /  
snprintf(mesg.mesg-data + n, sizeof(mesg.mesg-data) - n, 

" :  can't open, %s\nU, strerror(errn0)): 
mesg.mesg-len = strlen(ptr); 
memmove(mesg.mesg-data, ptr, mesg.mesg-len); 
Mesg-send(writefd, &mew); 

1 else { 

/ *  fopen succeeded: copy file to IPC channel * /  
while (Fgets (mesg .mesg-data, MAXMESGDATA, fp) ! = NULL) ( 

mesg.mesg-len = strlen(mesg.mesg-data); 
Mesg-send(writefd, &mesg); 

1 
Fclose (fp) ; 

1 

/ *  send a 0-length message to signify the end * /  
mesg.mesg-len = 0; 
Mesg-send(writefd, &mesg); 

1 
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2 void client(int, int); 

3 int 
4 main(int argc, char **argv) 

5 ( 
6 int msqid; 

7 / *  server must create the queue * /  
8 msqid = Msgget(MQLKEY1, 0); 

9 client (msqid, msqid) ; / *  same queue for both directions * /  

11 1 svmsgmpxlq/client~main.c 

Figure 6.17 Client main function. 

2 void 
3 client(int readfd, int writefd) 

4 ( 
5 size-t len; 
6 ssize-t n; 
7 char *ptr; 
8 struct mymesg mew; 

9 / *  start buffer with pid and a blank * /  
10 snprintf(mesg.mesg-data, MAXMESGDATA, "%Id ", (long) getpido); 
11 len = strlen(mesg.mesg-data); 
12 ptr = mesg-mesg-data + len; 

13 / *  read pathname * /  
14 Fgets(ptr, MAXMESGDATA - len, stdin); 
15 len = strlen(mesg.mesg-data); 
16 if (mesg.mesg-data[len - 11 == '\n') 
17 len--; / *  delete newline from fgets ( )  * /  
18 mesg.mesg-len = len; 
19 mesg.mesg-type = 1; 

2 0 / *  write PID and pathname to IPC channel * /  
2 1 ~esg-send(writefd, &mesg); 

22 / *  read from IPC, write to standard output * /  
23 mesg.mesg-type = getpido; 
24 while ( (n = Mesg-recv(readfd, &mesg) ) > 0) 
25 Write(STD0UT-FILENO, mesg.mesg-data, n); 
26 1 svrnsgmpxlq/c~ient.c 

Figure 6.18 client function. 
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ple: One Queue per Client 

We now modify the previous example to use one queue for all the client requests to the 
server and one queue per client for that client's responses. Figure 6.19 shows the 
design. 

child parent child 

t 
IPC-PRIVATE 

server 

client 1 LA '  

well-known key 

r 
fork 

Tc3x$.; IPC-PRIVATE 

queue k 

- 

server 

client 2 ' L A  
Figure 6.19 One queue per server and one queue per client. 

fork - m 

The server's queue has a key that is well-known to the clients, but each client creates its 
own queue with a key of IPC-PRIVATE. Instead of passing its process ID with the 
request, each client passes the identifier of its private queue to the server, and the server 
sends its reply to the client's queue. We also write this server as a concurrent server, 
with one fork  per client. 

server 

One potential problem with this design occurs if a client dies, in which case, messages may be 
left in its private queue forever (or at least until the kernel reboots or someone explicitly 
deletes the queue). 

The following headers and functions do not change from previous versions: 

mesg . h header (Figure 4.25), 
svmsg . h header (Figure 6.9), 
server main function (Figure 6.15), and 
mesg-send function (Figure 4.27). 

Our client main function is shown in Figure 6.20; it has changed slightly from Fig- 
ure 6.17. We open the server's well-known queue (MQ- KEY^) and then create our own 
queue with a key of IPC-PRIVATE. The two queue identifiers become the arguments 
to the client function (Figure 6.21). When the client is done, its private queue is 
removed. 
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svrnsgrnpxnq/client-rnain.c 
#include " svmsg . h" 

void client (int, int) ; 

int 
main (int argc, char **argv) 
{ 

int readid, writeid; 

/ *  server must create its well-known queue * /  
writeid = Msgget(MQ-KEY1, 0); 

/ *  we create our own private queue * /  
readid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-cREAT): 
client (readid, writeid) ; 

/ *  and delete our private queue * /  
~sgctl (readid, IPC-RMID, NULL) ; 

exit (0) ; 
1 

svrnsgrnpmq/client-main.c 

Figure 6.20 Client main function. 

2 void 
3 client(int readid, int writeid) 
4 { 

5 size-t len; 
6 ssize-t n; 
7 char *ptr; 
8 struct mymesg mesg; 

9 / *  start buffer with msqid and a blank * /  
10 snprintf(mesg.mesg-data, MAXMESGDATA, "%d ", readid); 
11 len = strlen(mesg.mesg-data): 
12 ptr = mesg.mesg-data + len; 

13 / *  read pathname * /  
14 Fgets (ptr, MAXMESGDATA - len, stdin) ; 
15 len = strlen(mesg.mesg-data); 
16 if (mesg-mesg-data[len - 11 == '\n') 
17 len-- ; /*.delete newline from fgets0 * /  
18 mesg-mesg-len = len; 
19 mesg.mesg-type = 1: 

2 0 / *  write msqid and pathname to server's well-known queue * /  
2 1 Mesg-send(writeid, &mesg); 

2 2 / *  read from our queue, write to standard output * /  
23 while ( (n = Mesg-recv(readid, &mesg)) > 0) 
24 Write(STD0UT-FILENO, rnesg.rnesg-data, n); 

Figure 6.21 client function. 
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Figure 6.21 is the c l i e n t  function. This function is nearly identical to Figure 6.18, 
but instead of passing the client's process ID as part of the request, the identifier of the 
client's private queue is passed instead. The message type in the mesg structure is also 
left as 1, because that is the type used for messages in both directions. 

Figure 6.23 is the s e r v e r  function. The main change from Figure 6.16 is writing 
this function as an infinite loop that calls f o r k  for each client request. 

Establish signal handler for SIGCHLD 

Since we are spawning a child for each client, we must worry about zombie pro- 
cesses. Sections 5.9 and 5.10 of UNPvl talk about this in detail. Here we establish a sig- 
nal handler for the SIGCHLD signal, and our function sig-chld (Figure 6.22) is called 
when a child terminates. 

3 The server parent blocks in the call to mesg-recv waiting for the next client mes- 
sage to arrive. 

i A child is created with fork, and the child tries to open the requested file, sending 
back either an error message or the contents of the file. We purposely put the call to 
fopen in the child, instead of the parent, just in case the file is on a remote filesystem, in 
which case, the opening of the file could take some time if any network problems occur. 

Our handler for the SIGCHLD function is shown in Figure 6.22. This is copied from 
Figure 5.11 of UNPv1. 

2 void 
3 sig-chld(int signo) 

4 ( 
5 pid-t pid; 
6 int stat; 

svrnsgrnpxnq/sigchldwaitpid.c 
Figure 6.22 SIGCHLD signal handler that calls waitpid. 

Each time our signal handler is called, it calls wa i tp id  in a loop, fetching the termi- 
nation status of any children that have terminated. Our signal handler then returns. 
This can create a problem, because the parent process spends most of its time blocked in 
a call to msgrcv in the function mesg-recv (Figure 6.13). When our signal handler 
returns, this call to msgrcv is interrupted. That is, the function returns an error of 
EINTR, as described in Section 5.9 of UNPv1. 

We must handle this interrupted system call, and Figure 6.24 shows the new version 
of our Mesg-recv wrapper function. We allow an error of EINTR from mesg-recv 
(which just calls msgrcv), and when this happens, we just call mesg-recv again. 
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svmsgrnpq/server.c 
1 #include "mesg . h" 
2 void 
3 server(int readid, int writeid) 
4 ( 

FILE *fp; 
char *ptr; 
ssize-t n; 
struct mymesg mesg; 
void sig-chld(int); 

Signal(SIGCHLD, sig-chld); 

f o r ( ; ; ) {  
/ *  read pathname from our well-known 

mesg.mesg-type = 1; 
if ( (n = Mesg-recv(readid, &mesg)) == 0 

err-msg("pathnarne missing"); 
continue; 

1 

queue * /  

) 

mesg.mesg-data[n] = '\0'; / *  null terminate pathname * /  

if ( (ptr = strchr(mesg.mesg-data, ' ' ) )  == NULL) [ 

err-rnsg("bogus request: %s", mesg-mesg-data); 
continue; 

1 
*ptr++ = 0; / *  null terminate msgid, ptr = pathname * /  
writeid = atoi(mesg.mesg-data); 

if (Fork() == 0) { / *  child * /  
if ( (fp = fopen(ptr. "r")) == NULL) ( 

/ *  error: must tell client * /  
snprintf(mesg.mesg-data + n, sizeof(mesg.mesg-data) - n, 

" :  can't open, %s\nu, strerror(errn0)); 
mesg-mesg-len = strlen(ptr); 
memmove(mesg.mesg-data, ptr, mesg.mesg-len); 
Mesg-send(writeid, &mesg); 

1 else ( 

/ *  fopen succeeded: copy file to client's queue * /  
while (Fgets(mesg.mesg-data, MAXMESGDATA, fp) ! =  NULL) ( 

Mesg-send(writeid. &mesg); 
1 
Fclose (fp) ; 

1 

/ *  send a 0-length message to signify the end * /  
mesg-mesg-len = 0; 
~esg-send(writeid, &mesg); 
exit(0) ; / *  child terminates * /  

1 
/ *  parent just loops around * /  

1 
48 1 

svmsgmpxnq/server.c 
Figure 6.23 server function. 
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svmsgmpmq/mesg~recv.c 
10 ssize-t  
11 ~ e s g - r e c v ( i n t  i d ,  s t r u c t  mymesg *mptr) 
1 2  ( 

13 ss ize- t  n; 

14 do ( 

15 n = mesg-recv ( i d ,  mptr) ; 
16  1 while ( n  == -1 && e r rno  == E I N T R ) ;  

17 i f  ( n  == -1) 
18 err-sys("mesg-recv e r r o r " ) ;  

1 9  r e t u r n  ( n ) ;  
20 1 

svmsgrnpxnq/mesg~recv.c 
Figure 6.24 Mesg-recv wrapper function that handles an interrupted system call. 

Message Queues with select and poll 

One problem with System V message queues is that they are known by their own iden- 
tifiers, and not by descriptors. This means that we cannot use either select  or p o l l  
(Chapter 6 of UNPv1) with these message queues. 

Actually, one version of Unix, IBM's AIX, extends s e l e c t  to handle System V message queues 
in addition to descriptors. But this is nonportable and works only with AIX. 

This missing feature is often uncovered when someone wants to write a server that 
handles both network connections and IPC connections. Network communications 
using either the sockets API or the XTI API (UNPvl) use descriptors, allowing either 
select or p o l l  to be used. Pipes and FIFOs also work with these two functions, 
because they too are identified by descriptors. 

One solution to this problem is for the server to create a pipe and then spawn a 
child, with the child blocking in a call to msgrcv. When a message is ready to be pro- 
cessed, msgrcv returns, and the child reads the message from the queue and writes the 
message to the pipe. The server parent can then select  on the pipe, in addition to 
some network connections. The downside is that these messages are then processed 
three times: once when read by the child using msgrcv, again when written to the pipe 
by the child, and again when read from the pipe by the parent. To avoid this extra pro- 
cessing, the parent could create a shared memory segment that is shared between itself 
and the child, and then use the pipe as a flag between the parent and child (Exer- 
cise 12.5). 

In Figure 5.14 we showed a solution using Posix message queues that did not require a fork. 
We can use a single process with Posix message queues, because they provide a notification 
capability that generates a signal when a message arrives for an empty queue. System V mes- 
sage queues do not provide this capability, so we must fork  a child and have the child block 
in a call to msgrcv. 
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Another missing feature from System V message queues, when compared to net- 
work programming, is the inability to peek at a message, something provided with the 
MSG-PEEK flag to the recv, recvfrom, and recvmsg functions (p. 356 of UNPv1). If 
such a facility were provided, then the parent-child scenario just described (to get 
around the select problem) could be made more efficient by having the child specify 
the peek flag to msgrcv and just write 1 byte to the pipe when a message was ready, 
and let the parent read the message. 

6.10 Message Queue Limits 

As we noted in Section 3.8, certain system limits often exist on message queues. Fig- 
ure 6.25 shows the values for some different implementations. The first column is the 
traditional System V name for the kernel variable that contains this limit. 

- 
msgtql 1 max #messages, svstemwide 40 1 40 1 

Name 

msgrnax 

msgmnb 

msgmni 

Figure 6.25 Typical system limits for System V message queues. 

Many SVR4-derived implementations have additional limits, inherited from their 
original implementation: msgssz is often 8, and this is the "segment" size (in bytes) in 
which the message data is stored. A message with 21 bytes of data would be stored in 3 
of these segments, with the final 3 bytes of the last segment unused. msgseg is the 
number of these segments that are allocated, often 1024. Historically, this has been 
stored in a short integer and must therefore be less than 32768. The total number of 
bytes available for all message data is the product of these two variables, often 8 x 1024 
bytes. 

The intent of this section is to show some typical values, to aid in planning for 
portability. When a system runs applications that make heavy use of message queues, 
kernel tuning of these (or similar) parameters is normally required (which we described 
in Section 3.8). 

Description 

max #bytes per message 
max #bytes on any one message queue 
max #message queues, systemwide 

Example 

Figure 6.26 is a program that determines the four limits shown in Figure 6.25. 

DUnix 4.08 

8192 
16384 

64 

2 #defineMAX-DATA 64*1024 
3 #define MAX-NMESG 4096 
4 #define MAX-NIDS 4096 
5int max-mesg; 

Solaris 2.6 

2048 

4096 
50 

6 struct mymesg ( 
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7 long type; 
8 char data[MAX-DATA]; 
9 1 mesg; 

10 int 
11 main(int argc, char **argv) 
12 { 

int i , j , msqid, qid[MAX-NIDSI ; 

/ *  first try and determine maximum amount of data we can send * /  
msqid = MS~~~~(IPC-PRIVATE, SVMSG-MODE I IPC-CREAT); 
mesg.type = 1; 
for (i = MAX-DATA; i > 0; i -= 128) { 

if (msgsnd(msqid, &mesg, i, 0) == 0) f 
printf("maximum amount of data per message = %d\nU, i); 

max-mesg = i; 
break; 

1 
if (errno !=  EINVAL) 

err-sys("msgsnd error for length %d", i); 

1 
if (i == 0) 

err-quit("i == 0"); 
Msgctl (msqid, IPC-RMID, NULL) ; 

/ *  see how many messages of varying size can be put onto a queue * /  
mesg.type = 1; 
for (i = 8; i <=max-mesg; i *= 2) { 

msqid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT); 
for (j = 0; j < MAX-NMESG; j++) { 

if (msgsnd(msqid, &mesg, i, IPC-NOWAIT) !=  0) { 

if (errno == EAGAIN) 
break; 

err-sys("msgsnd error, i = %d, j = %d", i, j); 
break; 

1 
1 
printf("%d %d-byte messages were placed onto queue,", j, i); 
print£(' %d bytes total\nu, i * j); 
~sgctl (msqid, IPC-RMID, NULL) ; 

1 
/ *  see how many identifiers we can 

mesg-type = 1; 
for (i = 0; i <= MAX-NIDS: i++) { 

if ( (qid[il = msgget(1PC-PRIVATE, 
printf("%d identifiers open at 
break: 

1 
1 
for (j = 0; j < i; j++) 

~sgctl (qid[ j I, IPC-RMID. NULL) : 

exit (0) ; 

"open" * /  

svrnsg/lirnits.c 

Figure 6.26 Determine the system limits on System V message queues. 
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Determine maximum message size 

14-28 TO determine the maximum message size, we try to send a message containing 
65536 bytes of data, and if this fails, we try a message containing 65408 bytes of data, 
and so on, until the call to msgsnd succeeds. 

How many messages of varying size can be put onto a queue? 

29-44 Next we start with 8-byte messages and see how many can be placed onto a given 
queue. Once we determine this limit, we delete the queue (discarding all these mes- 
sages) and try again with 16-byte messages. We keep doing so until we pass the maxi- 
mum message size that was determined in the first step. We expect smaller messages to 
encounter a limit on the total number of messages per queue and larger messages to 
encounter a limit on the total number of bytes per queue. 

How many identifiers can be open at once? 

45-54 Normally a system limit exists on the maximum number of message queue identi- 
fiers that can be open at any time. We determine this by just creating queues until 
msgget fails. 

We first run this program under Solaris 2.6 and then Digital Unix 4.OB, and the 
results confirm the values shown in Figure 6.25. 

solaris % limits 
maximum amount of data per message = 2048 
40 8-byte messages were placed onto queue, 320 bytes total 
40 16-byte messages were placed onto queue, 640 bytes total 
40 32-byte messages were placed onto queue, 1280 bytes total 
40 64-byte messages were placed onto queue, 2560 bytes total 
32 128-byte messages were placed onto queue, 4096 bytes total 
16 256-byte messages were placed onto queue, 4096 bytes total 
8 512-byte messages were placed onto queue, 4096 bytes total 
4 1024-byte messages were placed onto queue, 4096 bytes total 
2 2048-byte messages were placed onto queue, 4096 bytes total 
50 identifiers open at once 

alpha % limits 
maximum amount of data per message = 8192 
40 8-byte messages were placed onto queue, 320 bytes total 
40 16-byte messages were placed onto queue, 640 bytes total 
40 32-byte messages were placed onto queue, 1280 bytes total 
40 64-byte messages were placed onto queue, 2560 bytes total 
40 128-byte messages were placed onto queue, 5120 bytes total 
40 256-byte messages were placed onto queue, 10240 bytes total 
32 512-byte messages were placed onto queue, 16384 bytes total 
16 1024-byte messages were placed onto queue, 16384 bytes total 
8 2048-byte messages were placed onto queue, 16384 bytes total 
4 4096-byte messages were placed onto queue, 16384 bytes total 
2 8192-byte messages were placed onto queue, 16384 bytes total 
63 identifiers open at once 

The reason for the limit of 63 identifiers under Digital Unix, and not the 64 shown in 
Figure 6.25, is that one identifier is already being used by a system daemon. 
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6.11 Summary 

System V message queues are similar to Posix message queues. New applications 
should consider using Posix message queues, but lots of existing code uses System V 
message queues. Nevertheless, recoding an application to use Posix message queues, 
instead of System V message queues, should not be hard. The main feature missing 
from Posix message queues is the ability to read messages of a specified priority from 
the queue. Neither form of message queue uses real descriptors, making it hard to use 
either select or p o l l  with a message queue. 

Exercises 

6.1 Modify Figure 6.4 to accept a pathname argument of IPC-PRIVATE and create a message 
queue with a private key if this is specified. What changes must then be made to the 
remaining programs in Section 6.6? 

6.2 Why did we use a type of 1 in Figure 6.14 for messages to the server? 

6.3 What happens in Figure 6.14 if a malicious client sends many messages to the server but 
never reads any of the server's replies? What changes with Figure 6.19 for this type of 
client? 

6.4 Redo the implementation of Posix message queues from Section 5.8 to use System V mes- 
sage queues instead of memory-mapped I/O. 



Part  3 

Synchronization 



Mutexes and 

Condition Variables 

Introduction 

This chapter begins our discussion of synchronization: how to synchronize the actions 
of multiple threads or multiple processes. Synchronization is normally needed to allow 
the sharing of data between threads or processes. Mutexes and condition variables are 
the building blocks of synchronization. 

Mutexes and condition variables are h m  the Posix.1 threads standard, and can 
always be used to synchronize the various threads within a process. Posix also allows a 
mutex or condition variable to be used for synchronization between multiple processes, 
if the mutex or condition variable is stored in memory that is shared between the pro- 
cesses. 

This is an option for Posix but required by Unix 98 (e.g., the "process shared mutex/CV" line 
in Figure 1.5). 

In this chapter, we introduce the classic producer-consumer problem and use 
mutexes and condition variables in our solution of this problem. We use multiple 
threads for this example, instead of multiple processes, because having multiple threads 
share the common data buffer that is assumed in this problem is trivial, whereas sharing 
a common data buffer between multiple processes requires some form of shared mem- 
ory (which we do not describe until Part 4). We provide additional solutions to this 
problem in Chapter 10 using semaphores. 

Mutexes: Locking and Unlocking 

A mutex, which stands for mutual exclusion, is the most basic form of synchronization. 
A mutex is used to protect a critical region, to make certain that only one thread at a time 
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executes the code within the region (assuming a mutex that is being shared by the 
threads) or that only one process at a time executes the code within the region (assum- 
ing a mutex is being shared by the processes). The normal outline of code to protect a 
critical region looks like 

lock-the-mutex( . . .  ) ;  

critical region 
unlock-the-mutex( . . .  ) ;  

Since only one thread at a time can lock a given mutex, this guarantees that only one 
thread at a time can be executing the instructions within the critical region. 

Posix mutexes are declared as variables with a datatype of pthread-mutex-t. If 
the mutex variable is statically allocated, we can initialize it to the constant 
PTHREAD-MUTEX-INITIALIZER,asin 

s t a t i c  pthread-mutex-t lock = PTHREAD-MUTEX-INITIALIZER; 

If we dynamically allocate a mutex (e.g., by calling m a 1  loc)  or if we allocate a mutex in 
shared memory, we must initialize it at run time by calling the pthread-nutex-init 
function, as we show in Section 7.7. 

You may encounter code that omits the initializer because that implementation defines the ini- 
tializer to be 0 (and statically allocated variables are automatically initialized to 0). But this is 
incorrect code. 

The following three functions lock and unlock a mutex: 

#include <pthread.h> 

i n t  pthread~mutex~lock(pthread~mutex~t * m p t r ) ;  

i n t  pthread~mutex~trylock(pthread~mutex~t * m p t r ) ;  

i n t  pthread~mutex~unlock(pthread~mute~~t * m p t r ) ;  

All three return: 0 if OK, positive ~ x x x  value on error 

If we try to lock a mutex that is already locked by some other thread, 
pthread-mutex-lock blocks until the mutex is unlocked. 
pthread-mutex-t ry lock  is a nonblocking function that returns EBUSY if the mutex 
is already locked. 

If multiple threads are blocked waiting for a mutex, which thread runs when the mutex is 
unlocked? One of the features added by the 1003.1b-1993 standard is an option for priority 
scheduling. We do not cover this area, but suffice it to say that different threads can be 
assigned different priorities, and the synchronization functions (mutexes, read-write locks, 
and semaphores) will wake up the highest priority thread that is blocked. Section 5.5 of 
[Butenhof 19971 provides more details on the Posix.1 realtirne scheduling feature. 

Although we talk of a critical region being protected by a mutex, what is really p r c  
tected is the data being manipulated within the critical region. That is, a mutex is nor- 
mally used to protect shared data that is being shared between multiple threads or 
between multiple processes. 
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Mutex locks are cooperative locks. That is, if the shared data is a linked list (for 
example), then all the threads that manipulate the linked list must obtain the mutex lock 
before manipulating the l i t .  Nothing can prevent one thread from manipulating the 
linked list without first obtaining the mutex. 

Producer-Consumer Problem 

One of the classic problems in synchronization is called the producer-consumer problem, 
also known as the bounded buffer problem. One or more producers (threads or pro- 
cesses) are creating data items that are then processed by one or more consumers 
(threads or processes). The data items are passed between the producers and con- 
sumers using some type of IPC. 

We deal with this problem all the time with Unix pipes. That is, the shell pipeline 

grep pat tern chapters.* I wc -1 

is such a problem. g rep  is the single producer and wc is the single consumer. A Unix 
pipe is used as the form of IPC. The required synchronization between the producer 
and consumer is handled by the kernel in the way in which it handles the wr i t e s  by 
the producer and the reads by the consumer. If the producer gets ahead of the con- 
sumer (i.e., the pipe fills up), the kernel puts the producer to sleep when it calls wri te ,  
until more room is in the pipe. If the consumer gets ahead of the producer (i.e., the pipe 
is empty), the kernel puts the consumer to sleep when it calls read, until some data is 
in the pipe. 

This type of synchronization is implicit; that is, the producer and consumer are not 
even aware that it is being performed by the kernel. If we were to use a Posix or 
System V message queue as the form of IPC between the producer and consumer, the 
kernel would again handle the synchronization. 

When shared memory is being used as the form of IPC between the producer and 
the consumer, however, some type of explicit synchronization must be performed by the 
producers and consumers. We will demonstrate this using a mutex. The example that 
we use is shown in Figure 7.1. 

I thread 

buff [21: 
store 

buff [31 : items 

buff [niterns-11 : Initems-1 1 

Figure 7.1 Producer-consumer example: multiple producer threads, one consumer thread. 
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We have multiple producer threads and a single consumer thread, in a single pro- 
cess. The integer array buff contains the items being produced and consumed (i.e., the 
shared data). For simplicity, the producers just set buff [ 0 ] to 0, buff [ 11 to 1, and so 
on. The consumer just goes through this array and verifies that each entry is correct. 

In this first example, we concern ourselves only with synchronization between the 
multiple producer threads. We do not start the consumer thread until all the producers 
are done. Figure 7.2 is the main function for our example. 

2 #define MAXNITEMS 1000000 
3 #define MAXNTHREADS 100 

int ni tems ; / *  read-only by producer and consumer * /  
struct { 

pthread-mutex-t mutex; 
int buff [MAXNITEMSI ; 
int nput; 
int nval ; 

} shared = { 

PTHREAD-MLJTEX-INITIALIZER 

1 ;  

13 void *produce (void * )  , *consume (void * )  ; 

14 int 
15 main(int argc, char **argv) 
16 { 

17 int i, nthreads, count[MAXNTHREADSl; 
18 pthread-t tidqroduce[MAXNTHREADSI, tid-consume; 

19 if (argc !=  3) 
2 0 err-quit("usage: prodcons2 <#items> <#threads>"); 
21 nitems = min(atoi(argv[l]), MAXNITEMS); 
2 2 nthreads = min (atoi (argv [2 1 ) , MAXNTHREADS) ; 

23 set-concurrency(nthreads); 
2 4 / *  start all the producer threads * /  
2 5 for (i = 0; i < nthreads: i++) { 

26 count[il = 0; 
2 7 Pthread-create(&tid_produce[il, NULL, produce, &count[il); 
28 1 

29 / *  wait for all the producer threads * /  
3 0 for (i = 0; i < nthreads; i++) { 

3 1 Pthread-join(tidqroduce [il , NULL) ; 
32 printf ("count [%dl = %d\nm, i, count [il ) ; 
33 1 

34 / *  start, then wait for the consumer thread * /  
3 5 Pthread-create(&tid-consume, NULL, consume, NULL); 
3 6 Pthread-join(tid-consume, NULL); 

37 exit (0) ; 

Figure 7.2 main function. 
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Globals shared between the threads 

-12 These variables are shared between the threads. We collect them into a structure 
named shared, along with the mutex, to reinforce that these variables should be 
accessed only when the mutex is held. nput is the next index to store in the buff array, 
and nval is the next value to store (0, 1, 2, and so on). We allocate this structure and 
initialize the mutex that is used for synchronization between the producer threads. 

We will always try to collect shared data with their synchronization variables (mutex, condi- 
tion variable, or semaphore) into a structure as we have done here, as a good programming 
technique. In many cases, however, the shared data is dynamically allocated, say as a linked 
list. We might be able to store the head of the linked list in a structure with the synchroniza- 
tion variables (as we did with our mchdr  structure in Figure 5.20), but other shared data (the 
rest of the list) is not in the structure. Therefore, this solution is often not perfect. 

Command-line arguments 

-22 The first command-line argument specifies the number of items for the producers to 
store, and the next argument is the number of producer threads to create. 

Set concurrency level 

set-concurrency is a function of ours that tells the threads system how many 
threads we would like to run concurrently. Under Solaris 2.6, this is just a call to 
thr-setconcurrency and is required if we want the multiple producer threads to 
each have a chance to execute. If we omit this call under Solaris, only the first producer 
thread runs. Under Digital Unix 4.OB, our set-concurrency function does nothing 
(because all the threads within a process compete for the processor by default). 

Unix 98 requires a function named pthread-setconcurrency that performs the same func- 
tion. This function is needed with threads implementations that multiplex user threads (what 
we create with pthread-create) onto a smaller set of kernel execution entities (e.g., kernel 
threads). These are commonly referred to as many-to-few, two-level, or M-to-N implernenta- 
tions. Section 5.6 of [Butenhof 19971 discusses the relationship between user threads and ker- 
nel entities in more detail. 

Create producer threads 

-2s The producer threads are created, and each executes the function produce. We 
save the thread ID of each in the tid~roduce array. The argument to each producer 
thread is a pointer to an element of the count array. We first initialize the counter to 0, 
and each thread then increments this counter each time it stores an item in the buffer. 
We print this array of counters when we are done, to see how many items were stored 
by each producer thread. 

Wait for producer threads, then start consumer thread 

29-36 We wait for all the producer threads to terminate, also printing each thread's 
counter, and only then start a single consumer thread. This is how (for the time being) 
we avoid any synchronization issues between the producers and consumer. We wait for 
the consumer to finish and then terminate the process. 

Figure 7.3 shows the produce and consume functions for our example. 
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mu tex/prodcons2.c 
39 void * 

4 4 if (shared.nput >= nitems) { 

4 5 Pthread~mutex~unlock(&shared.mutex); 
46 return (NULL); / *  array is full, we're done */  
47 1 
4 8 shared.buff[shared.nput] = shared.nva1; 
49 shared.nput++; 
50 shared.nval++; 
51 Pthread~mutex~unlock(&shared.mutex); 
52 * (  (int * )  arg) += 1; 
53 1 
54 1 

55 void * 
56 consume (void *arg) 

57 I 
58 int i ; 

5 9 for (i = 0; i < nitems; i++) { 

60 if (shared.buff [i] != i) 
6 1 printf("buff[%d] = %d\nU, i, shared.buff[il); 
6 2 1 
6 3 return (NULL) ; 
64 1 

mutex/prodcons2.c 
Figure 7.3 producer and consumer functions. 

Generate the data items 

42-53 The critical region for the producer consists of the test for whether we are done 

if (shared-nput >= nitems) 

followed by the three lines 

We protect this region with a mutex lock, being certain to unlock the mutex when we 
are done. Notice that the increment of the count element (through the pointer arg) is 
not part of the critical region because each thread has its own counter (the count array 
in the main function). Therefore, we do not include this line of code within the region 
locked by the mutex, because as a general programming principle, we should always 
strive to minimize the amount of code that is locked by a mutex. 

Consumer verifies contents of array 

59-62 The consumer just verifies that each item in the array is correct and prints a mes- 
sage if an error is found. As we said earlier, only one instance of this function is run and 
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only after all the producer threads have finished, so no need exists for any synchroniza- 
tion. 

If we run the program just described, specifying one million items and five pro- 
ducer threads, we have 

solaris % prodcons2 1000000 5 
count[O] = 167165 
count[l] = 249891 
count[2] = 194221 
count[3] = 191815 
count[4] = 196908 

As we mentioned, if we remove the call to set-concurrency under Solaris 2.6, 
count [ 0 I then becomes 1000000 and the remaining counts are all 0. 

If we remove the mutex locking from this example, it fails, as expected. That is, the 
consumer detects many instances of buff [ i I not equal to i. We can also verify that 
the removal of the mutex locking has no effect if only one producer thread is run. 

Locking versus Waiting 

We now demonstrate that mutexes are for locking and cannot be used for waiting. We 
modify our producer-consumer example from the previous section to start the con- 
sumer thread right after all the producer threads have been started. This lets the con- 
sumer thread process the data as it is being generated by the producer threads, unlike 
Figure 7.2, in which we did not start the consumer until all the producer threads were 
finished. But we must now synchronize the consumer with the producers to make cer- 
tain that the consumer processes only data items that have already been stored by the 
producers. 

Figure 7.4 shows the main function. All the lines prior to the declaration of main 
have not changed from Figure 7.2. 

rnutex/prodcons3.c 
14 int 
15 main(int argc, char **argv) 

int i, nthreads, count[MAXNTHREADSl; 
pthread-t tidqroduce[MAXNTHREADS], tid-consume; 

if (argc !=  3) 
errquit("usage: prodcons3 <#items> <#threads>"); 

nitems = min(atoi(argv[ll), MAXNITEMS); 
nthreads = min(atoi(argv[21), MAXNTHREADS); 

/ *  create all producers and one consumer * /  
Set-concurrency(nthreads + 1); 
for (i = 0; i < nthreads; i++) { 

count[i] = 0; 
Pthread-create(&tidqroduce[il, NULL, produce, &count[i]); 

I 
Pthread-create(&tid-consume, NULL, consume, NULL); 
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3 0 / *  wait for all producers and the consumer * /  
3 1 for (i = 0; i < nthreads; i++) { 

32 Pthread-j oin (tidqroduce [ i] , NULL) ; 
33 printf ("count [%dl = %d\nU, i, count [i] ) ; 
34 I 
3 5 Pthread-join (tid-consume, NULL) ; 

3 6 exit (0) ; 

Figure 7.4 main function: start consumer immediately after starting producers. 

24 We increase the concurrency level by one, to account for the additional consumer 
thread. 

25-29 We create the consumer thread immediately after creating the producer threads. 

The produce function does not change from Figure 7.3. 

We show in Figure 7.5 the consume function, which calls our new consume-wait 
function. 

mu tex/prodcons3.c 
54 void 
55 consume-wait(int i) 
56 I 
5 7 f o r ( ; ; )  { 
58 Pthread-mutex-lock(&shared.mutex): 
5 9 if (i < shared.nput) { 

60 Pthread~mutex~unlock(&shared.mutex); 
6 1 return; / *  an item is ready * /  
62 1 
6 3 Pthread~mutex~unlock(&shared.mutex); 
6 4 1 
65 1 

66 void * 
67 consume(void *arg) 
68 { 
6 9 int i ; 

70 for (i = 0; i < nitems; i++) { 

7 1 consumewait(i); 
72 if (shared.buff[il !=  i) 
7 3 printf ("buff [%dl = %d\nn, i, shared.buff [il ) ; 
74 1 
7 5 return (NULL); 

Figure 7.5 consume-wait and consume functions. 

Consumer must wait 

71 The only change to the consume function is to call consume-wai t before fetching 
the next item from the array. 
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Wait for producers 

-64 Our consume-wait function must wait until the producers have generated the ith 
item. To check this condition, the producer's mutex is locked and i is compared to the 
producer's nput index. We must acquire the mutex lock before looking at nput, since 
this variable may be in the process of being updated by one of the producer threads. 

The fundamental problem is: what can we do when the desired item is not ready? 
All we do in Figure 7.5 is loop around again, unlocking and locking the mutex each 
time. This is calling spinning or polling and is a waste of CPU time. 

We could also sleep for a short amount of time, but we do not know how long to 
sleep. What is needed is another type of synchronization that lets a thread (or process) 
sleep until some event occurs. 

Condition Variables: Waiting and Signaling 

A mutex is for locking and a condition variable is for waiting. These are two different 
types of synchronization and both are needed. 

A condition variable is a variable of type pthread-cond-t, and the following two 
functions are used with these variables. 

int pthread-cond-wait(pthread-cond-t *cptr, pthread-mutex-t *mpt r ) ;  I 
int pthread-cond-signal (pthread-cond-t *cptr) ; I 

Both return: 0 if OK, positive Exxx value on error 

The term "signal" in the second function's name does not refer to a Unix SIGxxx signal. 
We choose what defines the "condition" to wait for and be notified of: we test this 

in our code. 
A mutex is always associated with a condition variable. When we call 

pthread-cond-wait to wait for some condition to be true, we specify the address of 
the condition variable and the address of the associated mutex. 

We explain the use of condition variables by recoding the example from the previ- 
ous section. Figure 7.6 shows the global declarations. 

Collect producer variables and mutex Into a structure 

-13 The two variables nput and nval are associated with the mutex, and we put all 
three variables into a structure named put. This structure is used by the producers. 

Collect counter, condition variable, and mutex into a structure 

-20 The next structure, nready, contains a counter, a condition variable, and a mutex. 
We initialize the condition variable to PTHREAD-COND-INITIALIZER. 

The main function does not change from Figure 7.4. 
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2 #define MAXNITEMS 1000000 
3 #define MAXNTHREADS 100 

4 / *  globals shared by threads * /  
5 int nitems; / *  read-only by producer and consumer * /  
6 int buff [MAXNITEMS] ; 
7 struct { 

8 pthread-mutex-t mutex; 
9 int npu t ; 
10 int nval ; 
11 1 put = ( 

12 PTHREAD-MUTEX-INITIALIZER 

13 1;  

/ *  next index to store * /  
/ *  next value to store */  

14 struct ( 

15 pthread-mutex-t mutex; 
16 pthread-cond-t cond; 
17 int nready; / *  number ready for consumer * /  
18 ) nready = { 

19 PTHREAD-MUTEX-INITIALIZER, PTHREAD-COND-INITIALIZER 

Figure 7.6 Globals for our producer-consurner, using a condition variable. 

The produce and consume functions do change, and we show them in Figure 7.7. 

Place next item into array 

50-58 We now use the mutex put  .mutex to lock the critical section when the producer 
places a new item into the array. 

Notify consumer 

59-64 We increment the counter nready .nready, which counts the number of items 
ready for the consumer to process. Before doing this increment, if the value of the 
counter was 0, we call pthread-cond-signal to wake up any threads (e.g., the con- 
sumer) that may be waiting for this value to become nonzero. We can now see the inter 
action of the mutex and condition variable associated with this counter. The counter is 
shared between the producers and the consumer, so access to it must be when the asso- 
ciated mutex (nready.mutex) is locked. The condition variable is used for waiting 
and signaling. 

Consumer waits for nready-nready to be nonzero 

72-76 The consumer just waits for the counter nready . nready to be nonzero. Since this 
counter is shared among all the producers and the consumer, we can test its value only 
while we have its associated mutex locked. If, while we have the mutex locked, the 
value is 0, we call pthread-cond-wait to go to sleep. This does two actions atomi- 
cally: 
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mutexlprodcons6.c 
46 void * 
47 produce (void *arg) 
48 I 
4 9 f o r ( ; ; ) {  
50 Pthread~mutex~lock(&put.rnutex); 
51 if (put.nput >= nitems) { 

52 Pthread~mutex~unlock(&put.rnutex); 
53 return (NULL) ; / *  array is full, we're done * /  
54 1 
5 5 buff [put.nputl = put .nval; 
5 6 put.nput++; 
5 7 put.nval++; 
58 Pthread~mutex~unlock(&put.mutex); 

64 *((int * )  arg) += 1; 
6 5 1 
66 1 

67 void * 
68 consume (void *arg) 
69 ( 

7 0 int i ; 

7 1 for (i- = 0; i < nitems; i++) { 
72 Pthread-mutex-lock(&nready.mutex); 
73 while (nready.nready == 0) 
74 Pthread-cond-wait(&nready.cond, &nready.mutex); 
7 5 nready-nready--; 
76 Pthread~mutex~unlock(&nready.mutex); 

77 if (buff [i] !=  i) 
7 8 printf ("buff[%dl = %d\nW , i, buff [il ) ; 
79 1 
8 0 return (NULL) ; 

Figure 7.7 produce and consume functions. 

1. the mutex nready . mutex is unlocked, and 

2. the thread is put to sleep until some other thread calls pthread-cond-signal 
for this condition variable. 

Before returning, pthread-cond-wait locks the mutex nready. mutex. Therefore, 
when it returns, and we find the counter nonzero, we decrement the counter (knowing 
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that we have the mutex locked) and then unlock the mutex. Notice that when 
pthread-cond-wait returns, we always test the condition again, because spurious 
wakeups can occur: a wakeup when the desired condition is still not true. Implementa- 
tions try to minimize the number of these spurious wakeups, but they can still occur. 

In general, the code that signals a condition variable looks like the following: 

struct { 

pthread-mutex-t mutex; 
pthread-cond-t cond; 
whatever variables maintain the condition 

) var = ( PTHREAD-MUTEX-INITIALIZER, PTHREAD-COND-INITIALIZER, ... 1; 

Pthread~mutex~lock(&var.mutex); 
set condition true 
pthread-cond-signal(&var.cond): 
~thread~mutex~unlock(&var.mutex); 

In our example, the variable that maintains the condition was an integer counter, and 
setting the condition was just incrementing the counter. We added the optimization that 
the signal occurred only when the counter went from 0 to 1. 

The code that tests the condition and goes to sleep waiting for the condition to be 
true normally looks like the following: 

~thread~mutex~lock(&var.mutex); 
while (condition is false) 

Pthread-cond-wait(&var.cond, &var.mutex); 
modify condition 
~thread~mutex~unlock(&var.mutex); 

Avoiding Lock Conflicts 

In the code fragment just shown, as well as in Figure 7.7, pthread-cond-signal is 
called by the thread that currently holds the mutex lock that is associated with the con- 
dition variable being signaled. In a worst-case scenario, we could imagine the system 
immediately scheduling the thread that is signaled; that thread runs and then immedi- 
ately stops, because it cannot acquire the mutex. An alternative to our code in Fig- 
ure 7.7 would be 

int dosignal; 

~thread~mutex~lock(&nready.mutex); 
dosignal = (nready.nready == 0); 
nready.nready++; 
Pthread~mutex~unlock(&nready.mutex); 

if (dosignal) 
pthread-cond-signal(&nready.cond); 

Here we do not signal the condition variable until we release the mutex. This is explic- 
itly allowed by Posix: the thread calling pthread-cond-signal need not be the cur- 
rent owner of the mutex associated with the condition variable. But Posix goes on to 
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say that if predictable scheduling behavior is required, then the mutex must be locked 
by the thread calling pthread-cond-wai t .  

Condition Variables: Timed Waits and Broadcasts 

Normally, pthread-cond-signal awakens one thread that is waiting on the condi- 
tion variable. In some instances, a thread knows that multiple threads should be awak- 
ened, in which case, pthread-cond-broadcast will wake up all threads that are 
blocked on the condition variable. 

An example of a scenario in which multiple threads should be awakened occurs with the read- 
ers and writers problem that we describe in Chapter 8. When a writer is finished with a lock, it 
wants to awaken all queued readers, because multiple readers are allowed at the same time. 

An alternate (and safer) way of thinking about a signal versus a broadcast is that you can 
always use a broadcast. A signal is an optimization for the cases in which you know that all 
the waiters are properly coded, only one waiter needs to be awakened, and which waiter is 
awakened does not matter. In all other situations, you must use a broadcast. 

i n t  pthread-cond-broadcastfpthread-cond-t *cptr); l 
i n t  pthread-cond-timedwait(pthread-cond-t *cptr, pthread-mutex-t *mptr, 

const  s t r u c t  timespec *abstime) ; 

I Both return: 0 if OK, positive Exxx value on error 1 

pthread-cond-timedwait lets a thread place a limit on how long it will block. 
abstime is a timespec structure: 

s t r u c t  timespec [ 

time-t tv-sec; / *  seconds * /  
long tv-nsec; / *  nanoseconds * /  

1;  

This structure specifies the system time when the function must return, even if the con- 
dition variable has not been signaled yet. If this timeout occurs, ETIMEDOUT is 
returned. 

This time value is an absolute time; it is not a time delta. That is, abstime is the system 
time-the number of seconds and nanoseconds past January 1, 1970, UTC-when the 
function should return. This differs from se lec t ,  pse lec t ,  and p o l l  (Chapter 6 of 
UNPvl), which all specify some number of fractional seconds in the future when the 
function should return. ( s e l e c t  specifies microseconds in the future, pse lec t  speci- 
fies nanoseconds in the future, and p o l l  specifies milliseconds in the future.) The 
advantage in using an absolute time, instead of a delta time, is if the function prema- 
turely returns (perhaps because of a caught signal): the function can be called again, 
without having to change the contents of the timespec structure. 
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7.7 Mutexes and Condition Variable Attributes 

Our examples in this chapter of mutexes and condition variables have stored them as 
globals in a process in which they are used for synchronization between the threads 
within that process. We have initialized them with the two constants 
PTHREAD-MLJTEX-INITIALIZER and PTHREAD-COND-INITIALIZER. Mutexes and 
condition variables initialized in this fashion assume the default attributes, but we can 
initialize these with other than the default attributes. 

First, a mutex or condition variable is initialized or destroyed with the following 
functions: 

#include ipthread.h> 

int pthread-mutex-init(pthread-mutex-t *mptr, const pthread-mutexattr-t *at tr ) ;  

int pthread-mutex-destroy(pthread-mutex-t *mpt r ) ;  

int pthread-cond-init (pthread-cond-t *cptr, const pthread-condattr-t *attr) ; 

int pthread-cond-destroy(pthread-cond-t *cp t r ) ;  

All four return: 0 if OK, positive Exxx value on error 

Considering a mutex, mptr must point to a pthread-mutex-t variable that has been 
allocated, and pthread-mutex-init initializes that mutex. The 
pthread-mut exat  t r-t value, pointed to by the second argument to 
pthread-mutex-init (attr), specifies the attributes. If this argument is a null pointer, 
the default attributes are used. 

Mutex attributes, a pthread-mutexattr-t datatype, and condition variable 
attributes, a pthread- condattr- t datatype, are initialized or destroyed with the fol- . . 

lowing functions: 

int pthread-mutexattr-init(pthread-mutexattr-t *a t t r ) ;  

I int pthread-mutexattr-destroy(pthread-mutexattr-t *a t t r ) ;  

int pthread-condattr-init(pthread-condattr-t *a t t r ) ;  

I int pthread-condattr-destroy(pthread-condattr-t *a t t r ) ;  

All four return: 0 if OK, positive Exxx value on error 

Once a mutex attribute or a condition variable attribute has been initialized, sepa- 
rate functions are called to enable or disable certain attributes. For example, one 
attribute that we will use in later chapters specifies that the mutex or condition variable 
is to be shared between different processes, not just between different threads within a 
single process. This attribute is fetched or stored with the following functions. 
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#include ipthread.h> 

int pthread-mutexattr-getpshared (const pthread-mutexattr-t *attr, int *valptr) ; 

int pthread-mutexattr-setpshared(pthread-mutexattr-t *attr, int ualue) ; 

int pthread-condattr-getpshared(c0nst pthread-condattr-t *attr, int *valptr) ; 

int pthread-condattr-setpshared (pthread-condattr-t *attr , int value) ; 

All four return: 0 if OK, positive Exxx value on error 

The two g e t  functions return the current value of this attribute in the integer pointed to 
by valptr and the two set functions set the current value of this attribute, depending on 
value. The value is either PTHREAD-PROCESS-PRIVATE or 
PTHREAD-PROCESS-SHARED. The latter is also referred to as the process-shared 
attribute. 

This feature is supported only if the constant -POSIX-THREAD-PROCESS-SHARED is defined 
by including iunistd. h>. It is an optional feature with Posix.1 but required by Unix 98 (Fig- 
ure 1.5). 

The following code fragment shows how to initialize a mutex so that it can be 
shared between processes: 

pthread-mutex-t *mptr; / *  pointer to the mutex in shared memory * /  
pthread-mutexattr-t mattr; / *  mutex attribute datatype */  

mptr = / *  some value that points to shared memory * /  ; 
Pthread-mutexattr-init(&mattr); 

#ifdef -POSIX-THREAD-PROCESS-SHARED 
Pthread-mutexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED); 

#else 
# error this implementation does not support -POSIX-THREAD-PROCESS-SHARED 
#endif 

Pthread-mutex-inithptr, &rnattr); 

We declare a pthread-mutexattr-t datatype named m a t t r ,  initialize it to the 
default attributes for a mutex, and then set the PTHREAD-PROCESS-SHARED attribute, 
which says that the mutex is to be shared between processes. pthread-mutex-init 
then initializes the mutex accordingly. The amount of shared memory that must be allo- 
cated for the mutex is s i zeo f  (pthread-mutex-t) . 

A nearly identical set of statements (replacing the five characters mutex with cond) 
is used to set the PTHREAD-PROCESS-SHARED attribute for a condition variable that is 
stored in shared memory for use by multiple processes. 

We showed examples of these process-shared mutexes and condition variables in 
Figure 5.22. 
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Process Termination While Holding a Lock 

When a mutex is shared between processes, there is always a chance that the process 
can terminate (perhaps involuntarily) while holding the mutex lock. There is no way to 
have the system automatically release held locks upon process termination. We will see 
that read-write locks and Posix semaphores share this property. The only type of syn- 
chronization locks that the kernel always cleans up automatically upon process termina- 
tion is f c n t l  record locks (Chapter 9). When using System V semaphores, the 
application chooses whether a semaphore lock is automatically cleaned up or not by the 
kernel upon process termination (the SEM-UNDO feature that we talk about in Sec- 
tion 11.3). 

A thread can also terminate while holding a mutex lock, by being canceled by 
another thread, or by calling pthread-exit. The latter should be of no concern, 
because the thread should know that it holds a mutex lock if it voluntarily terminates by 
calling pthread-exit. In the case of cancellation, the thread can install cleanup han- 
dlers that are called upon cancellation, which we demonstrate in Section 8.5. Fatal con- 
ditions for a thread normally result in termination of the entire process. For example, if 
a thread makes an invalid pointer reference, generating SIGSEGV, this terminates the 
entire process if the signal is not caught, and we are back to the previous condition deal- 
ing with the termination of the process. 

Even if the system were to release a lock automatically when a process terminates, 
this may not solve the problem. The lock was protecting a critical region probably 
while some data was being updated. If the process terminates while it is in the middle 
of this critical region, what is the state of the data? A good chance exists that the data 
has some inconsistencies: for example, a new item may have been only partially entered 
into a linked list. If the kernel were to just unlock the mutex when the process termi- 
nates, the next process to use the linked list could find it corrupted. 

In some examples, however, having the kernel clean up a lock (or a counter in the 
case of a semaphore) when the process terminates is OK. For example, a server might 
use a System V semaphore (with the SEM-UNDO feature) to count the number of clients 
currently being serviced. Each time a child is forked, it increments this semaphore, 
and when the child terminates, it decrements this semaphore. If the child terminates 
abnormally, the kernel will still decrement the semaphore. An example of when it is OK 
for the kernel to release a lock (not a counter as we just described) is shown in Sec- 
tion 9.7. The daemon obtains a write Lock on one of its data files and holds this lock as 
long as it is running. Should someone try to start another copy of the daemon, the new 
copy will terminate when it cannot get the write lock, guaranteeing that only one copy 
of the daemon is ever running. But should the daemon terminate abnormally, the ker- 
nel releases the write lock, allowing another copy to be started. 

7.8 Summary 

Mutexes are used to protect critical regions of code, so that only one thread at a time is 
executing within the critical region. Sometimes a thread obtains a mutex lock and then 
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discovers that it needs to wait for some condition to be true. When this happens, the 
thread waits on a condition variable. A condition variable is always associated with a 
mutex. The pthread-cond-wait function that puts the thread to sleep unlocks the 
mutex before putting the thread to sleep and relocks the mutex before waking up the 
thread at some later time. The condition variable is signaled by some other thread, and 
that signaling thread has the option of waking up one thread 
(pthread-cond-signal) or all threads that are waiting for the condition to be true 
(pthread-cond-broadcast). 

Mutexes and condition variables can be statically allocated and statically initialized. 
They can also be dynamically allocated, which requires that they be dynamically initial- 
ized. Dynamic initialization allows us to specify the process-shared attribute, allowing 
the mutex or condition variable to be shared between different processes, assuming that 
the mutex or condition variable is stored in memory that is shared between the different 
processes. 

Exercises 

Remove the mutex locking from Figure 7.3 and verify that the example fails if more than 
one producer thread is run. 

What happens in Figure 7.2 if the call to  thread-join for the consumer thread is 
removed? 

Write a program that just calls pthread-mutexattr-init and 
pthread-condattr-init in an infinite loop. Watch the memory usage of the process, 
using a program such as ps. What happens? Now add the appropriate calls to 
pthread-mutexattr-destroy and pthread-condattr-destroy and verify that no 
memory leak occurs. 

In Figure 7.7, the producer calls pthread-cond-signal only when the counter 
nready. nready goes from 0 to 1. To see what this optimization does, add a counter each 
time pthread-cond-signal is called, and print this counter in the main thread when the 
consumer is done. 



Read- Write Locks 

Introduction 

A mutex lock blocks all other threads from entering what we call a critical region. This 
critical region usually involves accessing or updating one or more pieces of data that are 
shared between the threads. But sometimes, we can distinguish between reading a piece 
of data and modifying a piece of data. 

We now describe a read-write lock and distinguish between obtaining the read-write 
lock for reading and obtaining the read-write lock for writing. The rules for allocating 
these read-write locks are: 

1. Any number of threads can hold a given read-write lock for reading as long as 
no thread holds the read-write lock for writing. 

2. A read-write lock can be allocated for writing only if no thread holds the 
read-write lock for reading or writing. 

Stated another way, any number of threads can have read access to a given piece of data 
as long as no thread is reading or modifying that piece of data. A piece of data can be 
modified only if no other thread is reading the data. 

In some applications, the data is read more often than the data is modified, and 
these applications can benefit from using read-write locks instead of mutex locks. 
Allowing multiple readers at any given time can provide more concurrency, while still 
protecting the data while it is modified from any other readers or writers. 

This sharing of access to a given resource is also known as shared~xclusive locking, 
because obtaining a read-write lock for reading is called a shared lock, and obtaining a 
read-write lock for writing is called an exclusive lock. Other terms for this type of prob- 
lem (multiple readers and one writer) are the readers and writers problem and 
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readers-writer locks. (In the last term, "readers" is intentionally plural, and "writer" is 
intentionally singular, emphasizing the multiple-readers but single-writer nature of the 
problem.) 

A common analogy for a read-write lock is accessing bank accounts. Multiple threads can be 
reading the balance of an account at the same time, but as soon as one thread wants to update 
a given balance, that thread must wait for all readers to finish reading that balance, and then 
only the updating thread should be allowed to modify the balance. No readers should be 
allowed to read the balance until the update is complete. 

The functions that we describe in this chapter are defined by Unix 98 because read-write locks 
were not part of the 1996 Posix.1 standard. These functions were developed by a collection of 
Unix vendors in 1995 known as the Aspen Group, along with other extensions that were not 
defined by Posix.1. A Posix working group (1003.lj) is currently developing a set of Pthreads 
extensions that includes read-write locks, which will hopefully be thesame as described in 
this chapter. 

8.2 Obtaining and Releasing Read-Write Locks 

A read-write lock has a datatype of pthread-rwlock-t. If a variable of this type is 
statically allocated, it can be initialized by assigning to it the constant 
PTHREAD-RWLOCK-INITIALIZER. 

pthread-rwlock-rdlock obtains a read-lock, blocking the calling thread if the 
read-write lock is currently held by a writer. p thread-rwlock-wrlock obtains a 
write-lock, blocking the calling thread if the read-write lock is currently held by either 
another writer or by one or more readers. pthread-rwlock-unlock releases either a 
read lock or a write lock. 

I int pthread~rwlock~rdlock(pthread~rwlock~t *rwptr) ;  l 
int pthread~rwlock~wrlock(pthread~rwlock~t *rwptr) :  

int pthread~rwlock~unlock(pthread~rwlock~t *rwptr) ; 

I All return: 0 if OK, msitive ~ x x x  value on error I 

The following two functions try to obtain either a read lock or a write lock, but if the 
lock cannot be granted, an error of EBuSY is returned instead of putting the calling 
thread to sleep. 

#include <pthread.h> 

int pthread~rwlock~tryrdlock(pthread~rwlock~t *rwp t r ) ;  

int pthread~rwlock~tr~rlock(pthread~rwlock~t *rwp t r ) ;  

Both return: 0 if OK, positive Exxx value on error 
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Read-Write Lock Attributes 

We mentioned that a statically allocated read-write lock can be initialized by assigning 
it the value PTHREAD-RWLOCK-INITIALIZER. These variables can also be dynami- 
cally initialized by calling pthread-rwlock-init. When a thread no longer needs a 
read-write lock, it can call the function pthread-rwlock-destroy. 

#include cpthread.h> 

int pthread-rwlock-init(pthread-rwlock-t *rwptr, 
const pthread-rwlockattr-t *attr) ; 

int pthread~rwlock~destroy(pthread~rwlock~t *rwptr) ;  I 
Both return: 0 if OK, positive Exxx value on error 

When initializing a read-write lock, if attr is a null pointer, the default attributes are 
used. To assign other than these defaults, the following two functions are provided: 

int pthread-mlockattr-init(pthread-rwlockattr-t *a t t r ) ;  l 
int pthread~rwlockattr~destroy(pthread~rwlockattr~t *a t&) ;  I 

I Both return: 0 if OK. ~ositive ~ x x x  value on error I 

Once an attribute object of datatype pthread-rwlockattr-t has been initialized, 
separate functions are called to enable or disable certain attributes. The only attribute 
currently defined is PTHREAD-PROCESS-SHARED, which specifies that the read-write 
lock is to be shared between different processes, not just between different threads 
within a single process. The following two functions fetch and set this attribute: 

#include cpthread.h> 

int pthread-rwlockattr-getpshared(const pthread-rwlockattr-t *attr, int *valptr);  

int pthread-mlockattr-setpshared(pthread-rw1ockattr-t *attr, int value); I 
Both return: 0 if OK, positive Exxx value on error I 

The first function returns the current value of this attribute in the integer pointed to by 
valptr. The second function sets the current value of this attribute to value, which is 
either PTHREAD-PROCESS-PRIVATE or PTHREAD-PROCESS-SHARED. 

Implementation Using Mutexes and Condition Variables 

Read-write locks can be implemented using just mutexes and condition variables. In 
this section, we examine one possible implementation. Our implementation gives 
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preference to waiting writers. This is not required and there are other alternatives. 

This section and the remaining sections of this chapter contain advanced topics that you may 
want to skip on a first reading. 

Other implementations of read-write locks merit study. Section 7.1.2 of [Butenhof 19971 pro- 
vides an implementation that gives priority to waiting readers and includes cancellation han- 
dling (which we say more about shortly). Section B.18.2.3.1 of [IEEE 19961 provides another 
implementation that gives priority to waiting writers and also includes cancellation handling. 
Chapter 14 of [Kleiman, Shah, and Smaalders 19961 provides an implementation that gives pri- 
ority to waiting writers. The implementation shown in this section is from Doug Schmidt's 
ACE package, http: / /www. cs .wus tl . edu/-schmidt/ACE . html (Adaptive Communica- 
tions Environment). All four implementations use mutexes and condition variables. 

gthread-rwlock-t Datatype 

Figure 8.1 shows our pthread-rw1ock.h header, which defines the basic 
pthread-rwlock-t datatype and the function prototypes for the functions that oper- 
ate on read-write locks. Normally, these are found in the xpthread . h> header. 

typedef struct { 

pthread-mutex-t rw-mutex; / *  basic lock on this struct * /  
pthread-cond-t rw-condreaders; / *  for reader threads waiting * /  
pthread-cond-t rw-condwriters; / *  for writer threads waiting * /  
int rw-magic ; / *  for error checking * /  
int rw-nwaitreaders; / *  the number waiting * /  
int rw-nwaitwriters; / *  the number waiting * /  
int rw-ref count; 

/ *  -1 if writer has the lock, else # readers holding the lock * /  
1 pthread-rwlock-t; 

14 / *  following must have same order as elements in struct above * /  
15 #define PTHREAD-RWLOCK-INITIALIZER { PTHREAD-MUTEX-INITIALIZER, \ 
16 PTHREAD-COND-INITIALIZER, PTHREAD-COND-INITIALIZER, \ 
17 RW-MAGIC, 0, 0, 0 1 

18 typedef int pthread-rwlockattr-t; / *  dummy; not supported * /  

/ *  function prototypes * /  
int pthread~rwlock~destroy(pthread~rwlock~t * ) ;  

int pthread-rwlock-init(pthread-rwlock-t *, pthread-rwlockattr-t * ) ;  

int pthread~rwlock~rdlock(pthread~rwlock~t * ) ;  

int pthread~rwlock~tryrdlock(pthread~rwlock~t * ) ;  

int pthread~rwlock~trywrlock(pthread~rwlock~t * ) ;  

int pthread~rwlock~unlock(pthread~rwlock~t * ) ;  

int pthread~rwlock~wrlock(pthread~rwlock~t * ) ;  
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2 7 
28 void 
29 void 
30 void 
31 int 
32 int 
33 void 
34 void 

/ *  and our wrapper functions * /  
~thread~rwlock~destroy(pthread~rwlock~t * ) ;  

pthread-rwlock-init(pthread-rwlock-t * ,  pthread-rwlockattr-t * ) ;  

~thread~rwlock~rdlock(pthread~rwlock~t * ) ;  

~thread~rwlock~tryrdlock(pthread~rwlock~t * ) ;  

 thread-rwlock-trywrlock(pthread_rwlock-t * ) :  

~thread~rwlock~unlock(pthread~rwlock~t * ) ;  

~thread~rwlock~wrlock(pthread~rwlock~t * ) ;  

35 #endif / *    thread-rwlock-h * /  
my-rwlock/pthread-rw1ock.h 

Figure 8.1 Definition of pthread-rwlock-t datatype. 

3-13 Our pthread-rwlock-t datatype contains one mutex, two condition variables, 
one flag, and three counters. We will see the use of all these in the functions that follow. 
Whenever we examine or manipulate this structure, we must hold the rw-mutex. 
When the structure is successfully initialized, the rw-magic member is set to 
RW-MAGIC. This member is then tested by all the functions to check that the caller is 
passing a pointer to an initialized lock, and then set to 0 when the lock is destroyed. 

Note that rw-ref count always indicates the current status of the read-write lock: 
-1 indicates a write lock (and only one of these can exist at a time), 0 indicates the lock 
is available, and a value greater than 0 means that many read locks are currently held. 

14-17 We also define the static initializer for this datatype. 

pthread-zwlock-init Function 

Our first fundion, pthread-rwlock-ini t, dynamically initializes a read-write lock 
and is shown in Figure 8.2. 

We do not support assigning attributes with this function, so we check that the 
attr argument is a null pointer. 

We initialize the mutex and two condition variables that are in our structure. All 
three counters are set to 0 and rw-magic is set to the value that indicates that the struc- 
ture is initialized. 

20-25 If the initialization of the mutex or condition variables fails, we are careful to 
destroy the initialized objects and return an error. 

pthread-zwlock-des t roy Function 

Figure 8.3 shows our pthread-rwlock-destroy fundion, which destroys a 
read-write lock when the caller is finished with it. 

8-13 We first check that the lock is not in use and then call the appropriate destroy func- 
tions for the mutex and two condition variables. 
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#include "pthread-rw1ock.h" 

int 
pthread-rwlock-init(pthread-rwlock-t *rw, pthread-rwlockattr-t *attr) 

int result; 

(attr !=  NULL) 
return (EINVAL) ; / *  not supported * /  

( (result = pthread-mutex-init(&rw->rw-mutex, NULL)) != 0) 
goto errl; 

( (result = pthread-cond-init(&rw->rw_condreaders, NULL)) !=  0) 
goto err2; 

( (result = pthread-cond-init(&rw->rw-condwriters, NULL)) !=  0) 
goto err3; 

rw->rw-nwaitreaders = 0; 
rw->rwmaitwriters = 0; 
rw->rw-refcount = 0; 
rw->rw-magic = RW-MAGIC; 

return (0) ; 

err3 : 
pthread-cond-destroy(&rw->rw-condreaders); 

err2 : 
pthread-mutex-destroy(&rw->rw-mutex); 

errl : 
return (result); / *  an errno value * /  

1 
my-rwlock/pthread-rwlock_init.c 

Figure 8.2 pthread-rwlock-init function: initialize a read-write lock. 

3 int 
4 pthread~rwlock~destroy(pthread~rwlock~t *rw) 
5 { 

6 if (rw->rw-magic != RW-MAGIC) 
7 return (EINVAL) ; 
8 if (rw->rw-refcount !=  0 I I 
9 rw->rw-nwaitreaders !=  0 I I rw->rw-nwaitwriters !=  0) 
10 return (EBUSY) ; 

15 return (0) ; 
16 1 

my-rwlock/pthread-rwlock_destray.c 

Figure 8.3 pthread-rwlock-destroy function: destroy a read-write lock. 
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rread_rwlock-rdlock Function 

Our pthread-rwlock-rdloc k function is shown in Figure 8.4. 

3 int 
4 pthread~rwlock~rdlock(pthread~rwlock~t *rw) 

5 ( 
6 int result; 

7 if (rw->rw-magic ! = RW-MAGIC) 
8 return (EINVAL) ; 

9 if ( (result = pthread-mutex-lock(&rw->rw-mutex)) != 0) 
10 return (result); 

11 / *  give preference to waiting writers * /  
12 while (rw->rw-refcount < 0 I (  rw->rw-nwaitwriters > 0) { 

13 rw->rw-nwaitreaders++; 

15 rw->rw-nwaitreaders--; 
16 if (result !=  0) 
17 break; 
18 } 

19 if (result == 0) 
20 rw->rw-refcount++; / *  another reader has a read lock * /  

21 pthread-mutex-unlock(&rw->rw-mutex); 
2 2 return (result); 

23 1 
my~rwlock/pfhreadreadrwlock_rdlock.c 

Figure 8.4 pthread-rwlock-rdlock function: obtain a read lock. 

9-10 Whenever we manipulate the pthread-rwlock-t structure, we must lock the 
rw-mutex member. 

1-18 We cannot obtain a read lock if (a) the rw-refcount is less than 0 (meaning a 
writer currently holds the lock), or (b) if threads are waiting to obtain a write lock 
(rw-nwaitwriters is greater than 0). If either of these conditions is true, we incre- 
ment rw-nwaitreaders and call pthread-cond-wait on the rw-condreaders 
condition variable. We will see shortly that when a read-write lock is unlocked, a check 
is first made for any waiting writers, and if none exist, then a check is made for any 
waiting readers. If readers are waiting, the rw-condreaders condition variable is 
broadcast. 

19-20 When we get the read lock, we increment rw-ref count. The mutex is released. 

A problem exists in this function: if the calling thread blocks in the call to 
pthread-cond-wait and the thread is then canceled, the thread terminates while it holds 
the mutex lock, and the counter rw-nwaitreaders is wrong. The same problem exists in our 
implementation of pthread~rwlock~wrlock in Figure 8.6. We correct these problems in 
Section 8.5. 
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Figure 8.5 shows our implementation of pthread-rwlock-tryrdlock, the non- 
blocking attempt to obtain a read lock. 

3 int 
4 pthread~rwlock~tryrdlock(pthread~rwlock~t *rw) 

5 I 
6 int result; 

7 if (rw->rw-magic !=  RW-MAGIC) 
8 return (EINVAL) ; 

9 if ( (result = pthread-mutex-lock(&rw->rw-mutex)) !=  0) 
10 return (result): 

11 if (rw->rw-refcount i 0 1 )  rw->rv-nwaitwriters > 0) 
12 result = EBUSY; / *  held by a writer or waiting writers * /  
13 else 
14 rw->rw-refcount++; / *  increment count of reader locks * /  

15 pthread-mutex-unlock(&rw->rw-mutex); 
16 return (result); 

17 1 
my~rwlock/pthread~rwlock~tryrdlock.c 

Figure 8.5 pthread-rwlock-tryrdlock function: try to obtain a read lock. 

11-14 If a writer currently holds the lock, or if threads are waiting for a write lock, EBUSY 
is returned. Otherwise, we obtain the lock by incrementing rw-ref count. 

Our pthread-rwlock-wrlock fundion is shown in Figure 8.6. 
11-17 AS long as readers are holding read locks or a writer is holding a write lock 

(rw-refcount is not equal to O), we must block. To do so, we increment 
rw-nwai twri t ers and call pthread-cond-wai t on the rw-condwri t ers condi- 
tion variable. We will see that this condition variable is signaled when the read-write 
lock is unlocked and writers are waiting. 

18-19 When we obtain the write lock, we set rw-ref count to -1. 

pthread-rwlock-trywrlock Function 

The nonblocking function pthread-rwl ock-trywrlock is shown in Figure 8.7. 
11-IU If rw-ref count is nonzero, the lock is currently held by either a writer or one or 

more readers (which one does not matter) and EBUSY is returned. Otherwise, we obtain 
the write lock and rw-ref count is set to -1. 
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int 
pthread~rwlock~wrlock(pthread~rwlock~t *rw) 
I 

int result; 

if (rw->rw-magic != RW-MAGIC) 
return (EINVAL) ; 

if ( (result = pthread-mutex-lock(&rw->rw-mutex)) != 0) 
return (result) ; 

while (rw->rw-refcount != 0) I 
rw->rw-nwaitwriters++; 
result = pthread~cond~wait(&rw-~rw~condwriters, &rw->rw-mutex); 
rw->rw-nwaitwriters--; 
if (result !=  0) 

break; 
1 
if (result == 0) 

rw->rw-refcount = -1; 

pthread~mutex~unlock(&rw->rw-mutex); 
return (result) ; 

Figure 8.6 pthread-rwlock-wrlock function: obtain a write lock. 

int 
pthread~rwlock~trywrlock(pthread~rwlock~t *rw) 
I 

int result ; 

if (rw->rw-magic != RW-MAGIC) 
return (EINVAL); 

if (rw->rw-refcount != 0) 
result = EBUSY; / *  held by either writer or reader(s) * /  

else 
rw->rw-refcount = -1; / *  available, indicate a writer has it * /  

pthread~mutex~unlock(&rw->rw-mutex); 
return (result) ; 

Figure 8.7 pthread-rwlock-trywrlock function: try to obtain a write lock. 
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Our final function, p thread-rwlock-unlock, is shown in Figure 8.8. 

2 #include "pthread-rw1ock.h" 

3 int 
4 pthread~rwlock~unlock(pthread~rwlock~t *rw) 
5 I 
6 int result ; 

7 if (rw->rw-magic !=  RW-MAGIC) 
8 return (EINVAL) ; 

9 if ( (result = pthread-mutex-lock(&rw->rw-mutex)) !=  0) 
10 return (result); 

11 if (rw->rw-ref count > 0) 
12 rw->rw-refcount--; / *  releasing a reader * /  
13 else if (rw->rw-refcount == -1) 
14 rw->rw-refcount = 0; / *  releasing a reader * /  
15 else 
16 err-dump("rw-refcount = %dlq, rw->rw-refcount); 

17 / *  give preference to waiting writers over waiting readers * /  
18 if (rw->rw-nwaitwriters > 0) [ 

19 if (rw->rw-refcount == 0) 
20 result = pthread-cond-signal(&rw->rw-condwriters); 
2 1 1 else if (rw->rw-nwaitreaders > 0) 
2 2 result = pthread-cond-broadcast(&rw->rw-condreaders); 

23 pthread-mutex-unlock(&rw-zrw-mutex); 
24 return (result); 

Figure 8.8 pthread~rwlock~unlock function: release a read lock or a write lock. 

11-16 If rw-ref count is currently greater than 0, then a reader is releasing a read lock. If 
-ref count is currently -1, then a writer is releasing a write lock. 

17-22 If a writer is waiting, the rw-condwriters condition variable is signaled if the 
lock is available (i.e., if the reference count is 0). We know that only one writer can 
obtain the lock, so pthread-cond-signal is called to wake up one thread. If no writ- 
ers are waiting but one or more readers are waiting, we call 
p t hread-cond-broadcas t on the rw-condreader s condition variable, because all 
the waiting readers can obtain a read lock. Notice that we do not grant any additional 
read locks as soon as a writer is waiting; otherwise, a stream of continual read requests 
could block a waiting writer forever. For this reason, we need two separate i f  tests, 
and cannot write 

/ *  give preference to waiting writers over waiting readers * /  
if (rw->rw-nwaitwriters > 0 && rw->rw-refcount == 0) 

result = pthread-cond-signal(&rw->rw-condwriters); 
1 else if (rw->rw-nwaitreaders > 0) 

result = pthread-cond-broadcast(&rw->rw-condreaders); 
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We could also omit the test of rw->rw-refcount, but that can result in calls to 
pthread-cond-s igna l  when read locks are still allocated, which is less efficient. 

Thread Cancellation 

We alluded to a problem with Figure 8.4 if the calling thread gets blocked in the call to 
pthread-cond-wait and the thread is then canceled. A thread may be canceled by 
any other thread in the same process when the other thread calls pthread-cancel, a 
fundion whose only argument is the thread ID to cancel. 

i n t  pthread-cancel (pthread-t tid) ; I 
Returns: 0 if OK, positive ~ x x x  value on error 

Cancellation can be used, for example, if multiple threads are started to work on a given 
task (say finding a record in a database) and the first thread that completes the task then 
cancels the other tasks. Another example is when multiple threads start on a task and 
one thread finds an error, necessitating that it and the other threads stop. 

To handle the possibility of being canceled, any thread can install (push) and 
remove (pop) cleanup handlers. 

#include ip thread.h> 

void pthread-cleanupsush (void  (*function) (void * ) , void *arg) ; 

void pthread-cleanupsop ( i n t  execute) ; 

These handlers are just fundions that are called 

when the thread is canceled (by some thread calling pthread-cancel), or 

when the thread voluntarily terminates (either by calling pthread-exit or 
returning from its thread start function). 

The cleanup handlers can restore any state that needs to be restored, such as unlocking 
any mutexes or semaphores that the thread currently holds. 

The function argument to pthread-cleanup_push is the address of the function 
that is called, and arg is its single argument. pthread-cleanup_pop always removes 
the function at the top of the cancellation cleanup stack of the calling threads and calls 
the function if execute is nonzero. 

We encounter thread cancellation again with Figure 15.31 when we see that a doors server is 
canceled if the client terminates while a procedure call is in progress. 
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Example 

An example is the easiest way to demonstrate the problem with our implementation in 
the previous section. Figure 8.9 shows a time line of our test program, and Figure 8.10 
shows the program. 

main thread thread1 thread2 

O T  

pthread-create - - - - - -b get read lock 
sleep(1) sleep ( 3  ) 

returns f - - - - - - - - return 
exit 

time 
Figure 8.9 Time line of program in Figure 8.10. 

Create two threads 

10-13 TWO threads are created, the first thread executing the function threadl and the 
second executing the function thread2. We sleep for a second after creating the first 
thread, to allow it to obtain a read lock. 

Wait for threads to terminate 

14-23 We wait for the second thread first, and verify that its status is PTHREAD-CANCEL. 
We then wait for the first thread to terminate and verify that its status is a null pointer. 
We then print the three counters in the pthread-rwlock-t structure and destroy the 
lock. 
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3 pthread-rwlock-t rwlock = PTHREAD-RWLOCK-INITIALIZER; 
4 pthread-t tidl, tid2; 
5 void *thread1 (void * )  , *thread2 (void * )  ; 

6 int 
7 main(int argc, char **argv) 
8 { 
9 void *status; 

10 Set-concurrency (2) ; 
11 Pthread-create(&tidl, NULL, threadl, NULL); 
12 sleep(1) ; / *  let thread10 get the lock * /  
13 Pthread-create(&tidZ, NULL, thread2. NULL); 

14 Pthread-join(tid2, &status); 
15 if (status != PTHREAD-CANCELED) 
16 printf("thread2 status = %p\nU, status): 
17 Pthread-join(tid1, &status); 
18 if (status !=  NULL) 
19 printf("thread1 status = %p\nn, status); 

2 4 exit (0) ; 
25 1 

26 void * 
27 threadl(void *arg) 
28 ( 
29 Pthread~rwlock~rdlock(&rwlock); 
30 printf("threadl0 got a read lock\nn); 
31 sleep(3): / *  let thread2 block in pthread-rwlockwrlock~) * /  
32 pthread-cancel(tid2); 
33 sleep(3) ; 
34 Pthread~rwlock~unlock(&rwlock); 
35 return (NULL); 
36 1 

37 void * 
38 threadZ(void *arg) 
39 ( 
40 printf("thread2() trying to obtain a write lock\nU); 
4 1 ~thread~rwlock~wrlock(&rwlock); 
42 printf("thread20 got a write lock\nU); / *  should not get here * /  
4 3 sleep(1) ; 
44 Pthread~rwlock~unlock(&rwlock); 
4 5 return (NULL) : 

Figure 8.10 Test program to show thread cancellation. 
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threadl function 

26-36 This thread obtains a read lock and then sleeps for 3 seconds. This pause allows the 
other thread to call pthread-rwlock-wrlock and block in its call to 
pthread-cond-wait, because a write lock cannot be granted while a read lock is 
active. The first thread then calls pthread-cancel to cancel the second thread, sleeps 
another 3 seconds, releases its read lock, and terminates. 

thread2 function 

37- 46 The second thread tries to obtain a write lock (which it cannot get, since the first 
thread has already obtained a read lock). The remainder of this function should never 
be executed. 

If we run this program using the functions from the previous section, we get 

solaris % testcancel 
threadl ( )  got a read lock 
thread20 trying to obtain a write lock 

and we never get back a shell prompt. The program is hung. The following steps have 
occurred: 

1. The second thread calls pthread-rwlock-wrlock (Figure 8.6), which blocks 
in its call to pthread-cond-wai t .  

2. The s l e e p  ( 3 ) in the first thread returns, and pthread-cancel is called. 

3. The second thread is canceled (it is terminated). When a thread is canceled 
while it is blocked in a condition variable wait, the mutex is reacquired before 
calling the first cancellation cleanup handler. (We have not installed any cancel- 
lation cleanup handlers yet, but the mutex is still reacquired before the thread is 
canceled.) Therefore, when the second thread is canceled, it holds the mutex 
lock for the read-write lock, and the value of rw-nwaitwriters in Figure 8.6 
has been incremented. 

4. The first thread calls pthread-rwlock-unlock, but it blocks forever in its call 
to pthread-mutex-lock (Figure 8.8), because the mutex is still locked by the 
thread that was canceled. 

If we remove the call to pthread-rwlock-unlock in our t h r e a d l  function, the main 
thread will print 

rw-refcount = 1, rw-nwaitreaders = 0, rw-nwaitwriters = 1 
pthread-rwlock-destroy error: Device busy 

The first counter is 1 because we removed the call to pthread_rwlock-unlock, but 
the final counter is 1 because that is the counter that was incremented by the second 
thread before it was canceled. 

The correction for this problem is simple. First we add two lines of code (preceded 
by a plus sign) to our pthread-rwlock-rdlock function in Figure 8.4 that bracket 
the call to pthread-cond-wai t :  
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rw->rw-nwaitreaders++; 
+ pthread~cleanup~ush(rwlock~cancelrdwait, (void * )  rw); 

result = pthread-cond-wait(&rw->rw_condreaders, &rw->rw_mutex); 
+ pthread-cleanup-pop(0); 

rw->rw-nwaitreaders--; 

The first new line of code establishes a cleanup handler (our rwlock-cancelrdwait 
function), and its single argument will be the pointer rw. If pthread-cond-wait 
returns, our second new line of code removes the cleanup handler. The single argument 
of 0 to pthread-cleanup_pop specifies that the handler is not called. If this argu- 
ment is nonzero, the cleanup handler is first called and then removed. 

If the thread is canceled while it is blocked in its call to pthread-cond-wait, no 
return is made from this function. Instead, the cleanup handlers are called (after reac- 
quiring the associated mutex, which we mentioned in step 3 earlier). 

Figure 8.11 shows our rwlock-cancelrdwait function, which is our cleanup 
handler for pthread-rwlock-rdlock. 

my~rwlock~cancel/pthread~rwlock~rdlock.c 
3 static void 

7 rw = arg; 
8 rw->rw-nwaitreaders--; 
9 pthread-mutex-unlock(&rw->rw_mutex); 

10 1 
my-rwlock-cancel Ipthread-rwlock~rdlock.~ 

Figure 8.11 rwlock~cancelrdwait function: cleanup handler for read lock. 

9 The counter rw-nwai treaders is decremented and the mutex is unlocked. This is 
the "state1' that was established before the call to pthread-cond-wait that must be 
restored after the thread is canceled. 

Our fix to our pthread-rwlock-wrlock function in Figure 8.6 is similar. First we 
add two new lines around the call to pthread-cond-wai t: 

rw->rw-nwaitwriters++; 
+ pthread~cleanup-push(rwlock~cancelwrwait, (void * )  rw); 

result = pthread-cond-wait(&rw->rw-condwriters, &rw->rw_mutex); 
+ pthread-cleanupqop (0) ; 

rw->rw-nwaitwriters--: 

Figure 8.12 shows our rwlock-cancelwrwait function, the cleanup handler for a 
write lock request. 

9 The counter rw-nwai twriters is decremented and the mutex is unlocked. 
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3 static void 
my-rwlock-cancel Ipthread-rwlock-wr1ock.c 

4 rwlock~cancelwrwait(void *arg) 
5 { 

6 pthread-rwlock-t *rw; 

7 rw = arg; 
8 rw->rw-nwaitwriters--; 

Figure 8.12 rwlock~cancelwrwait function: cleanup handler for write lock. 

If we run our test program from Figure 8.10 with these new functions, the results 
are now correct. 

solaris % testcancel 
threadlo got a read lock 
thread20 trying to obtain a write lock 
rw-refcount = 0, rw-nwaitreaders = 0, rw-nwaitwriters = 0 

The three counts are correct, t h r ead1  returns from its call to 
pthread-rwlock-unlock, and pthread-rwlock-des t r o y  does not return EBUSY. 

This section has been an overview of thread cancellation. There are more details; see, for 
example, Section 5.3 of [Butenhof 19971. 

8.6 Summary 

Read-write locks can provide more concurrency than a plain mutex lock when the data 
being protected is read more often than it is written. The read-write lock functions 
defined by Unix 98, which is what we have described in this chapter, or something simi- 
lar, should appear in a future Posix standard. These functions are similar to the mutex 
functions from Chapter 7. 

Read-write locks can be implemented easily using just mutexes and condition vari- 
ables, and we have shown a sample implementation. Our implementation gives prior- 
ity to waiting writers, but some implementations give priority to waiting readers. 

Threads may be canceled while they are blocked in a call to pthread-cond-wait, 
and our implementation allowed us to see this occur. We provided a fix for this prob- 
lem, using cancellation cleanup handlers. 

Exercises 

8.1 Modify our implementation in Section 8.4 to give preference to readers instead of writers. 

8.2 Measure the performance of our implementation in Section 8.4 versus a vendor-provided 
implementation. 
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Introduction 

The read-write locks described in the previous chapter are allocated in memory as vari- 
ables of datatype pthread-rwlock-t. These variables can be within a single process 
when the read-write locks are shared among the threads within that process (the 
default), or within shared memory when the read-write locks are shared among the 
processes that share that memory (and assuming that the PTHREAD-PROCESS-SHARED 
attribute is specified when the read-write lock is initialized). 

This chapter describes an extended type of read-write lock that can be used by 
related or unrelated processes to share the reading and writing of a file. The file that is 
being locked is referenced through its descriptor, and the function that performs the 
locking is f cntl. These types of locks are normally maintained within the kernel, and 
the owner of a lock is identified by its process ID. This means that these locks are for 
locking between different processes and not for locking between the different threads 
within one process. 

In this chapter, we introduce our sequence-number-increment example. Consider 
the following scenario, which comes from the Unix print spoolers (the BSD lpr com- 
mand and the System V lp command). The process that adds a job to the print queue 
(to be printed at a later time by another process) must assign a unique sequence number 
to each print job. The process ID, which is unique while the process is running, cannot 
be used as the sequence number, because a print job can exist long enough for a given 
process ID to be reused. A given process can also add multiple print jobs to a queue, 
and each job needs a unique number. The technique used by the print spoolers is to 
have a file for each printer that contains the next sequence number to be used. The file 
is just a single line containing the sequence number in ASCII. Each process that needs 
to assign a sequence number goes through three steps: 
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1. it reads the sequence number file, 
2. it uses the number, and 
3. it increments the number and writes it back. 

The problem is that in the time a single process takes to execute these three steps, 
another process can perform the same three steps. Chaos can result, as we will see in 
some examples that follow. 

What we have just described is a mutual exclusion problem. It could be solved using mutexes 
from Chapter 7 or with the read-write locks from Chapter 8. What differs with this problem, 
however, is that we assume the processes are unrelated, which makes using these techniques 
harder. We could have the unrelated processes share memory (as we describe in Part 4) and 
then use some type of synchronization variable in that shared memory, but for unrelated pro- 
cesses, f c n t l  record locking is often easier to use. Another factor is that the problem we 
described with the line printer spoolers predates the availability of mutexes, condition vari- 
ables, and read-write locks by many years. Record locking was added to Unix in the early 
1980s, before shared memory and threads. 

What is needed is for a process to be able to set a lock to say that no other process 
can access the file until the first process is done. Figure 9.2 shows a simple program that 
does these three steps. The functions my-lock and my-unlock are called to lock the 
file at the beginning and unlock the file when the process is done with the sequence 
number. We will show numerous implementations of these two functions. 

20 We print the name by which the program is being run (argv [ 0 I ) each time around 
the loop when we print the sequence number, because we use this main function with 
various versions of our locking functions, and we want to see which version is printing 
the sequence number. 

Printing a process ID requires that we cast the variable of type pid-t to a long and then print 
it with the %Id  format string. The problem is that the pid-t type is an integer type, but we do 
not know its size ( i n t  or long), so we must assume the largest. If we assumed an i n t  and 
used a format string of %d, but the type was actually a long, the code would be wrong. 

To show the results when locking is not used, the functions shown in Figure 9.1 pro- 
vide no locking at all. 

lock/locknone.c 
1 void 
2 my_lock(int  f d )  
3 ( 
4 r e tu rn ;  
5 1 

6 void 
7 my-unlock(int f d )  
8 { 

9 r e tu rn ;  

Figure 9.1 Functions that do no locking. 
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2 #define SEQFILE "seqno" / *  filename * /  

int 
main(int argc, char **argv) 
{ 

int fd; 
long i, seqno; 
pid-t pid; 
ssize-t n; 
char line[MAXLINE + 11 ; 

12 pid = getpid( ) ; 
13 fd = Open (SEQFILE, 0-RDWR, FILE-MODE) ; 

14 for (i = 0; i c 20; i++) { 
15 my-lock ( f d) ; / *  lock the file * /  

16 Lseek(fd, OL, SEEK-SET); / *  rewind before read * /  
17 n = Read(fd, line, MAXLINE); 
18 line[nl = '\0'; / *  null terminate for sscanf * /  

19 n = sscanf(1ine. "%ld\nn, &seqno); 
20 printf ("%s: pid = %Id, seq# = %1d\nw , argv[O] , (long) pid, seqno) ; 

21 seqno++; / *  increment sequence number * /  

2 2 snprintf (line, sizeof (line), "%ld\nW, seqno) ; 
23 Lseek(fd, OL, SEEK-SET); / *  rewind before write * /  
24 Write(fd, line, strlen(1ine)); 

2 5 my-unlock ( fd) ; / *  unlock the file * /  
2 6 1 
27 exit (0) ; 

Figure 9.2 main function for file locking example. 

If the sequence number in the file is initialized to one, and a single copy of the pro- 
gram is run, we get the following output: 

solaris % 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 

locknone 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
pid = 15491, 
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locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 
locknone: pid = 15491, 

Notice that the main function (Figure 9.2) is in a file named lockmain. c, but when we com- 
pile and link edit this with the functions that perform no locking (Figure 9.1), we call the exe- 
cutable locknone. This is because we will provide other implementations of the two 
functions mlock and my-unlock that use other locking techniques, so we name the exe- 
cutable based on the type of locking that we use. 

When the sequence number is again initialized to one, and the program is run twice 
in the background, we have the following output: 

solaris % locknone & locknone & 

solaris % locknone: pid = 15498, seq# = 1 
locknone: pid = 15498, seq# = 2 
locknone: pid = 15498, seq# = 3 
locknone: pid = 15498, seq# = 4 
locknone: pid = 15498, seq# = 5 
locknone: pid = 15498, seq# = 6 
locknone: pid = 15498, seq# = 7 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 
locknone : 

pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15498, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 
pid = 15499, 

seq# = 8 
seq# = 9 
seq# = 10 
seq# = 11 
seq# = 12 
seq# = 13 
seq# = 14 
seq# = 15 
seq# = 16 
seq# = 17 
seq# = 18 
seq# = 19 
seq# = 2 0 everything through this line is OK 
seq# = 1 this is wrong when kernel switches processes 
seq# = 2 
seq# = 3 
seq# = 4 
seq# = 5 
seq# = 6 
seq# = 7 
seq# = 8 
seq# = 9 
seq# = 10 
seq# = 11 
seq# = 12 
seq# = 13 
seq# = 14 
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locknone: pid = 15499, seq# = 15 
locknone: pid = 15499, seq# = 16 
locknone: pid = 15499, seq# = 17 
locknone: pid = 15499, seq# = 18 
locknone: pid = 15499, seq# = 19 
locknone: pid = 15499, seq# = 20 

The first thing we notice is that the shell's prompt is output before the first line of out- 
put from the program. This is OK and is common when running programs in the back- 
ground. 

The first 20 lines of output are OK and are generated by the first instance of the pro- 
gram (process ID 15498). But a problem occurs with the first line of output from the 
other instance of the program (process ID 15499): it prints a sequence number of 1, indi- 
cating that it probably was started first by the kernel, it read the sequence number file 
(with a value of I), and the kernel then switched to the other process. This process only 
ran again when the other process terminated, and it continued executing with the value 
of 1 that it had read before the kernel switched processes. This is not what we want. 
Each process reads, increments, and writes the sequence number file 20 times (there are 
exactly 40 lines of output), so the ending value of the sequence number should be 40. 

What we need is some way to allow a process to prevent other processes from 
accessing the sequence number file while the three steps are being performed. That is, 
we need these three steps to be performed as an atomic operation with regard to other 
processes. Another way to look at this problem is that the lines of code between the 
calls to my-lock and my-unlock in Figure 9.2 form a critical region, as we described in 
Chapter 7. 

When we run two instances of the program in the background as just shown, the 
output is nondeterministic. There is no guarantee that each time we run the two pro- 
grams we get the same output. This is OK if the three steps listed earlier are handled 
atomically with regard to other processes, generating an ending value of 40. But this is 
not OK if the three steps are not handled atomically, often generating an ending value 
less than 40, which is an error. For example, we do not care whether the first process 
increments the sequence number from 1 to 20, followed by the second process incre- 
menting it from 21 to 40, or whether each process runs just long enough to increment 
the sequence number by two (the first process would print 1 and 2, then the next pro- 
cess would print 3 and 4, and so on). 

Being nondeterministic does not make it incorrect. Whether the three steps are per- 
formed atomically is what makes the program correct or incorrect. Being nondetermin- 
istic, however, usually makes debugging these types of programs harder. 

Record Locking versus File Locking 

The Unix kernel has no notion whatsoever of records within a file. Any interpretation 
of records is up to the applications that read and write the file. Nevertheless, the term 
record locking is used to describe the locking features that are provided. But the applica- 
tion specifies a byte range within the file to lock or unlock. Whether this byte range has 
any relationship to one or more logical records within the file is left to the application. 
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Posix record locking defines one special byte range-a starting offset of 0 (the 
beginning of the file) and a length of 0-to specify the entire file. Our remaining dis- 
cussion concerns record locking, with file locking just one special case. 

The term granularity is used to denote the size of the object that can be locked. With , 

Posix record locking, this granularity is a single byte. Normally the smaller the granu- 
larity, the greater the number of simultaneous users allowed. For example, assume five 
processes access a given file at about the same time, three readers and two writers. Also 
assume that all five are accessing different records in the file and that each of the five 
requests takes about the same amount of time, say 1 second. If the locking is done at the 
file level (the coarsest granularity possible), then all three readers can access their 
records at the same time, but both writers must wait until the readers are done. Then 
one writer can modify its record, followed by the other writer. The total time will be 
about 3 seconds. (We are ignoring lots of details in these timing assumptions, of 
course.) But if the locking granularity is the record (the finest granularity possible), 
then all five accesses can proceed simultaneously, since all five are working on different 
records. The total time would then be only 1 second. 

Berkeley-derived implementations of Unix support file locking to lock or unlock an entire file, 
with no capabilities to lock or unlock a range of bytes within the file. This is provided by the 
flock function. 

History 

Various techniques have been employed for file and record locking under Unix over the 
years. Early programs such as UUCP and line printer daemons used various tricks that 
exploited characteristics of the filesystem implementation. (We describe three of these 
filesystem techniques in Section 9.8.) These are slow, however, and better techniques 
were needed for the database systems that were being implemented in the early 1980s. 

The first true file and record locking was added to Version 7 by John Bass in 1980, 
adding a new system call named locking. This provided mandatory record locking 
and was picked up by many versions of System I11 and Xenix. (We describe the differ- 
ences between mandatory and advisory locking, and between record locking and file 
locking later in this chapter.) 

4.2BSD provided file locking (not record locking) with its flock function in 1983. 
The 1984 /usr/group Standard (one of the predecessors to X/Open) defined the 
lockf function, which provided only exclusive locks (write locks), not shared locks 
(read locks). 

In 1984, System V Release 2 (SVR2) provided advisory record locking through the 
f cntl function. The lockf function was also provided, but it was just a library func- 
tion that called fcntl. (Many current systems still provide this implementation of 
lockf using fcntl.) In 1986, System V Release 3 (SVR3) added mandatory record 
locking to f cnt 1 using the set-group-ID bit, as we describe in Section 9.5. 

The 1988 Posix.1 standard standardized advisory file and record locking with the 
f cnt 1 function, and that is what we describe in this chapter. The X/Open Portability 
Guide Issue 3 (XPG3, dated 1988) also specifies that record locking is to be provided 
through the f cnt 1 function. 
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Posix fcntl  Record Locking 

The Posix interface for record locking is the f cnt 1 function. 

#include <fcntl.h> 

int fcntl(inc fd,  int crnd, . . . / *  struct flock *arg * /  ) ;  

Returns: depends on cmd if OK, -1 on error 

Three values of the crnd argument are used with record locking. These three commands 
require that the third argument, arg, be a pointer to an flock structure: 

struct flock [ 

short 1-type; / *  F-RDLCK, F-WRLCK, F-UNLCK * /  
short 1-whence; / *  SEEK-SET, SEEKCUR, SEEK-END * /  
off-t 1-start; / *  relative starting offset in bytes * /  
off-t 1-len; / *  #bytes; 0 means until end-of-file * /  
pid-t lqid; / *  PID returned by F-GETLK * /  

1; 

The three commands are: 

F-SETLK Obtain (an 1-type of either F-RDLCK or F-WRLCK) or release (an 1-type 
of F-UNLCK) the lock described by the flock structure pointed to by arg. 

If the lock cannot be granted to the process, the function returns immedi- 
ately (it does not block) with an error of EACCES or EAGAIN. 

F-SETLKW This command is similar to the previous command; however, if the lock 
cannot be granted to the process, the thread blocks until the lock can be 
granted. (The w at the end of this command name means "wait.") 

F-GETLK Examine the lock pointed to by arg to see whether an existing lock would 
prevent this new lock from being granted. If no lock currently exists that 
would prevent the new lock from being granted, the 1-type member of 
the flock structure pointed to by arg is set to F-UNLCK. Otherwise, infor- 
mation about the existing lock, including the process ID of the process 
holding the lock, is returned in the flock structure pointed to by arg (i.e., 
the contents of the structure are overwritten by this function). 

Realize that issuing an F-GETLK followed by an F-SETLK is not an atomic 
operation. That is, if we call F-GETLK and it sets the 1-type member to 
F-uNLCK on return, this does not guarantee that an immediate issue of the 
F-SETLK will return success. Another process could run between these 
two calls and obtain the lock that we want. 

The reason that the F-GETLK command is provided is to return informa- 
tion about a lock when F-SETLK returns an error, allowing us to determine 
who has the region locked, and how (a read lock or a write lock). But even 
in this scenario, we must be prepared for the F-GETLK command to return 
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that the region is unlocked, because the region can be unlocked between 
the F-SETLK and F-GETLK commands. 

The flock structure describes the type of lock (a read lock or a write lock) and the 
byte range of the file to lock. As with 1 seek, the starting byte offset is specified as a rel- 
ative offset (the 1-start member) and how to interpret that relative offset (the 
1-whenc e member) as 

SEEK-SET: 1-start relative to the beginning of the file, 
SEEK-CUR: 1-s tart relative to the current byte offset of the file, and 
SEEK-END: 1-s tart relative to the end of the file. 

The 1-len member specifies the number of consecutive bytes starting at that offset. A 
length of 0 means "from the starting offset to the largest possible value of the file off- 
set." Therefore, two ways to lock the entire file are 

1. specify an 1-whence of SEEK-SET, an 1-start of 0, and an 1-len of 0; or 

2. position the file to the beginning using lseek and then specify an 1-whence of 
SEEK-CUR, an 1-s tart of 0, and an 1-len of 0. 

The first of these two ways is most common, since it requires a single function call 
(f cntl) instead of two function calls. (See Exercise 9.10 also.) 

A lock can be for reading or writing, and at most, one type of lock (read or write) 
can exist for any byte of a file. Furthermore, a given byte can have multiple read locks 
but only a single write lock. This corresponds to the read-write locks that we described 
in the previous chapter. Naturally an error occurs if we request a read lock when the 
descriptor was not opened for reading, or request a write lock when the descriptor was 
not opened for writing. 

All locks associated with a file for a given process are removed when a descriptor 
for that file is closed by that process, or when the process holding the descriptor termi- 
nates. Locks are not inherited by a child across a fork. 

This cleanup of existing locks by the kernel when the process terminates is provided only by 
f cntl record locking and as an option with System V semaphores. The other synchronization 
techniques that we describe (mutexes, condition variables, read-write locks, and Pmix 
semaphores) do not perform this cleanup on process termination. We talked about this at the 
end of Section 7.7. 

Record locking should not be used with the standard I/O library, because of the 
internal buffering performed by the library. When a file is being locked, read and 
write should be used with the file to avoid problems. 

Example 

We now return to our example from Figure 9.2 and recode the two functions my-lock 
and my-unlock from Figure 9.1 to use Posix record locking. We show these functions 
in Figure 9.3. 
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2 void 
3 my-lock(int fd) 

4 
5 struct flock lock; 

6 1ock.l-type = F-WRLCK; 
7 1ock.l-whence = SEEK-SET: 
8 lock.1-start = 0; 
9 lock.1-len = 0; / *  write lock entire file * /  

10 Fcntl(fd, F-SETLKW, &lock); 
11 1 

12 void 
13 my-unlock(int fd) 

14 I 
15 struct flock lock; 

16 1ock.l-type = F-UNLCK; 
17 1ock.l-whence = SEEK-SET; 
18 lock.1-start = 0; 
19 1ock.l-len = 0; / *  unlock entire file * /  

20 Fcntl ( fd, F-SETLK, &lock) ; 

lock/lockfcntl.c 

Figure 9.3 Posix f cnt 1 locking. 

Notice that we must specify a write lock, to guarantee only one process at a time 
updates the sequence number. (See Exercise 9.4.) We also specify a command of 
F-SETLKW when obtaining the lock, because if the lock is not available, we want to 
block until it is available. 

Given the definition of the flock structure shown earlier, we might think we could initialize 
our structure in my-lock as 

static struct flock lock = ( F-WRLCK, SEEK-SET, 0, 0, 0 ); 

but this is wrong. Posix defines only the required members that must be in a structure, such as 
flock. Implementations can arrange these members in any order, and can also add imple- 
mentationspecific members. 

We do not show the output, but it appears correct. Realize that running our simple 
program from Figure 9.2 does not let us state that our program works. If the output is 
wrong, as we have seen, we can say that our program is not correct, but running two 
copies of the program, each looping 20 times is not an adequate test. The kernel could 
run one program that updates the sequence number 20 times, and then run the other 
program that updates the sequence number another 20 times. If no switch occurs 
between the two processes, we might never see the error. A better test is to run the 
functions from Figure 9.3 with a m a i n  function that increments the sequence number 
say, ten thousand times, without printing the value each time through the loop. If we 
initialize the sequence number to 1 and run 20 copies of this program at the same time, 
then we expect the ending value of the sequence number file to be 200,001. 
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Example: Simpler Macros 

In Figure 9.3, to request or release a lock takes six lines of code. We must allocate a 
structure, fill in the structure, and then call fcntl. We can simplify our programs by 
defining the following seven macros, which are from Section 12.3 of APUE: 

#define read-lock(fd, offset, whence, len) \ 
lock-reg(fd, F-SETLK, F-RDLCK, offset, whence, len) 

#define readw-lock(fd, offset, whence, len) \ 
lock-reg(fd, F-SETLKW, FRDLCK, offset, whence, len) 

#define write-lock(fd, offset, whence, len) \ 
lock-reg(fd, F-SETLK, F-WRLCK, offset, whence, len) 

#define writew-lock(fd, offset, whence, len) \ 
lock-reg(fd, F-SETLKW, F-WRLCK, offset, whence, len) 

#define un-lock(fd, offset, whence, len) \ 
lock-reg(fd, F-SETLK, F-UNLCK, offset, whence, len) 

#define is-read-lockable(fd, offset, whence, len) \ 
lock-test(fd, F-RDLCK, offset, whence, len) 

#define is-write-lockable(fd, offset, whence, len) \ 
-lock-test(fd, F-WRLCK, offset, whence, len) 

These macros use our lock-reg and lock-tes t functions, which are shown in Fig- 
ures 9.4 and 9.5. When using these macros, we need not worry about the structure or 
the function that is actually called. The first three arguments to these macros are pur- 
posely the same as the first three arguments to the lseek function. 

We also define two wrapper functions, Lock-reg and Lock-test, which termi- 
nate with an error upon an f cntl error, along with seven macros whose names also 
begin with a capital letter that call these two wrapper functions. 

Using these macros, our my-lock and my-unlock functions from Figure 9.3 
become 

#define my-lock(fd) (Writew-lock(fd, 0, SEEK-SET, 0)) 
#define my-unlock(fd) (Un-lock(fd, 0, SEEK-SET, 0) ) 

2 int 
3 lock-reg(int fd, int cmd. int type, off-t offset, int whence, off-t len) 
4 I 
5 struct flock lock; 

6 1ock.l-type = type; / *  F-RDLCK, F-WRLCK, F-UNLCK * /  
7 lock-1-start = offset: / *  byte offset, relative to 1-whence * /  
8 lock.1-whence = whence; / *  SEEK-SET, SEEK-CUR, SEEK-END * /  
9 lock.1-len = len; / *  #bytes (0 means to EOF) * /  

10 return (fcntl(fd, cmd, &lock)); / *  -1 upon error * /  
11 1 

lib/lock-reg.c 
Figure 9.4 Call f cnt 1 to obtain or release a lock. 
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2 pid-t 
3 lock-test(int fd, int type, off-t offset, int whence, off-t len) 
4 { 
5 struct flock lock; 

6 1ock.l-type = type; / *  F-RDLCK or F-WRLCK * /  
7 1ock.l-start = offset; / *  byte offset, relative to 1-whence * /  
8 lock.1-whence = whence; / *  SEEK-SET, SEEK-CUR, SEEK-END * /  
9 lock.1-len = len; / *  #bytes (0 means to EOF) * /  

10 if (fcntl(fd, FGETLK, &lock) == -1) 
11 return (-1); / *  unexpected error * /  

12 if (lock. 1-type == F-UNLCK) 
13 return (0) ; / *  false, region not locked by another proc * /  
14 return (1ock.lqid); / *  true, return ~ositive PID of lock owner * /  

Figure 9.5 Call f cnt 1 to test a lock. 

Advisory Locking 

Posix record locking is called advisory locking. This means the kernel maintains correct 
knowledge of all files that have been locked by each process, but it does not prevent a 
process from writing to a file that is read-locked by another process. Similarly, the ker- 
nel does not prevent a process from reading from a file that is write-locked by another 
process. A process can ignore an advisory lock and write to a file that is read-locked, or 
read from a file that is write-locked, assuming the process has adequate permissions to 
read or write the file. 

Advisory locks are fine for cooperating processes. The programming of daemons used 
by network programming is an example of cooperative processes-the programs that 
access a shared resource, such as the sequence number file, are all under control of the 
system administrator. As long as the actual file containing the sequence number is not 
writable by any process, some random process cannot write to the file while it is locked. 

le: Noncooperating Processes 

We can demonstrate that Posix record locking is advisory by running two instances of 
our sequence number program: one instance (lockf cntl) uses the functions from Fig- 
ure 9.3 and locks the file before incrementing the sequence number, and the other 
(locknone) uses the functions from Figure 9.1 that perform no locking. 

solaris % lockfcntl & locknone & 

lockfcntl: pid = 18816, seq# = 1 
lockfcntl: pid = 18816, seq# = 2 
lockfcntl: pid = 18816, seq# = 3 
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lockfcntl: pid = 18816, seq# = 4 
lockfcntl: pid = 18816, seq# = 5 
lockfcntl: pid = 18816, seq# = 6 
lockfcntl: pid = 18816, seq# = 7 
lockfcntl: pid = 18816, seq# = 8 
lockfcntl: pid = 18816, seq# = 9 
lockfcntl: pid = 18816, seq# = 10 
lockfcntl: pid = 18816, seq# = 11 
locknone: pid = 18817, seq# = 11 switch processes; error 
locknone: pid = 18817, seq# = 12 
locknone: pid = 18817, seq# = 13 
locknone: pid = 18817, seq# = 14 
locknone: pid = 18817, seq# = 15 
locknone: pid = 18817, seq# = 16 
locknone: pid = 18817, seq# = 17 
locknone: pid = 18817, seq# = 18 
lockfcntl: pid = 18816, seq# = 12 switch~rocesses;errur 
lockfcntl: pid = 18816, seq# = 13 
lockfcntl: pid = 18816, seq# = 14 
lockfcntl: pid = 18816, seq# = 15 
lockfcntl: pid = 18816, seq# = 16 
lockfcntl: pid = 18816, seq# = 17 
lockfcntl: pid = 18816, seq# = 18 
lockfcntl: pid = 18816, seq# = 19 
lockfcntl: pid = 18816, seq# = 20 
locknone: pid = 18817, seq# = 19 switch processes;error 
locknone: pid = 18817, seq# = 20 
locknone: pid = 18817, seq# = 21 
locknone: pid = 18817, seq# = 22 
locknone: pid = 18817, seq# = 23 
locknone: pid = 18817, seq# = 24 
locknone: pid = 18817, seq# = 25 
locknone: pid = 18817, seq# = 26 
locknone: pid = 18817, seq# = 27 
locknone: pid = 18817, seq# = 28 
locknone: pid = 18817, seq# = 29 
locknone: pid = 18817, seq# = 30 

Our lockf cntl program runs first, but while it is performing the three steps to incre- 
ment the sequence number from 11 to 12 (and while it holds the lock on the entire file), 
the kernel switches processes and our locknone program runs. This new program 
reads the sequence number value of 11 before our lockf cntl program writes it back to 
the file. The advisory record lock held by the lockf cntl program has no effect on our 
1 ocknone program. 

Mandatory Locking 

Some systems provide another type of record locking, called mandatory locking. With a 
mandatory lock, the kernel checks every read and write request to verify that the 
operation does not interfere with a lock held by a process. For a normal blocking 
descriptor, the read or write that conflicts with a mandatory lock puts the process to 
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sleep until the lock is released. With a nonblocking descriptor, issuing a read or write 
that conflicts with a mandatory lock causes an error return of EAGAIN. 

Posix.1 and Unix 98 define only advisory locking. Many implementations derived from 
System V, however, provide both advisory and mandatory locking. Mandatory record locking 
was introduced with System V Release 3. 

To enable mandatory locking for a particular file, 

the group-execute bit must be off, and 
the set-group-ID bit must be on. 

Note that having the set-user-ID bit on for a file without having the user-execute bit on 
also makes no sense, and similarly for the set-group-ID bit and the group-execute bit. 
Therefore, mandatory locking was added in this way, without affecting any existing 
user software. New system calls were not required. 

On systems that support mandatory record locking, the 1s command looks for this 
special combination of bits and prints an 1 or L to indicate that mandatory locking is 
enabled for that file. Similarly, the chmod command accepts a specification of 1 to 
enable mandatory locking for a file. 

On a first glance, using mandatory locking should solve the problem of an uncooperat- 
ing process, since any reads or writes by the uncooperating process on the locked file 
will block that process until the lock is released. Unfortunately, the timing problems are 
more complex, as we can easily demonstrate. 

To change our example using f cnt 1 to use mandatory locking, all we do is change 
the permission bits of the seqno file. We also run a different version of the main func- 
tion that takes the for loop limit from the first command-line argument (instead of 
using the constant 20) and does not call print f each time around the loop. 

s o l a r i s  % cat > seqno 
1 
D 

s o l a r i s  % 1s -1 seqno 

first initialize value to 1 

Control-D is our terminal end-of-file character 

- rw-r--r - -  1 rstevens other1 2 Oct 7 11:24 seqno 
s o l a r i s  % chmod +1 seqno enable mandatory locking 
s o l a r i s  % 1s -1 seqno 
w - - 1 -  1 rstevens  other1 2 Oct 7 11:24 seqno 

We now start two programs in the background: loopf cntl uses f cntl locking, and 
loopnone does no locking. We specify a command-line argument of 10,000, which is 
the number of times that each program reads, increments, and writes the sequence 
number. 

s o l a r i s  % loopf cntl 10000 & lwpnone 10000 & start both programs in the background 
s o l a r i s  % wait wait for both background jobs to finish 
s o l a r i s  % cat seqno and look at the sequence number 
14378 error: should be 20,001 
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Each time we run these two programs, the ending sequence number is normally 
between 14,000 and 16,000. If the locking worked as desired, the ending value would 
always be 20,001. To see where the error occurs, we need to draw a time line of the indi- 
vidual steps, which we show in Figure 9.6. 

lockf cntl locknone 

1. open()  
2. lock file 
3. r e a d ( )  + 1 
4. increment 
5. w r i t e  ( )  + 2  
6. unlock file 

r 7. lock file 
8. r e a d ( )  + 2  

kernel switch + 
10. open()  
11. read  ( ) blocks 

t kernel switch 

L 13. increment 
14. w r i t e 0  + 3  
15. unlock file 

kernel switch + 

t kernel switch 

17. read  ( ) -1 3 
18. increment 
19. w r i t e ( )  + 4  
20. read ( ) + 4 
21. increment 
22. w r i t e  ( )  + 5  
23. read  ( ) + 5 

25. lock file 
26. read  ( ) + 5 
27. increment 
28. w r i t e ( )  + 6  
29. unlock file 
30. lock file 
31. r e a d ( )  + 6  

2 32. increment 
a 33. w r i t e ( )  +7 

34. unlock file 
kernel switch+ 

36. increment 
37. w r i t e 0  + 6  

Figure 9.6 Time line of l oop fcn t l  and loopnone programs. 

We assume that the loopfcntl program starts first and executes the first eight steps 
shown in the figure. The kernel then switches processes while loopf cntl has a record 
lock on the sequence number file. loopnone is then started, but its first read blocks, 
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because the file from which it is reading has an outstanding mandatory lock owned by 
another process. We assume that the kernel switches back to the first program and it 
executes steps 13,14, and 15. This behavior is the type that we expect: the kernel blocks 
the read from the uncooperating process, because the file it is trying to read is locked 
by another process. 

The kernel then switches to the locknone program and it executes steps 17 
through 23. The reads and wri tes  are allowed, because the first program unlocked 
the file in step 15. The problem, however, appears when the program reads the value 
of 5 in step 23 and the kernel then switches to the other process. It obtains the lock and 
also reads the value of 5. This process increments the value twice, storing a value of 7, 
before the next process runs in step 36. But the second process writes a value of 6 to the 
file, which is wrong. 

What we see in this example is that mandatory locking prevents a process from 
reading a file that is locked (step 111, but this does not solve the problem. The problem 
is that the process on the left is allowed to update the file (steps 25 through 34) while the 
process on the right is in the middle of its three steps to update the sequence number 
(steps 23, 36, and 37). If multiple processes are updating a file, all the processes must 
cooperate using some form of locking. One rogue process can create havoc. 

Priorities of Readers and Writers 

In our implementation of read-write locks in Section 8.4, we gave priority to waiting 
writers over waiting readers. We now look at some details of the solution to the readers 
and writer problem provided by f c n t l  record locking. What we want to look at is how 
pending lock requests are handled when a region is already locked, something that is 
not specified by Posix. 

iple: Additional Read Locks While a Write Lock Is Pending 

The first question we ask is: if a resource is read-locked with a write lock queued, is 
another read lock allowed? Some solutions to the readers and writers problem do not 
allow another reader if a writer is already waiting, because if new read requests are con- 
tinually allowed, a possibility exists that the already pending write request will never be 
allowed. 

To test how f c n t l  record locking handles this scenario, we write a test program 
that obtains a read lock on an entire file and then forks two children. The first child 
tries to obtain a write lock (and will block, since the parent holds a read lock on the 
entire file), followed in time by the second child, which tries to obtain a read lock. Fig- 
ure 9.7 shows a time line of these requests, and Figure 9.8 is our test program. 

Parent opens file and obtains read lock 

-8 The parent opens the file and obtains a read lock on the entire file. Notice that we 
call read-lock (which does not block but returns an error if the lock cannot be 
granted) and not readw-lock (which can wait), because we expect this lock to be 
granted immediately. We also print a message with the current time (our gf-time 
function from p. 404 of UNPv1) when the lock is granted. 
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Figure 9.7 Determine whether another read lock is allowed while a write lock is pending. 

fork first child 

9-19 The first child is created and it sleeps for 1 second and then blocks while waiting for 
a write lock of the entire file. When the write lock is granted, this first child holds the 
lock for 2 seconds, releases the lock, and terminates. 

fork second child 

20-30 The second child is created, and it sleeps for 3 seconds to allow the first child's write 
lock to be pending, and then tries to obtain a read lock of the entire file. We can tell by 
the time on the message printed when readw-lock returns whether this read lock is 
queued or granted immediately. The lock is held for 4 seconds and released. 

Parent holds read lock for 5 seconds 

31-35 The parent holds the read lock for 5 seconds, releases the lock, and terminates. 
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lock/test2 .c 
1 #include "unpipc . h" 

2 int 
3 main(int argc, char **argv) 
4 { 

int fd; 

fd = Open("testl.dataW, 0-RDWR 1 0-CREAT, FILE-MODE); 

Read-lock(fd, 0, SEEK-SET, 0); / *  parent read locks entire file * /  
printf("%s: parent has read lock\nN, Gf-time0 ) ;  

if (Fork0 ==0) ( 
/ *  first child * /  

sleep (1) ; 
printf("%s: first child tries to obtain write lock\nn, Gf-time()); 
Writew-lock(fd, 0, SEEK-SET, 0); / *  this should block * /  
printf("%s: first child obtains write lock\nW, Gf-time()); 
sleep(2) ; 
Un-lock ( f d, 0, SEEK-SET, 0 ) ; 
printf("%s: first child releases write lock\nV, Gf-time0 
exit (0) ; 

1 
if (Fork0 == 0) { 

/ *  second child * /  
sleep(3); 
printf("%s: second child tries to obtain read lock\n", Gf 
Readw-lock ( f d, 0, SEEK-SET, 0 ) ; 
printf("%s: second child obtains read lock\nW, Gf-time( 
sleep(4); 
Un-lock(fd, 0, SEEK-SET, 0); 
printf("%s: second child releases read lock\nW, Gf-time 
exit (0) ; 

1 
/ *  parent * /  

sleep(5); 
Un-lock(fd, 0, SEEK-SET, 0); 
printf("%s: parent releases read lock\nU, Gf-time()); 
exit (0) ; 

lock/ test2 r 
Figure 9.8 Determine whether another read lock is allowed while a write lock is pending. 

The time line shown in Figure 9.7 is what we see under Solaris 2.6, Digital Unix 
4.OB, and BSD/OS 3.1. That is, the read lock requested by the second child is granted 
even though a write lock is already pending from the first child. This allows for poten- 
tial starvation of write locks as long as read locks are continually issued. Here is the 
output with some blank lines added between the major time events for readability: 
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alpha % test2 
16:32:29.674453: parent has read lock 

first child tries to obtain write lock 

second child tries to obtain read lock 
second child obtains read lock 

parent releases read lock 

second child releases read lock 
first child obtains write lock 

first child releases write lock 

Example: Do Pending Writers Have a Priority Over Pending Readers? 

The next question we ask is: do pending writers have a priority over pending readers? 
Some solutions to the readers and writers problem build in this priority. 

Figure 9.9 is our test program and Figure 9.10 is a time line of our test program. 

Parent creates file and obtains write lock 

6-8 The parent creates the file and obtains a write lock on the entire file. 

fork and create first child 

9-19 The first child is created, and it sleeps for 1 second and then requests a write lock on 
the entire file. We know this will block, since the parent has a write lock on the entire 
file and holds this lock for 5 seconds, but we want this request queued when the par- 
ent's lock is released. 

fork and create second child 

20-30 The second child is created, and it sleeps for 3 seconds and then requests a read lock 
on the entire file. This too will be queued when the parent releases its write lock. 

Under both Solaris 2.6 and Digital Unix 4.OB, we see that the first child's write lock 
is granted before the second child's read lock, as we show in Figure 9.10. But this 
doesn't tell us that write locks have a priority over read locks, because the reason could 
be that the kernel grants the lock requests in FIFO order, regardless whether they are 
read locks or write locks. To verlfy this, we create another test program nearly identical 
to Figure 9.9, but with the read lock request occurring at time 1 and the write lock 
request occurring at time 3. These two programs show that Solaris and Digital Unix 
handle lock requests in a FIFO order, regardless of the type of lock request. These two 
programs also show that BSD/OS 3.1 gives priority to read requests. 
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2 int 
3 main(int argc, char **argv) 
4 ( 

5 int fd; 

6 fd = Open("testl.data", 0-RDWR I 0-CREAT, FILE-MODE); 
7 Write-lock(fd, 0, SEEK-SET, 0) ; / *  parent write locks entire file * /  
8 printf("%s: parent has write lock\nW, Gf-time0 ) ;  

if (Fork() == 0) { 

/ *  first child * /  
sleep(1) ; 
printf("%s: first child tries to obtain write lock\nu, Gf-time()); 
Writew-lock(fd, 0, SEEK-SET, 0) ; / *  this should block * /  
printf("%s: first child obtains write lock\nN, Gf-time()); 
sleep(2); 
Un-lock(fd, 0, SEEK-SET, 0) ; 
printf("%s: first child releases write lock\nW, Gf-time()); 
exit (0) ; 

1 
if (Fork0 == 0) I 

/ *  second child * /  
sleep (3) ; 
printf("%s: second child tries to obtain read lock\nW, Gf-time()); 
Readw-lock(fd, 0, SEEK-SET, 0); 
printf("%s: second child obtains read lock\nn, Gf-time()); 
sleep(4); 
Un-lock(fd, 0, SEEK-SET, 0); 
printf("%s: second child releases read lock\nn, Gf-time()); 
exit (0) ; 

1 
/ *  parent * /  
sleep(5) ; 
Un-lock(fd, 0, SEEK-SET, 0); 

34 printf("%s: parent releases write lock\n", Gf-time()); 
35 exit (0) ; 

Figure 9.9 Test whether writers have a priority over readers. 
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Figure 9.10 Test whether writers have a priority over readers. 

Here is the output from Figure 9.9, from which we constructed the time line in Fig- 
ure 9.10: 

a lpha % teat3  
16:34:02.810285: parent  has w r i t e  lock 

16:34:03.848166: f i r s t  c h i l d  t r i e s  t o  ob ta in  w r i t e  lock 

16:34:05.861082: second c h i l d  t r i e s  t o  ob ta in  r ead  lock 

16:34:07.858393: parent  r e l e a s e s  w r i t e  lock 
16:34:07.865222: f i r s t  c h i l d  ob ta ins  w r i t e  lock 

16:34:09.865987: f i r s t  c h i l d  r e l e a s e s  w r i t e  lock 
16:34:09.872823: second c h i l d  ob ta ins  read lock 

16:34:13.873822: second c h i l d  r e l e a s e s  read lock 
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Starting Only One Copy of a Daemon 

A common use for record locking is to make certain that only one copy of a program 
(such as a daemon) is running at a time. The code fragment shown in Figure 9.11 would 
be executed when a daemon starts. 

2 #define PATH-PIDFILE "pidfile" 

3 int 
4 rnain(int argc, char **argv) 
5 ( 
6 int pidf d; 
7 char 1 ine [MAXLINE] ; 

8 / *  open the PID file, create if nonexistent * /  
9 pidfd = Open(PATH-PIDFILE, 0-RDWR I 0-CREAT, FILE-MODE); 

/ *  try to write lock the entire file * /  
if (write-lock(pidfd, 0, SEEK-SET, 0) < 0) I 

if (errno == EACCES I I errno == EAGAIN) 
err-quit("unab1e to lock %s, is %s already running?", 

PATH-PIDFILE, argv[O]); 
else 

err-sys("unab1e to lock %sW, PATH-PIDFILE); 
1 

/ *  write my PID, leave file open to hold the write lock * /  
snprintf (line, sizeof (line), "%ld\nW, (long) getpido ) ; 
Ftruncate (pidfd, 0) ; 
Write(pidfd, line, strlen(1ine) ) ;  

22 / *  then do whatever the daemon does . . .  * /  

Figure 9.11 Make certain only one copy of a program is running. 

Open and lock a file 

7 The daemon maintains a 1-line file that contains its process ID. This file is opened, 
being created if necessary, and then a write lock is requested on the entire file. If the 
lock is not granted, then we know that another copy of the program is running, and we 
print an error and terminate. 

Many Unix systems have their daemons write their process ID to a file. Solaris 2.6 stores some 
of these files in the /etc directory. Digital Unix and BSD/OS both store these files in the 
/var / run directory. 

Write our PID to file 

'1 We truncate the file to 0 bytes and then write a line containing our PID. The reason 
for truncating the file is that the previous copy of the program (say before the system 
was rebooted) might have had a process ID of 23456, whereas this instance of the 
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program has a process ID of 123. If we just wrote the line, without truncating the file, 
the contents would be 123\n6\n. While the first line would still contain the process 
ID, it is cleaner and less confusing to avoid the possibility of a second line in the file. 

Here is a test of the program in Figure 9.11: 

solaris % onedaemon & start first copy 
[ 1 1 22388 
solaris % cat pidfile check PID written to file 
22388 
solaris % onedaemon and try to start a second copy 
unable to lock pidfile, is onedaemon already running? 

Other ways exist for a daemon to prevent another copy of itself from being started. 
A semaphore could also be used. The advantages in the method shown in this section 
are that many daemons already write their process ID to a file, and should the daemon 
prematurely crash, the record lock is automatically released by the kernel. 

9.8 Lock Files 

Posix.1 guarantees that if the open function is called with the 0-CREAT (create the file if 
it does not already exist) and 0-EXCL flags (exclusive open), the function returns an 
error if the file already exists. Furthermore, the check for the existence of the file and 
the creation of the file (if it does not already exist) must be atomic with regard to other 
processes. We can therefore use the file created with this technique as a lock. We are 
guaranteed that only one process at a time can create the file (i.e., obtain the lock), and 
to release the lock, we just unlink the file. 

Figure 9.12 shows a version of our locking functions using this technique. If the 
open succeeds, we have the lock, and the my-lock function returns. We close the file 
because we do not need its descriptor: the lock is the existence of the file, regardless of 
whether the file is open or not. If open returns an error of EEXIST, then the file exists 
and we try the open again. 

There are three problems with this technique. 

1. If the process that currently holds the lock terminates without releasing the lock, 
the filename is not removed. There are ad hoc techniques to deal with 
this-check the last-access time of the file and assume it has been orphaned if it 
is older than some amount of time-but none are perfect. Another technique is 
to write the process ID of the process holding the lock into the lock file, so that 
other processes can read this process ID and check whether that process is still 
running. This is imperfect because process IDS are reused after some time. 

This scenario is not a problem with f cntl record locking, because when a pro- 
cess terminates, any record locks held by that process are automatically 
released. 

2. If some other process currently has the file open, we just call open again, in an 
infinite loop. This is called polling and is a waste of CPU time. An alternate 
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2 #define LOCKFILE "/tmp/seqno.lock" 

3 void 
4 my-lock(int fd) 

5 { 
6 int tempfd; 

7 while ( (tempfd = open(L0CKFILE. 0-RDWR I 0-CREAT I 0-EXCL, FILE-MODE)) < 0 )  { 

8 if (errno !=  EEXIST) 
9 err-sys("open error 
10 / *  someone else has the 
11 1 
12 Close (tempfd) ; 

13 1 

for lock file") ; 
lock, loop around and try again * /  

/ *  opened the file, we have the lock */  

14 void 
15 my-unlock (int fd) 

16 { 
17 Unlink (LOCKFILE) ; 
18 1 

/ *  release lock by removing file * /  

lock/lockopen.c 

Figure 9.12 Lock functions using open with 0-CREAT and 0-EXCL flags. 

technique would be to s l e e p  for 1 second, and then try the open again. (We 
saw this same problem in Figure 7.5.) 

This is not a problem with f c n t l  record locking, assuming that the process that 
wants the lock specifies the FSETLKW command. The kernel puts the process to 
sleep until the lock is available and then awakens the process. 

3. Creating and deleting a second file by calling open and unlink involves the 
filesystem and normally takes much longer than calling f c n t l  twice (once to 
obtain the lock and once to release the lock). When the time was measured to 
execute 1000 loops within our program that increments the sequence number, 
f c n t l  record locking was faster than calling open and unlink by a factor of 
75. 

Two other quirks of the Unix filesystem have also been used to provide ad hoc lock- 
ing. The first is that the l i n k  function fails if the name of the new link already exists. 
To obtain a lock, a unique temporary file is first created whose pathname contains the 
process ID (or some combination of the process ID and thread ID, if locking is needed 
between threads in different processes and between threads within the same process). 
The l i n k  function is then called to create a link to this file under the well-known path- 
name of the lock file. If this succeeds, then the temporary pathname can be unlinked. 
When the thread is finished with the lock, it just unlinks the well-known pathname. If 
the l i n k  fails with an error of EEXIST, the thread must try again (similar to what we 
did in Figure 9.12). One requirement of this technique is that the temporary file and the 
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well-known pathname must both reside on the same filesystem, because most versions 
of Unix do not allow hard links (the result of the link function) across different file- 
systems. 

The second quirk is based on open returning an error if the file exists, if O-TRUNC is 
specified, and if write permission is denied. To obtain a lock, we call open, specifying 
0-CREAT I 0-WRONLY I 0-TRUNC and a mode of 0 (i.e., the new file has no permission 
bits enabled). If this succeeds, we have the lock and we just unlink the pathname 
when we are done. If open fails with an error of EACCES, the thread must try again 
(similar to what we did in Figure 9.12). One caveat is that this trick does not work if the 
calling thread has superuser privileges. 

The lesson from these examples is to use f cntl record locking. Nevertheless, you 
may encounter code that uses these older types of locking, often in programs written 
before the widespread implementation of f cntl locking. 

9.9 NFS Locking 

NFS is the Network File System and is discussed in Chapter 29 of TCPv1. f cntl record 
locking is an extension to NFS that is supported by most implementations of NFS. Unix 
systems normally support NFS record locking with two additional daemons: lockd 
and statd. When a process calls f cntl to obtain a lock, and the kernel detects that the 
descriptor refers to a file that is on an NFS-mounted filesystem, the local lockd sends 
the request to the server's lockd. The s tatd daemon keeps track of the clients hold- 
ing locks and interacts with lockd to provide crash and recovery functions for NFS 
locking. 

We should expect record locking for an NFS file to take longer than record locking 
for a local file, since network communication is required to obtain and release each lock. 
To test NFS record locking, all we need to change is the filename specified by SEQFILE 
in Figure 9.2. If we measure the time required for our program to execute 10,000 loops 
using f cntl record locking, it is about 80 times faster for a local file than for an NFS 
file. Also realize that when the sequence number file is on an NFS-mounted filesystem, 
network communication is involved for both the record locking and for the reading and 
writing of the sequence number. 

Caveat emptor: NFS record locking has been a problem for many years, and most of the prob- 
lems have been caused by poor implementations. Despite the fact that the major Unix vendors 
have finally cleaned up their implementations, using f cntl record locking over NFS is still a 
religious issue for many. We will not take sides on this issue but will just note that f cntl 
record locking is supposed to work over NFS, but your success depends on the quality of the 
implementations, both client and server. 

9.10 Summary 

f cntl record locking provides advisory or mandatory locking of a file that is refer- 
enced through its open descriptor. These locks are for locking between different pro- 
cesses and not for locking between the different threads within one process. The term 
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"record" is a misnomer because the Unix kernel has no  concept of records within a file. 
A better term is "range locking," because we  speclfy a range of bytes within the file to 
lock or unlock. Almost all uses of this type of record locking are advisory between 
cooperating processes, because even mandatory locking can lead to inconsistent data, as  
we showed. 

With f c n t l  record locking, there is no  guarantee as  to the priority of pending read- 
ers versus pending writers, which is what w e  saw in Chapter 8 with read-write locks. 
If this is important to a n  application, tests similar to the ones w e  developed in Sec- 
tion 9.6 should be coded and run, or  the application should provide its own read-write 
locks (as we  did in Section 8.4), providing whatever priority is desired. 

Exercises 

Build the locknone program from Figures 9.2 and 9.1 and run it multiple times on your 
system. Verify that the program does not work without any locking, and that the results are 
nondeterministic. 

Modify Figure 9.2 so that the standard output is unbuffered. What effect does this have? 

Continue the previous exercise by also calling putchar for every character that is output to 
standard output, instead of calling printf. What effect does this have? 

Change the lock in the my-lock function in Figure 9.3 to be a read lock instead of a write 
lock. What happens? 

Change the call to open in the loopmain. c program to specify the O-NONBLOCK flag also. 
Build the loopfcntlnonb program and run two instances of it at the same time. Does 
anything change? Why? 

Continue the previous exercise by using the nonblocking version of loopmain. c to build 
the loopnonenonb program (using the locknone. c file, which performs no locking). 
Enable the s e w 0  file for mandatory locking. Run one instance of this program and 
another instance of the loopf cntlnonb program from the previous exercise at the same 
time. What happens? 

Build the loopf cntl program and run it 10 times in the background from a shell script. 
Each of the 10 instances should specify a command-line argument of 10,000. First, time the 
shell script when advisory locking is used, and then change the permissions of the s e w 0  
file to enable mandatory locking. What effect does mandatory locking have on perfor- 
mance? 

In Figures 9.8 and 9.9, why did we call fork to create child processes instead of calling 
pthread-create to create threads? 

In Figure 9.11, we call ftruncate to set the size of the file to 0 bytes. Why don't we just 
specify the 0-TRUNC flag for open instead? 

If we are writing a threaded application that uses fcntl record locking, should we use 
SEEK-SET, SEEK-CUR, or SEEK-END when specifying the starting byte offset to lock, and 
whv? 



Posix Semaphores 

Introduction 

A semaphore is a primitive used to provide synchronization between various processes 
or between the various threads in a given process. We look at three types of 
semaphores in this text. 

Posix named semaphores are identified by Posix IPC names (Section 2.2) and can 
be used to synchronize processes or threads. 

Posix memory-based semaphores are stored in shared memory and can be used 
to synchronize processes or threads. 

System V semaphores (Chapter 11) are maintained in the kernel and can be used 
to synchronize processes or threads. 

For now, we concern ourselves with synchronization between different processes. We 
first consider a binary semaphore: a semaphore that can assume only the values 0 or 1. 
We show this in Figure 10.1. 

functions to 
- - - - - - - -  - - - - - - -  - - - - - -  create, wait for, and 
kernel prOcee 1 post to semaphore 

semaphore:] 0 or 1 1 
Figure 10.1 A binary semaphore being used by two processes. 
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We show that the semaphore is maintained by the kernel (which is true for System V 
semaphores) and that its value can be 0 or 1. 

Posix semaphores need not be maintained in the kernel. Also, Posix semaphores 
are identified by names that might correspond to pathnames in the filesystem. There- 
fore, Figure 10.2 is a more realistic picture of what is termed a Posix named semaphore. 

functions to 
create, wait for, and 

kernel post to semaphore 

binary semaphore is a file 
whose contents are 0 or 1 

Figure 10.2 A Posix named binary semaphore being used by two processes. 

We must make one qualification with regard to Figure 10.2: although Posix named semaphores 
are identified by names that might correspond to pathnames in the filesystem, nothing 
requires that they actually be stored in a file in the filesystem. An embedded realtime system, 
for example, could use the name to identify the semaphore, but keep the actual semaphore 
value somewhere in the kernel. But if mapped files are used for the implementation (and we 
show such an implementation in Section 10.151, then the actual value does appear in a file and 
that file is mapped into the address space of all the processes that have the semaphore open. 

In Figures 10.1 and 10.2, we note three operations that a process can perform on a 
semaphore: 

1. Create a semaphore. This also requires the caller to specify the initial value, 
which for a binary semaphore is often 1, but can be 0. 

2. Wait for a semaphore. This tests the value of the semaphore, waits (blocks) if 
the value is less than or equal to 0, and then decrements the semaphore value 
once it is greater than 0. This can be summarized by the pseudocode 

while (semaphore-value <= 0 )  
; / *  wait ;  i - e . ,  block t h e  thread o r  process * /  

semaphore-value--; 
/ *  we have t h e  semaphore * /  

The fundamental requirement here is that the test of the value in the w h i l e  
statement, and its subsequent decrement (if its value was greater than O), must 
be done as an atomic operation with respect to other threads or processes access- 
ing this semaphore. (That is one reason System V semaphores were imple- 
mented in the mid-1980s within the kernel. Since the semaphore operations 
were system calls within the kernel, guaranteeing this atomicity with regard to 
other processes was easy.) 

There are other common names for this operation: originally it was called P by 
Edsger Dijkstra, for the Dutch word proberen (meaning to try). It is also known 
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as down (since the value of the semaphore is being decremented) and lock, but 
we will use the Posix term of wait. 

3. Post to a semaphore. This increments the value of the semaphore and can be 
summarized by the pseudocode 

If any processes are blocked, waiting for this semaphore's value to be greater 
than 0, one of those processes can now be awoken. As with the wait code just 
shown, this post operation must also be atomic with regard to other processes 
accessing the semaphore. 

There are other common names for this operation: originally it was called V for 
the Dutch word verhogen (meaning to increment). It is also known as up (since 
the value of the semaphore is being incremented), unlock, and signal. We will 
use the Posix term of post. 

Obviously, the actual semaphore code has more details than we show in the pseu- 
docode for the wait and post operations: namely how to queue all the processes that are 
waiting for a given semaphore and then how to wake up one (of the possibly many pro- 
cesses) that is waiting for a given semaphore to be posted to. Fortunately, these details 
are handled by the implementation. 

Notice that the pseudocode shown does not assume a binary semaphore with the 
values 0 and 1. The code works with semaphores that are initialized to any nonnegative 
value. These are called counting semaphores. These are normally initialized to some 
value N, which indicates the number of resources (say buffers) available. We show 
examples of both binary semaphores and counting semaphores throughout the chapter. 

We often differentiate between a binary semaphore and a counting semaphore, and we do so 
for our own edification. No difference exists between the two in the system code that imple- 
ments a semaphore. 

A binary semaphore can be used for mutual exclusion, just like a mutex. Fig- 
ure 10.3 shows an example. 

initialize mutex; initialize semaphore to 1; 

pthread~mutex~lock(&mutex); 
critical region 
pthread~mutex~unlock(&mutex); 

sem-wait(&sem); 
critical region 
semqost (&sem) ; 

Figure 10.3 Comparison of mutex and semaphore to solve mutual exclusion problem. 

We initialize the semaphore to 1. The call to sem-wai t waits for the value to be greater 
than 0 and then decrements the value. The call to semjost increments the value 
(from 0 to 1) and wakes up any threads blocked in a call to sem-wait for this 
semaphore. 

Although semaphores can be used like a mutex, semaphores have a feature not pro- 
vided by mutexes: a mutex must always be unlocked by the thread that locked the 
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mutex, while a semaphore post need not be performed by the same thread that did the 
semaphore wait. We can show an example of this feature using two binary semaphores 
and a simplified version of the producer-consumer problem from Chapter 7. Fig- 
ure 10.4 shows a producer that places an item into a shared buffer and a consumer that 
removes the item. For simplicity, assume that the buffer holds one item. 

-4 shared buffer 1-b consumer 

Figure 10.4 Simple producer-consumer problem with a shared buffer. 

Figure 10.5 shows the pseudocode for the producer and consumer. 

Producer 

initialize semaphore get to 0; 
initialize semaphore put to 1; 

sem-wait (&put) ; 
put data into buffer 
sem-post (&get) ; 

1 

Consumer 

f o r ( ; ; ) (  
sem-wait(&get); 
process data in buffer 

Figure 10.5 Pseudocode for simple producer+mnsumer. 

The semaphore put controls whether the producer can place an item into the shared 
buffer, and the semaphore get controls whether the consumer can remove an item from 
the shared buffer. The steps that occur over time are as follows: 

1. The producer initializes the buffer and the two semaphores. 

2. Assume that the consumer then runs. It blocks in its call to sem-wait because 
the value of get is 0. 

3. Sometime later, the producer starts. When it calls sem-wait, the value of put 
is decremented from 1 to 0, and the producer places an item into the buffer. It 
then calls semjost to increment the value of get from 0 to 1. Since a thread is 
blocked on this semaphore (the consumer), waiting for its value to become posi- 
tive, that thread is marked as ready-to-run. But assume that the producer con- 
tinues to run. The producer then blocks in its call to sem-wait at the top of the 
for loop, because the value of put is 0. The producer must wait until the con- 
sumer empties the buffer. 

4. The consumer returns from its call to sem-wait, which decrements the value of 
the get semaphore from 1 to 0. It processes the data in the buffer, and calls 
sem_post, which increments the value of put from 0 to 1. Since a thread is 
blocked on this semaphore (the producer), waiting for its value to become posi- 
tive, that thread is marked as ready-to-run. But assume that the consumer con- 
tinues to run. The consumer then blocks in its call to sem-wait, at the top of 
the for loop, because the value of get is 0. 
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5. The producer returns from its call to sem-wait, places data into the buffer, and 
this scenario just continues. 

We assumed that each time s e n j o s t  was called, even though a process was waiting 
and was then marked as ready-to-run, the caller continued. Whether the caller contin- 
ues or whether the thread that just became ready runs does not matter (you should 
assume the other scenario and convince yourself of this fact). 

We can list three differences among semaphores and mutexes and condition vari- 
ables. 

1. A mutex must always be unlocked by the thread that locked the mutex, whereas 
a semaphore post need not be performed by the same thread that did the 
semaphore wait. This is what we just showed in our example. 

2. A mutex is either locked or unlocked (a binary state, similar to a binary 
semaphore). 

3. Since a semaphore has state associated with it (its count), a semaphore post is 
always remembered. When a condition variable is signaled, if no thread is wait- 
ing for this condition variable, the signal is lost. As an example of this feature, 
consider Figure 10.5 but assume that the first time through the producer loop, 
the consumer has not yet called sen-wait. The producer can still put the data 
item into the buffer, call s e m j o s t  on the g e t  semaphore (incrementing its 
value from 0 to I), and then block in its call to sen-wait on the put  
semaphore. Some time later, the consumer can enter its f o r  loop and call 
sen-wait on the g e t  variable, which will decrement the semaphore's value 
from 1 to 0, and the consumer then processes the buffer. 

The Posix.1 Rationale states the following reason for providing semaphores along with 
mutexes and condition variables: "Semaphores are provided in this standard primarily to pro- 
vide a means of synchronization for processes; these processes may or may not share memory. 
Mutexes and condition variables are specified as synchronization mechanisms between 
threads; these threads always share (some) memory. Both are synchronization paradigms that 
have been in widespread use for a number of years. Each set of primitives is particularly well 
matched to certain problems." We will see in Section 10.15 that it takes about 300 lines of C to 
implement counting semaphores with kernel persistence, using mutexes and condition 
variables-applications should not have to reinvent these 300 lines of C themselves. Even 
though semaphores are intended for interprocess synchronization and mutexes and condition 
variables are intended for interthread synchronization, semaphores can be used between 
threads and mutexes and condition variables can be used between processes. We should use 
whichever set of primitives fits the application. 

We mentioned that Posix provides two types of semaphores: named semaphores and 
memory-based (also called unnamed) semaphores. Figure 10.6 compares the functions 
used for both types of semaphores. 

Figure 10.2 illustrated a Posix named semaphore. Figure 10.7 shows a Posix mem- 
ory-based semaphore within a process that is shared by two threads. 
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named memory-based 
semaphore semaphore 

semqost ( ) 

sem-getvalue ( ) 

sem-unlink ( ) 

Figure 10.6 Function calls for Posix semaphores. 

I thread I 
I 
I 
I 
I 

I 
I 

I thread I 

Figure 10.7 Memory-based semaphore shared between two threads within a process. 

Figure 10.8 shows a Posix memory-based semaphore in shared memory (Part 4) that 
is shared by two processes. We show that the shared memory belongs to the address 
space of both processes. 

I 
I 

I process A 
I / I 

u 
shared memory 

Figure 10.8 Memory-based semaphore in shared memory, shared by two processes. 

In this chapter, we first describe Posix named semaphores and then Posix memory- 
based semaphores. We return to the producer-consumer problem from Section 7.3 and 
expand it to allow multiple producers with one consumer and finally multiple 
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producers and multiple consumers. We then show that the common I/O technique of 
multiple buffers is just a special case of the producer-consumer problem. 

We show three implementations of Posix named semaphores: the first using FIFOs, 
the next using memory-mapped I/O with mutexes and condition variables, and the last 
using System V semaphores. 

.2 sem-open, sem-close, and sem-unlink Functions 

The function sem-open creates a new named semaphore or opens an existing named 
semaphore. A named semaphore can always be used to synchronize either threads or 
processes. 

#include <semaphore.h> 

sem-t *sem-open(const char *name, int oflag, . . . 
/ * mode-t mode, unsigned int value * / ) : 

I Returns: pointer to semaphore if OK, SEM-FAILED on error I 

We described the rules about the name argument in Section 2.2. 
The oflag argument is either 0, 0-CREAT, or 0-CREAT I 0-EXCL, as described in 

Section 2.3. If 0-CREAT is specified, then the third and fourth arguments are required: 
mode specifies the permission bits (Figure 2.41, and value specifies the initial value of the 
semaphore. This initial value cannot exceed SEM-VALUE-MAX, which must be at least 
32767. Binary semaphores usually have an initial value of 1, whereas counting 
semaphores often have an initial value greater than 1. 

If 0-CREAT is specified (without specifying 0-EXCL), the semaphore is initialized 
only if it does not already exist. Specifying 0-CREAT if the semaphore already exists is 
not an error. This flag just means "create and initialize the semaphore if it does not 
already exist." But specifying 0-CREAT ( 0-EXCL is an error if the semaphore already 
exists. 

The return value is a pointer to a sem-t datatype. This pointer is then used as the 
argument to sem-close, sem-wait, sem-trywait, sem_post, and sem-getvalue. 

The return value of SEM-FAILED to indicate an error is strange. A null pointer would make 
more sense. Earlier drafts that led to the Posix standard specified a return value of -1 to indi- 
cate an error, and many implementations define 

Posix.1 says little about the permission bits associated with a semaphore when it is created or 
opened by sem-open. Indeed, notice from Figure 2.3 and our discussion above that we do not 
even specify 0-RDONLY, 0-WRONLY, or 0-RDWR in the o&g argument when opening a named 
semaphore. The two systems used for the examples in this book, Digital Unix 4.08 and Solaris 
2.6, both require read access and write access to an existing semaphore for sem-open to suc- 
ceed. The reason is probably that the two semaphore operations-post and wait-both read 
and change the value of the semaphore. Not having either read access or write access for an 
existing semaphore on these two implementations causes the sem-open function to return an 
error of EACCES ("Permission denied"). 
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A named semaphore that was opened by sem-open is closed by sen-close. 

#include csemaphore.h> 

int sem-close (sem-t *sem) ; 

Returns: 0 if OK, -1 on error 

This semaphore close operation also occurs automatically on process termination for any 
named semaphore that is still open. This happens whether the process terminates vol- 
untarily (by calling e x i t  or - exit), or involuntarily (by being killed by a signal). 

Closing a semaphore does not remove the semaphore from the system. That is, 
Posix named semaphores are at least kernel-persistent: they retain their value even if no 
process currently has the semaphore open. 

A named semaphore is removed from the system by sem-unlink. 

#include <semaphore.h> 

int sen-unlink(const char *name);  

Returns: 0 if OK, -1 on error 

Semaphores have a reference count of how many times they are currently open (just like 
files), and this function is similar to the unlink function for a file: the name can be 
removed from the filesystem while its reference count is greater than 0, but the destruc- 
tion of the semaphore (versus removing its name from the filesystem) does not take 
place until the last sem-close occurs. 

10.3 sem-wait and sem-trywait Functions 

The sem- wai t  function tests the value of the specified semaphore, and if the value is 
greater than 0, the value is decremented and the function returns immediately. If the 
value is 0 when the function is called, the calling thread is put to sleep until the 
semaphore value is greater than 0, at which time it will be decremented, and the func- 
tion then returns. We mentioned earlier that the "test and decrement" operation must 
be atomic with regard to other threads accessing this semaphore. 

#include <semaphore.h> 

int sem-wait (sem-t *sem) ; 

int sem-trywait(sem-t * s e n ] ) ;  

Both return: 0 if OK, -1 on error 
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10.5 Simple Programs 

We now provide some simple programs that operate on Posix named semaphores, to 
learn more about their functionality and implementation. Since Posix named 
semaphores have at least kernel persistence, we can manipulate them across multiple 
programs. 

semcreate Program 

Figure 10.9 creates a named semaphore, allowing a -e option to specify an exclusive- 
create, and a -i option to specify an initial value (other than the default of 1). 

pxsem/semcreate.c 
1 #include "unpipc . h" 
2 int 
3 main(int argc, char **argv) 
4 I 
5 int c, flags; 
6 sem-t *sem; 
7 unsigned int value; 

8 flags = 0-RDWR I 0-CREAT; 
9 value = 1; 
10 while ( (c = Getopt(argc, argv, "ei:" ) )  !=  -1) { 

11 switch (c) { 
12 case ' e' : 
13 flags I= 0-EXCL; 
14 break; 

15 case 'i': 
16 value = atoi(optarg); 
17 break; 
18 1 
19 1 
20 if (optind != argc - 1) 
21 errquit("usage: semcreate [ -e I [ -i initalvalue I <name>"): 

2 2 sem = Sem-open(argv[optindl, flags, FILE-MODE, value): 

2 3 Sem-close(sem); 
24 exit (0) ; 
25 1 

pxsem/semcreate.c 
Figure 10.9 Create a named semaphore. 

Create semaphore 

22 Since we always specify the 0-CREAT flag, we must call sem-open with four argu- 
ments. The final two arguments, however, are used by sem-open only if the 
semaphore does not already exist. 

Close semaphore 

23 We call sem-close, although if this call were omitted, the semaphore is still closed 
(and the system resources released) when the process terminates. 
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anlink Program 

The program in Figure 10.10 unlinks a named semaphore. 

2 int 
3 main(int argc, char **argv) 

4 { 
5 if (argc !=  2) 
6 err-quit ( "usage: semunlink <name>" ) ; 

8 exit (0) ; 

9 } 
pxsern/sernunlink.c 

Figure 10.10 Unlink a named semaphore. 

getvalue Program 

Figure 10.11 is a simple program that opens a named semaphore, fetches its current 
value, and prints that value. 

2 int 
3 main(int argc, char **argv) 

4 { 
5 sem-t *sem; 
6 int val ; 

7 if (argc !=  2) 
8 err-quit("usage: semgetvalue <name>"); 

9 sem = Sem-open(argv[l], 0); 
10 Sem-getvalue(sem, &val); 
11 printf("va1ue = %d\nM, val); 

12 exit (0) ; 

13 1 
pxsern/serngetvalue.c 

Figure 10.11 Get and print a semaphore's value. 

Open semaphore 

9 When we are opening a semaphore that must already exist, the second argument to 
sem-open is 0: we do not specify 0-CREAT and there are no other 0-xxx constants to 
specify. 
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semwait Program 

The program in Figure 10.12 opens a named semaphore, calls sem-wait (which will 
block if the semaphore's value is currently less than or equal to 0, and then decrements 
the semaphore value), fetches and prints the semaphore's value, and then blocks forever 
in a call to pause. 

pxsern/semwait.c 
1 #include " unpipc . h" 

2 int 
3 main(int argc, char **argv) 
4 { 
5 sem-t *sem; 
6 int val ; 

7 if (argc !=  2) 
8 errquit("usage: semwait <name>"); 

9 sem = Sem-open (argv [ 11 , 0 ) : 
10 Sem-wait (sem) ; 
11 Sem-getvalue(sem, mall; 
12 printf("pid %Id has semaphore, value = %d\nW, (long) getpido, val); 

13 pause ( ) ; 
14 exit (0) ; 

/ *  blocks until killed * /  

15 } 
pxsemlsemwait.~ 

Figure 10.12 Wait for a semaphore and print its value. 

sempost Program 

Figure 10.13 is a program that posts to a named semaphore (i.e., increments its value by 
one) and then fetches and prints the semaphore's value. 

2 int 
3 main(int argc, char **argv) 

4 { 

5 sem-t *sem; 
6 int val ; 

7 if (argc !=  2) 
8 err-quit("usage: sempost <name>"); 

9 sem = Sem-open(argv[ll, 0); 
10 Semgost ( sem) ; 
11 Sem-getvalue(sem, &val); 
12 printf ("value = %d\nn, val) ; 

13 exit (0) ; 
14 } 

pxsem lsempost .c 
Figure 10.13 Post to a semaphore. 
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mples 

We first create a named semaphore under Digital Unix 4.08 and print its (default) value. 

alpha % semcreate /tnlp/testl 
alpha % 1s -1 /tmp/testl 
-rT,J-r--r-- 1 rstevens system 264 Nov 13 08:51 /tmp/testl 
alpha % semgetvalue /tnlp/testl 
value = 1 

As with Posix message queues, the system creates a file in the filesystem corresponding 
to the name that we specify for the named semaphore. 

We now wait for the semaphore and then abort the program that holds the 
semaphore lock. 

alpha % semwait /tnlp/testl 
pid 9702 has semaphore, value = 0 thevalueafter sen-wait returns 
a ? type our interrupt key to abort program 
alpha % semgetvalue /tnlp/testl 
value = 0 and value remains 0 

This example shows two features that we mentioned earlier. First, the value of a 
semaphore is kernel-persistent. That is, the semaphore's value of 1 is maintained by the 
kernel from when the semaphore was created in our previous example, even though no 
program had the semaphore open during this time. Second, when we abort our 
semwait program that holds the semaphore lock, the value of the semaphore does not 
change. That is, the semaphore is not unlocked by the kernel when a process holding 
the lock terminates without releasing the lock. This differs from record locks, which we 
said in Chapter 9 are automatically released when the process holding the lock termi- 
nates without releasing the lock. 

We now show that this implementation uses a negative semaphore value to indicate 
the number of processes waiting for the semaphore to be unlocked. 

alpha % semgetvalue /tnlp/testl 
value = 0 value is still 0 from previous example 

alpha % semwait / t ~ / t e s t l  & start in the background 
[ll 9718 it blocks, waiting for semaphore 

alpha % semgetvalue /tmp/testl 
value = -1 one process waiting for semaphore 

alpha % semwait /t-/testl & start another in the background 
[21 9727 it also blocks, waiting for semaphore 

alpha % semgetvalue /tnlp/testl 
value = -2 two processes waiting for semaphore 

alpha % sempost /t=/testl  now post to semaphore 
value = -1 value after semsost returns 
pid 9718 has semaphore, value = -1 output from semwait program 

alpha % sempost /tmp/testl post again to semaphore 
value = 0 
pid 9727 has semaphore, value = 0 output from other semwait program 
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When the value is -2 and we execute our sempost program, the value is incremental 
to -1 and one of the processes blocked in the call to sem-wait returns. 

We now execute the same example under Solaris 2.6 to see the differences in the 
implementation. 

solaris % semcreate /test2 
solaris % 1s -1 /tmp/.*test2* 
-rW-r--r-- 1 rstevens other1 48 Nov 13 09:ll /tmp/.SEMDtest2 

-rw-rw-rw- 1 rstevens other1 0 Nov 13 09:ll /tmp/.SEMLtest2 
solaris % semgetvalue /test2 
value = 1 

As with Posix message queues, files are created in the /tmp directory containing the 
specified name as the filename suffixes. We see that the permissions on the first file cor- 
respond to the permissions specified in our call to sem-open, and we guess that the 
second file is used for locking. 

We now verify that the kernel does not automatically post to a semaphore when the 
process holding the semaphore lock terminates without releasing the lock. 

solaris % semwait /test2 
pid 4133 has semaphore, value = 0 
-? type our interrupt key 
solaris % semgetvalue /test2 
value = 0 value remains 0 

Next we see how this implementation handles the semaphore value when processes are 
waiting for the semaphore. 

solaris % semgetvalue /test2 
value = 0 

solaris % semwait /test2 & 

[I] 4257 

solaris % semgetvalue /test2 
value = 0 

solaris % semwait /test2 & 

[21 4263 

solaris % semgetvalue /test2 
value = 0 

solaris % sempost /test2 
pid 4257 has semaphore, value = 0 
value = 0 

solaris % semgost /test2 
pid 4263 has semaphore, value = 0 
value = 0 

value is still 0 from previous example 

start in the background 
it blocks, waiting for semaphore 

this implementation does not use negative values 

start another in the background 

value remains 0 with two processes waiting 

now post to semaphore 
output from semwai t program 

output from other semwai t program 

One difference in this output compared to the previous output under Digital Unix, is 
when the semaphore is posted to: it appears that the waiting process runs before the 
process that posted to the semaphore. 
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I Producer-Consumer Problem 

In Section 7.3, we described the producer-consurner problem and showed some solutions 
in which multiple producer threads filled an array that was processed by one consumer 
thread. 

1. In our first solution (Section 7.2), the consumer started only after the producers 
were finished, and we were able to solve this synchronization problem using a 
single mutex (to synchronize the producers). 

2. In our next solution (Section 7-51, the consumer started before the producers 
were finished, and this required a mutex (to synchronize the producers) along 
with a condition variable and its mutex (to synchronize the consumer with the 
producers). 

We now extend the producer-consumer problem by using the shared buffer as a circular 
buffer: after the producer fills the final entry (buff [NBUFF-1 I ), it goes back and fills 
the first entry (buff [ 0 I 1, and the consumer does the same. This adds another synchro- 
nization problem in that the producer must not get ahead of the consumer. We still 
assume that the producer and consumer are threads, but they could also be processes, 
assuming that some way existed to share the buffer between the processes (e.g., shared 
memory, which we describe in Part 4). 

Three conditions must be maintained by the code when the shared buffer is consid- 
ered as a circular buffer: 

1. The consumer cannot try to remove an item from the buffer when the buffer is 
empty. 

2. The producer cannot try to place an item into the buffer when the buffer is full. 

3. Shared variables may describe the current state of the buffer (indexes, counts, 
linked list pointers, etc.), so all buffer manipulations by the producer and con- 
sumer must be protected to avoid any race conditions. 

Our solution using semaphores demonstrates three different types of semaphores: 

1. A binary semaphore named mutex protects the critical regions: inserting a data 
item into the buffer (for the producer) and removing a data item from the buffer 
(for the consumer). A binary semaphore that is used as a mutex is initialized to 
1. (Obviously we could use a real mutex for this, instead of a binary 
semaphore. See Exercise 10.1 0.) 

2. A counting semaphore named nempty counts the number of empty slots in the 
buffer. This semaphore is initialized to the number of slots in the buffer 
(NBUFF). 

3. A counting semaphore named n s t o r e d  counts the number of filled slots in the 
buffer. This semaphore is initialized to 0, since the buffer is initially empty. 
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Figure 10.14 shows the status of our buffer and the two counting semaphores when the 
program has finished its initialization. We have shaded the array elements that are 
unused. 

buff [ll : 
L 

ns  nempty: tored: M 

buff[2] : 

buff [31 : 

buff [NBUFF-11 : 

Figure 10.14 Buffer and the two counting semaphores after initialization. 

i 
h 

-~- 

In our example, the producer just stores the integers 0 through NLOOP-1 into the buffer 
(buff [ 0 I = 0, buff [ 1 I = 1, and so on), using the buffer as a circular buffer. The 
consumer takes these integers from the buffer and verifies that they are correct, printing 
any errors to standard output. 

Figure 10.15 shows the buffer and the counting semaphores after the producer has 
placed three items into the buffer, but before the consumer has taken any of these items 
from the buffer. 

producer places 
3 items into buffer 

- b u f f [ l ] : ~  
d - b u f f [ 2 1 : V J  buff [31: 

1 

buff [NBUFF-11 : I 1  

nstored: 1 3 1 
Figure 10.15 Buffer and semaphores after three items placed into buffer by producer. 

We next assume that the consumer removes one item from the buffer, and we show 
this in Figure 10.16. 
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b u f f [ O ] : ( Y  + consumer removes 
1 item from buffer 

b u f f  b u f f [ l l : K /  [21 : 

b u f f  [31 : m 

nstored: 1 2  1 
Figure 10.16 Buffer and semaphores after consumer removes first item from buffer. 

Figure 10.17 is the m a i n  function that creates the three semaphores, creates two 
threads, waits for both threads to complete, and then removes the semaphores. 

Globals 

6-10 The buffer containing NBUFF items is shared between the two threads, as are the 
three semaphore pointers. As described in Chapter 7, we collect these into a structure to 
reiterate that the semaphores are used to synchronize access to the buffer. 

Create semaphores 

19-25 Three semaphores are created and their names are passed to our px-ipc-name 
function. We specify the 0-EXCL flag because we need to initialize each semaphore to 
the correct value. If any of the three semaphores are still lying around from a previous 
run of this program that aborted, we could handle that by calling s e m- u n l i n k  for each 
semaphore, ignoring any errors, before creating the semaphores. Alternately, we could 
check for an error of EEXIST from sem-open with the 0-EXCL flag, and call 
s e m- u n l i n k  followed by another call to sem-open, but this is more complicated. If 
we need to verify that only one copy of this program is running (which we could do 
before trying to create any of the semaphores), we would do so as described in Sec- 
tion 9.7. 

Create two threads 

26-29 The two threads are created, one as the producer and one as the consumer. No 
arguments are passed to the two threads. 

30-36 The main thread then waits for both threads to terminate, and removes the three 
semaphores. 

We could also call sem-close for each semaphore, but this happens automatically when the 
process terminates. Removing the name of a named semaphore, however, must be done 
explicitly. 

Figure 10.18 shows the p r o d u c e  and consume functions. 



236 Posix Semaphores Chapter 10 

2 #define NBUFF 10 
3 #define SEM-MUTEX "mutex" / *  these are args to px-ipc-name() * /  
4 #define SEM-NEMPTY "nempty" 
5 #define SEM-NSTORED "nstored" 

6 int nitems; / *  read-only by producer and consumer * /  
7 struct { / *  data shared by producer and consumer */  
8 int buff [NBUFF] ; 
9 sen-t *mutex, *nempty, *nstored; 
10 } shared; 

11 void *produce(void * ) ,  *consume(void * ) ;  

12 int 
13 main(int argc, char **argv) 

pthread-t ti-roduce, tid-consume; 

if (argc !=  2) 
err-quit("usage: prodconsl <#items>"); 

nitems = atoi(argv[ll): 

/ *  create three semaphores * /  
shared.mutex = Sem-open(Px-ipc-name(SEM-MUTEX), 0-CREAT I 0-EXCL, 

FILE-MODE, 1) ; 
shared.nempty = Sem-open(Px-ipc-name(SEM-NEMPTY), 0-CREAT 1 0-EXCL, 

FILE-MODE, NBUFF); 
shared. nstored = Sem-open ( Px-ipc-name ( SEM-NSTORED) , 0-CREAT I 0-EXCL , 

FILE-MODE, 0) ; 

/ *  create one producer thread and one consumer thread * /  
Set-concurrency (2 ) ; 
Pthread-create(&tid_produce, NULL, produce, NULL); 
Pthread-create(&tid-consume, NULL, consume, NULL); 

/ *  wait for the two threads * /  
Pthread-join(tid_produce, NULL); 
Pthread-join(tid-consume, NULL); 

/ *  remove the semaphores * /  
Sem-unlink(Px-ipc-name(SEM-MUTEX)); 
Sem-unlink(Px-ipc-name(SEM-NEMPTY) ) ;  

Sem-unlink(Px-ipc-name(SEM-NSTORED) ) ;  

exit (0) ; 

pxsem/prodconsl .c 

Figure 10.17 main function for semaphore solution to producer-consurner problem. 

Producer waits until room for one item in buffer 

44 The producer calls sem-wait on the nempty semaphore, to wait until room is 
available for another item in the buffer. The first time this statement is executed, the 
value of the semaphore will go from NBUFF to NBUFF-1. 
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pxsern/prodconsl .c 
39 void * 
40 produce(void *arg) 

41 { 
42 int i ; 

for (i = 0 ;  i < nitems; i++) { 
Sem-wait(shared.nempty); / *  wait for at least 1 empty slot * /  
Sem-wait(shared.mutex): 
shared.buff[i % NBUFF] = i; / *  store i into circular buffer * /  
Sem_post(shared.mutex); 
Sem_post(shared.nstored); / *  1 more stored item * /  

} 
return (NULL) ; 

52 void * 
53 consume (void *arg) 

54 { 

55 int i ; 

for (i = 0 ;  i < nitems; i++) { 
Sem-wait(shared.nstored); / *  wait for at least 1 stored item * /  
Sem-wait(shared.mutex); 
if (shared.buff[i % NBUFF] != i) 

printf ("buff [%dl = %d\nV, i, shared.buff [i % NBUFFI ) ; 
Sem_post(shared.mutex); 
Sem_post(shared.nempty); / *  1 more empty slot * /  

} 
return (NULL) ; 

Figure 10.18 produce and consume functions. 

Producer stores item in buffer 

as Before storing the new item into the buffer, the producer must obtain the mutex 
semaphore. In our example, where the producer just stores a value into the array ele- 
ment indexed by i % NBUFF, no shared variables describe the status of the buffer (i.e., 
we do not use a linked list that we need to update each time we place an item into the 
buffer). Therefore, obtaining and releasing the mutex semaphore is not actually 
required. Nevertheless, we show it, because in general it is required for this type of 
problem (updating a buffer that is shared by multiple threads). 

After the item is stored in the buffer, the mutex semaphore is released (its value 
goes from 0 to I), and the nstored semaphore is posted to. The first time this state- 
ment is executed, the value of nstored will go from its initial value of 0 to 1. 

Consumer waits for nstored semaphore 

-62 When the nstored semaphore's value is greater than 0, that many items are in the 
buffer to process. The consumer takes one item from the buffer and verifies that its 
value is correct, protecting this buffer access with the mutex semaphore. The consumer 
then posts to the nempty semaphore, telling the producer that another slot is empty. 
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Deadlock 

What happens if we mistakenly swap the order of the two calls to Sem-wai t in the con- 
sumer function (Figure 10.18)? If we assume the producer starts first (as in the solution 
shown for Exercise 10.1), it stores NBUFF items into the buffer, decrementing the value 
of the nempty semaphore from NBUFF to 0 and incrementing the value of the nstored 
semaphore from 0 to NBUFF. At that point, the producer blocks in the call 
Sem-wait (shared. nempty) , since the buffer is full and no empty slots are available 
for another item. 

The consumer starts and verifies the first NBUFF items from the buffer. This decre- 
ments the value of the nstored semaphore from NBUFF to 0 and increments the value 
of the nempty semaphore from 0 to NBUFF. The consumer then blocks in the call 
Sem-wait (shared-nstored) after calling Sem-wait (shared.mutex). The pro- 
ducer can resume, because the value of nempty is now greater than 0, but the producer 
then calls Sem-wai t ( shared. mutex) and blocks. 

This is called a deadlock. The producer is waiting for the mutex semaphore, but the 
consumer is holding this semaphore and waiting for the nstored semaphore. But the 
producer cannot post to the ns tored semaphore until it obtains the mutex semaphore. 
This is one of the problems with semaphores: if we make an error in our coding, our 
program does not work correctly. 

Posix allows sem-wait to detect a deadlock and return an error of EDEADLK, but neither 
of the systems being used (Solaris 2.6 and Digital Unix 4.OB) detected this error with this 
example. 

10.7 File Locking 

We now return to our sequence number problem from Chapter 9 and provide versions 
of our my-lock and my-unlock functions that use Posix named semaphores. Fig- 
ure 10.19 shows the two functions. 

One semaphore is used for an advisory file lock, and the first time this function is 
called, the semaphore value is initialized to 1. To obtain the file lock, we call sem-wait, 
and to release the lock, we call s e m ~ o s t .  

10.8 sem-init and sen-destroy Functions 

Everything so far in this chapter has dealt with the Posix named semaphores. These 
semaphores are identified by a name argument that normally references a file in the file- 
system. But Posix also provides memory-based semaphores in which the application allo- 
cates the memory for the semaphore (that is, for a sem-t datatype, whatever that 
happens to be) and then has the system initialize this semaphore. 
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2 #def ine  LOCK-PATH "pxsemlock" 

3 sem-t *locksem; 
4 i n t  i n i t f  lag;  

5 void 
6 my-lock(int f d )  
7 I 
8 i f  ( i n i t f l a g  == 0 )  { 

9 locksem = Sem-open(Pxipc-name(L0CK-P 
10 i n i t f l a g  = 1; 
11 ) 

12 Sem-wait (locksem) ; 
13 ) 

'ATH), 0-CREAT, FILE-MODE, 1); 

1 4  void 
15 my-unlock ( i n t  f d )  
16 ( 

17 Semsos t  (locksem) ; 
18 ) 

Figure 10.19 File locking using Posix named semaphores. 

#include <semaphore.h> 

i n t  sem-ini t (sem-t *sem, i n t  shared, unsigned i n t  value) ; 

Returns: -1 on error 

i n t  sem-destroy(sem-t *sem); 

Returns: 0 if OK, -1 on error 

A memory-based semaphore is initialized by sem- init. The sem argument points to 
the s-t variable that the application must allocate. If shared is 0, then the semaphore 
is shared between the threads of a process, else the semaphore is shared between pro- 
cesses. When shared is nonzero, then the semaphore must be stored in some type of 
shared memory that is accessible to all the processes that will be using the semaphore. 
As with sem-open, the value argument is the initial value of the semaphore. 

When we are done with a memory-based semaphore, sem-des t r o y  destroys it. 

sem-open does not need a parameter similar to shared or an attribute similar to 
PTHREAD_PROCESS-SHARED (which we saw with mutexes and condition variables in Chap- 
ter 71, because a named semaphore is always sharable between different processes. 

Notice that there is nothing similar to 0-CREAT for a memory-based semaphore: s-init 
always initializes the semaphore value. Therefore, we must be careful to call sem-init only 
once for a given semaphore. (Exercise 10.2 shows the difference for a named semaphore.) The 
results are undefined if sem-ini t is called for a semaphore that has already been initialized. 
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Make certain you understand a fundamental difference between sem-open and sem-init. 
The former returns a pointer to a sem-t variable that the function has allocated and initialized. 
The first argument to sem-ini t ,  on the other hand, is a pointer to a sem-t variable that the 
caller must allocate and that the function then initializes. 

Posix.1 warns that for a memory-based semaphore, only the location pointed to by the sem 
argument to sem-init can be used to refer to the semaphore, and using copies of this sem-t 
datatype is undefined. 

sem-init returns -1 on an error, but does not return 0 on success. This is indeed strange, and 
a note in the Posix.1 Rationale says that a future update may specify a return of 0 on success. 

A memory-based semaphore can be used when the name associated with a named 
semaphore is not needed. Named semaphores are normally used when different, unre- 
lated processes are using the semaphore. The name is how each process identifies the 
semaphore. 

In Figure 1.3, we say that memory-based semaphores have process persistence, but 
their persistence really depends on the type of memory in which the semaphore is 
stored. A memory-based semaphore remains in existence as long as the memory in 
which the semaphore is contained is valid. 

If a memory-based semaphore is being shared between the threads of a single 
process (the shared argument to sem-init is O), then the semaphore has process 
persistence and disappears when the process terminates. 

If a memory-based semaphore is being shared between different processes (the 
shared argument to sem-init is I), then the semaphore must be stored in 
shared memory and the semaphore remains in existence as long as the shared 
memory remains in existence. Recall from Figure 1.3 that Posix shared memory 
and System V shared memory both have kernel persistence. This means that a 
server can create a region of shared memory, initialize a Posix memory-based 
semaphore in that shared memory, and then terminate. Sometime later, one or 
more clients can open the region of shared memory and access the memory- 
based semaphore stored therein. 

Be warned that the following code does not work as planned: 

sem-t mysem; 

Sem-init(&mysem, 1, 0 ) ;  / *  2nd a r g  of 1 -> shared between processes  * /  

i f  ( F o r k 0  == 0)  { / *  c h i l d  * /  

Sem-wait(&mysem); / *  parent ;  wai t  f o r  c h i l d  * /  

The problem here is that the semaphore mysem is not in shared memory-see Sec- 
tion 10.12. Memory is normally not shared between a parent and child across a fork.  
The child starts with a copy of the parent's memory, but this is not the same as shared 
memory. We talk more about shared memory in Part 4 of this book. 
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nple 

As an example, we convert our producer~onsumer example from Figures 10.17 
and 10.18 to use memory-based semaphores. Figure 10.20 shows the program. 

#define NBUFF 10 

in t ni tems; / *  read-only by producer and consumer * /  
struct ( / *  data shared by producer and consumer * /  

int buff [NBUFF] ; 
sem-t mutex, nempty, nstored; / *  semaphores, not pointers * /  

1 shared; 

void *produce(void * ) ,  *consume(void * ) ;  

int 
main(int argc, char **argv) 
( 

pthread-t tidjroduce, tid-consume; 

if (argc !=  2) 
errquit("usage: prodcons2 <#items>"); 

nitems = atoi(argv[ll); 

/ *  initialize three semaphores * /  
Sem-init (&shared.mutex, 0, 1) ; 
Sem-init(&shared.nempty, 0, NBUFF); 
Sem-init(&shared.nstored, 0, 0); 

Set-concurrency(2); 
Pthread-create(&tid_produce, NULL, produce, NULL); 
Pthread-create(&tid-consume, NULL, consume, NULL); 

Pthread-join (tid_produce, NULL) : 
Pthread-join(tid-consume, NULL); 

Sem-destroy(&shared.mutex); 
Sem-destroy(&shared.nempty); 
Sem-destroy(&shared.nstored); 
exit (0); 

> 
void * 
produce (void *arg) 
( 

int i ; 

for (i = 0; i < nitems; i++) { 
Sem-wait(&shared.nempty); / *  wait for at least 1 empty slot * /  
Sem-wait(&shared.mutex); 
shared.buff[i % NBUFF] = i; / *  store i into circular buffer * /  
Sem_post (&shared.mutex) ; 
Sem_post(&shared.nstored); / *  1 more stored item * /  

> 
return (NULL) ; 

1 
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43 void * 
44 consume(void *arg) 

45 I 
46 int i ; 

for (i = 0; i < nitems; i++) { 

Sem-wait(&shared.nstored); / *  wait for at least 1 stored item * /  
Sem-wait(&shared.mutex); 
if (shared.buff[i % NBUFFI !=  i) 

printf("buff[%d] = %d\n", i, shared.buff[i % NBUFFI); 
Sem_post(&shared.mutex); 
Sem_post(&shared.nempty); / *  1 more empty slot * /  

1 
return (NULL) ; 

Figure 10.20 Producer-consurner using memory-based semaphores. 

Allocate semaphores 

6 Our declarations for the three semaphores are now for three sem-t datatypes them- 
selves, not for pointers to three of these datatypes. 

Call sen-init 

16-27 We call sem-init instead of sem-open, and then sem-destroy instead of 
sem-unlink. These calls to sem-destroy are really not needed, since the program is 
about to terminate. 

The remaining changes are to pass pointers to the three semaphores in all the calls 
to sem-wait and semjost. 

10.9 Multiple Producers, One Consumer 

The producer-consumer solution in Section 10.6 solves the classic one-producer, one- 
consumer problem. An interesting modification is to allow multiple producers with one 
consumer. We will start with the solution from Figure 10.20, which used memory-based 
semaphores. Figure 10.21 shows the global variables and main function. 

Globals 

4 The global ni tems is the total number of items for all the producers to produce, 
and nproducers is the number of producer threads. Both are set from command-line 
arguments. 

Shared structure 

5-10 Two new variables are declared in the shared structure: nput, the index of the 
next buffer entry to store into (modulo NBUFF), and nputval, the next value to store in 
the buffer. These two variables are taken from our solution in Figures 7.2 and 7.3. 
These two variables are needed to synchronize the multiple producer threads. 
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2 #define NBUFF 10 
3 #define MAXNTHREADS 100 

4 int nitems, nproducers; / *  read-only by producer and consumer * /  

5 struct ( / *  data shared by producers and consumer * /  
6 int buff [NBUFF] ; 
7 int nput; 
8 int nputval ; 
9 sem-t mutex, nempty, nstored; / *  semaphores, not pointers * /  
10 } shared; 

11 void *produce(void * ) ,  *consume(void * ) ;  

12 int 
13 main(int argc, char **arm) 
14 I 
15 int i, count [MAXNTHREADS] ; 
16 pthread-t tid_produce[MAXNTHREADSl, tid-consume; 

17 if (argc !=  3) 
18 err-quit("usage: prodcons3 <#items> <#producers>"); 
19 nitems = atoi (argv[l] ) ; 
20 nproducers = min(atoi(argv[2] ) ,  MAXNTHREADS); 

21 / *  initialize three semaphores * /  
2 2 Sem-init (&shared.mutex, 0, 1) ; 
2 3 Sem-init(&shared.nempty, 0, NBUFF); 
2 4 Sem-init(&shared.nstored, 0, 0); 

25 / *  create all producers and one consumer * /  
26 Set~concurrency(nproducers + 1); 
2 7 for (i = 0; i < nproducers; i++) I 
28 count[i] = 0; 
29 Pthread-create(&tid_produce[il, NULL, produce, &count[i]); 
30 1 
31 Pthread-create(&tid-consume, NULL, consume, NULL); 

3 2 / *  wait for all producers and the consumer * /  
3 3 for (i = 0; i c nproducers; i++) ( 
3 4 Pthread-join(tid_produce[il, NULL); 
35 printf ("count [%dl = %d\nU, i, count [i] ) ; 
3 6 1 
37 Pthread-join (tid-consume, NULL) ; 

3 8 Sem-destroy(&shared.mutex); 
3 9 Sem-destroy(&shared.nempty); 
40 Sem-destroy(&shared.nstored); 
4 1 exit (0) ; 

Figure 10.21 main function that creates multiple producer threads. 
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New command-line arguments 

17-20 TWO new command-line arguments specify the total number of items to be stored 
into the buffer and the number of producer threads to create. 

Create all the threads 

21-41 The semaphores are initialized, and all the producer threads and one consumer 
thread are created. We then wait for all the threads to terminate. This code is nearly 
identical to Figure 7.2. 

Figure 10.22 shows the produce function that is executed by each producer thread. 

pxsem lpoLicans3.c 
43 void * 
44 produce (void *arg) 

45 ( 
46 f o r ( ; ; )  ( 
4 7 Sem-wait(&shared.nempty); / *  wait for at least 1 empty slot * /  

if (shared-nput >= nitems) I 
Sem_post(&shared.nempty); 
Semjost (&shared.mutex) ; 
return (NULL) ; / *  all done * /  

1 
shared.buff[shared.nput % NBUFF] = shared.nputva1; 
shared.nput++; 
shared.nputval++; 

5 7 Semjost(&shared.mutex); 
58 Semqost(&shared.nstored); / *  1 more stored item * /  
59 *((int * )  arg) += 1; 
6 0 1 
61 > pxsem/prodcm3.c 

Figure 10.22 Function executed by all the producer threads. 

Mutual exclusion among producer threads 

49-53 The change from Figure 10.18 is that the loop terminates when ni terns of the val- 
ues have been placed into the buffer by all the threads. Notice that multiple producer 
threads can acquire the nempty semaphore at the same time, but only one producer 
thread at a time can acquire the mutex semaphore. This protects the variables nput 
and nputval from being modified by more than one producer thread at a time. 

Termination of producers 

50-51 We must carefully handle the termination of the producer threads. After the last 
item is produced, each producer thread executes 

Sem-wait(&shared.nempty); / *  wait for at least 1 empty slot * /  

at the top of the loop, which decrements the nempty semaphore. But before the thread 
terminates, it must increment this semaphore, because the thread does not store an item 
in the buffer during its last time around the loop. The terminating thread must also 
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release the mutex semaphore, to allow the other producer threads to continue. If we 
did not increment nempty on thread termination and if we had more producer threads 
than buffer slots (say 14 threads and 10 buffer slots), the excess threads (4) would be 
blocked forever, waiting for the nempty semaphore, and would never terminate. 

The consume function in Figure 10.23 just verifies that each entry in the buffer is 
correct, printing a message if an error is detected. 

pxsem/prodcons3.c 
62 void * 
63 consume (void *arg) 

64 ( 
65 int i ; 

66 for (i = 0; i < nitems; i++) ( 

6 7 Sem-wait(&shared.nstored); / *  wait for at least 1 stored item * /  
68 Sem-wait(&shared.mutex); 

6 9 if (shared.buff[i % NBUFF] !=  i) 
70 printf("error: buff[%dl = %d\nN, i, shared.buff[i % NBUFF]); 

7 1 Sem_post(&shared.mutex); 
72 Sem_post(&shared.nempty); / *  1 more empty slot * /  
7 3 I 
7 4 return (NULL) ; 

75 1 
pxsem/prodcons3.c 

Figure 10.23 Function executed by the one consumer thread. 

Termination of the single consumer thread is simple-it just counts the number of 
items consumed. 

0 Multiple Producers, Multiple Consumers 

The next modification to our producer-consumer problem is to allow multiple produc- 
ers and multiple consumers. Whether it makes sense to have multiple consumers 
depends on the application. The author has seen two applications that use this tech- 
nique. 

1. A program that converts IP addresses to their corresponding hostnames. Each 
consumer takes an IP address, calls gethostbyaddr (Section 9.6 of UNPvI), 
and appends the hostname to a file. Since each call to gethostbyaddr can 
take a variable amount of time, the order of the IP addresses in the buffer will 
normally not be the same as the order of the hostnames in the file appended by 
the consumer threads. The advantage in this scenario is that multiple calls to 
gethostbyaddr (each of which can take seconds) occur in parallel: one per 
consumer thread. 

This assumes a reentrant version of gethostbyaddr, and not all implementations have 
this property. If a reentrant version is not available, an alternative is to store the buffer in 
shared memory and use multiple processes instead of multiple threads. 
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2. A program that reads UDP datagrams, operates on the datagrams, and then 
writes the result to a database. One consumer thread processes each datagram, 
and multiple consumer threads are needed to overlap the potentially long pro- 
cessing of each datagram. Even though the datagrams are normally written to 
the database by the consumer threads in an order that differs from the original 
datagram order, the ordering of the records in the database handles this. 

Figure 10.24 shows the global variables. 

2 #define NBUFF 10 
3 #define MAXNTHREADS 100 

4 int nitems, nproducers, nconsumers; / *  read-only * /  

5 struct ( / *  data shared by producers and consumers * /  
6 int buff [NBUFF] ; 
7 int npu t ; / *  item number: 0, 1, 2, . . . * /  
8 int npu tval ; / *  value to store in buff [ I  * /  
9 int nge t ; / *  item number: 0, 1, 2, . . .  * /  
10 int nge tval ; / *  value fetched from buff [ 1 * /  
11 sem-t mutex, nempty, nstored; / *  semaphores, not pointers * /  
12 1 shared; 

13 void *produce(void * ) ,  *consume(void * ) ;  
pxsem/prodcons4.~ 

Figure 10.24 Global variables. 

Globals and shared structure 

4-12 The number of consumer threads is now a global variable and is set from a 
command-line argument. We have added two more variables to our shared  structure: 
nget, the next item number for any one of the consumer threads to fetch, and 
ngetval ,  the corresponding value. 

The main function, shown in Figure 10.25, is changed to create multiple consumer 
threads. 

19-23 A new command-line argument specifies the number of consumer threads to create. 
We must also allocate an array (tid-consume) to hold all the consumer thread IDS, 
and an array (conscount) to hold our diagnostic count of how many items each con- 
sumer thread processes. 

24-50 Multiple producer threads and multiple consumer threads are created and then 
waited for. 
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pxsem/prodcons4.c 
14 int 
15 main(int argc, char **argv) 
16 I 
17 int i, prodcount[MAXNTHREADS], conscount[MAXNTHREADSl; 
18 pthread-t tid_produce[MAXNTHREADS], t i d - ~ ~ ~ ~ ~ ~ ~ [ M A X N T H R E A D S ] ;  

19 if (argc !=  4) 
20 err-quit("usage: prodcons4 <#items> <#producers> <#consumers>"); 
2 1 nitems = atoi(argv[ll); 
22 nproducers = min(atoi(argv[2]), MAXNTHREADS); 
2 3 nconsumers = min (atoi (argv[3] ) , MAXNTHREADS) ; 

2 4 / *  initialize three semaphores * /  
25 Sem-init (&shared.mutex, 0, 1) ; 
26 Sem-init(&shared.nempty, 0, NBUFF); 
2 7 ~em_init(&shared.nstored, 0, 0); 

/ *  create all producers and all consumers * /  
Set~concurrency(nproducers + nconsumers); 
for (i = 0; i c nproducers; i++) { 

prodcount[i] = 0; 
Pthread-create(&tid_produce[i], NULL, produce, &prodcount[il); 

1 
for (i = 0; i < nconsumers; i++) { 

conscount [i I = 0 ; 
Pthread-create(&tid-consume[i], NULL, consume, &conscount[il): 

1 

/ *  wait for all producers and all consumers * /  
for (i = 0; i < nproducers; i++) I 

Pthreadpjoin(tid_produce[il, NULL); 
printf("producer count[%d] = %d\nU, i, prodcount[il); 

1 
for (i = 0; i < nconsumers; i++) { 

Pthread-join(tid-consume[il, NULL); 
printf("consumer count[%d] = %d\nW, i, conscount[il); 

1 

Figure 10.25 main function that creates multiple producers and multiple consumers. 
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Our producer function contains one new line from Figure 10.22. When the pro- 
ducer threads terminate, the line preceded with the plus sign is new: 

if (shared.nput >= nitems) { 

+ Semqost(&shared.nstored); / *  let consumers terminate * /  
Semqost (&shared.nempty) ; 
semqost(&shared.mutex); 
return (NULL) ; / *  a11 done * /  

> 
We again must be careful when handling the termination of the producer threads and 
the consumer threads. After all the items in the buffer have been consumed, each con- 
sumer thread blocks in the call 

Sem-wait(&shared.nstored); / *  wait for at least 1 stored item * /  

We have the producer threads increment the ns  t o r e d  semaphore to unblock the con- 
sumer threads, letting them see that they are done. 

Our consumer function is shown in Figure 10.26. 

pxsem/prodcons4.c 
72 void * 
73 consume(void *arg) 
74 ( 
75 int i ; 

7 6 for ( ;  ; ) ( 

7 7 Sem-wait(&shared.nstored); / *  wait for at least 1 stored item *I 
78 Sem-wait(&shared.mutex); 

if (shared.nget >= nitems) ( 

Semqost(&shared.nstored); 
Sem_post(&shared.mutex); 
return (NULL) ; / *  a11 done * /  

1 
i = shared.nget % NBUFF; 
if (shared.buff[il != shared.ngetva1) 

printf("error: buff[%d] = %d\nw, i, shared.buff[il); 
shared.nget++; 

90 Sem_post(&shared.nempty); / *  1 more empty slot * /  
91 * (  (int * )  arg) t= 1; 
9 2 } 

93 I 
pxsem /prodcons4.c 

Figure 10.26 Function executed by all consumer threads. 

Termlnation of consumer threads 

79-83 Our consumer function must now compare nge t  to nitems, to determine when it 
is done (similar to the producer function). After the last item has been consumed from 
the buffer, the consumer threads block, waiting for the n s t o r e d  semaphore to be 
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greater than 0. Therefore, as each consumer thread terminates, it increments nstored 
to let another consumer thread terminate. 

1 Multiple Buffers 

In a typical program that processes some data, we find a Loop of the form 

while ( (n = read(fdin, buff, BUFFSIZE)) > 0 )  { 

/ *  process the data * /  

write(fdout, buff, n); 

1 

Many programs that process a text file, for example, read a line of input, process that 
line, and write a line of output. For text files, the calls to read and write are often 
replaced with calls to the standard I/O functions f ge t s and f pu t s. 

Figure 10.27 shows one way to depict this operation, in which we identify a func- 
tion named reader that reads the data from the input file and a function named 
writer that writes the data to the output file. One buffer is used. 

process 
I I 

reader ( ) buffer writer ( )  

process 
kernel 

Figure 10.27 One process that reads data into a buffer and then writes the buffer out. 

Figure 10.28 shows a time line of this operation. We have labeled the time line with 
numbers on the left, designating some arbitrary units of time. Time increases down- 
ward. We assume that a read operation takes 5 units of time, a write takes 7 units of 
time, and the processing time between the read and write consumes 2 units of time. 

We can modify this application by dividing the processing into two threads, as 
shown in Figure 10.29. Here we use two threads, since a global buffer is automatically 
shared by the threads. We could also divide the copying into two processes, but that 
would require shared memory, which we have not yet covered. 

Dividing the operation into two threads (or two processes) also requires some form 
of notification between the threads (or processes). The reader thread must notify the 
writer thread when the buffer is ready to be written, and the writer thread must notify 
the reader thread when the buffer is ready to be filled again. Figure 10.30 shows a time 
line for this operation. 
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Figure 10.28 One process that reads data into a buffer and then writes the buffer out. 

Figure 10.29 File copying divided into two threads. 
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Figure 10.30 File copying divided into two threads. 

We assume that the time to process the data in the buffer, along with the notification of 
the other thread, takes 2 units of time. The important thing to note is that dividing the 
reading and writing into two threads does not affect the total amount of time required 
to do the operation. We have not gained any speed advantage; we have only distrib- 
uted the operation into two threads (or processes). 

We are ignoring many fine points in these time lines. For example, most Unix ker- 
nels detect sequential reading of a file and do asynchronous read ahead of the next disk 
block for the reading process. This can improve the actual amount of time, called "clock 
time," that it takes to perform this type of operation. We are also ignoring the effect of 
other processes on our reading and writing threads, and the effects of the kernel's 
scheduling algorithms. 

The next step in our example is to use two threads (or processes) and two buffers. 
This is the classic double buffering solution, and we show it in Figure 10.31. 
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I thread thread I 

I I! 
i I 1 reader,!/ , writer 1 i I 

I buffer #2 I 
I one process_l 
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file h 
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Figure 10.31 File copying divided into two threads using two buffers. 

We show the reader thread reading into the first buffer while the writer thread is writ- 
ing from the second buffer. The two buffers are then switched between the two threads. 

Figure 10.32 shows a time line of double buffering. The reader first reads into buffer 
#1, and then notifies the writer that buffer #1 is ready for processing. The reader then 
starts reading into buffer #2, while the writer is writing buffer #l. 

Note that we cannot go any faster than the slowest operation, which in our example 
is the write. Once the server has completed the first two reads, it has to wait the addi- 
tional 2 units of time: the time difference between the write (7) and the read (5). The 
total clock time, however, will be almost halved for the double buffered case, compared 
to the single buffered case, for our hypothetical example. 

Also note that the writes are now occurring as fast as they can: each write separated 
by only 2 units of time, compared to a separation of 9 units of time in Figures 10.28 
and 10.30. This can help with some devices, such as tape drives, that operate faster if 
the data is written to the device as quickly as possible (this is called a streaming mode). 

The interesting thing to note about the double buffering problem is that it is just a 
special case of the producer-consumer problem. 

We now modify our producer-consumer to handle multiple buffers. We start with 
our solution from Figure 10.20 that used memory-based semaphores. Instead of just a 
double buffering solution, this solution handles any number of buffers (the NBUFF defi- 
nition). Figure 10.33 shows the global variables and the main function. 

Declare NBUFF buffers 

2-9 Our shared structure now contains an array of another structure named buff,  and 
this new structure contains a buffer and its count. 

Open input file 

18 The command-line argument is the pathname of a file that we will copy to standard 
output. 

Figure 10.34 shows the produce and consume functions. 
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Figure 10.32 Time l i e  for double buffering. 

Empty critical region 

1-42 The critical region that is locked by the mutex is empty for this example. If the data 
buffers were kept on a linked list, this would be where we could remove the buffer from 
the list, avoiding any conflict with the consumer's manipulation of this list. But in our 
example in which we just use the next buffer, with just one producer thread, nothing 
needs protection from the consumer. We still show the locking and unlocking of the 
mutex, to emphasize that this may be needed in other modifications to this code. 



254 Posix Semaphores Chapter 10 

2 #define NBUFF 8 

3 struct { / *  data shared by producer and consumer * /  
4 struct { 

5 char data[BUFFSIZE] ; / *  a buffer * /  
6 ssize-t n; / *  count of #bytes in the buffer * /  
7 1 buff [NBUFF] ; / *  NBUFF of these buffers/counts * /  
8 sem-t mutex, nempty, nstored; / *  semaphores, not pointers * /  
9 } shared; 

10 int fd; / *  input file to copy to stdout * /  
11 void *produce(void * ) ,  *consume(void * ) ;  

12 int 
13 main(int argc, char **argv) 
14 { 
15 pthread-t tid_produce. tid-consume; 

16 if (argc !=  2) 
17 err-quit("usage: mycat2 <pathname>"); 

18 fd = Open (argv[l] , O-RDONLY) ; 

19 / *  initialize three semaphores * /  
20 Sem-init(&shared.mutex, 0, 1); 
21 Sem-init(&shared.nempty, 0, NBUFF); 
2 2 Sem-init(&shared.nstored, 0, 0); 

23 / *  one producer thread, one consumer thread * /  
24 Set-concurrency (2) ; 
2 5 Pthread-create(&tid_produce, NULL, produce, NULL); / *  reader thread * /  
2 6 Pthread-create(&tid-consume, NULL, consume, NULL); / *  writer thread * /  

27 Pthread-join(tid_produce, NULL); 
2 8 Pthread-join(tid-consume, NULL); 

29 Sem-destroy(&shared.mutex); 
3 0 Sem-destroy(&shared.nempty); 
31 Sem-destroy(&shared.nstored); 
3 2 exit (0) ; 

Figure 10.33 Global variable and main function. 

Read data and increment nstored semaphore 

43-49 Each time the producer obtains an empty buffer, it calls read. When read returns, 
the nstored semaphore is incremented, telling the consumer that the buffer is ready. 
When read returns 0 (end-of-file), the semaphore is incremented and the producer 
returns. 



on 10.11 Multiple Buffers 255 

pxsem/rnycat2.c 
34 void * 
35 produce(void *arg) 
36 I 
3 7 int i ; 

3 8 for (i = 0:;) I 
3 9 Sem-wait(&shared.nempty); / *  wait for at least 1 empty slot * /  

4 0 Sem-wait(&shared.mutex); 
41 / *  critical region * /  
42 Sem_post(&shared.mutex); 

43 shared.buff[i].n = Read(fd, shared.buff[il.data, BUFFSIZE); 
44 if (shared.buff[il .n == 0) I 
45 Semqost(&shared.nstored); / *  1 more stored item * /  
4 6 return (NULL) ; 
4 7 1 
48 if (++i >= NBUFF) 
49 i = 0: / *  circular buffer * /  

50 Sem_post(&shared.nstored); / *  1 more stored item * /  
51 1 
52 1 

53 void * 
54 consume(void *arg) 
55 I 
5 6 int i ; 

5 7 for (i = 0;;) ( 
5 8 Sem-wait(&shared.nstored); / *  wait for at least 1 stored item * /  

59 Sem-wait(&shared.mutex); 
6 0 / *  critical region * /  
6 1 Semqost(&shared.mutex); 

62 if (shared.buff [il .n == 0) 
6 3 return (NULL) ; 
64 Write(STD0UT-FILENO, shared.buff[i].data, shared.buff[il.n); 
6 5 if (++i >= NBUFF) 
66 i = 0; / *  circular buffer * /  

6 7 Sem_post(&shared.nempty); / *  1 more empty slot * /  
6 8 1 

Figure 10.34 produce and consume functions. 

Consumer thread 

7-68 The consumer thread takes the buffers and writes them to standard output. A buff- 
er containing a Length of 0 indicates the end-of-file. As with the producer, the critical 
region protected by the mutex is empty. 
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In Section 22.3 of UNPvl, we developed an example using multiple buffers. In that example, 
the producer was the SIGIO signal handler, and the consumer was the main processing loop 
(the dg-echo function). The variable shared between the producer and consumer was the 
nqueue counter. The consumer blocked the sIGIo signal from being generated whenever it 
examined or modified this counter. 

10.1 2 Sharing Semaphores between Processes 

The rules for sharing memory-based semaphores between processes are simple: the 
semaphore itself (the sem-t datatype whose address is the first argument to 
sem-ini t) must reside in memory that is shared among all the processes that want to 
share the semaphore, and the second argument to sem-ini t must be 1. 

These rules are similar to those for sharing a mutex, condition variable, or read-write lock 
between processes: the synchronization object itself (the pthread-mutex-t variable, or the 
pthread-cond-t variable, or the pthread-rwlock-t variable) must reside in memory that 
is shared among all the processes that want to share the object, and the object must be initial- 
ized with the PTHREAD-PROCESS-SHARED attribute. 

With regard to named semaphores, different processes (related or unrelated) can 
always reference the same named semaphore by having each process call sem-open 
specifying the same name. Even though the pointers returned by sem-open might be 
different in each process that calls sem-open for a given name, the semaphore func- 
tions that use this pointer (e.g., semsost and sem-wait) will all reference the same 
named semaphore. 

But what if we call sem-open, which returns a pointer to a sem-t datatype, and 
then call fork? The description of the fork function in Posix.1 says "any semaphores 
that are open in the parent process shall also be open in the child process." This means 
that code of the following form is OK: 

sem-t *mutex; / *  global pointer that is copied across the fork0 *I 

. . . 
/ *  parent creates named semaphore * /  

mutex = Sern-open(Px-ipc-name(NAME), 0-CREAT 1 0-EXCL, FILE-MODE, 0); 
if ( (childpid = Fork() ) == 0) { 

/ *  child * /  
. . .  
Sem-wait(mutex); 
. . .  

1 
I* parent *I 

. . . 
Sernqost (mutex) ; 

The reason that we must be careful about knowing when we can and cannot share a 
semaphore between different processes is that the state of a semaphore might be contained in 
the sem-t datatype itself but it might also use other information (e.g., file descriptors). We 
will see in the next chapter that the only handle that a process has to describe a System V 
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semaphore is its integer identifier that is returned by semget. Any process that knows that 
identifier can then access the semaphore. All the state information for a System V semaphore 
is contained in the kernel, and the integer identifier just tells the kernel which semaphore is 
being referenced. 

13 Semaphore Limits 

Two semaphore limits are defined by Posix: 

SEM-NSEMS-MAX the maximum number of semaphores that a process can have 
open at once (Posix requires that this be at least 256), and 

SEM-VALUE-MAX the maximum value of a semaphore (Posix requires that this be 
at least 32767). 

These two constants are often defined in the <unistd.h> header and can also be 
obtained at run time by calling the sysconf function, as we show next. 

mple: semsysconf Program 

The program in Figure 10.35 calls sysconf and prints the two implementation-defined 
limits for semaphores. 

pxsem /semsysconf.c 
1 #include "unpipc.h" 

2 int 
3 main(int argc, char "*argv) 

4 { 
5 printf("SEM-NSEMS-MAX = %Id, SEM-VALUE-MAX = %ld\nW, 
6 Sysconf(-SC-SEM-NSEMS-MAX), Sysconf(-SC-SEM-VALUE-MAX) 1 ;  
7 exit (0) ; 

8 1 
pxsem/semsysconf.c 

Figure 10.35 Call sysconf to obtain semaphore limits. 

If we execute this on our two systems, we obtain 

solaris % semsysconf 
SEM-NSEMS-MAX = 2147483647, SEM-VALUE-MAX = 2147483647 

alpha % semsysconf 
SEM-NSEMS-MAX = 256, SEM-VALUE-MAX = 32767 

14 Implementation Using FlFOs 

We now provide an implementation of Posix named semaphores using FIFOs. Each 
named semaphore is implemented as a FIFO using the same name. The nonnegative 
number of bytes in the FIFO is the current value of the semaphore. The semjost 
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function writes 1 byte to the FIFO, and the sem-wait function reads 1 byte from the 
FIFO (blocking if the FIFO is empty, which is what we want). The sem-open function 
creates the FIFO if the 0-CREAT flag is specified, opens it twice (once read-only, once 
write-only), and if a new FIFO has been created, writes the number of bytes specified by 
the initial value to the FIFO. 

T

hi

s section and the remaining sections of this chapter contain advanced topics that you may 
want to skip on a first reading. 

We first show our semaphore. h header in Figure 10.36, which defines the funda- 
mental sem-t datatype. 

my_pxsemfifo/sernaphore.h 
1 / *  the fundamental datatype * /  
2 typedef struct 
3 int sem_fd[2] ; / *  two fds: [O] for reading, [I] for writing *I 
4 int sem-magic; / *  magic number if open * /  
5 } sem-t; 

7 #ifdef SEM-FAILED 
8 #undef SEM-FAILED 
9 #define SEM-FAILED ((sem-t * )  (-1)) / *  avoid compiler warnings * /  
10 #endif 

rrzy_pxsemfifa/sernaphore.h 
Figure 10.36 semaphore. h header. 

sem-t datatype 

1-5 Our semaphore data structure contains two descriptors, one for reading the FIFO 
and one for writing the FIFO. For similarity with pipes, we store both descriptors in a 
two-element array, with the first descriptor for reading and the second descriptor for 
writing. 

The sem-magic member contains SEM-MAGIC once this structure has been initial- 
ized. This value is checked by each function that is passed a sem-t pointer, to make 
certain that the pointer really points to an initialized semaphore structure. This member 
is set to 0 when the semaphore is closed. This technique, although not perfect, can help 
detect some programming errors. 

sem-open Function 

Figure 10.37 shows our sem-open function, which creates a new semaphore or opens 
an existing semaphore. 

3 #include <stdarg.h> / *  for variable arg lists * /  

4 sem-t * 
5 sem-open(const char *pathname, int oflag, ... ) 
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int i , flags, save-erro; 
char c; 
mode-t mode; 
va-list ap; 
sem-t *sem; 
unsigned int value; 

if (oflag & 0-CREAT) { 

va-start(ap, oflag); / *  init ap to final named argument * /  
mode = va-arg(ap, va-mode-t); 
value = va-arg(ap, unsigned int); 

if (mkfifo(pathname, mode) < 0) { 

if (errno == EEXIST && (oflag & 0-EXCL) == 0) 
oflag &= "0-CREAT; / *  already exists, OK * /  

else 
return (SEM-FAILED) ; 

1 
1 
if ( (sem = malloc(sizeof(sem~t))) == NULL) 

return ( SEM-FAILED) ; 
sem->sem-fd[O] = sem->sem-fd[ll = -1; 

if ( (sem->sem-fd[O] = open(pathname, 0-RDONLY I 0-NONBLOCK)) < 0) 
goto error; 

if ( (sem->sem-fd[l] = open(pathname, 0-WRONLY I 0-NONBLOCK)) < 0) 
goto error; 

/ *  turn off nonblocking for sem-fd[Ol * /  
if ( (flags = fcntl(sem->sem-fd[O], F-GETFL, 0)) < 0) 

goto error; 
flags &= -0-NONBLOCK; 
if (fcntl(sem->sem-fd[O], F-SETFL, flags) < 0) 

goto error; 

if (of lag & 0-CREAT) { / *  initialize semaphore * /  
for (i = 0; i < value; i++) 

if (write(sem->sem-fd[ll. &c. 11 !=  11 
goto error; 

1 
sem->sem-magic = SEM-M?iGIC; 
return (sem) ; 

error: 
save-errno = errno; 
if (oflag & 0-CREAT) 

unlink(pathname1; / *  if we created FIFO * /  
close (sem->sem-f d [ 0 I 1 ; / *  ignore error * /  
close(sem->sem-fd[ll); / *  ignore error * /  
free (sem) ; 
errno = save-errno; 
return (SEM-FAILED); 

54 1 
mygxsmfifa/sm-0pen.c 

Figure 10.37 sem-open function. 
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Create a new semaphore 

13-17 If the caller specifies the 0-CREAT flag, then we know that four arguments are 
required, not two. We call va-start to initialize the variable ap to point to the last 
named argument (of lag). We then use ap and the implementation's va-arg function 
to obtain the values for the third and fourth arguments. We described the handling of 
the variable argument list and our va-mode-t datatype with Figure 5.21. 

Create new FlFO 

18-23 A new FIFO is created with the name specified by the caller. As we discussed in 
Section 4.6, this function returns an error of EEXIST if the FIFO already exists. If the 
caller of sem-open does not specify the 0-EXCL flag, then this error is OK, but we do 
not want to initialize the FIFO later in the function, so we turn off the 0-CREAT flag. 

Allocate sem-t datatype and open FlFO for reading and writing 

25-37 We allocate space for a sem-t datatype, which will contain two descriptors. We 
open the FIFO twice, once read-only and once write-only. We do not want to block in 
either call to open, so we specify the 0-NONBLOCK flag when we open the FIFO read- 
only (recall Figure 4.21). We also specify the 0-NONBLOCK flag when we open the FIFO 
write-only, but this is to detect overflow (e.g., if we try to write more than PIPE-BUF 
bytes to the FIFO). After the FIFO has been opened twice, we turn off the nonblocking 
flag on the read-only descriptor. 

Initialize value of newly create semaphore 

38-42 If a new semaphore has been created, we initialize its value by writing value num- 
ber of bytes to the FIFO. If the initial value exceeds the implementation's PIPE-BUF 
limit, the call to write after the FIFO is full will return an error of EAGAIN. 

sen-close Function 

Figure 10.38 shows our s em-c 1 o s e function. 
11-15 We close both descriptors and free the memory that was allocated for the sem-t 

datatype. 

sen-unlink Function 

Our sem-unlink function, shown in Figure 10.39, removes the name associated with 
our semaphore. It just calls the Unix unlink function. 

sengost Function 

Figure 10.40 shows our semsost function, which increments the value of a 
semaphore. 

11-12 We write an arbitrary byte to the FIFO. If the FIFO was empty, this will wake up 
any processes that are blocked in a call to read on this FIFO, waiting for a byte of data. 
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3 int 
4 sem~close(sem~t *sem) 
5 { 
6 if (sem->sem-magic !=  SEM-MAGIC) { 

7 errno = EINVAL; 
8 return (-1); 
9 1 
10 sem->sem-magic = 0; / *  in case caller tries to use it later * /  
11 if (close(sem->sem-fd[O]) == -1 1 1  close(sem->sem-fd[lI) == -1) { 

12 free (sem) ; 
13 return (-1); 
14 1 
15 free(sem); 
16 return (0) : 
17 } 

myjxsemfifo/sm-c1ose.c 

Figure 10.38 sem-close function. 

myjxsmfifa/sem-un1ink.c 
#include "unpipc . h" 

int 
sem-unlink(const char *pathname) 
{ 

return (unlink(pathname)); 
I 

myjxsemfifo/sem-un1ink.c 

Figure 10.39 sem-unlink function. 

myjxsernfifo/sempst.c 
1 #include "unpipc.h" 
2 Qinclude "semaphore.hn 

3 int 
4 semqost (sem-t *sem) 
5 { 
6 char c; 

7 if (sem->sem-magic !=  SEM-MAGIC) { 

8 errno = EINVAL; 
9 return (-1); 
10 } 

11 if (write (sem->sen--fd[ll, &c, 1) == 1) 
12 return (0) : 
13 return (-1) ; 

Figure 10.40 semqost function. 
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sem-wait Function 

The final function is shown in Figure 10.41, sem-wai t. 

3 int 
4 serf-wait(serf-t *serf) 

5 { 
6 char c: 

7 if (sem->serf-magic != SEM-M?iGIC) ( 

8 errno = EINVAL; 
9 return (-1); 
10 } 

11 if (read(sem->sem-fd[O] , &c, 1) == 1) 
12 return (0) ; 
13 return (-1); 

14 1 
rnyjxsemfifo/sem-wait.c 

Figure 10.41 sem-wai t function. 

11-12 We read 1 byte from the FIFO, blocking if the FIFO is empty. 

We have not implemented the sem-trywait function, but that could be done by 
enabling the nonblocking flag for the FIFO and calling read. We have also not imple- 
mented the sem-getvalue function. Some implementations return the number of 
bytes currently in a pipe or FIFO when the stat or f stat function is called, as the 
st-size member of the stat structure. But this is not guaranteed by Posix and is 
therefore nonportable. Implementations of these two Posix semaphore functions are 
shown in the next section. 

10.1 5 Implementation Using Memory-Mapped 110 

We now provide an implementation of Posix named semaphores using memory- 
mapped I/O along with Posix mutexes and condition variables. An implementation 
similar to this is provided in Section B.11.3 (the Rationale) of [IEEE 19961. 

We cover memory-mapped 1 / 0  in Chapters 12 and 13. You may wish to skip this section until 
you have read those chapters. 

We first show our semaphore. h header in Figure 10.42, which defines the funda- 
mental sem-t datatype. 

sen-t datatype 

1-7 Our semaphore data structure contains a mutex, a condition variable, and an 
unsigned integer containing the current value of the semaphore. As discussed with Fig- 
ure 10.36, the sem-magic member contains SEM-MAGIC once this structure has been 
initialized. 
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myjxsem-mrnap/semaphore.h 
1 / *  the fundamental datatype * /  
2 typedef struct { 

3 pthread-mutex-t sem-mutex; / *  lock to test and set semaphore value * /  
4 pthread-cond-t sem-cond; / *  for transition from 0 to nonzero * /  
5 unsigned int sem-count; / *  the actual semaphore value * /  
6 int sem-magic; / *  magic number if open * /  
7 1 sem-t; 

9 #ifdef SEM-FAILED 
10 #undef SEM-FAILED 
11 #define SEM-FAILED ((sem-t *)(-I)) / *  avoid compiler warnings * /  
12 #endif 

myjxsem-mmap/semaphore.h 

Figure 10.42 semaphore. h header. 

m-upen Function 

Figure 10.43 shows the first half of our sem-open function, which creates a new 
semaphore or opens an existing semaphore. 

Handle variable argument list 

19-23 If the caller specifies the 0-CREAT flag, then we know that four arguments are 
required, not two. We described the handling of the variable argument list and our 
va-mode-t datatype with Figure 5.21. We turn off the user-execute bit in the mode 
variable (s-IXUSR) for reasons that we describe shortly. A file is created with the name 
specified by the caller, and the user-execute bit is turned on. 

Create a new semaphore and handle potential race condition 

24-32 If, when the 0-CREAT flag is specified by the caller, we were to just open the file, 
memory map its contents, and initialize the three members of the sem-t structure, we 
would have a race condition. We described this race condition with Figure 5.21, and the 
technique that we use is the same as shown there. We encounter a similar race condi- 
tion in Figure 10.52. 

Set the file size 

33-37 We set the size of the newly created file by writing a zero-filled structure to the file. 
Since we know that the file has just been created with a size of 0, we call write to set 
the file size, and not f truncate, because, as we note in Section 13.3, Posix does not 
guarantee that f truncate works when the size of a regular file is being increased. 

Memory map the file 

38-02 The file is memory mapped by mmap. This file will contain the current value of the 
sem-t data structure, although since we have memory mapped the file, we just refer- 
ence it through the pointer returned by mrnap: we never call read or write. 
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#include "unpipc.hn 
#include "semaphore.hm 

#include cstdarg.h> / * 
#define MAX-TRIES 10 / * 

sem-t * 
sem-open(const char *pathname, int 
I 

for variable arg lists * /  
for waiting for initialization * /  

oflag, ... 1 

int fd, i, created, save-errno; 
mode-t mode; 
va-list ap; 
sem-t *sem, seminit; 
struct stat statbuff; 
unsigned int value; 
pthread-mutexattr-t mattr; 
pthread-condattr-t cattr; 

created = 0; 
sem = MAP-FAILED; / *  [sic] * /  

again: 
if (oflag & 0-CREAT) { 

va-start(ap, oflag); / *  init ap to final named argument * /  
mode = va-arg(ap, va-mode-t) & IS-IXUSR; 
value = va-arg(ap. unsigned int); 
va-end (ap ) ; 

/ *  open and specify 0-EXCL and user-execute * /  
fd = open(pathname, oflag I 0-EXCL I 0-RDWR, mode I S-IXUSR); 
if (fd c 0) { 

if (errno == EEXIST && (oflag & 0-EXCL) == 0) 
goto exists; / *  already exists, OK * /  

else 
return (SEM-FAILED); 

} 
created = 1; 

/ *  first one to create the file initializes it * /  
/ *  set the file size * /  

bzero(&seminit, sizeof(seminit)); 
if (write(fd, &seminit, sizeof(seminit)) != sizeof(seminit)) 

goto err; 

/ *  memory map the file * I  
sem = mmap(NULL, sizeof(sem-t), PROT-READ I PROT-WRITE, 

MAP-SHARED, fd, 0); 
if (sem == MAPFAILED) 

goto err; 

/ *  initialize mutex, condition variable, and value * /  
if ( (i = pthread-mutexattr-init(&mattr)) !=  0) 

goto pthreaderr; 
pthread-mucexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED); 
i = pthread-mutex-init(&sem->sem-mutex, &mattr); 
pthread-mutexattr-destroy(&mattr); / *  be sure to destroy * /  
if (i !=  0 )  

goto pthreaderr; 
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51 if ( (i = pthread-condattr-init(&cattr)) !=  0) 
52 goto pthreaderr; 
53 pthread-condattr-setpshared(&cattr, PTHREAD-PROCESS-SHARED); 
54 i = pthread-cond-init(&sem->semcond, &cattr); 
55 pthread-condattr-destroy(&cattr); / *  be sure to destroy * /  
5 6 if (i !=  0) 
57 goto pthreaderr; 

if ( (sem->sem-count = value) > sysconf(-SC-SEM-VALUE-MAX)) { 

errno = EINVAL; 
goto err; 

1 
/ *  initialization complete, turn off user-execute bit * /  

if (fchmod(fd, mode) == -1) 
goto err; 

close (fd) ; 
sem->sem-magic = SEM-MAGIC; 
return (sem) ; 

68 } 
myjxsem-mmap/sem_npen.c 

Figure 10.43 sem-open function: first half. 

lnitialize sem-t data structure 

-57 We initialize the three members of the s e m- t  data structure: the mutex, the condi- 
tion variable, and the value of the semaphore. Since Posix named semaphores can be 
shared by any process that knows the semaphore's name and has adequate permission, 
we must specify the PTHREAD-PROCESS-SHARED attribute when initializing the mutex 
and condition variable. To do so for the semaphore, we first initialize the attributes by 
calling pthread-mutexattr-ini t, then set the process-shared attribute in this struc- 
ture by calling pthread-mutexattr-setpshared, and then initialize the mutex by 
calling pthread-mutex-ini t .  Three nearly identical steps are done for the condition 
variable. We are careful to destroy the attributes in the case of an error. 

Initialize semaphore value 

-61 Finally, the initial value of the semaphore is stored. We compare this value to the 
maximum value allowed, which we obtain by calling sysconf (Section 10.13). 

Turn off user-execute bit 

-67 Once the semaphore is initialized, we turn off the user-execute bit. This indicates 
that the semaphore has been initialized. We c l o s e  the file, since it has been memory 
mapped and we do not need to keep it open. 

Figure 10.44 shows the second half of our sem-open function. In Figure 5.23, we 
described a race condition that we handle here using the same technique. 

Open existing semaphore 

-78 We end up here if either the 0-CREAT flag is not specified or if 0-CREAT is specified 
but the semaphore already exists. In either case, we are opening an existing semaphore. 
We open the file containing the sem- t datatype for reading and writing, and memory 
map the file into the address space of the process (mmap). 
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exists: my~xsem-mmap/sem_open.c 
if ( (fd = open(pathname, 0-RDWRII < 01 ( 

if (errno == ENOENT && (oflag & 0-CREAT) 1 
goto again; 

goto err; 
1 
sem = mmap(NULL, sizeof (sem-t), PROT-READ I PROT-WRITE, 

MAP-SHARED, f d, 0 ) ; 
if (sem == MAPFAILED) 

goto err; 

/ *  make certain initialization is complete * /  
for (i = 0; i < MKTRIES; i++) { 

if (stat (pathname, &statbuff l == -11 ( 

if (errno == ENOENT && (oflag & 0-CREAT)) ( 

close (fd) ; 
goto again; 

1 
goto err: 

1 
if ((statbuff.st-mode & S-IXUSRI == 01 { 

close(fd1 ; 
sem->sen--magic = SEM-MAGIC; 
return (sem) ; 

1 
sleep (1) ; 

1 
errno = ETIMEDOUT; 
goto err; 

pthreaderr: 
errno = i; 

err : 
/ *  don't let munmap() or close() change errno * /  

save-errno = errno; 
if (created) 

unlink (pathname 1 ; 
if (sem != MAP-FAILED) 

munmap(sem, sizeof (sem-t)); 
close ( fd) ; 
errno = save-errno; 
return (SEM-FAILED): 

109 1 
mygxsm-mmap/sm-0pen.c 

Figure 10.44 sern-open function: second half. 

We can now see why Posix.1 states that "references to copies of the semaphore produce unde 
fined results." When named semaphores are implemented using memory-mapped I/O, the 
semaphore (the sem-t datatype) is memory mapped into the address space of all processes 
that have the semaphore open. This is performed by sem-open in each process that opens the 
named semaphore. Changes made by one process (e.g., to the semaphore's count) are seen by 
all the other processes through the memory mapping. If we were to make our own copy of a 
sem-t data structure, this copy would no longer be shared by all the processes. Even though 
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we might think it was working (the semaphore functions might not give any errors, at least 
until we call sem-close, which will unmap the memory, which would fail on the copy), no 
synchronization would occur with the other processes. Note from Figure 1.6, however, that 
memory-mapped regions in a parent are retained in the child across a fork, so a copy of a 
semaphore that is made by the kernel from a parent to a child across a fork is OK. 

Make certain that semaphore is initialized 

)-96 We must wait for the semaphore to be initialized (in case multiple threads try to cre- 
ate the same semaphore at about the same time). To do so, we call s t a t  and look at the 
file's permissions (the st-mode member of the s t a t  structure). If the user-execute bit 
is off, the semaphore has been initialized. 

Error returns 

-10s When an error occurs, we are careful not to change errno. 

i_close Function 

Figure 10.45 shows our sem-close function, which just calls munmap for the region 
that was memory mapped. Should the caller continue to use the pointer that was 
returned by sem-open, it should receive a SIGSEGV signal. 

3 int 
4 sem~close(sem~t *sem) 

5 
6 if (sem->sem-magic != SEM-M?iGIC) { 

7 errno = EINVAL; 
8 return (-1); 
9 ) 

10 if (munmap(sem, sizeof (sem-t)) == -1) 
11 return(-1) ; 

12 return (0) ; 

13 ) 
myjxsem-mmaplsem-c1ose.c 

Figure 10.45 sem-close function. 

_unlink Function 

Our sem-unlink function shown in Figure 10.46 removes the name associated with 
our semaphore. It just calls the Unix unl ink  function. 

sost Function 

Figure 10.47 shows our s e m j o s t  function, which increments the value of a 
semaphore, awaking any threads waiting for the semaphore if the semaphore value has 
just become greater than 0. 
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int 
sem-unlink(const char *pathname) 
{ 

if (unlink(pathname) == -1) 
return (-1); 

return (0) ; 

my~xsem-mmap/sem-un1ink.c 

Figure 10.46 sem-unlink function. 

3 int 
4 sernqost(sem-t *sen-) 
5 { 
6 int n; 

7 if (sem->sem-magic != SEM-MAGIC) { 

8 errno = EINVAL; 
9 return (-1) ; 
10 1 
11 if ( (n = pthread~mutex~lock(&sern->sem-mutex)) !=  0) { 

12 errno = n; 
13 return (-1); 
14 1 
15 if (sem->sen--count == 0) 
16 pthread-cond-signal(&sem->sem-cond); 
17 sem->sem-count++; 
18 pthread~mutex~unlock(&sern->sem-mutex); 
19 return (0 1 ; 
20 } 

my~xsem_mmap/semgost.c 

Figure 10.47 semqost function. 

11-18 We must acquire the semaphore's mutex lock before manipulating its value. If the 
semaphore's value will be going from 0 to 1, we call pthread-cond-signal to wake 
up anyone waiting for this semaphore. 

sen-wait Function 

The sem-wait function shown in Figure 10.48 waits for the value of the semaphore to 
exceed 0. 
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3 int 
4 sen-wait(sen-t *sem) 

5 { 

6 int n; 

if (sem->sen-magic ! = SEM-MAGIC) { 

errno = EINVAL; 
return (-1) ; 

1 
if ( (n = pthread-mutex-lock(&sem->sen-mutex)) != 0) { 

errno = n; 
return (-1) ; 

1 
while (sen->sem-count == 0) 

pthread-cond-wait(&sem->sem-cond, &sen->sen-mutex); 
sem->sem-count--; 
pthread~mutex~unlock(&sen->sen-mutex); 
return (0) ; 

Figure 10.48 sem-wait function. 

1-18 We must acquire the semaphore's mutex lock before manipulating its value. If the 
value is 0, we go to sleep in a call to pthread-cond-wai t, waiting for someone to call 
pthread-cond-signal for this semaphore, when its value goes from 0 to 1. Once the 
value is greater than 0, we decrement the value and release the mutex. 

\-trywait Function 

Figure 10.49 shows the sern-trywait function, the nonblocking version of sern-wait. 
1-22 We acquire the semaphore's mutex lock and then check its value. If the value is 

greater than 0, it is decremented and the return value is 0. Otherwise, the return value 
is -1 with e r r n o  set to EAGAIN. 

\-getvalue Function 

Figure 10.50 shows our final function, sern-getvalue, which returns the current value 
of the semaphore. 

1-16 We acquire the semaphore's mutex lock and return its value. 

We can see from this implementation that semaphores are simpler to use than 
mutexes and condition variables. 
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3 int 
4 sem-trywait(sem-t *sem) 
5 { 
6 int n, rc; 

if (sem->sem-magic != SEM-MAGIC) { 

errno = EINVAL; 
return (-1); 

1 
if ( (n = pthread-mutex-lock(&sem->sem-mutex)) !=  0) { 

errno = n; 
return (-1) ; 

1 
if (sem->sem-count > 0) { 

sem->sen-count--; 
rc = 0; 

1 else I 
rc = -1; 
errno = EAGAIN; 

1 
pthread-rnutex-unlock(&sem->sem-mutex); 
return (rc) ; 

24 1 
rnyjxsem-mmap/sem-try wait.^ 

Figure 10.49 sem-trywai t function. 

3 int 
4 sem-getvalue(sem-t *sem, int *pvalue) 
5 { 

6 int n; 

if (sem->sem-magic !=  SEM-MAGIC) { 

errno = EINVAL; 
return (-1) ; 

1 
if ( (n = pthread-mutex-lock(&sem->sem-mutex)) != 0) { 

errno = n; 
return (-1) ; 

1 
*pvalue = sem->sem-count; 
pthread~mutex~unlock(&sem->sem-rnutex); 
return (0) ; 

Figure 10.50 sem-getvalue function. 
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5 Implementation Using System V Semaphores 

We now provide one more implementation of Posix named semaphores using System V 
semaphores. Since implementations of the older System V semaphores are more com- 
mon than the newer Posix semaphores, this implementation can allow applications to 
start using Posix semaphores, even if not supported by the operating system. 

We cover System V semaphores in Chapter 11. You may wish to skip this section until you 
have read that chapter. 

We first show our semaphore. h header in Figure 10.51, which defines the funda- 
mental sem-t datatype. 

myjxsem-susem/semaphore.h 
1 / *  the fundamental datatype * /  
2 typedef struct { 

3 int sen-semid; / *  the System V semaphore ID * /  
4 int sem-magic; / *  magic number if open * /  
5 ) sem-t; 

7 #ifdef SEM-FAILED 
8 #undef SEM-FAILED 
9 #define SEM-FAILED ((sern-t * )  (-1)) / *  avoid compiler warnings * /  
10 #endif 

11 #ifndef SEMVMX 
12 #define SEMVMX 32767 / *  historical System V max value for sem * /  
13 #endif 

myjxsem-susem/semaphore.h 
Figure 10.51 semaphore. h header. 

se-t datatype 

-5 We implement a Posix named semaphore using a System V semaphore set consist- 
ing of one member. Our semaphore data structure contains the System V semaphore ID 
and a magic number (which we discussed with Figure 10.36). 

em-open Function 

Figure 10.52 shows the first half of our sem-open function, which creates a new 
semaphore or opens an existing semaphore. 

3 #include <stdarg.h> / *  for variable arg lists * /  
4 #define MAX-TRIES 10 / *  for waiting for initialization * /  

5 s-t * 
6 sen-open(const char *pathname, int oflag, . . . )  
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int i, fd. semflag, semid, save-errno; 
key-t key; 
mode-t mode; 
va-list ap; 
sem-t *sem; 
union semun arg; 
unsigned int value; 
struct semid-ds seminfo; 
struct sembuf initop; 

/ *  no mode for sem-open() w/out 0-CREAT; guess * /  
semflag = SVSEM-MODE; 
semid = -1; 

if (oflag & 0-CREAT) { 

va-start(ap, oflag); / *  init ap to final named argument * /  
mode = va-arg(ap, va-mode-t); 
value = va-arg(ap, unsigned int); 
va-end(ap); 

/ *  convert to key that will identify System V semaphore * /  
if ( (fd = open(pathname, oflag, mode)) == -1) 

return (SEM-FAILED); 
close(fd); 
if ( (key = ftok(pathname, 0 )  ) == (key-t) - 1) 

return (SEM-FAILED); 

/ *  create the System V semaphore with IPC-EXCL * /  
if ( (semid = semget(key, 1, semflag I IPC-EXCL)) >= 0) { 

/ *  success, we're the first so initialize to 0 * /  
arg.val = 0; 
if (semctl(semid, 0, SETVAL, arg) == -1) 

goto err; 
/ *  then increment by value to set sem-otime nonzero * /  

if (value > SEMVMX) { 

errno = EINVAL; 
goto err; 

1 
initop.sern-nun = 0; 
initop.sern-op = value; 
initop.sem-flg = 0; 
if (semop(semid, &initop, 1) == -1) 

goto err; 
goto finish; 

1 else if (errno !=  EEXIST I I (semflag & IPC-EXCL) !=  0) 
got0 err; 

/ *  else fall through */  
1 

rnyjxsem-susem Isem-0pen.c 

Figure 10.52 sem-open function: first half. 
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Create a new semaphore and handle variable argument list 

24 If the caller specifies the 0-CREAT flag, then we know that four arguments are 
required, not two. We described the handling of the variable argument list and our 
va-mode-t datatype with Figure 5.21. 

Create ancillary file and map pathname into System V IPC key 

30 A regular file is created with the pathname specified by the caller. We do so just to 
have a pathname for f t o k  to identify the semaphore. The caller's oflag argument for 
the semaphore, which can be either 0-CREAT or 0-CREAT I 0-EXCL, is used in the call 
to open. This creates the file if it does not already exist and will cause an error return if 
the file already exists and 0-EXCL is specified. The descriptor is closed, because the 
only use of this file is with f tok, which converts the pathname into a System V IPC key 
(Section 3.2). 

Create System V semaphore set with one member 

33 We convert the 0-CREAT and 0-EXCL constants into their corresponding System V 
IPC-xxx constants and call semget to create a System V semaphore set consisting of 
one member. We always specify IPC-EXCL to determine whether the semaphore exists 
or not. 

Initialize semaphore 

so Section 11.2 describes a fundamental problem with initializing System V 
semaphores, and Section 11.6 shows the code that avoids the potential race condition. 
We use a similar technique here. The first thread to create the semaphore (recall that we 
always specify I PC-EXCL) initializes it to 0 with a command of SETVAL to semc t 1, and 
then sets its value to the caller's specified initial value with semop. We are guaranteed 
that the semaphore's sem-otime value is initialized to 0 by semget and will be set 
nonzero by the creator's call to semop. Therefore, any other thread that finds that the 
semaphore already exists knows that the semaphore has been initialized once the 
sen-otime value is nonzero. 

Check initial value 

4 4  We check the initial value specified by the caller because System V semaphores are 
normally stored as unsigned s h o r t s  (the s e m  structure in Section 11.1) with a maxi- 
mum value of 32767 (Section 11.71, whereas Posix semaphores are normally stored as 
integers with possibly larger allowed values (Section 20.13). The constant SEMVMX is 
defined by some implementations to be the System V maximum value, or we define it to 
be 32767 in Figure 10.51. 

53 If the semaphore already exists and the caller does not specify 0-EXCL, this is not 
an error. In this situation, the code falls through to open (not create) the existing 
semaphore. 

Figure 10.53 shows the second half of our sem-open function. 
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5 6 * (0-CREAT not secif ied) or 
57 * (0-CREAT without 0-EXCL and semaphore already exists). 
58 * Must open semaphore and make certain it has been initialized. 
59 * / 
60 if ( (key = ftok(pathname, 0)) == (key-t) - 1) 
6 1 goto err; 
62 if ( (semid = semget(key, 0, semflag)) == -1) 
63 goto err; 

6 4 arg.buf = &seminfo; 
6 5 for (i = 0; i < MAX-TRIES; i++) { 
6 6 if (semctl(semid, 0 ,  IPC-STAT, arg) == -1) 
6 7 goto err; 
68 if (arg.buf->sem-otime !=  0) 
69 goto finish; 
70 sleep(1); 
71 ) 

7 2 errno = ETIMEDOUT: 
73 err: 
74 save-errno = errno; / *  don't let semctl() change errno * /  
75 if (semid !=  -1) 
7 6 semctl (semid, 0, IPCRMID) ; 
77 errno = save-errno: 
78 return (SEM-FAILED); 

79 finish: 
8 0 if ( (sem = rnalloc(sizeof (sen-t) ) ) == m L )  
81 goto err; 

8 2 sem->sem_semid = semid; 
83 sem->sem-magic = SEM-MAGIC; 
84 return (sem) ; 
85 1 my~xsem~susem/sem~open.c 

Figure 10.53 sem-open function: second half. 

Open existing semaphore 

55-63 For an existing semaphore (the 0-CREAT flag is not specified or 0-CREAT is speci- 
fied by itself and the semaphore already exists), we open the System V semaphore with 
semget. Notice that sem-open does not have a mode argument when 0-CREAT is not 
specified, but semget requires the equivalent of a mode argument even if an existing 
semaphore is just being opened. Earlier in the function, we assigned a default value 
(the SVSEM-MODE constant from our unpipc. h header) that we pass to semget when 
0-CREAT is not specified. 

Wait for semaphore to be initialized 

64-72 We then verlfy that the semaphore has been initialized by calling semctl with a 
command of IPC-STAT, waiting for sem-otime to be nonzero. 

Error returns 

73-78 When an error occurs, we are careful not to change errno. 
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Allocate sem-t datatype 

)-84 We allocate space for a sem-t datatype and store the System V semaphore ID in the 
structure. A pointer to the sem-t datatype is the return value from the function. 

_close Function 

Figure 10.54 shows our sem-close function, which just calls free to return the 
dynamically allocated memory that was used for the sem-t datatype. 

3 int 
4 sem~close(sem~t *sem) 

5 { 

6 if (sem->sem-magic !=  SEM-IGiGIC) { 

7 errno = EINVAL; 
8 return (-1) ; 
9 1 
10 sen->sem-magic = 0; / *  just in case * /  

11 free (sem) ; 
12 return (0) ; 

13 1 
my~xsem~susem/sem~close.c 

Figure 10.54 sem-close function. 

unlink Function - 

Our sem-unlink function, shown in Figure 10.55, removes the ancillary file and the 
System V semaphore associated with our Posix semaphore. 

Obtain System V key associated with pathname 

8-16 ftok converts the pathname into a System V IPC key. The ancillary file is then 
removed by unlink. (We do so now, in case one of the remaining functions returns an 
error.) We open the System V semaphore with semget and then remove it with a com- 
mand of I PC-RMID to semc t 1. 

gost Function 

Figure 10.56 shows our semsost function, which increments the value of a 
semaphore. 

-16 We call semop with a single operation that increments the semaphore value by one. 

wait Function - 

The next function is shown in Figure 10.57; it is sem-wait, which waits for the value of 
the semaphore to exceed 0. 

-16 We call semop with a single operation that decrements the semaphore value by one. 
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3 int 
4 sem-unlink(const char *pathname) 
5 I 
6 int semid; 
7 key-t key: 

8 if ( (key = ftok(pathname. 0)) == (key-t) - 1) 
9 return (-1) ; 
10 if (unlink (pathname) == -1) 
11 return (-1); 
12 if ( (semid = semget(key, 1, SVSEM-MODE)) == -1) 
13 return (-1); 
14 if (semctl(semid, 0, IPC-MID) == -1) 
15 return (-1); 
16 return (0) ; 

Figure 10.55 sem-unlink function. 

3 int 
4 semgost (sem-t *sem) 
5 I 
6 struct sembuf op; 

if (sem->sem-magic !=  SEM-MAGIC) { 

errno = EINVAL; 
return (-1); 

1 
op.sem-nun = 0; 
op.sem-op = 1; 
op.sem-flg = 0; 
if (semop(sem->sem-semid, &op, 1) < 0) 

return (-1) ; 
return (0) ; 

Figure 10.56 semgost function. 

sem-trywait Function 

Our sem-trywait function, the nonblocking version of sem-wait, is shown in Fig- 
ure 10.58. 

13  The only change from our sem-wait function in Figure 10.57 is specifying 
sem-f l g  as IPC-NOWAIT. If the operation cannot be completed without blocking the 
calling thread, the return value from semop is EAGAIN, which is what sem-trywait 
must return if the operation cannot be completed without blocking. 
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3 int 
4 sem-wait(sem-t *sem) 
5 I 
6 struct sernbuf op: 

7 if (sem->sem-magic != SEN-MAGIC) { 

8 errno = EINVAL; 
9 return (-1) ; 
10 1 
11 op.sem-num = 0; 
12 op.sem-op = -1; 
13 op.sem-flg = 0; 
14 if (semop(sem->sem-semid, &op, 1) < 0) 
15 return (-1) ; 
16 return (0) ; 

Figure 10.57 sem-wai t function. 

3 int 
4 sem-trywait(sem-t *sem) 
5 { 

6 struct sembuf op; 

7 if (sem->sem_magic !=  SEM-MAGIC) { 

8 errno = EINVAL; 
9 return (-1); 
10 1 
11 op.sem-num=O; 
12 op. sem-op = -1 ; 
13 0p.sem-flg = IPC-NOWAIT; 
14 if (semop(sem->sem-semid, &op, 1) < 0) 
15 return (-1); 
16 return (0) ; 
17 1 

my_pxsem~susem/sem~trywait.c 

Figure 10.58 sem-trywai t function. 

:etvalue Function 

The final function is shown in Figure 10.59; it is sem-getvalue, which returns the cur- 
rent value of the semaphore. 

4 The current value of the semaphore is obtained with a command of GETVAL to 
semctl. 
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#include "semaphore.h" 

int 
sem-getvalue(sem-t *sem, int *pvalue) 

( 

int val ; 

if (sem->sem-magic !=  SEM-MAGIC) ( 

errno = EINVAL; 
return (-1); 

I 
if ( (val = semctl(sen->sem-semid, 0, GETVAL)) < 0) 

return (-1); 
*pvalue = val; 
return (0) ; 

1 
my~xxm~susem/xm_getualue.c 

Figure 10.59 sem-getvalue function. 

Summary 

Posix semaphores are counting semaphores, and three basic operations are provided: 

create a semaphore, 

wait for a semaphore's value to be greater than 0 and then decrement the value, 
and 

post to a semaphore by incrementing its value and waking up any threads wait- 
ing for the semaphore. 

Posix semaphores can be named or memory-based. Named semaphores can always be 
shared between different processes, whereas memory-based semaphores must be desig- 
nated as process-shared when created. The persistence of these two types of 
semaphores also differs: named semaphores have at least kernel persistence, whereas 
memory-based semaphores have process persistence. 

The producer-consumer problem is the classic example for demonstrating 
semaphores. In this chapter, our first solution had one producer thread and one con- 
sumer thread, our next solution allowed multiple producer threads and one consumer 
thread, and our final solution allowed multiple consumer threads. We then showed that 
the classic problem of double buffering is just a special case of the producer-consumer 
problem, with one producer and one consumer. 

Three sample implementations of Posix semaphores were provided. The first, using 
FIFOs, is the simplest because much of the synchronization is handled by the kernel's 
read and write functions. The next implementation used memory-mapped I/O, simi- 
lar to our implementation of Posix message queues in Section 5.8, and used a mutex and 
condition variable for synchronization. Our final implementation used System V 
semaphores, providing a simpler interface to these semaphores. 
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Exercises 

Modify the produce and consume functions in Section 10.6 as follows. First, swap the 
order of the two calls to  em-wait in the consumer, to generate a deadlock (as we dis- 
cussed in Section 10.6). Next, add a call to p r i n t f  before each call to  em-wait, indicat- 
ing which thread (the producer or the consumer) is waiting for which semaphore. Add 
another call to p r i n t f  after the call to  em-wait, indicating that the thread got the 
semaphore. Reduce the number of buffers to 2, and then build and run this program to 
verify that it leads to a deadlock. 

Assume that we start four copies of our program that calls our my-lock function from 
Figure 10.19: 

8 lockpxsem & lockpxsem & lockpxsem & lockpxsem & 

Each of the four processes starts with an i n i t f  l a g  of 0, so each one calls sem-open spec- 
ifying 0-CREAT. Is this OK? 

What happens in the previous exercise if one of the four programs terminates after calling 
my-lock but before calling my-unlock? 

What could happen in Figure 10.37 if we did not initialize both descriptors to -l? 

In Figure 10.37, why do we save the value of e r rno  and then restore it, instead of coding 
the two calls to c l o s e  as 

What happens if two processes call our FIFO implementation of sem-open (Figure 10.37) 
at about the same time, both specifying 0-CREAT with an initial value of 5? Can the FIFO 
ever be initialized (incorrectly) to lo? 

With Figures 10.43 and 10.44, we described a possible race condition if two processes both 
try to create a semaphore at about the same time. Yet in the solution to the previous prob- 
lem, we said that Figure 10.37 does not have a race condition. Explain. 

Posix.1 makes it optional for sem-wait to detect that it has been interrupted by a caught 
signal and return EINTR. Write a test program to determine whether your implementation 
detects this or not. 

Also run your test program using our implementations that use FIFOs (Section 10.141, 
memory-mapped 1 / 0  (Section 10.151, and System V semaphores (Section 10.16). 

Which of our three implementations of s e m s o s t  are async-signal-safe (Figure 5.10)? 

Modify the producer-consumer solution in Section 10.6 to use a pthread-mutex-t 
datatype for the mutex variable, instead of a semaphore. Does any measurable change in 
performance occur? 

Compare the timing of named semaphores (Figures 10.17 and 10.18) with memory-based 
semaphores (Figure 10.20). 



System V Semaphores 

.1 Introduction 

When we described the concept of a semaphore in Chapter 10, we first desaibed 

a binary semaphore: a semaphore whose value is 0 or 1. This was similar to a 
mutex lock (Chapter 7), in which the semaphore value is 0 if the resource is 
locked, or 1 if the resource is available. 

The next level of detail expanded this into 

a counting semaphore: a semaphore whose value is between 0 and some limit 
(which must be at least 32767 for Posix semaphores). We used these to count 
resources in our producer-consumer problem, with the value of the semaphore 
being the number of resources available. 

In both types of semaphores, the wait operation waits for the semaphore value to be 
greater than 0, and then decrements the value. The post operation just increments the 
semaphore value, waking up any threads awaiting the semaphore value to be greater 
than 0. 

System V semaphores add another level of detail to semaphores by defining 

a set of counting semaphores: one or more semaphores (a set), each of which is a 
counting semaphore. There is a limit to the number of semaphores per set, typi- 
cally on the order of 25 semaphores (Section 11.7). When we refer to a 
"System V semaphore," we are referring to a set of counting semaphores. when 
we refer to a "Posix semaphore," we are referring to a single counting 
semaphore. 
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For every set of semaphores in the system, the kernel maintains the following struc- 
ture of information, defined by including <sys / sem . h>: 

struct semid-ds { 

struct ipcserm semserm; / *  operation permission struct * /  
struct sem *sem-base; / *  ptr to array of semaphores in set * /  
ushort sem-nsems; / *  # of semaphores in set * /  
t ime-t sem-otime; / *  time of last semop0 * /  
t ime-t sem-ctime; / *  time of creation or last IPC-SET * /  

1; 

The ipcserm structure was described in Section 3.3 and contains the access permis- 
sions for this particular semaphore. 

The sem structure is the internal data structure used by the kernel to maintain the 
set of values for a given semaphore. Every member of a semaphore set is described by 
the following structure: 

struct sem { 

ushort-t semval; / *  semaphore value, nonnegative * /  
short sempid; / *  PID of last successful semop0, SETVAL, SETALL * /  
ushort-t sernncnt; / *  # awaiting semval > current value * /  
ushort-t semzcnt; / *  # awaiting semval = 0 * /  

1; 

Note that sem-base contains a pointer to an array of these sem structures: one array 
element for each semaphore in the set. 

In addition to maintaining the actual values for each semaphore in the set, the ker- 
nel also maintains three other pieces of information for each semaphore in the set: the 
process ID of the process that performed the last operation on this value, a count of the 
number of processes waiting for the value to increase, and a count of the number of pro- 
cesses waiting for the value to become zero. 

Unix 98 says that the above structure is anonymous. The name that we show, sem, is from the 
historical System V implementation. 

We can picture a particular semaphore in the kernel as being a semid-ds structure 
that points to an array of sem structures. If the semaphore has two members in its set, 
we would have the picture shown in Figure 21.1. In this figure, the variable 
sem-nsems has a value of two, and we have denoted each member of the set with the 
subscripts [ 0 I and [ 1 I .  

11.2 semget Function 

The semget function creates a semaphore set or accesses an existing semaphore set. 

#include <sys/sem.h> 

int semget(key-t key, int nsems, int oflag); 

Returns: nonnegative identifier if OK, -1 on error 
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I 

I semid L 

sem-nsems 1 2 

semval 101 

I sempid I11 I 
sernncnt [ l l  

Figure 11.1 Kernel data structures for a semaphore set with two values in the set. 

The return value is an integer called the semaphore identifier that is used with the semop 
and semc t 1 functions. 

The nsems argument specifies the number of semaphores in the set. If we are not 
creating a new semaphore set but just accessing an existing set, we can speclfy this argu- 
ment as 0. We cannot change the number of semaphores in a set once it is created. 

The oflag value is a combination of the SEM-R and SEM-A constants shown in Fig- 
ure 3.6. R stands for "read and A stands for "alter." This can be bitwise-ORed with 
either IPC-CREAT or IPC-CREAT I IPC-EXCL, as discussed with Figure 3.4. 

When a new semaphore set is created, the following members of the semid-ds 
structure are initialized: 

The uid and cuid members of the semserm structure are set to the effective 
user ID of the process, and the gid and cgid members are set to the effective 
group ID of the process. 

The read-write permission bits in of 1 ag are stored in s emserm . mode. 
sem-o t ime is set to 0, and s em-c t ime is set to the current time. 

sem-nsems is set to nsems. 

The sem structure associated with each semaphore in the set is not initialized. 
These structures are initialized when semctl is called with either the SETVAL or 
SETALL commands. 

~lizatlon of Semaphore Value 

Comments in the source code in the 1990 edition of this book incorrectly stated that the 
semaphore values in the set were initialized to 0 by semget when a new set was cre- 
ated. Although some systems do initialize the semaphore values to 0, this is not guar- 
anteed. Indeed, older implementations of System V do not initialize the semaphore 
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values at all, leaving their values as whatever they were the last time that piece of mem- 
ory was used. 

Most manual pages for semget say nothing at all about the initial values of the 
semaphores when a new set is created. The X/Open XPG3 portability guide (1989) and 
Unix 98 correct this omission and explicitly state that the semaphore values are not ini- 
tialized by semget and are initialized only by calling semctl (which we describe 
shortly) with a command of either SETVAL (set one value in the set) or SETALL (set all 
the values in the set). 

This requirement of two function calls to create a semaphore set (semget) and then 
initialize it (semctl) is a fatal flaw in the design of System V semaphores. A partial 
solution is to specify IPC-CREAT I IPC-EXCL when calling semget, so that only one 
process (the first one to call semge t) creates the semaphore. This process then initial- 
izes the semaphore. The other processes receive an error of EEXIST from semget and 
they then call semget again, without specifying either IPC-CREAT or IPC-EXCL. 

But a race condition still exists. Assume that two processes both try to create and 
initialize a one-member semaphore set at about the same time, both executing the fol- 
lowing numbered lines of code: 

1 oflag = IPC-CREAT I IPC-EXCL I SVSEM-MODE; 
2 if ( (semid = semget (key, 1, oflag) ) >= 0) { 

/ *  success, we are the first, so initialize * /  
3 arg.val = 1; 
4 Semctl (semid, 0, SETVAL, arg) ; 

5 1 else if (errno == EEXIST) { 

/ *  already exists, just open * /  
6 semid = Semget(key, 1, SVSEM-MODE); 

7 1 else 
8 err-sys("semget error"); 

9 Semop(semid, ... ) ;  / *  decrement the semaphore by 1 * /  

The following scenario could occur: 

1. The first process executes lines 1-3 and is then stopped by the kernel. 

2. The kernel starts the second process, which executes lines 1,2,5,6, and 9. 

Even though the first process to create the semaphore will be the only process to initial- 
ize the semaphore, since it takes two steps to do the creation and initialization, the ker- 
nel can switch to another process between these two steps. That other process can then 
use the semaphore (line 9 in the code fragment), but the semaphore value has not been 
initialized by the first process. The semaphore value, when the second process executes 
line 9, is indeterminate. 

Fortunately, there is a way around this race condition. We are guaranteed that the 
sem-otime member of the semid-ds structure is set to 0 when a new semaphore set is 
created. (The System V manuals have stated this fact for a long time, as do the XPG3 
and Unix 98 standards.) This member is set to the current time only by a successful call 
to semop. Therefore, the second process in the preceding example must call semctl 
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with a command of IPC-STAT after its second call to semget succeeds (line 6 in the 
code fragment). It then waits for sem-otime to be nonzero, at which time it knows that 
the semaphore has been initialized and that the process that did the initialization has 
successfully called semop. This means the process that creates the semaphore must ini- 
tialize its value and must call semop before any other process can use the semaphore. 
We show examples of this technique in Figures 10.52 and 11.7. 

Posix named semaphores avoid this problem by having one function (sem-open) create and 
initialize the semaphore. Furthermore, even if 0-CREAT is specified, the semaphore is initial- 
ized only if it does not already exist. 

Whether this potential race condition is a problem also depends on the application. With some 
applications (e.g., our producer<onsumer as in Figure 10.21), one process always creates and 
initializes the semaphore. No race condition would exist in this scenario. But in other applica- 
tions (eg., our file locking example in Figure 10.19), no single process creates and initializes the 
semaphore: the first process to open the semaphore must create it and initialize it, and the race 
condition must be avoided. 

3 semop Function 

Once a semaphore set is opened with semget, operations are performed on one or 
more of the semaphores in the set using the semop function. 

#include <sys/sem.h> 

i n t  semop ( i n t  semid, s t r u c t  sembuf *opsptr, s ize- t nops) ; 

Returns: 0 if OK, -1 on error 

opsptr points to an array of the following structures: 

s t r u c t  sembuf { 
shor t  sem-num; / *  semaphore number: 0,  1 ,  ..., nsems-1 */  
s h o r t  sem-op; / *  semaphore opera t ion:  <0, 0, >O * /  
s h o r t  sem-£19; / *  opera t ion f l ags :  0,  IPC-NOWAIT, SEM-UNDO */  

1 ;  

The number of elements in the array of sembuf structures pointed to by opsptr is speci- 
fied by the nops argument. Each element in this array specifies an operation for one par- 
ticular semaphore value in the set. The particular semaphore value is specified by the 
sem-nurn value, which is 0 for the first element, one for the second, and so on, up to 
nsems-1, where nsems is the number of semaphore values in the set (the second argu- 
ment in the call to semget when the semaphore set was created). 

We are guaranteed only that the structure contains the three members shown. It might contain 
other members, and we have no guarantee that the members are in the order that we show. 
This means that we must not statically initialize this structure, as in 

struct sembuf ops[21 = ( 

0. 0. 0. / *  wait for [O] to be 0 * /  
0, 1, SEM-UNDO / *  then increment [Ol by 1 * /  

I ;  
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but must use run-time initialization, as in 

struct sembuf ops[2]; 

ops[O].sem-num = 0; / *  wait for [O] to be 0 * /  
ops[0].sem~op = 0; 
ops[O] .sem-flg = 0; 
ops[ll.sem-num = 0; /*  then increment [Ol by 1 * /  
ops [ll . sem-op = 1; 
ops[ll.sem-flg = SEM-UNDO; 

The array of operations passed to the semop function are guaranteed to be per- 
formed atomically by the kernel. The kernel either does all the operations that are speci- 
fied, or it does none of them. We show an example of this in Section 11.5. 

Each particular operation is specified by a sem-op value, which can be negative, 0, 
or positive. In the discussion that follows shortly, we refer to the following items: 

semval: the current value of the semaphore (Figure 11.1). 

semncnt: the number of threads waiting for semval to be greater than its cur- 
rent value (Figure 11.1). 

s emz cnt: the number of threads waiting for s emval to be 0 (Figure 11.1 ). 

semadj: the adjustment value for the calling process for the specified 
semaphore. This value is updated only if the SEM-UNDO flag is specified in the 
sem-f lg member of the sembuf structure for this operation. This is a concep- 
tual variable that is maintained by the kernel for each process that specifies the 
SEM-UNDO flag in a semaphore operation; a structure member with the name of 
s emad j need not exist. 

A given semaphore operation is made nonblocking by specifying the 
IPC-NOWAIT flag in the sem-f lg member of the sembuf structure. When this 
flag is specified and the given operation cannot be completed without putting 
the calling thread to sleep, semop returns an error of EAGAIN. 

When a thread is put to sleep waiting for a semaphore operation to complete 
(we will see that the thread can be waiting either for the semaphore value to be 0 
or for the value to be greater than 01, and the thread catches a signal, and the sig- 
nal handler returns, the semop function is interrupted and returns an error of 
EINTR. In the terminology of p. 124 of UNPv1, semop is a slow system call that is 
interrupted by a caught signal. 

When a thread is put to sleep waiting for a semaphore operation to complete 
and that semaphore is removed from the system by some other thread or pro- 
cess, sernop returns an error of EIDRM ("identifier removed"). 

We now describe the operation of semop, based on the three possible values of each 
specified sem-op operation: positive, 0, or negative. 

1. If sem-op is positive, the value of sem-op is added to semval. This corre- 
sponds to the release of resources that a semaphore controls. 
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If the SEM-UNDO flag is specified, the value of sem-op is subtracted from the 
semaphore's semad j value. 

2. If sem-op is 0, the caller wants to wait until semval is 0. If semval is already 
0, return is made immediately. 

If semval is nonzero, the semaphore's semzcnt value is incremented and the 
calling thread is blocked until semval becomes 0 (at which time, the 
semaphore's semzcnt value is decremented). As mentioned earlier, the thread 
is not put to sleep if IPC-NOWAIT is specified. The sleep returns prematurely 
with an error if a caught signal interrupts the function or if the semaphore is 
removed. 

3. If sem-op is negative, the caller wants to wait until the semaphore's value 
becomes greater than or equal to the absolute value of sem-op. This corre- 
sponds to the allocation of resources. 

If semval is greater than or equal to the absolute value of sem-op, the absolute 
value of sem-op is subtracted from semval. If the SEM-UNDO flag is specified, 
the absolute value of sem-op is added to the semaphore's semadj value. 

If semval is less than the absolute value of sem-op, the semaphore's semncnt 
value is incremented and the calling thread is blocked until semval becomes 
greater than or equal to the absolute value of sem-op. When this change 
occurs, the thread is unblocked, the absolute value of sem-op is subtracted from 
semval, and the semaphore's semncnt value is decremented. If the SEM-UNDO 
flag is specified, the absolute value of sem-op is added to the semaphore's 
semadj value. As mentioned earlier, the thread is not put to sleep if 
IPC-NOWAIT is specified. Also, the sleep returns prematurely with an error if a 
caught signal interrupts the function or if the semaphore is removed. 

If we compare these operations to the operations allowed on a Posix semaphore, the latter 
allows operations of only -1 (sen-wait) and +1 (semjost) .  System V semaphores allow the 
value to go up or down by increments other than one, and also allow waiting for the 
semaphore value to be 0. These more general operations, along with the fact that System V 
semaphores can have a set of values, is what complicates System V semaphores, compared to 
the simpler Posix semaphores. 

4 sernctl Function 

The semc t 1 function performs various control operations on a semaphore. 

#include <sys/sem.h> 

i n t  sernctl ( i n t  semid, i n t  semnum. i n t  cmd, . . . / * union senun arg */  ) ; I 
I Returns: nonnegative value if OK (see text), -1 on error I 
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The first argument semid identifies the semaphore, and semnum identifies the member of 
the semaphore set (0,1, and so on, up to nsems-I). The semnum value is used only for 
the GETVAL, SETVAL, GETNCNT, GETZCNT, and GETPID commands. 

The fourth argument is optional, depending on the cmd (see the comments in the 
union below). When required, it is the following union: 

union semun { 

i n t  v a l ;  / *  used for  SETVAL only * /  
struct  semid-ds *buf; / *  used for  IPC-SET and IPC-STAT * /  
ushort *array; I* used for  GETALL and SETALL *I 

1 ;  

This union does not appear in any system header and must be declared by the applica- 
tion. (We define it in our unpipc . h header, Figure C.1.) It is passed by value, not by 
reference. That is, the actual value of the union is the argument, not a pointer to the 
union. 

Unfortunately, some systems (FreeBSD and Linux) define this union as a result of including 
the <sys/sem. h> header, making it hard to write portable code. Even though having the sys- 
tem header declare this union makes sense, Unix 98 states that it must be explicitly declared 
by the application. 

The following values for the cmd are supported. Unless stated otherwise, a return 
value of 0 indicates success, and a return value of -1 indicates an error. 

GETVAL 

SETVAL 

GETPID 

GETNCNT 

GETZCNT 

GETALL 

SETALL 

IPC-RMID 

I PC-SET 

Return the current value of semval as the return value of the function. 
Since a semaphore value is never negative (semval is declared as an 
unsigned short), a successful return value is always nonnegative. 

Set the value of semval to arg.val. If this is successful, the semaphore 
adjustment value for this semaphore is set to 0 in all processes. 

Return the current value of sempid as the return value of the function. 

Return the current value of semncnt as the return value of the func- 
tion. 

Return the current value of semzcnt as the return value of the func 
tion. 

Return the values of semval for each member of the semaphore set. 
The values are returned through the arg.array pointer, and the return 
value of the function is 0. Notice that the caller must allocate an array 
of unsigned short integers large enough to hold all the values for 
the set, and then set arg.array to point to this array. 

Set the values of sernval for each member of the semaphore set. The 
values are specified through the arg.array pointer. 

Remove the semaphore set specified by semid from the system. 

Set the following three members of the semid-ds structure for the 
semaphore set from the corresponding members in the structure 
pointed to by the arg.buf argument: semserm . uid, s emserm . gid, 
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and semserm .mode. The sem-ctime member of the semid-ds 
structure is also set to the current time. 

IPC-STAT Return to the caller (through the argbuf argument) the current 
semid-ds structure for the specified semaphore set. Notice that the 
caller must first allocate a semid-ds structure and set arg.buf to point 
to this structure. 

i Simple Programs 

Since System V semaphores have kernel persistence, we can demonstrate their usage by 
writing a small set of programs to manipulate them and seeing what happens. The val- 
ues of the semaphores will be maintained by the kernel from one of our programs to the 
next. 

:reate Program 

Our first program shown in Figure 11.2 just creates a System V semaphore set. The -e 
command-line option specifies the IPC-EXCL flag, and the number of semaphores in 
the set must be specified by the final command-line argument. 

svsern/serncreate.c 
1 #include "unpipc.hW 

2 int 
3 main(int argc. char **argv) 
4 { 
5 int c, oflag, semid, nsems; 

oflag = SVSEM-MODE I IPC-CREAT; 
while ( (c = Getopt(argc, argv, "en)) !=  -1) { 

switch (c) { 
case 'el: 

oflag I =  IPCEXCL; 
break; 

1 
1 
if (optind != argc - 2) 

err-quit("usage: semcreate [ -e I <pathname> <nsems>"); 
nsems = atoi(argv[optind + 11); 

17 semid = Semget(Ftok(argv[optindl, 01, nsems, oflag); 
18 exit (0) ; 

19 1 
svsern/serncreate.c 

Figure 11.2 semcreate program. 

mid Program 

The next program, shown in Figure 11.3, removes a semaphore set from the system. A 
command of IPc-RMID is executed through the semctl function to remove the set. 
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semsetvalues Program 

Our semsetvalues program (Figure 11.4) sets all the values in a semaphore set. 

Get number of semaphores in set 

11-15 After obtaining the semaphore ID with semget, we issue an IPC-STAT command 
to semctl to fetch the semid-ds structure for the semaphore. The sem-nsems mem- 
ber is the number of semaphores in the set. 

Set all the values 

19-24 We allocate memory for an array of unsigned shorts, one per set member, and 
copy the values from the command-line into the array. A command of SETALL to 
semc t 1 sets all the values in the semaphore set. 

semgetvalues Program 

Figure 11.5 shows our semgetvalues program, which fetches and prints all the values 
in a semaphore set. 

Get number of semaphores in set 

11-15 After obtaining the semaphore ID with semget, we issue an IPC-STAT command 
to semctl to fetch the semid-ds structure for the semaphore. The sem-nsems mem- 
ber is the number of semaphores in the set. 

Get all the values 

16-22 We allocate memory for an array of unsigned shorts, one per set member, and 
issue a command of GETALL to semctl to fetch all the values in the semaphore set. 
Each value is printed. 

semops Program 

Our semops program, shown in Figure 11.6, executes an array of operations on a 
semaphore set. 

Command-line options 

7-19 An option of -n specifies the IPC-NOWAIT flag for each operation, and an option of 
-u specifies the SEM-UNDO flag for each operation. Note that the semop function allows 
us to specify a different set of flags for each member of the sembuf structure (that is, for 
the operation on each member of the set), but for simplicity we have these 
command-line options specify that flag for all specified operations. 

Allocate memory for the operations 

20-29 After opening the semaphore set with semget, an array of sembuf structures is 
allocated, one element for each operation specified on the command line. Unlike the 
previous two programs, this program allows the user to specify fewer operations than 
members of the semaphore set. 

Execute the operations 

semop executes the array of operations on the semaphore set. 
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2 int 
3 main(int argc, char **argv) 
4 { 
5 int semid; 

6 if (argc != 2) 
7 errquit("usage: semrmid <pathname>"); 

8 semid = Semget (Ftok(argv[l] , 0). 0, 0) ; 
9 Semctl (semid, 0, IPC-RMID) ; 

10 exit (0) ; 
11 1 

svsern/sernrmid.c 

Figure 11.3 semrmid program. 

1 #include "unpipc . h" 
2 int 
3 main(int argc, char **argv) 

int semid, nsems, i; 
struct semid-ds seminfo; 
unsigned short *ptr; 
union semun arg; 

if (argc < 2) 
errquit("usage: semsetvalues <pathname> [ va dues . . . 
/ *  first get the number of semaphores in the set * /  

semid = Semget (Ftok(argv[l] , 0). 0, 0) ; 
arg.buf = &seminfo; 
Semctl (semid, 0, IPC-STAT, arg) ; 
nsems = arg.buf->sem-nsems; 

/ *  now get the values from the command line * /  
if (argc != nsems + 2) 

errquit("%d semaphores in set, %d values specified", nsems, argc - 2); 

/ *  allocate memory to hold all the values in the set, and store */  
ptr = Calloc(nsems, sizeof(unsigned short)); 
arg.array = ptr; 
for (i = 0; i < nsems; i++) 

ptr[il = atoi(argv[i + 21); 
Semctl(semid, 0, SETALL, arg); 

exit (0) ; 

svsern/sernsetvalues.c 

Figure 11.4 semsetvalues program. 
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2 int 
3 main(int argc, char **argv) 
4 { 
5 int semid, nsems, i; 
6 struct semid-ds seminfo; 
7 unsigned short *ptr; 
8 union semun arg; 

9 if (argc != 2) 
10 err-quit("usage: semgetvalues <pathname>"); 

11 / *  first get the number of semaphores in the set * /  
12 semid = Semget (Ftok(argv[ll , 0). 0, 0) ; 
13 arg.buf = kerninfo; 
14 Semctl (semid, 0, IPC-STAT, arg) ; 
15 nsems = arg.buf->sem-nsems; 

16 / *  allocate memory to hold all the values in the set * /  
17 ptr = Calloc(nsems, sizeof(unsigned short)); 
18 arg-array = ptr; 

19 / *  fetch the values and print * /  
2 0 Semctl(semid, 0, GETALL, arg); 
2 1 for (i = 0; i < nsems; i++) 
2 2 printf('semval[%dl = %d\nN, i, ptr[il); 

2 3 exit (0) ; 

Figure Il.5 semgetvalues program. 

2 int 
3 main(int argc, char **argv) 
4 { 
5 int c, i, flag, semid, nops; 
6 struct sembuf *ptr; 

7 flag = 0; 
8 while ( (c = Getopt(argc, argv, "nu")) !=  -1) { 

9 switch (c) { 
10 case 'n' : 
11 flag I= IPC-NOWAIT; / *  for each operation * /  
12 break; 

13 case 'u' : 
14 flag ) =  SEM-UNDO; / *  for each operation * /  
15 break; 
16 1 
17 1 
18 if (argc - optind < 2) / *  argc - optind = #args remaining * /  
19 err-quit("usage: semops [ -n I [ -u ] <pathname> operation .. 
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20 semid = Semget(Ftok(argv[optind], 0). 0, 0); 
21 optind++; 
2 2 nops = argc - optind; 

/ *  allocate memory to hold operations, store, and perform * /  
ptr = Calloc(nops, sizeof(struct sembuf)); 
for (i = 0: i < nops; i++) { 

ptr[il .sem-nun = i; 
ptr[il.sem-op = atoi(argv[optind + i]); / *  <0, 0, or >O * /  
ptr[il.sem-flg = flag; 

1 
Semop (semid, ptr, nops) ; 

31 exit (0) ; 
32 1 

svsem/semops.c 
Figure 11.6 semops program. 

mples 

We now demonstrate the five programs that we have just shown, looking at some of the 
features of System V semaphores. 

solaris % touch /-/rich 
solaris % semcreate -e /tlp/rich 3 
solaris % semsetvalues /tlp/rich 1 2 3 
solaris % semgetvalues /tlp/rich 
semval[Ol = 1 
semval[l] = 2 
semval[21 = 3 

We first create a file named / tmp/r ich  that will be used (by f tok) to identify the 
semaphore set. semcreate creates a set with three members. semsetvalues sets the 
values to 1,2, and 3, and these values are then printed by semgetvalues. 

We now demonstrate the atomicity of the set of operations when performed on a 
semaphore set. 

solaris % semops -n /tlp/rich -1 -2 -4 
semctl error: Resource temporarily unavailable 
solaris % semgetvalues /tlp/rich 
semval [O] = 1 
semval[ll = 2 
semval[2] = 3 

We specify the nonblocking flag (-n) and three operations, each of which decrements a 
value in the set. The first operation is OK (we can subtract 1 from the first member of 
the set whose value is 11, the second operation is OK (we can subtract 2 from the second 
member of the set whose value is 21, but the third operation cannot be performed (we 
cannot subtract 4 from the third member of the set whose value is 3). Since the last 
operation cannot be performed, and since we specified nonblocking, an error of EAGAIN 
is returned. (Had we not specified the nonblocking flag, our program would have just 
blocked.) We then verify that none of the values in the set were changed. Even though 
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the first two operations could be performed, since the final operation could not be per- 
formed, none of the three operations are performed. The atomicity of semop means 
that either all of the operations are performed or none of the operations are performed. 

We now demonstrate the SEM-UNDO property of System V semaphores. 

solaris % semsetvalues /-/rich 1 2 3 settoknownvalues 
solaris % semo~s -u /tnw/rich -1 -2 -3 specifys~~-u~~~formchoperation 
solaris % semgetvalues /-/rich 
semval[o] = 1 all the changes were undone when sernops terminated 
semval[l] = 2 
semval[2] = 3 
solaris % semo~s /-/rich -1 -2 -3 do not specify SEM-UNDO 
solaris % serngetvalues /tmp/rich 
semval [O] = 0 the changes wer? not undone 
semval [l] = 0 
semval[2] = 0 

We first reset the three values to 1,2, and 3 with semsetvalues and then specify oper- 
ations of -1, -2, and -3 with our semops program. This causes all three values to 
become 0, but since we specify the -u flag to our semops program, the SEM-UNDO flag 
is specified for each of the three operations. This causes the semad j value for the three 
members to be set to 1,2, and 3, respectively. Then when our semops program termi- 
nates, these three semadj values are added back to the current values of each of the 
three members (which are all O), causing their final values to be 1,2, and 3, as we verify 
with our semgetvalues program. We then execute our semops program again, but 
without the -u flag, and tlus leaves the three values at 0 when our semops program ter- 
minates. 

11.6 File Locking 

We can provide a version of our my-lock and my-unlock functions from Figure 10.19, 
implemented using System V semaphores. We show this in Figure 11.7. 

First try an exclusive create 

13-17 We must guarantee that only one process initializes the semaphore, so we specify 
IPC-CREAT I IPC-EXCL. If this succeeds, that process calls semc t 1 to initialize the 
semaphore value to 1. If we start multiple processes at about the same time, each of 
which calls our my-lock function, only one will create the semaphore (assuming it 
does not already exist), and then that process initializes the semaphore too. 

Semaphore already exists; just open 

18-20 The first call to semget will return an error of EEXIST to the other processes, which 
then call semge t again, but without the I PC-CREAT I I PC-EXCL flags. 

Wait for semaphore to be initialized 

21-28 We encounter the same race condition that we talked about with the initialization of 
System V semaphores in Section 11.2. To avoid this, any process that finds that the 
semaphore already exists must call semctl with a command of IPC-STAT to look at 
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lock/locksvsem.c 
1 #include "unpipc . h" 

2 #define LOCK-PATH "/tmp/svsemlock" 
3 #define MAX-TRIES 10 

4 int semid, initflag; 
5 struct sernbuf postop, waitop; 

6 void 
7 my_lock(int fd) 
8 { 
9 int oflag, i; 
10 union semun arg; 
11 struct semid-ds seminfo; 

12 if (initflag == 0) { 

13 oflag = IPC-CREAT I IPC-EXCL I SVSEM-MODE; 
14 if ( (semid = semget(Ftok(L0CK-PATH, 0). 1, oflag)) >= 0) { 

15 / *  success, we're the first so initialize * /  
16 arg.va1 = 1; 
17 Semctl (semid, 0, SETVAL, arg) ; 

1 else if (errno == EEXIST) { 

/ *  someone else has created; make sure it's initialized * /  
semid = Semget(Ftok(L0CK-PATH, 0). 1, SVSEM-MODE); 
arg.buf = &seminfo; 
for (i = 0; i < MAX-TRIES; i++) ( 

Semctl(semid, 0, IPC-STAT, arg); 

sleep (1) ; 
1 
err-quit("semget OK, but semaphore not initialized"); 

1 else 
err-sys("semget error"); 

ini t : 
initflag = 1; 
postop.sem_nm = 0; / *  and init the two semop0 structures * /  
postop.sem-op = 1; 
postop.sem-flg = SEM-UNDO; 
waitop.sem-nm = 0: 
waitop.sem_op = -1; 
waitop.sem-flg = SEM-UNDO; 

1 
Semop(semid, &waitop, 1) ; / *  down by 1 * /  

42 void 
43 my-unlock (int fd) 
44 { 
4 5 Semop(semid, &postop, 1); / *  up by 1 * /  

Figure 11.7 File locking using System V semaphores. 
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the sem-otime value for the semaphore. Once this value is nonzero, we know that the 
process that created the semaphore has initialized it, and has called semop (the call to 
semop is at the end of this function). If the value is still 0 (which should happen very 
infrequently), we sleep for 1 second and try again. We limit the number of times that 
we try this, to avoid sleeping forever. 

Initialize sembur structures 

33-38 AS we mentioned earlier, there is no guaranteed order of the members in the 
sembuf structure, so we cannot statically initialize them. Instead, we allocate two of 
these structures and fill them in at run time, when the process calls my-lock for the 
first time. We specify the SEM-UNDO flag, so that if a process terminates while holding 
the lock, the kernel will release the lock (see Exercise 10.3). 

Creating a semaphore on its first use is easy (each process tries to create it but 
ignores an error if the semaphore already exists), but removing it after all the processes 
are done is much harder. In the case of a printer daemon that uses the sequence number 
file to assign job numbers, the semaphore would remain in existence all the time. But 
other applications might want to delete the semaphore when the file is deleted. In this 
case, a record lock might be better than a semaphore. 

11.7 Semaphore Limits 

As with System V message queues, there are certain system limits with System V 
semaphores, most of which arise from their original System V implementation (Sec- 
tion 3.8). These are shown in Figure 11.8. The first column is the traditional System V 
name for the kernel variable that contains this limit. 

I Name I Description I DUnix 4.0B I Solaris 2.6 I 
I I 

semmni I max # unique semaphore sets, systemwide 
semmsl I max # semaphores per semaphore set 

16 1 10 
25 1 25 

semopm I max # operations per semop call 

I I 

semaem I max adjust-on-exit value 1 16384 1 16384 1 

10 1 10 
semmnu 
s e m e  
s e n  

Figure 11.8 Typical limits for System V semaphores. 

Apparently no semmnu limit exists for Digital Unix. 

Example 

The program in Figure 11.9 determines the limits shown in Figure 11.8. 

semmns I max # semaphores, systemwide 400 1 60 

max # of undo structures, systemwide 
max # of undo entries per undo structure 
max value of any semaphore 

10 
32767 

30 

10 
32767 
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2 
3 #define 
4 #define 
5 #define 
6 #define 
7 #define 

8 int 

/ *  following are upper limits of values to try */  
MAX-NIDS 4096 / *  max # semaphore IDS * /  
MAX-VALUE 1024*1024 / *  rnax semaphore value * /  
MAX-MEMBERS 4 0 9 6 / *  max # semaphores per semaphore set * /  
MAX-NOPS 4096 / *  max # operations per semop0 * /  
MAX-NPROC Sysconf(-SC-CHILD-MAX) 

9 main(int argc, char **argv) 
10 { 

int i, j, semid, sid[MAX-NIDSI, pipefdL21; 
int s e m i ,  semvmx, semmsl, s e m s ,  semopn, semaem, semume. semmnu; 
pid-t *child; 
union semun arg; 
struct sembuf ops[MAX-NOPSI; 

/ *  see how many sets with one member we can create */  
for (i = 0; i <= MAX-NIDS; i++) I 

sid [i] = semget (IPC-PRIVATE, 1, SVSEM-MODE I IPC-CREAT) ; 
if (sid[i] == -1) I 

semmni = i: 
printf("%d identifiers open at once\nW, semi); 
break; 

1 
1 

/ *  before deleting, find maximum value using sid[O] * /  
for (j = 7; j < MAX-VALUE; j += 8) { 

arg.va1 = j; 
if (semctl(sid[O], 0, SETVAL, arg) == -1) { 

printf("max semaphore value = %d\nn, semvmx); 
break; 

1 
1 
for (j = 0; j < i; j++) 

Semctl (sid[ jl , 0, IPC-RMID) ; 

/ *  determine rnax # semaphores per semaphore set * /  
for (i = 1; i <= MAX-MEMBERS; i++) I 

semid = semget(1PC-PRIVATE, i, SVSEM-MODE I IPC-CREAT); 
if (semid == -1) { 

semmsl = i - 1; 
printf("max of %d members per set\nW, semmsl); 
break; 

1 
Semctl (semid, 0, IPC-RMID) ; 

I 

/ *  find rnax of total # of semaphores we can create * /  

for (i = 0; i < s e m i ;  i++) { 
sid[i] = semget(1PC-PRIVATE, semmsl, SVSEM-MODE I IPC-CREAT); 
if (sid[i] == -1) I 
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/ * 
* Up to this point each set has been created with semmsl 
* members. But this just failed, so try recreating this 
* final set with one fewer member per set, until it works. 
* / 
for (j = semmsl- 1; j > 0; j--) I 

sid[i] = semget(1PC-PRIVATE, j, SVSEM-MODE I IPC-CREAT); 
if (sid[il != -1) { 

semmns += j ; 
printf("max of %d semaphores\nM, semmns); 
Semctl (sid[i], 0, IPC-RMID) ; 
goto done; 

1 
1 
errquit("j reached 0, semmns = %d", sems); 

1 
s e m s  += semmsl; 

1 
printf("max of %d semaphores\nn, semmns): 

done : 
for (j = 0; j < i; j++) 

Semctl (sid[ j] , 0, IPC-RMID) ; 

/ *  see how many operations per semop ( ) * /  
semid = Semget(1PC-PRIVATE, semmsl, SVSEM-MODE I IPC-CREAT); 
for (i = 1; i <= MAX-NOPS; i++) ( 

ops[i - ll.sem-num = i - 1; 
ops[i - l].sem-op = 1; 
ops[i - l1.sem-flg = 0; 
if (semop(semid, ops, i) == -1) ( 

if (errno !=  E2BIG) 
err-sys("expected E2BIG from semop"); 

semopn = i - 1; 
printf ( "max of %d operations per semop ( ) \n" , semopn) ; 
break; 

1 
1 
Semctl(semid, 0, IPC-WID); 

/ *  determine the max value of semadj * /  
/ *  create one set with one semaphore * /  

semid = Semget(1PC-PRIVATE, 1, SVSEM-MODE I IPC-CREAT); 
arg.va1 = semvmx; 
Semctl(semid, 0, SETVAL, arg); / *  set value to max * /  
for (i = semvmx - 1; i > 0; i--) { 

ops[Ol.sem-nm = 0; 
ops[O] .sem-op = -i; 
ops[O].sem-flg = SEM-UNDO; 
if (semop(semid, ops, 1) !=  -1) I 

semaem = i; 
printf("max value of adjust-on-exit = %d\nn, semaem); 
break; 

1 
1 
Semctl (semid, 0, IPC-RMID) ; 
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if 

1 
1 
semct1 
for (j 

Ki 

/ *  determine max # undo structures * /  
/ *  create one set with one semaphore; init to 0 * /  

semid = Semget(1PC-PRIVATE, 1, SVSEM-MODE I IPC-CREAT); 
arg.va1 = 0; 
~emctl(semid, 0, SETVAL, arg); / *  set semaphore value to 0 * /  
Pipe (pipefd) ; 
child = Malloc(MAX-NPROC * sizeof(pid-t)); 
for (i = 0; i < MAX-NPROC; i++) { 

if ( (child[i] = fork()) == -1) { 

semmnu = i - 1; 
printf ("fork failed, senunnu at least %d\n", senunnu); 
break; 

1 else if (child[il == 0) { 
ops[O].sem-nm = 0; / *  child does the semop0 * /  
ops [ 01 . sem-op = 1 ; 
ops[O].sem-flg = SEM-UNDO: 
j = semop(semid, ops, 1); / *  0 if OK, -1 if error */  
Write(pipefd[l], &j, sizeof(j)); 
sleep (30) ; / *  wait to be killed by parent * /  
exit (0) ; / *  just in case * /  

1 
/ *  parent reads result of semop0 * /  
Read(pipefd[Ol, &j, sizeof(j)); 

(j == -1) { 

semmnu = i; 
printf("max # undo structures = %d\nW, senunnu); 
break; 

(semid, 0, IPC-RMID) ; 
= 0; j <= i && child[j] > 0; j++) 
11 (child[ j I, SIGINT) ; 

/ *  determine m a  # adjust entries per process * /  
/ *  create one set with max # of semaphores * /  

semid = Semget(1PC-PRIVATE, semmsl, SVSEM-MODE I IPC-CREAT); 
for (i = 0; i < semmsl; i++) { 

arg.va1 = 0; 
Semctl(semid, i, SETVAL, arg); / *  set semaphore value to 0 * /  

ops[i].sem-nm = i; 
ops[il.sem-op = 1; / *  add 1 to the value * /  
ops[il.sem-flg = SEM-UNW; 

if (semop(semid, ops, i + 1) == -1) ( 

semme = i; 
printf("max # undo entries per process = %d\nM, semme); 
break; 

1 
1 
Semctl (semid, 0, IPCRMID) ; 

exit (0) ; 
153 1 

svsern/lirnits.c 

Figure 11.9 Determine the system limits on System V semaphores. 
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11.8 Summary 

The following changes occur when moving from Posix semaphores to System V 
semaphores: 

1. System V semaphores consist of a set of values. When specifying a group of 
semaphore operations to apply to a set, either all of the operations are per- 
formed or none of the operations are performed. 

2. Three operations may be applied to each member of a semaphore set: test for the 
value being 0, add an integer to the value, and subtract an integer from the 
value (assuming that the value remains nonnegative). The only operations 
allowed for a Posix semaphore are to increment by one and to decrement by one 
(assuming that the value remains nonnegative). 

3. Creating a System V semaphore set is tricky because it requires two operations 
to create the set and then initialize the values, which can lead to race conditions. 

4. System V semaphores provide an "undo" feature that reverses a semaphore 
operation upon process termination. 

Exercises 

11.1 Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead of a path- 
name to specify the queue. We showed that the identifier is all we need to know to access 
a System V message queue (assuming we have adequate permission). Make similar modi- 
fications to Figure 11.6 and show that the same feature applies to System V semaphores. 

11.2 What happens in Figure 11.7 if the LOCK-PATH file does not exist? 
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Shared Memory lnfroducfion 

1 Introduction 

Shared memory is the fastest form of IPC available. Once the memory is mapped into 
the address space of the processes that are sharing the memory region, no kernel 
involvement occurs in passing data between the processes. What is normally required, 
however, is some form of synchronization between the processes that are storing and 
fetching information to and from the shared memory region. In Part 3, we discussed 
various forms of synchronization: mutexes, condition variables, read-write locks, record 
locks, and semaphores. 

What we mean by "no kernel involvemenf' is that the processes do not execute any sys- 
tem calls into the kernel to pass the data. Obviously, the kernel must establish the mem- 
ory mappings that allow the processes to share the memory, and then manage this 
memory over time (handle page faults, and the like). 

Consider the normal steps involved in the client-server file copying program that 
we used as an example for the various types of message passing (Figure 4.1). 

The server reads from the input file. The file data is read by the kernel into its 
memory and then copied from the kernel to the process. 

The server writes this data in a message, using a pipe, FIFO, or message queue. 
These forms of IPC normally require the data to be copied from the process to 
the kernel. 

We use the qualifier normally because Posix message queues can be implemented using 
memory-mapped 1/0  (the map function that we describe in this chapter), as we showed 
in Section 5.8 and as we show in the solution to Exercise 12.2. In Figure 12.1, we assume 
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that Posix message queues are implemented within the kernel, which is another possibil- 
ity. But pipes, FIFOs, and System V message queues all involve copying the data from the 
process to the kernel for a w r i t e  or msgsnd, or copying the data from the kernel to the 
process for a read or msgrcv. 

The client reads the data from the IPC channel, normally requiring the data to be 
copied from the kernel to the process. 

Finally, the data is copied from the client's buffer, the second argument to the 
w r i t e  function, to the output file. 

A total of four copies of the data are normally required. Additionally, these four copies 
are done between the kernel and a process, often an expensive copy (more expensive 
than copying data within the kernel, or copying data within a single process). Fig- 
ure 12.1 depicts this movement of the data between the client and server, through the 
kernel. 

process - - - -  
kernel 

client 

Figure 12.1 Flow of file data from server to client. 

server 

The problem with these forms of IPC-pipes, FIFOs, and message queues-is that 
for two processes to exchange information, the information has to go through the ker- 
nel. 

Shared memory provides a way around this by letting two or more processes share 
a region of memory. The processes must, of course, coordinate or synchronize the use of 
the shared memory among themselves. (Sharing a common piece of memory is similar 
to sharing a disk file, such as the sequence number file used in all the file locking exam- 
ples.) Any of the techniques described in Part 3 can be used for this synchronization. 

The steps for the client-server example are now as follows: 

v 
output input (pipe, FIFO, or 

file file message queue) 

The server gets access to a shared memory object using (say) a semaphore. 

The server reads from the input file into the shared memory object. The second 
argument to the read, the address of the data buffer, points into the shared 
memory object. 

When the read is complete, the server notifies the client, using a semaphore. 

The client writes the data from the shared memory object to the output file. 
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This scenario is depicted in Figure 12.2. 

output I file 1 

rli_ll I 
I 

input I file 1 
Figure 12.2 Copying file data from server to client using shared memory. 

process 

I 

sharedmemory 

In this figure the data is copied only twice-from the input file into shared memory and 
from shared memory to the output file. We draw one dashed box enclosing the client 
and the shared memory object, and another dashed box enclosing the server and the 
shared memory object, to reinforce that the shared memory object appears in the 
address space of both the client and the server. 

The concepts involved in using shared memory are similar for both the Posix inter- 
face and the System V interface. We describe the former in Chapter 13 and the latter in 
Chapter 14. 

I 

I server 

I n1 

In this chapter, we return to our sequence-number-increment example that we 
started in Chapter 9. But we now store the sequence number in memory instead of in a 
file. 

We first reiterate that memory is not shared by default between a parent and child 
across a fork. The program in Figure 12.3 has a parent and child increment a global 
integer named count. 

Create and initialize semaphore 

la  We create and initialize a semaphore that protects what we think is a shared vari- 
able (the global count). Since this assumption is false, this semaphore is not really 
needed. Notice that we remove the semaphore name from the system by calling 
sem-unlink, but although this removes the pathname, it has no effect on the 
semaphore that is already open. We do this so that the pathname is removed from the 
filesystem even if the program aborts. 

Set standard output unbuffered and fork 

We set standard output unbuffered because both the parent and child will be writ- 
ing to it. This prevents interleaving of the output from the two processes. 

2s The parent and child each execute a loop that increments the counter the specified 
number of times, being careful to increment the variable only when the semaphore is 
held. 
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2 #define SEM-NAME "mysem" 

3 int count = 0; 

4 int 
5 main(int argc, char **argv) 
6 I 
7 int i, nloop; 

9 if (argc !=  2) 
10 err-quit("usage: incrl <#loops>"); 
11 nloop = atoi (argv [l] ) ; 

12 / *  create, initialize, and unlink semaphore * /  
13 rnutex = Sem-open(Px-ipc-name(SEM-NAME), 0-CREAT I 0-EXCL, FILE-MODE, 1); 
14 Sem-unlink (Px-ipc-name (SEM-NAME) ) ; 

setbuf(stdout, NULL); / *  stdout is unbuffered * /  
if (Fork() == 0) { / *  child * /  

for (i = 0; i i nloop; i++) { 
Sem-wait(mutex); 
printf("chi1d: %d\n", count++); 
Sem_post(mutex); 

1 
exit (0) ; 

1 
/ *  parent * /  

for (i = 0; i i nloop; i++) { 
Sem-wait(mutex); 
printf("parent: %d\nN, count++): 
Sem_post(mutex); 

1 
exit (0) ; 

Figure 123 Parent and child both increment the same global. 

If we run this program and look only at the output when the system switches 
between the parent and child, we have the following: 

child: 0 
child: 1 

child: 678 
child: 679 
parent: 0 
parent: 1 

child runs first, counter starts at 0 

child is stopped, parent runs, counter starts at 0 

parent: 1220 
parent: 1221 
child: 680 parent is stopped, child runs 
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child: 681 
. . .  
child: 2078 
child: 2079 
parent: 1222 child is stopped, parent runs 
parent: 1223 

and so on 

As we can see, both processes have their own copy of the global count. Each starts 
with the value of this variable as 0, and each increments its own copy of this variable. 
Figure 12.4 shows the parent before calling fork. 

parent 
I 1 int count; 

1 

/ *  parent * /  
. . . 

parent executing here --, 

Figure 124 Parent before calling fork. 

if (Fork0 == 0) I 
/ *  child * /  
. . . 

When f o r k  is called, the child starts with its own copy of the parent's data space. Fig- 
ure 12.5 shows the two processes after f o r k  returns. 

parent 

I 
int count; I 
if (Fork() == 0) I 

/ *  child * /  
... child executing here --, 

1 

/ *  parent * /  

child 

int count; 

if (Fork0 == 0) I 
/ *  child * /  

/ *  parent * /  
. . .  

Figure 12.5 Parent and child after fork returns. 

We see that the parent and child each have their own copy of the variable count. 

12.2 map, mumnap, and m s y n c  Functions 

The mmap function maps either a file or a Posix shared memory object into the address 
space of a process. We use this function for three purposes: 
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1. with a regular file to provide memory-mapped 1/0 (Section 12.3), 

2. with special files to provide anonymous memory mappings (Sections 12.4 
and 12.5), and 

3. with s h o p e n  to provide Posix shared memory between unrelated processes 
(Chapter 13). 

void *mmap(void *addr, size-t k n ,  int prot, int pap, int fd, off-t offset); I 
I Returns: starting address of mapped region if OK, MAP-FAILED on error I 

addr can specify the starting address within the process of where the descriptor fd 
should be mapped. Normally, this is specified as a null pointer, telling the kernel to 
choose the starting address. In any case, the return value of the function is the starting 
address of where the descriptor has been mapped. 

Zen is the number of bytes to map into the address space of the process, starting at 
offset bytes from the beginning of the file. Normally, offset is 0. Figure 12.6 shows this 
mapping. 

address space 
of process 

high memory 

memory 
mapped 
portion 
of file 

return value of m a p  -t - - - - - - - - - - . 
\ 
\ 

low memory \ 

I 

memory mapped file referenced by descriptor fd:  ort ti on of file 

Figure 126 Example of memory-mapped file. 

The protection of the memory-mapped region is specified by the prot argument 
using the constants in Figure 12.7. The common value for this argument is PROT-READ 
I PROT-WRITE for read-write access. 
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I vrot 

PROT-READ 
PROT-WRITE 

PROT-EXEC 
PROT-NONE C data can be written 

data can be executed 
data cannot be accessed 

Figure 127 prof argument for mmap.h>. 

Figure 12.8 flags argument for mmap. 

The flags are specified by the constants in Figure 12.8. Either the MAP-SHARED or 
the MAP-PRIVATE flag must be specified, optionally ORed with MAP-FIXED. If 
MAP-PRIVATE is specified, then modifications to the mapped data by the calling pro- 
cess are visible only to that process and do not change the underlying object (either a 
file object or a shared memory object). If MAP-SHARED is specified, modifications to the 
mapped data by the calling process are visible to all processes that are sharing the 
object, and these changes do modify the underlying object. 

For portability, MAP-FIXED should not be specified. If it is not specified, but addr is 
not a null pointer, then it is implementation dependent as to what the implementation 
does with addr. The nonnull value of addr is normally taken as a hint about where the 
memory should be located. Portable code should specify addr as a null pointer and 
should not specify MAP-FIXED. 

One way to share memory between a parent and child is to call map with 
MAP-SHARED before calling fork. Posix.1 then guarantees that memory mappings in 
the parent are retained in the child. Furthermore, changes made by the parent are visi- 
ble to the child and vice versa. We show an example of this shortly. 

After map  returns success, the fd argument can be closed. This has no effect on the 
mapping that was established by rnrnap. 

To remove a mapping from the address space of the process, we call munrnap. 

int munmap (void *addr, size-t len) ; 

Returns: 0 if OK, -1 on error I 
The addr argument is the address that was returned by map, and the Zen is the size of 
that mapped region. Further references to these addresses result in the generation of a 
SIGSEGV signal to the process (assuming, of course, that a later call to map does not 
reuse this portion of the address space). 
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If the mapped region was mapped using MAP-PRIVATE, the changes made are dis- 
carded. 

In Figure 12.6, the kernel's virtual memory algorithm keeps the memory-mapped 
file (typically on disk) synchronized with the memory-mapped region in memory, 
assuming a MAP-SHARED segment. That is, if we modify a location in memory that is 
memory-mapped to a file, then at some time later the kernel will update the file accord- 
ingly. But sometimes, we want to make certain that the file on disk corresponds to what 
is in the memory-mapped region, and we call msync to perform this synchronization. 

#include isys/mman.h> 

int msync (void *addr, size-t Zen, int flags) ; 

Returns: 0 if OK, -1 on error 

The addr and len arguments normally refer to the entire memory-mapped region of 
memory, although subsets of this region can also be specified. The flags argument is 
formed from the combination of constants shown in Figure 12.9. 

MS-SYNC perform synchronous writes 

Figure 12.9 flags for rnsync function. 

One of the two constants MS-ASYNC and MS-SYNC must be specified, but not both. The 
difference in these two is that MS-ASYNC returns once the write operations are queued 
by the kernel, whereas MS-SYNC returns only after the write operations are complete. If 
MS-INVALIDATE is also specified, all in-memory copies of the file data that are incon- 
sistent with the file data are invalidated. Subsequent references will obtain data from 
the file. 

Why Use mmag? 

Our description of mmap so far has implied a memory-mapped file: some file that we 
open and then map into our address space by calling mmap. The nice feature in using a 
memory-mapped file is that all the 1 /0  is done under the covers by the kernel, and we 
just write code that fetches and stores values in the memory-mapped region. We never 
call read, wri te ,  or lseek. Often, this can simplify our code. 

Recall our implementation of Posix message queues using mmap and the storing of values into 
a msg-hdr structure in Figure 5.30 and the fetching of values from a msg-hdr structure in Fig- 
ure 5.32. 
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Beware of some caveats, however, in that not all files can be memory mapped. Try- 
ing to map a descriptor that refers to a terminal or a socket, for example, generates an 
error return from map.  These types of descriptors must be accessed using read and 
wr i t e  (or variants thereof ). 

Another use of m a p  is to provide shared memory between unrelated processes. In 
this case, the actual contents of the file become the initial contents of the memory that is 
shared, and any changes made by the processes to this shared memory are then copied 
back to the file (providing filesystem persistence). This assumes that MAP-SHARED is 
specified, which is required to share the memory between processes. 

Details on the implementation of map and its relationship to the kernel's virtual memory 
algorithms are provided in [McKusick et al. 19961 for 4.4BSD and in [Vahalia 19961 and [Good- 
heart and Cox 19941 for SVR4. 

2.3 Increment Counter in a Memory-Mapped File 

We now modify Figure 12.3 (which did not work) so that the parent and child share a 
piece of memory in which the counter is stored. To do so, we use a memory-mapped 
file: a file that we open and then m a p  into our address space. Figure 12.10 shows the 
new program. 

New command-line argument 

11-14 We have a new command-line argument that is the name of a file that will be mem- 
ory mapped. We open the file for reading and writing, creating the file if it does not 
exist, and then write an integer with a value of 0 to the file. 

mmap then close descriptor 

15-16 We call m a p  to map the file that was just opened into the memory of this process. 
The first argument is a null pointer, telling the system to pick the starting address. The 
length is the size of an integer, and we specify read-write access. By specifying a fourth 
argument of MAP-SHARED, any changes made by the parent will be seen by the child, 
and vice versa. The return value is the starting address of the memory region that will 
be shared, and we store it in p t r .  

fork 

20-34 We set standard output unbuffered and call fork. The parent and child both incre- 
ment the integer counter pointed to by p t r .  

Memory-mapped files are handled specially by fork, in that memory mappings 
created by the parent before calling fork  are shared by the child. Therefore, what we 
have done by opening the file and calling m a p  with the MAP-SHARED flag is provide a 
piece of memory that is shared between the parent and child. Furthermore, since the 
shared memory is a memory-mapped file, any changes to the shared memory (the piece 
of memory pointed to by p t r  of size s izeof  ( i n t  ) ) are also reflected in the actual file 
(whose name was specified by the command-line argument). 
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2 #define SEM-NAME "rnysern" 

3 int 
4 main(int argc, char **argv) 

int fd, i, nloop, zero = 0; 
int *ptr; 
sern-t *rnutex; 

if (argc !=  3) 
err-quit("usage: incr2 <pathname> <#loops>"); 

nloop = atoi(argv[2]); 

/ *  open file, initialize to 0, map into memory * /  
fd = Open(argv[l], 0-RDWR I 0-CREAT, FILE-MODE); 
Write(fd, &zero, sizeof (int) ) ; 
ptr = Mmap(NULL, sizeof(int), PROTREAD I PROT-WRITE, MAP-SHARED, fd, 0); 
Close ( fd) ; 

/ *  create, initialize, and unlink semaphore * /  
mutex = Sern-open(Px-ipc-name(SEM-NAME), 0-CREAT I 0-EXCL, FILE-MODE, 1); 
Sern-unlink(Px-ipcpame(SEM-NAME)); 

setbuf(stdout, NULL); / *  stdout is unbuffered * /  
if (Fork0 == 0) { / *  child * /  

for (i = 0; i < nloop; i++) { 
Sem-wait(mutex) ; 
printf ("child: %d\n" , (*ptr) ++) ; 

Sem_post(mutex); 
1 
exit (0) ; 

1 
/ *  parent * /  

for (i = 0; i < nloop; i++) { 
Sem-wait(mutex) ; 
printf("parent: %d\nW, (*ptr)++); 
Sem_post(mutex); 

1 
exit (0) ; 

Figure 12.10 Parent and child incrementing a counter in shared memory. 

If we execute this program, we see that the memory pointed to by ptr is indeed 
shared between the parent and child. We show only the values when the kernel 
switches between the two processes. 

solaris % incr2 /tw/tm.l 10000 
child: 0 child starts first 
child: 1 
. . . 
child: 128 
child: 129 
parent: 130 child is stopped, parent starts 
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parent: 131 
. . . 
parent: 636 
parent: 637 
child: 638 parent is stopped, child starts 
child: 639 
. . . 
child: 1517 
child: 1518 
parent: 1519 child is stopped, parent starts 
parent: 1520 
. . . 
parent: 19999 final line of output 
solaris % od -D /tnw/temw.l 
0000000 0000020000 
0000004 

Since the file was memory mapped, we can look at the file after the program terminates 
with the od program and see that the final value of the counter (20,000) is indeed stored 
in the file. 

Figure 12.11 is a modification of Figure 12.5 showing the shared memory, and show- 
ing that the semaphore is also shared. We show the semaphore as being in the kernel, 
but as we mentioned with Posix semaphores, this is not a requirement. Whatever 
implementation is used, the semaphore must have at least kernel persistence. The 
semaphore could be stored as another memory-mapped file, as we demonstrated in Sec- 
tion 10.15. 

shared memory 

parent py 
int *ptr; 

if (Fork0 == 0) { 

/ *  child * /  

parent executing here -, 

1 

/ *  parent * /  

- 

. . - 

child executing here + 

child 

int *ptr; 

if (Fork0 == 0) { 

/ *  child * /  
. . . 

) 

/ *  parent * /  
. - .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
kernel 

Figure 12.11 Parent and child sharing memory and a semaphore. 

We show that the parent and child each have their own copy of the pointer ptr, but 
each copy points to the same integer in shared memory: the counter that both processes 
increment. 
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W e  now modify our program from Figure 12.10 to use a Posix memory-based 
semaphore instead of a Posix named semaphore, and store this semaphore in the shared 
memory. Figure 12.12 is the new program. 

shmlincr3.c 
1 #include "unpipc.hn 

2 struct shared { 

3 sem-t mutex; / *  the mutex: a Posix memory-based semaphore *I 
4 int count ; / *  and the counter * /  
5 1 shared; 

6 int 
7 main(int argc, char **argv) 
8 { 

int fd, i, nloop; 
struct shared *ptr; 

if (argc != 3) 
err-quit("usage: incr3 <pathname> <#loops>"); 

nloop = atoi(argv[2]); 

/ *  open file, initialize to 0, map into memory * /  
fd = Open(argv[l], 0-RDWR I 0-CREAT, FILE-MODE); 
Write(fd, &shared, sizeof(struct shared) 1;  
ptr = Mmap(NULL, sizeof(struct shared), PROT-READ I PROT-!JVRITE, 

MAP-SHARED, f d, 0 ) ; 
Close ( f d) ; 

/ *  initialize semaphore that is shared between processes * /  
Sem-init(&ptr->mutext 1, 1); 

setbuf (stdout, NULL) ; / *  stdout is unbuffered * /  
if (Fork() == 0) { / *  child * /  

for (i = 0; i < nloop; i++) { 

Sem-wait(&ptr->mutex); 
printf("chi1d: %d\nW, ptr->count++); 
Semsost (&ptr->mutex) ; 

1 
exit (0) ; 

1 
/ *  parent * /  

for (i = 0; i < nloop; i++) { 
Sem-wait(&ptr->mutex); 
printf("parent: %d\nU, ptr->count++); 
Semsost (&ptr->mutex) ; 

1 
exit (0) ; 

Figure 12.12 Counter and semaphore are both in shared memory. 

Define structure that will be in shared memory 

2-5 W e  define a structure containing the integer counter and a semaphore to protect it. 
This structure will be stored in the shared memory object. 
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Map the memory 

19 We create the file that will be mapped, and write a structure of 0 to the file. All we 
are doing is initializing the counter, because the value of the semaphore will be initial- 
ized by the call to sem-init. Nevertheless, writing an entire structure of 0 is simpler 
than to try to write only an integer of 0. 

Initialize semaphore 

21 We are now using a memory-based semaphore, instead of a named semaphore, so 
we call sem-ini t to initialize its value to 1. The second argument must be nonzero, to 
indicate that the semaphore is being shared between processes. 

Figure 12.13 is a modification of Figure 12.11, noting the change that the semaphore 
has moved from the kernel into shared memory. 

shared memory 
count & semaphore 

struct shared *ptr; struct shared *ptr; 

if (Fork0 == 0) { 

/ *  child * /  
. . . 

1 

Figure 12.13 Counter and semaphore are now in shared memory. 

went executing here --c 

4.4BSD Anonymous Memory Mapping 

child executing here --, 

/ *  parent * /  
. . . 

Our examples in Figures 12.10 and 12.12 work fine, but we have to create a file in the 
filesystem (the command-line argument), call open, and then w r i t e  zeros to the file to 
initialize it. When the purpose of calling m a p  is to provide a piece of mapped memory 
that will be shared across a fork, we can simplify this scenario, depending on the 
implementation. 

if (Fork0 == 0) { 

/ *  child * /  
. . . 

1 

1. 4.4BSD provides anonymous memoy mapping, which completely avoids having 
to create or open a file. Instead, we specify the flags as MAP-SHARED I 
MAP-ANON and the fd as -1. The offset is ignored. The memory is initialized to 0. 
We show an example of this in Figure 12.14. 

2. SVR4 provides /dev/zero, which we open, and we use the resulting descrip 
tor in the call to map.  This device returns bytes of 0 when read, and anything 
written to the device is discarded. We show an example of this in Figure 12.15. 
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(Many Berkeley-derived implementations, such as SunOS 4.1.x and BSD/OS 3.1, 
also support /dev/ zero.) 

Figure 12.14 shows the only portion of Figure 12.10 that changes when we use 4.4BSD 
anonymous memory mapping. 

shm liner-map-an0n.c 
3 int 
4 main(int argc, char **argv) 
5 { 

6 int i, nloop; 
7 int *ptr; 
8 sem-t *mutex; 

9 if (argc !=  2) 
10 err-quit("usage: incr-map-anon <#loops>"); 
11 nloop = atoi(argv[ll); 

12 / *  map into memory * /  
13 ptr = Mmap(NULL, sizeof(int), PROT-READ I PROT-WRITE, 
14 MAP-SHARED 1 MAP-ANON, -1, 0); 

shmlincr-map-an0n.c 

Figure 12.14 4.4BSD anonymous memory mapping. 

6-11 The automatic variables f d  and zero are gone, as is the command-line argument 
that specified the pathname that was created. 

12-14 We no longer open a file. The MAP-ANON flag is specified in the call to mmap, and 
the fifth argument (the descriptor) is -1. 

12.5 SVR4 /dev/zero Memory Mapping 

Figure 12.15 shows the only portion of Figure 12.10 that changes when we map 
/dev/zero. 

shm /in~r~dev~zero.c 
3 int 
4 main(int argc, char **argv) 
5 { 

6 int fd, i, nloop; 
7 int *ptr; 
8 sem-t *mutex; 

9 if (argc !=  2) 
10 err-quit("usage: incr-dev-zero <#loops>"); 
11 nloop = atoi (argvll] ) ; 

12 / *  open /dev/zero, map into memory */  
13 fd = Open("/dev/zeroU, 0-RDWR); 
14 ptr = Mmap(NULL, sizeof(int), PROTREAD I PROT-WRITE, MAP-SHARED, fd, 0); 
15 Close (fd) ; 

shm/in~r~dev~zero.c 

Figure 12.15 SVR4 memory mapping of /dev/ zero. 
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.ii The automatic variable zero is gone, as is the cornmand-line argument that speci- 
fied the pathname that was created. 

-15 We open /dev/ zero, and the descriptor is then used in the call to map.  We are 
guaranteed that the memory-mapped region is initialized to 0. 

i Referencing Memory-Mapped Objects 

When a regular file is memory mapped, the size of the mapping in memory (the second 
argument to map)  normally equals the size of the file. For example, in Figure 12.12 the 
file size is set to the size of our shared structure by w r i t e ,  and this value is also the 
size of the memory mapping. But these two sizes-the file size and the memory- 
mapped size-can differ. 

We will use the program shown in Figure 12.16 to explore the rnrnap function in 
more detail. 

2 int 
3 main(int argc, char **argv) 
4 { 
5 int fd, i; 
6 char *ptr; 
7 size-t filesize, mmapsize, pagesize; 

8 if (argc != 4) 
9 errquit("usage: test1 <pathname> <filesize> <mmapsize>"); 
10 filesize = atoi(argv[2]); 
11 mmapsize = atoi (argv[3] ) ; 

12 / *  open file: create or truncate; set file size * /  
13 fd = Open (argv[l] , 0-RDWR I 0-CREAT I 0-TRUNC, FILE-MODE) ; 
14 Lseek(fd, filesize - 1, SEEK-SET); 
15 Write(fd, "" ,  1); 

16 ptr = Mmap(NULL, mmapsize, PROT-READ 1 PROT-WRITE, MAP-SHARED, fd, 0); 
17 Close(fd); 

20 for (i = 0; i < max(filesize, mmapsize); i += pagesize) { 

21 print£ ('ptr [%dl = %d\nn, i, ptr [i] ) ; 
22 ptr[il = 1; 
2 3 printf("ptr[%d] = %d\nU, i + pagesize - 1, ptr[i + pagesize - 11); 
2 4 ptr[i + pagesize - 11 = 1; 
25 1 
26 printf("ptr[%d]=%d\n", i,ptr[i]); 

2 7 exit (0) ; 

Figure 12.16 Memory mapping when map equals file size. 
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Command-line arguments 

8-11 The command-line arguments specify the pathname of the file that will be created 
and memory mapped, the size to which that file is set, and the size of the memory map- 
ping. 

Create, open, truncate file; set file size 

12-15 The file being opened is created if it does not exist, or truncated to a size of 0 if it 
already exists. The size of the file is then set to the specified size by seeking to that size 
minus 1 byte and writing 1 byte. 

Memory map fiie 

16-17 The file is memory mapped, using the size specified as the final command-line 
argument. The descriptor is then closed. 

Print page size 

18-19 The page size of the implementation is obtained using sysconf and printed. 

Read and store the memory-mapped region 

20-26 The memory-mapped region is read (the first byte of each page and the last byte of 
each page), and the values printed. We expect the values to all be 0. We also set the first 
and last bytes of the page to 1. We expect one of the references to generate a signal 
eventually, which will terminate the program. When the for loop terminates, we print 
the first byte of the next page, expecting this to fail (assuming that the program has not 
already failed). 

The first scenario that we show is when the file size equals the memory-mapped 
size, but this size is not a multiple of the page size. 

solaris % 1s -1 foo 
£00: No such file or directory 
solaris % test1 foo 5000 5000 
PAGESIZE = 4096 
ptr[O] = 0 
ptr[40951 = 0 
ptr[4096] = 0 
ptr[8191] = 0 
Segmentation Fault(coredump) 
solaris % 1s -1 foo 
-rW-r--r-- 1 rstevens other1 5000 Mar 20 17:18 £00 

solaris % od -b -A d foo 
0000000 001 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 
0000016 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 
* 

The page size is 4096 bytes, and we are able to read the entire second page (indexes 4096 
through 8191), but a reference to the third page (index 8192) generates SIGSEGV, which 



&on 12.6 Referencing Memory-Mapped Objects 319 

the shell prints as "Segmentation Fault." Even though we set p t r  [ 8191 I to 1, this 
value is not written to the file, and the file's size remains 5000. The kernel lets us read 
and write that portion of the final page beyond our mapping (since the kernel's memory 
protection works with pages), but anything that we write to this extension is not written 
to the file. The other 3 bytes that we set to 1, indexes 0,4095, and 4096, are copied back 
to the file, which we verify with the od command. (The -b option says to print the 
bytes in octal, and the -A d option says to print the addresses in decimal.) Figure 12.17 
depicts this example. 

file size 

4 
file 

I I 
offset: 0 4999 

index: 0 4999 5000 8191 ,- -, 
i remainder I 

memory-mapped region of last page 
I I 

references b- references OK generate 
SIGSEGV 

m a p  i ) size 
Figure 12.17 Memory mapping when m a p  size equals file size. 

If we run our example under Digital Unix, we see similar results, but the page size 
is now 8192. 

alpha % 1s -1 foo 
£00 not found 
alpha % testl foo 5000 5000 
PAGESIZE = 8192 
ptr[O] = 0 
ptr[8191] = 0 
Memory fault(coredump) 
alpha % 1s -1 foo 
-rW-r--r-- 1 rstevens operator 5000 Mar 21 08:40 foo 

We are still able to reference beyond the end of our memory-mapped region but within 
that page of memory (indexes 5000 through 8191). Referencing p t  r [ 8 192 I generates 
SIGSEGV, as we expect. 

In our next example with Figure 12.16, we specify a memory mapping (15000 bytes) 
that is larger than the file size (5000 bytes). 

solaris % rm foo 
solaris % testl foo 5000 15000 
PAGESIZE = 4096 
ptr[O] = 0 
ptr[4095] = 0 
ptr[4096] = 0 
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ptr[81911 = 0 
Bus Error(coredump) 
solaris % 1s -1 foo 
-rW-r--r-- 1 rstevens other1 5000 Mar 20 17:37 £00 

The results are similar to our earlier example when the file size and the memory map 
size were the same (both 5000). This example generates SIGBUS (which the shell prints 
as "Bus Error"), whereas the previous example generated SIGSEGV. The difference is 
that SIGBUS means we have referenced within our memory-mapped region but beyond 
the size of the underlying object. The SIGSEGV in the previous example meant we had 
referenced beyond the end of our memory-mapped region. What we have shown here 
is that the kernel knows the size of the underlying object that is mapped (the file f oo in 
this case), even though we have closed the descriptor for that object. The kernel allows 
us to specify a size to rnrnap that is larger than the size of this object, but we cannot refer- 
ence beyond its end (except for the bytes within the final page that are beyond the end 
of the object, indexes 5000 through 8191). Figure 12.18 depicts this example. 

file size 

file 

I 1 

offset: 0 4999 
m a p  ( ) size 

index: 0 4999 5000 8191 8192 14999 

SIGSEGV 

Figure 12.18 Memory mapping when m a p  size exceeds file size. 

Our next program is shown in Figure 12.19. It shows a common technique for han- 
dling a file that is growing: specify a memory-map size that is larger than the file, keep 
track of the file's current size (making certain not to reference beyond the current end- 
of-file), and then just let the file's size increase as more data is written to the file. 

Open file 

9-11 We open a file, creating it if it does not exist or truncating it if it already exists. The 
file is memory mapped with a size of 32768, even though the file's current size is 0. 

Increase file size 

12-16 We increase the size of the file, 4096 bytes at a time, by calling f truncate (Sec- 
tion 13.3), and fetch the byte that is now the final byte of the file. 
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shrnltest2.c 
l#include "unpipc.hU 

2 #define FILE "test.datan 
3 #define SIZE 32768 

4 int 
5 main(int argc, char **argv) 

int fd, i; 
char *ptr; 

/ *  open: create or truncate; then m a p  file */  
fd = Open(FILE, 0-RDWR I 0-CREAT I 0-TRUNC, FILE-MODE); 
ptr = Mmap(NULL, SIZE, PROT-READ ( PROT-WRITE, MAP-SHARED, fd. 0); 

for (i = 4096; i c= SIZE; i += 4096) { 

printf("setting file size to %d\nU, i); 
Ftruncate (fd, i) ; 
printf ("ptr[%d] = %d\nU, i - 1, ptr[i - 11); 

1 

exit (0) ; 

shrnltest2.c 
Figure 12.19 Memory map example that lets the file size grow. 

When we run this program, we see that as we increase the size of the file, we are 
able to reference the new data through our established memory map. 

alpha % Is -1 test-data 
test.data: No such file or directory 
alpha % test2 
setting file size to 4096 
ptr140951 = 0 
setting file size to 8192 
ptr[8191] = 0 
setting file size to 12288 
ptr[12287] = 0 
setting file size to 16384 
ptr[16383] = 0 
setting file size to 20480 
ptrL204791 = 0 
setting file size to 24576 
ptr[24575] = 0 
setting file size to 28672 
ptr[286711 = 0 
setting file size to 32768 
ptr[32767] = 0 
alpha % 1s -1 test-data 
w - r - r -  1 rstevens other1 32768 Mar 20 17:53 test.data 
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This example shows that the kernel keeps track of the size of the underlying object that 
is memory mapped (the file test. data in this example), and we are always able to ref- 
erence bytes that are within the current file size that are also within our memory map. 
We obtain identical results under Solaris 2.6. 

This section has dealt with memory-mapped files and mmap. In Exercise 13.1, we 
modify our two programs to work with Posix shared memory and see the same results. 

12.7 Summary 

Shared memory is the fastest form of IPC available, because one copy of the data in the 
shared memory is available to all the threads or processes that share the memory. Some 
form of synchronization is normally required, however, to coordinate the various 
threads or processes that are sharing the memory. 

This chapter has focused on the mmap function and the mapping of regular files into 
memory, because this is one way to share memory between related or unrelated pro- 
cesses. Once we have memory mapped a file, we no longer use read, write, or lseek 
to access the file; instead, we just fetch or store the memory locations that have been 
mapped to the file by mmap. Changing explicit file 1 /0  into fetches and stores of mem- 
ory can often simplify our programs and sometimes increase performance. 

When the memory is to be shared across a subsequent fork, this can be simplified 
by not creating a regular file to map, but using anonymous memory mapping instead. 
This involves either a new flag of MAP-ANON (for Berkeley-derived kernels) or mapping 
/ dev/ zero (for SVR4-derived kernels). 

Our reason for covering mmap in such detail is both because memory mapping of 
files is a useful technique and because mmap is used for Posix shared memory, which is 
the topic of the next chapter. 

Also available are four additional functions (that we do not cover) defined by Posix 
dealing with memory management: 

mlockall causes all of the memory of the process to be memory resident. 
munloc kall undoes this locking. 

mlock causes a specified range of addresses of the process to be memory resi- 
dent, where the function arguments are a starting address and a number of bytes 
from that address. munlock unlocks a specified region of memory. 

Exercises 

12.1 What would happen in Figure 12.19 if we executed the code within the for loop one more 
time? 

12.2 Assume that we have two processes, a sender and a receiver, with the former just sending 
messages to the latter. Assume that System V message queues are used and draw a dia- 
gram of how the messages go from the sender to the receiver. Now assume that our 
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implementation of Posix message queues from Section 5.8 is used, and draw a diagram of 
the transfer of messages. 

12.3 With map and MAP-SHARED, we said that the kernel virtual memory algorithm updates 
the actual file with any modifications that are made to the memory image. Read the man- 
ual page for /dev/zero to determine what happens when the kernel writes the changes 
back to the file. 

12.4 Modify Figure 12.10 to specify MAP-PRIVATE instead of MAP-SHARED, and verify that the 
results are similar to the results from Figure 12.3. What are the contents of the file that is 
memory mapped? 

12.5 In Section 6.9, we mentioned that one way to select on a System V message queue is to 
create a piece of anonymous shared memory, create a child, and let the child block in its 
call to msgrcv, reading the message into shared memory. The parent also creates two 
pipes; one is used by the child to notify the parent that a message is ready in shared mem- 
ory, and the other pipe is used by the parent to notify the child that the shared memory is 
now available. This allows the parent to select on the read end of the pipe, along with 
any other descriptors on which it wants to select. Code this solution. Call our my-shun 
function (Figure A.46) to allocate the anonymous shared memory object. Use our 
msgcreate and msgsnd programs from Section 6.6 to create the message queue, and then 
place records onto the queue. The parent should just print the size and type of each mes- 
sage that the child reads. 



Posix Shared Memory 

Introduction 

The previous chapter described shared memory in general terms, along with the m a p  
function. Examples were shown that used m a p  to provide shared memory between a 
parent and child: 

using a memory-mapped file (Figure 12.10), 

using 4.4BSD anonymous memory mapping (Figure 12.14), and 

using / dev / zero anonymous memory mapping (Figure 12.15). 

We now extend the concept of shared memory to include memory that is shared 
between unrelated processes. Posix.1 provides two ways to share memory between 
unrelated processes. 

1. Memory-mapped pes: a file is opened by open, and the resulting descriptor is 
mapped into the address space of the process by map. We described this tech- 
nique in Chapter 12 and showed its use when sharing memory between a par- 
ent and child. Memory-mapped files can also be shared between unrelated 
processes. 

2. Shared memory objects: the function shm_open opens a Posix.1 IPC name (per- 
haps a pathname in the filesystem), returning a descriptor that is then mapped 
into the address space of the process by map. We describe this technique in 
this chapter. 
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Both techniques require the call to map.  What differs is how the descriptor that is an 
argument to m a p  is obtained: by open or by shm_open. We show this in Figure 13.1. 
Both are called memory objects by Posix. 

Posix memory-mapped file Posix shared memory object 

f d  = open(pathname, . . .  ) ;  f d  = shm_open(name, ... ) ;  

\ 
p t r = m a p (  . . .  , fd ,  ... ) ;  p t r  \ = m a p (  . . . , fd ,  . . . ) ; 

t- Posix memory objects b 

Figure 13.1 Posix memory objects: memory-mapped files and shared memory objects. 

13.2 s k o p e n  and s-unlink Functions 

The two-step process involved with Posix shared memory requires 

1. calling shxopen,  specifying a name argument, to either create a new shared 
memory object or to open an existing shared memory object, followed by 

2. calling m a p  to map the shared memory into the address space of the calling 
process. 

The name argument used with shxopen  is then used by any other processes that want 
to share this memory. 

The reason for this two-step process, instead of a single step that would take a name and 
return an address within the memory of the calling process, is that m a p  already existed when 
Posix invented its form of shared memory. Clearly, a single function could do both steps. The 
reason that sh-open returns a descriptor (recall that mq-open returns an mqd-t value and 
sem-open returns a pointer to a s e m - t  value) is that an open descriptor is what m a p  uses to 
map the memory object into the address space of the process. 

# include <sys/man.h> 

i n t  shm_open(const char  *name, i n t  oflag, mode-t mode); 

Returns: nonnegative descriptor if OK, -1 on error 

i n t  s-unlink (const  char  *name) ; 

Returns: 0 if OK, -1 on error 

We described the rules about the name argument in Section 2.2. 
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The oflag argument must contain either 0-RDONLY (read-only) or 0-RDWR 
(read-write), and the following flags can also be specified: 0-CREAT, 0-EXCL, or 
0-TRUNC. The 0-CREAT and 0-EXCL flags were described in Section 2.3. If 0-TRUNC 
is specified along with 0-RDWR, then if the shared memory object already exists, it is 
truncated to 0-length. 

mode specifies the permission bits (Figure 2.4) and is used when the 0-CREAT flag is 
specified. Note that unlike the mcopen and sem-open functions, the mode argument 
to shm-open must always be specified. If the 0-CREAT flag is not specified, then this 
argument can be specified as 0. 

The return value from s h x o p e n  is an integer descriptor that is then used as the 
fifth argument to m a p .  

The s h x u n l i n k  function removes the name of a shared memory object. As with 
all the other un l ink  functions (the un l ink  of a pathname in the filesystem, the 
m c u n l i n k  of a Posix message queue, and the sem-unlink of a Posix named 
semaphore), unlinking a name has no effect on existing references to the underlying 
object, until all references to that object are closed. Unlinking a name just prevents any 
subsequent call to open, mcopen, or sem-open from succeeding. 

I ftruncate and fstat Functions 

When dealing with map ,  the size of either a regular file or a shared memory object can 
be changed by calling f t runca te .  

int ftruncate (int fd, of f-t length) ; I 
Returns: 0 if OK, -1 on error I 

Posix defines the function slightly differently for regular files versus shared memory 
objects. 

For a regular file: If the size of the file was larger than length, the extra data is 
discarded. If the size of the file was smaller than length, whether the file is 
changed or its size is increased is unspecified. Indeed, for a regular file, the 
portable way to extend the size of the file to length bytes is to l s e e k  to offset 
length-1 and w r i t e  1 byte of data. Fortunately, almost all Unix implementa- 
tions support extending a file with f t runca te .  

For a shared memory object: f t r u n c a t e  sets the size of the object to length. 

We call f t r u n c a t e  to specify the size of a newly created shared memory object or 
to change the size of an existing object. When we open an existing shared memory 
object, we can call f s t a t  to obtain information about the object. 
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i n t  f s t a t  ( i n t  fd, s t r u c t  s t a t  *buf)  ; 

Returns: 0 if OK, -1 on error 

A dozen or more members are in the s ta t  structure (Chapter 4 of APUE talks about all 
the members in detail), but only four contain information when fd refers to a shared 
memory object. 

s t r u c t  s t a t  { 

. . . 
mode-t st-mode; / *  mode: S-IIRW}{USR,GRP,OTH} * /  
uid-t st- uid; / *  u s e r  I D  of owner * /  
gid-t s t q i d ;  / *  group I D  of owner * /  
off- t s t- size;  / *  s i z e  i n  by tes  * /  

We show examples of these two function in the next section. 

Unfortunately, Posix.1 does not specify the initial contents of a newly created shared memory 
object. The description of the shm-open function states that "The shared memory object shall 
have a size of 0." The description of f t runcate  specifies that for a regular file (not shared 
memory), "If the file is extended, the extended area shall appear as if it were zero-filled." But 
nothing is said in the description of f t runcate  about the new contents of a shared memory 
object that is extended. The Posix.1 Rationale states that "If the memory object is extended, the 
contents of the extended areas are zeros" but this is the Rationale, not the official standard. 
When the author asked on the cornp . s t d .  unix newsgroup about this detail, the opinion was 
expressed that some vendors objected to an initialize-to-0 requirement, because of the over- 
head. If a newly extended piece of shared memory is not initialized to some value (i.e., if the 
contents are left as is), this could be a security hole. 

13.4 Simple Programs 

We now develop some simple programs that operate on Posix shared memory. 

shmcreate Program 

Our shmcreate program, shown in Figure 13.2, creates a shared memory object with a 
specified name and length. 

19-22 shm_open creates the shared memory object. If the -e  option is specified, it is an 
error if the object already exists. f t r u n c a t e  sets the length, and mmap maps the object 
into the address space of the process. The program then terminates. Since Posix shared 
memory has at least kernel persistence, this does not remove the shared memory object. 
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2 int 
3 main(int argc, char **argv) 
4 
5 int c, fd, flags; 
6 char *ptr; 
7 of f-t length; 

flags = 0-RDWR I 0-CREAT; 
while ( (c = Getopt(argc, argv, "en)) !=  -1) { 

switch (c) { 
case 'en: 

flags I =  0-EXCL: 
break; 

1 
1 
if (optind !=  argc - 2) 

err-quit("usage: shmcreate [ -e I <name> <length>"); 
length = atoi(argv[optind + 11); 

19 fd = Shm_open(argv[optindl, flags, FILE-MODE); 
2 0 Ftruncate(fd, length); 

22 exit (0) ; 

Figure 13.2 Create a Posix shared memory object of a specified size. 

Figure 13.3 shows our trivial program that calls shm-unlink to remove the name of a 
shared memory object from the system. 

2 int 
3 main(int argc, char **argv) 
4 
5 if (argc !=  2) 
6 err-quit("usage: shmunlink <name>"); 

8 exit (0) ; 
9 1 

pxshm/shrnunlink.c 
Figure 13.3 Unlink the name of a Posix shared memory object. 
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shmwrite Program 

Figure 13.4 is our shmwrite program, which writes a pattern of O,1,2, ..., 254,255,0,1, 
and so on, to a shared memory object. 

2 int 
3 main(int argc, char **argv) 
4 I 
5 int i, fd; 
6 struct stat stat; 
7 unsigned char *ptr; 

8 if (argc !=  2) 
9 err-quit("usage: shmwrite <name>"); 

10 / *  open, get size, map * /  
11 fd = Shm_open(argv[l], 0-RDWR, FILE-MODE); 
12 Fstat(fd, &stat); 
13 ptr = Mrnap(NULL, stat.st-size, PROT-READ I PROT-WRITE, 
14 MAP-SHARED, f d, 0 ) ; 
15 Close(fd); 

16 / *  set: ptr[O] = 0, ptr[l] = 1, etc. * /  
17 for (i = 0; i < stat.st-size; i++) 
18 *ptr++ = i % 256; 

20 1 
pxshm/shmwrite.c 

Figure 13.4 Open a shared memory object and fill it with a pattern. 

10-15 The shared memory object is opened by shxopen, and we fetch its size with 
f s tat. We then map it using mmap and c 1 o s e the descriptor. 

16-18 The pattern is written to the shared memory. 

Our shmread program, shown in Figure 13.5, verifies the pattern that was written by 
shmwrite. 

2 int 
3 main(int argc, char **argv) 
4 I 
5 int i, fd; 
6 struct stat stat; 
7 unsigned char c, *ptr; 

8 if (argc !=  2) 
9 err-quit("usage: shmread <name>"); 
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10 / *  open, get size, map * /  
11 fd = Shm_open(argv[l], 0-RDONLY, FILE-MODE); 
12 Fstat (fd, &stat) ; 
13 ptr = Mrnap(NULL. stat.st-size, PROT-READ, 
14 MAP-SHARED, fd, 0) ; 
15 Close ( fd) ; 

16 / *  check that ptr[O] = 0, ptr[l] = 1, etc. * /  
17 for (i = 0; i < stat.st-size; i++) 
18 if ( (C = *ptr++) != (i % 256)) 
19 err-ret ("ptr[%dl = %dW , i, c) ; 

2 0 exit (0) ; 
21 1 

pxshrn/shrnread.c 
Figure 13.5 Open a shared memory object and verify its data pattern. 

5 The shared memory object is opened read-only, its size is obtained by fstat, it is 
mapped by mmap (for reading only), and the descriptor is closed. 

9 The pattern written by shmwrite is verified. 

We create a shared memory object whose length is 123,456 bytes under Digital Unix 4.OB 
named / tmp/myshm. 

alpha % shmcreate /tmp/myshm 123456 
alpha % 1s -1 /tmp/myshm 
-rT,-r--r-- 1 rstevens system 123456 Dec 10 14:33 /tmp/myshm 
alpha % od -c /tmp/myshm 
0000000 \o \o \o \o \o \o \o \o \o \o \o \o \o \o \o \o 
* 
0361100 

We see that a file with the same name is created in the filesystem. Using the od pro- 
gram, we can verify that the object's initial contents are all 0. (Octal 0361100, the byte 
offset just beyond the final byte of the file, equals 123,456.) 

Next, we run our shmwrite program and use od to verify that the initial contents 
are as expected. 

alpha % shmwrite /tmp/myshm 
alpha % od -x /tmp/myshm I head -4 
0000000 0100 0302 0504 0706 0908 ObOa OdOc OfOe 
0000020 1110 1312 1514 1716 1918 lbla ldlc lfle 
0000040 2120 2322 2524 2726 2928 2b2a 2d2c 2f2e 
0000060 3130 3332 3534 3736 3938 3b3a 3d3c 3f3e 
alpha % shmread /tmp/myshm 
alpha % shmunlink /tmp/myshm 

We verify the shared memory object's contents with shmread and then unlink the 
name. 

If we run our shmcreate program under Solaris 2.6, we see that a file is created in 
the / tmp directory with the specified size. 



332 Posix Shared Memory 

1 
Chapter 13 

solaris % shmcreate -e /testshm 123 
solaris % 1s -1 /tmp/.*testshm* 
-rW-r--r-- 1 rstevens other1 123 Dec 10 14:40 /tmp/.SHMtestshm 

Example 

We now provide a simple example in Figure 13.6 to demonstrate that a shared memory 
object can be memory mapped starting at different addresses in different processes. 

2 int 
3 main(int argc, char **argv) 
4 { 

int m i ,  fd2, *ptrl. *ptr2; 
pid-t childpid; 
struct stat stat; 

if (argc != 2) 
err-quit("usage: test3 <name>"); 

shm_unlink(Px~ipc~name(argv[ll) ) ;  

f dl = S-open (Px-ipc-name (argv[l] ) , 0-RDWR 1 0-CREAT I 0-EXCL, FILE-MODE) ; 
Ftruncate(fd1, sizeof(int) ) ;  

fd2 = Open("/etc/motd", 0-RDONLY); 
Fstat(fd2, &stat); 

if ( (childpid = Fork() ) == 0) { 

/ *  child * /  
ptr2 = Mmap (NULL, stat. st-size, PROT-READ, MAP-SHARED, f d2, 0) ; 
ptrl = Mmap(NULL, sizeof(int), PROT-READ I PROT-WRITE, 

MAP-SHARED, f dl, 0 ) ; 
printf("chi1d: shm ptr = %p, motd ptr = %p\n", ptrl, ptr2); 

sleep(5); 
printf("shared memory integer = %d\nW, *ptrl); 
exit (0) ; 

1 
/ *  parent: mmap in reverse order from child * /  

ptrl = Mmap (NULL, sizeof (int) , PROT-READ ( PROT-WRITE, MAP-SHARED, fdl, 0) ;  
ptr2 = Mmap(NULL, stat.st-size, PROT-READ, MAP-SHARED, fd2, 0); 
printf("parent: shm ptr = %p, motd ptr = %p\nU, ptrl, ptr2); 
*ptrl = 777; 
Waitpid(chi1dpid. NULL, 0) ; 

exit (0) ; 
32 1 pxshmltest3.c 

Figure 13.6 Shared memory can appear at different addresses in different processes. 

10-14 We create a shared memory segment whose name is the command-line argument, 
set its size to the size of an integer, and then open the file /etc /motd. 

15-30 We fork, and both the parent and child call mmap twice, but in a different order. 
Each prints the starting address of each memory-mapped region. The child then sleeps 
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for 5 seconds, the parent stores the value 777 in the shared memory region, and then the 
child prints this value. 

When we run this program, we see that the shared memory object is memory 
mapped at different starting addresses in the parent and child. 

solaris  % test3 test3.data 
parent: shm ptr  = eee30000, motd p t r  = eee20000 
child: shm p t r  = eee20000, motd p t r  = eee30000 
shared memory integer = 777 

Nevertheless, the parent stores 777 into Oxeee3 00 00, and the child reads this value 
from Oxeee20000. The pointers ptrl in the parent and child both point to the same 
shared memory segment, even though the value of each pointer is different in each pro- 
cess. 

13.5 lncrementing a Shared Counter 

We now develop an example similar to the one shown in Section 12.3, in which multiple 
processes increment a counter that is stored in shared memory. We store the counter in 
shared memory and use a named semaphore for synchronization, but we no longer 
need a parent-child relationship. Since Posix shared memory objects and Posix named 
semaphores are referenced by names, the various processes that are incrementing the 
counter can be unrelated, as long as each knows the IPC names and each has adequate 
permission for the IPC objects (shared memory and semaphore). 

Figure 13.7 shows the server that creates the shared memory object, creates and ini- 
tializes the semaphore, and then terminates. 

Create shared memory object 

13-19 We call sh~unlink in case the shared memory object still exists, followed by 
shm-open to create the object. The size of the object is set to the size of our shmstruct 
structure by f truncate, and then mmap maps the object into our address space. The 
descriptor is closed. 

Create and initialize semaphore 

20-22 We call sem-unlink, in case the semaphore still exists, followed by sem-open to 
create the named semaphore and initialize it to 1. It will be used as a mutex by any pro- 
cess that increments the counter in the shared memory object. The semaphore is then 
closed. 

Terminate 

23 The process terminates. Since Posix shared memory has at least kernel persistence, 
the object remains in existence until all open references are closed (when this process 
terminates there are no open references) and explicitly unlinked. 

Our program must use different names for the shared memory object and the 
semaphore. There is no guarantee that the implementation adds anything to the Posix 
IPC names to differentiate among message queues, semaphores, and shared memory. 
We have seen that Solaris prefixes these three types of names with .MQ, . SEM, and 
. SHM, but Digital Unix does not. 
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pxshm /server2 .c 
1 #include "unpipc.hW 

2 struct shmstruct ( / *  struct stored in shared memory * /  
3 int count ; 
4 I ;  
5 sem-t *mutex; / *  pointer to named semaphore * /  

6 int 
7 main(int argc, char **argv) 
8 ( 

9 int fd; 
10 struct shmstruct *ptr; 

11 if (argc ! =  3) 
12 err-quit("usage: server1 <shmname> <senname>"); 

13 shm_unlink(Fx-ipc-nameCargv[l])); / *  OK if this fails * /  
14 / *  create shm, set its size, map it, close descriptor * /  
15 f d = Sh~open (Px-ipc-name (argv [l] ) , 0-RDWR I 0-CREAT I 0-EXCL, FILE-MODE) ; 
16 Ftruncate(fd, sizeof (struct shmstruct) ) ; 
17 ptr = Mmap(NULL, sizeof(struct shmstruct), PROT-READ I PROT-WRITE, 
18 MAP-SHARED, f d, 0 ) ; 
19 Close ( f d) ; 

20 sen-unlink(Px-ipc-name(argv[2])); / *  OK if this fails * /  
21 mutex = Sen-open(Px-ipc-name(argv[2]). 0-CREAT I 0-EXCL, FILE-MODE, 1); 
2 2 Sem~close(mutex); 

23 exit (0) ; 
24 1 

pxshm /serverl.c 
Figure 13.7 Program that creates and initializes shared memory and semaphore. 

Figure 13.8 shows our client program that increments the counter in shared memory 
some number of times, obtaining the semaphore each time it increments the counter. 

Open shared memory 

15-18 shm-open opens the shared memory object, which must already exist (since 
0-CREAT is not specified). The memory is mapped into the address space of the pro- 
cess by mmap, and the descriptor is then closed. 

Open semaphore 

19 The named semaphore is opened. 

Obtain semaphore and increment counter 

20-26 The counter is incremented the number of times specified by the command-line 
argument. We print the old value of the counter each time, along with the process ID, 
since we will run multiple copies of this program at the same time. 
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2 struct shmstruct { 

3 int count ; 
4 1; 
5 sem-t *mutex; 

/ *  struct stored in shared memory * /  

/ *  pointer to named semaphore * /  

6 int 
7 main(int argc, char **argv) 
8 { 
9 int fd, i, nloop; 
10 pid-t pid; 
11 struct shmstruct *ptr; 

12 if (argc != 4) 
13 err-quit("usage: client1 <shmnamer csemnamez <#loops>"); 
14 nloop = atoi(argv[3]); 

15 f d = S-open (Px-ipc-name (argv [ 1 I ) , 0-RDWR, FILE-MODE) ; 
16 ptr = Mmap(NULL, sizeof(struct shmstruct), PROT-READ I PROT-WRITE, 
17 MAP-SHARED, f d, 0 ) ; 
18 Close (fd) ; 

19 mutex = Sem-open(Px-ipc-name(argv[2]), 0); 

20 pid = getpid( ) ; 
21 for (i = 0; i < nloop; i++) { 

2 2 Sem-wait(mutex); 
2 3 printf("pid %Id: %d\nM, (long) pid, ptr->count++); 
2 4 Sem_post (mutex) ; 
25 1 
2 6 exit (0) ; 

Figure 13.8 Program that increments a counter in shared memory. 

We first start the server and then run three copies of the client in the background. 

solaris % server1 shml seml creates and initializes shared memory and semaphore 

solaris % clientl shml seml 
clientl shml seml 10000 6 

[21  17976 
[31 17977 
[41 17978 
pid 17977: 0 
pid 17977: 1 

- 0 .  

pid 17977: 32 
pid 17976: 33 
. . .  
pid 17976: 707 
pid 17978: 708 
. . .  

10000 & clientl shml seml 10000 & \ 

process IDS output by shell 

and this process runs first 

process 17977 continues 

kernel switches processes 
process 17976 continues 

kernel switches processes 
process 17978 continues 
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pid 17978: 852 
pid 17977: 853 
. . . 
pid 17977: 29998 
pid 17977: 29999 

kernel switches processes 
and so on 

final value output, which is correct 

13.6 Sending Messages to a Server 

We now modify our producer<onsurner example as follows. A server is started that 
creates a shared memory object in which messages are placed by client processes. Our 
server just prints these messages, although this could be generalized to do things simi- 
larly to the syslog daemon, which is described in Chapter 13 of UNPv1. We call these 
other processes clients, because that is how they appear to our server, but they may well 
be servers of some form to other clients. For example, a Telnet server is a client of the 
syslog daemon when it sends log messages to the daemon. 

Instead of using one of the message passing techniques that we described in Part 2, 
shared memory is used to contain the messages. This, of course, necessitates some form 
of synchronization between the clients that are storing messages and the server that is 
retrieving and printing the messages. Figure 13.9 shows the overall design. 

: - - - - - shared memory containing I 
I I 

server 

Figure 13.9 Multiple clients sending messages to a server through shared memory. 

What we have here are multiple producers (the clients) and a single consumer (the 
server). The shared memory appears in the address space of the server and in the 
address space of each client. 

Figure 13.10 is our cliserv2 . h header, which defines a structure with the layout 
of the shared memory object. 

Basic semaphores and variables 

5-8 The three Posix memory-based semaphores, mutex, nempty, and nstored, serve 
the same purpose as the semaphores in our producer<onsumer example in Sec- 
tion 10.6. The variable nput is the index ( O , l ,  ... NMESG-1) of the next location to store 
a message. Since we have multiple producers, this variable must be in the shared mem- 
ory and can be referenced only while the mutex is held. 



n 13.6 Sending Messages to a Server 337 

2 #define MESGSIZE 256 / *  max #bytes per message, incl. null at end * /  
3 #define NMESG 16 / *  max #messages * /  

struct shmstruct { / *  struct stored in shared memory * /  
sem-t mutex; / *  three Posix memory-based semaphores * /  
sem-t nempty; 
sem-t nstored; 
int npu t ; / *  index into msgoff[] for next put * /  
long noverf low; / *  #overflows by senders * /  
sem-t noverflowmutex; / *  mutex for noverflow counter * /  
long msgoff[NMESG]; / *  offset in shared memory of each message * /  
char msgdata[NMESG * MESGSIZE]; / *  the actual messages * /  

13 1 ;  
pxshm/cliserv2.h 

Figure 13.10 Header that defines layout of shared memory. 

Overflow counter 

lo The possibility exists that a client wants to send a message but all the message slots 
are taken. But if the client is actually a server of some type (perhaps an FTP server or an 
HTTP server), the client does not want to wait for the server to free up a slot. Therefore, 
we will write our clients so that they do not block but increment the noverflow 
counter when this happens. Since this overflow counter is also shared among all the 
clients and the server, it too requires a mutex so that its value is not corrupted. 

Message offsets and data 

12 The array msgof f contains offsets into the msgdata array of where each message 
begins. That is, msgoff [OI is 0, msgoff [ l l  is 256 (the value of MESGSIZE), 
msgof f [ 2  I  is 512, and so on. 

Be sure to understand that we must use offsets such as these when dealing with 
shared memory, because the shared memory object can get mapped into a different 
physical address in each process that maps the object. That is, the return value from 
mmap can be different for each process that calls m a p  for the same shared memory 
object. For this reason, we cannot use pointers within the shared memory object that 
contain actual addresses of variables within the object. 

Figure 13.11 is our server that waits for a message to be placed into shared memory 
by one of the clients, and then prints the message. 

Create shared memory object 

16 shm-unlink is called first to remove the shared memory object, if it still exists. 
The object is created by shxopen and then mapped into the address space by map. 
The descriptor is then closed. 

Initialize array of offsets 

19 The array of offsets is initialized to contain the offset of each message. 
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2 int 
3 main(int argc, char **argv) 

int fd, index, lastnoverflow, temp; 
long offset; 
struct shmstruct *ptr; 

if (argc !=  2) 
err-quit ( "usage : server2 <name>" ) ; 

/ *  create shm, set its size, map it, close descriptor * /  
shmunlink(Px~ipc~name(argv[ll)); / *  OK if this fails * /  
fd = Shm_open(Px-ipc-name(argv[l]), 0-RDWR I 0-CREAT I 0-EXCL, FILE-MODE); 
ptr = Mmap(NULL, sizeof(stmct shmstmct), PROT-READ I PROT-WRITE, 

MAP-SHARED, f d, 0 ) ; 
Ftmncate(fd, sizeof(struct shmstruct) ) ;  

Close(fd); 

/ *  initialize the array of offsets * /  
for (index = 0; index < NMESG; index++) 

ptr->msgoff[indexl = index * MESGSIZE; 

/ *  initialize the semaphores in shared memory * /  
Sem-init(&ptr->mutex, 1, 1); 
Sem-init(&ptr->nempty, 1, NMESG); 
Sem-init(&ptr->nstored, 1, 0); 
Sem-init(&ptr->noverflowmutex. 1, 1); 

/ *  this program is the consumer * /  
index = 0; 
lastnoverflow = 0; 
f o r ( ; ; ) {  

Sen-wait(&ptr->nstored); 
Sen-wait(&ptr-zmutex); 
offset = ptr->msgoff[indexl; 
printf("index = %d: %s\nU, index, &ptr->msgdata[offsetl); 
if (++index >= NMESG) 

index = 0; / *  circular buffer * /  
Sem_post (&ptr->mutex) ; 
Sem_post(&ptr->nempty); 

Sem-wait (&ptr->noverflowmutex) ; 
temp = ptr->noverflow; / *  don't printf while mutex held * /  
Sem_post (&ptr-znoverflowmutex) ; 
if (temp != lastnoverflow) { 

printf("noverf1ow = %d\nU, temp); 
lastnoverflow = temp; 

1 
1 

exit (0) ; 

pxshmlserver2.c 
Figure 13.11 Our server that fetches and prints the messages from shared memory. 
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Initialize semaphores 

24 The four memory-based semaphores in the shared memory object are initialized. 
The second argument to sem-init is nonzero for each call, since the semaphore is in 
shared memory and will be shared between processes. 

Wait for message, and then print 

36 The first half of the for loop is the standard consumer algorithm: wait for nstored 
to be greater than 0, wait for the mutex, process the data, release the mutex, and incre- 
ment nemp t y. 

Handle overflows 

43 Each time around the loop, we also check for overflows. We test whether the 
counter noverf lows has changed from its previous value, and if so, print and save the 
new value. Notice that we fetch the current value of the counter while the 
noverf lowmutex is held, but then release it before comparing and possibly printing it. 
This demonstrates the general rule that we should always write our code to perform the 
minimum number of operations while a mutex is held. 

Our client program is shown in Figure 13.12. 

Command-line arguments 

13 The first command-line argument is the name of the shared memory object, the next 
is the number of messages to store for the server, and the last one is the number of 
microseconds to pause between each message. By starting multiple copies of our client 
and specifying a small value for this pause, we can force an overflow to occur, and ver- 
ify that the server handles it correctly. 

Open and map shared memory 

.is We open the shared memory object, assuming that it has already been created and 
initialized by the server, and then map it into our address space. The descriptor can 
then be closed. 

Store messages 

-31 Our client follows the basic algorithm for the consumer but instead of calling 
sem-wait (nempty), which is where the consumer blocks if there is no room in the 
buffer for its message, we call sem-trywait, which will not block. If the value of the 
semaphore is 0, an error of EAGAIN is returned. We detect this error and increment the 
overflow counter. 

sleep-us is a function from Figures C.9 and C.10 of APUE. It sleeps for the specified number 
of microseconds, and is implemented by calling either select or poll. 

-37 While the mut ex semaphore is held we obtain the value of offset and increment 
nput, but we then release the mutex before copying the message into the shared mem- 
ory. We should do only those operations that must be protected while holding the 
semaphore. 
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pxshm/client2.c 
1 #include "cliserv2.h" 

2 int 
3 main(int argc, char **argv) 
4 { 

int fd, i, nloop, nusec; 
pid-t pid; 
char mesg [MESGSIZE] ; 
long offset; 
struct shmstruct *ptr; 

if (argc != 4) 
err-quit("usage: client2 <name> <#loops> <#us~c>"); 

nloop = atoi(argv[21); 
nusec = atoi(argv[31); 

/ *  open and map shared memory that server must create * /  
fd = Shm_open(Px~ipc~name(argv[ll), 0-RDWR, FILE-MODE); 
ptr = Mmap(NULL, sizeof(struct shmstruct), PROT-READ I PROT-WRITE, 

MAP-SHARED, f d, 0 ) ; 
Close ( f d) ; 

pid = getpid ( ) ; 
for (i = 0; i < nloop: i++) { 

Sleep-usbusec); 
snprintf(mesg, MESGSIZE, "pid %ld: message %d", (long) pid, i); 

if (sem-trywait (&ptr->nempty) == -1) { 

if (errno == EAGAIN) { 

Sem-wait(&ptr->noverflowmutex); 
ptr->noverflow++; 
Semqost(&ptr->noverflowmutex); 
continue; 

} else 
err-sys("serr-trywait error"); 

1 
Sem-wait(&ptr->mutex); 
offset = ptr->msgoff[ptr-znputl; 
if (++ (ptr->nput) z= NMESG) 

ptr->nput = 0; / *  circular buffer * /  
Semqost(&ptr->mutex); 
strcpy(&ptr->msgdata[offsetl, mesg); 
Semqost(&ptr-mstored); 

1 
exit (0) ; 

41 1 pxshm/client2.c 

Figure 13.12 Client that stores messages in shared memory for server. 
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We first start our server in the background and then run our client, specifying 50 
messages with no pause between each message. 

solaris % server2 serv2 & 

[21  27223 
solaris % client2 serv2 50 0 
index = 0: pid 27224:  message 
index = 1: pid 27224:  message 
index = 2 :  pid 27224:  message 
0 . .  

0 
1 
2 

continues like this 
index = 15 :  pid 27224:  message 47 
index = 0:  pid 27224:  message 48 
i n d e x = l : p i d 2 7 2 2 4 : m e s s a g e 4 9  nornessageslost 

But if we run our client again, we see some overflows. 

solaris % client2 serv2 50 0 
index = 2 :  pid 27228:  message 0 
index = 3:  pid 27228:  message 1 
. . . continues OK 
index = 10 :  pid 27228:  message 8 
index = 11: pid 27228:  message 9 
noverflow = 25 semer detects 25 messages lost 
index = 12 :  pid 27228:  message 1 0  
index = 13 :  pid 27228:  message 11 
. . .  continues OK for rnessuges 12-22 
index = 9:  pid 27228:  message 23  
index = 1 0 :  pid 27228:  message 2 4  

This time, the client appears to have stored messages 0 through 9, which were then 
fetched and printed by the server. The client then ran again, storing messages 10 
through 49, but there was room for only the first 15 of these, and the remaining 25 (mes- 
sages 25 through 49) were not stored because of overflow. 

Obviously, in this example, we caused the overflow by having the client generate 
the messages as fast as it can, with no pause between each message, which is not a typi- 
cal real-world scenario. The purpose of this example, however, is to demonstrate how 
to handle situations in which no room is available for the client's message but the client 
does not want to block. This is not unique to shared memory-the same scenario can 
happen with message queues, pipes, and FIFOs. 

Overrunning a receiver with data is not unique to this example. Section 8.13 of UNPvI talks 
about this with regard to UDP datagrams, and the UDP socket receive buffer. Section 18.2 of 
TCPv3 describes how Unix domain datagram sockets return an error of ENOBUFS to the sender 
when the receiver's buffer overflows, which differs from UDF. In Figure 13.12, our client (the 
sender) knows when the server's buffer has overflowed, so if this code were placed into a gen- 
eral-purpose function for other programs to call, the function could return an error to the caller 
when the server's buffer overflows. 
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13.7 Summary 

Posix shared memory is built upon the m a p  function from the previous chapter. We 
first call sh-open, specifying a Posix IPC name for the shared memory object, obtain a 
descriptor, and then memory map the descriptor with map.  The result is similar to a 
memory-mapped file, but the shared memory object need not be implemented as a file. 

Since shared memory objects are represented by descriptors, their size is set with 
f t runcate,  and information about an existing object (protection bits, user ID, group 
ID, and size) is returned by f s t a t .  

When we covered Posix message queues and Posix semaphores, we provided sam- 
ple implementations based on memory-mapped 1/0  in Sections 5.8 and 10.15. We do 
not do this for Posix shared memory, because the implementation would be trivial. If 
we are willing to memory map a file (as is done by the Solaris and Digital Unix imple- 
mentations), then s h o p e n  is implemented by calling open, and shm-unlink is 
implemented by calling unlink. 

Exercises 

13.1 Modify Figures 12.16 and 12.19 to work with Posix shared memory instead of a memory- 
mapped file, and verify that the results are the same as shown for a memory-mapped file. 

13.2 In the f o r  loops in Figures 13.4 and 13.5, the C idiom *ptr++ is used to step through the 
array. Would it be preferable to use p t r  [ i] instead? 



System V Shared Memory 

1 Introduction 

System V shared memory is similar in concept to Posix shared memory. Instead of call- 
ing shm-open followed by mmap, we call shmget followed by shmat. 

For every shared memory segment, the kernel maintains the following structure of 
information, defined by including <sys / shm . h>: 

struct shmid-ds { 

struct ipcgerm s-erm; 
size-t shm-segsz ; 
pid-t shm-lpid; 
pid-t s-cpid; 
shmatt-t s-nattch; 
shmat-t s-cnattch; 
t ime-t s-at ime ; 
t ime-t s-dtime; 
time-t shxc t ime ; 

1 ;  

/ *  operation permission struct * /  
/ *  segment size * /  
/ *  pid of last operation * /  
/ *  creator pid * /  
/ *  current # attached * /  
/ *  in-core # attached * /  
/ *  last attach time * /  
/ *  last detach time * /  
/ *  last change time of this structure * /  

We described the i p c s e r m  structure in Section 3.3, and it contains the access permis- 
sions for the shared memory segment. 

2 shmget Function 

A shared memory segment is created, or an existing one is accessed, by the shmget 
function. 
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#include isys/shm.h> 

int shmget (key-t key, size-t size, int oflag) ; 

Returns: shared memow identifier if OK, -1 on error 

The return value is an integer called the shared memory identifier that is used with the 
three other shmXXX functions to refer to this segment. 

key can be either a value returned by f tok or the constant IPC-PRIVATE, as dis- 
cussed in Section 3.2. 

size specifies the size of the segment, in bytes. When a new shared memory seg- 
ment is created, a nonzero value for size must be specified. If an existing shared mem- 
ory segment is being referenced, size should be 0. 

oflag is a combination of the read-write permission values shown in Figure 3.6. This 
can be bitwise-ORed with either IPC-CREAT or IPC-CREAT I IPC-EXCL, as discussed 
with Figure 3.4. 

When a new shared memory segment is created, it is initialized to size bytes of 0. 
Note that shmget creates or opens a shared memory segment, but does not provide 

access to the segment for the calling process. That is the purpose of the shmat function, 
which we describe next. 

14.3 shmat Function 

After a shared memory segment has been created or opened by shmget, we attach it to 
our address space by calling shmat. 

void *shmat(int shmid, const void *shmaddr, int f lag) ;  I 
Returns: starting address of mapped region if OK, -1 on error 

shmid is an identifier returned by shmget. The return value from shmat is the starting 
address of the shared memory segment within the calling process. The rules for deter- 
mining this address are as follows: 

If shmaddr is a null pointer, the system selects the address for the caller. This is 
the recommended (and most portable) method. 

If shmaddr is a nonnull pointer, the returned address depends on whether the 
caller specifies the SHM-rn~ value for the flag argument: 

If SHM-RND is not specified, the shared memory segment is attached at the 
address specified by the shmaddr argument. 

If SHM-~D is specified, the shared memory segment is attached at the 
address specified by the shmaddr argument, rounded down by the constant 
SHMLBA. LBA stands for "lower boundary address." 
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By default, the shared memory segment is attached for both reading and writing by the 
calling process, if the process has read-write permissions for the segment. The 
SHM-RDONLY value can also be specified in the flag argument, specifying read-only 
access. 

,4 shmat Function 

When a process is finished with a shared memory segment, it detaches the segment by 
calling shmd t . 

#include <sys/shm.h> 

int shmdt (const void *shmaddr) ; 

Returns: 0 if OK, -1 on error 

When a process terminates, all shared memory segments currently attached by the pro- 
cess are detached. 

Note that this call does not delete the shared memory segment. Deletion is accom- 
plished by calling shmctl with a command of IPC-MID, which we describe in the 
next section. 

,5 shmctl Function 

shmct 1 provides a variety of operations on a shared memory segment. 

int shmctl (int shmid, int cmd, struct shmid-ds *buff) ; I 
L Returns: 0 if OK, -1 on error 

Three commands are provided: 

IPC-RMID Remove the shared memory segment identified by shmid from the sys- 
tem and destroy the shared memory segment. 

IPC-SET Set the following three members of the shmid-ds structure for the 
shared memory segment from the corresponding members in the 
structure pointed to by the buff argument: shm_perm.uid, 
s-erm. g id, and s-erm. mode. The s m c  t ime value is also 
replaced with the current time. 

IPC-STAT Return to the caller (through the buff argument) the current shmid-ds 
structure for the specified shared memory segment. 
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14.6 Simple Programs 

We now develop some simple programs that operate on System V shared memory. 

shmget Program 

Our shmget program, shown in Figure 14.1, creates a shared memory segment using a 
specified pathname and length. 

swshrn/shmget.c 
1 #include "unpipc . h" 

2 int 
3 main(int argc, char **argv) 
4 ( 
5 int c, id, oflag; 
6 char *ptr; 
7 size-t length; 

oflag = SVSHM-MODE I IPC-CREAT; 
while ( (c = Getopt (argc, argv, "em) ) ! = -1) { 

switch (c) { 
case 'e': 

oflag I =  IPC-EXCL; 
break; 

1 
1 
if (optind != argc - 2) 

err-quit("usage: shmget [ -e I <pathname> <length>"); 
length = atoi(argv[optind + 11 ) ;  

19 id = Shmget(Ftok(argv[optind], O), length, oflag); 
20 ptr = Shmat(id, NULL, 0); 

21 exit (0) ; 

Figure 14.1 Create a System V shared memory segment of a specified size. 

19 shmget creates the shared memory segment of the specified size. The pathname 
passed as a command-line argument is mapped into a System V IPC key by f tok. If 
the -e option is specified, it is an error if the segment already exists. If we know that 
the segment already exists, the length on the command line should be specified as 0. 

20 shmat attaches the segment into the address space of the process. The program 
then terminates. Since System V shared memory has at least kernel persistence, this 
does not remove the shared memory segment. 

shmrmid Program 

Figure 14.2 shows our trivial program that calls shmc t 1 with a command of 1 PC-RMID 
to remove a shared memory segment from the system. 
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svshm/shmrmid.c 
1 #include "unpipc.h" 

2 int 
3 main(int argc, char **argv) 
4 { 
5 int id; 

6 if (argc != 2) 
7 err-quit("usage: shmrmid <pathname>"); 

8 id = Shget(Ftok(argv[ll, 0). 0, SVSHM-MODE); 
9 Shctl(id, IPC-RMID, NULL); 

10 exit (0) ; 
11 1 svshrn/shmrmid.c 

Figure 14.2 Remove a System V shared memory segment. 

u n w r i t e  Program 

Figure 14.3 is our shmwrite program, which writes a pattern of O,1,2, ..., 254,255,0,1, 
and so on, to a shared memory segment. 

svshrn/shmwrite.c 
1 #include "unpipc . h" 
2 int 
3 main(int argc, char **argv) 

int i, id; 
struct shmid-ds buff; 
unsigned char *ptr; 

if (argc != 2) 
err-quit("usage: shwrite <pathname>"); 

id = Shmget(Ftok(argv[l], 0). 0, SVSHM-MODE); 
ptr = Shmat(id, NULL, 0); 
Shctl(id, IPC-STAT, &buff); 

/ *  set: ptr[O] = 0, ptr[l] = 1, etc. * /  
for (i = 0; i < buff.shm_segsz; i++) 

*ptr++ = i % 256; 

exit (0) ; 

svshm/shmwrite.c 

Figure 14.3 Open a shared memory segment and fill it with a pattern. 

10-12 The shared memory segment is opened by shmget and attached by shmat. We 
fetch its size by calling shmc t 1 with a command of I PC-STAT. 

13-15 The pattern is written to the shared memory. 



348 System V Shared Memory Chapter 14 

shmread Program 

Our s h m r e a d  program, shown in Figure 14.4, verifies the pattern that was written by 
shmwr i t e. 

2 int 
3 rnain(int argc, char **argv) 
4 { 
5 int i, id; 
6 struct shmid-ds buff ; 
7 unsigned char c. *ptr; 

8 if (argc !=  2) 
9 err-quit("usage: shread <pathname>"); 

10 id = Shmget(Ftok(argv[l], O), 0, SVSHM-MODE); 
11 ptr = Shmat(id, NULL, 0) ; 
12 Shmctl ( id, IPC-STAT, &buff ) ; 

13 / *  check that ptr[O] = 0, ptr[ll = 1, etc. * /  
14 for (i = 0; i < buff.shm_segsz; i++) 
15 if ( (C = *ptr++) !=  (i % 256) ) 
16 err-ret ("ptr[%d] = Bd", i, c) ; 

17 exit (0) ; 

Figure 14.4 Open a shared memory segment and verify its data pattern. 

i 0-12 The shared memory segment is opened and attached. Its size is obtained by calling 
shmc  t 1 with a command of I PC-STAT. 

13-1 6 The pattern written by shmwr i t e is verified. 

Examples 

We create a shared memory segment whose length is 1234 bytes under Solaris 2.6. The 
pathname used to identify the segment (e.g., the pathname passed to f t o k )  is the path- 
name of our smet executable. Using the pathname of a server's executable file often 
provides a unique identifier for a given application. 

solaris % shmget shmget 1234 
solaris % ipcs -bmo 
IPC status from <running system> as of Thu Jan 8 13:17:06 1998 
T ID KEY MODE OWNER GROUP NATTCH SEGSZ 
Shared Memory: 
m 1 Ox0000f12a --rw-r--r-- rstevens other1 0 1234 

We run the ipcs program to verify that the segment has been created. We notice that 
the number of attaches (which is stored in the s-nattch member of the shmid-ds 
structure) is 0, as we expect. 
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Next, we run our shmwri te program to set the contents of the shared memory seg- 
ment to the pattern. We verify the shared memory segment's contents with shmread 
and then remove the identifier. 

s o l a r i s  % shmwrite shrnget 
s o l a r i s  % shmread shrnget 
s o l a r i s  % shmrmid shmget 
s o l a r i s  % ipcs -bmo 
IPC s t a t u s  from <running system> a s  of Thu Jan 8 13:18:01 1998 
T I D  KEY MODE OWNER GROUP NATTCH SEGSZ 
Shared Memory: 

We run ipcs to verify that the shared memory segment has been removed. 

When the name of the server executable is used as an argument to f tok to identify some form 
of System V IPC, the absolute pathname would normally be specified, such as 
/usr/bin/myserverd, and not a relative pathname as we have used (shrnget). We have 
been able to use a relative pathname for the examples in this section because all of the pro- 
grams have been run from the directory containing the server executable. Realize that f tok 
uses the i-node of the file to form the IPC identifier (e.g., Figure 3.2), and whether a given file is 
referenced by an absolute pathname or by a relative pathname has no effect on the i-node. 

.7 Shared Memory Limits 

As with System V message queues and System V semaphores, certain system limits 
exist on System V shared memory (Section 3.8). Figure 14.5 shows the values for some 
different implementations. The first column is the traditional System V name for the 
kernel variable that contains this limit. 

Name Description DUnix 4.OB Solaris 2.6 

s h a x  max #bytes for a shared memory segment 4,194,304 1,048,576 

shmmnb min #bvtes for a shared memory segment 1 1 

shmmni I max #shared memory identifiers, systemwide 128 1 100 

shmseg I max #shared memory segments attached per process I 32 1 6 

Figure 14.5 Typical system limits for System V shared memory. 

The program in Figure 14.6 determines the four limits shown in Figure 14.5. 

2 #def ine  MAX-NIDS 4096 

3 i n t  
4 ma in ( in t  argc ,  char  **argv) 
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int i, j, shmid[MAX-NIDS]; 
void *addr [MAX-NIDSI ; 
unsigned long size; 

/ *  see how many identifiers we can "open" * /  
for (i = 0; i <= MAX-NIDS; i++) { 

shmid[i] = shmget(1PC-PRIVATE, 1024, SVSHM-MODE I IPC-CREAT); 
if (shmid[i] == -1) { 

printf("%d identifiers open at once\nW, i); 
break; 

1 
1 
for (j = 0; j < i; j++) 

Shmctl(shmid[jl, IPC-RMID, NULL); 

/ *  now see how many we can "attachn * /  
for (i = 0; i <= MAX_NIDS; i++) ( 

shmid[i] = Shmget(1PC-PRIVATE, 1024, SVSHM-MODE I IPC-CREAT); 
addr[i] = shmat(shmid[i], NULL, 0); 
if (addrri] == (void * )  -1) t 

printf("8d shared memory segments attached at once\nW, i); 
Shmctl(shmid[il, IPC-RMID, NULL); / *  the one that failed * /  
break; 

1 
1 
for (j = 0; j < i; j++) { 

Shmdt(addrLj1); 
Shmctl(shmid[jl, IPC-RMID, NULL); 

1 

/ *  see how small a shared memory segment we can create * /  
for (size = 1;; size++) { 

shmid[O] = shmget(1PC-PRIVATE, size, SVSHM-MODE 1 IPC-CREAT); 
if (shmid[O] != -1) { / *  stop on first success * /  

printf("minimum size of shared memory segment = %lu\nu, size); 
Shmctl(shmid[O], IPC-RMID, NULL); 
break; 

1 
1 

/ *  see how large a shared memory segment we can create * /  
for (size = 65536;; size += 4096) { 

shmid[O] = shmget(1PC-PRIVATE, size, SVSHM-MODE I IPC-CREAT); 
if (shmid[Ol == -1) { / *  stop on first failure * /  

printf("maximum size of shared memory segment = %lu\nU, size - 4096); 
break; 

1 
Shmctl(shmid[Ol, IPC-RMID, NULL); 

1 

exit (0) ; 
1 

svshrn/limits.c 

Figure 14.6 Determine the system limits on shared memory. 
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We run this program under Digital Unix 4.08. 

alpha % limits 
127 identifiers open at once 
32 shared memory segments attached at once 
minimum size of shared memory segment = 1 
maximum size of shared memory segment = 4194304 

The reason that Figure 14.5 shows 128 identifiers but our program can create only 127 
identifiers is that one shared memory segment has already been created by a system 
daemon. 

8 Summary 

System V shared memory is similar in concept to Posix shared memory. The most com- 
mon function calls are 

shmget to obtain an identifier, 

shmat to attach the shared memory segment to the address space of the process, 

shmctl with a command of IPC-STAT to fetch the size of an existing shared 
memory segment, and 

shmct 1 with a command of 1 PC-RMID to remove a shared memory object. 

One difference is that the size of a Posix shared memory object can be changed at any 
time by calling f truncate (as we demonstrated in Exercise 13.11, whereas the size of a 
System V shared memory object is fixed by shmget. 

Exercises 

14.1 Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead of a path- 
name to specify the queue. We showed that the identifier is all we need to know to access 
a System V message queue (assuming we have adequate permission). Make similar modi- 
fications to Figure 14.4 and show that the same feature applies to System V shared mem- 
ory. 



Part  5 

Remote Procedure Calls 



Doors 

i.1 Introduction 

When discussing client-server scenarios and procedure calls, there are three different 
types of procedure calls, which we show in Figure 15.1. 

1. A local procedure call is what we are familiar with from our everyday C program- 
ming: the procedure (function) being called and the calling procedure are both 
in the same process. Typically, some machine instruction is executed that trans- 
fers control to the new procedure, and the called procedure saves machine regis- 
ters and allocates space on the stack for its local variables. 

2. A remote procedure call (RPC) is when the procedure being called and the calling 
procedure are in different processes. We normally refer to the caller as the client 
and the procedure being called as the server. In the middle scenario in Fig- 
ure 15.1, we show the client and server executing on the same host. This is a fre- 
quently occurring special case of the bottom scenario in this figure, and this is 
what doors provide us: the ability for a process to call a procedure (function) in 
another process on the same host., One process (a server) makes a procedure 
available within that process for other processes (clients) to call by creating a 
door for that procedure. We can also think of doors as a special type of IPC, 
since information, in the form function arguments and return values, is 
exchanged between the client and server. 

3. RPC in general allows a client on one host to call a server procedure on another 
host, as long as the two hosts are connected by some form of network (the bot- 
tom scenario in Figure 15.1). This is what we describe in Chapter 16. 
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Figure 15.1 Three different types of procedure calls. 

Historically, doors were developed for the Spring distributed operating system, details of 
which are available at h t t p  : / /www . sun. com/tech/pro j ects /spr ing.  A description of 
the doors IPC mechanism in this operating system is in [Hamilton and Kougiouris 19931. 

Doors then appeared in Solaris 2.5, although the only manual page contained just a warning 
that doors were an experimental interface used only by some Sun applications. With Solaris 
2.6, the interface was documented in eight manual pages, but these manual pages list the sta- 
bility of the interface as "evolving." Expect that changes might occur to the API that we 
describe in this chapter with future releases of Solaris. A preliminary version of doors for 
Linux is being developed: h t t p  : / /www . c s  .brown. edul - tor/doors.  

The implementation of doors in Solaris 2.6 involves a library (containing the door-XXX func- 
tions that we describe in this chapter), which is linked with the user's application (-ldoor), 
and a kernel filesystem ( /kernel /  sys/doorf s). 

Even though doors are a Solaris-only feature, we describe them in detail because they provide 
a nice introduction to remote procedure calls, without having to deal with any networking 
details. We will also see in Appendix A that they are as fast, if not faster, than all other forms 
of message passing. 

Local procedure calls are synchronous: the caller does not regain control until the 
called procedure returns. Threads can be thought of as providing a form of 
asynchronous procedure call: a function is called (the third argument to 
pthread-create), and both that function and the caller appear to execute at the same 
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time. The caller can wait for the new thread to finish by calling pthread-join. 
Remote procedure calls can be either synchronous or asynchronous, but we will see that 
door calls are synchronous. 

Within a process (client or server), doors are identified by descriptors. Externally, 
doors may be identified by pathnames in the filesystem. A server creates a door by call- 
ing door-create, whose argument is a pointer to the procedure that will be associated 
with this door, and whose return value is a descriptor for the newly created door. The 
server then associates a pathname with the door descriptor by calling fattach. A 
client opens a door by calling open, whose argument is the pathname that the server 
associated with the door, and whose return value is the client's descriptor for this door. 
The client then calls the server procedure by calling door-call. Naturally, a server for 
one door could be a client for another door. 

We said that door calls are synchronous: when the client calls door-call, this func- 
tion does not return until the server procedure returns (or some error occurs). The 
Solaris implementation of doors is also tied to threads. Each time a client calls a server 
procedure, a thread in the server process handles this client's call. Thread management 
is normally done automatically by the doors library, creating new threads as they are 
needed, but we will see how a server process can manage these threads itself, if desired. 
This also means that a given server can be servicing multiple client calls of the same 
server procedure at the same time, with one thread per client. This is a concurrent 
server. Since multiple instances of a given server procedure can be executing at the 
same time (each instance as one thread), the server procedures must be thread safe. 

When a server procedure is called, both data and descriptors can be passed from the 
client to the server. Both data and descriptors can also be passed back from the server 
to the client. Descriptor passing is inherent to doors. Furthermore, since doors are 
identified by descriptors, this allows a process to pass a door to some other process. We 
say more about descriptor passing in Section 15.8. 

We begin our description of doors with a simple example: the client passes a long inte- 
ger to the server, and the server returns the square of that value as the long integer 
result. Figure 15.2 shows the client. (We gloss over many details in this example, all of 
which we cover later in the chapter.) 

Open the door 

8-10 The door is specified by the pathname on the command line, and it is opened by 
calling open. The returned descriptor is called the door descriptor, but sometimes we 
just call it the door. 

Set up arguments and pointer to result 

11-18 The arg structure contains a pointer to the arguments and a pointer to the results. 
d a t a ~ t r  points to the first byte of the arguments, and data-s i ze specifies the num- 
ber of argument bytes. The two members descstr and desc-num deal with the 
passing of descriptors, which we describe in Section 15.8. rbuf points to the first byte 
of the result buffer, and rs i ze is its size. 
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2 int 
3 main(int argc. char **argv) 
4 I 
5 int f d; 
6 long ival, oval; 
7 door-arg-t arg; 

8 if (argc !=  3) 
9 err-quit("usage: client1 <server-pathname> <integer-value>"); 

10 f d = Open (argv [l] , 0-RDWR) ; I * open the door * I 

/ *  set up the arguments and pointer to result * /  
ival = atol(argv[21); 
arg.dataqtr = (char * )  Lival; / *  data arguments * /  
arg.data-size = sizeof(1ong); I* size of data arguments * /  
arg.descqtr = NULL; 
arg.desc-num = 0; 
arg.rbuf = (char * )  &oval; / *  data results * /  
arg.rsize = sizeof(1ong); / *  size of data results *I 

19 / *  call server procedure and print result * /  
2 0 Door-call ( f d, &arg ) ; 
21 printf("resu1t: %ld\n", oval); 

2 2 exit (0) ; 

Figure 15.2 Client that sends a long integer to the server to be squared. 

Call server procedure and print result 

19-21 We call the server procedure by calling door-call, specifying as arguments the 
door descriptor and a pointer to the argument structure. Upon return, we print the 
result. 

The server program is shown in Figure 15.3. It consists of a server procedure 
named servproc and a main function. 

Server procedure 

2-10 The server procedure is called with five arguments, but the only one we use is 
da tap t  r, which points to the first byte of the arguments. The long integer argument is 
fetched through this pointer and squared. Control is passed back to the client, along 
with the result, by door- return. The first argument points to the result, the second is 
the size of the result, and the remaining two deal with the returning of descriptors. 

Create a door descriptor and attach to pathname 

17-21 A door descriptor is created by door-create. The first argument is a pointer to 
the function that will be called for this door (servproc). After this descriptor is 
obtained, it must be associated with a pathname in the filesystem, because this path- 
name is how the client identifies the door. This association is done by creating a regular 
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2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 { 
6 long arg, result; 

7 arg = *((long * )  dataptr); 
8 result = arg * arg; 
9 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
10 1 

11 int 
12 main(int argc, char **argv) 
13 { 
14 int f d; 

15 if (argc !=  2) 
16 err-quit("usage: server1 cserver-pathname>"); 

17 / *  create a door descriptor and attach to pathname * /  
18 fd = Door-create(servproc, NULL, 0); 

19 unlink(argv[l] ) ; 
20 Close(Open(argv[l], 0-CREAT I 0-RDWR, FILE-MODE)); 
21 Fattach (fd, argv[l] ) ; 

2 2 / *  servproc() handles all client requests * /  
23 for ( ; ; 

24 pause ( ; 

25 1 
akorslserverl .c 

Figure 15.3 Server that returns the square of a long integer. 

file in the filesystem (we call unl ink  first, in case the file already exists, ignoring any 
error return) and calling f a t  tach, an SVR4 function that associates a descriptor with a 
pathname. 

Main server thread does nothing 

22-24 The main server thread then blocks in a call to pause. All the work is done by the 
servproc  function, which will be executed as another thread in the server process each 
time a client request arrives. 

To run this client and server, we first start the server in one window 

solaris % serverl /tm/serverl 

and then start the client in another window, specifying the same pathname argument 
that we passed to the server: 

solaris % client1 /tm/serverl 9 
result: 81 
solaris % 1s -1 /tm/serverl 
Drw-r-r- 1 rstevens other1 0 Apr 9 10:09 /tmp/serverl 
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The result is what we expect, and when we execute Is, we see that it prints the charac 
ter D as the first character to indicate that this pathname is a door, 

Figure 15.4 shows a diagram of what appears to be happening with this example. It 
appears that door-call calls the server procedure, which then returns. 

Figure 15.5 shows what is actually going on when we call a procedure in a different 
process on the same host. 

server 
servproc ( ) 

t 
/ *  do whatever * /  

client 

I main( 1 is' 1 , doorreturn ( ) ; 
&i@ 

-ce 

I { 0 . .  

fd = door-create ( ) ; 

- 1 I fattachlfd, path) ; 

Figure 15.4 Apparent procedure call from one process to another. 

client 

main ( ) 

fd = open(path, ) ; 

door callffd. ) :  

( '.* door-call ( ) 

server 
servproc( r I 

{ 
/ *  do whatever * /  
door-return( ) ; 4 7 

1 
main( ) 

( 

. . . 
fd = door-create ( ) ; -3 

0 

fattach(fd, path) ; 
. . . 

1 
door-create ( )  4 -J 

t 
1 
door-return ( ) r 1 

u 
Figure 15.5 Actual flow of control for a procedure call from one process to another. 
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The following numbered steps in Figure 15.5 take place. 

The server process starts first, calls door-create to create a door descriptor 
referring to the function sewroc, and then attaches this descriptor to a path- 
name in the filesystem. 

The client process starts and calls door-call. This is actually a function in the 
doors library. 

The door-call library function performs a system call into the kernel. The tar- 
get procedure is identified and control is passed to some doors library function 
in the target process. 

The actual server procedure (named servproc in our example) is called. 

The server procedure does whatever it needs to do to handle the client request 
and calls door-return when it is done. 

door-return is actually a function in the doors library, and it performs a sys- 
tem call into the kernel. 

The client is identified and control is passed back to the client. 

The remaining sections describe the doors API in more detail looking at many exam- 
ples. In Appendix A, we will see that doors provide the fastest form of IPC, in terms of 
latency. 

door-call Function 

The door-call function is called by a client, and it calls a server procedure that is exe- 
cuting in the address space of the server process. 

int door-call (int fd, door-arg-t *argp) ; 

Returns: 0 if OK, -1 on error 

The descriptor fd is normally returned by open (e.g., Figure 15.2). The pathname 
opened by the client identifies the server procedure that is called by door-call when 
this descriptor is the first argument. 

The second argument argp points to a structure describing the arguments and the 
buffer to be used to hold the return values: 
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typedef s t r u c t  door-arg { 

char  *data_ptr;  / *  

s ize- t  data- size;  / *  

s ize- t  desc-num; / *  

char *rbuf ;  / * 
s ize- t  r s i z e ;  / * 

1 door-arg-t; 

c a l l :  p t r  t o  d a t a  arguments; 
r e t u r n :  p t r  t o  d a t a  r e s u l t s  * /  
c a l l :  #bytes  of d a t a  arguments; 
r e tu rn :  a c t u a l  #bytes  of d a t a  r e s u l t s  * /  
c a l l :  p t r  t o  d e s c r i p t o r  arguments: 
r e t u r n :  p t r  t o  d e s c r i p t o r  r e s u l t s  * /  
c a l l :  number of d e s c r i p t o r  arguments; 
r e tu rn :  number of d e s c r i p t o r  r e s u l t s  * /  
p t r  t o  r e s u l t  b u f f e r  * /  
#bytes  of r e s u l t  b u f f e r  * /  

Upon return, this structure describes the return values. All six members of this struc- 
ture can change on return, as we now describe. 

The use of char * for the two pointers is strange and necessitates explicit casts in our code to 
avoid compiler warnings. We would expect void  * pointers. We will see the same use of 
char * with the first argument to door- return. Solaris 2.7 will probably change the 
datatype of desc-num to be an unsigned i n t ,  and the final argument to door-return 
would change accordingly. 

Two types of arguments and two types of results exist: data and descriptors. 

The data arguments are a sequence of da t a-s i z e bytes pointed to by da tastr. 
The client and server must somehow "know" the format of these arguments 
(and the results). For example, no special coding tells the server the datatypes of 
the arguments. In Figures 15.2 and 15.3, the client and server were written to 
know that the argument was one long integer and that the result was also one 
long integer. One way to encapsulate this information (for someone reading the 
code years later) is to put all the arguments into one structure, all the results into 
another structure, and define both structures in a header that the client and 
server include. We show an example of this with Figures 15.11 and 15.12. If 
there are no data arguments, we specify datajtr as a null pointer and 
data-size as 0. 

Since the client and server deal with binary arguments and results that are packed into an 
argument buffer and a result buffer, the implication is that the client and server must be 
compiled with the same compiler. Sometimes different compilers, on the same system, 
pack structures differently. 

The descriptor arguments are an array of door-desc-t structures, each one con- 
taining one descriptor that is passed from the client to the server procedure. The 
number of door-desc-t structures passed is desc-num. (We describe this 
structure and what it means to "pass a descriptor" in Section 15.8.) If there are 
no descriptor arguments, we specify descjtr as a null pointer and desc-num 
as 0. 

Upon return, da t a j  t r points to the data results, and da ta-s i z e specifies the 
size of these results. If there are no data results, data-size will be 0, and we 
should ignore da t a s  t r. 
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Upon return, there can also be descriptor results: d e s c ~ t r  points to an array of 
door-desc-t structures, each one containing one descriptor that was passed 
by the server procedure to the client. The number of door-desc-t structures 
returned is contained in desc-num. If there are no descriptor results, 
desc-num will be 0, and we should ignore descstr. 

Using the same buffer for the arguments and results is OK. That is, datastr and 
descstr can point into the buffer specified by rbuf when door-call is called. 

Before calling door-call, the client sets rbuf to point to a buffer where the results 
will be stored, and rsize is the buffer size. Normally upon return, datastr and 
descstr both point into this result buffer. If this buffer is too small to hold the 
server's results, the doors library automatically allocates a new buffer in the caller's 
address space using mmap (Section 12.2) and updates rbuf and rsize accordingly. 
datastr and descstr will then point into this newly allocated buffer. It is the 
caller's responsibility to notice that rbuf has changed and at some later time to return 
this buffer to the system by calling munmap with rbuf and rsize as the arguments to 
munmap. We show an example of this with Figure 15.7. 

3 door-create Function 

A server process establishes a server procedure by calling door-create. 

#include cdoor.h> 

typedef void Door-serversroc (void *cookie, char *dataptr, size-t datasize, 
door-desc-t *descptr, size-t ndesc) ; 

int door-create (Door-serversroc *proc, void *cookie, u-int attr)  ; 

Returns: nonnegative descriptor if OK, -1 on error 

In this declaration, we have added our own typedef, which simplifies the function 
prototype. This typedef says that door server procedures (e.g., servproc in Fig- 
ure 15.3) are called with five arguments and return nothing. 

When door-create is called by a server, the first argument proc is the address of 
the server procedure that will be associated with the door descriptor that is the return 
value of this function. When this server procedure is called, its first argument cookie is 
the value that was passed as the second argument to door-create. This provides a 
way for the server to cause some pointer to be passed to this procedure every time that 
procedure is called by a client. The next four arguments to the server procedure, 
dataptr, datasize, descptr, and ndesc, describe the data arguments and the descriptor argu- 
ments from the client: the information described by the first four members of the 
door-arg-t structure that we described in the previous section. 

The final argument to door-create, attr, describes special attributes of this server 
procedure, and is either 0 or the bitwise-OR of the following two constants: 
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DOOR-PRIVATE The doors library automatically creates new threads in the server 
process as needed to call the server procedures as client requests 
arrive. By default, these threads are placed into a process-wide 
thread pool and can be used to service a client request for any 
door in the server process. 

Specifying the DOOR-PRIVATE attribute tells the library that this 
door is to have its own pool of server threads, separate from the 
process-wide pool. 

DOOR-UNREF When the number of descriptors referring to this door goes from 
two to one, the server procedure is called with a second argument 
(dataptr) of DOOR-UNREF-DATA. The descptr argument is a null 
pointer, and both datasize and ndesc are 0. We show some exam- 
ples of this attribute starting with Figure 15.16. 

The return value from a server procedure is declared as void because a server pro- 
cedure never returns by calling return or by falling off the end of the function. 
Instead, the server procedure calls door-return, which we describe in the next sec- 
tion. 

We saw in Figure 15.3 that after obtaining a door descriptor from door-create, 
the server normally calls fat tach to associate that descriptor with a pathname in the 
filesystem. The client opens that pathname to obtain its door descriptor for its call to 
door-call. 

fattach is not a Posix.1 function but it is required by Unix 98. Also, a function named 
f detach undoes this association, and a command named f detach just invokes this function. 

Door descriptors created by door-create have the FD-CLOEXEC bit set in the 
descriptor's file descriptor flags. This means the descriptor will be closed by the kernel 
if this process calls any of the exec functions. With regard to fork, even though all 
descriptors open in the parent are then shared by the child, only the parent will receive 
door invocations from clients; none are delivered to the child, even though the descrip- 
tor returned by door-create is open in the child. 

If we consider that a door is identified by a process ID and the address of a server procedure to 
call (which we will see in the door-inf o-t structure in Section 15.6), then these two rules 
regarding fork and exec make sense. A child will never get any door invocations, because 
the process ID associated with the door is the process ID of the parent that called 
door-create. A door descriptor must be closed upon an exec, because even though the 
process ID does not change, the address of the server procedure associated with the door has 1 

no meaning in the newly invoked program that runs after exec. 

15.4 doorreturn Function 

When a server procedure is done it returns by calling door-return. This causes the 
associated door-call in the client to return. 
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int door-returntchar *dataptr, size-t datasize, door-desc-t *descptr, size-t ndesc) ; 

Returns: no return to caller if OK, -1 on error 

The data results are specified by dataptr and datasize, and the descriptor results are speci- 
fied by descptr and ndesc. 

15.5 door-cred Function 

One nice feature of doors is that the server procedure can obtain the client's credentials 
on every call. This is done with the door-cred function. 

int door-cred (door-cred-t * w e d )  ; I 
Returns: 0 if OK, -1 on error 

The door-cred-t structure that is pointed to by cred contains the client's credentials 
on return. 

typedef struct door-cred ( 

uid-t dc-euid: / *  effective user ID of client * /  
gid-t dc-egid; / *  effective group ID of client * /  
uid-t dc-ruid; / *  real user ID of client * /  
gid-t dc-rgid: / *  real group ID of client * /  
pid-t dcqid; / *  process ID of client * /  

1 door-cred-t ; 

Section 4.4 of APUE talks about the difference between the effective and real IDS, and 
we show an example with Figure 15.8. 

Notice that there is no descriptor argument to this function. It returns information 
about the client of the current door invocation, and must therefore be called by the 
server procedure or some function called by the server procedure. 

15.6 door-info Function 

The door-cred function that we just described provides information for the server 
about the client. The client can find information about the server by calling the 
door-inf o function. 

int door-info ( int fd, door-info-t *info) ; 

Returns: 0 if OK, -1 on error 
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fd specifies an open door. The door-inf o-t structure that is pointed to by info con- 
tains information about the server on return. 

typedef struct door-info { 

pid-t di-target; / *  server process ID * /  
doorstr-t diqroc; / *  server procedure * /  
doorstr-t di-data; / *  cookie for server procedure * /  
door-attr-t di-attributes; / *  attributes associated with door * /  
door-id-t di-uniquifier; / *  unique number * /  

1 door-info-t; 

di-target  is the process ID of the server, and d i s r o c  is the address of the server 
procedure within the server process (which is probably of little use to the client). The 
cookie pointer that is passed as the first argument to the server procedure is returned as 
di-data. 

The current attributes of the door are contained in d i -a t t r ibutes ,  and we 
described two of these in Section 25.3: DOOR-PRIVATE and DOOR-UNREF. Two new 
attributes are DOOR-LOCAL (the procedure is local to this process) and DOOR-REVOKE 
(the server has revoked the procedure associated with this door by calling the 
door-revoke function). 

Each door is assigned a systemwide unique number when created, and this is 
returned as di-uniquif i e r .  

This function is normally called by the client, to obtain information about the server. 
But it can also be issued by a server procedure with a first argument of DOOR-QUERY: 
this returns information about the calling thread. In this scenario, the address of the 
server procedure ( d i s r o c )  and the cookie (di-data) might be of interest. 

15.7 Examples 

We now show some examples of the five functions that we have described. 

door-inf o Function 

Figure 15.6 shows a program that opens a door, then calls door-inf o, and prints infor- 
mation about the door. 

2 int 
3 main (int argc, char **argv) 

4 { 

5 int fd; 
6 struct stat stat; 
7 struct door-info info; 

8 if (argc != 2) 
9 err-quit("usage: doorinfo <pathname>"); 

10 fd = Open(argv[ll, 0-RDONLY); 
11 Fstat (fd, &stat) ; 
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12 if (S-ISDOOR(stat .st-mode) == 0) 
13 err-quit("pathname is not a door"); 

14 Door-info ( fd, &info) ; 
15 printf("server PID = %Id, uniquifier = %Id", 

(long) info.di-target, (long) info.di-uniquifier); 
if (info.di-attributes & DOOR-LOCAL) 

print£(", DOOR-LOCAL"); 
if (info.di-attributes & DOOR-PRIVATE) 

printf(", DOOR-PRIVATE"); 
if (info.di-attributes & DOOR-REVOKED) 

print£(", DOOR-REVOKED"); 
if (info.di-attributes & DOOR-UNREF) 

print£(", DOOR-UNREF"); 
printf ("\nW) ; 

2 6 exit (0) ; 
27 } 

doors/doorinfo.c 

Figure 15.6 Print information about a door. 

We open the specified pathname and first verify that it is a door. The st-mode 
member of the stat structure for a door will contain a value so that the S-ISDOOR 
macro is true. We then call door-inf o. 

We first run the program specifying a pathname that is not a door, and then run it 
on the two doors that are used by Solaris 2.6. 

solaris % doorinfo /etc/passwB 
pathname is not a door 

solaris % doorinfo /etc/.name-service-door 
server PID = 308, uniquifier = 18, DOOR-LJNREF 
solaris % doorinfo /etc/.syslog-door 
server PID = 282, uniquifier = 1635 

solaris % ps -f -p 308 
root 308 1 0 Apr O l ?  0:34 /usr/sbin/nscd 

solaris % ps -f -p 282 
root 282 1 0 Apr O l ?  0:10 /usr/sbin/syslogd -n -2 14 

We use the ps command to see what program is running with the process ID returned 
by door-inf o. 

t Buffer Too Small 

When describing the door-call function, we mentioned that if the result buffer is too 
small for the server's results, a new buffer is automatically allocated. We now show an 
example of this. Figure 15.7 shows the new client, a simple modification of Figure 15.2. 

3 In this version of our program, we print the address of our oval variable, the con- 
tents of data_ptr, which points to the result on return from door-call, and the 
address and size of the result buffer (rbuf and rsize). 
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2 int 
3 main(int argc, char **argv) 
4 ( 
5 int fd; 
6 long ival, oval; 
7 door-arg-t arg; 

8 if (argc !=  3) 
9 err-quittUusage: client2 <server-pathname> <integer-value>"); 

10 fd = Open(argv[ll, 0-RDWR); / *  open the door * /  

/ *  set up the arguments and pointer to result * /  
ival = at01 (argvr2 1 ) ; 
arg-datastr = (char * )  Lival; / *  data arguments * /  
arg.data-size = sizeof(1ong); / *  size of data arguments * /  
arg.descqtr = NULL; 
arg.desc-num = 0; 
arg.rbuf = (char * )  &oval; / *  data results * /  
arg.rsize = sizeof(1ong); / *  size of data results * /  

19 / *  call server procedure and print result * /  
2 0 Door-call (fd, &arg) ; 
2 1 printf("&oval = %p, dataqtr = %p, rbuf = %p, rsize = %d\nV, 
22 &oval, arg.dataqtr, arg.rbuf, arg.rsize); 
23 printf("resu1t: %ld\n", *((long * )  arg.dataqtr)); 

2 4 exit (0) ; 
25 } 

doorslclient2.c 
Figure 15.7 Print address of result. 

When we run this program, we have not changed the size of the result buffer from 
Figure 15.2, so we expect to find that d a t a a t r  and rbuf both point to our oval vari- 
able, and that r s i z e  is 4 bytes. Indeed, this is what we see: 

solaris % client2 /trqp/server2 22 
&oval = effff740, dataqtr = effff740, rbuf = effff740, rsize = 4 
result: 484 

We now change only one line in Figure 15.7, decreasing the size of the client's result 
buffer by 1 byte. The new version of line 18 from Figure 15.7 is 

arg.rsize = sizeof(1ong) - 1; / *  size of data results * /  

When we execute this new client program, we see that a new result buffer has been allo- 
cated and d a t a s t r  points to this new buffer. 

solaris % client3 /tmg/server3 33 
&oval = effff740, dataqtr = ef620000, rbuf = ef620000, rsize = 4096 
result: 1089 

The allocated size of 4096 is the page size on this system, which we saw in Section 12.6. 
We can see from this example that we should always reference the server's result 
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through the d a t a x t r  pointer, and not through our variables whose addresses were 
passed in rbuf. That is, in our example, we should reference the long integer result as 
* ( long * ) a r g  . d a t a s t r )  and not as oval (which we did in Figure 15.2). 

This new buffer is allocated by mmap and can be returned to the system using 
munmap. The client can also just keep using this buffer for subsequent calls to 
door-call. 

door-cred Function and Client Credentials 

This time, we make one change to our servproc function from Figure 15.3: we call the 
door-cred function to obtain the client credentials. Figure 15.8 shows the new server 
procedure; the client and the server main function do not change from Figures 15.2 
and 15.3. 

doors/server4.c 
1 #include "unpipc .h" 

2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 I 
6 long arg, result; 
7 door-cred-t info; 

8 / *  obtain and print client credentials * /  
9 Dooycred(&info); 
10 printf("euid = %Id, ruid = %Id, pid = %1d\nm, 
11 (long) info.dc-euid, (long) info.dc-ruid, (long) info.dcqid); 

12 arg = *((long * )  dataptr); 
13 result = arg * arg; 
14 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
15 } 

doors/server4.c 

Figure 15.8 Server procedure that obtains and prints client credentials. 

We first run the client and will see that the effective user ID equals the real user ID, 
as we expect. We then become the superuser, change the owner of the executable file to 
root, enable the set-user-ID bit, and run the client again. 

solaris % client4 /trqp/server4 77 first run of client 
result: 5929 

solaris % su become superuser 
Password: 
Sun Microsystems Inc. SunOS 5.6 Generic August 1997 
solaris # cd directory containing executable 
solaris # 1s -1 client4 
-rwxrwxr-x 1 rstevens otherl 139328 Apr 13 06:02 client4 
solaris # chown root client4 change owner to root 
solaris # chmod u+s client4 and turn on the set-user-ID bit 
solaris # 1s -1 client4 check file permissions and owner 
-rwsrwxr-x 1 root other1 139328 Apr 13 06:02 client4 
solaris # exit 
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solaris % 1s -1 client4 
-rwsrwxr-x 1 root other1 139328 Apr 13 06:02 client4 
solaris % client4 /tw/server4 77 and run the client again 
result: 5929 

If we look at the server output, we can see the change in the effective user ID the second 
time we ran the client. 

solaris % server4 /tw/server4 
euid = 224, ruid = 224, pid = 3168 
euid = 0, ruid = 224, pid = 3176 

The effective user ID of 0 means the superuser. 

Automatic Thread Management by Server 

To see the thread management performed by the server, we have the server procedure 
print its thread ID when the procedure starts executing, and then we have it sleep for 5 
seconds, to simulate a long running server procedure. The sleep lets us start multiple 
clients while an existing client is being serviced. Figure 15.9 shows the new server pro- 
cedure. 

doors/server5.c 
1 #include "unpipc . h" 
2 void 
3 servproc(void *cookie, char *dataptr. size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 

5 I 
6 long arg, result; 

7 arg = *((long * )  dataptr); 
8 printf("thread id %Id, arg = %1d\nw, pr-thread- NULL), arg); 
9 sleep(5) ; 

10 result = arg * arg; 
11 Door-return((char * )  &result, sizeof(result), NULL, 0); 

Figure 15.9 Server procedure that prints thread ID and sleeps. 

We introduce a new function from our library, pr-thread-id. It has one argu- 
ment (a pointer to a thread ID or a null pointer to use the calling thread's ID) and 
returns a long integer identifier for this thread (often a small integer). A process can 
always be identified by an integer value, its process ID. Even though we do not know 
whether the process ID is an int or a long, we just cast the return value from getpid 
to a long and print the value (Figure 9.2). But the identifier for a thread is a 
pthread-t datatype (called a thread ID), and this need not be an integer. Indeed, 
Solaris 2.6 uses small integers as the thread ID, whereas Digital Unix uses pointers. 
Often, however, we want to print a small integer identifier for a thread (as in this exam- 
ple) for debugging purposes. Our library function, shown in Figure 15.10, handles this 
problem. 
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1iblwrappthread.c 
245 long 
246 pr-thread-id(pthread-t * ptr) 
247 { 

248 #if defined (sun) 
249 return ((ptr == NULL) ? pthreaLself0 : *ptr); / *  Solaris * /  

250 #elif defined(-osf-) && defined(-alpha) 
2 5 1  pthread-t tid; 

2 52 tid = (ptr == NULL) ? pthread-self0 : *ptr; / *  Digital Unix * /  
253 return (pthread-getsequence-np(tid)); 
254 #else 
255 / *  everything else * /  
256 return ((ptr == NULL) ? pthread-self() : *ptr); 
257 #endif 

Figure 15.10 pr-thread-id function: return small integer identifier for calling thread. 

If the implementation does not provide a small integer identifier for a thread, the func- 
tion could be more sophisticated, mapping the pthread-t values to small integers and 
remembering this mapping (in an array or linked l i t )  for future calls. This is done in 
the thread-name function in [Lewis and Berg 19981. 

Returning to Figure 15.9, we run the client three times in a row. Since we wait for 
the shell prompt before starting the next client, we know that the 5-second wait is com- 
plete at the server each time. 

solaris % client5 /trqp/server5 55 
result: 3025  
solaris % client5 /trqp/server5 66 
result: 4356 
solaris % client5 /trqp/server5 77 
result: 5929 

Looking at the server output, we see that the same server thread services each client: 

solaris % server5 /trqp/server5 
thread id 4, arg = 55 
thread id 4, arg = 66 
thread id 4, arg = 77  

We now start three clients at the same time: 

solaris % client5 /trqp/server5 11 & client5 /trqp/server5 22 & \ 
client5 /trqp/server5 33 & 

[21  3812 
[ 31  3813 
r41  3814  
solaris % result: 484  
result: 1 2 1  
result: 1089  

The server output shows that two new threads are created to handle the second and 
third invocations of the server procedure: 
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thread id 4, arg = 22 
thread id 5, arg = 11 
thread id 6, arg = 33 

We then start two more clients at the same time: 

solaris % client5 /t-/server5 11 & client5 /t-/server5 22 & 

[21 3830 
r 31  3 8 3 1  
solaris % result: 484 
result: 1 2 1  

and see that the server uses the previously created threads: 

thread id 6, arg = 22 
thread id 5, arg = 11 

What we can see with this example is that the server process (i.e., the doors library that 
is linked with our server code) automatically creates saver threads as they are needed. 
If an application wants to handle the thread management itself, it can, using the func- 
tions that we describe in Section 15.9. 

We have also verified that the server procedure is a concurrent server: multiple 
instances of the same server procedure can be running at the same time, as separate 
threads, servicing different clients. Another way we know that the server is concurrent 
is that when we run three clients at the same time, all three results are printed 5 seconds 
later. If the server were iterative, one result would be printed 5 seconds after all three 
clients were started, the next result 5 seconds later, and the last result 5 seconds later. 

Automatic Thread Management by Server: Multiple Server Procedures 

The previous example had only one server procedure in the server process. Our next 
question is whether multiple server procedures in the same process can use the same 
thread pool. To test this, we add another server procedure to the server process and 
also recode this example to show a better style for handling the arguments and results 
between different processes. 

Our first file is a header named squareproc . h that defines one datatype for the 
input arguments to our square function and one datatype for the output arguments. It 
also defines the pathname for this procedure. We show this in Figure 15.11. 

Our new procedure takes a long integer input value and returns a double contain- 
ing the square root of the input. We define the pathname, input structure, and output 
structure in our sq r tp roc  . h header, which we show in Figure 15.12. 

We show our client program in Figure 15.13. It just calls the two procedures, one 
after the other, and prints the result. This program is similar to the other client pro- 
grams that we have shown in this chapter. 

Our two server procedures are shown in Figure 15.14. Each prints its thread ID and 
argument, sleeps for 5 seconds, computes the result, and returns. 

The main function, shown in Figure 15.15, opens two door descriptors and associ- 
ates each one with one of the two server procedures. 
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doors/squareproc.h 
1 #define PATH-SQUARE-WOR "/trnp/squareproc-door" 

2 typedef struct { 

3 long argl; 
4 } squareproc-in-t; 

/ *  input to squareproc0 * /  

5 typedef struct { / *  output from squareproc() * /  
6 long resl; 
7 } squareproc-out-t; 

doors/squareproc.h 
Figure 15.11 squareproc . h header. 

doors/sqrtproc.h 
1 #define PATH-SQRT-DOOR "/tmp/sqrtproc-door" 

2 typedef struct I 
3 long argl; 
4 } sqrtproc-in-t; 

5 typedef struct { 

6 double resl; 

/ *  input to sqrtproc() * /  

/ *  output from sqrtproc ( )  * /  

7 } sqrtproc-out-t; 
doors/sqrtproc.h 

Figure 15.12 sqrtproc . h header. 

4 int 
5 main(int argc, char **argv) 
6 
7 int fdsquare. fdsqrt; 
8 door-arg-t arg; 
9 squareproc-in-t square-in; 
10 squareproc-out-t square-out; 
11 sqrtproc-in-t sqrt-in; 
12 sqrtproc-out-t sqrt-out; 

13 if (argc != 2) 
14 err-quit("usage: client7 <integer-value>"); 

15 fdsquare = OpentPATH-SQUARE-DOOR, 0-RDWR); 
16 fdsqrt = Open(PATH-SQRT-DOOR, 0-RDWR); 

/ *  set up the arguments and call squareproc0 * /  
square-in.arg1 = atol(argv[l]); 
arg.dataqtr = (char * )  &square-in; 
arg.data-size = sizeof(square-in); 
arg.descqtr = NULL; 
arg.desc-num = 0; 
arg.rbuf = (char * )  &square-out; 
arg.rsize = sizeof(square-out); 
Door-call(fdsquare, &arg); 



374 Doors Chapter 15 

/ *  set up the arguments and call sqrtproc0 * /  
sqrt-in.argl = atol(argv[ll); 
arg.data_ptr = (char * )  &sqrt-in; 
arg.data-size = sizeof(sqrt-in); 
arg.desc_ptr = NULL; 
arg.desc-num = 0; 
arg.rbuf = (char * )  &sqrt-out; 
arg.rsize = sizeof(sqrt-out); 
Door-call(fdsqrt, &arg); 

Figure 15.13 Client program that calls our square and square root procedures. 

5 void 
6 squareproc(void *cookie, char *dataptr, size-t datasize, 
7 door-desc-t *descptr, size-t ndesc) 
8 { 

9 squareproc-in-t in; 
10 squareproc-out-t out; 

11 memcpy(&in, dataptr, min(sizeof(in), datasize) ) ;  

12 printf("squareproc: thread id %Id, arg = %1d\nM, 
13 pr-thread-id(NULL), in.arg1); 
14 sleep(5); 

15 out.res1 = in.argl * in.arg1; 
16 Door-return( (char * )  &out, sizeof (out), NULL, 0) ; 
17 1 

18 void 
19 sqrtproc(void *cookie, char *dataptr, size-t datasize, 
2 0 door-desc-t *descptr, size-t ndesc) 
21 { 
2 2 sqrtproc-in-t in: 
23 sqrtproc-out-t out; 

24 memcpy (&in, dataptr, min(sizeof (in), datasize) ) ; 
25 printf("sqrtproc: thread id %Id, arg = %1d\nn, 
2 6 pr-thread-id(NULL), in.arg1); 
27 sleep(5) ; 

2 8 out.res1 = sqrt((doub1e) in.arg1); 
29 Door-return((char * )  &out, sizeof(out), NULL, 0); 

Figure 15.14 Two server procedures. 
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doors/sewer7.c 
31 int 
32 main(int argc, char **argv) 
33 { 

34 int fd; 

3 5 if (argc !=  1) 
3 6 err-quit("usage: server7"); 

37 fd = Door-create (squareproc, NULL, 0 ) ; 
3 8 unlink(PATH-SQUARE-DOOR); 
3 9 Close(Open(PATH-SQUARE-DOOR, 0-CREAT I 0-RDWR, FILE-MODE) ) ;  

40 Fattach(fd, PATH-SQUARE-DOOR); 

4 1 fd = Door-create(sqrtproc, NULL, 0); 
42 unlink(PATH-SQRT-DOOR); 
4 3 Close(Open(PATH-SQRT-DOOR, 0-CREAT I 0-RDWR, FILE-MODE) 1 ;  
4 4 Fattach(fd, PATH-SQRT-DOOR); 

45 for ( ; ; 

46 pause ( ; 

47 1 
doors/server7.c 

Figure 15.15 main function. 

If we run the client, it takes 10 seconds to print the results (as we expect). 

solaris % client7 77 
result: 5929 8.77496 

If we look at the server output, we see that the same thread in the server process han- 
dles both client requests. 

solaris % server7 
squareproc: thread id 4, arg = 77 
sqrtproc: thread id 4, arg = 77 

This tells us that any thread in the pool of server threads for a given process can handle 
a client request for any server procedure. 

IR-UNREF Attribute for Servers 

We mentioned in Section 15.3 that the DOOR- REF attribute can be specified to 
door-create as an attribute of a newly created door. The manual page says that 
when the number of descriptors referring to the door drops to one (that is, the reference 
count goes from two to one), a special invocation is made of the door's server proce- 
dure. What is special is that the second argument to the server procedure (the pointer 
to the data arguments) is the constant DOOR- REF-DATA. We will demonstrate three 
ways in which the door is referenced. 

1. The descriptor returned by door-create in the server counts as one reference. 
In fact, the reason that the trigger for an unreferenced procedure is the transition 
of the reference count from two to one, and not from one to 0, is that the server 
process normally keeps this descriptor open for the duration of the process. 
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2. The pathname attached to the door in the filesystem also counts as one refer- 
ence. We can remove this reference by calling the £detach function, running 
the f detach program, or unlinking the pathname from the filesystem (either 
the unlink function or the rm command). 

3. The descriptor returned by open in the client counts as an open reference until 
the descriptor is closed, either explicitly by calling close or implicitly by the 
termination of the client process. In all the client processes that we have shown 
in this chapter, this close is implicit. 

Our first example shows that if the server closes its door descriptor after calling 
f attach, an unreferenced invocation of the server procedure occurs immediately. Fig- 
ure 15.16 shows our server procedure and the server main function. 

2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 { 

6 long arg. result; 

7 if (dataptr == DOOR-UNREF-DATA) { 

8 printf("door unreferenced\nn); 
9 Door-return(NULL, 0, NULL, 0); 

10 1 
11 arg = *((long * )  dataptr); 
12 printf("thread id %Id, arg = %ld\n", pr-thread-id(NULL), arg); 
13 sleep(61 ; 

14 result = arg * arg; 
15 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
16 1 

17 int 
18 main(int argc, char **argv) 

19 
2 0 int fd; 

21 if (argc !=  2) 
2 2 err-quit("usage: server1 <server-pathname>"); 

23 / *  create a door descriptor and attach to pathname * /  
24 fd = Door-create(servproc, NULL, DOOR-UNREF); 

2 5 unlink(argv[ll); 
26 Close(Open(argv[l], 0-CREAT ( 0-RDWR, FILE-MODE)); 
27 Fattach(fd, argv[ll); 
2 8 Close(fd1; 

29 / *  servproc() handles all client requests * /  
3 0 for ( ; ; ) 

3 1 pause ( ; 

32 1 
doors/sewerunrefl.c 

Figure 15.16 Server procedure that handles an unreferenced invocation. 
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7-10 Our server procedure recognizes the special invocation and prints a message. The 
thread returns from this special call by calling door- return with two null pointers 
and two sizes of 0. 

8 We now c l o s e  the door descriptor after f a t  tach  returns. The only use that the 
server has for this descriptor after f a t t a c h  is if it needs to call door-bind, 
door-in£ o, or door-revoke. 

When we start the server, we notice that the unreferenced invocation occurs imme- 
diately: 

solaris % serverunrefl /tmp/doorl 
door unreferenced 

If we follow the reference count for this door, it becomes one after door-create 
returns and then two after f a t t a c h  returns. The server's call to c l o s e  reduces the 
count from two to one, triggering the unreferenced invocation. The only reference left 
for this door is its pathname in the filesystem, and that is what the client needs to refer 
to this door. That is, the client continues to work fine: 

solaris % clientunrefl /tmp/doorl 11 
result: 121 
solaris % clientunrefl /tmp/doorl 22 
result: 484 

Furthermore, no further unreferenced invocations of the server procedure occur. 
Indeed, only one unreferenced invocation is delivered for a given door. 

We now change our server back to the common scenario in which it does not c lose  
its door descriptor. We show the server procedure and the server main function in Fig- 
ure 15.17. We leave in the 6-second sleep and also print when the server procedure 
returns. We start the server in one window, and then from another window we verify 
that the door's pathname exists in the filesystem and then remove the pathname with 
rm: 

solaris % 1s -1 /tmp/door2 
Drw-r-r- 1 rstevens other1 0 Apr 16 08:58 /tmp/door2 
solaris % n n  /tmp/door2 

As soon at the pathname is removed, the unreferenced invocation is made of the server 
procedure: 

solaris % serverunref2 /tmp/door2 
door unreferenced as soon as pathname is removed from filesystem 

If we follow the reference count for this door, it becomes one after door-create 
returns and then two after f a t t a c h  returns. When we r m  the pathname, this com- 
mand reduces the count from two to one, triggering the unreferenced invocation. 

In our final example of this attribute, we again remove the pathname from the file- 
system, but onlj~ after starting three client invocations of the door. What we show is 
that each client invocation increases the reference count, and only when all three clients 
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1 #include "unpipc.hU 

2 void 
3 servproc(void *cookie, char *dataptr, 
4 door-desc-t *descptr, size-t 
5 
6 long arg, result; 

7 if (dataptr == DOOR-UNREF-DATA) { 

size-t datasize, 
ndesc) 

8 printf("door unreferenced\nW); 
9 Door-return(NULL, 0, NULL, 0); 

10 1 
11 arg = *((long " )  dataptr); 
12 printf("thread id %Id, arg = %1d\n1', pr-thread-id(NULL), arg); 
13 sleep(6); 

14 result = arg * arg; 
15 printf("thread id %Id returning\nn, pr-thread-id(NULL)); 
16 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
17 1 

18 int 
19 main(int argc, char **argv) 
20 1 
2 1 int fd; 

2 2 if (argc != 2) 
23 err-quit("usage: server1 <server-pathnamez"); 

24 / *  create a door descriptor and attach to pathname * /  
25 fd = Door-create(servproc, NULL, DOOR-UNREF); 

26 unlink(argv[l]); 
2 7 Close(Open(argv[ll, 0-CREAT I 0-RDWR, FILE-MODE) ) ;  

2 8 Fattach(fd, argvtll) ; 

29 / *  servproc0 handles all client requests * /  
3 0 for ( ; ; 

31 pause ( ; 

Figure 15.17 Server that does not close its door descriptor. 

terminate does the unreferenced invocation take place. We use our previous server 
from Figure 15.17, and our client is unchanged from Figure 15.2. 

solaris % clientunref2 /tmp/door2 44 & clientunref2 /tmp/door2 55 & \ 
clientunref2 /tmp/door2 55 & 

121 13552 
[31 13553 
[41 13554 
solaris % rm /tmp/door2 
solaris % result: 1936 
result: 3025 
result: 4356 

while the three clients are running 
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Here is the server output: 

s o l a r i s  % serverunref2 /tmp/door2 
t h read  i d  4, a r g  = 44  
thread i d  5 ,  a r g  = 55 
thread i d  6 ,  a r g  = 66 
thread i d  4 r e tu rn ing  
thread i d  5 r e tu rn ing  
thread i d  6 r e tu rn ing  
door unreferenced 

If we follow the reference count for this door, it becomes one after door-create 
returns and then two after f a t t a c h  returns. As each client calls open, the reference 
count is incremented, going from two to three, from three to four, and then from four to 
five. When we r m  the pathname, the count reduces from five to four. Then as each 
client terminates, the count goes from four to three, then three to two, then two to one, 
and this final decrement triggers the unreferenced invocation. 

What we have shown with these examples is that even though the description of 
the DOOR-UNREF attribute is simple ("the unreferenced invocation occurs when the ref- 
erence count goes from two to one"), we must understand this reference count to use 
this feature. 

5.8 Descriptor Passing 

When we think of passing an open descriptor from one process to another, we normally 
think of either 

a child sharing all the open descriptors with the parent after a call to fork, or 

all descriptors normally remaining open when exec is called. 

In the first example, the process opens a descriptor, calls fork, and then the parent 
closes the descriptor, letting the child handle the descriptor. This passes an open 
descriptor from the parent to the child. 

Current Unix systems extend this notion of descriptor passing and provide the abil- 
ity to pass any open descriptor from one process to any other process, related or unre- 
lated. Doors provide one API for the passing of descriptors from the client to the server, 
and from the server to the client. 

We described descriptor passing using Unix domain sockets in Section 14.7 of UNPvl. Berke- 
ley-derived kernels pass descriptors using these sockets, and all the details are provided in 
Chapter 18 of TCPv3. SVR4 kernels use a different technique to pass a descriptor, the 
I-SENDFD and I-RECVFD i o c t l  commands, described in Section 15.5.1 of APUE. But an 
SVR4 process can still access this kernel feature using a Unix domain socket. 

Be sure to understand what we mean by passing a descriptor. In Figure 4.7, the 
server opens the file and then copies the entire file across the bottom pipe. If the file's 
size is 1 megabyte, then 1 megabyte of data goes across the bottom pipe from the server 
to the client. But if the server passes a descriptor back to the client, instead of the file 
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itself, then only the descriptor is passed across the bottom pipe in Figure 4.7 (which we 
assume is some small amount of kernel-specific information). The client then takes this 
descriptor and reads the file, writing its contents to standard output. All the file reading 
takes place in the client, and the server only opens the file. 

Realize that the server cannot just write the descriptor number across the bottom 
pipe in Figure 4.7, as in 

int fd; 

This approach does not work. Descriptor numbers are a per-process attribute. Suppose 
the value of f d is 4 in the server. Even if this descriptor is open in the client, it almost 
certainly does not refer to the same file as descriptor 4 in the server process. (The only 
time descriptor numbers mean something from one process to another is across a fork 
or across an exec.) If the lowest unused descriptor in the server is 4, then a successful 
open in the server will return 4. If the server "passes" its descriptor 4 to the client and 
the lowest unused descriptor in the client is 7, then we want descriptor 7 in the client to 
refer to the same file as descriptor 4 in the server. Figures 15.4 of APUE and 18.4 of 
TCPv3 show what must happen from the kernel's perspective: the two descriptors (4 in 
the server and 7 in the client, in our example) must both point to the same file table 
entry within the kernel. Some kernel black magic is involved in descriptor passing, but 
APIs like doors and Unix domain sockets hide all these internal details, allowing pro- 
cesses to pass descriptors easily from one process to another. 

Descriptors are passed across a door from the client to server by setting the 
d e s c q t r  member of the door-arg-t structure to point to an array of door-desc-t 
structures, and setting door-num to the number of these structures. Descriptors are 
passed from the server to the client by setting the third argument of door- return to 
point to an array of door-desc-t structures, and setting the fourth argument to the 
number of descriptors being passed. 

typedef struct door-desc { 

door-attr-t d-attributes; / *  tag for union * /  
union { 

struct { / *  valid if tag = DOOR-DESCRIPTOR * /  
int d-descriptor; / *  descriptor number * /  
door-id-t d-id; / *  unique id * /  

1 d-desc; 
) d-data; 

) door-desc-t ; 

This structure contains a union, and the first member of the structure is a tag that iden- 
tifies what is contained in the union. But currently only one member of the union is 
defined (a d-desc structure that describes a descriptor), and the tag (d-attributes) 
must be set to DOOR-DESCRIPTOR. 
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xample 

We modify our file server example (recall Figure 1.9) so that the server opens the file, 
passes the open descriptor to the client, and the client then copies the file to standard 
output. Figure 15.18 shows the arrangement. 

, 
0 

0 
door-desc-t desc; 

, , , , 
0 

client ,' I 'fd = open( 1 ;  
I 0 / I I desc ... = fd 

Figure 15.18 File server example with server passing back open descriptor. 

main( ) , door-return(NULL. 0. Edesc. 1) ; 
{ 1 

. . . main( ) 
door-call(servfd. 1 ;  I 

Figure 15.19 shows the client program. 

Open door, read pathname from standard input 

filefd = arg.desc_ptr-> ... 
while ( (n = Read(fi1efd. ) ) > 0) 

w~~~~(STDOUT-FILENO. 1 ;  
1 

9-15 The pathname associated with the door is a command-line argument and the door 
is opened. The filename that the client wants opened is read from standard input and 
the trailing newline is deleted. 

Set up arguments and pointer to result 

16-22 The door-arg-t structure is set up. We add one to the size of the pathname to 
allow the server to null terminate the pathname. 

Call server procedure and check result 

23-31 We call the server procedure and then check that the result is what we expect: no 
data and one descriptor. We will see shortly that the server returns data (containing an 
error message) only if it cannot open the file, in which case, our call to err-quit prints 
that error. 

Fetch descriptor and copy file to standard output 

32-34 The descriptor is fetched from the door-desc-t structure, and the file is copied to 
standard output. 

. . . 
fd = door-create( 1 ;  
fattach(fd, path); 
... 

1 
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2 int 
3 main(int argc, char **argv) 

int door, fd; 
char argbuf[BUFFSIZE], resbuf[BUFFSIZEl, buff[BUFFSIZEl; 
size-t len, n; 
door-arg-t arg; 

if (argc !=  2) 
err-quit("usage: clientfdl <server-pathname>"); 

door = Open(argv[ll, 0-RDWR); / *  open the door * /  

~gets(argbuf, BUFFSIZE, stdin); / *  read pathname of file to open * /  
len = strlen(argbuf); 
if (argbuf[len - 11 == '\n') 

len--; / *  delete newline from fgets0 * /  

/ *  set up the arguments and pointer to result * /  
arg.data_ptr = argbuf; / *  data argument * /  
arg.data-size = len + 1; / *  size of data argument * /  
arg.desc_ptr = NULL; 
arg.desc-nun = 0; 
arg.rbuf = resbuf; / *  data results * /  
arg.rsize = BUFFSIZE; / *  size of data results * /  

Door-call(door, &arg); / *  call server procedure * /  

if (arg.data-size != 0) 
err-quit("%.*sW, arg.data-size, arg.data_ptr); 

else if (arg.desc_ptr == NULL) 
errquit("desc_ptr is NULLn); 

else if (arg.desc-nun !=  1) 
err-quit("desc-nun = %dm, arg.desc-nun); 

else if (arg.descgtr-rd-attributes !=  DOOR-DESCRIPTOR) 
errquit("d-attributes = %d", arg.descqtr->d-attributes); 

fd = arg.desc_ptr->d-data.d-desc.d-descriptor; 
while ( (n = Read(fd, buff, BUFFSIZE)) > 0) 

write (STDOUT-FILENO, buff, n) ; 

exit (0) ; 

doors/clientfdl .c 

Figure 15.19 Client program for descriptor passing file server example. 

Figure 15.20 shows the server procedure. The server main function has not 
changed from Figure 15.3. 

Open file for client 

9-14 We null terminate the client's pathname and try to open the file. If an error occurs, 
the data result is a string containing the error message. 



ion 15.8 Descriptor Passing 383 

2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 { 

6 int fd; 
7 char resbuf[BUFFSIZEl; 
8 door-desc-t desc; 

9 dataptr[datasize - 11 = 0; / *  null terminate * /  
10 if ( (fd = open(dataptr, 0-RDONLY)) == -1) { 

11 / *  error: must tell client * /  
12 snprintf(resbuf, BUFFSIZE, "%s: can't open, %s", 
13 dataptr, strerror(errn0) ) :  

14 Door-return(resbuf, strlen(resbuf), NULL, 0); 

15 ) else { 

16 / *  open succeeded: return descriptor * /  
17 desc.d-data.d-desc.d-descriptor = fd; 
18 desc.d-attributes = DOOR-DESCRIPTOR; 
19 Door-return(NULL, 0, &desc, 1); 
20 1 

Figure 15.20 Server procedure that opens a file and passes back its descriptor. 

Success 

. ~ o  If the open succeeds, only the descriptor is returned; there are no data results. 

We start the server and specify its door pathname as / tmpl f dl and then run the 
client: 

solaris % clientfdl /tmp/fdl 
/etc/shadow 
/etc/shadow: can't open, Permission denied 
solaris % clientfdl /tmp/fdl 
/no/such/file 
/no/such/file: can't open, No such file or directory 
solaris % clientfdl /tmp/fdl 
/etc/ntp.conf a 2-linefile 
multicastclient 224.0.1.1 
driftfile /etc/ntp.drift 

The first two times, we specify a pathname that causes an error return, and the third 
time, the server returns the descriptor for a 2-line file. 

There is a problem with descriptor passing across a door. To see the problem in our example, 
just add a printf to the server procedure after a successful open. You will see that each 
descriptor value is one greater than the previous descriptor value. The problem is that the 
server is not closing the descriptors after it passes them to the client. But there is no easy way 
to do this. The logical place to perform the close would be after door-return returns, once 
the descriptor has been sent to the client, but door-return does not return! If we had been 
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using either sendmsg to pass the descriptor across a Unix domain socket, or i o c t l  to pass the 
descriptor across an SVR4 pipe, we could c l o s e  the descriptor when sendmsg or ioc t l  
returns. But the doors paradigm for passing descriptors is different from these two techniques, 
since no return occurs from the function that passes the descriptor. The only way around this 
problem is for the server procedure to somehow remember that it has a descriptor open and 
close it at some later time, which becomes very messy. 

This problem should be fixed in Solaris 2.7 with the addition of a new DOOR-RELEASE 
attribute. The sender sets d -a t t r i bu t e s  to DOOR-DESCRIPTOR I DOOR-RELEASE, which 
tells the system to close the descriptor after passing it to the receiver. 

15.9 door-server-create Function 

We showed with Figure 15.9 that the doors library automatically creates new threads as 
needed to handle the client requests as they arrive. These are created by the library as 
detached threads, with the default thread stack size, with thread cancellation disabled, 
and with a signal mask and scheduling class that are initially inherited from the thread 
that called door-create. If we want to change any of these features or if we want to 
manage the pool of server threads ourselves, we call door-server-create and spec- 
ify our own server creation procedure. 

I typedef vo id  ~oor~createqroc(door~info~t * ) ;  I 
Returns: pointer to previous server creation procedure 

As with our declaration of door-create in Section 15.3, we use C's typedef to sim- 
plify the function prototype for the library function. Our new datatype defines a server 
creation procedure as taking a single argument (a pointer to a door-inf o-t structure), 
and returning nothing (void). When we call door-server-create, the argument is 
a pointer to our server creation procedure, and the return value is a pointer to the previ- 
ous server creation procedure. 

Our server creation procedure is called whenever a new thread is needed to service 
a client request. Information on which server procedure needs the thread is in the 
door-info-t structure whose address is passed to the creation procedure. The 
disroc member contains the address of the server procedure, and di-data contains 
the cookie pointer that is passed to the server procedure each time it is called. 

An example is the easiest way to see what is happening. Our client does not change 
from Figure 15.2. In our server, we add two new functions in addition to our server 
procedure function and our server main function. Figure 15.21 shows an overview of 
the four functions in our server process, when some are registered, and when they are 
all called. 

Figure 15.22 shows the server main function. 
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. . . 
each thread logically 

door-return ( ) ; 
I appears to continue 

execute my-thread 1 executing at 
when each new -thread ( ) 

servproc as 
thread is started r -  ... 

each client call 
is serviced 

door-bind ( I ; ; ) 
door-return ( ) 

1 

i w (-+ y;cyte( 1 

pthread-create( , my-thread, ) ;  

register 
my-create 

door-server-create (my-create) ; 

register servproc as server . . .  
procedure for this door; fd = door-create(servproc, ) ;  

1 server procedure 

i function executed 
by each 
server thread 

t 
server 
creation 
procedure 

also execute my-create . . 
to create first thread 1 

Figure 15.21 Overview of the four functions in our server process. 

doors/server6.c 
42 int 
43 main(int argc, char **argv) 
44 { 
45 if (argc !=  2) 

48 / *  create a door descriptor and attach to pathname * /  
4 9 Pthread~mutex~lock(&fdlock); 
50 fd = Door-create(servpr0c. NULL, DOOR-PRIVATE); 
5 1 Pthread~mutex~unlock(&fdlock); 

52 unlink (argv [ 11 ) ; 
5 3 Close(open(argv[l], 0-CREAT I 0-RDWR, FILE-MODE)); 
5 4 Fattach(fd, argv[ll ) ; 

55 / *  servproc0 handles all client requests * /  
56 for ( ; ; ) 

57 pause ( )  ; 

58 1 
doors/server6.c 

Figure 15.22 main function for example of thread pool management. 
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We have made four changes from Figure 15.3: (1) the declaration of the door 
descriptor fd is gone (it is now a global variable that we show and desaibe in Fig- 
ure 15-23), (2) we protect the call to door-create with a mutex (which we also 
desaibe in Figure 15.23), (3) we call door-server-create before creating the door, 
specifying our server aeation procedure (my-thread, which we show next), and (4) in 
the call to door-create, the final argument (the attributes) is now DOOR-PRIVATE 
instead of 0. This tells the library that this door will have its own pool of threads, called 
a private server pool. 

Specifying a private server pool with DOOR-PRIVATE and specifying a server cre- 
ation procedure with door-server-create are independent. Four scenarios are pos- 
sible. 

1. Default: no private server pools and no server aeation procedure. The system 
creates threads as needed, and they all go into the process-wide thread pool. 

2. DOOR-PRIVATE and no server creation procedure. The system creates threads 
as needed, and they go into the process-wide pool for doors created without 
DOOR-PRIVATE or into a door's private server pool for doors created with 
DOOR-PRIVATE. 

3. N o  private server pools, but a server aeation procedure is specified. The server 
creation procedure is called whenever a new thread is needed, and these threads 
all go into the process-wide thread pool. 

4. DOOR-PRIVATE and a server aeation procedure are both specified. The server 
creation procedure is called whenever a new thread is needed. When a thread is 
created, it should call door-bind to assign itself to the appropriate private 
server pool, or the thread will be assigned to the process-wide pool. 

Figure 15.23 shows our two new functions: my-create is our server creation proce- 
dure, and it calls my-thread as the function that is executed by each thread that it cre- 
ates. 

Server creation procedure 

30-41 Each time my-create is called, we create a new thread. But before calling 
pthread-create, we initialize its attributes, set the contention scope to 
PTHREAD-SCOPE-SYSTEM, and specify the thread as a detached thread. The thread is 
created and starts executing the my-thread function. The argument to this function is 
a pointer to the door-inf o-t structure. If we have a server with multiple doors and 
we specify a server creation procedure, this one server creation procedure is called 
when a new thread is needed for any of the doors. The only way for this server creation 
procedure and the thread start function that it specifies to pthread-create to differ- 
entiate between the different server procedures is to look at the diaroc pointer in the 
door-inf o-t structure. 

Setting the contention scope to PTHREAD_ScoPE-SYSTEM means this thread will com- 
pete for processor resources against threads in other processes. The alternative, 
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doors/sewer6.c 
13 pthread-mutex-t fdlock = PTHREAD-MUTEX-INITIALIZER; 
14 static int fd = -1; / *  door descriptor */  

15 void * 
16 my-thread(void *arg) 
17 { 

18 int oldstate; 
19 door-info-t *iptr = arg; 

20 if ((Door-serverqroc * )  iptr->diqroc == servproc) { 

2 1 Pthread~mutex~lock(&fdlock); 
22 Pthread~mutex~unlock(&fdlock); 

2 3 Pthread-setcancelstate(PTHREAD-CANCELLDISABLE, &oldstate); 
24 Door-bind ( f d) ; 
25 Door-return (NULL, 0, NULL, 0) ; 
26 } else 
2 7 errait("my-thread: unknown function: %p", arg); 
28 return (NULL) ; / *  never executed * /  
29 1 

30 void 
31 my-create(door-info-t *iptr) 
32 { 

33 pthread-t tid; 
34 pthread-attr-t attr; 

3 5 Pthread-attr-init(&attr); 
36 Pthread-attr-setscope(&attr, PTHREAD-SCOPE-SYSTEM); 
3 7 Pthread-attr-setdetachstate(&attr, PTHREAD-CREATE-DETACHED); 
38 Pthread-create(&tid, &attr, my-thread, (void * )  iptr); 
39 Pthread-attr-destroy(&attr); 
40 printf("my-thread: created server thread %1d\nm, pr-thread-id(&tid) ) ;  

Figure 15.23 Our own thread management functions. 

PTHRE~-SCOPE-PROCESS, means this thread will compete for processor resources 
only against other threads in this process. The latter will not work with doors, because 
the doors library requires that the kernel lightweight process performing the 
door-return be the same lightweight process that originated the invocation. An 
unbound thread (PTHREAD-SCOPE-PROCESS) could change lightweight processes dur- 
ing execution of the server procedure. 

The reason for requiring that the thread be created as a detached thread is to prevent 
the system from saving any information about the thread when it terminates, because 
no one will be calling pthread-j oin. 

Thread start function 

15-20 my-thread is the thread start function specified by the call to pthread-create. 
The argument is the pointer to the door-info-t structure that was passed to 
my-create. The only server procedure that we have in this process is servproc, and 
we just verify that the argument references this procedure. 
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Wait for descriptor to be valid 

21-22 The server creation procedure is called for the first time when door-create is 
called, to create an initial server thread. This call is issued from within the doors library 
before door-create returns. But the variable f d will not contain the door descriptor 
until door-create returns. (This is a chicken-and-egg problem.) Since we know that 
my-thread is running as a separate thread from the main thread that calls 
door-create, our solution to this timing problem is to use the mutex fdlock as fol- 
lows: the main thread locks the mutex before calling door-create and unlocks the 
mutex when door-create returns and a value has been stored into f d (Figure 15.22). 
Our my-thread function just locks the mutex (probably blocking until the main thread 
has unlocked the mutex) and then unlocks it. We could have added a condition variable 
that the main thread signals, but we don't need it here, since we know the sequence of 
calls that will occur. 

Disable thread cancellation 

23 When a new Posix thread is created by pthread-create, thread cancellation is 
enabled by default. When cancellation is enabled, and a client aborts a door-call that 
is in progress (which we will demonstrate in Figure 15.31), the thread cancellation han- 
dlers (if any) are called, and the thread is then terminated. When cancellation is dis- 
abled (as we are doing here), and a client aborts a door-call that is in progress, the 
server procedure complctcs (the thread is not terminated), and the results from 
door-return are just discarded. Since the server thread is terminated when cancella- 
tion is enabled, and since the server procedure may be in the middle of an operation for 
the client (it may hold some locks or semaphores), the doors library disables thread can- 
cellation for all the threads that it creates. If a server procedure wants to be canceled 
when a client terminates prematurely, that thread must enable cancellation and must be 
prepared to deal with it. 

Notice that the contention scope of PTHREAD-SCOPE-SYSTEM and the detached state are spec- 
ified as attributes when the thread is created. But the cancellation mode can be set only by the 
thread itself once it is running. Indeed, even though we just disable cancellation, a thread can 
enable and disable cancellation whenever it wants. 

Bind this thread to a door 

24 We call door-bind to bind the calling thread to the private server pool associated 
with the door whose descriptor is the argument to door-bind. Since we need the door 
descriptor for this call, we made f d a global variable for this version of our server. 

Make thread available for a client call 

2s The thread makes itself available for incoming door invocations by calling 
door-return with two null pointers and two 0 lengths as the arguments. 

We show the server procedure in Figure 15.24. This version is identical to the one in 
Figure 15.9. 

To demonstrate what happens, we just start the server: 

s o l a r i s  % server6 /t1q~/door6 
my-thread: c rea ted  se rve r  thread 4 



on 15.9 door-server-create Function 389 

2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t "descptr, size-t ndesc) 
5 I 
6 long arg, result; 

7 arg = * ( (long * )  dataptr) ; 
8 printf("thread id %Id, arg = %1d\nN, pr-thread-id(NULL), arg); 
9 sleep(5) ; 

10 result = arg * arg; 
11 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
12 1 

doorslserver6.c 

Figure 15.24 Server procedure. 

As soon as the server starts and door-create is called, our server creation procedure 
is called the first time, even though we have not even started the client. This creates the 
first thread, which will wait for the first client call. We then run the client three times in 
a row: 

solaris % client6 /tmp/door6 11 
result: 121 
solaris % client6 /tmp/door6 22 
result: 484 
solaris % client6 /tmp/door6 33 
result: 1089 

If we look at the corresponding server output, another thread is created when the first 
client call occurs (thread ID 5), and then thread number 4 services each of the client 
requests. The doors library appears to always keep one extra thread ready. 

my-thread: created server thread 5 
thread id 4, arg = 11 
thread id 4, arg = 22 
thread id 4, arg = 33 

We then execute the client three times, all at about the same time in the background. 

solaris 
client6 
[21 
[31 
[41 
solaris 
result : 
result : 

% client6 /tmp/door6 44 & client6 /tmp/dwr6 55 & \ 
/tmp/door6 66 & 

4919 
4920 
4921 
% result: 1936 
4356 
3025 

Looking at the corresponding server output, we see that two new threads are created 
(thread IDS 6 and 7), and threads 4,5, and 6 service the three client requests: 
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thread id 4, arg = 44 
my-thread: created server thread 6 
thread id 5, arg = 66 
my-thread: created server thread 7 
thread id 6, arg = 55 

15.1 0 door-bind, door-unbind, and door-revoke Functions 

Three additional functions complete the doors API. 

#include cdoor.h> 

int door-bind (int fd) ; 

int door-unbind(void); 

int door-revoke (int fd) ; 

All three return: 0 if OK, -1 on error 

We introduced the door-bind function in Figure 15.23. It binds the calling thread to 
the private server pool associated with the door whose descriptor is fd. If the calling 
thread is already bound to some other door, an implicit unbind is performed. 

door-unbind explicitly unbinds the calling thread from the door to which it has 
been bound. 

door-revoke revokes access to the door identified by fd. A door descriptor can be 
revoked only by the process that created the descriptor. Any door invocation that is in 
progress when this function is called is allowed to complete normally. 

15.11 Premature Termination of Client or Server 

All our examples so far have assumed that nothing abnormal happens to either the 
client or server. We now consider what happens when errors occur at either the client 
or server. Realize that when the client and server are part of the same process (the local 
procedure call in Figure 15.1), the client does not need to worry about the server crash- 
ing and vice versa, because if either crashes the entire process crashes. But when the 
client and server are distributed to two processes, we must consider what happens if 
one of the two crashes and how the peer is notified of this failure. This is something we 
must worry about regardless of whether the client and server are on the same host or on 
different hosts. 

Premature Termination of Server 

While the client is blocked in a call to door-call, waiting for results, it needs to know 
if the server thread terminates for some reason. To see what happens, we have the 
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server procedure thread terminate by calling thread-exit. This terminates just this 
thread, not the entire server process. Figure 15.25 shows the server procedure. 

doms/serverintrl .c 
1 #include "unpipc . h" 
2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 { 
6 long arg, result; 

7 pthread-exi t (NULL) ; / *  and see what happens at client * /  
8 arg = " ( (long * )  dataptr) ; 
9 result = arg * arg; 
10 Door-return( (char * )  &result, sizeof (result), NULL, 0) ; 
11 1 

doors/serverintrl .c 

Figure 15.25 Server procedure that terminates itself after being invoked. 

The remainder of the server does not change from Figure 15.3, and the client does not 
change from Figure 15.2. 

When we run our client, we see that an error of EINTR is returned by door-call if 
the server procedure terminates before returning. 

solaris % clientintrl /tw/doorl 11 
door-call error: Interrupted system call 

Uninterruptability of door-call System Call 

The door-call manual page warns that this function is not a restartable system call. 
(The door-call function in the doors library invokes a system call of the same name.) 
We can see this by changing our server so that the server procedure just sleeps for 6 sec- 
onds before returning, which we show in Figure 15.26. 

2 void 
3 servproc(void *cookie, char *dataptr. size-t datasize. 
4 door-desc-t *descptr, size-t ndesc) 
5 { 

6 long arg, result; 

7 sleep(6): / *  let client catch SIGCHLD * /  
8 arg = *((long * )  dataptr); 
9 result = arg * arg; 
10 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
11 1 

doors/serverintr2.c 

Figure 15.26 Server procedure sleeps for 6 seconds. 

We then modify our client from Figure 15.2 to establish a signal handler for 
SIGCHLD, fork a child process, and have the child sleep for 2 seconds and then 
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terminate. Therefore, about 2 seconds after the client parent calls door-call, the par- 
ent catches SIGCHLD and the signal handler returns, interrupting the door-call sys- 
tem call. We show this client in Figure 15.27. 

void 
sig-chld (int signo) 
{ 

return; 
1 

/ *  just interrupt door-call 0 * /  

int 
main(int argc, char **argv) 
{ 

int fd; 
long ival, oval; 
door-arg-t arg; 

if (argc != 3) 
err-quit("usage: clientintr2 <server-pathname> <integer-value>"); 

fd = Open(argv[ll, 0-RDWR); / *  open the door * /  

/ *  set up the arguments and pointer to result * /  
ival = at01 (argv[2] ) ; 
arg.dataqtr = (char * )  &ival; / *  data arguments * /  
arg.data-size = sizeof(1ong); / *  size of data arguments * /  
arg.descqtr = NULL; 
arg.desc-num = 0; 
arg.rbuf = (char * )  &oval; / *  data results * /  
arg.rsize = sizeof(1ong); / *  size of data results * /  

Signal (SIGCHLD, sig-chld) ; 
if (Fork() == 0) { 

sleep (2) ; / *  child * /  
exit(0) ; / *  generates SIGCHLD * /  

1 
/ *  parent: call server procedure and print result * /  

Door-call (fd, &arg) ; 
printf("resu1t: %1d\nm, oval); 

exit (0) ; 
1 

doors/clientintr2.c 
Figure 15.27 Client that catches SIGCHLD after 2 seconds. 

The client sees the same error as if the server procedure terminated prematurely: 
EINTR. 

solaris % cl ientintr2 /tw/door2 22 
door-call error: Interrupted system call 

This means we must block any signals that might be generated during a call to 
door- call from being delivered to the process, because those signals will interrupt 
door-call. 
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mpotent versus Nonidempotent Procedures 

What if we know that we just caught a signal, detect the error of EINTR from 
door-call, and call the server procedure again, since we know that the error is from 
our caught signal and not from the server procedure terminating prematurely? This can 
lead to problems, as we will show. 

First, we modify our server to (1) print its thread ID when it is called, (2) sleep for 6 
seconds, and (3) print its thread ID when it returns. Figure 15.28 shows this version of 
our server procedure. 

doors/serverintr3.~ 
1 #include "unpipc . h" 

2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 { 

6 long arg, result; 

7 printf("thread id %Id called\nn, pr-thread-id(NULL)); 
8 sleep(6) ; / *  let client catch SIGCHLD * /  
9 arg = * ( (long * )  dataptr) ; 
10 result = arg * arg; 
11 printf("thread id %Id returning\nu, pr-thread-id(NULL)); 
12 Door-returnl (char * )  &result, sizeof(result), NULL, 0); 

13 1 
doors lserverintr3.c 

Figure 15.28 Server procedure that prints its thread ID when called and when returning. 

Figure 15.29 shows our client program. 
2-8 We declare the global caught-sigchld and set this to one when the SIGCHLD sig- 

nal is caught. 
1-42 We now call door- call in a loop as long as the error is EINTR and this was caused 

by our signal handler. 

If we look at just the client output, it appears OK: 

solaris % clientintr3 /tmg/door3 33 
calling door-call 
calling door-call 
result: 1089 

door-call is called the first time, our signal handler is invoked about 2 seconds later 
and caught-sigchld is set to one, door- call returns EINTR, and we call 
door-call again. This second time, the server procedure proceeds to completion and 
the expected result is returned. 

But looking at the server output, we see that the server procedure is called twice. 

solaris % serverintr3 /tmg/door3 
thread id 4 called 
thread id 4 returning 
thread id 5 called 
thread id 5 returning 
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volatile sig-atomic-t caught-sigchld; 

void 
sig-chld(int signo) 
I 

caught-sigchld = 1; 
return; 

1 
/ *  just interrupt door-call() */  

int 
main(int argc, char **argv) 
I 

int fd, rc; 
long ival, oval; 
door-arg-t arg; 

if (argc !=  3) 
err-quit("usage: clientintr3 <server-pathname> <integer-value>"); 

/ *  set up the arguments and pointer to result * /  
ival = atol(argv[2]); 
arg.dataqtr = (char * )  &ival; / *  data arguments * /  
arg.data-size = sizeof(1ong); / *  size of data arguments * /  
arg.descqtr = NULL; 
arg.descpum = 0; 
arg-rbuf = (char * )  &oval; / *  data results */  
arg.rsize = sizeof(1ong); / *  size of data results * /  

Signal(S1GCHLD. sig-chld); 
if (Fork() == 0) { 

sleep(2) ; / *  child * /  
exit (0) ; / *  generates SIGCHLD */  

1 
/ *  parent: call server procedure and print result * /  

f o r ( ; ; ) (  
printf("ca1ling door-call\nn); 
if ( (rc = door-call (fd. &arg) ) == 0) 

break; / *  success */  
if (errno == EINTR && caught-sigchld) { 

caught-sigchld = 0; 
continue; / *  call door-call0 again * /  

1 
err-sys("door-call error"); 

1 
printf("resu1t: %1d\nw, oval); 

1 
doors /clientintr3.c 

Figure 15.29 Client that calls door-call again after receiving EINTR. 
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When the client calls door-call the second time, after the first call is interrupted by 
the caught signal, this starts another thread that calls the server procedure a second 
time. If the server procedure is idempotent, this is OK. But if the server procedure is not 
idempotent, this is a problem. 

The term idempotent, when describing a procedure, means the procedure can be 
called any number of times without harm. Our server procedure, which calculates the 
square of a number, is idempotent: we get the correct result whether we call it once or 
twice. Another example is a procedure that returns the current time and date. Even 
though this procedure may return different information each time (say it is called twice, 
1 second apart, causing the returned times to differ by 1 second), it is still OK. The clas- 
sic example of a nonidempotent procedure is one that subtracts some amount from a 
bank account: the end result is wrong unless this procedure is called only once. 

Premature Termination of Client 

We now see how a server procedure is notified if the client terminates after calling 
door-call but before the server returns. We show our client in Figure 15.30. 

2 int 
3 rnain(int argc, char **argv) 
4 I 
5 int fd; 
6 long ival, oval; 
7 door-arg-t arg; 

8 if (argc !=  3) 
9 err-quit("usage: clientintrd <server-pathname> <integer-value>"); 

10 fd = Open(argv[ll, 0-RDWR); / *  open the door * /  

11 / *  set up the arguments and pointer to result * /  
12 ival = at01 (argv[2] ) ; 
13 arg.data_ptr = (char * )  &ival: / *  data arguments * /  
14 arg.data-size = sizeof(1ong): / *  size of data arguments * /  
15 arg.descqtr = NULL; 
16 arg.desc-num = 0; 
17 arg.rbuf = (char * )  &oval; / *  data results * /  
18 arg.rsize = sizeof(1ong); / *  size of data results * /  

19 / *  call server procedure and print result * /  
2 0 alarm(3) ; 
21 Door-call ( fd, &arg) ; 
22 printf("resu1t: %1d\nu, oval); 

24 1 
abors/clientintr4.c 

Figure 15.30 Client that terminates prematurely after calling door-call. 
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2 o The only change from Figure 15.2 is the call to alarm ( 3  ) right before the call to 
door-call. This function schedules a SIGALRM signal for 3 seconds in the future, but 
since we do not catch this signal, its default action terminates the process. This will 
cause the client to terminate before door-call returns, because we will put a 6-second 
sleep in the server procedure. 

Figure 15.31 shows our server procedure and its thread cancellation handler. 

doors lserverintr4.c 
1 #include "unpipc.hU 

2 void 
3 servproc-cleanup(void *arg) 
4 ( 

5 printf("servproc cancelled, thread id %1d\nn, pr-thread-id(NULL)); 

6 1 

7 void 
8 servproc(void *cookie, char *dataptr, size-t datasize, 
9 door-desc-t "descptr, size-t ndesc) 

10 I 
11 int oldstate, junk; 
12 long arg, result; 

Pthread-setcancelstate(PTHREAD-CANCEL-ENABLE, &oldstate); 
pthread~cleanup_push(servproc~cleanup, NULL); 
sleep (6) ; 
arg = *((long * )  dataptr); 
result = arg * arg; 
pthread-cleanup_pop (0) ; 
Pthread~setcancelstate(oldstate, &junk); 
Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 

21 1 
doors lserverintr4.c 

Figure 15.31 Server procedure that detects premature termination of client. 

Recall our discussion of thread cancellation in Section 8.5 and our discussion of this 
with Figure 15.23. When the system detects that the client is terminating with a 
door-call in progress, the server thread handling that call is sent a cancellation 
request. 

If the server thread has cancellation disabled, nothing happens, the thread exe- 
cutes to completion (when it calls door-return), and the results are then dis- 
carded. 

If cancellation is enabled for the server thread, any cleanup handlers are called, 
and the thread is then terminated. 

In our server procedure, we first call p thread-s e t cancel s t a t e to enable cancella- 
tion, because when the doors library creates new threads, it disables thread cancellation. 
This function also saves the current cancellation state in the variable oldstate, and we 
restore this state at the end of the function. We then call pthread-cleanup~ush to 
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register our function servproc-cleanup as the cancellation handler. All our function 
does is print that the thread has been canceled, but this is where a server procedure can 
do whatever must be done to clean up after the terminated client: release mutexes, write 
a log file record, or whatever. When our cleanup handler returns, the thread is termi- 
nated. 

We also put a 6-second sleep in our server procedure, to allow the client to abort 
while its door- call is in progress. 

When we run our client twice, we see that the shell prints "Alarm clock" when our 
process is killed by a SIGALRM signal. 

solaris % clientintrl /tmp/door4 44 
Alarm Clock 
solaris % clientintrl /tmp/door4 44 
Alarm Clock 

If we look at the corresponding server output, we see that each time the client termi- 
nates prematurely, the server thread is indeed canceled and our cleanup handler is 
called. 

solaris % serverintr4 /tmp/door4 
servproc canceled, thread id 4 
servproc canceled, thread id 5 

The reason we ran our client twice is to show that after the thread with an ID of 4 
is canceled, a new thread is created by the doors library to handle the second client 
invocation. 

15.12 Summary 

Doors provide the ability to call a procedure in another process on the same host. In the 
next chapter we extend this concept of remote procedure calls by describing the calling 
of a procedure in another process on another host. 

The basic functions are simple. A server calls door-create to create a door and 
associate it with a server procedure, and then calls f a t t a c h  to attach the door to a 
pathname in the filesystem. The client calls open on this pathname and then 
door-call to call the server procedure in the server process. The server procedure 
returns by calling door- return. 

Normally, the only permission testing performed for a door is that done by open 
when it creates the door, based on the client's user IDS and group IDS, along with the 
permission bits and owner IDS of the pathname. One nice feature of doors that we have 
not seen with the other forms of IPC in this text is the ability of the server to determine 
the clienvs credentials: the client's effective and real user IDS, and effective and real 
group IDS. These can be used by the server to determine whether it wants to service 
this client's request. 

Doors allow the passing of descriptors from the client to the server and vice versa. 
This is a powerful technique, because so much in Unix is represented by a descriptor: 
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access to files for file or  device I/O, access to sockets or  XTI for network communication 
(UNPvl), and access to doors for RPC. 

When calling procedures in  another process, we  must worry about premature ter- 
mination of the peer, something w e  d o  not need to worry about with local procedure 
calls. A doors client is notified if the server thread terminates prematurely by an error 
return of EINTR from door-call. A doors server thread is notified if its client termi- 
nates while the client is blocked in a call to door-call by the receipt of a cancellation 
request for the server thread. The server thread must decide whether to handle this 
cancellation or  not. 

Exercises 

How many bytes of information are passed as arguments by door-call from the client to 
the server? 

In Figure 15.6, do we need to call f stat to first verify that the descriptor is a door? 
Remove this call and see what happens. 

The Solaris 2.6 manual page for sleep ( 3 C )  states that 'The current process is suspended 
from execution." In Figure 15.9, why is the doors library able to create the second and 
third threads (thread IDS 5 and 6) once the first thread (ID 4) starts running, since this 
statement would imply that the entire server process blocks as soon as one thread calls 
sleep? 

In Section 15.3, we said that the FD-CLOEXEC bit is automatically set for descriptors cre- 
ated by door-create. But we can call fcntl after door-create returns and turn this 
bit off. What will happen if we do this, call exec, and then invoke the server procedure 
from a client? 

In Figures 15.28 and 15.29, print the current time in the two calls to print£ in the server 
and in the two calls to print f in the client. Run the client and server. Why does the first 
invocation of the server procedure return after 2 seconds? 

Remove the mutex lock that protects f d in Figures 15.22 and 15.23 and verify that the pro- 
gram no longer works. What error do you see? 

If the only characteristic of a server thread that we want to change is to enable cancellation, 
do we need to establish a server creation procedure? 

Verify that door-revoke allows a client call that is in progress to complete, and deter- 
mine what happens to door-call once the server procedure has been revoked. 

In our solution to the previous exercise and in Figure 15.22, we said that the door descrip- 
tor needs to be a global when either the server procedure or the server creation procedure 
needs to use the descriptor. That statement is not true. Recode the solution to the previous 
exercise, keeping f d as an automatic variable in the main function. 

In Figure 15.23, we call pthread-at tr-ini t and pthread-at tr-des troy every time 
a thread is created. Is this optimal? 
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I Introduction 

When we build an application, our first choice is whether to 

1. build one huge monolithic program that does everything, or 

2. distribute the application among multiple processes that communicate with 
each other. 

If we choose the second option, the next choice is whether to 

2a. assume that all the processes run on the same host (allowing IPC to be used for 
communication between the processes), or 

2b. assume that some of the processes will run on other hosts (necessitating some 
form of network communication between the processes). 

If we look at Figure 15.1, the top scenario is case 1, the middle scenario is case 2a, and 
the bottom scenario is case 2b. Most of this text has focused on case (2a): IPC between 
processes on the same host, using message passing, shared memory, and possibly some 
form of synchronization. IPC between threads within the same process, or within 
threads in different processes, is just a special case of this scenario. 

When we require network communications among the various pieces of the appli- 
cation, most applications are written using explicit network programming, that is, direct 
calls to either the sockets API or the XTI API, as described in UNPv1. Using the sockets 
API, clients call socket, connect, read, and w r i t e ,  whereas servers call socket, 
bind, l i s t e n ,  accept,  read, and wri te .  Most applications that we are familiar with 
(Web browsers, Web servers, Telnet clients, Telnet servers, etc.) are written this way. 
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An alternative way to write a distributed application is to use implicit network pro- 
gramming. Remote procedure calls, or RPC, provide such a tool. We code our applica- 
tion using the familiar procedure call, but the calling process (the client) and the process 
containing the procedure being called (the server) can be executing on different hasts. 
The fact that the client and server are running on different hosts, and that network 110 
is involved in the procedure call, is for the most part transparent. Indeed, one metric by 
which to measure any RPC package is how transparent it makes the underlying net- 
working. 

Example 

As an example of RPC, we recode Figures 15.2 and 15.3 to use Sun RPC instead of 
doors. The client calls the server's procedure with a long integer argument, and the 
return value is the square of that value. Figure 16.1 is our first file, square. x. 

sunrpc/squarel lsquare.~ 
1 s t r u c t  square-in { / *  input  (argument) * /  
2 long argl; 
3 1 ;  

4 s t r u c t  square-out { / *  output ( r e s u l t )  * /  
5 long resl; 
6 1 ;  

7 program SQUARE-PROG { 

8 version SQUARE-VERS { 

9 square-out SQUAREPROC(squa re - in )  = 1; / *  procedure number = 1 */  
1 0  ) = 1; / *  version number * /  
11 ) = 0x31230000; / *  program number * /  

sunrpclsquarel /square.x 
Figure 16.1 RPC specification file. 

These files whose name end in . x are called RPC specification files, and they define the 
server procedures along with their arguments and results. 

Define argument and return value 

1-6 We define two structures, one for the arguments (a single long), and one for the 
results (a single long). 

Define program, version, and procedure 

7-11 We define an RPC program named SQUARE-PROG that consists of one version 
(SQUARE-VERS), and in that version is a single procedure named SQUAREPROC. The 
argument to this procedure is a square- in structure, and its return value is a 
square-out structure. We also assign this procedure a number of 1, we assign the ver- 
sion a value of 1, and we assign the program number a 32-bit hexadecimal value. (We 
say more about these program numbers in Figure 16.9.) 

We compile this specification file using a program supplied with the Sun RPC pack- 
age, rpcgen. 

The next program we write is the client main function that calls our remote proce- 
dure. We show this in Figure 16.2. 
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sunrpc/squarel /client.c 
#include "unpipc.hM / *  our header * /  
#include "square.hU / *  generated by rpcgen * /  

int 
rnain(int argc, char **argv) 
( 

CLIENT *cl; 
square-in in; 
square-out *outp; 

if (argc !=  3) 
err-quit("usage: client <hostname> <integer-value>"); 

cl = Clnt-create(argv[ll, SQUARE-PROG, SQUARE-VERS, "tcp"); 

in.arg1 = atol(argv[21); 
if ( (outp = squareproc-l(&in, cl)) == NULL) 

err-quit("%sU, clnt-sperror(c1, argv[l])); 

printf("resu1t: %ld\n", outp->resl); 
exit (0) ; 

1 
sunrpc/squarel/client.c 

Figure 16.2 Client main function that calls remote procedure. 

Include header generated by rpcgen 

We #include the square. h header that is generated by rpcgen. 

Declare client handle 

We declare a client handle named cl. Client handles are intended to look like stan- 
dard I/O FILE pointers (hence the uppercase name of CLIENT). 

Obtain client handle 

We call clnt-create, which returns a client handle upon success. 

CLIENT *clnt-create (const char *host, unsigned long prognum, 
unsigned long versnum, const char *protocol) ; 

1 Returns: nonnull client handle if OK, NULL on error I 
As with standard I/O FILE pointers, we don't care what the client handle points to. It 
is probably some structure of information that is maintained by the RPC runtime sys- 
tem. clnt-create allocates one of these structures and returns its pointer to us, and 
we then pass this pointer to the RPC runtime each time we call a remote procedure. 

The first argument to clnt-create is either the hostname or IP address of the host 
running our server. The second argument is the program name, and the third argument 
is the version number, both from our square. x file (Figure 16.1). The final argument is 
our choice of protocol, and we normally specify either TCP or UDP. 
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Call remote procedure and print result 

12-15 We call our procedure, and the first argument is a pointer to the input structure 
(kin), and the second argument is the client handle. (In most standard 1 /0  calls, the 
F I L E  handle is the final argument. Similarly, the CLIENT handle is normally the final 
argument to the RPC functions.) The return value is a pointer to the result structure. 
Notice that we allocate room for the input structure, but the RPC runtime allocates the 
result structure. 

In our square .x specification file, we named our procedure SQUAREPROC, but 
from the client we call squareproc-1. The convention is that the name in the . x file is 
converted to lowercase and an underscore is appended, followed by the version num- 
ber. 

On the server side, all we write is our server procedure, which we show in Fig- 
ure 16.3. The rpcgen program automatically generates the server main function. 

3 square-out * 
4 squareproc-1-svc(square-in *inp, s t ruct  svc-req *rqstp) 
5 ( 

6 s t a t i c  square-out out; 

7 out .res1  = inp->argl * inp->argl; 
8 return (&out) ; 

Figure 16.3 Server procedure that is called using Sun RPC. 

Procedure arguments 

3-4 We first notice that the name of our server procedure has -svc appended following 
the version number. This allows two ANSI C function prototypes in the square.h 
header, one for the function called by the client in Figure 16.2 (which had the client han- 
dle as an argument) and one for the actual server function (which has different argu- 
ments). 

When our server procedure is called, the first argument is a pointer to the input 
structure, and the second argument is a pointer to a structure passed by the RPC run- 
time that contains information about this invocation (which we ignore in this simple 
procedure). 

Execute and return 

6-8 We fetch the input argument and calculate its square. The result is stored in a struc- 
ture whose address is the return value from this function. Since we are returning the 
address of a variable from the function, that variable cannot be an automatic variable. 
We declare it as s t a t i c .  

Astute readers will note that this prevents our server function from being thread safe. We dis- 
cuss this in Section 16.2 and show a thread-safe version there. 
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We now compile our client under Solaris and our server under BSD/OS, start the 
server, and run the client. 

solaris % client bsdi 11 
result: 121 
solaris % client 209.75.135.35 22 
result: 484 

The first time we specify the server's hostname, and the second time its IP address. 
This demonstrates that the c ln t- create  function and the RPC runtime functions that 
it calls allow either a hostname or an IP address. 

We now demonstrate some error returns from cln t- create  when either the host 
does not exist, or the host exists but is not running our server. 

solaris % client nosuchhost 11 
nosuchhost: RPC: Unknown host from the RPC runtime 
clnt-create error from our wrapper function 
solaris % client localhost 11 
localhost: RPC: Program not registered 
clnt-create error 

We have written a client and server and shown their use without any explicit net- 
work programming at all. Our client just calls two functions (clnt- create and 
squareproc-I), and on the server side, we have just written the function 
squareproc-1-svc. All the details involving XTI under Solaris, sockets under 
BSD/OS, and network I/O are handled by the RPC runtime. This is the purpose of 
RPC: to allow the programming of distributed applications without requiring explicit 
knowledge of network programming. 

Another important point in this example is that the two systems, a Sparc running 
Solaris and an Intel x86 running BSD/OS, have different byte orders. That is, the Sparc is 
big endian and the Intel is little endian (which we show in Section 3.4 of UNPvl). These 
byte ordering differences are also handled automatically by the runtime library, using a 
standard called XDR (external data representation), which we discuss in Section 16.8. 

More steps are involved in building this client and server than in the other p r e  
grams in this text. Here are the steps involved in building the client executable: 

solaris % rpcgen -C 8quare.x 
solaris % cc -c c1ient.c -0 c1ient.o 
solaris % cc -c square-c1nt.c -0 square-c1nt.o 
solaris % cc -c square-xdr.c -0 square-xdr.0 
solaris % cc -0 client c1ient.o square-c1nt.o square-xdr.0 1ibunpipc.a -1nsl 

The -C option to rpcgen tells it to generate ANSI C prototypes in the square. h 
header. rpcgen also generates a client stub (square-clnt .c) and a file named 
square-xdr . c that handles the XDR data conversions. Our library (with functions 
used in this book) is l ibunpipc .a, and -Ins1 specifies the system library with the 
networking functions under Solaris (which includes the RPC and XDR runtime). 

We see similar commands when we build the server, although rpcgen does not 
need to be run again. The file square-svc . c contains the server main function, and 
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square-xdr . o, the same file from earlier that contains the XDR functions, is also 
required by the server. 

s o l a r i s  % cc -c server-c -0 server.0 
s o l a r i s  % cc -c square-svc.c -0 square-svc.0 
s o l a r i s  % cc -0 server server.0 square-svc.0 square-xdr.0 1ibunpipc.a -1nel 

This generates a client and server that both run under Solaris. 
When the client and server are being built for different systems (e.g., in our earlier 

example, we ran the client under Solaris and the server under BSD/OS), additional 
steps may be required. For example, some of the files must be either shared (e.g., NFS) 
or copied between the two systems, and files that are used by both the client and server 
(square-xdr . o) must be compiled on each system. 

Figure 16.4 summarizes the files and steps required to build our client-server exam- 
ple. The three shaded boxes are the files that we must write. The dashed lines show the 
files that #include square. h. 

RPC specification file ~~~ 

square-c1nt.c square-xdr.c square-svc.c 
client stub server stub server 

main procedures 

Y 
CC 

executable executable 
Figure 16.4 Summary of steps required to build an RPC client-server. 

Figure 16.5 summarizes the steps that normally take place in a remote procedure 
call. The numbered steps are executed in order. 

0. The sever is started and it registers itself with the port mapper on the server host. 
The client is then started, and it calls clnt-create, which contacts the port map- 
per on the server host to find the server's ephemeral port. The clnt-create 
function also establishes a TCP connection with the server (since we specified TCP 
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client process 
r-------- 1 
I I 

c~ient.c[ i routines 

server process 
r--------I 
I I 

square-svc.c 
square-xdr.c 

I RPC 

system call = (2) 
(9) process - - - - - - - . - - -. - - - - - - - 

(7) 
(4) process - - - - - - - - - - - - - - - -  

kernel 
7 

network 
routines 

Figure 16.5 Steps involved in a remote procedure call. 

as the protocol in Figure 16.2). We do not show these steps in the figure and save 
our detailed description for Section 16.3. 

The client calls a local procedure, called the client stub. In Figure 16.2, this proce- 
dure was named squareproc-1, and the file containing the client stub was gener- 
ated by rpcgen and called square-clnt . c. To the client, the client stub appears 
to be the actual server procedure that it wants to call. The purpose of the stub is to 
package up the arguments to the remote procedure, possibly put them into some 
standard format, and then build one or more network messages. The packaging of 
the client's arguments into a network message is termed marshaling. The client rou- 
tines and the stub normally call functions in the RPC runtime library (e.g., 
clnt-create in our earlier example). When link editing under Solaris, these run- 
time functions are loaded from the -1nsl library, whereas under BSD/OS, they 
are in the standard C library. 

These network messages are sent to the remote system by the client stub. This nor- 
mally requires a system call into the local kernel (e.g., write or sendto). 

The network messages are transferred to the remote system. The typical network- 
ing protocols used for this step are either TCP or UDP. 

A server stub procedure is waiting on the remote system for the client's request. It 
unmarshals the arguments from the network messages. 

The server stub executes a local procedure call to invoke the actual server function 
(our squareproc-1-svc procedure in Figure 16.3), passing it the arguments that 
it received in the network messages from the client. 

When the server procedure is finished, it returns to the server stub, returning what- 
ever its return values are. 
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7. The server stub converts the return values, if necessary, and marshals them into 
one or more network messages to send back to the client. 

8. The messages are transferred back across the network to the client. 

9. The client stub reads the network messages from the local kernel (e.g., read or 
recvf rom). 

10. After possibly converting the return values, the client stub finally returns to the 
client function. This step appears to be a normal procedure return to the client. 

History 

Probably one of the earliest papers on RPC is [White 19751. According to [Corbin 19911, 
White then moved to Xerox, and several RPC systems were developed there. One of 
these, Courier, was released as a product in 1981. The classic paper on RPC is [Birrell 
and Nelson 19841, which describes the RPC facility for the Cedar project running on sin- 
gle-user Dorado workstations at Xerox in the early 1980s. Xerox was implementing 
RPC on workstations before most people knew what workstations were! A Unix imple- 
mentation of Courier was distributed for many years with the 4.x BSD releases, but 
today Courier is of historical interest only. 

Sun released the first version of its R K  package in 1985. It was developed by Bob 
Lyon, who had left Xerox in 1983 to join Sun. Its official name is ONC/RPC: Open Net- 
work Computing Remote Procedure Call, but it is often called just "Sun RPC." Techni- 
cally, it is similar to Courier. The original releases of Sun RPC were written using the 
sockets API and worked with either TCP or UDI? The publicly available source code 
release was called RPCSRC. In the early 1990s, this was rewritten to use TLI, the prede- 
cessor to XTI (described in Part 4 of UNPvI), and works with any networking protocol 
supported by the kernel. Publicly available source code implementations of both are 
available from f tp : / /playground. sun. com/pub/ rpc with the sockets version 
named rpcsrc and the TLI version named tirpcsrc (called TI-RPC, where "TI" 
stands for "transport independent"). 

RFC 1831 [Srinivasan 1995al provides an overview of Sun RPC and describes the 
format of the RPC messages that are sent across the network. RFC 1832 [Srinivasan 
1995bl describes XDR, both the supported datatypes and their format "on the wire." 
RFC 1833 [Srinivasan 1995~1 describes the binding protocols: RPCBIND and its prede- 
cessor, the port mapper. 

Probably the most widespread application that uses Sun RPC is NFS, Sun's network 
filesystem. Normally, NFS is not built using the standard RPC tools, rpcgen and the 
RPC runtime library that we describe in this chapter. Instead, most of the library rou- 
tines are hand-optimized and reside within the kernel for performance reasons. Never- 
theless, most systems that support NFS also support Sun RPC. 

In the mid-1980s, Apollo competed against Sun in the workstation market, and they 
designed their own RPC package to compete against Sun's, called NCA (Network Com- 
puting Architecture), and their implementation was called NCS (Network Computing 
System). NCA/RPC was the RPC protocol, NDR (Network Data Representation) was 
similar to Sun's XDR, and NIDL (Network Interface Definition Language) defined the 
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interfaces between the clients and servers (e.g., similar to our . x file in Figure 16.1). The 
runtime library was called NCK (Network Computing Kernel). 

Apollo was acquired by Hewlett Packard in 1989, and NCA was developed into the 
Open Software Foundation's Distributed Computing Environment (DCE), of which 
RPC is a fundamental element from which most pieces are built. More information on 
DCE is available from ht tp : / /www . camb . opengroup. org / tech/ dce. An imple- 
mentation of the DCE RPC package has been made publicly available at 
f tp : / /gatekeeper. dec . com/pub/DEC/DCE. This directory also contains a 
171-page document describing the internals of the DCE RPC package. DCE is available 
for many platforms. 

Sun RPC is more widespread than DCE RPC, probably because of its freely available imple- 
mentation and its packaging as part of the basic system with most versions of Unix. DCE RPC 
is normally available as an add-on (i.e., separate cost) feature. Widespread porting of the pub- 
licly available implementation has not o&curred, although a Linux port is underway. In this 
text, we cover only Sun RPC. All three RPC packages-Courier, Sun RPC, and DCE RPC-are 
amazingly similar, because the basic RPC concepts are the same. 

Most Unix vendors provide additional, detailed documentation on Sun RPC. For example, the 
Sun documentation is available at http: //docs. sun. com, and in the Developer Collection, 
Volume 1, is a 280-page "ONC+ Developer's Guide." The Digital Unix documentation at 
http://www.unix.digital.com/faqs/publications/pub_page/V4OD_DOCS.HTM 
includes a 116-page manual titled "Programming with ONC RPC." 

RPC itself is a controversial topic. Eight posting5 on this topic are contained in 
http://www.kohala.com/-rstevens/papers.others/rpc.coments.txt. 

In this chapter, we assume TI-RPC (the transport independent version of RPC men- 
tioned earlier) for most examples, and we talk about TCP and UDP as the supported 
protocols, even though TI-RPC supports any protocols that are supported by the host. 

6.2 Multithreading 

Recall Figure 15.9, in which we showed the automatic thread management performed 
by a doors server, providing a concurrent server by default. We now show that Sun 
RPC provides an iterative server by default. We start with the example from the previous 
section and modify only the server procedure. Figure 16.6 shows the new function, 
which prints its thread ID, sleeps for 5 seconds, prints its thread ID again, and returns. 

We start the server and then run the client three times: 

solaris % client localhost 22 & client localhost 33 & \ 
client localhost 44 & 

[31 25179 
[41 25180 
[51 25181 
solaris % result: 484 about 5 seconds after the prompt is printed 
result: 1936 another 5 seconds later 
result: 1089 and another 5 seconds later 



408 Sun RPC Chapter 16 

3 square-out * 
4 squareproc-1-svc(square-in *inp,  s t r u c t  svc-req * rqs tp )  
5 I 
6 s t a t i c  square-out out ;  

7 p r i n t f ( " t h r e a d  % I d  s t a r t e d ,  a r g  = %1d\nu,  
8 pr-thread-id(NULL), inp -za rg l ) ;  
9 s l e e p ( 5 ) ;  

10 ou t . r e s1  = inp- zargl  * inp- zargl ;  
11 p r i n t f ( " t h r e a d  % I d  done\nn,  pr-thread-id(NULL)); 

12 r e t u r n  (&out)  ; 

Figure 16.6 Server procedure that sleeps for 5 seconds. 

Although we cannot tell from this output, a 5-second wait occurs between the printing 
of each result by the client. If we look at the server output, we see that the clients are 
handled iteratively: the first client's request is handled to completion, and then the sec- 
ond client's request is handled to completion, and finally the t h d  client's request is 
handled to completion. 

s o l a r i s  % server 
thread 1 s t a r t e d ,  a r g  = 22 
thread 1 done 
thread 1 s t a r t e d ,  a r g  = 44 
thread 1 done 
thread 1 s t a r t e d ,  a r g  = 33 
thread 1 done 

One thread handles all client requests: the server is not multithreaded by default. 

Our doors servers in Chapter 15 all ran in the foreground when started from the shell, as in 

solaris % server 

That allowed us to place debugging calls to p r i n t f  in our server procedures. But Sun RPC 
servers, by default, run as daemons, performing the steps as outlined in Section 12.4 of 
UNPvl. This requires calling syslog from the server procedure to print any diagnostic infor- 
mation. What we have done, however, is specify the C compiler flag -DDEBUG when we com- 
pile our server, which is the equivalent of placing the line 

#define DEBUG 

in the server stub (the square-svc . c file that is generated by rpcgen). This stops the server 
main function from making itself a daemon, and leaves it connected to the terminal on which 
it was started. That is why we can call p r i n t f  from our server procedure. 

The provision for a multithreaded server appeared with Solaris 2.4 and is enabled 
by a -M command-line option to rpcgen. This makes the server code generated by 
rpcgen thread safe. Another option, -A, has the server automatically create threads as 
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they are needed to process new client requests. We enable both options when we run 
rpcgen. 

Both the client and server also require source code changes, which we should 
expect, given our use of static in Figure 16.3. The only change we make to our 
square. x file is to change the version from 1 to 2. Nothing changes in the declarations 
of the procedure's argument and result structures. 

Figure 16.7 shows our new client program. 

1 #include "unpipc .h" 
2 #include "square.hn 

3 int 
4 main(int argc, char **argv) 

5 I 
6 CLIENT *cl; 
7 square-in in; 
8 square-out out; 

9 if (argc !=  3) 
10 err-quit("usage: client <hostname> 

11 cl = Clnt-create(argv[l], SQUARE-PROG, 

12 in. argl = at01 (argvL21) ; 

<integer-value>"); 

SQUARE-VERS, "tcp"); 

13 if (squareproc-Z(&in, &out, cl) !=  RPC-SUCCESS) 
14 err-quit("%sn, clnt-sperror(c1, argv[ll)); 

15 printf("resu1t: %ld\nn, out.res1): 
16 exit (0) ; 

17 1 
sunrpc/square3/client.c 

Figure 16.7 Client main function for multithreaded server. 

Declare variable to hold result 

8 We declare a variable of type square-out, not a pointer to this type. 

New argument for procedure call 

2-14 A pointer to our out variable becomes the second argument to squareproc-2, 
and the client handle is the last argument. Instead of this function returning a pointer to 
the result (as in Figure 16.2), it now returns either RPC-SUCCESS or some other value if 
an error occurs. The clnt-s t at enum in the <rpc/ clnt-stat . h> header lists all the 
possible error returns. 

Figure 16.8 shows our new server procedure. As with Figure 16.6, it prints its 
thread ID, sleeps for 5 seconds, prints another message, and returns. 

New arguments and return value 

3-12 The changes required for multithreading involve the function arguments and return 
value. lnstead of returning a pointer to the result structure (as in Figure 16.31, a pointer 
to this structure is now the second argument to the function. The pointer to the 
svc-req structure moves to the third position. The return value is now TRUE upon 
success, or FALSE if an error is encountered. 
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bool-t 
squareproc-2-svc(square-in *inp, square-out *outp, struct svc-req *rqstp) 
I 

printf("thread %Id started, arg = %1d\nn, 
pr-thread-id(NULL), inp->argl); 

sleep (5) ; 
outp->resl = inp->argl * inp->argl; 
printf("thread %Id done\nM, pr-thread-id(NULL)); 
return (TRUE) ; 

1 

13 int 
14 squareqrog-2-freeresult(SVCXPRT *transp, xdrproc-t xdr-result, 
15 caddr-t result) 
16 I 
17 xdr-free(xdr-result, result); 
18 return (1 : 
19 1 

sunrpc /square3 1server.c 
Figure 16.8 Multithreaded server procedure. 

New function to free XDR memory 

13-19 Another source code change we must make is to provide a function that frees any 
storage automatically allocated. This function is called from the server stub after the 
server procedure returns and after the result has been sent to the client. In our example, 
we just call the generic xdr-f ree routine. (We talk more about this function with Fig- 
ure 16.19 and Exercise 16.10.) If our server procedure had allocated any storage neces- 
sary to hold the result (say a linked list), it would free that memory from this new 
function. 

We build our client and server and again run three copies of the client at the same 
time: 

solaris % client localhost 55 & client localhost 66 & \ 
client localhost 77 & 

131 25427 
[41 25428 
[51 25429 
solaris % result: 4356 
result: 3025 
result: 5929 

This time we can tell that the three results are printed one right after the other. Looking 
at the server output, we see that three threads are used, and all run simultaneously. 

solaris % server 
thread 1 started, arg = 55 
thread 4 started, arg = 77 
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thread 6 s t a r t e d ,  a r g  = 66 
thread 6 done 
thread 1 done 
thread 4 done 

One unfortunate side effect of the source code changes required for multithreading is that not 
all systems support this feature. For example, Digital Unix 4.OB and BSD/OS 3.1 both provide 
the older RPC system that does not support multithreading. That means if we want to compile 
and run a program on both types of systems, we need # i f  def s to handle the differences in the 
calling sequences at the client and server ends. Of course, a nonthreaded client on BSD/OS, 
say, can still call a multithreaded server procedure running on Solaris, but if we have an RPC 
client (or server) that we want to compile on both types of systems, we need to modify the 
source code to handle the differences. 

Server Binding 

In the description of Figure 16.5, we glossed over step 0: how the server registers itself 
with its local port mapper and how the client discovers the value of this port. We first 
note that any host running an RPC server must be running the port mapper. The port 
mapper is assigned TCP port 111 and UDP port 111, and these are the only fixed Internet 
port assignments for Sun RPC. RPC servers always bind an ephemeral port and then 
register their ephemeral port with the local port mapper. When a client starts, it must 
first contact the port mapper on the server's host, ask for the server's ephemeral port 
number, and then contact the server on that ephemeral port. The port mapper is pro- 
viding a name service whose scope is confined to that system. 

Some readers will claim that NFS also has a fixed port number assignment of 2049. Although 
many implementations use this port by default, and some older implementations still have this 
port number hardcoded into the client and server, most current implementations allow other 
ports to be used. Most NFS clients also contact the port mapper on the server host to obtain 
the port number. 

With Solaris 2.x, Sun renamed the port mapper RPCBIND. The reason for this change is that 
the term "port" implied Internet ports, whereas the TI-RPC package can work with any net- 
working protocol, not just TCF and UDI? We will use the traditional name of port mapper. 
Also, in our discussion that follows, we assume that TCP and UDP are the only protocols sup- 
ported on the server host. 

The steps performed by the server and client are as follows: 

1. When the system goes into multiuser mode, the port mapper is started. The exe- 
cutable name is typically portmap or rpcbind. 

2. When our server starts, its main function (which is part of the server stub that is 
generated by rpcgen) calls the library function svc-create. This function deter- 
mines the networking protocols supported by the host and creates a transport end- 
point (e.g., socket) for each protocol, binding an ephemeral port to the TCP and 
UDP endpoints. It then contacts the local port mapper to register the TCP and UDP 
ephemeral port numbers with the RPC program number and version number. 
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The port mapper is itself an RPC program and the server registers itself with the 
port mapper using RPC calls (albeit to a known port, 111). A description of the pro- 
cedures supported by the port mapper is given in RFC 1833 [Srinivasan 1995~1. 
Three versions of this RPC program exist: version 2 is the historical port mapper 
that handles just TCP and UDP ports, and versions 3 and 4 are the newer RPCBIND 
protocols. 

We can see all the RPC programs that are registered with the port mapper by execut- 
ing the rpcinf o program. We can execute this program to verify that port number 
111 is used by the port mapper itself: 

solaris % rpcinfo -p 
program vers proto port service 
100000 4 tcp 111 rpcbind 
100000 3 tcp 111 rpcbind 

-100000 2 tcp 111 rpcbind 
100000 4 udp 111 rpcbind 
100000 3 udp 111 rpcbind 
100000 2 udp 111 rpcbind 

(We have omitted many additional lines of output.) We see that Solaris 2.6 supports 
all three versions of the protocol, all at port 111, using either TCP or UDP. The map- 
ping from the RPC program number to the service name is normally found in the 
file / etc /rpc. Executing the same command under BSD/OS 3.1 shows that it sup- 
ports only version 2 of this program. 

bsdi % rpcinfo -p 
program vers proto port 
100000 2 tcp 111 portmapper 
100000 2 udp 111 portmapper 

Digital Unix 4.OB also supports just version 2: 

alpha % rpcinfo -p 
program vers proto port 
100000 2 tcp 111 portmapper 
100000 2 udp 111 portmapper 

Our server process then goes to sleep, waiting for a client request to arrive. This 
could be a new TCP connection on its TCP port, or the arrival of a UDP datagram on 
its UDP port. If we execute rpcinf o after starting our server from Figure 16.3, we 
see 

solaris % rpcinfo -p 
program vers proto port service 

824377344 1 udp 47972 
824377344 1 tcp 40849 

where 824377344 equals 0x3 123 00 0 0, the program number that we assigned in 
Figure 16.1. We also assigned a version number of 1 in that figure. Notice that a 
server is ready to accept clients using either TCP or UDP, and the client chooses 
which of these two protocols to use when it creates the client handle (the final argu- 
ment to clnt-create in Figure 16.2). 
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3. The client starts and calls clnt-create. The arguments (Figure 16.2) are the 
server's hostname or IP address, the program number, version number, and a string 
specifying the protocol. An RPC request is sent to the server host's port mapper 
(normally using UDP as the protocol for this RPC message), asking for the informa- 
tion on the specified program, version, and protocol. Assuming success, the port 
number is saved in the client handle for all future RPC calls using this handle. 

In Figure 16.1, we assigned a program number of 0x3 1 2  3 0 000 to our program. 
The 32-bit program numbers are divided into groups, as shown in Figure 16.9. 

Figure 16.9 Program number ranges for Sun RPC. 

Program number 

OXOOOOOOOO - Oxlf f f ff f f 
0x20000000 - Ox3fffffff 
0x40 0 000 0 0 - Ox5f f f f f f f 
0x60000000 - OX£ f f f f f f f 

The rpcinfo program shows the programs currently registered on your system. 
Another source of information on the RPC programs supported on a given system is 
normally the . x files in the directory /usr / include/ rpcsvc. 

Description 

defined by Sun 
definedbyuser 
transient (for customer-written applications) 
reserved 

etd and RPC Servers 

By default, servers created by rpcgen can be invoked by the inetd superserver. (Sec- 
tion 12.5 of UNPvl covers inetd in detail.) Examining the server stub generated by 
rpcgen shows that when the server main starts, it checks whether standard input is a 
XTT endpoint and, if so, assumes it was started by inetd. 

Backing up, after creating an RPC server that will be invoked by inetd, the 
/ e t c / ine td . conf configuration file needs to be updated with the server information: 
the RPC program name, the program numbers that are supported, which protocols to 
support, and the pathname of the server executable. As an example, here is one line 
(wrapped to fit on this page) from the Solaris configuration file: 

rstatd/2-4 tli rpc/datagram-v wait root 
/usr/lib/netsvc/rstat/rpc.rstatd rpc.rstatd 

The first field is the program name (which will be mapped to its corresponding program 
number using the / et c/rpc file), and the supported versions are 2,3, and 4. The next 
field specifies a XTI endpoint (as opposed to a socket endpoint), and the third field spec- 
ifies that all visible datagram protocols are supported. Looking at the file 
/etc/netconf ig, there are two of these protocols: UDP and /dev/ cl t s. (Chapter 29 
of UNPvl describes this file and XTI addresses.) The fourth field, wait, tells inetd to 
wait for this server to terminate before monitoring the XTI endpoint for another client 
request. All RPC servers in / etc/ inetd . conf specify the wait attribute. 

The next field, root, specifies the user ID under which the program will run, and 
the last two fields are the pathname of the executable and the program name with any 
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arguments to be passed to the program (there are no command-line arguments for this 
program). 

i n e t d  will create the XTI endpoints and register them with the port mapper for the 
specified program and versions. We can verify this with rpc inf  o: 

solaris % rpcinfo 1 grep statd 
100001 2 udp 0.0.0.0.128.11 rstatd superuser 
100001 3 udp 0.0.0.0.128.11 rstatd superuser 
100001 4 udp 0.0.0.0.128.11 rstatd superuser 
100001 2 ticlts \000\000\020, rstatd superuser 
100001 3 ticlts \000\000\020, rstatd superuser 
100001 4 ticlts \000\000\020, rstatd superuser 

The fourth field is the printable format for XTI addresses (which prints the individual 
bytes) and 128 x 256 + 11 equals 32779, which is the UDP ephemeral port number 
assigned to this XTI endpoint. 

When a UDP datagram arrives for port 32779, i n e t d  will detect that a datagram is 
ready to be read and it will fo rk  and then exec the program 
/ u s r / l i b / n e t s v c / r s t a t  / r p c  . r s t a t d .  .Between the fork  and exec, the XTI end- 
point for this server will be duplicated onto descriptors O,1,  and 2, and all other inetd 
descriptors are closed (Figure 12.7 of UNPv1). i n e t d  will also stop monitoring this XTI 
endpoint for additional client requests until this server (which will be a child of inetd) 
terminates-the wait attribute in the configuration file for this server. 

Assuming this program was generated by rpcgen, it will detect that standard 
input is a XTI endpoint and initialize it accordingly as an RPC server endpoint. This is 
done by calling the RMZ functions svc-tli-create and svc-reg, two functions that 
we do not cover. The second function does not register this server with the port 
mapper-that is done only once by i n e t d  when it starts. The RPC server loop, a func- 
tion named svc-run, will read the pending datagram and call the appropriate server 
procedure to handle the client's request. 

Normally, servers invoked by i n e t d  handle one client's request and terminate, 
allowing ine td  to wait for the next client request. As an optimization, RPC servers 
generated by rpcgen wait around for a small amount of time (2 minutes is the default) 
in case another client request arrives. If so, this existing server that is already running 
will read the datagram and process the request. This avoids the overhead of a fork 
and an exec for multiple client requests that arrive in quick succession. After the small 
wait period, the server will terminate. This will generate SIGCHLD for inetd,  causing 
it to start looking for arriving datagrams on the XTI endpoint again. 

16.4 Authentication 

By default, there is no information in an RPC request to identify the client. The server 
replies to the client's request without worrying about who the client is. This is called 
null authentication or AUTH-NONE. 

The next level is called Unix authentication or AUTH-SYS. The client must tell the 
RMZ runtime to include its identification (hostname, effective user ID, effective group 
ID, and supplementary group IDS) with each request. We modify our client-server 
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from Section 16.2 to include Unix authentication. Figure 16.10 shows the client. 

sunrpc/square4/client.c 
1 #include "unpipc . h" 
2 #include "square.hn 

3 int 
4 main(int argc, char **argv) 
5 { 

6 CLIENT *cl; 
7 square-in in; 
8 square-out out; 

9 if (argc !=  3) 
10 err-quit("usage: client <hostname> <integer-value>"); 

11 cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, "tcp"); 

14 in.argl = atol(argvL21); 
15 if (squareproc-2 (&in, &out, cl) !=  RPC-SUCCESS) 
16 err-quit("%sn, clnt-sperror(c1, argv[ll)); 

17 printf("resu1t: %1d\nn, out.res1); 
18 exit (0) ; 
19 1 

sunrpc/square4/client.c 

Figure 16.10 Client that provides Unix authentication. 

12-13 These two lines are new. We first call auth-destroy to destroy the previous 
authentication associated with this client handle, the null authentication that is created 
by default. The function authsys-create-defaul t  creates the appropriate Unix 
authentication structure, and we store that in the cl-auth member of the CLIENT 
structure. The remainder of the client has not changed from Figure 16.7. 

Figure 16.11 shows our new server procedure, modified from Figure 16.8. We do 
not show the squarejrog-2-f  r e e r e s u l t  function, wluch does not change. 

6-8 We now use the pointer to the svc-req structure that is always passed as an argu- 
ment to the server procedure. 

struct svc-req { 

u-long rurog; / * 
u-long revers; / * 
u-long ruroc; / * 
struct opaque-auth rccred; / * 
caddr-t rcclntcred; / *  
SVCXPRT *rq-xprt; / * 

1; 

struct opaque-auth { 

program number * /  
version number * /  
procedure number * /  
raw credentials * /  
cooked credentials (read-only) * /  
transport handle * /  

enum-t oa-flavor; / *  flavor: AUTH-xxx constant * /  
caddr-t oa-base ; / *  address of more auth stuff * /  
u-int oa-length; / *  not to exceed MAX-AUTH-BYTES * /  

1; 



416 Sun RPC Chapter 16 

3 bool-t 
4 squareproc-2-svc(square-in *inp, square-out *outp, scruct svc-req *rqstp) 
5 
6 printf("thread %Id started, arg = %Id, auth = %d\nU, 
7 pr-thread-id(NULL), inp->argl, rqstp->rq-cred.oa-flavor); 
8 if (rqstp->r~cred.oa-flavor == AUTH-SYS) { 

9 struct authsysqarms *au; 

10 au = (struct authsysqarms * )  rqstp->rq-clntcred; 
11 printf("AUTH-SYS: host %s, uid %Id, gid %ld\n", 
12 au->sup-machname, (long) au->sup-uid, (long) au->sup-gid); 
13 1 
14 sleep(5) ; 
15 outp->resl = inp->argl * inp->argl; 
16 printf("thread %Id done\nW, pr-thread-id(NULL) ) ;  

17 return (TRUE) ; 
18 1 

sunrpc/square4/smer.c 
Figure 16.11 Server procedure that looks for Unix authentication. 

The rq-cred member contains the raw authentication information, and its oa-f lavor 
member is an integer that identifies the type of authentication. The term "raw" means 
that the RPC runtime has not processed the information pointed to by oa-base. But if 
the authentication type is one supported by the runtime, then the cooked credentials 
pointed to by rq-clntcred have been processed by the runtime into some structure 
appropriate for that type of authentication. We print the type of authentication and 
then check whether it equals AUTH-SYS. 

9-12 For Unix authentication, the pointer to the cooked credentials (rq-clntcred) 
points to an authsys~arms structure containing the client's identity: 

struct authsysgarms { 
u-long aup-time; / *  credentials creation time * /  
char *sup-machname; / *  hostname where client is located * /  
uid-t aup-uid; / *  effective user ID * /  
gid-t aup-gid; / *  effective group ID * /  
u-int aup-len; / *  #elements in aup-gids[l * /  
gid-t *sup-gids; / *  supplementary group IDS * /  

1; 

We obtain the pointer to this structure and print the client's hostname, effective user ID, 
and effective group ID. 

If we start our server and run the client once, we get the following output from the 
server: 

solaris % server 
thread 1 started, arg = 44, auth = 1 
AUTH-SYS: host solaris.kohala.com, uid 765, gid 870 
thread 1 done 
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Unix authentication is rarely used, because it is simple to defeat. We can easily 
build our own RPC packets containing Unix authentication information, setting the user 
ID and group IDS to any values we want, and send it to the server. The server has no 
way to verify that we are who we claim to be. 

Actually, NFS uses Unix authentication by default, but the requests are normally sent by the 
NFS client's kernel and usually with a reserved port (Section 2.7 of UNPvl). Some NFS 
servers are configured to respond to a client's request only if it arrives from a reserved port. If 
you.are trusting the client host to mount your filesystems, you are trusting that client's kernel 
to identify its users correctly. If a reserved port is not required by the server, then hackers can 
write their own programs that send NFS requests to an NFS server, setting the Unix authenti- 
cation IDS to any values desired. Even if a reserved port is required by the server, if you have 
your own system on which you have superuser privileges, and you can plug your system into 
the network, you can still send your own NFS requests to the server. 

An RPC packet, either a request or a reply, actually contains two fields related to 
authentication: the credentials and the verifier (Figures 16.30 and 16.32). A common anal- 
ogy is a picture ID (passport, driver's license, or whatever). The credentials are the 
printed information (name, address, date of birth, etc.), and the verifier is the picture. 
There are also different forms of credentials: a picture is better than just listing the 
height, weight, and sex, for example. If we had an ID card without any form of identi- 
fying information (library cards are often examples of this), then we would have creden- 
tials without any verifier, and anyone could use the card and claim to be the owner. 

In the case of null authentication, both the credentials and the verifier are empty. 
With Unix authentication, the credentials contain the hostname and the user and group 
IDS, but the verifier is empty. Other forms of authentication are supported, and the cre- 
dentials and verifiers contain other information: 

AUTH-SHORT An alternate form of Unix authentication that is sent in the verifier 
field from the server back to the client in the RPC reply. It is a 
smaller amount of information than full Unix authentication, and 
the client can send this back to the server as the credentials in subse- 
quent requests. The intent of this type of credential is to save net- 
work bandwidth and server CPU cycles. 

AUTH-DES DES is an acronym for the Data Encryption Standard, and this form of 
authentication is based on secret key and public key cryptography. 
This scheme is also called secure RPC, and when used as the basis for 
NFS, this is called secure NFS. 

AUTH-KERB This scheme is based on MIT's Kerberos system for authentication. 

Chapter 19 of [Garfinkel and Spafford 19961 says more about the latter two forms of 
authentication, including their setup and use. 

5 Timeout and Retransmission 

We now look at the timeout and retransmission strategy used by Sun RPC. Two time- 
out values are used: 
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1. The total timeout is the total amount of time that a client waits for the server's 
reply. This value is used by both TCP and UDP. 

2. The retry timeout is used only by UDP and is the amount of time between 
retransmissions of the client's request, waiting for the server's reply. 

First, no need exists for a retry timeout with TCP because TCP is a reliable protocol. If 
the server host never receives the client's request, the client's TCP will time out and 
retransmit the request. When the server host receives the client's request, the server's 
TCP will acknowledge its receipt to the client's TCP. If the server's acknowledgment is 
lost, causing the client's TCP to retransmit the request, when the server TCP receives 
this duplicate data, it will be discarded and another acknowledgment sent by the server 
TCI? With a reliable protocol, the reliability (timeout, retransmission, handling of dupli- 
cate data or duplicate ACKs) is provided by the transport layer, and is not a concern of 
the RPC runtime. One request sent by the client RPC layer will be received as one 
request by the server RPC layer (or the client RPC layer will get an error indication if 
the request never gets acknowledged), regardless of what happens at the network and 
transport layers. 

After we have created a client handle, we can call c ln t -cont ro l  to both query 
and set options that affect the handle. This is similar to calling f c n t  1 for a descriptor, 
or calling getsockopt  and se tsockopt  for a socket. 

bool-t clnt-control(CL1ENT *d, unsigned int request, char * p t r ) ;  

I Returns: TRUE if OK, FALSE on error 

cl is the client handle, and what is pointed to by ptr depends on the request. 

We modify our client from Figure 16.2 to call this function and print the two time- 
outs. Figure 16.12 shows our new client. 

Protocol is a command-line argument 

10-12 We now specify the protocol as another command-line argument and use this as the 
final argument to clnt-create .  

Get total timeout 

13-14 The first argument to c ln t -cont ro l  is the client handle, the second is the request, 
and the third is normally a pointer to a buffer. Our first request is CLGET-TIMEOUT, 
which returns the total timeout in the t imeval  structure whose address is the third 
argument. This request is valid for all protocols. 

Try to get retry timeout 

15-16 our  next request is CLGET-RETRY-TIMEOUT for the retry timeout, but this is valid 
only for UDP. Therefore, if the return value is FALSE, we print nothing. 

We also modify our server from Figure 16.6 to sleep for 1000 seconds instead of 5 
seconds, to guarantee that the client's request times out. We start the server on our host 
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#include "square.hW 

int 
main(int argc, char **argv) 
{ 

CLIENT *cl; 
square-in in; 
square-out *outp; 
struct timeval tv; 

if (argc != 4) 
errquit("usage: client <hostname> <integer-value> <protocol>"); 

cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, argv[31); 

Clnt-control(c1, CLGET-TIMEOUT, (char * )  &tv); 
printf("timeout = %Id sec, %Id usec\nM, tv.tv-sec, tv.tv-usec); 
if (clnt~control(cl, CLGET-RETRY-TIMEOUT, (char * )  &tv) == TRUE) 

printf("retry timeout = %Id sec, %Id usec\nM, tv.tv-sec, tv.tv-usec); 

in.arg1 = atol(argv[2]); 
if ( (outp = squareproc-l(&in, cl)) == NULL) 

err-quit("%s", clnt-sperror(c1, argv[ll)); 

printf("resu1t: %1d\nv, outp->resl); 
exit (0) ; 

1 sunrpc/square5/client.c 

Figure 16.12 Client that queries and prints the two RPC timeout values. 

bsd i  and run the client twice, once specifying TCP and once specifying UDP, but the 
results are not what we expect: 

solaris % date ; client bsdi 44 tcp ; date 
Wed Apr 22 14:46:57 MST 1998 
timeout = 30 sec, 0 usec this says 30 seconds 
bsdi: RPC: Timed out 
Wed Apr 22 14:47:22 MST 1998 but this is 25 seconds later 

solaris % date ; client bsdi 55 udp ; date 
Wed Apr 22 14:48:05 MST 1998 
timeout = -1 sec. -1 usec bizarre 
retry timeout = 15 sec. 0 usec this turns out to be correct 
bsdi: RPC: Timed out 
Wed Apr 22 14:48:31 MST 1998 about 25 seconds later 

In the TCP case, the total timeout is returned by c ln t -cont ro l  as 30 seconds, but our 
measurement shows a timeout of 25 seconds. With UDP, the total timeout is returned 
as -1. 

To see what is happening here, look at the client stub, the function squareproc-1 
in the file square-clnt . c that is generated by rpcgen. This function calls a library 
function named c ln t -ca l l ,  and the final argument is a t imeval  structure named 
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TIMEOUT that is declared in this file and is initialized to 25 seconds. This argument to 
c l n t - c a l l  overrides the default of 30 seconds for TCP and the -1 values for UDP. 
This argument is used until the client explicitly sets the total timeout by calling 
c ln t -cont ro l  with a request of CLSET-TIMEOUT. If we want to change the total 
timeout, we should call c ln t -cont ro l  and should not modify the structure in the 
client stub. 

The only way to verify the UDP retry timeout is to watch the packets using tcpdurnp. This 
shows that the first datagram is sent as soon as the client starts, and the next datagram is about 
15 seconds later. 

TCP Connection Management 

If we watch the TCP client-server that we just described using t cpdump, we see TCP's 
three-way handshake, followed by the client sending its request, and the server 
acknowledging this request. About 25 seconds later, the client sends a FIN, which is 
caused by the client process terminating, and the remaining three segments of the TCP 
connection termination sequence follow. Section 2.5 of UNPvl describes these segments 
in more detail. 

We want to show the following characteristics of Sun RPC's usage of TCP connec- 
tions: a new TCP connection is established by the client's call to clnt-create ,  and this 
connection is used by all procedure calls associated with the specified program and ver- 
sion. A client's TCP connection is terminated either explicitly by calling 
clnt-des t r o y  or implicitly by the termination of the client process. 

#include <rpc/rpc.h> 

void clntdestroy(CL1ENT * d ) ;  

We start with our client from Figure 16.2 and modify it to call the server procedure 
twice, then call clnt- destroy, and then pause. Figure 16.13 shows the new client. 

Running this program yields the expected output: 

s o l a r i s  % client kalae 5 
r e s u l t :  25 
r e s u l t :  1 0 0  

program just waits until we kill it 

But the verification of our earlier statements is shown only by the tcpdump output. 
This shows that one TCP connection is created (by the call to c ln t -c rea te )  and is 
used for both client requests. The connection is then terminated by the call to 
clnt-destroy, even though our client process does not terminate. 

Transaction ID 

Another part of the timeout and retransmission strategy is the use of a transaction ID or 
XID to identify the client requests and server replies. When a client issues an RPC call, 
the RPC runtime assigns a 32-bit integer XID to the call, and this value is sent in the 
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sunrpc/square9/client.c 
#include "unpipc.h" / *  our header * /  
#include "square.hU / *  generated by rpcgen * /  

int 
main(int argc, char **argv) 
( 

CLIENT *c1; 
square-in in; 
square-out *outp; 

if (argc !=  3) 
errquit("usage: client <hostname> <integer-value>"); 

cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, "tcp"); 

in.arg1 = atol(argv[2]); 
if ( (outp = squareproc-1 (&in, cl) ) == NULL) 

err-quit ( "%s" , clnt-sperror (cl, argv[l] ) ) ; 
printf("resu1t: %ld\nW, outp->resl); 

in.arg1 *= 2; 
if ( (outp = squareproc-1 (&in, cl) ) == NULL) 

err-quit ( "%s" , clnt-sperror (cl, argv[l] ) ) ; 
printf("resu1t: %1d\nw, outp->resl); 

clntdestroy (cl) ; 

pause ( ) ; 

exit (0) ; 
1 

sunrpc/square9 lc1ient.c 
Figure 16.13 Client program to examine TCP connection usage. 

RPC message. The server must return this XID with its reply. The XID does not change 
when the RPC runtime retransmits a request. The XID serves two purposes: 

1. The client verifies that the XID of the reply equals the XID that was sent with the 
request; otherwise the client ignores this reply. If TCP is being used, the client 
should rarely receive a reply with the incorrect XID, but with UDP, and the pos- 
sibility of retransmitted requests and a lossy network, the receipt of a reply with 
the incorrect XID is a definite possibility. 

2. The server is allowed to maintain a cache of the replies that it sends, and one of 
the items that it uses to determine whether a request is a duplicate is the XID. 
We describe this shortly. 

The TI-RPC package uses the following algorithm for choosing an XID for a new 
request, where the A operator is C's bitwise exclusive OR: 

struct timeval now; 

gettimeofday(&now, NULL); 
xid = getpido now.tv-sec A now.tv-usec; 
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Server Duplicate Request Cache 

To enable the RPC runtime to maintain a duplicate request cache, the server must call 
svc-dg-enablecache. Once this cache is enabled, there is no way to turn it off (other 
than termination of the server process). 

#include <rpc/rpc.h> 

int svc-dg-enablecache (SVCXPRT *xprt , unsigned long size) ; 

Returns: I if OK, 0 on error 

xprt is the transport handle, and this pointer is member of the svc-req structure (Sec- 
tion 16.4). The address of this structure is an argument to the server procedure. size is 
the number of cache entries for which memory should be allocated. 

When this cache is enabled, the server maintains a FIFO (first-in, first-out) cache of 
all the replies that it sends. Each reply is uniquely identified by the following: 

program number, 
version number, 
procedure number, 
XID, and 
client address (IP address and UDP port). 

Each time the RPC runtime in the server receives a client request, it first searches the 
cache to see whether it already has a reply for this request. If so, the cached reply is 
returned to the client instead of calling the server procedure again. 

The purpose of the duplicate request cache is to avoid calling a server procedure 
multiple times when duplicate requests are received, probably because the server proce- 
dure is not idempotent. A duplicate request can be received because the reply was lost or 
because the client retransmission passes the reply in the network. Notice that this 
duplicate request cache applies only to datagram protocols such as UDP, because if TCP 
is being used, a duplicate request never makes it to the application; it is handled com- 
pletely by TCP (see Exercise 16.6). 

16.6 Call Semantics 

In Figure 15.29, we showed a doors client that retransmitted its request to the server 
when the client's call to door-call was interrupted by a caught signal. But we then 
showed that this caused the server procedure to be called twice, not once. We then cate- 
gorized server procedures into those that are idempotent (can be called any number of 
times without harm), and those that are not idempotent (such as subtracting money 
from a bank account). 

Procedure calls can be placed into one of three categories: 

1 .  Exactly once means the procedure was executed once, period. This type of oper- 
ation is hard to achieve, owing to the possibility of server crashes. 
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2. At most once means the procedure was not executed at all or it was executed 
once. If a normal return is made to the caller, we know the procedure was exe- 
cuted once. But if an error return is made, we're not certain whether the proce- 
dure was executed once or not at all. 

3. At least once means the procedure was executed at least once, but perhaps more. 
This is OK for idempotent procedures-the client keeps transmitting its request 
until it receives a valid response. But if the client has to send its request more 
than once to receive a valid response, a possibility exists that the procedure was 
executed more than once. 

With a local procedure call, if the procedure returns, we know that it was executed 
exactly once, but if the process crashes after the procedure has been called, we don't 
know whether it was executed once or not at all. We must consider various scenarios 
with remote procedure calls: 

If TCP is being used and a reply is received, we know that the remote procedure 
was called exactly once. But if a reply is not received (say the server crashes), 
we don't know whether the server procedure executed to completion before the 
host crashed, or whether the server procedure had not yet been called (at-most- 
once semantics). Providing exactly-once semantics in the face of server crashes 
and extended network outages requires a transaction processing system, some- 
thing that is beyond the capability of an RPC package. 

If UDP is being used without a server cache and a reply is received, we know 
that the server procedure was called at least once, but possibly more than once 
(at-least-once semantics). 

If UDP is being used with a server cache and a reply is received, we know that 
the server procedure was called exactly once. But if a reply is not received, we 
have at-most-once semantics, similar to the TCP scenario. 

Given these three choices: 

1. TCP, 
2. UDP with a server cache, or 
3. UDP without a server cache, 

our recommendations are: 

Always use TCP unless the overhead of the TCP connections is excessive for the 
application. 

Use a transaction processing system for nonidempotent procedures that are 
important to do correctly (i.e., bank accounts, airline reservations, and the like). 

For a nonidempotent procedure, using TCP is preferable to UDP with a server 
cache. TCP was designed to be reliable from the beginning, and adding this to a 
UDP application is rarely the same as just using TCP-(~.~.,  section 20.5 of 
UNPv1). 
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Using UDP without a server cache for an idempotent procedure is OK. 

Using UDP without a server cache for a nonidempotent procedure is dangerous. 

We cover additional advantages of TCP in the next section. 

16.7 Premature Termination of Client or Server 

We now consider what happens when either the client or the server terminates prema- 
turely and TCP is being used as the transport protocol. Since UDP is connedionless, 
when a process with an open UDP endpoint terminates, nothing is sent to the peer. All 
that will happen in the UDP scenario when one end crashes is that the peer will time 
out, possibly retransmit, and eventually give up, as discussed in the previous section. 
But when a process with an open TCP connection terminates, that connection is termi- 
nated, sending a FIN to the peer (pp. 36-37 of UNPvl), and we want to see what the 
RPC runtime does when it receives this unexpected FIN from its peer. 

Premature Termination of Server 

We first terminate the server prematurely while it is processing a client's request. The 
only change we make to our client is to remove the " t cp"  argument from the call to 
c ln t -ca l l  in Figure 16.2 and require the transport protocol to be a command-line 
argument, as in Figure 16.12. In our server procedure, we add a call to the abor t  func- 
tion. This terminates the server process, causing the server's TCP to send a FIN to the 
client, which we can verify with tcpdump. 

We first run our Solaris client to our BSD/OS server: 

solaris % client bsdi 22 tcp 
bsdi: RPC: Unable to receive; An event requires attention 

When the server's FIN is received by the client, the RPC runtime is waiting for the 
server's reply. It detects the unexpected reply and returns an error from our call to 
squareproc-1. The error (RPC-CANTRECV) is saved by the runtime in the client han- 
dle, and the call to clnt-sperror  (from our Clnt-create wrapper function) prints 
this as "Unable to receive." The remainder of the error message, "An event requires 
attention," corresponds to the XTI error saved by the runtime, and is also printed by 
clnt-sperror.  About 30 different RPC-xxx errors can be returned by a client's call of 
a remote procedure, and they are listed in the <rpc / c lnt-s t a  t . h> header. 

If we swap the hosts for the client and server, we see the same scenario, with the 
same error returned by the RPC runtime (RPC-CANTRECV), but a different message at 
the end. 

bsdi % client solaris 11 tcp 
solaris: RPC: Unable to receive; errno = Connection reset by peer 

The Solaris server that we aborted above was not compiled as a multithreaded 
server, and when we called abort,  the entire process was terminated. Things change if 
we are running a multithreaded server and only the thread servicing the client's call 
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terminates. To force this scenario, we replace the call to abort with a call to 
pthread-exit ,  as we did with our doors example in Figure 15.25. We run our client 
under BSD/OS and our multithreaded server under Solaris. 

bsdi % client solaris 33 tcp 
so l a r i s :  RPC: Timed out 

When the server thread terminates, the TCP connection to the client is not closed; it 
remains open in the server process. Therefore, no FIN is sent to the client, so the client 
just times out. We would see the same error if the server host crashed after the client's 
request was sent to the server and acknowledged by the server's TCl? 

nature Termination of Client 

When an RPC client terminates while it has an RPC procedure call in progress using 
TCP, the client's TCP will send a FIN to the server when the client process terminates. 
Our question is whether the server's RPC runtime detects this condition and possibly 
notifies the server procedure. (Recall from Section 15.11 that a doors server thread is 
canceled when the client prematurely terminates.) 

To generate this condition, our client calls alarm ( 3 ) right before calling the server 
procedure, and our server procedure calls s l e e p  ( 6 ) .  (This is what we did with our 
doors example in Figures 15.30 and 15.31. Since the client does not catch SIGALRM, the 
process is terminated by the kernel about 3 seconds before the server's reply is sent.) 
We run our client under BSD/OS and our server under Solaris. 

bsdi % client solaris 44 tcp 
Alarm c a l l  

This is what we expect at the client, but nothing different happens at the server. The 
server procedure completes its 6-second sleep and returns. If we watch what happens 
with tcpdump we see the following: 

When the client terminates (about 3 seconds after starting), the client TCP sends 
a FIN to the server, which the server TCP acknowledges. The TCP term for this 
is a half-close (Section 18.5 of TCPvl). 

About 6 seconds after the client and server started, the server sends its reply, 
which its TCP sends to the client. (Sending data across a TCP connection after 
receiving a FIN is OK, as we describe on pp. 130-132 of UNPvl, because TCP 
connections are full-duplex.) The client TCP responds with an RST (reset), 
because the client process has terminated. This will be recognized by the server 
on its next read or write on the connection, but nothing happens at this time. 

We summarize the points made in this section. 

RPC clients and servers using UDP never know whether the other end termi- 
nates prematurely. They may time out when no response is received, but they 
cannot tell the type of error: premature process termination, crashing of the peer 
host, network unreachability, and so on. 
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An RPC client or server using TCP has a better chance of detecting problems at 
the peer, because premature termination of the peer process automatically 
causes the peer TCP to close its end of the connection. But this does not help if 
the peer is a threaded RPC server, because termination of the peer thread does 
not close the connection. Also this does not help detect a crashing of the peer 
host, because when that happens, the peer TCP does not close its open connec- 
tions. A timeout is still required to handle all these scenarios. 

16.8 XDR: External Data Representation 

When we used doors in the previous chapter to call a procedure in one process from 
another process, both processes were on the same host, so we had no data conversion 
problems. But with RPC between different hosts, the various hosts can use different 
data formats. First, the sizes of the fundamental C datatypes can be different (e.g., a 
long on some systems occupies 32 bits, whereas on others it occupies 64 bits), and sec- 
ond, the actual bit ordering can differ (e.g., big-endian versus little-endian byte order- 
ing, which we talked about on pp. 66-69 and pp. 137-140 of UNPvl). We have already 
encountered this with Figure 16.3 when we ran our server on a little-endian x86 and our 
client on a big-endian Sparc, yet we were able to exchange a long integer correctly 
between the two hosts. 

Sun RPC uses XDR, the External Data Representation standard, to describe and 
encode the data (RFC 1832 [Srinivasan 1995b1). XDR is both a language for describing 
the data and a set of rules for encoding the data. XDR uses implicit typing, which means 
the sender and receiver must both know the types and ordering of the data: for exam- 
ple, two 32-bit integer values followed by one single precision floating point value, fol- 
lowed by a character string. 

As a comparison, in the OSI world, ASN.1 (Abstract Syntax Notation one) is the normal way to 
describe the data, and BER (Basic Encoding Rules) is a common way to encode the data. This 
scheme also uses explicit typing, which means each data value is preceded by some value (a 
"specifier") describing the datatype that follows. In our example, the stream of bytes would 
contain the following fields, in order: a specifier that the next value is an integer, the integer 
value, a specifier that the next value is an integer, the integer value, a specifier that the next 
value is a floating point value, the floating point value, a specifier that the next value is a char- 
acter string, the character string. 

The XDR representation of all datatypes requires a multiple of 4 bytes, and these 
bytes are always transmitted in the big-endian byte order. Signed integer values are 
stored using two's complement notation, and floating point values are stored using the 
IEEE format. Variable-length fields always contain up to 3 bytes of padding at the end, 
so that the next item is on a 4-byte boundary. For example, a 5-character ASCII string 
would be transmitted as 12 bytes: 

a 4-byte integer count containing the value 5, 
the 5-byte string, and 
3 bytes of 0 for padding. 
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When describing XDR and the datatypes that it supports, we have three items to 
consider: 

1. How do we declare a variable of each type in our RPC specification file (our . x 
file) for rpcgen? Our only example so far (Figure 16.1) uses only a long integer. 

2. Which C datatype does rpcgen convert this to in the . h header that it gener- 
ates? 

3. What is the actual format of the data that is transmitted? 

Figure 16.14 answers the first two questions. To generate this table, an RPC specifica- 
tion file was created using all the supported XDR datatypes. The file was run through 
rpcgen and the resulting C header examined. 

We now describe the table entries in more detail, referencing each by the number in 
the first column (1-15). 

1. A cons t declaration is turned into a C #define.  

2. A typedef declaration is turned into a C typedef.  

3. These are the five signed integer datatypes. The first four are transmitted as 
32-bit values by XDR, and the last one is transmitted as a 64-bit value by XDR. 

64-bit integers are known to many C compilers as type long long i n t  or just long 
long. Not all compilers and operating systems support these. Since the generated . h file 
declares the C variable of type longlong-t, some header needs to define 

typedef long long longlong-t; 

An XDR long occupies 32 bits, but a C long on a 64-bit Unix system holds 64 bits (e.g., 
the LP64 model described on p. 27 of UNPvl). Indeed, these decade-old XDR names are 
unfortunate in today's world. Better names would have been something like int8-t, 
int l6-t ,  int32-t, int64_t,andsoon. 

4. These are the five unsigned integer datatypes. The first four are transmitted as 
32-bit values by XDR, and the last one is transmitted as a 64-bit value by XDR. 

5. These are the three floating point datatypes. The first is transmitted as a 32-bit 
value, the second as a 64-bit value, and the third as a 128-bit value. 

Quadruple-precision floating point numbers are known in C as type long double. Not 
all compilers and operating systems support these. (Your compiler may allow long 
double, but treat it as a double.) Since the generated . h file declares the C variable of 
type quadruple, some header needs to define 

typedef long double quadruple; 

Under Solaris 2.6, for example, we must include the line 

%#include <floatingpoint.h> 

at the beginning of the . x file, because this header includes the required definition. The 
percent sign at the beginning of the line tells rpcgen to place the remainder of the line in 
the . h file. 
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RPC specification file ( . x) 

const name = value; 
typedef declaration ; 

char var; 
short var; 
int var; 
long vclr; 
hyper var; 
unsigned char var; 
unsigned short var; 
unsigned int var; 
unsigned long var; 
unsigned hyper var; 

float var; 
double var; 
quadruple var ; 

boo1 var; 
enum var { name = const, . . . 1 ; 

opaque vclr [ n  I ; 
opaque vclr<m>; 

string var<m>; 

datatype var [ n ]  ; 

datatype var<m>; 

struct var { members . . . ) ; 

union var switch (int disc) { 

case discmlueA : armdeclA ; 
case discvalueB : armdeclB ; 
. . . 
default : defaultdecl; 

1 ; 

C header file ( . h) 

#define name value 
typedef declaration ; 

char var; 
short var; 
int var; 
long var; 
longlong_t var; 
u-char var; 
u-short var; 
u-int var; 
u-long var; 
u-long long-t var ; 
float vclr; 
double var; 
quadruple vclr; 

bool-t var; 
enum var { name = const, . . . ) ; 

typedef enum var var; 
char var [ n ]  ; 
struct { 

u-int var-len; 
char *var-val ; 

) var; 
char *var; 

datatype var [ n ]  ; 
struct { 

u-int var-len; 
datatype *var-val ; 

1 var; 
struct var { members . . . 1 ; 
typedef struct vclr var; 

struct var { 

int disc; 
union ( 

armdeclA ; 
armdeclB ; 
. . . 
defaultdecl ; 

1 var-u; 
1; 
typedef s truct var var; 

Figure 16.14 Summary of datatypes supported by XDR and rpcgen. 
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The boolean datatype is equivalent to a signed integer. The RPC headers also 
#define the constant TRUE to be 1 and the constant FALSE to be 0. 

An enumeration is equivalent to a signed integer and is the same as C's enum 
datatype. rpcgen also generates a typedef for the specified variable name. 

Fixed-length opaque data is a specified number of bytes (n) that are transmitted as 
8-bit values, uninterpreted by the runtime library. 

Variable-length opaque data is also a sequence of uninterpreted bytes that are 
transmitted as 8-bit values, but the actual number of bytes is transmitted as an 
unsigned integer and precedes the data. When sending this type of data (eg ,  
when filling in the arguments prior to an RPC call), set the length before mak- 
ing the call. When this type of data is received, the length must be examined to 
determine how much data follows. 

The maximum length m can be omitted in the declaration. But if the length is 
specified at compile time, the runtime library will check that the actual length 
(what we show as the var-len member of the structure) does not exceed the 
value of m. 

A string is a sequence of ASCII characters. In memory, a string is stored as a 
normal null-terminated C character string, but when a string is transmitted, it 
is preceded by an unsigned integer that specifies the actual number of charac- 
ters that follows (not including the terminating null). When sending this type 
of data, the runtime determines the number of characters by calling strlen. 
When this type of data is received, it is stored as a null-terminated C character 
string. 

The maximum length m can be omitted in the declaration. But if the length is 
specified at compile time, the runtime library will check that the actual length 
does not exceed the value of m. 

A fixed-length array of any datatype is transmitted as a sequence of n elements 
of that datatype. 

A variable-length away of any datatype is transmitted as an unsigned integer 
that specifies the actual number of elements in the array, followed by the array 
elements. 

The maximum number of elements m can be omitted in the declaration. But if 
this maximum is specified at compile time, the runtime library will check that 
the actual length does not exceed the value of m. 

A structure is transmitted by transmitting each member in turn. rpcgen also 
generates a typedef for the specified variable name. 

A discriminated union is composed of an integer discriminant followed by a set 
of datatypes (called arms) based on the value of the discriminant. In Fig- 
ure 16.14, we show that the discriminant must be an int, but it can also be an 
unsigned int, an enum, or a boo1 (all of which are transmitted as a 32-bit 
integer value). When a discriminated union is transmitted, the 32-bit value of 
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the discriminant is transmitted first, followed only by the arm value corre- 
sponding to the value of the discriminant. The default declaration is often 
void, which means that nothing is transmitted following the 32-bit value of 
the discriminant. We show an example of this shortly. 

15. Optional data is a special type of union that we describe with an example in 
Figure 16.24. The XDR declaration looks like a C pointer declaration, and that 
is what the generated . h file contains. 

Figure 16.16 summarizes the encoding used by XDR for its various datatypes. 

Example: Using XDR without RPC 

We now show an example of XDR but without RPC. That is, we will use XDR to encode 
a structure of binary data into a machine-independent representation that can be pro- 
cessed on other systems. This technique can be used to write files in a machine- 
independent format or to send data to another computer across a network in a machine- 
independent format. Figure 16.15 shows our RPC specification file, data. x, which is 
really just an XDR specification file, since we do not declare any RPC procedures. 

The filename suffix of . x comes from the term "XDR specification file." The RPC specification 
(RFC 1831) says that the RPC language, sometimes called RPCL, is identical to the XDR lan- 
guage (which is defined in RFC 1832), except for the addition of a program definition (which 
describes the program, versions, and procedures). 

sunrpc/xdrl /data.x 
1 enum result-t { 

2 RESULT-INT = 1, RESULT-DOUBLE = 2 
3 1; 

4 union union-arg switch (result-t result) { 

5 case RESULT-INT: 
6 int intval ; 
7 case RESULT-DOUBLE: 
8 double doubleval; 
9 default: 
10 void; 
11 1; 

12 struct data { 

13 short short-arg; 
14 long long-arg ; 

15 string vstring-arg < 128 >; / *  variable-length string * /  
16 opaque f opaque-arg [ 3 I ; / *  fixed-length opaque * /  
17 opaque vopaque-arg o; / *  variable-length opaque * /  
18 short f short-arg [4] ; / *  fixed-length array * /  
19 long vlong-arg o; / *  variable-length array * /  
2 0 union-arg uarg; 

Figure 16.15 XDR specification file. 
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MSB rrri"l same encoding format for unsigned char, short, unsigned short, 
char : 

int, unsigned int, long, unsigned long, bool, enum 
byte 0 1 2 3 

MSB LSB 

hyper: same encoding format for unsigned hyper 

byte0 1 2  3 4  5 6 7 

1-bit sign 
float: %bit exponent 

byteO 
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I 1-bit sign 
double : I I ll-bit exponent 
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byte 0 
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h h 
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opaque <m>: 

I\ 

string <m> : 

* 0 1 m-1 
4  bytes * ;bytes so thar(m + r) mod 4  = 0 

type [n] : 

. . ,  

union: I discriminant I impliedarm I 

variable-length opaque data lengthm 

length m 

type <m> : 

--bytes 

Figure 16.16 Encoding used by XDR for its various datatypes. 
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Declare enumeration and discriminated union 

1-11 We declare an enumeration with two values, followed by a discriminated union that 
uses this enumeration as the discriminant. If the discriminant value is RESULT-INT, 
then an integer value is transmitted after the discriminant value. If the discriminant 
value is RESULT-DOUBLE, then a double precision floating point value is transmitted 
after the discriminant value; otherwise, nothing is transmitted after the discriminant 
value. 

Declare structure 

12-21 We declare a structure containing numerous XDR datatypes. 

Since we do not declare any RPC procedures, if we look at all the files generated by 
rpcgen in Figure 16.4, we see that the client stub and server stub are not generated by 
rpcgen. But it still generates the d a t a .  h header and the data-xdr . c file containing 
the XDR functions to encode or decode the data items that we declared in our data  .x 
file. 

Figure 16.17 shows the d a t a .  h header that is generated. The contents of this 
header are what we expect, given the conversions shown in Figure 16.14. 

In the file data-xdr . c, a function is defined named xdr-data that we can call to 
encode or decode the contents of the d a t a  structure that we define. (The fundion name 
suffix of -data comes from the name of our structure in Figure 16.15.) The first pro- 
gram that we write is called w r i t e .  c, and it sets the values of all the variables in the 
d a t a  structure, calls the xdr-data function to encode all the fields into XDR format, 
and then writes the result to standard output. 

Figure 16.18 shows this program. 

Set structure members to some nonzero value 

12-32 We first set all the members of the d a t a  structure to some nonzero value. In the 
case of variable-length fields, we must set the count and that number of values. For the 
discriminated union, we set the discriminant to RESULT-INT and the integer value to 
123. 

Allocate suitably aligned buffer 

We call malloc to allocate room for the buffer that the XDR routines will store into, 
since it must be aligned on a 4-byte boundary, and just allocating a cha r  array does not 
guarantee this alignment. 

Create XDR memory stream 

The runtime function xdrmem-create initializes the buffer pointed to by buff for 
XDR to use as a memory stream. We allocate a variable of type XDR named xhandle 
and pass the address of this variable as the first argument. The XDR runtime maintains 
the information in this variable (buffer pointer, current position in the buffer, and so on). 
The final argument is XDR-ENCODE, which tells XDR that we will be going from host 
format (our ou t  structure) into XDR format. 
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2 * Please do not edit this file. It was generated using rpcgen. 
3 * /  

6 enum result-t { 

7 RESULT-INT = 1, 
8 RESULT-DOUBLE = 2 
9 1 ;  
10 typedef enum result-t result-t; 

struct union-arg I 
result-t result; 
union { 

int intval; 
double doubleval; 

) union-arg-u; 
1 ;  
typedef struct union-arg union-arg; 

19 struct data { 

20 short short-arg; 
21 long long-arg; 
2 2 char *vstring-arg; 
2 3 char f opaque-arg [ 3 ] ; 
24 struct { 

2 5 u-int vopaque-arg-len; 
2 6 char "vopaque-arg-val; 
27 1 vopaque-arg: 
28 short fshort-arg 141 ; 
29 struct { 

3 0 u-int vlong-arg-len; 
31 long "vlong-arg-val; 
32 ) vlong-arg; 
33 union-arg uarg; 
34 1 ;  
35 typedef struct data data; 

3 6 / *  the xdr functions * /  
37 extern bool-t xdr-result-t(XDR *, result-t * ) ;  

38 extern bool-t xdr-union-arg(XDR *, union-arg * ) ;  

39 extern bool-t xdr-data(XDR *, data * ) ;  

Figure 16.17 Header generated by rpcgen from Figure 16.15. 
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sunrpclxdrl 1write.c 
1 #include "unpipc-h" 
2 #include "data. h" 

3 int 
4 main(int argc, char **argv) 
5 { 

/ *  the structure whose values we store */ 
/ *  the result of the XDR encoding * /  

XDR xhandl e ; 
data out; 
char *buff; 
char vop[2] ; 
long vlong[31; 
u-int size; 

out-short-arg = 1; 
out.long-arg = 2; 
out.vstring-arg = "hello, world"; / *  pointer assignment 

out.fopaque-arg[O] = 99; / *  fixed-length opaque * /  
out. £opaque-arg[ll = 88; 
out.fopaque-arg[2] = 77; 

vop[Ol = 33; / *  variable-length opaque * /  
vop[l] = 44; 
out.vopaque-arg.vopaque-arg-len = 2; 
out.vopaque~arg.vopaque~arggval = vop; 

out.fshort-arg[O] = 9999; / *  fixed-length array * /  
out.fshort-arg[ll = 8888; 
out.fshort-arg[2] = 7777; 
out.fshort-arg[31 = 6666; 

vlong[O] = 123456; / *  variable-length array * /  
vlong[l] = 234567; 
vlong[2] = 345678; 
out.vlong~arg.vlong~arg~len = 3; 
out.vlong~arg.vlong~arg~val = vlong; 

out-uarg-result = RESULT-INT; 
out.uarg.union-arg-u.intva1 = 

buff = Malloc(BUFFS1ZE); / 
xdrmem-create ( &xhandle , buff, 

if (xdr-data(&xhandle, &out) 
err-quit("xdr-data error" 

/ *  discriminated union * /  
123 ; 

must be aligned on 4-byte boundary * /  
BUFFSIZE, XDR-ENCODE); 

= TRUE) 

size = xdrgetpos(&xhandle); 
Write(STD0UT-FILENO, buff, size); 

exit (0) ; 
I 

sunrpc/xdrl /writer 
Figure 16.18 Initialize the data structure and write it in XDR format. 
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Encode the structure 

-36 We call the xdr-data function, which was generated by rpcgen in the file 
data-xdr. c, and it encodes the out  structure into XDR format. A return value of 
TRUE indicates success. 

Obtain size of encoded data and write 

-38 The function xdr-getpos returns the current position of the XDR runtime in the 
output buffer (i.e., the byte offset of the next byte to store into), and we use this as the 
size of our wri te .  

Figure 16.19 shows our read program, which reads the file that was written by the 
previous program, printing the values of all the members of the da ta  structure. 

Allocate suitably aligned buffer 

-13 We call malloc to allocate a buffer that is suitably aligned and read the file that was 
generated by the previous program into the buffer. 

Create XDR memory stream, inltlallze buffer, and decode 

-17 We initialize an XDR memory stream, this time specifying XDR-DECODE to indicate 
that we want to convert from XDR format into host format. We initialize our i n  struc- 
ture to 0 and call xdr-data to decode the buffer buff into our structure in. We must 
initialize the XDR destination to 0 (the i n  structure), because some of the XDR routines 
(notably xdr-string) require this. xdr-data is the same function that we called 
from Figure 16.18; what has changed is the final argument to xdrmem-create: in the 
previous program, we specified XDR-ENCODE, but in this program, we specify 
XDR-DECODE. This value is saved in the XDR handle (xhandle) by xdrmem-create 
and then used by the XDR runtime to determine whether to encode or decode the data. 

Print structure values 

8-42 We print all the members of our d a t a  structure. 

Free any XDR-allocated memory 

We call xdr-f r e e  to free the dynamic memory that the XDR runtime might have 
allocated (see also Exercise 16.10). 

We now run our w r i t e  program on a Sparc, redirecting standard output to a file 
named data: 

solaris % w r i t e  > data 
solaris % 1s -1 d a t a  
w - r w - r -  1 rstevens other1 76 Apr 23 12:32 data 

We see that the file size is 76 bytes, and that corresponds to Figure 16.20, which details 
the storage of the data (nineteen 4-byte values). 



436 Sun RPC Chapter 16 

sunrpclxdr1lread.c 
1 #include "unpipc-h" 
2 #include "data.hl' 

3 int 
4 main(int argc, char **argv) 
5 { 

XDR xhandl e ; 
int i ; 
char *buff; 
data in; 
ssize-t n; 

buff = Malloc(BUFFS1ZE); I* must be aligned on 4-byte boundary *I 
n = Read(STD1N-FILENO, buff, BUFFSIZE); 
printf("read %ld bytes\nU, (long) n); 

xdrmem-create(&xhandle, buff, n, XDR-DECODE); 
memset(&in, 0, sizeof(in)); 
if (xdrdata(&xhandle, &in) != TRUE) 

err-quit("xdr-data error"); 

printf("short-arg = %d, long-arg = %Id, vstring-arg = '%s'\nU, 
in.short-arg, in.long-arg, in.vstring-arg); 

printf("vopaqueo = " ) ;  

for (i = 0; i < in.vopaque-arg.vopaque-arg-len; i++) 
print£(" %d", in.vopaque-arg.vopaque-arg-val[i]); 

printf ('\nW) ; 

printf("vlongc> = " ) ;  

for (i = 0; i < in-vlong-arg-vlong-arg-len; i++) 
print£(" %Id", in.vlong~arg.vlong~arg~val[i]); 

printf("\n"); 

switch (in.uarg.result) [ 
case RESULT-INT: 

printf("uarg (int) = %d\nU, in.uarg.union-arg-u.intva1); 
break; 

case RESULT-DOUBLE: 
printf("uarg (double) = %g\nU, in.uarg.union~arg~u.doubleval); 
break; 

default : 
printf("uarg (void)\nn); 
break; 

1 

xdr-free(xdr-data, (char * )  &in); 

exit (0) ; 
45 1 

sunrpc/xdrl/read.c 

Figure 16.19 Read the data structure in XIlR format and print the values. 
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4 bytes 

short I 1 I 

string <128> 

opaque 13 I 
r 

opaque <>( 

short [41 

234567 
345678 

union 

Figure 16.20 Format of the XDR stream written by Figure 16.18. 

If we read this binary data file under BSD/OS or under Digital Unix, the results are 
what we expect: 

bsdi % read < data 
read 76 bytes 
short-arg = 1, long-arg = 2, vstring-arg = 'hello, world' 
£opaque[] = 99, 88, 77 
vopaqueo = 33 44 
£short-arg[l = 9999, 8888, 7777, 6666 
vlongo = 123456 234567 345678 
uarg (int) = 123 

alpha % read < data 
read 76 bytes 
short-arg = 1, long-arg = 2, vstring-arg = 'hello, world' 
£opaque[] = 99, 88, 77 
vopaqueo = 33 44 
£short-arg[l = 9999, 8888, 7777, 6666 
vlongc> = 123456 234567 345678 
uarg (int) = 123 

~mple: Calculating the Buffer Size 

In our previous example, we allocated a buffer of length BUFFSIZE (which is defined to 
be 8192 in our unpipc . h header, Figure C.l), and that was adequate. Unfortunately, no 
simple way exists to calculate the total size required by the XDR encoding of a given 
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structure. Just calculating the sizeof the structure is wrong, because each member is 
encoded separately by XDR. What we must do is go through the structure, member by 
member, adding the size that will be used by the XDR encoding of each member. For 
example, Figure 16.21 shows a simple structure with three members. 

sunrpclxdrl lexarnp1e.x 
lconst M A X C = 4 ;  

2 struct example { 

3 short a; 
4 double b; 
5 short c[MAXCl ; 

6 I ;  
sunrpc/xdrl lexamp1e.x 

Figure 16.21 XDR specification of a simple structure. 

The program shown in Figure 16.22 calculates the number of bytes that XDR requires to 
encode this structure to be 28 bytes. 

sunrpclxdrl lexamp1e.c 
1 #include "unpipc.h" 
2 #include "examp1e.h" 

3 int 
4 main(int argc, char **argv) 

5 { 
6 int size; 
7 example £00; 

8 size = RNDUP(sizeof(foo.a)) + ~NDUP(sizeof(foo.b)) + 
9 RNDUP(sizeof(foo.C[O])) * MAXC; 

10 printf("size = %d\nW, size); 
11 exit (0) ; 
12 } 

sunrpclxdrl lexamp1e.c 
Figure 16.22 Program to calculate the number of bytes that XDR encoding requires. 

8-9 The macro RNDUP is defined in the <rpc /xdr . h> header and rounds its argument 
up to the next multiple of BYTES-PER-XDR-UNIT (4). For a fixed-length array, we cal- 
culate the size of each element and multiply this by the number of elements. 

The problem with this technique is variable-length datatypes. If we declare string 
d< 10 >, then the maximum number of bytes required is RNDuP ( s i z eo f ( int (for the 
length) plus RNDUP ( s i z eo f ( char ) * 10 ) (for the characters). But we cannot calculate 
a size for a variable-length declaration without a maximum, such as float e o .  The 
easiest solution is to allocate a buffer that should be larger than needed, and check for 
failure of the XDR routines (Exercise 16.5). 

Example: Optional Data 

. There are three ways to specify optional data in an XDR specification file, all of which 
we show in Figure 16.23. 
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sunrpclxdrl /opt1 .x 
1 union optlong switch (boo1 flag) { 

2 case TRUE: 
3 long val; 
4 case FALSE: 
5 void; 
6 I; 

7 struct args { 

8 optlong argl; I* union with boolean discriminant *I 
9 long arg2 c 1 >; I* variable-length array with one element *I 
10 long *arg3; I* pointer *I 
11 I; 

sunrpc/xdrl /opt1 .x 

Figure 16.23 XDR specification file showing three ways to specify optional data. 

Declare union with boolean discriminant 

1-8 We define a union with TRUE and FALSE arms and a structure member of this 
type. When the discriminant flag is TRUE, a long value follows; otherwise, nothing 
follows. When encoded by the XDR runtime, this will be encoded as either 

a 4-byte flag of 1 (TRUE) followed by a 4-byte value, or 
a 4-byte flag of 0 (FALSE). 

Declare variable-length array 

9 When we specify a variable-length array with a maximum of one element, it will be 
coded as either 

a 4-byte length of 1 followed by a 4-byte value, or 
a 4-byte length of 0. 

Declare XDR pointer 

10 A new way to specify optional data is shown for arg3 (which corresponds to the 
last line in Figure 16.14). This argument will be coded as either 

a 4-byte value of I followed by a 4-byte value, or 
a 4-byte value of 0 

depending on the value of the corresponding C pointer when the data is encoded. If the 
pointer is nonnull, the first encoding is used (8 bytes), else the second encoding is used 
(4 bytes of 0). This is a handy way of encoding optional data when the data is refer- 
enced in our code by a pointer. 

One implementation detail that makes the first two declarations generate identical 
encodings is that the value of TRUE is 1, which is also the length of the variable-length 
array when one element is present. 

Figure 16.24 shows the . h file that is generated by rpcgen for this specification file. 
14-21 Even though all three arguments will be encoded the same by the XDR runtime, the 

way we set and fetch their values in C is different for each one. 
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sunrpclxdrl /opt1 .h 
7 struct optlong { 

8 int flag; 
9 union { 

10 long val; 
11 I optlong-u; 
12 I; 
13 typedef struct optlong optlong; 

14 struct args { 

15 optlong argl; 
16 struct { 

17 u-int arg2Jen; 
18 long *arg2_val; 
19 I arg2; 
20 long *arg3; 
23. I; 
22 typedef struct args args; 

sunrpclxdrl /opt1 .h 
Figure 16.24 C header generated by rpcgen for Figure 16.23. 

sunrpclxdrl lopt1z.c 
1 #include "unpipc . h" 

3 int 
4 main(int argc, char **argv) 

int i ; 
XDR xhandl e ; 
char *buff; 
long *lptr; 
args out; 
size-t size: 

out.argl.flag = FALSE; 
out.arg2.arg2-len = 0; 
out .arg3 = NULL; 

buff = Malloc(BUFFS1ZE); I* must be aligned on 4-byte boundary *I 
xdrmem-create(&xhandle, buff, BUFFSIZE, XDR-ENCODE); 

if (xdr-args(&xhandle, &out) !=  TRUE) 
errquit("xdr-args error"); 

size = xdrgetpos(&xhandle); 

lptr = (long * )  buff; 
for (i = 0; i < size; i += 4) 

printf("%ld\n", (long) ntohl(*lptr++)); 

exit (0) ; 

sunrpclxdrl 1optlz.c 
Figure 16.25 None of the three arguments will be encoded. 
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Figure 16.25 is a simple program that sets the values of the three arguments so that 
none of the long values are encoded. 

Set values 

!-id We set the discriminant of the union for the first argument to FALSE, the length of 
the variable-length array to 0, and the pointer corresponding to the third argument to 
NULL. 

Allocate suitably aligned buffer and encode 

5-19 We allocate a buffer and encode our out structure into an XDR memory stream. 

Print XDR buffer 

7-22 We print the buffer, one 4-byte value at a time, using the ntohl function (host-te 
network long integer) to convert from the XDR big-endian byte order to the host's byte 
order. This shows exactly what has been encoded into the buffer by the XDR runtime: 

solaris % optlz 
0 
0 
0 

As we expect, each argument is encoded as 4 bytes of 0 indicating that no value follows. 

Figure 16.26 is a modification of the previous program that assigns values to all 
three arguments, encodes them into an XDR memory stream, and prints the stream. 

Set values 

2-18 TO assign a value to the union, we set the discriminant to TRUE and set the value. 
To assign a value to the variable-length array, we set the array length to 1, and its associ- 
ated pointer points to the value. To assign a value to the third argument, we set the 
pointer to the address of the value. 

When we run this program, it prints the expected six 4-byte values: 

solaris % opt1 
1 discriminant value of TRUE 

variable-length array length 

flag for nonnull pointer variable 

ample: Linked List Processing 

Given the capability to encode optional data from the previous example, we can extend 
XDR's pointer notation and use it to encode and decode linked lists containing a vari- 
able number of elements. Our example is a linked list of name-value pairs, and Fig- 
ure 16.27 shows the XDR specification file. 

1-5 Our my1 is t structure contains one name-value pair and a pointer to the next struc- 
ture. The last structure in the list will have a null next pointer. 
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sunrpclxdrl /opt1 .c 
1 #include "unpipc.hU 
2 #include "opt1.h" 

3 int 
4 main(int argc, char **argv) 
5 I 

int i ; 
XDR xhandle ; 
char *buff; 
long lva12, lva13, *lptr; 
args out; 
size-t size; 

out.argl.flag = TRUE; 
out.argl.optlong~u.val = 5; 

buff = Malloc(BUFFS1ZE); / *  must be aligned on 4-byte boundary * /  
xdrmem-create(&xhandle, buff, BUFFSIZE, XDR-ENCODE); 

if (xdr-args(&xhandle, &out) != TRUE) 
errquit("xdr-args error"); 

size = xdrgetpos(&xhandle); 

lptr = (long * )  buff; 
for (i = 0; i < size; i += 4) 

printf("%ld\nW, (long) ntohl(*lptr++)); 

28 I sunrpclxdrl lopt1.c 

Figure 16.26 Assign values to all three arguments from Figure 16.23. 

sunrpclxdrl lopt2.x 
1 struct mylist { 

2 string name o; 
3 long value; 
4 mylist *next; 
5 I; 

6 struct args { 

7 mylist *list; 
8 I; sunrpc/xdrl Iopt2.x 

Figure 16.27 XDR specification for linked list of name-value pairs. 

Figure 16.28 shows the . h file generated by rpcgen from Figure 16.27. 

Figure 16.29 is our program that initializes a linked list containing three name-value 
pairs and then calls the XDR runtime to encode it. 
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sunrpclxdrl lopt2.h 
7 struct mylist { 

8 char *name; 
9 long value; 
10 struct mylist *next; 
11 I ;  
12 typedef struct mylist mylist; 

13 struct args { 

14 mylist *list; 
15 I; 
16 typedef struct args args; 

sunrpc/xdrl lopt2.h 
Figure 16.28 C declarations corresponding to Figure 16.27. 

sunrpclxdrl lopt2.c 
1 #include "unpipc.h" 
2 #include "opt2.h" 

int 
main(int argc, char **argv) 
{ 

int i ; 
XDR xhandl e ; 
long *lptr: 
args out; / *  the structure that we fill * /  
char *buff; / *  the XDR encoded result * /  
mylist nameval[4] ; / *  up to 4 list entries * /  
size-t size; 

nameval[2].name = "namel"; 
nameval[2] .value = 0x1111; 
nameval [ 2 ] . next = &nameval [ 1 I ; 
nameval [ 1 I . name = " namee2 " ; 
nameval[l].value = 0x2222; 
nameval [l ] . next = &nameval [ 01 ; 
nameval[O].name = "nameee3"; 
nameval[O].value = 0x3333; 
nameval [ 01 . next = NULL; 

23 buff = Malloc(BUFFS1ZE); / *  must be aligned on 4-byte boundary * /  
24 xdrmem-create(&xhandle, buff, BUFFSIZE, XDR-ENCODE); 

25 if (xdr-args(&xhandle, &out) != TRUE) 
26 err-quit("xdr-args error"); 
2 7 size = xdrgetpos(&xhandle); 

28 lptr = (long * )  buff; 
29 for (i = 0; i < size; i += 4) 
3 0 printf("%8lx\n", (long) ntohl(*lptr++)); 

31 exit (0) ; 
32 I 

sunrpclxdrl lopt2.c 
Figure 16.29 Initialize linked list, encode it, and print result. 
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lnltialize linked list 

11-22 We allocate room for four list entries but initialize only three. The first entry is 
nameval [ 2 I ,  then nameval [ 1 I ,  and then nameval [ 0 I. The head of the linked list 
(out. list) is set to &nameval[2 I .  Our reason for initializing the list in this order is 
just to show that the XDR runtime follows the pointers, and the order of the linked list 
entries that are encoded has nothing to do with which array entries are being used. We 
have also initialized the values to hexadecimal values, because we will print the long 
integer values in hex, because this makes it easier to see the ASCII values in each byte. 

The output shows that each list entry is preceded by a 4-byte value of 1 (which we 
can consider as either a length of 1 for a variable-length array, or as the boolean value 
TRUE), and the fourth entry consists of just a 4-byte value of 0, indicating the end of the 
list. 

solaris % opt2 
1 
5 

6e616d65 
31000000 

1111 
1 
6 

6e616d65 
65320000 

2222 
1 
7 

6e616d65 
65653300 

3333 
0 

one element follows 
string length 
n a m e  
1,3 bytes of pad 
corresponding value 
one element follows 
string length 
n a m e  
e 2,2 bytes of pad 
corresponding value 
one element follows 
string length 
n a m e  
e e 3,1 byteofpad 
corresponding value 
no element follows: end-of-list 

If XDR decodes a linked list of this form, it will dynamically allocate memory for 
the list entries and pointers, and link the pointers together, allowing us to traverse the 
list easily in C. 

16.9 RPC Packet Formats 

Figure 16.30 shows the format of an RPC request when encapsulated in a TCP segment. 
Since TCP is a byte stream and provides no message boundaries, some method of 

delineating the messages must be provided by the application. Sun RPC defines a record 
as either a request or reply, and each record is composed of one or more fragments. Each 
fragment starts with a 4-byte value: the high-order bit is the final-fragment flag, and the 
low-order 31 bits is the count. If the final-fragment bit is 0, then additional fragments 
make up the record. 

This 4-byte value is transmitted in the big-endian byte order, the same as all 4-byte XDR inte- 
gers, but this field is not in standard XDR format because XDR does not transmit bit fields. 
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unsigned i n t  xic 

enum msg-typc 

unsigned i n t  rpcverz 

unsigned i n t  pro! 

unsigned i n t  verz 
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IP header 

TCP header 

flag + length 

transaction ID (XID) 
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RPC version (2) 

program number 
-- 

version number 

procedure number 
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20 
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4 
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4 
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4 

4 

up to 
400 bytes 

4 

4 

up to 
400 bytes 

Figure 16.30 RPC request encapsulated in a TCP segment. 

If UDP is being used instead of TCP, the first field following the UDP header is the 
XID, as we show in Figure 16.32. 

With TCP, virtually no limit exists to the size of the RPC request and reply, because any num- 
ber of fragments can be used and each fragment has a 31-bit length field. But with UDP, the 
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request and reply must each fit in a single UDP datagram, and the maximum amount of data 
in this datagram is 65507 bytes (assuming IPv4). Many implementations prior to the TI-WC 
package further limit the size of either the request or reply to around 8192 bytes, so if more 
than about 8000 bytes is needed for either the request or reply, TCP should be used. 

We now show the actual XDR specification of an RPC request, taken from RFC 1831. 
The names that we show in Figure 16.30 were taken from this specification. 

enum auth-flavor { 

AUTH-NONE = 0, 
AUTH-SYS = 1, 
AUTH-SHORT = 2 

/ *  and more to be defined * /  

1; 

struct opaque-auth { 

auth-flavor flavor; 
opaque body<400>; 

1; 

enum msg-type { 

CALL = 0, 
REPLY = 1 

1; 

struct call-body { 

unsigned int rpcvers; / *  RPC version: must be 2 * /  
unsigned int prog; / *  program number * /  
unsigned int vers; / *  version number * /  
unsigned int proc; / *  procedure number * /  
opaque-auth cred; / *  caller's credentials * /  
opaque-auth verf; / *  caller's verifier * /  

/ *  procedure-specific parameters start here * /  
1; 

struct rpc-msg { 

unsigned int xid; 
union switch (msg-type mtype) { 

case CALL: 
call-body cbody; 

case REPLY: 
reply-body rbody; 

1 body; 
1; 

The contents of the variable-length opaque data containing the credentials and veri- 
fier depend on the flavor of authentication. For null authentication (the default), the 
length of the opaque data should be 0. For Unix authentication, the opaque data con- 
tains the following information: 

struct authsysqarms { 

unsigned int stamp; 
string machinename<255>; 
unsigned int uid; 
unsigned int gid; 
unsigned int gids<l6>; 

1; 
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When the credential flavor is AUTH-SYS, the verifier flavor should be AUTH-NONE. 

The format of an RPC reply is more complicated than that of a request, because 
errors can occur in the request. Figure 16.31 shows the possibilities. 

Figure 16.32 shows the format of a successful RPC reply, this time showing the UDP 
encapsulation. 

We now show the actual XDR specification of an RPC reply, taken from RFC 1831. 

enum reply-stat { 

MSG-ACCEPTED = 0, 
MSG-DENIED = 1 

1; 

enum accept-stat { 

SUCCESS = 0, / *  RPC executed successfully * /  
PROG-UNAVAIL = 1, / *  program # unavailable * /  
PROG-MISMATCH = 2, / *  version # unavailable * /  
PROC-UNAVAIL = 3, / *  procedure # unavailable * /  
GARBAGE-ARGS = 4, / *  cannot decode arguments * /  
SYSTEM-ERR = 5 / *  memory allocation failure, etc. * /  

1; 

struct accepted-reply { 

opaque-auth verf; 
union switch (accept-stat stat) I 
case SUCCESS: 
opaque results[O]; / *  procedure-specific results start here * /  

case PROG-MISMATCH: 
struct { 

unsigned int low; / *  lowest version # supported * /  
unsigned int high; / *  highest version # supported * /  

1 mismatch-info; 
default: / *  PROG-UNAVAIL, PROC-UNAVAIL, GARBAGE-ARGS, SYSTEM-ERR * /  
void; 

1 reply-data; 
1; 

union reply-body switch (reply-stat stat) { 

case MSG-ACCEPTED: 
accepted-reply areply; 

case MSG-DENIED: 
rejected-reply rreply; 

1 reply; 
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MSG-ACCEPTED MSG-DENIED 

/ \ 
SUCCESS PROG-UNAVAIL RPC-MISMATCH / \ AUTH-ERROR 

PROG-MISMATCH 
PROC-UNAVAIL 

GARBAGE-ARGS 
SYSTEM-ERR 

Figure 16.31 Possible RPC replies. 

ver f 
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enum accept-stat accept status (0 = success) 
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. . . 
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8 
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4 

4 

lp to 
100 bytes 

4 

Figure 16.32 Successful RPC reply encapsulated as a UDP datagram. 
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The call can be rejected by the server if the RPC version number is wrong or if an 
authentication error occurs. 

enum reject-stat { 

RPC-MISMATCH = 0, / *  RPC version number not 2 * /  
AUTH-ERROR = 1 / *  authentication error * /  

1; 

enum auth-stat { 

AUTH-OK = 0, / *  success * /  
/ *  following are failures at server end * /  

AUTH-BADCRED = 1, / *  bad credential (seal broken) * /  
AUTH-REJECTEDCRED = 2, / *  client must begin new session * /  
AUTH-BADVERF = 3, / *  bad verifier (seal broken) * /  
AUTH-REJECTEDVERF = 4, / *  verifier expired or replayed * /  
AUTH-TOOWEAK = 5, / *  rejected for security reasons * /  

/ *  following are failures at client end * /  
AUTH-INVALIDRESP = 6, / *  bogus response verifier * /  
AUTH-FAILED = 7 / *  reason unknown * /  

1; 

union rejectehreply switch (reject-stat stat) { 

case RPC-MISMATCH: 
struct { 

unsigned int low; / *  lowest RPC version # supported * /  
unsigned int high; / *  highest RPC version # supported * /  

1 mismatch-info; 
case AUTH-ERROR: 

auth-stat stat; 

1; 

16.10 Summary 

Sun RPC allows us to code distributed applications with the client running on one host 
and the server on another host. We first define the server procedures that the client can 
call and then write an RPC specification file that describes the arguments and return 
values for each of these procedures. We then write the client m a i n  function that calls 
the server procedures, and the server procedures themselves. The client code appears 
to just call the server procedures, but underneath the covers, network communication is 
taking place, hidden by the various RPC runtime routines. 

The rpcgen program is a fundamental part of building applications using RPC. It 
reads our specification file, and generates the client stub and the server stub, as well as 
generating functions that call the required XDR runtime routines that will handle all the 
data conversions. The XDR runtime is also a fundamental part of this process. XDR 
defines a standard way of exchanging various data formats between different systems 
that may have different-sized integers, different byte orders, different floating point for- 
mats, and the like. As we showed, we can use XDR by itself, independent of the RPC 
package, just for exchanging data in a standard format using any form of communica- 
tions to actually transfer the data (programs written using sockets or XTI, floppy disks, 
CD-ROMs, or whatever). 
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Sun RPC provides its own form of naming, using 32-bit program numbers, 32-bit 
version numbers, and 32-bit procedure numbers. Each host that runs an RPC server 
must run a program named the port mapper (now called RPCBIND). RPC servers bind 
ephemeral TCP and UDP ports and then register with the port mapper to associate 
these ephemeral ports with the programs and versions provided by the server. When 
an RPC client starts, it contacts the port mapper on the server's host to obtain the 
desired port number, and then contacts the server itself, normally using either TCP or 
UDP. 

By default, no authentication is provided by RPC clients, and RPC servers handle 
any client request that they receive. This is the same as if we were to write our own 
client-server using either sockets or XTI. Sun RPC provides three additional forms of 
authentication: Unix authentication (providing the client's hostname, user ID, and 
group IDS), DES authentication (based on secret key and public key cryptography), and 
Kerberos authentication. 

Understanding the timeout and retransmission strategy of the underlying RPC 
package is essential to using RPC (or any form of network programming). When a reli- 
able transport layer such as TCP is used, only a total timeout is needed by the RPC 
client, as any lost or duplicated packets are handled completely by the transport layer. 
When an unreliable transport such as UDP is used, however, the RPC package has a 
retry timeout in addition to a total timeout. A transaction ID is used by the RPC client 
to verify that a received reply is the one desired. 

Any procedure call can be classified as having exactly-once semantics, at-most-once 
semantics, or at-least-once semantics. With local procedure calls, we normally ignore 
this issue, but with RPC, we must be aware of the differences, as well as understanding 
the difference between an idempotent procedure (one that can be called any number of 
times without harm) and one that is not idempotent (and must be called only once). 

Sun RPC is a large package, and we have just scratched the surface. Nevertheless, 
given the basics that have been covered in this chapter, complete applications can be 
written. Using rpcgen hides many of the details and simplifies the coding. The Sun 
manuals refer to various levels of RPC coding-the simplified interface, top level, inter- 
mediate level, expert level, and bottom level-but these categorizations are meaning- 
less. The number of functions provided by the RPC runtime is 164, with the division as 
follows: 

11 auth- functions (authentication), 
26 clnt- functions (client side), 
5 pmap- functions (port mapper access), 

24 rpc- functions (general), 
44 svc- functions (server side), and 
54 xdr functions (XDR conversions). 

This compares to around 25 functions each for the sockets and XTI APIs, and less than 
10 functions each for the doors API and the Posix and System V message queue APIs, 
semaphore APIs, and shared memory APIs. Fifteen functions deal with Posix threads, 
10 functions with Posix condition variables, 11 functions with Posix read-write locks, 
and one function with fcntl record locking. 
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Exercises 

When we start one of our servers, it registers itself with the port mapper. But if we termi- 
nate it, say with our terminal interrupt key, what happens to this registration? What hap- 
pens if a client request arrives at some time later for this server? 

We have a client-server using RPC with UDP, and it has no server reply cache. The client 
sends a request to the server but the server takes 20 seconds before sending its reply. The 
client times out after 15 seconds, causing the server procedure to be called a second time. 
What happens to the server's second reply? 

The XDR s t r i n g  datatype is always encoded as a length followed by the characters. 
What changes if we want a fixed-length string and write, say, char  c [ l o ]  instead of 
s t r i n g s d o > ?  

Change the maximum size of the s t r i n g  in Figure 16.15 from 128 and 10, and run the 
w r i t e  program. What happens? Now remove the maximum length specifier from the 
s t r i n g  declaration, that is, write s t r i n g  v s t r i n g - a r g o  and compare the 
data-xdr . c file to one that is generated with a maximum length. What changes? 

Change the third argument to xdrmem-create in Figure 16.18 (the buffer size) to 50 and 
see what happens. 

In Section 16.5, we described the duplicate request cache that can be enabled when UDP is 
being used. We could say that TCP maintains its own duplicate request cache. What are 
we referring to, and how big is this TCP duplicate request cache? (Hint: How does TCP 
detect the receipt of duplicate data?) 

Given the five elements that uniquely identify each entry in the server's duplicate request 
cache, in what order should these five values be compared, to require the fewest number of 
comparisons, when comparing a new request to a cache entry? 

When watching the actual packets for our client-server from Section 16.5 using TCP, the 
size of the request segment is 48 bytes and the size of the reply segment is 32 bytes (ignor- 
ing the IPv4 and TCP headers). Account for these sizes ( eg ,  Figures 16.30 and 16.32). 
What will the sizes be if we use UDP instead of TCP? 

Can an RPC client on a system that does not support threads call a server procedure that 
has been compiled to support threads? What about the differences in the arguments that 
we described in Section 16.2? 

16.10 In our r ead  program in Figure 16.19, we allocate room for the buffer into which the file is 
read, and that buffer contains the pointer vstr ing- arg.  But where is the string stored 
that is pointed to by vstr ing- arg? Modify the program to verify your assumption. 

16.11 Sun RPC defines the null procedure as the one with a procedure number of 0 (which is why 
we always started our procedure numbering with 1, as in Figure 16.1). Furthermore, every 
server stub generated by rpcgen automatically defines this procedure (which you can eas- 
ily verify by looking at any of the server stubs generated by the examples in this chapter). 
The null procedure takes no arguments and returns nothing, and is often used for verify- 
ing that a given server is running, or to measure the round-trip time to the server. But if 
we look at the client stub, no stub is generated for this procedure. Look up the manual 
page for the c ln t - ca l l  function and use it to call the null procedure for any of the 
servers shown in this chapter. 
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16.12 Why does no entry exist for a message size of 65536 for Sun RPC using UDP in Figure A.2? 
Why do no entries exist for message sizes of 16384 and 32768 for Sun RPC using UDP in 
Figure A.4? 

16.13 Verify that omitting the call to xdr-f ree in Figure 16.19 introduces a memory leak. Add 
the statement 

£ o r ( ; ; ) {  

immediately before calling xdrmem-create, and put the ending brace immediately 
before the call to xdr-f ree. Run the program and watch its memory size using ps. Then 
move the ending brace to follow the call to xdr-f ree and run the program again, watch- 
ing its memory size. 



Epilogue 

This text has described in detail four different techniques for interprocess communica- 
tion (IPC): 

1. message passing (pipes, FIFOs, Posix and System V message queues), 

2. synchronization (mutexes, condition variables, read-write locks, file and record 
locks, Posix and System V semaphores), 

3. shared memory (anonymous, named Posix, named System V), and 

4. procedure calls (Solaris doors, Sun RPC). 

Message passing and procedure calls are often used by themselves, that is, they nor- 
mally provide their own synchronization. Shared memory, on the other hand, usually 
requires some form of application-provided synchronization to work correctly. The syn- 
chronization techniques are sometimes used by themselves; that is, without the other 
forms of IPC. 

After covering 16 chapters of details, the obvious question is: which form of IPC 
should be used to solve some particular problem? Unfortunately, there is no silver bul- 
let regarding IPC. The vast number of different types of IPC provided by Unix indicates 
that no one solution solves all (or even most) problems. All that you can do is become 
familiar with the facilities provided by each form of IPC and then compare the features 
with the needs of your specific application. 

We first list four items that must be considered, in case they are important for your 
application. 

1 .  Networked versus nonnetworked. We assume that this decision has already been 
made and that IPC is being used between processes or threads on a single host. 
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If the application might be distributed across multiple hosts, consider using 
sockets instead of IPC, to simplify the later move to a networked application. 

2. Portability (recall Figure 1.5). Almost all Unix systems support Posix pipes, 
Posix FIFOs, and Posix record locking. As of 1998, most Unix systems support 
System V IPC (messages, semaphores, and shared memory), whereas only a few 
support Posix IPC (messages, semaphores, and shared memory). More imple- 
mentations of Posix IPC should appear, but it is (unfortunately) an option with 
Unix 98. Many Unix systems support Posix threads (which include mutexes 
and condition variables) or should support them in the near future. Some sys- 
tems that support Posix threads do not support the process-shared attributes of 
mutexes and condition variables. The read-write locks required by Unix 98 
should be adopted by Posix, and many versions of Unix already support some 
type of read-write lock. Memory-mapped I/O is widespread, and most Unix 
systems also provide anonymous memory mapping (either /dev/zero or 
MAP-ANON). Sun RPC should be available on almost all Unix systems, whereas 
doors are a Solaris-only feature (for now). 

3. Performance. If this is a critical item in your design, run the programs developed 
in Appendix A on your own systems. Better yet, modify these programs to sim- 
ulate the environment of your particular application and measure their perfor- 
mance in this environment. 

4. Realtime scheduling. If you need this feature and your system supports the Posix 
realtime scheduling option, consider the Posix functions for message passing 
and synchronization (message queues, semaphores, mutexes, and condition 
variables). For example, when someone posts to a Posix semaphore on which 
multiple threads are blocked, the thread that is unblocked is chosen in a manner 
appropriate to the scheduling policies and parameters of the blocked threads. 
System V semaphores, on the other hand, make no such guarantee. 

To help understand some of the features and limitations of the various types of IPC, 
we summarize some of the major differences: 

Pipes and FIFOs are byte streams with no message boundaries. Posix messages 
and System V messages have record boundaries that are maintained from the 
sender to the receiver. (With regard to the Internet protocols described in 
UNPv1, TCP is a byte stream, but UDP provides messages with record bound- 
aries.) 

Posix message queues can send a signal to a process or initiate a new thread 
when a message is placed onto an empty queue. No similar form of notification 
is provided for System V message queues. Neither type of message queue can 
be used directly with either s e l e c t  or p o l l  (Chapter 6 of UNPvl), although 
we provided workarounds in Figure 5.14 and Section 6.9. 

The bytes of data in a pipe or FIFO are first-in, first-out. Posix messages and 
System V messages have a priority that is assigned by the sender. When reading 
a Posix message queue, the highest priority message is always returned first. 
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When reading a System V message queue, the reader can ask for any priority 
message that it wants. 

When a message is placed onto a Posix or System V message queue, or written 
to a pipe or FIFO, one copy is delivered to exactly one thread. No peeking capa- 
bility exists (similar to the sockets MSG-PEEK flag; Section 13.7 of UNPvl), and 
these messages cannot be broadcast or multicast to multiple recipients (as is pos- 
sible with sockets and XTI using the UDP protocol; Chapters 18 and 19 of 
UNPv1). 

Mutexes, condition variables, and read-write locks are all unnamed: they are 
memory-based. They can be shared easily between the different threads within 
a single process. They can be shared between different processes only if they are 
stored in memory that is shared between the different processes. Posix 
semaphores, on the other hand, come in two flavors: named and memory-based. 
Named semaphores can always be shared between different processes (since 
they are identified by Posix IPC names), and memory-based semaphores can be 
shared between different processes if the semaphore is stored in memory that is 
shared between the different processes. System V semaphores are also named, 
using the key-t datatype, which is often obtained from the pathname of a file. 
These semaphores can be shared easily between different processes. 

f cntl record locks are automatically released by the kernel if the process hold- 
ing the lock terminates without releasing the lock. System V semaphores have 
this feature as an option. Mutexes, condition variables, read-write locks, and 
Posix semaphores do not have this feature. 

Each fcntl lock is associated with some range of bytes (what we called a 
"record") in the file referenced by the descriptor. Read-write locks are not asso- 
ciated with any type of record. 

Posix shared memory and System V shared memory both have kernel persis- 
tence. They remain in existence until explicitly deleted, even if they are not cur- 
rently being used by some process. 

The size of a Posix shared memory object can be extended while the object is 
being used. The size of a System V shared memory segment is fixed when it is 
created. 

The kernel limits for the three types of System V IPC often require tuning by the 
system administrator, because their default values are usually inadequate for 
real-world applications (Section 3.8). The kernel limits for the three types of 
Posix IPC usually require no tuning at all. 

Information about System V IPC objects (current size, owner ID, last- 
modification time, etc.) is available with a command of IPC-STAT with the three 
XXXctl functions, and with the ipcs command. No standard way exists to 
obtain this information about Posix IPC objects. If the implementation uses files 
in the filesystem for these objects, then the information is available with the 
stat function or with the Is command, if we know the mapping from the Posix 
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IPC name to the pathname. But if the implementation does not use files, this 
information may not be available. 

Of the various synchronization techniques-mutexes, condition variables, 
read-write locks, record locks, and Posix and System V semaphores-the only 
functions that can be called from a signal handler (Figure 5.10) are semsost 
and f cntl. 

Of the various message passing techniques-pipes, FIFOs, and Posix and 
System V message queues-the only functions that can be called from a signal 
handler are read and write (for pipes and FIFOs). 

Of all the message passing techniques, only doors accurately provide the client's 
identity to the server (Section 15.5). In Section 5.4, we mentioned two other 
types of message passing that also identify the client: BSD/OS provides this 
identity when a Unix domain socket is used (Section 14.8 of UNPvl), and SVR4 
passes the sender's identity across a pipe when a descriptor is passed across the 
pipe (Section 15.3.1 of APUE). 



Appendix A 

Performance Measurements 

1 Introduction 

In the text, we have covered six types of message passing: 

pipes, 
FIFOs, 
Posix message queues, 
System V message queues, 
doors, and 
SunRPC, 

and five types of synchronization: 

mutexes and condition variables, 
read-write locks, 
f c n t  1 record locking, 
Posix semaphores, and 
System V semaphores. 

We now develop some simple programs to measure the performance of these types of 
IPC, so we can make intelligent decisions about when to use a particular form of PC. 

When comparing the different forms of message passing, we are interested in two 
measurements. 

1. The bandwidth is the speed at which we can move data through the IPC channel. 
To measure this, we send lots of data (millions of bytes) from one process to 
another. We also measure this for different sizes of the 1 /0  operation (writes 
and reads for pipes and FIFOs, for example), expecting to find that the band- 
width increases as the amount of data per 1 / 0  operation increases. 
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2. The latency is how long a small IPC message takes to go from one process to 
another and back. We measure this as the time for a 1-byte message to go from 
one process to another, and back (the round-trip time). 

In the real world, the bandwidth tells us how long bulk data takes to be sent across an 
IPC channel, but IPC is also used for small control messages, and the time required by 
the system to handle these small messages is provided by latency. Both numbers are 
important. 

To measure the various forms of synchronization, we modify our program that 
increments a counter in shared memory, with either multiple threads or multiple pro- 
cesses incrementing the counter. Since the increment is a simple operation, the time 
required is dominated by the time of the synchronization primitives. 

The simple programs used in this Appendix to measure the various forms of IPC are loosely 
based on the lmbench suite of benchmarks that is described in LMcVoy and Staelin 19961. This 
is a sophisticated set of benchmarks that measure many characteristics of a Unix system (con- 
text switch time, I/O throughput, etc.) and not just IPC. The source code is publicly available: 
http://www.bitmover.com/lrnbench. 

The numbers shown in this Appendix are provided to let us compare the techniques described 
in this book. An ulterior motive is to show how simple measuring these values is. Before 
making choices among the various techniques, you should measure these performance num- 
bers on your own systems. Unfortunately, as easy as the numbers are to measure, when 
anomalies are detected, explaining these is often very hard, without access to the source code 
for the kernel or libraries in question. 

A.2 Results 

We now summarize all the results from this Appendix, for easy reference when going 
through the various programs that we show. 

The two systems used for all the measurements are a SparcStation 4/110 running 
Solaris 2.6 and a Digital Alpha (DEC 3000 model 300, Pelican) running Digital Unix 
4.OB. The following lines were added to the Solaris / e t c / sys tern file: 

s e t  msgsys:msginfo~msgmax = 16384 
s e t  msgsys:msginfo~msgmnb = 32768 
s e t  msgsys:msginfo~msgseg = 4096 

This allows 16384-byte messages on a System V message queue (Figure A.2). The same 
changes were accomplished with Digital Unix by specifying the following lines as input 
to the Digital Unix sysconf i g  program: 

i p c  : 
msg-max = 16384 
msg-mnb = 32768 
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ssage Passing Bandwidth Results 

Figure A.2 lists the bandwidth results measured on a Sparc running Solaris 2.6, and Fig- 
ure A.3 graphs these values. Figure A.4 lists the bandwidth results measured on an 
Alpha running Digital Unix 4.OB, and Figure A.5 graphs these values. 

As we might expect, the bandwidth normally increases as the size of the message 
increases. Since many implementations of System V message queues have small kernel 
limits (Section 3.8), the largest message is 16384 bytes, and even for messages of this 
size, kernel defaults had to be increased. The decrease in bandwidth above 4096 bytes 
for Solaris is probably caused by the configuration of the internal message queue limits. 
For comparison with UNPv1, we also show the values for a TCP socket and a Unix 
domain socket. These two values were measured using programs in the lmbench pack- 
age using only 65536-byte messages. For the TCP socket, the two processes were both 
on the same host. 

ssage Passing Latency Results 

Figure A.l lists the latency results measured under Solaris 2.6 and Digital Unix 4.OB. 

Figure A.l Latency to exchange a I-byte message using various forms of IPC. 

Latency (microseconds) 

In Section A.4, we show the programs that measured the first six values, and the 
remaining three are from the lmbench suite. For the TCP and UDP measurements, the 
two processes were on the same host. 

Pipe Posix 
message 
aueue 

System V 
message 
aueue 

Doors SunRPC 
TCP 

SunRPC 
UDP 

TCP 
socket 

UDP 
socket 

Unix 
domain 
socket 
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Figure A 2  Bandwidth for various types of message passing (Solaris 2.6). 
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Thread Synchronization Results 

Figure A.6 lists the time required by one or more threads to increment a counter that is 
in shared memory using various forms of synchronization under Solaris 2.6, and Fig- 
ure A.7 graphs these values. Each thread increments the counter 1,000,000 times, and 
the number of threads incrementing the counter varied from one to five. Figure A.8 lists 
these values under Digital Unix 4.OB, and Figure A.9 graphs these values. 

The reason for increasing the number of threads is to verify that the code using the 
synchronization technique is correct and to see whether the time starts increasing non- 
linearly as the number of threads increases. We can measure f cnt 1 record locking only 
for a single thread, because this form of synchronization works between processes and 
not between multiple threads within a single process. 

Under Digital Unix, the times become very large for the two types of Posix 
semaphores with more than one thread, indicating some type of anomaly. We do not 
graph these values. 

One possible reason for these larger-than-expected numbers is that this program is a pathologi- 
cal synchronization test. That is, the threads do nothing but synchronization, and the lock is 
held essentially all the time. Since the threads are created with process contention scope, by 
default, each time a thread loses its timeslice, it probably holds the lock, so the new thread that 
is switched to probably blocks immediately. 

Process Synchronization Results 

Figures A.6 and A.7 and Figures A.8 and A.9 showed the measurements of the various 
synchronization techniques when used to synchronize the threads within a single pro- 
cess. Figures A.10 and A.ll show the performance of these techniques under Solaris 2.6 
when the counter is shared between different processes. Figures A.12 and A.13 show the 
process synchronization results under Digital Unix 4.OB. The results are similar to the 
threaded numbers, although the two forms of Posix semaphores are now similar for 
Solaris. We plot only the first value for f cntl record locking, since the remaining val- 
ues are so large. As we noted in Section 7.2, Digital Unix 4.OB does not support the 
PTHREAD-PROCESS-SHARED feature, so we cannot measure the mutex values between 
different processes. We again see some type of anomaly for Posix semaphores under 
Digital Unix when multiple processes are involved. 
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Figure A.6 Time required to increment a counter in shared memory (Solaris 2.6). 
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Figure A.7 Time required to increment a counter in shared memory (Solaris 2.6). 
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llme required to increment a counter in shared memory (seconds) 
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Figure A.8 llme required to increment a counter in shared memory (Digital Unix 4.08). 

# threads 

1 

time to 
increment 
counter 

in shared 
memory 
(seconds) 

fcntl 

l W 7  

2.9 

2 3 4 

number of threads 

Figure A 9  llme required to increment a counter in shared memory (Digital Unix 4.08). 
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llme required to increment a counter in shared memory (seconds) 

Figure A.10 llme required to increment a counter in shared memory (Solaris 2.6). 
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Figure A.12 Time required to increment a counter in shared memory (Digital Unix 4.OB). 
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Figure A.13 Time required to increment a counter in shared memory (Digital Unix 4.OB). 
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,3 Message Passing Bandwidth Programs 

This section shows the three programs that measure the bandwidth of pipes, Posix mes- 
sage queues, and System V message queues. We showed the results of these programs 
in Figures A.2 and A.3. 

pe Bandwidth Program 

Figure A.14 shows an overview of the program that we are about to describe. 

time 
this 

function 

varent 

Pipe (contpipe) ; 
Pipe(datapipe); 
if (Fork0 == 0) ( - - -  

1 
reader ( ) ; 

exit (0) ; 

} 

reader( ) 

( 
Write (contpipe [ll , ) ;- 
while (more to receive) 

Read(datapipe[Ol, );4 

1 

control pipe: 
#bytes to send 

data pipe: 
data 

child 

main( ) 

( 

. . . 

writer ( ) ; 

exit (0) ; 
1 

writer( ) 

( 

bRead(contpipe[Ol. ) ;  

while (more to send) 
- Write(datapipe[ll, ) ;  

1 

Figure A.14 Overview of program to measure the bandwidth of a pipe. 

Figure A.15 shows the first half of our b w j i p e  program, which measures the band- 
width of a pipe. 

Command-line arguments 

11-15 The command-line arguments specify the number of loops to perform (typically 
five in the measurements that follow), the number of megabytes to transfer (an argu- 
ment of 10 causes 10 x 1024 x 1024 bytes to be transferred), and the number of bytes for 
each w r i t e  and read (which varies between 1024 and 65536 in the measurements that 
we showed). 

Allocate buffer and touch it 

16-17 valloc is a version of malloc that allocates the requested amount of memory 
starting on a page boundary. Our function touch (Figure A.17) stores 1 byte of data in 
each page of the buffer, forcing the kernel to page-in each page comprising the buffer. 
We do so before any timing is done. 
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benchlbulgipe.~ 
1 #include "unpipc.hm 

2 void reader (int , int , int ) ; 
3 void writer(int, int); 

4 void *buf; 
5 int totalnbytes, xfersize; 

6 int 
7 main(int argc, char **argv) 

int i, nloop, contpipe[2], datapipe[2]; 
pid-t childpid; 

if (argc != 4) 
err-quit("usage: bwsipe <#loops> <#mbytes> <#bytes/write>"); 

nloop = atoi(argv[l]); 
totalnbytes = atoi(argv[2]) * 1024 * 1024: 
xfersize = atoi(argvL31); 

buf = Valloc(xfersize1; 
Touch(buf, xfersize) ; 

Pipe(contpipe); 
Pipe(datapipe); 

if ( (childpid = Fork0 1 == 01 { 

writer(contpipe[Ol, datapipe[ll 
exit (0) ; 

1 
/ *  parent */  

Start-time ( ) ; 
for (i = 0; i i nloop; i++) 

reader(contpipe[ll, datapipe[OI 
~rintf("bandwidth: %.3f MB/sec\nm, 

; /*child*/ 

totalnbytes); 

totalnbytes / Stop-time0 * nloop); 
kill(childpid, SIGTERM); 
exit (0) ; 

benchlbwgipe.~ 
Figure A.15 main function to measure the bandwidth of a pipe. 

valloc is not part of Posix.1 and is listed as a "legacy" interface by Unix 98: it was required 
by an earlier version of the X/Open specification but is now optional. Our Valloc wrapper 
function calls malloc if valloc is not supported. 

Create two pipes 

18-19 Two pipes are created: contpipe [ 0 ] and contpipe [ 1 ] are used to synchronize 
the two processes at the beginning of each transfer, and datapipe [OI and 
datapipe [I] are used for the actual data transfer. 

fork to create child 

20-31 A child process is created, and the child (a return value of 0) calls the wri ter  func- 
tion while the parent calls the reader function. The reader function in the parent is 
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called nloop times. Our start-time function is called immediately before the loop 
begins, and our stop-time function is called as soon as the loop terminates. These 
two functions are shown in Figure A.17. The bandwidth that is printed is the total num- 
ber of bytes transferred each time around the loop, divided by the time needed to trans- 
fer the data (stop-time returns this as the number of microseconds since 
start-time was called), times the number of loops. The child is then killed with the 
SIGTERM signal, and the program terminates. 

The second half of the program is shown in Figure A.16, and contains the two func- 
tions writer and reader. 

bench1bwgipe.c 
void 
writer(int contfd, int datafd) 
( 

int ntowrite; 

f o r ( ; ; ) {  
Read(contfd, &ntowrite, sizeof(nt0write)l; 

while (ntowrite z 0) ( 

Write(datafd, buf, xfersize); 
ntowrite -= xfersize; 

1 
1 

1 

void 
reader (int contfd, int datafd, int nbytes) 

{ 
ssize-t n; 

Write(contfd, &nbytes, sizeof(nbytes)); 

while ((nbytes > 0) && 

((n = Read(datafd. buf. xfersize)) > 0)) { 

nbytes -= n; 
1 

1 
bench/ b w g i p e . ~  

Figure A.16 writer and reader functions to measure bandwidth of a pipe. 

writer function 

33-44 This function is an infinite loop that is called by the child. It waits for the parent to 
say that it is ready to receive the data, by reading an integer on the control pipe that 
specifies the number of bytes to write to the data pipe. When this notification is 
received, the child writes the data across the pipe to the parent, xfersize bytes per 
write. 

reader function 

45-54 This function is called by the parent in a loop. Each time the function is called, it 
writes an integer to the control pipe telling the child how many bytes to write to the 
pipe. The function then calls read in a loop, until all the data has been received. 
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Our start-t ime, stop-t ime, and touch functions are shown in Figure A.17. 

2 static struct timeval tv-start, tv-stop; 

3 int 
4 start-time(void) 
5 ( 
6 return (gettimeofday(&tv-start, NULL) ) ;  

7 1 

8 double 
9 stop-time (void) 
10 ( 

11 double clockus; 

12 if (gettimeofday(&tv-stop, NULL) == -1) 
13 return (0.0); 
14 tv-sub(&tv-stop, &tv-start); 
15 clockus = tv-stop.tv-sec * 1000000.0 + tv-stop.tv-usec; 
16 return (clockus); 
17 1 

18 int 
19 touch(void *vptr, int nbytes) 
20 { 
21 char *cptr; 
22 static int pagesize = 0; 

2 3 if (pagesize == 0) ( 

2 4 errno = 0; 
25 #ifdef -SC-PAGESIZE 
26 if ( (pagesize = sysconf(-SC-PAGESIZE)) == -1) 
2 7 return (-1); 
28 #else 
29 pagesize = getpagesize(); / *  BSD * /  
30 #endif 
31 1 
32 cptr = vptr; 
33 while (nbytes > 0) I 
3 4 *cptr = 1; 
3 5 cptr += pagesize; 
3 6 nbytes -= pagesize; 
37 1 
3 8 return (0); 

Figure A.17 Timing functions: start-t he, stop-time, and touch. 
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The tv-sub function is shown in Figure A.18; it subtracts two timeval structures, 
storing the result in the first structure. 

2 void 
3 tv-sub(s t ruct  t imeval *out,  s t r u c t  timeval * in )  
4 ( 
5 i f  ((out->tv-usec -= in->tv-usec) i 0)  ( / *  out  -= i n  * /  
6 --out->tv-sec; 
7 out->tv-usec += 1000000; 
8 1 
9 out->tv-sec -= in->tv-sec; 

Figure A.18 tv-sub function: subtract two timeval structures. 

On a Sparc running Solaris 2.6, if we run our program five times in a row, we get 

s o l a r i s  % b w g i p e  5 10 65536 
bandwidth: 13.722 MB/sec 
s o l a r i s  % b w g i p e  5 10 65536 
bandwidth: 13.781 MB/sec 
s o l a r i s  % b w g i p e  5 10 65536 
bandwidth: 13.685 MB/sec 
s o l a r i s  % b w g i p e  5 10 65536 
bandwidth: 13.665 MB/sec 
s o l a r i s  % w i p e  5 10 65536 
bandwidth: 13.584 MB/sec 

Each time we specify five loops, 10,485,760 bytes per loop, and 65536 bytes per write 
and read. The average of these five runs is the 13.7 MBytes/sec value shown in Fig- 
ure A.2. 

Posix Message Queue Bandwidth Program 

Figure A.19 is our main program that measures the bandwidth of a Posix message 
queue. Figure A.20 shows the writer and reader functions. This program is similar 
to our previous program that measures the bandwidth of a pipe. 

Note that our program must specify the maximum number of messages that can exist on the 
queue, when we create the queue, and we specify this as four. The capacity of the IPC channel 
can affect the performance, because the writing process can send this many messages before its 
call to mcsend blocks, forcing a context switch to the reading process. Therefore, the perfor- 
mance of this program depends on this magic number. Changing this number from four to 
eight under Solaris 2.6 had no effect on the numbers in Figure A.2, but this same change under 
Digital Unix 4.OB decreased the performance by 12%. We would have guessed the perfor- 
mance would increase with a larger number of messages, because this could halve the number 
of context switches. But if a memory-mapped file is used, this doubles the size of that file and 
the amount of memory that is mmaped. 
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bench/bw_pxmsg.c 
1 #include "unpipc .h" 
2 #define NAME "bw_pxmsg" 

3 void reader (int , mqd-t , int) ; 
4 void writer(int, mqd-tl ; 

5 void *buf; 
6 int totalnbytes, xfersize; 

7 int 
8 main(int argc, char **argv) 
9 ( 

int i, nloop, contpipe 121 ; 
mqd-t mq; 
pid-t childpid; 
struct mq-attr attr; 

if (argc !=  4) 
err-quit("usage: bwsxmsg <#loops> <#mbytes> <#bytes/write>"); 

nloop = atoi(argvCl1); 
totalnbytes = atoi(argv[Z]) * 1024 * 1024; 
xfersize = atoi(argv[31); 

buf = Valloc(xfersize); 
~ouch(buf, xfersize); 

Pipe (contpipe) ; 
mpunlink(Px-ipc-name(NAME)); / *  error OK * /  
attr.mQmamsg = 4; 
attr.m%msgsize = xfersize; 
mq = Mq-open(Px-ipc-name(NAME), 0-RDWR I 0-CREAT, FILE-MODE, &attr); 
if ( (childpid = Fork()) == 0) ( 

writer(contpipe[Ol, mq); / *  child * /  
exit (0) ; 

I 
/ *  parent * /  

Start-time ( ) ; 
for (i = 0; i i nloop; i++) 

reader(contpipe[ll, mq, totalnbytes); 
printf("bandwidth: %.3f MB/sec\nW, 

totalnbytes / Stop-time() * nloop); 

kill(chi1dpid. SIGTERM); 
Mpclose (mq) ; 
M~unlink(Px-ipc-name(NAME) 1 ;  
exit (0) ; 

40 1 bench/ bw2xmsg.c 

Figure A.19 main function to measure bandwidth of a Posix message queue. 
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bench/bwgxmsg.c 
41 void 
42 writer(int contfd, mqd-t mqsend) 
43 ( 

4 4 int ntowrite; 

4 5 f o r ( ; ; ) (  
4 6 ~ead(contfd, &ntowrite, sizeof(nt0write) ) ;  

4 7 while (ntowrite > 0) ( 

4 8 Mesend (mqsend, buf , xfersize, 0) ; 
4 9 ntowrite -= xfersize; 
50 1 
51 1 
52 1 

53 void 
54 reader(int contfd, mqd-t mqrecv, int nbytes) 
55 ( 

56 ssize-t n; 

5 7 Write(contfd, &nbytes, sizeof(nbytes)); 

5 8 while ((nbytes > 0) && 

59 ((n = Mereceive(mqrecv, buf, xfersize, NULL)) > 0)) ( 

60 nbytes -= n; 
6 1 1 
62 1 benchlbwgxmsg.~ 

Figure A.20 writer and reader functions to measure bandwidth of a Posix message queue. 

System V Message Queue Bandwidth Program 

Figure A.21 is our m a i n  program that measures the bandwidth of a System V message 
queue, and Figure A.22 shows the w r i t e r  and reader functions. 

void reader (int, int , int) ; 
void writer (int, int ) ; 

struct msgbuf *buf; 
int totalnbytes, xfersize; 

int 
main(int argc, char **arm) 
I 

int i, nloop, contpipe [21 , msqid; 
pid-t childpid; 

if (argc !=  4) 
err-quit("usage: bw-svmsg <#loops> <#mbytes> <#bytes/write>"); 

nloop = atoi(argv[ll): 
totalnbytes = atoi(argv[Z]) * 1024 * 1024; 
xfersize = atoi(argv[31); 
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16 buf = Valloc(xfersize); 
17 Touch(buf, xfersize); 
18 buf ->mtype = 1; 

19 Pipe(contpipe); 
20 msqid = Msgget(1PC-PRIVATE, IPC-CREAT I SVMSG-MODE); 

if ( (childpid = Fork ( ) ) == 0) { 
writer (contpipe [O] , msqid) : / *  child * /  
exit (0) ; 

1 
Start-time ( ) ; 
for (i = 0; i c nloop; i++) 

reader(contpipe[ll, msqid, totalnbytes); 
printf("bandwidth: %.3f MB/sec\nn, 

totalnbytes / Stop-time0 * nloop); 

30 kill (childpid, SIGTERM) ; 
31 Msgctl(msqid, IPC-RMID, NULL); 
32 exit (0) ; 

Figure A21 main function to measure bandwidth of a System V message queue. 

bench/ bw_svrnsg.c 
34 void 
35 writer(int contfd, int msqid) 
36 { 
37 int ntowrite; 

40 while (ntowrite > 0) { 
41 Msgsnd(msqid, buf, xfersize - sizeof(1ong). 0); 
42 ntowrite -= xfersize; 
4 3 1 
4 4 1 
45 1 

46 void 
47 reader(int contfd, int msqid, int nbytes) 
48 { 

4 9 ssize-t n; 

5 1 while ((nbytes z 0) && 

52 ((n = Msgrcv(msqid, buf, xfersize - sizeof(long), 0, 0)) > 0)) t 
5 3 nbytes -= n + sizeof(1ong); 
5 4 1 

Figure A22 writer and reader functions to measure bandwidth of a System V message queue. 
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3ors Bandwidth Program 

Our program to measure the bandwidth of the doors API is more complicated than the 
previous ones in this section, because we must fork before creating the door. Our par- 
ent creates the door and then notifies the child that the door can be opened by writing 
to a pipe. 

Another change is that unlike Figure A.14, the reader function is not receiving the 
data. Instead, the data is being received by a function named server that is the server 
procedure for the door. Figure A.23 shows an overview of the program. 

doors 
server 

procedure 

time 
this 

function 

parent 

nain( ) 

I 
. . . 
Pipe(contpipe); 
if (Fork0 == 0) { - - - -  

1 
doorfd = Door-create( 1; 
Fattach ( ) ; 

Write(contpipe[ll, ) ;  / 
reader ( ) ; 

exit( 0); 

t 

server ( ) 

I 
if (end of data) 
Write (contpipe [Ol , ) ; - 

Door-return ( ) ; 

t 

reader ( ) 

Read (contpipe [ 11 , ) ; t- 

I 

child 

main( ) 

{ 

. . .  

F if (Fork0 == 0) { 

Read (contpipe [Ol , ; 

/ doorfd = Open( ) ; 

writer( ) ; 

exit (0) ; 

1 

1 

writer( ) 

{ 
~ead(contpipe[Ol. ) :  

while (more to send) ; 
Write(datapipe[ll, 1; 
Door-call ( ) ; 

1 

Figure A.23 Overview of program to measure the bandwidth of the doors API. 

Since doors are supported only under Solaris, we simplify the program by assuming a 
full-duplex pipe (Section 4.4). 

Another change from the previous programs is the fundamental difference between 
message passing, and procedure calling. In our Posix message queue program, for 
example, the writer just writes messages to a queue in a loop, and this is asynchronous. 
At some point, the queue will fill, or the writing process will lose its time slice of the 
processor, and the reader runs and reads the messages. If, for example, the queue held 
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eight messages and the writer wrote eight messages each time it ran, and the reader 
read all eight messages each time it ran, to send N messages would involve N/4 context 
switches (N/8 from the writer to the reader, and another N/8 from the reader to the 
writer). But the doors API is synchronous: the caller blocks each time it calls 
door- call and cannot resume until the server procedure returns. To exchange N mes- 
sages now involves Nx2 context switches. We will encounter the same problem when 
we measure the bandwidth of RPC calls. Despite the increased number of context 
switches, note from Figure A.3 that doors provide the fastest IPC bandwidth up 
through a message size of around 25000 bytes. 

Figure A.24 shows the main function of our program. The w r i t e r ,  server ,  and 
reader functions are shown in Figure A.25. 

Sun RPC Bandwidth Program 

Since procedure calls in Sun RPC are synchronous, we have the same limitation that we 
mentioned with our doors program. It is also easier with RPC to generate two pro- 
grams, a client and a server, because that is what rpcgen generates. Figure A.26 shows 
the RPC specification file. We declare a single procedure that takes a variable-length of 
opaque data as input and returns nothing. 

Figure A.27 shows our client program, and Figure A.28 shows our server proce- 
dure. We specify the protocol (TCP or UDP) as a command-line argument for the client, 
allowing us to measure both protocols. 
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benchlbw-d0or.c 
1 #include "unpipc.h" 

2 void reader (int , int ) ; 
3 void writer (int ) ; 
4 void server{void *, char *, size-t, door-desc-t *, size-t); 

5 void *buf; 
6 int totalnbytes, xfersize, contpipe [21; 

7 int 
8 main(int argc, char **argv) 
9 { 

int i, nloop, doorfd; 
char c; 
pid-t childpid; 
ssize-t n; 

if (argc != 5) 
err-quit("usage: bw-door <pathname> <#loops> <#mbytes> <#bytes/write>"); 

nloop = atoi (argv[21) ; 
totalnbytes = atoi(argv[3]) * 1024 * 1024; 
xfersize = atoi(argv[4]); 

buf = ~alloc (xfersize) : 
Touch (buf , xf ersize) ; 

unlink(argv[ll ) ; 
~lose(Open(argv[l], 0-CREAT I 0-EXCL I 0-RDWR, FILE-MODE)); 
Pipe (contpipe) ; / *  assumes full-duplex SVR4 pipe * /  

if ( (childpid = Fork{ == 0) { 

/ *  child = client = writer * /  
if ( (n = Read(contpipe[O], &c, 1)) != 1) 

err-quit("chi1d: pipe read returned %dW, n); 
doorfd = Open(argv[ll, 0-RDWR); 

writer(doorfd); 
exit (0) ; 

1 
/ *  parent = server = reader * /  

doorfd = Door-create(server, NULL, 0); 
Fattach(doorfd, argv[ll) ; 
Write(contpipe[l], &c, 1); / *  tell child door is ready * /  

Start-time{) ; 
for (i = 0; i < nloop; i++) 

reader(doorfd, totalnbytes); 
printf("bandwidth: %.3f MB/sec\nM, 

totalnbytes / Stop-time ( ) * nloop) ; 
kill (childpid, SIGTERM) ; 
unlink (argv[ll) ; 
exit (0) ; 

44 1 bench / bwd0or.c 

Figure A24 main function to measure the bandwidth of the doors API. 
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bench/ bw-d0or.c 
45 void 
46 writer (int doorfd) 

/ *  no descriptors to pass * /  

/ *  no return values expected * /  

{ 

int ntowrite; 
door-arg-t arg; 

arg.descqtr = NULL; 
arg. desc-num = 0 ; 
arg.rbuf = NULL; 
arg.rsize = 0; 

f o r ( ; ; ) {  
~ead(contpipe[O], &ntowrite, sizeof(nt0write)); 

while (ntowrite > 0) { 

arg.data_ptr = buf; 
arg.data-size = xfersize; 
Door-call(doorfd, &arg); 
ntowrite -= xfersize; 

1 
1 

1 

static int ntoread, nread; 

void 
server(void *cookie, char *argp, size-t arg-size, 

door-desc-t *dp, size-t n-descriptors) 
{ 

char c; 

nread += arg-size; 
if (nread >= ntoread) 

~rite(contpipe[O], &c, I); / *  tell reader0 we are all done * /  

Door-return (NULL, 0, NULL, 0 ) ; 
1 

void 
reader (int doorfd, int nbytes) 
{ 

char c; 
ssize-t n; 

ntoread = nbytes; / *  globals for server0 procedure * /  
nread = 0; 

Write(contpipell1, &nbytes, sizeof(nbytes)); 

if ( (n = Read(contpipe[ll , &c, 1) ) !=  1) 
err-quit("reader: pipe read returned Bd", n); 

k 
bench/ bw-h0r.c 

Figure A25 writer, server, and reader functions for doors API bandwidth measurement. 
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bench/bw_sunrpc.x 
1 %#define DEBUG / *  so server runs in foreground * /  

2 struct data-in { 

3 opaque data-; / *  variable-length opaque data * /  
4 1; 

5 program BW-SUNRPC-PROG { 

6 version BW-SUNRPCYERS { 

7 void BW-SUNRPC (data-in) = 1 ; 
8 } = 1; 
9 1 = 0~31230001; benchlbw-sunrpc.~ 

Figure A26 RPC specification file for our bandwidth measurements of Sun RPC. 

3 void *buf; 
4 int totalnbytes, xfersize; 

5 int 
6 main(int argc, char **argv) 
7 { 

int i, nloop, ntowrite; 
CLIENT *cl; 
data-in in; 

if (argc !=  6) 
err-quit("usage: bw-sunrpc-client <hostname> <#loops>" 

" <#mbytes> <#bytes/write> <protocol>"); 
nloop = atoi(argv[21); 
totalnbytes = atoi(argv[3]) * 1024 * 1024; 
xfersize = atoi(argv[41); 

buf = ~alloc(xfersize); 
Touch(buf, xfersize); 

cl = Clnt-create(argv[l], BW-SUNRPC-PROG, BW-SUNRPC-VERS, argv[5] 1; 

Start-time ( )  ; 

for (i = 0; i < nloop; i++) { 

ntowrite = totalnbytes; 
while (ntowrite > 0) { 

in.data.data-len = xfersize; 
in.data.data-val = buf; 
if (bw-sunrpc-l(&in, cl) == NULL) 

err-quit("%sW, clnt-sperror(c1, argv[ll) ) ;  

ntowrite -= xfersize; 
1 

1 
printf("bandwidth: %.3f MB/sec\nW, 

totalnbytes / Stop-time ( ) * nloop) ; 
exit (0) ; 

34 1 benchlbw-sunrpc-c1ient.c 

Figure A27 RPC client program for bandwidth measurement. 
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6 void * 
7 bw~sunrpc~l~svc(data~in * inp, struct svc-req *rqstp) 
8 { 
9 static int nbytes; 

10 nbytes = inp->data.data-len; 
11 return (mbytes); / *  must be nonnull, but xdrvoid ( ) will ignore *I 

Figure A28 RPC server procedure for bandwidth measurement. 

A.4 Message Passing Latency Programs 

We now show the three programs that measure the latency of pipes, Posix message 
queues, and System V message queues. The performance numbers were shown in Fig- 
ure A.1. 

Pipe Latency Program 

The program to measure the latency of a pipe is shown in Figure A.29. 

doit function 

2-9 This function runs in the parent and its clock time is measured. It writes 1 byte to a 
pipe (that is read by the child) and reads 1 byte from another pipe (that is written to by 
the child). This is what we described as the latency: how long it takes to send a small 
message and receive a small message in reply. 

Create pipes 

19-20 Two pipes are created and fork creates a child, leading to the arrangement shown 
in Figure 4.6 (but without the unused ends of each pipe closed, which is OK). Two 
pipes are needed for this test, since pipes are half-duplex, and we want two-way com- 
munication between the parent and child. 

Chiid echoes 1-byte message 

22-27 The child is an infinite loop that reads a 1-byte message and sends it back. 

Measure parent 

29-34 The parent first calls the doit function to send a 1-byte message to the child and 
read its 1-byte reply. This makes certain that both processes are running. The doit 
function is then called in a loop and the clock time is measured. 
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2 void 
3 doit(int readfd, int writefd) 
4 { 
5 char c; 

6 write (writefd, &c, 1) ; 
7 if (Read(readfd. &c. 1) != 1) 
8 err-quit("read error"); 
9 1 

10 int 
11 main(int argc, char **argv) 

int i, nloop, pipe1 [21 , pipe2 [21; 
char c; 
pid-t childpid; 

if (argc != 2) 
err-quit("usage: latqipe <#loops>"); 

nloop = atoi(argv[ll); 

Pipe (pipel) ; 
Pipe (pipe2 ) ; 

if ( (childpid = Fork0 ) == 0) { 

f o r ( ; ; ) {  / *  child * /  
if (Read(pipel[O], &c, 1) != 1) 

err-quit("read error"); 
Write(pipe2[1], &c, 1); 

1 
exit (0) ; 

1 
/ *  parent * /  

doit(pipe2[0], pipel[ll); 

Start-time ( ) ; 
for (i = 0; i < nloop; i++) 

doit(pipe2[0], pipel[ll) ; 
printf("1atency: %.3f usec\nn, Stop-time0 / nloop); 

Kill(childpid, SIGTERM); 
exit (0) ; 

bench/latgipe.c 

Figure A.29 Program to measure the latency of a pipe. 



482 Performance Measurements Appendix A 

On a Sparc running Solaris 2.6, if we run the program five times in a row, we get 

s o l a r i s  % l a t g i p e  10000 
la tency:  278.633 usec 
s o l a r i s  % l a t g i p e  10000 
la tency:  397.810 usec 
s o l a r i s  % l a t g i p e  10000 
la tency:  392.567 usec 
s o l a r i s  % l a t g i p e  10000 
la tency:  266.572 usec 
s o l a r i s  % l a t g i p e  10000 
la tency:  284.559 usec 

The average of these five runs is 324 microseconds, which we show in Figure A.1. These 
times include two context switches (parent-to-child, then child-teparent), four system 
calls ( w r i t e  by parent, read by child, w r i t e  by child, and read by parent), and the 
pipe overhead for 1 byte of data in each direction. 

Posix Message Queue Latency Program 

Our program to measure the latency of a Posix message queue is shown in Figure A.30. 
2s-2s Two message queues are created: one is used from the parent to the child, and the 

other from the child to the parent. Although Posix messages have a priority, allowing 
us to assign different priorities for the messages in the two different directions, 
m ~ r e c e i v e  always returns the next message on the queue. Therefore, we cannot use 
just one queue for this test. 

System V Message Queue Latency Program 

Figure A.31 shows our program that measures the latency of a System V message 
queue. 

Only one message queue is created, and it contains messages in both directions: 
parent-techild and child-to-parent. The former have a type field of 1, and the latter 
have a type field of 2. The fourth argument to msgrcv in d o i t  is 2, to read only mes- 
sages of this type, and the fourth argument to msgrcv in the child is 1, to read only 
messages of this type. 

In Sections 9.3 and 11.3, we mentioned that many kernel-defined structures cannot be statically 
initialized because Posix.1 and Unix 98 guarantee only that certain members are present in the 
structure. These standards do not guarantee the order of these members, and the structures 
might contain other, nonstandard, members too. But in this program, we statically initialize 
the msgbuf structures, because System V message queues guarantee that this structure con- 
tains a long message type field followed by the actual data. 

bench/latgxmsg.c 
1 #include "unpipc.h" 
2 #def ine  NAME1 "lat_pxmsglW 
3 #def ine  NAME2 " l a tqxmsg2"  
4 #def ine  MAXMSG 4 / *  room f o r  4096 by tes  on queue * /  
5 #def ine  MSGSIZE 1024 



Section A.4 Message Passing Latency Programs 483 

6 void 
7 doit(mqd-t mqsend, mqd-t mqrecv) 
8 { 
9 char buff[MSGSIZEl; 

10 M ~ s e n d  (mqsend, buff, 1, 0) ; 
11 if (M~receive (mqrecv, buff, MSGSIZE, NULL) != 1) 
12 err-quit ( "m~receive error" ) : 
13 1 

14 int 
15 main(int argc, char **argv) 
16 { 

int i, nloop; 
mqd-t mql, mq2; 
char buff[MSGSIZEI; 
pid-t childpid; 
struct mQattr attr; 

if (argc != 2) 
err-quit("usage: latqmsg <#loops>"); 

nloop = atoi(argv[ll): 

attr.mq_maxmsg = MAXMSG; 
attr.mQmsgsize = MSGSIZE; 
mql = Maopen(Px-ipc-name(NAME1). 0-RDWR I 0-CREAT, FILE-MODE, &attr); 
mq2 = Mq_open(Px-ipc-name(NAME2). 0-RDWR I 0-CREAT, FILE-MODE, &attr); 

if ( (childpid = ForkO) == 0) { 

for ( ;  ; 1 { / *  child * /  
if (M~receive(mq1, buff, MSGSIZE, NULL) !=  1) 

err-quit("m~receive error"); 
M~send(mq2, buff, 1, 0) ; 

1 
exit (0) ; 

1 
/ *  parent * /  

doit(mq1, mq2); 

Start-time ( ) ; 
for (i = 0; i < nloop; i++) 

doit(rnq1, mq2); 
printf("1atency: %.3f usec\nn, Stop-time0 / nloop); 

Kill(chi1dpid. SIGTERM); 
M Q C ~ O S ~  (mql) ; 
M~close (mq2 ) ; 
~~unlink(Px-ipc-name(NAME1) ) ;  

Mq_unlink(Px-ipc-name(NAME2)); 
exit (0) ; 

49 1 bench/latgxmsg.c 

Figure A.30 Program to measure the latency of a Posix message queue. 
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benchllat-svmsg.c 
1 #include "unpipc.hU 
2 struct msgbuf pachild = t  1, { 0 1 1; / *  type = 1 * /  
3 struct msgbuf child2p = t  2, t  0 1 1; / *  type = 2 * /  
4 struct msgbuf inbuf; 

5 void 
6 doit(int msgid) 
7 t  
8 Msgsnd(msgid, &p2child, 0, 0); 
9 if (Msgrcv(msgid, &inbuf, sizeof (inbuf .mtext) , 2, 0) ! = 0) 
10 err-quit("msgrcv error"); 
11 1 

12 int 
13 main(int argc, char **argv) 
14 t  

int i, nloop, msgid; 
pid-t childpid; 

if (argc != 2) 
err-quit("usage: lat-svmsg <#loops>"); 

nloop = atoi(argv[l]); 

msgid = Msgget(1PC-PRIVATE, IPC-CREAT I SVMSG-MODE); 
if ( (childpid = Fork() ) == 0) { 

f o r ( ; ; )  t  / *  child * /  
if (Msgrcv(msgid, &inbuf, sizeof (inbuf .mtext) , 1, 0) !=  0) 

err-quit("msgrcv error"); 
Msgsnd(msgid, &child2p, 0, 0) ; 

1 
exit (0) ; 

1 
/ *  parent * /  

doit (msgid) ; 

Start-time ( ) ; 
for (i = 0; i <nloop; i++) 

doi t (msgid) ; 
printf("1atency: %.3f usec\nn, Stop-time0 / nloop); 

Kill(chi1dpid. SIGTERM); 
Msgctl (msgid, IPC-RMID, NULL) ; 
exit (0) ; 

38 1 
benchllat-svmsg.c 

Figure A.31 Program to measure the latency of a System V message queue. 

Doors Latency Program 

Our program to measure the latency of the doors API is shown in Figure A.32. The 
child creates the door and associates the function server with the door. The parent 
then opens the door and invokes door-call in a loop. One byte of data is passed as 
an argument, and nothing is returned. 
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benchllat-d0or.c 
1 #include "unpipc . h" 
2 void 
3 server(void *cookie, char *argp, size-t arg-size, 
4 door-desc-t *dp, size-t n-descriptors) 
5 t  
6 char c; 

7 Door-return (&c, sizeof (char) , NULL, 0) ; 
8 1 

9 int 
10 main(int argc, char **argv) 
11 1 

int i, nloop, doorfd, contpipe[21; 
char c; 
pid-t childpid; 
door-arg-t arg; 

if (argc != 3) 
err-quit("usage: lat-door <pathname> <#loops>"); 

nloop = atoi(argv[2]); 

unlink(argv[ll); 
Close(Open(argv[l], 0-CREAT I 0-EXCL I 0-RDWR, FILE-MODE)); 
Pipe(contpipe); 

if ( (childpid = Fork()) == 0) {  

doorfd = Door-create(server, NULL, 0): 
Fattach(doorfd, argv[ll); 
Write(contpipe[ll, &c, 1); 

for ( ; ; ) / *  child = server * /  
pause ( ) ; 

exit (0) ; 
1 
arg.data_ptr = &c; / *  parent = client * /  
arg.data-size = sizeof(char); 
arg.descqtr = NULL; 
arg-desc-num = 0; 
arg-rbuf = &c; 
arg.rsize = sizeof(char); 

if (Read(contpipe[O], &c, 1) != 1) / *  wait for child to create * /  
err-quit("pipe read error"); 

doorfd = Open(argv[ll, 0-RDWR); 
Door~call(doorfd, &arg); / *  once to start everything * /  

Start-time ( ) ; 
for (i = 0; i < nloop; i++) 

Door~call(doorfd, &arg); 
printf("1atency: %.3f usec\nn, Stop-time() / nloop); 

Kill (childpid, SIGTERM) : 
unlink (argv[l] ) ; 
exit (0) ; 

47 I 
benchllat-d0or.c 

Figure A.32 Program to measure the latency of the doors API. 
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Sun RPC Latency Program 

To measure the latency of the Sun RPC API, we write two programs, a client and a 
server (similar to what we did when we measured the bandwidth). We use the same 
RPC specification file (Figure A.26), but our client calls the null procedure this time. 
Recall from Exercise 16.11 that this procedure takes no arguments and returns nothing, 
which is what we want to measure the latency. Figure A.33 shows the client. As in the 
solution to Exercise 16.11, we must call clnt-call  directly to call the null procedure; a 
stub function is not provided in the client stub. 

3 int 
4 main (int argc. char **argv) 
5 t  
6 int i, nloop; 
7 CLIENT *cl; 
8 struct timeval tv; 

9 if (argc !=  4) 
10 errquit("usage: lat-sunrpc-client <hostname> <#loops> <protocol>"); 
11 nloop = atoi(argv[21); 

Start-time ( )  ; 

for (i = 0; i < nl-oop: i++) { 
if (clnt~call(cl, NULLPROC, xdr-void, NULL, 

xdr-void, NULL, tv) != RPC-SUCCESS) 
err-quit("%sW, clnt-sperror(c1, argv[l])); 

1 
printf("1atency: %.3f usec\nm. Stop-time0 / nloop); 
exit (0) ; 

Figure A.33 Sun RPC client for latency measurement. 

We compile our server with the server function from Figure A.28, but that function 
is never called. Since we used rpcgen to build the client and server, we need to define 
at least one server procedure, but we never call it. The reason we used rpcgen is that it 
automatically generates the server main with the null procedure, which we need. 

A.5 Thread Synchronization Programs 

To measure the time required by the various synchronization techniques, we create 
some number of threads (one to five for the measurements shown in Figures A.6 and 
A.8) and each thread increments a counter in shared memory a large number of times, 
using the different forms of synchronization to coordinate access to the shared counter. 
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Posix Mutex Program 

Figure A.34 shows the global variables and the m a i n  function for ow program to mea- 
sure Posix mutexes. 

#define MAXNTHREADS 100 

int nl-oop; 

struct { 

pthread-mutex-t mutex; 
long counter; 

1 shared = { 

PTHREAD-MUTEX-INITIALIZER 

1 ; 

void *incr (void * )  ; 

int 
main(int argc, char **argv) 
t 

int i, nthreads; 
pthread-t tid[MAXNTHREADS]; 

if (argc != 3) 
err-quit("usage: incrqmutexl <#loops> <#threads>"); 

nl-oop = atoi (argv[l] ) ; 
nthreads = min(atoi (argv[2] ) , MAXNTHREADS) ; 

/ *  lock the mutex * /  
Pthread-mutex-lock(&shared.mutex); 

/ *  create all the threads * /  
Set-concurrency(nthreads); 
for (i = 0; i < nthreads; i++) { 

Pthread-create(&tid[il, NULL, incr, NULL); 
1 

/ *  start the timer and unlock the mutex * /  
Start-time ( ) ; 
Pthread~mutex~unlock(&shared.mutex); 

/ *  wait for all the threads * /  
for (i = 0; i < nthreads; i++) { 

Pthread-join(tid[i], NULL); 
1 
printf("microseconds: %.Of usec\nn, Stop-time0 ) ;  

if (shared.counter != nloop * nthreads) 
printf("error: counter = %ld\nu, shared.counter); 

exit (0) ; 
1 

bench/incr_pxrnutexl .c 

Figure A.34 Global variables and main function to measure Posix mutex synchronization. 
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Shared data 

The shared data between the threads consists of the mutex itself and the counter. 
The mutex is statically initialized. 

Lock mutex and create threads 

The main thread locks the mutex before the threads are created, so that no thread 
can obtain the mutex until all the threads have been created and the mutex is released 
by the main thread. Our set-concurrency function is called and the threads are cre- 
ated. Each thread executes the incr function, which we show next. 

Start timer and release the mutex 

Once all the threads are created, the timer is started and the mutex is released. The 
main thread then waits for all the threads to finish, at which time the timer is stopped 
and the total number of microseconds is printed. 

Figure A.35 shows the incr function that is executed by each thread. 

bench/incr_pxmutexl .c 
39 vo id  * 
40 i n c r ( v o i d  *arg)  
41 i 
42 i n t  i ; 

43 f o r  (i = 0; i < nloop; i + + )  { 
44 Pthread~mutex~lock(&shared.mutex); 
4 5 shared.counter++; 
46 Pthread~mutex~unlock(&shared.mutex); 
4 7 1 
48 r e t u r n  (NULL) ; 

49 1 
bench/incr_pxmutexl .c 

Figure A.35 lncrement a shared counter using a Posix mutex. 

lncrement counter in critical region 

The counter is incremented after obtaining the mutex. The mutex is released. 

Read-Write Lock Program 

Our program that uses read-write locks is a slight modification to our program that 
uses Posix mutexes. Each thread must obtain a write lock on the read-write lock before 
incrementing the shared counter. 

Few systems implement the Posix read-write locks that we described in Chapter 8, which are 
part of Unix 98 and are being considered by the Posix.lj working group. The read-write lock 
measurements described in this Appendix were made under Solaris 2.6 using the Solaris 
read-write locks described in the rwlock (3T) manual page. This implementation provides 
the same functionality as the proposed read-write locks, and the wrapper functions required 
to use these functions from the functions we described in Chapter 8 are trivial. 
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Under Digital Unix 4.08, our measurements were made using the Digital thread-independent 
services read-write locks, described on the tis-rwlock manual pages. We do not show the 
simple modifications to Figures A.36 and A.37 for these read-write locks. 

Figure A.36 shows the main function, and Figure A.37 shows the incr function. 

benchlincr-rwlockl .c 
#include "unpipc.hN 
#include <synch.h> / *  Solaris header */  

void Rw~wrlock(rwlock~t *rwptr); 
void Rw~unlock(rwlock~t *rwptr); 

int nloop; 

struct { 

rwlock-t rwlock; 
long counter; 

1 shared; 

/ *  the Solaris datatype */  

/ *  init to 0 -> USYNC-THREAD */  

void *incr (void * )  ; 

int 
main(int argc, char **argv) 
{ 

int i, nthreads; 
pthread-t ~~~[MAXNTHREADSI; 

if (argc !=  3) 
err-quit("usage: incr-rwlockl <#loops> <#threads>"); 

nloop = atoi(argv[ll); 
nthreads = min(atoi(argv[2]), MAXNTHREADS); 

/ *  obtain write lock * /  
Rw~wrlock(&shared.rwlock); 

/ *  create all the threads * /  
Set-concurrency(nthreads); 
for (i = 0; i < nthreads; i++) { 

Pthread-create(&tid[il, NULL, incr, NULL); 
1 

/ *  start the timer and release the write lock * /  

/ *  wait for all the threads * /  
for (i = 0; i <nthreads; i++) { 

Pthread-join(tid[i], NULL); 
1 
printf("microseconds: %.Of usec\nn, Stop-time()); 
if (shared.counter != nloop * nthreads) 

printf("error: counter = %1d\nv, shared.counter); 

exit (0) ; 
1 

benchlincr-rwlockl .c 

Figure A.36 main function to measure read-write lock synchronization. 
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benchlincr-rwlockl ,c 
40 void * 
41 incr(void *arg) 
42 I 
4 3 int i ; 

4 4 for (i = 0; i < nloop; i++) { 
4 5 RW-wrlock (&shared. rwlock) ; 
46 shared.counter++; 
47 ~w~unlock(&shared.rwlock); 
4 8 1 
4 9 return (NULL) ; 

Figure A37 Increment a shared counter using a read-write lock. 

Posix Memory-Based Semaphore Program 

We measure both Posix memory-based semaphores and Posix named semaphores. Fig- 
ure A.39 shows the main function for the memory-based semaphore program, and Fig- 
ure A.38 shows its incr function. 

18-19 A semaphore is created with a value of 0, and the second argument of 0 to 
sem-init says that the semaphore is shared between the threads of the calling process. 

20-27 After all the threads are created, the timer is started and semjos t is called once by 
the main thread. 

benchlincr~xsernl .c 
37 void * 
38 incr(void *arg) 
39 I 
40 int i ; 

41 for (i = 0; i c nloop; i++) { 
4 2 Sem-wait(&shared.mutex); 

4 4 Semsost (&shared.mutex) ; 
45 1 
46 return (NULL) ; 

Figure A.38 Increment a shared counter using a Posix memory-based semaphore. 
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2 #define MAXNTHREADS 100 

3 int nloop; 

4 struct { 

5 sem-t mutex; / *  the memory-based semaphore * /  
6 long counter; 
7 1 shared; 

8 void *incr(void * )  ; 

9 int 
10 main(int argc, char **argv) 
11 { 

12 int i, nthreads; 
13 pthread-t tid[MAXNTHREADS]; 

14 if (argc != 3) 
15 err-quit("usage: incr~xseml <#loops> <#threads>"); 
16 nloop = atoi(argv[ll); 
17 nthreads = min(atoi (argvL21 ) , MAXNTHREADS) ; 

18 / *  initialize memory-based semaphore to 0 * /  
19 Sem-init(&shared.mutex, 0, 0); 

/ *  create all the threads * /  
Set-concurrency(nthreads); 
for (i = 0; i < nthreads; i++) { 

Pthread-create(&tid[il, NULL, incr, NULL); 
1 

/ *  start the timer and release the semaphore * /  
Start-time ( ) ; 
Sem_post(&shared.mutex); 

2 8 / *  wait for all the threads * /  
2 9 for (i = 0; i < nthreads; i++) { 
3 0 Pthread-join(tid[i] , NULL) ; 
31 1 
3 2 printf("microseconds: %.Of usec\nW, Stop-time()); 
3 3 if (shared.counter !=  nloop * nthreads) 
3 4 printf("error: counter = %1d\nw, shared-counter); 

3 5 exit (0) ; 

Figure A.39 main function to measure Posix memory-based semaphore synchronization. 
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Appendix A 

Posix Named Semaphore Program 

Figure A.41 shows the main function that measures Posix named semaphores, and Fig- 
ure A.40 shows its incr function. 

bench/incr_pxsem2.c 
40 void * 

incr (void *arg) 

I 
int i ; 

for (i = 0; i < nloop; i++) I 
Sem-wait(shared.mutex); 
shared.counter++; 
Sem_post(shared.mutex); 

1 
return (NULL) ; 

50 1 
bench/incr_pxsem2.c 

Figure A.40 Increment a shared counter using a Posix named semaphore. 

System V Semaphore Program 

The main function of our program that measures System V semaphores is shown in Fig- 
ure A.42, and Figure A.43 shows its incr function. 

20-23 A semaphore is created consisting of one member, and its value is initialized to 0. 
24-29 Two semop structures are initialized: one to post-to the semaphore and one to wait- 

for the semaphore. Notice that the sem-f lg member of both structures is 0: the 
SEM-UNDO flag is not specified. 

System V Semaphore with SEM-UNDO Program 

The only difference in our program that measures System V semaphores with the 
SEM-UNDO feature from Figure A.42 is setting the sem-f lg member of the two semop 
structures to SEM-UNDO instead of 0. We do not show this simple modification. 
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2 #define MAXNTHREADS 100 
3 #define NAME "incr_pxsem2" 

4 int nloop; 

5 struct { 

6 sem-t *mutex; 
7 long counter; 
8 1 shared; 

/ *  pointer to the named semaphore * /  

9 void *incr (void * ) ; 

10 int 
11 main(int argc, char **argv) 
12 I 
13 int i, nthreads; 
14 pthread-t tid[M?+XNTHREADS]; 

15 if (argc != 3) 
16 err-quit("usage: incrqxsem2 <#loops> <#threads>"); 
17 nloop = atoi(argv[l]); 
18 nthreads = min(atoi (argv[2] ) , -THREADS) ; 

19 / *  initialize named semaphore to 0 * /  
20 sem-unlink(Px-ipc-name(NAME)); / *  error OK */  
21 shared.mutex = Sem-open(Px-ipc-name(NAME), 0-CREAT I 0-EXCL, FILE-MODE, 0); 

/ *  create all the threads * /  
Set-concurrency(nthreads); 
for (i = 0; i < nthreads; i++) { 

Pthread-create(&tid[i], NULL, incr, NULL); 
1 

/ *  start the timer and release the semaphore */  
Start-time ( )  ; 

Sem_post(shared.mutex); 

/ *  wait for all the threads * /  
for (i = 0; i < nthreads; i++) { 

Pthread-join(tid[i], NULL); 
1 
printf("microseconds: %.Of usec\nM, Stop-time()); 
if (shared-counter != nloop * nthreads) 

printf("error: counter = %ld\nv, shared.counter); 
Sem-unlink(Px-ipc-name(NAME)); 

38 exit (0) ; 

Figure A.41 main function to measure Posix named semaphore synchronization. 
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#define MAXNTHREADS 100 

int nloop; 

struct ( 

int semid; 
long counter; 

1 shared; 

struct sembuf postop, waitop; 

void *incr (void * )  ; 

int 
main(int argc, char **argv) 
I 

int i, nthreads; 
pthread-t tid[MAXNTHREADS]; 
union semun arg; 

if (argc !=  3) 
err-quit("usage: incr-svseml <#loops> <#threads>"); 

nloop = atoi (argvrl] ) ; 
nthreads = min(atoi(argv[2]), MAXNTHREADS); 

I *  create semaphore and initialize to 0 * /  
shared.semid = Semget(1PC-PRIVATE, 1, IFC-CREAT ( SVSEM-MODE); 
arg.va1 = 0; 
Semctl(shared.semid. 0, SETVAL, arg); 
postop.sem-num = 0; / *  and init the two semop() structures * /  
postop.sem-op = 1; 
postop.sem-flg = 0; 
waitop.sem-num = 0; 
waitop.sern-op = -1; 
waitop.sem-flg = 0; 

/ *  create all the threads * /  
Set-concurrency(nthreads); 
for (i = 0; i < nthreads; i++) ( 

Pthread-create(&tid[il, NULL, incr, NULL); 
? 

/ *  start the timer and release the semaphore * /  
Start-time ( )  ; 

Semop(shared.semid, &postop, 1); / *  up by 1 * /  

/ *  wait for all the threads * /  
for (i = 0; i < nthreads; i++) ( 

Pthread-join(tid[il, NULL) ; 
1 
printf("microseconds: %.Of usec\nU, Stop-time()); 
if (shared.counter !=  nloop * nthreads) 

printf("error: counter = %ld\nV, shared.counter); 
Semctl(shared.semid, 0, IPC-RMID); 

exit (0) ; 
1 

bench/incr-svsernl.~ 

Figure A.42 main function to measure System V semaphore synchronization. 
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benchlincr-svsernl .c 
48 void * 
49 incr(void *arg) 

50 { 
5 1 int i ; 

52 for (i = 0; i c nloop; i++) ( 
5 3 Semop(shared.semid, &waitop, 1); 
54 shared.counter++; 
5 5 Semop(shared.semid, &postop, 1); 
5 6 1 
5 7 return (NULL) ; 

Figure A.43 Increment a shared counter using a System V semaphore. 

t i  Record Locking Program 

Our final program uses f cntl record locking to provide synchronization. The main 
function is shown in Figure A.45. This program will run successfully when only one 
thread is specified, because f cntl locks are between different processes, not between 
the different threads of a single process. When multiple threads are specified, each 
thread can always obtain the requested lock (that is, the calls to writew-lock never 
block, since the calling process already owns the lock), and the final value of the counter 
is wrong. 

-22 The pathname of the file to create and then use for locking is a command-line argu- 
ment. This allows us to measure this program when this file resides on different file- 
systems. We expect this program to run slower when this file is on an NFS mounted 
filesystem, which requires that both systems (the NFS client and NFS server) support 
NFS record locking. 

The incr function using record locking is shown in Figure A.44. 

benchlincrfcntll .c 
44 void * 
45 incr(void *arg) 

46 [ 
47 int i ; 

4 8 for (i = 0; i c nloop; i++) { 
4 9 Writew-lock(shared.fd. 0, SEEK-SET, 0); 
50 shared.counter++; 
51 Un-lock(shared.fd, 0, SEEK-SET, 0); 
52 1 
5 3 return (NULL) ; 

54 1 
benchlincrfcntll .c 

Figure A.44 Increment a shared counter using f cntl record locking. 
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5 #define MAXNTHREADS 100 

6 int nloop; 

7 struct { 

8 int fd; 
9 long counter; 
10 1 shared; 

11 void *incr(void * ) ;  

12 int 
13 main(int argc, char **argv) 
14 { 
15 int i, nthreads; 
16 char *pathname ; 
17 pthread-t tid[MAXNTHREADSl; 

18 if (argc != 4) 
19 err-quit("usage: incr-fcntll <pathname> <#loops> <#threads>"); 
2 0 pathname = argv[l]; 
21 nloop = atoi(argv[2]); 
2 2 nthreads = min(atoi(argv[31), MAXNTHREADS); 

23 / *  create the file and obtain write lock * /  
2 4 shared.fd = Open(pathname, 0-RDWR I 0-CREAT I 0-TRUNC, FILE-MODE); 
25 Writew-lock (shared. fd, 0, SEEK-SET, 0) ; 

/ *  create all the threads * /  
Set-concurrency(nthreads); 
for (i = 0; i < nthreads; i++) { 

Pthread-create(&tid[il, NULL, incr, NULL); 
1 

/ *  start the timer and release the write lock * /  
Start-time ( ) ; 
Un-lock(shared.fd, 0, SEEK-SET, 0); 

/ *  wait for all the threads * /  
for (i = 0; i < nthreads; i++) { 

Pthread-join(tid[i], NULL); 
1 
printf("microseconds: %.Of usec\nU, Stop-time()); 
if (shared.counter !=  nloop * nthreads) 

printf("error: counter = %1d\nu, shared.counter1; 
Unlink(pathname); 

42 exit (0) ; 
43 1 

benchlincrfcntll .c 
Figure A.45 main function to measure fcntl record locking. 
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.6 Process Synchronization Programs 

In the programs in the previous section, sharing a counter between multiple threads 
was simple: we just stored the counter as a global variable. We now modify these pro- 
grams to provide synchronization between different processes. 

To share the counter between a parent and its children, we store the counter in 
shared memory that is allocated by our my-shm function, shown in Figure A.46. 

2 void * 
3 my-shm(size-r; nbytes) 
4 { 
5 void *shared; 

6 #if defined(MAP-ANON) 
7 shared = mmap(NULL, nbytes, PROT-READ I PROT-mITE, 
8 MAP-ANON I MAP-SHARED, -1, 0 ) ; 
9 #elif defined(HAVE_DEV-ZERO) 
10 int fd; 

11 / *  memory map /dev/zero * /  
12 if ( (fd = open("/dev/zero", 0-RDWR)) == -1) 
13 return (MAP-FAILED); 
14 shared = mmap(NULL, nbytes, PROT-READ I PROT-m1TE MAP-SHARED, fd, 0); 
15 close(fd); 

16 #else 
17 #error cannot determine what type of anonymous shared memory to use 
18 #endif 
19 return (shared) ; / *  MAP-FAILED on error * /  

Figure A.46 Create some shared memory for a parent and its children. 

If the system supports the MAP-ANON flag (Section 124,  we use it; otherwise, we 
memory map /dev/zero (Section 12.5). 

Further modifications depend on the type of synchronization and what happens to 
the underlying datatype when fork is called. We described some of these details in 
Section 10.12. 

Posix mutex: the mutex must be stored in shared memory (with the shared 
counter), and the PTHREAD-PROCEss-smRED attribute must be set when the 
mutex is initialized. We show the code for this program shortly. 

Posix read-write lock: the read-write lock must be stored in shared memory 
(with the shared counter), and the PTHREAD-PROCESS-SHARED attribute must 
be set when the read-write is initialized. 
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Posix memory-based semaphores: the semaphore must be stored in shared 
memory (with the shared counter), and the second argument to sem-init must 
be 1, to specify that the semaphore is shared between processes. 

Posix named semaphores: either we can have the parent and each child call 
sem-open or we can have the parent call sem-open, knowing that the 
semaphore will be shared by the child across the fork. 

System V semaphores: nothing special need be coded, since these semaphores 
can always be shared between processes. The children just need to know the 
semaphore's identifier. 

fcntl record locking: nothing special need be coded, since descriptors are 
shared by the child across a fork. 

We show only the code for the Posix mutex program. 

Posix Mutex Program 

The main function for our first program uses a Posix mutex to provide synchronization 
and is shown in Figure A.48. Its i nc r  function is shown in Figure A.47. 

19-20 Since we are using multiple processes (the children of a parent), we must place our 
shared structure into shared memory. We call our my-shm function (Figure A.46). 

21-26 Since the mutex is in shared memory, we cannot statically initialize it, so we call 
pthread-mutex-init after setting the PTHREAD-PROCESS-SHARED attribute. The 
mutex is locked. 

27-36 All the children are created, the timer is started, and the mutex is unlocked. 
37-43 The parent waits for all the children and then stops the timer. 

bench/inu~xmutex5.c 
46 void * 
47 incr(void *arg) 
48 [ 
4 9 int i ; 

50 for (i = 0; i < nloop; i++) { 

51 Pthread-mutex-lock(&shared-zmutex); 
52 shared->counter++; 
53 Pthread-mutex-unlock(&shared->mutex); 
5 4 1 
5 5 return (NULL) ; 
56 1 

bench/incr~xmutex5.c 
Figure A.47 incr function to measure Posix mutex locking between processes. 
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2 #define MAXNPROC 100 

3 int nloop; 

4 struct shared { 

5 pthread-mutex-t mutex; 
6 long counter; 
7 1 *shared; / *  pointer; actual structure in shared memory * /  

8 void *incr (void * )  ; 

9 int 
10 main(int argc, char **argv) 
11 { 
12 int i, nprocs; 
13 pid-t childpid[MAXNPROCl; 
14 pthread-mutexattr-t mattr; 

15 if (argc != 3) 
16 err-quit("usage: incrqxmutex5 <#loops> c#processes>"); 
17 nloop = atoi(argv[ll); 
18 nprocs = min(atoi(argv[2]), MAXNPROC); 

19 / *  get shared memory for parent and children * /  
20 shared = My-shm(sizeof(struct shared)): 

21 / *  initialize the mutex and lock it * /  
2 2 Pthread-mutexattr-init(&mattr); 
2 3 Pthread-mutexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED); 
2 4 Pthread-mutex-init(&shared-zmutex, &mattr); 
25 Pthread-mutexattr-destroy(&mattr); 
26 Pthread-mutex-lock(&shared->mutex); 

/ *  create all the children * /  
for (i = 0; i c nprocs; i++) { 

if ( (childpid[i] = Fork()) == 0) { 

incr (NULL) ; 
exit (0) ; 

1 
1 

/ *  parent: start the timer and unlock the mutex * /  
Start-time ( ) ; 

3 7 / *  wait for all the children */  
3 8 for (i = 0; i c nprocs; i++) { 
39 waitpid(childpid[iI, NULL, 0) ; 
40 1 
4 1 printf("microseconds: %.Of usec\nW, Stop-time()); 
42 if (shared->counter != nlOOp * nprocs) 
43 printf("error: counter = %ld\nW, shared->counter); 

44 exit (0) ; 
45 1 

bench/incr_pxmutex5.c 

Figure A.48 main function to measure Posix mutex locking between processes. 



Appendix 6 

A Threads Primer 

6.1 Introduction 

This appendix summarizes the basic Posix thread functions. In the traditional Unix 
model, when a process needs something performed by another entity, it forks a child 
process and lets the child perform the processing. Most network servers under Unix, 
for example, are written this way. 

Although this paradigm has served well for many years, there are problems with 
fork: 

fork is expensive. Memory is copied from the parent to the child, all descrip- 
tors are duplicated in the child, and so on. Current implementations use a tech- 
nique called copy-on-write, which avoids a copy of the parent's data space to the 
child until the child needs its own copy; but regardless of this optimization, 
fork is expensive. 

Interprocess communication (IPC) is required to pass information between the 
parent and child after the fork. Information from the parent to the child before 
the fork  is easy, since the child starts with a copy of the parent's data space and 
with a copy of all the parent's descriptors. But returning information from the 
child to the parent takes more work. 

Threads help with both problems. Threads are sometimes called lightweight processes, 
since a thread is "lighter weight" than a process. That is, thread creation can be 10-100 
times faster than process creation. 
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All threads within a process share the same global memory. This makes the sharing 
of information easy between the threads, but along with this simplicity comes the prob 
lem of synchronization. But more than just the global variables are shared. All threads 
within a process share: 

process instructions, 
most data, 
open files (e.g., descriptors), 
signal handlers and signal dispositions, 
current working directory, and 
user and group IDS. 

But each thread has its own: 

thread ID, 
set of registers, including program counter and stack pointer, 
stack (for local variables and return addresses), 
errno, 
signal mask, and 
priority. 

B.2 Basic Thread Functions: Creation and Termination 

In this section, we cover five basic thread functions. 

gthread-create Function 

When a program is started by exec, a single thread is created, called the initial thread or 
main thread. Additional threads are created by pthread- create. 

int pthread-create(pthread-t *tid,  const pthread-attr-t *attr 
void * (*func) (void * )  , void *arg) ; 

Returns: 0 if OK, positive ~ x x x  value on error 

Each thread within a process is identified by a thread ID, whose datatype is pthread-t. 
On successful creation of a new thread, its ID is returned through the pointer tid. 

Each thread has numerous attributes: its priority, its initial stack size, whether it 
should be a daemon thread or not, and so on. When a thread is created, we can specify 
these attributes by initializing a pthread-attr-t  variable that overrides the default. 
We normally take the default, in which case, we specify the attr argument as a null 
pointer. 

Finally, when we create a thread, we specify a function for it to execute, called its 
thread start function. The thread starts by calling this function and then terminates either 
explicitly (by calling pthread-exit) or implicitly (by letting this function return). The 
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address of the function is specified as the func argument, and this function is called with 
a single pointer argument, arg. If we need multiple arguments to the function, we must 
package them into a structure and then pass the address of this structure as the single 
argument to the start function. 

Notice the declarations of func and arg. The function takes one argument, a generic 
pointer (void *), and returns a generic pointer (void *). This lets us pass one pointer 
(to anything we want) to the thread, and lets the thread return one pointer (again, to 
anything we want). 

The return value from the Pthread functions is normally !I if OK or nonzero on an 
error. But unlike most system functions, which return -1 on an error and set errno to a 
positive value, the Pthread functions return the positive error indication as the func- 
tion's return value. For example, if pthread-create cannot create a new thread 
because we have exceeded some system limit on the number of threads, the function 
return value is EAGAIN. The Pthread functions do not set errno. The convention of 0 
for OK or nonzero for an error is fine, since all the ~ x x x  values in <sys /errno. h> are 
positive. A value of 0 is never assigned to one of the ~ x x x  names. 

gthread- j oin Function 

We can wait for a given thread to terminate by calling pthread-join. Comparing 
threads to Unix processes, pthread-create is similar to fork, and pthread-j oin is 
similar to wai tpid. 

I int pthread-join(pthread-t tid, void **status); 

1 Returns: 0 if OK, positive Exxx value on error 

We must specify the tid of the thread for which we wish to wait. Unfortunately, we 
have no way to wait for any of our threads (similar to wai tpid with a process ID argu- 
ment of -1). 

If the status pointer is nonnull, the return value from the thread (a pointer to some 
object) is stored in the location pointed to by status. 

gthread-self Function 

Each thread has an ID that identifies it within a given process. The thread ID is 
returned by pthread-create, and we saw that it was used by pthread-join. A 
thread fetches this value for itself using pthread-self. 

#include cpthread.h> 

pthread-t pthread-self(void); 

Returns: thread ID of calling thread 
L 

Comparing threads to Unix processes, pthread-self is similar to getpid. 
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gthread-detach Function 

A thread is either joinable (the default) or detached. When a joinable thread terminates, 
its thread ID and exit status are retained until another thread in the process calls 
pthread- j oin. But a detached thread is l i e  a daemon process: when it terminates, all 
its resources are released, and we cannot wait for it to terminate. If one thread needs to 
know when another thread terminates, it is best to leave the thread as joinable. 

The pthread-detach function changes the specified thread so that it is detached. 

I int pthread-detach (pthread-t tid) ; I 
1 Returns: 0 if OK, positive ~ x x x  value on error 1 

This function is commonly called by the thread that wants to detach itself, as in 

pthread-detach(pthread-self()); 

gthread-exit Function 

One way for a thread to terminate is to call pthread-exit. 

#include <pthread.h> 

void pthread-exit (void *status) ; 

Does not return to caller 1 

If the thread is not detached, its thread ID and exit status are retained for a later 
pthread-j o i n  by some other thread in the calling process. 

The pointer status must not point to an object that is local to the calling thread (e.g., 
an automatic variable in the thread start function), since that object disappears when the 
thread terminates. 

A thread can terminate in two other ways: 

The function that started the thread (the third argument to pthread-create) 
can return.  Since this function must be declared as returning a void pointer, 
that return value is the exit status of the thread. 

If the main function of the process returns or if any thread calls e x i t  or -exit, 
the process terminates immediately, including any threads that are still running. 
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Miscellaneous Source Code 

1 unpigc .h Header 

Almost every program in the text includes our unpipc . h header, shown in Figure C.1. 
This header includes all the standard system headers that most network programs need, 
along with some general system headers. It also defines constants such as MAXLINE 
and ANSI C function prototypes for the functions that we define in the text (e.g., 
px-ipc-name) and all the wrapper functions that we use. We do not show these proto- 
types. 

1iblunpipc.h 
1 / *  Our own header. Tabs are set for 4 spaces, not 8 * /  

4 #include "../config.hU / *  configuration options for current OS * /  
5 / *  "../config.h" is generated by configure * /  

6 / *  If anything changes in the following list of #includes, must change 
7 ../aclocal.m4 and ../configure.in also, for configure's tests. * /  

csys/types.h> 
csys/time.h> 
ctime. h> 

/ *  basic system data types * /  
/ *  timeval{} for select0 * /  
/ *  timespec{} for pselecto * /  

cerrno . h> 
cfcntl.h> / *  for nonblocking * /  
climits.h> / *  PIPE-BUF * /  

cstdio. h> 
cstdlib.h> 
cstring.h> 
csys/stat.h> / *  for Sgxx  file mode constants * /  
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21 #ifdef HAVE-MQUEUE-H 
22 #include anqueue.h> 
23 #endif 

/ *  POS~X message queues * /  

24 #ifdef HAVE-SEMAPHORE-H 
25 #include <semaphore.h> / *  Posix semaphores * /  

26 #ifndef SEM-FAILED 
27 #define SEM-FAILED ((sem-t *)(-I)) 
28 #endif 

30 #ifdef HAVE-SYS-MMAN-H 
31 #include <sys/nunan.h> / *  Posix shared memory * /  
32 #endif 

33 #ifndef MAPFAILED 
34 #define MAP-FAILED ((void * ) ( - I ) )  
35 #endif 

39 #ifdef HAVE-SYS-MSG-H 

42 #ifdef HAVE-SYS-SEM-H 
43 #ifdef bsdi- 
44 #undef HAVE-SYS-SEM-H 
45 #else 
46 #include <sys/sem.h> 
47 #endif 

48 #ifndef HAVE-SEMUN-UNION 
49 union semun { 

50 int val ; 
5 1 struct semid-ds *buf; 

/ *  System V IPC * /  

/ *  System V message queues * /  

/ *  hack: BSDI's semctl0 prototype is wrong * I  

/ *  System V semaphores */  

/ *  define union for semctl0 * /  

52 unsigned short *array; 
53 I ;  
54 #endif 
55 #endif / *  HAVE-SYS-SEM-H * /  

56 #ifdef HAVE-SYS-SHM-H 
57 #include <sys/shm.h> / *  System V shared memory * /  
58 #endif 

59 #ifdef HAVE-SYS-SELECT-H 
60 #include <sys/select.h> / *  for convenience * /  
61 #endif 

62 #ifdef HAVE-POLL-H 
63 #include <poll.h> 
64 #endif 

/ *  for convenience * /  
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65 #ifdef HAVE-STROPTS-H 
66 #include <stropts.h> 
67 #endif 

/* for convenience * /  

68 #ifdef HAVE-STRINGS-H 
69 #include cstrings.h> / *  for convenience * /  
70 #endif 

/ *  Next three headers are normally needed for socket/file ioctl's: 
* <sys/ioctl.h>, <sys/filio.h>, and <sys/sockio.h>. 
* / 
#ifdef HAVE-SYS-IOCTL-H 
#include <sys/ioctl.h> 
#endif 
#ifdef HAVE-SYS-FILIO-H 
#include <sys/filio.h> 
#endif 

83 #ifdef HAVE-DOOR-H 
84 #include <door.h> 
85 #endif 

/ *  Solaris doors API * /  

86 #ifdef HAVE-RPC-RPC-H 
87 #ifdef -PSX4-NSPACE-H-TS / *  Digital Unix 4.0b hack, hack, hack * /  
88 #undef SUCCESS 
89 #endif 
90 #include <rpc/rpc.h> / *  Sun RPC * /  
91 #endif 

92 / *  Define bzeroo as a macro if it's not in standard C library. * /  
93 #ifndef HAVE-BZERO 
94 #define bzero (ptr, n) memset (ptr, 0, n) 
95 #endif 

96 / *  Posix-lg requires that an #include of <poll.h> define INFTIM, but many 
97 systems still define it in csys/stropts.h>. We don't want to include 

98 all the streams stuff if it's not needed, so we just define INFTIM here. 
99 This is the standard value, but there's no guarantee it is -1. * /  
100 #ifndef INFTIM 
101 #define INFTIM (-1) 
102 #ifdef HAVE-POLL-H 
103 #define INFTIM-UNPH 
104 #endif 
105 #endif 

106 / *  Miscellaneous constants * /  
107 #ifndef PATH-MAX 
108 #define PATH-MAX 1024 
109 #endif 

110 #define MAX-PATH 1024 
111 #define MAXLINE 4096 
112 #define BUFFSIZE 8192 

/ *  infinite poll timeout * /  

/ *  tell unpxti.h we defined it * /  

/ *  should be in clirnits.h> * /  
/ *  max # of characters in a pathname * /  

/ *  max text line length * I  
/ *  buffer size for reads and writes */  
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#define FILE-MODE (S-IRUSR I S-IWUSR I S-IRGRP 1 S-IROTH) 
/ *  default permissions for new files * /  

#define DIR-MODE (FILE-MODE ( S-IXUSR I S-IXGRP I S-IXOTH) 
/ *  default permissions for new directories * /  

#define SVMSG-MODE (MSG-R ( MSG-W I MSG-R>>3 I MSG-R>>6) 
/ *  default permissions for new SV message queues * /  

#define SVSEM-MODE (SEM-R I SEM-A I SEM-R>>3 1 SEM-R>>6) 
/ *  default permissions for new SV semaphores * /  

#define SVSHMJIODE (SHM-R I SHM-W I SHM-R>>3 I SHM-R>>6) 
/ *  default permissions for new SV shared memory * /  

typedef void Sigfunc (int) ; / *  for signal handlers * /  

#ifdef HAVE-SIGINFO-T-STRUCT 
typedef void Sigfunc-rt (int, siginfo-t *, void * ) ;  

#endi f 

#define min(a,b) ( (a) c (b) ? (a) : (b) ) 
#define max(a,b) ( (a) > (b) ? (a) : (b) ) 

#ifndef HAVE-TIMESPEC-STRUCT 
struct timespec { 

t ime-t tv-sec ; / *  seconds * /  
long tv-nsec ; / *  and nanoseconds * /  

1 ;  
#endif 

/ * 
* In our wrappers for open(), -open(), and sem-open0 we handle the 
* optional arguments using the va-XXXO macros. But one of the optional 
* arguments is of type "mode-t" and this breaks under BSD/OS because it 
* uses a 16-bit integer for this datatype. But when our wrapper function 
* is called, the compiler expands the 16-bit short integer to a 32-bit 
* integer. This breaks our call to va-arg0. All we can do is the 
* following hack. Other systems in addition to BSD/OS might have this 
* problem too . . .  
* / 

#ifdef -bsdi- 
#define va-mode-t int 
#else 
#define va-mode-t mode-t 
#endif 

/ *  our record locking macros * /  
#define read-lock(fd, offset, whence, len) \ 

lock-reg(fd, F-SETLK, F-RDLCK, offset, whence, len) 
#define readw-lock(fd, offset, whence, len) \ 

lock-reg(fd, F-SETLKW, FRDLCK, offset, whence, len) 
#define write-lock(fd, offset, whence, len) \ 

lock-reg(fd, F-SETLK, F-WRLCK, offset, whence, len) 
#define writew-lock(fd, offset, whence, len) \ 

lock-reg(fd, F-SETLKW, F-WRLCK, offset, whence, len) 
#define un-lock(fd, offset, whence, len) \ 

lock-reg(fd, F-SETLK, F-UNLCK, offset, whence, len) 
#define is-read-lockable(fd, offset, whence, len) \ 
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162 lock-test(fd, F-RDLCK, offset, whence, len) 
163 #define is-write-lockable(fd, offset, whence, len) \ 
164 lock-test(fd, F-WRLCK, offset, whence, len) 

1iblunpipc.h 

Figure C.l Our header unpipc . h. 

conf ig . h Header 

The GNU autoconf tool was used to aid in the portability of all the source code in this 
text. It is available from f tp : / /prep. ai . mi t . edu/pub/gnu/ . This tool generates a 
shell script named configure that you must run after downloading the software onto 
your system. This script determines the features provided by your Unix system: are 
System V message queues supported? is the uint8-t datatype defined? is the 
gethostname function provided? and so on, generating a header named con£ ig . h. 
This header is the first header included by our unpipc . h header in the previous sec- 
tion. Figure C.2 shows the conf ig. h header for Solaris 2.6 when used with the gcc 
compiler. 

The lines beginning with #define in column 1 are for features that the system pro- 
vides. The lines that are commented out and contain #undef are features that the sys- 
tem does not provide. 

sparc-sun-solaris2.6/config.h 
1 / *  c0nfig.h. Generated automatically by configure. * /  
2 / *  Define the following if you have the corresponding header * /  
3 #define CPU-VENDOR-OS "sparc-sun-solaris2.6" 
4 #define HAVE-DOOR-H 1 / *  cdoor.h> * /  
5 #define HAVE-MQUEUE-H 1 / *  cmqueue.h> * /  
6 #define HAVE-POLL-H 1 / *  cpoll.h> * /  
7 #define HAVE-PTHREAD-H 1 / *  cpthread.hz * /  
8 #define HAVE-RPC-RPC-H 1 / *  crpc/rpc.h> * /  
9 #define HAVE-SEMAPHORE-H 1 / *  csemaphore.h> * /  
10 #define HAVE-STRINGSY 1 / *  cstrings.hz * /  
11 #define HAVE-SYS-FILIO-H 1 / *  csys/filio.h> * /  
12 #define HAVE-SYS-IOCTL-H 1 / *  csys/ioctl.h> * /  
13 #define HAVE-SYS-IPC-H 1 / *  csys/ipc.h> * /  
14 #define HAVE-SYS-MMAN-H 1 / *  csys/man.h> * /  
15 #define HAVE-SYS-MSG-H 1 / *  csys/msg.h> * /  
16 #define HAVE-SYS-SEM-H 1 / *  <sys/sem.h> * /  
17 #define HAVE-SYS-SHM-H 1 / *  csys/shm.h> */  
18 #define HAVE-SYS-SELECT-H 1 / *  csys/select.h> * /  
19 / *  #undef HAVE-SYS-SYSCTL-H */  / *  <sys/sysctl.h> */  
20 #define HAVE-SYS-TIME-H 1 / *  csys/time.hz * /  

21 / *  Define if we can include ctime.hz with <sys/time.h> * /  
22 #define TIME-WITH-SYS-TIME 1 

23 / *  Define the following if the function is provided * /  
24 #define HAVE-BZERO 1 
25 #define HAVE-FATTACH 1 
26 #define HAVE-POLL 1 
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27 / *  #undef HAVE-PSELECT */  
28 #define HAVE-SIGWAIT 1 
29 #define HAVE-VALLOC 1 
30 #define HAVE-VSNPRINTF 1 

31 / *  Define the following if the function prototype is in a header * /  
32 #define HAVE-GETHOSTNAME-PROTO 1 I *  <unistd.hz * /  
33 #define HAVE-GETRUSAGE-PROTO 1 / *  <sys/resource.hz * /  
34 I*  #undef HAVE-PSELECT-PROTO * /  I *  csys/select.hz * /  
35 #define HAVE-SHM-OPEN-PROTO 1 / *  csys/mman.h> * /  
36 #define HAVE-SNPRINTFPROTO 1 / *  cstdio.hz * /  
37 #define HAVE-THR-SETCONCURRENCYYPROTO 1 / *  <thread.hz * /  

38 / *  Define the following if the structure is defined. * /  
39 #define HAVE-SIGINFO-T-STRUCT 1 / *  csignal.hz * /  
40 #define HAVE-TIMESPEC-STRUCT 1 / *  ctime.hz * /  
41 / *  #undef HAVE-SEMUh-UNION */  / *  csys/sem.hz * /  

42 / *  Devices * /  
43 #define HAVE-DEV-ZERO 1 

Define the following 
#undef int8-t " / 
#undef intl6-t * /  
#undef int32-t * /  
#uncle£ uint8-t * /  
#undef uintl6-t * /  
#undef uint32-t * /  
#undef size-t * /  
#undef ssize-t * /  

to the appropriate datatype, if necessary * /  
/ *  <sys/types.hz * /  
/ *  csys/types.hz * /  
/ *  <sys/types.hz * /  
/ *  <sys/types.hz * /  
/ *  <sys/types.hz * /  
/ *  <sys/types.hz * /  
/ *  <sys/types.hz * /  
/ *  csys/types.hz * /  

53 #define POSIX-IPC-PREFIX " / " 
54 #define RPCGEN-ANSIC 1 / *  defined if rpcgen groks -C option * /  

Figure C.2 Our con£ ig . h header for Solaris 2.6. 

C.3 Standard Error Functions 

We define our own set of error functions that are used throughout the text to hand11 
error conditions. The reason for our own error functions is to let us write our error han 
dling with a single line of C code, as in 

if (error condition ) 
err-sys (printf format with any number of arguments) ; 

instead of 

if (error condition) { 

char buff [2OO] ; 
snprintf (buff , sizeof (buf £1 , printf format with any number of arguments) ; 
perror (buf f) ; 
exit (1) ; 

1 
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Our error functions use the variable-length argument list facility from ANSI C. See Sec- 
tion 7.3 of [Kernighan and Ritchie 19881 for additional details. 

Figure C.3 lists the differences between the various error functions. If the global 
integer daemon~roc is nonzero, the message is passed to syslog with the indicated 
level (see Chapter 12 of UNPvl for details on syslog); otherwise, the error is output to 
standard error. 

strerror 
Function 1 (errno) ? / Terminate ? I level 

errdump 
err-msg 
err-qui t 
err-ret 
err-sys 

Figure C.3 Summary of our standard error functions. 

Figure C.4 shows the five functions from Figure C.3. 

#include "unpipc.hU 

#include <stdarg.h> / *  ANSI C header file * /  
#include <syslog.hz / *  for syslog0 * /  

int daemon-proc; / *  set nonzero by daemon-init0 * /  

static void err-doit(int, int, const char *, va-list); 

/ *   onf fatal error related to a system call. 
* Print a message and return. * /  

void 
err-ret(const char *fmt, ... ) 
I 

va-list ap; 

va-start(ap, frnt); 
err-doit (1, LOG-INFO, frnt , ap) ; 
va-end(ap); 
return; 

1 

/ *  Fatal error related to a system call. 
* Print a message and terminate. * /  

void 
err-sys(const char *fmt,...) 
{ 

va-list ap; 

va-start (ap, fmt) ; 
err-doit (1, LOG-ERR, frnt , ap) ; 
va-end(ap); 
exit (1) ; 
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/ *  Fatal error related to a system call. 
* Print a message, dump core, and terminate. * /  

void 
err-dump(const char *fmt, ... ) 
I 

va-list ap; 

va-start (ap. fmt) ; 
err-doit(1, LOG-ERR, fmt, ap) ; 
va-end(ap); 
abort ( ) ; / *  dump core and terminate * /  
exit(1) ; / *  shouldn't get here * /  

1 

/ *  Nonfatal error unrelated to a system call. 
* Print a message and return. * /  

void 
err-msg (const char *fmt , . . . ) 
I 

va-list ap; 

va-start (ap, fmt) ; 
err-doit (0, LOG-INFO, fmt , ap) ; 
va-end(ap); 
return; 

I 

/ *  Fatal error unrelated to a system call 
* Print a message and terminate. * /  

void 
err-quitlconst char *fmt,...) 
{ 

va-list ap; 

va-start (ap, fmt) ; 
err-doit(0, LOG-ERR, fmt, ap); 
va-end(ap); 
exit (1) ; 

1 

/ *  Print a message and return to caller. 
* Caller specifies "errnoflag" and "level". * /  

static void 
err-doit(int errnoflag, int level, const char *fmt, va-list ap) 
{ 

int errno-save, n; 
char buf [MAXLINE] ; 

errno-save = errno; / *  value caller might want printed * /  
#ifdef HAVE-VSNPRINTF 

vsnprintf(buf, sizeof(buf), fmt, ap); / *  this is safe * /  
#else 

vsprintf (buf, fmt, ap); / *  this is not safe * /  
#endif 
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76 if (errnof lag) 
7 7 snprintf(buf + n, sizeof(buf) - n, " :  %sU, strerror(errn0-save)); 
7 8 strcat (buf , " \nu ) ; 

if (daemonjroc) { 
syslog (level, buf) ; 

1 else { 

fflush(stdout) ; / *  in case stdout and stderr are the same * /  
fputs (buf, stderr) ; 
fflushlstderr); 

I 
return: 

Figure C.4 Our standard error functions. 
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Solutions to Selected Exercises 

Chapter 1 

1.1 Both processes only need to specify the 0-APPEND flag to the open function, or 
the append mode to the f open function. The kernel then ensures that each 
wr i t e  is appended to the file. This is the easiest form of file synchronization to 
specify. (Pages 60-61 of APUE talk about this in more detail.) The synchroniza- 
tion issues become more complex when existing data in the file is updated, as in a 
database system. 

1.2 Something like the following is typical: 

#ifdef -REENTRANT 
#define errno (*-errno ( ) 

#else 
extern int errno; 
#endi f 

If -REENTRANT is defined, references to errno call a function named -errno 
that returns the address of the calling thread's errno variable. This variable is 
possibly stored as thread-specific data (Section 23.5 of UNPv1). If -REENTRANT is 
not defined, then errno is a global i n t .  

Chapter 2 

2.1 These two bits can change the effective user ID and/or the effective group ID of 
the program that is running. These two effective IDS are used in Section 2.4. 
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2.2 First specify both 0-CREAT and 0-EXCL, and if this returns success, a new object 
has been created. But if this fails with an error of EEXIST, then the object already 
exists and the program must call the open function again, without specifying 
either 0-CREAT or 0-EXCL. This second call should succeed, but a chance exists 
(albeit small) that it fails with an error of ENOENT, which indicates that some other 
thread or process has removed the object between the two calls. 

Chapter 3 

3.1 Our program is shown in Figure D.1. 

2 int 
3 rnain(int argc, char **argv) 
4 { 

5 int i, rnsqid; 
6 struct rnsqid-ds info; 

7 for (i = 0; i < 10; i++) { 
8 rnsqid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT); 
9 Msgctl (rnsqid, IPC-STAT, &info) ; 
10 printf("rnsqid = %d. seq = %lu\nn, rnsqid, info.rnsgqerm.seq); 

Figure D.l Print identifier and slot usage sequence number. 

3.2 The first call to msgget uses the first available message queue, whose slot usage 
sequence number is 20 after running the program in Figure 3.7 two times, return- 
ing an identifier of 1000. Assuming the next available message queue has never 
been used, its slot usage sequence number will be 0, returning an identifier of 1. 

3.3 Our simple program is shown in Figure D.2. 

2 int 
3 rnain(int argc, char **argv) 
4 { 

5 Msgget(1PC-PRIVATE, 0666 1 IPC-CREAT I IPC-EXCL); 
6 unlink("/tmp/fifo.l"); 
7 Mkfifo("/tmp/fifo.ln, 0666); 

8 exit (0) ; 
9 I 

svrnsgl test urn ask.^ 
Figure D.2 Test whether the file mode creation mask is used by rnsgget. 
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When we run this program we see that our file mode creation mask is 2 (turn off 
the other-write bit) and this bit is turned off in the FIFO, but this bit is not turned 
off in the message queue. 

solaris % umask 
02 
solaris % testumask 
solaris % 1s -1 /tmg/fifo.l 
prw-rw-r-- 1 rstevens other1 0 Mar 25 16:05 /tmp/fifo.l 
solaris % ipcs -q 
IPC status from <running system> as of Wed Mar 25 16:06:03 1998 
T ID KEY MODE OWNER GROUP 
Message Queues: 

q 200 00000000 --rw-rw-rw- rstevens other1 

3.4 With f tok, the possibility always exists that some other pathname on the system 
can lead to the same key as the one being used by our server. With 
IPC-PRIVATE, the server knows that it is creating a new message queue, but the 
server must then write the resulting identifier into some file for the clients to read. 

3.5 Here is one way to detect the collisions: 

solaris % find / -links 1 -not -type 1 -print I 
xargs -nl f t ok l  > tm.1 
solaris % wc -1 tm.1 
109351 temp.1 

solaris % sort +O -1 tm.1 1 
nawk i f  (lastkey == $1) 

print  last l ine,  $0 
las t l ine  = $0 
lastkey = $1 

1' > t m . 2  
solaris % wc -1 t m . 2  

82188 temp.2 

In the find program, we ignore files with more than one link (since each link will 
have the same i-node), and we ignore symbolic links (since the stat function fol- 
lows the link). The extremely high percentage of collisions (75.2%) is due to 
Solaris 2.x using only 12 bits of the i-node number. This means lots of collisions 
can occur on any filesystem with more than 4096 files. For example, the four files 
with i-node numbers 4096, 8192, 12288, and 16384 all have the same IPC key 
(assuming they are on the same filesystem). 

This example was run on the same filesystems but using the f t o k  function from 
BSD/OS, which adds the entire i-node number into the key, and the number of 
collisions was only 849 (less than 1 %). 

4.1 If f d [ 1 1 were left open in the child when the parent terminated, the child's read 
of f d [ 1 1 would not return an end-of-file, because this descriptor is still open in 
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the child. By closing f d [ 1 ] in the child, this guarantees that as soon as the parent 
terminates, all its descriptors are closed, causing the child's read of fd [ l l  to 
return 0. 

4.2 If the order of the calls is swapped, some other process can create the FIFO 
between the calls to open and mkf i f o, causing the latter to fail. 

4.3 If we execute 

solaris % mainpopen 2>temp.stderr 
/etc/ntp.conf > /myfile 
solaris % cat temp-stderr 
sh: /myfile: cannot create 

we see that popen returns success, but we read just an end-of-file with fgets. 
The shell error message is written to standard error. 

4.5 Change the first call to open to specify the nonblocking flag: 

readfifo = Open(SERV-FIFO, 0-RDONLY I 0-NONBLOCK, 0); 
This call then returns immediately, and the next call to open (for write-only) also 
returns immediately, since the FIFO is already open for reading. But to avoid an 
error from readline, the 0-NONBLOCK flag must be turned off for the descriptor 
readf if o before calling readline. 

4.6 If the client were to open its client-specific FIFO (write-only) before opening the 
server's well-known FIFO (read-only), a deadlock would occur. The only way to 
avoid the deadlock is to open the two FIFOs in the order shown in Figure 4.24 or 
to use the nonblocking flag. 

4.7 The disappearance of the writer is signaled by an end-of-file for the reader. 

4.8 Figure D.3 shows our program. 

2 int 
3 main(int argc, char **argv) 
4 { 
5 int fdL21; 
6 char buffL71; 
7 struct stat info; 

8 if (argc !=  2 )  
9 err-quit("usage: test1 <pathname>"); 

10 Mkfifo(argv[l], FILE-MODE); 
11 fd [ 0 1 = Open ( argv [ 1 ] , 0-RWNLY I 0-NONBLCCK) ; 
12 fd[ll = Open(argv[l], 0-WRONLY ( 0-NONBLOCK); 

13 / *  check sizes when FIFO is empty * /  
14 Fstat (fd[O] , &info) ; 
15 printf("fd[O]: st-size = %1d\nm, (long) info.st-size); 
16 Fstat (fd[ll , &info) ; 
17 printf("fd[l]: st-size = %ld\nU, (long) info.st-size); 



Solutions to Selected Exercises Appendix D 519 

Write(fd[ll, buff, sizeof(buff)); 

/ *  check sizes when FIFO contains 7 bytes * /  
Fstat (fd[O] , &info) ; 
printf("fd[O]: st-size = %1d\nm, (long) info.st-size); 
Fstat (fd[ll , &info) ; 
printf("fd[l]: st-size = %1d\nu, (long) info.st-size); 

exit(0); 
I 

pipe/testl.c 

Figure D.3 Determine whether f stat returns the number of bytes in a FIFO. 

4.9 select returns that the descriptor is writable, but the call to write then elicits 
SIGPIPE. This concept is described on pages 153-155 of UNPv1; when a read (or 
write) error occurs, select returns that the descriptor is readable (or writable), 
and the actual error is returned by read (or write). Figure D.4 shows our pro- 
gram. 

2 int 
3 rrain(int argc, char **argv) 

4 { 

5 int fdL21, n; 
6 pid-t childpid; 
7 fd-set wset; 

( (childpid = Fork()) == 0) { / *  child * /  
printf("chi1d closing pipe read descriptor\nn); 
Close(fd[Ol ) ; 
sleep(6); 
exit (0) ; 

/ *  parent * /  
16 Close(fd[Ol ) ; / *  in case of a full-duplex pipe * /  
17 sleep(3) ; 
18 FD-ZERO (&wset) ; 
19 FD-SET(fd[ll, &wset) ; 
20 n = select(fd[l] + 1, NULL, &wset, NULL, NULL); 
21 printf ("select returned %d\nW, n) ; 

2 2 if (FD-ISSET(~~[~I, &wset)) { 

23 printf("fd[ll writable\nn); 
24 Write (fd[ll, "hello". 5) ; 
2 5 I 
2 6 exit(0) ; 

Figure D.4 Determine what select returns for writability when the read end of a pipe is closed. 
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Chapter 5 

5.1 

5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

First create the queue without specifying any attributes, followed by a call to 
m ~ g e t a t  t r  to obtain the default attributes. Then remove the queue and create 
it again, using the default value of either attribute that is not specified. 

The signal is not generated for the second message, because the registration is 
removed every time the notification occurs. 

The signal is not generated for the second message, because the queue was not 
empty when the message was received. 

The GNU C compiler under Solaris 2.6 (which defines both constants as calls to 
sysconf) generates the errors 

testl.c:13: warning: int format, long int arg (arg 2) 
testl.c:13: warning: int format, long int arg (arg 3) 

Under Solaris 2.6, we specify 1,000,000 messages of 10 bytes each. This leads to a 
file size of 20,000,536 bytes, which corresponds with our results from running Fig- 
ure 5.5: 10 bytes of data per message, 8 bytes of overhead per message (perhaps 
for pointers), another 2 bytes of overhead per message (perhaps for 4-byte align- 
ment), and 536 bytes of overhead per file. Before mq_open is called, the size of 
the program reported by ps  is 1052 Kbytes, but after the message queue is ae- 
ated, the size is 20 Mbytes. This makes us think that Posix message queues are 
implemented using memory-mapped files, and that mq_open maps the file into 
the address space of the calling process. We obtain similar results under Digital 
Unix 4.OB. 

A size argument of 0 is OK for the ANSI C memXXX functions. The original 1989 
ANSI C standard X3.159-1989, also known as ISO/IEC 98991990, did not say this 
(and none of the manual pages that the author could find mentioned this), but 
Technical Corrigendum Number 1 explicitly states that a size of 0 is OK (but the 
pointer arguments must still be valid). h t  t p  : / /www . l y s a t o r  . l i u  . se / c / is a 
wonderful reference point for information on the C language. 

For two-way communication between two processes, two message queues are 
needed (see for example, Figure A.30). Indeed, if we were to modify Figure 4.14 
to use Posix message queues instead of pipes, we would see the parent read back 
what it wrote to the queue. 

The mutex and condition variable are contained in the memory-mapped file, 
which is shared by all processes that have the queue open. Other processes may 
have the queue open, so a process that is closing its handle to the queue cannot 
destroy the mutex and condition variable. 

An array cannot be assigned across an equals sign in C, whereas a structure can. 

The main function spends almost all of its time blocked in a call to se lec t ,  wait- 
ing for the pipe to be readable. Every time the signal is delivered, the return from 
the signal handler interrupts this call to s e l e c t ,  causing it to return an error of 
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EINTR. To handle this, our Select wrapper function checks for this error, and 
calls s e 1 e c t again, as shown in Figure D.5. 

again : 
if ( (n = select(nfds, readfds, writefds, exceptfds, timeout)) < 0) { 

if (errno == EINTR) 
goto again; 

else 
err-sys("se1ect error"); 

I else if (n == 0 && timeout == NULL) 
errquit("se1ect returned 0 with no timeout"); 

return (n); / *  can return 0 on timeout * /  

Figure D.5 Our Select wrapper function that handles EINTR. 

Page 124 of UNPvl talks more about interrupted system calls. 

Chapter 6 

6.1 The remaining programs must then accept a numeric message queue identifier 
instead of a pathname (recall the output of Figure 6.3). This change could be 
made with a new command-line option in these other programs, or the assump 
tion could be made that a pathname argument that is entirely numeric is an iden- 
tifier and not a pathname. Since most pathnames that are passed to ftok are 
absolute pathnames, and not relative (i.e., they contain at least one slash charac- 
ter), this assumption is probably OK. 

6.2 Messages with a type of 0 are not allowed, and a client can never have a process 
ID of 1, since this is normally the ini t process. 

6.3 When only one queue is used in Figure 6.14, this malicious client affects all other 
clients. When we have one return queue per client (Figure 6-19), this client affects 
only its own queue. 

Chapter 7 

7.2 The process will terminate, probably before the consumer thread has finished, 
because calling exit terminates any threads still running. 

7.3 Under Solaris 2.6, omitting the call to the destroy functions causes a memory 
leak, implying that the init functions are performing dynamic memory alloca- 
tion. We do not see this under Digital Unix 4.OB, which just implies an implemen- 
tation difference. The calls to the matching destroy functions are still required. 
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Chapter 9 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

From an implementation perspective, Digital Unix appears to use the a t t r - t  
variable as the attributes object itself, whereas Solaris uses this variable as a 
pointer to a dynamically allocated object. Either implementation is fine. 

Depending on your system, you may need to increase the loop counter from 20, to 
see the errors. 

To make the standard 1 /0  stream unbuffered, we add the line 
setvbuf(stdout, NULL. -1ONBF. 0); 

to the main function, before the f o r  loop. This should have no effect, because 
there is only one call to p r i n t  f and the string is terminated with a newline. Nor- 
mally, standard output is line buffered, so in either case (line buffered or 
unbuffered), the single call to p r i n t  f ends up in a single wr i t e  call to the kernel. 

We change the call to p r i n t  f to be 
snprintf(line, sizeof(1ine). "%s: pid = %Id, seq# = %d\nm, 

argv[O], (long) pid. seqno); 
for (ptr = line; (c = *ptr++) !=  0; ) 

putchar(c); 

and declare c as an integer and p t r  as a char*. If we leave in the call to 
setvbuf, making standard output unbuffered, this causes the standard 110 
library to call wr i te  once per character that is output, instead of once per line. 
This involves more CPU time, and provides more opportunities for the kernel to 
switch between the two processes. We should see more errors with this program. 

Since multiple processes are allowed to have read locks for the same region of a 
file, this is the same as having no locks at all for our example. 

Nothing changes, because the nonblocking flag for a descriptor has no effect on 
f cnt  1 advisory locking. What determines whether a call to f cnt  1 blocks or not 
is whether the command is F-SETLKW (which always blocks) or F-SETLK (which 
never blocks). 

The loopf cntlnonb program operates as expected, because, as we showed in 
the previous exercise, the nonblocking flag has no effect on a program that per- 
forms f c n t l  locking. But the nonblocking flag does affect the loopnonenonb 
program, which performs no locking. As we said in Section 9.5, a nonblocking 
call to read or wri te  for a file for which mandatory locking is enabled, returns 
an error of EAGAIN if the read or wr i t e  conflicts with an existing lock. We see 
this error as either 

read error: Resource temporarily unavailable 

write error: Resource temporarily unavailable 

and we can verify that the error is EAGAIN by executing 



Solutions to Selected Exercises Appendix D 523 

9.7 

9.8 

9.9 

9.10 

Chapter 10 

10.1 

solaris % grep Resource /usr/include/aya/errno.h 
#define EAGAIN 11 / *  Resource temporarily unavailable * /  

Under Solaris 2.6, mandatory locking increases the clock time by about 16% and it 
increases the system CPU time by about 20%. The user CPU time remains the 
same, as we expect, because the extra time is within the kernel checking every 
read and write,  not within our process. 

Locks are granted on a per-process basis, not on a per-thread basis. To see con- 
tention for lock requests, we must have different processes trying to obtain the 
locks. 

If another copy of the daemon were running and we open with the 0-TRUNC flag, 
this would wipe out the process ID stored by the first copy of the daemon. We 
cannot truncate the file until we know we are the only copy running. 

SEEK-SET is always preferable. The problem with SEEK-CUR is that it depends 
on the current offset in the file, which is specified by lseek. But if we call l seek  
and then f cn t  1, we are using two function calls to perform what is a single oper- 
ation, and a chance exists that another thread can change the current offset by call- 
ing l s e e k  between our two function calls. (Recall that all threads share the same 
descriptors. Also recall that f c n t l  record locks are for locking between different 
processes and not for locking between the different threads within one process.) 
Similarly, if we specify SEEK-END, a chance exists that another thread can append 
data to the file before we obtain a lock based on what we think is the end of the 
file. 

Here is the output under Solaris 2.6: 

solaris % deadlock 100 
prod: 
prod: 
prod: 
prod: 

prod: 
prod: 
prod : 
prod: 

prod : 

cons : 
cons : 
cons : 
cons: 
cons : 

cons : 
cons : 
cons : 

calling sem-wait (nempty) 
got sem-wait (nempty) 
calling sem-wait(mutex) 
got sem-waithutex), storing 0 

calling sem-wait(nempty) 
got sem-wait(nempty) 
calling sem-wait(rnutex) 
got sem-wait(rnutex), storing 1 

calling sem-wait(nempty) 

calling sem-wait(rnutex) 
got sem-wait(mutex) 
calling sem-wait(nstored1 
got sem-wait(nstored) 
fetched 0 

calling sem-wait(rnutex) 
got sem-wait (mutex) 
calling sem-wait(nstored) 

i=U loop for producer 

i=l loop for producer 

start next loop, but no empty slots 
context switch from producer to consumer 
i=O loop for consumer 

i=O loop for consumer 
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cons: got sem-wait(nstored) 
cons: fetched 1 

cons: calling sem-wait(mutex) 
cons: got sem-wait(mutex) 
cons: calling sem-wait(nstored) consumer blocks here forever 

context switch from consumer to producer 
prod: got sem-wait(nempty) 
prod: calling sem-wait(mutex) producer blocks here forever 

This is OK given the rules for semaphore initialization that we specified when 
we described sem-open: if the semaphore already exists it, is not initialized. So 
only the first of the four programs that calls sem-open actually initializes the 
semaphore value to 1. When the remaining three call sem-open with the 
0-CREAT flag, the semaphore will already exist, so its value is not initialized 
again. 

This is a problem. The semaphore is automatically closed when the process ter- 
minates, but the value of the semaphore is not changed. This will prevent any of 
the other three programs from obtaining the lock, causing another type of dead- 
lock. 

If we did not initialize the descriptors to -1, their initial value is unknown, since 
malloc does not initialize the memory that it allocates. So if one of the calls to 
open fails, the calls to c l o s e  at the label e r r o r  could close some descriptor that 
the process is using. By initializing the descriptors to -1, we know that the calls 
to c lose  will have no effect (other than returning an error that we ignore) if that 
descriptor has not been opened yet. 

A chance exists, albeit slight, that c l o s e  could be called for a valid descriptor 
and could return some error, thereby changing e r rno  from the value that we 
want to return. Since we want to save the value of er rno to return to the caller, 
to do so explicitly is better than counting on some side effect (that c lose  will not 
return an error when a valid descriptor is closed). 

No race condition exists in this function, because the mkf i f o function returns an 
error if the FIFO already exists. If two processes call this function at about the 
same time, the FIFO is created only once. The second process to call mkf i f o will 
receive an error of EEXIST, causing the 0-CREAT flag to be turned off, prevent- 
ing another initialization of the FIFO. 

Figure 10.37 does not have the race condition that we described with Figure 10.43 
because the initialization of the semaphore is performed by writing data to the 
FIFO. If the process that creates the FIFO is suspended by the kernel after it calls 
mkf i f o but before it wr i tes  the data bytes to the FIFO, the second process will 
just open the FIFO and block the first time it calls s e m - w a i t ,  because the newly 
created FIFO will be empty until the first process (which created the FIFO) writes 
the data bytes to the FIFO. 

Figure D.6 shows the test program. Both the Solaris 2.6 and Digital Unix 4.08 
implementations detect being interrupted by a caught signal and return EINTR. 
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2 #define NAME "testeintr" 

3 static void sig-alrm(int); 

4 int 
5 main(int argc, char **argv) 
6 { 
7 sem-t *seml, sed: 

8 / *  first test a named semaphore * /  
9 sem-unlink(Px-ipc_name(NAME) ) ;  

10 seml = sem-open (PX-ipc-name (NAME) , 0-RMR I O-CREAT I O-MCL. 
11 FILE-MODE, 0) ; 

12 Signal(SIGALRM, sig-alrm); 
13 alarm(2) ; 
14 if (sem-wait (seml) == 0) 
15 printf("sem-wait returned O?\nW): 
16 else 
17 err-ret("sem-wait error"); 
18 Sem-close(sem1); 

/ *  now a memory-based semaphore with process scope * /  
Seminit (&sem2, 1, 0) ; 
alarm(2) ; 
if (sem-wait(&sem2) == 0) 

printf("sem-wait returned O?\nn); 
else 

29 static void 
30 sig-alrm(int signo) 
31 { 

32 printf("S1GALRM caught\n0); 
3 3 return; 

Figure D.6 Test whether sem-wait detects EINTR. 

Our implementation using FIFOs returns EINTR, because s e m - w a i t  blocks in a 
call to read on a FIFO, which must return the error. Our implementation using 
memory-mapped 1 / 0  does not return any error, because sem-wai  t blocks in a 
call to pthread-cond-wait and this function does not return EINTR when 
interrupted by a caught signal. (We saw another example of this with Fig- 
ure 5.29.) Our implementation using System V semaphores returns EINTR, 
because s e m- w a i t  blocks in a call to semop, which returns the error. 

10.9 The implementation using FIFOs (Figure 10.40) is async-signal-safe because 
w r i t e  is async-signal-safe. The implementation using a memory-mapped file 



526 Solutions to Selected Exercises Appendix D 

(Figure 10.47) is not, because none of the pthread-XXX functions are async- 
signal-safe. The implementation using System V semaphores (Figure 10.56) is 
not, because semop is not listed as async-signal-safe by Unix 98. 

Chapter 11 

11.1 Only one line needs to change: 
i sernid = Sernget (Ftok(argv[optind] , 0) , 0, 0) ; 
--- 
> sernid = atol(argv[optind]); 

11.2 The call to f tok will fail, causing our Ftok wrapper to terminate. The my-lock 
function could call f tok before calling semget, check for an error of ENOENT, 
and create the file if it does not exist. 

Chapter 12 

12.1 The file size would be increased by another 4096 bytes (to 36864), but our refer- 
ence to the new end-of-file (index 36863) might generate a SIGSEGV signal, since 
the size of the memory-mapped region is 32768. The reason we say "might" and 
not "will" is that it depends on the page size. 

12.2 Figure D.7 shows the scenario assuming a System V message queue, and Fig- 
ure D.8 shows the Posix message queue scenario. The calls to memcpy in the 
sender occur when m ~ s e n d  is called (Figure 5.30), and the calls to memcpy in 
the receiver occur when m~receive is called (Figure 5.32). 

receiver sender 

process - - - - - - - - - - - - -  
kernel 

System V 
message queue I 

Figure D.7 Sending messages using a System V message queue. 

Any read from /dev/zero returns the requested number of bytes, all contain- 
ing 0. Any data written to this device is simply discarded, just like writes to 
/dev/null. 

The final contents of the file are 4 bytes of 0 (assuming a 32-bit int). 

Figure D.9 shows our program. 
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I Posix message I 
I queuein 4 I memcpy ( ) sender 
I 

receiver 

I shared memory 
I 

I 

process 

kernel's virtual memory algorithm 
keeps regular file in sync 

with memory-mapped region 

Figure D.8 Sending messages using a Posix message queue implemented using map. 

2 #define MAXMSG (8192 + sizeof (long)) 

3 int 
4 main(int argc. char **argv) 

int pipe1 [2], pipe2 [2] , mqid; 
char c; 
pid-t childpid; 
fd-set rset; 
ssize-t n, nread; 
struct msgbuf *buff; 

if (argc != 2) 
err-quit("usage: svmsgread <pathname>"); 

Pipe (pipe1 ) ; / *  2-way communication with child * /  
Pipe (pipe2) ; 

buff = M~_S~(MAXMSG) ; / *  anonymous shared memory with child * /  

if ( (childpid = Fork0 ) == 0) ( 

Close (pipe1 [ 11 ) ; / *  child * /  
Close (pipe2 LO]) ; 

mqid = Msgget(Ftok(argv[l], 0). MSG7R); 
f o r ( ; ; ) (  

/ *  block, waiting for message, then tell parent * /  
nread = Msgrcv (mqid, buff , MAXMSG, 0, 0) ; 
write (pipe2 [I], &nread, sizeof (ssize-t) ) ; 

/ *  wait for parent to say s h  is available * /  
if ( (n = Read(pipel[O], &c, 1)) != 1) 

err-quit("chi1d: read on pipe returned %dm, n); 
1 
exit (0) ; 

1 
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31 / *  parent * /  
3 2 Close(pipel[Ol); 
3 3 Close(pipe2[1]); 

FD-ZERO (&rset ) ; 
FD-SET (pipe2 [ 0 1 , &rset) ; 
f o r ( ; ; ) (  

if ( (n = select(pipe2[0] + 1, &rset. NULL. NULL, NULL)) !=  1) 
err-sys("se1ect returned %dm, n); 

if (FD-1SSET(pipe2 [O] , &rset) ) { 

n = Read(pipe2 [0] , &nread, sizeof (ssize-t) ) ; 
if (n != sizeof (ssize-t) ) 

err-quit("parent: read on pipe returned %d", n); 

4 3 printf("read %d bytes, type = %ld\n", nread, buff->rntype); 
4 4 Write(pipe1 [l] , &c, 1) ; 

4 5 1 else 
4 6 errquit ("pipe2 [O] not ready" ) ; 
47 1 

4 8 ~ill(chi1dpid. SIGTERM); 
4 9 exit (0) ; 

Figure D.9 Example of parent and child setup to use select with System V messages. 

Chapter 13 

13.1 Figure D.10 shows our modified version of Figure 12.16, and Figure D.ll shows 
our modified version of Figure 12.19. Notice in the first program that we must 
set the size of the shared memory object using £truncate; we cannot use 
lseek and write. 

pxshrnltest1.c 
1 #include "unpipc . h" 
2 int 
3 rnain(int argc, char **argv) 

int fd, i; 
char *ptr; 
size-t shmsize, mmapsize, pagesize; 

if (argc != 4) 
err-quit("usage: test1 <name> <shmsize> <nunapsize>"); 

shmsize = atoi(argv[2]); 
mmapsize = atoi (argv[31) ; 

/ *  open shm: create or truncate; set shm size * /  
fd = Shm_open(Px-ipc-name(argv[l]), 0-RDWR I 0-CREAT I 0-TRUNC, 

FILE-MODE); 
Ftruncate(fd, shmsize); 
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16 ptr = Mmap(NULL, mmapsize, PROT-READ I PROT-WRITE, MAP-SHARED, fd. 0); 
17 Close ( f d) ; 

18 pagesize = Sysconf(-SC-PAGESIZE); 
19 printf("PAGES1ZE = %1d\nu, (long) pagesize); 

20 for (i = 0; i i rnax(shmsize, mapsize); i += pagesize) C 
2 1 printf ( "ptr [%dl = %d\nU , i, ptr [ill ; 
2 2 ptrri] = 1; 
23 printf("ptr[%d] = %d\n", i + pagesize - 1, ptr[i + pagesize - 11); 
24 ptr[i + pagesize - 11 = 1: 
2 5 1 
2 6 printf ( "ptr [%dl = %d\nW , i, ptr [i] ) ; 

2 7 exit (0) ; 
28 1 pxshmltestl .c 

Figure D.10 Memory mapping when m a p  equals shared memory size. 

pxshmltestl .c 
1 #include "unpipc-h" 

2 #define FILE "test.dataM 
3 #define SIZE 32768 

4 int 
5 main(int argc, char **argv) 
6 ( 
7 int fd, i; 
8 char *ptr; 

9 / *  open shm: create or truncate; then map shm * /  
10 fd = shm_open(Px-ipcpame(F1LE). 0-RDWR I 0-CREAT ( 0-TRUNC, FILE-MODE); 
11 ptr = Mmap (NULL, SIZE, PROT-READ ( PROT-WRITE, MAP-SHARED, fd, 0) ; 

12 for (i = 4096; i i= SIZE; i += 4096) ( 

13 printf("setting shm size to %d\nn, il; 
14 Ftruncate (fd, i) : 
15 printf("ptr[%d] = %d\n", i - 1, ptr[i - 11); 
16 1 

17 exit (0) ; 
18 1 pxshmltest1.c 

Figure D.ll Memory-map example that lets the shared memory size grow. 

13.2 One possible problem with *ptr++ is that the pointer returned by mmap is modi- 
fied, preventing a later call to munmap. If the pointer is needed at a later time, it 
must be either saved, or not modified. 
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Chapter 14 

14.1 Only one line needs to change: 

Chapter 15 

15.1 There are data-size + (desc-num x s izeof  (door-desc-t ) ) bytes of argu- 
ments. 

15.2 No, we do not need to call £ s t a t .  If the descriptor does not refer to a door, 
door-in£ o returns an error of EBADF: 

solaris % doorinfo /etc/passwd 
door-info error: Bad file number 

15.3 The manual page is wrong. Posix.1 states correctly that "The sleep0 function 
shall cause the current thread to be suspended from execution." 

15.4 The results are unpredictable (although a core dump is a pretty safe bet), because 
the address of the server procedure associated with the door will cause some 
random code in the newly execed program to be called as a function. 

15.5 When the client's door- call is terminated by the caught signal, the server pro- 
cess must be notified because the server thread handling this client (thread ID 4 
in our output) is then sent a cancellation request. But we said with Figure 15.23 
that for all the server threads automatically created by the doors library, cancella- 
tion is disabled, and hence this thread is not terminated. Instead, the call to 
s l e e p  ( 6 ) , in which the server procedure is blocked, appears to return prema- 
turely when the client's door- call is terminated, about 2 seconds after the 
server procedure was called. But the server thread still proceeds to completion. 

15.6 The error that we see is 

solaris % server6 /tmp/door6 
my-thread: created server thread 4 
door-bind error: Bad file number 

When starting the server 20 times in a row, the error occurred five times. This 
error is nondeterministic. 

15.7 No. All that is required is to enable cancellation each time the server procedure 
is called, as we do in Figure 15.31. Although this technique calls the function 
pthread-setcancels t a  t e every time the server procedure is invoked, 
instead of just once when the thread starts, this overhead is probably trivial. 

15.8 To test this, we modlfy one of our servers (say Figure 15.9) to call door-revoke 
from the server procedure. Since the door descriptor is the argument to 
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door-revoke, we must also make f d a global. We then execute our client (say 
Figure 15.2) twice: 

solaris % client8 /tmp/door8 88 
result: 7744 
solaris % client8 /tmp/door8 99 
door-call error: Bad file number 

The first invocation returns successfully, verifying our statement that 
door-revoke does not affect a call that is in progress. The second invocation 
tells us that the error from door-call is EBADF. 

15.9 To avoid making f d  a global, we use the cookie pointer that we can pass to 
door- create and that is then passed to the server procedure every time it is 
called. Figure D.12 shows the server process. 

2 void 
3 servproc(void *cookie, char *dataptr, size-t datasize, 
4 door-desc-t *descptr, size-t ndesc) 
5 { 

6 long arg, result; 

7 Door-revoke(*((int * )  cookie)); 
8 arg = *((long * )  dataptr); 
9 printf("thread id %Id, arg = %1d\nw, pr-thread-id(NULL), arg); 

10 result = arg * arg; 
11 Door-return((char * )  &result, sizeof(resu1t). NULL, 0); 
12 1 

13 int 
14 main(int argc, char **argv) 
15 { 
16 int fd; 

17 if (argc !=  2) 
18 err-quit("usage: server9 <server-pathname>"); 

19 / *  create a door descriptor and attach to pathname * /  
2 0 fd = Door-create(servproc, &fd, 0); 

2 4 / *  servproco handles all client requests * /  
2 5 for ( ; ; ) 

26 pause ( ) ; 
27 I doors/sewer9.c 

Figure D.12 Using the cookie pointer to avoid making f d a global. 

We could easily make the same change to Figures 15.22 and 15.23, since the 
cookie pointer is available to our my-thread function (in the door-info-t 
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15.10 

Chapter 16 

16.1 

16.2 

16.3 

16.4 

16.5 

16.6 

structure), which passes a pointer to this structure to the newly created thread 
(which needs the descriptor for the call to door-bind). 

In this example, the thread attributes never change, so we could initialize the 
attributes once (in the main function). 

The port mapper does not monitor the servers that register with it, to try and 
detect if they crash. After we terminate our client, the port mapper mappings 
remain in place, as we can verify with the rpcinf o program. So a client who 
contacts the port mapper after our server terminates will get an OK return from 
the port mapper with the port numbers in use before the server terminated. But 
when a client tries to contact the TCP server, the RPC runtime will receive an 
RST (reset) in response to its SYN (assuming that no other process has since been 
assigned that same port on the server host), causing an error return from 
clnt-create. A UDP client's call to clnt-create will succeed (since there is 
no connection to establish), but when the client sends a UDP datagram to the old 
server port, nothing will be returned (assuming again that no other process has 
since been assigned that same port on the server host) and the client's procedure 
call will eventually time out. 

The RPC runtime returns the server's first reply to the client when it is received, 
about 20 seconds after the client's call. The next reply for the server will just be 
held in the client's network buffer for this endpoint until either the endpoint is 
closed, or until the next read of this buffer by the RPC runtime. Assume that the 
client issues a second call to this server immediately after receiving the first reply. 
Assuming no network loss, the next datagram that will arrive on this endpoint 
will be the server's reply to the client's retransmission. But the RPC runtime will 
ignore this reply, since the XID will correspond to the client's first procedure call, 
which cannot equal the XID used for this second procedure call. 

The C structure member is char c [ 10 I, but this will be encoded by XDR as ten 
4-byte integers. If you really want a fixed-length string, use the fixed-length 
opaque datatype. 

The call to xdr-data returns FALSE, because its call to xdr-string (look at 
the data-xdr . c file) returns FALSE. 

When a maximum length is specified, it is coded as the final argument to 
xdr-string. When this maximum length is omitted, the final argument is the 
one's complement of 0, (which is 232 - 1, assuming 32-bit integers). 

The XDR routines all check that adequate room is available in the buffer for the 
data that is being encoded into the buffer, and they return an error of FALSE 
when the buffer is full. Unfortunately, there is no way to distinguish among the 
different possible errors from the XDR functions. 

We could say that TCP's use of sequence numbers to detect duplicate data is, in 
effect, a duplicate request cache, because these sequence numbers identify any 
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old segment that arrives as containing duplicate data that TCP has already 
acknowledged. For a given connection (e.g., for a given client's IP address and 
port), the size of this cache would be one-half of TCP's 32-bit sequence number 
space, or Z3', about 2 gigabytes. 

Since all five values for a given request must be equal to all five values in the 
cache entry, the first value compared should be the one most likely to be 
unequal, and the last value compared should be the one least likely to be 
unequal. The actual order of the comparisons in the TI-RPC package is (1) XID, 
(2) procedure number, (3) version number, (4) program number, and (5) client's 
address. Given that the XID changes for every request, to compare it first makes 
sense. 

In Figure 16.30, starting with the flag/length field and including 4 bytes for the 
long integer argument, there are 12 4-byte fields, for a total of 48 bytes. With the 
default of null authentication, the credential data and verifier data will both be 
empty. That is, the credentials and verifier will both take 8 bytes: 4 bytes for the 
authentication flavor (AUTH-NONE) and 4 bytes for the authentication length 
(which has a value of 0). 

In the reply (look at Figure 16.32 but realize that since TCP is being used, a 4-byte 
flag/length field will precede the XID), there are eight 4-byte fields, starting with 
the flag/length field and ending with 4 bytes of long integer result. They total 32 
bytes. 

When UDP is used, the only change in the request and reply is the absence of the 
4-byte flag/length field. This gives a request size of 44 bytes and a reply size of 
28 bytes, which we can verify with tcpdump. 

Yes. The difference in argument handling, both at the client end and at the server 
end, is local to that host and independent of the packets that traverse the net- 
work. The client main calls a function in the client stub to generate a network 
record, and the server main calls a function in the server stub to process this net- 
work record. The RPC record that is transmitted across the network is defined 
by the RPC protocol, and this does not change, regardless of whether either end 
supports threads or not. 

The XDR runtime dynamically allocates space for these strings. We verify this 
fact by adding the following line to our read program: 

printf("sbrk0 = %p, buff = %p , in.vstring-arg = %p\n", 
sbrk(NU~~), buff, in.vstring-arg); 

The sbrk  function returns the current address at the top of the program's data 
segment, and the memory just below this is normally the region from which 
ma1 l o c  takes its memory. Running this program yields 

sbrk0 = 29638, buff = 25e48, in.vstring-arg = 27e58 

which shows that the pointer vstring-arg points into the region used by 
malloc. Our 8192-byte buf f goes from Ox25e48 to Ox27e47, and the string is 
stored just beyond this buffer. 
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16.11 Figure D.13 shows the client program. Note that the final argument to 
c l n t - c a l l  is an actual t imeval  structure and not a pointer to one of these 
structures. Also note that the third and fifth arguments to c l n t - c a l l  must be 
nonnull function pointers to XDR routines, so we specify xdr-void, the XDR 
function that does nothing. (You can verify that this is the way to call a function 
with no arguments or no return values, by writing a trivial RPC specification file 
that defines a function with no arguments and no return values, running 
rpcgen, and examining the client stub that is generated.) 

sunrpc/squarelO/client.c 
1 #include "unpipc.h" / *  our header * /  
2 #include " square. h " / *  generated by rpcgen * /  

3 int 
4 main(int argc, char **argv) 

5 { 
6 CLIENT *cl: 
7 struct timeval tv; 

8 if (argc != 3) 
9 err-quit("usage: client <hostname> <protocol>"); 

10 cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, argv[2]); 

12 tv-tv-usec = 0: 
13 if (clnt-call (cl , NULLPROC, xdrvoid, NULL, 
14 xdr-void, NULL, tv) !=  RPC-SUCCESS) 
15 err-quit ( "%s" , clnt-sperror (cl, argv[l] ) ) ; 

Figure D.13 Client program that calls the server's null procedure. 

16.12 The resulting UDP datagram size (65536 + 20 + RPC overhead) exceeds 65535, the 
maximum size of an IPv4 datagram. In Figure A.4, there are no values for Sun 
RPC using UDP for message sizes of 16384 and 32768, because this is an older 
RPCSRC 4.0 implementation that limits the size of the UDP datagrams to around 
9000 bytes. 



Bibliography 

Whenever an electronic copy was found of a paper or report referenced in this bibli- 
ography, its URL is included. Be aware that these URLs can change over time, and 
readers are encouraged to check the Errata for this text on the author's home page for 
any changes: h t t p :  //www. kohala. corn/-rstevens. 

Bach, M. J. 1986. The Design of the UNlX Operating System. Prentice Hall, Englewood Cliffs, N.J. 

Birrell, A. D., and Nelson, B. J. 1984. "Implementing Remote Procedure Calls," ACM Transactions 
on Computer Systems, vol. 2, no. 1, pp. 39-59 (Feb.). 

Butenhof, D. R. 1997. Programming with POSIX Threads. Addison-Wesley, Reading, Mass. 

Corbin, J. R. 1991. The Art of Distributed Applications: Programming Techniques for Remote Procedure 
Calls. Springer-Verlag, New York. 

Garfinkel, S. L., and Spafford, E. H. 1996. Practical UNIX and Internet Security, Second Edition. 
O'Reilly & Associates, Sebastopol, Calif. 

Goodheart, B., and Cox, J. 1994. The Magic Garden Explained: The Internals of UNIX System V 
Release 4, An Open Systems Design. Prentice Hall, Englewood Cliffs, N.J. 

Hamilton, G., and Kougiouris, I? 1993. "The Spring Nucleus: A Microkernel for Objects," Pro- 
ceedings of the 1993 Summer USENIX Conference, pp. 147-159, Cincinnati, Oh. 



536 UNIX Network Programming Bibliography 

IEEE. 1996. "Information Technology-Portable Operating System Interface (POSIX)-Part 1: 
System Application Program Interface (API) [C Language]," IEEE Std 1003.1,1996 Edition, 
Institute of Electrical and Electronics Engineers, Piscataway, N. J. (July). 

This version of Posix.1 contains the 1990 base Am, the 1003.lb realtime extensions (1993), the 
1003.1~ Pthreads (1995), and the 1003.li technical corrections (1995). This is also International 
Standard ISO/IEC 9945-1: 1996 (E). Ordering information on IEEE standards and draft stan- 
dards is available at http: / /www. i eee .  org. Unfortunately, the IEEE standards are not freely 
available on the Internet. 

Josey, A., ed. 1997. Go Solo 2: The Authorized Guide to Version 2 of the Single UNIX Specification. 
Prentice Hall, Upper Saddle River, N.J. 

Also note that many of the Unix 98 specifications (e.g., all of the manual pages) are available 
onlineathttp://www.UNIX-systems.org/online.html. 

Kernighan, B. W., and Pike, R. 1984. The UNlX Programming Environment. Prentice Hall, Engle- 
wood Cliffs, N.J. 

Kernighan, B. W., and Ritchie, D. M. 1988. The C Programming Language, Second Edition. Prentice 
Hall, Englewood Cliffs, N.J. 

Kleiman, S., Shah, D., and Smaalders, B. 1996. Programming with Threads. Prentice Hall, Upper 
Saddle River, N. J. 

Lewis, B., and Berg, D. J. 1998. Multithreaded Programming with Pthreads. Prentice Hall, Upper 
Saddle River, N.J. 

McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S. 1996. The Design and Implementa- 
tion of the 4.4BSD Operating System. Addison-Wesley, Reading, Mass. 

McVoy, L., and Staelin, C. 1996. "lmbench: Portable Tools for Performance Analysis," Proceedings 
of the 1996 Winter Technical Conference, pp. 279-294, San Diego, Calif. 

This suite of benchmark tools, along with this paper, are available from 
http://www.bitmover.com/lmbench. 

Rochkind, M. J. 1985. Advanced UNIX Programming. Prentice Hall, Englewood Cliffs, N.J. 

Salus, I? H. 1994. A Quarter Century of Unix. Addison-Wesley, Reading, Mass. 

Srinivasan, R. 1995a. "RPC: Remote Procedure Call Protocol Specification Version 2," RFC 1831, 
18 pages (Aug.). 

Srinivasan, R. 1995b. "XDR: External Data Representation Standard," RFC 1832,24 pages (Aug.). 

Srinivasan, R. 1995c. "Binding Protocols for ONC RPC Version 2," RFC 1833,14 pages (Aug.). 

Stevens, W. R. 1992. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading, 
Mass. 

All the details of Unix programming. Referred to throughout this text as APUE. 

Stevens, W. R. 1994. TCPIZP Illustrated, Volume 1: The Protocols. Addison-Wesley, Reading, Mass. 
A complete introduction to the Internet protocols. Referred to throughout this text as TCPvl. 



UNIX Network Programming Bibliography 537 

Stevens, W. R. 1996. TCPIIP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX 
Domain Protocols. Addison-Wesley, Reading, Mass. 

Referred to throughout this text as TCPv3. 

Stevens, W. R. 1998. UNlX Network Programming, Volume 1,  Second Edition, Networking APls: Sock- 
ets and XTI. Prentice Hall, Upper Saddle River, N. J. 

Referred to throughout this text as UNPvI. 

Vahalia, U. 1996. UNlX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, N.J. 

White, J. E. 1975. "A High-Level Framework for Network-Based Resource Sharing," RFC 707, 
27 pages (Dec.). 

http://~~~.kohala.com/-rstevens/papers.others/rfc707.txt 

Wright, G. R., and Stevens, W. R. 1995. TCPIlP Illustrated, Volume 2: The lmplemenfafion. Addison- 
Wesley, Reading, Mass. 

The implementation of the Internet protocols in the 4.4BSD-Lite operaling system. Referred to 
throughout this text as TCPv2. 



Index 

Rather than provide a separate glossary (with most of the entries being acronyms), this 
index also serves as a glossary for all the acronyms used in this book. The primary 
entry for the acronym appears under the acronym name. For example, all references to 
Remote Procedure Call appear under RPC. The entry under the compound term 
"Remote Procedure Call" refers back to the main entry under RPC. 

The notation "definition of" appearing with a C function refers to the boxed func- 
tion prototype for that function, its primary description. The "definition of" notation 
for a structure refers to its primary definition. Some functions also contain the notation 
"source code" if a source code implementation for that function appears in the text. 

4.2BSD, 198 
4.3BSD, 98 
4.4BSD, 311,315-316 
4.4BSD-Lite, 537 
64-bit architectures, 85,427 

abor t  function, 90,424-425 
absolute time, 171 
Abstract Syntax Notation One, see ASN.1 
accept function, 399 
accept- stat  member, 447 
accepted- reply structure, definition of, 447 
access  function, 91 
ACE (Adaptive Communications Environment), 

180 
address, IP, 245,401,403,413,422,533 
advisory locking, 203-204,217,522 
aio-return function, 91 
aio-suspend function, 91 

AIX, xvi, 151 
alarm function, 91,396,425 
American National Standards Institute, see ANSI 
American Standard Code for Information 

Interchange, see ASCII 
anonymous memory mapping, 315-317 
ANSI (American National Standards Institute), 21, 

402-403,505,511,520 
API (application program interface), 13-14,356, 

379-380,450,536 
sockets, xiv, 8,14,151,398-399,403,406, 

449-450,454-455 
TLI, 406 
XTI, 14,151,398-399,403,406,413-414,424, 

449-454455 
Apollo, 406 
APUE (Advanced Programming in the UNIX 

Environment), xiv, 536 
areply  member, 447 



540 UNIX Network Programming Index 

arm, 429 
array datatype, XDR, 429 
a r ray  member, 288 
ASCII (American Standard Code for Information 

Interchange), 193,426,429,444 
ASN.1 (Abstract Syntax Notation One), 426 
Aspen Group, 178 
asynchronous 

event notification, 87 
I/O, 14,101 
procedure call, 356 

asyncsignal-safe, 90-91,95,98,102,279,525-526 
at-least-once RPC call semantics, 423,450 
at-most-once RPC call semantics, 423,450 
atomic, 24,59,197,214,220,286 
atomicity of pipe and FIFO writes, 65-66 
attributes 

condition variable, 113,172-174,521 
doors, 363,366,375,384 
message queue, 79-82,520 
mutex, 172-174 
process-shared, 9-10,113,128,173,175,265, 
454 

read-write lock, 179 
thread, 98,113,502,521,532 

aup-gid member, 416 
aup-gids member, 416 
aup-len member, 416 
aup-machname member, 416 
aup-time member, 416 
aup-uid member, 416 
AUTH-BADCRED constant, 449 
AUTH-BADVERF constant, 449 
AUTH-DES constant, 417 
AUTH-ERROR constant, 448-449 
AUTH-FAILED constant, 449 
AUTH-INVALIDRESP constant, 449 
AUTH-KERB constant, 417 
AUTH-NONE constant, 414,446-447,533 
AUTH-OK constant, 449 
AUTH-REJECTEDCRED constant, 449 
AUTH-REJECTEDVERF constant, 449 
AUTH-SHORT constant, 417,446 
AUTH-SYS constant, 414,416,446-447 
AUTH_TOOWEAK constant, 449 
auth-destroy function, 415 
auth-f lavor  member, 446 
auth-stat  member, 449 
authentication 

null, 414 
RPC, 414-417 
Unix, 414 

authsys-create-default function, 415 
authsysqarms structure, 416 

definition of, 416,446 
autoconf program, 509 
awk program, xvii, 13 

Bach, M. J., 36,535 
bandwidth, 457 

performance, message passing, 467-480 
basename program, 13 
Basic Encoding Rules, see BER 
Bass, J., 198 
Bausum, D., xvi 
Bentley, J. L., xvii 
BER (Basic Encoding Rules), 426 
Berg, D. J., 371,536 
bibliography, 535-537 
bii-endian byte order, 403,426,444 
binary semaphore, 219,281 
bind function, 399 
Birrell, A. D., 406,535 
black magic, 380 
body member, 446 
boo1 datatype, XDR, 429 
Bostic, K., 311,536 
Bound, J., xvi 
bounded buffer problem, 161 
Bourne shell, 13,5272 
Bowe, G., xvi 
Briggs, A., xvi 
BSD/OS, 53,59,66,84,111,209-210,213,316, 

403-405,411-412,425,437,456,517 
buf member, 288 
buffers, multiple, 249-256 
BUFFSIZE constant, definition of, 507 
bullet, silver, 453 
Butenhof, D. R., xvi, 9,95,160,163,180,192,535 
byte 

order, big-endian, 403,426,444 
order, little-endian, 403,426 
range, 197 
stream, 67,74,76,444,454 

BYTES-PER-XDR-UNIT constant, 438 

C function prototype, 21,105,363,384,402-403, 
505 

C shell, 72 
C standard, 21,90,511,520 

c9x, 21 
Technical Corrigendum, 520 

CALL constant, 446 



UNIX Network Programming Index 541 

call semantics 
at-least-once RPC, 423,450 
at-most-once RPC, 423,450 
exactly-once RPC, 422-423,450 
RPC, 422-424 

call-body structure, definition of, 446 
c a l l o c  function, 84,136 
cancellation, thread, 174,180,183,187-192384, 

388,396-398,530 
carriage return, see CR 
c a t  program, 52-53,64-66 
cbody member, 446 
CDE (Common Desktop Environment), 15 
Cedar, 406 
cfget ispeed function, 91 
cf getospeed function, 91 
cf se t i speed  function, 91 
c f  setospeed function, 91 
cgid  member, 33-34,131,283 
Chang, W., xvi 
char datatype, XDR, 427 
chd i r  function, 91 
chmod function, 91 
chmod program, 205 
chown function, 91 
chown program, 33 
cl-auth member, 415 
Clark, J. J., xvii 
Cleeland, C., xvi 
CLGET-RETRY-TIMEOUT constant, 418 
CLGET-TIMEOUT constant, 418 
client 

handle, definition of, 401 
identity, 83-84,365,369,397,415-477.456 
stub, 403,405 

c l i e n t  function, 48,54-55,72,142,144,147,149 
CLIENT structure, 401 -402,415 
clnt -ca l l  function, 419-420,424,451,486,534 
clnt-control  function, 418-420 

definition of, 418 
clnt-create function, 401,403-405,412-413, 

418,420,532 
definition of, 401 

clnt-destroy function, 420 
definition of, 420 

clnt-sperror function, 424 
c ln t - s t a t  structure, 409 
clock-gettime function, 91 
c lose  function, 12,61,63,65,73,77,91,114,214 

260,265,279,330,376-378,383-384,524 
Clouter, M., xvi 
CLSET-TIMEOUT constant, 420 
coding style, 12.90 

Columbus Unix, 28 
Common Desktop Environment, see CDE 
concurrency, thread, 163,165-166,488 
concurrent server, 66-67,147,357,372,407 
condition variables, 159-175 

attributes, 113,172-1 74,521 
c0nfig.h header, 509-510 
conf igure  program, 509 
connect function, 399 
cons t datatype, XDR, 427 
contention scope, 386,388,462 
conventions, source code, 1 I 
cooperating processes, 203 
cooperative locks, 161 
Coordinated Universal Time, see UTC 
copy-on-write, 501 
Corbin, J. R., 406,535 
counting semaphore, 221,281 
Courier, 406 
Cox, J., 36,311,535 
cpio program, 13 
CR (carriage return), 67 
c r e a t  function, 91 
creator ID, 33 
cred member, 446 
credentials, 417,446,449,533 
critical region, 159,177,197 
cuid  member, 33-34,131,283 

d-a t t r i b u  t e s  member, 380,384 
d-data member, 380 
d-desc structure, 380 

definition of, 380 
d-descriptor member, 380 
d-id member, 380 
daemon, 60,174,203,408,502,504,511,523 

starting one copy, 213-214 
daemonjroc variable, 511 
Data Encryption Standard, see DES 
d a t a q t r  member, 357,362-363,367-369 
data- size member, 357,362,530 
datatypes, XDR, 427-430 
dc-egid member, 365 
dc-euid member, 365 
d c q i d  member, 365 
dc-rgid member, 365 
dc-ruid member, 365 
DCE (Distributed Computing Environment), 407 
deadlock, 56,143,238,279,518,523-524 
DEBUG constant, 408 
delta time, 171 
denial-of-service, see DoS 



542 UNIX Network Programming 

7 

Index 

DES (Data Encryption Standard), 417 
des c-nun member, 357,362-363,530 
d e s c q t r  member, 357,362-363'380 
descriptor passing, 84,379-384 
detached thread, 98,384,386-388,504 
/ d e v / c l t s  device, 413 
/ dev/null  device, 526 
/dev/ zero device, 315-317,322-323,325,454, 

497,526 
/dev/zero memory mapping, 316-317 
dg-echo function, 256 
d i -a t t r ibu tes  member, 366 
di-data member, 366,384 
d i q r o c  member, 366,384, ,386 
di-target  member, 366 
di-uniqui f i e r  member, 366 
Digital Equipment Corp., xvi 
Digital Unix, xvi, 15,20-21,37,51,73,77,79,82, 

98,l00,104,109,154,163,209-210,213,225, 
231-232,238,296,319,331,333,342,351,370, 
407,411-412,437,458-459,461-462,464, 
466,471,489,520-522,524 

Dijkstra, E. W., 220 
DIR-MODE constant, definition of, 508 
discriminant, 429 
discriminated union, 429 
Distributed Computing Environment, see DCE 
Door- createqroc datatype, 384 
DOOR-DESCRIPTOR constant, 380,384 
DOOR-LOCAL constant, 366 
WOR-PRIVATE constant, 364,366,386 
DOOR-QUERY constant, 366 
DOOR-RELEASE constant, 384 
DOORREVOKE constant, 366 
Door-servergroc datatype, 363 
DOOR-mREF constant, 364,366,375-379 
DOOR-mREFDATA constant, 364,375 
door-arg-t structure, 363,380-381 

definition of, 362 
door-bind function, 377,385-386,388,390,532 

definition of, 390 
door-call function, 357-358,360-364,367,369, 

388,390-393,395-398,422,476,484,530-531 
definition of, 361 

door-create function, 357-358,361,363-364, 
375,377,379,384-386,388-389,397-398,531 

definition of, 363 
door-cred function, 365,369 

definition of, 365 
door-cred-t structure, 365 

definition of, 365 
door-desc-t structure, 362-363,380-381,530 

definition of, 380 

door-in£ o function, 365-367,377,530 
definition of, 365 

door-in£ o-t structure, 364,366,384,386-387, 
531 

definition of, 366 
door- return function, 358,361-362,364-365, 

377,380,383,385,387-388,396-397 
definition of, 365 

door-revoke function, 366,377,390,398, 
530-531 

definition of, 390 
door-server-create function, 384-390 

definition of, 384 
door-unbind function, 390 

definition of, 390 
doors, 355-398 

attributes, 363,366,375,384 
premature termination of client, 390-397 
premature termination of server, 390-397 
thread management, 370-375 

Dorado, 406 
DoS (denial-of-service), 65-67 
double buffering, 251 
double datatype, XDR, 427 
dup function, 91 
dup2 function, 91 
duplicate data, 418,421,451,532 
duplicate request cache, RPC server, 421-424,451, 

532-533 

E2BIG error, 83,133 
EACCES error, 24,32,199,216,225 
EAGAIN error, 1259-60,93,121,124,132,199, 

205,227,260,269,276,286,293,339,503,522 
EBADF error, 52,530-531 
EBUSY error, 90,121,160,178,184,192 
echo program, 64 
EDEADLK error, 238 
EEXIST error, 23-24,31-32,54,74,111,214-215, 

235,260,284,294,516,524 
effective 

group ID, 23,25,33-34,131,283,365,414,416, 
515 

user ID, 23,25,33-34,84,131,283,365, 
369-370,414,416,515 

EIDRM error, 132-133,286 
EINTR error, 90,121,124,132-133,149,227,279, 

286,391-394,398,521,524-525 
EMSGSIZE error, 13,83 
ENOBUFS error, 341 
ENOENT error, 24,32,115,516,526 
ENOMSG error, 133,139 



UNIX Network Programming Index 543 

ENOSPC error, 24,32 
enum datatype, XDR, 429 
environment variable 

PATH, 52 
PX-IPC-NAME, 21 

EN XI^ error, 59 
ephemeral port, 404,411,414,450 
EPIPE error, 60 
err- doit  function, source code, 512 
err-dump function, 511 

source code, 512 
err-msg function, 511 

source code, 512 
e r r q u i t  function, 381,511 

source code, 512 
e r r r e t  function, 511 

source code, 511 
err- sys function, 11-12511 

source code, 511 
errata availability, xvi 
- errno function, 515 
errno variable, 11-13,18,49,116,267,269,274. 

279,502-503,511,515,524 
cerrno.  h> header, 13,18 
error functions, 510-513 
ESPIPE error, 54 
ESRCH error, 121 
/ e t c / i n e t d .  con£ file, 413 
/e tc /netconf ig  file, 413 
/ e t c / rpc  file, 412-413 
/e tc /sysconf ig tab  file, 38 
/etc/system file, 37,458 
ETIMEDOUT error, 171 
exactly+nce RPC call semantics, 422-423.450 
examples road map, 15-16 
exec function, 9-10,13,58,73,364,379-380,398, 

414,502,530 
execle function, 91 
execve function, 91 
exercises, solutions to, 515-534 
e x i t  function, 9,48,90,226,504,511,521 
- e x i t  function, 9-10,91,226,504 
expIicit 

file I/O, 322 
network programming, 4,399,403 
synchronization, 161 
thread termination, 502 
typing, 426 

external data representation, see XDR 

F-GETFL constant, 58 
F-GETLK constant, 199-200 

F-RDLCK constant, 199 
F-SETFL constant, 58-59 
F-SETLK constant, 199-200,522 
F-SETLKW constant, 199,201,522 
F-UNLCK constant, 199 
F-WRLCK constant, 199 
FALSE constant, 409,418,429,439,441,532 
f a t t a c h  function, 357,359,364,376-377,379,397 
f c n t l  function, 58,91,174,193-194,198-200, 

202,205,207,274-217,398,418,4% 
455-456,462,495,522-523 

definition of, 199 
FD-CLOEXEC constant, 10,364,398 
fdatasync function, 91 
f detach function, 364,376 
f detach program, 364 
f dopen function, 68 
f g e t s  function, 48,53,71,249,518 
FIFO (first in, first out), 54-60 

limits, 72-73 
NFS and, 66 
order, lock requests, 210 
order, message queue, 133,138,143 
order, queued signals, 100,102,104-105 
order, RPC server reply cache, 422 
permissions, 54 
used for implementation of Posix semaphores, 

257-262 
writes, atomicity of pipe and, 65-66 

f i f 0 . h  header, 56 
file I/O, explicit, 322 
file locking 

using Posix semaphores, 238 
using System V semaphores, 294-296 
versus record locking, 197-198 

file mode creation mask, 23,33,55 
file permissions, 203,205,216,397 
FILE structure, 52,401-402 
File Transfer Protocol, see ETP 
FILE-MODE constant, 55,79 

definition of, 508 
filesystem persistence, 6-7,78,311 
FIN (finish flag, TCP header), 420,424-425 
f ind  program, 39,517 
finish flag, TCP header, see FIN 
first in, first out, see FIFO 
f l avor  member, 446 
f l o a t  datatype, XDR, 427 
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i-node, 28-29,349,517 
Institute of Electrical and Electronics Engineers, see 

IEEE 
i n t  datatype, XDR, 427 
in t l6- t  datatype, 427 
int32-t datatype, 427 
int64-t datatype, 427 
int8-t  datatype, 427 
International Electrotechnical Commission, see IEC 
International Organization for Standardization, see 

IS0 
Internet Protocol, see IP 
Internet Protocol version 4, see IPv4 
interprocess communication, see IPC 
i o c t l  function, 379,384 
IP (Internet ProtocoD, address, 245,401,403,413, 

422,533 
IPC (interprocess communication) 

identifier reuse, System V, 34-36 
kerneI limits, System V, 36-38 
key, 28 
name space, 7-9 
names, Posix, 19-22 
networked, 453 
nonnetworked, 453 
permissions, Posix, 23,25-26,84,115,225,232, 

267,327 
permissions, System V, 31-35,39,130-131, 

282-283,343-345 
persistence, 6-7 
Posix, 19-26 
System V, 27-39 

IPC-CREAT constant, 31-32,38,130,283-284, 
294,344 

IPC-EXCL constant, 31-3238,130,135,141,273, 
283-284,289,294,344 

IPC-NOWAIT constant, 87,132-133,139,143,276, 
286-287.290 

IPC-PRIVATE constant, 29-31,38-39,130,134, 
147,155,344,517 

IPC-RMID constant, 35,134,137,275,288-289, 
345-346,351 

IPC-SET constant, 33,134,288,345 
IPC-STAT constant, 38,134,274,285,289-290, 

294,345,347-348,351,455 
i p c q e r m  structure, 30-35,38,129-130,282-283, 

343 
definition of, 30 

ipcrm program, 36 
ipcs  program, 36,134,138-140,348-349,455 
IPv4 (Internet Protocol version 4), 446,451,534 
is-read-lockable function, definition of, 202 
is-write- lockable function, definition of, 202 
IS0 (International Organization for 

Standardization), 13-14,520,536 
iterative, server, 66-67,144,372,407-408 

Johnson, M., mi  
Johnson, S., mi  
joinable thread, 387,504 
Josey, A., 15,536 
justice, poetic, 517 

Kacker, M., xvi 
Karels, M. J., 311,536 
Kerberos, 417 
kernel limits, System V IPC, 36-38 
kernel persistence, 6,75,77,226 
Kernighan, B. W., mi-xvii, 12,511,536 
key, IPC, 28 
key-t datatype, 8,28-30,455 
k i l l  function, 91,101 
Kleiman, S., 180,536 
KornShell, 72-73 
Kougiouris, I?, 356,535 

1-len member, 199-200 
l q i d  member, 199 
1-s tar t  member, 199-200 
1-type member, 199 
1-whence member, 199-200 
last in, first out, see LIFO 
latency, 361,458 

performance, message passing, 480-486 
leak, memory, 114,175,452,521 
Leisner, M., xvi 
Lewis, B., 371,536 
LF (linefeed), 67 
LIFO (last in, first out), 104 
lightweight process, 501 
l i m i t  program, 72 
limits 

FIFO, 72-73 
pipe, 72-73 
Posix message queue, 86-87 
Posix semaphore, 257 
System V IPC kernel, 36-38 
System V message queue, 152-154 
System V semaphore, 296-300 
System V shared memory, 349-351 
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d i m i  ts . h> header, 72 
linefeed, see LF 
l i n k  function, 91,215-216 
Linux, mi, 288,356,407 
l i s t e n  function, 399 
little-endian byte order, 403,426 
lmbench program, 458-459 
local procedure call, 355 
lock priority, 180,207-213 
lock-reg function, 202 
lock- test function, 202 
lockd program, 216 
lockf function, 198 
lockf c n t l  program, 203-204 
locking 

advisory, 203-204,217,522 
conflicts, 170-171 
file locking versus record, 197-198 
granularity, 198 
lock files, 214-216 
mandatory, 204-207,217 
NFS, 216 
priorities of readers and writers, 207-213 
record, 193-217 
shared-exclusive, 177 
versus waiting, 165-167 

locking function, 198 
locknone program, 203-204,207,217 
LOG-ERR constant, 511 
LOG-INFO constant, 511 
long datatype, XDR, 427 
long double datatype, 427 
long long datatype, 427 
long jmp function, 90 
long long-t datawe, 427 
loom program, xvii 
loop£ c n t l  program, 205-206,217 
loopf cntlnonb program, 217,522 
loopnone program, 205-206 
loopnonenonb program, 217,522 
low member, 447,449 
l p  program, 193 
LP64, 427 
l p r  program, 193 
1s program, 36,81,205,360,455 
lseek function, 5,54,91,113,115,200,202,310, 

322,327,523,528 
l s t a t  function, 21,44 
Lyon, B., 406 

machinename member, 446 
magic number, 109,117,181,258,262,271 

main thread, 93,190,235,388,488,490,502 
malloc function, 117,160,432,435,467-468,524, 

533 
mandatory locking, 204-207,217 
many-to-few thread implementation, 163 
MAP-ANON constant, 315-316,322,454,497 
MAP-FIXED constant, 309 
MAP-PRIVATE constant, 309-310,323 
MAP-SHARED constant, 309-311,315,323 
Marquardt, D., mi  
marshaling, 405 
MAX-PATH constant, definition of, 507 
MAXLINE constant, 49,505 

definition of, 507 
McKusick, M. K., 311,536 
McVoy, L., mi, 458,536 
memcpy function, 127,526 
memory 

leak, 114,175,452,521 
mapping, anonymous, 315-317 
mapping, /dev/ zero,  316-317 
object, 326 

memory-mapped 
file, 78,107,111,127,308,310-311,313,322, 

325-326,471,520,525 
I/O, 303,525 
I/O, used for implementation of Posix message 

queues, 106-126 
I/O, used for implementation of Posix 

semaphores, 262-270 
mesg structure, 149 
mesg-recv function, 69-71,141-142,144,149 
mesg-send function, 69-70,141-142.194 
mesg . h header, 68 
Mesg-recv function, 149 
message 

boundary, 67,76,444,454 
queue attributes, 79-82.520 
queue descriptor, definition of, 77 
queue ID, 129-130,139-140,142,147,149,151, 

154 
queue limits, Posix, 86-87 
queue limits, System V, 152-154 
queue priority, 82-83,85-86,109,123-124,126, 

143,482 
queues, implementation using memory- 

mapped I/O, Posix, 106-126 
queues, Posix, 75-128 
queues, System V, 129-155 
queues with p o l l  function, System V, 151-152 
queues with s e l e c t  function, Posix, 95-98 
queues with s e l e c t  function, System V, 

151-152 
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messages 
multiplexing, 142-151 
streams versus, 67-72 

Metz, C. W., xvi 
mismatch-in£ o structure, definition of, 447,449 
mkdir function, 91 
mkf if o function, 39,54-58,74,91,518,524 

definition of, 54 
mkf ifo program, 54 
mlock function, 322 
mlockall function, 322 
mmap function, 14,109,113,115,263,265,303, 

307-311,315-320,322-323,325-328, 
330-334,337,342-343,363,369,471,527,529 

definition of, 308 
mode member, 31-34,134,283,289,345 
mode-t datatype, 110-111 
MQ-OPEN-MAX constant, 86 
MQ-PRIO-MAX constant, 82-83,86 
mq-at tr structure, 80,83 

definition of, 80 
mq-close function, 76-79,109,116-117,126-127 

definition of, 77 
source code, 116 

mq-curmsgs member, 80,123-124 
mq-f lags member, 80,108,118 
mq-getattr function, 79-83,85,117,126,520 

definition of, 79 
source code, 1 18 

mq-hdr structure, 109,113,117,119 
-in£ o structure, 106,108-109,113,115-118 
mq-maxmsg member, 76,80,86,112,123,127 
mq-msgsize member, 76,80,83,86,112,127 
mq-notify function, 87-99,117,119,126-127 

definition of, 87 
source code, 120 

mq-open function, 19-20,22,25,76-80,82,106, 
109,111-114,116,126-127,326-327.520 

definition of, 76 
source code, 109 

mq-receive function, 24,76,82-86,88,90,93, 
115,121,124,126,482,526 

definition of, 83 
source code, 125 

mq-send function, 13,24,82-86,109, 121,124, 
126-127,471,526 

definition of, 83 
source code, 122 

mq-setattr function, 7Y-82,118,126 
definition of, 79 
source code, 119 

mq-unlink function, 76-79,117,126,327 
definition of, 77 
source code, 117 

mqd-t datatype, 8,77,95,109,326 
mqh-attr structure, 108 
mqh-event structure, 119 
mqh-free member, 108-109,113 
mqh-head member, 108-109,113,124 
mqh-nwait member, 121,124 
mqhgid member, 119 
mqh-wait member, 121 
MQI-MAGIC constant, 109 
mqi-f lags member, 109 
mqi-hdr member, 109 
mqi-magic member, 109 
mqueue . h header, 106 
MS-ASYNC constant, 310 
MS-INVALIDATE constant, 310 
MS-SYNC constant, 310 
MSG-ACCEPTED constant, 447-448 
MSG-DENIED constant, 447-448 
MSG-NOERROR constant, 83,133 
MSG-PEEK ~~ns tan t ,  152,455 
MSG-R constant, 33 
MSG-TRUNC constant, 83 
MSG-w constant, 33 
msg-cbytes member, 129,134 
msg-ctime member, 129,131 
msg-f irst member, 129 
msg-hdr structure, 109,113, l u ,  126,310 
msg-las t member, 129 
msg-len member, 109 
msg-lrpid member, 129,131 
msg-lspid member, 129,131 
msg-next member, 108-109,124 
msggerm structure, 131,134 

definition of, 129 
msggrio member. 109 
msg-qbytes member, 129,131-132 134 
msg-qnum member, 129,131 
msg-r t ime member, 129,131 
msg-st ime member, 129,131 
msg-type member, 446 
msgbuf structure, 131,134,136,482 

definition of, 131 
msgctl function, 35,38,134-135,137 

definition of, 134 
msgget function, 33-35,38,130-131,135,139, 

154,516-517 
definition of, 130 

msghdr structure, 126 
msgmap variable, 37 
msgmax variable, 37-38,152,458 
msgmnb variable, 37-38,152,458 
msgmni variable, 37-38,152 
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msgrcv function, 83,87,131-134,137-139,143, 
149,151-152,304,323,482 

definition of, 132 
msgseg variable, 37,152,458 
msgsnd function, 34,131-132,135,143,154,304 

definition of, 131 
msgssz variable, 37,152 
msgtql variable, 37-38,152 
msqid-ds structure, 130,132,134 

definition of, 129 
msync function, 307-311 

definition of, 310 
mtext member, 131 
M-to-N thread implementation, 163 
mtype member, 131 
multiple buffers, 249-256 
multiplexing messages, 142-151 
multithreading, RPC, 407-411 
munlock function, 322 
munlockall function, 322 
munmap function, 117,267,307-311,363,369,529 

definition of, 309 
mutex, 159-175 

and condition variables, used for 
implementation of Posix read-write lock, 
179-187 

attributes, 172-174 
mutual exclusion, 159,194,221 
my-create function, 386-387 
my-lock function, 194,196-197,200-202,214, 

217,238,279,294,296,526 
my-sh function, 323,497-498 
my-thread function, 386-388,531 
my-unlock function, 194,196-197,200,202,238, 

279,294 
mymesg structure, 68 

name space, IPC, 7-9 
named pipe, 43,54 
names, Posix IPC, 19-22 
National Optical Astronomy Observatories, see 

NOAO 
NCA (Network Computing Architecture), 406 
NCK (Network Computing Kernel), 407 
NCS (Network Computing System), 406 
NDR (Network Data Representation), 406 
Nelson, B. J., 406,535 
Nelson, R., xvi 
network programming, explicit, 4,399,403 
Network Computing Architecture, see NCA 
Network Computing Kernel, see NCK 
Network Computing System, see NCS 
Network Data Representation, see NDR 

Network File System, see NFS 
Network Interface Definition Language, see NIDL 
Network News Transfer Protocol, see NNTP 
networked IPC, 453 
NFS (Network File System), 404,406,411,417,495 

and FIFO, 66 
locking, 216 
secure, 417 

NIDL (Network Interface Definition Language), 
406 

NNTP (Network News Transfer Protocol), 67 
NOAO (National Optical Astronomy 

Observatories), xvi 
nonblocking, 24,58-59,80,85,87,93,109,132,143, 

160,184,205,217,260,262,269,276,286,293, 
518,522 

noncooperating processes, 203-204 
nondeterministic, 197,217,530 
nonnetworked IPC, 453 
n toh l  function, 441 
null 

authentication, 414 
procedure, 451,486,534 
signal, 121 

0-APPEND constant, 515 
0-CREAT constant, 22-25,31,54,77,110-111,115, 

214-216,225,228-229,239,258,260,263, 
265,273-274,279,285,327,334,516,524 

0-EXCL constant, 22-25,31,54,77,111,214-215, 
225,235,260,273,327,516 

0-NONBLOCK constant, 22.24.58-60,77,93,121, 
124,217,260,518 

0-RDONLY constant, 22,25-26,61,63,77,115,225, 
327 

0-WRONLY constant, 22,25-26,61,77,115,216, 
225 

oa-base member, 416 
oa-f l avo r  member, 416 
oa-length member, 416 
od program, 313,319,331 
ONC (Open Network Computing), 406 
opaque data, 429 
opaque datatype, XDR, 429 
opaque-auth structure, definition of, 416,446 
open systems interconnection, see OSI 
open function, 22-23,26,31,49,54,56,58,61,63, 

65-66,71,74,91,111,115,214-217,260,265, 
273,310-311,315-317,325-327,342,357, 
361,364,367,376,379-380,382-383,397, 
515,518,523-524 
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Open Group, The, 14-15 
Open Network Computing, see ONC 
Open Software Foundation, see OSF 
OPEN-MAX constant, 72-73 
Operation Support Systems, 28 
optarg variable, 82 
opt ind variable, 78 
OSF (Open Software Foundation), 14 
OSI (open systems interconnection), 426 
owner ID, 25,33,38,397 

packet formats, RFC, 444-449 
Papanikolaou, S., xvii 
PATH environment variable, 52 
PATH-MAX constant, 19,22 
pathconf function, 72-73,91 
pause function, 90-91,230,359,420 
pclose  function, 52-53,73 

definition of, 52 
- PC-PIPE-BUF constant, 72 
PDP-11, 37 
performance, 457-499 

message passing bandwidth, 467-480 
message passing latency, 480-486 
process synchronization, 497-499 
thread synchronization, 486-496 

permissions 
FIFO, 54 
file, 203,205,216,397 
Posix IPC, 23,k-26,84,115,225,232,267,327 
System V IPC, 31-35,39,130-131,282-283, 

343-345 
persistence, 6 

filesystem, 6-7,78,311 
IPC, 6-7 
kernel, 6,75,77,226 
process, 6 

pid-t datatype, 194 
Pike, R., 12,536 
pipe, 44-53 

and FIFO writes, atomicity of, 65-66 
full-duplex, 44,50-52,127,475 
limits, 72-73 
named, 43,54 

pipe function, 44,50,56,58,68,73,91 
definition of, 44 

PIPE-BUF constant, 59-60,65,72-73,260 
po l  1 function, 95,151,155,171,339,454 

System V message queues with, 151-152 
polling, 87,167,214 
popen function, 52-53,73-74,518 

definition of, 52 

port 
ephemeral, 404,411,414,450 
mapper, 404,406,411-414,450-451,532 
reserved, 417 

Portable Operating System Interface, see Posix 
portmap program, 411 
Posix (Portable Operating System Interface), 13-14 

IPC, 19-26 
IPC names, 19-22 
IPC permissions, 23,25-26,84,115,225,232, 

267,327 
message queue limits, 86-87 
message queues, 75- 128 
message queues, implementation using 

memory-mapped I/O, 106-126 
message queues with s e l e c t  function, 95-98 
read-write lock, implementation using mutexes 

and condition variables, 179-187 
realtime signals, 98-106 
semaphore limits, 257 
semaphores, 219-279 
semaphores between processes, 256-257 
semaphores. file locking using, 238 
semaphores, implementation using FIFOs, 

257-262 
semaphores, implementation using memory- 

mapped 110, 262-270 
semaphores, implementation using System V 

semaphores, 271 -278 
shared memory, 325-342 

Posix.1, 8.14-16,19,44,59,73,83,87,98,101,159, 
173,178, 198,205,214,225,240,256,266,279, 
309,325,328,364,468,482,530,536 

definition of, 14 
Rationale, 14,223,240,262,328 

Posix.lb, 14,99,536 
Posix.lc, 14,536 
Posix.lg, 8 
Posix.li, 14,536 
Posix. 1 j, 178,488 
Posix.2, 14-16 

definition of, 13 
P0six.4, 99 
POSIX-IPC-PREFIX constant, 22 
- POSIX-C-SOURCE constant, 13 
- POSIX-MAPPED-FILES Constant, 9 
- POSIX-MESSAGE-PASSING constant, 9 
-POSIX-REALTIME-SIGNALS constant, 9 
- POSIX-SEMAPHORES constant, 9 
- POSIX-SHARED-MEMORY-OBJECTS constant, 9 
- POSIX-THREAD-PROCESS-SHARED constant, 9, 

173 
- POSIX-TKREADS constant, 8-9 
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PostScript, xvij 
pr-thread-id function, 370-371 
source code, 371 

printf function, 90,102,127,205,217,279,383, 
398,408,522 

priority 
lock, 180,207-213 
message queue, 82-83,85-86,109,123-124, 
126,143,482 

thread, 160,502 
private server pool, 386,388,390 
proc member, 446 
PROC-UNAVAIL constant, 447-448 
procedure call 
asynchronous, 356 
local, 355 
synchronous, 356-357,476 

procedure, null, 451,486,534 
process 
lightweight, 501 
persistence, 6 

processes, cooperating, 203 
process-shared attribute, 9-10,113,128,173,175, 

265,454 
producer-zonsumer problem, 161-165,233-238, 

242-249 
prog member, 446 
PROG-MISMATCH constant, 447-448 
PROG-UNAVAIL Constant, 447-448 
PROT-EXEC constant, 309 
P R o T - ~ E  constant, 309 
PROT-READ constant, 308-309 
PROT-WRITE constant, 308-309 
ps program, 127,175,367,452,520 
pselect function, 171 
FTHREAD-CANCEL constant, 188 
FTHREAD-COND_INITIALIZER constant, 167, 

172 
PTHREAD-MUTEX-INITIALIZER constant, 160, 

172 
Pthread-mut ex-lock wrapper function, source 

code, 12 
PTHREAD-PROCESS-PRIVATE constant, 173,179 
PTHREAD-PROCESS-SHARED constant, 113,128, 

173,179,193,239,256,265,462,497-498 
PTHREAD-RWLOCK-INITIALIZER constant, 

178-179 
FTHREAD-SCOPE-PROCESS Constant, 387 
FTHREAD-SCOPE-SYSTEM constant, 386,388 
pthread-attr-destroy function, 398 
pthread-attr-init function, 398 
pthread-at tr-t datatype, 502 

pthread-cancel function, 187,190 
definition of, 187 

pthread-cleanupqop function, 187,191 
definition of, 187 

pthread-cleanupqush function, 187,396 
definition of, 187 

pthread-condattr-destroy function, 175 
definition of, 172 

pthread-condat tr-getpshared function, 
definition of, 173 

pthread-condattr-init function, 114,175 
definition of, 172 

pthread-condattr-setpshared function, 
definition of, 173 

pthread-condattr-t datatype, 172 
pthread-cond-broadcast function, 171,175, 

186 
definition of, 171 

pthread-cond-destroy function, definition of, 
172 

pthread-cond-init function, definition of, 172 
pthread-cond-signal function, 124,126, 

167-171,175,186-187,227,268-269 
definition of, 167 

pthread-cond-t datatype, 8,167,256 
pthread-cond-timedwai t function, 171 
definition of, 171 

pthread-cond-wai t function, 121,167-171, 
175,183-184,187,190-192,227,269,525 

definition of, 167 
pthread-create function, 163,217,356, 

385-388,502-504 
definition of, 502 

pthread-de tach function, 502-504 
definition of, 504 

pthread-exi t function, 174,187,425,502-504 
definition of, 504 

pthread-j oin function, 357,387,502-504 
definition of, 503 

pthread-mutexattr-destroy function, 175 
definition of, 172 

pthread-mutexattr-getpshared function, 
definition of, 173 

pthread-mutexattr-ini t function, 113-114, 
175,265 

definition of, 172 
pthread-mutexat tr-se tpshared function, 

113,265 
definition of, 173 

pthread-mutexattr-t datatype, 172-173 
pthread-mutex-des troy function, definition 

of, 172 
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pthread-mutex-init function, 113,160, 
172-173,265,498 

definition of, 172 
pthread-mutex-lock function, 12,160,190,221 

definition of, 160 
pthread-mutex-t datatype, 8,160,172,256,279 
pthread-mutex-trylock function, 160 

definition of, 160 
pthread-mutex-unlock function, 221 

definition of, 160 
pthread-rwlockattrdestroy function, 

definition of, 179 
pthread-rwlockattr-getpshared function, 

definition of, 179 
pthread- rwlockat t r - in i  t function, definition 

of, 179 
pthread- rwlockat tr-se tpshared function, 

definition of, 179 
pthread-rwlockattr-t datatype, 179 
pthread-rwlock-des t r o y  function, 179,181, 

192 
definition of, 179 
source code, 182 

pthread-rwlock. h header, 180 
pthread-rwlock-ini t function, 179,181 

definition of, 179 
source code, 182 

pthread-rwlock-rdlock function, 178-179, 
183,190-191 

definition of, 178 
source code, 183 

pthread-rwlock-t datatype, 8,178,180-181, 
183,188,193,256 

pthread-rwlock-tryrdlock function, 184 
definition of, 178 
source code, 184 

pthread-rwlock-trywrlock function, 184 
definition of, 178 
source code,. 185 

pthread-rwlock-unlock function, 178-179, 
186,190,192 

definition of, 178 
source code, 186 

pthread-rwlock-wrlock function, 178-179, 
183-184,190-191 

definition of, 178 
source code, 185 

pthread- self function, 502-504 
definition of, 503 

pthread-setcancelstate function, 396,530 
pthread-se tconcurrency function, 163 
pthread-sigmask function, 95 
pthread-t datatype, 370-371,502 

<pthread. h> header, 180 
Pthreads, 15 
putchar function, 217 
PX-IPC-NAME environment variable, 21 
px-ipc-name function, 21-22,26,78,235,505 

definition of, 21 
source code, 22 

quadruple datatype, XDR, 427 
Quarterman, J. S., 311,536 
queued signals, 100,102 

FIFO order, 100,102,104-105 

Rafsky, L. C., xvi 
Rago, S. A., xvi 
r a i s e  function, 91 
rbody member, 446 
rbuf member, 357,362-363,367-369 
read ahead, 251 
read function, 5-6,43,49-52,54,59,61,63,70, 

83,90-91,142,161,200,204-207,249,254, 
260,262-263,278,304,310-311,322,399,406, 
435,451,456-457,467,469,471,482, 
517-519,522-523,525-526,533 

read-lock function, 207 
definition of, 202 

readers-and-writers 
locks, 178 
problem, 177 

r ead l ine  function, 61,63,74,518 
readw-lock function, 207-208 

definition of, 202 
read-write lock, 177-192 

attributes, 179 
implementation using mutexes and condition 

variables, Posix, 179-187 
real 

group ID, 365 
user ID, 365,369 

realtime 
scheduling, 14,160,171,454 
signals, Posix, 98-106 

record, 75 
locking, 193-217 
locking, file locking versus, 197-198 

recv  function, 152 
recvf rom function, 152,406 
recvmsg function, 83,152 
Red Hat Software, xvi 
- REENTRANT constant, 13,515 
Regina, N., xvii 
Reid, J., xvi 
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re ject-stat member, 449 
re jected-reply structure, definition of, 449 
remote procedure call, see RPC 
remote procedure call language, see RPCL 
remote procedure call source code, see RPCSRC 
remote terminal protocol, see Telnet 
rename function, 91 
REPLY constant, 446 
reply-body structure, definition of, 447 
reply-stat member, 447 
Request for Comments, see RFC 
reserved port, 417 
reset flag, TCP header, see RST 
results member, 447 
retransmission, 424,532 

RPC timeout and, 417-422 
RFC (Request for Comments) 

1831, 406,430,446-447 
1832, 406,426,430 
1833, 406,412 

Ritchie, D. M., 511,536 
rm program, 36,376-377,379 
rmdir function, 91 
RNDUP function, 438 
road map, examples, 15-16 
Rochkind, M. J., 27,536 
round-trip time, 451,458 
RPC (remote procedure call), 355,399-452 

and inetd program, 413-414 
authentication, 414-417 
call semantics, 422-424 
call semantics, at-least-once, 423,450 
call semantics, at-most-once, 423,450 
call semantics, exactly-once, 422-423,450 
multithreading, 407-411 
packet formats, 444-449 
premature termination of client, 424-426 
premature termination of server, 424-426 
secure, 417 
server binding, 411-414 
server duplicate request cache, 421-424,451, 

532-533 
TCP connection management, 420 
timeout and retransmission, 417-422 
transaction ID, 420-422 

RPC-CANTRECV constant, 424 
RKMISMATCH constant, 448-449 
RPC-SUCCESS constant, 409 
rpc-msg structure, definition of, 446 
rpcbind program, 406,411-412,450 
rpcgen program, 400-406,408-409,411, 

413-414,419,427-429,432-433,435, 
439-440,442,449-451,476,486,534 

rpcinf o program, 412-414,532 
RPCL (remote procedure call language), 430 
RPCSRC (remote procedure call source code), 406, 

534 
rpcvers member, 446 
rq-clntcred member, 415 
rq-cred member, 415-416 
rq-proc member, 415 
rq-prog member, 415 
rq-vers member, 415 
rq-xprt member, 415 
rreply member, 447 
r s i ze member, 357,362-363,367-368 
RST (reset flag, TCP header), 425,532 
RTSIG-MAX Constant, 100 
Rw-MAGIC constant, 181 
xcondreaders member, 183,186 
rw-condwriters member, 184,186 
x m a g i c  member, 181 
rw-rnutex member, 181,183 
-waitreaders member, 183,191 
-waitwriters member, l83-l84,l9O-l9l 
rw-ref count member, 181,183-184186 
rwlock-cancelrdwait function, 191 
rwlock-cancelwrwai t function, 191 

S-IRGRP constant, 23 
S-IROTH constant, 23 
S-IRUSR constant, 23 
S-ISDOOR constant, 367 
S-ISFIFO macro, 44 
S-IWGRP constant, 23 
S-IWOTH constant, 23 
S-IWUSR constant, 23 
S-IXUSR constant, 111,263 
S-TYPEISMQ macro, 21 
S-TYPEISSEM macro, 21 
S-TYPEISSHM macro, 21 
SA-RESTART constant, 106 
SA-SIGINFO constant, 100-102,105-106,127 
sa-f lags member, 106 
sa-handler member, 106 
sa-mask member, 106 
sa-sigaction member, 105-106 
Salus, P. H., 43,536 
sar program, 39 
sbrk function, 533 
-SC-CHILD-MAX constant, 297 
scheduling, realtime, 14,160,171,454 
Schmidt, D. C., 180 
-SC-MQ-OPEN-MAX constant, 87 
-SC-MQ-PRIO-MAX constant, 87 
scope, contention, 386,388,462 
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- SC-OPEN-MAX constant, 72 
- SC-PAGESIZE constant, 317,470,529 
- SC-RTSIG-MAX constant, 102 
- SC-SEM-NSEMS-MAX constant, 257 
- SC-SEM-VALUE-MAX constant, 257,265 
Secure 

NFS, 417 
RPC, 417 

Security, hole, 328 
SEEK-CUR constant, 200,217,523 
SEEK-END constant, 200,217,523 
SEEK-SET constant, 200,217,523 
select function, 74,95,98,151-152 155,171, 

323,339,454,519-521,528 
Posix message queues with, 95-98 
System V message queues with, 151-152 

select wrapper function, source code, 521 
sem structure, 273,282-283 

definition of, 282 
SEM-A constant, 33,283 
SEM-FAILED constant, 225 
SEM-MAGIC constant, 258,262 
SEM-NSEMS-MAX constant, 257 
semqost wrapper function, source code, 11 
SEM-R constant, 33,283 
sEM-uNDo constant, 174,286-287,290,294,296, 

492 
SEM-VALUE-MAX constant, 225,257 
sem-base member, 282-283 
sem-close function, 224-226,228,235,260,267, 

275 
definition of, 226 
source code, 261,267,275 

sem-c time member, 282-283,289 
sem-destroy function, 224,238-242 

definition of, 239 
sem-f lg member, 276,285-286,492 
sem-getvalue function, 224-225,227,262,269, 

277 
definition of, 227 
source code, 270,278 

sem-init function, 224,238-242,256,315,339, 
490,498 

definition of, 239 
sem-magic member, 258,262 
sem-nsems member, 282-283,290 
sem-num member, 285-286 
sem-op member, 285-287 
sem-open function, 19,22,25-26,224-226, 

228-229,232,235,239-240,242,256,258, 
260,263,265-267,271,273-274,279,285, 
326-327,333,498,524 

definition of, 225 
source code, 258,264,271 

sem-o t ime member, 273-274,282-285,296 
semqerm structure, 283,288-289 

definition of, 282 
semqost function, 11,90-91,221-225, W, 238, 

242,256-257,260,267,275,279,287,456,490 
definition of, 227 
source code, 261,268,276 

sem-t datatype, 8,225,238-240,242,256,258, 
260,262-263,265-266,271,275,326 

sem-trywai t function, 224-227,262,269,276, 
339 

definition of, 226 
source code, 270,277 

sem-unlink function, 224-226,235,242,260, 
267,275,305,327,333 

de

fini

tion of, 226 
source code, 261,268,276 

sem-wai t function, 221 -227,Z30,232,236,238, 
242,256,258,262,268-269,275-276,279, 
287,339,524-525 

definition of, 226 
source code, 262,269,277 

semadj member, 10,286-287,294 
semaem variable, 37-38,296 
semaphore. h header, 258,262,271 
semaphores 

between processes, Posix, 256-257 
binary, 219,281 
counting, 221,281 
file locking using Posix, 238 
file locking using System V, 294-296 
ID, 271,283,290,300 
implementation using FIFOs, Posix, 257-262 
implementation using memory-mapped I/O, 

Posix, 262-270 
implementation using System V semaphores, 

Posix, 271-278 
limits, Posix, 257 
limits, System V, 296-300 
Posix, 219-279 
System V, 281 -300 

sembuf structure, 285-286,290,296 
definition of, 285 

semctl function, 273-275,277,283-284,287-290, 
294 

definition of, 287 
semget function, 34,38,257,273-275,282-285, 

290,294,526 
definition of, 282 

semid-ds structure, 282-284288-290 
definition of, 282 

semmap variable, 37 
s e m i  variable, 37-38,296 
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s e m s  variable, 37,296 
semmnu variable, 37,296 
semmsl variable, 37-38,296 
sernncnt member, 282-283,286-288 
semop function, 273,275-276,283-287,290,294, 

296,492,525-526 
definition of, 285 

semopm variable, 37-38,296 
sempid member, 282-283,288 
semume variable, 37-38,296 
semun structure, 506 

definition of, 288 
semval member, 282-283,286-288 
SEMVMX constant, 273 
semvmx variable, 37-38,296 
semzcnt member, 282-283,286-288 
sendmsg function, 384 
sendto function, 405 
seq member, 34-35,38 
sequence number, slot usage, 34 
server 

binding, RPC, 411 -414 
concurrent, 66-67,147,357,372,407 
creation procedure, 384 
duplicate request cache, RPC, 421 -424,451, 

532-533 
iterative, 66-67,144,372,407-408 
stub, 405 

se rve r  function, 48-49,54-55,63,72,141-142, 
144,149 

session, 4 
s e  t-concurrency function, 163,165,488 
SETALL constant, 283-284,288,290 
s e t g i d  function, 91 
set-group-ID, 26,198,205 
se tpgid  function, 91 
s e t r l i m i t  function, 72 
s e t s i d  function, 91 
setsockopt function, 418 
s e t u i d  function, 91 
set-user-ID, 26,205,369 
SETVAL constant, 273,283-284,288 
setvbuf function, 522 
sh  program, 52 
Shar, D., 180,536 
shared memory, 303-351 

ID, 344,351 
limits, System V, 349-351 
object, 325 
Posix, 325-342 
System V, 343-351 

shared-exclusive locking, 177 
SHM-R constant, 33 

SHM-RDONLY constant, 345 
SHM-RND constant, 344 
SHM-w constant, 33 
s b a t i m e  member, 343 
s-cnat t ch  member, 343 
shm-cpid member, 343 
s-c t ime member, 343,345 
s-dtime member, 343 
s-lpid member, 343 
s w n a t  t ch member, 343,348 
s b o p e n  function, 19,22,25,308,325-328,330, 

333-334,337,342-343 
definition of, 326 

shmgerm structure, 345 
definition of, 343 

s h ~ s e g s z  member, 343 
shm_unlink function, 326-327,329,333,337,342 

definition of, 326 
s h a t  function, 343-347,351 

definition of, 344 
s h c t l  function, 345-348,351 

definition of, 345 
s h d t  function, 345 

definition of, 345 
s h g e t  function, 34,38,343-344,346-349,351 

definition of, 344 
s h i d - d s  structure, 345,348 

definition of, 343 
SHMLBA constant, 344 
shmmax variable, 37-38,349 
s h i n  variable, 37-38 
shmmnb variable, 349 
shmmni variable, 37-38,349 
s h s e g  variable, 37-38,349 
s h o r t  datatype, XDR, 427 
SI-ASYNCIO constant, 101 
SI-MESGQ constant, 101,121 
SI-QUEUE Constant, 101,104,121 
SI-TIMER constant, 101 
sI-USER constant, 101 
si-code member, 101,104,121 
si-signo member, 101 
si-value member, 101 
SIG-DFL constant, 106 
SIG-IGN constant, 60,106 
s igac t ion  function, 91,100,105 
s igac  t i o n  structure, definition of, 106 
s igaddset  function, 91 
SIGALRM signal, 100,106,396-397,425 
SIGBUS signal, 320 
SIGCHLD signal, 48,149,391-393,414 
s igde l se t  function, 91 
sigemptyset function, 91 
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s i g e v  structure, 98 
SIGEV-NONE constant, 98 
SIGEV-SIGNAL constant, 89,98,121 
SIGEV-THREAD Constant, 98,128 
sigev-notif y member, 88-89,98 
sigev-not if y -a t t r i bu t e s  member, 88,98 
sigev-no t i f  y-f unct ion  member, 88,98 
sigev-signo member, 88,90 
sigev-value member, 88,98 
s igevent  structure, 87,89,91,100,119,121 

definition of, 88 
s i g f  i l l s e t  function, 91 
Sigfunc-rt datatype, 105 
s i g i n f  o-t structure, 95,101,121 

definition of, 101 
SIGINT signal, 100 
s I G I 0  signal, 256 
sigismember function, 91 
SIGKILL signal, 100 
signal 

disposition, 60,502 
handler, 60,88-91,93,95,98,100-102,105-106, 

121,149,227,256,286,391,393,456,502,520 
mask, 93,95,384,502 
null, 121 
Posix realtime, 98-106 
synchronous, 60 

s i g n a l  function, 88,90-91,105 
s ignal- rt  function, 102,105-106 

source code, 105 
s igpause  function, 91 
sigpending function, 91 
SIGPIPE signal, 59-60,519 
sigprocrnask function, 91,93,95,102 
sigqueue function, 91,101,121 
SIGRTMAX signal, 100,102,127 
SIGRTMIN signal, 100,127 
SIGSEGV signal, 174,267,309,318-320,526 
sigset function, 91 
sigsuspend function, 91,93 
SIGTERM signal, 469 
sigtimedwai t function, 95 
SIGUSRl signal, 88-91,93,95 
s i g v a l  structure, 100-101 

definition of, 88 
s igwa i t  function, 93-95 

definition of, 95 
s igwa i t i n f  o function, 95 
silver bullet, 453 
Simple Mail Transfer Protocol, see SMTP 
Single Unix Specification, 15 
Sitarama, S. K., xvi 
s iva l - i n t  member, 88,102 

s i v a l q t r  member, 88 
Skowran, K., xvi 
s l e e p  function, 91,93,127,190,215,296,398,425, 

530 
sleep-us function, 339 
slot usage sequence number, 34 
Smaalders, B., xvi, 180,536 
SMTP (Simple Mail Transfer Protocol), 67 
Snader, J. C., xvi 
snp r in t f  function, 21 
socket, Unix domain, 84,341,379-380,384,456, 

459 
socket  function, 399 
socketpa i r  function, 44,50 
sockets API, xiv, 8,14,151,398-399,403,406, 

449-450,454-455 
Solaris, xvii, 15,20-21,29,37,51,53,59,73,77-78, 

82,98,100,104,109,154,163,165,209-210, 
213,225,232,238,322,331,333,342,348, 
356-357,362,367,370,384,398,403-405, 
408,411-413,424-425,427,454,458-460, 
462-463,465,471,475,482,488,509-510, 
517,520-524 

solutions to exercises, 515-534 
source code 

availability, xvi 
conventions, 11 

Spafford, E. H., 417,535 
Spec 1170, 15 
spinning, 167 
s p r i n t f  function, 21 
spurious wakeup, 121,170 
squareproc-1 function, 402-403,405,419,424 
Srinivasan, R., 406,412,426,536 
s t-dev member, 28-30 
s t q i d  member, 328 
st- ino member, 28-30 
st-mode member, 21,44,115,267,328,367 
s t-si ze member, 74,262,328 
st- uid member, 328 
Staelin, C., 458,536 
Stallman, R. M., 13 
stamp member, 446 
standards, Unix, 13-15 
s tar t- t ime function, 469-470 

source code, 470 
s t a t  function, 21,28-29,44,91,115,262,267,455, 

517 
s t a t  member, 449 
s t a t  structure, 21.28-29,44,74,115,262,267, 

328,367 
definition of, 328 

s t a t d  program, 216 
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Stevens, D. A., xvi 
Stevens, E. M., xvi 
Stevens, S. H., xvi 
Stevens, W. R, xiv, 536-537 
Stevens, W. R, xvi 
stop-t ime function, 469-470 

source code, 470 
strchr function, 63 
streams versus messages, 67-72 
strerror function, 49,511 
string datatype, XDR, 429,438,451 
strlen function, 429 
struct datatype, XDR, 429 
stub 

client, 403,405 
server, 405 

SUCCESS constant, 447-448 
Sun Microsystems, 406 
SunOS 4, 316 
superuser, 25,33-34,216,369-370,414,417 
supplementary group ID, 25,414,416 
svc-create function, 411 
svc-dg-enablecache function, 422 

definition of, 422 
svcreg function, 414 
svc-req structure, 409,415,422 

definition of, 415 
svc-run function, 414 
svc-t li-create function, 414 
SVCXPRT structure, 415 
SVMSG-MODE constant, 35 

definition of, 508 
svmsg . h header, 140,144 
SVR2 (System V Release 2), 198 
SVR3 (System V Release 3), 98,198,205 
SVR4 (System V Release 4), 34,44,50-51,84,152, 

311,315-317,322,359,379,384,456 
SVSEM-MODE constant, 274 

definition of, 508 
SVSHM-MODE constant, definition of, 508 
SYN (synchronize sequence numbers flag, TCP 

header), 532 
synchronization 

explicit, 161 
implicit, 161 

synchronize sequence numbers flag, TCP header, 
see SYN 

synchronous 
procedure call, 356-357,476 
signal, 60 

sysconf function, 72-73,86,91,100,102,257, 
265,318,520 

sysconf is program, 37,458 

sysconf igdb program, 38 
sysdef program, 37 
<sys/errno. h> header, 13,503 
<sys/ ipc . h> header, 30 
syslog function, 336,408,511 
<sys/msg . h> header, 33,129,131,134 
<sys/sem. h> header, 33,282,288 
<sys/shm. h> header, 33,343 
<sys/stat.h> header, 23,54 
system call, 5,198,205,220,303,361,391,405,482 

interrupted, 121,124,132-133,149,151,227, 
279,286,391-392,395,521,524-525 

slow, 286 
system function, 134 
System V 

IPC, 27-39 
IPC identifier reuse, 34-36 
IPC kernel limits, 36-38 
IPC permissions, 31-35,39,130-131,282-283, 

343-345 
message queue limits, 152-154 
message queues, 129-155 
message queues with poll function, 151-152 
message queues with select function, 

151-152 
Release 2, see SVR2 
Release 3, see SVR3 
Release 4, see SVR4 
semaphore limits, 296-300 
semaphores, 281-300 
semaphores, file locking using, 294-296 
semaphores. used for implementation of Posix 

semaphores, 271 -278 
shared memory, 343-351 
shared memory limits, 349-351 

SYSTEM-ERR constant, 447-448 
<sys/ types. h> header, 28 

tar program, 13 
Taylor, I. L., xvi 
tcdrain function, 91 
tcf l o w  function, 91 
tcf lush function, 91 
tcgetattr function, 91 
tcge tpgrp function, 91 
TCP (Transmission Control Protocol), 67,74,401, 

404-407,411-412,418-426,444-446, 
450-451,454,459,476,532-533 

connection management, RPC, 420 
for Transactions, see T/TCP, 
three-way handshake, 420 

tcpdump program, 420,424-425,533 
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TCPvl (TCP/IP Illustrated, Volume I), xiv, 536 
TCPv2 (TCP/IP Illustrated, Volume 2), xiv, 537 
TCPv3 (TCP/IP Illustrated, Volume 3), xiv, 537 
tcsendbreak function, 91 
t c s e t a t t r  function, 91 
t c se tpg rp  function, 91 
Teer, R., xvi 
Telnet (remote terminal protocol), 336,399 
termination of client 

doors, premature, 390-397 
RPC, premature, 424-426 

termination of server 
doors, premature, 390-397 
RPC, premature, 424-426 

Thomas, M., xvi 
thr-setconcurrency function, 163 
thread- exit function, 391 
threads, 5-6,501-504 

attributes, 98,113,502,521,532 
cancellation, 174,180,183,187-192,384,388, 

396-398,530 
concurrency, 163,165-166,488 
detached, 98,384,386-388,504 
ID, 502 
ID, printing, 371 
implementation, many-to-few, 163 
implementation, M-to-N, 163 
implementation, two-level, 163 
joinable, 387,504 
main, 93,190,235,388,488,490,502 
management, doors, 370-375 
priority, 160,502 
start function, 98,187,386-387,502 
termination, explicit, 502 
termination, implicit, 502 

three-way handshake, TCP, 420 
time 

absolute, 171 
delta, 171 
round-trip, 451,458 

t i m e  function, 91 
timeout, 67,171,424,426 

and retransmission, RPC, 417-422 
TIMEOUT constant, 420 
timer- getoverrun function, 91 
t i m e r - g e t  t i m e  function, 91 
timer- settime function, 91,101 
times function, 91 
timespec structure, 171,508 

definition of, 171 
t imeval  structure, 418-419,471,534 
TI-RPC (transport independent RFC), 406-407, 

411,421,446,533 

TLI (Transport Layer Interface), API, 406 
touch function, 467,470 

source code, 470 
transaction ID, see XID 
Transmission Control Protocol, see TCP 
transport independent RPC, see TI-RPC 
Troff, xvii 
TRUE constant, 409,418,429,435,439,441,444 
T / T B  ( T B  for Transactions), 537 
Tucker, A., xvi 
tv-nsec member, 171,508 
tv-sec member, 171,508 
tv-sub function, 471 

source code, 471 
two-level thread implementation, 163 
typedef datatype, XDR, 427 

typing 
explicit, 426 
implicit, 426 

UDP (User Datagram Protocol), 68,74,83,246, 
341,401,405-407,411-414,418-425, 
445-447,450-452,454-455,459,476, 
532-534 

u i d  member, 33-34,131,134,283,288,345,446 
uint8-t  datatype, 509 
u l imi  t program, 72-73 
umask function, 23,91 
umask program, 23,39 
un-lock function, definition of, 202 
unarne function, 91 
uniform resource locator, see URL 
union datatype, XDR, 429 
i u n i s  t d  . h> header, 8,86,173,257 
Unix 

95, 15 
98, 8,16,33-34,36,44,84,90,129,159, 163, 173, 

178,192,205,282,284,288,364,454,468,482, 
488,526,536 

98, definition of, 15 
authentication, 414 
Columbus, 28 
domain socket, 84,341,379-380,384,456,459 
Specification, Single, 15 
standards, 13-15 
System 111, 43,198 
Version 7, 98,198 
versions and portability, 15 

unl ink  function, 56,58,77,91,115,117,214-216, 
226,260,267,275,327,342,359,376 

unpipc. h header, 21,55,105,111,274,288, 
505-509 

source code, 505 
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UNPvl (UNIX Network Programming, Volume I), 
xiv, 537 

unsigned c h a r  datatype, XDR, 427 
unsigned hyper  datatype, XDR, 427 
unsigned i n t  datatype, XDR, 427 
unsigned long  datatype, XDR, 427 
unsigned s h o r t  datatype, XDR, 427 
URL (uniform resource locator), 535 
Usenet, iii 
User Datagram Protocol, see UDP 
user ID, 328,397,413,417,502 

effective, 23,25,33-34,84,131,283,365, 
369-370,414,416,515 

real, 365,369 
UTC (Coordinated Universal Time), 171 
utirne function, 91 
UUCP, 198 

va-arg function, 111,260 
va-mode-t datatype, 111,260,263,273 

definition of, 508 
v a - s t a r t  function, 260 
Vahalia, U., 311,537 
v a l  member, 288 
v a l l o c  function, 467-468 
v e r f  member, 446-447 
verifier, 417,446,449,533 
v e r s  member, 446 
v i  program, xvii, 13 
vo id  datatype, 503-504 

w a i t  function, 91,413-414 
Wait, J. W., xvi 
waiting, locking versus, 165-167 
w a i  t p i d  function, 48,73,91,149,503 
wakeup, spurious, 121,170 
wc program, 161 
well-known 

key, 147 
pathname, 60,215 

White, J. E., 406,537 
Wolff, R., xvi 
Wolff, S., xvi 
wrapper function, 11-13 

source code, Pthread-rnut ex-lock, 
source code, S e l e c t ,  521 
source code,  ems so st , 11 

Wright, G. R, xiv, xvii, 537 

w r i t e  function, 5,43,52,54,59-60,65,83,90-91, 
95,98,142,161,200,204-205,207,249,260, 
263,278,304,310-311,315,317,322,327,399, 
405,435,451,456-457,467,469,471,482,515, 
519,522-526,528 

w r i  te-lock function, definition of, 202 
writew-lock function, 495 

definition of, 202 

XDR (external data representation), 403,406, 
426-444,450,532-534 

datatypes, 427-430 
fragment, 444 

XDR datatype, 432 
XDR-DECODE constant, 435 
XDR-ENCODE constant, 432,435 
xdr-data function, 432,435,532 
xdr-f r e e  function, 410,435,452 
xdr-getpos function, 435 
xdr-s tr i n g  function, 435,532 
xdr-void function, 534 
xdrmem-create function, 432,435,451-452 
Xenix, 198 
Xerox, 406 
XID (transaction ID), 420-422,532-533 
x i d  member, 446 
X/Open, 14,198 

Portablity Guide, see XPG 
Transport Interface, see XTI 

XOPEN-REALTIME constant, 9 - 
XPG (X/Open Portablity Guide), 15,198,284,468 
XTI (X/Open Transport Interface), API, 14,151, 

398-399,403,406,413-414,424,449-450,455 

yacc program, 13 

zombie, 48,149 
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long pr-thread-id (pthread-t *ptr) ; 371 

char *px-ipc-n~(const char *rWIe); 21 

int sen-close ( sem-t *sem ) ; 

int sen-destroy(sem-t *sem); 

int sen-init (sem-t *sem, int shared, unsigned int value) ; 

sem-t *sen-men (const char *name, int ofag, . . . 
/ *  mode-t mode, unsigned int value * /  ) ; 

int sensost (sem-t *sent) ; 

int sen-trywait (sem-t Isem) ; 

int sen-unlink (cons t char *name) ; 

int gem-wait (sen-t *sent) ; 
- 

int semctl (int semid, int semnum, int cmd, . . . / *  union semun arg * /  ) ; 287 

int s-et (key-t key, int nsems, int ofag) ; 282 

int s-p (int semid, struct sembuf *opsptr, size-t nops) ; 285 

int shm-men(const char *name, int ofag, mode-t mode); 326 

int shm_unlink(const char *name); 326 

int shmctl (int shmid, int cmd, struct shmid-ds *buff) ; 345 

int shmdt (const void 'shmaddr) ; 345 

int shmget (key-t key, size-t size, int of2ag) ; 344 

sigfunc-rt *signal-rt ( int sipo, Sigf unc-rt *func) ; 105 

int sigwait (const sigset-t *set, int *sig) ; 95 

int start-tims(v0id) ; 470 

double stop-tims(void); - 470 

int mrc-dg-enablecache ( SVCXPRT *xprt ,  unsigned long size) ; 422 

int touch (void *vptr, int nbytes) ; 470 

void tv-sub ( s truct timeval *out, s truc t timeval *in) ; 471 



Structure Definitions 
accepted-reply 
authsysjarms 

call-body 

d-desc 
door-arg-t 
door-cred-t 
door-desc-t 
door-info-t 

flock 

ipcqerm 

mismatch-info 
mcattr 
msgbu f 
msgqerm 

msqid-ds 

opaque-au th 

rejected-reply 
replybody 

rpc-msg 

sem 
sembuf 
semid-ds 
semqerrn 
semun 
shmid-ds 
s-errn 
sigaction 
sigeven t 
siginfo-t 
sigval 
Stat 
svc-req 


