
S E C O N D E D I T I O N

W. RICHARD STEVENS

you'll ever nee&

b

Interprocess Commun ica t i ons I
Well-implemented interprocess communications (IPC) are key to the performance of
virtually every non-trivial UNIX program. In UNIX Network Programming,
Udnme 2, Seeond Edition, legendary UNIX expert W. Richard Stevens presents
a comprehensive guide to every form of IPC. including message passing. synchronization.
shared memory, and Remote Procedure Calls (RPG. -

Stevens heglns with a basic: introduction to IPC and the problems it is intended to solve

Slep-by-step you'll learn how to maximize both System V IPC and the new Posix standards.

which offer dramatic improvements in convenience and performance. You'll find extensive

coverage of Pthreads. with many examples rrflecting multiple threads instead of multiple

processes. Alongthe way. you'll master every current IPC technique and technology. including:

Pipes and FlFOs POSIX and System V Semaphores

Posix and System V Message Queues Poslx and System V Shared Me
t -C

Sbiaris Doors and Sun RPC

performance Measurements
of IPC Techn~ques

of UNlX Network Programming,
1

of five! You won't just learn about IPC
"from the outside." You'll actually create implemkntatiom of Posix message queues.
read-write locks, and semaphores, gaining an in-de@h understanding of these
capabilities you simply can't get awwhere else.

The book contains extensive new source code--all caqfully optimized and available
on the Web. You'll even find a complete guide to mesuring IPC performance
with message passing bandwidth and laterfcy progrMns, and thread and process
synchronization programs.

The better you understand IPC. the better your UNIX software will run. This book
contains all you need to know.

I

ABOUT THE AUTHOR
W. RlCHAR D S T E V E N S is author of UNIX Network Programming. Firs
widely recognized as the classic text in UNIX networking and UNIX Net
Programming, Wume 1. Second Edition. He is also author of Advanced
in the UNIX Environment and the TCP/IP IIIustrated Series. Stevens
is an acknowledged UNIX and networking expert. sought-after
instructor, and occamnal consultant.

PRENTICE HALL
Upper Saddle River. NJ 07458

Function prototype Page

boolLt clnt-control (CLIENT *d, unsigned int request, char *ptr) ; 418

CLIENT *clnt-create (const char *host, unsigned long prognum,
unsigned long versnum, const char *protocol) ;

void clnt-destroy(CL1ENT * c !) ; 420

int door-bind (int f d) ; 390

int door-call (int fd , door-arg-t *argp) ; 361

int door-create (Door-serverqroc *proc, void *cookie, u-int attr) ; 363

int door-cred (door-cred-t *cred) ; 365

int door-info (int fd , door-in£ o-t *info) ; 365

int dooryeturn (char *dataptr, size-t datasize, door-desc-t *descptr. size-t ndesc) ; 365

int door-revoke (int fd) ; 390

Door-createqroc *door~server~create(Door~createqroc *prOc); 384

int door-unbind(void); 390

void err-durn (const char * f i t , . . .) ;
void err-msg (const char * f i t , . . .) ;
void err-quit (const char * f i t , . . .) ;
void err-rot (const char * f i t , . . .) ;
void err-sys (const char * f i t , . . .) ;
int fcntl (int f d , int cmd, . . . / * struct flock *arg * /) ;

int fstat(int fd , struct stat *buf) ;

key-t ftok(const char *pathname, int i d) ;

int ftruncate (int f d , of f-t length) ;

int qclose (mqd-t mqdes) ;

int qgetattr (mqd-t mqdes, struct mpattr *attr) ;

int -notify (mqd-t mqdes, const struct sigevent *notification) ;

mqd-t qopen(const char *name, int oflag, . . .
/ * mode-t mode, struct mq-attr *attr * /) .

int -unlink (const char *name) ; 77

int msgctl(int msqid, int cmd, struct msqid-ds *buff);
int msgget (key-t key, int oflag) ;

FILE *popen (const char *command, const char *type) ; 52

Function prototype Page

int pthread-cancel (pthread-t tid) ; 187

void pthread-c leanupgop (int execute) ; 187

void pthread-cleanupgush(void (*function) (void *) , void *a%) ; 187

int pthreahcreate (pthread-t *tid, const pthread-attr-t *attr,
void * (*fu?tc) (void *) , void *a%) ; 502

int pthread-detach (pthread-t tid) ; 504

void pthread-exit (void *status) ; 504

int pthread-join(pthread-t tid, void **status) ; 503

pthread-t pthread-self(void); 503

int pthread-condattr-destroy(pthread-condattr-t *attr); 172

int pthread-condattr-getpshared(const pthread-condattr-t 'attr, int *valptr) ; 173

int pthread-condattr-init(pthread-condattr-t *attr); 172

int pthread-condattr-setpshared(pthread-condattr-t *attr, int value); 173

int pthread-cond-broadcast(pthread-cond-t *cptr); 171

int pthreahcond-destroy(pthread-cond-t *cptr); 172

int pthread-cond-init(pthread-cond-t *cptr, const pthread-condattr-t *attr); 172

int pthread-cond-signal(pthread-cond-t *cptr); 167

int pthread-cond-timedwait(pthread-cond-t *cptr, pthread-mutex-t *mptr,
const struct timespec *abstime) ; 171

int pthread-cond-wait(pthread~cond-t *cptr, pthread-mutex-t *mptr); 167

int

int

int

int

int

int

int

int

int

pthread-mutaxattr-destroy(pthread-mutexattr-t *attr);

pthread-mutaxattr-getpsharrd (const pthread-mutexattr-t *attr, int "valptr) ;

pthread-mutaxattr-init (pthread-mutexattr-t *attr) ;

pthread-mutaxattr-setpshared(pthread-mutexattr-t *attr, int value);

pthread-mutex-destroy(pthread-mutex-t *mptr);

pthread-mutex-init(pthread-mutex-t *mptr, const pthread-mutexattr-t *attr);

pthread~mutex~lock(pthread~mutex~t *mptr) ;

pthrea~mutex~trylock(pthread~mutex~t *mptr);

pthread~mutex~unlock(pthread~mutex~t *mptr);

int

int

int

int

int

int

int

int

int

int

int

pthread~rwlockattr~destroy(pthread~rwlockattr~t *attr);

pthread-rwlockattr-getpshared(const pthread-rwlockattr-t *attr, int *Va!ptr) ;

pthread-rwlockattr-init(pthread-rwlockattr-t *attr);

pthread-rwlockattr-setpshared (pthread-rwlockattr-t *attr, int value) ;

pthread-rwlock_destroy(pthread-rwlock-t *noptr);

pthread-rwlock-init (pthread-rwlock-t *noptr,
const pthread-rwlockattr-t *attr);

pthread~rwlock~rdlock(pthread~rwlock~t *noptr);

pthread~rwlock~tryrdlock(pthread~rwlock~t *noptr);

pthread~rwlock~trywr1ock(pthread~rwlock~t *noptr);

pthrea~rwlock~unlock(pthread~rwlock~t *nu@');

pthread~rw1ock~wrlock(pthread~rwlo~k~t * q t r) ;

UNIX Network Programming
Volume 2
Second Edition

lnterprocess Communications

by W. Richard Stevens

ISBN 0-23-082082-9

Prentice Hall PTR
Upper Saddle River, NJ 07458
www.phptr.com

Library of Congress Cataloging-in-Publication Data

Stevens, W. Richard.
UNIX network programming I by W. Richard Stevens. -- 2nd ed.
v. <l > : ill. : 25 cm.
Includes bibliographical references and index.
Contents: v. 1. Networking APIs : sockets and XTI.
ISBN 0-13-490012-X (v. 1)
1. UNIX (Computer file) 2. Computer networks. 3. Internet

programming. I. Title.
QA76.76.063S755 1998
005.7' 12768--DC2 1 97-3 176 1

Editorial/production supervision: Patti Guerrieri
Cover design director: Jerry Votta
Cover designer: Scott Weiss
Manufacturing manager: Alexis R. Heydl
Marketing manager: Miles Williams
Acquisitions editor: Mary Franz
Editorial assistant: Noreen Regina

01999 by Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, NJ 07458

Prentice Hall books are widely used by corporations and government agencies
for training, marketing, and resale.

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact: Corporate Sales Department, Phone: 800-382-3419;
Fax: 201-236-7141; E-mail: corpsales@prenhall.com; or write: Prentice Hall PTR,
Corp. Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

All products or services mentioned in this book are the trademarks or service marks of their
respective companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America
1 0 9 8 7 6 5 4 3 2

ISBN 0-1 3-081 081 -9

Prentice-Hall lntemational (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To the Usenet community;
for many questions answered,

and many FAQs provided.

Abbreviated Table of Contents

Part 1. Introduction 1
Chapter 1. lntroduction
Chapter 2. Posix IPC
Chapter 3. System V IPC

Part 2. Message Passing 41
Chapter 4. Pipes and FlFOs 43
Chapter 5. Posix Message Queues 75
Chapter 6. System V Message Queues 1 29

Part 3. Synchronization 157
Chapter 7. Mutexes and Condition Variables 159
Chapter 8. Read-Write Locks 1 77
Chapter 9. Record Locking 193
Chapter 10. Posix Semaphores 21 9
Chapter 11. System V Semaphores 28 1

Part 4. Shared Memory 301
Chapter 12. Shared Memory Introduction 303
Chapter 13. Posix Shared Memory 325
Chapter 14. System V Shared Memory 343

Part 5. Remote Procedure Calls 353

Chapter 15. Doors 355
Chapter 16. Sun RPC 399

Appendix A. Performance Measurements
Appendix 6. A Threads Primer
Appendix C. Miscellaneous Source Code
Appendix D. Solutions to Selected Exercises

Table of Contents

Preface

Part 1. lntroduction

xiii

1

Chapter 1.

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Chapter 2.

2.1
2.2
2.3
2.4
2.5

lntroduction

lntroduction 3
Processes, Threads, and the Sharing of Information 5
Persistence of IPC Objects 6
Name Spaces 7
Effect of fork, exec, and exit on IPC Objects 9
Error Handling: Wrapper Functions 11
Unix Standards 13
Road Map to IPC Examples in the Text 15
Summary 16

Posix IPC

lntroduction 19
IPC Names 19
Creating and Opening IPC Channels 22
IPC Permissions 25
Summary 26

vii

viii UNIX Network Programming Contents

Chapter 3.

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

System V IPC

lntroduction 27
key-t Keys and f t o k Function 28
i p c q e r m Structure 30
Creating and Opening IPC Channels 30
IPC Permissions 32
Identifier Reuse 34
ipcs and i p c r m Programs 36
Kernel Limits 36
Summary 38

Part 2. Message Passing 41

Chapter 4.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.1 1
4.1 2

Chapter 5.

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Chapter 6.

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Pipes and FlFOs

lntroduction 43
A Simple Client-Server Example 43
Pipes 44
Full-Duplex Pipes 50
popen and pclose Functions 52
FlFOs 54
Additional Properties of Pipes and FlFOs 58
One Server, Multiple Clients 60
Iterative versus Concurrent Servers 66
Streams and Messages 67
Pipe and FIFO Limits 72
Summary 73

Posix Message Queues

lntroduction 75
m a o p e n , m a c l o s e , and m x u n l i n k Functions 76
m a g e t a t t r and m a s e t a t t r Functions 79
m a s e n d and m a r e c e i v e Functions 82
Message Queue Limits 86
m a n o t i f y Function 87
Posix Realtime Signals 98
Implementation Using Memory-Mapped 110 106
Summary 126

System V Message Queues

lntroduction 129
m s g g e t Function 130
m s g s n d Function 131
m s g r c v Function 132
m s g c t l Function 134
Simple Programs 135
Client-Server Example 140
Multiplexing Messages 142

UNIX Network Programming Contents ix

6.9 Message Queues with select and poll 151
6.10 Message Queue Limits 152
6.11 Summary 155

Part 3. Svnchronization 157

Chapter 7.
.ill

Chapter 8.

Chapter 9.

Chapter 10.

Mutexes and Condition Variables 159
lntroduction 159
Mutexes: Locking and Unlocking 159
Producer-Consumer Problem 161
Locking versus Waiting 165
Condition Variables: Waiting and Signaling 167
Condition Variables: Timed Waits and Broadcasts 171
Mutexes and Condition Variable Attributes 172
Summary 174

Read-Write Locks

lntroduction 1 77
Obtaining and Releasing Read-Write Locks 178
Read-Write Lock Attributes 179
Implementation Using Mutexes and Condition Variables 179
Thread Cancellation 187
Summary 192

Record Locking

lntroduction 193
Record Locking versus File Locking 197
Posix f cntl Record Locking 199
Advisory Locking 203
Mandatory Locking 204
Priorities of Readers and Writers 207
Starting Only One Copy of a Daemon 213
Lock Files 214
NFS Locking 216
Summary 216

Posix Semaphores 219

lntroduction 21 9
sem-open, sem-close, and sem-unlink Functions 225
sem-wait and sem-trywait Functions 226
semsos t and sem-getvalue Functions 227
Simple Programs 228
Producer-Consumer Problem 233
File Locking 238
sem-init and sem-destroy Functions 238
Multiple Producers, One Consumer 242
Multiple Producers, Multiple Consumers 245

x UNIX Network Programming Contents

Chapter 1 1.

Multiple Buffers 249
Sharing Semaphores between Processes 256
Semaphore Limits 257
Implementation Using FlFOs 257
lmplementation Using Memory-Mapped 110 262
lmplementation Using System V Semaphores 271
Summary 278

System V Semaphores
lntroduction 281
semget Function 282
semop Function 285
semctl Function 287
Simple Programs 289
File Locking 294
Semaphore Limits 296
Summary 300

Part 4. Shared Memory 301

Chapter 12.

Chapter 13.

Chapter 14.

Shared Memory lntroduction
lntroduction 303
m a p , munmap, and msync Functions 307
Increment Counter in a Memory-Mapped File 31 1
4.4BSD Anonymous Memory Mapping 31 5
SVR4 /dev/zero Memory Mapping 316
Referencing Memory-Mapped Objects 317
Summary 322

Posix Shared Memory
lntroduction 325
s w o p e n and shm-unlink Functions 326
f truncate and fstat Functions 327
Simple Programs 328
lncrementing a Shared Counter 333
Sending Messages to a Server 336
Summary 342

System V Shared Memory
lntroduction 343
shmget Function 343
shmat Function 344
shmdt Function 345
shmctl Function 345
Simple Programs 346
Shared Memory Limits 349
Summary 351

UNIX Network Programming Contents xi

Part 5. Remote Procedure Calls 353

Chapter 15.
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.1 0
15.11
15.12

Chapter 16.
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.1 0

Epilogue

Appendix A.

A. 1
A.2
A.3
A.4
A.5
A.6

Appendix B.
B. 1
B.2

Appendix C.

C. 1
C.2
C.3

Doors 355

lntroduction 355
door-call Function 361
door-create Function 363
door-return Function 364
door-cred Function 365
door-in£ o Function 365
Examples 366
Descriptor Passing 379
door-server-create Function 384
doorbind, door-unbind, and door-revoke Functions 390
Premature Termination of Client or Server 390
Summary 397

Sun RPC
lntroduction 399
Multithreading 407
Server Binding 41 1
Authentication 41 4
Timeout and Retransmission 417
Call Semantics 422
Premature Termination of Client or Server 424
XDR: External Data Representation 426
RPC Packet Formats 444
Summary 449

Performance Measurements

lntroduction 457
Results 458
Message Passing Bandwidth Programs 467
Message Passing Latency Programs 480
Thread Synchronization Programs 486
Process Synchronization Programs 497

A Threads Primer
lntroduction 501
Basic Thread Functions: Creation and Termination 502

Miscellaneous Source Code
unpipc .h Header 505
con£ ig. h Header 509
Standard Error Functions 51 0

xii UNIX Network Programming Contents

Appendix D. Solutions to Selected Exercises

Bibliography

Index

Preface

Introduction

Most nontrivial programs involve some form of IPC or Interprocess Communication. This
is a natural effect of the design principle that the better approach is to design an applica-
tion as a group of small pieces that communicate with each other, instead of designing
one huge monolithic program. Historically, applications have been built in the follow-
ing ways:

1. One huge monolithic program that does everything. The various pieces of the
program can be implemented as functions that exchange information as func-
tion parameters, function return values, and global variables.

2. Multiple programs that communicate with each other using some form of IPC.
Many of the standard Unix tools were designed in this fashion, using shell
pipelines (a form of IPC) to pass information from one program to the next.

3. One program comprised of multiple threads that communicate with each other
using some type of IPC. The term IPC describes this communication even
though it is between threads and not between processes.

Combinations of the second two forms of design are also possible: multiple processes,
each consisting of one or more threads, involving communication between the threads
within a given process and between the different processes.

What I have described is distributing the work involved in performing a given
application between multiple processes and perhaps among the threads within a pro-
cess. On a system containing multiple processors (CPUs), multiple processes might be

xiii

xiv UNIX Network Programming Preface

able to run at the same time (on different CPUs), or the multiple threads of a given pro-
cess might be able to run at the same time. Therefore, distributing an application
among multiple processes or threads might reduce the amount of time required for an
application to perform a given task.

This book describes four different forms of IPC in detail:

1. message passing (pipes, FIFOs, and message queues),

2. synchronization (mutexes, condition variables, read-write locks, file and record
locks, and semaphores),

3. shared memory (anonymous and named), and

4. remote procedure calls (Solaris doors and Sun RPC).

This book does not cover the writing of programs that communicate across a computer
network. This form of communication normally involves what is called the sockets API
(application program interface) using the TCP/IP protocol suite; these topics are cov-
ered in detail in Volume 1 of this series [Stevens 19981.

One could argue that single-host or nonnetworked IPC (the subject of this volume)
should not be used and instead all applications should be written as distributed appli-
cations that run on various hosts across a network. Practically, however, single-host IPC
is often much faster and sometimes simpler than communicating across a network.
Techniques such as shared memory and synchronization are normally available only on
a single host, and may not be used across a network. Experience and history have
shown a need for both nonnetworked IPC (this volume) and IPC across a network
(Volume 1 of this series).

This current volume builds on the foundation of Volume 1 and my other four books,
which are abbreviated throughout this text as follows:

UNPv1: UNIX Network Programming, Volume 1 [Stevens 19981,
APUE: Advanced Programming in the UNIX Environment [Stevens 19921,
TCPv1: TCPIIP Illustrated, Volume 1 [Stevens 19941,
TCPv2: TCPIIP Illustrated, Volume 2 [Wright and Stevens 19951, and
TCPv3: TCPIIP Illustrated, Volume 3 [Stevens 19961.

Although covering IPC in a text with "network programming" in the title might
seem odd, IPC is often used in networked applications. As stated in the Preface of the
1990 edition of UNIX Network Programming, "A requisite for understanding how to
develop software for a network is an understanding of interprocess communication
(IPC)."

Changes from the First Edition

This volume is a complete rewrite and expansion of Chapters 3 and 18 from the 1990
edition of UNlX Network Programming. Based on a word count, the material has
expanded by a factor of five. The following are the major changes with this new edi-
tion:

UNIX Network Programming Preface xv

In addition to the three forms of "System V IPC" (message queues, semaphores,
and shared memory), the newer Posix functions that implement these three
types of IPC are also covered. (I say more about the Posix family of standards in
Section 1.7.) In the coming years, I expect a movement to the Posix IPC func-
tions, which have several advantages over their System V counterparts.

The Posix functions for synchronization are covered: mutex locks, condition
variables, and read-write locks. These can be used to synchronize either threads
or processes and are often used when accessing shared memory.

This volume assumes a Posix threads environment (called "Pthreads"), and
many of the examples are built using multiple threads instead of multiple pro-
cesses.

The coverage of pipes, FIFOs, and record locking focuses on their Posix defini-
tions.

In addition to describing the IPC facilities and showing how to use them, I also
develop implementations of Posix message queues, read-write locks, and Posix
semaphores (all of which can be implemented as user libraries). These imple-
mentations can tie together many different features (e-g., one implementation of
Posix semaphores uses mutexes, condition variables, and memory-mapped 1/01
and highlight conditions that must often be handled in our applications (such as
race conditions, error handling, memory leaks, and variable-length argument
lists). Understanding an implementation of a certain feature often leads to a
greater knowledge of how to use that feature.

The RPC coverage focuses on the Sun RPC package. I precede this with a
description of the new Solaris doors API, which is similar to RPC but on a single
host. This provides an introduction to many of the features that we need to
worry about when calling procedures in another process, without having to
worry about any networking details.

Readers

This text can be used either as a tutorial on IPC, or as a reference for experienced pro-
grammers. The book is divided into four main parts:

message passing,
synchronization,
shared memory, and
remote procedure calls

but many readers will probably be interested in speafic subsets. Most chapters can be
read independently of others, although Chapter 2 summarizes many features common
to all the Posix IPC functions, Chapter 3 summarizes many features common to all the
System V IPC functions, and Chapter 12 is an introduction to both Posix and System V
shared memory. All readers should read Chapter 1, especially Section 1.6, which
describes some wrapper functions used throughout the text. The Posix IPC chapters are

xvi UNIX Network Programming Preface

independent of the System V IPC chapters, and the chapters on pipes, FIFOs, and record
locking belong to neither camp. The two chapters on RPC are also independent of the
other IPC techniques.

To aid in the use as a reference, a thorough index is provided, along with sum-
maries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to
related topics are provided throughout the text.

Source Code and Errata Availability

The source code for all the examples that appear in this book is available from the
author's home page (listed at the end of this Preface). The best way to learn the IPC
techniques described in this book is to take these programs, modify them, and enhance
them. Actually writing code of this form is the only way to reinforce the concepts and
techniques. Numerous exercises are also provided at the end of each chapter, and most
answers are provided in Appendix D.

A current errata for this book is also available from the author's home page.

Acknowledgments

Although the author's name is the only one to appear on the cover, the combined effort
of many people is required to produce a quality text book. First and foremost is the
author's family, who put up with the long and weird hours that go into writing a book.
Thank you once again, Sally, Bill, Ellen, and David.

My thanks to the technical reviewers who provided invaluable feedback (135
printed pages) catching lots of errors, pointing out areas that needed more explanation,
and suggesting alternative presentations, wording, and coding: Gavin Bowe, Allen
Briggs, Dave Butenhof, Wan-Teh Chang, Chris Cleeland, Bob Friesenhahn, Andrew
Gierth, Scott Johnson, Marty Leisner, Larry McVoy, Craig Metz, Bob Nelson, Steve Rago,
Jim Reid, Swamy K. Sitarama, Jon C. Snader, Ian Lance Taylor, Rich Teer, and Andy
Tucker.

The following people answered email questions of mine, in some cases many ques-
tions, all of which improved the accuracy and presentation of the text: David Bausum,
Dave Butenhof, Bill Gallmeister, Mukesh Kacker, Brian Kernighan, Larry McVoy, Steve
Rago, Keith Skowran, Bart Smaalders, Andy Tucker, and John Wait.

A special thanks to Larry Rafsky at GSquared, for lots of things. My thanks as
usual to the National Optical Astronomy Observatories (NOAO), Sidney Wolff, Richard
Wolff, and Steve Crandi, for providing access to their networks and hosts. Jim Bound,
Matt Thomas, Mary Clouter, and Barb Glover of Digital Equipment Corp. provided the
Alpha system used for most of the examples in this text. A subset of the code in this
book was tested on other Unix systems: my thanks to Michael Johnson of Red Hat Soft-
ware for providing the latest releases of Red Hat Linux, and to Dave Marquardt and
Jessie Haug of IBM Austin for an RS/6000 system and access to the latest releases of
AIX.

UNIX Network Programming Preface xvii

My thanks to the wonderful staff at Prentice Hall-my editor Mary Franz, along
with Noreen Regina, Sophie Papanikolaou, and Patti Guerrieri-for all their help, espe-
cially in bringing everything together on a tight schedule.

Colophon

I produced camera-ready copy of the book (Postscript), which was then typeset for the
final book. The formatting system used was James Clark's wonderful groff package,
on a SparcStation running Solaris 2.6. (Reports of troff's death are greatly exaggerated.)
I typed in all 138,897 words using the vi editor, created the 72 illustrations using the
gpic program (using many of Gary Wright's macros), produced the 35 tables using the
gtbl program, performed all the indexing (using a set of awk scripts written by Jon
Bentley and Brian Kernighan), and did the final page layout. Dave Hanson's loom pro-
gram, the GNU indent program, and some scripts by Gary Wright were used to
include the 8,046 lines of C source code in the book.

I welcome email from any readers with comments, suggestions, or bug fixes.

Tucson, Arizona
July 1998

W. Richard Stevens
rstevens@kohala.com

http://www.kohala.com/-rstevens

Part 7

Introduction

Introduction

1 .I lntroduction

IPC stands for interprocess communication. Traditionally the term describes different
ways of message passing between different processes that are running on some operating
system. This text also describes numerous forms of synchronization, because newer
forms of communication, such as shared memory, require some form of synchronization
to operate.

In the evolution of the Unix operating system over the past 30 years, message pass-
ing has evolved through the following stages:

Pipes (Chapter 4) were the first widely used form of IPC, available both within
programs and from the shell. The problem with pipes is that they are usable
only between processes that have a common ancestor (i.e., a parent-child rela-
tionship), but this was fixed with the introduction of named pipes or FIFOs (Chap-
ter 4).

System V message queues (Chapter 6) were added to System V kernels in the early
1980s. These can be used between related or unrelated processes on a given
host. Although these are still referred to with the "System V" prefix, most ver-
sions of Unix today support them, regardless of whether their heritage is
System V or not.

When describing Unix processes, the term related means the processes have some ancestor
in common. This is another way of saying that these related processes were generated

4 Introduction Chapter 1

from this ancestor by one or more forks. A common example is when a process calls
fork twice, generating two child processes. We then say that these two children are
related. Similarly, each child is related to the parent. With regard to IPC, the parent can
establish some form of IPC before calling fork (a pipe or message queue, for example),
knowing that the two children will inherit this IPC object across the fork. We talk more
about the inheritance of the various IPC objects with Figure 1.6. We must also note that
all Unix processes are theoretically related to the init process, which starts everything
going when a system is bootstrapped. Practically speaking, however, process relation-
ships start with a login shell (called a session) and all the processes generated by that shell.
Chapter 9 of APUE talks about sessions and process relationships in more detail.

Throughout the text, we use indented, parenthetical notes such as this one to describe
implementation details, historical points, and minutiae.

Posix message queues (Chapter 5) were added by the Posix realtime standard
(1003.1b-1993, which we say more about in Section 1.7). These can be used
between related or unrelated processes on a given host.

Remote Procedure Calls (RPCs, which we cover in Part 5) appeared in the
mid-1980s as a way of calling a function on one system (the server) from a pro-
gram on another system (the client), and was developed as an alternative to
explicit network programming. Since information is normally passed between
the client and server (the arguments and return values of the function that is
called), and since RPC can be used between a client and server on the same host,
W C can be considered as another form of message passing.

Looking at the evolution of the various forms of synchronization provided by Unix
is also interesting.

Early programs that needed some form of synchronization (often to prevent
multiple processes from modifying the same file at the same time) used quirks of
the filesystem, some of which we talk about in Section 9.8.

Record locking (Chapter 9) was added to Unix kernels in the early 2980s and then
standardized by Posix.1 in 1988.

System V semaphores (Chapter 11) were added along with System V shared memory
(Chapter 14) at the same time System V message queues were added (early
1980s). Most versions of Unix support these today.

Posix semaphores (Chapter 10) and Posix shared memory (Chapter 13) were also
added by the Posix realtime standard (1003.1b-1993, which we mentioned with
regard to Posix message queues earlier).

Mutexes and condition variables (Chapter 7) are two forms of synchronization
defined by the Posix threads standard (1003.1~-1995). Although these are often
used for synchronization between threads, they can also provide synchroniza-
tion between different processes.

Read-write locks (Chapter 8) are an additional form of synchronization. These
have not yet been standardized by Posix, but probably will be soon.

Section 1.2 Processes, Threads, and the Sharing of Information 5

1.2 Processes, Threads, and the Sharing of Information

In the traditional Unix programming model, we have multiple processes running on a
system, with each process having its own address space. Information can be shared
between Unix processes in various ways. We summarize these in Figure 1.1.

filesystem e
Figure 1.1 Three ways to share information behveen Unix processes.

1. The two processes on the left are sharing some information that resides in a file
in the filesystem. To access this data, each process must go through the kernel
(e.g., read, wri te , lseek, and the like). Some form of synchronization is
required when a file is being updated, both to protect multiple writers from each
other, and to protect one or more readers from a writer.

2. The two processes in the middle are sharing some information that resides
within the kernel. A pipe is an example of this type of sharing, as are System V
message queues and System V semaphores. Each operation to access the shared
information now involves a system call into the kernel.

3. The two processes on the right have a region of shared memory that each pro-
cess can reference. Once the shared memory is set up by each process, the pro-
cesses can access the data in the shared memory without involving the kernel at
all. Some form of synchronization is required by the processes that are sharing
the memory.

Note that nothing restricts any of the IPC techniques that we describe to only two pro-
cesses. Any of the techniques that we describe work with any number of processes. We
show only two processes in Figure 1.1 for simplicity.

Threads

Although the concept of a process within the Unix system has been used for a long time,
the concept of multiple threads within a given process is relatively new. The Posix.1
threads standard (called "Pthreads") was approved in 1995. From an IPC perspective,

6 Introduction Chapter 1

all the threads within a given process share the same global variables (e.g., the concept
of shared memory is inherent to this model). What we must worry about, however, is
synchronizing access to this global data among the various threads. Indeed, synchro-
nization, though not explicitly a form of IPC, is used with many forms of IPC to control
access to some shared data.

In this text, we describe IPC between processes and IPC between threads. We
assume a threads environment and make statements of the form "if the pipe is empty,
the calling thread is blocked in its call to read until some thread writes data to the
pipe." If your system does not support threads, you can substitute "process" for
"thread in this sentence, providing the classic Unix definition of blocking in a read of
an empty pipe. But on a system that supports threads, only the thread that calls read
on an empty pipe is blocked, and the remaining threads in the process can continue to
execute. Writing data to this empty pipe can be done by another thread in the same
process or by some thread in another process.

Appendix B summarizes some of the characteristics of threads and the five basic
Pthread functions that are used throughout this text.

1.3 Persistence of IPC Objects

We can define the persistence of any type of IPC as how long an object of that type
remains in existence. Figure 1.2 shows three types of persistence.

process-persistent IPC:
exists until last process with
IPC object open closes the object

kernel-persistent IPC:
exists until kernel reboots
or IPC object is explicitly deleted

filesystem-persistent IPC:
exists until IPC object is
explicitly deleted

Figure 1.2 Persistence of IPC objects.

1. A process-persistent IPC object remains in existence until the last process that
holds the object open closes the object. Examples are pipes and FIFOs.

2. A kernel-persistent IPC object remains in existence until the kernel reboots or
until the object is explicitly deleted. Examples are System V message queues,
semaphores, and shared memory. Posix message queues, semaphores, and
shared memory must be at least kernel-persistent, but may be file-
system-persistent, depending on the implementation.

Section 1.4 Name Spaces 7

3. A filesystem-persistent IPC object remains in existence until the object is explicitly
deleted. The object retains its value even if the kernel reboots. Posix message
queues, semaphores, and shared memory have this property, if they are imple-
mented using mapped files (not a requirement).

We must be careful when defining the persistence of an IPC object because it is not
always as it seems. For example, the data within a pipe is maintained within the kernel,
but pipes have process persistence and not kernel persistence-after the last process
that has the pipe open for reading closes the pipe, the kernel discards all the data and
removes the pipe. Similarly, even though FIFOs have names within the filesystem, they
also have process persistence because all the data in a FIFO is discarded after the last
process that has the FIFO open closes the FIFO.

Figure 1.3 summarizes the persistence of the IPC objects that we describe in this
text.

Type of IPC

Pipe
FIFO
Pcsix mutex
Posix condition variable
Posix read-write lock
f cn t l record locking
Posix message queue
Pcsix named semaphore
Pcsix memory-based semaphore
Posix shared memorv
System V message queue
System V semaphore
System V shared memory
TCP socket
UDP socket
Unix domain socket

Persistence

process
process
process
process
process
process
kernel
kernel
process
kernel
kernel
kernel
kernel
process
process
process

Figure 1.3 Persistence of various types of IPC objects.

Note that no type of IPC has filesystem persistence, but we have mentioned that the
three types of Posix IPC may, depending on the implementation. Obviously, writing
data to a file provides filesystem persistence, but this is normally not used as a form of
IPC. Most forms of IPC are not intended to survive a system reboot, because the pro-
cesses do not survive the reboot. Requiring filesystem persistence would probably
degrade the performance for a given form of IPC, and a common design goal for IPC is
high performance.

1.4 Name Spaces

When two unrelated processes use some type of IPC to exchange information between
themselves; the IPC object must have a name or identifier of some form so that one

8 Introduction Chapter 1

process (often a server) can create the IPC object and other processes (often one or more
clients) can specify that same IPC object.

Pipes do not have names (and therefore cannot be used between unrelated pro-
cesses), but FIFOs have a Unix pathname in the filesystem as their identifier (and can
therefore be used between unrelated processes). As we move to other forms of IPC in
the following chapters, we use additional naming conventions. The set of possible
names for a given type of IPC is called its name space. The name space is important,
because with all forms of IPC other than plain pipes, the name is how the client and
server connect with each other to exchange messages.

Figure 1.4 summarizes the naming conventions used by the different forms of IPC.

Posix m u t e I .
Posix condition variable
Posix read-write lock

1 f c n t l record locking

Type of IPC

Pipe
FIFO

Posix message queue mqd-t value
Posix named semaphore I Posix POsixIPcname IPC name 1 sem-t pointer

Name space
to open or create

(no name)
pathname

(no name)
(no name)
(no name)
pathname

Figure 1.4 Name spaces for the various forms of IPC.

Identification
after IPC opened

descriptor
descriutor

p thread-mutex-t ptr
pthread-cond-t ptr

pthread-rwlock-tptr
descriptor

1 Posix memory-based semaphore
Posix shared memory

System V message queue
System V semaphore
System V shared memory

~ Zk
TCP socket

1 E z n socket

Unix 98
Posix.1-
1996

.

We also indicate which forms of IPC are standardized by the 1996 version of Posix.1 and
Unix 98, both of which we say more about in Section 1.7. For comparison purposes, we
include three types of sockets, which are described in detail in UNPvl. Note that the
sockets API (application program interface) is being standardized by the Posix.lg work-
ing group and should eventually become part of a future Posix.1 standard.

Even though Posix.1 standardizes semaphores, they are an optional feature. Fig-
ure 1.5 summarizes which features are specified by Posix.1 and Unix 98. Each feature is
mandatory, not defined, or optional. For the optional features, we specify the name of
the constant (e.g., -POSIX-THREADS) that is defined (normally in the <unistd.h>
header) if the feature is supported. Note that Unix 98 is a superset of Posix.1.

(no name)
Posix IPC name

key-t key
key-t key
key-t key
pathname

progratdversion

IF addr & TCP port
IP addr & UDP port

pathname

sem-t pointer
descriptor

System V IPC identifier
System V IPC identifier
System V IPC identifier

descriptor
RPC handle

descriptor
descriptor
descriptor

.I g
%
.If3

Section 1.5 Effect of fork, exec, and exit on IPC Objects 9

Type of IPC - -
Pipe
FIFO

Posix mutex
Posix condition variable

processshared mutex/CV
Pcsix read-write lock

Posix.1 1996

f cn t 1 record locking

l'osix message queue
Pcsix semaphores

System V semaphore (not defined) I mandatory
System V shared memory (not defined) mandatow

Unix 98

mandatory
mandatory

- POSIX-THREADS
- POSIX-THREADS

-POSIX-THREAD-PROCESS-SHARED
(not defined)

Posix shared memory I - POSIX-SHARED-MEMORY-OBJECTS I SOPEN-REALTIME

mandatory
mandatory

mandatory
mandatory
mandatory
mandatory

mandatory

- POSIX-MESSAGE-PASSING
- POSIX-SEMAPHORES

System V message queue

mandatory

- XOPEN-REALTIME
- XOPEN-REALTIME

Doors
Sun RPC

map

Effect of fork, exec, and exit on IPC Objects

(not defined)

I Realtime signals

We need to understand the effect of the fork, exec, and -exit functions on the vari-
ous forms of IPC that we discuss. (The latter is called by the e x i t function.) We sum-
marize this in Figure 1.6.

Most of these features are described later in the text, but we need to make a few
points. First, the calling of fork from a multithreaded process becomes messy with
regard to unnamed synchronization variables (mutexes, condition variables, read-write
locks, and memory-based semaphores). Section 6.1 of [Butenhof 19971 provides the
details. We simply note in the table that if these variables reside in shared memory and
are created with the process-shared attribute, then they remain accessible to any thread
of any process with access to that shared memory. Second, the three forms of System V
IPC have no notion of being open or closed. We will see in Figure 6.8 and Exercises 11.1
and 14.1 that all we need to know to access these three forms of IPC is an identifier. So
these three forms of IPC are available to any process that knows the identifier, although
some special handling is indicated for semaphores and shared memory.

mandatory

(not defined)
(not defined)

- POSIX-MAPPED-FILES or
- POSIX-SHARED-MEMORY-OBJECTS

(not defined)
(not defined)

mandatory

Figure 1.5 Availability of the various forms of IPC.

- POSIX-REALTIME-SIGNALS - XOPEN-REALTIME

10 Introduction Chapter 1

Type of IPC fork

Pipes child gets copies of all
and parent's open descriptors
FIFOs
Posix child gets copies of all
message parent's open message
aueues aueue descrivtors
System V 1 1 no effect
message
queues

Posix shared if in shared
mutexes and memory and process- ==+====
condition I I shared attribute
variables

read-write memory and process-
locks shared attribute

Posix all open in parent remain
named open in child
sema~hores
System V I I all sernad j values in child
semaphores are set to 0 I I
fcntl locks held by parent are
record not inherited by child
locking

memory mappings in
memory parent are retained by
mappings 11 child
Posix I I memory mappings in
shared parent ire retained by
memory /I child
System V attached shared memory
shared segments remain attached
memory by child
Doors child gets copies of all

parent's open descriptors
but only parent is a server
for door invocations on
door descriptors

exec

all open descriptors remain
open unless descriptor's
FD CLOEXEC bit set
all open message queue
descriptors are closed

no effect

vanishes unless in shared
memory that stays open
and process-shared
attribute
vanishes unless in shared
memory that stays open
and process-shared
attribute
vanishes unless in shared
memory that stays open
and process-shared
attribute

any open are closed

all semad j values carried
over to new program

locks are unchanged as
long as descriptor remains

"Pen
memory mappings are
unmapped

memory mappings are
unmapped

attached shared memory
segments are detached

all door descriptors should
be closed because they are
created with FD-CLOEXEC
bit set

- exit

all open descriptors closed;
all data removed from pipe
or FIFO on last close
all open message queue
descriptors are closed

no effect

vanishes unless in shared
memory that stays open
and process-shared
attribute
vanishes unless in shared
memory that stays open
and process-shared
attribute
vanishes unless in shared
memory that stays open
and process-shared
attribute
any open are closed

all semad j values are
added to corresponding
semaphore value
all outstanding locks
owned by process are
unlocked

memory mappings are
unmapped

memory mappings are
unmapped

attached shared memory
segments are detached

all open descriptors closed

Figure 1.6 Effect of calling fork, exec, and -exit on IPC.

Section 1.6 Error Handling: Wrapper Functions 11

1.6 Error Handling: Wrapper Functions

In any real-world program, we must check every function call for an error return. Since
terminating on an error is the common case, we can shorten our programs by defining a
wrapper function that performs the actual function call, tests the return value, and termi-
nates on an error. The convention we use is to capitalize the name of the function, as in

Sern jos t (p t r) ;

Our wrapper function is shown in Figure 1.7.

lib/wrapunix.c
387 void
388 Sem_post(sem-t *sem)
389 {

390 i f (sern_post(sem) == -1)
391 err-sys("sem_post e r r o r ") ;
392)

lib/wrapunix.c
Figure 1.7 Our wrapper function for the s e m s o s t function.

Whenever you encounter a function name in the text that begins with a capital let-
ter, that is a wrapper function of our own. It calls a function whose name is the
same but begins with the lowercase letter. The wrapper function always terminates
with an error message if an error is encountered.

When describing the source code that is presented in the text, we always refer to the
lowest-level function being called (e.g., semjost) and not the wrapper function
(e.g., Semjost). Similarly the index always refers to the lowest level function
being called, and not the wrapper functions.

The format of the source code just shown is used throughout the text. Each nonblank line is
numbered. The text describing portions of the code begins with the starting and ending line
numbers in the left margin. Sometimes the paragraph is preceded by a short descriptive bold
heading, providing a summary statement of the code being described.

The horizontal rules at the beginning and end of the code fragment specify the source code
filename: the file wrapunix. c in the directory l i b for this example. Since the source code for
all the examples in the text is freely available (see the Preface), you can locate the appropriate
source file. Compiling, running, and especially modifying these programs while reading this
text is an excellent way to learn the concepts of interprocess communications.

Although these wrapper functions might not seem like a big savings, when we dis-
cuss threads in Chapter 7, we will find that the thread functions do not set the standard
Unix errno variable when an error occurs; instead the errno value is the return value
of the function. This means that every time we call one of the pthread functions, we
must allocate a variable, save the return value in that variable, and then set errno to
this value before calling our err-sys function (Figure C.4). To avoid cluttering the
code with braces, we can use C's comma operator to combine the assignment into
errno and the call of err-sys into a single statement, as in the following:

12 Introduction Chapter 1

i n t n;

i f ((n = pthread~mutex~lock(&ndone~mutex)) != 0)
e r rno = n , err-sys("pthread~mutex~1ock e r r o r ") ;

Alternately, we could define a new error function that takes the system's error number
as an argument. But we can make this piece of code much easier to read as just

by defining our own wrapper function, shown in Figure 1.8.

1iblwrappthread.c
125 void
126 ~thread~mutex~lock(pthread~mutex~t *mptr)
127 {

12 8 i n t n;

129 if ((n = pthread-mutex-lock(mptr)) == 0)
130 re tu rn ;
131 e r rno = n;
132 err~sys("pthread~mutex~1ock e r r o r ") ;

Figure 1.8 Our wrapper function for pthread-mutex-lock.

With careful C coding, we could use macros instead of functions, providing a little run-time
efficiency, but these wrapper functions are rarely, if ever, the performance bottleneck of a pro-
gram.

Our choice of capitalizing the first character of the function name is a compromise. Many
other styles were considered: prefixing the function name with an e (as done on p. 182 of
[Kernighan and Pike 1984]), appending -e to the function name, and so on. Our style seems
the least distracting while still providing a visual indication that some other function is really
being called.

This technique has the side benefit of checking for errors from functions whose error returns
are often ignored: c l o s e and pthread-mutex-lock, for example.

Throughout the rest of this book, we use these wrapper functions unless we need to
check for an explicit error and handle it in some form other than terminating the pro-
cess. We do not show the source code for all our wrapper functions, but the code is
freely available (see the Preface).

Unix errno Value

When an error occurs in a Unix function, the global variable errno is set to a positive
value, indicating the type of error, and the function normally returns -1. Our err-sys
function looks at the value of errno and prints the corresponding error message string
(e.g., "Resource temporarily unavailable" if errno equals EAGAIN).

The value of errno is set by a function only if an error occurs. Its value is unde-
fined if the function does not return an error. All the positive error values are constants
with an all-uppercase name beginning with E and are normally defined in the

Section 1.7 Unix Standards 13

<sys /errno. h> header. No error has the value of 0.
With multiple threads, each thread must have its own errno variable. Providing a

per-thread errno is handled automatically, although this normally requires telling the
compiler that the program being compiled must be reentrant. Specdying something
like -D-REENTRANT or -D-POSIX-C_SOURCE=19 9 5 0 6L to the compiler is typically
required. Often the <errno. h> header defines errno as a macro that expands into a
function call when -REENTRANT is defined, referencing a per-thread copy of the error
variable.

Throughout the text, we use phrases of the form "the m ~ s e n d function returns
EMSGSIZE" as shorthand to mean that the function returns an error (typically a return
value of -1) with errno set to the specified constant.

1.7 Unix Standards

Most activity these days with regard to Unix standardization is being done by Posix and
The Open Group.

Posix is an acronym for "Portable Operating System Interface." Posix is not a single
standard, but a family of standards being developed by the Institute for Electrical and
Electronics Engineers, Inc., normally called the IEEE. The Posix standards are also
being adopted as international standards by IS0 (the International Organization for
Standardization) and IEC (the International Electrotechnical Commission), called
ISO/IEC. The Posix standards have gone through the following iterations.

IEEE Std 1003.1-1988 (317 pages) was the first of the Posix standards. It specified
the C language interface into a Unix-like kernel covering the following areas: process
primitives (fork, exec, signals, timers), the environment of a process (user IDS, pro-
cess groups), files and directories (all the 1 / 0 functions), terminal I/O, the system
databases (password file and group file), and the t a r and cpio archive formats.

The first Posix standard was a trial use version in 1986 known as "IEEEIX." The name Posix
was suggested by Richard Stallman.

IEEE Std 1003.1-1990 (356 pages) was next and it was also International Standard
ISO/IEC 9945-1: 1990. Minimal changes were made from the 1988 version to the
1990 version. Appended to the title was "Part 1: System Application Program Inter-
face (API) [C Language]" indicating that this standard was the C language API.

IEEE Std 1003.2-1992 was published in two volumes, totaling about 1300 pages, and
its title contained "Part 2: Shell and Utilities." This part defines the shell (based on
the System V Bourne shell) and about 100 utilities (programs normally executed
from a shell, from awk and basename to v i and yacc). Throughout this text, we
refer to this standard as Posix.2.

14 Introduction Chapter 1

IEEE Std 1003.1b-1993 (590 pages) was originally known as IEEE P1003.4. This was
an update to the 1003.1-1990 standard to include the realtime extensions developed
by the P1003.4 working group: file synchronization, asynchronous I/O, semaphores,
memory management (mmap and shared memory), execution scheduling, clocks and
timers, and message queues.

IEEE Std 1003.1,1996 Edition [IEEE 19961 (743 pages) includes 1003.1-1990 (the base
API), 1003.1b-1993 (realtime extensions), 1003.1~-1995 (Pthreads), and 1003.1i-1995
(technical corrections to 1003.lb). This standard is also called ISO/IEC 9945-1: 1996.
Three chapters on threads were added, along with additional sections on thread syn-
chronization (mutexes and condition variables), thread scheduling, and synchroniza-
tion scheduling. Throughout this text, we refer to this standard as Posix.1.

Over one-quarter of the 743 pages are an appendix titled "Rationale and Notes." This ratio-
nale contains historical information and reasons why certain features were included or omit-
ted. Often the rationale is as informative as the official standard.

Unfortunately, the IEEE standards are not freely available on the Internet. Ordering informa-
tion is given in the Bibliography entry for IIEEE 19961.

Note that semaphores were defined in the realtime standard, separately from mutexes and
condition variables (which were defined in the Pthreads standard), which accounts for some of
the differences that we see in their APIs.

Finally, note that read-write locks are not (yet) part of any Posix standard. We say more about
this in Chapter 8.

Sometime in the future, a new version of IEEE Std 1003.1 should be printed to
include the P1003.lg standard, the networking APIs (sockets and XTI), which are
described in UNPvl.

The Foreword of the 1996 Posix.1 standard states that ISO/IEC 9945 consists of the
following parts:

Part 1: System application program interface (API) [C language],
Part 2: Shell and utilities, and
Part 3: System administration (under development).

Parts 1 and 2 are what we call Posix.1 and Posix.2.
Work on all of the Posix standards continues and it is a moving target for any book

that attempts to cover it. The current status of the various Posix standards is available
fromhttp://www.pasc.org/standing/sdll.html.

The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open Company
(founded in 1984) and the Open Software Foundation (OSF, founded in 1988). It is an
international consortium of vendors and end-user customers from industry, govem-
ment, and academia. Their standards have gone through the following iterations:

Section 1.8 Road Map to IPC Examples in the Text 15

X/Open published the XIOpen Portability Guide, Issue 3 (XPG3) in 1989.

Issue 4 was published in 1992 followed by Issue 4, Version 2 in 1994. This latest ver-
sion was also known as "Spec 1170," with the magic number 1170 being the sum of
the number of system interfaces (9261, the number of headers (70), and the number
of commands (174). The latest name for this set of specifications is the "X/Open Sin-
gle Unix Specification," although it is also called "Unix 95."

In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification can be called "Unix 98," which is how we refer to
this specification throughout this text. The number of interfaces required by Unix 98
increases from 1170 to 1434, although for a workstation, this jumps to 3030, because
it includes the CDE (Common Desktop Environment), which in turn requires the X
Window System and the Motif user interface. Details are available in [Josey 19971
andhttp://www.UNIX-systems.org/version2.

Much of the Single Unix Specification is freely available on the Internet from this URL.

Unix Versions and Portability

Most Unix systems today conform to some version of Posix.1 and Posix.2. We use the
qualifier "some" because as updates to Posix occur (e.g., the realtime extensions in 1993
and the Pthreads addition in 1996), vendors take a year or two (sometimes more) to
incorporate these latest changes.

Historically, most Unix systems show either a Berkeley heritage or a System V her-
itage, but these differences are slowly disappearing as most vendors adopt the Posix
standards. The main differences still existing deal with system administration, one area
that no Posix standard currently addresses.

Throughout this text, we use Solaris 2.6 and Digital Unix 4.OB for most examples.
The reason is that at the time of this writing (late 1997 to early 19981, these were the only
two Unix systems that supported System V IPC, Posix IPC, and Posix threads.

1.8 Road Map to IPC Examples in the Text

Three patterns of interaction are used predominantly throughout the text to illustrate
various features:

1. File server: a client-server application in which the client sends the server a
pathname and the server returns the contents of that file to the client.

2. Producer<onsumer: one or more threads or processes (producers) place data
into a shared buffer, and one or more threads or processes (consumers) operate
on the data in the shared buffer.

16 [ntrodudion Chapter 1

3. Sequence-number-increment: one or more threads or processes increment a
shared sequence number. Sometimes the sequence number is in a shared file,
and sometimes it is in shared memory.

The first example illustrates the various forms of message passing, whereas the other
two examples illustrate the various types of synchronization and shared memory.

To provide a road map for the different topics that are covered in this text, Figures
1.9, 1.10, and 1.11 summarize the programs that we develop, and the starting figure
number and page number in which the source code appears.

1.9 Summary

IPC has traditionally been a messy area in Unix. Various solutions have been imple-
mented, none of which are perfect. Our coverage is divided into four main areas:

1. message passing (pipes, FIFOs, message queues),
2. synchronization (mutexes, condition variables, read-write locks, semaphores),
3. shared memory (anonymous, named), and
4. procedure calls (Solaris doors, Sun RPC).

We consider IPC between multiple threads in a single process, and between multiple
processes.

The persistence of each type of IPC as either can be process-persistent, kernel-
persistent, or filesystem-persistent, based on how long the IPC object stays in existence.
When choosing the type of IPC to use for a given application, we must be aware of the
persistence of that IPC object.

Another feature of each type of IPC is its name space: how IPC objects are identified
by the processes and threads that use the IPC object. Some have no name (pipes,
mutexes, condition variables, read-write locks), some have names in the filesystem
(FIFOs), some have what we describe in Chapter 2 as Posix IPC names, and some have
other types of names (what we describe in Chapter 3 as System V IPC keys or identi-
fiers). Typically, a server creates an IPC object with some name and the clients use that
name to access the IPC object.

Throughout the source code in the text, we use the wrapper functions described in
Section 1.6 to reduce the size of our code, yet still check every function call for an error
return. Our wrapper functions all begin with a capital letter.

The IEEE Posix standards-Posix.1 defining the basic C interface to Unix and
Posix.2 defining the standard commands-have been the standards that most vendors
are moving toward. The Posix standards, however, are rapidly being absorbed and
expanded by the commercial standards, notably The Open Group's Unix standards,
such as Unix 98.

Section 1.9 Summary 17

Figure 1.9 Different versions of the file server client-server example.

Figure

4.8
4.15
4.16
4.18
4.23
4.25
6.9
6.15
6.20

15.18

I Figure I Page I Description - -
7.2 1 162 1 Mutex onlv, multiple producers, one consumer

Page

47
53
55
57
62
68

141
144
148
381

Description

Uses two pipes, parent-child
Uses popen and c a t
Uses two FIFOs, parent-child
Uses two FIFOs, stand-alone server, unrelated client
Uses FIFOs, stand-alone iterative server, multiple clients
Uses pipe or FIFO: builds records on top of byte stream
Uses two System V message queues
Uses one System V message queue, multiple clients
Uses one System V message queue per client, multiple clients
Uses descriptor passing across a door

7.6

Figure 1.10 Different versions of the producer-consumer example.

10.20
10.21
10.24
10.33

Figure (Page I Description

9.1 1 194 1 Seq# in file, nolocking

10.17 1 236 1 Posix named semaphores, one producer, one consumer

168

-
Seq# in file, f c n t l locking
Seq# in file, filesystem locking using open
Seq# in file, Posix named semaphore locking
Seq# in mmap shared memory, Posix named semaphore locking
Seq# in mmap shared memory, Posix memory-based semaphore locking
Seq# in 4.48%) anonymous shared memory, Posix named semaphore locking
Seq# in SVR4 /dev/zero shared memory, Posix named semaphore locking
Seq# in Posix shared memory, Posix memory-based semaphore locking

Performance measurement: mutex locking between threads
Performance measurement: read-write locking between threads
Performance measurement: Posix memory-based semaphore locking between threads
Performance measurement: Posix named semaphore locking between threads

. .
Mutex and condition variable, multiple producers, one consumer

242
243
246
254

494 Performance measurement: System V semaphore locking between threads
496 1 Performance measurement: f c n t l record locking between threads
499 Performance measurement: mutex locking between processes

Posix memory-based semaphores, one producer, one consumer
Posix memory-based semaphores, multiple producers, one consumer
Posix memory-based semaphores, multiple producers, multiple consumers
Posix memory-based semaphores, one producer, one consumer: multiple buffers

Figure 1.11 Different versions of the sequence-number-increment example.

18 lntroduction Chapter 1

Exercises

1.1 In Figure 1.1 we show two processes accessing a single file. If both processes are just
appending new data to the end of the file (a log file perhaps), what kind of synchronization
is required?

1.2 Look at your system's <errno. h> header and see how it defines ermo.

1.3 Update Figure 1.5 by noting the features supported by the Unix systems that you use.

Posix /PC

Introduction

The three types of IPC,

Posix message queues (Chapter 5),
Posix semaphores (Chapter lo), and
Posix shared memory (Chapter 13)

are collectively referred to as "Posix IPC." They share some similarities in the functions
that access them, and in the information that describes them. This chapter describes all
these common properties: the pathnames used for identification, the flags specified
when opening or creating, and the access permissions.

A summary of their functions is shown in Figure 2.1.

IPC Names

In Figure 1.4, we noted that the three types of Posix IPC use "Posix IPC names" for their
identification. The first argument to the three functions mq_open, sem-open, and
s h x o p e n is such a name, which may or may not be a real pathname in a filesystem.
All that Posix.1 says about these names is:

It must conform to existing rules for pathnames (must consist of at most
PATH-MAX bytes, including a terminating null byte).

If it begins with a slash, then different calls to these functions all reference the
same queue. If it does not begin with a slash, the effect is implementation
dependent.

20 Posix IPC Chapter 2

Header I <mqueue.h> I <semaphore.h> I <sys/mman.h>

Message
queues

Functions to create, open, or delete meopen
m ~ c l o s e
mq-unlink

Semaphores Shared
memory

The interpretation of additional slashes in the name is implementation defined.

Functions for control operations

Functions for IPC operations

So, for portability, these names must begin with a slash and must not contain any other
slashes. Unfortunately, these rules are inadequate and lead to portability problems.

Solaris 2.6 requires the initial slash but forbids any additional slashes. Assuming a
message queue, it then creates three files in / trnp that begin with . MQ. For example, if
the argument to mq_open is /queue. 1234, then the three files are
/tmp/.MQDqueue.1234, /tmp/.MQLqueue.1234, and /tmp/.MQPqueue.1234.
Digital Unix 4.OB, on the other hand, creates the specified pathname in the filesystem.

The portability problem occurs if we specify a name with only one slash (as the first
character): we must have write permission in that directory, the root directory. For
example, / tmp .12 3 4 abides by the Posix rules and would be OK under Solaris, but
Digital Unix would try to create this file, and unless we have write permission in the
root directory, this attempt would fail. If we specify a name of /tmp/test .1234, this
will succeed on all systems that create an actual file with that name (assuming that the
/ tmp directory exists and that we have write permission in that directory, which is nor-
mal for most Unix systems), but fails under Solaris.

To avoid these portability problems we should always #define the name in a
header that is easy to change if we move our application to another system.

This case is one in which the standard tries to be so general (in this case, the realtime standard
was trying to allow message queue, semaphore, and shared memory implementations all
within existing Unix kernels and as stand-alone diskless systems) that the standard's solution
is nonportable. Within Posix, this is called "a standard way of being nonstandard."

Figure 2.1 Summary of Posix IPC functions.

m ~ g e t a t t r
mq-se ta t t r
m ~ s e n d
%receive
mq-notify

Posix.1 defines the three macros

S-TYPE1 SMQ (b ~ f)

S-TYPEISSEM (b ~ f)

S-TY PEI SSHM (b ~ f)

sem-wait
sem-trywait
s e m s o s t
sem-getvalue

f t runcate
f s t a t

m a p
munmap

Section 2.2 IPC Names 21

that take a single argument, a pointer to a stat structure, whose contents are filled in
by the f stat, lstat, or stat functions. These three macros evaluate to a nonzero
value if the specified IPC object (message queue, semaphore, or shared memory object)
is implemented as a distinct file type and the stat structure references such a file type.
Otherwise, the macros evaluate to 0.

Unfortunately, these macros are of little use, since there is no guarantee that these three types
of IPC are implemented using a distinct file type. Under Solaris 2.6, for example, all three
macros always evaluate to 0.

All the other macros that test for a given file type have names beginning with S-1s and their
single argument is the st-mode member of a s t a t structure. Since these three new macros
have a different argument, their names were changed to begin with S-TYPEIS.

px-ipc-name Function

Another solution to this portability problem is to define our own function named
px-ipc-name that prefixes the correct directory for the location of Posix IPC names.

I #include "unpipc.h"
I
I
I char *px-ipcpame(const char *name);
I

This is the notation we use for functions of our own throughout this book that are not standard
system functions: the box around the function prototype and return value is dashed. The
header that is included at the beginning is usually our unpipc . h header (Figure C.1).

The name argument should not contain any slashes. For example, the call

px-ipc-name (" t e s t l ")

returns a pointer to the string /test1 under Solaris 2.6 or a pointer to the string
/ tmp / tes t 1 under Digital Unix 4.OB. The memory for the result string is dynamically
allocated and is returned by calling free. Additionally, the environment variable
PX-IPC-NAME can override the default directory.

Figure 2.2 shows our implementation of this function.

This may be your first encounter with snpr in t f . Lots of existing code calls s p r i n t f instead,
but s p r i n t f cannot check for overflow of the destination buffer. snpr in t f , on the other
hand, requires that the second argument be the size of the destination buffer, and this buffer
will not be overflowed. Providing input that intentionally overflows a program's sp r in t f
buffer has been used for many years by hackers breaking into systems.

snpr in t f is not yet part of the ANSI C standard but is being considered for a revision of the
standard, currently called C9X. Nevertheless, many vendors are providing it as part of the
standard C library. We use snpr in t f throughout the text, providing our own version that
just calls s p r i n t f when it is not provided.

22 Posix IPC Chapter 2

2 char *
3 px-ipc-name(const char *name)
4 {

5 char *dir, "dst, *slash;

6 if ((dst = malloc(PATH-MAX)) == NULL)
7 return (NULL) ;

8 / * can override default directory with environment variable * /
9 if ((dir = getenv("PX-IPC-NAME")) == NULL) {

10 #ifdef POSIX-IPC-PREFIX
11 dir = POSIX-IPC-PREFIX; / * from "config.hn * /
12 #else
13 dir = " /tmp/" ;
14 #endif
15 1
16 / * dir must end in a
17 slash = (dir [strlen (dir)

/ * default * /

18 snprintf (dst, PATH-MAX, "%s%s%sN , dir, slash, name) ;

19 return (dst) ; / * caller can free0 this pointer " /

20 1
liblpx-ipc-name.c

Figure 22 Our px-ipc-name function.

Creating and Opening IPC Channels

The three functions that create or open an IPC object, mq_open, sem-open, and
s-open, all take a second argument named oflag that specifies how to open the
requested object. This is similar to the second argument to the standard open function.
The various constants that can be combined to form this argument are shown in Fig-
ure 2.3.

Description

read-only
write-only
read-write

Figure 23 Various constants when opening or creating a Posix IPC object.

create if it does not already exist
exclusive create

nonblocking mode
truncate if it alreadv exists

The first three rows specify how the object is being opened: read-only, write-only, or
read-write. A message queue can be opened in any of the three modes, whereas none

m ~ o p e n

0-RDONLY
0-WRONLY
0-RDWR

0-CREAT
0-EXCL

0-NONBLOCK

sem-open shxopen

0-RDONLY

0-RDWR

0-CREAT
0-EXCL

0-CREAT
0-EXCL

0-TRUNC

Section 2.3 Creating and Opening IPC Channels 23

of these three constants is specified for a semaphore (read and write access is required
for any semaphore operation), and a shared memory object cannot be opened write-
only.

The remaining 0-xxx flags in Figure 2.3 are optional.

0-CREAT Create the message queue, semaphore, or shared memory object if it
does not already exist. (Also see the 0-EXCL flag, which is
described shortly.)

When creating a new message queue, semaphore, or shared mem-
ory object at least one additional argument is required, called mode.
This argument specifies the permission bits and is formed as the bit-
wise-OR of the constants shown in Figure 2.4.

Figure 2.4 mode constants when a new IPC object is created.

These constants are defined in the <sys/ stat. h> header. The
specified permission bits are modified by the fde mode creation mask
of the process, which can be set by calling the umask function
(pp. 83-85 of APUE) or by using the shell's umask command.

As with a newly created file, when a new message queue,
semaphore, or shared memory object is created, the user ID is set to
the effective user ID of the process. The group ID of a semaphore or
shared memory object is set to the effective group ID of the process
or to a system default group ID. The group ID of a new message
queue is set to the effective group ID of the process. (Pages 77-78 of
APUE talk more about the user and group IDS.)

This difference in the setting of the group ID between the three types of Posix
IPC is strange. The group ID of a new file created by open is either the effec-
tive group ID of the process or the group ID of the directory in which the file is
created, but the IPC functions cannot assume that a pathname in the filesystem
is created for an IPC object.

0-EXCL If this flag and 0-CREAT are both specified, then the function creates
a new message queue, semaphore, or shared memory object only if
it does not already exist. If it already exists, and if 0-CREAT I
0-EXCL is specified, an error of EEXIST is returned.

24 Posix IPC Chapter 2

The check for the existence of the message queue, semaphore, or
shared memory object and its creation (if it does not already exist)
must be atomic with regard to other processes. We will see two simi-
lar flags for System V IPC in Section 3.4.

0-NONBLOCK This flag makes a message queue nonblocking with regard to a read
on an empty queue or a write to a full queue. We talk about this
more with the m c r e c e i v e and m c s e n d functions in Section 5.4.

O-TRUNC If an existing shared memory object is opened read-write, this flag
specifies that the object be truncated to 0 length.

Figure 2.5 shows the actual logic flow for opening an IPC object. We describe what we
mean by the test of the access permissions in Section 2.4. Another way of looking at
Figure 2.5 is shown in Figure 2.6.

start here
OK

create new object

no

system tables full ?
error return,

er rno = ENOSPC

new object
is created

does object no no error return,
0-CREAT set ?

already exist ? - errno = ENOENT

are both 0-CREAT yes error return,
and 0-EXCL set ?
' errno = EEXIST

existing
object is no

referenced
are the access no error return,

permissions OK ?
' errno = EACCES

OK

Figure 25 Logic for opening or creating an IPC object.

Figure 2.6 Logic for creating or opening an IPC object.

oflag argument

no special flags
0-CREAT

0-CREAT I 0-EXCL

Object does not exist

error, e r rno = ENOENT
OK, creates new object
OK, creates new object

Object already exists

OK, references existing object
OK, references existing object

error, e r rno = EEXIST

Section 2.4 IPC Permissions 25

Note that in the middle line of Figure 2.6, the 0-CREAT flag without 0-EXCL, we do not
get an indication whether a new entry has been created or whether we are referencing
an existing entry.

2.4 IPC Permissions

A new message queue, named semaphore, or shared memory object is created by
mcopen, sem-open, or shm-open when the oflag argument contains the 0-CREAT
flag. As noted in Figure 2.4, permission bits are associated with each of these forms of
IPC, similar to the permission bits associated with a Unix file.

When an existing message queue, semaphore, or shared memory object is opened
by these same three functions (either 0-CREAT is not specified, or 0-CREAT is specified
without O-EXCL and the object already exists), permission testing is performed based
on

1. the permission bits assigned to the IPC object when it was created,

2. the type of access being requested (0-RDONLY, 0-WRONLY, or 0-RDWR), and

3. the effective user ID of the calling process, the effective group ID of the calling
process, and the supplementary group IDS of the process (if supported).

The tests performed by most Unix kernels are as follows:

1. If the effective user ID of the process is 0 (the superuser), access is allowed.

2. If the effective user ID of the process equals the owner ID of the IPC object: if the
appropriate user access permission bit is set, access is allowed, else access is
denied.

By appropriate access permission bit, we mean if the process is opening the IPC
object for reading, the user-read bit must be on. If the process is opening the
IPC object for writing, the user-write bit must be on.

3. If the effective group ID of the process or one of the supplementary group IDS of
the process equals the group ID of the IPC object: if the appropriate group
access permission bit is set, access is allowed, else permission is denied.

4. If the appropriate other access permission bit is set, access is allowed, else per-
mission is denied.

These four steps are tried in sequence in the order listed. Therefore, if the process owns
the IPC object (step 2), then access is granted or denied based only on the user access
permissions-the group permissions are never considered. Similarly if the process
does not own the IPC object, but the process belongs to an appropriate group, then
access is granted or denied based only on the group access permissions-the other per-
missions are not considered.

26 Posix IPC Chapter 2

We note from Figure 2.3 that sem-open does not use the 0-RDONLY, 0-WRONLY, or 0-RDWR
flag. We note in Section 10.2, however, that some Unix implementations assume 0-RDWR, since
any use of a semaphore involves reading and writing the semaphore value.

2.5 Summary

The three types of Posix IPC-message queues, semaphores, and shared memory-are
identified by pathnames. But these may or may not be real pathnames in the filesystem,
and this discrepancy can be a portability problem. The solution that we employ
throughout the text is to use our own px-ipc-name function.

When an IPC object is created or opened, we specify a set of flags that are similar to
those for the open function. When a new IPC object is created, we must specify the per-
missions for the new object, using the same s-xxx constants that are used with open
(Figure 2.4). When an existing IPC object is opened, the permission testing that is per-
formed is the same as when an existing file is opened.

Exercises

2.1 In what way do the set-user-ID and set-group-ID bits (Section 4.4 of APUE) of a program
that uses Posix IPC affect the permission testing described in Section 2.4?

2.2 When a program opens a Posix IPC object, how can it determine whether a new object was
created or whether it is referencing an existing object?

System V /PC

3.1 Introduction

The three types of IPC,

System V message queues (Chapter 61,
System V semaphores (Chapter ll), and
System V shared memory (Chapter 14)

are collectively referred to as "System V IPC." This term is commonly used for these
three IPC facilities, acknowledging their heritage from System V Unix. They share
many similarities in the functions that access them, and in the information that the ker-
nel maintains on them. This chapter describes all these common properties.

A summary of their functions is shown in Figure 3.1.

Header I <svs/msa.h> I <svs/sem.h> I <sys/shm.h>

Shared
memory

Message
queues

Figure 3.1 Summary of System V IPC functions.

Semaphores

--

Function to create or open

Function for control operations

Functions for IPC operations

Information on the design and development of the System V IPC functions is hard to find.
[Rochkind 19851 provides the following information: System V message queues, semaphores,
and shared memory were developed in the late 1970s at a branch laboratory of Bell

msgget

msgct 1

msgsnd
msgrcv

semget

semctl

s emop

shmge t

shmctl

shmat
shmdt

28 System V IPC Chapter 3

Laboratories in Columbus, Ohio, for an internal version of Unix called (not surprisingly)
"Columbus Unix" or just "CB Unix." This version of Unix was used for "Operation Support
Systems," transaction processing systems that automated telephone company administration
and recordkeeping. System V IPC was added to the commercial Unix system with System V
around 1983.

key-t Keys and ftok Function

In Figure 1.4, the three types of System V IPC are noted as using key-t values for their
names. The header <sys/ types. h> defines the key-t datatype, as an integer, nor-
mally at least a 32-bit integer. These integer values are normally assigned by the f tok
function.

The function f tok converts an existing pathname and an integer identifier into a
key-t value (called an IPC key).

#include <sys / ipc .h>

I key-t f tok (const char *pathname, i n t id) : I
I Returns: IPC key if OK, -1 on error

This function takes information derived from the pathname and the low-order 8 bits of
id, and combines them into an integer IPC key.

This function assumes that for a given application using System V IPC, the server
and clients all agree on a single pathname that has some meaning to the application. It
could be the pathname of the server daemon, the pathname of a common data file used
by the server, or some other pathname on the system. If the client and server need only
a single IPC channel between them, an id of one, say can be used. If multiple IPC chan-
nels are needed, say one from the client to the server and another from the server to the
client, then one channel can use an id of one, and the other an id of two, for example.
Once the pathname and id are agreed on by the client and server, then both can call the
f tok function to convert these into the same IPC key.

Typical implementations of f tok call the stat function and then combine

1. information about the filesystem on which pathname resides (the st-dev mem-
ber of the stat structure),

2. the file's i-node number within the filesystem (the st-ino member of the stat
structure), and

3. the low-order 8 bits of the id.

The combination of these three values normally produces a 32-bit key. No guarantee
exists that two different pathnames combined with the same, id generate different keys,
because the number of bits of information in the three items just listed (filesystem iden-
tifier, i-node, and id) can be greater than the number of bits in an integer. (See Exer-
cise 3.5.)

Section 3.2 key-t Keys and f tok Function 29

The i-node number is never 0, so most implementations define IPC-PRIVATE (which we
describe in Section 3.4) to be 0.

If the pathname does not exist, or is not accessible to the calling process, f t o k
returns -1. Be aware that the file whose pathname is used to generate the key must not
be a file that is created and deleted by the server during its existence, since each time it
is created, it can assume a new i-node number that can change the key returned by
f tok to the next caller.

Example

The program in Figure 3.2 takes a pathname as a command-line argument, calls stat,
calls ftok, and then prints the st-dev and st- ino members of the stat structure,
and the resulting IPC key. These three values are printed in hexadecimal, so we can eas-
ily see how the IPC key is constructed from these two values and our id of 0x57.

2 int
3 rnain(.int argc, char **argv)

4 {

5 struct stat stat;

6 if (argc != 2)
7 err-quit("usage: ftok <pathname>");

8 Stat(argv[ll, &stat);
9 printf("st-dev: %lx, st-ino: %lx, key: %x\nU,
10 (u-long) stat.st-dev, (u-long) stat.st-ino,
11 Ftok(argv[l], 0x57));

12 exit (0) ;

13 I
svipc/ftok.c

Figure 3.2 Obtain and print filesystem information and resulting IPC key.

Executing this under Solaris 2.6 gives us the following:

solaris % ftok /etc/system
st-dev: 800018, st-ino: 4alb. key: 57018alb
solaris % ftok /usr/tmp
st-dev: 800015, st-ino: 10b78, key: 57015b78
solaris % ftok /home/rstevens/Mail.out
st-dev: 80001f. st-ino: 3b03, key: 5701fb03

Apparently the id is in the upper 8 bits, the low-order 12 bits of st-dev in the next
12 bits, and the low-order 12 bits of st- ino in the low-order 12 bits.

Our purpose in showing this example is not to let us count on this combination of
information to form the IPC key but to let us see how one implementation combines the
pathname and id. Other implementations may do this differently.

FreeBSD uses the lower 8 bits of the id, the lower 8 bits of st-dev, and the lower 16 bits of
s t-ino.

30 System V IPC Chapter 3

Note that the mapping done by f tok is one-way, since some bits from st-dev and st- ino
are not used. That is, given a key, we cannot determine the pathname that was used to create
the key.

3.3 i gc~erm Structure

The kernel maintains a structure of information for each IPC object, similar to the infor-
mation it maintains for files.

s t r u c t i p c q e r m {

uid-t u id ; / * owner's u se r i d * /
gid-t g id ; / * owner's group i d * /
uid-t cuid; / * c r e a t o r ' s u se r i d * /
gid-t cgid; / * c r e a t o r ' s group i d * /
mode-t mode; / * read-write permissions * /
ulong-t seq; / * s l o t usage sequence number * /
key-t key; / * I P C key * /

I ;

This structure, and other manifest constants for the System V IPC functions, are defined
in the <sys/ipc .h> header. We talk about all the members of this structure in this
chapter.

3.4 Creating and Opening IPC Channels

The three getXXX functions that create or open an IPC object (Figure 3.1) all take an
IPC key value, whose type is key-t, and return an integer identifier. This identifier is
not the same as the id argument to the f tok function, as we see shortly. An application
has two choices for the key value that is the first argument to the three getXXX func-
tions:

1. call f tok, passing it a pathname and id, or

2. specify a key of IPC-PRIVATE, which guarantees that a new, unique IPC object
is created.

The sequence of steps is shown in Figure 3.3.

'% msgger ()
i n t identifie

Imsgctl() , msgsnd() , msgrcv()

key of IPC-PRIVATE Semget () ' s e m c t l o , semop0 - shmget () shmct lo , s h m a t 0 , shmdt0

open or create access IPC channel
IPC channel

Figure 3.3 Generating IPC identifiers from IPC keys.

Section 3.4 Creating and Opening IPC Channels 31

All three getXXX functions (Figure 3.1) also take an oflag argument that specifies the
read-write permission bits (the mode member of the i p c j e r m structure) for the IPC
object, and whether a new IPC object is being created or an existing one is being refer-
enced. The rules for whether a new IPC object is created or whether an existing one is
referenced are as follows:

Specifying a key of IPC-PRIVATE guarantees that a unique IPC object is created.
No combinations of pathname and id exist that cause f t o k to generate a key value
of IPC-PRIVATE.

Setting the IPC-CREAT bit of the oflag argument creates a new entry for the
specified key, if it does not already exist. If an existing entry is found, that entry
is returned.

Setting both the IPC-CREAT and IPC-EXCL bits of the oflag argument creates a
new entry for the specified key, only if the entry does not already exist. If an
existing entry is found, an error of EEXIST is returned, since the IPC object
already exists.

The combination of IPC-CREAT and IPC-EXCL with regard to IPC objects is
similar to the combination of 0-CREAT and 0-EXCL with regard to the open
function.

Setting the I PC-EXCL bit, without setting the I PC-CREAT bit, has no meaning.

The actual logic flow for opening an IPC object is shown in Figure 3.4. Figure 3.5 shows
another way of looking at Figure 3.4.

Note that in the middle line of Figure 3.5, the IPC-CREAT flag without IPC-EXCL,
we do not get an indication whether a new entry has been created or whether we are
referencing an existing entry. In most applications, the server creates the IPC object and
specifies either IPC-CREAT (if it does not care whether the object already exists) or
IPC-CREAT I IPC-EXCL (if it needs to check whether the object already exists). The
clients specify neither flag (assuming that the server has already created the object).

The System V IPC functions define their own IPC-xxx constants, instead of using the
0-CREAT and 0-EXCL constants that are used by the standard open function along with the
Posix IPC functions (Figure 2.3).

Also note that the System V IPC functions combine their IPC-xxx constants with the perrnis-
sion bits (which we describe in the next section) into a single oflag argument. The open func-
tion along with the Posix IPC functions have one argument named oflag that specifies the
various 0-xxx flags, and another argument named mode that specifies the permission bits.

32 System V IPC Chapter 3

start here

OK
create new entry
return identifier

key == IPC-PRIVATE ? system tables full ?
error return,

er rno = ENOSPC

new entry
is created '

no
does key already exist ? ---+ IPC-CREAT set ? &

no error return,
e r rno = ENOENT

are both IPC-CREAT yes error return,
and1PC-EXCLset? ' errno = EEXIST

existing
entry is no

referenced
are the access no error return,

permissions OK ? e r rno = EACCES

return identifier

Figure 3.4 Logic for creating or opening an IPC object.

Figure 3.5 Logic for creating or opening an IPC channel.

oflag argument

no special flags
IPC-CREAT

IPC-CREAT I IPC-EXCL

3.5 IPC Permissions

Whenever a new IPC object is created using one of the getXXX functions with the
IPC-CREAT flag, the following information is saved in the i pc se rm structure (Sec-
tion 3.3):

key does not exist

error, e r rno = ENOENT
OK, creates new entry
OK, creates new entry

1. Some of the bits in the oflag argument initialize the mode member of the
ipcaerm structure. Figure 3.6 shows the permission bits for the three different
IPC mechanisms. (The notation >> 3 means the value is right shifted 3 bits.)

key already exists

OK, references existing object
OK, references existing object

error, e r rno = EEXIST

-

Section 3.5 IPC Permissions 33

I 1 Svmbolic values I
Numeric
(octal)

I

- -
1 0 02 0 1 MSG-W z> 3 1 SEM-A 22 3 1 SHM-W 22 3 1 write by group

0400 1 MSG-R
0200

Description
Message
queue

Figure 3.6 mode values for IPC read-write permissions.

SEM-R

0040 1 MSG-R 22 3 1 SEM-R 22 3 1 S H M R 22 3 1 readbygroup

MSG-W

0004
0002

2. The two members c u i d and cgid are set to the effective user ID and effective
group ID of the calling process, respectively. These two members are called the
creator IDS.

Semaphore

S H N R I read by user

3. The two members u i d and gid in the i p c x e r m structure are also set to the
effective user ID and effective group ID of the calling process. These two mem-
bers are called the owner IDS.

Shared
memory

SEM-A

MSG-R 22 6
MSG-W 22 6

The creator IDS never change, although a process can change the owner IDS by calling
the c t l X X X function for the IPC mechanism with a command of IPC-SET. The three
c t l X X X functions also allow a process to change the permission bits of the mode mem-
ber for the IPC object.

S H M W I write by user

Most implementations define the six constants MSG-R, MSG-W, SEM-R, SEM-A, SHM-R, and
SHM-w shown in Figure 3.6 in the <sys /msg . hz, <sys / sem. hz, and <sys / shm. hz headers.
But these are not required by Unix 98. The suffix A in SEM-A stands for "alter."

SEM-R 22 6
SEM-A 22 6

The three getXXX functions do not use the normal Unix file mode creation mask. The permis-
sions of the message queue, semaphore, or shared memory segment are set to exactly what the
function specifies.

Posix IPC does not let the creator of an IPC object change the owner. Nothing is like the
IPC-SET command with Posix IPC. But if the Posix IPC name is stored in the filesystem, then
the superuser can change the owner using the chown command.

S H M R 22 6
SHM-W 22 6

Two levels of checking are done whenever an IPC object is accessed by any process,
once when the IPC object is opened (the g e t X X X function) and then each time the IPC
object is used:

read by others
writeby others

Whenever a process establishes access to an existing IPC object with one of the
g e t X X X functions, an initial check is made that the caller's oflag argument does
not specify any access bits that are not in the mode member of the i p c j e r m
structure. This is the bottom box in Figure 3.4. For example, a server process
can set the mode member for its input message queue so that the group-read
and other-read permission bits are off. Any process that tries to specify an oflag
argument that includes these bits gets an error return from the m s g g e t function.
But this test that is done by the g e t X X X functions is of little use. It implies that

34 System V IPC Chapter 3

the caller knows which permission category it falls into-user, group, or other.
If the creator specifically turns off certain permission bits, and if the caller speci-
fies these bits, the error is detected by the getXXX function. Any process, how-
ever, can totally bypass this check by just specifying an oflag argument of 0 if it
knows that the IPC object already exists.

2. Every IPC operation does a permission test for the process using the operation.
For example, every time a process tries to put a message onto a message queue
with the msgsnd function, the following tests are performed in the order listed.
As soon as a test grants access, no further tests are performed.

a. The superuser is always granted access.

b. If the effective user ID equals either the uid value or the cuid value for the
IPC object, and if the appropriate access bit is on in the mode member for the
IPC object, permission is granted. By "appropriate access bit," we mean the
read-bit must be set if the caller wants to do a read operation or, the IPC
object (receiving a message from a message queue, for example), or the
write-bit must be set for a write operation.

c. If the effective group ID equals either the gid value or the cgid value for
the IPC object, and if the appropriate access bit is on in the mode member for
the IPC object, permission is granted.

d. If none of the above tests are true, the appropriate "other" access bit must be
on in the mode member for the IPC object, for permission to be allowed.

3.6 Identifier Reuse

The ipcjerm structure (Section 3.3) also contains a variable named seq, which is a
slot usage sequence number. This is a counter that is maintained by the kernel for every
potential IPC object in the system. Every time an IPC object is removed, the kernel
increments the slot number, cycling it back to zero when it overflows.

What we are describing in this section is the common SVR4 implementation. This implemen-
tation technique is not mandated by Unix 98.

This counter is needed for two reasons. First, consider the file descriptors main-
tained by the kernel for open files. They are small integers, but have meaning only
within a single process-they are process-specific values. If we try to read from file
descriptor 4, say, in a process, this approach works only if that process has a file open on
this descriptor. It has no meaning whatsoever for a file that might be open on file
descriptor 4 in some other unrelated process. System V IPC identifiers, however, are
systemwide and not process-specific.

We obtain an IPC identifier (similar to a file descriptor) from one of the get func-
tions: msgget, semget, and shmget. These identifiers are also integers, but their
meaning applies to all processes. If two unrelated processes, a client and server, for
example, use a single message queue, the message queue identifier returned by the

Section 3.6 Identifier Reuse 35

msgget function must be the same integer value in both processes in order to access the
same message queue. This feature means that a rogue process could try to read a mes-
sage from some other application's message queue by trying different small integer
identifiers, hoping to find one that is currently in use that allows world read access. If
the potential values for these identifiers were small integers (like file descriptors), then
the probability of finding a valid identifier would be about 1 in 50 (assuming a maxi-
mum of about 50 descriptors per process).

To avoid this problem, the designers of these IPC facilities decided to increase the
possible range of identifier values to include all integers, not just small integers. This
increase is implemented by incrementing the identifier value that is returned to the call-
ing process, by the number of IPC table entries, each time a table entry is reused. For
example, if the system is configured for a maximum of 50 message queues, then the first
time the first message queue table entry in the kernel is used, the identifier returned to
the process is zero. After this message queue is removed and the first table entry is
reused, the identifier returned is 50. The next time, the identifier is 100, and so on.
Since seq is often implemented as an unsigned long integer (see the ipcxerm struc-
ture shown in Section 3.3), it cycles after the table entry has been used 85,899,346 times
(232/50, assuming 32-bit long integers).

A second reason for incrementing the slot usage sequence number is to avoid short
term reuse of the System V IPC identifiers. This helps ensure that a server that prema-
turely terminates and is then restarted, does not reuse an identifier.

As an example of this feature, the program in Figure 3.7 prints the first 10 identifier
values returned by msgge t.

2 i n t
3 m a i n (i n t argc, char * * a r g v)

4 {
5 i n t i, m s q i d ;

6 f o r (i = 0 ; i < 1 0 ; i + +) {

7 m s q i d = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT);

8 p r i n t f (" m s q i d = %d\nn, m s q i d) ;

9 M s g c t l (m s q i d , IPC-RMID, NULL) ;
1 0 1
11 e x i t (0) ;

1 2 1
svrnsg/slot.c

Figure 3.7 Print kernel assigned message queue identifier 10 times in a row.

Each time around the loop msgget creates a message queue, and then msgctl with a
command of IPC-WID deletes the queue. The constant SVMSG-MODE is defined in our
unpipc . h header (Figure C.l) and specifies our default permission bits for a System V
message queue. The program's output is

so lar i s % slot
m s q i d = 0
m s q i d = 5 0

36 System V IPC Chapter 3

msqid = 100
msqid = 150
msqid = 200
msqid = 250
msqid = 300
msqid = 350
msqid = 400
msqid = 450

If we run the program again, we see that this slot usage sequence number is a kernel
variable that persists between processes.

solaris % slot
msqid = 500
msqid = 550
msqid = 600
msqid = 650
msqid = 700
msqid = 750
msqid = 800
msqid = 850
msqid = 900
msqid = 950

3.7 ipcs and ipcrm Programs

Since the three types of System V IPC are not identified by pathnarnes in the filesystem,
we cannot look at them or remove them using the standard 1s and r m programs.
Instead, two special programs are provided by any system that implements these types
of IPC: ipcs, which prints various pieces of information about the System V IPC fea-
tures, and ipcrm, which removes a System V message queue, semaphore set, or shared
memory segment. The former supports about a dozen command-line options, which
affect which of the three types of IPC is reported and what information is output, and
the latter supports six command-line options. Consult your manual pages for the
details of all these options.

Since System V IPC is not part of Posix, these two commands are not standardized by Posix.2.
But these two commands are part of Unix 98.

3.8 Kernel Limits

Most implementations of System V IPC have inherent kernel limits, such as the maxi-
mum number of message queues and the maximum number of semaphores per
semaphore set. We show some typical values for these limits in Figures 6.25, 11.9, and
14.5. These limits are often derived from the original System V implementation.

Section 11.2 of [Bach 19861 and Chapter 8 of [Goodheart and Cox 19941 both describe the
System V implementation of messages, semaphores, and shared memory. Some of these limits
are described therein.

Section 3.8 Kernel Limits 37

Unfortunately, these kernel limits are often too small, because many are derived
from their original implementation on a small address system (the 16-bit PDP-11). For-
tunately, most systems allow the administrator to change some or all of these default
limits, but the required steps are different for each flavor of Unix. Most require reboot-
ing the running kernel after changing the values. Unfortunately, some implementations
still use 16-bit integers for some of the limits, providing a hard limit that cannot be
exceeded.

Solaris 2.6, for example, has 20 of these limits. Their current values are printed by
the sysdef command, although the values are printed as 0 if the corresponding kernel
module has not been loaded (i.e., the facility has not yet been used). These may be
changed by placing any of the following statements in the / e t c / system file, which is
read when the kernel bootstraps.

4et msgsys:msginfo~msgseg
set msgsys:msginfo~msgssz
set msgsys:msginfo~msgtq1
set msgsys:msginfo~msgmap
set msgsys:msginfo~msgmax
set msgsys:msginfo~msgrnnb
set msgsys:msginfo~msgmni

set semsys:seminfo~semopm
set semsys:seminfo~semurne
set semsys:seminfo~sernaem
set semsys:seminfo-semmap
set semsys:seminfo~semvmx
set semsys:seminfo~semms1
set semsys:seminfo-semi
set semsys:seminfo~semmns
set semsys:seminfo~semmnu

set shmsys:shminfo-shin
set shmsys:shminfo-shmseg
set shmsys:shminfo-shmmax
set shmsys:shminfo-shmmni

= value
= value
= value
= value
= value
= value
= value

= value
= value
= value
= value
= value
= value
= value
= value
= value

= value
= value
= value
= value

The last six characters of the name on the left-hand side of the equals sign are the vari-
ables listed in Figures 6.25,11.9, and 14.5.

With Digital Unix 4.OB, the sysconf i g program can query or modify many kernel
parameters and limits. Here is the output of this program with the -q option, which
queries the kernel for the current limits, for the ipc subsystem. We have omitted some
lines unrelated to the System V IPC facility.

alpha % /.sbin/.sy.sconfig -q ipc
ipc :
msg-rnax = 8192
msg-mnb = 16384
msg-mni = 64
msg-tql = 40

shm-rnax = 4194304
shm-min = 1
shun-mni = 128
shm-seg = 32

38 System V IK Chapter 3

sem-mni = 16
sem-msl = 25
sem-opm = 10
sem-ume = 10
sem-vmx = 32767
sem-aem = 16384
nun-of-sems = 60

Different defaults for these parameters can be specified in the / e t c / sysconf i g t a b
file, which should be maintained using the sysconf igdb program. This file is read
when the system bootstraps.

3.9 Summary

The first argument to the three functions, msgget, semget, and shmget, is a System V
IPC key. These keys are normally created from a pathname using the system's f tok
function. The key can also be the special value of IPC-PRIVATE. These three functions
create a new IPC object or open an existing IPC object and return a System V IPC identi-
fier: an integer that is then used to identify the object to the remaining IPC functions.
These integers are not per-process identifiers (like descriptors) but are systemwide iden-
tifiers. These identifiers are also reused by the kernel after some time.

Associated with every System V IPC object is an i p c s e r m structure that contains
information such as the owner's user ID, group ID, read-write permissions, and so on.
One difference between Posix IPC and System V IPC is that this information is always
available for a System V IPC object (by calling one of the three XXXc t l functions with
an argument of IPC-STAT), but access to this information for a Posix IPC object
depends on the implementation. If the Posix IPC object is stored in the filesystem, and
if we know its name in the filesystem, then we can access this same information using
the existing filesystem tools.

When a new System V IPC object is created or an existing object is opened, two
flags are specified to the getXXX function (IPC-CREAT and IPC-EXCL), combined
with nine permission bits.

Undoubtedly, the biggest problem in using System V IPC is that most implementa-
tions have artificial kernel limits on the sizes of these objects, and these limits date back
to their original implementation. These mean that most applications that make heavy
use of System V IPC require that the system administrator modify these kernel limits,
and accomplishing this change differs for each flavor of Unix.

Exercises

3.1 Read about the m s g c t l function in Section 6.5 and modify the program in Figure 3.7 to
print the seq member of the i p c q e r m structure in addition to the assigned identifier.

Chapter 3 Exercises 39

Immediately after running the program in Figure 3.7, we run a program that creates two
message queues. Assuming no other message queues have been used by any other applica-
tions since the kernel was booted, what two values are returned by the kernel as the mes-
sage queue identifiers?

We noted in Section 3.5 that the System V IPC getXXX functions do not use the file mode
creation mask. Write a test program that creates a FtFO (using the mkfifo function
described in Section 4.6) and a System V message queue, specifying a permission of (octal)
666 for both. Compare the permissions of the resulting FIFO and message queue. Make
certain your shell umask value is nonzero before running this program.

A server wants to create a unique message queue for its clients. Which is preferable-using
some constant pathname (say the server's executable file) as an argument to f tok, or using
IPC-PRIVATE?

Modify Figure 3.2 to print just the IPC key and pathname. Run the find program to print
all the pathnames on your system and run the output through the program just modified.
How many pathnames map to the same key?

If your system supports the sar program ("system activity reporter"), run the command

sar -m 5 6

This prints the number of message queue operations per second and the number of
semaphore operations per second, sampled every 5 seconds, 6 times.

Part 2

Message Passing

Pipes and FlFOs

4.1 Introduction

Pipes are the original form of Unix IPC, dating back to the Third Edition of Unix in 1973
[Salus 19941. Although useful for many operations, their fundamental limitation is that
they have no name, and can therefore be used only by related processes. This was cor-
rected in System I11 Unix (1982) with the addition of FIFOs, sometimes called named
pipes. Both pipes and FIFOs are accessed using the normal read and w r i t e functions.

Technically, pipes can be used between unrelated processes, given the ability to pass descrip-
tors between processes (which we describe in Section 15.8 of this text as well as Section 14.7 of
UNPvl). But for practical purposes, pipes are normally used between processes that have a
common ancestor.

This chapter describes the creation and use of pipes and FIFOs. We use a simple file
server example and also look at some client-server design issues: how many IPC chan-
nels are needed, iterative versus concurrent servers, and byte streams versus message
interfaces.

4.2 A Simple Client-Server Example

The client-server example shown in Figure 4.1 is used throughout this chapter and
Chapter 6 to illustrate pipes, FIFOs, and System V message queues.

The client reads a pathname from the standard input and writes it to the P C chan-
nel. The server reads this pathname from the IPC channel and tries to open the file for
reading. If the server can open the file, the server responds by reading the file and writ-
ing it to the IPC channel; otherwise, the server responds with an error message. The

44 Pipes and FIFOs Chapter 4

pathname
pathname - - - - - - - - - - - - -

client m stdou t or file error contents message file contents - - - - - - - - - - - - -
or error message

Figure 4.1 Client-server example.

client then reads from the IPC channel, writing what it receives to the standard output.
If the file cannot be read by the server, the client reads an error message from the IPC
channel. Otherwise, the client reads the contents of the file. The two dashed lines
between the client and server in Figure 4.1 are the IPC channel.

4.3 Pipes

Pipes are provided with all flavors of Unix. A pipe is created by the p ipe function and
provides a one-way (unidirectional) flow of data.

#include <unistd.h>

int pipe (int fd121) ;

I Returns: 0 if OK, -1 on error I

Two file descriptors are returned: fd[Ul, which is open for reading, and fdLl1, which is
open for writing.

Some versions of Unix, notably SVR4, provide full-duplex pipes, in which case, both ends are
available for reading and writing. Another way to create a full-duplex IPC channel is with the
socketpair function, described in Section 14.3 of UNPvl, and this works on most current
Unix systems. The most common use of pipes, however, is with the various shells, in which
case, a half-duplex pipe is adequate.

Posix.1 and Unix 98 require only half-duplex pipes, and we assume so in this chapter.

The S-ISFIFO macro can be used to determine if a descriptor or file is either a pipe
or a FIFO. Its single argument is the s t-mode member of the s ta t structure and the
macro evaluates to true (nonzero) or false (0). For a pipe, this structure is filled in by the
f s t a t function. For a FIFO, this struc- is filled in by the f s ta t , 1s t a t , or s ta t
functions.

Figure 4.2 shows how a pipe looks in a single process.
Although a pipe is created by one process, it is rarely used within a single process.

(We show an example of a pipe within a single process in Figure 5.14.) Pipes are typi-
cally used to communicate between two different processes (a parent and child) in the
following way. First, a process (which will be the parent) creates a pipe and then forks
to create a copy of itself, as shown in Figure 4.3.

Section 4.3 Pipes 45

process

m

pipe w -+ flow of data +

Figure 4.2 A pipe in a single process.

parent child
fork

I + flow of data +

Figure 4.3 Pipe in a single process, immediately after fork.

Next, the parent process closes the read end of one pipe, and the child process closes the
write end of that same pipe. This provides a one-way flow of data between the two p r e
cesses, as shown in Figure 4.4.

+ flow of data +

Figure 4.4 Pipe between two processes.

When we enter a command such as

who I sort I lp

to a Unix shell, the shell performs the steps described previously to create three

--

46 Pipes and FIFOs Chapter 4

processes with two pipes between them. The shell also duplicates the read end of each
pipe to standard input and the write end of each pipe to standard output. We show this
pipeline in Figure 4.5.

who process sort process lp process

-t flow of data -t -+ flow of data -+

Figure 4.5 Pipes between three processes in a shell pipeline.

All the pipes shown so far have been half-duplex or unidirectional, providing a one-
way flow of data only. When a two-way flow of data is desired, we must create two
pipes and use one for each direction. The actual steps are as follows:

1. create pipe 1 (f d l f O l and fdlfll), create pipe 2 (fd2101 and fd2111),
2. fork,
3. parent closes read end of pipe 1 (f d l f o l) ,
4. parent closes write end of pipe 2 (fd2[11),
5. child closes write end of pipe 1 (f d l f l I) , and
6. child closes read end of pipe 2 (fd2[0]) .

We show the code for these steps in Figure 4.8. This generates the pipe arrangement
shown in Figure 4.6.

parent child

-t flow of data 4

t flow of data t

Figure 4.6 Two pipes to provide a bidirectional flow of data.

Section 4.3 Pipes 47

Example

Let us now implement the client-server example described in Section 4.2 using pipes.
The main function creates two pipes and forks a child. The client then runs in the par-
ent process and the server runs in the child process. The first pipe is used to send the
pathname from the client to the server, and the second pipe is used to send the contents
of that file (or an error message) from the server to the client. This setup gives us the
arrangement shown in Figure 4.7.

pathname

file contents
or error messag

Figure 4.7 Implementation of Figure 4.1 using two pipes.

Realize that in this figure we show the two pipes connecting the two processes, but each
pipe goes through the kernel, as shown previously in Figure 4.6. Therefore, each byte of
data from the client to the server, and vice versa, crosses the user-kernel interface twice:
once when written to the pipe, and again when read from the pipe.

Figure 4.8 shows our main function for this example.

2 void client (int, int) , server (int , int) ;

3 int
4 main(int argc, char **argv)
5 (
6 int pipel [2 I , pipe2 [2 I ;
7 pid-t childpid;

/ * create two pipes * /

10 if ((childpid = Fork ()) == 0) (/ * child * /
11 Close (pipe1 [l I) ;
12 Close (pipe2 [01) ;

13 server (pipel [0 I , pipe2 [11) ;
14 exit (0) ;
15 1
16 / * parent * /
17 Close (pipe1 [0 I) ;
18 Close (pipe2 [11) ;

19 client (pipe2 [O] , pipel [I]) ;

2 0 Waitpid(childpid, NULL, 0); / * wait for child to terminate * /
21 exit(0) ;
22 1

pip el main pipe.^
Figure 4.8 main function for client-server using two pipes.

48 Pipes and FIFOs Chapter 4

Create pipes, fork

8-19 Two pipes are created and the six steps that we listed with Figure 4.6 are performed.
The parent calls the client function (Figure 4.9) and the child calls the server func-
tion (Figure 4.10).

waitpid for child

20 The server (the child) terminates first, when it calls exit after writing the final data
to the pipe. It then becomes a zombie: a process that has terminated, but whose parent is
still running but has not yet waited for the child. When the child terminates, the kernel
also generates a SIGCHLD signal for the parent, but the parent does not catch this signal,
and the default action of this signal is to be ignored. Shortly thereafter, the parent's
client function returns after reading the final data from the pipe. The parent then
calls waitpid to fetch the termination status of the terminated child (the zombie). If
the parent did not call waitpid, but just terminated, the child would be inherited by
the init process, and another SIGCHLD signal would be sent to the init process,
which would then fetch the termination status of the zombie.

The c 1 i ent function is shown in Figure 4.9.

2 void
3 client(int readfd, int writefd)
4 (
5 size-t len;
6 ssize-t n;
7 char buff[MAXLINEI;

8 / * read pathname * /
9 Fgets (buff, MAXLINE, stdin) ;

10 len = strlen(buf f) ; / * £gets() guarantees null byte at end * /
11 if (buff [len - 11 == '\n')
12 len--; / * delete newline from £gets() * /

13 / * write pathname to IPC channel * I
14 write(writefd, buff, len);

15 / * read from IPC, write to standard output * /
16 while ((n = Read(readfd, buff, MAXLINE)) > 0)
17 Write(STD0UT-FILENO, buff, n):

Figure 4.9 client function for client-server using two pipes.

Read pathname from standard input

8-14 The pathname is read from standard input and written to the pipe, after deleting
the newline that is stored by f gets.

Copy from pipe to standard output

15-17 The client then reads everything that the server writes to the pipe, writing it to

:tion 4.3 Pipes 49

standard output. Normally this is the contents of the file, but i f the specified pathname
cannot be opened, what the server returns is an error message.

Figure 4.10 shows the server function.

2 void
3 server(int readfd, int writefd)
4
5 int fd;
6 ssize-t n;
7 char buff [MAXLINE + 1 I ;

8 / * read pathname from IPC channel * /
9 if ((n = Read(readfd, buff, MAXLINE)) == 0)
10 err-quit("end-of-file while reading pathname"):
11 buff[n] = '\O1; / * null terminate pathname */

12 if ((fd = open(buff, 0-RDONLY)) < 0) [
13 / * error: must tell client * /
14 snprintf(buff + n, sizeof(buff) - n, " : can't open, %s\nn,
15 strerror(errn0));
16 n = strlen(buf f) ;
17 Write(writefd, buff, n) ;

18 1 else [

19 / * open succeeded: copy file to IPC channel * /
2 0 while ((n = Read(fd, buff, MAXLINE)) > 0)
21 Write(writefd, buff, n);
22 Close (f d) ;
23 1
24 1

pip el server.^
Figure 4.10 server function for client-server using two pipes.

Read pathname from pipe

The pathname written by the client is read from the pipe and null terminated. Note
that a read on a pipe returns as soon as some data is present; it need not wait for the
requested number of bytes (MAXLINE in this example).

Open file, handle error

12-17 The file is opened for reading, and if an error occurs, an error message string is
returned to the client across the pipe. We call the strerror function to return the error
message string corresponding to errno. (Pages 690-691 of UNPvl talk more about the
strerror function.)

Copy file to pipe

18-23 If the open succeeds, the contents of the file are copied to the pipe.

We can see the output from the program when the pathname is OK, and when an
error occurs.

50 Pipes and FIFOs Chapter 4

solaris % mainpipe
/etc/inet/ntp.conf a file consisting of two lines
multicastclient 224.0.1.1
driftfile /etc/inet/ntp.drift
solaris % mainpipe
/etc/shadow a file we cannot read
/etc/shadow: can't open, Permission denied
solaris % mainpipe
/no/such/file a nonexistent file
/no/such/file: can't open, No such file or directory

4.4 Full-Duplex Pipes

We mentioned in the previous section that some systems provide full-duplex pipes:
SVR4's pipe function and the socketpair function provided by many kernels. But
what exactly does a full-duplex pipe provide? First, we can think of a half-duplex pipe
as shown in Figure 4.11, a modification of Figure 4.2, which omits the process.

Figure 4.11 Half-duplex pipe.

A full-duplex pipe could be implemented as shown in Figure 4.12. This implies that
only one buffer exists for the pipe and everything written to the pipe (on either descrip-
tor) gets appended to the buffer and any read from the pipe (on either descriptor) just
takes data from the front of the buffer.

write
full-duplex pipe

write

Figure 4.12 One possible (incorrect) implementation of a full-duplex pipe.

The problem with this implementation becomes apparent in a program such as Fig-
ure A.29. We want two-way communication but we need two independent data
streams, one in each direction. Otherwise, when a process writes data to the full-duplex
pipe and then turns around and issues a read on that pipe, it could read back what it
just wrote.

Figure 4.13 shows the actual implementation of a full-duplex pipe.

Figure 4.13 Actual implementation of a full-duplex pipe.

write + half-duplex pipe +
fdllI=-----

t half-duplex pipe t

Here, the full-duplex pipe is constructed from two half-duplex pipes. Anything written

- read

-a it
- fdlO1

Section 4.4 Full-Duplex Pipes 51

to fdfll will be available for
able for reading by fdfll.

The program in Figure

a reading by fdfOl, and anything written to fdfO1 will be avail-

4.14 demonstrates that we can use a single full-duplex pipe
for two-way communication.

2 int
3 main(int argc, char **argv)
4 (

5 int fd[21. n;
6 char c;
7 pid-t childpid;

Pipe (f d) ; / * assumes a full-duplex pipe (e.g., SVR4) * /
if ((childpid = Fork()) == 0) I / * child * /

sleep(3) ;
if ((n = Read(fd[Ol, &c, 1)) != 1)

err-quit("chi1d: read returned %d", n);
printf("chi1d read %c\n", c);
Write(fd[Ol , "c", 1) ;
exit (0) ;

1
/ * parent * /

Write(fd[l] , "p", 1) ;
if ((n = Read(fd[l], &c, 1)) != 1)

err-quit("parent: read returned %dm, n);
printf ('parent read %c\n" , C) ;
exit(0);

Figure 4.14 Test a full-duplex pipe for two-way communication.

We create a full-duplex pipe and fork. The parent writes the character p to the
pipe, and then reads a character from the pipe. The child sleeps for 3 seconds, reads a
character from the pipe, and then writes the character c to the pipe. The purpose of the
sleep in the child is to allow the parent to call read before the child can call read, to see
whether the parent reads back what it wrote.

If we run this program under Solaris 2.6, which provides full-duplex pipes, we
observe the desired behavior.

solaris % fduplex
child read p
parent read c

The character p goes across the half-duplex pipe shown in the top of Figure 4.13, and
the character c goes across the half-duplex pipe shown in the bottom of Figure 4.13.
The parent does not read back what it wrote (the character p).

If we run this program under Digital Unix 4.OB, which by default provides half-
duplex pipes (it also provides full-duplex pipes like SVR4, i f different options are speci-
fied at compile time), we see the expected behavior of a half-duplex pipe.

52 Pipes and FIFOs Chapter 4

alpha % fduplex
read error: Bad file number
alpha % child read p
write error: Bad file number

The parent writes the character p, which the child reads, but then the parent aborts
when it tries to read from Mil, and the child aborts when it tries to w r i t e to fdfO1
(recall Figure 4.11). The error returned by read is EBADF, which means that the
descriptor is not open for reading. Similarly, w r i t e returns the same error if its
descriptor is not open for writing.

4.5 popen and pclose Functions

As another example of pipes, the standard 1 /0 library provides the popen function that
creates a pipe and initiates another process that either reads from the pipe or writes to
the pipe.

#include <stdio.h>

FILE *popen (const char *command, const char *type) ;

Returns: file pointer if OK, on error

int pclose (FILE *stream) ;

Returns: termination status of shell or -1 on error

command is a shell command line. It is processed by the s h program (normally a Bourne
shell), so the PATH environment variable is used to locate the command. A pipe is cre-
ated between the calling process and the specified command. The value returned by
popen is a standard I/O F I L E pointer that is used for either input or output, depend-
ing on the character string type.

If type is r, the calling process reads the standard output of the command.

If type is w, the calling process writes to the standard input of the command.

The pclose function closes a standard 1 / 0 stream that was created by popen, waits
for the command to terminate, and then returns the termination status of the shell.

Section 14.3 of APUE provides an implementation of popen and pclose.

Example

Figure 4.15 shows another solution to our client-server example using the popen func-
tion and the Unix c a t program.

Section 4.5 popen and pclose Functions 53

2 int
3 main(int argc, char **argv)
4 I
5 size-t n;
6 char buff [MAXLINE] , command [MAXLINE] ;
7 FILE *fp;

8 / * read pathname * /
9 Fgets (buff, MAXLINE, stdin) ;
10 n = strlen(buff); / * £gets0 guarantees null byte at end * /
11 if (buff[n - 11 == '\nl)
12 n-- ; / * delete newline from £gets() * /

13 snprintf(command, sizeof(command), "cat %s", buff);
14 fp = Popen(command, "r");

15 / * copy from pipe to standard output */
16 while (Fgets(buff, MAXLINE, fp) != NULL)
17 Fputs (buff , stdout) ;

18 Pclose (fp) ;
19 exit (0) ;
20 1

pipelmainpopen.~
Figure 4.15 Client-server using popen.

8-17 The pathname is read from standard input, as in Figure 4.9. A command is built
and passed to popen. The output from either the shell or the cat program is copied to
standard output.

One difference between this implementation and the implementation in Figure 4.8
is that now we are dependent on the error message generated by the system's cat pro-
gram, which is often inadequate. For example, under Solaris 2.6, we get the following
error when trying to read a file that we do not have permission to read:

solaris % cat /etc/shadow
cat: cannot open /etc/shadow

But under BSD/OS 3.1, we get a more descriptive error when trying to read a similar
file:

bsdi % cat /etc/master.pasd
cat: /etc/master.passwd: cannot open [Permission denied]

Also realize that the call to popen succeeds in such a case, but fgets just returns an
end-of-file the first time it is called. The cat program writes its error message to stan-
dard error, and popen does nothing special with it-only standard output is redirected
to the pipe that it creates.

54 Pipes and FIFO5 Chapter 4

Pipes have no names, and their biggest disadvantage is that they can be used only
between processes that have a parent process in common. Two unrelated processes can-
not create a pipe between them and use it for IPC (ignoring descriptor passing).

FIFO stands for first in, first out, and a Unix FIFO is similar to a pipe. It is a one-way
(half-duplex) flow of data. But unlike pipes, a FIFO has a pathname associated with it,
allowing unrelated processes to access a single FIFO. FIFOs are also called named pipes.

A FIFO is created by the mkf i f o function.

I int mkf if o (const char *pathname, mode-t mode) ;

Returns: 0 if OK, -1 on error

The pathname is a normal Unix pathname, and this is the name of the FIFO.
The mode argument specifies the file permission bits, similar to the second argument

to open. Figure 2.4 shows the six constants from the <sys / s tat. h> header used to
specify these bits for a FIFO.

The rnkf if o function implies 0-CREAT I 0-EXCL. That is, it creates a new FIFO or
returns an error of EEXIST if the named FIFO already exists. If the creation of a new
FIFO is not desired, call open instead of mkf i f o. To open an existing FIFO or create a
new FIFO if it does not already exist, call mkf if o, check for an error of EEXIST, and if
this occurs, call open instead.

The mkf i f o command also creates a FIFO. This can be used from shell scripts or
from the command line.

Once a FIFO is created, it must be opened for reading or writing, using either the
open function, or one of the standard 1 /0 open functions such as f open. A FIFO must
be opened either read-only or write-only. It must not be opened for read-write, because
a FIFO is half-duplex.

A write to a pipe or FIFO always appends the data, and a read always returns
what' is at the beginning of the pipe or FIFO. If lseek is called for a pipe or FIFO, the
error ESPIPE is returned.

Example

We now redo our client-server from Figure 4.8 to use two FIFOs instead of two pipes.
Our client and server functions remain the same; all that changes is the main func-
tion, which we show in Figure 4.16.

4 void client (int, int) , server (int, int) ;

Section 4.6 FIFOs 55

5 int
6 main(int argc, char **argv)
7 I
8 int readfd, writefd;
9 pid-t childpid;

/ * create two FIFOs; OK if they already exist * /
((mkfifo(FIFO1, FILE-MODE) < 0) && (errno != EEXIST))
err-sys("can't create %s", FIFO1);
((mkfifo(FIFO2, FILE-MODE) c 0) && (errno != EEXIST)) {

unlink(FIFO1) ;
err-sys("canft create %s", FIFOZ);

((childpid = Fork()) == 0) { / * child * /
readfd = Open(FIFO1, 0-RDONLY, 0);
writefd = Open(FIFO2, 0-WRONLY, 0);

20 server(readfd, writefd);
21 exit (0) ;
2 2 1
2 3 / * parent * /
2 4 writefd = Open(FIFO1, 0-WRONLY, 0);
25 readfd = Gpen(FIFO2, 0-RDONLY, 0);

26 client (readfd, writefd) ;

2 7 Waitpid(childpid, NULL, 0); / * wait for child to terminate */

28 Close (readfd) ;
29 Close (writefd) ;

30 Unlink(FIFO1);
31 Unlink (FIFO2) ;
3 2 exit (0) ;
33

pipelmainfifo.~
Figure 4.16 main function for our client-server that uses two FIFOs.

Create two FlFOs

10-16 TWO FIFOs are created in the / tmp filesystem. If the FIFOs already exist, that is OK.
The FILE-MODE constant is defined in our unpipc . h header (Figure C.l) as

#define FILE-MODE (S-IRUSR I S-IWUSR I S-IRGRP I S-IROTH)
/ * default permissions for new files * /

This allows user-read, user-write, group-read, and other-read. These permission bits are
modified by the file mode creation mask of the process.

fork

17-27 We call fork, the child calls our server function (Figure 4.10), and the parent calls
our c 1 ient function (Figure 4.9). Before executing these calls, the parent opens the first
FIFO for writing and the second FIFO for reading, and the child opens the first FIFO for
reading and the second FIFO for writing. This is similar to our pipe example, and Fig-
ure 4.17 shows this arrangement.

56 Pipes and FIFOs Chapter 4

parent child

/tmp/fifo.l

4 flow of data 4

/tmp/fifo.Z

FIFO 2
I I

t flow of data t

Figure 4.17 Client-server example using two FIFOs.

The changes from our pipe example to this FIFO example are as follows:

To create and open a pipe requires one call to pipe. To create and open a FIFO
requires one call to mkf i f o followed by a call to open.

A pipe automatically disappears on its last close. A FIFO's name is deleted from
the filesystem only by calling unlink.

The benefit in the extra calls required for the FIFO is that a FIFO has a name in the file-
system allowing one process to create a FIFO and another unrelated process to open the
FIFO. This is not possible with a pipe.

Subtle problems can occur with programs that do not use FIFOs correctly. Consider
Figure 4.16: if we swap the order of the two calls to open in the parent, the program
does not work. The reason is that the open of a FIFO for reading blocks if no process
currently has the FIFO open for writing. If we swap the order of these two opens in the
parent, both the parent and the child are opening a FIFO for reading when no process
has the FIFO open for writing, so both block. This is called a deadlock. We discuss this
scenario in the next section.

Example: Unrelated Client and Server

In Figure 4.16, the client and server are still related processes. But we can redo this
example with the client and server unrelated. Figure 4.18 shows the server program.
This program is nearly identical to the server portion of Figure 4.16.

The header f i f o . h is shown in Figure 4.19 and provides the definitions of the two
FIFO names, which both the client and server must know.

Figure 4.20 shows the client program, which is nearly identical to the client portion
of Figure 4.16. Notice that the client, not the server, deletes the FIFOs when done,
because the client performs the last operation on the FIFOs.

section 4.6 FIFOs 57

2 void server (int, int) ;

3 int
4 main(int argc, char **argv)

5 I
6 int readfd, writefd;

/ * create two FIFOs; OK if they already exist * /
if ((mkfifo(FIFO1, FILE-MODE) c 0) && (errno != EEXIST))

err-sys ("can't create %s" , FIFO1) ;
if ((mkfifo(FIFO2, FILE-MODE) c 0) && (errno != EEXIST)) I

unlink (FIFO1) ;
err-sys("can't create %s", FIF02);

1
readfd = Open(FIFO1, 0-RDONLY, 0);
writefd = Open(FIFO2, 0-WRONLY, 0);

16 server (readfd, writefd) ;
17 exit (0) ;
18 1

pipelserver-main.c
Figure 4.18 Stand-alone server main function.

Figure 4.19 f if o . h header that both the client and server include.

2 void client (int, int) ;

3 int
4 main(int argc, char **argv)
5 I
6 int readfd, writefd;

7 writefd = Open(FIFO1, 0-WRONLY, 0);
8 readf d = Open (FIFO2 , 0-RDONLY, 0) ;

9 client (readfd, writefd) ;

10 Close (readfd) ;
11 Close (writef d) ;

12 Unlink(FIFO1) :
13 Unlink (FIFOZ) ;
14 exit(0) ;

Figure 4.20 Stand-alone client main fundion.

58 Pipes and FIFOs Chapter 4

In the case of a pipe or FIFO, where the kernel keeps a reference count of the number of open
descriptors that refer to the pipe or FIFO, either the client or server could call unlink without
a problem. Even though this function removes the pathname from the filesystem, this does not
affect open descriptors that had previously opened the pathname. But for other forms of IPC,
such as System V message queues, no counter exists and if the server were to delete the queue
after writing its final message to the queue, the queue could be gone when the client tries to
read the final message.

To run this client and server, start the server in the background

% server-fifo &

and then start the client. Alternately, we could start only the client and have it invoke
the server by calling fo rk and then exec. The client could also pass the names of the
two FIFOs to the server as command-line arguments through the exec function, instead
of coding them into a header. But this scenario would make the server a child of the
client, in which case, a pipe could just as easily be used.

4.7 Additional Properties of Pipes and FlFOs

We need to describe in more detail some properties of pipes and FIFOs with regard to
their opening, reading, and writing. First, a descriptor can be set nonblocking in two
ways.

1. The 0-NONBLOCK flag can be specified when open is called. For example, the
first call to open in Figure 4.20 could be

writefd = Open(FIFO1, 0-WRONLY I 0-NONBLOCK, 0);

2. If a descriptor is already open, f cntl can be called to enable the 0-NONBLOCK
flag. This technique must be used with a pipe, since open is not called for a
pipe, and no way exists to specify the 0-NONBLOCK flag in the call to pipe.
When using f cntl, we first fetch the current file status flags with the F-GETFL
command, bitwise-OR the 0-NONBLOCK flag, and then store the file status flags
with the F-SETFL command:

int flags;

if ((flags = fcntl(fd, F-GETFL, 0)) c 0)
err-sys ("FGETFL error") ;

flags) = 0-NONBLOCK;
if (fcntl(fd, F-SETFL. flags) < 0)

err-sys("F-SETFL error");

Beware of code that you may encounter that simply sets the desired flag,
because this also clears all the other possible file status flags:

/ * wrong way to set nonblocking */
if (f cntl (f d, F-SETFL, 0-NONBLOCK) < 0)

err-sys("F-SETFL error");

Section 4.7 Additional Properties of Pipes and FIFOs 59

Figure 4.21 shows the effect of the nonblocking flag for the opening of a FIFO and
for the reading of data from an empty pipe or from &I empty FIFO.

Current
operation

open FIFO
read-only

open FIFO
write-only

read
empty pipe
or
empty FIFO

write to
pipe or FIFO

Existing opens
of pipe or FIFO

FIFO
open for writing
FIFO not
open for writing

FIFO

Return

open for reading
FIFO not
open for reading

pipe or FIFO
open for writing

pipe or FIFO not

Figure 4.21 Effect of 0-NONBLOCK flag on pipes and FIFOs.

Blocking (default)

blocks until FIFO is opened for
writing

returns OK

open for writing

pipe or FIFO
open for reading
pipe or FIFO not
open for reading

Note a few additional rules regarding the reading and writing of a pipe or FIFO.

O-NONBLO~K set

returns OK

returns OK

blocks until FIFO is opened for
reading

blocks until data is in the pipe or
FIFO, or until the pipe or
FIFO is no longer open for
writing

read returns 0 (end-of-file)

If we ask to read more data than is currently available in the pipe or FIFO, only
the available data is returned. We must be prepared to handle a return value
from read that is less than the requested amount.

returns OK I returnsOK

returns an error of ENXIO

returns an error of EAGAIN

read returns 0 (end-of-file)

(see text)

SIGPIPE generated for thread

If the number of bytes to w r i t e is less than or equal to PIPE-BUF (a Posix limit
that we say more about in Section 4.11), the w r i t e is guaranteed to be atomic.
This means that if two processes each write to the same pipe or FIFO at about
the same time, either all the data from the first process is written, followed by all
the data from the second process, or vice versa. The system does not intermix
the data from the two processes. If, however, the number of bytes to w r i t e is
greater than PIPE-BUF, there is no guarantee that the w r i t e operation is
atomic.

(see text)

SIGPIPE generated for thread

Posix.1 requires that PIPE-BUF be at least 512 bytes. Commonly encountered values
range from 1024 for BSD/OS 3.1 to 5120 for Solaris 2.6. We show a program in Sec-
tion 4.11 that prints this value.

The setting of the 0-NONBLOCK flag has no effect on the atomicity of wr i tes to a
pipe or FIFO-atomicity is determined solely by whether the requested number
of bytes is less than or equal to PIPE-BUF. But when a pipe or FIFO is set non-
blocking, the return value from w r i t e depends on the number of bytes to write

60 Pipes and FIFOs Chapter 4

and the amount of space currently available in the pipe or FIFO. If the number
of bytes to w r i t e is less than or equal to PIPE-BUF:

a. If there is room in the pipe or FIFO for the requested number of bytes, all the
bytes are transferred.

b. If there is not enough room in the pipe or FIFO for the requested number of
bytes, return is made immediately with an error of EAGAIN. Since the
0-NONBLOCK flag is set, the process does not want to be put to sleep. But the
kernel cannot accept part of the data and still guarantee an atomic wri te , so
the kernel must return an error and tell the process to try again later.

If the number of bytes to w r i t e is greater than PIPE-BUF:

a. If there is room for at least 1 byte in the pipe or FIFO, the kernel transfers
whatever the pipe or FIFO can hold, and that is the return value from
write .

b. If the pipe or FIFO is full, return is made immediately with an error of
EAGAIN.

If we w r i t e to a pipe or FIFO that is not open for reading, the SIGPIPE signal
is generated:

a. If the process does not catch or ignore SIGPIPE, the default action of termi-
nating the process is taken.

b. If the process ignores the SIGPIPE signal, or if it catches the signal and
returns from its signal handler, then w r i t e returns an error of EPIPE.

SIGPIPE is considered a synchronous signal, that is, a signal attributable to one
specific thread, the one that called write. But the easiest way to handle this
signal is to ignore it (set its disposition to SIG-IGN) and let write return an
error of EPIPE. An application should always detect an error return from
write, but detecting the termination of a process by SIGPIPE is harder. If the
signal is not caught, we must look at the termination status of the process from
the shell to determine that the process was killed by a signal, and which signal.
Section 5.13 of UNPvl talks more about SIGPIPE.

4.8 One Server, Multiple Clients

The real advantage of a FIFO is when the server is a long-running process (e.g., a dae-
mon, as described in Chapter 12 of UNPvl) that is unrelated to the client. The daemon
creates a FIFO with a well-known pathname, opens the FIFO for reading, and the client
then starts at some later time, opens the FIFO for writing, and sends its commands or
whatever to the daemon through the FIFO. One-way communication of this form
(client to server) is easy with a FIFO, but it becomes harder if the daemon needs to send
something back to the client. Figure 4.22 shows the technique that we use with our
example.

The server creates a FIFO with a well-known pathname, / tmp/ f i f o . s e r v in this
example. The server will read client requests from this FIFO. Each client creates its own
FIFO when it starts, with a pathname containing its process ID. Each client writes its

Section 4.8 One Server, Multiple Clients 61

PID 1234 PID 9876
Figure 4.22 One server, multiple clients.

request to the server's well-known FIFO, and the request contains the client process ID
along with the pathname of the file that the client wants the server to open and send to
the client.

Figure 4.23 shows the server program.

Create well-known FIFO and open for read-only and write-only

10-15 The server's well-known FIFO is created, and it is OK if it already exists. We then
open the FIFO twice, once read-only and once write-only. The readf i f o descriptor is
used to read each client request that arrives at the FIFO, but the dummy£ d descriptor is
never used. The reason for opening the FIFO for writing can be seen in Figure 4.21. If
we do not open the FIFO for writing, then each time a client terminates, the FIFO
becomes empty and the server's read returns 0 to indicate an end-of-file. We would
then have to close the FIFO and call open again with the 0-RDONLY flag, and this will
block until the next client request arrives. But if we always have a descriptor for the
FIFO that was opened for writing, read will never return 0 to indicate an end-of-file
when no clients exist. Instead, our server will just block in the call to read, waiting for
the next client request. This trick therefore simplifies our server code and reduces the
number of calls to open for its well-known FIFO.

When the server starts, the first open (with the 0-RDONLY flag) blocks until the first
client opens the server's FIFO write-only (recall Figure 4.21). The second open (with
the 0-WRONLY flag) then returns immediately, because the FIFO is already open for
reading.

Read client request

16 Each client request is a single line consisting of the process ID, one space, and then
the pathname. We read this line with our readline function (which we show on p. 79
of UNPvl).

62 Pipes and FIFOs Chapter 4

2 void server (int, int) ;

3 int
4 main(int argc, char **argv)
5 I

int readfifo, writefifo, dummyfd, fd;
char *ptr, buff [MAXLINE] , f if oname [MAXLINE] :
pid-t pid;
ssize-t n;

/ * create server's well-known FIFO; OK if already exists * /
if ((mkfifo(SERV-FIFO, FILE-MODE) < 0) && (errno != EEXIST))

err-sys("can't create %s", SERV-FIFO);

/ * open server's well-known FIFO for reading and writing */
readfifo = Open(SERV-FIFO, 0-RDONLY, 0);
dummyfd = Open(SERV-FIFO, 0-WRONLY, 0); / * never used * /

while ((n = Readline(readfif0, buff, MAXLINE)) > 0) {

if (buff[n - 11 == '\n')
n-- ; / * delete newline from readline() * /

buff [n] = '\0'; / * null terminate pathname * /

if ((ptr = strchr(buf f, ' ')) == NULL) (

err-msg("bogus request: %s", buff);
continue;

1
*ptr++ = 0; / * null terminate PID, ptr = pathname * /
pid = at01 (buff) ;
snprintf(fifoname, sizeof(fifoname), "/tmp/fifo.%ld", (long) pid);
if ((writefifo = open(fifoname, 0-WRONLY, 0)) < 0) {

errmsg("cannot open: %s", fifoname);
continue;

1
if ((fd = open(ptr, 0-RDONLY)) < 0) I

/ * error: must tell client * /
snprintf (buff + n, sizeof (buff) - n, " : can't open, %s\nn,

strerror(errn0)) ;

n = strlen(ptr) ;
~rite(writefif0, ptr, n);

1 else {

/ * open succeeded: copy file to FIFO * /
while ((n = Read(fd, buff, MAXLINE)) > 0)

Write(writefif0. buff, n) ;
Close (f d) ;
Close (writefifo) ;

1
1

46 1 fifocliserv/mainserver~

Figure 4.23 FIFO server that handles multiple clients.

Section 4.8 One Server, Multiple Clients 63

Parse client's request

17-26 The newline that is normally returned by readline is deleted. This newline is
missing only if the buffer was filled before the newline was encountered, or if the final
line of input was not terminated by a newline. The strchr function returns a pointer
to the first blank in the line, and ptr is incremented to point to the first character of the
pathname that follows. The pathname of the client's FIFO is constructed from the pro-
cess ID, and the FIFO is opened for write-only by the server.

Open file for client, send file to client's FlFO

27-44 The remainder of the server is similar to our server function from Figure 4.10.
The file is opened and if this fails, an error message is returned to the client across the
FIFO. If the open succeeds, the file is copied to the client's FIFO. When done, we must
close the server's end of the client's FIFO, which causes the client's read to return 0
(end-of-file). The server does not delete the client's FIFO; the client must do so after it
reads the end-of-file from the server.

We show the client program in Figure 4.24.

Create FlFO

10-14 The client's FIFO is created with the process ID as the final part of the pathname.

Build client request line

15-21 The client's request consists of its process ID, one blank, the pathname for the server
to send to the client, and a newline. This line is built in the array buff, reading the
pathname from the standard input.

Open server's FlFO and write request

22-24 The server's FIFO is opened and the request is written to the FIFO. If this client is
the first to open this FIFO since the server was started, then this open unblocks the
server from its call to open (with the 0-RDONLY flag).

Read file contents or error message from server

25-31 The server's reply is read from the FIFO and written to standard output. The
client's FIFO is then closed and deleted.

We can start our server in one window and run the client in another window, and it
works as expected. We show only the client interaction.

solaris % mainclient
/etc/shadow a file we cannot read
/etc/shadow: can't open, Permission denied
solaris % mainclient
/etc/inet/ntp.conf a 2-linefile
multicastclient 224.0.1.1
driftfile /etc/inet/ntp.drift

We can also interact with the server from the shell, because FIFOs have names in the
filesystem.

64 Pipes and FIFOs Chapter 4

fifocliserv/mainclient.c
l#include "fifo.hW

2 int
3 main(int argc, char **argv)
4 I

int readfifo, writefifo;
size-t len;
ssize-t n;
char *ptr, f ifoname [MAXLINE] , buff [MAXLINE] ;
pid-t pid:

/ * create FIFO with our PID as part of name * /
pid = getpid () ;
snprintf(fifoname, sizeof(fifoname), "/tmp/fifo.%ld", (long) pid);
if ((mkfifo(fifoname, FILE-MODE) c 0) && (errno != EEXIST))

err-sys ("can' t create %s" , f ifoname) ;

/ * start buffer with pid and a blank * /
snprintf(buff, sizeof(buff), "%ld ", (long) pid);
len = strlen (buf f) ;
ptr = buff + len;

/ * read pathname */
Fgets(ptr, MAXLINE - len, stdin);
len = strlen(buff); / * £gets() guarantees null byte at end */

/ * open FIFO to server and write PID and pathname to FIFO */
writef if o = Open (SERV-FIFO, 0-WRONLY, 0) ;
Write(writefif0, buff, len);

/ * now open our FIFO; blocks until server opens for writing * /
readfifo = Open(fifoname, 0-RDONLY, 0);

/ * read from IPC, write to standard output * /
while ((n = Read(readfif0, buff, MAXLINE)) > 0)

Write(STD0UT-FILENO, buff, n);

Close(readfifo);
Unlink(fifoname);
exit (0) ;

Figure 4.24 FIFO client that works with the server in Figure 4.23.

solaris % Pid=$$ process ID of this shell
solaris % mkfifo /tw/fifo.$Pid make the client's FIFO
solaris % echo "$Pid /etc/inet/ntp.conf" > /tmp/fifo.serv
solaris % cat < /tmp/fifo.$Pid and read server's reply
multicastclient 224.0.1.1
driftfile /etc/inet/ntp.drift
solaris % rm /tw/fifo.$Pid

We send our process ID and pathname to the server with one shell command (echo)
and read the server's reply with another (cat). Any amount of time can occur between
these two commands. Therefore, the server appears to write the file to the FIFO, and
the client later executes cat to read the data from the FIFO, which might make us think

Section 4.8 One Server, Multiple Clients 65

that the data remains in the FIFO somehow, even when no process has the FIFO open.
This is not what is happening. Indeed, the rule is that when the final c lose of a pipe or
FIFO occurs, any remaining data in the pipe or FIFO is discarded. What is happening in
our shell example is that after the server reads the request line from the client, the server
blocks in its call to open on the client's FIFO, because the client (our shell) has not yet
opened the FIFO for reading (recall Figure 4.21). Only when we execute c a t sometime
later, which opens the client FIFO for reading, does the server's call to open for this
FIFO return. This timing also leads to a denial-of-service attack, which we discuss in the
next section.

Using the shell also allows simple testing of the server's error handling. We can
easily send a line to the server without a process ID, and we can also send a line to the
server specifying a process ID that does not correspond to a FIFO in the / tmp directory.
For example, if we invoke the client and enter the following lines

solaris % cat > /tmp/fifo.serv
/no/process/id
999999 /invalid/process/id

then the server's output (in another window) is

solaris % server
bogus request: /no/process/id
cannot open: /tmp/£i£o.999999

Atomicity of FIFO writes

Our simple client-server also lets us see why the atomicity property of wri tes to pipes
and FIFOs is important. Assume that two clients send requests at about the same time
to the server. The first client's request is the line

and the second client's request is the line

If we assume that each client issues one w r i t e function call for its request line, and that
each line is less than or equal to PIPE-BUF (which is reasonable, since this limit is usu-
ally between 1024 and 5120 and since pathnames are often limited to 1024 bytes), then
we are guaranteed that the data in the FIFO will be either

The data in the FIFO will not be something like

66 Pipes and FIFOs Chapter 4

FlFOs and NFS

FIFOs are a form of IPC that can be used on a single host. Although FIFOs have names
in the filesystem, they can be used only on local filesystems, and not on NFS-mounted
filesystems.

solaris % mkfifo /nfs/bsdi/usr/rstevens/fifo.temp
mkfifo: 1/0 error

In this example, the filesystem /nf s /bsdi/usr is the /usr filesystem on the host
bsdi.

Some systems (e.g., BSD/OS) do allow FIFOs to be created on an NFSmounted file-
system, but data cannot be passed between the two systems through one of these FIFOs.
In this scenario, the FIFO would be used only as a rendezvous point in the filesystem
between clients and servers on the same host. A process on one host cannot send data to
a process on another host through a FIFO, even though both processes may be able to
open a FIFO that is accessible to both hosts through NFS.

4.9 Iterative versus Concurrent Servers

The server in our simple example from the preceding section is an iterative server. It iter-
ates through the client requests, completely handling each client's request before pro-
ceeding to the next client. For example, if two clients each send a request to the server
at about the same time-the first for a 10-megabyte file that takes 10 seconds (say) to
send to the client, and the second for a 10-byte file-the second client must wait at least
10 seconds for the first client to be serviced.

The alternative is a concurrent server. The most common type of concurrent server
under Unix is called a one-child-per-client server, and it has the server call fork to create
a new child each time a client request arrives. The new child handles the client request
to completion, and the multiprogramming features of Unix provide the concurrency of
all the different processes. But there are other techniques that are discussed in detail in
Chapter 27 of UNPvl:

create a pool of children and service a new client with an idle child,
create one thread per client, and
create a pool of threads and service a new client with an idle thread.

Although the discussion in UNPvl is for network servers, the same techniques apply to
IPC servers whose clients are on the same host.

Denial-of-Service Attacks

We have already mentioned one problem with an iterative server-some clients must
wait longer than expected because they are in Line following other clients with longer
requests-but another problem exists. Recall our shell example following Figure 4.24
and our discussion of how the server blocks in its call to open for the client FIFO if the
client has not yet opened this FIFO (which did not happen until we executed our cat

tion 4.10 Streams and Messages 67

command). This means that a malicious client could tie up the server by sending it a
request line, but never opening its FIFO for reading. This is called a denial-of-service
(DoS) attack. To avoid this, we must be careful when coding the iterative portion of any
server, to note where the server might block, and for how long it might block. One way
to handle the problem is to place a timeout on certain operations, but it is usually sim-
pler to code the server as a concurrent server, instead of as an iterative server, in which
case, this type of denial-of-service attack affects only one child, and not the main server.
Even with a concurrent server, denial-of-service attacks can still occur: a malicious client
could send lots of independent requests, causing the server to reach its limit of child
processes, causing subsequent forks to fail.

10 Streams and Messages

The examples shown so far, for pipes and FIFOs, have used the stream I/O model,
which is natural for Unix. No record boundaries exist-reads and writes do not exam-
ine the data at all. A process that reads 100 bytes from a FIFO, for example, cannot tell
whether the process that wrote the data into the FIFO did a single write of 100 bytes,
five writes of 20 bytes, two writes of 50 bytes, or some other combination of writes that
totals 100 bytes., One process could also write 55 bytes into the FIFO, followed by
another process writing 45 bytes. The data is a byte stream with no interpretation done
by the system. If any interpretation is desired, the writing process and the reading pro-
cess must agree to it a priori and do it themselves.

Sometimes an application wants to impose some structure on the data being trans-
ferred. This can happen when the data consists of variable-length messages and the
reader must know where the message boundaries are so that it knows when a single
message has been read. The following three techniques are commonly used for this:

1. Special termination sequence in-band: many Unix applications use the newline
character to delineate each message. The writing process appends a newline to
each message, and the reading process reads one line at a time. This is what our
client and server did in Figures 4.23 and 4.24 to separate the client requests. In
general, this requires that any occurrence of the delimiter in the data must be
escaped (that is, somehow flagged as data and not as a delimiter).

Many Internet applications (ETP, SMTP, HTTP, NNTP) use the 2-character
sequence of a carriage return followed by a liiefeed (CR/LF) to delineate text
records.

2. Explicit length: each record is preceded by its length. We will use this technique
shortly. This technique is also used by Sun RPC when used with TCP. One
advantage to this technique is that escaping a delimiter that appears in the data
is unnecessary, because the receiver does not need to scan all the data, looking
for the end of each record.

3. One record per connection: the application closes the connection to its peer (its
TCP connection, in the case of a network application, or its IPC connection) to

68 Pipes and FIFOs Chapter 4

indicate the end of a record. This requires a new connection for every record,
but is used with HTTP 1.0.

The standard 1 /0 library can also be used to read or write a pipe or FIFO. Since the
only way to open a pipe is with the pipe function, which returns an open descriptor,
the standard 1 /0 function f dopen must be used to create a new standard I/O stream
that is then associated with this open descriptor. Since a FIFO has a name, it can be
opened using the standard I/O f open function.

More structured messages can also be built, and this capability is provided by both
Posix message queues and System V message queues. We will see that each message
has a length and a priority (System V calls the latter a "type"). The length and priority
are specified by the sender, and after the message is read, both are returned to the
reader. Each message is a record, similar to UDP datagrams (UNPvl).

We can also add more structure to either a pipe or FIFO ourselves. We define a mes-
sage in our mesg . h header, as shown in Figure 4.25.

2 / * Our own "messages" to use with pipes, FIFOs, and message queues. * /

3 / * want sizeof(struct mymesg) <= PIPE-BUF * /
4 #define MAXMESGDATA (PIPE-BUF - 2*sizeof(long))

5 / * length of mesg-len and mesg-type * /
6 #define MESGHDRSIZE (sizeof(struct mymesg) - MAXMESGDATA)

7 struct mymesg (

8 long mesg-len; / * #bytes in mesg-data, can be 0 * /
9 long mesg-type; / * message type, must be > 0 * /
10 char mesg-data [MAXMESGDATAI ;

11 1;

12 ssize-t mesg-send(int, struct mymesg *) ;

13 void Mesg-send(int, struct mymesg *) :

14 ssize-t mesg-recv(int, struct mymesg *) ;

15 ssize-t Mesg-recv(int, struct mymesg *) ;
pipernesg/rnesg.h

Figure 4.25 Our mymesg structure and related definitions.

Each message has a mesg-type, which we define as an integer whose value must be
greater than 0. We ignore the type field for now, but return to it in Chapter 6, when we
describe System V message queues. Each message also has a length, and we allow the
length to be zero. What we are doing with the mymesg structure is to precede each mes-
sage with its length, instead of using newlines to separate the messages. Earlier, we
mentioned two benefits of this design: the receiver need not scan each received byte
looking for the end of the message, and there is no need to escape the delimiter (a new-
line) if it appears in the message.

Figure 4.26 shows a picture of the mymesg structure, and how we use it with pipes,
FIFOs, and System V message queues.

tion 4.10 Streams and Messages 69

second argument for write and read

I second argument for msgsnd and msgrcv

I

I mesg-len I mesg-type / mesg-data I
System v message: msobuf { 1,

used with System V message queues,
msgsnd and msgrcv functions

L

used with pipes and FIFOs,
write and read functions

Figure 4.26 Our mymesg structure.

We define two functions to send and receive messages. Figure 4.27 shows our
mesg-send function, and Figure 4.28 shows our mesg-recv function.

2 ssize-t
3 mesg-send(int fd, struct mymesg *mptr)
4 (

5 return (write(fd, mptr, MESGHDRSIZE + mptr->mesg-len)) ;

6 1
pipemesglmesg-send.c

Figure 4.27 mesg-send function.

2 ssize-t
3 mesg-recv(int fd, struct mymesg *mptr)
4 (

5 size-t len;
6 ssize-t n;

7 / * read message header first, to get len of data that follows * /
8 if ((n = Read(fd, mptr, MESGHDRSIZE)) == 0)
9 return (0) ; / * end of file * /
10 else if (n != MESGHDRSIZE)
11 err-quit("message header: expected %d, got %dm, MESGHDRSIZE, n);

12 if ((len = mptr->mesg-len) > 0)
13 if ((n = Read(fd, mptr-smesg-data, len)) != len)
14 err-quit("message data: expected %d, got %dm, len, n);
15 return (len);
16 1 pipemesglrnesg-recv.c

Figure 4.28 mesg-recv function.

70 Pipes and FIFOs Chapter 4

It now takes two reads for each message, one to read the length, and another to read
the actual message (if the length is greater than 0).

Careful readers may note that mesg-recv checks for all possible errors and terminates if one
occurs. Nevertheless, we still define a wrapper function named Mesg-recv and call it from
our programs, for consistency.

We now change our client and server functions to use the mesg-send and
mesg-recv functions. Figure 4.29 shows our client.

2 void
3 client(int readfd, int writefd)

4 (

5 size-t len;
6 ssize-t n;
7 struct mymesg mesg;

8 / * read pathnarne * /
9 Fgets(mesg.mesg-data, MAXMESGDATA, stdin);
10 len = strlen(mesg.mesg-data);
11 if (mesg.mesg-data[len - 11 == '\nl)
12 len-- : / * delete newline from fgets() * /
13 mesg.mesg-len = len;
14 mesg.mesg-type = 1;

15 / * write pathnarne to IPC channel * /
16 Mesg-send(writefd. &mesg):

17 / * read from IPC, write to standard output * /
18 while ((n = Mesg-recv(readfd, &mesg)) > 0)
19 Write(STDOUT-FILENO, mesg.mesg-data, n);

Figure 4.29 Our client function that uses messages.

Read pathname, send to server

8-16 The pathnarne is read from standard input and then sent to the server using
mesg-send.

Read file's contents or error message from server

17-19 The client calls mesg-recv in a loop, reading everything that the server sends back.
By convention, when mesg-recv returns a length of 0, this indicates the end of data
from the server. We will see that the server includes the newline in each message that it
sends to the client, so a blank line will have a message length of 1.

Figure 4.30 shows our server.

Section 4.10 Streams and Messages 71

2 void
3 server(int readfd, int writefd)
4 (
5 FILE *fp;
6 ssize-t n;
7 struct mymesg mesg;

8 / * read pathname from IPC channel * /
9 mesg.mesg-type = 1;
10 if ((n = Mesg-recv(readfd, &mesg)) == 0)
11 errquit("pathname missing");
12 mesg.mesg-data[nl = '\Of; / * null terminate pathname * /

13 if ((fp = fopen(mesg.mesg-data, "r")) == NULL) (

14 / * error: must tell client * /
15 snprintf(mesg.mesg-data + n. sizeof(mesg.mesg-data) - n,
16 I, _ . can't open, %s\nU, strerror(errn0));
17 mesg-mesg-len = strlen(mesg.mesg-data);
18 Mesg-send (writefd, &mesg) ;

19 1 else {

20 / * fopen succeeded: copy file to IPC channel * /
21 while (Fgets(mesg.mesg-data, MAXMESGDATA, fp) != NULL) {

2 2 mesg.mesg-len = strlen(mesg.mesg-data);
2 3 Mesg-send(writefd, &mesg);
2 4 1
25 Fclose (fp) ;
26 1

2 7 / * send a 0-length message to signify the end * /
28 mesg.mesg-len = 0;
29 Mesg-send(writefd, &mesg);
30 1

pipemesglserver.~
Figure 4.30 Our server function that uses messages.

Read pathname from IPC channel, open file

8-18 The pathname is read from the client. Although the assignment of 1 to mesg-type
appears useless (it is overwritten by mesg-recv in Figure 4.28), we call this same func-
tion when using System V message queues (Figure 6.10), in which case, this assignment
is needed (e.g., Figure 6.13). The standard 1 /0 function fopen opens the file, which
differs from Figure 4.10, where we called the Unix 1 /0 function open to obtain a
descriptor for the file. The reason we call the standard 1 /0 library here is to call f gets
to read the file one line at a time, and then send each line to the client as a message.

Copy file to client

19-26 If the call to f open succeeds, the file is read using f gets and sent to the client, one
line per message. A message with a length of 0 indicates the end of the file.

72 Pipes and FIFOs Chapter 4

When using either pipes or FIFOs, we could also close the IPC channel to notify the
peer that the end of the input file was encountered. We send back a message with a
length of 0, however, because we will encounter other types of IPC that do not have the
concept of an end-of-file.

The main functions that call our client and server functions do not change at
all. We can use either the pipe version (Figure 4.8) or the FIFO version (Figure 4.16).

4.11 Pipe and FIFO Limits

The only system-imposed limits on pipes and FIFOs are

OPEN-MAX the maximum number of descriptors open at any time by a process
(Posix requires that this be at least 16), and

PIPE-BUF the maximum amount of data that can be written to a pipe or FIFO
atomically (we described this in Section 4.7; Posix requires that this be
at least 512).

The value of OPEN-MAX can be queried by calling the sysconf function, as we show
shortly. It can normally be changed from the shell by executing the ul imi t command
(Bourne shell and KornShell, as we show shortly) or the limit command (C shell). It
can also be changed from a process by calling the setrlimi t function (described in
detail in Section 7.11 of APUE).

The value of PIPE-BUF is often defined in the <limits . h> header, but it is consid-
ered a pathname variable by Posix. This means that its value can differ, depending on the
pathname that is specified (for a FIFO, since pipes do not have names), because differ-
ent pathnames can end up on different filesystems, and these filesystems might have
different characteristics. The value can therefore be obtained at run time by calling
either pathconf or fpathconf. Figure 4.31 shows an example that prints these two
limits.

2 int
3 main(int argc, char **argv)
4 (

5 if (argc != 2)
6 errquit("usage: pipeconf <pathname>");

7 printf("P1PE-BUF = %Id, OPEN-MAX = %1d\nw.
8 Pathconf(argv[l], -PC-PIPE-BUF), Sysconf(_S~-0~EN-W)) ;

9 exit(0) ;

10 1
pipel pipec0nf.c

Figure 4.31 Determine values of PIPE-BUF and OPEN-W at run time.

Section 4.12 Summary 73

Here are some examples, specifying different filesysterns:

s o l a r i s % pipeconf / Solaris 2.6 default values
PIPE-BUF = 5120, OPEN-MAX = 64
s o l a r i s % pipeconf /home
PIPE-BUF = 5120, OPEN-MAX = 64
s o l a r i s % pipeconf / t m
PIPE-BUF = 5120, OPEN-MAX = 64

alpha % pipeconf / Digital Unix 4.OB default values
PIPE-BUF = 4096, OPEN-MAX = 4096
alpha % pipeconf /usr
PIPE-BUF = 4096, OPEN-MAX = 4096

We now show how to change the value of OPEN-mX under Solaris, using the Korn-
Shell.

s o l a r i s % ulimit -nS display max # descriptors, soft limit
6 4
s o l a r i s % ulimit - n ~ display max # descriptors, hard limit
1024
s o l a r i s % ulimit -nS 512 set soft limit to 512
s o l a r i s % pipeconf / verify that change has occurred
PIPE-BUF = 5120, OPEN-MAX = 512

Although the value of PIPE-BUF can change for a FIFO, depending on the underlying file-
system in which the pathname is stored, this should be extremely rare.

Chapter 2 of APUE describes the fpathconf, pathconf, and sysconf functions, which pro-
vide run-time information on certain kernel limits. Posix.1 defines 12 constants that begin with
- PC- and 52 that begin with -SC-. Digital Unix 4.OB and Solaris 2.6 both extend the latter,
defining about 100 run-time constants that can be queried with sysconf.

The getconf command is defined by Posix.2, and it prints the value of most of
these implementation limits. For example

alpha % getconf 0PEN-W
4096
alpha % getconf PIPE-BUF I
4096

4.12 Summary

Pipes and FIFOs are fundamental building blocks for many applications. Pipes are
commonly used with the shells, but also used from within programs, often to pass infor-
mation from a child back to a parent. Some of the code involved in using a pipe (pipe,
fork, close, exec, and waitpid) can be avoided by using popen and pclose,
which handle all the details and invoke a shell.

74 Pipes and FIFOs Chapter 4

FIFOs are similar to pipes, but are created by m k f i f o and then opened by open.
We must be careful when opening a FIFO, because numerous rules (Figure 4.21) govern
whether an open blocks or not.

Using pipes and FIFOs, we looked at some client-server designs: one server with
multiple clients, and iterative versus concurrent servers. An iterative server handles
one client request at a time, in a serial fashion, and these types of servers are normally
open to denial-of-service attacks. A concurrent server has another process or thread
handle each client request.

One characteristic of pipes and FIFOs is that their data is a byte stream, similar to a
TCP connection. Any delineation of this byte stream into records is left to the applica-
tion. We will see in the next two chapters that message queues provide record bound-
aries, similar to UDP datagrams.

Exercises

In the transition from Figure 4.3 to Figure 4.4, what could happen if the child did not
c l o s e (f d [l l) ?

In describing mkf i f o in Section 4.6, we said that to open an existing FIFO or create a new
FIFO if it does not already exist, call mkfifo, check for an error of EEXIST, and if this
occurs, call open. What can happen if the logic is changed, calling open first and then
mkf i f o if the FIFO does not exist?

What happens in the call to popen in Figure 4.15 if the shell encounters an error?

Remove the open of the server's FIFO in Figure 4.23 and verify that this causes the server to
terminate when no more clients exist.

In Figure 4.23, we noted that when the server starts, it blocks in its first call to open until
the first client opens this FIFO for writing. How can we get around this, causing both
opens to return immediately, and block instead in the first call to readl ine?

What happens to the client in Figure 4.24 if it swaps the order of its two calls to open?

Why is a signal generated for the writer of a pipe or FIFO after the reader disappears, but
not for the reader of a pipe or FIFO after its writer disappears?

Write a small test program to determine whether f s t a t returns the number of bytes of data
currently in a FIFO as the s t- s ize member of the s t a t structure.

Write a small test program to determine what s e l e c t returns when you select for writabil-
ity on a pipe descriptor whose read end has been closed.

Posix Message Queues

Introduction

A message queue can be thought of as a linked list of messages. Threads with adequate
permission can put messages onto the queue, and threads with adequate permission
can remove messages from the queue. Each message is a record (recall our discussion of
streams versus messages in Section 4.10), and each message is assigned a priority by the
sender. No requirement exists that someone be waiting for a message to arrive on a
queue before some process writes a message to that queue. This is in contrast to both
pipes and FIFOs, for which it having a writer makes no sense unless a reader also exists.

A process can write some messages to a queue, terminate, and have the messages
read by another process at a later time. We say that message queues have kernel persis-
tence (Section 1.3). This differs from pipes and FIFOs. We said in Chapter 4 that any
data remaining in a pipe or FIFO when the last close of the pipe or FIFO takes place, is
discarded.

This chapter looks at Posix message queues and Chapter 6 looks at System V mes-
sage queues. Many similarities exist between the two sets of functions, with the main
differences being:

A read on a Posix message queue always returns the oldest message of the high-
est priority, whereas a read on a System V message queue can return a message
of any desired priority.

Posix message queues allow the generation of a signal or the initiation of a
thread when a message is placed onto an empty queue, whereas nothing similar
is provided by System V message queues.

76 Posix Message Queues Chapter 5

Every message on a queue has the following attributes:

an unsigned integer priority (Posix) or a long integer type (System V),
the length of the data portion of the message (which can be O), and
the data itself (if the length is greater than 0).

Notice that these characteristics differ from pipes and FIFOs. The latter two are byte
streams with no message boundaries, and no type associated with each message. We
discussed this in Section 4.10 and added our own message interface to pipes and FIFOs.

Figure 5.1 shows one possible arrangement of a message queue.

mLmaxmsg priority = 30

mq-msgsize length = 1

Figure 5.1 Possible arrangement of a Posix message queue containing three messages.

We are assuming a linked list, and the head of the list contains the two attributes of the
queue: the maximum number of messages allowed on the queue, and the maximum
size of a message. We say more about these attributes in Section 5.3.

In this chapter, we use a technique that we use in later chapters when looking at
message queues, semaphores, and shared memory. Since all of these IPC objects have at
least kernel persistence (recall Section 1.3), we can write small programs that use these
techniques, to let us experiment with them and learn more about their operation. For
example, we can write a program that creates a Posix message queue, write another pro-
gram that adds a message to a Posix message queue, and write another that reads from
one of these queues. By writing messages with different priorities, we can see how
these messages are returned by the m ~ r e c e i v e function.

-en, mgclose, and mgunlink Functions

The m L o p e n function creates a new message queue or opens an existing message
queue.

#include <mqueue.h>

mqd-t mq-open(const char *name, int oflag, . . .
/ * mode-t mode, struct mLattr *attr * /) ;

I Returns: message queue descriptor if OK, -1 on error

15.2 m c o p e n , m c c l o s e , and m c u n l i n k Functions 77

We describe the rules about the name argument in Section 2.2.
The oflag argument is one of 0-RDONLY, 0-WRONLY, or 0-RDWR, and may be bit-

wise-ORed with 0-CREAT, 0-EXCL, and 0-NONBLOCK. We describe all these flags in
Section 2.3.

When a new queue is created (0-CREAT is specified and the message queue does
not already exist), the mode and attr arguments are required. We describe the mode val-
ues in Figure 2.4. The attr argument lets us specify some attributes for the queue. If this
argument is a null pointer, the default attributes apply. We discuss these attributes in
Section 5.3.

The return value from mLopen is called a message queue descriptor, but it need not
be (and probably is not) a small integer like a file descriptor or a socket descriptor. This
value is used as the first argument to the remaining seven message queue functions.

Solaris 2.6 defines mqd-t as a void* whereas Digital Unix 4.08 defines it as an i n t . In our
sample implementation in Section 5.8, these descriptors are pointers to a structure. Calling
these datatypes a descriptor is an unfortunate mistake.

An open message queue is closed by mLc 10s e.

I i n t m ~ c l o s e (m q d - t mqdes); I
Returns: 0 if OK, -1 on error

The functionality is similar to the c lose of an open file: the calling process can no
longer use the descriptor, but the message queue is not removed from the system. If the
process terminates, all open message queues are closed, as if mLclose were called.

To remove a name that was used as an argument to mLopen from the system,
m ~ u n l i n k must be called.

i n t m ~ u n l i n k (c o n s t char *name) ; I
I Returns: 0 if OK, -1 on error I

Message queues have a reference count of how many times they are currently open (just
like files), and this function is similar to the unlink function for a file: the name can be
removed from the system while its reference count is greater than 0, but the destruction
of the queue (versus removing its name from the system) does not take place until the
last m ~ c l o s e occurs.

Posix message queues have at least kernel persistence (recall Section 1.3). That is,
they exist along with any messages written to the queue, even if no process currently
has the queue open, until the queue is removed by calling m ~ u n l i n k and having the
queue reference count reach 0.

78 Posix Message Queues Chapter 5

We will see that if these message queues are implemented using memory-mapped files (Sec-
tion 12.2), then they can have filesystem persistence, but this is not required and cannot be
counted on.

Example: -create1 Program

Since Posix message queues have at least kernel persistence, we can write a set of small
programs to manipulate these queues, providing an easy way to experiment with them.
The program in Figure 5.2 creates a message queue whose name is specified as the
command-line argument.

pxmsg lmqcreatel .c
1 #include "unpipc.hW

2 int
3 main(int argc, char **argv)
4 {

5 int c, flags;
6 mqd-t mqd;

flags = 0-RDWR 1 0-CREAT;
while ((c = Getopt(argc, argv. "en)) != -1) {

switch (c) {
case 'e' :

flags I = 0-EXCL;
break;

I
1
if (optind != argc - 1)

err-quit("usage: mqcreate [-e I <name>");

17 mqd = Mcopen(argv[optindl, flags, FILE-MODE, NULL);

Figure 5.2 Create a message queue with the exclusive-create flags specified.

8-16 We allow a -e option that specifies an exclusive create. (We say more about the
getopt function and our Getopt wrapper with Figure 5.5.) Upon return, getopt
stores in optind the index of the next argument to be processed.

17 We call mcopen with the IPC name from the command-line, without calling our
px-ipc-name function (Section 2.2). This lets us see exactly how the implementation
handles these Posix IPC names. (We do this with all our simple test programs through-
out this book.)

Here is the output under Solaris 2.6:

solaris % mqcreatel /temp.l234 first create works
solaris % 1s -1 /tqp/.*l234
-rw-rw-rw- 1 rstevens otherl 132632 Oct 23 17:08 /tmp/.MQDtemp.1234
-rw-rw-rw- 1 rstevens other1 0 Oct 23 17:08 /tmp/.MQLtemp.l234
-m-r--r-- 1 rstevens other1 0 Oct 23 17:08 /tmp/.MQPtemp.l234

solaris % mqcreatel -e /temp.l234 second create with -e fails
mLopen error for /temp.1234: File exists

ion 5.3 mcgetattrandm~setattr Functions 79

(We call this version of our program mqcreatel, because we enhance it in Figure 5.5
after describing attributes.) The third file has the permissions that we specify with our
FILE-MODE constant (read-write for the user, read-only for the group and other), but
the other two files have different permissions. We guess that the filename containing D
contains the data, the filename containing L is some type of lock, and the filename con-
taining P specifies the permissions.

Under Digital Unix 4.OB, we can see the actual pathname that is created.

alpha % mqcreatel /tmp/myq.1234
alpha % 1s -1 /tm,~/myq.1234
-rW-r--r-- 1 rstevens system 11976 Oct 23 17:04 /tmp/myq.1234

alpha % mqcreatel -e /tmp/myq.1234
mLopen error for /tmp/myq.1234: File exists

mpk: mgunlink Program

Figure 5.3 is our mqunlink program, which removes a message queue from the system.

pxmsg/mqunlink.c
1 #include "unpipc.h"

2 int
3 main(int argc, char **argv)
4 {

5 if (argc != 2)
6 err-quit("usage: mqunlink <name>");

7 M~unlink(argv[ll);

8 exit(0) ;
9 1

pxmsg/mqunlink.c
Figure 5.3 m ~ u n l ink a message queue.

We can remove the message queue that was created by our mqcreate program.

solaris % mqunlink /tenlp.1234

All three files in the / tmp directory that were shown earlier are removed.

m c g e t a t t r and msetattr Functions

Each message queue has four attributes, all of which are returned by m ~ g e t a t t r and
one of which is set by m L s e t a t t r .

#include <mqueue.h>

int m~getattr (mqd-t mqdes, struct mLattr *attr) ;

int m~setattr(mqd-t mqdes, const struct mLattr *attr, struct mq-attr *oattr);

Both return: 0 if OK, -1 on error

80 Posix Message Queues Chapter 5

The m L a t t r structure contains these attributes.

struct m ~ a t t r {
long mq-flags; / * message queue flag: 0, 0-NONBLOCK * /
long memaxmsg; / * max number of messages allowed on queue * /
long m~msgsize; / * max size of a message (in bytes) * /
long mq-curmsgs; / * number of messages currently on queue * /

1;

A pointer to one of these structures can be passed as the fourth argument to mLopen,
allowing us to set both mLmaxmsg and m ~ m s g s i z e when the queue is created. The
other two members of this structure are ignored by mLopen.

m ~ g e t a t t r fills in the structure pointed to by attr with the current attributes for
the queue.

m ~ s e t a t t r sets the attributes for the queue, but only the m ~ f l a g s member of
the m ~ a t t r structure pointed to by attr is used, to set or clear the nonblocking flag.
The other three members of the structure are ignored: the maximum number of mes-
sages per queue and the maximum number of bytes per message can be set only when
the queue is created, and the number of messages currently on the queue can be fetched
but not set.

Additionally, if the oattr pointer is nonnull, the previous attributes of the queue are
returned (m ~ f lags, mLmaxmsg, and m ~ m s g s i z e) , along with the current status of
the queue (m~curmsgs) .

Example: mqgetattr Program

The program in Figure 5.4 opens a specified message queue and prints its attributes.

2 int
3 main(int argc, char **argv)
4
5 mqd-t mqd;
6 struct m ~ a t t r attr;

7 if (argc != 2)
8 err-quit ("usage: mqgetattr <name>" 1 ;

9 mqd = Meopen (argv [1 I , 0-RDONLY) ;

10 Megetattr(mqd, &attr);
11 printf("max #msgs = %Id, max #bytes/msg = %Id, "
12 "#currently on queue = %1d\nn,
13 attr.memaxmsg, attr.memsgsize, attr.mq-curmsgs);

14 Mq-close (mqd) ;
15 exit (0) ;

Figure 5.4 Fetch and print the attributes of a message queue.

We can create a message queue and print its default attributes.

Section 5.3 m c g e t a t t r and m ~ s e t a t t r Functions 81

solaris % mqcreatel /hello.world
solaris % mqgetattr /hello.world
max #msgs = 128, max #bytes/msg = 1024, #currently on queue = 0

We can now see that the file size listed by 1s when we created a queue with the default
attributes following Figure 5.2 was 128 x 1024 + 1560 = 132,632. The 1560 extra bytes are
probably overhead information: 8 bytes per message plus an additional 536 bytes.

Example: mcreate Program

We can modify our program from Figure 5.2, allowing us to specify the maximum num-
ber of messages for the queue and the maximum size of each message. We cannot spec-
ify one and not the other; both must be specified (but see Exercise 5.1). Figure 5.5 is the
new program.

pxmsg/mqcrea te.c
1 #include "unpipc.hW

2 struct m ~ a t t r attr; / * mq-mamsg and m~msgsize both init to 0 * /

3 int
4 main (int argc, char **argv)
5 {

int c, flags:
mqd-t mqd;

flags = 0-RDWR I 0-CREAT;
while ((c = Getopt(argc, argv, em:^:")) != -1) {

switch (c) {
case 'e':

flags I= 0-EXCL;
break;

case 'ml :
attr.mq-mamsg = atol(optarg):
break;

case ' z ' :
attr.m~msgsize = atol(optarg);
break;

1
1
if (optind != argc - 1)

err-quit("usage: mqcreate [-e I [-m mamsg -z msgsize I <name>");

if ((attr.mcmamsg != 0 && attr.m~msgsize == 0) I I
(attr.mcmamsg == 0 && attr.mpmsgsize != 0))
err-quit("must specify both -m maxmsg and -z msgsize");

mqd = Mq~open(argv[optindl, flags, FILE-MODE,
(attr.mcmamsg != 0) ? &attr : NULL);

M~close (rnqd) ;
exit (0) ;

Figure 5.5 Modification of Figure 5.2 allowing attributes to be specified.

82 Posix Message Queues Chapter 5

To specify that a command-line option requires an argument, we specify a colon fol-
lowing the option character for the m and z options in the call to getopt. When pro-
cessing the option character, optarg points to the argument.

Our Getopt wrapper function calls the standard library's ge topt function and terminates the
process if ge topt detects an error: encountering an option letter not included in the third
argument, or an option letter without a required argument (indicated by an option letter fol-
lowed by a colon). In either case, ge topt writes an error message to standard error and
returns an error, which causes our Getopt wrapper to terminate. For example, the following
two errors are detected by getopt:

solaris % mqcreate -e
mqcreate: option requires an argument -- z
solaris % mqcreate -q
mqcreate: i l legal option -- q

The following error (not specifying the required name argument) is detected by our program:

solaris % mqcreate
usage: mqcreate [-e I [-m maxmsg -z msgsize I <name>

If neither of the two new options are specified, we must pass a null pointer as the
final argument to mLopen, else we pass a pointer to our a t t r structure.

We now run this new version of our program, specifying a maximum of 1024 mes-
sages, each message containing up to 8192 bytes.

s o l a r i s % mqcreate -e -m 1024 -2 8192 /foobar
s o l a r i s % 1s -a1 /tmp/.*foobar
- rw- rw- rw- 1 r s t evens o t h e r l 8397336 Oct 25 11:29 /tmp/.MQDfoobar
-rw-rw-rw- 1 r s t evens o the r1 0 Oct 25 11:29 /tmp/.MQLfoobar
-rW-r--r-- 1 r s t evens o the r1 0 Oct 25 11:29 /tmp/.MQPfoobar

The size of the file containing the data for this queue accounts for the maximum number
of maximum-sized messages (1024 x 8192 = 8,388,608), and the remaining 8728 bytes of
overhead allows room for 8 bytes per message (8 x 1024) plus an additional 536 bytes.

If we execute the same program under Digital Unix 4.OB, we have

alpha % mqcreate -m 256 -2 2048 /tmp/bigq
alpha % 1s -1 /tmg/bigq
-rW-r--r-- 1 r s t evens system 537288 Oct 25 15:38 /tmp/bigq

This implementation appears to allow room for the maximum number of maximum-
sized messages (256x2048 = 524,288) and the remaining 13000 bytes of overhead
allows room for 48 bytes per message (48 x 256) plus an additional 712 bytes.

5.4 -send and -receive Functions

These two functions place a message onto a queue and take a message off a queue.
Every message has a priority, which is an unsigned integer less than MQ-PRIO-MAX.
Posix requires that this upper limit be at least 32.

Solaris 2.6 has an upper limit of 32, but this limit is 256 with Digital Unix 4.08. We show how
to obtain these values with Figure 5.8.

rtion 5.4 m ~ s e n d and m ~ r e c e i v e Functions 83

m ~ r e c e i v e always returns the oldest message of the highest priority from the
specified queue, and the priority can be returned in addition to the actual contents of
the message and its length.

This operation of mq-receive differs from that of the System V msgrcv (Section 6.4).
System V messages have a type field, which is similar to the priority, but with msgrcv, we can
specify three different scenarios as to which message is returned: the oldest message on the
queue, the oldest message with a specific type, or the oldest message whose type is less than or
equal to some value.

i n t m~send(mqd-t mqdes, const char *ptr, s ize- t len, unsigned i n t prio) ; I
I Returns: 0 if OK, -1 on error

ssize-t m~rece ive (mqd- t mqdes, char *ptr, s ize- t len, unsigned i n t *priop); I
Returns: number of bytes in message if OK, -1 on error

The first three arguments to both functions are similar to the first three arguments for
w r i t e and read, respectively.

Declaring the pointer argument to the buffer as a char* looks like a mistake. void* would be
more consistent with other Posix.1 functions.

The value of the len argument for m ~ r e c e i v e must be at least as big as the maxi-
mum size of any message that can be added to this queue, the m q - m s g s i z e member of
the m ~ a t t r structure for this queue. If lm is smaller than this value, EMSGSIZE is
returned immediately.

This means that most applications that use Posix message queues must call mq-getattr after
opening the queue, to determine the maximum message size, and then allocate one or more
read buffers of that size. By requiring that the buffer always be large enough for any message
on the queue, m ~ r e c e i v e does not need to return a notification if the message is larger than
the buffer. Compare, for example, the MSG-NOERROR flag and the EZBIG error possible with
System V message queues (Section 6.4) and the MSG-TRUNC flag with the recvmsg function
that is used with UDP datagrams (Section 13.5 of UNPvl).

prio is the priority of the message for m ~ s e n d , and its value must be less than
MQ-PRIO-MAX. If priop is a nonnull pointer for mareceive, the priority of the
returned message is stored through this pointer. If the application does not need mes-
sages of differing priorities, then the priority can always be specified as 0 for mcsend,
and the final argument for m ~ r e c e i v e can be a null pointer.

A 0-byte message is allowed. This instance is one in which what is important is not what is
said in the standard (i.e., Posix.l), but what is not said: nowhere is a 0-byte message forbidden.
The return value from m ~ r e c e i v e is the number of bytes in the message (if OK) or -1 (if an
error), so a return value of 0 indicates a 0-length message.

One feature is missing from both Posix message queues and System V message queues: accu-
rately identifying the sender of each message to the receiver. This information could be useful

84 Posix Message Queues Chapter 5

in many applications. Unfortunately, most IPC messaging mechanisms do not identify the
sender. In Section 15.5, we describe how doors provide this identity. Section 14.8 of UNPvl
describes how BSD/OS provides this identity when a Unix domain socket is used. Sec-
tion 15.3.1 of APUE describes how SVR4 passes the sender's identity across a pipe when a
descriptor is passed across the pipe. The BSD/OS technique is not widely implemented, and
although the SVR4 technique is part of Unix 98, it requires passing a descriptor across the pipe,
which is normally more expensive than just passing data across a pipe. We cannot have the
sender include its identity (e.g., its effective user ID) with the message, as we cannot trust the
sender to tell the truth. Although the access permissions on a message queue determine
whether the sender is allowed to place a message onto the queue, this still does not identify the
sender. The possibility exists to create one queue per sender (which we talk about with regard
to System V message queues in Section 6.8), but this does not scale well for large applications.
Lastly, realize that if the message queue functions are implemented entirely as user functions
(as we show in Section 5.8), and not within the kernel, then we could not trust any sender
identity that accompanied the message, as it would be easy to forge.

Example: send Program

Figure 5.6 shows our program that adds a message to a queue.

2 i n t
3 ma in (in t a rgc , char **argv)
4 {

5 mqd-t mqd;
6 void *p t r ;
7 size- t l en ;
8 uint-t p r i o ;

9 i f (argc != 4)
10 er r -qui t ("usage: mqsend <name> <#bytes> < p r i o r i t y > ") ;
11 l e n = a t o i (a r g v [2 1) ;
12 p r i o = a t o i (argv[31) ;

13 mqd = M ~ o p e n (argv [1] , 0-WRONLY) ;

14 p t r = Cal loc (l en , s i z e o f (c h a r)) ;
15 M~send(mqd , p t r , l e n , p r i o) ;

16 e x i t (0) ;
17 1 pxrnsglmqsendc

Figure 5.6 mqsend program.

Both the size of the message and its priority must be specified as command-line
arguments. The buffer is allocated by calloc, which initializes it to 0.

Example: mqreceive Program

The program in Figure 5.7 reads the next message from a queue.

r
Section 5.4 mq-send and mq-receive Functions 85

int
main(int argc, char **argv)
{

int c, flags;
mqd-t mqd;
ssize-t n;
uint-t prio;
void *buff;
struct m ~ a t t r attr;

flags = 0-RDONLY;
while ((c = Getopt (argc, argv, "n")) != -1) {

switch (c) {

case 'n' :
flags I = 0-NONBLOCK;
break;

1
1
if (optind != argc - 1)

err-qui t ("usage : mqreceive [-n I <name>") ;

mqd = Mq-open (argv [optindl , flags) :
Mq-getattr(mqd, &attr);

buff = Malloc(attr.mq-msgsize);

n = M~receive(mqd, buff, attr.mq-msgsize, &prio);
printf("read %Id bytes. priority = %u\nU, (long) n

exit (0) ;

prio) ;

1
pxrnsg/rnqreceive.c

Figure 5.7 mqreceive program.

Allow -n option to specify nonblocking

14-17 A command-line option of -n specifies nonblocking, which causes our program to
return an error if no messages are in the queue.

Open queue and get attributes

21-25 We open the queue and then get its attributes by calling mcgetattr. We need to
determine the maximum message size, because we must allocate a buffer of this size for
the call to m~receive. We print the size of the message that is read and its priority.

Since n is a size-t datatype and we do not know whether this is an int or a long, we cast
the value to be a long integer and use the %Id format string. On a @-bit implementation, int
will be a 32-bit integer, but long and size-t will both be @-bit integers.

We can use these two programs to see how the priority field is used.

86 Posix Message Queues Chapter 5

solaris % mqcreate /teat1 create and get attributes
solaris % mqgetattr /teat1
max #msgs = 128. max #bytes/msg = 1024, #currently on queue = 0

solaris % mqaend /teat1 100 99999
mq-send error: Invalid argument

solaris 8 mqaend /teat1 100 6
solaris % mqaend /teat1 50 18
solaris % mqaend /teat1 33 18

send with invalid priority

ZOO bytes, priority of 6
50 bytes, priority of 18
33 bytes, priority of 18

solaris % mqreceive /teat1
read 50 bytes, priority = 18 oldest, highest priority message is returned
solaris % mqreceive /teetl
read 33 bytes, priority = 18
solaris % mqreceive /teat1
read 100 bytes, priority = 6
solaris % mqreceive -n /teat1 specify nonblocking; queue is empty
rnq-receive error: Resource temporarily unavailable

We can see that m ~ r e c e i v e returns the oldest message of the highest priority.

5.5 Message Queue Limits

We have already encountered two limits for any given queue, both of which are estab-
lished when the queue is created:

mq-maxmsg the maximum number of messages on the queue, and

m ~ m s g s i z e the maximum size of a given message.

No inherent limits exist on either value, although for the two implementations that we
have looked at, room in the filesystem must exist for a file whose size is the product of
these two numbers, plus some small amount of overhead. Virtual memory require-
ments may also exist based on the size of the queue (see Exercise 5.5).

Two other limits are defined by the implementation:

MQ-OPEN-MAX the maximum number of message queues that a process can have
open at once (Posix requires that this be at least 81, and

MQ-PRIO-MAX the maximum value plus one for the priority of any message (Posix
requires that this be at least 32).

These two constants are often defined in the <unistd.h> header and can also be
obtained at run time by calling the sysconf function, as we show next.

Example: mqsysconf Program

The program in Figure 5.8 calls sysconf and prints the two implementation-defined
limits for message queues.

n 5.6 m c n o t i f y Function 87

2 i n t
3 main(in t a rgc , char **argv)
4 {
5 p r i n t f ("MQ-OPEN-MAX = %1d, MQ-PRIO-MAX = %ld\n l ' ,
6 Sysconf(-SC-MQ-OPEN-MAX), S~~CO~~(-SC-MQ-PRIO-MAX));
7 e x i t (0) ;

Figure 5.8 Call sysconf to obtain message queue limits.

If we execute this on our two systems, we obtain

s o l a r i s % mqayaconf
MQ-OPEN-MAX = 3 2 , MQ-PRIO-MAX = 32

alpha % mqayaconf
MQ-OPEN-MAX = 64, MQ-PRIO-MAX = 256

mgnot i fy Function

One problem that we will see with System V message queues in Chapter 6 is their
inability to notify a process when a message is placed onto a queue. We can block in a
call to msgrcv, but that prevents us from doing anything else while we are waiting. If
we specify the nonblocking flag for msgrcv (IPC-NOWAIT), we do not block, but we
must continually call this function to determine when a message arrives. We said this is
called polling and is a waste of CPU time. We want a way for the system to tell us when
a message is placed onto a queue that was previously empty.

This section and the remaining sections of this chapter contain advanced topics that you may
want to skip on a first reading.

Posix message queues allow for an asynchronous event notification when a message is
placed onto an empty message queue. This notification can be either

the generation of a signal, or
the creation of a thread to execute a specified function.

We establish this notification by calling mcnot i f y.

I i n t m p n o t i f y (rnqd-t mqdes, const s t r u c t s igevent *notifiation) ; I
I Returns: 0 if OK, -1 on error

This function establishes or removes the asynchronous event notification for the speci-
fied queue. The sigevent structure is new with the Posix.1 realtime signals, which we
say more about in the next section. This structure and all of the new signal-related con-
stants introduced in this chapter are defined by <signal. h>.

88 Posix Message Queues Chapter 5

union s i g v a l {

i n t s iva l - in t ;
void * s i v a l q t r ;

1 ;

/ * i n t e g e r value * /
/ * p o i n t e r value * /

s t r u c t s igevent {

i n t sigev-notify; / * SIGEV-{NONE,SIGNAL,THREAD) * /
i n t sigev-signo; / * s i g n a l number i f SIGEV-SIGNAL * /
union s i g v a l sigev-value; / * passed t o s i g n a l handler o r thread * /

/ * following two i f SIGEV-THREAD * /
void (*sigev-notify-function) (union s i g v a l) ;
pthread-attr- t *sigev-notify-attributes;

1 ;

We will show some examples shortly of the different ways to use this notification, but a
few rules apply in general for this function.

1. If the notification argument is nonnull, then the process wants to be notified
when a message arrives for the specified queue and the queue is empty. We say
that "the process is registered for notification for the queue."

2. If the notification argument is a null pointer and if the process is currently regis
tered for notification for the queue, the existing registration is removed.

3. Only one process at any given time can be registered for notification for a given
queue.

4. When a message arrives for a queue that was previously empty and a process is
registered for notification for the queue, the notification is sent only if no thread
is blocked in a call to m c r e c e i v e for that queue. That is, blocking in a call to
m c r e c e i v e takes precedence over any registration for notification.

5. When the notification is sent to the registered process, the registration is
removed. The process must reregister (if desired) by calling m c n o t i f y again.

One of the original problems with Unix signals was that a signal's action was reset to
its default each time the signal was generated (Section 10.4 of APUE). Usually the
first function called by a signal handler was s ignal , to reestablish the handler. This
provided a small window of time, between the signal's generation and the process
reestablishing its signal handler, during which another occurrence of that signal
could terminate the process. At first glance, we seem to have a similar problem with
m ~ n o t i f y , since the process must reregister each time the notification occurs. But
message queues are different from signals, because the notification cannot occur
again until the queue is empty. Therefore, we must be careful to reregister before
reading the message from the queue.

Example: Simple Signal Notification

Before getting into the details of Posix realtime signals or threads, we can write a simple
program that causes SIGUSRl to be generated when a message is placed onto an empty
queue. We show this program in Figure 5.9 and note that this program contains an
error that we talk about in detail shortly.

ion 5.6 m c n o t i f y Function 89

2 mqd-t mqd;
3 void *buff;
4 struct mq-attr attr;
5 struct sigevent sigev;

6 static void sig-usrl(int);

7 int
8 main(int argc, char **arm)
9 I
10 if (argc != 2)
11 err-quit("usage: mqnotifysigl <name>");

12 / * open queue, get attributes, allocate read buffer * /
13 mqd = M ~ o p e n (arm [1 I , 0-RDONLY) ;
14 Mq-getattr (mqd, &attr) ;
15 buff = Malloc(attr.mq-msgsize);

16 / * establish signal handler, enable notification * /
17 Signal (SIGUSR1, sig-usrl) ;
18 sigev.sigev-notify = SIGEV-SIGNAL;
19 sigev.sigev-signo = SIGUSR1:
20 M~notify(mqd, &sigev):

21 for (; ;)

2 2 pause () ;
23 exit (0) ;
24 1

/ * signal handler does everything * /

25 static void
26 sig-usrl(int signo)
27 {
28 ssize-t n;

29 Mq-notify (mqd, &sigev) ; / * reregister first * /
30 n = Mq-receive (mqd, buff, attr.mq-msgsize, NULL) ;
31 printf("SIGUSR1 received, read %Id bytes\nM, (long) n);
3 2 return;

Figure 5.9 Generate SIGUSRl when message placed onto an empty queue (incorrect version).

Declare globals

2-6 We declare some globals that are used by both the main function and our signal
handler (sig-usrl).

Open queue, get attributes, allocate read buffer

12-15 We open the message queue, obtain its attributes, and allocate a read buffer.

Establish slgnal handler, enable notiflcatlon

16-20 We first establish our signal handler for SIGUSRl. We fill in the sigev-notify
member of the sigevent structure with the SIGEV-SIGNAL constant, which says that

90 Posix Message Queues Chapter 5

we want a signal generated when the queue goes from empty to not-empty. We set the
sigev-signo member to the signal that we want generated and call mcnot if y.

Infinite loop

21-22 Our main function is then an infinite loop that goes to sleep in the pause function,
which returns -1 each time a signal is caught.

Catch signal, read message

25-33 Our signal handler calls m c n o t i f y, to reregister for the next event, reads the mes-
sage, and prints its length. In this program, we ignore the received message's priority.

The re tu rn statement at the end of sig-usrl is not needed, since there is no return value
and falling off the end of the function is an implicit return to the caller. Nevertheless, the
author always codes an explicit r e tu rn at the end of a signal handler to reiterate that the
return from this function is special. It might cause the premature return (with an error of
EINTR) of a function call in the thread that handles the signal.

We now run this program from one window

s o l a r i s % mqcreate /teat1 create queue
s o l a r i s % mqnotifyaigl /teat1 start program from Figure 5.9

and then execute the following commands from another window:

s o l a r i s % mqaend /teat1 50 16 send 50-byte message with priority of 16

As expected, our mqnotifysigl program outputs SIGUSRl received, read 50
bytes.

We can verify that only one process at a time can be registered for the notification,
by starting another copy of our program from another window:

s o l a r i s % mqnotifyaigl /teat1
mq-notify e r r o r : Device busy

This error message corresponds to EBUSY.

Posix Signals: Async-Signal-Safe Functions

The problem with Figure 5.9 is that it calls mcnotify, mcreceive, and printf
from the signal handler. None of these functions may be called from a signal handler.

Posix uses the term async-signal-safe to describe the functions that may be called
from a signal handler. Figure 5.10 lists these Posix functions, along with a few that are
added by Unix 98.

Functions not listed may not be called from a signal handler. Note that none of the
standard I/O functions are listed and none of the pthread-XXX functions are listed.
Of all the IPC functions covered in this text, only semsost, read, and write are
listed (we are assuming the latter two would be used with pipes and FIFOs).

ANSI C lists four functions that may be called from a signal handler: abort , ex i t , longjmp,
and s ignal . The first three are not listed as async-signal-safe by Unix 98.

on 5.6 m c n o t i f y Function 91

access
aio-return
aio-suspend
alarm
cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
chdir
chmod
chown
clock-gettirne
close
creat

dup
dup2
execle
execve
- exit
fcntl
f datasync
fork

fpathconf
fstat
f sync
getegid
geteuid
getgid
getgroups
getpgrp
getpid
getppid
getuid
kill
link
lseek
mkdir
mkfifo
open
pathconf
pause
pipe
raise
read

rename
rmdi r
semsost
setgid
setpgid
setsid
setuid
sigaction
sigaddset
sigdelset
sigemptyset
sigfillset
sigismember
signal
sigpause
sigpending
sigprocmask
sigqueue
sigset
sigsuspend
sleep
stat

Figure 5.10 Functions that are async-signalsafe.

mple: Signal Notification

sysconf
tcdrain
tcf low
tcf lush
tcgetattr

tcgetPgrP
tcsendbreak
tcsetattr
tcsetpgrp
time
timer-getoverrur
timergettime
timer-settime
times
urnask
uname
unlink
ut ime
wait
waitpid
write

One way to avoid calling any function from a signal handler is to have the handler just
set a global flag that some thread examines to determine when a message has been
received. Figure 5.11 shows this technique, although it contains a different error, which
we describe shortly.

Global variable

2 Since the only operation performed by our signal handler is to set mqf lag nonzero,
the global variables from Figure 5.9 need not be global. Reducing the number of global
variables is always a good technique, especially when threads are being used.

Open message queue

:-18 We open the message queue, obtain its attributes, and allocate a receive buffer.

Initialize signal sets

-22 We initialize three signal sets and turn on the bit for SIGUSRl in the set newmask.

Establish signal handler, enable notification

-27 We establish a signal handler for SIGUSRl, fill in our sigevent structure, and call
mq-notify.

92 Posix Message Queues Chapter 5

pxrnsg/mqnotifysig2.c
1 #include "unpipc.h"

2 volatile sig-atomic-t mqflag; / * set nonzero by signal handler * /
3 static void sig-usrl(int);

4 int
5 main(int argc, char **argv)
6 (

mqd-t mqd:
void *buff;
ssize-t n;
sigset-t zeromask, newmask, oldmask;
struct mq-attr attr;
struct sigevent sigev;

if (argc != 2)
err-quit("usage: mqnotifysig2 <name>");

/ * open queue, get attributes, allocate read buffer * /
mqd = Maopen (argv [1 I , 0-RDONLY) ;
Mcgetattr (mqd, &attr) ;
buff = Malloc(attr.m~msgsize);

Sigemptyset(&zeromask); / * no signals blocked * /
Sigemptyset(&newmask);
Sigemptyset(&oldmask) :
Sigaddset(&newmask, SIGUSR1);

/ * establish signal handler, enable notification * /
Signal(SIGUSR1, sig-usrl);
sigev.sigev-notify = SIGEV-SIGNAL;
sigev.sigev-signo = SIGUSRl;
Manotify (mqd, &sigev) ;

f o r (; ;) {
Sigprocmask(S1G-BLOCK, &newmask, &oldmask); / * block SIGUSRl * /
while (mqflag == 0)

sigsuspend(&zeromask);
mqflag = 0; / * reset flag * /

Mq-notify(mqd, &sigev); / * reregister first * /
n = Mq-receive(mqd, buff, attr.mq_msgsize, NULL);
printf("read %Id bytes\nW, (long) n);
Sigprocmask(S1G-UNBLOCK, &newmask, NULL); / * unblock SIGUSRl * /

1
exit (0) ;

39 1

40 static void
41 sig-usrl(int signo)
42 I
4 3 mqf lag = 1;
44 return;
45 }

pxrnsg/mqnotifysig2.c

Figure 5.11 Signal handler just sets a flag for main thread (incorrect version).

Section 5.6 m c n o t i f y Function 93

Wait for signal handler to set flag

28-32 We call sigprocmask to block SIGUSRl, saving the current signal mask in
oldmask. We then test the global mqf lag in a loop, waiting for the signal handler to
set it nonzero. As long as it is 0, we call sigsuspend, which atomically puts the calling
thread to sleep and resets its signal mask to zeromask (no signals are blocked). Sec-
tion 10.16 of APUE talks more about sigsuspend and why we must test the mqf lag
variable only when s1GusR1 is blocked. Each time sigsuspend returns, SIGUSRl is
blocked.

Reregister and read message

33-36 When mqf lag is nonzero, we reregister and then read the message from the queue.
We then unblock SIGUSRl and go back to the top of the for loop.

We mentioned that a problem still exists with this solution. Consider what happens
if two messages arrive for the queue before the first message is read. We can simulate
this by adding a sleep before the call to mcnot i f y. The fundamental problem is that
the notification is sent only when a message is placed onto an empty queue. If two mes-
sages arrive for a queue before we can read the first, only one notification is sent: we
read the first message and then call sigsuspend waiting for another message, which
may never be sent. In the meantime, another message is already sitting on the queue
waiting to be read that we are ignoring.

Example: Signal Notification with Nonblocking -receive

The correction to the problem just noted is to always read a message queue in a non-
blocking mode when mcnotify is being used to generate a signal. Figure 5.12 shows
a modification to Figure 5.11 that reads the message queue in a nonblocking mode.

Open message queue nonblocking

15-18 The first change is to specify 0-NONBLOCK when the message queue is opened.

Read all messages from queue

34-38 The other change is to call m~receive in a loop, processing each message on the
queue. An error return of EAGAIN is OK and just means that no more messages exist.

Example: Signal Notification Using simait instead of a Signal Handler

Although the previous example is correct, it could be more efficient. Our program
blocks, waiting for a message to arrive, by calling sigsuspend. When a message is
placed onto an empty queue, the signal is generated, the main thread is stopped, the
signal handler executes and sets the mqf lag variable, the main thread executes again,
finds m c f lag nonzero, and reads the message. An easier approach (and probably
more efficient) would be to block in a function just waiting for the signal to be deliv-
ered, without having the kernel execute a signal handler just to set a flag. This capabil-
ity is provided by s igwai t .

94 Posix Message Queues Chapter 5

pxmsg/mqnotifysig3.c
1 #include "unpipc. h"

2 volatile sig-atomic-t mqflag; / * set nonzero by signal handler * /
3 static void sig-usrl (int) ;

4 int
5 main(int argc, char **argv)
6 (:

mqd-t mqd;
void *buff;
ssize-t n;
sigset-t zeromask, newmask, oldmask;
struct mq-attr attr;
struct sigevent sigev;

if (argc ! = 2)
err-quit("usage: mqnotifysig3 <name>");

/ * open queue, get attributes, allocate read buffer " /
mqd = Mq-open(argv[ll, 0-RDONLY I 0-NONBLOCK);
Mq-getattr(mqd, &attr);
buff = Malloc(attr.mq_msgsize);

Sigemptyset (&zeromask) ; / * no signals blocked * /
Sigemptyset(&newmask);
Sigemptyset(&oldmask);
Sigaddset(&newmask, SIGUSR1) ;

/ * establish signal handler, enable notification */
Signal (SIGUSR1 , sig-usrl) ;
sigev.sigev-notify = SIGEV-SIGNAL;
sigev.sigev-signo = SIGUSRl;
Mq-notify(mqd, &sigev);

for (; ; 1 (:
Sigprocmask(S1G-BLOCK, &newmask, &oldmask); / * block SIGUSRl * /
while (mqflag == 0)

sigsuspend(&zeromask);
mqflag = 0; / * reset flag * /

Mq_notify(mqd, &sigev); / * reregister first * /
while ((n = mq-receive(mqd, buff, attr.mq_msgsize, NULL)) >= 0) {

printf("read %Id bytes\nU, (long) n);
1
if (errno != EAGAIN)

err-sys("mq-receive error");
Sigprocmask(S1G-UNBLOCK, &newmask, NULL); / * unblock SIGUSRl * /

1
exit (0) ;

43 static void
44 sig-usrl(int signo)
45 I
46 mqf lag = 1;
4 7 return;

Figure 5.12 Using a signal notification to read a Posix message queue.

Section 5.6 mq-not i f y Function 95

i n t s igwai t (const s igse t - t *set, i n t *sig) ; I
Returns: 0 if OK, positive ~ x x x value on error

Before calling sigwait , we block some set of signals. We specify this set of signals as
the set argument. sigwai t then blocks until one or more of these signals is pending, at
which time it returns one of the signals. That signal value is stored through the pointer
sig, and the return value of the function is 0. This is called "synchronously waiting for
an asynchronous event": we are using a signal but without an asynchronous signal han-
dler.

Figure 5.13 shows the use of m a n o t i f y with sigwait .

Initialize signal set and block SIGUSR~

18-20 One signal set is initialized to contain just SIGUSR1, and this signal is then blocked
by sigprocmask.

Wait for signal

26-34 We now block, waiting for the signal, in a call to s igwait . When SIGUSRl is
delivered, we reregister the notification and read all available messages.

s igwai t is often used with a multithreaded process. Indeed, looking at its function proto-
type, we see that its return value is 0 or one of the EXXX errors, which is the same as most of the
Pthread functions. But sigprocrnask cannot be used with a multithreaded process; instead,
pthread-sigmask must be called, and it changes the signal mask of just the calling thread.
The arguments for pthread-sigmas k are identical to those for sigprocmask.

Two more variants of s igwai t exist: s igwai t info also returns a siginfo-t structure
(which we define in the next section) and is intended for use with reliable signals.
sigtimedwait also returns a siginfo- t structure and allows the caller to specify a time
limit.

Most threads books, such as [Butenhof 19971, recommend using s igwai t to handle all signals
in a multithreaded process and never using asynchronous signal handlers.

Example: Posix Message Queues with select

A message queue descriptor (an mqd-t variable) is not a "normal" descriptor and can-
not be used with either s e l e c t or p o l l (Chapter 6 of UNPvl). Nevertheless, we can
use them along with a pipe and the m a n o t i f y function. (We show a similar technique
in Section 6.9 with System V message queues, which involves a child process and a
pipe.) First, notice from Figure 5.10 that the w r i t e function is async-signal-safe, so we
can call it from a signal handler. Figure 5.14 shows our program.

96 Posix Message Queues Chapter 5

2 int
3 main(int argc, char **argv)
4 {

int signo;
mqd-t mqd;
void *buff;
ssize-t n;
sigset-t newmask;
struct maattr attr;
struct sigevent sigev;

if (argc != 2)
err-quit("usage: mqnotifysig4 <name>");

/ * open queue, get attributes, allocate read buffer * /
mqd = Mq_open(argv[ll, 0-RDONLY (0-NONBLOCK);
Mq_getattr(mqd, &attr);
buff = Malloc(attr.m~msgsize);

Sigemptyset(&newmask);
Sigaddset (&newmask, SIGUSRl) ;
Sigprocmask(S1G-BLOCK, &newmask, NULL); / * block SIGUSRl * /

/ * establish signal handler, enable notification * /
sigev.sigev-notify = SIGEV-SIGNAL;
sigev.sigev-sign0 = SIGUSRl;
Manotify (mqd, &sigev) ;

f o r (; ;) {
Sigwait(&newmask, &signo);
if (signo == SIGUSR1) {

Manotif y (mqd, &sigev) ; / * reregister first * /
while ((n = mq_receive(mqd, buff, attr.mq_msgsize, NULL)) >= 0) {

printf("read %Id bytes\nn, (long) n);
I
if (errno != EAGAIN)

err-sys("mereceive error");
I

I
exit (0) ;

37 I
pxmsg/mqnotifysig4.c

Figure 5.13 Using menotify with sigwait.

2 int pipefd[2] ;
3 static void sig-usrl(int);

n 5.6 menot i f y Function 97

4 int
5 main(int argc, char **argv)
6 {

int nfds;
char c;
fd-set rset;
mqd-t mqd;
void *buff;
ssize-t n;
struct mq_attr attr;
struct sigevent sigev;

if (argc != 2)
err-quit("usage: mqnotifysig5 <name>");

/ * open queue, get attributes, allocate read buffer * /
mqd = Mq-open(argv[ll, 0-RDONLY I 0-NONBLOCK);
M~getattr (rnqd, &attr) ;
buff = Malloc(attr.mq_msgsize);

/ * establish signal handler, enable notification * /
Signal(SIGUSR1, sig-usrl);
sigev.sigev-notify = SIGEV-SIGNAL;
sigev.sigev-signo = SIGUSRl;
Mq_notify (rnqd, &sigev) ;

FD-ZERO(&rset);
f o r (; ;) {

FD-SET(pipefd[O]. &rset);
nfds = Select (pipefd[Ol + 1, &rset, NULL, NULL, NULL) ;

if (FD-ISSET(pipefd[O], &rset)) {

Read(pipefd[O], &c, 1);
Mq_notify (mqd, &sigev) ; / * reregister first * /
while ((n = mq-receive (rnqd, buff, attr .mq-msgsize, NULL)) >= 0) {

printf("read %Id bytes\nW, (long) n);
1
if (errno != EAGAIN)

err-sys("mq_receive error");
1

1
exit (0) ;

43 static void
44 sig-usrl(int signo)
45 {
46 Write(pipefd[l] , " ", 1) ; / * one byte of 0 * /
47 return;

Figure 5.14 Using a signal notification with a pipe.

98 Posix Message Queues Chapter 5

Create a pipe

21 We create a pipe that the signal handler will write to when a notification is received
for the message queue. This is an example of a pipe being used within a single process.

Call select

27-40 We initialize the descriptor set r s e t and each time around the loop turn on the bit
corresponding to p ipefd [0] (the read end of the pipe). We then call s e l e c t waiting
for only this descriptor, although in a typical application, this is where input or output
on multiple descriptors would be multiplexed. When the read end of the pipe is read-
able, we reregister the message queue notification and read all available messages.

Signal handler

43-48 Our signal handler just wr i tes 1 byte to the pipe. As we mentioned, this is an
async-signal-safe operation.

Example: Initiate Thread

Another alternative is to set sigev-notify to SIGEV-THREAD, which causes a new
thread to be created. The function specified by the s igev-no t i f y-f unc t i on is called
with the parameter of sigev-value. The thread attributes for the new thread are
specified by sigev-notify-attributes, which can be a null pointer if the default
attributes are OK. Figure 5.15 shows an example of this technique.

We specify a null pointer for the new thread's argument (sigev-value), so noth-
ing is passed to the thread start function. We could pass a pointer to the message queue
descriptor as the argument, instead of declaring it as a global, but the new thread still
needs the message queue attributes and the s igev structure (to reregister). We specify
a null pointer for the new thread's attributes, so system defaults are used. These new
threads are created as detached threads.

Unfortunately, neither of the systems being used for these examples, Solaris 2.6 and Digital
Unix 4.OB, support SIGEV-THREAD. Both require that sigev-notify be either SIGEV-NONE

or SIGEV-SIGNAL.

Posix Realtime Signals

Unix signals have gone through numerous evolutionary changes over the past years.

1. The signal model provided by Version 7 Unix (1978) was unreliable. Signals
could get lost, and it was hard for a process to turn off selected signals while
executing critical sections of code.

2. 4.3BSD (1986) added reliable signals.

3. System V Release 3.0 (1986) also added reliable signals, albeit differently from
the BSD model.

4. Posix.1 (1990) standardized the BSD reliable signal model, and Chapter 10 of
APUE describes this model in detail.

5.7 Posix Realtime Signals 99

pxmsglmqnotifythreadl .c
1 #include " unpipc . h"
2 mqd-t mqd;
3 struct mq-attr attr;
4 struct sigevent sigev;

5 static void notify-thread(union sigval); / * our thread function * /

6 int
7 main(int argc, char **argv)

if (argc != 2)
err-quit("usage: mqnotifythreadl <name>");

mqd = Mq_open(argv[ll, 0-RDONLY I 0-NONBLOCK);
Mq-getattr (rnqd, &attr) ;

sigev.sigev-notify = SIGEV-THREAD;
sigev.sigev~value.sival_ptr = NULL;
sigev.sigev~notify~function = notify-thread;
sigev.sigev-notify-attributes = NULL;
M~notify(mqd, &sigev);

for (; ;

pause (; / * each new thread does everything * /

exit (0) ;

22 static void
23 notify-thread(union sigval arg)
24 I
2 5 ssize-t n;
2 6 void *buff;

27 printf("notify-thread started\nm);
28 buff = Malloc(attr.mq-msgsize);
29 Mq_notify(mqd, &sigev); / * reregister * /

30 while ((n = mq-receive (mqd, buff, attr .mq-msgsize, NULL)) >= 0) {

3 1 printf ("read %Id bytes\n" , (long) n) ;
32 1
3 3 if (errno != EAGAIN)
3 4 err-sys("mq_receive error");

Figure 5.15 mq-notify that initiates a new thread.

5. Posix.1 (1996) added realtime signals to the Posix model. This work originated
from the Posixlb realtime extensions (which was called Posix.4).

Almost every Unix system today provides Posix reliable signals, and newer systems are
providing the Posix realtime signals. (Be careful to differentiate between reliable and

100 Posix Message Queues Chapter 5

realtime when describing signals.) We need to say more about the realtime signals, as
we have already encountered some of the structures defined by this extension in the
previous section (the s i gval and s igevent structures).

Signals can be divided into two groups:

1. The realtime signals whose values are between SIGRTMIN and SIGRTMAX,
inclusive. Posix requires that at least RTSIG-MAX of these realtime signals be
provided, and the minimum value for this constant is 8.

2. All other signals: SIGALRM, SIGINT, SIGKILL, and so on.

On Solaris 2.6, the normal Unix signals are numbered 1 through 37, and 8 realtime signals are
defined with values from 38 through 45. On Digital Unix 4.OB, the normal Unix signals are
numbered 1 through 32, and 16 realtime signals are defined with values from 33 through 38.
Both implementations define SIGRTMIN and SIGRTMAX as macros that call sysconf, to allow
their values to change in the future.

Next we note whether or not the new SA-SIGINFO flag is specified in the call to
sigaction by the process that receives the signal. These differences lead to the four
possible scenarios shown in Figure 5.16.

1 1 Call to s iqact ion I

all other signals realtime behavior realtime behavior I unspecified unspecified

Signal

SIGRTMIN through
SIGRTMAX

Figure 5.16 Realtime behavior of Posix signals, depending on SA-SIGINFO.

What we mean in the three boxes labeled "realtime behavior unspecified" is that some
implementations may provide realtime behavior and some may not. If we want real-
time behavior, we must use the new realtime signals between SIGRTMIN and
SIGRTMAX, and we must specify the SA-SIGINFO flag to sigaction when the signal
handler is installed.

The term realtime behavior implies the following characteristics:

SA-SIGINFO
specified

realtime behavior
guaranteed

Signals are queued. That is, if the signal is generated three times, it is delivered
three times. Furthermore, multiple occurrences of a given signal are queued in a
first-in, first-out (FIFO) order. We show an example of signal queueing shortly.
For signals that are not queued, a signal that is generated three times can be
delivered only once.

SA-SIGINFO
not specified

realtime behavior
uns~ecified

When multiple, unblocked signals in the range SIGRTMIN through SIGRTMAX
are queued, lower-numbered signals are delivered before higher-numbered sig-
nals. That is, SIGRTMIN is a "higher priority" than the signal numbered
SIGRTMIN+l, which is a "higher priority" than the signal numbered
SIGRTMIN+2, and so on.

n 5.7 Posix Realtime Signals 101

When a nonrealtime signal is delivered, the only argument to the signal handler
is the signal number. Realtime signals carry more information than other sig-
nals. The signal handler for a realtime signal that is installed with the
SA-SIGINFO flag set is declared as

void func (i n t signo, s i g i n f o-t *info, void *context) ;

signo is the signal number, and the siginfo-t structure is defined as

typedef s t r u c t {

i n t si-signo; / * same value a s signo argument * /
i n t si-code; / * SI-{USER,QUEUE,TIMER,ASYNCIO,MESGQ} * /
union s i g v a l si-value; / * i n t ege r o r p o i n t e r value from sender * /

) s ig info- t ;

What the context argument points to is implementation dependent.

Technically a nonrealtime Posix signal handler is called with just one argument.
Many Unix systems have an older, three-argument convention for signal handlers
that predates the Posix realtime standard.

s ig in f o-t is the only Posix structure defined as a typedef of a name ending in
- t . In Figure 5.17 we declare pointers to these structures as s ig in f o-t * without
the word s t r u c t.

Some new functions are defined to work with the realtime signals. For example,
the sigqueue function is used instead of the kill function, to send a signal to
some process, and the new function allows the sender to pass a sigval union
with the signal.

The realtime signals are generated by the following Posix.1 features, identified by
the si-code value contained in the siginf o-t structure that is passed to the signal
handler.

SIPSYNCIO The signal was generated by the completion of an asynchronous
I/O request: the Posix aio-XXX functions, which we do not
describe.

SI-MESGQ The signal was generated when a message was placed onto an
empty message queue, as we described in Section 5.6.

SI-QUEUE The signal was sent by the sigqueue function. We show an exam-
ple of this shortly.

SI-TIMER The signal was generated by the expiration of a timer that was set
by the t imer-set time function, which we do not describe.

SI-USER The signal was sent by the ki 11 function.

If the signal was generated by some other event si-code will be set to some value
other than the ones just shown. The contents of the si-value member of the
siginf o-t structure are valid only when si-code is SI-ASYNCIO, SI-MESGQ,
SI-QUEUE, Or S I-TIMER.

102 Posix Message Queues Chapter 5

Example

Figure 5.17 is a simple program that demonstrates realtime signals. The program calls
fork, the child blocks three realtime signals, the parent then sends nine signals (three
occurrences each of three realtime signals), and the child then unblocks the signals and
we see how many occurrences of each signal are delivered and the order in which the
signals are delivered.

Print realtime signal numbers

10 We print the minimum and maximum realtime signal numbers, to see how many
realtime signals the implementation supports. We cast the two constants to an integer,
because some implementations define these two constants to be macros that call
sysconf, as in

#define SIGRTMAX (sysconf(-SC-RTSIG-MAX))

and sysconf returns a long integer (see Exercise 5.4).

fork: child blocks three realtime signals

11-17 A child is spawned, and the child calls sigprocmask to block the three realtime
signals that we are using: SIGRTMAX, SIGRTMAX- 1, and SIGRTMAX-2.

Establish signal handler

18-21 We call our s igna l - r t function (which we show in Figure 5.18) to establish our
function s ig - r t as the handler for the three realtime signals. This function sets the
SA-SIGINFO flag, and since these three signals are realtime signals, we expect realtime
behavior.

Wait for parent to generate the signals, then unblock the signals

22-25 We wait 6 seconds to allow the parent to generate the nine signals. We then call
sigprocmask to unblock the three realtime signals. This should allow all the queued
signals to be delivered. We pause for another 3 seconds, to let the signal handler call
p r i n t f nine times, and then the child terminates.

Parent sends the nine signals

27-36 The parent pauses for 3 seconds to let the child block all signals. The parent then
generates three occurrences of each of the three realtime signals: i assumes three values,
and j takes on the values O , 1 , and 2 for each value of i . We purposely generate the sig-
nals starting with the highest signal number, because we expect them to be delivered
starting with the lowest signal number. We also send a different integer value
(s iva l - in t) with each signal, to verify that the three occurrences of a given signal are
generated in FIFO order.

Signal handler

38-43 Our signal handler just prints the information about the signal that is delivered.

We noted with Figure 5.10 that print£ is not async-signal-safe and should not be called from
a signal handler. We call it here as a simple diagnostic tool in this little test program.

i.7 Posix Realtime Signals 103

rtsignals/testl.c
1 #include "unpipc .h"

2 static void sig-rt(int, siginfo-t *, void *) ;

3 int
4 main(int argc, char **argv)
5 {

int i, j;
pid-t pid;
sigset-t newset;
union sigval val;

printf("S1GRTMIN = %d, SIGRTMAX = %d\nn, (int) SIGRTMIN, (int) SIGRTMAX);

if ((pid = Fork()) == 0) {

/ * child: block three realtime signals * /
Sigernptyset(&newset);
Sigaddset(&newset, SIGRTMAX);
Sigaddset(&newset, SIGRTMAX - 1
Sigaddset(&newset, SIGRTMAX - 2
Sigprocmask(S1G-BLOCK, &newset,

/ * establish signal handler
Signal-rt(SIGRTMAX, sig-rt);

with SA-SIGINFO set * /

1 ;
1 :
NULL) ;

Signal-rt (SIGRTMAX - 1, sig-rt) ;
Signal-rt(S1GRTMAX - 2, sig-rt);

sleep(6) ; I * let parent send all the signals * /

Sigprocmask(S1G-UNBLOCK, &newset, NULL); / * unblock * /
sleep (3) ; / * let all queued signals be delivered * /
exit (0) ;

1
/ * parent sends nine signals to child * /

sleep(3) ; / * let child block all signals * /
for (i = SIGRTMAX; i >= SIGRTMAX - 2; i--) {

for (j = 0; j <= 2; j++) {
val.siva1-int = j;
Sigqueue (pid, i, val) ;
printf("sent signal %d, val = %d\nn, i, j);

1
1
exit (0) ;

38 static void
39 sig-rt(int signo, siginfo-t *info, void *context)
40 {
41 printf("received signal #%d, code = %d, ival = %d\nM,
42 signo, info->si-code, info->si-value.siva1-int);

Figure 5.17 Simple test program to demonstrate realtime signals.

104 Posix Message Queues Chapter 5

We first run the program under Solaris 2.6, but the output is not what is expected.
solaris % testl
SIGRTMIN = 38. SIGRTMAX = 45

sent signal
sent signal
sent signal
sent signal
sent signal
sent signal
sent signal
sent signal
sent signal
solaris %

45, val = 0
45, val = 1
45, val = 2
44, val = 0
44, val = 1
44, val = 2
43, val = 0
43, val = 1
43, val = 2

received signal #45,
received signal #45,
received signal #45,
received signal #44,
received signal #44,
received signal #44,
received signal #43,
received signal #43,
received signal #43,

code = -2,
code = -2,
code = -2,
code = -2,
code = -2,
code = -2,
code = -2,
code = -2,
code = -2,

8 realtime signals provided
3-second pause in here
parent now sends the nine signals

parent terminates, shell prompt printed
3-second pause before child unblocks the signals

ival = 2 child catches the signals
ival = 1
ival = 0
ival = 2
ival = 1
ival = 0
ival = 2
ival = 1
ival = 0

The nine signals are queued, but the three signals are generated starting with the high-
est signal number (we expect the lowest signal number to be generated first). Then for a
given signal, the queued signals appear to be delivered in LIFO, not FIFO, order. The
si-code of -2 corresponds to SI-QUEUE.

We now run the program under Digital Unix 4.08 and see different results.
alpha % testl
SIGRTMIN = 33, SIGRTMAX = 48

sent signal 48,
sent signal 48,
sent signal 48,
sent signal 47,
sent signal 47,
sent signal 47,
sent signal 46,
sent signal 46,
sent signal 46,
alpha %

received signal
received signal
received signal
received signal
received signal
received signal
received signal
received signal
received signal

val
val
val
val
val
val
val
val
val

code = -1,
code = -1,
code = -1,
code = -1,
code = -1,
code = -1,
code = -1,
code = -1,
code = -1,

16 realtime signals provided
3-second pause in here
parent now sends the nine signals

parent terminates, shell prompt printed
3second pause before child unblocks the signals

ival = 0 child catches the signals
ival = 1
ival = 2
ival = 0
ival = 1
ival = 2
ival = 0
ival = 1
ival = 2

Section 5.7 Posix Realtime Signals 105

The nine signals are queued but are delivered in the order in which they were gener-
ated, not the lowest-numbered-signal-first, as we expect. But for a given signal, the
three occurrences are delivered in FIFO order.

Both of these implementations appear to have bugs.

signal-rt Function

On p. 120 of UNPvl, we show our signal function, which calls the Posix sigaction
function to establish a signal handler that provides realtime Posix semantics. We now
modify that function to provide realtime behavior. We call this new function
signal-rt and show it in Figure 5.18.

2 Sigfunc-rt *
3 signal-rt(int signo, Sigfunc-rt *func)
4 I
5 struct sigaction act, oact;

6 act-sa-sigaction = func: / * must store function addr here * /
7 sigemptyset(&act.sa-mask);
8 act.sa-flags = SA-SIGINFO; / * must specify this for realtime * /
9 if (signo == SIGALRM) {

10 #ifdef SA-INTERRUPT
11 act.sa-flags I = SA-INTERRUPT; / * SunOS 4.x * /
12 #endif
13 1 else I
14 #ifdef SA-RESTART
15 act.sa-flags I= SA-RESTART; / * SVR4, 4.4BSD * /
16 #endif
17 I
18 if (sigaction(signo, &act, &oact) c 0)
19 return ((Sigfunc-rt *) SIG-ERR);
20 return (oact.sa-sigaction);
21 I

lib/signal-rt.c
Figure 5.18 signal-rt function to provide realtime behavior.

Simplify function prototype using typedef

1-3 In our unpipc . h header (Figure C.11, we define Sigf unc-rt as

typedef void Sigfunc-rt(int, siginfo-t *, void *) ;

We said earlier in this section that this is the function prototype for a signal handler
installed with the SA-SIGINFO flag set.

Specify handler function

5-7 The sigaction structure changed when realtime signal support was added, with
the addition of the new sa-s igac t ion member.

106 Posix Message Queues Chapter 5

struct sigaction {

void (*saphandler)(); / * SIG-DFL, SIG-IGN, or addr of signal handler * /
sigset-t sa-mask; / * additional signals to block * /
int sa-flags; / * signal options: SA-xxx * /
void (*sa-sigaction) (int, siginfo-t, void *) ;

/ * addr of signal handler if SA-SIGINFO set * /
1 :

The rules are:

If the SA-SIGINFO flag is set in the sa-flags member, then the
sa-s igac t i on member specifies the address of the signal-handling function.

If the SA-SIGINFO flag is not set in the sa-flags member, then the
sa-handler member specifies the address of the signal-handling function.

To specify the default action for a signal or to ignore a signal, set sa-handler
to either SIG-DFL or SIG-IGN, and do not set SA-SIGINFO.

Set SA-SIGINFO

8-17 We always set the SA-SIGINFO flag, and also specify the SA-RESTART flag if the
signal is not SIGALRM.

5.8 Implementation Using Memory-Mapped I10

We now provide an implementation of Posix message queues using memory-mapped
I/O, along with Posix mutexes and condition variables.

We cover mutexes and condition variables in Chapter 7 and memory-mapped I/O in Chapters
12 and 13. You may wish to skip this section until you have read those chapters.

Figure 5.19 shows a layout of the data structures that we use to implement Posix
message queues. In this figure, we assume that the message queue was created to hold
up to four messages of 7 bytes each.

Figure 5.20 shows our mqueue . h header, which defines the fundamental structures
for this implementation.

mud-t datatype

1 Our message queue descriptor is just a pointer to an mcinf o structure. Each call
to mcopen allocates one of these structures, and the pointer to this structure is what
gets returned to the caller. This reiterates that a message queue descriptor need not be a
small integer, like a file descriptor-the only Posix requirement is that this datatype
cannot be an array type.

L 5.8 Implementation Using Memory-Mapped 1/0 107

mq-flags
mq-maxmsg

mqh-free
mqh-nwai t

mqh-event

mqh-lock

mqh-wai t

I
rnsg-next
msg-len
m s g q r i o

rnsg-next *
msg-len

--

msg-len

m s g q r i o

1 byte pad

start of memory-mapped region

1
L

one s t rudre for each
J

mcopen of message queue

1 one message

one message

1 one message

1 one message

J r-- end of memory-mapped region
L

V
J

one memory-mapped file per message queue

Figure 5.19 Layout of data structures to implement Posix message queues using a memory-mapped file.

108 Posix Message Queues Chapter 5

1 typedef struct meinfo *mqd-t; / *

2 struct mcattr I
3 long mq-flags; / *
4 long mLmaxmsg; / *
5 long mq-msgsize; / *
6 long mccurmsgs ; / *
7 1;

8 / * one mchdrI1 per queue,
9 struct mchdr I

myjxmsg-mmap/mqueue.h
opaque datatype * /

message queue flag: 0-NONBLOCK * /
max number of messages allowed on queue * /
max size of a message (in bytes) * /
number of messages currently on queue * /

at beginning of mapped file * /

struct mcattr mqh-attr;
long mqh-head;
long mqh-free;
long mqh-nwait ;
pid-t mqhsid;
struct sigevent mqh-event;
pthread-mutex-t mqh-lock;
pthread-cond-t mqh-wait;

/ * the queue's attributes * /
/ * index of first message * /
/ * index of first free message * /
/ * #threads blocked in mcreceive0 * /
/ * nonzero PID if mqh-event set * /
/ * for mcnotify0 * /
/ * mutex lock * /
/ * and condition variable * /

19 / * one msg-hdr{) at the front of each message in the mapped file * /
20 struct msg-hdr I
2 1 long msg-next ; / * index of next on linked list * /
22 / * msg-next must be first member in struct * /
23 ssize-t msg-len: / * actual length * /
24 unsigned int msgsrio; / * priority * /
25 1;

2 6 / * one mcinfo{) malloc'ed per process per maopen0 * /
27 struct meinfo I
28 struct mchdr *mqi-hdr; / * start of mmap'ed region * /
29 long mqi-magic ; / * magic number if open * /
3 0 int mqi-flags; / * flags for this process * /
3 1 1;
32 #define MQI-MAGIC 0x98765432

33 / * size of message in file is rounded up for alignment * /
34 #define MSGSIZE(i) ((((i) + sizeof(1ong)-1) / sizeof(1ong)) * sizeof(1ong))

myyxmsg-mmap/mqueue.h
Figure 5.20 mqueue . h header.

m d r Structure

8-18 This structure appears at the beginning of the mapped file and contains all the per-
queue information. The mq_f lags member of the mqh-attr structure is not used,
because the flags (the nonblocking flag is the only one defined) must be maintained on a
per-open basis, not on a per-queue basis. The flags are maintained in the m c i n f o
structure. We describe the remaining members of this structure as we use them in the
various functions.

Note now that everything that we refer to as an index (the mqh-head and
mqh-f ree members of this structure, and the msg-next member of the next structure)
contains byte indexes from the beginning of the mapped file. For example, the size of

)n 5.8 Implementation Using Memory-Mapped 1/0 109

the mehdr structure under Solaris 2.6 is 96 bytes, so the index of the first message fol-
lowing this header is 96. Each message in Figure 5.19 occupies 20 bytes (12 bytes for the
msg-hdr structure and 8 bytes for the message data), so the indexes of the remaining
three messages are 116,136, and 156, and the size of this mapped file is 176 bytes. These
indexes are used to maintain two linked lists in the mapped file: one list (mqh-head)
contains all the messages currently on the queue, and the other (mqh-f ree) contains all
the free messages on the queue. We cannot use actual memory pointers (addresses) for
these list pointers, because the mapped file can start at different memory addresses in
each process that maps the file (as we show in Figure 13.6).

mag-hdr Structure

-2s This structure appears at the beginning of each message in the mapped file. All
messages are either on the message list or on the free list, and the msg-next member
contains the index of the next message on the list (or 0 if this message is the end of the
list). msg-len is the actual length of the message data, which for our example in Fig-
ure 5.19 can be between 0 and 7 bytes, inclusive. m s g j r i o is the priority assigned to
the message by the caller of mesend.

-info structure

26-32 One of these structures is dynamically allocated by meopen when a queue is
opened, and freed by mec lose . mqi-hdr points to the mapped file (the starting
address returned by mmap). A pointer to this structure is the fundamental mqd-t
datatype of our implementation, and this pointer is the return value from mq-open.

The mqi-magic member contains MQI-MAGIC, once this structure has been initial-
ized and is checked by each function that is passed an mqd-t pointer, to make certain
that the pointer really points to an m c i n f o structure. mqi-f l a g s contains the non-
blocking flag for this open instance of the queue.

MSGSIZE macro

33-34 For alignment purposes, we want each message in the mapped file to start on a long
integer boundary. Therefore, if the maximum size of each message is not so aligned, we
add between 1 and 3 bytes of padding to the data portion of each message, as shown in
Figure 5.19. This assumes that the size of a long integer is 4 bytes (which is true for
Solaris 2.6), but if the size of a long integer is 8 bytes (as on Digital Unix 4.01, then the
amount of padding will be between 1 and 7 bytes.

mchopen Function

Figure 5.21 shows the first part of our meopen function, which creates a new message
queue or opens an existing message queue.

3 #include cstdarg.h>
4 #define - T R I E S 10 / * for waiting for initialization * /

5 struct mq-attr defattr =
6 (0, 128, 1024, 0);

110 Posix Message Queues Chapter 5

7 mqd-t
8 mcopen(const char *pathname, int oflag, . . . I
9 I

int i, fd, nonblock, created, save-errno;
long msgsize, filesize, index;
va-list ap;
mode-t mode;
int8-t *mptr;
struct stat statbuff;
struct mchdr *mqhdr;
struct msg-hdr *msghdr;
struct mcattr *attr;
struct mcinfo *mqinfo;
pthread-mutexattr-t rnattr;
pthread-condattr-t cattr;

created = 0;
nonblock = oflag & 0-NONBLOCK;
oflag &= "0-NONBLOCK;
mptr = (int8-t *) MAP-FAILED;
mqinfo = NULL;

again :
if (oflag & 0-CREAT) I

va-start(ap, oflag); / * init ap to final named argument * /
mode = va-arg(ap, va-mode-t) & "S-IXUSR;
attr = v~arg(ap, struct mcattr *) ;

va-end (ap) ;

/ * open and specify 0-EXCL and user-execute * /
fd = open(pathname, oflag I 0-EXCL I 0-RDWR, mode I S-IXUSR);
if (fd c 0) {

if (errno == EEXIST && (oflag & 0-EXCL) == 0)
goto exists; / * already exists, OK * /

else
return ((mqd-t) -1) ;

1
created = 1;

/ * first one to create the file initializes it * /
if (attr == NULL)

attr = &defattr;
else I

if (attr-zmcrnaxmsg c= 0 I I attr->mq_msgsize c= 0) I
errno = EINVAL;
goto err;

1
}

my~xrnsg-mmap/mq-0pen.c
Figure 5.21 meopen function: first part.

Handle variable argument list

29-32 This function can be called with either two or four arguments, depending on
whether or not the 0-CREAT flag is specified. When this flag is specified, the third

i.8 Implementation Using Memory-Mapped 1/0 111

argument is of type mode-t, but this is a primitive system datatype that can be any
type of integer. The problem we encounter is on BSD/OS, which defines this datatype
as an unsigned s h o r t integer (occupying 16 bits). Since an integer on this implemen-
tation occupies 32 bits, the C compiler expands an argument of this type from 16 to
32 bits, since all short integers are expanded to integers in the argument list. But if we
specify mode-t in the call to va-arg, it will step past 16 bits of argument on the stack,
when the argument has been expanded to occupy 32 bits. Therefore, we must define
our own datatype, va-mode-t, that is an integer under BSD/OS, or of type mode-t
under other systems. The following lines in our unpipc . h header (Figure C.l) handle
this portability problem:

#ifdef -- bsdi--
#define va-mode-t int
#else
#define va-mode-t mode-t
#endif

We turn off the user-execute bit in the mode variable (s-IXUSR) for reasons that we
describe shortly.

Create a new message queue

A regular file is created with the name specified by the caller, and the user-execute
bit is turned on.

Handle potential race condition

If we were to just open the file, memory map its contents, and initialize the mapped
file (as described shortly) when the 0-CREAT flag is specified by the caller, we would
have a race condition. A message queue is initialized by mcopen only if 0-CREAT is
specified by the caller and the message queue does not already exist. That means we
need some method of detecting whether the message queue already exists. To do so, we
always specify 0-EXCL when we open the file that will be memory-mapped. But an
error return of EEXIST from open becomes an error from mcopen, only if the caller
specified 0-EXCL. Otherwise, if open returns an error of EEXIST, the file already exists
and we just skip ahead to Figure 5.23 as if the 0-CREAT flag was not specified.

The possible race condition is because our use of a memory-mapped file to repre-
sent a message queue requires two steps to initialize a new message queue: first, the file
must be created by open, and second, the contents of the file (described shortly) must
be initialized. The problem occurs if two threads (in the same or different processes)
call mcopen at about the same time. One thread can create the file, and then the sys-
tem switches to the second thread before the first thread completes the initialization.
This second thread detects that the file already exists (using the 0-EXCL flag to open)
and immediately tries to use the message queue. But the message queue cannot be used
until the first thread initializes the message queue. We use the user-execute bit of the
file to indicate that the message queue ha~&een initialized. This bit is enabled only by
the thread that actually creates the file (using the 0-EXCL flag to detect which thread
creates the file), and that thread initializes the message queue and then turns off the
user-execute bit. We encounter similar race conditions in Figures 10.43 and 10.52.

112 Posix Message Queues Chapter 5

Check attributes

4.2-so If the caller specifies a null pointer for the final argument, we use the default
attributes shown at the beginning of this figure: 128 messages and 1024 bytes per mes-
sage. If the caller specifies the attributes, we verify that mq-maxmsg and rn~msgsize
are positive.

The second part of our mq_open function is shown in Figure 5.22; it completes the
initialization of a new queue.

myjxmsg-mmaplmq-0pen.c
/ * calculate and set the file size * /

msgsize = MSGSIZE(attr->mq-msgsize);
filesize = sizeof(struct mq-hdr) + (attr->mq-maxmsg *

(sizeof(struct msg-hdr) + msgsize));
if (lseek(fd, filesize - 1, SEEK-SET) == -1)

goto err;
if (write(fd, "" , 1) == -1)

goto err;

/ * memory map the file * /
mptr = mmap(NULL, filesize, PROT-READ I PROT-WRITE,

MAP-SHARED, f d, 0) ;
if (mptr == MAP-FAILED)

goto err;

/ * allocate one mq_info{) for the queue * /
if ((mqinfo = malloc(sizeof(struct mq-info))) == NULL)

goto err;

mqinfo->mqi-hdr = mqhdr = (struct mq-hdr *) mptr;
mqinfo-zmqi-magic = MQI-MAGIC;
mqinfo-xnqi-flags = nonblock;

/ * initialize header at beginning of file * /
/ * create free list with all messages on it * /

mqhdr-zmqh-attr-mq-flags = 0;
mqhdr-zmqh-attr.mq_maxmsg = attr->mmaxmsg;
mqhdr->mqh-attr.mq-msgsize = attr->mq-msgsize;
mqhdr->mqh-attr.mq-curmsgs = 0;
mqhdr->mqh-nwait = 0;
mqhdr->mqh_pid = 0;
mqhdr->rnqh-head = 0;
index = sizeof(struct mq-hdr);
mqhdr->mqh-free = index;
for (i = 0; i < attr->mq-maxmsg - 1; i++) I

msghdr = (struct msg-hdr *) &mptr[indexl;
index += sizeof(struct msg-hdr) + msgsize;
msghdr-zmsg-next = index;

1
msghdr = (struct msg-hdr *) &mptr[indexl;
msghdr->msg-next = 0; / * end of free list * /

/ * initialize mutex & condition variable * /
if ((i = pthread-mutexattr-init(&mattr)) != 0)

goto pthreaderr;

Section 5.8 Implementation Using Memory-Mapped 1 / 0 113

91 pthread-mutexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED);
9 2 i = pthread-mutex-init(&mqhdr->mqh-lock, &mattr);
93 pthread-mutexattr-destroy(&mattr); / * be sure to destroy * /
94 if (i != 0)
95 goto pthreaderr;

9 6 if ((i = pthread-condattr-init(&cattr)) != 0)
97 goto pthreaderr;
9 8 pthread-condattr-setpshared(&cattr, PTHREAD-PROCESS-SHARED);
99 i = pthread-cond-init(&mqhdr->mqh-wait, &cattr);
100 pthread-condattr-destroy(&cattr); / * be sure to destroy * /
101 if (i != 0)
102 goto pthreaderr;

103 / * initialization complete, turn off user-execute bit * /
104 if (fchmod(fd, mode) == -1)
105 goto err;
106 close (fd) ;
107 return ((mqd-t) mqinfo) ;

Figure 5.22 Second part of mcopen function: complete initialization of new queue.

Set the file size

a - 5 s We calculate the size of each message, rounding up to the next multiple of the size
of a long integer. To calculate the file size, we also allocate room for the mchdr struc-
ture at the beginning of the file and the msg-hdr structure at the beginning of each
message (Figure 5.19). We set the size of the newly created file using lseek and then
writing one byte of 0. Just calling f truncate (Section 13.3) would be easier, but we are
not guaranteed that this works to increase the size of a file.

Memory map the file

59-63 The file is memory mapped by mmap.

Allocate -info structure

64-66 We allocate one mq-inf o structure for each call to mcopen. This structure is ini-
tialized.

Initialize m h d r structure

67-87 We initialize the mchdr structure. The head of the linked list of messages
(mqh-head) is set to 0, and all the messages in the queue are added to the free list
(mqh-f reel.

Initialize mutex and condition variable

8s- ioz Since Posix message queues can be shared by any process that knows the message
queue's name and has adequate permission, we must initialize the mutex and condition
variable with the PTHREAD-PROCESS-SHARED attribute. To do so for the message
queue, we first initialize the attributes by calling pthread-mutexat tr-ini t, then call
pthread-mutexattr-setpshared to set the process-shared attribute in this struc-
ture, and then initialize the mutex by calling pthread-mutex-ini t. Nearly identical
steps are done for the condition variable. We are careful to destroy the mutex or

114 Posix Message Queues Chapter 5

condition variable attributes that are initialized, even if an error occurs, because the calls
to pthread-mutexattr-init or pthread-condattr-init might allocate memory
(Exercise 7.3).

Turn off user-execute bit

103-107 Once the message queue is initialized, we turn off the user-execute bit. This indi-
cates that the message queue has been initialized. We also close the file, since it has
been memory mapped and there is no need to keep it open (taking up a descriptor).

Figure 5.23 shows the final part of our mcopen function, which opens an existing
queue.

myjxmsg-mmaplmq-0pen.c
exists:

/ * open the file then memory map * /
if ((fd = open(pathname, 0-RDWR)) c 0) I

if (errno == ENOENT && (oflag & 0-CREAT))
goto again;

goto err;
1

/ * make certain initialization is complete * /
for (i = 0; i c -TRIES; i++) I

if (stat(pathname, &statbuff) == -1) I
if (errno == ENOENT && (oflag & 0-CREAT)) {

close(fd);
goto again;

)
goto err;

1
if ((statbuff.st-mode & S-IXUSR) == 0)

break;
sleep(1);

1
if (i == MAX-TRIES) {

errno = ETIMEDOUT;
goto err;

1
filesize = statbuff.st-size;
mptr = mmap(NULL, filesize, PROT-READ I PROT-WRITE, MAP-SHARED, fd, 0);
if (mptr == MAP-FAILED)

goto err;
close (fd) ;

/ * allocate one mq_info{) for each open * /
if ((mqinfo = malloc(sizeof(struct mq-info))) == NULL)

goto err;

mqinfo-zmqi-hdr = (struct mq-hdr *) mptr;
mqinfo->mqi-magic = MQI-MAGIC;
mqinfo-zmqi-flags = nonblock;
return ((mqd-t) mqinfo) ;

116 Posix Message Queues Chapter 5

Memory map file; ailocate and initiaiize -info structure

133-144 The file is memory mapped, and the descriptor can then be closed. We allocate an
m c i n f o structure and initialize it. The return value is a pointer to the m c i n f o struc-
ture that was allocated.

Handie errors

145-15s When an error is detected earlier in the function, the label e r r is branched to, with
errno set to the value to be returned by meopen. We are careful that the functions
called to clean up after the error is detected do not affect the errno returned by this
function.

q-close Function

Figure 5.24 shows our m c c 1 os e function.

2 #include "mqueue . h"
3 int
4 mq_close(mqd-t mqd)
5 {

6 long msgsize, filesize;
7 struct mehdr *mqhdr;
8 struct meattr *attr;
9 struct meinfo *mqinfo;

10 mqinfo = mqd;
11 if (mqinfo->mqi-magic != MQI-MAGIC) {

12 errno = EBADF;
13 return (-1);
14 1
15 mqhdr = mqinfo->mqi-hdr;
16 attr = &mqhdr->mqh-attr;

17 if (menotify(mqd, NULL) != 0) / * unregister calling process * /
18 return (-1) ;

19 msgsize = MSGSIZE(attr->m~msgsize);
2 0 filesize = sizeof(struct mehdr) + (attr->memaxmsg *
21 (sizeof(struct msg-hdr) + msgsize)) ;

22 if (munmap(mqinfo->mqi-hdr, filesize) == -1)
2 3 return (-1);

24 mqinfo-zmqi-magic = 0; / * just in case * /
2 5 free (mqinf o 1 ;
2 6 return (0) ;
27 1 m~gxrnsg-mmaplmq-c1ose.c

Figure 5.24 m~close function.

5.8 Implementation Using Memory-Mapped 1/0 117

Get pointers to structures

; The argument is validated, and pointers are then obtained to the memory-mapped
region (mqhdr) and the attributes (in the m c h d r structure).

Unregister calling process

I We call m c n o t i f y to unregister the calling process for this queue. If the process is
registered, it will be unregistered, but if it is not registered, no error is returned.

Unmap region and free memory

i We calculate the size of the file for munmap and then free the memory used by the
m c i n f o structure. Just in case the caller continues to use the message queue descrip-
tor before that region of memory is reused by ma1 loc, we set the magic number to 0, so
that our message queue functions will detect the error.

Note that if the process terminates without calling m c c l o s e , the same operations
take place on process termination: the memory-mapped file is unmapped and the mem-
ory is freed.

link Function

Our m ~ u n l i n k function shown in Figure 5.25 removes the name associated with our
message queue. It just calls the Unix un l ink function.

3 int
4 mq-unlink(const char *pathname)
5 {

6 if (unlink(pathname) == -1)
7 return (-1);
8 return (0) ;

9 I
my~xmsg-mmap/mq-un1ink.c

Figure 5.25 meunlink function.

tattr Function

Figure 5.26 shows our m c r g e t a t t r function, which returns the current attributes of the
specified queue.

Acquire queue's mutex lock

I We must acquire the message queue's mutex lock before fetching the attributes, in
case some other thread is in the middle of changing them.

118 Posix Message Queues Chapter 5

mygxmsg-mmap/mq_getattr.c
1 #include "unpipc.hU
2 #include "mqueue.hU

3 int
4 megetattr(mqd-t mqd, struct mcattr *mqstat)
5 (

int n;
struct mchdr *mqhdr;
struct mq-attr *attr;
struct meinfo *mqinfo;

mqinfo = mqd;
if (mqinfo->mqi-magic != MQI-MAGIC) {

errno = EBADF;
return (-1);

I
mqhdr = mqinfo->mqi-hdr;
attr = &mqhdr->mqh-attr:
if ((n = pthread-mutex-lock(&mqhdr->mqh-lock)) != 0) I

errno = n;
return (-1);

I
mqstat->meflags = mqinfo->mqi-flags; / * per-open * /
mqstat->mq-maxmsg = attr->mq_maxmsg; / * remaining three per-queue */
mqstat->rnemsgsize = attr->mq-msgsize;
mqstat->mq-curmsgs = attr->mccurmsgs;

pthread-mutex-unlock(&mqhdr->mqh-lock);
return (0) ;

27 I
mygxmsg-mmap /mq_getattr.c

Figure 5.26 megetattr function.

mseta t tr Function

Figure 5.27 shows our m ~ s e t a t t r function, which sets the current attributes of the
specified queue.

Return current attributes

22-27 If the third argument is a nonnull pointer, we return the previous attributes and cur-
rent status before changing anything.

Change -flags

28-31 The only attribute that can be changed with this function is m q _ f lags, which we
store in the m c i n f o structure.

8 Implementation Using Memory-Mapped 1/0 119

3 int
4 rnesetattr(mqd-t mqd, const struct mcattr *mqstat,
5 struct meattr *omqstat)
6 {
7 int n;
8 struct m ~ h d r *mqhdr ;
9 struct meattr *attr:

10 struct m ~ i n f o *mqinfo;

mqinfo = mqd;
if (mqinfo->mqi-magic != MQI-MAGIC) {

errno = EBADF;
return (-1);

I
mqhdr = mqinfo->mqi-hdr;
attr = &mqhdr->mqh-attr;
if ((n = pthread-mutex-lock(&mqhdr->mqh-lock)) != 0) {

errno = n;
return (-1) ;

I
if (omqstat != NULL) {

omqstat->-flags = mqinfo->mqi-flags; / * previous attributes * /
omqstat->memaxmsg = attr->m~maxmsg;
omqstat->memsgsize = attr->mq_msgsize;
omqstat->rnecurmsgs = attr->mq-curmsgs; / * and current status * /

I
if (mqstat->meflags & 0-NONBLOCK)

mqinfo->mqi-flags) = 0-NONBLOCK;
else

mqinfo->mqi-flags &= "0-NONBLOCK;

32 pthread-mutex-unlock(&mqhdr->mqh-lock);
3 3 return (0) ;

Figure 5.27 mesetattr function.

ify Function

The mcnoti f y function shown in Figure 5.28 registers or unregisters the calling pro-
cess for the queue. We keep track of the process currently registered for a queue by
storing its process ID in the mqh_pid member of the mchdr structure. Only one pro-
cess at a time can be registered for a given queue. When a process registers itself, we
also save its specified sigevent structure in the mqh-event structure.

120 Posix Message Queues Chapter 5

3 int
4 menotify(mqd-t mqd, const struct sigevent *notification)
5 (

int n;
pid-t pid;
struct m ~ h d r *mqhdr;
struct meinfo *mqinfo;

mqinfo = mqd;
if (mqinfo->mqi-magic != MQI-MAGIC) {

errno = EBADF;
return (-1) ;

1
mqhdr = mqinfo->mqi-hdr:
if ((n = pthread-mutex-lock(&mqhdr->mqh-lock)) != 0) (

return (-1) ;
I
pid = getpid () ;
if (notification == NULL) {

if (mqhdr->mqhqid == pid) {

mqhdr->mqhqid = 0; / * unregister calling process * /
I / * no error if caller not registered * /

I else (

if (mqhdr->mqhqid != 0) {

if (kill(mqhdr->mqh_pid, 0) != -1 1 1 errno != ESRCH) {

errno = EBUSY;
goto err;

1
I
mqhdr->mqhqid = pid;
mqhdr->mqh-event = *notification;

I
pthread~mutex~unlock(&mqhdr->mqh~l~ck);
return (0) ;

err :
pthread~mutex~unlock(&mqhdr-~mqh~lock);
return (-1);

40 I my~xmsg-mmaplmq-n0tIfy.c
Figure 5.28 meno t i f y function.

Unregister caliing process

20-24 If the second argument is a null pointer, the calling process is unregistered for this
queue. Strangely, no error is specified if the calling process is not registered for this
queue.

15.8 Implementation Using Memory-Mapped 1/0 121

Register caliing process

4 If some process is already registered, we check whether it still exists by sending it
signal 0 (called the null signal). This performs the normal error checking, but does not
send a signal and returns an error of ESRCH if the process does not exist. An error of
EBUSY is returned if the previously registered process still exists. Otherwise, the pro-
cess ID is saved, along with the caller's s igeven t structure.

Our test for whether the previously registered process exists is not perfect. This process can
terminate and then have its process ID reused at some later time.

mnd Function

Figure 5.29 shows the first half of our m e s e n d function.

lnitiaiize

Pointers are obtained to the structures that we will use, and the mutex lock for the
queue is obtained. A check is made that the size of the message does not exceed the
maximum message size for this queue.

Check for empty queue and send notification if applicabie

If we are placing a message onto an empty queue, we check whether any process is
registered for this queue and whether any thread is blocked in a call to mcrece ive .
For the latter check, we will see that our m c r e c e i v e function keeps a count
(mqh-nwait) of the number of threads blocked on the empty queue. If this counter is
nonzero, we do not send any notification to the registered process. We handle a notifi-
cation of SIGEV-SIGNAL and call s igqueue to send the signal. The registered process
is then unregistered.

Calling sigqueue to send the signal results in an si-code of SI-QUEUE being passed to the
signal handler in the siginfo-t structure (Section 5.7), which is incorrect. Generating the
correct si-code of SI-MESGQ from a user process is implementation dependent. Page 433 of
[IEEE 19961 mentions that a hidden interface into the signal generation mechanism is required
to generate this signal from a user library.

Check for fuil queue

8 If the queue is full but the 0-NONBLOCK flag has been set, we return an error of
EAGAIN. Otherwise, we wait on the condition variable mqh-wait, which we will see is
signaled by our m ~ r e c e i v e function when a message is read from a full queue.

Our implementation is simplistic with regard to returning an error of EINTR if this call to
-send is interrupted by a signal that is caught by the calling process. The problem is that
pthread-cond-wait does not return an error when the signal handler returns: it can either
return a value of 0 (which appears as a spurious wakeup) or it need not return at all. Ways
around this exist, all nontrivial.

Figure 5.30 shows the second half of our m e s e n d function. At this point, we know
the queue has room for the new message.

122 Posix Message Queues Chapter 5

my_pxmsgmmap/mq-send.c
1 #include "unpipc.h"
2 #include "mqueue.hU

3 int
4 mesend(mqd-t mqd, const char *ptr, size-t len, unsigned int prio)
5 (

int n;
long index, freeindex;
int8-t *mptr:
struct sigevent *sigev;
struct mehdr *mqhdr;
struct meattr *attr;
struct msg-hdr *msghdr, *nmsghdr, *pmsghdr;
struct meinfo *mqinfo;

mqinfo = mqd;
if (mqinfo->mqi-magic != MQI-MAGIC) {

errno = EBADF;
return (-1) ;

1
mqhdr = mqinfo->mqi-hdr; / * struct pointer * /
mptr = (int8-t *) mqhdr; / * byte pointer * /
attr = &mqhdr->mqh-attr;

((n = pthread-mutex-lock(&mqhdr->mqh_lock)) != 0) {

errno = n;
return (-1);

(len > attr->memsgsize) {
errno = EMSGSIZE;
goto err;

(attr->mq-curmsgs == 0) {

if (mqhdr->mqh_pid != 0 && mqhdr->mqh-nwait == 0) {

sigev = &mqhdr->mqh-event;
if (sigev->sigev-notify == SIGEV-SIGNAL) {

sigqueue(mqhdr->mqhqid, sigev->sigev-signo,
sigev->sigev-value);

1
mqhdr->mqhqid = 0; / * unregister * /

1
) else if (attr->mq-curmsgs >= attr->mq_maxmsg) {

/ * queue is full * /
if (mqinfo->mqi-flags & 0-NONBLOCK) {

errno = EAGAIN;
goto err;

1
/ * wait for room for one message on the queue * /

while (attr->mecurmsgs >= attr-zmq-maxmsg)
pthread-cond-wait(&mqhdr->mqh-wait, &mqhdr->mqh-lock) ;

1
myjxmsg-mmap/mq-send.c

Figure 5.29 mesend function: first half.

15.8 Implementation Using Memory-Mapped 1/0 123

myjxmsg-mmaplmq-send.c
/ * nmsghdr will point to new message * /

if ((freeindex = mqhdr->mqh-free) == 0)
err-dump("mesend: curmsgs = %ld; free = 0". attr->m~curmsgs);

nmsghdr = (struct msg-hdr *) &mptr[freeindexl;
nmsghdr->msgqrio = prio;
nmsghdr->msg-len = len;
memcpy(nmsghdr + 1, ptr, len); / * copy message from caller * /
mqhdr->mqh-free = nmsghdr->msg-next; / * new freelist head * /

/ * find right place for message in linked list * /
index = mqhdr->mqh-head;
pmsghdr = (struct msg-hdr *) &(mqhdr->mqh-head);
while (index ! = 0) {

msghdr = (struct msg-hdr *) &mptr[indexl;
if (prio > msghdr->msgqrio) {

nmsghdr->msg-next = index;
pmsghdr->msg-next = freeindex;
break;

I
index = msghdr->msggext;
pmsghdr = msghdr;

(index == 0) {

/ * queue was empty or new goes at end of list * /
pmsghdr->msg-next = freeindex;
nmsghdr->msg-next = 0;

I
/ * wake up anyone blocked in mereceive waiting for a message * /

if (attr->mq-curmsgs == 0)
pthread-cond-signal(&mqhdr->mqh-wait);

attr->mq-curmsgs++;

pthread~mutex~unlock(&mqhdr->mqh~lock) ;

return (0) ;

84 I
myjxrnsgmmaplmq-send.c

Figure 5.30 mesend function: second half.

Get index of free biock to use

52 Since the number of free messages created when the queue was initialized equals
m c m a x m s g , we should never have a situation where m c c u r m s g s is less than
m c m a x m s g with an empty free list.

Copy message

56 n r n s g h d r contains the address in the mapped memory of where the message is
stored. The priority and length are stored in its m s g- h d r structure, and then the con-
tents of the message are copied from the caller.

124 Posix Message Queues Chapter 5

Place new message onto iinked list in correct location

57-74 The order of messages on our linked list is from highest priority at the front
(mqh-head) to lowest priority at the end. When a new message is added to the queue
and one or more messages of the same priority are already on the queue, the new mes-
sage is added after the last message with its priority. Using this ordering, m c r e c e i v e
always returns the first message on the linked list (which is the oldest message of the
highest priority on the queue). As we step through the linked list, pmsghdr contains
the address of the previous message in the list, because its msg-next value will contain
the index of the new message.

Our design can be slow when lots of messages are on the queue, forcing a traversal of a large
number of l i t entries each time a message is written to the queue. A separate index could be
maintained that remembers the location of the last message for each possible priority.

Wake up anyone blocked in -receive

75-77 If the queue was empty before we placed the message onto the queue, we call
pthread-cond-signal to wake up any thread that might be blocked in
m c r e c e i v e .

78 The number of messages currently on the queue, mccurmsgs, is incremented.

-receive Function

Figure 5.31 shows the first half of our m e r e c e i v e function, which sets up the pointers
that it needs, obtains the mutex lock, and verifies that the caller's buffer is large enough
for the largest possible message.

Check for empty queue

30-40 If the queue is empty and the 0-NONBLOCK flag is set, an error of EAGAIN is
returned. Otherwise, we increment the queue's mqh-nwait counter, which was exam-
ined by our m e s e n d function in Figure 5.29, if the queue was empty and someone was
registered for notification. We then wait on the condition variable, which is signaled by
m c s e n d in Figure 5.29.

As with our implementation of m c s e n d , our implementation of m ~ r e c e i v e is simplistic
with regard to returning an error of EINTR if this call is interrupted by a signal that is caught
by the calling process.

Figure 5.32 shows the second half of our m c r e c e i v e function. At this point, we
know that a message is on the queue to return to the caller.

Section 5.8 Implementation Using Memory-Mapped 1 / 0 125

ssize-t
mq-receive(mqd-t mqd, char *ptr, size-t rnaxlen, unsigned int *priop)
(

int n;
long index;
int8-t *mptr;
ssize-t len;
struct m ~ h d r *mqhdr;
struct m ~ a t t r *attr;
struct msg-hdr *msghdr;
struct m ~ i n f o *mqinfo;

rnqinfo = rnqd;
if (mqinfo->mqi-magic != MQI-MAGIC) (

errno = EBADF;
return (-1);

1
rnqhdr = mqinfo->mqi-hdr; / * struct pointer * /
mptr = (int8-t *) rnqhdr; / * byte pointer */
attr = Lmqhdr->mqh-attr;
if ((n = pthread-mutex-lock(&mqhdr->mqh-lock)) != 0) {

errno = n;
return (-1);

1
if (rnaxlen < attr->mq_msgsize) (

errno = EMSGSIZE;
goto err;

1
if (attr->m~curmsgs == 0) { / * queue is empty * /

if (rnqinfo->mqi-flags & 0-NONBLOCK) (

errno = EAGAIN;
goto err;

1
/ * wait for a message to be placed onto queue * /

mqhdr->mqh-nwait++;
while (attr->mq-curmsgs == 0)

pthread-cond-wait(&mqhdr->mqh-wait, &mqhdr->mqh-lock);
rnqhdr->mqh-nwait--;

1 rny_pxmsg~rnmap/rnq~receive.c

Figure 5.31 -receive function: first half.

126 Posix Message Queues Chapter 5

myjxrnsg-mmaplmq- receive.^
41 if ((index = mqhdr->mqh-head) == 0)
42 err-dump("mq_receive: curmsgs = %Id; head = O", attr->mq-curmsgs);

43 msghdr = (struct msg-hdr *) &mptr[index];
44 mqhdr->mqh-head = msghdr->msg-next; / * new head of list * /
45 len = msghdr->msg-len;
46 memcpy(ptr, msghdr + 1, len); / * copy the message itself * /
4 7 if (priop != NULL)

49 / * just-read message goes to front of free list * /
50 msghdr->mg-next = mqhdr->mqh-free;
51 mqhdr->mqh-free = index;

5 2 / * wake up anyone blocked in -send waiting for room * /
53 if (attr->m~curmsgs == attr->mq-mamsg)
5 4 pthread-cond-signal(&mqhdr->mqh-wait);
55 attr-zm~curmsgs--;

56 pthread~mutex~unlock(&mqhdr->mqh-lock);
5 7 return (len) ;

58 err:
59 pthread-mutex-unlock(&mqhdr->mqh-lock);
60 return (-1);

61 1
myjxmsg-mmaplmq- receive.^

Figure 5.32 m~receive function: second half.

Return message to caller

43-51 msghdr points to the msg-hdr of the first message on the queue, which is what we
return. The space occupied by this message becomes the new head of the free list.

Wake up anyone blocked in -send

52-54 If the queue was full before we took the message off the queue, we call
pthread-cond-signal, in case anyone is blocked in m ~ s e n d waiting for room for a
message.

5.9 Summary

Posix message queues are simple: a new queue is created or an existing queue is opened
by mLopen; queues are closed by ms_close, and the queue names are removed by
m ~ u n l i n k . Messages are placed onto a queue with mcsend and read with
m ~ r e c e i v e . Attributes of the queue can be queried and set with m ~ g e t a t t r and
m L s e t a t t r , and the function m ~ n o t i f y lets us register a signal to be sent, or a
thread to be invoked, when a message is placed onto an empty queue. Small integer
priorities are assigned to each message on the queue, and m ~ r e c e i v e always returns
the oldest message of the highest priority each time it is called.

) Exercises 127

Using m a n o t i f y introduced us to the Posix realtime signals, named SIGRTMIN
through SIGRTMAX. When the signal handler for these signals is installed with the
SA-SIGINFO flag set, (1) these signals are queued, (2) the queued signals are delivered
in a FIFO order, and (3) two additional arguments are passed to the signal handler.

Finally, w e implemented most of the Posix message queue features in about 500
lines of C code, using memory-mapped I/O, along with a Posix mutex and a Posix con-
dition variable. This implementation showed a race condition dealing with the creation
of a new queue; we will encounter this same race condition in Chapter 10 when imple-
menting Posix semaphores.

Exercises

With Figure 5.5, we said that if the attr argument to m e o p e n is nonnull when a new queue
is created, both of the members m c m a x m s g and m c m s g s i z e must be specified. How
could we allow either of these to be specified, instead of requiring both, with the one not
specified assuming the system's default value?

Modify Figure 5.9 so that it does not call m ~ n o t i f y when the signal is delivered. Then
send two messages to the queue and verify that the signal is not generated for the second
message. Why?

Modify Figure 5.9 so that it does not read the message from the queue when the signal is
delivered. Instead, just call m ~ n o t i f y and print that the signal was received. Then send
two messages to the queue and verify that the signal is not generated for the second mes-
sage. Why?

What happens if we remove the cast to an integer for the two constants in the first pr int f
in Figure 5.1 7?

Modify Figure 5.5 as follows: before calling m e o p e n , print a message and sleep for 30
seconds. After m e o p e n returns, print another message, sleep for 30 seconds, and then
call m e c l o s e . Compile and run the program, specifying a large number of messages (a
few hundred thousand) and a maximum message size of (say) 10 bytes. The goal is to cre-
ate a large message queue (megabytes) and then see whether the implementation uses
memory-mapped files. During the first 30-second pause, run a program such as ps and
look at the memory size of the program. Do this again, after m e o p e n has returned. Can
you explain what happens?

What happens in the call to m e m c p y in Figure 5.30 when the caller of m e s e n d specifies a
length of O?

Compare a message queue to the full-duplex pipes that we described in Section 4.4. How
many message queues are needed for two-way communication between a parent and child?

In Figure 5.24, why don't we destroy the mutex and condition variable?

Posix says that a message queue descriptor cannot be an array type. Why?

Where does the m a i n function in Figure 5.14 spend most of its time? What happens every
time a signal is delivered? How do we handle this scenario?

128 Posix Message Queues Chapter 5

5.11 Not all implementations support the PTHREAD-PROCESS-SHARED attributes for mutexes
and condition variables. Redo the implementation of Posix message queues in Section 5.8
to use Posix semaphores (Chapter 10) instead of mutexes and condition variables.

5.12 Extend the implementation of Posix message queues in Section 5.8 to support
S IGEV-THREAD.

System V Message Queues

Introduction

System V message queues are identified by a message queue identifier. Any process with
adequate privileges (Section 3.5) can place a message onto a given queue, and any pro-
cess with adequate privileges can read a message from a given queue. As with Posix
message queues, there is no requirement that some process be waiting for a message to
arrive on a queue before some process writes a message to that queue.

For every message queue in the system, the kernel maintains the following struc-
ture of information, defined by including <sys /msg . h>:

struct msqid-ds (

struct ipcserm
struct msg
struct msg
msglen-t
msgqnum-t
msglen-t
pid-t
pid-t
time-t
t ime-t
time-t

msgqerm;
*msg-first;
*msg-last;
msg-cbytes
msg-mum;
msg-qbytes
msg-lspid;
msg-lrpid;
msg-stime;
msg-rtime;
msg-ctime;

read-write perms: Section 3.3 * /
ptr to first message on queue * /
ptr to last message on queue * /
current # bytes on queue * /
current # of messages on queue * /
m a x # of bytes allowed on queue * /
pid of last msgsndo * /
pid of last msgrcvo * /
time of last msgsndo * /
time of last msgrcvo * /
time of last msgctlo
(that changed the above) " /

Unix 98 does not require the msg-f irst, msg-last, or msg-cbytes members. Neverthe-
less, these three members are found in the common System V derived implementations. Natu-
rally, no requirement exists that the messages on a queue be maintained as a linked list, as
implied by the msg-f irst and msg-last members. If these two pointers are present, they
point to kernel memory and are largely useless to an application.

130 System V Message Queues Chapter 6

We can picture a particular message queue in the kernel as a linked list of messages,
as shown in Figure 6.1. Assume that three messages are on a queue, with lengths of 1
byte, 2 bytes, and 3 bytes, and that the messages were written in that order. Also
assume that these three messages were written &th types of 100, 200, and 300, respec-
tively.

msqid --c
msqid-ds(1

next -- next -- NULL

ipcgerd 1 type = 100 type = 200 type = 300

length = 1 length = 2 length = 3

msg-first -J data
data

msg-last - data

. . .
msg-c t ime

Figure 6.1 System V message queue structures in kernel.

In this chapter, we look at the functions for manipulating System V message queues
and implement our file server example from Section 4.2 using message queues.

6.2 msgget Function

A new message queue is created, or an existing message queue is accessed with the
msgget function.

I int msgget (key-t key, int oflag) ; I
I Returns: nonnegative identifier if OK, -1 on error I

The return value is an integer identifier that is used in the other three msg functions to
refer to this queue, based on the specified key, which can be a value returned by f tok or
the constant IPC-PRIVATE, as shown in Figure 3.3.

oflag is a combination of the read-write permission values shown in Figure 3.6. This
can be bitwise-ORed with either IPC-CREAT or IPC-CREAT I IPC-EXCL, as discussed
with Figure 3.4.

When a new message queue is created, the following members of the msqid-ds
structure are initialized:

6.3 msgsnd Function 131

The uid and cuid members of the msgserm structure are set to the effective
user ID of the process, and the gid and cgid members are set to the effective
group ID of the process.

The read-write permission bits in oflag are stored in msgserm .mode.

msg-qnum, msg-lspid, msg-lrpid, msg-stime, and msg-rtime are set to 0.

msg-ct ime is set to the current time.

msg-qby tes is set to the system limit.

msgsnd Function

Once a message queue is opened by msgget, we put a message onto the queue using
msgsnd.

int msgsnd(int msqid, const void *ptr , size-t length, int flag); I
Returns: 0 if OK, -1 on error

msqid is an identifier returned by msgget. ptr is a pointer to a structure with the follow-
ing template, which is defined in <sys /msg . h>.

struct msgbuf {

long mtype; / * message type, must be > 0 * /
char mtext[l]; / * message data * /

1;

The message type must be greater than 0, since nonpositive message types are used
as a special indicator to the msgrcv function, which we describe in the next section.

The name mtext in the msgbuf structure definition is a misnomer; the data portion
of the message is not restricted to text. Any form of data is allowed, binary data or text.
The kernel does not interpret the contents of the message data at all.

We use the term "template" to describe this structure, because what ptr points to is
just a long integer containing the message type, immediately followed by the message
itself (if the length of the message is greater than 0 bytes). But most applications do not
use this definition of the msgbuf structure, since the amount of data (1 byte) is normally
inadequate. No compile-time limit exists to the amount of data in a message (this limit
can often be changed by the system administrator), so rather than declare a structure
with a huge amount of data (more data than a given implementation may support), this
template is defined instead. Most applications then define their own message structure,
with the data portion defined by the needs of the application.

For example, if some application wanted to exchange messages consisting of a
16-bit integer followed by an 8-byte character array, it could define its own structure as:

132 System V Message Queues Chapter 6

#define MY-DATA 8

typedef struct m m s g b u f (

long mtype; / * message type */
intl6-t mshort; / * start of message data */
char mchar [MY-DATA] :

} Message;

The length argument to msgsnd specifies the length of the message in bytes. This is
the length of the user-defined data that follows the long integer message type. The
length can be 0. In the example just shown, the length could be passed as
sizeof (Message) - sizeof (long).

The flag argument can be either 0 or IPC-NOWAIT. This flag makes the call to
msgsnd nonblocking: the function returns immediately if no room is available for the
new message. This condition can occur if

too many bytes are already on the specified queue (the msg-qbytes value in
the msqid-ds structure), or

too many messages exist systemwide.

If one of these two conditions exists and if IPC-NOWAIT is specified, msgsnd
returns an error of EAGAIN. If one of these two conditions exists and if IPC-NOWAIT is
not specified, then the thread is put to sleep until

room exists for the message,

the message queue identified by rnsqid is removed from the system (in which
case, an error of EIDRM is returned), or

the calling thread is interrupted by a caught signal (in which case, an error of
EINTR is returned).

6.4 m s g r c v Function

A message is read from a message queue using the msgrcv function.

#include isys/msg.h>

ssize-t msgrcv(int msqid, void *ptr, size-t length, long type, int flag);

Returns: number of bytes of data read into buffer if OK, -1 on error

The ptr argument specifies where the received message is to be stored. As with
msgsnd, this pointer points to the long integer type field (Figure 4.26) that is returned
immediately before the actual message data.

length specifies the size of the data portion of the buffer pointed to by ptr. This is
the maximum amount of data that is returned by the function. This length excludes the
long integer type field.

16.4 msgrcv Function 133

type specifies which message on the queue is desired:

If type is 0, the first message on the queue is returned. Since each message queue
is maintained as a FIFO list (first-in, first-out), a type of 0 specifies that the oldest
message on the queue is to be returned.

If type is greater than 0, the first message whose type equals type is returned.

If type is less than 0, the first message with the lowest type that is less than or
equal to the absolute value of the type argument is returned.

Consider the message queue example shown in Figure 6.1, which contains three mes-
sages:

the first message has a type of 100 and a length of I,
the second has a type of 200 and a length of 2, and
the last message has a type of 300 and a length of 3.

Figure 6.2 shows the message returned for different values of type.

Type of message returned

100
100
200
300
100
100
100

Figure 6.2 Messages returned by msgrcv for different values of type.

The flag argument specifies what to do if a message of the requested type is not on
the queue. If the IPC-NOWAIT bit is set and no message is available, the msgrcv func-
tion returns immediately with an error of ENOMSG. Otherwise, the caller is blocked until
one of the following occurs:

1. a message of the requested type is available,

2. the message queue identified by msqid is removed from the system (in which
case, an error of EIDm is returned), or

3. the calling thread is interrupted by a caught signal (in which case, an error of
EINTR is returned).

An additional bit in the flag argument can be specified: MSG-NOERROR. When set,
this specifies that if the actual data portion of the received message is greater than the
length argument, just truncate the data portion and return without an error. Not speci-
fying the MSG-NOERROR flag causes an error return of E2BIG if length is not large
enough to receive the entire message.

134 System V Message Queues Chapter 6

On successful return, msgrcv returns the number of bytes of data in the received
message. This does not include the bytes needed for the long integer message type that
is also returned through the ptr argument.

6.5 rnsgctl Function

The msgct 1 function provides a variety of control operations on a message queue.

int msgctl (int msqid, int cmd, struct msqid-ds *buff) ;

Returns: 0 if OK, -1 on error

Three commands are provided:

I PC-RMID

I PC-SET

I PC-STAT

Example

Remove the message queue specified by msqid from the system. Any
messages currently on the queue are discarded. We have already seen
an example of this operation in Figure 3.7. The third argument to the
function is ignored for this command.

Set the following four members of the msqid-ds structure for the
message queue from the corresponding members in the structure
pointed to by the buff argument: msgserm . uid, msgserm. gid,
msg_perm.mode,andmsg~qbytes.

Return to the caller (through the buff argument) the current msqid-ds
structure for the specified message queue.

The program in Figure 6.3 creates a message queue, puts a message containing 1 byte of
data onto the queue, issues the IPC-STAT command to msgctl, executes the ipcs
command using the system function, and then removes the queue using the
IPC-RMID command to msgc t 1.

We write a 1-byte message to the queue, so we just use the standard msgbuf struc-
ture defined in <sys /msg . h>.

Executing this program gives us

solaris % ctl
read-write: 664, cbytes = 1, qnum = 1, qbytes = 4096
IPC status from <running system> as of Mon Oct 20 15:36:40 1997
T ID KEY MODE OWNER GROUP
Message Queues:

9 1150 00000000 --rw-rw-r-- rstevens other1

The values are as expected. The key value of 0 is the common value for IPC-PRIVATE,
as we mentioned in Section 3.2. On this system there is a limit of 4096 bytes per mes-
sage queue. Since we wrote a message with 1 byte of data, and since msg-cbytes is 1,

6.6 Simple Programs 135

2 int
3 main(int argc, char **argv)
4 {
5 int rnsqid;
6 struct rnsqid-ds info;
7 struct rnsgbuf buf;

8 rnsqid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT);

9 buf .rntype = 1 ;
10 buf.rntext[Ol = 1;
11 Msgsnd(rnsqid, &buff 1, 0) ;

12 Msgctl (rnsqid, IPC-STAT, &info) :
13 printf("read-write: %030, cbytes = %lu, qnum = %lu, qbytes = %lu\nn,
14 info.rnsg_perm.rnode & 0777, (ulong-t) info.rnsg-cbytes,
15 (ulong-t) info.rnsg-qnum, (ulong-t) info.rnsg-qbytes);

16 system("ipcs -qW) ;

17 Msgctl (rnsqid, IPC-RMID, NULL) ;
18 exit (0) :
19 1

svmsg/ctl.c
Figure 6.3 Example of rnsgctl function with IPC-STAT command.

this limit is apparently just for the data portion of the messages, and does not include
the long integer message type associated with each message.

Simple Programs

Since System V message queues are kernel-persistent, we can write a small set of pro-
grams to manipulate these queues, and see what happens.

,eate Program

Figure 6.4 shows our msgcreate program, which creates a message queue.
2 We allow a command-line option of -e to specify the IPC-EXCL flag.

The pathname that is required as a command-line argument is passed as an argu-
ment to f tok. The resulting key is converted into an identifier by msgget. (See Exer-
cise 6.1.)

d Program

Our msgsnd program is shown in Figure 6.5, and it places one message of a specified
length and type onto a queue.

136 System V Message Queues Chapter 6

2 int
3 rnain(int argc, char **argv)
4 {
5 int c, oflag, rnqid;

7 while ((c = Getopt(argc, argv, "en)) != -1) {

8 switch (c) (
9 case 'e':
10 oflag I= IPC-EXCL;
11 break;
12 1
13 1
14 if (optind != argc - 1)
15 err-quit("usage: rnsgcreate [-e] <pathname>");

16 rnqid = Msgget(Ftok(argv[optindl, O), oflag);
17 exit (0) ;
18 1

svrnsg/rnsgcreate.c

Figure 6.4 Create a System V message queue.

2 int
3 rnain(int argc, char **argv)
4 {
5 int rnqid;
6 size-t len;
7 long type;
8 struct rnsgbuf *ptr;

9 if (argc != 4)
10 err-quit("usage: rnsgsnd <pathname> <#bytes> <type>");
11 len = atoi (argv [2]) ;
12 type = atoi(argv[3]) ;

13 rnqid = Msgget(Ftok(argv[ll, 0). MSG-W);

14 ptr = Calloc(sizeof(1ong) + len, sizeof(char));
15 ptr->rntype = type;

16 Msgsnd(rnqid, ptr, len, 0);

17 exit (0) ;
18 1

svrnsg/rnsgsnd.c

Figure 6.5 Add a message to a System V message queue.

We allocate a pointer to a generic msgbuf structure but then allocate the actual
structure (e.g., the output buffer) by calling calloc, based on the size of the message.
This function initializes the buffer to 0.

e 6.6 Simple Programs 137

:CV Program

Figure 6.6 shows our msgrcv function, which reads a message from a queue. An
optional -n argument specifies nonblocking, and an optional - t argument specifies the
type argument for msgrcv.

svrnsg/rnsgrcv.c
1 #include "unpipc . h"

2 #define MAXMSG (8192 + sizeof(1ong))

3 int
4 main(int argc, char **argv)
5 {

int c, flag, rnqid;
long type ;
ssize-t n;
struct rnsgbuf *buff;

type = flag = 0;
while ((c = Getopt(argc, argv, "nt: " 1) != -1) {

switch (c) {
case 'n':

flag I= IPC-WAIT;
break;

case 't':
type = atol(optarg);
break;

1

optind != argc - 1)
err-quit ("usage: rnsgrcv [-n] [-t type] <pathname>") ;

rnqid = Msgget(Ftok(argv[optind], 0), MSG-R);

buff = Malloc (MAXMSG) ;

n = Msgrcv(mqid, buff, MAXMSG, type, flag);
printf("read %d bytes, type = %1d\nM, n, buff-mtype);

exit (0) ;

Figure 6.6 Read a message from a System V message queue.

! No simple way exists to determine the maximum size of a message (we talk about
this and other limits in Section 6.10), so we define our own constant for this limit.

mid Program

To remove a message queue, we call msgctl with a command of IPc-RMID, as shown
in Figure 6.7.

138 System V Message Queues Chapter 6

2 int
3 main(int argc, char **argv)
4 {

5 int rnqid;

6 if (argc != 2)
7 errquit("usage: rnsgrmid <pathname>");

8 rnqid = Msgget (Ftok(argv[ll. 0) 8 0) ;
9 ~sgctl (mqid, IPC-MID, NULL) ;

10 exit (0) ;

Figure 6.7 Remove a System V message queue.

Examples

We now use the four programs that we have just shown. We first create a message
queue and write three messages to the queue.

solaris % rnsgcreate /tmp/no/such/file
ftok error for pathname "/trnp/no/such/file" and id 0: No such file or directory
solaris % touch /tmp/testl
solaris % magcreate /tmp/testl .
solaris % msgsnd /tmp/testl 1 100
solaris % msgsnd /tmp/testl 2 200
solaris % msgsnd /tmp/testl 3 300
solaris % ipcs -qo
IPC status from <running system> as of Sat Jan 10 11:25:45 1998
T ID KEY MODE OWNER GROUP CBYTES QNUM
Message Queues:

9 100 0x0000113e --rw-r--r-- rstevens other1 6 3

We first try to create a message queue using a pathname that does not exist. This
demonstrates that the pathname argument for f tok must exist. We then create the file
/tmp/testl and create a message queue using this pathname. Three messages are
placed onto the queue: the three lengths are 1, 2, and 3 bytes, and the three types are
respectively 100,200, and 300 (recall Figure 6.1). The ipcs program shows 3 messages
comprising a total of 6 bytes on the queue.

We next demonstrate the use of the type argument to msgrcv in reading the mes-
sages in an order other than FIFO.

solaris % rnsgrcv -t 200 /tmp/testl
read 2 bytes, type = 200
solaris % msgrcv -t -300 /tmp/testl
read 1 bytes, type = 100
solaris % msgrcv /tmp/testl
read 3 bytes, type = 300
solaris % rnsgrcv -n /tmp/testl
rnsgrcv error: No message of desired type

6.6 Simple Programs 139

The first example requests the message with a type field of 200, the second example
requests the message with the lowest type field less than or equal to 300, and the third
example requests the first message on the queue. The last execution of our msgrcv pro-
gram shows the IPC-NOWAIT flag.

What happens if we specify a positive type argument to msgrcv but no message
with that type exists on the queue?

solaris % ipcs -qo
IPC Status from <running system> as of Sat Jan 10 11:37:01 1998
T ID KEY MODE OWNER GROUP CBYTES QNUM
Message Queues:

9 100 0x0000113e --rw-r--r-- rstevens other1 0 0
solaris % msgsnd /tmp/testl 1 100
solaris % rnsgrcv -t 999 /-/test1
^? type our interrupt key to terminate
solaris % rnsgrcv -n -t 999 /tmp/testl
msgrcv error: No message of desired type
solaris % grep desired /usr/include/sys/errno.h
#define ENOMSG 35 / * No message of desired type * /
solaris % rnsgrmid /tmp/testl

We first execute i p c s to verlfy that the queue is empty, and then place a message of
length 1 with a type of 100 onto the queue. When we ask for a message of type 999, the
program blocks (in the call to msgrcv), waiting for a message of that type to be placed
onto the queue. We interrupt this by terminating the program with our interrupt key.
We then specify the -n flag to prevent blocking, and see that the error ENOMSG is
returned in this scenario. We then remove the queue from the system with our
msgrmid program. We could have removed the queue using the system-provided com-
mand

solaris % ipcrm -q 100

which specifies the message queue identifier, or using

solaris % ipcrm -Q Ox113e

which specifies the message queue key.

vid Program

We now demonstrate that to access a System V message queue, we need not call
msgget: all we need to know is the message queue identifier (easily obtained with
ipcs) and read permission for the queue. Figure 6.8 shows a simplification of our
msgrcv program from Figure 6.6.

We do not call msgget. Instead, the caller specifies the message queue identifier on
the command line.

140 System V Message Queues Chapter 6

svrnsg/rnsgrcvid.c
1 #include "unpipc.hn

2 #define MAXMSG (8192 + sizeof (long))

3 int
4 main(int argc, char **argvl
5 {
6 int mqid;
7 ssize-t n;
8 struct msgbuf *buff;

9 if (argc != 2)
10 err-quit("usage: msgrcvid <mqid>");
11 mqid = atoi(argv[ll);

12 buff = Malloc(MAXMSG);

13 n = Msgrcv(mqid, buff, MAXMSG, 0, 0) ;
14 printf("read %d bytes, type = %1d\nM, n, buff->mtype);

15 exit (0) :
16 1

svrnsg/rnsgrcvid.c

Figure 6.8 Read from a System V message queue knowing only the identifier.

Here is an example of this technique:

solaris % touch /tmp/testid
solaris % rnsgcreate /tmp/testid
solaris % msgsnd /tmp/testid 4 400
solaris % ipcs -qo
IPC status from <running system> as of Wed Mar 25 09:48:28 1998
T ID KEY MODE OWNER GROUP CBYTES QNUM
Message Queues:
9 150 0x0000118a --rw-r--r-- rstevens other1 4 1
solaris % rnsgrcvid 150
read 4 bytes, type = 400

We obtain the identifier of 150 from ipcs, and this is the command-line argument to
our msgrcvid program.

This same feature applies to System V semaphores (Exercise 11.1) and System V
shared memory (Exercise 14.1).

6.7 Client-Server Example

We now code our client-server example from Section 4.2 to use two message queues.
One queue is for messages from the client to the server, and the other queue is for mes-
sages in the other direction.

Our header svmsg . h is shown in Figure 6.9. We include our standard header and
define the keys for each message queue.

5.7 Client-Server Example 141

svmsgcliserv/svmsg.h
1 #include "unpipc . h"

Figure 6.9 svmsg . h header for client-server using message queues.

The main function for the server is shown in Figure 6.10. Both message queues are
created and if either already exists, it is OK, because we do not specify the IPC-EXCL
flag. The server function is the one shown in Figure 4.30 that calls our mesg-send
and mesg-recv functions, versions of which we show shortly.

2 void server(int, int);

3 int
4 main(int argc, char **argv)
5 {
6 int readid, writeid;

7 readid = Msgget(MQ-KEYI, SVMSG-MODE I IPC-CREAT);
8 writeid = Msgget(MQ-KEYZ, SVMSG-MODE 1 IPC-CREAT);

9 server(readid, writeid);

10 exit (0) ;

svmsgcliserv/server_main.c

Figure 6.10 Server main function using message queues.

2 void client(int, int);

3 int
4 main(int argc, char **argv)
5 {
6 int readid, writeid;

7 / * assumes server has created the queues * /
8 writeid = Msgget(MQ-KEY1, 0);
9 readid = Msgget(MLKEY2, 0);

10 client(readid, writeid);

11 / * now we can delete the queues * /
12 Msgctl(readid, IPC-RMID, NULL);
13 Msgctl (writeid, IPC-RMID, NULL) ;

15 1 svmsgcliserv/client_main.c

Figure 6.11 Client main function using message queues.

142 System V Message Queues Chapter 6

Figure 6.11 shows the main function for the client. The two message queues are
opened and our client function from Figure 4.29 is called. This function calls our
mesg-send and mesg-recv functions, which we show next.

Both the client and server functions use the message format shown in Fig-
ure 4.25. These two functions also call our mesg-send and mesg-recv functions. The
versions of these functions that we showed in Figures 4.27 and 4.28 called write and
read, which worked with pipes and FIFOs, but we need to recode these two functions
to work with message queues. Figures 6.12 and 6.13 show these new versions. Notice
that the arguments to these two functions do not change from the versions that called
write and read, because the first integer argument can contain either an integer
descriptor (for a pipe or FIFO) or an integer message queue identifier.

2 ss ize-t
3 rnesg-send(int i d , s truct rnymesg "rnptr)
4 {

5 return (rnsgsnd(id, & (rnptr-xnesg-type) , rnptr-srnesg-len, 0)) ;

Figure 6.12 rnesg-send function that works with message queues.

svmsgcliserv/mesg~recu.c
1 #include "rnesg.hm

2 ss ize- t
3 mesg-recv(int i d , s truct rnymesg *rnptr)
4 {
5 ss ize-t n;

6 n = rnsgrcv(id, &(rnptr-xnesg-type), MAXMESGDATA, rnptr->rnesg-type, 0) ;
7 rnptr-xnesg-len = n; / * return #bytes of data * /

8 return (n) ; / * -1 on error, 0 a t EOF, e l s e > O * /
9 1

svmsgcliserv/mesg~recu.c

Figure 6.13 rnesg-recv function that works with message queues.

Multiplexing Messages

Two features are provided by the type field that is associated with each message on a
queue:

1. The type field can be used to identify the messages, allowing multiple processes
to multiplex messages onto a single queue. One value of the type field is used
for messages from the clients to the server, and a different value that is unique
for each client is used for messages from the server to the clients. Naturally, the
process ID of the client can be used as the type field that is unique for each
client.

5.8 Multiplexing Messages 143

2. The type field can be used as a priority field. This lets the receiver read the mes-
sages in an order other than first-in, first-out (FIFO). With pipes and FIFOs, the
data must be read in the order in which it was written. With System V message
queues, we can read the messages in any order that is consistent with the values
we associate with the message types. Furthermore, we can call msgrcv with the
IPC-NOWAIT flag to read any messages of a given type from the queue, but
return immediately if no messages of the specified type exist.

le: One Queue per Application

Recall our simple example of a server process and a single client process. With either
pipes or FIFOs, two IPC channels are required to exchange data in both directions, since
these types of IPC are unidirectional. With a message queue, a single queue can be
used, having the type of each message signify whether the message is from the client to
the server, or vice versa.

Consider the next complication, a server with multiple clients. Here we can use a
type of 1, say, to indicate a message from any client to the server. If the client passes its
process ID as part of the message, the server can send its messages to the client pro-
cesses, using the client's process ID as the message type. Each client then specifies its
process ID as the type argument to msgrcv. Figure 6.14 shows how a single message
queue can be used to multiplex these messages between multiple clients and one server.

type = 1234 or 9876: server replies type = 1: client requests u

-
PID 1234

-
PID 9876

Figure 6.14 Multiplexing messages between multiple clients and one server.

A potential for deadlock always exists when one IPC channel is used by both the clients and
the server. Clients can fill up the message queue (in this example), preventing the server from
sending a reply. The clients are then blocked in rnsgsnd, as is the server. One convention that
can detect this deadlock is for the server to always use a nonblocking write to the message
queue.

144 System V Message Queues Chapter 6

We now redo our client-server example using a single message queue with different
message types for messages in each direction. These programs use the convention that
messages with a type of 1 are from the client to the server, and all other messages have a
type equal to the process ID of the client. This client-server requires that the client
request contain the client's process ID along with the pathname, similar to what we did
in Section 4.8.

Figure 6.15 shows the server main function. The svmsg . h header was shown in
Figure 6.9. Only one message queue is created, and if it already exists, it is OK. The
same message queue identifier is used for both arguments to the server function.

svmsgmpxl qlserver-maim
1 #include "svmsg.h"

2 void server(int, int);

3 int
4 main(int argc, char **argv)

5 {
6 int msqid;

7 rnsqid = Msgget(MQ-KEY1, SVMSG-MODE I IPC-CREAT);

8 server (rnsqid, rnsqid) ; / * same queue for both directions * /

9 exit (0) ;

10 1 svmsgmpxl q/server-rnain.c
Figure 6.15 Server main function.

The server function does all the server processing, and is shown in Figure 6.16.
This function is a combination of Figure 4.23, our FIFO server that read commands con-
sisting of a process ID and a pathname, and Figure 4.30, which used our mesg-send
and mesg-recv functions. Notice that the process ID sent by the client is used as the
message type for all messages sent by the server to the client. Also, this server is an
infinite loop that is called once and never returns, reading each client request and send-
ing back the replies. Our server is an iterative server, as we discussed in Section 4.9.

Figure 6.17 shows the client main function. The client opens the message queue,
which the server must have already created.

The client function shown in Figure 6.18 does all of the processing for our client.
This function is a combination of Figure 4.24, which sent a process ID followed by a
pathname, and Figure 4.29, which used our mesg-send and mesg-recv functions.
Note that the type of messages requested from mesg-recv equals the process ID of the
client.

Our client and server functions both use the mesg-send and mesg-recv
functions from Figures 6.12 and 6.13.

Section 6.8 Multiplexing Messages 145

2 void
3 server (int readfd, int writefd)
4 f

FILE *fp;
char *ptr;
pid-t pid;
ssize-t n;
struct mymesg mesg;

for (; ;)

/ * read pathname from IPC channel * /
mesg-mesg-type = 1;
if ((n = Mesg-recv (readfd, &mesg)) == 0) (

err-msg("pathname missing");
continue;

1
mesg.mesg-data[nl = '\0'; / * null terminate pathname * /

if ((ptr = strchr(mesg.mesg-data, ' ')) == NULL) (

err-msg("bogus request: %sU, mesg.mesg-data);
continue;

1
*ptr++ = 0; / * null terminate PID, ptr = pathname * /
pid = atol(mesg.mesg-data);
mesg.mesg-type = pid; / * for messages back to client * /

if ((fp = fopen(ptr, "r")) == NULL) (

/ * error: must tell client * /
snprintf(mesg.mesg-data + n, sizeof(mesg.mesg-data) - n,

" : can't open, %s\nU, strerror(errn0)):
mesg.mesg-len = strlen(ptr);
memmove(mesg.mesg-data, ptr, mesg.mesg-len);
Mesg-send(writefd, &mew);

1 else {

/ * fopen succeeded: copy file to IPC channel * /
while (Fgets (mesg .mesg-data, MAXMESGDATA, fp) ! = NULL) (

mesg.mesg-len = strlen(mesg.mesg-data);
Mesg-send(writefd, &mesg);

1
Fclose (fp) ;

1

/ * send a 0-length message to signify the end * /
mesg.mesg-len = 0;
Mesg-send(writefd, &mesg);

1

146 System V Message Queues Chapter 6

2 void client(int, int);

3 int
4 main(int argc, char **argv)

5 (
6 int msqid;

7 / * server must create the queue * /
8 msqid = Msgget(MQLKEY1, 0);

9 client (msqid, msqid) ; / * same queue for both directions * /

11 1 svmsgmpxlq/client~main.c

Figure 6.17 Client main function.

2 void
3 client(int readfd, int writefd)

4 (
5 size-t len;
6 ssize-t n;
7 char *ptr;
8 struct mymesg mew;

9 / * start buffer with pid and a blank * /
10 snprintf(mesg.mesg-data, MAXMESGDATA, "%Id ", (long) getpido);
11 len = strlen(mesg.mesg-data);
12 ptr = mesg-mesg-data + len;

13 / * read pathname * /
14 Fgets(ptr, MAXMESGDATA - len, stdin);
15 len = strlen(mesg.mesg-data);
16 if (mesg.mesg-data[len - 11 == '\n')
17 len--; / * delete newline from fgets () * /
18 mesg.mesg-len = len;
19 mesg.mesg-type = 1;

2 0 / * write PID and pathname to IPC channel * /
2 1 ~esg-send(writefd, &mesg);

22 / * read from IPC, write to standard output * /
23 mesg.mesg-type = getpido;
24 while ((n = Mesg-recv(readfd, &mesg)) > 0)
25 Write(STD0UT-FILENO, mesg.mesg-data, n);
26 1 svrnsgmpxlq/c~ient.c

Figure 6.18 client function.

Multiplexing Messages 147

ple: One Queue per Client

We now modify the previous example to use one queue for all the client requests to the
server and one queue per client for that client's responses. Figure 6.19 shows the
design.

child parent child

t
IPC-PRIVATE

server

client 1 LA '

well-known key

r
fork

Tc3x$.; IPC-PRIVATE

queue k

-

server

client 2 ' L A
Figure 6.19 One queue per server and one queue per client.

fork - m

The server's queue has a key that is well-known to the clients, but each client creates its
own queue with a key of IPC-PRIVATE. Instead of passing its process ID with the
request, each client passes the identifier of its private queue to the server, and the server
sends its reply to the client's queue. We also write this server as a concurrent server,
with one fork per client.

server

One potential problem with this design occurs if a client dies, in which case, messages may be
left in its private queue forever (or at least until the kernel reboots or someone explicitly
deletes the queue).

The following headers and functions do not change from previous versions:

mesg . h header (Figure 4.25),
svmsg . h header (Figure 6.9),
server main function (Figure 6.15), and
mesg-send function (Figure 4.27).

Our client main function is shown in Figure 6.20; it has changed slightly from Fig-
ure 6.17. We open the server's well-known queue (MQ- KEY^) and then create our own
queue with a key of IPC-PRIVATE. The two queue identifiers become the arguments
to the client function (Figure 6.21). When the client is done, its private queue is
removed.

148 System V Message Queues

7

Chapter 6

svrnsgrnpxnq/client-rnain.c
#include " svmsg . h"

void client (int, int) ;

int
main (int argc, char **argv)
{

int readid, writeid;

/ * server must create its well-known queue * /
writeid = Msgget(MQ-KEY1, 0);

/ * we create our own private queue * /
readid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-cREAT):
client (readid, writeid) ;

/ * and delete our private queue * /
~sgctl (readid, IPC-RMID, NULL) ;

exit (0) ;
1

svrnsgrnpmq/client-main.c

Figure 6.20 Client main function.

2 void
3 client(int readid, int writeid)
4 {

5 size-t len;
6 ssize-t n;
7 char *ptr;
8 struct mymesg mesg;

9 / * start buffer with msqid and a blank * /
10 snprintf(mesg.mesg-data, MAXMESGDATA, "%d ", readid);
11 len = strlen(mesg.mesg-data):
12 ptr = mesg.mesg-data + len;

13 / * read pathname * /
14 Fgets (ptr, MAXMESGDATA - len, stdin) ;
15 len = strlen(mesg.mesg-data);
16 if (mesg-mesg-data[len - 11 == '\n')
17 len-- ; /*.delete newline from fgets0 * /
18 mesg-mesg-len = len;
19 mesg.mesg-type = 1:

2 0 / * write msqid and pathname to server's well-known queue * /
2 1 Mesg-send(writeid, &mesg);

2 2 / * read from our queue, write to standard output * /
23 while ((n = Mesg-recv(readid, &mesg)) > 0)
24 Write(STD0UT-FILENO, rnesg.rnesg-data, n);

Figure 6.21 client function.

6.8 Multiplexing Messages 149

Figure 6.21 is the c l i e n t function. This function is nearly identical to Figure 6.18,
but instead of passing the client's process ID as part of the request, the identifier of the
client's private queue is passed instead. The message type in the mesg structure is also
left as 1, because that is the type used for messages in both directions.

Figure 6.23 is the s e r v e r function. The main change from Figure 6.16 is writing
this function as an infinite loop that calls f o r k for each client request.

Establish signal handler for SIGCHLD

Since we are spawning a child for each client, we must worry about zombie pro-
cesses. Sections 5.9 and 5.10 of UNPvl talk about this in detail. Here we establish a sig-
nal handler for the SIGCHLD signal, and our function sig-chld (Figure 6.22) is called
when a child terminates.

3 The server parent blocks in the call to mesg-recv waiting for the next client mes-
sage to arrive.

i A child is created with fork, and the child tries to open the requested file, sending
back either an error message or the contents of the file. We purposely put the call to
fopen in the child, instead of the parent, just in case the file is on a remote filesystem, in
which case, the opening of the file could take some time if any network problems occur.

Our handler for the SIGCHLD function is shown in Figure 6.22. This is copied from
Figure 5.11 of UNPv1.

2 void
3 sig-chld(int signo)

4 (
5 pid-t pid;
6 int stat;

svrnsgrnpxnq/sigchldwaitpid.c
Figure 6.22 SIGCHLD signal handler that calls waitpid.

Each time our signal handler is called, it calls wa i tp id in a loop, fetching the termi-
nation status of any children that have terminated. Our signal handler then returns.
This can create a problem, because the parent process spends most of its time blocked in
a call to msgrcv in the function mesg-recv (Figure 6.13). When our signal handler
returns, this call to msgrcv is interrupted. That is, the function returns an error of
EINTR, as described in Section 5.9 of UNPv1.

We must handle this interrupted system call, and Figure 6.24 shows the new version
of our Mesg-recv wrapper function. We allow an error of EINTR from mesg-recv
(which just calls msgrcv), and when this happens, we just call mesg-recv again.

150 System V Message Queues Chapter 6

svmsgrnpq/server.c
1 #include "mesg . h"
2 void
3 server(int readid, int writeid)
4 (

FILE *fp;
char *ptr;
ssize-t n;
struct mymesg mesg;
void sig-chld(int);

Signal(SIGCHLD, sig-chld);

f o r (; ;) {
/ * read pathname from our well-known

mesg.mesg-type = 1;
if ((n = Mesg-recv(readid, &mesg)) == 0

err-msg("pathnarne missing");
continue;

1

queue * /

)

mesg.mesg-data[n] = '\0'; / * null terminate pathname * /

if ((ptr = strchr(mesg.mesg-data, ' ')) == NULL) [

err-rnsg("bogus request: %s", mesg-mesg-data);
continue;

1
*ptr++ = 0; / * null terminate msgid, ptr = pathname * /
writeid = atoi(mesg.mesg-data);

if (Fork() == 0) { / * child * /
if ((fp = fopen(ptr. "r")) == NULL) (

/ * error: must tell client * /
snprintf(mesg.mesg-data + n, sizeof(mesg.mesg-data) - n,

" : can't open, %s\nu, strerror(errn0));
mesg-mesg-len = strlen(ptr);
memmove(mesg.mesg-data, ptr, mesg.mesg-len);
Mesg-send(writeid, &mesg);

1 else (

/ * fopen succeeded: copy file to client's queue * /
while (Fgets(mesg.mesg-data, MAXMESGDATA, fp) ! = NULL) (

Mesg-send(writeid. &mesg);
1
Fclose (fp) ;

1

/ * send a 0-length message to signify the end * /
mesg-mesg-len = 0;
~esg-send(writeid, &mesg);
exit(0) ; / * child terminates * /

1
/ * parent just loops around * /

1
48 1

svmsgmpxnq/server.c
Figure 6.23 server function.

6.9 Message Queues with s e l e c t and p o l l 151

svmsgmpmq/mesg~recv.c
10 ssize-t
11 ~ e s g - r e c v (i n t i d , s t r u c t mymesg *mptr)
1 2 (

13 ss ize- t n;

14 do (

15 n = mesg-recv (i d , mptr) ;
16 1 while (n == -1 && e r rno == E I N T R) ;

17 i f (n == -1)
18 err-sys("mesg-recv e r r o r ") ;

1 9 r e t u r n (n) ;
20 1

svmsgrnpxnq/mesg~recv.c
Figure 6.24 Mesg-recv wrapper function that handles an interrupted system call.

Message Queues with select and poll

One problem with System V message queues is that they are known by their own iden-
tifiers, and not by descriptors. This means that we cannot use either select or p o l l
(Chapter 6 of UNPv1) with these message queues.

Actually, one version of Unix, IBM's AIX, extends s e l e c t to handle System V message queues
in addition to descriptors. But this is nonportable and works only with AIX.

This missing feature is often uncovered when someone wants to write a server that
handles both network connections and IPC connections. Network communications
using either the sockets API or the XTI API (UNPvl) use descriptors, allowing either
select or p o l l to be used. Pipes and FIFOs also work with these two functions,
because they too are identified by descriptors.

One solution to this problem is for the server to create a pipe and then spawn a
child, with the child blocking in a call to msgrcv. When a message is ready to be pro-
cessed, msgrcv returns, and the child reads the message from the queue and writes the
message to the pipe. The server parent can then select on the pipe, in addition to
some network connections. The downside is that these messages are then processed
three times: once when read by the child using msgrcv, again when written to the pipe
by the child, and again when read from the pipe by the parent. To avoid this extra pro-
cessing, the parent could create a shared memory segment that is shared between itself
and the child, and then use the pipe as a flag between the parent and child (Exer-
cise 12.5).

In Figure 5.14 we showed a solution using Posix message queues that did not require a fork.
We can use a single process with Posix message queues, because they provide a notification
capability that generates a signal when a message arrives for an empty queue. System V mes-
sage queues do not provide this capability, so we must fork a child and have the child block
in a call to msgrcv.

152 System V Message Queues Chapter 6

Another missing feature from System V message queues, when compared to net-
work programming, is the inability to peek at a message, something provided with the
MSG-PEEK flag to the recv, recvfrom, and recvmsg functions (p. 356 of UNPv1). If
such a facility were provided, then the parent-child scenario just described (to get
around the select problem) could be made more efficient by having the child specify
the peek flag to msgrcv and just write 1 byte to the pipe when a message was ready,
and let the parent read the message.

6.10 Message Queue Limits

As we noted in Section 3.8, certain system limits often exist on message queues. Fig-
ure 6.25 shows the values for some different implementations. The first column is the
traditional System V name for the kernel variable that contains this limit.

-
msgtql 1 max #messages, svstemwide 40 1 40 1

Name

msgrnax

msgmnb

msgmni

Figure 6.25 Typical system limits for System V message queues.

Many SVR4-derived implementations have additional limits, inherited from their
original implementation: msgssz is often 8, and this is the "segment" size (in bytes) in
which the message data is stored. A message with 21 bytes of data would be stored in 3
of these segments, with the final 3 bytes of the last segment unused. msgseg is the
number of these segments that are allocated, often 1024. Historically, this has been
stored in a short integer and must therefore be less than 32768. The total number of
bytes available for all message data is the product of these two variables, often 8 x 1024
bytes.

The intent of this section is to show some typical values, to aid in planning for
portability. When a system runs applications that make heavy use of message queues,
kernel tuning of these (or similar) parameters is normally required (which we described
in Section 3.8).

Description

max #bytes per message
max #bytes on any one message queue
max #message queues, systemwide

Example

Figure 6.26 is a program that determines the four limits shown in Figure 6.25.

DUnix 4.08

8192
16384

64

2 #defineMAX-DATA 64*1024
3 #define MAX-NMESG 4096
4 #define MAX-NIDS 4096
5int max-mesg;

Solaris 2.6

2048

4096
50

6 struct mymesg (

5.10 Message Queue Limits 153

7 long type;
8 char data[MAX-DATA];
9 1 mesg;

10 int
11 main(int argc, char **argv)
12 {

int i , j , msqid, qid[MAX-NIDSI ;

/ * first try and determine maximum amount of data we can send * /
msqid = MS~~~~(IPC-PRIVATE, SVMSG-MODE I IPC-CREAT);
mesg.type = 1;
for (i = MAX-DATA; i > 0; i -= 128) {

if (msgsnd(msqid, &mesg, i, 0) == 0) f
printf("maximum amount of data per message = %d\nU, i);

max-mesg = i;
break;

1
if (errno != EINVAL)

err-sys("msgsnd error for length %d", i);

1
if (i == 0)

err-quit("i == 0");
Msgctl (msqid, IPC-RMID, NULL) ;

/ * see how many messages of varying size can be put onto a queue * /
mesg.type = 1;
for (i = 8; i <=max-mesg; i *= 2) {

msqid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT);
for (j = 0; j < MAX-NMESG; j++) {

if (msgsnd(msqid, &mesg, i, IPC-NOWAIT) != 0) {

if (errno == EAGAIN)
break;

err-sys("msgsnd error, i = %d, j = %d", i, j);
break;

1
1
printf("%d %d-byte messages were placed onto queue,", j, i);
print£(' %d bytes total\nu, i * j);
~sgctl (msqid, IPC-RMID, NULL) ;

1
/ * see how many identifiers we can

mesg-type = 1;
for (i = 0; i <= MAX-NIDS: i++) {

if ((qid[il = msgget(1PC-PRIVATE,
printf("%d identifiers open at
break:

1
1
for (j = 0; j < i; j++)

~sgctl (qid[j I, IPC-RMID. NULL) :

exit (0) ;

"open" * /

svrnsg/lirnits.c

Figure 6.26 Determine the system limits on System V message queues.

154 System V Message Queues Chapter 6

Determine maximum message size

14-28 TO determine the maximum message size, we try to send a message containing
65536 bytes of data, and if this fails, we try a message containing 65408 bytes of data,
and so on, until the call to msgsnd succeeds.

How many messages of varying size can be put onto a queue?

29-44 Next we start with 8-byte messages and see how many can be placed onto a given
queue. Once we determine this limit, we delete the queue (discarding all these mes-
sages) and try again with 16-byte messages. We keep doing so until we pass the maxi-
mum message size that was determined in the first step. We expect smaller messages to
encounter a limit on the total number of messages per queue and larger messages to
encounter a limit on the total number of bytes per queue.

How many identifiers can be open at once?

45-54 Normally a system limit exists on the maximum number of message queue identi-
fiers that can be open at any time. We determine this by just creating queues until
msgget fails.

We first run this program under Solaris 2.6 and then Digital Unix 4.OB, and the
results confirm the values shown in Figure 6.25.

solaris % limits
maximum amount of data per message = 2048
40 8-byte messages were placed onto queue, 320 bytes total
40 16-byte messages were placed onto queue, 640 bytes total
40 32-byte messages were placed onto queue, 1280 bytes total
40 64-byte messages were placed onto queue, 2560 bytes total
32 128-byte messages were placed onto queue, 4096 bytes total
16 256-byte messages were placed onto queue, 4096 bytes total
8 512-byte messages were placed onto queue, 4096 bytes total
4 1024-byte messages were placed onto queue, 4096 bytes total
2 2048-byte messages were placed onto queue, 4096 bytes total
50 identifiers open at once

alpha % limits
maximum amount of data per message = 8192
40 8-byte messages were placed onto queue, 320 bytes total
40 16-byte messages were placed onto queue, 640 bytes total
40 32-byte messages were placed onto queue, 1280 bytes total
40 64-byte messages were placed onto queue, 2560 bytes total
40 128-byte messages were placed onto queue, 5120 bytes total
40 256-byte messages were placed onto queue, 10240 bytes total
32 512-byte messages were placed onto queue, 16384 bytes total
16 1024-byte messages were placed onto queue, 16384 bytes total
8 2048-byte messages were placed onto queue, 16384 bytes total
4 4096-byte messages were placed onto queue, 16384 bytes total
2 8192-byte messages were placed onto queue, 16384 bytes total
63 identifiers open at once

The reason for the limit of 63 identifiers under Digital Unix, and not the 64 shown in
Figure 6.25, is that one identifier is already being used by a system daemon.

Chapter 6 Exercises 155

6.11 Summary

System V message queues are similar to Posix message queues. New applications
should consider using Posix message queues, but lots of existing code uses System V
message queues. Nevertheless, recoding an application to use Posix message queues,
instead of System V message queues, should not be hard. The main feature missing
from Posix message queues is the ability to read messages of a specified priority from
the queue. Neither form of message queue uses real descriptors, making it hard to use
either select or p o l l with a message queue.

Exercises

6.1 Modify Figure 6.4 to accept a pathname argument of IPC-PRIVATE and create a message
queue with a private key if this is specified. What changes must then be made to the
remaining programs in Section 6.6?

6.2 Why did we use a type of 1 in Figure 6.14 for messages to the server?

6.3 What happens in Figure 6.14 if a malicious client sends many messages to the server but
never reads any of the server's replies? What changes with Figure 6.19 for this type of
client?

6.4 Redo the implementation of Posix message queues from Section 5.8 to use System V mes-
sage queues instead of memory-mapped I/O.

Part 3

Synchronization

Mutexes and

Condition Variables

Introduction

This chapter begins our discussion of synchronization: how to synchronize the actions
of multiple threads or multiple processes. Synchronization is normally needed to allow
the sharing of data between threads or processes. Mutexes and condition variables are
the building blocks of synchronization.

Mutexes and condition variables are h m the Posix.1 threads standard, and can
always be used to synchronize the various threads within a process. Posix also allows a
mutex or condition variable to be used for synchronization between multiple processes,
if the mutex or condition variable is stored in memory that is shared between the pro-
cesses.

This is an option for Posix but required by Unix 98 (e.g., the "process shared mutex/CV" line
in Figure 1.5).

In this chapter, we introduce the classic producer-consumer problem and use
mutexes and condition variables in our solution of this problem. We use multiple
threads for this example, instead of multiple processes, because having multiple threads
share the common data buffer that is assumed in this problem is trivial, whereas sharing
a common data buffer between multiple processes requires some form of shared mem-
ory (which we do not describe until Part 4). We provide additional solutions to this
problem in Chapter 10 using semaphores.

Mutexes: Locking and Unlocking

A mutex, which stands for mutual exclusion, is the most basic form of synchronization.
A mutex is used to protect a critical region, to make certain that only one thread at a time

160 Mutexes and Condition Variables Chapter 7

executes the code within the region (assuming a mutex that is being shared by the
threads) or that only one process at a time executes the code within the region (assum-
ing a mutex is being shared by the processes). The normal outline of code to protect a
critical region looks like

lock-the-mutex(. . .) ;

critical region
unlock-the-mutex(. . .) ;

Since only one thread at a time can lock a given mutex, this guarantees that only one
thread at a time can be executing the instructions within the critical region.

Posix mutexes are declared as variables with a datatype of pthread-mutex-t. If
the mutex variable is statically allocated, we can initialize it to the constant
PTHREAD-MUTEX-INITIALIZER,asin

s t a t i c pthread-mutex-t lock = PTHREAD-MUTEX-INITIALIZER;

If we dynamically allocate a mutex (e.g., by calling m a 1 loc) or if we allocate a mutex in
shared memory, we must initialize it at run time by calling the pthread-nutex-init
function, as we show in Section 7.7.

You may encounter code that omits the initializer because that implementation defines the ini-
tializer to be 0 (and statically allocated variables are automatically initialized to 0). But this is
incorrect code.

The following three functions lock and unlock a mutex:

#include <pthread.h>

i n t pthread~mutex~lock(pthread~mutex~t * m p t r) ;

i n t pthread~mutex~trylock(pthread~mutex~t * m p t r) ;

i n t pthread~mutex~unlock(pthread~mute~~t * m p t r) ;

All three return: 0 if OK, positive ~ x x x value on error

If we try to lock a mutex that is already locked by some other thread,
pthread-mutex-lock blocks until the mutex is unlocked.
pthread-mutex-t ry lock is a nonblocking function that returns EBUSY if the mutex
is already locked.

If multiple threads are blocked waiting for a mutex, which thread runs when the mutex is
unlocked? One of the features added by the 1003.1b-1993 standard is an option for priority
scheduling. We do not cover this area, but suffice it to say that different threads can be
assigned different priorities, and the synchronization functions (mutexes, read-write locks,
and semaphores) will wake up the highest priority thread that is blocked. Section 5.5 of
[Butenhof 19971 provides more details on the Posix.1 realtirne scheduling feature.

Although we talk of a critical region being protected by a mutex, what is really p r c
tected is the data being manipulated within the critical region. That is, a mutex is nor-
mally used to protect shared data that is being shared between multiple threads or
between multiple processes.

3 Producer-Consumer Problem 161

Mutex locks are cooperative locks. That is, if the shared data is a linked list (for
example), then all the threads that manipulate the linked list must obtain the mutex lock
before manipulating the l i t . Nothing can prevent one thread from manipulating the
linked list without first obtaining the mutex.

Producer-Consumer Problem

One of the classic problems in synchronization is called the producer-consumer problem,
also known as the bounded buffer problem. One or more producers (threads or pro-
cesses) are creating data items that are then processed by one or more consumers
(threads or processes). The data items are passed between the producers and con-
sumers using some type of IPC.

We deal with this problem all the time with Unix pipes. That is, the shell pipeline

grep pat tern chapters.* I wc -1

is such a problem. g rep is the single producer and wc is the single consumer. A Unix
pipe is used as the form of IPC. The required synchronization between the producer
and consumer is handled by the kernel in the way in which it handles the wr i t e s by
the producer and the reads by the consumer. If the producer gets ahead of the con-
sumer (i.e., the pipe fills up), the kernel puts the producer to sleep when it calls wri te ,
until more room is in the pipe. If the consumer gets ahead of the producer (i.e., the pipe
is empty), the kernel puts the consumer to sleep when it calls read, until some data is
in the pipe.

This type of synchronization is implicit; that is, the producer and consumer are not
even aware that it is being performed by the kernel. If we were to use a Posix or
System V message queue as the form of IPC between the producer and consumer, the
kernel would again handle the synchronization.

When shared memory is being used as the form of IPC between the producer and
the consumer, however, some type of explicit synchronization must be performed by the
producers and consumers. We will demonstrate this using a mutex. The example that
we use is shown in Figure 7.1.

I thread

buff [21:
store

buff [31 : items

buff [niterns-11 : Initems-1 1

Figure 7.1 Producer-consumer example: multiple producer threads, one consumer thread.

162 Mutexes and Condition Variables Chapter 7

We have multiple producer threads and a single consumer thread, in a single pro-
cess. The integer array buff contains the items being produced and consumed (i.e., the
shared data). For simplicity, the producers just set buff [0] to 0, buff [11 to 1, and so
on. The consumer just goes through this array and verifies that each entry is correct.

In this first example, we concern ourselves only with synchronization between the
multiple producer threads. We do not start the consumer thread until all the producers
are done. Figure 7.2 is the main function for our example.

2 #define MAXNITEMS 1000000
3 #define MAXNTHREADS 100

int ni tems ; / * read-only by producer and consumer * /
struct {

pthread-mutex-t mutex;
int buff [MAXNITEMSI ;
int nput;
int nval ;

} shared = {

PTHREAD-MLJTEX-INITIALIZER

1 ;

13 void *produce (void *) , *consume (void *) ;

14 int
15 main(int argc, char **argv)
16 {

17 int i, nthreads, count[MAXNTHREADSl;
18 pthread-t tidqroduce[MAXNTHREADSI, tid-consume;

19 if (argc != 3)
2 0 err-quit("usage: prodcons2 <#items> <#threads>");
21 nitems = min(atoi(argv[l]), MAXNITEMS);
2 2 nthreads = min (atoi (argv [2 1) , MAXNTHREADS) ;

23 set-concurrency(nthreads);
2 4 / * start all the producer threads * /
2 5 for (i = 0; i < nthreads: i++) {

26 count[il = 0;
2 7 Pthread-create(&tid_produce[il, NULL, produce, &count[il);
28 1

29 / * wait for all the producer threads * /
3 0 for (i = 0; i < nthreads; i++) {

3 1 Pthread-join(tidqroduce [il , NULL) ;
32 printf ("count [%dl = %d\nm, i, count [il) ;
33 1

34 / * start, then wait for the consumer thread * /
3 5 Pthread-create(&tid-consume, NULL, consume, NULL);
3 6 Pthread-join(tid-consume, NULL);

37 exit (0) ;

Figure 7.2 main function.

Section 7.3 Producer-Consumer Problem 163

Globals shared between the threads

-12 These variables are shared between the threads. We collect them into a structure
named shared, along with the mutex, to reinforce that these variables should be
accessed only when the mutex is held. nput is the next index to store in the buff array,
and nval is the next value to store (0, 1, 2, and so on). We allocate this structure and
initialize the mutex that is used for synchronization between the producer threads.

We will always try to collect shared data with their synchronization variables (mutex, condi-
tion variable, or semaphore) into a structure as we have done here, as a good programming
technique. In many cases, however, the shared data is dynamically allocated, say as a linked
list. We might be able to store the head of the linked list in a structure with the synchroniza-
tion variables (as we did with our mchdr structure in Figure 5.20), but other shared data (the
rest of the list) is not in the structure. Therefore, this solution is often not perfect.

Command-line arguments

-22 The first command-line argument specifies the number of items for the producers to
store, and the next argument is the number of producer threads to create.

Set concurrency level

set-concurrency is a function of ours that tells the threads system how many
threads we would like to run concurrently. Under Solaris 2.6, this is just a call to
thr-setconcurrency and is required if we want the multiple producer threads to
each have a chance to execute. If we omit this call under Solaris, only the first producer
thread runs. Under Digital Unix 4.OB, our set-concurrency function does nothing
(because all the threads within a process compete for the processor by default).

Unix 98 requires a function named pthread-setconcurrency that performs the same func-
tion. This function is needed with threads implementations that multiplex user threads (what
we create with pthread-create) onto a smaller set of kernel execution entities (e.g., kernel
threads). These are commonly referred to as many-to-few, two-level, or M-to-N implernenta-
tions. Section 5.6 of [Butenhof 19971 discusses the relationship between user threads and ker-
nel entities in more detail.

Create producer threads

-2s The producer threads are created, and each executes the function produce. We
save the thread ID of each in the tid~roduce array. The argument to each producer
thread is a pointer to an element of the count array. We first initialize the counter to 0,
and each thread then increments this counter each time it stores an item in the buffer.
We print this array of counters when we are done, to see how many items were stored
by each producer thread.

Wait for producer threads, then start consumer thread

29-36 We wait for all the producer threads to terminate, also printing each thread's
counter, and only then start a single consumer thread. This is how (for the time being)
we avoid any synchronization issues between the producers and consumer. We wait for
the consumer to finish and then terminate the process.

Figure 7.3 shows the produce and consume functions for our example.

164 Mutexes and Condition Variables Chapter 7

mu tex/prodcons2.c
39 void *

4 4 if (shared.nput >= nitems) {

4 5 Pthread~mutex~unlock(&shared.mutex);
46 return (NULL); / * array is full, we're done */
47 1
4 8 shared.buff[shared.nput] = shared.nva1;
49 shared.nput++;
50 shared.nval++;
51 Pthread~mutex~unlock(&shared.mutex);
52 * ((int *) arg) += 1;
53 1
54 1

55 void *
56 consume (void *arg)

57 I
58 int i ;

5 9 for (i = 0; i < nitems; i++) {

60 if (shared.buff [i] != i)
6 1 printf("buff[%d] = %d\nU, i, shared.buff[il);
6 2 1
6 3 return (NULL) ;
64 1

mutex/prodcons2.c
Figure 7.3 producer and consumer functions.

Generate the data items

42-53 The critical region for the producer consists of the test for whether we are done

if (shared-nput >= nitems)

followed by the three lines

We protect this region with a mutex lock, being certain to unlock the mutex when we
are done. Notice that the increment of the count element (through the pointer arg) is
not part of the critical region because each thread has its own counter (the count array
in the main function). Therefore, we do not include this line of code within the region
locked by the mutex, because as a general programming principle, we should always
strive to minimize the amount of code that is locked by a mutex.

Consumer verifies contents of array

59-62 The consumer just verifies that each item in the array is correct and prints a mes-
sage if an error is found. As we said earlier, only one instance of this function is run and

7.4 Locking versus Waiting 165

only after all the producer threads have finished, so no need exists for any synchroniza-
tion.

If we run the program just described, specifying one million items and five pro-
ducer threads, we have

solaris % prodcons2 1000000 5
count[O] = 167165
count[l] = 249891
count[2] = 194221
count[3] = 191815
count[4] = 196908

As we mentioned, if we remove the call to set-concurrency under Solaris 2.6,
count [0 I then becomes 1000000 and the remaining counts are all 0.

If we remove the mutex locking from this example, it fails, as expected. That is, the
consumer detects many instances of buff [i I not equal to i. We can also verify that
the removal of the mutex locking has no effect if only one producer thread is run.

Locking versus Waiting

We now demonstrate that mutexes are for locking and cannot be used for waiting. We
modify our producer-consumer example from the previous section to start the con-
sumer thread right after all the producer threads have been started. This lets the con-
sumer thread process the data as it is being generated by the producer threads, unlike
Figure 7.2, in which we did not start the consumer until all the producer threads were
finished. But we must now synchronize the consumer with the producers to make cer-
tain that the consumer processes only data items that have already been stored by the
producers.

Figure 7.4 shows the main function. All the lines prior to the declaration of main
have not changed from Figure 7.2.

rnutex/prodcons3.c
14 int
15 main(int argc, char **argv)

int i, nthreads, count[MAXNTHREADSl;
pthread-t tidqroduce[MAXNTHREADS], tid-consume;

if (argc != 3)
errquit("usage: prodcons3 <#items> <#threads>");

nitems = min(atoi(argv[ll), MAXNITEMS);
nthreads = min(atoi(argv[21), MAXNTHREADS);

/ * create all producers and one consumer * /
Set-concurrency(nthreads + 1);
for (i = 0; i < nthreads; i++) {

count[i] = 0;
Pthread-create(&tidqroduce[il, NULL, produce, &count[i]);

I
Pthread-create(&tid-consume, NULL, consume, NULL);

166 Mutexes and Condition Variables Chapter 7

3 0 / * wait for all producers and the consumer * /
3 1 for (i = 0; i < nthreads; i++) {

32 Pthread-j oin (tidqroduce [i] , NULL) ;
33 printf ("count [%dl = %d\nU, i, count [i]) ;
34 I
3 5 Pthread-join (tid-consume, NULL) ;

3 6 exit (0) ;

Figure 7.4 main function: start consumer immediately after starting producers.

24 We increase the concurrency level by one, to account for the additional consumer
thread.

25-29 We create the consumer thread immediately after creating the producer threads.

The produce function does not change from Figure 7.3.

We show in Figure 7.5 the consume function, which calls our new consume-wait
function.

mu tex/prodcons3.c
54 void
55 consume-wait(int i)
56 I
5 7 f o r (; ;) {
58 Pthread-mutex-lock(&shared.mutex):
5 9 if (i < shared.nput) {

60 Pthread~mutex~unlock(&shared.mutex);
6 1 return; / * an item is ready * /
62 1
6 3 Pthread~mutex~unlock(&shared.mutex);
6 4 1
65 1

66 void *
67 consume(void *arg)
68 {
6 9 int i ;

70 for (i = 0; i < nitems; i++) {

7 1 consumewait(i);
72 if (shared.buff[il != i)
7 3 printf ("buff [%dl = %d\nn, i, shared.buff [il) ;
74 1
7 5 return (NULL);

Figure 7.5 consume-wait and consume functions.

Consumer must wait

71 The only change to the consume function is to call consume-wai t before fetching
the next item from the array.

1 Section 7.5 Condition Variables: Waiting and Signaling 167

Wait for producers

-64 Our consume-wait function must wait until the producers have generated the ith
item. To check this condition, the producer's mutex is locked and i is compared to the
producer's nput index. We must acquire the mutex lock before looking at nput, since
this variable may be in the process of being updated by one of the producer threads.

The fundamental problem is: what can we do when the desired item is not ready?
All we do in Figure 7.5 is loop around again, unlocking and locking the mutex each
time. This is calling spinning or polling and is a waste of CPU time.

We could also sleep for a short amount of time, but we do not know how long to
sleep. What is needed is another type of synchronization that lets a thread (or process)
sleep until some event occurs.

Condition Variables: Waiting and Signaling

A mutex is for locking and a condition variable is for waiting. These are two different
types of synchronization and both are needed.

A condition variable is a variable of type pthread-cond-t, and the following two
functions are used with these variables.

int pthread-cond-wait(pthread-cond-t *cptr, pthread-mutex-t *mpt r) ; I
int pthread-cond-signal (pthread-cond-t *cptr) ; I

Both return: 0 if OK, positive Exxx value on error

The term "signal" in the second function's name does not refer to a Unix SIGxxx signal.
We choose what defines the "condition" to wait for and be notified of: we test this

in our code.
A mutex is always associated with a condition variable. When we call

pthread-cond-wait to wait for some condition to be true, we specify the address of
the condition variable and the address of the associated mutex.

We explain the use of condition variables by recoding the example from the previ-
ous section. Figure 7.6 shows the global declarations.

Collect producer variables and mutex Into a structure

-13 The two variables nput and nval are associated with the mutex, and we put all
three variables into a structure named put. This structure is used by the producers.

Collect counter, condition variable, and mutex into a structure

-20 The next structure, nready, contains a counter, a condition variable, and a mutex.
We initialize the condition variable to PTHREAD-COND-INITIALIZER.

The main function does not change from Figure 7.4.

168 Mutexes and Condition Variables Chapter 7

2 #define MAXNITEMS 1000000
3 #define MAXNTHREADS 100

4 / * globals shared by threads * /
5 int nitems; / * read-only by producer and consumer * /
6 int buff [MAXNITEMS] ;
7 struct {

8 pthread-mutex-t mutex;
9 int npu t ;
10 int nval ;
11 1 put = (

12 PTHREAD-MUTEX-INITIALIZER

13 1;

/ * next index to store * /
/ * next value to store */

14 struct (

15 pthread-mutex-t mutex;
16 pthread-cond-t cond;
17 int nready; / * number ready for consumer * /
18) nready = {

19 PTHREAD-MUTEX-INITIALIZER, PTHREAD-COND-INITIALIZER

Figure 7.6 Globals for our producer-consurner, using a condition variable.

The produce and consume functions do change, and we show them in Figure 7.7.

Place next item into array

50-58 We now use the mutex put .mutex to lock the critical section when the producer
places a new item into the array.

Notify consumer

59-64 We increment the counter nready .nready, which counts the number of items
ready for the consumer to process. Before doing this increment, if the value of the
counter was 0, we call pthread-cond-signal to wake up any threads (e.g., the con-
sumer) that may be waiting for this value to become nonzero. We can now see the inter
action of the mutex and condition variable associated with this counter. The counter is
shared between the producers and the consumer, so access to it must be when the asso-
ciated mutex (nready.mutex) is locked. The condition variable is used for waiting
and signaling.

Consumer waits for nready-nready to be nonzero

72-76 The consumer just waits for the counter nready . nready to be nonzero. Since this
counter is shared among all the producers and the consumer, we can test its value only
while we have its associated mutex locked. If, while we have the mutex locked, the
value is 0, we call pthread-cond-wait to go to sleep. This does two actions atomi-
cally:

7 5 Condition Variables: Waiting and Signaling 169

mutexlprodcons6.c
46 void *
47 produce (void *arg)
48 I
4 9 f o r (; ;) {
50 Pthread~mutex~lock(&put.rnutex);
51 if (put.nput >= nitems) {

52 Pthread~mutex~unlock(&put.rnutex);
53 return (NULL) ; / * array is full, we're done * /
54 1
5 5 buff [put.nputl = put .nval;
5 6 put.nput++;
5 7 put.nval++;
58 Pthread~mutex~unlock(&put.mutex);

64 *((int *) arg) += 1;
6 5 1
66 1

67 void *
68 consume (void *arg)
69 (

7 0 int i ;

7 1 for (i- = 0; i < nitems; i++) {
72 Pthread-mutex-lock(&nready.mutex);
73 while (nready.nready == 0)
74 Pthread-cond-wait(&nready.cond, &nready.mutex);
7 5 nready-nready--;
76 Pthread~mutex~unlock(&nready.mutex);

77 if (buff [i] != i)
7 8 printf ("buff[%dl = %d\nW , i, buff [il) ;
79 1
8 0 return (NULL) ;

Figure 7.7 produce and consume functions.

1. the mutex nready . mutex is unlocked, and

2. the thread is put to sleep until some other thread calls pthread-cond-signal
for this condition variable.

Before returning, pthread-cond-wait locks the mutex nready. mutex. Therefore,
when it returns, and we find the counter nonzero, we decrement the counter (knowing

170 Mutexes and Condition Variables Chapter 7

that we have the mutex locked) and then unlock the mutex. Notice that when
pthread-cond-wait returns, we always test the condition again, because spurious
wakeups can occur: a wakeup when the desired condition is still not true. Implementa-
tions try to minimize the number of these spurious wakeups, but they can still occur.

In general, the code that signals a condition variable looks like the following:

struct {

pthread-mutex-t mutex;
pthread-cond-t cond;
whatever variables maintain the condition

) var = (PTHREAD-MUTEX-INITIALIZER, PTHREAD-COND-INITIALIZER, ... 1;

Pthread~mutex~lock(&var.mutex);
set condition true
pthread-cond-signal(&var.cond):
~thread~mutex~unlock(&var.mutex);

In our example, the variable that maintains the condition was an integer counter, and
setting the condition was just incrementing the counter. We added the optimization that
the signal occurred only when the counter went from 0 to 1.

The code that tests the condition and goes to sleep waiting for the condition to be
true normally looks like the following:

~thread~mutex~lock(&var.mutex);
while (condition is false)

Pthread-cond-wait(&var.cond, &var.mutex);
modify condition
~thread~mutex~unlock(&var.mutex);

Avoiding Lock Conflicts

In the code fragment just shown, as well as in Figure 7.7, pthread-cond-signal is
called by the thread that currently holds the mutex lock that is associated with the con-
dition variable being signaled. In a worst-case scenario, we could imagine the system
immediately scheduling the thread that is signaled; that thread runs and then immedi-
ately stops, because it cannot acquire the mutex. An alternative to our code in Fig-
ure 7.7 would be

int dosignal;

~thread~mutex~lock(&nready.mutex);
dosignal = (nready.nready == 0);
nready.nready++;
Pthread~mutex~unlock(&nready.mutex);

if (dosignal)
pthread-cond-signal(&nready.cond);

Here we do not signal the condition variable until we release the mutex. This is explic-
itly allowed by Posix: the thread calling pthread-cond-signal need not be the cur-
rent owner of the mutex associated with the condition variable. But Posix goes on to

7.6 Condition Variables: Timed Waits and Broadcasts 171

say that if predictable scheduling behavior is required, then the mutex must be locked
by the thread calling pthread-cond-wai t .

Condition Variables: Timed Waits and Broadcasts

Normally, pthread-cond-signal awakens one thread that is waiting on the condi-
tion variable. In some instances, a thread knows that multiple threads should be awak-
ened, in which case, pthread-cond-broadcast will wake up all threads that are
blocked on the condition variable.

An example of a scenario in which multiple threads should be awakened occurs with the read-
ers and writers problem that we describe in Chapter 8. When a writer is finished with a lock, it
wants to awaken all queued readers, because multiple readers are allowed at the same time.

An alternate (and safer) way of thinking about a signal versus a broadcast is that you can
always use a broadcast. A signal is an optimization for the cases in which you know that all
the waiters are properly coded, only one waiter needs to be awakened, and which waiter is
awakened does not matter. In all other situations, you must use a broadcast.

i n t pthread-cond-broadcastfpthread-cond-t *cptr); l
i n t pthread-cond-timedwait(pthread-cond-t *cptr, pthread-mutex-t *mptr,

const s t r u c t timespec *abstime) ;

I Both return: 0 if OK, positive Exxx value on error 1

pthread-cond-timedwait lets a thread place a limit on how long it will block.
abstime is a timespec structure:

s t r u c t timespec [

time-t tv-sec; / * seconds * /
long tv-nsec; / * nanoseconds * /

1;

This structure specifies the system time when the function must return, even if the con-
dition variable has not been signaled yet. If this timeout occurs, ETIMEDOUT is
returned.

This time value is an absolute time; it is not a time delta. That is, abstime is the system
time-the number of seconds and nanoseconds past January 1, 1970, UTC-when the
function should return. This differs from se lec t , pse lec t , and p o l l (Chapter 6 of
UNPvl), which all specify some number of fractional seconds in the future when the
function should return. (s e l e c t specifies microseconds in the future, pse lec t speci-
fies nanoseconds in the future, and p o l l specifies milliseconds in the future.) The
advantage in using an absolute time, instead of a delta time, is if the function prema-
turely returns (perhaps because of a caught signal): the function can be called again,
without having to change the contents of the timespec structure.

172 Mutexes and Condition Variables Chapter 7

7.7 Mutexes and Condition Variable Attributes

Our examples in this chapter of mutexes and condition variables have stored them as
globals in a process in which they are used for synchronization between the threads
within that process. We have initialized them with the two constants
PTHREAD-MLJTEX-INITIALIZER and PTHREAD-COND-INITIALIZER. Mutexes and
condition variables initialized in this fashion assume the default attributes, but we can
initialize these with other than the default attributes.

First, a mutex or condition variable is initialized or destroyed with the following
functions:

#include ipthread.h>

int pthread-mutex-init(pthread-mutex-t *mptr, const pthread-mutexattr-t *at tr) ;

int pthread-mutex-destroy(pthread-mutex-t *mpt r) ;

int pthread-cond-init (pthread-cond-t *cptr, const pthread-condattr-t *attr) ;

int pthread-cond-destroy(pthread-cond-t *cp t r) ;

All four return: 0 if OK, positive Exxx value on error

Considering a mutex, mptr must point to a pthread-mutex-t variable that has been
allocated, and pthread-mutex-init initializes that mutex. The
pthread-mut exat t r-t value, pointed to by the second argument to
pthread-mutex-init (attr), specifies the attributes. If this argument is a null pointer,
the default attributes are used.

Mutex attributes, a pthread-mutexattr-t datatype, and condition variable
attributes, a pthread- condattr- t datatype, are initialized or destroyed with the fol- . .

lowing functions:

int pthread-mutexattr-init(pthread-mutexattr-t *a t t r) ;

I int pthread-mutexattr-destroy(pthread-mutexattr-t *a t t r) ;

int pthread-condattr-init(pthread-condattr-t *a t t r) ;

I int pthread-condattr-destroy(pthread-condattr-t *a t t r) ;

All four return: 0 if OK, positive Exxx value on error

Once a mutex attribute or a condition variable attribute has been initialized, sepa-
rate functions are called to enable or disable certain attributes. For example, one
attribute that we will use in later chapters specifies that the mutex or condition variable
is to be shared between different processes, not just between different threads within a
single process. This attribute is fetched or stored with the following functions.

Section 7.7 I- Mutexes and Condition Variable Attributes 173

#include ipthread.h>

int pthread-mutexattr-getpshared (const pthread-mutexattr-t *attr, int *valptr) ;

int pthread-mutexattr-setpshared(pthread-mutexattr-t *attr, int ualue) ;

int pthread-condattr-getpshared(c0nst pthread-condattr-t *attr, int *valptr) ;

int pthread-condattr-setpshared (pthread-condattr-t *attr , int value) ;

All four return: 0 if OK, positive Exxx value on error

The two g e t functions return the current value of this attribute in the integer pointed to
by valptr and the two set functions set the current value of this attribute, depending on
value. The value is either PTHREAD-PROCESS-PRIVATE or
PTHREAD-PROCESS-SHARED. The latter is also referred to as the process-shared
attribute.

This feature is supported only if the constant -POSIX-THREAD-PROCESS-SHARED is defined
by including iunistd. h>. It is an optional feature with Posix.1 but required by Unix 98 (Fig-
ure 1.5).

The following code fragment shows how to initialize a mutex so that it can be
shared between processes:

pthread-mutex-t *mptr; / * pointer to the mutex in shared memory * /
pthread-mutexattr-t mattr; / * mutex attribute datatype */

mptr = / * some value that points to shared memory * / ;
Pthread-mutexattr-init(&mattr);

#ifdef -POSIX-THREAD-PROCESS-SHARED
Pthread-mutexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED);

#else
error this implementation does not support -POSIX-THREAD-PROCESS-SHARED
#endif

Pthread-mutex-inithptr, &rnattr);

We declare a pthread-mutexattr-t datatype named m a t t r , initialize it to the
default attributes for a mutex, and then set the PTHREAD-PROCESS-SHARED attribute,
which says that the mutex is to be shared between processes. pthread-mutex-init
then initializes the mutex accordingly. The amount of shared memory that must be allo-
cated for the mutex is s i zeo f (pthread-mutex-t) .

A nearly identical set of statements (replacing the five characters mutex with cond)
is used to set the PTHREAD-PROCESS-SHARED attribute for a condition variable that is
stored in shared memory for use by multiple processes.

We showed examples of these process-shared mutexes and condition variables in
Figure 5.22.

174 Mutexes and Condition Variables Chapter 7

Process Termination While Holding a Lock

When a mutex is shared between processes, there is always a chance that the process
can terminate (perhaps involuntarily) while holding the mutex lock. There is no way to
have the system automatically release held locks upon process termination. We will see
that read-write locks and Posix semaphores share this property. The only type of syn-
chronization locks that the kernel always cleans up automatically upon process termina-
tion is f c n t l record locks (Chapter 9). When using System V semaphores, the
application chooses whether a semaphore lock is automatically cleaned up or not by the
kernel upon process termination (the SEM-UNDO feature that we talk about in Sec-
tion 11.3).

A thread can also terminate while holding a mutex lock, by being canceled by
another thread, or by calling pthread-exit. The latter should be of no concern,
because the thread should know that it holds a mutex lock if it voluntarily terminates by
calling pthread-exit. In the case of cancellation, the thread can install cleanup han-
dlers that are called upon cancellation, which we demonstrate in Section 8.5. Fatal con-
ditions for a thread normally result in termination of the entire process. For example, if
a thread makes an invalid pointer reference, generating SIGSEGV, this terminates the
entire process if the signal is not caught, and we are back to the previous condition deal-
ing with the termination of the process.

Even if the system were to release a lock automatically when a process terminates,
this may not solve the problem. The lock was protecting a critical region probably
while some data was being updated. If the process terminates while it is in the middle
of this critical region, what is the state of the data? A good chance exists that the data
has some inconsistencies: for example, a new item may have been only partially entered
into a linked list. If the kernel were to just unlock the mutex when the process termi-
nates, the next process to use the linked list could find it corrupted.

In some examples, however, having the kernel clean up a lock (or a counter in the
case of a semaphore) when the process terminates is OK. For example, a server might
use a System V semaphore (with the SEM-UNDO feature) to count the number of clients
currently being serviced. Each time a child is forked, it increments this semaphore,
and when the child terminates, it decrements this semaphore. If the child terminates
abnormally, the kernel will still decrement the semaphore. An example of when it is OK
for the kernel to release a lock (not a counter as we just described) is shown in Sec-
tion 9.7. The daemon obtains a write Lock on one of its data files and holds this lock as
long as it is running. Should someone try to start another copy of the daemon, the new
copy will terminate when it cannot get the write lock, guaranteeing that only one copy
of the daemon is ever running. But should the daemon terminate abnormally, the ker-
nel releases the write lock, allowing another copy to be started.

7.8 Summary

Mutexes are used to protect critical regions of code, so that only one thread at a time is
executing within the critical region. Sometimes a thread obtains a mutex lock and then

, 7 Exercises 175

discovers that it needs to wait for some condition to be true. When this happens, the
thread waits on a condition variable. A condition variable is always associated with a
mutex. The pthread-cond-wait function that puts the thread to sleep unlocks the
mutex before putting the thread to sleep and relocks the mutex before waking up the
thread at some later time. The condition variable is signaled by some other thread, and
that signaling thread has the option of waking up one thread
(pthread-cond-signal) or all threads that are waiting for the condition to be true
(pthread-cond-broadcast).

Mutexes and condition variables can be statically allocated and statically initialized.
They can also be dynamically allocated, which requires that they be dynamically initial-
ized. Dynamic initialization allows us to specify the process-shared attribute, allowing
the mutex or condition variable to be shared between different processes, assuming that
the mutex or condition variable is stored in memory that is shared between the different
processes.

Exercises

Remove the mutex locking from Figure 7.3 and verify that the example fails if more than
one producer thread is run.

What happens in Figure 7.2 if the call to thread-join for the consumer thread is
removed?

Write a program that just calls pthread-mutexattr-init and
pthread-condattr-init in an infinite loop. Watch the memory usage of the process,
using a program such as ps. What happens? Now add the appropriate calls to
pthread-mutexattr-destroy and pthread-condattr-destroy and verify that no
memory leak occurs.

In Figure 7.7, the producer calls pthread-cond-signal only when the counter
nready. nready goes from 0 to 1. To see what this optimization does, add a counter each
time pthread-cond-signal is called, and print this counter in the main thread when the
consumer is done.

Read- Write Locks

Introduction

A mutex lock blocks all other threads from entering what we call a critical region. This
critical region usually involves accessing or updating one or more pieces of data that are
shared between the threads. But sometimes, we can distinguish between reading a piece
of data and modifying a piece of data.

We now describe a read-write lock and distinguish between obtaining the read-write
lock for reading and obtaining the read-write lock for writing. The rules for allocating
these read-write locks are:

1. Any number of threads can hold a given read-write lock for reading as long as
no thread holds the read-write lock for writing.

2. A read-write lock can be allocated for writing only if no thread holds the
read-write lock for reading or writing.

Stated another way, any number of threads can have read access to a given piece of data
as long as no thread is reading or modifying that piece of data. A piece of data can be
modified only if no other thread is reading the data.

In some applications, the data is read more often than the data is modified, and
these applications can benefit from using read-write locks instead of mutex locks.
Allowing multiple readers at any given time can provide more concurrency, while still
protecting the data while it is modified from any other readers or writers.

This sharing of access to a given resource is also known as shared~xclusive locking,
because obtaining a read-write lock for reading is called a shared lock, and obtaining a
read-write lock for writing is called an exclusive lock. Other terms for this type of prob-
lem (multiple readers and one writer) are the readers and writers problem and

178 Read-Write Locks Chapter 8

readers-writer locks. (In the last term, "readers" is intentionally plural, and "writer" is
intentionally singular, emphasizing the multiple-readers but single-writer nature of the
problem.)

A common analogy for a read-write lock is accessing bank accounts. Multiple threads can be
reading the balance of an account at the same time, but as soon as one thread wants to update
a given balance, that thread must wait for all readers to finish reading that balance, and then
only the updating thread should be allowed to modify the balance. No readers should be
allowed to read the balance until the update is complete.

The functions that we describe in this chapter are defined by Unix 98 because read-write locks
were not part of the 1996 Posix.1 standard. These functions were developed by a collection of
Unix vendors in 1995 known as the Aspen Group, along with other extensions that were not
defined by Posix.1. A Posix working group (1003.lj) is currently developing a set of Pthreads
extensions that includes read-write locks, which will hopefully be thesame as described in
this chapter.

8.2 Obtaining and Releasing Read-Write Locks

A read-write lock has a datatype of pthread-rwlock-t. If a variable of this type is
statically allocated, it can be initialized by assigning to it the constant
PTHREAD-RWLOCK-INITIALIZER.

pthread-rwlock-rdlock obtains a read-lock, blocking the calling thread if the
read-write lock is currently held by a writer. p thread-rwlock-wrlock obtains a
write-lock, blocking the calling thread if the read-write lock is currently held by either
another writer or by one or more readers. pthread-rwlock-unlock releases either a
read lock or a write lock.

I int pthread~rwlock~rdlock(pthread~rwlock~t *rwptr) ; l
int pthread~rwlock~wrlock(pthread~rwlock~t *rwptr) :

int pthread~rwlock~unlock(pthread~rwlock~t *rwptr) ;

I All return: 0 if OK, msitive ~ x x x value on error I

The following two functions try to obtain either a read lock or a write lock, but if the
lock cannot be granted, an error of EBuSY is returned instead of putting the calling
thread to sleep.

#include <pthread.h>

int pthread~rwlock~tryrdlock(pthread~rwlock~t *rwp t r) ;

int pthread~rwlock~tr~rlock(pthread~rwlock~t *rwp t r) ;

Both return: 0 if OK, positive Exxx value on error

3.4 Implementation Using Mutexes and Condition Variables 179

Read-Write Lock Attributes

We mentioned that a statically allocated read-write lock can be initialized by assigning
it the value PTHREAD-RWLOCK-INITIALIZER. These variables can also be dynami-
cally initialized by calling pthread-rwlock-init. When a thread no longer needs a
read-write lock, it can call the function pthread-rwlock-destroy.

#include cpthread.h>

int pthread-rwlock-init(pthread-rwlock-t *rwptr,
const pthread-rwlockattr-t *attr) ;

int pthread~rwlock~destroy(pthread~rwlock~t *rwptr) ; I
Both return: 0 if OK, positive Exxx value on error

When initializing a read-write lock, if attr is a null pointer, the default attributes are
used. To assign other than these defaults, the following two functions are provided:

int pthread-mlockattr-init(pthread-rwlockattr-t *a t t r) ; l
int pthread~rwlockattr~destroy(pthread~rwlockattr~t *a t&) ; I

I Both return: 0 if OK. ~ositive ~ x x x value on error I

Once an attribute object of datatype pthread-rwlockattr-t has been initialized,
separate functions are called to enable or disable certain attributes. The only attribute
currently defined is PTHREAD-PROCESS-SHARED, which specifies that the read-write
lock is to be shared between different processes, not just between different threads
within a single process. The following two functions fetch and set this attribute:

#include cpthread.h>

int pthread-rwlockattr-getpshared(const pthread-rwlockattr-t *attr, int *valptr);

int pthread-mlockattr-setpshared(pthread-rw1ockattr-t *attr, int value); I
Both return: 0 if OK, positive Exxx value on error I

The first function returns the current value of this attribute in the integer pointed to by
valptr. The second function sets the current value of this attribute to value, which is
either PTHREAD-PROCESS-PRIVATE or PTHREAD-PROCESS-SHARED.

Implementation Using Mutexes and Condition Variables

Read-write locks can be implemented using just mutexes and condition variables. In
this section, we examine one possible implementation. Our implementation gives

180 Read-Write Locks Chapter 8

preference to waiting writers. This is not required and there are other alternatives.

This section and the remaining sections of this chapter contain advanced topics that you may
want to skip on a first reading.

Other implementations of read-write locks merit study. Section 7.1.2 of [Butenhof 19971 pro-
vides an implementation that gives priority to waiting readers and includes cancellation han-
dling (which we say more about shortly). Section B.18.2.3.1 of [IEEE 19961 provides another
implementation that gives priority to waiting writers and also includes cancellation handling.
Chapter 14 of [Kleiman, Shah, and Smaalders 19961 provides an implementation that gives pri-
ority to waiting writers. The implementation shown in this section is from Doug Schmidt's
ACE package, http: / /www. cs .wus tl . edu/-schmidt/ACE . html (Adaptive Communica-
tions Environment). All four implementations use mutexes and condition variables.

gthread-rwlock-t Datatype

Figure 8.1 shows our pthread-rw1ock.h header, which defines the basic
pthread-rwlock-t datatype and the function prototypes for the functions that oper-
ate on read-write locks. Normally, these are found in the xpthread . h> header.

typedef struct {

pthread-mutex-t rw-mutex; / * basic lock on this struct * /
pthread-cond-t rw-condreaders; / * for reader threads waiting * /
pthread-cond-t rw-condwriters; / * for writer threads waiting * /
int rw-magic ; / * for error checking * /
int rw-nwaitreaders; / * the number waiting * /
int rw-nwaitwriters; / * the number waiting * /
int rw-ref count;

/ * -1 if writer has the lock, else # readers holding the lock * /
1 pthread-rwlock-t;

14 / * following must have same order as elements in struct above * /
15 #define PTHREAD-RWLOCK-INITIALIZER { PTHREAD-MUTEX-INITIALIZER, \
16 PTHREAD-COND-INITIALIZER, PTHREAD-COND-INITIALIZER, \
17 RW-MAGIC, 0, 0, 0 1

18 typedef int pthread-rwlockattr-t; / * dummy; not supported * /

/ * function prototypes * /
int pthread~rwlock~destroy(pthread~rwlock~t *) ;

int pthread-rwlock-init(pthread-rwlock-t *, pthread-rwlockattr-t *) ;

int pthread~rwlock~rdlock(pthread~rwlock~t *) ;

int pthread~rwlock~tryrdlock(pthread~rwlock~t *) ;

int pthread~rwlock~trywrlock(pthread~rwlock~t *) ;

int pthread~rwlock~unlock(pthread~rwlock~t *) ;

int pthread~rwlock~wrlock(pthread~rwlock~t *) ;

r
Section 8.4 Implementation Using Mutexes and Condition Variables 181

2 7
28 void
29 void
30 void
31 int
32 int
33 void
34 void

/ * and our wrapper functions * /
~thread~rwlock~destroy(pthread~rwlock~t *) ;

pthread-rwlock-init(pthread-rwlock-t * , pthread-rwlockattr-t *) ;

~thread~rwlock~rdlock(pthread~rwlock~t *) ;

~thread~rwlock~tryrdlock(pthread~rwlock~t *) ;

 thread-rwlock-trywrlock(pthread_rwlock-t *) :

~thread~rwlock~unlock(pthread~rwlock~t *) ;

~thread~rwlock~wrlock(pthread~rwlock~t *) ;

35 #endif / * thread-rwlock-h * /
my-rwlock/pthread-rw1ock.h

Figure 8.1 Definition of pthread-rwlock-t datatype.

3-13 Our pthread-rwlock-t datatype contains one mutex, two condition variables,
one flag, and three counters. We will see the use of all these in the functions that follow.
Whenever we examine or manipulate this structure, we must hold the rw-mutex.
When the structure is successfully initialized, the rw-magic member is set to
RW-MAGIC. This member is then tested by all the functions to check that the caller is
passing a pointer to an initialized lock, and then set to 0 when the lock is destroyed.

Note that rw-ref count always indicates the current status of the read-write lock:
-1 indicates a write lock (and only one of these can exist at a time), 0 indicates the lock
is available, and a value greater than 0 means that many read locks are currently held.

14-17 We also define the static initializer for this datatype.

pthread-zwlock-init Function

Our first fundion, pthread-rwlock-ini t, dynamically initializes a read-write lock
and is shown in Figure 8.2.

We do not support assigning attributes with this function, so we check that the
attr argument is a null pointer.

We initialize the mutex and two condition variables that are in our structure. All
three counters are set to 0 and rw-magic is set to the value that indicates that the struc-
ture is initialized.

20-25 If the initialization of the mutex or condition variables fails, we are careful to
destroy the initialized objects and return an error.

pthread-zwlock-des t roy Function

Figure 8.3 shows our pthread-rwlock-destroy fundion, which destroys a
read-write lock when the caller is finished with it.

8-13 We first check that the lock is not in use and then call the appropriate destroy func-
tions for the mutex and two condition variables.

182 Read-Write Locks

7

Chapter 8

#include "pthread-rw1ock.h"

int
pthread-rwlock-init(pthread-rwlock-t *rw, pthread-rwlockattr-t *attr)

int result;

(attr != NULL)
return (EINVAL) ; / * not supported * /

((result = pthread-mutex-init(&rw->rw-mutex, NULL)) != 0)
goto errl;

((result = pthread-cond-init(&rw->rw_condreaders, NULL)) != 0)
goto err2;

((result = pthread-cond-init(&rw->rw-condwriters, NULL)) != 0)
goto err3;

rw->rw-nwaitreaders = 0;
rw->rwmaitwriters = 0;
rw->rw-refcount = 0;
rw->rw-magic = RW-MAGIC;

return (0) ;

err3 :
pthread-cond-destroy(&rw->rw-condreaders);

err2 :
pthread-mutex-destroy(&rw->rw-mutex);

errl :
return (result); / * an errno value * /

1
my-rwlock/pthread-rwlock_init.c

Figure 8.2 pthread-rwlock-init function: initialize a read-write lock.

3 int
4 pthread~rwlock~destroy(pthread~rwlock~t *rw)
5 {

6 if (rw->rw-magic != RW-MAGIC)
7 return (EINVAL) ;
8 if (rw->rw-refcount != 0 I I
9 rw->rw-nwaitreaders != 0 I I rw->rw-nwaitwriters != 0)
10 return (EBUSY) ;

15 return (0) ;
16 1

my-rwlock/pthread-rwlock_destray.c

Figure 8.3 pthread-rwlock-destroy function: destroy a read-write lock.

ion 8.4 Implementation Using Mutexes and Condition Variables 183

rread_rwlock-rdlock Function

Our pthread-rwlock-rdloc k function is shown in Figure 8.4.

3 int
4 pthread~rwlock~rdlock(pthread~rwlock~t *rw)

5 (
6 int result;

7 if (rw->rw-magic ! = RW-MAGIC)
8 return (EINVAL) ;

9 if ((result = pthread-mutex-lock(&rw->rw-mutex)) != 0)
10 return (result);

11 / * give preference to waiting writers * /
12 while (rw->rw-refcount < 0 I (rw->rw-nwaitwriters > 0) {

13 rw->rw-nwaitreaders++;

15 rw->rw-nwaitreaders--;
16 if (result != 0)
17 break;
18 }

19 if (result == 0)
20 rw->rw-refcount++; / * another reader has a read lock * /

21 pthread-mutex-unlock(&rw->rw-mutex);
2 2 return (result);

23 1
my~rwlock/pfhreadreadrwlock_rdlock.c

Figure 8.4 pthread-rwlock-rdlock function: obtain a read lock.

9-10 Whenever we manipulate the pthread-rwlock-t structure, we must lock the
rw-mutex member.

1-18 We cannot obtain a read lock if (a) the rw-refcount is less than 0 (meaning a
writer currently holds the lock), or (b) if threads are waiting to obtain a write lock
(rw-nwaitwriters is greater than 0). If either of these conditions is true, we incre-
ment rw-nwaitreaders and call pthread-cond-wait on the rw-condreaders
condition variable. We will see shortly that when a read-write lock is unlocked, a check
is first made for any waiting writers, and if none exist, then a check is made for any
waiting readers. If readers are waiting, the rw-condreaders condition variable is
broadcast.

19-20 When we get the read lock, we increment rw-ref count. The mutex is released.

A problem exists in this function: if the calling thread blocks in the call to
pthread-cond-wait and the thread is then canceled, the thread terminates while it holds
the mutex lock, and the counter rw-nwaitreaders is wrong. The same problem exists in our
implementation of pthread~rwlock~wrlock in Figure 8.6. We correct these problems in
Section 8.5.

184 Read-Write Locks Chapter 8

Figure 8.5 shows our implementation of pthread-rwlock-tryrdlock, the non-
blocking attempt to obtain a read lock.

3 int
4 pthread~rwlock~tryrdlock(pthread~rwlock~t *rw)

5 I
6 int result;

7 if (rw->rw-magic != RW-MAGIC)
8 return (EINVAL) ;

9 if ((result = pthread-mutex-lock(&rw->rw-mutex)) != 0)
10 return (result):

11 if (rw->rw-refcount i 0 1) rw->rv-nwaitwriters > 0)
12 result = EBUSY; / * held by a writer or waiting writers * /
13 else
14 rw->rw-refcount++; / * increment count of reader locks * /

15 pthread-mutex-unlock(&rw->rw-mutex);
16 return (result);

17 1
my~rwlock/pthread~rwlock~tryrdlock.c

Figure 8.5 pthread-rwlock-tryrdlock function: try to obtain a read lock.

11-14 If a writer currently holds the lock, or if threads are waiting for a write lock, EBUSY
is returned. Otherwise, we obtain the lock by incrementing rw-ref count.

Our pthread-rwlock-wrlock fundion is shown in Figure 8.6.
11-17 AS long as readers are holding read locks or a writer is holding a write lock

(rw-refcount is not equal to O), we must block. To do so, we increment
rw-nwai twri t ers and call pthread-cond-wai t on the rw-condwri t ers condi-
tion variable. We will see that this condition variable is signaled when the read-write
lock is unlocked and writers are waiting.

18-19 When we obtain the write lock, we set rw-ref count to -1.

pthread-rwlock-trywrlock Function

The nonblocking function pthread-rwl ock-trywrlock is shown in Figure 8.7.
11-IU If rw-ref count is nonzero, the lock is currently held by either a writer or one or

more readers (which one does not matter) and EBUSY is returned. Otherwise, we obtain
the write lock and rw-ref count is set to -1.

Section 8.4 Implementation Using Mutexes and Condition Variables 185

int
pthread~rwlock~wrlock(pthread~rwlock~t *rw)
I

int result;

if (rw->rw-magic != RW-MAGIC)
return (EINVAL) ;

if ((result = pthread-mutex-lock(&rw->rw-mutex)) != 0)
return (result) ;

while (rw->rw-refcount != 0) I
rw->rw-nwaitwriters++;
result = pthread~cond~wait(&rw-~rw~condwriters, &rw->rw-mutex);
rw->rw-nwaitwriters--;
if (result != 0)

break;
1
if (result == 0)

rw->rw-refcount = -1;

pthread~mutex~unlock(&rw->rw-mutex);
return (result) ;

Figure 8.6 pthread-rwlock-wrlock function: obtain a write lock.

int
pthread~rwlock~trywrlock(pthread~rwlock~t *rw)
I

int result ;

if (rw->rw-magic != RW-MAGIC)
return (EINVAL);

if (rw->rw-refcount != 0)
result = EBUSY; / * held by either writer or reader(s) * /

else
rw->rw-refcount = -1; / * available, indicate a writer has it * /

pthread~mutex~unlock(&rw->rw-mutex);
return (result) ;

Figure 8.7 pthread-rwlock-trywrlock function: try to obtain a write lock.

186 Read-Write Locks Chapter 8

Our final function, p thread-rwlock-unlock, is shown in Figure 8.8.

2 #include "pthread-rw1ock.h"

3 int
4 pthread~rwlock~unlock(pthread~rwlock~t *rw)
5 I
6 int result ;

7 if (rw->rw-magic != RW-MAGIC)
8 return (EINVAL) ;

9 if ((result = pthread-mutex-lock(&rw->rw-mutex)) != 0)
10 return (result);

11 if (rw->rw-ref count > 0)
12 rw->rw-refcount--; / * releasing a reader * /
13 else if (rw->rw-refcount == -1)
14 rw->rw-refcount = 0; / * releasing a reader * /
15 else
16 err-dump("rw-refcount = %dlq, rw->rw-refcount);

17 / * give preference to waiting writers over waiting readers * /
18 if (rw->rw-nwaitwriters > 0) [

19 if (rw->rw-refcount == 0)
20 result = pthread-cond-signal(&rw->rw-condwriters);
2 1 1 else if (rw->rw-nwaitreaders > 0)
2 2 result = pthread-cond-broadcast(&rw->rw-condreaders);

23 pthread-mutex-unlock(&rw-zrw-mutex);
24 return (result);

Figure 8.8 pthread~rwlock~unlock function: release a read lock or a write lock.

11-16 If rw-ref count is currently greater than 0, then a reader is releasing a read lock. If
-ref count is currently -1, then a writer is releasing a write lock.

17-22 If a writer is waiting, the rw-condwriters condition variable is signaled if the
lock is available (i.e., if the reference count is 0). We know that only one writer can
obtain the lock, so pthread-cond-signal is called to wake up one thread. If no writ-
ers are waiting but one or more readers are waiting, we call
p t hread-cond-broadcas t on the rw-condreader s condition variable, because all
the waiting readers can obtain a read lock. Notice that we do not grant any additional
read locks as soon as a writer is waiting; otherwise, a stream of continual read requests
could block a waiting writer forever. For this reason, we need two separate i f tests,
and cannot write

/ * give preference to waiting writers over waiting readers * /
if (rw->rw-nwaitwriters > 0 && rw->rw-refcount == 0)

result = pthread-cond-signal(&rw->rw-condwriters);
1 else if (rw->rw-nwaitreaders > 0)

result = pthread-cond-broadcast(&rw->rw-condreaders);

m 8.5 Thread Cancellation 187

We could also omit the test of rw->rw-refcount, but that can result in calls to
pthread-cond-s igna l when read locks are still allocated, which is less efficient.

Thread Cancellation

We alluded to a problem with Figure 8.4 if the calling thread gets blocked in the call to
pthread-cond-wait and the thread is then canceled. A thread may be canceled by
any other thread in the same process when the other thread calls pthread-cancel, a
fundion whose only argument is the thread ID to cancel.

i n t pthread-cancel (pthread-t tid) ; I
Returns: 0 if OK, positive ~ x x x value on error

Cancellation can be used, for example, if multiple threads are started to work on a given
task (say finding a record in a database) and the first thread that completes the task then
cancels the other tasks. Another example is when multiple threads start on a task and
one thread finds an error, necessitating that it and the other threads stop.

To handle the possibility of being canceled, any thread can install (push) and
remove (pop) cleanup handlers.

#include ip thread.h>

void pthread-cleanupsush (void (*function) (void *) , void *arg) ;

void pthread-cleanupsop (i n t execute) ;

These handlers are just fundions that are called

when the thread is canceled (by some thread calling pthread-cancel), or

when the thread voluntarily terminates (either by calling pthread-exit or
returning from its thread start function).

The cleanup handlers can restore any state that needs to be restored, such as unlocking
any mutexes or semaphores that the thread currently holds.

The function argument to pthread-cleanup_push is the address of the function
that is called, and arg is its single argument. pthread-cleanup_pop always removes
the function at the top of the cancellation cleanup stack of the calling threads and calls
the function if execute is nonzero.

We encounter thread cancellation again with Figure 15.31 when we see that a doors server is
canceled if the client terminates while a procedure call is in progress.

188 Read-Write Locks Chapter 8

Example

An example is the easiest way to demonstrate the problem with our implementation in
the previous section. Figure 8.9 shows a time line of our test program, and Figure 8.10
shows the program.

main thread thread1 thread2

O T

pthread-create - - - - - -b get read lock
sleep(1) sleep (3)

returns f - - - - - - - - return
exit

time
Figure 8.9 Time line of program in Figure 8.10.

Create two threads

10-13 TWO threads are created, the first thread executing the function threadl and the
second executing the function thread2. We sleep for a second after creating the first
thread, to allow it to obtain a read lock.

Wait for threads to terminate

14-23 We wait for the second thread first, and verify that its status is PTHREAD-CANCEL.
We then wait for the first thread to terminate and verify that its status is a null pointer.
We then print the three counters in the pthread-rwlock-t structure and destroy the
lock.

)n 8.5 Thread Cancellation 189

3 pthread-rwlock-t rwlock = PTHREAD-RWLOCK-INITIALIZER;
4 pthread-t tidl, tid2;
5 void *thread1 (void *) , *thread2 (void *) ;

6 int
7 main(int argc, char **argv)
8 {
9 void *status;

10 Set-concurrency (2) ;
11 Pthread-create(&tidl, NULL, threadl, NULL);
12 sleep(1) ; / * let thread10 get the lock * /
13 Pthread-create(&tidZ, NULL, thread2. NULL);

14 Pthread-join(tid2, &status);
15 if (status != PTHREAD-CANCELED)
16 printf("thread2 status = %p\nU, status):
17 Pthread-join(tid1, &status);
18 if (status != NULL)
19 printf("thread1 status = %p\nn, status);

2 4 exit (0) ;
25 1

26 void *
27 threadl(void *arg)
28 (
29 Pthread~rwlock~rdlock(&rwlock);
30 printf("threadl0 got a read lock\nn);
31 sleep(3): / * let thread2 block in pthread-rwlockwrlock~) * /
32 pthread-cancel(tid2);
33 sleep(3) ;
34 Pthread~rwlock~unlock(&rwlock);
35 return (NULL);
36 1

37 void *
38 threadZ(void *arg)
39 (
40 printf("thread2() trying to obtain a write lock\nU);
4 1 ~thread~rwlock~wrlock(&rwlock);
42 printf("thread20 got a write lock\nU); / * should not get here * /
4 3 sleep(1) ;
44 Pthread~rwlock~unlock(&rwlock);
4 5 return (NULL) :

Figure 8.10 Test program to show thread cancellation.

190 Read-Write Locks Chapter 8

threadl function

26-36 This thread obtains a read lock and then sleeps for 3 seconds. This pause allows the
other thread to call pthread-rwlock-wrlock and block in its call to
pthread-cond-wait, because a write lock cannot be granted while a read lock is
active. The first thread then calls pthread-cancel to cancel the second thread, sleeps
another 3 seconds, releases its read lock, and terminates.

thread2 function

37- 46 The second thread tries to obtain a write lock (which it cannot get, since the first
thread has already obtained a read lock). The remainder of this function should never
be executed.

If we run this program using the functions from the previous section, we get

solaris % testcancel
threadl () got a read lock
thread20 trying to obtain a write lock

and we never get back a shell prompt. The program is hung. The following steps have
occurred:

1. The second thread calls pthread-rwlock-wrlock (Figure 8.6), which blocks
in its call to pthread-cond-wai t .

2. The s l e e p (3) in the first thread returns, and pthread-cancel is called.

3. The second thread is canceled (it is terminated). When a thread is canceled
while it is blocked in a condition variable wait, the mutex is reacquired before
calling the first cancellation cleanup handler. (We have not installed any cancel-
lation cleanup handlers yet, but the mutex is still reacquired before the thread is
canceled.) Therefore, when the second thread is canceled, it holds the mutex
lock for the read-write lock, and the value of rw-nwaitwriters in Figure 8.6
has been incremented.

4. The first thread calls pthread-rwlock-unlock, but it blocks forever in its call
to pthread-mutex-lock (Figure 8.8), because the mutex is still locked by the
thread that was canceled.

If we remove the call to pthread-rwlock-unlock in our t h r e a d l function, the main
thread will print

rw-refcount = 1, rw-nwaitreaders = 0, rw-nwaitwriters = 1
pthread-rwlock-destroy error: Device busy

The first counter is 1 because we removed the call to pthread_rwlock-unlock, but
the final counter is 1 because that is the counter that was incremented by the second
thread before it was canceled.

The correction for this problem is simple. First we add two lines of code (preceded
by a plus sign) to our pthread-rwlock-rdlock function in Figure 8.4 that bracket
the call to pthread-cond-wai t :

8.5 Thread Cancellation 191

rw->rw-nwaitreaders++;
+ pthread~cleanup~ush(rwlock~cancelrdwait, (void *) rw);

result = pthread-cond-wait(&rw->rw_condreaders, &rw->rw_mutex);
+ pthread-cleanup-pop(0);

rw->rw-nwaitreaders--;

The first new line of code establishes a cleanup handler (our rwlock-cancelrdwait
function), and its single argument will be the pointer rw. If pthread-cond-wait
returns, our second new line of code removes the cleanup handler. The single argument
of 0 to pthread-cleanup_pop specifies that the handler is not called. If this argu-
ment is nonzero, the cleanup handler is first called and then removed.

If the thread is canceled while it is blocked in its call to pthread-cond-wait, no
return is made from this function. Instead, the cleanup handlers are called (after reac-
quiring the associated mutex, which we mentioned in step 3 earlier).

Figure 8.11 shows our rwlock-cancelrdwait function, which is our cleanup
handler for pthread-rwlock-rdlock.

my~rwlock~cancel/pthread~rwlock~rdlock.c
3 static void

7 rw = arg;
8 rw->rw-nwaitreaders--;
9 pthread-mutex-unlock(&rw->rw_mutex);

10 1
my-rwlock-cancel Ipthread-rwlock~rdlock.~

Figure 8.11 rwlock~cancelrdwait function: cleanup handler for read lock.

9 The counter rw-nwai treaders is decremented and the mutex is unlocked. This is
the "state1' that was established before the call to pthread-cond-wait that must be
restored after the thread is canceled.

Our fix to our pthread-rwlock-wrlock function in Figure 8.6 is similar. First we
add two new lines around the call to pthread-cond-wai t:

rw->rw-nwaitwriters++;
+ pthread~cleanup-push(rwlock~cancelwrwait, (void *) rw);

result = pthread-cond-wait(&rw->rw-condwriters, &rw->rw_mutex);
+ pthread-cleanupqop (0) ;

rw->rw-nwaitwriters--:

Figure 8.12 shows our rwlock-cancelwrwait function, the cleanup handler for a
write lock request.

9 The counter rw-nwai twriters is decremented and the mutex is unlocked.

192 Read-Write Locks Chapter 8

3 static void
my-rwlock-cancel Ipthread-rwlock-wr1ock.c

4 rwlock~cancelwrwait(void *arg)
5 {

6 pthread-rwlock-t *rw;

7 rw = arg;
8 rw->rw-nwaitwriters--;

Figure 8.12 rwlock~cancelwrwait function: cleanup handler for write lock.

If we run our test program from Figure 8.10 with these new functions, the results
are now correct.

solaris % testcancel
threadlo got a read lock
thread20 trying to obtain a write lock
rw-refcount = 0, rw-nwaitreaders = 0, rw-nwaitwriters = 0

The three counts are correct, t h r ead1 returns from its call to
pthread-rwlock-unlock, and pthread-rwlock-des t r o y does not return EBUSY.

This section has been an overview of thread cancellation. There are more details; see, for
example, Section 5.3 of [Butenhof 19971.

8.6 Summary

Read-write locks can provide more concurrency than a plain mutex lock when the data
being protected is read more often than it is written. The read-write lock functions
defined by Unix 98, which is what we have described in this chapter, or something simi-
lar, should appear in a future Posix standard. These functions are similar to the mutex
functions from Chapter 7.

Read-write locks can be implemented easily using just mutexes and condition vari-
ables, and we have shown a sample implementation. Our implementation gives prior-
ity to waiting writers, but some implementations give priority to waiting readers.

Threads may be canceled while they are blocked in a call to pthread-cond-wait,
and our implementation allowed us to see this occur. We provided a fix for this prob-
lem, using cancellation cleanup handlers.

Exercises

8.1 Modify our implementation in Section 8.4 to give preference to readers instead of writers.

8.2 Measure the performance of our implementation in Section 8.4 versus a vendor-provided
implementation.

Record Locking

Introduction

The read-write locks described in the previous chapter are allocated in memory as vari-
ables of datatype pthread-rwlock-t. These variables can be within a single process
when the read-write locks are shared among the threads within that process (the
default), or within shared memory when the read-write locks are shared among the
processes that share that memory (and assuming that the PTHREAD-PROCESS-SHARED
attribute is specified when the read-write lock is initialized).

This chapter describes an extended type of read-write lock that can be used by
related or unrelated processes to share the reading and writing of a file. The file that is
being locked is referenced through its descriptor, and the function that performs the
locking is f cntl. These types of locks are normally maintained within the kernel, and
the owner of a lock is identified by its process ID. This means that these locks are for
locking between different processes and not for locking between the different threads
within one process.

In this chapter, we introduce our sequence-number-increment example. Consider
the following scenario, which comes from the Unix print spoolers (the BSD lpr com-
mand and the System V lp command). The process that adds a job to the print queue
(to be printed at a later time by another process) must assign a unique sequence number
to each print job. The process ID, which is unique while the process is running, cannot
be used as the sequence number, because a print job can exist long enough for a given
process ID to be reused. A given process can also add multiple print jobs to a queue,
and each job needs a unique number. The technique used by the print spoolers is to
have a file for each printer that contains the next sequence number to be used. The file
is just a single line containing the sequence number in ASCII. Each process that needs
to assign a sequence number goes through three steps:

194 Record Locking Chapter 9

1. it reads the sequence number file,
2. it uses the number, and
3. it increments the number and writes it back.

The problem is that in the time a single process takes to execute these three steps,
another process can perform the same three steps. Chaos can result, as we will see in
some examples that follow.

What we have just described is a mutual exclusion problem. It could be solved using mutexes
from Chapter 7 or with the read-write locks from Chapter 8. What differs with this problem,
however, is that we assume the processes are unrelated, which makes using these techniques
harder. We could have the unrelated processes share memory (as we describe in Part 4) and
then use some type of synchronization variable in that shared memory, but for unrelated pro-
cesses, f c n t l record locking is often easier to use. Another factor is that the problem we
described with the line printer spoolers predates the availability of mutexes, condition vari-
ables, and read-write locks by many years. Record locking was added to Unix in the early
1980s, before shared memory and threads.

What is needed is for a process to be able to set a lock to say that no other process
can access the file until the first process is done. Figure 9.2 shows a simple program that
does these three steps. The functions my-lock and my-unlock are called to lock the
file at the beginning and unlock the file when the process is done with the sequence
number. We will show numerous implementations of these two functions.

20 We print the name by which the program is being run (argv [0 I) each time around
the loop when we print the sequence number, because we use this main function with
various versions of our locking functions, and we want to see which version is printing
the sequence number.

Printing a process ID requires that we cast the variable of type pid-t to a long and then print
it with the %Id format string. The problem is that the pid-t type is an integer type, but we do
not know its size (i n t or long), so we must assume the largest. If we assumed an i n t and
used a format string of %d, but the type was actually a long, the code would be wrong.

To show the results when locking is not used, the functions shown in Figure 9.1 pro-
vide no locking at all.

lock/locknone.c
1 void
2 my_lock(int f d)
3 (
4 r e tu rn ;
5 1

6 void
7 my-unlock(int f d)
8 {

9 r e tu rn ;

Figure 9.1 Functions that do no locking.

on 9.1 Introduction 195

2 #define SEQFILE "seqno" / * filename * /

int
main(int argc, char **argv)
{

int fd;
long i, seqno;
pid-t pid;
ssize-t n;
char line[MAXLINE + 11 ;

12 pid = getpid() ;
13 fd = Open (SEQFILE, 0-RDWR, FILE-MODE) ;

14 for (i = 0; i c 20; i++) {
15 my-lock (f d) ; / * lock the file * /

16 Lseek(fd, OL, SEEK-SET); / * rewind before read * /
17 n = Read(fd, line, MAXLINE);
18 line[nl = '\0'; / * null terminate for sscanf * /

19 n = sscanf(1ine. "%ld\nn, &seqno);
20 printf ("%s: pid = %Id, seq# = %1d\nw , argv[O] , (long) pid, seqno) ;

21 seqno++; / * increment sequence number * /

2 2 snprintf (line, sizeof (line), "%ld\nW, seqno) ;
23 Lseek(fd, OL, SEEK-SET); / * rewind before write * /
24 Write(fd, line, strlen(1ine));

2 5 my-unlock (fd) ; / * unlock the file * /
2 6 1
27 exit (0) ;

Figure 9.2 main function for file locking example.

If the sequence number in the file is initialized to one, and a single copy of the pro-
gram is run, we get the following output:

solaris %
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :

locknone
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,
pid = 15491,

196 Record Locking Chapter 9

locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,
locknone: pid = 15491,

Notice that the main function (Figure 9.2) is in a file named lockmain. c, but when we com-
pile and link edit this with the functions that perform no locking (Figure 9.1), we call the exe-
cutable locknone. This is because we will provide other implementations of the two
functions mlock and my-unlock that use other locking techniques, so we name the exe-
cutable based on the type of locking that we use.

When the sequence number is again initialized to one, and the program is run twice
in the background, we have the following output:

solaris % locknone & locknone &

solaris % locknone: pid = 15498, seq# = 1
locknone: pid = 15498, seq# = 2
locknone: pid = 15498, seq# = 3
locknone: pid = 15498, seq# = 4
locknone: pid = 15498, seq# = 5
locknone: pid = 15498, seq# = 6
locknone: pid = 15498, seq# = 7
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :
locknone :

pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15498,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,
pid = 15499,

seq# = 8
seq# = 9
seq# = 10
seq# = 11
seq# = 12
seq# = 13
seq# = 14
seq# = 15
seq# = 16
seq# = 17
seq# = 18
seq# = 19
seq# = 2 0 everything through this line is OK
seq# = 1 this is wrong when kernel switches processes
seq# = 2
seq# = 3
seq# = 4
seq# = 5
seq# = 6
seq# = 7
seq# = 8
seq# = 9
seq# = 10
seq# = 11
seq# = 12
seq# = 13
seq# = 14

n 9.2 Record Locking versus File Locking 197

locknone: pid = 15499, seq# = 15
locknone: pid = 15499, seq# = 16
locknone: pid = 15499, seq# = 17
locknone: pid = 15499, seq# = 18
locknone: pid = 15499, seq# = 19
locknone: pid = 15499, seq# = 20

The first thing we notice is that the shell's prompt is output before the first line of out-
put from the program. This is OK and is common when running programs in the back-
ground.

The first 20 lines of output are OK and are generated by the first instance of the pro-
gram (process ID 15498). But a problem occurs with the first line of output from the
other instance of the program (process ID 15499): it prints a sequence number of 1, indi-
cating that it probably was started first by the kernel, it read the sequence number file
(with a value of I), and the kernel then switched to the other process. This process only
ran again when the other process terminated, and it continued executing with the value
of 1 that it had read before the kernel switched processes. This is not what we want.
Each process reads, increments, and writes the sequence number file 20 times (there are
exactly 40 lines of output), so the ending value of the sequence number should be 40.

What we need is some way to allow a process to prevent other processes from
accessing the sequence number file while the three steps are being performed. That is,
we need these three steps to be performed as an atomic operation with regard to other
processes. Another way to look at this problem is that the lines of code between the
calls to my-lock and my-unlock in Figure 9.2 form a critical region, as we described in
Chapter 7.

When we run two instances of the program in the background as just shown, the
output is nondeterministic. There is no guarantee that each time we run the two pro-
grams we get the same output. This is OK if the three steps listed earlier are handled
atomically with regard to other processes, generating an ending value of 40. But this is
not OK if the three steps are not handled atomically, often generating an ending value
less than 40, which is an error. For example, we do not care whether the first process
increments the sequence number from 1 to 20, followed by the second process incre-
menting it from 21 to 40, or whether each process runs just long enough to increment
the sequence number by two (the first process would print 1 and 2, then the next pro-
cess would print 3 and 4, and so on).

Being nondeterministic does not make it incorrect. Whether the three steps are per-
formed atomically is what makes the program correct or incorrect. Being nondetermin-
istic, however, usually makes debugging these types of programs harder.

Record Locking versus File Locking

The Unix kernel has no notion whatsoever of records within a file. Any interpretation
of records is up to the applications that read and write the file. Nevertheless, the term
record locking is used to describe the locking features that are provided. But the applica-
tion specifies a byte range within the file to lock or unlock. Whether this byte range has
any relationship to one or more logical records within the file is left to the application.

198 Record Locking Chapter 9

Posix record locking defines one special byte range-a starting offset of 0 (the
beginning of the file) and a length of 0-to specify the entire file. Our remaining dis-
cussion concerns record locking, with file locking just one special case.

The term granularity is used to denote the size of the object that can be locked. With ,

Posix record locking, this granularity is a single byte. Normally the smaller the granu-
larity, the greater the number of simultaneous users allowed. For example, assume five
processes access a given file at about the same time, three readers and two writers. Also
assume that all five are accessing different records in the file and that each of the five
requests takes about the same amount of time, say 1 second. If the locking is done at the
file level (the coarsest granularity possible), then all three readers can access their
records at the same time, but both writers must wait until the readers are done. Then
one writer can modify its record, followed by the other writer. The total time will be
about 3 seconds. (We are ignoring lots of details in these timing assumptions, of
course.) But if the locking granularity is the record (the finest granularity possible),
then all five accesses can proceed simultaneously, since all five are working on different
records. The total time would then be only 1 second.

Berkeley-derived implementations of Unix support file locking to lock or unlock an entire file,
with no capabilities to lock or unlock a range of bytes within the file. This is provided by the
flock function.

History

Various techniques have been employed for file and record locking under Unix over the
years. Early programs such as UUCP and line printer daemons used various tricks that
exploited characteristics of the filesystem implementation. (We describe three of these
filesystem techniques in Section 9.8.) These are slow, however, and better techniques
were needed for the database systems that were being implemented in the early 1980s.

The first true file and record locking was added to Version 7 by John Bass in 1980,
adding a new system call named locking. This provided mandatory record locking
and was picked up by many versions of System I11 and Xenix. (We describe the differ-
ences between mandatory and advisory locking, and between record locking and file
locking later in this chapter.)

4.2BSD provided file locking (not record locking) with its flock function in 1983.
The 1984 /usr/group Standard (one of the predecessors to X/Open) defined the
lockf function, which provided only exclusive locks (write locks), not shared locks
(read locks).

In 1984, System V Release 2 (SVR2) provided advisory record locking through the
f cntl function. The lockf function was also provided, but it was just a library func-
tion that called fcntl. (Many current systems still provide this implementation of
lockf using fcntl.) In 1986, System V Release 3 (SVR3) added mandatory record
locking to f cnt 1 using the set-group-ID bit, as we describe in Section 9.5.

The 1988 Posix.1 standard standardized advisory file and record locking with the
f cnt 1 function, and that is what we describe in this chapter. The X/Open Portability
Guide Issue 3 (XPG3, dated 1988) also specifies that record locking is to be provided
through the f cnt 1 function.

9.3 Posix f cntl Record Locking 199

Posix fcntl Record Locking

The Posix interface for record locking is the f cnt 1 function.

#include <fcntl.h>

int fcntl(inc fd, int crnd, . . . / * struct flock *arg * /) ;

Returns: depends on cmd if OK, -1 on error

Three values of the crnd argument are used with record locking. These three commands
require that the third argument, arg, be a pointer to an flock structure:

struct flock [

short 1-type; / * F-RDLCK, F-WRLCK, F-UNLCK * /
short 1-whence; / * SEEK-SET, SEEKCUR, SEEK-END * /
off-t 1-start; / * relative starting offset in bytes * /
off-t 1-len; / * #bytes; 0 means until end-of-file * /
pid-t lqid; / * PID returned by F-GETLK * /

1;

The three commands are:

F-SETLK Obtain (an 1-type of either F-RDLCK or F-WRLCK) or release (an 1-type
of F-UNLCK) the lock described by the flock structure pointed to by arg.

If the lock cannot be granted to the process, the function returns immedi-
ately (it does not block) with an error of EACCES or EAGAIN.

F-SETLKW This command is similar to the previous command; however, if the lock
cannot be granted to the process, the thread blocks until the lock can be
granted. (The w at the end of this command name means "wait.")

F-GETLK Examine the lock pointed to by arg to see whether an existing lock would
prevent this new lock from being granted. If no lock currently exists that
would prevent the new lock from being granted, the 1-type member of
the flock structure pointed to by arg is set to F-UNLCK. Otherwise, infor-
mation about the existing lock, including the process ID of the process
holding the lock, is returned in the flock structure pointed to by arg (i.e.,
the contents of the structure are overwritten by this function).

Realize that issuing an F-GETLK followed by an F-SETLK is not an atomic
operation. That is, if we call F-GETLK and it sets the 1-type member to
F-uNLCK on return, this does not guarantee that an immediate issue of the
F-SETLK will return success. Another process could run between these
two calls and obtain the lock that we want.

The reason that the F-GETLK command is provided is to return informa-
tion about a lock when F-SETLK returns an error, allowing us to determine
who has the region locked, and how (a read lock or a write lock). But even
in this scenario, we must be prepared for the F-GETLK command to return

200 Record Locking Chapter 9

that the region is unlocked, because the region can be unlocked between
the F-SETLK and F-GETLK commands.

The flock structure describes the type of lock (a read lock or a write lock) and the
byte range of the file to lock. As with 1 seek, the starting byte offset is specified as a rel-
ative offset (the 1-start member) and how to interpret that relative offset (the
1-whenc e member) as

SEEK-SET: 1-start relative to the beginning of the file,
SEEK-CUR: 1-s tart relative to the current byte offset of the file, and
SEEK-END: 1-s tart relative to the end of the file.

The 1-len member specifies the number of consecutive bytes starting at that offset. A
length of 0 means "from the starting offset to the largest possible value of the file off-
set." Therefore, two ways to lock the entire file are

1. specify an 1-whence of SEEK-SET, an 1-start of 0, and an 1-len of 0; or

2. position the file to the beginning using lseek and then specify an 1-whence of
SEEK-CUR, an 1-s tart of 0, and an 1-len of 0.

The first of these two ways is most common, since it requires a single function call
(f cntl) instead of two function calls. (See Exercise 9.10 also.)

A lock can be for reading or writing, and at most, one type of lock (read or write)
can exist for any byte of a file. Furthermore, a given byte can have multiple read locks
but only a single write lock. This corresponds to the read-write locks that we described
in the previous chapter. Naturally an error occurs if we request a read lock when the
descriptor was not opened for reading, or request a write lock when the descriptor was
not opened for writing.

All locks associated with a file for a given process are removed when a descriptor
for that file is closed by that process, or when the process holding the descriptor termi-
nates. Locks are not inherited by a child across a fork.

This cleanup of existing locks by the kernel when the process terminates is provided only by
f cntl record locking and as an option with System V semaphores. The other synchronization
techniques that we describe (mutexes, condition variables, read-write locks, and Pmix
semaphores) do not perform this cleanup on process termination. We talked about this at the
end of Section 7.7.

Record locking should not be used with the standard I/O library, because of the
internal buffering performed by the library. When a file is being locked, read and
write should be used with the file to avoid problems.

Example

We now return to our example from Figure 9.2 and recode the two functions my-lock
and my-unlock from Figure 9.1 to use Posix record locking. We show these functions
in Figure 9.3.

I 9.3 Posix f cnt 1 Record Locking 201

2 void
3 my-lock(int fd)

4
5 struct flock lock;

6 1ock.l-type = F-WRLCK;
7 1ock.l-whence = SEEK-SET:
8 lock.1-start = 0;
9 lock.1-len = 0; / * write lock entire file * /

10 Fcntl(fd, F-SETLKW, &lock);
11 1

12 void
13 my-unlock(int fd)

14 I
15 struct flock lock;

16 1ock.l-type = F-UNLCK;
17 1ock.l-whence = SEEK-SET;
18 lock.1-start = 0;
19 1ock.l-len = 0; / * unlock entire file * /

20 Fcntl (fd, F-SETLK, &lock) ;

lock/lockfcntl.c

Figure 9.3 Posix f cnt 1 locking.

Notice that we must specify a write lock, to guarantee only one process at a time
updates the sequence number. (See Exercise 9.4.) We also specify a command of
F-SETLKW when obtaining the lock, because if the lock is not available, we want to
block until it is available.

Given the definition of the flock structure shown earlier, we might think we could initialize
our structure in my-lock as

static struct flock lock = (F-WRLCK, SEEK-SET, 0, 0, 0);

but this is wrong. Posix defines only the required members that must be in a structure, such as
flock. Implementations can arrange these members in any order, and can also add imple-
mentationspecific members.

We do not show the output, but it appears correct. Realize that running our simple
program from Figure 9.2 does not let us state that our program works. If the output is
wrong, as we have seen, we can say that our program is not correct, but running two
copies of the program, each looping 20 times is not an adequate test. The kernel could
run one program that updates the sequence number 20 times, and then run the other
program that updates the sequence number another 20 times. If no switch occurs
between the two processes, we might never see the error. A better test is to run the
functions from Figure 9.3 with a m a i n function that increments the sequence number
say, ten thousand times, without printing the value each time through the loop. If we
initialize the sequence number to 1 and run 20 copies of this program at the same time,
then we expect the ending value of the sequence number file to be 200,001.

202 Record Locking Chapter 9

Example: Simpler Macros

In Figure 9.3, to request or release a lock takes six lines of code. We must allocate a
structure, fill in the structure, and then call fcntl. We can simplify our programs by
defining the following seven macros, which are from Section 12.3 of APUE:

#define read-lock(fd, offset, whence, len) \
lock-reg(fd, F-SETLK, F-RDLCK, offset, whence, len)

#define readw-lock(fd, offset, whence, len) \
lock-reg(fd, F-SETLKW, FRDLCK, offset, whence, len)

#define write-lock(fd, offset, whence, len) \
lock-reg(fd, F-SETLK, F-WRLCK, offset, whence, len)

#define writew-lock(fd, offset, whence, len) \
lock-reg(fd, F-SETLKW, F-WRLCK, offset, whence, len)

#define un-lock(fd, offset, whence, len) \
lock-reg(fd, F-SETLK, F-UNLCK, offset, whence, len)

#define is-read-lockable(fd, offset, whence, len) \
lock-test(fd, F-RDLCK, offset, whence, len)

#define is-write-lockable(fd, offset, whence, len) \
-lock-test(fd, F-WRLCK, offset, whence, len)

These macros use our lock-reg and lock-tes t functions, which are shown in Fig-
ures 9.4 and 9.5. When using these macros, we need not worry about the structure or
the function that is actually called. The first three arguments to these macros are pur-
posely the same as the first three arguments to the lseek function.

We also define two wrapper functions, Lock-reg and Lock-test, which termi-
nate with an error upon an f cntl error, along with seven macros whose names also
begin with a capital letter that call these two wrapper functions.

Using these macros, our my-lock and my-unlock functions from Figure 9.3
become

#define my-lock(fd) (Writew-lock(fd, 0, SEEK-SET, 0))
#define my-unlock(fd) (Un-lock(fd, 0, SEEK-SET, 0))

2 int
3 lock-reg(int fd, int cmd. int type, off-t offset, int whence, off-t len)
4 I
5 struct flock lock;

6 1ock.l-type = type; / * F-RDLCK, F-WRLCK, F-UNLCK * /
7 lock-1-start = offset: / * byte offset, relative to 1-whence * /
8 lock.1-whence = whence; / * SEEK-SET, SEEK-CUR, SEEK-END * /
9 lock.1-len = len; / * #bytes (0 means to EOF) * /

10 return (fcntl(fd, cmd, &lock)); / * -1 upon error * /
11 1

lib/lock-reg.c
Figure 9.4 Call f cnt 1 to obtain or release a lock.

9.4 Advisory Locking 203

2 pid-t
3 lock-test(int fd, int type, off-t offset, int whence, off-t len)
4 {
5 struct flock lock;

6 1ock.l-type = type; / * F-RDLCK or F-WRLCK * /
7 1ock.l-start = offset; / * byte offset, relative to 1-whence * /
8 lock.1-whence = whence; / * SEEK-SET, SEEK-CUR, SEEK-END * /
9 lock.1-len = len; / * #bytes (0 means to EOF) * /

10 if (fcntl(fd, FGETLK, &lock) == -1)
11 return (-1); / * unexpected error * /

12 if (lock. 1-type == F-UNLCK)
13 return (0) ; / * false, region not locked by another proc * /
14 return (1ock.lqid); / * true, return ~ositive PID of lock owner * /

Figure 9.5 Call f cnt 1 to test a lock.

Advisory Locking

Posix record locking is called advisory locking. This means the kernel maintains correct
knowledge of all files that have been locked by each process, but it does not prevent a
process from writing to a file that is read-locked by another process. Similarly, the ker-
nel does not prevent a process from reading from a file that is write-locked by another
process. A process can ignore an advisory lock and write to a file that is read-locked, or
read from a file that is write-locked, assuming the process has adequate permissions to
read or write the file.

Advisory locks are fine for cooperating processes. The programming of daemons used
by network programming is an example of cooperative processes-the programs that
access a shared resource, such as the sequence number file, are all under control of the
system administrator. As long as the actual file containing the sequence number is not
writable by any process, some random process cannot write to the file while it is locked.

le: Noncooperating Processes

We can demonstrate that Posix record locking is advisory by running two instances of
our sequence number program: one instance (lockf cntl) uses the functions from Fig-
ure 9.3 and locks the file before incrementing the sequence number, and the other
(locknone) uses the functions from Figure 9.1 that perform no locking.

solaris % lockfcntl & locknone &

lockfcntl: pid = 18816, seq# = 1
lockfcntl: pid = 18816, seq# = 2
lockfcntl: pid = 18816, seq# = 3

204 Record Locking Chapter 9

lockfcntl: pid = 18816, seq# = 4
lockfcntl: pid = 18816, seq# = 5
lockfcntl: pid = 18816, seq# = 6
lockfcntl: pid = 18816, seq# = 7
lockfcntl: pid = 18816, seq# = 8
lockfcntl: pid = 18816, seq# = 9
lockfcntl: pid = 18816, seq# = 10
lockfcntl: pid = 18816, seq# = 11
locknone: pid = 18817, seq# = 11 switch processes; error
locknone: pid = 18817, seq# = 12
locknone: pid = 18817, seq# = 13
locknone: pid = 18817, seq# = 14
locknone: pid = 18817, seq# = 15
locknone: pid = 18817, seq# = 16
locknone: pid = 18817, seq# = 17
locknone: pid = 18817, seq# = 18
lockfcntl: pid = 18816, seq# = 12 switch~rocesses;errur
lockfcntl: pid = 18816, seq# = 13
lockfcntl: pid = 18816, seq# = 14
lockfcntl: pid = 18816, seq# = 15
lockfcntl: pid = 18816, seq# = 16
lockfcntl: pid = 18816, seq# = 17
lockfcntl: pid = 18816, seq# = 18
lockfcntl: pid = 18816, seq# = 19
lockfcntl: pid = 18816, seq# = 20
locknone: pid = 18817, seq# = 19 switch processes;error
locknone: pid = 18817, seq# = 20
locknone: pid = 18817, seq# = 21
locknone: pid = 18817, seq# = 22
locknone: pid = 18817, seq# = 23
locknone: pid = 18817, seq# = 24
locknone: pid = 18817, seq# = 25
locknone: pid = 18817, seq# = 26
locknone: pid = 18817, seq# = 27
locknone: pid = 18817, seq# = 28
locknone: pid = 18817, seq# = 29
locknone: pid = 18817, seq# = 30

Our lockf cntl program runs first, but while it is performing the three steps to incre-
ment the sequence number from 11 to 12 (and while it holds the lock on the entire file),
the kernel switches processes and our locknone program runs. This new program
reads the sequence number value of 11 before our lockf cntl program writes it back to
the file. The advisory record lock held by the lockf cntl program has no effect on our
1 ocknone program.

Mandatory Locking

Some systems provide another type of record locking, called mandatory locking. With a
mandatory lock, the kernel checks every read and write request to verify that the
operation does not interfere with a lock held by a process. For a normal blocking
descriptor, the read or write that conflicts with a mandatory lock puts the process to

9.5 Mandatory Locking 205

sleep until the lock is released. With a nonblocking descriptor, issuing a read or write
that conflicts with a mandatory lock causes an error return of EAGAIN.

Posix.1 and Unix 98 define only advisory locking. Many implementations derived from
System V, however, provide both advisory and mandatory locking. Mandatory record locking
was introduced with System V Release 3.

To enable mandatory locking for a particular file,

the group-execute bit must be off, and
the set-group-ID bit must be on.

Note that having the set-user-ID bit on for a file without having the user-execute bit on
also makes no sense, and similarly for the set-group-ID bit and the group-execute bit.
Therefore, mandatory locking was added in this way, without affecting any existing
user software. New system calls were not required.

On systems that support mandatory record locking, the 1s command looks for this
special combination of bits and prints an 1 or L to indicate that mandatory locking is
enabled for that file. Similarly, the chmod command accepts a specification of 1 to
enable mandatory locking for a file.

On a first glance, using mandatory locking should solve the problem of an uncooperat-
ing process, since any reads or writes by the uncooperating process on the locked file
will block that process until the lock is released. Unfortunately, the timing problems are
more complex, as we can easily demonstrate.

To change our example using f cnt 1 to use mandatory locking, all we do is change
the permission bits of the seqno file. We also run a different version of the main func-
tion that takes the for loop limit from the first command-line argument (instead of
using the constant 20) and does not call print f each time around the loop.

s o l a r i s % cat > seqno
1
D

s o l a r i s % 1s -1 seqno

first initialize value to 1

Control-D is our terminal end-of-file character

- rw-r--r - - 1 rstevens other1 2 Oct 7 11:24 seqno
s o l a r i s % chmod +1 seqno enable mandatory locking
s o l a r i s % 1s -1 seqno
w - - 1 - 1 rstevens other1 2 Oct 7 11:24 seqno

We now start two programs in the background: loopf cntl uses f cntl locking, and
loopnone does no locking. We specify a command-line argument of 10,000, which is
the number of times that each program reads, increments, and writes the sequence
number.

s o l a r i s % loopf cntl 10000 & lwpnone 10000 & start both programs in the background
s o l a r i s % wait wait for both background jobs to finish
s o l a r i s % cat seqno and look at the sequence number
14378 error: should be 20,001

206 Record Locking Chapter 9

Each time we run these two programs, the ending sequence number is normally
between 14,000 and 16,000. If the locking worked as desired, the ending value would
always be 20,001. To see where the error occurs, we need to draw a time line of the indi-
vidual steps, which we show in Figure 9.6.

lockf cntl locknone

1. open()
2. lock file
3. r e a d () + 1
4. increment
5. w r i t e () + 2
6. unlock file

r 7. lock file
8. r e a d () + 2

kernel switch +
10. open()
11. read () blocks

t kernel switch

L 13. increment
14. w r i t e 0 + 3
15. unlock file

kernel switch +

t kernel switch

17. read () -1 3
18. increment
19. w r i t e () + 4
20. read () + 4
21. increment
22. w r i t e () + 5
23. read () + 5

25. lock file
26. read () + 5
27. increment
28. w r i t e () + 6
29. unlock file
30. lock file
31. r e a d () + 6

2 32. increment
a 33. w r i t e () +7

34. unlock file
kernel switch+

36. increment
37. w r i t e 0 + 6

Figure 9.6 Time line of l oop fcn t l and loopnone programs.

We assume that the loopfcntl program starts first and executes the first eight steps
shown in the figure. The kernel then switches processes while loopf cntl has a record
lock on the sequence number file. loopnone is then started, but its first read blocks,

n 9.6 Priorities of Readers and Writers 207

because the file from which it is reading has an outstanding mandatory lock owned by
another process. We assume that the kernel switches back to the first program and it
executes steps 13,14, and 15. This behavior is the type that we expect: the kernel blocks
the read from the uncooperating process, because the file it is trying to read is locked
by another process.

The kernel then switches to the locknone program and it executes steps 17
through 23. The reads and wri tes are allowed, because the first program unlocked
the file in step 15. The problem, however, appears when the program reads the value
of 5 in step 23 and the kernel then switches to the other process. It obtains the lock and
also reads the value of 5. This process increments the value twice, storing a value of 7,
before the next process runs in step 36. But the second process writes a value of 6 to the
file, which is wrong.

What we see in this example is that mandatory locking prevents a process from
reading a file that is locked (step 111, but this does not solve the problem. The problem
is that the process on the left is allowed to update the file (steps 25 through 34) while the
process on the right is in the middle of its three steps to update the sequence number
(steps 23, 36, and 37). If multiple processes are updating a file, all the processes must
cooperate using some form of locking. One rogue process can create havoc.

Priorities of Readers and Writers

In our implementation of read-write locks in Section 8.4, we gave priority to waiting
writers over waiting readers. We now look at some details of the solution to the readers
and writer problem provided by f c n t l record locking. What we want to look at is how
pending lock requests are handled when a region is already locked, something that is
not specified by Posix.

iple: Additional Read Locks While a Write Lock Is Pending

The first question we ask is: if a resource is read-locked with a write lock queued, is
another read lock allowed? Some solutions to the readers and writers problem do not
allow another reader if a writer is already waiting, because if new read requests are con-
tinually allowed, a possibility exists that the already pending write request will never be
allowed.

To test how f c n t l record locking handles this scenario, we write a test program
that obtains a read lock on an entire file and then forks two children. The first child
tries to obtain a write lock (and will block, since the parent holds a read lock on the
entire file), followed in time by the second child, which tries to obtain a read lock. Fig-
ure 9.7 shows a time line of these requests, and Figure 9.8 is our test program.

Parent opens file and obtains read lock

-8 The parent opens the file and obtains a read lock on the entire file. Notice that we
call read-lock (which does not block but returns an error if the lock cannot be
granted) and not readw-lock (which can wait), because we expect this lock to be
granted immediately. We also print a message with the current time (our gf-time
function from p. 404 of UNPv1) when the lock is granted.

208 Record Locking
7

Chapter 9

parent

get read lock

%2 -
2
E!
4 -
2

1
release lock

0-

1 --

2--

3--

4--

5

6

7--

8--

9--

child #1

try write lock
I
I
I
I
I
I
I

13
I u
12 3 I$

glbc
I.'=
I .2

I
I
I
I
I

i
gets write lock

release lock

--

--

1

child #2

gets read lock

time

release lock

Figure 9.7 Determine whether another read lock is allowed while a write lock is pending.

fork first child

9-19 The first child is created and it sleeps for 1 second and then blocks while waiting for
a write lock of the entire file. When the write lock is granted, this first child holds the
lock for 2 seconds, releases the lock, and terminates.

fork second child

20-30 The second child is created, and it sleeps for 3 seconds to allow the first child's write
lock to be pending, and then tries to obtain a read lock of the entire file. We can tell by
the time on the message printed when readw-lock returns whether this read lock is
queued or granted immediately. The lock is held for 4 seconds and released.

Parent holds read lock for 5 seconds

31-35 The parent holds the read lock for 5 seconds, releases the lock, and terminates.

I 9.6 Priorities of Readers and Writers 209

lock/test2 .c
1 #include "unpipc . h"

2 int
3 main(int argc, char **argv)
4 {

int fd;

fd = Open("testl.dataW, 0-RDWR 1 0-CREAT, FILE-MODE);

Read-lock(fd, 0, SEEK-SET, 0); / * parent read locks entire file * /
printf("%s: parent has read lock\nN, Gf-time0) ;

if (Fork0 ==0) (
/ * first child * /

sleep (1) ;
printf("%s: first child tries to obtain write lock\nn, Gf-time());
Writew-lock(fd, 0, SEEK-SET, 0); / * this should block * /
printf("%s: first child obtains write lock\nW, Gf-time());
sleep(2) ;
Un-lock (f d, 0, SEEK-SET, 0) ;
printf("%s: first child releases write lock\nV, Gf-time0
exit (0) ;

1
if (Fork0 == 0) {

/ * second child * /
sleep(3);
printf("%s: second child tries to obtain read lock\n", Gf
Readw-lock (f d, 0, SEEK-SET, 0) ;
printf("%s: second child obtains read lock\nW, Gf-time(
sleep(4);
Un-lock(fd, 0, SEEK-SET, 0);
printf("%s: second child releases read lock\nW, Gf-time
exit (0) ;

1
/ * parent * /

sleep(5);
Un-lock(fd, 0, SEEK-SET, 0);
printf("%s: parent releases read lock\nU, Gf-time());
exit (0) ;

lock/ test2 r
Figure 9.8 Determine whether another read lock is allowed while a write lock is pending.

The time line shown in Figure 9.7 is what we see under Solaris 2.6, Digital Unix
4.OB, and BSD/OS 3.1. That is, the read lock requested by the second child is granted
even though a write lock is already pending from the first child. This allows for poten-
tial starvation of write locks as long as read locks are continually issued. Here is the
output with some blank lines added between the major time events for readability:

210 Record Locking Chapter 9

alpha % test2
16:32:29.674453: parent has read lock

first child tries to obtain write lock

second child tries to obtain read lock
second child obtains read lock

parent releases read lock

second child releases read lock
first child obtains write lock

first child releases write lock

Example: Do Pending Writers Have a Priority Over Pending Readers?

The next question we ask is: do pending writers have a priority over pending readers?
Some solutions to the readers and writers problem build in this priority.

Figure 9.9 is our test program and Figure 9.10 is a time line of our test program.

Parent creates file and obtains write lock

6-8 The parent creates the file and obtains a write lock on the entire file.

fork and create first child

9-19 The first child is created, and it sleeps for 1 second and then requests a write lock on
the entire file. We know this will block, since the parent has a write lock on the entire
file and holds this lock for 5 seconds, but we want this request queued when the par-
ent's lock is released.

fork and create second child

20-30 The second child is created, and it sleeps for 3 seconds and then requests a read lock
on the entire file. This too will be queued when the parent releases its write lock.

Under both Solaris 2.6 and Digital Unix 4.OB, we see that the first child's write lock
is granted before the second child's read lock, as we show in Figure 9.10. But this
doesn't tell us that write locks have a priority over read locks, because the reason could
be that the kernel grants the lock requests in FIFO order, regardless whether they are
read locks or write locks. To verlfy this, we create another test program nearly identical
to Figure 9.9, but with the read lock request occurring at time 1 and the write lock
request occurring at time 3. These two programs show that Solaris and Digital Unix
handle lock requests in a FIFO order, regardless of the type of lock request. These two
programs also show that BSD/OS 3.1 gives priority to read requests.

m 9.6 Priorities of Readers and Writers 211

2 int
3 main(int argc, char **argv)
4 (

5 int fd;

6 fd = Open("testl.data", 0-RDWR I 0-CREAT, FILE-MODE);
7 Write-lock(fd, 0, SEEK-SET, 0) ; / * parent write locks entire file * /
8 printf("%s: parent has write lock\nW, Gf-time0) ;

if (Fork() == 0) {

/ * first child * /
sleep(1) ;
printf("%s: first child tries to obtain write lock\nu, Gf-time());
Writew-lock(fd, 0, SEEK-SET, 0) ; / * this should block * /
printf("%s: first child obtains write lock\nN, Gf-time());
sleep(2);
Un-lock(fd, 0, SEEK-SET, 0) ;
printf("%s: first child releases write lock\nW, Gf-time());
exit (0) ;

1
if (Fork0 == 0) I

/ * second child * /
sleep (3) ;
printf("%s: second child tries to obtain read lock\nW, Gf-time());
Readw-lock(fd, 0, SEEK-SET, 0);
printf("%s: second child obtains read lock\nn, Gf-time());
sleep(4);
Un-lock(fd, 0, SEEK-SET, 0);
printf("%s: second child releases read lock\nn, Gf-time());
exit (0) ;

1
/ * parent * /
sleep(5) ;
Un-lock(fd, 0, SEEK-SET, 0);

34 printf("%s: parent releases write lock\n", Gf-time());
35 exit (0) ;

Figure 9.9 Test whether writers have a priority over readers.

212 Record Locking

1

Chapter 9

0-

1-

2-

3-

4-

5-

6 -

7 -

8-

9-

10 -

11 -

tin

parent

- get write lock

child #1 child #2

- release lock

try write lock
I
I
I

I&
1:

B I.2
8 1 bn

try read lock
a 1.3 I

1.; I
I 3 I
I +

gets write lock

release lock gets read lock

release lock

Figure 9.10 Test whether writers have a priority over readers.

Here is the output from Figure 9.9, from which we constructed the time line in Fig-
ure 9.10:

a lpha % teat3
16:34:02.810285: parent has w r i t e lock

16:34:03.848166: f i r s t c h i l d t r i e s t o ob ta in w r i t e lock

16:34:05.861082: second c h i l d t r i e s t o ob ta in r ead lock

16:34:07.858393: parent r e l e a s e s w r i t e lock
16:34:07.865222: f i r s t c h i l d ob ta ins w r i t e lock

16:34:09.865987: f i r s t c h i l d r e l e a s e s w r i t e lock
16:34:09.872823: second c h i l d ob ta ins read lock

16:34:13.873822: second c h i l d r e l e a s e s read lock

1 Section 9.7 Starting Only One Copy of a Daemon 213

Starting Only One Copy of a Daemon

A common use for record locking is to make certain that only one copy of a program
(such as a daemon) is running at a time. The code fragment shown in Figure 9.11 would
be executed when a daemon starts.

2 #define PATH-PIDFILE "pidfile"

3 int
4 rnain(int argc, char **argv)
5 (
6 int pidf d;
7 char 1 ine [MAXLINE] ;

8 / * open the PID file, create if nonexistent * /
9 pidfd = Open(PATH-PIDFILE, 0-RDWR I 0-CREAT, FILE-MODE);

/ * try to write lock the entire file * /
if (write-lock(pidfd, 0, SEEK-SET, 0) < 0) I

if (errno == EACCES I I errno == EAGAIN)
err-quit("unab1e to lock %s, is %s already running?",

PATH-PIDFILE, argv[O]);
else

err-sys("unab1e to lock %sW, PATH-PIDFILE);
1

/ * write my PID, leave file open to hold the write lock * /
snprintf (line, sizeof (line), "%ld\nW, (long) getpido) ;
Ftruncate (pidfd, 0) ;
Write(pidfd, line, strlen(1ine)) ;

22 / * then do whatever the daemon does . . . * /

Figure 9.11 Make certain only one copy of a program is running.

Open and lock a file

7 The daemon maintains a 1-line file that contains its process ID. This file is opened,
being created if necessary, and then a write lock is requested on the entire file. If the
lock is not granted, then we know that another copy of the program is running, and we
print an error and terminate.

Many Unix systems have their daemons write their process ID to a file. Solaris 2.6 stores some
of these files in the /etc directory. Digital Unix and BSD/OS both store these files in the
/var / run directory.

Write our PID to file

'1 We truncate the file to 0 bytes and then write a line containing our PID. The reason
for truncating the file is that the previous copy of the program (say before the system
was rebooted) might have had a process ID of 23456, whereas this instance of the

214 Record Locking Chapter 9

program has a process ID of 123. If we just wrote the line, without truncating the file,
the contents would be 123\n6\n. While the first line would still contain the process
ID, it is cleaner and less confusing to avoid the possibility of a second line in the file.

Here is a test of the program in Figure 9.11:

solaris % onedaemon & start first copy
[1 1 22388
solaris % cat pidfile check PID written to file
22388
solaris % onedaemon and try to start a second copy
unable to lock pidfile, is onedaemon already running?

Other ways exist for a daemon to prevent another copy of itself from being started.
A semaphore could also be used. The advantages in the method shown in this section
are that many daemons already write their process ID to a file, and should the daemon
prematurely crash, the record lock is automatically released by the kernel.

9.8 Lock Files

Posix.1 guarantees that if the open function is called with the 0-CREAT (create the file if
it does not already exist) and 0-EXCL flags (exclusive open), the function returns an
error if the file already exists. Furthermore, the check for the existence of the file and
the creation of the file (if it does not already exist) must be atomic with regard to other
processes. We can therefore use the file created with this technique as a lock. We are
guaranteed that only one process at a time can create the file (i.e., obtain the lock), and
to release the lock, we just unlink the file.

Figure 9.12 shows a version of our locking functions using this technique. If the
open succeeds, we have the lock, and the my-lock function returns. We close the file
because we do not need its descriptor: the lock is the existence of the file, regardless of
whether the file is open or not. If open returns an error of EEXIST, then the file exists
and we try the open again.

There are three problems with this technique.

1. If the process that currently holds the lock terminates without releasing the lock,
the filename is not removed. There are ad hoc techniques to deal with
this-check the last-access time of the file and assume it has been orphaned if it
is older than some amount of time-but none are perfect. Another technique is
to write the process ID of the process holding the lock into the lock file, so that
other processes can read this process ID and check whether that process is still
running. This is imperfect because process IDS are reused after some time.

This scenario is not a problem with f cntl record locking, because when a pro-
cess terminates, any record locks held by that process are automatically
released.

2. If some other process currently has the file open, we just call open again, in an
infinite loop. This is called polling and is a waste of CPU time. An alternate

n 9.8 Lock Files 215

2 #define LOCKFILE "/tmp/seqno.lock"

3 void
4 my-lock(int fd)

5 {
6 int tempfd;

7 while ((tempfd = open(L0CKFILE. 0-RDWR I 0-CREAT I 0-EXCL, FILE-MODE)) < 0) {

8 if (errno != EEXIST)
9 err-sys("open error
10 / * someone else has the
11 1
12 Close (tempfd) ;

13 1

for lock file") ;
lock, loop around and try again * /

/ * opened the file, we have the lock */

14 void
15 my-unlock (int fd)

16 {
17 Unlink (LOCKFILE) ;
18 1

/ * release lock by removing file * /

lock/lockopen.c

Figure 9.12 Lock functions using open with 0-CREAT and 0-EXCL flags.

technique would be to s l e e p for 1 second, and then try the open again. (We
saw this same problem in Figure 7.5.)

This is not a problem with f c n t l record locking, assuming that the process that
wants the lock specifies the FSETLKW command. The kernel puts the process to
sleep until the lock is available and then awakens the process.

3. Creating and deleting a second file by calling open and unlink involves the
filesystem and normally takes much longer than calling f c n t l twice (once to
obtain the lock and once to release the lock). When the time was measured to
execute 1000 loops within our program that increments the sequence number,
f c n t l record locking was faster than calling open and unlink by a factor of
75.

Two other quirks of the Unix filesystem have also been used to provide ad hoc lock-
ing. The first is that the l i n k function fails if the name of the new link already exists.
To obtain a lock, a unique temporary file is first created whose pathname contains the
process ID (or some combination of the process ID and thread ID, if locking is needed
between threads in different processes and between threads within the same process).
The l i n k function is then called to create a link to this file under the well-known path-
name of the lock file. If this succeeds, then the temporary pathname can be unlinked.
When the thread is finished with the lock, it just unlinks the well-known pathname. If
the l i n k fails with an error of EEXIST, the thread must try again (similar to what we
did in Figure 9.12). One requirement of this technique is that the temporary file and the

216 Record Locking Chapter 9

well-known pathname must both reside on the same filesystem, because most versions
of Unix do not allow hard links (the result of the link function) across different file-
systems.

The second quirk is based on open returning an error if the file exists, if O-TRUNC is
specified, and if write permission is denied. To obtain a lock, we call open, specifying
0-CREAT I 0-WRONLY I 0-TRUNC and a mode of 0 (i.e., the new file has no permission
bits enabled). If this succeeds, we have the lock and we just unlink the pathname
when we are done. If open fails with an error of EACCES, the thread must try again
(similar to what we did in Figure 9.12). One caveat is that this trick does not work if the
calling thread has superuser privileges.

The lesson from these examples is to use f cntl record locking. Nevertheless, you
may encounter code that uses these older types of locking, often in programs written
before the widespread implementation of f cntl locking.

9.9 NFS Locking

NFS is the Network File System and is discussed in Chapter 29 of TCPv1. f cntl record
locking is an extension to NFS that is supported by most implementations of NFS. Unix
systems normally support NFS record locking with two additional daemons: lockd
and statd. When a process calls f cntl to obtain a lock, and the kernel detects that the
descriptor refers to a file that is on an NFS-mounted filesystem, the local lockd sends
the request to the server's lockd. The s tatd daemon keeps track of the clients hold-
ing locks and interacts with lockd to provide crash and recovery functions for NFS
locking.

We should expect record locking for an NFS file to take longer than record locking
for a local file, since network communication is required to obtain and release each lock.
To test NFS record locking, all we need to change is the filename specified by SEQFILE
in Figure 9.2. If we measure the time required for our program to execute 10,000 loops
using f cntl record locking, it is about 80 times faster for a local file than for an NFS
file. Also realize that when the sequence number file is on an NFS-mounted filesystem,
network communication is involved for both the record locking and for the reading and
writing of the sequence number.

Caveat emptor: NFS record locking has been a problem for many years, and most of the prob-
lems have been caused by poor implementations. Despite the fact that the major Unix vendors
have finally cleaned up their implementations, using f cntl record locking over NFS is still a
religious issue for many. We will not take sides on this issue but will just note that f cntl
record locking is supposed to work over NFS, but your success depends on the quality of the
implementations, both client and server.

9.10 Summary

f cntl record locking provides advisory or mandatory locking of a file that is refer-
enced through its open descriptor. These locks are for locking between different pro-
cesses and not for locking between the different threads within one process. The term

Chapter 9 Exercises 217

"record" is a misnomer because the Unix kernel has no concept of records within a file.
A better term is "range locking," because we speclfy a range of bytes within the file to
lock or unlock. Almost all uses of this type of record locking are advisory between
cooperating processes, because even mandatory locking can lead to inconsistent data, as
we showed.

With f c n t l record locking, there is no guarantee as to the priority of pending read-
ers versus pending writers, which is what w e saw in Chapter 8 with read-write locks.
If this is important to a n application, tests similar to the ones w e developed in Sec-
tion 9.6 should be coded and run, or the application should provide its own read-write
locks (as we did in Section 8.4), providing whatever priority is desired.

Exercises

Build the locknone program from Figures 9.2 and 9.1 and run it multiple times on your
system. Verify that the program does not work without any locking, and that the results are
nondeterministic.

Modify Figure 9.2 so that the standard output is unbuffered. What effect does this have?

Continue the previous exercise by also calling putchar for every character that is output to
standard output, instead of calling printf. What effect does this have?

Change the lock in the my-lock function in Figure 9.3 to be a read lock instead of a write
lock. What happens?

Change the call to open in the loopmain. c program to specify the O-NONBLOCK flag also.
Build the loopfcntlnonb program and run two instances of it at the same time. Does
anything change? Why?

Continue the previous exercise by using the nonblocking version of loopmain. c to build
the loopnonenonb program (using the locknone. c file, which performs no locking).
Enable the s e w 0 file for mandatory locking. Run one instance of this program and
another instance of the loopf cntlnonb program from the previous exercise at the same
time. What happens?

Build the loopf cntl program and run it 10 times in the background from a shell script.
Each of the 10 instances should specify a command-line argument of 10,000. First, time the
shell script when advisory locking is used, and then change the permissions of the s e w 0
file to enable mandatory locking. What effect does mandatory locking have on perfor-
mance?

In Figures 9.8 and 9.9, why did we call fork to create child processes instead of calling
pthread-create to create threads?

In Figure 9.11, we call ftruncate to set the size of the file to 0 bytes. Why don't we just
specify the 0-TRUNC flag for open instead?

If we are writing a threaded application that uses fcntl record locking, should we use
SEEK-SET, SEEK-CUR, or SEEK-END when specifying the starting byte offset to lock, and
whv?

Posix Semaphores

Introduction

A semaphore is a primitive used to provide synchronization between various processes
or between the various threads in a given process. We look at three types of
semaphores in this text.

Posix named semaphores are identified by Posix IPC names (Section 2.2) and can
be used to synchronize processes or threads.

Posix memory-based semaphores are stored in shared memory and can be used
to synchronize processes or threads.

System V semaphores (Chapter 11) are maintained in the kernel and can be used
to synchronize processes or threads.

For now, we concern ourselves with synchronization between different processes. We
first consider a binary semaphore: a semaphore that can assume only the values 0 or 1.
We show this in Figure 10.1.

functions to
- - - - - - - - - - - - - - - - - - - - - create, wait for, and
kernel prOcee 1 post to semaphore

semaphore:] 0 or 1 1
Figure 10.1 A binary semaphore being used by two processes.

220 Posix Semaphores Chapter 10

We show that the semaphore is maintained by the kernel (which is true for System V
semaphores) and that its value can be 0 or 1.

Posix semaphores need not be maintained in the kernel. Also, Posix semaphores
are identified by names that might correspond to pathnames in the filesystem. There-
fore, Figure 10.2 is a more realistic picture of what is termed a Posix named semaphore.

functions to
create, wait for, and

kernel post to semaphore

binary semaphore is a file
whose contents are 0 or 1

Figure 10.2 A Posix named binary semaphore being used by two processes.

We must make one qualification with regard to Figure 10.2: although Posix named semaphores
are identified by names that might correspond to pathnames in the filesystem, nothing
requires that they actually be stored in a file in the filesystem. An embedded realtime system,
for example, could use the name to identify the semaphore, but keep the actual semaphore
value somewhere in the kernel. But if mapped files are used for the implementation (and we
show such an implementation in Section 10.151, then the actual value does appear in a file and
that file is mapped into the address space of all the processes that have the semaphore open.

In Figures 10.1 and 10.2, we note three operations that a process can perform on a
semaphore:

1. Create a semaphore. This also requires the caller to specify the initial value,
which for a binary semaphore is often 1, but can be 0.

2. Wait for a semaphore. This tests the value of the semaphore, waits (blocks) if
the value is less than or equal to 0, and then decrements the semaphore value
once it is greater than 0. This can be summarized by the pseudocode

while (semaphore-value <= 0)
; / * wait ; i - e . , block t h e thread o r process * /

semaphore-value--;
/ * we have t h e semaphore * /

The fundamental requirement here is that the test of the value in the w h i l e
statement, and its subsequent decrement (if its value was greater than O), must
be done as an atomic operation with respect to other threads or processes access-
ing this semaphore. (That is one reason System V semaphores were imple-
mented in the mid-1980s within the kernel. Since the semaphore operations
were system calls within the kernel, guaranteeing this atomicity with regard to
other processes was easy.)

There are other common names for this operation: originally it was called P by
Edsger Dijkstra, for the Dutch word proberen (meaning to try). It is also known

10.7 Introduction 221

as down (since the value of the semaphore is being decremented) and lock, but
we will use the Posix term of wait.

3. Post to a semaphore. This increments the value of the semaphore and can be
summarized by the pseudocode

If any processes are blocked, waiting for this semaphore's value to be greater
than 0, one of those processes can now be awoken. As with the wait code just
shown, this post operation must also be atomic with regard to other processes
accessing the semaphore.

There are other common names for this operation: originally it was called V for
the Dutch word verhogen (meaning to increment). It is also known as up (since
the value of the semaphore is being incremented), unlock, and signal. We will
use the Posix term of post.

Obviously, the actual semaphore code has more details than we show in the pseu-
docode for the wait and post operations: namely how to queue all the processes that are
waiting for a given semaphore and then how to wake up one (of the possibly many pro-
cesses) that is waiting for a given semaphore to be posted to. Fortunately, these details
are handled by the implementation.

Notice that the pseudocode shown does not assume a binary semaphore with the
values 0 and 1. The code works with semaphores that are initialized to any nonnegative
value. These are called counting semaphores. These are normally initialized to some
value N, which indicates the number of resources (say buffers) available. We show
examples of both binary semaphores and counting semaphores throughout the chapter.

We often differentiate between a binary semaphore and a counting semaphore, and we do so
for our own edification. No difference exists between the two in the system code that imple-
ments a semaphore.

A binary semaphore can be used for mutual exclusion, just like a mutex. Fig-
ure 10.3 shows an example.

initialize mutex; initialize semaphore to 1;

pthread~mutex~lock(&mutex);
critical region
pthread~mutex~unlock(&mutex);

sem-wait(&sem);
critical region
semqost (&sem) ;

Figure 10.3 Comparison of mutex and semaphore to solve mutual exclusion problem.

We initialize the semaphore to 1. The call to sem-wai t waits for the value to be greater
than 0 and then decrements the value. The call to semjost increments the value
(from 0 to 1) and wakes up any threads blocked in a call to sem-wait for this
semaphore.

Although semaphores can be used like a mutex, semaphores have a feature not pro-
vided by mutexes: a mutex must always be unlocked by the thread that locked the

222 Posix Semaphores Chapter 10

mutex, while a semaphore post need not be performed by the same thread that did the
semaphore wait. We can show an example of this feature using two binary semaphores
and a simplified version of the producer-consumer problem from Chapter 7. Fig-
ure 10.4 shows a producer that places an item into a shared buffer and a consumer that
removes the item. For simplicity, assume that the buffer holds one item.

-4 shared buffer 1-b consumer

Figure 10.4 Simple producer-consumer problem with a shared buffer.

Figure 10.5 shows the pseudocode for the producer and consumer.

Producer

initialize semaphore get to 0;
initialize semaphore put to 1;

sem-wait (&put) ;
put data into buffer
sem-post (&get) ;

1

Consumer

f o r (; ;) (
sem-wait(&get);
process data in buffer

Figure 10.5 Pseudocode for simple producer+mnsumer.

The semaphore put controls whether the producer can place an item into the shared
buffer, and the semaphore get controls whether the consumer can remove an item from
the shared buffer. The steps that occur over time are as follows:

1. The producer initializes the buffer and the two semaphores.

2. Assume that the consumer then runs. It blocks in its call to sem-wait because
the value of get is 0.

3. Sometime later, the producer starts. When it calls sem-wait, the value of put
is decremented from 1 to 0, and the producer places an item into the buffer. It
then calls semjost to increment the value of get from 0 to 1. Since a thread is
blocked on this semaphore (the consumer), waiting for its value to become posi-
tive, that thread is marked as ready-to-run. But assume that the producer con-
tinues to run. The producer then blocks in its call to sem-wait at the top of the
for loop, because the value of put is 0. The producer must wait until the con-
sumer empties the buffer.

4. The consumer returns from its call to sem-wait, which decrements the value of
the get semaphore from 1 to 0. It processes the data in the buffer, and calls
sem_post, which increments the value of put from 0 to 1. Since a thread is
blocked on this semaphore (the producer), waiting for its value to become posi-
tive, that thread is marked as ready-to-run. But assume that the consumer con-
tinues to run. The consumer then blocks in its call to sem-wait, at the top of
the for loop, because the value of get is 0.

,tion 10.1 Introduction 223

5. The producer returns from its call to sem-wait, places data into the buffer, and
this scenario just continues.

We assumed that each time s e n j o s t was called, even though a process was waiting
and was then marked as ready-to-run, the caller continued. Whether the caller contin-
ues or whether the thread that just became ready runs does not matter (you should
assume the other scenario and convince yourself of this fact).

We can list three differences among semaphores and mutexes and condition vari-
ables.

1. A mutex must always be unlocked by the thread that locked the mutex, whereas
a semaphore post need not be performed by the same thread that did the
semaphore wait. This is what we just showed in our example.

2. A mutex is either locked or unlocked (a binary state, similar to a binary
semaphore).

3. Since a semaphore has state associated with it (its count), a semaphore post is
always remembered. When a condition variable is signaled, if no thread is wait-
ing for this condition variable, the signal is lost. As an example of this feature,
consider Figure 10.5 but assume that the first time through the producer loop,
the consumer has not yet called sen-wait. The producer can still put the data
item into the buffer, call s e m j o s t on the g e t semaphore (incrementing its
value from 0 to I), and then block in its call to sen-wait on the put
semaphore. Some time later, the consumer can enter its f o r loop and call
sen-wait on the g e t variable, which will decrement the semaphore's value
from 1 to 0, and the consumer then processes the buffer.

The Posix.1 Rationale states the following reason for providing semaphores along with
mutexes and condition variables: "Semaphores are provided in this standard primarily to pro-
vide a means of synchronization for processes; these processes may or may not share memory.
Mutexes and condition variables are specified as synchronization mechanisms between
threads; these threads always share (some) memory. Both are synchronization paradigms that
have been in widespread use for a number of years. Each set of primitives is particularly well
matched to certain problems." We will see in Section 10.15 that it takes about 300 lines of C to
implement counting semaphores with kernel persistence, using mutexes and condition
variables-applications should not have to reinvent these 300 lines of C themselves. Even
though semaphores are intended for interprocess synchronization and mutexes and condition
variables are intended for interthread synchronization, semaphores can be used between
threads and mutexes and condition variables can be used between processes. We should use
whichever set of primitives fits the application.

We mentioned that Posix provides two types of semaphores: named semaphores and
memory-based (also called unnamed) semaphores. Figure 10.6 compares the functions
used for both types of semaphores.

Figure 10.2 illustrated a Posix named semaphore. Figure 10.7 shows a Posix mem-
ory-based semaphore within a process that is shared by two threads.

224 Posix Semaphores Chapter 10

named memory-based
semaphore semaphore

semqost ()

sem-getvalue ()

sem-unlink ()

Figure 10.6 Function calls for Posix semaphores.

I thread I
I
I
I
I

I
I

I thread I

Figure 10.7 Memory-based semaphore shared between two threads within a process.

Figure 10.8 shows a Posix memory-based semaphore in shared memory (Part 4) that
is shared by two processes. We show that the shared memory belongs to the address
space of both processes.

I
I

I process A
I / I

u
shared memory

Figure 10.8 Memory-based semaphore in shared memory, shared by two processes.

In this chapter, we first describe Posix named semaphores and then Posix memory-
based semaphores. We return to the producer-consumer problem from Section 7.3 and
expand it to allow multiple producers with one consumer and finally multiple

ion 10.2 sem-open, sem-close, and sem-unlink Functions 225

producers and multiple consumers. We then show that the common I/O technique of
multiple buffers is just a special case of the producer-consumer problem.

We show three implementations of Posix named semaphores: the first using FIFOs,
the next using memory-mapped I/O with mutexes and condition variables, and the last
using System V semaphores.

.2 sem-open, sem-close, and sem-unlink Functions

The function sem-open creates a new named semaphore or opens an existing named
semaphore. A named semaphore can always be used to synchronize either threads or
processes.

#include <semaphore.h>

sem-t *sem-open(const char *name, int oflag, . . .
/ * mode-t mode, unsigned int value * /) :

I Returns: pointer to semaphore if OK, SEM-FAILED on error I

We described the rules about the name argument in Section 2.2.
The oflag argument is either 0, 0-CREAT, or 0-CREAT I 0-EXCL, as described in

Section 2.3. If 0-CREAT is specified, then the third and fourth arguments are required:
mode specifies the permission bits (Figure 2.41, and value specifies the initial value of the
semaphore. This initial value cannot exceed SEM-VALUE-MAX, which must be at least
32767. Binary semaphores usually have an initial value of 1, whereas counting
semaphores often have an initial value greater than 1.

If 0-CREAT is specified (without specifying 0-EXCL), the semaphore is initialized
only if it does not already exist. Specifying 0-CREAT if the semaphore already exists is
not an error. This flag just means "create and initialize the semaphore if it does not
already exist." But specifying 0-CREAT (0-EXCL is an error if the semaphore already
exists.

The return value is a pointer to a sem-t datatype. This pointer is then used as the
argument to sem-close, sem-wait, sem-trywait, sem_post, and sem-getvalue.

The return value of SEM-FAILED to indicate an error is strange. A null pointer would make
more sense. Earlier drafts that led to the Posix standard specified a return value of -1 to indi-
cate an error, and many implementations define

Posix.1 says little about the permission bits associated with a semaphore when it is created or
opened by sem-open. Indeed, notice from Figure 2.3 and our discussion above that we do not
even specify 0-RDONLY, 0-WRONLY, or 0-RDWR in the o&g argument when opening a named
semaphore. The two systems used for the examples in this book, Digital Unix 4.08 and Solaris
2.6, both require read access and write access to an existing semaphore for sem-open to suc-
ceed. The reason is probably that the two semaphore operations-post and wait-both read
and change the value of the semaphore. Not having either read access or write access for an
existing semaphore on these two implementations causes the sem-open function to return an
error of EACCES ("Permission denied").

226 Posix Semaphores

7

Chapter 10

A named semaphore that was opened by sem-open is closed by sen-close.

#include csemaphore.h>

int sem-close (sem-t *sem) ;

Returns: 0 if OK, -1 on error

This semaphore close operation also occurs automatically on process termination for any
named semaphore that is still open. This happens whether the process terminates vol-
untarily (by calling e x i t or - exit), or involuntarily (by being killed by a signal).

Closing a semaphore does not remove the semaphore from the system. That is,
Posix named semaphores are at least kernel-persistent: they retain their value even if no
process currently has the semaphore open.

A named semaphore is removed from the system by sem-unlink.

#include <semaphore.h>

int sen-unlink(const char *name);

Returns: 0 if OK, -1 on error

Semaphores have a reference count of how many times they are currently open (just like
files), and this function is similar to the unlink function for a file: the name can be
removed from the filesystem while its reference count is greater than 0, but the destruc-
tion of the semaphore (versus removing its name from the filesystem) does not take
place until the last sem-close occurs.

10.3 sem-wait and sem-trywait Functions

The sem- wai t function tests the value of the specified semaphore, and if the value is
greater than 0, the value is decremented and the function returns immediately. If the
value is 0 when the function is called, the calling thread is put to sleep until the
semaphore value is greater than 0, at which time it will be decremented, and the func-
tion then returns. We mentioned earlier that the "test and decrement" operation must
be atomic with regard to other threads accessing this semaphore.

#include <semaphore.h>

int sem-wait (sem-t *sem) ;

int sem-trywait(sem-t * s e n]) ;

Both return: 0 if OK, -1 on error

228 Posix Semaphores Chapter 10

10.5 Simple Programs

We now provide some simple programs that operate on Posix named semaphores, to
learn more about their functionality and implementation. Since Posix named
semaphores have at least kernel persistence, we can manipulate them across multiple
programs.

semcreate Program

Figure 10.9 creates a named semaphore, allowing a -e option to specify an exclusive-
create, and a -i option to specify an initial value (other than the default of 1).

pxsem/semcreate.c
1 #include "unpipc . h"
2 int
3 main(int argc, char **argv)
4 I
5 int c, flags;
6 sem-t *sem;
7 unsigned int value;

8 flags = 0-RDWR I 0-CREAT;
9 value = 1;
10 while ((c = Getopt(argc, argv, "ei:")) != -1) {

11 switch (c) {
12 case ' e' :
13 flags I= 0-EXCL;
14 break;

15 case 'i':
16 value = atoi(optarg);
17 break;
18 1
19 1
20 if (optind != argc - 1)
21 errquit("usage: semcreate [-e I [-i initalvalue I <name>"):

2 2 sem = Sem-open(argv[optindl, flags, FILE-MODE, value):

2 3 Sem-close(sem);
24 exit (0) ;
25 1

pxsem/semcreate.c
Figure 10.9 Create a named semaphore.

Create semaphore

22 Since we always specify the 0-CREAT flag, we must call sem-open with four argu-
ments. The final two arguments, however, are used by sem-open only if the
semaphore does not already exist.

Close semaphore

23 We call sem-close, although if this call were omitted, the semaphore is still closed
(and the system resources released) when the process terminates.

3n 10.5 Simple Programs 229

anlink Program

The program in Figure 10.10 unlinks a named semaphore.

2 int
3 main(int argc, char **argv)

4 {
5 if (argc != 2)
6 err-quit ("usage: semunlink <name>") ;

8 exit (0) ;

9 }
pxsern/sernunlink.c

Figure 10.10 Unlink a named semaphore.

getvalue Program

Figure 10.11 is a simple program that opens a named semaphore, fetches its current
value, and prints that value.

2 int
3 main(int argc, char **argv)

4 {
5 sem-t *sem;
6 int val ;

7 if (argc != 2)
8 err-quit("usage: semgetvalue <name>");

9 sem = Sem-open(argv[l], 0);
10 Sem-getvalue(sem, &val);
11 printf("va1ue = %d\nM, val);

12 exit (0) ;

13 1
pxsern/serngetvalue.c

Figure 10.11 Get and print a semaphore's value.

Open semaphore

9 When we are opening a semaphore that must already exist, the second argument to
sem-open is 0: we do not specify 0-CREAT and there are no other 0-xxx constants to
specify.

230 Posix Semaphores Chapter 10

semwait Program

The program in Figure 10.12 opens a named semaphore, calls sem-wait (which will
block if the semaphore's value is currently less than or equal to 0, and then decrements
the semaphore value), fetches and prints the semaphore's value, and then blocks forever
in a call to pause.

pxsern/semwait.c
1 #include " unpipc . h"

2 int
3 main(int argc, char **argv)
4 {
5 sem-t *sem;
6 int val ;

7 if (argc != 2)
8 errquit("usage: semwait <name>");

9 sem = Sem-open (argv [11 , 0) :
10 Sem-wait (sem) ;
11 Sem-getvalue(sem, mall;
12 printf("pid %Id has semaphore, value = %d\nW, (long) getpido, val);

13 pause () ;
14 exit (0) ;

/ * blocks until killed * /

15 }
pxsemlsemwait.~

Figure 10.12 Wait for a semaphore and print its value.

sempost Program

Figure 10.13 is a program that posts to a named semaphore (i.e., increments its value by
one) and then fetches and prints the semaphore's value.

2 int
3 main(int argc, char **argv)

4 {

5 sem-t *sem;
6 int val ;

7 if (argc != 2)
8 err-quit("usage: sempost <name>");

9 sem = Sem-open(argv[ll, 0);
10 Semgost (sem) ;
11 Sem-getvalue(sem, &val);
12 printf ("value = %d\nn, val) ;

13 exit (0) ;
14 }

pxsem lsempost .c
Figure 10.13 Post to a semaphore.

on 10.5 Simple Programs 231

mples

We first create a named semaphore under Digital Unix 4.08 and print its (default) value.

alpha % semcreate /tnlp/testl
alpha % 1s -1 /tmp/testl
-rT,J-r--r-- 1 rstevens system 264 Nov 13 08:51 /tmp/testl
alpha % semgetvalue /tnlp/testl
value = 1

As with Posix message queues, the system creates a file in the filesystem corresponding
to the name that we specify for the named semaphore.

We now wait for the semaphore and then abort the program that holds the
semaphore lock.

alpha % semwait /tnlp/testl
pid 9702 has semaphore, value = 0 thevalueafter sen-wait returns
a ? type our interrupt key to abort program
alpha % semgetvalue /tnlp/testl
value = 0 and value remains 0

This example shows two features that we mentioned earlier. First, the value of a
semaphore is kernel-persistent. That is, the semaphore's value of 1 is maintained by the
kernel from when the semaphore was created in our previous example, even though no
program had the semaphore open during this time. Second, when we abort our
semwait program that holds the semaphore lock, the value of the semaphore does not
change. That is, the semaphore is not unlocked by the kernel when a process holding
the lock terminates without releasing the lock. This differs from record locks, which we
said in Chapter 9 are automatically released when the process holding the lock termi-
nates without releasing the lock.

We now show that this implementation uses a negative semaphore value to indicate
the number of processes waiting for the semaphore to be unlocked.

alpha % semgetvalue /tnlp/testl
value = 0 value is still 0 from previous example

alpha % semwait / t ~ / t e s t l & start in the background
[ll 9718 it blocks, waiting for semaphore

alpha % semgetvalue /tmp/testl
value = -1 one process waiting for semaphore

alpha % semwait /t-/testl & start another in the background
[21 9727 it also blocks, waiting for semaphore

alpha % semgetvalue /tnlp/testl
value = -2 two processes waiting for semaphore

alpha % sempost /t=/testl now post to semaphore
value = -1 value after semsost returns
pid 9718 has semaphore, value = -1 output from semwait program

alpha % sempost /tmp/testl post again to semaphore
value = 0
pid 9727 has semaphore, value = 0 output from other semwait program

232 Posix Semaphores Chapter 10

When the value is -2 and we execute our sempost program, the value is incremental
to -1 and one of the processes blocked in the call to sem-wait returns.

We now execute the same example under Solaris 2.6 to see the differences in the
implementation.

solaris % semcreate /test2
solaris % 1s -1 /tmp/.*test2*
-rW-r--r-- 1 rstevens other1 48 Nov 13 09:ll /tmp/.SEMDtest2

-rw-rw-rw- 1 rstevens other1 0 Nov 13 09:ll /tmp/.SEMLtest2
solaris % semgetvalue /test2
value = 1

As with Posix message queues, files are created in the /tmp directory containing the
specified name as the filename suffixes. We see that the permissions on the first file cor-
respond to the permissions specified in our call to sem-open, and we guess that the
second file is used for locking.

We now verify that the kernel does not automatically post to a semaphore when the
process holding the semaphore lock terminates without releasing the lock.

solaris % semwait /test2
pid 4133 has semaphore, value = 0
-? type our interrupt key
solaris % semgetvalue /test2
value = 0 value remains 0

Next we see how this implementation handles the semaphore value when processes are
waiting for the semaphore.

solaris % semgetvalue /test2
value = 0

solaris % semwait /test2 &

[I] 4257

solaris % semgetvalue /test2
value = 0

solaris % semwait /test2 &

[21 4263

solaris % semgetvalue /test2
value = 0

solaris % sempost /test2
pid 4257 has semaphore, value = 0
value = 0

solaris % semgost /test2
pid 4263 has semaphore, value = 0
value = 0

value is still 0 from previous example

start in the background
it blocks, waiting for semaphore

this implementation does not use negative values

start another in the background

value remains 0 with two processes waiting

now post to semaphore
output from semwai t program

output from other semwai t program

One difference in this output compared to the previous output under Digital Unix, is
when the semaphore is posted to: it appears that the waiting process runs before the
process that posted to the semaphore.

a 10.6 Producer-Consumer Problem 233

I Producer-Consumer Problem

In Section 7.3, we described the producer-consurner problem and showed some solutions
in which multiple producer threads filled an array that was processed by one consumer
thread.

1. In our first solution (Section 7.2), the consumer started only after the producers
were finished, and we were able to solve this synchronization problem using a
single mutex (to synchronize the producers).

2. In our next solution (Section 7-51, the consumer started before the producers
were finished, and this required a mutex (to synchronize the producers) along
with a condition variable and its mutex (to synchronize the consumer with the
producers).

We now extend the producer-consumer problem by using the shared buffer as a circular
buffer: after the producer fills the final entry (buff [NBUFF-1 I), it goes back and fills
the first entry (buff [0 I 1, and the consumer does the same. This adds another synchro-
nization problem in that the producer must not get ahead of the consumer. We still
assume that the producer and consumer are threads, but they could also be processes,
assuming that some way existed to share the buffer between the processes (e.g., shared
memory, which we describe in Part 4).

Three conditions must be maintained by the code when the shared buffer is consid-
ered as a circular buffer:

1. The consumer cannot try to remove an item from the buffer when the buffer is
empty.

2. The producer cannot try to place an item into the buffer when the buffer is full.

3. Shared variables may describe the current state of the buffer (indexes, counts,
linked list pointers, etc.), so all buffer manipulations by the producer and con-
sumer must be protected to avoid any race conditions.

Our solution using semaphores demonstrates three different types of semaphores:

1. A binary semaphore named mutex protects the critical regions: inserting a data
item into the buffer (for the producer) and removing a data item from the buffer
(for the consumer). A binary semaphore that is used as a mutex is initialized to
1. (Obviously we could use a real mutex for this, instead of a binary
semaphore. See Exercise 10.1 0.)

2. A counting semaphore named nempty counts the number of empty slots in the
buffer. This semaphore is initialized to the number of slots in the buffer
(NBUFF).

3. A counting semaphore named n s t o r e d counts the number of filled slots in the
buffer. This semaphore is initialized to 0, since the buffer is initially empty.

234 Posix Semaphores Chapter 10

Figure 10.14 shows the status of our buffer and the two counting semaphores when the
program has finished its initialization. We have shaded the array elements that are
unused.

buff [ll :
L

ns nempty: tored: M

buff[2] :

buff [31 :

buff [NBUFF-11 :

Figure 10.14 Buffer and the two counting semaphores after initialization.

i
h

-~-

In our example, the producer just stores the integers 0 through NLOOP-1 into the buffer
(buff [0 I = 0, buff [1 I = 1, and so on), using the buffer as a circular buffer. The
consumer takes these integers from the buffer and verifies that they are correct, printing
any errors to standard output.

Figure 10.15 shows the buffer and the counting semaphores after the producer has
placed three items into the buffer, but before the consumer has taken any of these items
from the buffer.

producer places
3 items into buffer

- b u f f [l] : ~
d - b u f f [2 1 : V J buff [31:

1

buff [NBUFF-11 : I 1

nstored: 1 3 1
Figure 10.15 Buffer and semaphores after three items placed into buffer by producer.

We next assume that the consumer removes one item from the buffer, and we show
this in Figure 10.16.

iection 10.6 Producer-Consumer Problem 235

b u f f [O] : (Y + consumer removes
1 item from buffer

b u f f b u f f [l l : K / [21 :

b u f f [31 : m

nstored: 1 2 1
Figure 10.16 Buffer and semaphores after consumer removes first item from buffer.

Figure 10.17 is the m a i n function that creates the three semaphores, creates two
threads, waits for both threads to complete, and then removes the semaphores.

Globals

6-10 The buffer containing NBUFF items is shared between the two threads, as are the
three semaphore pointers. As described in Chapter 7, we collect these into a structure to
reiterate that the semaphores are used to synchronize access to the buffer.

Create semaphores

19-25 Three semaphores are created and their names are passed to our px-ipc-name
function. We specify the 0-EXCL flag because we need to initialize each semaphore to
the correct value. If any of the three semaphores are still lying around from a previous
run of this program that aborted, we could handle that by calling s e m- u n l i n k for each
semaphore, ignoring any errors, before creating the semaphores. Alternately, we could
check for an error of EEXIST from sem-open with the 0-EXCL flag, and call
s e m- u n l i n k followed by another call to sem-open, but this is more complicated. If
we need to verify that only one copy of this program is running (which we could do
before trying to create any of the semaphores), we would do so as described in Sec-
tion 9.7.

Create two threads

26-29 The two threads are created, one as the producer and one as the consumer. No
arguments are passed to the two threads.

30-36 The main thread then waits for both threads to terminate, and removes the three
semaphores.

We could also call sem-close for each semaphore, but this happens automatically when the
process terminates. Removing the name of a named semaphore, however, must be done
explicitly.

Figure 10.18 shows the p r o d u c e and consume functions.

236 Posix Semaphores Chapter 10

2 #define NBUFF 10
3 #define SEM-MUTEX "mutex" / * these are args to px-ipc-name() * /
4 #define SEM-NEMPTY "nempty"
5 #define SEM-NSTORED "nstored"

6 int nitems; / * read-only by producer and consumer * /
7 struct { / * data shared by producer and consumer */
8 int buff [NBUFF] ;
9 sen-t *mutex, *nempty, *nstored;
10 } shared;

11 void *produce(void *) , *consume(void *) ;

12 int
13 main(int argc, char **argv)

pthread-t ti-roduce, tid-consume;

if (argc != 2)
err-quit("usage: prodconsl <#items>");

nitems = atoi(argv[ll):

/ * create three semaphores * /
shared.mutex = Sem-open(Px-ipc-name(SEM-MUTEX), 0-CREAT I 0-EXCL,

FILE-MODE, 1) ;
shared.nempty = Sem-open(Px-ipc-name(SEM-NEMPTY), 0-CREAT 1 0-EXCL,

FILE-MODE, NBUFF);
shared. nstored = Sem-open (Px-ipc-name (SEM-NSTORED) , 0-CREAT I 0-EXCL ,

FILE-MODE, 0) ;

/ * create one producer thread and one consumer thread * /
Set-concurrency (2) ;
Pthread-create(&tid_produce, NULL, produce, NULL);
Pthread-create(&tid-consume, NULL, consume, NULL);

/ * wait for the two threads * /
Pthread-join(tid_produce, NULL);
Pthread-join(tid-consume, NULL);

/ * remove the semaphores * /
Sem-unlink(Px-ipc-name(SEM-MUTEX));
Sem-unlink(Px-ipc-name(SEM-NEMPTY)) ;

Sem-unlink(Px-ipc-name(SEM-NSTORED)) ;

exit (0) ;

pxsem/prodconsl .c

Figure 10.17 main function for semaphore solution to producer-consurner problem.

Producer waits until room for one item in buffer

44 The producer calls sem-wait on the nempty semaphore, to wait until room is
available for another item in the buffer. The first time this statement is executed, the
value of the semaphore will go from NBUFF to NBUFF-1.

I

Section 10.6 Producer<onsumer Problem 237

pxsern/prodconsl .c
39 void *
40 produce(void *arg)

41 {
42 int i ;

for (i = 0 ; i < nitems; i++) {
Sem-wait(shared.nempty); / * wait for at least 1 empty slot * /
Sem-wait(shared.mutex):
shared.buff[i % NBUFF] = i; / * store i into circular buffer * /
Sem_post(shared.mutex);
Sem_post(shared.nstored); / * 1 more stored item * /

}
return (NULL) ;

52 void *
53 consume (void *arg)

54 {

55 int i ;

for (i = 0 ; i < nitems; i++) {
Sem-wait(shared.nstored); / * wait for at least 1 stored item * /
Sem-wait(shared.mutex);
if (shared.buff[i % NBUFF] != i)

printf ("buff [%dl = %d\nV, i, shared.buff [i % NBUFFI) ;
Sem_post(shared.mutex);
Sem_post(shared.nempty); / * 1 more empty slot * /

}
return (NULL) ;

Figure 10.18 produce and consume functions.

Producer stores item in buffer

as Before storing the new item into the buffer, the producer must obtain the mutex
semaphore. In our example, where the producer just stores a value into the array ele-
ment indexed by i % NBUFF, no shared variables describe the status of the buffer (i.e.,
we do not use a linked list that we need to update each time we place an item into the
buffer). Therefore, obtaining and releasing the mutex semaphore is not actually
required. Nevertheless, we show it, because in general it is required for this type of
problem (updating a buffer that is shared by multiple threads).

After the item is stored in the buffer, the mutex semaphore is released (its value
goes from 0 to I), and the nstored semaphore is posted to. The first time this state-
ment is executed, the value of nstored will go from its initial value of 0 to 1.

Consumer waits for nstored semaphore

-62 When the nstored semaphore's value is greater than 0, that many items are in the
buffer to process. The consumer takes one item from the buffer and verifies that its
value is correct, protecting this buffer access with the mutex semaphore. The consumer
then posts to the nempty semaphore, telling the producer that another slot is empty.

238 Posix Semaphores Chapter 10

Deadlock

What happens if we mistakenly swap the order of the two calls to Sem-wai t in the con-
sumer function (Figure 10.18)? If we assume the producer starts first (as in the solution
shown for Exercise 10.1), it stores NBUFF items into the buffer, decrementing the value
of the nempty semaphore from NBUFF to 0 and incrementing the value of the nstored
semaphore from 0 to NBUFF. At that point, the producer blocks in the call
Sem-wait (shared. nempty) , since the buffer is full and no empty slots are available
for another item.

The consumer starts and verifies the first NBUFF items from the buffer. This decre-
ments the value of the nstored semaphore from NBUFF to 0 and increments the value
of the nempty semaphore from 0 to NBUFF. The consumer then blocks in the call
Sem-wait (shared-nstored) after calling Sem-wait (shared.mutex). The pro-
ducer can resume, because the value of nempty is now greater than 0, but the producer
then calls Sem-wai t (shared. mutex) and blocks.

This is called a deadlock. The producer is waiting for the mutex semaphore, but the
consumer is holding this semaphore and waiting for the nstored semaphore. But the
producer cannot post to the ns tored semaphore until it obtains the mutex semaphore.
This is one of the problems with semaphores: if we make an error in our coding, our
program does not work correctly.

Posix allows sem-wait to detect a deadlock and return an error of EDEADLK, but neither
of the systems being used (Solaris 2.6 and Digital Unix 4.OB) detected this error with this
example.

10.7 File Locking

We now return to our sequence number problem from Chapter 9 and provide versions
of our my-lock and my-unlock functions that use Posix named semaphores. Fig-
ure 10.19 shows the two functions.

One semaphore is used for an advisory file lock, and the first time this function is
called, the semaphore value is initialized to 1. To obtain the file lock, we call sem-wait,
and to release the lock, we call s e m ~ o s t .

10.8 sem-init and sen-destroy Functions

Everything so far in this chapter has dealt with the Posix named semaphores. These
semaphores are identified by a name argument that normally references a file in the file-
system. But Posix also provides memory-based semaphores in which the application allo-
cates the memory for the semaphore (that is, for a sem-t datatype, whatever that
happens to be) and then has the system initialize this semaphore.

e 10.8 sem-init and sem-destroy Functions 239

2 #def ine LOCK-PATH "pxsemlock"

3 sem-t *locksem;
4 i n t i n i t f lag;

5 void
6 my-lock(int f d)
7 I
8 i f (i n i t f l a g == 0) {

9 locksem = Sem-open(Pxipc-name(L0CK-P
10 i n i t f l a g = 1;
11)

12 Sem-wait (locksem) ;
13)

'ATH), 0-CREAT, FILE-MODE, 1);

1 4 void
15 my-unlock (i n t f d)
16 (

17 Semsos t (locksem) ;
18)

Figure 10.19 File locking using Posix named semaphores.

#include <semaphore.h>

i n t sem-ini t (sem-t *sem, i n t shared, unsigned i n t value) ;

Returns: -1 on error

i n t sem-destroy(sem-t *sem);

Returns: 0 if OK, -1 on error

A memory-based semaphore is initialized by sem- init. The sem argument points to
the s-t variable that the application must allocate. If shared is 0, then the semaphore
is shared between the threads of a process, else the semaphore is shared between pro-
cesses. When shared is nonzero, then the semaphore must be stored in some type of
shared memory that is accessible to all the processes that will be using the semaphore.
As with sem-open, the value argument is the initial value of the semaphore.

When we are done with a memory-based semaphore, sem-des t r o y destroys it.

sem-open does not need a parameter similar to shared or an attribute similar to
PTHREAD_PROCESS-SHARED (which we saw with mutexes and condition variables in Chap-
ter 71, because a named semaphore is always sharable between different processes.

Notice that there is nothing similar to 0-CREAT for a memory-based semaphore: s-init
always initializes the semaphore value. Therefore, we must be careful to call sem-init only
once for a given semaphore. (Exercise 10.2 shows the difference for a named semaphore.) The
results are undefined if sem-ini t is called for a semaphore that has already been initialized.

240 Posix Semaphores Chapter 10

Make certain you understand a fundamental difference between sem-open and sem-init.
The former returns a pointer to a sem-t variable that the function has allocated and initialized.
The first argument to sem-ini t , on the other hand, is a pointer to a sem-t variable that the
caller must allocate and that the function then initializes.

Posix.1 warns that for a memory-based semaphore, only the location pointed to by the sem
argument to sem-init can be used to refer to the semaphore, and using copies of this sem-t
datatype is undefined.

sem-init returns -1 on an error, but does not return 0 on success. This is indeed strange, and
a note in the Posix.1 Rationale says that a future update may specify a return of 0 on success.

A memory-based semaphore can be used when the name associated with a named
semaphore is not needed. Named semaphores are normally used when different, unre-
lated processes are using the semaphore. The name is how each process identifies the
semaphore.

In Figure 1.3, we say that memory-based semaphores have process persistence, but
their persistence really depends on the type of memory in which the semaphore is
stored. A memory-based semaphore remains in existence as long as the memory in
which the semaphore is contained is valid.

If a memory-based semaphore is being shared between the threads of a single
process (the shared argument to sem-init is O), then the semaphore has process
persistence and disappears when the process terminates.

If a memory-based semaphore is being shared between different processes (the
shared argument to sem-init is I), then the semaphore must be stored in
shared memory and the semaphore remains in existence as long as the shared
memory remains in existence. Recall from Figure 1.3 that Posix shared memory
and System V shared memory both have kernel persistence. This means that a
server can create a region of shared memory, initialize a Posix memory-based
semaphore in that shared memory, and then terminate. Sometime later, one or
more clients can open the region of shared memory and access the memory-
based semaphore stored therein.

Be warned that the following code does not work as planned:

sem-t mysem;

Sem-init(&mysem, 1, 0) ; / * 2nd a r g of 1 -> shared between processes * /

i f (F o r k 0 == 0) { / * c h i l d * /

Sem-wait(&mysem); / * parent ; wai t f o r c h i l d * /

The problem here is that the semaphore mysem is not in shared memory-see Sec-
tion 10.12. Memory is normally not shared between a parent and child across a fork.
The child starts with a copy of the parent's memory, but this is not the same as shared
memory. We talk more about shared memory in Part 4 of this book.

Section 10.8 sem-ini t and sem-des troy Functions 241

nple

As an example, we convert our producer~onsumer example from Figures 10.17
and 10.18 to use memory-based semaphores. Figure 10.20 shows the program.

#define NBUFF 10

in t ni tems; / * read-only by producer and consumer * /
struct (/ * data shared by producer and consumer * /

int buff [NBUFF] ;
sem-t mutex, nempty, nstored; / * semaphores, not pointers * /

1 shared;

void *produce(void *) , *consume(void *) ;

int
main(int argc, char **argv)
(

pthread-t tidjroduce, tid-consume;

if (argc != 2)
errquit("usage: prodcons2 <#items>");

nitems = atoi(argv[ll);

/ * initialize three semaphores * /
Sem-init (&shared.mutex, 0, 1) ;
Sem-init(&shared.nempty, 0, NBUFF);
Sem-init(&shared.nstored, 0, 0);

Set-concurrency(2);
Pthread-create(&tid_produce, NULL, produce, NULL);
Pthread-create(&tid-consume, NULL, consume, NULL);

Pthread-join (tid_produce, NULL) :
Pthread-join(tid-consume, NULL);

Sem-destroy(&shared.mutex);
Sem-destroy(&shared.nempty);
Sem-destroy(&shared.nstored);
exit (0);

>
void *
produce (void *arg)
(

int i ;

for (i = 0; i < nitems; i++) {
Sem-wait(&shared.nempty); / * wait for at least 1 empty slot * /
Sem-wait(&shared.mutex);
shared.buff[i % NBUFF] = i; / * store i into circular buffer * /
Sem_post (&shared.mutex) ;
Sem_post(&shared.nstored); / * 1 more stored item * /

>
return (NULL) ;

1

242 Posix Semaphores Chapter 10

43 void *
44 consume(void *arg)

45 I
46 int i ;

for (i = 0; i < nitems; i++) {

Sem-wait(&shared.nstored); / * wait for at least 1 stored item * /
Sem-wait(&shared.mutex);
if (shared.buff[i % NBUFFI != i)

printf("buff[%d] = %d\n", i, shared.buff[i % NBUFFI);
Sem_post(&shared.mutex);
Sem_post(&shared.nempty); / * 1 more empty slot * /

1
return (NULL) ;

Figure 10.20 Producer-consurner using memory-based semaphores.

Allocate semaphores

6 Our declarations for the three semaphores are now for three sem-t datatypes them-
selves, not for pointers to three of these datatypes.

Call sen-init

16-27 We call sem-init instead of sem-open, and then sem-destroy instead of
sem-unlink. These calls to sem-destroy are really not needed, since the program is
about to terminate.

The remaining changes are to pass pointers to the three semaphores in all the calls
to sem-wait and semjost.

10.9 Multiple Producers, One Consumer

The producer-consumer solution in Section 10.6 solves the classic one-producer, one-
consumer problem. An interesting modification is to allow multiple producers with one
consumer. We will start with the solution from Figure 10.20, which used memory-based
semaphores. Figure 10.21 shows the global variables and main function.

Globals

4 The global ni tems is the total number of items for all the producers to produce,
and nproducers is the number of producer threads. Both are set from command-line
arguments.

Shared structure

5-10 Two new variables are declared in the shared structure: nput, the index of the
next buffer entry to store into (modulo NBUFF), and nputval, the next value to store in
the buffer. These two variables are taken from our solution in Figures 7.2 and 7.3.
These two variables are needed to synchronize the multiple producer threads.

n 10.9 Multiple Producers, One Consumer 243

2 #define NBUFF 10
3 #define MAXNTHREADS 100

4 int nitems, nproducers; / * read-only by producer and consumer * /

5 struct (/ * data shared by producers and consumer * /
6 int buff [NBUFF] ;
7 int nput;
8 int nputval ;
9 sem-t mutex, nempty, nstored; / * semaphores, not pointers * /
10 } shared;

11 void *produce(void *) , *consume(void *) ;

12 int
13 main(int argc, char **arm)
14 I
15 int i, count [MAXNTHREADS] ;
16 pthread-t tid_produce[MAXNTHREADSl, tid-consume;

17 if (argc != 3)
18 err-quit("usage: prodcons3 <#items> <#producers>");
19 nitems = atoi (argv[l]) ;
20 nproducers = min(atoi(argv[2]) , MAXNTHREADS);

21 / * initialize three semaphores * /
2 2 Sem-init (&shared.mutex, 0, 1) ;
2 3 Sem-init(&shared.nempty, 0, NBUFF);
2 4 Sem-init(&shared.nstored, 0, 0);

25 / * create all producers and one consumer * /
26 Set~concurrency(nproducers + 1);
2 7 for (i = 0; i < nproducers; i++) I
28 count[i] = 0;
29 Pthread-create(&tid_produce[il, NULL, produce, &count[i]);
30 1
31 Pthread-create(&tid-consume, NULL, consume, NULL);

3 2 / * wait for all producers and the consumer * /
3 3 for (i = 0; i c nproducers; i++) (
3 4 Pthread-join(tid_produce[il, NULL);
35 printf ("count [%dl = %d\nU, i, count [i]) ;
3 6 1
37 Pthread-join (tid-consume, NULL) ;

3 8 Sem-destroy(&shared.mutex);
3 9 Sem-destroy(&shared.nempty);
40 Sem-destroy(&shared.nstored);
4 1 exit (0) ;

Figure 10.21 main function that creates multiple producer threads.

244 Posix Semaphores Chapter 10

New command-line arguments

17-20 TWO new command-line arguments specify the total number of items to be stored
into the buffer and the number of producer threads to create.

Create all the threads

21-41 The semaphores are initialized, and all the producer threads and one consumer
thread are created. We then wait for all the threads to terminate. This code is nearly
identical to Figure 7.2.

Figure 10.22 shows the produce function that is executed by each producer thread.

pxsem lpoLicans3.c
43 void *
44 produce (void *arg)

45 (
46 f o r (; ;) (
4 7 Sem-wait(&shared.nempty); / * wait for at least 1 empty slot * /

if (shared-nput >= nitems) I
Sem_post(&shared.nempty);
Semjost (&shared.mutex) ;
return (NULL) ; / * all done * /

1
shared.buff[shared.nput % NBUFF] = shared.nputva1;
shared.nput++;
shared.nputval++;

5 7 Semjost(&shared.mutex);
58 Semqost(&shared.nstored); / * 1 more stored item * /
59 *((int *) arg) += 1;
6 0 1
61 > pxsem/prodcm3.c

Figure 10.22 Function executed by all the producer threads.

Mutual exclusion among producer threads

49-53 The change from Figure 10.18 is that the loop terminates when ni terns of the val-
ues have been placed into the buffer by all the threads. Notice that multiple producer
threads can acquire the nempty semaphore at the same time, but only one producer
thread at a time can acquire the mutex semaphore. This protects the variables nput
and nputval from being modified by more than one producer thread at a time.

Termination of producers

50-51 We must carefully handle the termination of the producer threads. After the last
item is produced, each producer thread executes

Sem-wait(&shared.nempty); / * wait for at least 1 empty slot * /

at the top of the loop, which decrements the nempty semaphore. But before the thread
terminates, it must increment this semaphore, because the thread does not store an item
in the buffer during its last time around the loop. The terminating thread must also

n 10.10 Multiple Producers, Multiple Consumers 245

release the mutex semaphore, to allow the other producer threads to continue. If we
did not increment nempty on thread termination and if we had more producer threads
than buffer slots (say 14 threads and 10 buffer slots), the excess threads (4) would be
blocked forever, waiting for the nempty semaphore, and would never terminate.

The consume function in Figure 10.23 just verifies that each entry in the buffer is
correct, printing a message if an error is detected.

pxsem/prodcons3.c
62 void *
63 consume (void *arg)

64 (
65 int i ;

66 for (i = 0; i < nitems; i++) (

6 7 Sem-wait(&shared.nstored); / * wait for at least 1 stored item * /
68 Sem-wait(&shared.mutex);

6 9 if (shared.buff[i % NBUFF] != i)
70 printf("error: buff[%dl = %d\nN, i, shared.buff[i % NBUFF]);

7 1 Sem_post(&shared.mutex);
72 Sem_post(&shared.nempty); / * 1 more empty slot * /
7 3 I
7 4 return (NULL) ;

75 1
pxsem/prodcons3.c

Figure 10.23 Function executed by the one consumer thread.

Termination of the single consumer thread is simple-it just counts the number of
items consumed.

0 Multiple Producers, Multiple Consumers

The next modification to our producer-consumer problem is to allow multiple produc-
ers and multiple consumers. Whether it makes sense to have multiple consumers
depends on the application. The author has seen two applications that use this tech-
nique.

1. A program that converts IP addresses to their corresponding hostnames. Each
consumer takes an IP address, calls gethostbyaddr (Section 9.6 of UNPvI),
and appends the hostname to a file. Since each call to gethostbyaddr can
take a variable amount of time, the order of the IP addresses in the buffer will
normally not be the same as the order of the hostnames in the file appended by
the consumer threads. The advantage in this scenario is that multiple calls to
gethostbyaddr (each of which can take seconds) occur in parallel: one per
consumer thread.

This assumes a reentrant version of gethostbyaddr, and not all implementations have
this property. If a reentrant version is not available, an alternative is to store the buffer in
shared memory and use multiple processes instead of multiple threads.

246 Posix Semaphores Chapter 10

2. A program that reads UDP datagrams, operates on the datagrams, and then
writes the result to a database. One consumer thread processes each datagram,
and multiple consumer threads are needed to overlap the potentially long pro-
cessing of each datagram. Even though the datagrams are normally written to
the database by the consumer threads in an order that differs from the original
datagram order, the ordering of the records in the database handles this.

Figure 10.24 shows the global variables.

2 #define NBUFF 10
3 #define MAXNTHREADS 100

4 int nitems, nproducers, nconsumers; / * read-only * /

5 struct (/ * data shared by producers and consumers * /
6 int buff [NBUFF] ;
7 int npu t ; / * item number: 0, 1, 2, . . . * /
8 int npu tval ; / * value to store in buff [I * /
9 int nge t ; / * item number: 0, 1, 2, . . . * /
10 int nge tval ; / * value fetched from buff [1 * /
11 sem-t mutex, nempty, nstored; / * semaphores, not pointers * /
12 1 shared;

13 void *produce(void *) , *consume(void *) ;
pxsem/prodcons4.~

Figure 10.24 Global variables.

Globals and shared structure

4-12 The number of consumer threads is now a global variable and is set from a
command-line argument. We have added two more variables to our shared structure:
nget, the next item number for any one of the consumer threads to fetch, and
ngetval , the corresponding value.

The main function, shown in Figure 10.25, is changed to create multiple consumer
threads.

19-23 A new command-line argument specifies the number of consumer threads to create.
We must also allocate an array (tid-consume) to hold all the consumer thread IDS,
and an array (conscount) to hold our diagnostic count of how many items each con-
sumer thread processes.

24-50 Multiple producer threads and multiple consumer threads are created and then
waited for.

~10.10 Multiple Producers, Multiple Consumers 247

pxsem/prodcons4.c
14 int
15 main(int argc, char **argv)
16 I
17 int i, prodcount[MAXNTHREADS], conscount[MAXNTHREADSl;
18 pthread-t tid_produce[MAXNTHREADS], t i d - ~ ~ ~ ~ ~ ~ ~ [M A X N T H R E A D S] ;

19 if (argc != 4)
20 err-quit("usage: prodcons4 <#items> <#producers> <#consumers>");
2 1 nitems = atoi(argv[ll);
22 nproducers = min(atoi(argv[2]), MAXNTHREADS);
2 3 nconsumers = min (atoi (argv[3]) , MAXNTHREADS) ;

2 4 / * initialize three semaphores * /
25 Sem-init (&shared.mutex, 0, 1) ;
26 Sem-init(&shared.nempty, 0, NBUFF);
2 7 ~em_init(&shared.nstored, 0, 0);

/ * create all producers and all consumers * /
Set~concurrency(nproducers + nconsumers);
for (i = 0; i c nproducers; i++) {

prodcount[i] = 0;
Pthread-create(&tid_produce[i], NULL, produce, &prodcount[il);

1
for (i = 0; i < nconsumers; i++) {

conscount [i I = 0 ;
Pthread-create(&tid-consume[i], NULL, consume, &conscount[il):

1

/ * wait for all producers and all consumers * /
for (i = 0; i < nproducers; i++) I

Pthreadpjoin(tid_produce[il, NULL);
printf("producer count[%d] = %d\nU, i, prodcount[il);

1
for (i = 0; i < nconsumers; i++) {

Pthread-join(tid-consume[il, NULL);
printf("consumer count[%d] = %d\nW, i, conscount[il);

1

Figure 10.25 main function that creates multiple producers and multiple consumers.

248 Posix Semaphores Chapter 10

Our producer function contains one new line from Figure 10.22. When the pro-
ducer threads terminate, the line preceded with the plus sign is new:

if (shared.nput >= nitems) {

+ Semqost(&shared.nstored); / * let consumers terminate * /
Semqost (&shared.nempty) ;
semqost(&shared.mutex);
return (NULL) ; / * a11 done * /

>
We again must be careful when handling the termination of the producer threads and
the consumer threads. After all the items in the buffer have been consumed, each con-
sumer thread blocks in the call

Sem-wait(&shared.nstored); / * wait for at least 1 stored item * /

We have the producer threads increment the ns t o r e d semaphore to unblock the con-
sumer threads, letting them see that they are done.

Our consumer function is shown in Figure 10.26.

pxsem/prodcons4.c
72 void *
73 consume(void *arg)
74 (
75 int i ;

7 6 for (; ;) (

7 7 Sem-wait(&shared.nstored); / * wait for at least 1 stored item *I
78 Sem-wait(&shared.mutex);

if (shared.nget >= nitems) (

Semqost(&shared.nstored);
Sem_post(&shared.mutex);
return (NULL) ; / * a11 done * /

1
i = shared.nget % NBUFF;
if (shared.buff[il != shared.ngetva1)

printf("error: buff[%d] = %d\nw, i, shared.buff[il);
shared.nget++;

90 Sem_post(&shared.nempty); / * 1 more empty slot * /
91 * ((int *) arg) t= 1;
9 2 }

93 I
pxsem /prodcons4.c

Figure 10.26 Function executed by all consumer threads.

Termlnation of consumer threads

79-83 Our consumer function must now compare nge t to nitems, to determine when it
is done (similar to the producer function). After the last item has been consumed from
the buffer, the consumer threads block, waiting for the n s t o r e d semaphore to be

a 10.11 Multiple Buffers 249

greater than 0. Therefore, as each consumer thread terminates, it increments nstored
to let another consumer thread terminate.

1 Multiple Buffers

In a typical program that processes some data, we find a Loop of the form

while ((n = read(fdin, buff, BUFFSIZE)) > 0) {

/ * process the data * /

write(fdout, buff, n);

1

Many programs that process a text file, for example, read a line of input, process that
line, and write a line of output. For text files, the calls to read and write are often
replaced with calls to the standard I/O functions f ge t s and f pu t s.

Figure 10.27 shows one way to depict this operation, in which we identify a func-
tion named reader that reads the data from the input file and a function named
writer that writes the data to the output file. One buffer is used.

process
I I

reader () buffer writer ()

process
kernel

Figure 10.27 One process that reads data into a buffer and then writes the buffer out.

Figure 10.28 shows a time line of this operation. We have labeled the time line with
numbers on the left, designating some arbitrary units of time. Time increases down-
ward. We assume that a read operation takes 5 units of time, a write takes 7 units of
time, and the processing time between the read and write consumes 2 units of time.

We can modify this application by dividing the processing into two threads, as
shown in Figure 10.29. Here we use two threads, since a global buffer is automatically
shared by the threads. We could also divide the copying into two processes, but that
would require shared memory, which we have not yet covered.

Dividing the operation into two threads (or two processes) also requires some form
of notification between the threads (or processes). The reader thread must notify the
writer thread when the buffer is ready to be written, and the writer thread must notify
the reader thread when the buffer is ready to be filled again. Figure 10.30 shows a time
line for this operation.

250 Posix Semaphores

7

Chapter 10

input
file *

output
file

input
file *

output
file

0-
1-
2-
3-
4-
5-
6-

12
13--
14 --
15 --

20 --
21 --

22 --

27
write()

28
29
30
31

time

Figure 10.28 One process that reads data into a buffer and then writes the buffer out.

Figure 10.29 File copying divided into two threads.

r - 1
I thread thread I

process
kernel

input
file

output
file

)n 10.11 Multiple Buffers 251

input
file)

input
file

reader thread

19
read ()

20

22 notify writer
23
24
25
26
27
28
29
30

writer thread

-0
-- 1
--2
--3
--4
-75

buffer --6
--7
--8
--9

write0
10
11
12

-- 13
14

notify reader 15
-- I6
-- I7
-- 18
-- 19
-- 20
-- 21

buffer -- 22
-- 23
-- 24
-- 25

write()
26
27
28

-- 29
30

output
file)

output
file)

t notify reader t 31
time time

Figure 10.30 File copying divided into two threads.

We assume that the time to process the data in the buffer, along with the notification of
the other thread, takes 2 units of time. The important thing to note is that dividing the
reading and writing into two threads does not affect the total amount of time required
to do the operation. We have not gained any speed advantage; we have only distrib-
uted the operation into two threads (or processes).

We are ignoring many fine points in these time lines. For example, most Unix ker-
nels detect sequential reading of a file and do asynchronous read ahead of the next disk
block for the reading process. This can improve the actual amount of time, called "clock
time," that it takes to perform this type of operation. We are also ignoring the effect of
other processes on our reading and writing threads, and the effects of the kernel's
scheduling algorithms.

The next step in our example is to use two threads (or processes) and two buffers.
This is the classic double buffering solution, and we show it in Figure 10.31.

252 Posix Semaphores Chapter 10

I thread thread I

I I!
i I 1 reader,!/ , writer 1 i I

I buffer #2 I
I one process_l
L - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - -

input output
file h

process
- - - -
kernel

Figure 10.31 File copying divided into two threads using two buffers.

We show the reader thread reading into the first buffer while the writer thread is writ-
ing from the second buffer. The two buffers are then switched between the two threads.

Figure 10.32 shows a time line of double buffering. The reader first reads into buffer
#1, and then notifies the writer that buffer #1 is ready for processing. The reader then
starts reading into buffer #2, while the writer is writing buffer #l.

Note that we cannot go any faster than the slowest operation, which in our example
is the write. Once the server has completed the first two reads, it has to wait the addi-
tional 2 units of time: the time difference between the write (7) and the read (5). The
total clock time, however, will be almost halved for the double buffered case, compared
to the single buffered case, for our hypothetical example.

Also note that the writes are now occurring as fast as they can: each write separated
by only 2 units of time, compared to a separation of 9 units of time in Figures 10.28
and 10.30. This can help with some devices, such as tape drives, that operate faster if
the data is written to the device as quickly as possible (this is called a streaming mode).

The interesting thing to note about the double buffering problem is that it is just a
special case of the producer-consumer problem.

We now modify our producer-consumer to handle multiple buffers. We start with
our solution from Figure 10.20 that used memory-based semaphores. Instead of just a
double buffering solution, this solution handles any number of buffers (the NBUFF defi-
nition). Figure 10.33 shows the global variables and the main function.

Declare NBUFF buffers

2-9 Our shared structure now contains an array of another structure named buff, and
this new structure contains a buffer and its count.

Open input file

18 The command-line argument is the pathname of a file that we will copy to standard
output.

Figure 10.34 shows the produce and consume functions.

)n 10.11 Multiple Buffers 253

input
file *

input
file *

input
file *

input
file)

reader thread
0-
1-
2-

read ()

7- -
8 --

9--
read ()

11 --
12 --
13 -- notify writer
14 --

15 --

19
read ()

20 21 I
22 notify writer
23 --
24 --
25

28
29 --
30 --
31 --notify writer
32 --

time

writer thread

f r
3
4
5
6
7
8
9

10
11
12
13
14

notify reader 15

time

output
file *

output
file)

output
file *

Figure 10.32 Time l i e for double buffering.

Empty critical region

1-42 The critical region that is locked by the mutex is empty for this example. If the data
buffers were kept on a linked list, this would be where we could remove the buffer from
the list, avoiding any conflict with the consumer's manipulation of this list. But in our
example in which we just use the next buffer, with just one producer thread, nothing
needs protection from the consumer. We still show the locking and unlocking of the
mutex, to emphasize that this may be needed in other modifications to this code.

254 Posix Semaphores Chapter 10

2 #define NBUFF 8

3 struct { / * data shared by producer and consumer * /
4 struct {

5 char data[BUFFSIZE] ; / * a buffer * /
6 ssize-t n; / * count of #bytes in the buffer * /
7 1 buff [NBUFF] ; / * NBUFF of these buffers/counts * /
8 sem-t mutex, nempty, nstored; / * semaphores, not pointers * /
9 } shared;

10 int fd; / * input file to copy to stdout * /
11 void *produce(void *) , *consume(void *) ;

12 int
13 main(int argc, char **argv)
14 {
15 pthread-t tid_produce. tid-consume;

16 if (argc != 2)
17 err-quit("usage: mycat2 <pathname>");

18 fd = Open (argv[l] , O-RDONLY) ;

19 / * initialize three semaphores * /
20 Sem-init(&shared.mutex, 0, 1);
21 Sem-init(&shared.nempty, 0, NBUFF);
2 2 Sem-init(&shared.nstored, 0, 0);

23 / * one producer thread, one consumer thread * /
24 Set-concurrency (2) ;
2 5 Pthread-create(&tid_produce, NULL, produce, NULL); / * reader thread * /
2 6 Pthread-create(&tid-consume, NULL, consume, NULL); / * writer thread * /

27 Pthread-join(tid_produce, NULL);
2 8 Pthread-join(tid-consume, NULL);

29 Sem-destroy(&shared.mutex);
3 0 Sem-destroy(&shared.nempty);
31 Sem-destroy(&shared.nstored);
3 2 exit (0) ;

Figure 10.33 Global variable and main function.

Read data and increment nstored semaphore

43-49 Each time the producer obtains an empty buffer, it calls read. When read returns,
the nstored semaphore is incremented, telling the consumer that the buffer is ready.
When read returns 0 (end-of-file), the semaphore is incremented and the producer
returns.

on 10.11 Multiple Buffers 255

pxsem/rnycat2.c
34 void *
35 produce(void *arg)
36 I
3 7 int i ;

3 8 for (i = 0:;) I
3 9 Sem-wait(&shared.nempty); / * wait for at least 1 empty slot * /

4 0 Sem-wait(&shared.mutex);
41 / * critical region * /
42 Sem_post(&shared.mutex);

43 shared.buff[i].n = Read(fd, shared.buff[il.data, BUFFSIZE);
44 if (shared.buff[il .n == 0) I
45 Semqost(&shared.nstored); / * 1 more stored item * /
4 6 return (NULL) ;
4 7 1
48 if (++i >= NBUFF)
49 i = 0: / * circular buffer * /

50 Sem_post(&shared.nstored); / * 1 more stored item * /
51 1
52 1

53 void *
54 consume(void *arg)
55 I
5 6 int i ;

5 7 for (i = 0;;) (
5 8 Sem-wait(&shared.nstored); / * wait for at least 1 stored item * /

59 Sem-wait(&shared.mutex);
6 0 / * critical region * /
6 1 Semqost(&shared.mutex);

62 if (shared.buff [il .n == 0)
6 3 return (NULL) ;
64 Write(STD0UT-FILENO, shared.buff[i].data, shared.buff[il.n);
6 5 if (++i >= NBUFF)
66 i = 0; / * circular buffer * /

6 7 Sem_post(&shared.nempty); / * 1 more empty slot * /
6 8 1

Figure 10.34 produce and consume functions.

Consumer thread

7-68 The consumer thread takes the buffers and writes them to standard output. A buff-
er containing a Length of 0 indicates the end-of-file. As with the producer, the critical
region protected by the mutex is empty.

256 Posix Semaphores Chapter 10

In Section 22.3 of UNPvl, we developed an example using multiple buffers. In that example,
the producer was the SIGIO signal handler, and the consumer was the main processing loop
(the dg-echo function). The variable shared between the producer and consumer was the
nqueue counter. The consumer blocked the sIGIo signal from being generated whenever it
examined or modified this counter.

10.1 2 Sharing Semaphores between Processes

The rules for sharing memory-based semaphores between processes are simple: the
semaphore itself (the sem-t datatype whose address is the first argument to
sem-ini t) must reside in memory that is shared among all the processes that want to
share the semaphore, and the second argument to sem-ini t must be 1.

These rules are similar to those for sharing a mutex, condition variable, or read-write lock
between processes: the synchronization object itself (the pthread-mutex-t variable, or the
pthread-cond-t variable, or the pthread-rwlock-t variable) must reside in memory that
is shared among all the processes that want to share the object, and the object must be initial-
ized with the PTHREAD-PROCESS-SHARED attribute.

With regard to named semaphores, different processes (related or unrelated) can
always reference the same named semaphore by having each process call sem-open
specifying the same name. Even though the pointers returned by sem-open might be
different in each process that calls sem-open for a given name, the semaphore func-
tions that use this pointer (e.g., semsost and sem-wait) will all reference the same
named semaphore.

But what if we call sem-open, which returns a pointer to a sem-t datatype, and
then call fork? The description of the fork function in Posix.1 says "any semaphores
that are open in the parent process shall also be open in the child process." This means
that code of the following form is OK:

sem-t *mutex; / * global pointer that is copied across the fork0 *I

. . .
/ * parent creates named semaphore * /

mutex = Sern-open(Px-ipc-name(NAME), 0-CREAT 1 0-EXCL, FILE-MODE, 0);
if ((childpid = Fork()) == 0) {

/ * child * /
. . .
Sem-wait(mutex);
. . .

1
I* parent *I

. . .
Sernqost (mutex) ;

The reason that we must be careful about knowing when we can and cannot share a
semaphore between different processes is that the state of a semaphore might be contained in
the sem-t datatype itself but it might also use other information (e.g., file descriptors). We
will see in the next chapter that the only handle that a process has to describe a System V

)n 10.14 Implementation Using FIFOs 257

semaphore is its integer identifier that is returned by semget. Any process that knows that
identifier can then access the semaphore. All the state information for a System V semaphore
is contained in the kernel, and the integer identifier just tells the kernel which semaphore is
being referenced.

13 Semaphore Limits

Two semaphore limits are defined by Posix:

SEM-NSEMS-MAX the maximum number of semaphores that a process can have
open at once (Posix requires that this be at least 256), and

SEM-VALUE-MAX the maximum value of a semaphore (Posix requires that this be
at least 32767).

These two constants are often defined in the <unistd.h> header and can also be
obtained at run time by calling the sysconf function, as we show next.

mple: semsysconf Program

The program in Figure 10.35 calls sysconf and prints the two implementation-defined
limits for semaphores.

pxsem /semsysconf.c
1 #include "unpipc.h"

2 int
3 main(int argc, char "*argv)

4 {
5 printf("SEM-NSEMS-MAX = %Id, SEM-VALUE-MAX = %ld\nW,
6 Sysconf(-SC-SEM-NSEMS-MAX), Sysconf(-SC-SEM-VALUE-MAX) 1 ;
7 exit (0) ;

8 1
pxsem/semsysconf.c

Figure 10.35 Call sysconf to obtain semaphore limits.

If we execute this on our two systems, we obtain

solaris % semsysconf
SEM-NSEMS-MAX = 2147483647, SEM-VALUE-MAX = 2147483647

alpha % semsysconf
SEM-NSEMS-MAX = 256, SEM-VALUE-MAX = 32767

14 Implementation Using FlFOs

We now provide an implementation of Posix named semaphores using FIFOs. Each
named semaphore is implemented as a FIFO using the same name. The nonnegative
number of bytes in the FIFO is the current value of the semaphore. The semjost

258 Posix Semaphores Chapter 10

function writes 1 byte to the FIFO, and the sem-wait function reads 1 byte from the
FIFO (blocking if the FIFO is empty, which is what we want). The sem-open function
creates the FIFO if the 0-CREAT flag is specified, opens it twice (once read-only, once
write-only), and if a new FIFO has been created, writes the number of bytes specified by
the initial value to the FIFO.

T

hi

s section and the remaining sections of this chapter contain advanced topics that you may
want to skip on a first reading.

We first show our semaphore. h header in Figure 10.36, which defines the funda-
mental sem-t datatype.

my_pxsemfifo/sernaphore.h
1 / * the fundamental datatype * /
2 typedef struct
3 int sem_fd[2] ; / * two fds: [O] for reading, [I] for writing *I
4 int sem-magic; / * magic number if open * /
5 } sem-t;

7 #ifdef SEM-FAILED
8 #undef SEM-FAILED
9 #define SEM-FAILED ((sem-t *) (-1)) / * avoid compiler warnings * /
10 #endif

rrzy_pxsemfifa/sernaphore.h
Figure 10.36 semaphore. h header.

sem-t datatype

1-5 Our semaphore data structure contains two descriptors, one for reading the FIFO
and one for writing the FIFO. For similarity with pipes, we store both descriptors in a
two-element array, with the first descriptor for reading and the second descriptor for
writing.

The sem-magic member contains SEM-MAGIC once this structure has been initial-
ized. This value is checked by each function that is passed a sem-t pointer, to make
certain that the pointer really points to an initialized semaphore structure. This member
is set to 0 when the semaphore is closed. This technique, although not perfect, can help
detect some programming errors.

sem-open Function

Figure 10.37 shows our sem-open function, which creates a new semaphore or opens
an existing semaphore.

3 #include <stdarg.h> / * for variable arg lists * /

4 sem-t *
5 sem-open(const char *pathname, int oflag, ...)

tion 10.14 Implementation Using FIFOs 259

int i , flags, save-erro;
char c;
mode-t mode;
va-list ap;
sem-t *sem;
unsigned int value;

if (oflag & 0-CREAT) {

va-start(ap, oflag); / * init ap to final named argument * /
mode = va-arg(ap, va-mode-t);
value = va-arg(ap, unsigned int);

if (mkfifo(pathname, mode) < 0) {

if (errno == EEXIST && (oflag & 0-EXCL) == 0)
oflag &= "0-CREAT; / * already exists, OK * /

else
return (SEM-FAILED) ;

1
1
if ((sem = malloc(sizeof(sem~t))) == NULL)

return (SEM-FAILED) ;
sem->sem-fd[O] = sem->sem-fd[ll = -1;

if ((sem->sem-fd[O] = open(pathname, 0-RDONLY I 0-NONBLOCK)) < 0)
goto error;

if ((sem->sem-fd[l] = open(pathname, 0-WRONLY I 0-NONBLOCK)) < 0)
goto error;

/ * turn off nonblocking for sem-fd[Ol * /
if ((flags = fcntl(sem->sem-fd[O], F-GETFL, 0)) < 0)

goto error;
flags &= -0-NONBLOCK;
if (fcntl(sem->sem-fd[O], F-SETFL, flags) < 0)

goto error;

if (of lag & 0-CREAT) { / * initialize semaphore * /
for (i = 0; i < value; i++)

if (write(sem->sem-fd[ll. &c. 11 != 11
goto error;

1
sem->sem-magic = SEM-M?iGIC;
return (sem) ;

error:
save-errno = errno;
if (oflag & 0-CREAT)

unlink(pathname1; / * if we created FIFO * /
close (sem->sem-f d [0 I 1 ; / * ignore error * /
close(sem->sem-fd[ll); / * ignore error * /
free (sem) ;
errno = save-errno;
return (SEM-FAILED);

54 1
mygxsmfifa/sm-0pen.c

Figure 10.37 sem-open function.

260 Posix Semaphores
1

Chapter 10

Create a new semaphore

13-17 If the caller specifies the 0-CREAT flag, then we know that four arguments are
required, not two. We call va-start to initialize the variable ap to point to the last
named argument (of lag). We then use ap and the implementation's va-arg function
to obtain the values for the third and fourth arguments. We described the handling of
the variable argument list and our va-mode-t datatype with Figure 5.21.

Create new FlFO

18-23 A new FIFO is created with the name specified by the caller. As we discussed in
Section 4.6, this function returns an error of EEXIST if the FIFO already exists. If the
caller of sem-open does not specify the 0-EXCL flag, then this error is OK, but we do
not want to initialize the FIFO later in the function, so we turn off the 0-CREAT flag.

Allocate sem-t datatype and open FlFO for reading and writing

25-37 We allocate space for a sem-t datatype, which will contain two descriptors. We
open the FIFO twice, once read-only and once write-only. We do not want to block in
either call to open, so we specify the 0-NONBLOCK flag when we open the FIFO read-
only (recall Figure 4.21). We also specify the 0-NONBLOCK flag when we open the FIFO
write-only, but this is to detect overflow (e.g., if we try to write more than PIPE-BUF
bytes to the FIFO). After the FIFO has been opened twice, we turn off the nonblocking
flag on the read-only descriptor.

Initialize value of newly create semaphore

38-42 If a new semaphore has been created, we initialize its value by writing value num-
ber of bytes to the FIFO. If the initial value exceeds the implementation's PIPE-BUF
limit, the call to write after the FIFO is full will return an error of EAGAIN.

sen-close Function

Figure 10.38 shows our s em-c 1 o s e function.
11-15 We close both descriptors and free the memory that was allocated for the sem-t

datatype.

sen-unlink Function

Our sem-unlink function, shown in Figure 10.39, removes the name associated with
our semaphore. It just calls the Unix unlink function.

sengost Function

Figure 10.40 shows our semsost function, which increments the value of a
semaphore.

11-12 We write an arbitrary byte to the FIFO. If the FIFO was empty, this will wake up
any processes that are blocked in a call to read on this FIFO, waiting for a byte of data.

)n 10.14 [mplementation Using FIFOs 261

3 int
4 sem~close(sem~t *sem)
5 {
6 if (sem->sem-magic != SEM-MAGIC) {

7 errno = EINVAL;
8 return (-1);
9 1
10 sem->sem-magic = 0; / * in case caller tries to use it later * /
11 if (close(sem->sem-fd[O]) == -1 1 1 close(sem->sem-fd[lI) == -1) {

12 free (sem) ;
13 return (-1);
14 1
15 free(sem);
16 return (0) :
17 }

myjxsemfifo/sm-c1ose.c

Figure 10.38 sem-close function.

myjxsmfifa/sem-un1ink.c
#include "unpipc . h"

int
sem-unlink(const char *pathname)
{

return (unlink(pathname));
I

myjxsemfifo/sem-un1ink.c

Figure 10.39 sem-unlink function.

myjxsernfifo/sempst.c
1 #include "unpipc.h"
2 Qinclude "semaphore.hn

3 int
4 semqost (sem-t *sem)
5 {
6 char c;

7 if (sem->sem-magic != SEM-MAGIC) {

8 errno = EINVAL;
9 return (-1);
10 }

11 if (write (sem->sen--fd[ll, &c, 1) == 1)
12 return (0) :
13 return (-1) ;

Figure 10.40 semqost function.

262 Posix Semaphores
1

Chapter 10

sem-wait Function

The final function is shown in Figure 10.41, sem-wai t.

3 int
4 serf-wait(serf-t *serf)

5 {
6 char c:

7 if (sem->serf-magic != SEM-M?iGIC) (

8 errno = EINVAL;
9 return (-1);
10 }

11 if (read(sem->sem-fd[O] , &c, 1) == 1)
12 return (0) ;
13 return (-1);

14 1
rnyjxsemfifo/sem-wait.c

Figure 10.41 sem-wai t function.

11-12 We read 1 byte from the FIFO, blocking if the FIFO is empty.

We have not implemented the sem-trywait function, but that could be done by
enabling the nonblocking flag for the FIFO and calling read. We have also not imple-
mented the sem-getvalue function. Some implementations return the number of
bytes currently in a pipe or FIFO when the stat or f stat function is called, as the
st-size member of the stat structure. But this is not guaranteed by Posix and is
therefore nonportable. Implementations of these two Posix semaphore functions are
shown in the next section.

10.1 5 Implementation Using Memory-Mapped 110

We now provide an implementation of Posix named semaphores using memory-
mapped I/O along with Posix mutexes and condition variables. An implementation
similar to this is provided in Section B.11.3 (the Rationale) of [IEEE 19961.

We cover memory-mapped 1 / 0 in Chapters 12 and 13. You may wish to skip this section until
you have read those chapters.

We first show our semaphore. h header in Figure 10.42, which defines the funda-
mental sem-t datatype.

sen-t datatype

1-7 Our semaphore data structure contains a mutex, a condition variable, and an
unsigned integer containing the current value of the semaphore. As discussed with Fig-
ure 10.36, the sem-magic member contains SEM-MAGIC once this structure has been
initialized.

:tion 10.15 Implementation Using Memory-Mapped I/O 263

myjxsem-mrnap/semaphore.h
1 / * the fundamental datatype * /
2 typedef struct {

3 pthread-mutex-t sem-mutex; / * lock to test and set semaphore value * /
4 pthread-cond-t sem-cond; / * for transition from 0 to nonzero * /
5 unsigned int sem-count; / * the actual semaphore value * /
6 int sem-magic; / * magic number if open * /
7 1 sem-t;

9 #ifdef SEM-FAILED
10 #undef SEM-FAILED
11 #define SEM-FAILED ((sem-t *)(-I)) / * avoid compiler warnings * /
12 #endif

myjxsem-mmap/semaphore.h

Figure 10.42 semaphore. h header.

m-upen Function

Figure 10.43 shows the first half of our sem-open function, which creates a new
semaphore or opens an existing semaphore.

Handle variable argument list

19-23 If the caller specifies the 0-CREAT flag, then we know that four arguments are
required, not two. We described the handling of the variable argument list and our
va-mode-t datatype with Figure 5.21. We turn off the user-execute bit in the mode
variable (s-IXUSR) for reasons that we describe shortly. A file is created with the name
specified by the caller, and the user-execute bit is turned on.

Create a new semaphore and handle potential race condition

24-32 If, when the 0-CREAT flag is specified by the caller, we were to just open the file,
memory map its contents, and initialize the three members of the sem-t structure, we
would have a race condition. We described this race condition with Figure 5.21, and the
technique that we use is the same as shown there. We encounter a similar race condi-
tion in Figure 10.52.

Set the file size

33-37 We set the size of the newly created file by writing a zero-filled structure to the file.
Since we know that the file has just been created with a size of 0, we call write to set
the file size, and not f truncate, because, as we note in Section 13.3, Posix does not
guarantee that f truncate works when the size of a regular file is being increased.

Memory map the file

38-02 The file is memory mapped by mmap. This file will contain the current value of the
sem-t data structure, although since we have memory mapped the file, we just refer-
ence it through the pointer returned by mrnap: we never call read or write.

264 Posix Semaphores

1

Chapter 10

#include "unpipc.hn
#include "semaphore.hm

#include cstdarg.h> / *
#define MAX-TRIES 10 / *

sem-t *
sem-open(const char *pathname, int
I

for variable arg lists * /
for waiting for initialization * /

oflag, ... 1

int fd, i, created, save-errno;
mode-t mode;
va-list ap;
sem-t *sem, seminit;
struct stat statbuff;
unsigned int value;
pthread-mutexattr-t mattr;
pthread-condattr-t cattr;

created = 0;
sem = MAP-FAILED; / * [sic] * /

again:
if (oflag & 0-CREAT) {

va-start(ap, oflag); / * init ap to final named argument * /
mode = va-arg(ap, va-mode-t) & IS-IXUSR;
value = va-arg(ap. unsigned int);
va-end (ap) ;

/ * open and specify 0-EXCL and user-execute * /
fd = open(pathname, oflag I 0-EXCL I 0-RDWR, mode I S-IXUSR);
if (fd c 0) {

if (errno == EEXIST && (oflag & 0-EXCL) == 0)
goto exists; / * already exists, OK * /

else
return (SEM-FAILED);

}
created = 1;

/ * first one to create the file initializes it * /
/ * set the file size * /

bzero(&seminit, sizeof(seminit));
if (write(fd, &seminit, sizeof(seminit)) != sizeof(seminit))

goto err;

/ * memory map the file * I
sem = mmap(NULL, sizeof(sem-t), PROT-READ I PROT-WRITE,

MAP-SHARED, fd, 0);
if (sem == MAPFAILED)

goto err;

/ * initialize mutex, condition variable, and value * /
if ((i = pthread-mutexattr-init(&mattr)) != 0)

goto pthreaderr;
pthread-mucexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED);
i = pthread-mutex-init(&sem->sem-mutex, &mattr);
pthread-mutexattr-destroy(&mattr); / * be sure to destroy * /
if (i != 0)

goto pthreaderr;

~n 10.15 Implementation Using Memory-Mapped 1/0 265

51 if ((i = pthread-condattr-init(&cattr)) != 0)
52 goto pthreaderr;
53 pthread-condattr-setpshared(&cattr, PTHREAD-PROCESS-SHARED);
54 i = pthread-cond-init(&sem->semcond, &cattr);
55 pthread-condattr-destroy(&cattr); / * be sure to destroy * /
5 6 if (i != 0)
57 goto pthreaderr;

if ((sem->sem-count = value) > sysconf(-SC-SEM-VALUE-MAX)) {

errno = EINVAL;
goto err;

1
/ * initialization complete, turn off user-execute bit * /

if (fchmod(fd, mode) == -1)
goto err;

close (fd) ;
sem->sem-magic = SEM-MAGIC;
return (sem) ;

68 }
myjxsem-mmap/sem_npen.c

Figure 10.43 sem-open function: first half.

lnitialize sem-t data structure

-57 We initialize the three members of the s e m- t data structure: the mutex, the condi-
tion variable, and the value of the semaphore. Since Posix named semaphores can be
shared by any process that knows the semaphore's name and has adequate permission,
we must specify the PTHREAD-PROCESS-SHARED attribute when initializing the mutex
and condition variable. To do so for the semaphore, we first initialize the attributes by
calling pthread-mutexattr-ini t, then set the process-shared attribute in this struc-
ture by calling pthread-mutexattr-setpshared, and then initialize the mutex by
calling pthread-mutex-ini t . Three nearly identical steps are done for the condition
variable. We are careful to destroy the attributes in the case of an error.

Initialize semaphore value

-61 Finally, the initial value of the semaphore is stored. We compare this value to the
maximum value allowed, which we obtain by calling sysconf (Section 10.13).

Turn off user-execute bit

-67 Once the semaphore is initialized, we turn off the user-execute bit. This indicates
that the semaphore has been initialized. We c l o s e the file, since it has been memory
mapped and we do not need to keep it open.

Figure 10.44 shows the second half of our sem-open function. In Figure 5.23, we
described a race condition that we handle here using the same technique.

Open existing semaphore

-78 We end up here if either the 0-CREAT flag is not specified or if 0-CREAT is specified
but the semaphore already exists. In either case, we are opening an existing semaphore.
We open the file containing the sem- t datatype for reading and writing, and memory
map the file into the address space of the process (mmap).

266 Posix Semaphores Chapter 10

exists: my~xsem-mmap/sem_open.c
if ((fd = open(pathname, 0-RDWRII < 01 (

if (errno == ENOENT && (oflag & 0-CREAT) 1
goto again;

goto err;
1
sem = mmap(NULL, sizeof (sem-t), PROT-READ I PROT-WRITE,

MAP-SHARED, f d, 0) ;
if (sem == MAPFAILED)

goto err;

/ * make certain initialization is complete * /
for (i = 0; i < MKTRIES; i++) {

if (stat (pathname, &statbuff l == -11 (

if (errno == ENOENT && (oflag & 0-CREAT)) (

close (fd) ;
goto again;

1
goto err:

1
if ((statbuff.st-mode & S-IXUSRI == 01 {

close(fd1 ;
sem->sen--magic = SEM-MAGIC;
return (sem) ;

1
sleep (1) ;

1
errno = ETIMEDOUT;
goto err;

pthreaderr:
errno = i;

err :
/ * don't let munmap() or close() change errno * /

save-errno = errno;
if (created)

unlink (pathname 1 ;
if (sem != MAP-FAILED)

munmap(sem, sizeof (sem-t));
close (fd) ;
errno = save-errno;
return (SEM-FAILED):

109 1
mygxsm-mmap/sm-0pen.c

Figure 10.44 sern-open function: second half.

We can now see why Posix.1 states that "references to copies of the semaphore produce unde
fined results." When named semaphores are implemented using memory-mapped I/O, the
semaphore (the sem-t datatype) is memory mapped into the address space of all processes
that have the semaphore open. This is performed by sem-open in each process that opens the
named semaphore. Changes made by one process (e.g., to the semaphore's count) are seen by
all the other processes through the memory mapping. If we were to make our own copy of a
sem-t data structure, this copy would no longer be shared by all the processes. Even though

ion 10.15 Implementation Using Memory-Mapped 1/0 267

we might think it was working (the semaphore functions might not give any errors, at least
until we call sem-close, which will unmap the memory, which would fail on the copy), no
synchronization would occur with the other processes. Note from Figure 1.6, however, that
memory-mapped regions in a parent are retained in the child across a fork, so a copy of a
semaphore that is made by the kernel from a parent to a child across a fork is OK.

Make certain that semaphore is initialized

)-96 We must wait for the semaphore to be initialized (in case multiple threads try to cre-
ate the same semaphore at about the same time). To do so, we call s t a t and look at the
file's permissions (the st-mode member of the s t a t structure). If the user-execute bit
is off, the semaphore has been initialized.

Error returns

-10s When an error occurs, we are careful not to change errno.

i_close Function

Figure 10.45 shows our sem-close function, which just calls munmap for the region
that was memory mapped. Should the caller continue to use the pointer that was
returned by sem-open, it should receive a SIGSEGV signal.

3 int
4 sem~close(sem~t *sem)

5
6 if (sem->sem-magic != SEM-M?iGIC) {

7 errno = EINVAL;
8 return (-1);
9)

10 if (munmap(sem, sizeof (sem-t)) == -1)
11 return(-1) ;

12 return (0) ;

13)
myjxsem-mmaplsem-c1ose.c

Figure 10.45 sem-close function.

_unlink Function

Our sem-unlink function shown in Figure 10.46 removes the name associated with
our semaphore. It just calls the Unix unl ink function.

sost Function

Figure 10.47 shows our s e m j o s t function, which increments the value of a
semaphore, awaking any threads waiting for the semaphore if the semaphore value has
just become greater than 0.

268 Posix Semaphores Chapter 10

int
sem-unlink(const char *pathname)
{

if (unlink(pathname) == -1)
return (-1);

return (0) ;

my~xsem-mmap/sem-un1ink.c

Figure 10.46 sem-unlink function.

3 int
4 sernqost(sem-t *sen-)
5 {
6 int n;

7 if (sem->sem-magic != SEM-MAGIC) {

8 errno = EINVAL;
9 return (-1) ;
10 1
11 if ((n = pthread~mutex~lock(&sern->sem-mutex)) != 0) {

12 errno = n;
13 return (-1);
14 1
15 if (sem->sen--count == 0)
16 pthread-cond-signal(&sem->sem-cond);
17 sem->sem-count++;
18 pthread~mutex~unlock(&sern->sem-mutex);
19 return (0 1 ;
20 }

my~xsem_mmap/semgost.c

Figure 10.47 semqost function.

11-18 We must acquire the semaphore's mutex lock before manipulating its value. If the
semaphore's value will be going from 0 to 1, we call pthread-cond-signal to wake
up anyone waiting for this semaphore.

sen-wait Function

The sem-wait function shown in Figure 10.48 waits for the value of the semaphore to
exceed 0.

ion 10.15 Implementation Using Memory-Mapped 1/0 269

3 int
4 sen-wait(sen-t *sem)

5 {

6 int n;

if (sem->sen-magic ! = SEM-MAGIC) {

errno = EINVAL;
return (-1) ;

1
if ((n = pthread-mutex-lock(&sem->sen-mutex)) != 0) {

errno = n;
return (-1) ;

1
while (sen->sem-count == 0)

pthread-cond-wait(&sem->sem-cond, &sen->sen-mutex);
sem->sem-count--;
pthread~mutex~unlock(&sen->sen-mutex);
return (0) ;

Figure 10.48 sem-wait function.

1-18 We must acquire the semaphore's mutex lock before manipulating its value. If the
value is 0, we go to sleep in a call to pthread-cond-wai t, waiting for someone to call
pthread-cond-signal for this semaphore, when its value goes from 0 to 1. Once the
value is greater than 0, we decrement the value and release the mutex.

\-trywait Function

Figure 10.49 shows the sern-trywait function, the nonblocking version of sern-wait.
1-22 We acquire the semaphore's mutex lock and then check its value. If the value is

greater than 0, it is decremented and the return value is 0. Otherwise, the return value
is -1 with e r r n o set to EAGAIN.

\-getvalue Function

Figure 10.50 shows our final function, sern-getvalue, which returns the current value
of the semaphore.

1-16 We acquire the semaphore's mutex lock and return its value.

We can see from this implementation that semaphores are simpler to use than
mutexes and condition variables.

270 Posix Semaphores Chapter 10

3 int
4 sem-trywait(sem-t *sem)
5 {
6 int n, rc;

if (sem->sem-magic != SEM-MAGIC) {

errno = EINVAL;
return (-1);

1
if ((n = pthread-mutex-lock(&sem->sem-mutex)) != 0) {

errno = n;
return (-1) ;

1
if (sem->sem-count > 0) {

sem->sen-count--;
rc = 0;

1 else I
rc = -1;
errno = EAGAIN;

1
pthread-rnutex-unlock(&sem->sem-mutex);
return (rc) ;

24 1
rnyjxsem-mmap/sem-try wait.^

Figure 10.49 sem-trywai t function.

3 int
4 sem-getvalue(sem-t *sem, int *pvalue)
5 {

6 int n;

if (sem->sem-magic != SEM-MAGIC) {

errno = EINVAL;
return (-1) ;

1
if ((n = pthread-mutex-lock(&sem->sem-mutex)) != 0) {

errno = n;
return (-1) ;

1
*pvalue = sem->sem-count;
pthread~mutex~unlock(&sem->sem-rnutex);
return (0) ;

Figure 10.50 sem-getvalue function.

1 10.16 Implementation Using System V Semaphores 271

5 Implementation Using System V Semaphores

We now provide one more implementation of Posix named semaphores using System V
semaphores. Since implementations of the older System V semaphores are more com-
mon than the newer Posix semaphores, this implementation can allow applications to
start using Posix semaphores, even if not supported by the operating system.

We cover System V semaphores in Chapter 11. You may wish to skip this section until you
have read that chapter.

We first show our semaphore. h header in Figure 10.51, which defines the funda-
mental sem-t datatype.

myjxsem-susem/semaphore.h
1 / * the fundamental datatype * /
2 typedef struct {

3 int sen-semid; / * the System V semaphore ID * /
4 int sem-magic; / * magic number if open * /
5) sem-t;

7 #ifdef SEM-FAILED
8 #undef SEM-FAILED
9 #define SEM-FAILED ((sern-t *) (-1)) / * avoid compiler warnings * /
10 #endif

11 #ifndef SEMVMX
12 #define SEMVMX 32767 / * historical System V max value for sem * /
13 #endif

myjxsem-susem/semaphore.h
Figure 10.51 semaphore. h header.

se-t datatype

-5 We implement a Posix named semaphore using a System V semaphore set consist-
ing of one member. Our semaphore data structure contains the System V semaphore ID
and a magic number (which we discussed with Figure 10.36).

em-open Function

Figure 10.52 shows the first half of our sem-open function, which creates a new
semaphore or opens an existing semaphore.

3 #include <stdarg.h> / * for variable arg lists * /
4 #define MAX-TRIES 10 / * for waiting for initialization * /

5 s-t *
6 sen-open(const char *pathname, int oflag, . . .)

272 Posix Semaphores
7

Chapter 10

int i, fd. semflag, semid, save-errno;
key-t key;
mode-t mode;
va-list ap;
sem-t *sem;
union semun arg;
unsigned int value;
struct semid-ds seminfo;
struct sembuf initop;

/ * no mode for sem-open() w/out 0-CREAT; guess * /
semflag = SVSEM-MODE;
semid = -1;

if (oflag & 0-CREAT) {

va-start(ap, oflag); / * init ap to final named argument * /
mode = va-arg(ap, va-mode-t);
value = va-arg(ap, unsigned int);
va-end(ap);

/ * convert to key that will identify System V semaphore * /
if ((fd = open(pathname, oflag, mode)) == -1)

return (SEM-FAILED);
close(fd);
if ((key = ftok(pathname, 0)) == (key-t) - 1)

return (SEM-FAILED);

/ * create the System V semaphore with IPC-EXCL * /
if ((semid = semget(key, 1, semflag I IPC-EXCL)) >= 0) {

/ * success, we're the first so initialize to 0 * /
arg.val = 0;
if (semctl(semid, 0, SETVAL, arg) == -1)

goto err;
/ * then increment by value to set sem-otime nonzero * /

if (value > SEMVMX) {

errno = EINVAL;
goto err;

1
initop.sern-nun = 0;
initop.sern-op = value;
initop.sem-flg = 0;
if (semop(semid, &initop, 1) == -1)

goto err;
goto finish;

1 else if (errno != EEXIST I I (semflag & IPC-EXCL) != 0)
got0 err;

/ * else fall through */
1

rnyjxsem-susem Isem-0pen.c

Figure 10.52 sem-open function: first half.

n 10.16 Implementation Using System V Semaphores 273

Create a new semaphore and handle variable argument list

24 If the caller specifies the 0-CREAT flag, then we know that four arguments are
required, not two. We described the handling of the variable argument list and our
va-mode-t datatype with Figure 5.21.

Create ancillary file and map pathname into System V IPC key

30 A regular file is created with the pathname specified by the caller. We do so just to
have a pathname for f t o k to identify the semaphore. The caller's oflag argument for
the semaphore, which can be either 0-CREAT or 0-CREAT I 0-EXCL, is used in the call
to open. This creates the file if it does not already exist and will cause an error return if
the file already exists and 0-EXCL is specified. The descriptor is closed, because the
only use of this file is with f tok, which converts the pathname into a System V IPC key
(Section 3.2).

Create System V semaphore set with one member

33 We convert the 0-CREAT and 0-EXCL constants into their corresponding System V
IPC-xxx constants and call semget to create a System V semaphore set consisting of
one member. We always specify IPC-EXCL to determine whether the semaphore exists
or not.

Initialize semaphore

so Section 11.2 describes a fundamental problem with initializing System V
semaphores, and Section 11.6 shows the code that avoids the potential race condition.
We use a similar technique here. The first thread to create the semaphore (recall that we
always specify I PC-EXCL) initializes it to 0 with a command of SETVAL to semc t 1, and
then sets its value to the caller's specified initial value with semop. We are guaranteed
that the semaphore's sem-otime value is initialized to 0 by semget and will be set
nonzero by the creator's call to semop. Therefore, any other thread that finds that the
semaphore already exists knows that the semaphore has been initialized once the
sen-otime value is nonzero.

Check initial value

4 4 We check the initial value specified by the caller because System V semaphores are
normally stored as unsigned s h o r t s (the s e m structure in Section 11.1) with a maxi-
mum value of 32767 (Section 11.71, whereas Posix semaphores are normally stored as
integers with possibly larger allowed values (Section 20.13). The constant SEMVMX is
defined by some implementations to be the System V maximum value, or we define it to
be 32767 in Figure 10.51.

53 If the semaphore already exists and the caller does not specify 0-EXCL, this is not
an error. In this situation, the code falls through to open (not create) the existing
semaphore.

Figure 10.53 shows the second half of our sem-open function.

274 Posix Semaphores Chapter 10

5 6 * (0-CREAT not secif ied) or
57 * (0-CREAT without 0-EXCL and semaphore already exists).
58 * Must open semaphore and make certain it has been initialized.
59 * /
60 if ((key = ftok(pathname, 0)) == (key-t) - 1)
6 1 goto err;
62 if ((semid = semget(key, 0, semflag)) == -1)
63 goto err;

6 4 arg.buf = &seminfo;
6 5 for (i = 0; i < MAX-TRIES; i++) {
6 6 if (semctl(semid, 0 , IPC-STAT, arg) == -1)
6 7 goto err;
68 if (arg.buf->sem-otime != 0)
69 goto finish;
70 sleep(1);
71)

7 2 errno = ETIMEDOUT:
73 err:
74 save-errno = errno; / * don't let semctl() change errno * /
75 if (semid != -1)
7 6 semctl (semid, 0, IPCRMID) ;
77 errno = save-errno:
78 return (SEM-FAILED);

79 finish:
8 0 if ((sem = rnalloc(sizeof (sen-t))) == m L)
81 goto err;

8 2 sem->sem_semid = semid;
83 sem->sem-magic = SEM-MAGIC;
84 return (sem) ;
85 1 my~xsem~susem/sem~open.c

Figure 10.53 sem-open function: second half.

Open existing semaphore

55-63 For an existing semaphore (the 0-CREAT flag is not specified or 0-CREAT is speci-
fied by itself and the semaphore already exists), we open the System V semaphore with
semget. Notice that sem-open does not have a mode argument when 0-CREAT is not
specified, but semget requires the equivalent of a mode argument even if an existing
semaphore is just being opened. Earlier in the function, we assigned a default value
(the SVSEM-MODE constant from our unpipc. h header) that we pass to semget when
0-CREAT is not specified.

Wait for semaphore to be initialized

64-72 We then verlfy that the semaphore has been initialized by calling semctl with a
command of IPC-STAT, waiting for sem-otime to be nonzero.

Error returns

73-78 When an error occurs, we are careful not to change errno.

[on 10.16 Implementation Using System V Semaphores 275

Allocate sem-t datatype

)-84 We allocate space for a sem-t datatype and store the System V semaphore ID in the
structure. A pointer to the sem-t datatype is the return value from the function.

_close Function

Figure 10.54 shows our sem-close function, which just calls free to return the
dynamically allocated memory that was used for the sem-t datatype.

3 int
4 sem~close(sem~t *sem)

5 {

6 if (sem->sem-magic != SEM-IGiGIC) {

7 errno = EINVAL;
8 return (-1) ;
9 1
10 sen->sem-magic = 0; / * just in case * /

11 free (sem) ;
12 return (0) ;

13 1
my~xsem~susem/sem~close.c

Figure 10.54 sem-close function.

unlink Function -

Our sem-unlink function, shown in Figure 10.55, removes the ancillary file and the
System V semaphore associated with our Posix semaphore.

Obtain System V key associated with pathname

8-16 ftok converts the pathname into a System V IPC key. The ancillary file is then
removed by unlink. (We do so now, in case one of the remaining functions returns an
error.) We open the System V semaphore with semget and then remove it with a com-
mand of I PC-RMID to semc t 1.

gost Function

Figure 10.56 shows our semsost function, which increments the value of a
semaphore.

-16 We call semop with a single operation that increments the semaphore value by one.

wait Function -

The next function is shown in Figure 10.57; it is sem-wait, which waits for the value of
the semaphore to exceed 0.

-16 We call semop with a single operation that decrements the semaphore value by one.

276 Posix Semaphores Chapter 10

3 int
4 sem-unlink(const char *pathname)
5 I
6 int semid;
7 key-t key:

8 if ((key = ftok(pathname. 0)) == (key-t) - 1)
9 return (-1) ;
10 if (unlink (pathname) == -1)
11 return (-1);
12 if ((semid = semget(key, 1, SVSEM-MODE)) == -1)
13 return (-1);
14 if (semctl(semid, 0, IPC-MID) == -1)
15 return (-1);
16 return (0) ;

Figure 10.55 sem-unlink function.

3 int
4 semgost (sem-t *sem)
5 I
6 struct sembuf op;

if (sem->sem-magic != SEM-MAGIC) {

errno = EINVAL;
return (-1);

1
op.sem-nun = 0;
op.sem-op = 1;
op.sem-flg = 0;
if (semop(sem->sem-semid, &op, 1) < 0)

return (-1) ;
return (0) ;

Figure 10.56 semgost function.

sem-trywait Function

Our sem-trywait function, the nonblocking version of sem-wait, is shown in Fig-
ure 10.58.

13 The only change from our sem-wait function in Figure 10.57 is specifying
sem-f l g as IPC-NOWAIT. If the operation cannot be completed without blocking the
calling thread, the return value from semop is EAGAIN, which is what sem-trywait
must return if the operation cannot be completed without blocking.

10.16 Implementation Using System V Semaphores 277

3 int
4 sem-wait(sem-t *sem)
5 I
6 struct sernbuf op:

7 if (sem->sem-magic != SEN-MAGIC) {

8 errno = EINVAL;
9 return (-1) ;
10 1
11 op.sem-num = 0;
12 op.sem-op = -1;
13 op.sem-flg = 0;
14 if (semop(sem->sem-semid, &op, 1) < 0)
15 return (-1) ;
16 return (0) ;

Figure 10.57 sem-wai t function.

3 int
4 sem-trywait(sem-t *sem)
5 {

6 struct sembuf op;

7 if (sem->sem_magic != SEM-MAGIC) {

8 errno = EINVAL;
9 return (-1);
10 1
11 op.sem-num=O;
12 op. sem-op = -1 ;
13 0p.sem-flg = IPC-NOWAIT;
14 if (semop(sem->sem-semid, &op, 1) < 0)
15 return (-1);
16 return (0) ;
17 1

my_pxsem~susem/sem~trywait.c

Figure 10.58 sem-trywai t function.

:etvalue Function

The final function is shown in Figure 10.59; it is sem-getvalue, which returns the cur-
rent value of the semaphore.

4 The current value of the semaphore is obtained with a command of GETVAL to
semctl.

278 Posix Semaphores

7

Chapter 10

#include "semaphore.h"

int
sem-getvalue(sem-t *sem, int *pvalue)

(

int val ;

if (sem->sem-magic != SEM-MAGIC) (

errno = EINVAL;
return (-1);

I
if ((val = semctl(sen->sem-semid, 0, GETVAL)) < 0)

return (-1);
*pvalue = val;
return (0) ;

1
my~xxm~susem/xm_getualue.c

Figure 10.59 sem-getvalue function.

Summary

Posix semaphores are counting semaphores, and three basic operations are provided:

create a semaphore,

wait for a semaphore's value to be greater than 0 and then decrement the value,
and

post to a semaphore by incrementing its value and waking up any threads wait-
ing for the semaphore.

Posix semaphores can be named or memory-based. Named semaphores can always be
shared between different processes, whereas memory-based semaphores must be desig-
nated as process-shared when created. The persistence of these two types of
semaphores also differs: named semaphores have at least kernel persistence, whereas
memory-based semaphores have process persistence.

The producer-consumer problem is the classic example for demonstrating
semaphores. In this chapter, our first solution had one producer thread and one con-
sumer thread, our next solution allowed multiple producer threads and one consumer
thread, and our final solution allowed multiple consumer threads. We then showed that
the classic problem of double buffering is just a special case of the producer-consumer
problem, with one producer and one consumer.

Three sample implementations of Posix semaphores were provided. The first, using
FIFOs, is the simplest because much of the synchronization is handled by the kernel's
read and write functions. The next implementation used memory-mapped I/O, simi-
lar to our implementation of Posix message queues in Section 5.8, and used a mutex and
condition variable for synchronization. Our final implementation used System V
semaphores, providing a simpler interface to these semaphores.

ipter 10 Exercises 279

Exercises

Modify the produce and consume functions in Section 10.6 as follows. First, swap the
order of the two calls to em-wait in the consumer, to generate a deadlock (as we dis-
cussed in Section 10.6). Next, add a call to p r i n t f before each call to em-wait, indicat-
ing which thread (the producer or the consumer) is waiting for which semaphore. Add
another call to p r i n t f after the call to em-wait, indicating that the thread got the
semaphore. Reduce the number of buffers to 2, and then build and run this program to
verify that it leads to a deadlock.

Assume that we start four copies of our program that calls our my-lock function from
Figure 10.19:

8 lockpxsem & lockpxsem & lockpxsem & lockpxsem &

Each of the four processes starts with an i n i t f l a g of 0, so each one calls sem-open spec-
ifying 0-CREAT. Is this OK?

What happens in the previous exercise if one of the four programs terminates after calling
my-lock but before calling my-unlock?

What could happen in Figure 10.37 if we did not initialize both descriptors to -l?

In Figure 10.37, why do we save the value of e r rno and then restore it, instead of coding
the two calls to c l o s e as

What happens if two processes call our FIFO implementation of sem-open (Figure 10.37)
at about the same time, both specifying 0-CREAT with an initial value of 5? Can the FIFO
ever be initialized (incorrectly) to lo?

With Figures 10.43 and 10.44, we described a possible race condition if two processes both
try to create a semaphore at about the same time. Yet in the solution to the previous prob-
lem, we said that Figure 10.37 does not have a race condition. Explain.

Posix.1 makes it optional for sem-wait to detect that it has been interrupted by a caught
signal and return EINTR. Write a test program to determine whether your implementation
detects this or not.

Also run your test program using our implementations that use FIFOs (Section 10.141,
memory-mapped 1 / 0 (Section 10.151, and System V semaphores (Section 10.16).

Which of our three implementations of s e m s o s t are async-signal-safe (Figure 5.10)?

Modify the producer-consumer solution in Section 10.6 to use a pthread-mutex-t
datatype for the mutex variable, instead of a semaphore. Does any measurable change in
performance occur?

Compare the timing of named semaphores (Figures 10.17 and 10.18) with memory-based
semaphores (Figure 10.20).

System V Semaphores

.1 Introduction

When we described the concept of a semaphore in Chapter 10, we first desaibed

a binary semaphore: a semaphore whose value is 0 or 1. This was similar to a
mutex lock (Chapter 7), in which the semaphore value is 0 if the resource is
locked, or 1 if the resource is available.

The next level of detail expanded this into

a counting semaphore: a semaphore whose value is between 0 and some limit
(which must be at least 32767 for Posix semaphores). We used these to count
resources in our producer-consumer problem, with the value of the semaphore
being the number of resources available.

In both types of semaphores, the wait operation waits for the semaphore value to be
greater than 0, and then decrements the value. The post operation just increments the
semaphore value, waking up any threads awaiting the semaphore value to be greater
than 0.

System V semaphores add another level of detail to semaphores by defining

a set of counting semaphores: one or more semaphores (a set), each of which is a
counting semaphore. There is a limit to the number of semaphores per set, typi-
cally on the order of 25 semaphores (Section 11.7). When we refer to a
"System V semaphore," we are referring to a set of counting semaphores. when
we refer to a "Posix semaphore," we are referring to a single counting
semaphore.

282 System V Semaphores Chapter 11

For every set of semaphores in the system, the kernel maintains the following struc-
ture of information, defined by including <sys / sem . h>:

struct semid-ds {

struct ipcserm semserm; / * operation permission struct * /
struct sem *sem-base; / * ptr to array of semaphores in set * /
ushort sem-nsems; / * # of semaphores in set * /
t ime-t sem-otime; / * time of last semop0 * /
t ime-t sem-ctime; / * time of creation or last IPC-SET * /

1;

The ipcserm structure was described in Section 3.3 and contains the access permis-
sions for this particular semaphore.

The sem structure is the internal data structure used by the kernel to maintain the
set of values for a given semaphore. Every member of a semaphore set is described by
the following structure:

struct sem {

ushort-t semval; / * semaphore value, nonnegative * /
short sempid; / * PID of last successful semop0, SETVAL, SETALL * /
ushort-t sernncnt; / * # awaiting semval > current value * /
ushort-t semzcnt; / * # awaiting semval = 0 * /

1;

Note that sem-base contains a pointer to an array of these sem structures: one array
element for each semaphore in the set.

In addition to maintaining the actual values for each semaphore in the set, the ker-
nel also maintains three other pieces of information for each semaphore in the set: the
process ID of the process that performed the last operation on this value, a count of the
number of processes waiting for the value to increase, and a count of the number of pro-
cesses waiting for the value to become zero.

Unix 98 says that the above structure is anonymous. The name that we show, sem, is from the
historical System V implementation.

We can picture a particular semaphore in the kernel as being a semid-ds structure
that points to an array of sem structures. If the semaphore has two members in its set,
we would have the picture shown in Figure 21.1. In this figure, the variable
sem-nsems has a value of two, and we have denoted each member of the set with the
subscripts [0 I and [1 I .

11.2 semget Function

The semget function creates a semaphore set or accesses an existing semaphore set.

#include <sys/sem.h>

int semget(key-t key, int nsems, int oflag);

Returns: nonnegative identifier if OK, -1 on error

~n 11.2 semget Function 283

I

I semid L

sem-nsems 1 2

semval 101

I sempid I11 I
sernncnt [l l

Figure 11.1 Kernel data structures for a semaphore set with two values in the set.

The return value is an integer called the semaphore identifier that is used with the semop
and semc t 1 functions.

The nsems argument specifies the number of semaphores in the set. If we are not
creating a new semaphore set but just accessing an existing set, we can speclfy this argu-
ment as 0. We cannot change the number of semaphores in a set once it is created.

The oflag value is a combination of the SEM-R and SEM-A constants shown in Fig-
ure 3.6. R stands for "read and A stands for "alter." This can be bitwise-ORed with
either IPC-CREAT or IPC-CREAT I IPC-EXCL, as discussed with Figure 3.4.

When a new semaphore set is created, the following members of the semid-ds
structure are initialized:

The uid and cuid members of the semserm structure are set to the effective
user ID of the process, and the gid and cgid members are set to the effective
group ID of the process.

The read-write permission bits in of 1 ag are stored in s emserm . mode.
sem-o t ime is set to 0, and s em-c t ime is set to the current time.

sem-nsems is set to nsems.

The sem structure associated with each semaphore in the set is not initialized.
These structures are initialized when semctl is called with either the SETVAL or
SETALL commands.

~lizatlon of Semaphore Value

Comments in the source code in the 1990 edition of this book incorrectly stated that the
semaphore values in the set were initialized to 0 by semget when a new set was cre-
ated. Although some systems do initialize the semaphore values to 0, this is not guar-
anteed. Indeed, older implementations of System V do not initialize the semaphore

284 System V Semaphores
1

Chapter 11

values at all, leaving their values as whatever they were the last time that piece of mem-
ory was used.

Most manual pages for semget say nothing at all about the initial values of the
semaphores when a new set is created. The X/Open XPG3 portability guide (1989) and
Unix 98 correct this omission and explicitly state that the semaphore values are not ini-
tialized by semget and are initialized only by calling semctl (which we describe
shortly) with a command of either SETVAL (set one value in the set) or SETALL (set all
the values in the set).

This requirement of two function calls to create a semaphore set (semget) and then
initialize it (semctl) is a fatal flaw in the design of System V semaphores. A partial
solution is to specify IPC-CREAT I IPC-EXCL when calling semget, so that only one
process (the first one to call semge t) creates the semaphore. This process then initial-
izes the semaphore. The other processes receive an error of EEXIST from semget and
they then call semget again, without specifying either IPC-CREAT or IPC-EXCL.

But a race condition still exists. Assume that two processes both try to create and
initialize a one-member semaphore set at about the same time, both executing the fol-
lowing numbered lines of code:

1 oflag = IPC-CREAT I IPC-EXCL I SVSEM-MODE;
2 if ((semid = semget (key, 1, oflag)) >= 0) {

/ * success, we are the first, so initialize * /
3 arg.val = 1;
4 Semctl (semid, 0, SETVAL, arg) ;

5 1 else if (errno == EEXIST) {

/ * already exists, just open * /
6 semid = Semget(key, 1, SVSEM-MODE);

7 1 else
8 err-sys("semget error");

9 Semop(semid, ...) ; / * decrement the semaphore by 1 * /

The following scenario could occur:

1. The first process executes lines 1-3 and is then stopped by the kernel.

2. The kernel starts the second process, which executes lines 1,2,5,6, and 9.

Even though the first process to create the semaphore will be the only process to initial-
ize the semaphore, since it takes two steps to do the creation and initialization, the ker-
nel can switch to another process between these two steps. That other process can then
use the semaphore (line 9 in the code fragment), but the semaphore value has not been
initialized by the first process. The semaphore value, when the second process executes
line 9, is indeterminate.

Fortunately, there is a way around this race condition. We are guaranteed that the
sem-otime member of the semid-ds structure is set to 0 when a new semaphore set is
created. (The System V manuals have stated this fact for a long time, as do the XPG3
and Unix 98 standards.) This member is set to the current time only by a successful call
to semop. Therefore, the second process in the preceding example must call semctl

m 11.3 s e m o p Function 285

with a command of IPC-STAT after its second call to semget succeeds (line 6 in the
code fragment). It then waits for sem-otime to be nonzero, at which time it knows that
the semaphore has been initialized and that the process that did the initialization has
successfully called semop. This means the process that creates the semaphore must ini-
tialize its value and must call semop before any other process can use the semaphore.
We show examples of this technique in Figures 10.52 and 11.7.

Posix named semaphores avoid this problem by having one function (sem-open) create and
initialize the semaphore. Furthermore, even if 0-CREAT is specified, the semaphore is initial-
ized only if it does not already exist.

Whether this potential race condition is a problem also depends on the application. With some
applications (e.g., our producer<onsumer as in Figure 10.21), one process always creates and
initializes the semaphore. No race condition would exist in this scenario. But in other applica-
tions (eg., our file locking example in Figure 10.19), no single process creates and initializes the
semaphore: the first process to open the semaphore must create it and initialize it, and the race
condition must be avoided.

3 semop Function

Once a semaphore set is opened with semget, operations are performed on one or
more of the semaphores in the set using the semop function.

#include <sys/sem.h>

i n t semop (i n t semid, s t r u c t sembuf *opsptr, s ize- t nops) ;

Returns: 0 if OK, -1 on error

opsptr points to an array of the following structures:

s t r u c t sembuf {
shor t sem-num; / * semaphore number: 0, 1 , ..., nsems-1 */
s h o r t sem-op; / * semaphore opera t ion: <0, 0, >O * /
s h o r t sem-£19; / * opera t ion f l ags : 0, IPC-NOWAIT, SEM-UNDO */

1 ;

The number of elements in the array of sembuf structures pointed to by opsptr is speci-
fied by the nops argument. Each element in this array specifies an operation for one par-
ticular semaphore value in the set. The particular semaphore value is specified by the
sem-nurn value, which is 0 for the first element, one for the second, and so on, up to
nsems-1, where nsems is the number of semaphore values in the set (the second argu-
ment in the call to semget when the semaphore set was created).

We are guaranteed only that the structure contains the three members shown. It might contain
other members, and we have no guarantee that the members are in the order that we show.
This means that we must not statically initialize this structure, as in

struct sembuf ops[21 = (

0. 0. 0. / * wait for [O] to be 0 * /
0, 1, SEM-UNDO / * then increment [Ol by 1 * /

I ;

286 System V Semaphores Chapter 11

but must use run-time initialization, as in

struct sembuf ops[2];

ops[O].sem-num = 0; / * wait for [O] to be 0 * /
ops[0].sem~op = 0;
ops[O] .sem-flg = 0;
ops[ll.sem-num = 0; /* then increment [Ol by 1 * /
ops [ll . sem-op = 1;
ops[ll.sem-flg = SEM-UNDO;

The array of operations passed to the semop function are guaranteed to be per-
formed atomically by the kernel. The kernel either does all the operations that are speci-
fied, or it does none of them. We show an example of this in Section 11.5.

Each particular operation is specified by a sem-op value, which can be negative, 0,
or positive. In the discussion that follows shortly, we refer to the following items:

semval: the current value of the semaphore (Figure 11.1).

semncnt: the number of threads waiting for semval to be greater than its cur-
rent value (Figure 11.1).

s emz cnt: the number of threads waiting for s emval to be 0 (Figure 11.1).

semadj: the adjustment value for the calling process for the specified
semaphore. This value is updated only if the SEM-UNDO flag is specified in the
sem-f lg member of the sembuf structure for this operation. This is a concep-
tual variable that is maintained by the kernel for each process that specifies the
SEM-UNDO flag in a semaphore operation; a structure member with the name of
s emad j need not exist.

A given semaphore operation is made nonblocking by specifying the
IPC-NOWAIT flag in the sem-f lg member of the sembuf structure. When this
flag is specified and the given operation cannot be completed without putting
the calling thread to sleep, semop returns an error of EAGAIN.

When a thread is put to sleep waiting for a semaphore operation to complete
(we will see that the thread can be waiting either for the semaphore value to be 0
or for the value to be greater than 01, and the thread catches a signal, and the sig-
nal handler returns, the semop function is interrupted and returns an error of
EINTR. In the terminology of p. 124 of UNPv1, semop is a slow system call that is
interrupted by a caught signal.

When a thread is put to sleep waiting for a semaphore operation to complete
and that semaphore is removed from the system by some other thread or pro-
cess, sernop returns an error of EIDRM ("identifier removed").

We now describe the operation of semop, based on the three possible values of each
specified sem-op operation: positive, 0, or negative.

1. If sem-op is positive, the value of sem-op is added to semval. This corre-
sponds to the release of resources that a semaphore controls.

on 11.4 semctl Function 287

If the SEM-UNDO flag is specified, the value of sem-op is subtracted from the
semaphore's semad j value.

2. If sem-op is 0, the caller wants to wait until semval is 0. If semval is already
0, return is made immediately.

If semval is nonzero, the semaphore's semzcnt value is incremented and the
calling thread is blocked until semval becomes 0 (at which time, the
semaphore's semzcnt value is decremented). As mentioned earlier, the thread
is not put to sleep if IPC-NOWAIT is specified. The sleep returns prematurely
with an error if a caught signal interrupts the function or if the semaphore is
removed.

3. If sem-op is negative, the caller wants to wait until the semaphore's value
becomes greater than or equal to the absolute value of sem-op. This corre-
sponds to the allocation of resources.

If semval is greater than or equal to the absolute value of sem-op, the absolute
value of sem-op is subtracted from semval. If the SEM-UNDO flag is specified,
the absolute value of sem-op is added to the semaphore's semadj value.

If semval is less than the absolute value of sem-op, the semaphore's semncnt
value is incremented and the calling thread is blocked until semval becomes
greater than or equal to the absolute value of sem-op. When this change
occurs, the thread is unblocked, the absolute value of sem-op is subtracted from
semval, and the semaphore's semncnt value is decremented. If the SEM-UNDO
flag is specified, the absolute value of sem-op is added to the semaphore's
semadj value. As mentioned earlier, the thread is not put to sleep if
IPC-NOWAIT is specified. Also, the sleep returns prematurely with an error if a
caught signal interrupts the function or if the semaphore is removed.

If we compare these operations to the operations allowed on a Posix semaphore, the latter
allows operations of only -1 (sen-wait) and +1 (semjost) . System V semaphores allow the
value to go up or down by increments other than one, and also allow waiting for the
semaphore value to be 0. These more general operations, along with the fact that System V
semaphores can have a set of values, is what complicates System V semaphores, compared to
the simpler Posix semaphores.

4 sernctl Function

The semc t 1 function performs various control operations on a semaphore.

#include <sys/sem.h>

i n t sernctl (i n t semid, i n t semnum. i n t cmd, . . . / * union senun arg */) ; I
I Returns: nonnegative value if OK (see text), -1 on error I

288 System V Semaphores Chapter 11

The first argument semid identifies the semaphore, and semnum identifies the member of
the semaphore set (0,1, and so on, up to nsems-I). The semnum value is used only for
the GETVAL, SETVAL, GETNCNT, GETZCNT, and GETPID commands.

The fourth argument is optional, depending on the cmd (see the comments in the
union below). When required, it is the following union:

union semun {

i n t v a l ; / * used for SETVAL only * /
struct semid-ds *buf; / * used for IPC-SET and IPC-STAT * /
ushort *array; I* used for GETALL and SETALL *I

1 ;

This union does not appear in any system header and must be declared by the applica-
tion. (We define it in our unpipc . h header, Figure C.1.) It is passed by value, not by
reference. That is, the actual value of the union is the argument, not a pointer to the
union.

Unfortunately, some systems (FreeBSD and Linux) define this union as a result of including
the <sys/sem. h> header, making it hard to write portable code. Even though having the sys-
tem header declare this union makes sense, Unix 98 states that it must be explicitly declared
by the application.

The following values for the cmd are supported. Unless stated otherwise, a return
value of 0 indicates success, and a return value of -1 indicates an error.

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

GETALL

SETALL

IPC-RMID

I PC-SET

Return the current value of semval as the return value of the function.
Since a semaphore value is never negative (semval is declared as an
unsigned short), a successful return value is always nonnegative.

Set the value of semval to arg.val. If this is successful, the semaphore
adjustment value for this semaphore is set to 0 in all processes.

Return the current value of sempid as the return value of the function.

Return the current value of semncnt as the return value of the func-
tion.

Return the current value of semzcnt as the return value of the func
tion.

Return the values of semval for each member of the semaphore set.
The values are returned through the arg.array pointer, and the return
value of the function is 0. Notice that the caller must allocate an array
of unsigned short integers large enough to hold all the values for
the set, and then set arg.array to point to this array.

Set the values of sernval for each member of the semaphore set. The
values are specified through the arg.array pointer.

Remove the semaphore set specified by semid from the system.

Set the following three members of the semid-ds structure for the
semaphore set from the corresponding members in the structure
pointed to by the arg.buf argument: semserm . uid, s emserm . gid,

m 11.5 Simple Programs 289

and semserm .mode. The sem-ctime member of the semid-ds
structure is also set to the current time.

IPC-STAT Return to the caller (through the argbuf argument) the current
semid-ds structure for the specified semaphore set. Notice that the
caller must first allocate a semid-ds structure and set arg.buf to point
to this structure.

i Simple Programs

Since System V semaphores have kernel persistence, we can demonstrate their usage by
writing a small set of programs to manipulate them and seeing what happens. The val-
ues of the semaphores will be maintained by the kernel from one of our programs to the
next.

:reate Program

Our first program shown in Figure 11.2 just creates a System V semaphore set. The -e
command-line option specifies the IPC-EXCL flag, and the number of semaphores in
the set must be specified by the final command-line argument.

svsern/serncreate.c
1 #include "unpipc.hW

2 int
3 main(int argc. char **argv)
4 {
5 int c, oflag, semid, nsems;

oflag = SVSEM-MODE I IPC-CREAT;
while ((c = Getopt(argc, argv, "en)) != -1) {

switch (c) {
case 'el:

oflag I = IPCEXCL;
break;

1
1
if (optind != argc - 2)

err-quit("usage: semcreate [-e I <pathname> <nsems>");
nsems = atoi(argv[optind + 11);

17 semid = Semget(Ftok(argv[optindl, 01, nsems, oflag);
18 exit (0) ;

19 1
svsern/serncreate.c

Figure 11.2 semcreate program.

mid Program

The next program, shown in Figure 11.3, removes a semaphore set from the system. A
command of IPc-RMID is executed through the semctl function to remove the set.

290 System V Semaphores

1

Chapter 11

semsetvalues Program

Our semsetvalues program (Figure 11.4) sets all the values in a semaphore set.

Get number of semaphores in set

11-15 After obtaining the semaphore ID with semget, we issue an IPC-STAT command
to semctl to fetch the semid-ds structure for the semaphore. The sem-nsems mem-
ber is the number of semaphores in the set.

Set all the values

19-24 We allocate memory for an array of unsigned shorts, one per set member, and
copy the values from the command-line into the array. A command of SETALL to
semc t 1 sets all the values in the semaphore set.

semgetvalues Program

Figure 11.5 shows our semgetvalues program, which fetches and prints all the values
in a semaphore set.

Get number of semaphores in set

11-15 After obtaining the semaphore ID with semget, we issue an IPC-STAT command
to semctl to fetch the semid-ds structure for the semaphore. The sem-nsems mem-
ber is the number of semaphores in the set.

Get all the values

16-22 We allocate memory for an array of unsigned shorts, one per set member, and
issue a command of GETALL to semctl to fetch all the values in the semaphore set.
Each value is printed.

semops Program

Our semops program, shown in Figure 11.6, executes an array of operations on a
semaphore set.

Command-line options

7-19 An option of -n specifies the IPC-NOWAIT flag for each operation, and an option of
-u specifies the SEM-UNDO flag for each operation. Note that the semop function allows
us to specify a different set of flags for each member of the sembuf structure (that is, for
the operation on each member of the set), but for simplicity we have these
command-line options specify that flag for all specified operations.

Allocate memory for the operations

20-29 After opening the semaphore set with semget, an array of sembuf structures is
allocated, one element for each operation specified on the command line. Unlike the
previous two programs, this program allows the user to specify fewer operations than
members of the semaphore set.

Execute the operations

semop executes the array of operations on the semaphore set.

ion 115 Simple Programs 291

2 int
3 main(int argc, char **argv)
4 {
5 int semid;

6 if (argc != 2)
7 errquit("usage: semrmid <pathname>");

8 semid = Semget (Ftok(argv[l] , 0). 0, 0) ;
9 Semctl (semid, 0, IPC-RMID) ;

10 exit (0) ;
11 1

svsern/sernrmid.c

Figure 11.3 semrmid program.

1 #include "unpipc . h"
2 int
3 main(int argc, char **argv)

int semid, nsems, i;
struct semid-ds seminfo;
unsigned short *ptr;
union semun arg;

if (argc < 2)
errquit("usage: semsetvalues <pathname> [va dues . . .
/ * first get the number of semaphores in the set * /

semid = Semget (Ftok(argv[l] , 0). 0, 0) ;
arg.buf = &seminfo;
Semctl (semid, 0, IPC-STAT, arg) ;
nsems = arg.buf->sem-nsems;

/ * now get the values from the command line * /
if (argc != nsems + 2)

errquit("%d semaphores in set, %d values specified", nsems, argc - 2);

/ * allocate memory to hold all the values in the set, and store */
ptr = Calloc(nsems, sizeof(unsigned short));
arg.array = ptr;
for (i = 0; i < nsems; i++)

ptr[il = atoi(argv[i + 21);
Semctl(semid, 0, SETALL, arg);

exit (0) ;

svsern/sernsetvalues.c

Figure 11.4 semsetvalues program.

292 System V Semaphores Chapter 11

2 int
3 main(int argc, char **argv)
4 {
5 int semid, nsems, i;
6 struct semid-ds seminfo;
7 unsigned short *ptr;
8 union semun arg;

9 if (argc != 2)
10 err-quit("usage: semgetvalues <pathname>");

11 / * first get the number of semaphores in the set * /
12 semid = Semget (Ftok(argv[ll , 0). 0, 0) ;
13 arg.buf = kerninfo;
14 Semctl (semid, 0, IPC-STAT, arg) ;
15 nsems = arg.buf->sem-nsems;

16 / * allocate memory to hold all the values in the set * /
17 ptr = Calloc(nsems, sizeof(unsigned short));
18 arg-array = ptr;

19 / * fetch the values and print * /
2 0 Semctl(semid, 0, GETALL, arg);
2 1 for (i = 0; i < nsems; i++)
2 2 printf('semval[%dl = %d\nN, i, ptr[il);

2 3 exit (0) ;

Figure Il.5 semgetvalues program.

2 int
3 main(int argc, char **argv)
4 {
5 int c, i, flag, semid, nops;
6 struct sembuf *ptr;

7 flag = 0;
8 while ((c = Getopt(argc, argv, "nu")) != -1) {

9 switch (c) {
10 case 'n' :
11 flag I= IPC-NOWAIT; / * for each operation * /
12 break;

13 case 'u' :
14 flag) = SEM-UNDO; / * for each operation * /
15 break;
16 1
17 1
18 if (argc - optind < 2) / * argc - optind = #args remaining * /
19 err-quit("usage: semops [-n I [-u] <pathname> operation ..

.on 11.5 Simple Programs 293

20 semid = Semget(Ftok(argv[optind], 0). 0, 0);
21 optind++;
2 2 nops = argc - optind;

/ * allocate memory to hold operations, store, and perform * /
ptr = Calloc(nops, sizeof(struct sembuf));
for (i = 0: i < nops; i++) {

ptr[il .sem-nun = i;
ptr[il.sem-op = atoi(argv[optind + i]); / * <0, 0, or >O * /
ptr[il.sem-flg = flag;

1
Semop (semid, ptr, nops) ;

31 exit (0) ;
32 1

svsem/semops.c
Figure 11.6 semops program.

mples

We now demonstrate the five programs that we have just shown, looking at some of the
features of System V semaphores.

solaris % touch /-/rich
solaris % semcreate -e /tlp/rich 3
solaris % semsetvalues /tlp/rich 1 2 3
solaris % semgetvalues /tlp/rich
semval[Ol = 1
semval[l] = 2
semval[21 = 3

We first create a file named / tmp/r ich that will be used (by f tok) to identify the
semaphore set. semcreate creates a set with three members. semsetvalues sets the
values to 1,2, and 3, and these values are then printed by semgetvalues.

We now demonstrate the atomicity of the set of operations when performed on a
semaphore set.

solaris % semops -n /tlp/rich -1 -2 -4
semctl error: Resource temporarily unavailable
solaris % semgetvalues /tlp/rich
semval [O] = 1
semval[ll = 2
semval[2] = 3

We specify the nonblocking flag (-n) and three operations, each of which decrements a
value in the set. The first operation is OK (we can subtract 1 from the first member of
the set whose value is 11, the second operation is OK (we can subtract 2 from the second
member of the set whose value is 21, but the third operation cannot be performed (we
cannot subtract 4 from the third member of the set whose value is 3). Since the last
operation cannot be performed, and since we specified nonblocking, an error of EAGAIN
is returned. (Had we not specified the nonblocking flag, our program would have just
blocked.) We then verify that none of the values in the set were changed. Even though

294 System V Semaphores
7

Chapter 11

the first two operations could be performed, since the final operation could not be per-
formed, none of the three operations are performed. The atomicity of semop means
that either all of the operations are performed or none of the operations are performed.

We now demonstrate the SEM-UNDO property of System V semaphores.

solaris % semsetvalues /-/rich 1 2 3 settoknownvalues
solaris % semo~s -u /tnw/rich -1 -2 -3 specifys~~-u~~~formchoperation
solaris % semgetvalues /-/rich
semval[o] = 1 all the changes were undone when sernops terminated
semval[l] = 2
semval[2] = 3
solaris % semo~s /-/rich -1 -2 -3 do not specify SEM-UNDO
solaris % serngetvalues /tmp/rich
semval [O] = 0 the changes wer? not undone
semval [l] = 0
semval[2] = 0

We first reset the three values to 1,2, and 3 with semsetvalues and then specify oper-
ations of -1, -2, and -3 with our semops program. This causes all three values to
become 0, but since we specify the -u flag to our semops program, the SEM-UNDO flag
is specified for each of the three operations. This causes the semad j value for the three
members to be set to 1,2, and 3, respectively. Then when our semops program termi-
nates, these three semadj values are added back to the current values of each of the
three members (which are all O), causing their final values to be 1,2, and 3, as we verify
with our semgetvalues program. We then execute our semops program again, but
without the -u flag, and tlus leaves the three values at 0 when our semops program ter-
minates.

11.6 File Locking

We can provide a version of our my-lock and my-unlock functions from Figure 10.19,
implemented using System V semaphores. We show this in Figure 11.7.

First try an exclusive create

13-17 We must guarantee that only one process initializes the semaphore, so we specify
IPC-CREAT I IPC-EXCL. If this succeeds, that process calls semc t 1 to initialize the
semaphore value to 1. If we start multiple processes at about the same time, each of
which calls our my-lock function, only one will create the semaphore (assuming it
does not already exist), and then that process initializes the semaphore too.

Semaphore already exists; just open

18-20 The first call to semget will return an error of EEXIST to the other processes, which
then call semge t again, but without the I PC-CREAT I I PC-EXCL flags.

Wait for semaphore to be initialized

21-28 We encounter the same race condition that we talked about with the initialization of
System V semaphores in Section 11.2. To avoid this, any process that finds that the
semaphore already exists must call semctl with a command of IPC-STAT to look at

tion 11.6 File Locking 295

lock/locksvsem.c
1 #include "unpipc . h"

2 #define LOCK-PATH "/tmp/svsemlock"
3 #define MAX-TRIES 10

4 int semid, initflag;
5 struct sernbuf postop, waitop;

6 void
7 my_lock(int fd)
8 {
9 int oflag, i;
10 union semun arg;
11 struct semid-ds seminfo;

12 if (initflag == 0) {

13 oflag = IPC-CREAT I IPC-EXCL I SVSEM-MODE;
14 if ((semid = semget(Ftok(L0CK-PATH, 0). 1, oflag)) >= 0) {

15 / * success, we're the first so initialize * /
16 arg.va1 = 1;
17 Semctl (semid, 0, SETVAL, arg) ;

1 else if (errno == EEXIST) {

/ * someone else has created; make sure it's initialized * /
semid = Semget(Ftok(L0CK-PATH, 0). 1, SVSEM-MODE);
arg.buf = &seminfo;
for (i = 0; i < MAX-TRIES; i++) (

Semctl(semid, 0, IPC-STAT, arg);

sleep (1) ;
1
err-quit("semget OK, but semaphore not initialized");

1 else
err-sys("semget error");

ini t :
initflag = 1;
postop.sem_nm = 0; / * and init the two semop0 structures * /
postop.sem-op = 1;
postop.sem-flg = SEM-UNDO;
waitop.sem-nm = 0:
waitop.sem_op = -1;
waitop.sem-flg = SEM-UNDO;

1
Semop(semid, &waitop, 1) ; / * down by 1 * /

42 void
43 my-unlock (int fd)
44 {
4 5 Semop(semid, &postop, 1); / * up by 1 * /

Figure 11.7 File locking using System V semaphores.

296 System V Semaphores Chapter 11

the sem-otime value for the semaphore. Once this value is nonzero, we know that the
process that created the semaphore has initialized it, and has called semop (the call to
semop is at the end of this function). If the value is still 0 (which should happen very
infrequently), we sleep for 1 second and try again. We limit the number of times that
we try this, to avoid sleeping forever.

Initialize sembur structures

33-38 AS we mentioned earlier, there is no guaranteed order of the members in the
sembuf structure, so we cannot statically initialize them. Instead, we allocate two of
these structures and fill them in at run time, when the process calls my-lock for the
first time. We specify the SEM-UNDO flag, so that if a process terminates while holding
the lock, the kernel will release the lock (see Exercise 10.3).

Creating a semaphore on its first use is easy (each process tries to create it but
ignores an error if the semaphore already exists), but removing it after all the processes
are done is much harder. In the case of a printer daemon that uses the sequence number
file to assign job numbers, the semaphore would remain in existence all the time. But
other applications might want to delete the semaphore when the file is deleted. In this
case, a record lock might be better than a semaphore.

11.7 Semaphore Limits

As with System V message queues, there are certain system limits with System V
semaphores, most of which arise from their original System V implementation (Sec-
tion 3.8). These are shown in Figure 11.8. The first column is the traditional System V
name for the kernel variable that contains this limit.

I Name I Description I DUnix 4.0B I Solaris 2.6 I
I I

semmni I max # unique semaphore sets, systemwide
semmsl I max # semaphores per semaphore set

16 1 10
25 1 25

semopm I max # operations per semop call

I I

semaem I max adjust-on-exit value 1 16384 1 16384 1

10 1 10
semmnu
s e m e
s e n

Figure 11.8 Typical limits for System V semaphores.

Apparently no semmnu limit exists for Digital Unix.

Example

The program in Figure 11.9 determines the limits shown in Figure 11.8.

semmns I max # semaphores, systemwide 400 1 60

max # of undo structures, systemwide
max # of undo entries per undo structure
max value of any semaphore

10
32767

30

10
32767

11.7 Semaphore Limits 297

2
3 #define
4 #define
5 #define
6 #define
7 #define

8 int

/ * following are upper limits of values to try */
MAX-NIDS 4096 / * max # semaphore IDS * /
MAX-VALUE 1024*1024 / * rnax semaphore value * /
MAX-MEMBERS 4 0 9 6 / * max # semaphores per semaphore set * /
MAX-NOPS 4096 / * max # operations per semop0 * /
MAX-NPROC Sysconf(-SC-CHILD-MAX)

9 main(int argc, char **argv)
10 {

int i, j, semid, sid[MAX-NIDSI, pipefdL21;
int s e m i , semvmx, semmsl, s e m s , semopn, semaem, semume. semmnu;
pid-t *child;
union semun arg;
struct sembuf ops[MAX-NOPSI;

/ * see how many sets with one member we can create */
for (i = 0; i <= MAX-NIDS; i++) I

sid [i] = semget (IPC-PRIVATE, 1, SVSEM-MODE I IPC-CREAT) ;
if (sid[i] == -1) I

semmni = i:
printf("%d identifiers open at once\nW, semi);
break;

1
1

/ * before deleting, find maximum value using sid[O] * /
for (j = 7; j < MAX-VALUE; j += 8) {

arg.va1 = j;
if (semctl(sid[O], 0, SETVAL, arg) == -1) {

printf("max semaphore value = %d\nn, semvmx);
break;

1
1
for (j = 0; j < i; j++)

Semctl (sid[jl , 0, IPC-RMID) ;

/ * determine rnax # semaphores per semaphore set * /
for (i = 1; i <= MAX-MEMBERS; i++) I

semid = semget(1PC-PRIVATE, i, SVSEM-MODE I IPC-CREAT);
if (semid == -1) {

semmsl = i - 1;
printf("max of %d members per set\nW, semmsl);
break;

1
Semctl (semid, 0, IPC-RMID) ;

I

/ * find rnax of total # of semaphores we can create * /

for (i = 0; i < s e m i ; i++) {
sid[i] = semget(1PC-PRIVATE, semmsl, SVSEM-MODE I IPC-CREAT);
if (sid[i] == -1) I

298 System V Semaphores Chapter 11

/ *
* Up to this point each set has been created with semmsl
* members. But this just failed, so try recreating this
* final set with one fewer member per set, until it works.
* /
for (j = semmsl- 1; j > 0; j--) I

sid[i] = semget(1PC-PRIVATE, j, SVSEM-MODE I IPC-CREAT);
if (sid[il != -1) {

semmns += j ;
printf("max of %d semaphores\nM, semmns);
Semctl (sid[i], 0, IPC-RMID) ;
goto done;

1
1
errquit("j reached 0, semmns = %d", sems);

1
s e m s += semmsl;

1
printf("max of %d semaphores\nn, semmns):

done :
for (j = 0; j < i; j++)

Semctl (sid[j] , 0, IPC-RMID) ;

/ * see how many operations per semop () * /
semid = Semget(1PC-PRIVATE, semmsl, SVSEM-MODE I IPC-CREAT);
for (i = 1; i <= MAX-NOPS; i++) (

ops[i - ll.sem-num = i - 1;
ops[i - l].sem-op = 1;
ops[i - l1.sem-flg = 0;
if (semop(semid, ops, i) == -1) (

if (errno != E2BIG)
err-sys("expected E2BIG from semop");

semopn = i - 1;
printf ("max of %d operations per semop () \n" , semopn) ;
break;

1
1
Semctl(semid, 0, IPC-WID);

/ * determine the max value of semadj * /
/ * create one set with one semaphore * /

semid = Semget(1PC-PRIVATE, 1, SVSEM-MODE I IPC-CREAT);
arg.va1 = semvmx;
Semctl(semid, 0, SETVAL, arg); / * set value to max * /
for (i = semvmx - 1; i > 0; i--) {

ops[Ol.sem-nm = 0;
ops[O] .sem-op = -i;
ops[O].sem-flg = SEM-UNDO;
if (semop(semid, ops, 1) != -1) I

semaem = i;
printf("max value of adjust-on-exit = %d\nn, semaem);
break;

1
1
Semctl (semid, 0, IPC-RMID) ;

111.7 Semaphore Limits 299

if

1
1
semct1
for (j

Ki

/ * determine max # undo structures * /
/ * create one set with one semaphore; init to 0 * /

semid = Semget(1PC-PRIVATE, 1, SVSEM-MODE I IPC-CREAT);
arg.va1 = 0;
~emctl(semid, 0, SETVAL, arg); / * set semaphore value to 0 * /
Pipe (pipefd) ;
child = Malloc(MAX-NPROC * sizeof(pid-t));
for (i = 0; i < MAX-NPROC; i++) {

if ((child[i] = fork()) == -1) {

semmnu = i - 1;
printf ("fork failed, senunnu at least %d\n", senunnu);
break;

1 else if (child[il == 0) {
ops[O].sem-nm = 0; / * child does the semop0 * /
ops [01 . sem-op = 1 ;
ops[O].sem-flg = SEM-UNDO:
j = semop(semid, ops, 1); / * 0 if OK, -1 if error */
Write(pipefd[l], &j, sizeof(j));
sleep (30) ; / * wait to be killed by parent * /
exit (0) ; / * just in case * /

1
/ * parent reads result of semop0 * /
Read(pipefd[Ol, &j, sizeof(j));

(j == -1) {

semmnu = i;
printf("max # undo structures = %d\nW, senunnu);
break;

(semid, 0, IPC-RMID) ;
= 0; j <= i && child[j] > 0; j++)
11 (child[j I, SIGINT) ;

/ * determine m a # adjust entries per process * /
/ * create one set with max # of semaphores * /

semid = Semget(1PC-PRIVATE, semmsl, SVSEM-MODE I IPC-CREAT);
for (i = 0; i < semmsl; i++) {

arg.va1 = 0;
Semctl(semid, i, SETVAL, arg); / * set semaphore value to 0 * /

ops[i].sem-nm = i;
ops[il.sem-op = 1; / * add 1 to the value * /
ops[il.sem-flg = SEM-UNW;

if (semop(semid, ops, i + 1) == -1) (

semme = i;
printf("max # undo entries per process = %d\nM, semme);
break;

1
1
Semctl (semid, 0, IPCRMID) ;

exit (0) ;
153 1

svsern/lirnits.c

Figure 11.9 Determine the system limits on System V semaphores.

300 System V Semaphores Chapter 11

11.8 Summary

The following changes occur when moving from Posix semaphores to System V
semaphores:

1. System V semaphores consist of a set of values. When specifying a group of
semaphore operations to apply to a set, either all of the operations are per-
formed or none of the operations are performed.

2. Three operations may be applied to each member of a semaphore set: test for the
value being 0, add an integer to the value, and subtract an integer from the
value (assuming that the value remains nonnegative). The only operations
allowed for a Posix semaphore are to increment by one and to decrement by one
(assuming that the value remains nonnegative).

3. Creating a System V semaphore set is tricky because it requires two operations
to create the set and then initialize the values, which can lead to race conditions.

4. System V semaphores provide an "undo" feature that reverses a semaphore
operation upon process termination.

Exercises

11.1 Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead of a path-
name to specify the queue. We showed that the identifier is all we need to know to access
a System V message queue (assuming we have adequate permission). Make similar modi-
fications to Figure 11.6 and show that the same feature applies to System V semaphores.

11.2 What happens in Figure 11.7 if the LOCK-PATH file does not exist?

r

Par t 4

Shared Memory

Shared Memory lnfroducfion

1 Introduction

Shared memory is the fastest form of IPC available. Once the memory is mapped into
the address space of the processes that are sharing the memory region, no kernel
involvement occurs in passing data between the processes. What is normally required,
however, is some form of synchronization between the processes that are storing and
fetching information to and from the shared memory region. In Part 3, we discussed
various forms of synchronization: mutexes, condition variables, read-write locks, record
locks, and semaphores.

What we mean by "no kernel involvemenf' is that the processes do not execute any sys-
tem calls into the kernel to pass the data. Obviously, the kernel must establish the mem-
ory mappings that allow the processes to share the memory, and then manage this
memory over time (handle page faults, and the like).

Consider the normal steps involved in the client-server file copying program that
we used as an example for the various types of message passing (Figure 4.1).

The server reads from the input file. The file data is read by the kernel into its
memory and then copied from the kernel to the process.

The server writes this data in a message, using a pipe, FIFO, or message queue.
These forms of IPC normally require the data to be copied from the process to
the kernel.

We use the qualifier normally because Posix message queues can be implemented using
memory-mapped 1/0 (the map function that we describe in this chapter), as we showed
in Section 5.8 and as we show in the solution to Exercise 12.2. In Figure 12.1, we assume

304 Shared Memory Introduction Chapter 12

that Posix message queues are implemented within the kernel, which is another possibil-
ity. But pipes, FIFOs, and System V message queues all involve copying the data from the
process to the kernel for a w r i t e or msgsnd, or copying the data from the kernel to the
process for a read or msgrcv.

The client reads the data from the IPC channel, normally requiring the data to be
copied from the kernel to the process.

Finally, the data is copied from the client's buffer, the second argument to the
w r i t e function, to the output file.

A total of four copies of the data are normally required. Additionally, these four copies
are done between the kernel and a process, often an expensive copy (more expensive
than copying data within the kernel, or copying data within a single process). Fig-
ure 12.1 depicts this movement of the data between the client and server, through the
kernel.

process - - - -
kernel

client

Figure 12.1 Flow of file data from server to client.

server

The problem with these forms of IPC-pipes, FIFOs, and message queues-is that
for two processes to exchange information, the information has to go through the ker-
nel.

Shared memory provides a way around this by letting two or more processes share
a region of memory. The processes must, of course, coordinate or synchronize the use of
the shared memory among themselves. (Sharing a common piece of memory is similar
to sharing a disk file, such as the sequence number file used in all the file locking exam-
ples.) Any of the techniques described in Part 3 can be used for this synchronization.

The steps for the client-server example are now as follows:

v
output input (pipe, FIFO, or

file file message queue)

The server gets access to a shared memory object using (say) a semaphore.

The server reads from the input file into the shared memory object. The second
argument to the read, the address of the data buffer, points into the shared
memory object.

When the read is complete, the server notifies the client, using a semaphore.

The client writes the data from the shared memory object to the output file.

112.1 Introduction 305

This scenario is depicted in Figure 12.2.

output I file 1

rli_ll I
I

input I file 1
Figure 12.2 Copying file data from server to client using shared memory.

process

I

sharedmemory

In this figure the data is copied only twice-from the input file into shared memory and
from shared memory to the output file. We draw one dashed box enclosing the client
and the shared memory object, and another dashed box enclosing the server and the
shared memory object, to reinforce that the shared memory object appears in the
address space of both the client and the server.

The concepts involved in using shared memory are similar for both the Posix inter-
face and the System V interface. We describe the former in Chapter 13 and the latter in
Chapter 14.

I

I server

I n1

In this chapter, we return to our sequence-number-increment example that we
started in Chapter 9. But we now store the sequence number in memory instead of in a
file.

We first reiterate that memory is not shared by default between a parent and child
across a fork. The program in Figure 12.3 has a parent and child increment a global
integer named count.

Create and initialize semaphore

la We create and initialize a semaphore that protects what we think is a shared vari-
able (the global count). Since this assumption is false, this semaphore is not really
needed. Notice that we remove the semaphore name from the system by calling
sem-unlink, but although this removes the pathname, it has no effect on the
semaphore that is already open. We do this so that the pathname is removed from the
filesystem even if the program aborts.

Set standard output unbuffered and fork

We set standard output unbuffered because both the parent and child will be writ-
ing to it. This prevents interleaving of the output from the two processes.

2s The parent and child each execute a loop that increments the counter the specified
number of times, being careful to increment the variable only when the semaphore is
held.

306 Shared Memory Introduction Chapter 12

2 #define SEM-NAME "mysem"

3 int count = 0;

4 int
5 main(int argc, char **argv)
6 I
7 int i, nloop;

9 if (argc != 2)
10 err-quit("usage: incrl <#loops>");
11 nloop = atoi (argv [l]) ;

12 / * create, initialize, and unlink semaphore * /
13 rnutex = Sem-open(Px-ipc-name(SEM-NAME), 0-CREAT I 0-EXCL, FILE-MODE, 1);
14 Sem-unlink (Px-ipc-name (SEM-NAME)) ;

setbuf(stdout, NULL); / * stdout is unbuffered * /
if (Fork() == 0) { / * child * /

for (i = 0; i i nloop; i++) {
Sem-wait(mutex);
printf("chi1d: %d\n", count++);
Sem_post(mutex);

1
exit (0) ;

1
/ * parent * /

for (i = 0; i i nloop; i++) {
Sem-wait(mutex);
printf("parent: %d\nN, count++):
Sem_post(mutex);

1
exit (0) ;

Figure 123 Parent and child both increment the same global.

If we run this program and look only at the output when the system switches
between the parent and child, we have the following:

child: 0
child: 1

child: 678
child: 679
parent: 0
parent: 1

child runs first, counter starts at 0

child is stopped, parent runs, counter starts at 0

parent: 1220
parent: 1221
child: 680 parent is stopped, child runs

Section 12.2 map, munmap, and m s y n c Functions 307

child: 681
. . .
child: 2078
child: 2079
parent: 1222 child is stopped, parent runs
parent: 1223

and so on

As we can see, both processes have their own copy of the global count. Each starts
with the value of this variable as 0, and each increments its own copy of this variable.
Figure 12.4 shows the parent before calling fork.

parent
I 1 int count;

1

/ * parent * /
. . .

parent executing here --,

Figure 124 Parent before calling fork.

if (Fork0 == 0) I
/ * child * /
. . .

When f o r k is called, the child starts with its own copy of the parent's data space. Fig-
ure 12.5 shows the two processes after f o r k returns.

parent

I
int count; I
if (Fork() == 0) I

/ * child * /
... child executing here --,

1

/ * parent * /

child

int count;

if (Fork0 == 0) I
/ * child * /

/ * parent * /
. . .

Figure 12.5 Parent and child after fork returns.

We see that the parent and child each have their own copy of the variable count.

12.2 map, mumnap, and m s y n c Functions

The mmap function maps either a file or a Posix shared memory object into the address
space of a process. We use this function for three purposes:

308 Shared Memory Introduction Chapter 12

1. with a regular file to provide memory-mapped 1/0 (Section 12.3),

2. with special files to provide anonymous memory mappings (Sections 12.4
and 12.5), and

3. with s h o p e n to provide Posix shared memory between unrelated processes
(Chapter 13).

void *mmap(void *addr, size-t k n , int prot, int pap, int fd, off-t offset); I
I Returns: starting address of mapped region if OK, MAP-FAILED on error I

addr can specify the starting address within the process of where the descriptor fd
should be mapped. Normally, this is specified as a null pointer, telling the kernel to
choose the starting address. In any case, the return value of the function is the starting
address of where the descriptor has been mapped.

Zen is the number of bytes to map into the address space of the process, starting at
offset bytes from the beginning of the file. Normally, offset is 0. Figure 12.6 shows this
mapping.

address space
of process

high memory

memory
mapped
portion
of file

return value of m a p -t - - - - - - - - - - .
\
\

low memory \

I

memory mapped file referenced by descriptor fd: ort ti on of file

Figure 126 Example of memory-mapped file.

The protection of the memory-mapped region is specified by the prot argument
using the constants in Figure 12.7. The common value for this argument is PROT-READ
I PROT-WRITE for read-write access.

)n 12.2 map, munmap, and msync Functions 309

I vrot

PROT-READ
PROT-WRITE

PROT-EXEC
PROT-NONE C data can be written

data can be executed
data cannot be accessed

Figure 127 prof argument for mmap.h>.

Figure 12.8 flags argument for mmap.

The flags are specified by the constants in Figure 12.8. Either the MAP-SHARED or
the MAP-PRIVATE flag must be specified, optionally ORed with MAP-FIXED. If
MAP-PRIVATE is specified, then modifications to the mapped data by the calling pro-
cess are visible only to that process and do not change the underlying object (either a
file object or a shared memory object). If MAP-SHARED is specified, modifications to the
mapped data by the calling process are visible to all processes that are sharing the
object, and these changes do modify the underlying object.

For portability, MAP-FIXED should not be specified. If it is not specified, but addr is
not a null pointer, then it is implementation dependent as to what the implementation
does with addr. The nonnull value of addr is normally taken as a hint about where the
memory should be located. Portable code should specify addr as a null pointer and
should not specify MAP-FIXED.

One way to share memory between a parent and child is to call map with
MAP-SHARED before calling fork. Posix.1 then guarantees that memory mappings in
the parent are retained in the child. Furthermore, changes made by the parent are visi-
ble to the child and vice versa. We show an example of this shortly.

After map returns success, the fd argument can be closed. This has no effect on the
mapping that was established by rnrnap.

To remove a mapping from the address space of the process, we call munrnap.

int munmap (void *addr, size-t len) ;

Returns: 0 if OK, -1 on error I
The addr argument is the address that was returned by map, and the Zen is the size of
that mapped region. Further references to these addresses result in the generation of a
SIGSEGV signal to the process (assuming, of course, that a later call to map does not
reuse this portion of the address space).

310 Shared Memory Introduction Chapter 12

If the mapped region was mapped using MAP-PRIVATE, the changes made are dis-
carded.

In Figure 12.6, the kernel's virtual memory algorithm keeps the memory-mapped
file (typically on disk) synchronized with the memory-mapped region in memory,
assuming a MAP-SHARED segment. That is, if we modify a location in memory that is
memory-mapped to a file, then at some time later the kernel will update the file accord-
ingly. But sometimes, we want to make certain that the file on disk corresponds to what
is in the memory-mapped region, and we call msync to perform this synchronization.

#include isys/mman.h>

int msync (void *addr, size-t Zen, int flags) ;

Returns: 0 if OK, -1 on error

The addr and len arguments normally refer to the entire memory-mapped region of
memory, although subsets of this region can also be specified. The flags argument is
formed from the combination of constants shown in Figure 12.9.

MS-SYNC perform synchronous writes

Figure 12.9 flags for rnsync function.

One of the two constants MS-ASYNC and MS-SYNC must be specified, but not both. The
difference in these two is that MS-ASYNC returns once the write operations are queued
by the kernel, whereas MS-SYNC returns only after the write operations are complete. If
MS-INVALIDATE is also specified, all in-memory copies of the file data that are incon-
sistent with the file data are invalidated. Subsequent references will obtain data from
the file.

Why Use mmag?

Our description of mmap so far has implied a memory-mapped file: some file that we
open and then map into our address space by calling mmap. The nice feature in using a
memory-mapped file is that all the 1 /0 is done under the covers by the kernel, and we
just write code that fetches and stores values in the memory-mapped region. We never
call read, wri te , or lseek. Often, this can simplify our code.

Recall our implementation of Posix message queues using mmap and the storing of values into
a msg-hdr structure in Figure 5.30 and the fetching of values from a msg-hdr structure in Fig-
ure 5.32.

ction 12.3 Increment Counter in a Memory-Mapped File 311

Beware of some caveats, however, in that not all files can be memory mapped. Try-
ing to map a descriptor that refers to a terminal or a socket, for example, generates an
error return from map. These types of descriptors must be accessed using read and
wr i t e (or variants thereof).

Another use of m a p is to provide shared memory between unrelated processes. In
this case, the actual contents of the file become the initial contents of the memory that is
shared, and any changes made by the processes to this shared memory are then copied
back to the file (providing filesystem persistence). This assumes that MAP-SHARED is
specified, which is required to share the memory between processes.

Details on the implementation of map and its relationship to the kernel's virtual memory
algorithms are provided in [McKusick et al. 19961 for 4.4BSD and in [Vahalia 19961 and [Good-
heart and Cox 19941 for SVR4.

2.3 Increment Counter in a Memory-Mapped File

We now modify Figure 12.3 (which did not work) so that the parent and child share a
piece of memory in which the counter is stored. To do so, we use a memory-mapped
file: a file that we open and then m a p into our address space. Figure 12.10 shows the
new program.

New command-line argument

11-14 We have a new command-line argument that is the name of a file that will be mem-
ory mapped. We open the file for reading and writing, creating the file if it does not
exist, and then write an integer with a value of 0 to the file.

mmap then close descriptor

15-16 We call m a p to map the file that was just opened into the memory of this process.
The first argument is a null pointer, telling the system to pick the starting address. The
length is the size of an integer, and we specify read-write access. By specifying a fourth
argument of MAP-SHARED, any changes made by the parent will be seen by the child,
and vice versa. The return value is the starting address of the memory region that will
be shared, and we store it in p t r .

fork

20-34 We set standard output unbuffered and call fork. The parent and child both incre-
ment the integer counter pointed to by p t r .

Memory-mapped files are handled specially by fork, in that memory mappings
created by the parent before calling fork are shared by the child. Therefore, what we
have done by opening the file and calling m a p with the MAP-SHARED flag is provide a
piece of memory that is shared between the parent and child. Furthermore, since the
shared memory is a memory-mapped file, any changes to the shared memory (the piece
of memory pointed to by p t r of size s izeof (i n t)) are also reflected in the actual file
(whose name was specified by the command-line argument).

312 Shared Memory Introduction Chapter 12

2 #define SEM-NAME "rnysern"

3 int
4 main(int argc, char **argv)

int fd, i, nloop, zero = 0;
int *ptr;
sern-t *rnutex;

if (argc != 3)
err-quit("usage: incr2 <pathname> <#loops>");

nloop = atoi(argv[2]);

/ * open file, initialize to 0, map into memory * /
fd = Open(argv[l], 0-RDWR I 0-CREAT, FILE-MODE);
Write(fd, &zero, sizeof (int)) ;
ptr = Mmap(NULL, sizeof(int), PROTREAD I PROT-WRITE, MAP-SHARED, fd, 0);
Close (fd) ;

/ * create, initialize, and unlink semaphore * /
mutex = Sern-open(Px-ipc-name(SEM-NAME), 0-CREAT I 0-EXCL, FILE-MODE, 1);
Sern-unlink(Px-ipcpame(SEM-NAME));

setbuf(stdout, NULL); / * stdout is unbuffered * /
if (Fork0 == 0) { / * child * /

for (i = 0; i < nloop; i++) {
Sem-wait(mutex) ;
printf ("child: %d\n" , (*ptr) ++) ;

Sem_post(mutex);
1
exit (0) ;

1
/ * parent * /

for (i = 0; i < nloop; i++) {
Sem-wait(mutex) ;
printf("parent: %d\nW, (*ptr)++);
Sem_post(mutex);

1
exit (0) ;

Figure 12.10 Parent and child incrementing a counter in shared memory.

If we execute this program, we see that the memory pointed to by ptr is indeed
shared between the parent and child. We show only the values when the kernel
switches between the two processes.

solaris % incr2 /tw/tm.l 10000
child: 0 child starts first
child: 1
. . .
child: 128
child: 129
parent: 130 child is stopped, parent starts

ion 12.3 Increment Counter in a Memory-Mapped File 313

parent: 131
. . .
parent: 636
parent: 637
child: 638 parent is stopped, child starts
child: 639
. . .
child: 1517
child: 1518
parent: 1519 child is stopped, parent starts
parent: 1520
. . .
parent: 19999 final line of output
solaris % od -D /tnw/temw.l
0000000 0000020000
0000004

Since the file was memory mapped, we can look at the file after the program terminates
with the od program and see that the final value of the counter (20,000) is indeed stored
in the file.

Figure 12.11 is a modification of Figure 12.5 showing the shared memory, and show-
ing that the semaphore is also shared. We show the semaphore as being in the kernel,
but as we mentioned with Posix semaphores, this is not a requirement. Whatever
implementation is used, the semaphore must have at least kernel persistence. The
semaphore could be stored as another memory-mapped file, as we demonstrated in Sec-
tion 10.15.

shared memory

parent py
int *ptr;

if (Fork0 == 0) {

/ * child * /

parent executing here -,

1

/ * parent * /

-

. . -

child executing here +

child

int *ptr;

if (Fork0 == 0) {

/ * child * /
. . .

)

/ * parent * /
. - .

.
kernel

Figure 12.11 Parent and child sharing memory and a semaphore.

We show that the parent and child each have their own copy of the pointer ptr, but
each copy points to the same integer in shared memory: the counter that both processes
increment.

314 Shared Memory Introduction

1
Chapter 12

W e now modify our program from Figure 12.10 to use a Posix memory-based
semaphore instead of a Posix named semaphore, and store this semaphore in the shared
memory. Figure 12.12 is the new program.

shmlincr3.c
1 #include "unpipc.hn

2 struct shared {

3 sem-t mutex; / * the mutex: a Posix memory-based semaphore *I
4 int count ; / * and the counter * /
5 1 shared;

6 int
7 main(int argc, char **argv)
8 {

int fd, i, nloop;
struct shared *ptr;

if (argc != 3)
err-quit("usage: incr3 <pathname> <#loops>");

nloop = atoi(argv[2]);

/ * open file, initialize to 0, map into memory * /
fd = Open(argv[l], 0-RDWR I 0-CREAT, FILE-MODE);
Write(fd, &shared, sizeof(struct shared) 1;
ptr = Mmap(NULL, sizeof(struct shared), PROT-READ I PROT-!JVRITE,

MAP-SHARED, f d, 0) ;
Close (f d) ;

/ * initialize semaphore that is shared between processes * /
Sem-init(&ptr->mutext 1, 1);

setbuf (stdout, NULL) ; / * stdout is unbuffered * /
if (Fork() == 0) { / * child * /

for (i = 0; i < nloop; i++) {

Sem-wait(&ptr->mutex);
printf("chi1d: %d\nW, ptr->count++);
Semsost (&ptr->mutex) ;

1
exit (0) ;

1
/ * parent * /

for (i = 0; i < nloop; i++) {
Sem-wait(&ptr->mutex);
printf("parent: %d\nU, ptr->count++);
Semsost (&ptr->mutex) ;

1
exit (0) ;

Figure 12.12 Counter and semaphore are both in shared memory.

Define structure that will be in shared memory

2-5 W e define a structure containing the integer counter and a semaphore to protect it.
This structure will be stored in the shared memory object.

n 12.4 4.4BSD Anonymous Memory Mapping 315

Map the memory

19 We create the file that will be mapped, and write a structure of 0 to the file. All we
are doing is initializing the counter, because the value of the semaphore will be initial-
ized by the call to sem-init. Nevertheless, writing an entire structure of 0 is simpler
than to try to write only an integer of 0.

Initialize semaphore

21 We are now using a memory-based semaphore, instead of a named semaphore, so
we call sem-ini t to initialize its value to 1. The second argument must be nonzero, to
indicate that the semaphore is being shared between processes.

Figure 12.13 is a modification of Figure 12.11, noting the change that the semaphore
has moved from the kernel into shared memory.

shared memory
count & semaphore

struct shared *ptr; struct shared *ptr;

if (Fork0 == 0) {

/ * child * /
. . .

1

Figure 12.13 Counter and semaphore are now in shared memory.

went executing here --c

4.4BSD Anonymous Memory Mapping

child executing here --,

/ * parent * /
. . .

Our examples in Figures 12.10 and 12.12 work fine, but we have to create a file in the
filesystem (the command-line argument), call open, and then w r i t e zeros to the file to
initialize it. When the purpose of calling m a p is to provide a piece of mapped memory
that will be shared across a fork, we can simplify this scenario, depending on the
implementation.

if (Fork0 == 0) {

/ * child * /
. . .

1

1. 4.4BSD provides anonymous memoy mapping, which completely avoids having
to create or open a file. Instead, we specify the flags as MAP-SHARED I
MAP-ANON and the fd as -1. The offset is ignored. The memory is initialized to 0.
We show an example of this in Figure 12.14.

2. SVR4 provides /dev/zero, which we open, and we use the resulting descrip
tor in the call to map. This device returns bytes of 0 when read, and anything
written to the device is discarded. We show an example of this in Figure 12.15.

316 Shared Memory Introduction Chapter 12

(Many Berkeley-derived implementations, such as SunOS 4.1.x and BSD/OS 3.1,
also support /dev/ zero.)

Figure 12.14 shows the only portion of Figure 12.10 that changes when we use 4.4BSD
anonymous memory mapping.

shm liner-map-an0n.c
3 int
4 main(int argc, char **argv)
5 {

6 int i, nloop;
7 int *ptr;
8 sem-t *mutex;

9 if (argc != 2)
10 err-quit("usage: incr-map-anon <#loops>");
11 nloop = atoi(argv[ll);

12 / * map into memory * /
13 ptr = Mmap(NULL, sizeof(int), PROT-READ I PROT-WRITE,
14 MAP-SHARED 1 MAP-ANON, -1, 0);

shmlincr-map-an0n.c

Figure 12.14 4.4BSD anonymous memory mapping.

6-11 The automatic variables f d and zero are gone, as is the command-line argument
that specified the pathname that was created.

12-14 We no longer open a file. The MAP-ANON flag is specified in the call to mmap, and
the fifth argument (the descriptor) is -1.

12.5 SVR4 /dev/zero Memory Mapping

Figure 12.15 shows the only portion of Figure 12.10 that changes when we map
/dev/zero.

shm /in~r~dev~zero.c
3 int
4 main(int argc, char **argv)
5 {

6 int fd, i, nloop;
7 int *ptr;
8 sem-t *mutex;

9 if (argc != 2)
10 err-quit("usage: incr-dev-zero <#loops>");
11 nloop = atoi (argvll]) ;

12 / * open /dev/zero, map into memory */
13 fd = Open("/dev/zeroU, 0-RDWR);
14 ptr = Mmap(NULL, sizeof(int), PROTREAD I PROT-WRITE, MAP-SHARED, fd, 0);
15 Close (fd) ;

shm/in~r~dev~zero.c

Figure 12.15 SVR4 memory mapping of /dev/ zero.

m 12.6 Referencing Memory-Mapped Objects 317

.ii The automatic variable zero is gone, as is the cornmand-line argument that speci-
fied the pathname that was created.

-15 We open /dev/ zero, and the descriptor is then used in the call to map. We are
guaranteed that the memory-mapped region is initialized to 0.

i Referencing Memory-Mapped Objects

When a regular file is memory mapped, the size of the mapping in memory (the second
argument to map) normally equals the size of the file. For example, in Figure 12.12 the
file size is set to the size of our shared structure by w r i t e , and this value is also the
size of the memory mapping. But these two sizes-the file size and the memory-
mapped size-can differ.

We will use the program shown in Figure 12.16 to explore the rnrnap function in
more detail.

2 int
3 main(int argc, char **argv)
4 {
5 int fd, i;
6 char *ptr;
7 size-t filesize, mmapsize, pagesize;

8 if (argc != 4)
9 errquit("usage: test1 <pathname> <filesize> <mmapsize>");
10 filesize = atoi(argv[2]);
11 mmapsize = atoi (argv[3]) ;

12 / * open file: create or truncate; set file size * /
13 fd = Open (argv[l] , 0-RDWR I 0-CREAT I 0-TRUNC, FILE-MODE) ;
14 Lseek(fd, filesize - 1, SEEK-SET);
15 Write(fd, "" , 1);

16 ptr = Mmap(NULL, mmapsize, PROT-READ 1 PROT-WRITE, MAP-SHARED, fd, 0);
17 Close(fd);

20 for (i = 0; i < max(filesize, mmapsize); i += pagesize) {

21 print£ ('ptr [%dl = %d\nn, i, ptr [i]) ;
22 ptr[il = 1;
2 3 printf("ptr[%d] = %d\nU, i + pagesize - 1, ptr[i + pagesize - 11);
2 4 ptr[i + pagesize - 11 = 1;
25 1
26 printf("ptr[%d]=%d\n", i,ptr[i]);

2 7 exit (0) ;

Figure 12.16 Memory mapping when map equals file size.

318 Shared Memory Introduction Chapter 12

Command-line arguments

8-11 The command-line arguments specify the pathname of the file that will be created
and memory mapped, the size to which that file is set, and the size of the memory map-
ping.

Create, open, truncate file; set file size

12-15 The file being opened is created if it does not exist, or truncated to a size of 0 if it
already exists. The size of the file is then set to the specified size by seeking to that size
minus 1 byte and writing 1 byte.

Memory map fiie

16-17 The file is memory mapped, using the size specified as the final command-line
argument. The descriptor is then closed.

Print page size

18-19 The page size of the implementation is obtained using sysconf and printed.

Read and store the memory-mapped region

20-26 The memory-mapped region is read (the first byte of each page and the last byte of
each page), and the values printed. We expect the values to all be 0. We also set the first
and last bytes of the page to 1. We expect one of the references to generate a signal
eventually, which will terminate the program. When the for loop terminates, we print
the first byte of the next page, expecting this to fail (assuming that the program has not
already failed).

The first scenario that we show is when the file size equals the memory-mapped
size, but this size is not a multiple of the page size.

solaris % 1s -1 foo
£00: No such file or directory
solaris % test1 foo 5000 5000
PAGESIZE = 4096
ptr[O] = 0
ptr[40951 = 0
ptr[4096] = 0
ptr[8191] = 0
Segmentation Fault(coredump)
solaris % 1s -1 foo
-rW-r--r-- 1 rstevens other1 5000 Mar 20 17:18 £00

solaris % od -b -A d foo
0000000 001 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
0000016 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
*

The page size is 4096 bytes, and we are able to read the entire second page (indexes 4096
through 8191), but a reference to the third page (index 8192) generates SIGSEGV, which

&on 12.6 Referencing Memory-Mapped Objects 319

the shell prints as "Segmentation Fault." Even though we set p t r [8191 I to 1, this
value is not written to the file, and the file's size remains 5000. The kernel lets us read
and write that portion of the final page beyond our mapping (since the kernel's memory
protection works with pages), but anything that we write to this extension is not written
to the file. The other 3 bytes that we set to 1, indexes 0,4095, and 4096, are copied back
to the file, which we verify with the od command. (The -b option says to print the
bytes in octal, and the -A d option says to print the addresses in decimal.) Figure 12.17
depicts this example.

file size

4
file

I I
offset: 0 4999

index: 0 4999 5000 8191 ,- -,
i remainder I

memory-mapped region of last page
I I

references b- references OK generate
SIGSEGV

m a p i) size
Figure 12.17 Memory mapping when m a p size equals file size.

If we run our example under Digital Unix, we see similar results, but the page size
is now 8192.

alpha % 1s -1 foo
£00 not found
alpha % testl foo 5000 5000
PAGESIZE = 8192
ptr[O] = 0
ptr[8191] = 0
Memory fault(coredump)
alpha % 1s -1 foo
-rW-r--r-- 1 rstevens operator 5000 Mar 21 08:40 foo

We are still able to reference beyond the end of our memory-mapped region but within
that page of memory (indexes 5000 through 8191). Referencing p t r [8 192 I generates
SIGSEGV, as we expect.

In our next example with Figure 12.16, we specify a memory mapping (15000 bytes)
that is larger than the file size (5000 bytes).

solaris % rm foo
solaris % testl foo 5000 15000
PAGESIZE = 4096
ptr[O] = 0
ptr[4095] = 0
ptr[4096] = 0

320 Shared Memory Introduction Chapter 12

ptr[81911 = 0
Bus Error(coredump)
solaris % 1s -1 foo
-rW-r--r-- 1 rstevens other1 5000 Mar 20 17:37 £00

The results are similar to our earlier example when the file size and the memory map
size were the same (both 5000). This example generates SIGBUS (which the shell prints
as "Bus Error"), whereas the previous example generated SIGSEGV. The difference is
that SIGBUS means we have referenced within our memory-mapped region but beyond
the size of the underlying object. The SIGSEGV in the previous example meant we had
referenced beyond the end of our memory-mapped region. What we have shown here
is that the kernel knows the size of the underlying object that is mapped (the file f oo in
this case), even though we have closed the descriptor for that object. The kernel allows
us to specify a size to rnrnap that is larger than the size of this object, but we cannot refer-
ence beyond its end (except for the bytes within the final page that are beyond the end
of the object, indexes 5000 through 8191). Figure 12.18 depicts this example.

file size

file

I 1

offset: 0 4999
m a p () size

index: 0 4999 5000 8191 8192 14999

SIGSEGV

Figure 12.18 Memory mapping when m a p size exceeds file size.

Our next program is shown in Figure 12.19. It shows a common technique for han-
dling a file that is growing: specify a memory-map size that is larger than the file, keep
track of the file's current size (making certain not to reference beyond the current end-
of-file), and then just let the file's size increase as more data is written to the file.

Open file

9-11 We open a file, creating it if it does not exist or truncating it if it already exists. The
file is memory mapped with a size of 32768, even though the file's current size is 0.

Increase file size

12-16 We increase the size of the file, 4096 bytes at a time, by calling f truncate (Sec-
tion 13.3), and fetch the byte that is now the final byte of the file.

Section 12.6 Referencing Memory-Mapped Objects 321

shrnltest2.c
l#include "unpipc.hU

2 #define FILE "test.datan
3 #define SIZE 32768

4 int
5 main(int argc, char **argv)

int fd, i;
char *ptr;

/ * open: create or truncate; then m a p file */
fd = Open(FILE, 0-RDWR I 0-CREAT I 0-TRUNC, FILE-MODE);
ptr = Mmap(NULL, SIZE, PROT-READ (PROT-WRITE, MAP-SHARED, fd. 0);

for (i = 4096; i c= SIZE; i += 4096) {

printf("setting file size to %d\nU, i);
Ftruncate (fd, i) ;
printf ("ptr[%d] = %d\nU, i - 1, ptr[i - 11);

1

exit (0) ;

shrnltest2.c
Figure 12.19 Memory map example that lets the file size grow.

When we run this program, we see that as we increase the size of the file, we are
able to reference the new data through our established memory map.

alpha % Is -1 test-data
test.data: No such file or directory
alpha % test2
setting file size to 4096
ptr140951 = 0
setting file size to 8192
ptr[8191] = 0
setting file size to 12288
ptr[12287] = 0
setting file size to 16384
ptr[16383] = 0
setting file size to 20480
ptrL204791 = 0
setting file size to 24576
ptr[24575] = 0
setting file size to 28672
ptr[286711 = 0
setting file size to 32768
ptr[32767] = 0
alpha % 1s -1 test-data
w - r - r - 1 rstevens other1 32768 Mar 20 17:53 test.data

322 Shared Memory Introduction Chapter 12

This example shows that the kernel keeps track of the size of the underlying object that
is memory mapped (the file test. data in this example), and we are always able to ref-
erence bytes that are within the current file size that are also within our memory map.
We obtain identical results under Solaris 2.6.

This section has dealt with memory-mapped files and mmap. In Exercise 13.1, we
modify our two programs to work with Posix shared memory and see the same results.

12.7 Summary

Shared memory is the fastest form of IPC available, because one copy of the data in the
shared memory is available to all the threads or processes that share the memory. Some
form of synchronization is normally required, however, to coordinate the various
threads or processes that are sharing the memory.

This chapter has focused on the mmap function and the mapping of regular files into
memory, because this is one way to share memory between related or unrelated pro-
cesses. Once we have memory mapped a file, we no longer use read, write, or lseek
to access the file; instead, we just fetch or store the memory locations that have been
mapped to the file by mmap. Changing explicit file 1 /0 into fetches and stores of mem-
ory can often simplify our programs and sometimes increase performance.

When the memory is to be shared across a subsequent fork, this can be simplified
by not creating a regular file to map, but using anonymous memory mapping instead.
This involves either a new flag of MAP-ANON (for Berkeley-derived kernels) or mapping
/ dev/ zero (for SVR4-derived kernels).

Our reason for covering mmap in such detail is both because memory mapping of
files is a useful technique and because mmap is used for Posix shared memory, which is
the topic of the next chapter.

Also available are four additional functions (that we do not cover) defined by Posix
dealing with memory management:

mlockall causes all of the memory of the process to be memory resident.
munloc kall undoes this locking.

mlock causes a specified range of addresses of the process to be memory resi-
dent, where the function arguments are a starting address and a number of bytes
from that address. munlock unlocks a specified region of memory.

Exercises

12.1 What would happen in Figure 12.19 if we executed the code within the for loop one more
time?

12.2 Assume that we have two processes, a sender and a receiver, with the former just sending
messages to the latter. Assume that System V message queues are used and draw a dia-
gram of how the messages go from the sender to the receiver. Now assume that our

ter 12 Exercises 323

implementation of Posix message queues from Section 5.8 is used, and draw a diagram of
the transfer of messages.

12.3 With map and MAP-SHARED, we said that the kernel virtual memory algorithm updates
the actual file with any modifications that are made to the memory image. Read the man-
ual page for /dev/zero to determine what happens when the kernel writes the changes
back to the file.

12.4 Modify Figure 12.10 to specify MAP-PRIVATE instead of MAP-SHARED, and verify that the
results are similar to the results from Figure 12.3. What are the contents of the file that is
memory mapped?

12.5 In Section 6.9, we mentioned that one way to select on a System V message queue is to
create a piece of anonymous shared memory, create a child, and let the child block in its
call to msgrcv, reading the message into shared memory. The parent also creates two
pipes; one is used by the child to notify the parent that a message is ready in shared mem-
ory, and the other pipe is used by the parent to notify the child that the shared memory is
now available. This allows the parent to select on the read end of the pipe, along with
any other descriptors on which it wants to select. Code this solution. Call our my-shun
function (Figure A.46) to allocate the anonymous shared memory object. Use our
msgcreate and msgsnd programs from Section 6.6 to create the message queue, and then
place records onto the queue. The parent should just print the size and type of each mes-
sage that the child reads.

Posix Shared Memory

Introduction

The previous chapter described shared memory in general terms, along with the m a p
function. Examples were shown that used m a p to provide shared memory between a
parent and child:

using a memory-mapped file (Figure 12.10),

using 4.4BSD anonymous memory mapping (Figure 12.14), and

using / dev / zero anonymous memory mapping (Figure 12.15).

We now extend the concept of shared memory to include memory that is shared
between unrelated processes. Posix.1 provides two ways to share memory between
unrelated processes.

1. Memory-mapped pes: a file is opened by open, and the resulting descriptor is
mapped into the address space of the process by map. We described this tech-
nique in Chapter 12 and showed its use when sharing memory between a par-
ent and child. Memory-mapped files can also be shared between unrelated
processes.

2. Shared memory objects: the function shm_open opens a Posix.1 IPC name (per-
haps a pathname in the filesystem), returning a descriptor that is then mapped
into the address space of the process by map. We describe this technique in
this chapter.

326 Posix Shared Memory Chapter 13

Both techniques require the call to map. What differs is how the descriptor that is an
argument to m a p is obtained: by open or by shm_open. We show this in Figure 13.1.
Both are called memory objects by Posix.

Posix memory-mapped file Posix shared memory object

f d = open(pathname, . . .) ; f d = shm_open(name, ...) ;

\
p t r = m a p (. . . , fd , ...) ; p t r \ = m a p (. . . , fd , . . .) ;

t- Posix memory objects b

Figure 13.1 Posix memory objects: memory-mapped files and shared memory objects.

13.2 s k o p e n and s-unlink Functions

The two-step process involved with Posix shared memory requires

1. calling shxopen, specifying a name argument, to either create a new shared
memory object or to open an existing shared memory object, followed by

2. calling m a p to map the shared memory into the address space of the calling
process.

The name argument used with shxopen is then used by any other processes that want
to share this memory.

The reason for this two-step process, instead of a single step that would take a name and
return an address within the memory of the calling process, is that m a p already existed when
Posix invented its form of shared memory. Clearly, a single function could do both steps. The
reason that sh-open returns a descriptor (recall that mq-open returns an mqd-t value and
sem-open returns a pointer to a s e m - t value) is that an open descriptor is what m a p uses to
map the memory object into the address space of the process.

include <sys/man.h>

i n t shm_open(const char *name, i n t oflag, mode-t mode);

Returns: nonnegative descriptor if OK, -1 on error

i n t s-unlink (const char *name) ;

Returns: 0 if OK, -1 on error

We described the rules about the name argument in Section 2.2.

n 13.3 f truncate and f s t a t Functions 327

The oflag argument must contain either 0-RDONLY (read-only) or 0-RDWR
(read-write), and the following flags can also be specified: 0-CREAT, 0-EXCL, or
0-TRUNC. The 0-CREAT and 0-EXCL flags were described in Section 2.3. If 0-TRUNC
is specified along with 0-RDWR, then if the shared memory object already exists, it is
truncated to 0-length.

mode specifies the permission bits (Figure 2.4) and is used when the 0-CREAT flag is
specified. Note that unlike the mcopen and sem-open functions, the mode argument
to shm-open must always be specified. If the 0-CREAT flag is not specified, then this
argument can be specified as 0.

The return value from s h x o p e n is an integer descriptor that is then used as the
fifth argument to m a p .

The s h x u n l i n k function removes the name of a shared memory object. As with
all the other un l ink functions (the un l ink of a pathname in the filesystem, the
m c u n l i n k of a Posix message queue, and the sem-unlink of a Posix named
semaphore), unlinking a name has no effect on existing references to the underlying
object, until all references to that object are closed. Unlinking a name just prevents any
subsequent call to open, mcopen, or sem-open from succeeding.

I ftruncate and fstat Functions

When dealing with map , the size of either a regular file or a shared memory object can
be changed by calling f t runca te .

int ftruncate (int fd, of f-t length) ; I
Returns: 0 if OK, -1 on error I

Posix defines the function slightly differently for regular files versus shared memory
objects.

For a regular file: If the size of the file was larger than length, the extra data is
discarded. If the size of the file was smaller than length, whether the file is
changed or its size is increased is unspecified. Indeed, for a regular file, the
portable way to extend the size of the file to length bytes is to l s e e k to offset
length-1 and w r i t e 1 byte of data. Fortunately, almost all Unix implementa-
tions support extending a file with f t runca te .

For a shared memory object: f t r u n c a t e sets the size of the object to length.

We call f t r u n c a t e to specify the size of a newly created shared memory object or
to change the size of an existing object. When we open an existing shared memory
object, we can call f s t a t to obtain information about the object.

328 Posix Shared Memory

1

Chapter 13

i n t f s t a t (i n t fd, s t r u c t s t a t *buf) ;

Returns: 0 if OK, -1 on error

A dozen or more members are in the s ta t structure (Chapter 4 of APUE talks about all
the members in detail), but only four contain information when fd refers to a shared
memory object.

s t r u c t s t a t {

. . .
mode-t st-mode; / * mode: S-IIRW}{USR,GRP,OTH} * /
uid-t st- uid; / * u s e r I D of owner * /
gid-t s t q i d ; / * group I D of owner * /
off- t s t- size; / * s i z e i n by tes * /

We show examples of these two function in the next section.

Unfortunately, Posix.1 does not specify the initial contents of a newly created shared memory
object. The description of the shm-open function states that "The shared memory object shall
have a size of 0." The description of f t runcate specifies that for a regular file (not shared
memory), "If the file is extended, the extended area shall appear as if it were zero-filled." But
nothing is said in the description of f t runcate about the new contents of a shared memory
object that is extended. The Posix.1 Rationale states that "If the memory object is extended, the
contents of the extended areas are zeros" but this is the Rationale, not the official standard.
When the author asked on the cornp . s t d . unix newsgroup about this detail, the opinion was
expressed that some vendors objected to an initialize-to-0 requirement, because of the over-
head. If a newly extended piece of shared memory is not initialized to some value (i.e., if the
contents are left as is), this could be a security hole.

13.4 Simple Programs

We now develop some simple programs that operate on Posix shared memory.

shmcreate Program

Our shmcreate program, shown in Figure 13.2, creates a shared memory object with a
specified name and length.

19-22 shm_open creates the shared memory object. If the -e option is specified, it is an
error if the object already exists. f t r u n c a t e sets the length, and mmap maps the object
into the address space of the process. The program then terminates. Since Posix shared
memory has at least kernel persistence, this does not remove the shared memory object.

I 13.4 Simple Programs 329

2 int
3 main(int argc, char **argv)
4
5 int c, fd, flags;
6 char *ptr;
7 of f-t length;

flags = 0-RDWR I 0-CREAT;
while ((c = Getopt(argc, argv, "en)) != -1) {

switch (c) {
case 'en:

flags I = 0-EXCL:
break;

1
1
if (optind != argc - 2)

err-quit("usage: shmcreate [-e I <name> <length>");
length = atoi(argv[optind + 11);

19 fd = Shm_open(argv[optindl, flags, FILE-MODE);
2 0 Ftruncate(fd, length);

22 exit (0) ;

Figure 13.2 Create a Posix shared memory object of a specified size.

Figure 13.3 shows our trivial program that calls shm-unlink to remove the name of a
shared memory object from the system.

2 int
3 main(int argc, char **argv)
4
5 if (argc != 2)
6 err-quit("usage: shmunlink <name>");

8 exit (0) ;
9 1

pxshm/shrnunlink.c
Figure 13.3 Unlink the name of a Posix shared memory object.

330 Posix Shared Memory Chapter 13

shmwrite Program

Figure 13.4 is our shmwrite program, which writes a pattern of O,1,2, ..., 254,255,0,1,
and so on, to a shared memory object.

2 int
3 main(int argc, char **argv)
4 I
5 int i, fd;
6 struct stat stat;
7 unsigned char *ptr;

8 if (argc != 2)
9 err-quit("usage: shmwrite <name>");

10 / * open, get size, map * /
11 fd = Shm_open(argv[l], 0-RDWR, FILE-MODE);
12 Fstat(fd, &stat);
13 ptr = Mrnap(NULL, stat.st-size, PROT-READ I PROT-WRITE,
14 MAP-SHARED, f d, 0) ;
15 Close(fd);

16 / * set: ptr[O] = 0, ptr[l] = 1, etc. * /
17 for (i = 0; i < stat.st-size; i++)
18 *ptr++ = i % 256;

20 1
pxshm/shmwrite.c

Figure 13.4 Open a shared memory object and fill it with a pattern.

10-15 The shared memory object is opened by shxopen, and we fetch its size with
f s tat. We then map it using mmap and c 1 o s e the descriptor.

16-18 The pattern is written to the shared memory.

Our shmread program, shown in Figure 13.5, verifies the pattern that was written by
shmwrite.

2 int
3 main(int argc, char **argv)
4 I
5 int i, fd;
6 struct stat stat;
7 unsigned char c, *ptr;

8 if (argc != 2)
9 err-quit("usage: shmread <name>");

113.4 Simple Programs 331

10 / * open, get size, map * /
11 fd = Shm_open(argv[l], 0-RDONLY, FILE-MODE);
12 Fstat (fd, &stat) ;
13 ptr = Mrnap(NULL. stat.st-size, PROT-READ,
14 MAP-SHARED, fd, 0) ;
15 Close (fd) ;

16 / * check that ptr[O] = 0, ptr[l] = 1, etc. * /
17 for (i = 0; i < stat.st-size; i++)
18 if ((C = *ptr++) != (i % 256))
19 err-ret ("ptr[%dl = %dW , i, c) ;

2 0 exit (0) ;
21 1

pxshrn/shrnread.c
Figure 13.5 Open a shared memory object and verify its data pattern.

5 The shared memory object is opened read-only, its size is obtained by fstat, it is
mapped by mmap (for reading only), and the descriptor is closed.

9 The pattern written by shmwrite is verified.

We create a shared memory object whose length is 123,456 bytes under Digital Unix 4.OB
named / tmp/myshm.

alpha % shmcreate /tmp/myshm 123456
alpha % 1s -1 /tmp/myshm
-rT,-r--r-- 1 rstevens system 123456 Dec 10 14:33 /tmp/myshm
alpha % od -c /tmp/myshm
0000000 \o \o \o \o \o \o \o \o \o \o \o \o \o \o \o \o
*
0361100

We see that a file with the same name is created in the filesystem. Using the od pro-
gram, we can verify that the object's initial contents are all 0. (Octal 0361100, the byte
offset just beyond the final byte of the file, equals 123,456.)

Next, we run our shmwrite program and use od to verify that the initial contents
are as expected.

alpha % shmwrite /tmp/myshm
alpha % od -x /tmp/myshm I head -4
0000000 0100 0302 0504 0706 0908 ObOa OdOc OfOe
0000020 1110 1312 1514 1716 1918 lbla ldlc lfle
0000040 2120 2322 2524 2726 2928 2b2a 2d2c 2f2e
0000060 3130 3332 3534 3736 3938 3b3a 3d3c 3f3e
alpha % shmread /tmp/myshm
alpha % shmunlink /tmp/myshm

We verify the shared memory object's contents with shmread and then unlink the
name.

If we run our shmcreate program under Solaris 2.6, we see that a file is created in
the / tmp directory with the specified size.

332 Posix Shared Memory

1
Chapter 13

solaris % shmcreate -e /testshm 123
solaris % 1s -1 /tmp/.*testshm*
-rW-r--r-- 1 rstevens other1 123 Dec 10 14:40 /tmp/.SHMtestshm

Example

We now provide a simple example in Figure 13.6 to demonstrate that a shared memory
object can be memory mapped starting at different addresses in different processes.

2 int
3 main(int argc, char **argv)
4 {

int m i , fd2, *ptrl. *ptr2;
pid-t childpid;
struct stat stat;

if (argc != 2)
err-quit("usage: test3 <name>");

shm_unlink(Px~ipc~name(argv[ll)) ;

f dl = S-open (Px-ipc-name (argv[l]) , 0-RDWR 1 0-CREAT I 0-EXCL, FILE-MODE) ;
Ftruncate(fd1, sizeof(int)) ;

fd2 = Open("/etc/motd", 0-RDONLY);
Fstat(fd2, &stat);

if ((childpid = Fork()) == 0) {

/ * child * /
ptr2 = Mmap (NULL, stat. st-size, PROT-READ, MAP-SHARED, f d2, 0) ;
ptrl = Mmap(NULL, sizeof(int), PROT-READ I PROT-WRITE,

MAP-SHARED, f dl, 0) ;
printf("chi1d: shm ptr = %p, motd ptr = %p\n", ptrl, ptr2);

sleep(5);
printf("shared memory integer = %d\nW, *ptrl);
exit (0) ;

1
/ * parent: mmap in reverse order from child * /

ptrl = Mmap (NULL, sizeof (int) , PROT-READ (PROT-WRITE, MAP-SHARED, fdl, 0) ;
ptr2 = Mmap(NULL, stat.st-size, PROT-READ, MAP-SHARED, fd2, 0);
printf("parent: shm ptr = %p, motd ptr = %p\nU, ptrl, ptr2);
*ptrl = 777;
Waitpid(chi1dpid. NULL, 0) ;

exit (0) ;
32 1 pxshmltest3.c

Figure 13.6 Shared memory can appear at different addresses in different processes.

10-14 We create a shared memory segment whose name is the command-line argument,
set its size to the size of an integer, and then open the file /etc /motd.

15-30 We fork, and both the parent and child call mmap twice, but in a different order.
Each prints the starting address of each memory-mapped region. The child then sleeps

Section 13.5 Incrementing a Shared Counter 333

for 5 seconds, the parent stores the value 777 in the shared memory region, and then the
child prints this value.

When we run this program, we see that the shared memory object is memory
mapped at different starting addresses in the parent and child.

solaris % test3 test3.data
parent: shm ptr = eee30000, motd p t r = eee20000
child: shm p t r = eee20000, motd p t r = eee30000
shared memory integer = 777

Nevertheless, the parent stores 777 into Oxeee3 00 00, and the child reads this value
from Oxeee20000. The pointers ptrl in the parent and child both point to the same
shared memory segment, even though the value of each pointer is different in each pro-
cess.

13.5 lncrementing a Shared Counter

We now develop an example similar to the one shown in Section 12.3, in which multiple
processes increment a counter that is stored in shared memory. We store the counter in
shared memory and use a named semaphore for synchronization, but we no longer
need a parent-child relationship. Since Posix shared memory objects and Posix named
semaphores are referenced by names, the various processes that are incrementing the
counter can be unrelated, as long as each knows the IPC names and each has adequate
permission for the IPC objects (shared memory and semaphore).

Figure 13.7 shows the server that creates the shared memory object, creates and ini-
tializes the semaphore, and then terminates.

Create shared memory object

13-19 We call sh~unlink in case the shared memory object still exists, followed by
shm-open to create the object. The size of the object is set to the size of our shmstruct
structure by f truncate, and then mmap maps the object into our address space. The
descriptor is closed.

Create and initialize semaphore

20-22 We call sem-unlink, in case the semaphore still exists, followed by sem-open to
create the named semaphore and initialize it to 1. It will be used as a mutex by any pro-
cess that increments the counter in the shared memory object. The semaphore is then
closed.

Terminate

23 The process terminates. Since Posix shared memory has at least kernel persistence,
the object remains in existence until all open references are closed (when this process
terminates there are no open references) and explicitly unlinked.

Our program must use different names for the shared memory object and the
semaphore. There is no guarantee that the implementation adds anything to the Posix
IPC names to differentiate among message queues, semaphores, and shared memory.
We have seen that Solaris prefixes these three types of names with .MQ, . SEM, and
. SHM, but Digital Unix does not.

334 Posix Shared Memory Chapter 13

pxshm /server2 .c
1 #include "unpipc.hW

2 struct shmstruct (/ * struct stored in shared memory * /
3 int count ;
4 I ;
5 sem-t *mutex; / * pointer to named semaphore * /

6 int
7 main(int argc, char **argv)
8 (

9 int fd;
10 struct shmstruct *ptr;

11 if (argc ! = 3)
12 err-quit("usage: server1 <shmname> <senname>");

13 shm_unlink(Fx-ipc-nameCargv[l])); / * OK if this fails * /
14 / * create shm, set its size, map it, close descriptor * /
15 f d = Sh~open (Px-ipc-name (argv [l]) , 0-RDWR I 0-CREAT I 0-EXCL, FILE-MODE) ;
16 Ftruncate(fd, sizeof (struct shmstruct)) ;
17 ptr = Mmap(NULL, sizeof(struct shmstruct), PROT-READ I PROT-WRITE,
18 MAP-SHARED, f d, 0) ;
19 Close (f d) ;

20 sen-unlink(Px-ipc-name(argv[2])); / * OK if this fails * /
21 mutex = Sen-open(Px-ipc-name(argv[2]). 0-CREAT I 0-EXCL, FILE-MODE, 1);
2 2 Sem~close(mutex);

23 exit (0) ;
24 1

pxshm /serverl.c
Figure 13.7 Program that creates and initializes shared memory and semaphore.

Figure 13.8 shows our client program that increments the counter in shared memory
some number of times, obtaining the semaphore each time it increments the counter.

Open shared memory

15-18 shm-open opens the shared memory object, which must already exist (since
0-CREAT is not specified). The memory is mapped into the address space of the pro-
cess by mmap, and the descriptor is then closed.

Open semaphore

19 The named semaphore is opened.

Obtain semaphore and increment counter

20-26 The counter is incremented the number of times specified by the command-line
argument. We print the old value of the counter each time, along with the process ID,
since we will run multiple copies of this program at the same time.

on 13.5 lncrementing a Shared Counter 335

2 struct shmstruct {

3 int count ;
4 1;
5 sem-t *mutex;

/ * struct stored in shared memory * /

/ * pointer to named semaphore * /

6 int
7 main(int argc, char **argv)
8 {
9 int fd, i, nloop;
10 pid-t pid;
11 struct shmstruct *ptr;

12 if (argc != 4)
13 err-quit("usage: client1 <shmnamer csemnamez <#loops>");
14 nloop = atoi(argv[3]);

15 f d = S-open (Px-ipc-name (argv [1 I) , 0-RDWR, FILE-MODE) ;
16 ptr = Mmap(NULL, sizeof(struct shmstruct), PROT-READ I PROT-WRITE,
17 MAP-SHARED, f d, 0) ;
18 Close (fd) ;

19 mutex = Sem-open(Px-ipc-name(argv[2]), 0);

20 pid = getpid() ;
21 for (i = 0; i < nloop; i++) {

2 2 Sem-wait(mutex);
2 3 printf("pid %Id: %d\nM, (long) pid, ptr->count++);
2 4 Sem_post (mutex) ;
25 1
2 6 exit (0) ;

Figure 13.8 Program that increments a counter in shared memory.

We first start the server and then run three copies of the client in the background.

solaris % server1 shml seml creates and initializes shared memory and semaphore

solaris % clientl shml seml
clientl shml seml 10000 6

[21 17976
[31 17977
[41 17978
pid 17977: 0
pid 17977: 1

- 0 .

pid 17977: 32
pid 17976: 33
. . .
pid 17976: 707
pid 17978: 708
. . .

10000 & clientl shml seml 10000 & \

process IDS output by shell

and this process runs first

process 17977 continues

kernel switches processes
process 17976 continues

kernel switches processes
process 17978 continues

336 Posix Shared Memory
7

Chapter 13

pid 17978: 852
pid 17977: 853
. . .
pid 17977: 29998
pid 17977: 29999

kernel switches processes
and so on

final value output, which is correct

13.6 Sending Messages to a Server

We now modify our producer<onsurner example as follows. A server is started that
creates a shared memory object in which messages are placed by client processes. Our
server just prints these messages, although this could be generalized to do things simi-
larly to the syslog daemon, which is described in Chapter 13 of UNPv1. We call these
other processes clients, because that is how they appear to our server, but they may well
be servers of some form to other clients. For example, a Telnet server is a client of the
syslog daemon when it sends log messages to the daemon.

Instead of using one of the message passing techniques that we described in Part 2,
shared memory is used to contain the messages. This, of course, necessitates some form
of synchronization between the clients that are storing messages and the server that is
retrieving and printing the messages. Figure 13.9 shows the overall design.

: - - - - - shared memory containing I
I I

server

Figure 13.9 Multiple clients sending messages to a server through shared memory.

What we have here are multiple producers (the clients) and a single consumer (the
server). The shared memory appears in the address space of the server and in the
address space of each client.

Figure 13.10 is our cliserv2 . h header, which defines a structure with the layout
of the shared memory object.

Basic semaphores and variables

5-8 The three Posix memory-based semaphores, mutex, nempty, and nstored, serve
the same purpose as the semaphores in our producer<onsumer example in Sec-
tion 10.6. The variable nput is the index (O , l , ... NMESG-1) of the next location to store
a message. Since we have multiple producers, this variable must be in the shared mem-
ory and can be referenced only while the mutex is held.

n 13.6 Sending Messages to a Server 337

2 #define MESGSIZE 256 / * max #bytes per message, incl. null at end * /
3 #define NMESG 16 / * max #messages * /

struct shmstruct { / * struct stored in shared memory * /
sem-t mutex; / * three Posix memory-based semaphores * /
sem-t nempty;
sem-t nstored;
int npu t ; / * index into msgoff[] for next put * /
long noverf low; / * #overflows by senders * /
sem-t noverflowmutex; / * mutex for noverflow counter * /
long msgoff[NMESG]; / * offset in shared memory of each message * /
char msgdata[NMESG * MESGSIZE]; / * the actual messages * /

13 1 ;
pxshm/cliserv2.h

Figure 13.10 Header that defines layout of shared memory.

Overflow counter

lo The possibility exists that a client wants to send a message but all the message slots
are taken. But if the client is actually a server of some type (perhaps an FTP server or an
HTTP server), the client does not want to wait for the server to free up a slot. Therefore,
we will write our clients so that they do not block but increment the noverflow
counter when this happens. Since this overflow counter is also shared among all the
clients and the server, it too requires a mutex so that its value is not corrupted.

Message offsets and data

12 The array msgof f contains offsets into the msgdata array of where each message
begins. That is, msgoff [OI is 0, msgoff [l l is 256 (the value of MESGSIZE),
msgof f [2 I is 512, and so on.

Be sure to understand that we must use offsets such as these when dealing with
shared memory, because the shared memory object can get mapped into a different
physical address in each process that maps the object. That is, the return value from
mmap can be different for each process that calls m a p for the same shared memory
object. For this reason, we cannot use pointers within the shared memory object that
contain actual addresses of variables within the object.

Figure 13.11 is our server that waits for a message to be placed into shared memory
by one of the clients, and then prints the message.

Create shared memory object

16 shm-unlink is called first to remove the shared memory object, if it still exists.
The object is created by shxopen and then mapped into the address space by map.
The descriptor is then closed.

Initialize array of offsets

19 The array of offsets is initialized to contain the offset of each message.

338 Posix Shared Memory Chapter 13

2 int
3 main(int argc, char **argv)

int fd, index, lastnoverflow, temp;
long offset;
struct shmstruct *ptr;

if (argc != 2)
err-quit ("usage : server2 <name>") ;

/ * create shm, set its size, map it, close descriptor * /
shmunlink(Px~ipc~name(argv[ll)); / * OK if this fails * /
fd = Shm_open(Px-ipc-name(argv[l]), 0-RDWR I 0-CREAT I 0-EXCL, FILE-MODE);
ptr = Mmap(NULL, sizeof(stmct shmstmct), PROT-READ I PROT-WRITE,

MAP-SHARED, f d, 0) ;
Ftmncate(fd, sizeof(struct shmstruct)) ;

Close(fd);

/ * initialize the array of offsets * /
for (index = 0; index < NMESG; index++)

ptr->msgoff[indexl = index * MESGSIZE;

/ * initialize the semaphores in shared memory * /
Sem-init(&ptr->mutex, 1, 1);
Sem-init(&ptr->nempty, 1, NMESG);
Sem-init(&ptr->nstored, 1, 0);
Sem-init(&ptr->noverflowmutex. 1, 1);

/ * this program is the consumer * /
index = 0;
lastnoverflow = 0;
f o r (; ;) {

Sen-wait(&ptr->nstored);
Sen-wait(&ptr-zmutex);
offset = ptr->msgoff[indexl;
printf("index = %d: %s\nU, index, &ptr->msgdata[offsetl);
if (++index >= NMESG)

index = 0; / * circular buffer * /
Sem_post (&ptr->mutex) ;
Sem_post(&ptr->nempty);

Sem-wait (&ptr->noverflowmutex) ;
temp = ptr->noverflow; / * don't printf while mutex held * /
Sem_post (&ptr-znoverflowmutex) ;
if (temp != lastnoverflow) {

printf("noverf1ow = %d\nU, temp);
lastnoverflow = temp;

1
1

exit (0) ;

pxshmlserver2.c
Figure 13.11 Our server that fetches and prints the messages from shared memory.

n 13.6 Sending Messages to a Server 339

Initialize semaphores

24 The four memory-based semaphores in the shared memory object are initialized.
The second argument to sem-init is nonzero for each call, since the semaphore is in
shared memory and will be shared between processes.

Wait for message, and then print

36 The first half of the for loop is the standard consumer algorithm: wait for nstored
to be greater than 0, wait for the mutex, process the data, release the mutex, and incre-
ment nemp t y.

Handle overflows

43 Each time around the loop, we also check for overflows. We test whether the
counter noverf lows has changed from its previous value, and if so, print and save the
new value. Notice that we fetch the current value of the counter while the
noverf lowmutex is held, but then release it before comparing and possibly printing it.
This demonstrates the general rule that we should always write our code to perform the
minimum number of operations while a mutex is held.

Our client program is shown in Figure 13.12.

Command-line arguments

13 The first command-line argument is the name of the shared memory object, the next
is the number of messages to store for the server, and the last one is the number of
microseconds to pause between each message. By starting multiple copies of our client
and specifying a small value for this pause, we can force an overflow to occur, and ver-
ify that the server handles it correctly.

Open and map shared memory

.is We open the shared memory object, assuming that it has already been created and
initialized by the server, and then map it into our address space. The descriptor can
then be closed.

Store messages

-31 Our client follows the basic algorithm for the consumer but instead of calling
sem-wait (nempty), which is where the consumer blocks if there is no room in the
buffer for its message, we call sem-trywait, which will not block. If the value of the
semaphore is 0, an error of EAGAIN is returned. We detect this error and increment the
overflow counter.

sleep-us is a function from Figures C.9 and C.10 of APUE. It sleeps for the specified number
of microseconds, and is implemented by calling either select or poll.

-37 While the mut ex semaphore is held we obtain the value of offset and increment
nput, but we then release the mutex before copying the message into the shared mem-
ory. We should do only those operations that must be protected while holding the
semaphore.

340 Posix Shared Memory Chapter 13

pxshm/client2.c
1 #include "cliserv2.h"

2 int
3 main(int argc, char **argv)
4 {

int fd, i, nloop, nusec;
pid-t pid;
char mesg [MESGSIZE] ;
long offset;
struct shmstruct *ptr;

if (argc != 4)
err-quit("usage: client2 <name> <#loops> <#us~c>");

nloop = atoi(argv[21);
nusec = atoi(argv[31);

/ * open and map shared memory that server must create * /
fd = Shm_open(Px~ipc~name(argv[ll), 0-RDWR, FILE-MODE);
ptr = Mmap(NULL, sizeof(struct shmstruct), PROT-READ I PROT-WRITE,

MAP-SHARED, f d, 0) ;
Close (f d) ;

pid = getpid () ;
for (i = 0; i < nloop: i++) {

Sleep-usbusec);
snprintf(mesg, MESGSIZE, "pid %ld: message %d", (long) pid, i);

if (sem-trywait (&ptr->nempty) == -1) {

if (errno == EAGAIN) {

Sem-wait(&ptr->noverflowmutex);
ptr->noverflow++;
Semqost(&ptr->noverflowmutex);
continue;

} else
err-sys("serr-trywait error");

1
Sem-wait(&ptr->mutex);
offset = ptr->msgoff[ptr-znputl;
if (++ (ptr->nput) z= NMESG)

ptr->nput = 0; / * circular buffer * /
Semqost(&ptr->mutex);
strcpy(&ptr->msgdata[offsetl, mesg);
Semqost(&ptr-mstored);

1
exit (0) ;

41 1 pxshm/client2.c

Figure 13.12 Client that stores messages in shared memory for server.

n 13.6 Sending Messages to a Server 341

We first start our server in the background and then run our client, specifying 50
messages with no pause between each message.

solaris % server2 serv2 &

[21 27223
solaris % client2 serv2 50 0
index = 0: pid 27224: message
index = 1: pid 27224: message
index = 2 : pid 27224: message
0 . .

0
1
2

continues like this
index = 15 : pid 27224: message 47
index = 0: pid 27224: message 48
i n d e x = l : p i d 2 7 2 2 4 : m e s s a g e 4 9 nornessageslost

But if we run our client again, we see some overflows.

solaris % client2 serv2 50 0
index = 2 : pid 27228: message 0
index = 3: pid 27228: message 1
. . . continues OK
index = 10 : pid 27228: message 8
index = 11: pid 27228: message 9
noverflow = 25 semer detects 25 messages lost
index = 12 : pid 27228: message 1 0
index = 13 : pid 27228: message 11
. . . continues OK for rnessuges 12-22
index = 9: pid 27228: message 23
index = 1 0 : pid 27228: message 2 4

This time, the client appears to have stored messages 0 through 9, which were then
fetched and printed by the server. The client then ran again, storing messages 10
through 49, but there was room for only the first 15 of these, and the remaining 25 (mes-
sages 25 through 49) were not stored because of overflow.

Obviously, in this example, we caused the overflow by having the client generate
the messages as fast as it can, with no pause between each message, which is not a typi-
cal real-world scenario. The purpose of this example, however, is to demonstrate how
to handle situations in which no room is available for the client's message but the client
does not want to block. This is not unique to shared memory-the same scenario can
happen with message queues, pipes, and FIFOs.

Overrunning a receiver with data is not unique to this example. Section 8.13 of UNPvI talks
about this with regard to UDP datagrams, and the UDP socket receive buffer. Section 18.2 of
TCPv3 describes how Unix domain datagram sockets return an error of ENOBUFS to the sender
when the receiver's buffer overflows, which differs from UDF. In Figure 13.12, our client (the
sender) knows when the server's buffer has overflowed, so if this code were placed into a gen-
eral-purpose function for other programs to call, the function could return an error to the caller
when the server's buffer overflows.

342 Posix Shared Memory Chapter 13

13.7 Summary

Posix shared memory is built upon the m a p function from the previous chapter. We
first call sh-open, specifying a Posix IPC name for the shared memory object, obtain a
descriptor, and then memory map the descriptor with map. The result is similar to a
memory-mapped file, but the shared memory object need not be implemented as a file.

Since shared memory objects are represented by descriptors, their size is set with
f t runcate, and information about an existing object (protection bits, user ID, group
ID, and size) is returned by f s t a t .

When we covered Posix message queues and Posix semaphores, we provided sam-
ple implementations based on memory-mapped 1/0 in Sections 5.8 and 10.15. We do
not do this for Posix shared memory, because the implementation would be trivial. If
we are willing to memory map a file (as is done by the Solaris and Digital Unix imple-
mentations), then s h o p e n is implemented by calling open, and shm-unlink is
implemented by calling unlink.

Exercises

13.1 Modify Figures 12.16 and 12.19 to work with Posix shared memory instead of a memory-
mapped file, and verify that the results are the same as shown for a memory-mapped file.

13.2 In the f o r loops in Figures 13.4 and 13.5, the C idiom *ptr++ is used to step through the
array. Would it be preferable to use p t r [i] instead?

System V Shared Memory

1 Introduction

System V shared memory is similar in concept to Posix shared memory. Instead of call-
ing shm-open followed by mmap, we call shmget followed by shmat.

For every shared memory segment, the kernel maintains the following structure of
information, defined by including <sys / shm . h>:

struct shmid-ds {

struct ipcgerm s-erm;
size-t shm-segsz ;
pid-t shm-lpid;
pid-t s-cpid;
shmatt-t s-nattch;
shmat-t s-cnattch;
t ime-t s-at ime ;
t ime-t s-dtime;
time-t shxc t ime ;

1 ;

/ * operation permission struct * /
/ * segment size * /
/ * pid of last operation * /
/ * creator pid * /
/ * current # attached * /
/ * in-core # attached * /
/ * last attach time * /
/ * last detach time * /
/ * last change time of this structure * /

We described the i p c s e r m structure in Section 3.3, and it contains the access permis-
sions for the shared memory segment.

2 shmget Function

A shared memory segment is created, or an existing one is accessed, by the shmget
function.

344 System V Shared Memory Chapter 14

#include isys/shm.h>

int shmget (key-t key, size-t size, int oflag) ;

Returns: shared memow identifier if OK, -1 on error

The return value is an integer called the shared memory identifier that is used with the
three other shmXXX functions to refer to this segment.

key can be either a value returned by f tok or the constant IPC-PRIVATE, as dis-
cussed in Section 3.2.

size specifies the size of the segment, in bytes. When a new shared memory seg-
ment is created, a nonzero value for size must be specified. If an existing shared mem-
ory segment is being referenced, size should be 0.

oflag is a combination of the read-write permission values shown in Figure 3.6. This
can be bitwise-ORed with either IPC-CREAT or IPC-CREAT I IPC-EXCL, as discussed
with Figure 3.4.

When a new shared memory segment is created, it is initialized to size bytes of 0.
Note that shmget creates or opens a shared memory segment, but does not provide

access to the segment for the calling process. That is the purpose of the shmat function,
which we describe next.

14.3 shmat Function

After a shared memory segment has been created or opened by shmget, we attach it to
our address space by calling shmat.

void *shmat(int shmid, const void *shmaddr, int f lag) ; I
Returns: starting address of mapped region if OK, -1 on error

shmid is an identifier returned by shmget. The return value from shmat is the starting
address of the shared memory segment within the calling process. The rules for deter-
mining this address are as follows:

If shmaddr is a null pointer, the system selects the address for the caller. This is
the recommended (and most portable) method.

If shmaddr is a nonnull pointer, the returned address depends on whether the
caller specifies the SHM-rn~ value for the flag argument:

If SHM-RND is not specified, the shared memory segment is attached at the
address specified by the shmaddr argument.

If SHM-~D is specified, the shared memory segment is attached at the
address specified by the shmaddr argument, rounded down by the constant
SHMLBA. LBA stands for "lower boundary address."

ion 14.5 shmctl Function 345

By default, the shared memory segment is attached for both reading and writing by the
calling process, if the process has read-write permissions for the segment. The
SHM-RDONLY value can also be specified in the flag argument, specifying read-only
access.

,4 shmat Function

When a process is finished with a shared memory segment, it detaches the segment by
calling shmd t .

#include <sys/shm.h>

int shmdt (const void *shmaddr) ;

Returns: 0 if OK, -1 on error

When a process terminates, all shared memory segments currently attached by the pro-
cess are detached.

Note that this call does not delete the shared memory segment. Deletion is accom-
plished by calling shmctl with a command of IPC-MID, which we describe in the
next section.

,5 shmctl Function

shmct 1 provides a variety of operations on a shared memory segment.

int shmctl (int shmid, int cmd, struct shmid-ds *buff) ; I
L Returns: 0 if OK, -1 on error

Three commands are provided:

IPC-RMID Remove the shared memory segment identified by shmid from the sys-
tem and destroy the shared memory segment.

IPC-SET Set the following three members of the shmid-ds structure for the
shared memory segment from the corresponding members in the
structure pointed to by the buff argument: shm_perm.uid,
s-erm. g id, and s-erm. mode. The s m c t ime value is also
replaced with the current time.

IPC-STAT Return to the caller (through the buff argument) the current shmid-ds
structure for the specified shared memory segment.

346 System V Shared Memory Chapter 14

14.6 Simple Programs

We now develop some simple programs that operate on System V shared memory.

shmget Program

Our shmget program, shown in Figure 14.1, creates a shared memory segment using a
specified pathname and length.

swshrn/shmget.c
1 #include "unpipc . h"

2 int
3 main(int argc, char **argv)
4 (
5 int c, id, oflag;
6 char *ptr;
7 size-t length;

oflag = SVSHM-MODE I IPC-CREAT;
while ((c = Getopt (argc, argv, "em)) ! = -1) {

switch (c) {
case 'e':

oflag I = IPC-EXCL;
break;

1
1
if (optind != argc - 2)

err-quit("usage: shmget [-e I <pathname> <length>");
length = atoi(argv[optind + 11) ;

19 id = Shmget(Ftok(argv[optind], O), length, oflag);
20 ptr = Shmat(id, NULL, 0);

21 exit (0) ;

Figure 14.1 Create a System V shared memory segment of a specified size.

19 shmget creates the shared memory segment of the specified size. The pathname
passed as a command-line argument is mapped into a System V IPC key by f tok. If
the -e option is specified, it is an error if the segment already exists. If we know that
the segment already exists, the length on the command line should be specified as 0.

20 shmat attaches the segment into the address space of the process. The program
then terminates. Since System V shared memory has at least kernel persistence, this
does not remove the shared memory segment.

shmrmid Program

Figure 14.2 shows our trivial program that calls shmc t 1 with a command of 1 PC-RMID
to remove a shared memory segment from the system.

:tion 14.6 Simple Programs 347

svshm/shmrmid.c
1 #include "unpipc.h"

2 int
3 main(int argc, char **argv)
4 {
5 int id;

6 if (argc != 2)
7 err-quit("usage: shmrmid <pathname>");

8 id = Shget(Ftok(argv[ll, 0). 0, SVSHM-MODE);
9 Shctl(id, IPC-RMID, NULL);

10 exit (0) ;
11 1 svshrn/shmrmid.c

Figure 14.2 Remove a System V shared memory segment.

u n w r i t e Program

Figure 14.3 is our shmwrite program, which writes a pattern of O,1,2, ..., 254,255,0,1,
and so on, to a shared memory segment.

svshrn/shmwrite.c
1 #include "unpipc . h"
2 int
3 main(int argc, char **argv)

int i, id;
struct shmid-ds buff;
unsigned char *ptr;

if (argc != 2)
err-quit("usage: shwrite <pathname>");

id = Shmget(Ftok(argv[l], 0). 0, SVSHM-MODE);
ptr = Shmat(id, NULL, 0);
Shctl(id, IPC-STAT, &buff);

/ * set: ptr[O] = 0, ptr[l] = 1, etc. * /
for (i = 0; i < buff.shm_segsz; i++)

*ptr++ = i % 256;

exit (0) ;

svshm/shmwrite.c

Figure 14.3 Open a shared memory segment and fill it with a pattern.

10-12 The shared memory segment is opened by shmget and attached by shmat. We
fetch its size by calling shmc t 1 with a command of I PC-STAT.

13-15 The pattern is written to the shared memory.

348 System V Shared Memory Chapter 14

shmread Program

Our s h m r e a d program, shown in Figure 14.4, verifies the pattern that was written by
shmwr i t e.

2 int
3 rnain(int argc, char **argv)
4 {
5 int i, id;
6 struct shmid-ds buff ;
7 unsigned char c. *ptr;

8 if (argc != 2)
9 err-quit("usage: shread <pathname>");

10 id = Shmget(Ftok(argv[l], O), 0, SVSHM-MODE);
11 ptr = Shmat(id, NULL, 0) ;
12 Shmctl (id, IPC-STAT, &buff) ;

13 / * check that ptr[O] = 0, ptr[ll = 1, etc. * /
14 for (i = 0; i < buff.shm_segsz; i++)
15 if ((C = *ptr++) != (i % 256))
16 err-ret ("ptr[%d] = Bd", i, c) ;

17 exit (0) ;

Figure 14.4 Open a shared memory segment and verify its data pattern.

i 0-12 The shared memory segment is opened and attached. Its size is obtained by calling
shmc t 1 with a command of I PC-STAT.

13-1 6 The pattern written by shmwr i t e is verified.

Examples

We create a shared memory segment whose length is 1234 bytes under Solaris 2.6. The
pathname used to identify the segment (e.g., the pathname passed to f t o k) is the path-
name of our smet executable. Using the pathname of a server's executable file often
provides a unique identifier for a given application.

solaris % shmget shmget 1234
solaris % ipcs -bmo
IPC status from <running system> as of Thu Jan 8 13:17:06 1998
T ID KEY MODE OWNER GROUP NATTCH SEGSZ
Shared Memory:
m 1 Ox0000f12a --rw-r--r-- rstevens other1 0 1234

We run the ipcs program to verify that the segment has been created. We notice that
the number of attaches (which is stored in the s-nattch member of the shmid-ds
structure) is 0, as we expect.

:ion 14.7 Shared Memory Limits 349

Next, we run our shmwri te program to set the contents of the shared memory seg-
ment to the pattern. We verify the shared memory segment's contents with shmread
and then remove the identifier.

s o l a r i s % shmwrite shrnget
s o l a r i s % shmread shrnget
s o l a r i s % shmrmid shmget
s o l a r i s % ipcs -bmo
IPC s t a t u s from <running system> a s of Thu Jan 8 13:18:01 1998
T I D KEY MODE OWNER GROUP NATTCH SEGSZ
Shared Memory:

We run ipcs to verify that the shared memory segment has been removed.

When the name of the server executable is used as an argument to f tok to identify some form
of System V IPC, the absolute pathname would normally be specified, such as
/usr/bin/myserverd, and not a relative pathname as we have used (shrnget). We have
been able to use a relative pathname for the examples in this section because all of the pro-
grams have been run from the directory containing the server executable. Realize that f tok
uses the i-node of the file to form the IPC identifier (e.g., Figure 3.2), and whether a given file is
referenced by an absolute pathname or by a relative pathname has no effect on the i-node.

.7 Shared Memory Limits

As with System V message queues and System V semaphores, certain system limits
exist on System V shared memory (Section 3.8). Figure 14.5 shows the values for some
different implementations. The first column is the traditional System V name for the
kernel variable that contains this limit.

Name Description DUnix 4.OB Solaris 2.6

s h a x max #bytes for a shared memory segment 4,194,304 1,048,576

shmmnb min #bvtes for a shared memory segment 1 1

shmmni I max #shared memory identifiers, systemwide 128 1 100

shmseg I max #shared memory segments attached per process I 32 1 6

Figure 14.5 Typical system limits for System V shared memory.

The program in Figure 14.6 determines the four limits shown in Figure 14.5.

2 #def ine MAX-NIDS 4096

3 i n t
4 ma in (in t argc , char **argv)

350 System V Shared Memory

7

Chapter 14

int i, j, shmid[MAX-NIDS];
void *addr [MAX-NIDSI ;
unsigned long size;

/ * see how many identifiers we can "open" * /
for (i = 0; i <= MAX-NIDS; i++) {

shmid[i] = shmget(1PC-PRIVATE, 1024, SVSHM-MODE I IPC-CREAT);
if (shmid[i] == -1) {

printf("%d identifiers open at once\nW, i);
break;

1
1
for (j = 0; j < i; j++)

Shmctl(shmid[jl, IPC-RMID, NULL);

/ * now see how many we can "attachn * /
for (i = 0; i <= MAX_NIDS; i++) (

shmid[i] = Shmget(1PC-PRIVATE, 1024, SVSHM-MODE I IPC-CREAT);
addr[i] = shmat(shmid[i], NULL, 0);
if (addrri] == (void *) -1) t

printf("8d shared memory segments attached at once\nW, i);
Shmctl(shmid[il, IPC-RMID, NULL); / * the one that failed * /
break;

1
1
for (j = 0; j < i; j++) {

Shmdt(addrLj1);
Shmctl(shmid[jl, IPC-RMID, NULL);

1

/ * see how small a shared memory segment we can create * /
for (size = 1;; size++) {

shmid[O] = shmget(1PC-PRIVATE, size, SVSHM-MODE 1 IPC-CREAT);
if (shmid[O] != -1) { / * stop on first success * /

printf("minimum size of shared memory segment = %lu\nu, size);
Shmctl(shmid[O], IPC-RMID, NULL);
break;

1
1

/ * see how large a shared memory segment we can create * /
for (size = 65536;; size += 4096) {

shmid[O] = shmget(1PC-PRIVATE, size, SVSHM-MODE I IPC-CREAT);
if (shmid[Ol == -1) { / * stop on first failure * /

printf("maximum size of shared memory segment = %lu\nU, size - 4096);
break;

1
Shmctl(shmid[Ol, IPC-RMID, NULL);

1

exit (0) ;
1

svshrn/limits.c

Figure 14.6 Determine the system limits on shared memory.

pter 14 Exercises 351

We run this program under Digital Unix 4.08.

alpha % limits
127 identifiers open at once
32 shared memory segments attached at once
minimum size of shared memory segment = 1
maximum size of shared memory segment = 4194304

The reason that Figure 14.5 shows 128 identifiers but our program can create only 127
identifiers is that one shared memory segment has already been created by a system
daemon.

8 Summary

System V shared memory is similar in concept to Posix shared memory. The most com-
mon function calls are

shmget to obtain an identifier,

shmat to attach the shared memory segment to the address space of the process,

shmctl with a command of IPC-STAT to fetch the size of an existing shared
memory segment, and

shmct 1 with a command of 1 PC-RMID to remove a shared memory object.

One difference is that the size of a Posix shared memory object can be changed at any
time by calling f truncate (as we demonstrated in Exercise 13.11, whereas the size of a
System V shared memory object is fixed by shmget.

Exercises

14.1 Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead of a path-
name to specify the queue. We showed that the identifier is all we need to know to access
a System V message queue (assuming we have adequate permission). Make similar modi-
fications to Figure 14.4 and show that the same feature applies to System V shared mem-
ory.

Part 5

Remote Procedure Calls

Doors

i.1 Introduction

When discussing client-server scenarios and procedure calls, there are three different
types of procedure calls, which we show in Figure 15.1.

1. A local procedure call is what we are familiar with from our everyday C program-
ming: the procedure (function) being called and the calling procedure are both
in the same process. Typically, some machine instruction is executed that trans-
fers control to the new procedure, and the called procedure saves machine regis-
ters and allocates space on the stack for its local variables.

2. A remote procedure call (RPC) is when the procedure being called and the calling
procedure are in different processes. We normally refer to the caller as the client
and the procedure being called as the server. In the middle scenario in Fig-
ure 15.1, we show the client and server executing on the same host. This is a fre-
quently occurring special case of the bottom scenario in this figure, and this is
what doors provide us: the ability for a process to call a procedure (function) in
another process on the same host., One process (a server) makes a procedure
available within that process for other processes (clients) to call by creating a
door for that procedure. We can also think of doors as a special type of IPC,
since information, in the form function arguments and return values, is
exchanged between the client and server.

3. RPC in general allows a client on one host to call a server procedure on another
host, as long as the two hosts are connected by some form of network (the bot-
tom scenario in Figure 15.1). This is what we describe in Chapter 16.

356 Doors

7

Chapter 15

host
r - - - - - - - - - - 1

process

host host
r - - -cie;t- - - 1 r - - - - - - - - 1

I I I server I
I process I I process I
I 1 1
I

1 local

remote
procedure
call (RPC)
on a single
host (doors)

remote

1
procedure
call (RPC)
between hosts
(Chapter 16)

interconnected network

Figure 15.1 Three different types of procedure calls.

Historically, doors were developed for the Spring distributed operating system, details of
which are available at h t t p : / /www . sun. com/tech/pro j ects /spr ing. A description of
the doors IPC mechanism in this operating system is in [Hamilton and Kougiouris 19931.

Doors then appeared in Solaris 2.5, although the only manual page contained just a warning
that doors were an experimental interface used only by some Sun applications. With Solaris
2.6, the interface was documented in eight manual pages, but these manual pages list the sta-
bility of the interface as "evolving." Expect that changes might occur to the API that we
describe in this chapter with future releases of Solaris. A preliminary version of doors for
Linux is being developed: h t t p : / /www . c s .brown. edul - tor/doors.

The implementation of doors in Solaris 2.6 involves a library (containing the door-XXX func-
tions that we describe in this chapter), which is linked with the user's application (-ldoor),
and a kernel filesystem (/kernel / sys/doorf s).

Even though doors are a Solaris-only feature, we describe them in detail because they provide
a nice introduction to remote procedure calls, without having to deal with any networking
details. We will also see in Appendix A that they are as fast, if not faster, than all other forms
of message passing.

Local procedure calls are synchronous: the caller does not regain control until the
called procedure returns. Threads can be thought of as providing a form of
asynchronous procedure call: a function is called (the third argument to
pthread-create), and both that function and the caller appear to execute at the same

:tion 15.1 Introduction 357

time. The caller can wait for the new thread to finish by calling pthread-join.
Remote procedure calls can be either synchronous or asynchronous, but we will see that
door calls are synchronous.

Within a process (client or server), doors are identified by descriptors. Externally,
doors may be identified by pathnames in the filesystem. A server creates a door by call-
ing door-create, whose argument is a pointer to the procedure that will be associated
with this door, and whose return value is a descriptor for the newly created door. The
server then associates a pathname with the door descriptor by calling fattach. A
client opens a door by calling open, whose argument is the pathname that the server
associated with the door, and whose return value is the client's descriptor for this door.
The client then calls the server procedure by calling door-call. Naturally, a server for
one door could be a client for another door.

We said that door calls are synchronous: when the client calls door-call, this func-
tion does not return until the server procedure returns (or some error occurs). The
Solaris implementation of doors is also tied to threads. Each time a client calls a server
procedure, a thread in the server process handles this client's call. Thread management
is normally done automatically by the doors library, creating new threads as they are
needed, but we will see how a server process can manage these threads itself, if desired.
This also means that a given server can be servicing multiple client calls of the same
server procedure at the same time, with one thread per client. This is a concurrent
server. Since multiple instances of a given server procedure can be executing at the
same time (each instance as one thread), the server procedures must be thread safe.

When a server procedure is called, both data and descriptors can be passed from the
client to the server. Both data and descriptors can also be passed back from the server
to the client. Descriptor passing is inherent to doors. Furthermore, since doors are
identified by descriptors, this allows a process to pass a door to some other process. We
say more about descriptor passing in Section 15.8.

We begin our description of doors with a simple example: the client passes a long inte-
ger to the server, and the server returns the square of that value as the long integer
result. Figure 15.2 shows the client. (We gloss over many details in this example, all of
which we cover later in the chapter.)

Open the door

8-10 The door is specified by the pathname on the command line, and it is opened by
calling open. The returned descriptor is called the door descriptor, but sometimes we
just call it the door.

Set up arguments and pointer to result

11-18 The arg structure contains a pointer to the arguments and a pointer to the results.
d a t a ~ t r points to the first byte of the arguments, and data-s i ze specifies the num-
ber of argument bytes. The two members descstr and desc-num deal with the
passing of descriptors, which we describe in Section 15.8. rbuf points to the first byte
of the result buffer, and rs i ze is its size.

358 Doors Chapter 15
1

2 int
3 main(int argc. char **argv)
4 I
5 int f d;
6 long ival, oval;
7 door-arg-t arg;

8 if (argc != 3)
9 err-quit("usage: client1 <server-pathname> <integer-value>");

10 f d = Open (argv [l] , 0-RDWR) ; I * open the door * I

/ * set up the arguments and pointer to result * /
ival = atol(argv[21);
arg.dataqtr = (char *) Lival; / * data arguments * /
arg.data-size = sizeof(1ong); I* size of data arguments * /
arg.descqtr = NULL;
arg.desc-num = 0;
arg.rbuf = (char *) &oval; / * data results * /
arg.rsize = sizeof(1ong); / * size of data results *I

19 / * call server procedure and print result * /
2 0 Door-call (f d, &arg) ;
21 printf("resu1t: %ld\n", oval);

2 2 exit (0) ;

Figure 15.2 Client that sends a long integer to the server to be squared.

Call server procedure and print result

19-21 We call the server procedure by calling door-call, specifying as arguments the
door descriptor and a pointer to the argument structure. Upon return, we print the
result.

The server program is shown in Figure 15.3. It consists of a server procedure
named servproc and a main function.

Server procedure

2-10 The server procedure is called with five arguments, but the only one we use is
da tap t r, which points to the first byte of the arguments. The long integer argument is
fetched through this pointer and squared. Control is passed back to the client, along
with the result, by door- return. The first argument points to the result, the second is
the size of the result, and the remaining two deal with the returning of descriptors.

Create a door descriptor and attach to pathname

17-21 A door descriptor is created by door-create. The first argument is a pointer to
the function that will be called for this door (servproc). After this descriptor is
obtained, it must be associated with a pathname in the filesystem, because this path-
name is how the client identifies the door. This association is done by creating a regular

ction 15.1 Introduction 359

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 {
6 long arg, result;

7 arg = *((long *) dataptr);
8 result = arg * arg;
9 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
10 1

11 int
12 main(int argc, char **argv)
13 {
14 int f d;

15 if (argc != 2)
16 err-quit("usage: server1 cserver-pathname>");

17 / * create a door descriptor and attach to pathname * /
18 fd = Door-create(servproc, NULL, 0);

19 unlink(argv[l]) ;
20 Close(Open(argv[l], 0-CREAT I 0-RDWR, FILE-MODE));
21 Fattach (fd, argv[l]) ;

2 2 / * servproc() handles all client requests * /
23 for (; ;

24 pause (;

25 1
akorslserverl .c

Figure 15.3 Server that returns the square of a long integer.

file in the filesystem (we call unl ink first, in case the file already exists, ignoring any
error return) and calling f a t tach, an SVR4 function that associates a descriptor with a
pathname.

Main server thread does nothing

22-24 The main server thread then blocks in a call to pause. All the work is done by the
servproc function, which will be executed as another thread in the server process each
time a client request arrives.

To run this client and server, we first start the server in one window

solaris % serverl /tm/serverl

and then start the client in another window, specifying the same pathname argument
that we passed to the server:

solaris % client1 /tm/serverl 9
result: 81
solaris % 1s -1 /tm/serverl
Drw-r-r- 1 rstevens other1 0 Apr 9 10:09 /tmp/serverl

360 Doors Chapter 15

The result is what we expect, and when we execute Is, we see that it prints the charac
ter D as the first character to indicate that this pathname is a door,

Figure 15.4 shows a diagram of what appears to be happening with this example. It
appears that door-call calls the server procedure, which then returns.

Figure 15.5 shows what is actually going on when we call a procedure in a different
process on the same host.

server
servproc ()

t
/ * do whatever * /

client

I main(1 is' 1 , doorreturn () ;
&i@

-ce

I { 0 . .

fd = door-create () ;

- 1 I fattachlfd, path) ;

Figure 15.4 Apparent procedure call from one process to another.

client

main ()

fd = open(path,) ;

door callffd.) :

('.* door-call ()

server
servproc(r I

{
/ * do whatever * /
door-return() ; 4 7

1
main()

(

. . .
fd = door-create () ; -3

0

fattach(fd, path) ;
. . .

1
door-create () 4 -J

t
1
door-return () r 1

u
Figure 15.5 Actual flow of control for a procedure call from one process to another.

115.2 door-call Function 361

The following numbered steps in Figure 15.5 take place.

The server process starts first, calls door-create to create a door descriptor
referring to the function sewroc, and then attaches this descriptor to a path-
name in the filesystem.

The client process starts and calls door-call. This is actually a function in the
doors library.

The door-call library function performs a system call into the kernel. The tar-
get procedure is identified and control is passed to some doors library function
in the target process.

The actual server procedure (named servproc in our example) is called.

The server procedure does whatever it needs to do to handle the client request
and calls door-return when it is done.

door-return is actually a function in the doors library, and it performs a sys-
tem call into the kernel.

The client is identified and control is passed back to the client.

The remaining sections describe the doors API in more detail looking at many exam-
ples. In Appendix A, we will see that doors provide the fastest form of IPC, in terms of
latency.

door-call Function

The door-call function is called by a client, and it calls a server procedure that is exe-
cuting in the address space of the server process.

int door-call (int fd, door-arg-t *argp) ;

Returns: 0 if OK, -1 on error

The descriptor fd is normally returned by open (e.g., Figure 15.2). The pathname
opened by the client identifies the server procedure that is called by door-call when
this descriptor is the first argument.

The second argument argp points to a structure describing the arguments and the
buffer to be used to hold the return values:

362 Doors
1

Chapter 15

typedef s t r u c t door-arg {

char *data_ptr; / *

s ize- t data- size; / *

s ize- t desc-num; / *

char *rbuf ; / *
s ize- t r s i z e ; / *

1 door-arg-t;

c a l l : p t r t o d a t a arguments;
r e t u r n : p t r t o d a t a r e s u l t s * /
c a l l : #bytes of d a t a arguments;
r e tu rn : a c t u a l #bytes of d a t a r e s u l t s * /
c a l l : p t r t o d e s c r i p t o r arguments:
r e t u r n : p t r t o d e s c r i p t o r r e s u l t s * /
c a l l : number of d e s c r i p t o r arguments;
r e tu rn : number of d e s c r i p t o r r e s u l t s * /
p t r t o r e s u l t b u f f e r * /
#bytes of r e s u l t b u f f e r * /

Upon return, this structure describes the return values. All six members of this struc-
ture can change on return, as we now describe.

The use of char * for the two pointers is strange and necessitates explicit casts in our code to
avoid compiler warnings. We would expect void * pointers. We will see the same use of
char * with the first argument to door- return. Solaris 2.7 will probably change the
datatype of desc-num to be an unsigned i n t , and the final argument to door-return
would change accordingly.

Two types of arguments and two types of results exist: data and descriptors.

The data arguments are a sequence of da t a-s i z e bytes pointed to by da tastr.
The client and server must somehow "know" the format of these arguments
(and the results). For example, no special coding tells the server the datatypes of
the arguments. In Figures 15.2 and 15.3, the client and server were written to
know that the argument was one long integer and that the result was also one
long integer. One way to encapsulate this information (for someone reading the
code years later) is to put all the arguments into one structure, all the results into
another structure, and define both structures in a header that the client and
server include. We show an example of this with Figures 15.11 and 15.12. If
there are no data arguments, we specify datajtr as a null pointer and
data-size as 0.

Since the client and server deal with binary arguments and results that are packed into an
argument buffer and a result buffer, the implication is that the client and server must be
compiled with the same compiler. Sometimes different compilers, on the same system,
pack structures differently.

The descriptor arguments are an array of door-desc-t structures, each one con-
taining one descriptor that is passed from the client to the server procedure. The
number of door-desc-t structures passed is desc-num. (We describe this
structure and what it means to "pass a descriptor" in Section 15.8.) If there are
no descriptor arguments, we specify descjtr as a null pointer and desc-num
as 0.

Upon return, da t a j t r points to the data results, and da ta-s i z e specifies the
size of these results. If there are no data results, data-size will be 0, and we
should ignore da t a s t r.

on 15.3 door-create Function 363

Upon return, there can also be descriptor results: d e s c ~ t r points to an array of
door-desc-t structures, each one containing one descriptor that was passed
by the server procedure to the client. The number of door-desc-t structures
returned is contained in desc-num. If there are no descriptor results,
desc-num will be 0, and we should ignore descstr.

Using the same buffer for the arguments and results is OK. That is, datastr and
descstr can point into the buffer specified by rbuf when door-call is called.

Before calling door-call, the client sets rbuf to point to a buffer where the results
will be stored, and rsize is the buffer size. Normally upon return, datastr and
descstr both point into this result buffer. If this buffer is too small to hold the
server's results, the doors library automatically allocates a new buffer in the caller's
address space using mmap (Section 12.2) and updates rbuf and rsize accordingly.
datastr and descstr will then point into this newly allocated buffer. It is the
caller's responsibility to notice that rbuf has changed and at some later time to return
this buffer to the system by calling munmap with rbuf and rsize as the arguments to
munmap. We show an example of this with Figure 15.7.

3 door-create Function

A server process establishes a server procedure by calling door-create.

#include cdoor.h>

typedef void Door-serversroc (void *cookie, char *dataptr, size-t datasize,
door-desc-t *descptr, size-t ndesc) ;

int door-create (Door-serversroc *proc, void *cookie, u-int attr) ;

Returns: nonnegative descriptor if OK, -1 on error

In this declaration, we have added our own typedef, which simplifies the function
prototype. This typedef says that door server procedures (e.g., servproc in Fig-
ure 15.3) are called with five arguments and return nothing.

When door-create is called by a server, the first argument proc is the address of
the server procedure that will be associated with the door descriptor that is the return
value of this function. When this server procedure is called, its first argument cookie is
the value that was passed as the second argument to door-create. This provides a
way for the server to cause some pointer to be passed to this procedure every time that
procedure is called by a client. The next four arguments to the server procedure,
dataptr, datasize, descptr, and ndesc, describe the data arguments and the descriptor argu-
ments from the client: the information described by the first four members of the
door-arg-t structure that we described in the previous section.

The final argument to door-create, attr, describes special attributes of this server
procedure, and is either 0 or the bitwise-OR of the following two constants:

364 Doors Chapter 15

DOOR-PRIVATE The doors library automatically creates new threads in the server
process as needed to call the server procedures as client requests
arrive. By default, these threads are placed into a process-wide
thread pool and can be used to service a client request for any
door in the server process.

Specifying the DOOR-PRIVATE attribute tells the library that this
door is to have its own pool of server threads, separate from the
process-wide pool.

DOOR-UNREF When the number of descriptors referring to this door goes from
two to one, the server procedure is called with a second argument
(dataptr) of DOOR-UNREF-DATA. The descptr argument is a null
pointer, and both datasize and ndesc are 0. We show some exam-
ples of this attribute starting with Figure 15.16.

The return value from a server procedure is declared as void because a server pro-
cedure never returns by calling return or by falling off the end of the function.
Instead, the server procedure calls door-return, which we describe in the next sec-
tion.

We saw in Figure 15.3 that after obtaining a door descriptor from door-create,
the server normally calls fat tach to associate that descriptor with a pathname in the
filesystem. The client opens that pathname to obtain its door descriptor for its call to
door-call.

fattach is not a Posix.1 function but it is required by Unix 98. Also, a function named
f detach undoes this association, and a command named f detach just invokes this function.

Door descriptors created by door-create have the FD-CLOEXEC bit set in the
descriptor's file descriptor flags. This means the descriptor will be closed by the kernel
if this process calls any of the exec functions. With regard to fork, even though all
descriptors open in the parent are then shared by the child, only the parent will receive
door invocations from clients; none are delivered to the child, even though the descrip-
tor returned by door-create is open in the child.

If we consider that a door is identified by a process ID and the address of a server procedure to
call (which we will see in the door-inf o-t structure in Section 15.6), then these two rules
regarding fork and exec make sense. A child will never get any door invocations, because
the process ID associated with the door is the process ID of the parent that called
door-create. A door descriptor must be closed upon an exec, because even though the
process ID does not change, the address of the server procedure associated with the door has 1

no meaning in the newly invoked program that runs after exec.

15.4 doorreturn Function

When a server procedure is done it returns by calling door-return. This causes the
associated door-call in the client to return.

Section 15.6 door-in£ o Function 365

int door-returntchar *dataptr, size-t datasize, door-desc-t *descptr, size-t ndesc) ;

Returns: no return to caller if OK, -1 on error

The data results are specified by dataptr and datasize, and the descriptor results are speci-
fied by descptr and ndesc.

15.5 door-cred Function

One nice feature of doors is that the server procedure can obtain the client's credentials
on every call. This is done with the door-cred function.

int door-cred (door-cred-t * w e d) ; I
Returns: 0 if OK, -1 on error

The door-cred-t structure that is pointed to by cred contains the client's credentials
on return.

typedef struct door-cred (

uid-t dc-euid: / * effective user ID of client * /
gid-t dc-egid; / * effective group ID of client * /
uid-t dc-ruid; / * real user ID of client * /
gid-t dc-rgid: / * real group ID of client * /
pid-t dcqid; / * process ID of client * /

1 door-cred-t ;

Section 4.4 of APUE talks about the difference between the effective and real IDS, and
we show an example with Figure 15.8.

Notice that there is no descriptor argument to this function. It returns information
about the client of the current door invocation, and must therefore be called by the
server procedure or some function called by the server procedure.

15.6 door-info Function

The door-cred function that we just described provides information for the server
about the client. The client can find information about the server by calling the
door-inf o function.

int door-info (int fd, door-info-t *info) ;

Returns: 0 if OK, -1 on error

-

366 Doors
7

Chapter 15

fd specifies an open door. The door-inf o-t structure that is pointed to by info con-
tains information about the server on return.

typedef struct door-info {

pid-t di-target; / * server process ID * /
doorstr-t diqroc; / * server procedure * /
doorstr-t di-data; / * cookie for server procedure * /
door-attr-t di-attributes; / * attributes associated with door * /
door-id-t di-uniquifier; / * unique number * /

1 door-info-t;

di-target is the process ID of the server, and d i s r o c is the address of the server
procedure within the server process (which is probably of little use to the client). The
cookie pointer that is passed as the first argument to the server procedure is returned as
di-data.

The current attributes of the door are contained in d i -a t t r ibutes , and we
described two of these in Section 25.3: DOOR-PRIVATE and DOOR-UNREF. Two new
attributes are DOOR-LOCAL (the procedure is local to this process) and DOOR-REVOKE
(the server has revoked the procedure associated with this door by calling the
door-revoke function).

Each door is assigned a systemwide unique number when created, and this is
returned as di-uniquif i e r .

This function is normally called by the client, to obtain information about the server.
But it can also be issued by a server procedure with a first argument of DOOR-QUERY:
this returns information about the calling thread. In this scenario, the address of the
server procedure (d i s r o c) and the cookie (di-data) might be of interest.

15.7 Examples

We now show some examples of the five functions that we have described.

door-inf o Function

Figure 15.6 shows a program that opens a door, then calls door-inf o, and prints infor-
mation about the door.

2 int
3 main (int argc, char **argv)

4 {

5 int fd;
6 struct stat stat;
7 struct door-info info;

8 if (argc != 2)
9 err-quit("usage: doorinfo <pathname>");

10 fd = Open(argv[ll, 0-RDONLY);
11 Fstat (fd, &stat) ;

115.7 Examples 367

12 if (S-ISDOOR(stat .st-mode) == 0)
13 err-quit("pathname is not a door");

14 Door-info (fd, &info) ;
15 printf("server PID = %Id, uniquifier = %Id",

(long) info.di-target, (long) info.di-uniquifier);
if (info.di-attributes & DOOR-LOCAL)

print£(", DOOR-LOCAL");
if (info.di-attributes & DOOR-PRIVATE)

printf(", DOOR-PRIVATE");
if (info.di-attributes & DOOR-REVOKED)

print£(", DOOR-REVOKED");
if (info.di-attributes & DOOR-UNREF)

print£(", DOOR-UNREF");
printf ("\nW) ;

2 6 exit (0) ;
27 }

doors/doorinfo.c

Figure 15.6 Print information about a door.

We open the specified pathname and first verify that it is a door. The st-mode
member of the stat structure for a door will contain a value so that the S-ISDOOR
macro is true. We then call door-inf o.

We first run the program specifying a pathname that is not a door, and then run it
on the two doors that are used by Solaris 2.6.

solaris % doorinfo /etc/passwB
pathname is not a door

solaris % doorinfo /etc/.name-service-door
server PID = 308, uniquifier = 18, DOOR-LJNREF
solaris % doorinfo /etc/.syslog-door
server PID = 282, uniquifier = 1635

solaris % ps -f -p 308
root 308 1 0 Apr O l ? 0:34 /usr/sbin/nscd

solaris % ps -f -p 282
root 282 1 0 Apr O l ? 0:10 /usr/sbin/syslogd -n -2 14

We use the ps command to see what program is running with the process ID returned
by door-inf o.

t Buffer Too Small

When describing the door-call function, we mentioned that if the result buffer is too
small for the server's results, a new buffer is automatically allocated. We now show an
example of this. Figure 15.7 shows the new client, a simple modification of Figure 15.2.

3 In this version of our program, we print the address of our oval variable, the con-
tents of data_ptr, which points to the result on return from door-call, and the
address and size of the result buffer (rbuf and rsize).

368 Doors Chapter 15

2 int
3 main(int argc, char **argv)
4 (
5 int fd;
6 long ival, oval;
7 door-arg-t arg;

8 if (argc != 3)
9 err-quittUusage: client2 <server-pathname> <integer-value>");

10 fd = Open(argv[ll, 0-RDWR); / * open the door * /

/ * set up the arguments and pointer to result * /
ival = at01 (argvr2 1) ;
arg-datastr = (char *) Lival; / * data arguments * /
arg.data-size = sizeof(1ong); / * size of data arguments * /
arg.descqtr = NULL;
arg.desc-num = 0;
arg.rbuf = (char *) &oval; / * data results * /
arg.rsize = sizeof(1ong); / * size of data results * /

19 / * call server procedure and print result * /
2 0 Door-call (fd, &arg) ;
2 1 printf("&oval = %p, dataqtr = %p, rbuf = %p, rsize = %d\nV,
22 &oval, arg.dataqtr, arg.rbuf, arg.rsize);
23 printf("resu1t: %ld\n", *((long *) arg.dataqtr));

2 4 exit (0) ;
25 }

doorslclient2.c
Figure 15.7 Print address of result.

When we run this program, we have not changed the size of the result buffer from
Figure 15.2, so we expect to find that d a t a a t r and rbuf both point to our oval vari-
able, and that r s i z e is 4 bytes. Indeed, this is what we see:

solaris % client2 /trqp/server2 22
&oval = effff740, dataqtr = effff740, rbuf = effff740, rsize = 4
result: 484

We now change only one line in Figure 15.7, decreasing the size of the client's result
buffer by 1 byte. The new version of line 18 from Figure 15.7 is

arg.rsize = sizeof(1ong) - 1; / * size of data results * /

When we execute this new client program, we see that a new result buffer has been allo-
cated and d a t a s t r points to this new buffer.

solaris % client3 /tmg/server3 33
&oval = effff740, dataqtr = ef620000, rbuf = ef620000, rsize = 4096
result: 1089

The allocated size of 4096 is the page size on this system, which we saw in Section 12.6.
We can see from this example that we should always reference the server's result

Section 15.7 Examples 369

through the d a t a x t r pointer, and not through our variables whose addresses were
passed in rbuf. That is, in our example, we should reference the long integer result as
* (long *) a r g . d a t a s t r) and not as oval (which we did in Figure 15.2).

This new buffer is allocated by mmap and can be returned to the system using
munmap. The client can also just keep using this buffer for subsequent calls to
door-call.

door-cred Function and Client Credentials

This time, we make one change to our servproc function from Figure 15.3: we call the
door-cred function to obtain the client credentials. Figure 15.8 shows the new server
procedure; the client and the server main function do not change from Figures 15.2
and 15.3.

doors/server4.c
1 #include "unpipc .h"

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 I
6 long arg, result;
7 door-cred-t info;

8 / * obtain and print client credentials * /
9 Dooycred(&info);
10 printf("euid = %Id, ruid = %Id, pid = %1d\nm,
11 (long) info.dc-euid, (long) info.dc-ruid, (long) info.dcqid);

12 arg = *((long *) dataptr);
13 result = arg * arg;
14 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
15 }

doors/server4.c

Figure 15.8 Server procedure that obtains and prints client credentials.

We first run the client and will see that the effective user ID equals the real user ID,
as we expect. We then become the superuser, change the owner of the executable file to
root, enable the set-user-ID bit, and run the client again.

solaris % client4 /trqp/server4 77 first run of client
result: 5929

solaris % su become superuser
Password:
Sun Microsystems Inc. SunOS 5.6 Generic August 1997
solaris # cd directory containing executable
solaris # 1s -1 client4
-rwxrwxr-x 1 rstevens otherl 139328 Apr 13 06:02 client4
solaris # chown root client4 change owner to root
solaris # chmod u+s client4 and turn on the set-user-ID bit
solaris # 1s -1 client4 check file permissions and owner
-rwsrwxr-x 1 root other1 139328 Apr 13 06:02 client4
solaris # exit

370 Doors Chapter 15

solaris % 1s -1 client4
-rwsrwxr-x 1 root other1 139328 Apr 13 06:02 client4
solaris % client4 /tw/server4 77 and run the client again
result: 5929

If we look at the server output, we can see the change in the effective user ID the second
time we ran the client.

solaris % server4 /tw/server4
euid = 224, ruid = 224, pid = 3168
euid = 0, ruid = 224, pid = 3176

The effective user ID of 0 means the superuser.

Automatic Thread Management by Server

To see the thread management performed by the server, we have the server procedure
print its thread ID when the procedure starts executing, and then we have it sleep for 5
seconds, to simulate a long running server procedure. The sleep lets us start multiple
clients while an existing client is being serviced. Figure 15.9 shows the new server pro-
cedure.

doors/server5.c
1 #include "unpipc . h"
2 void
3 servproc(void *cookie, char *dataptr. size-t datasize,
4 door-desc-t *descptr, size-t ndesc)

5 I
6 long arg, result;

7 arg = *((long *) dataptr);
8 printf("thread id %Id, arg = %1d\nw, pr-thread- NULL), arg);
9 sleep(5) ;

10 result = arg * arg;
11 Door-return((char *) &result, sizeof(result), NULL, 0);

Figure 15.9 Server procedure that prints thread ID and sleeps.

We introduce a new function from our library, pr-thread-id. It has one argu-
ment (a pointer to a thread ID or a null pointer to use the calling thread's ID) and
returns a long integer identifier for this thread (often a small integer). A process can
always be identified by an integer value, its process ID. Even though we do not know
whether the process ID is an int or a long, we just cast the return value from getpid
to a long and print the value (Figure 9.2). But the identifier for a thread is a
pthread-t datatype (called a thread ID), and this need not be an integer. Indeed,
Solaris 2.6 uses small integers as the thread ID, whereas Digital Unix uses pointers.
Often, however, we want to print a small integer identifier for a thread (as in this exam-
ple) for debugging purposes. Our library function, shown in Figure 15.10, handles this
problem.

Section 15.7 Examples 371

1iblwrappthread.c
245 long
246 pr-thread-id(pthread-t * ptr)
247 {

248 #if defined (sun)
249 return ((ptr == NULL) ? pthreaLself0 : *ptr); / * Solaris * /

250 #elif defined(-osf-) && defined(-alpha)
2 5 1 pthread-t tid;

2 52 tid = (ptr == NULL) ? pthread-self0 : *ptr; / * Digital Unix * /
253 return (pthread-getsequence-np(tid));
254 #else
255 / * everything else * /
256 return ((ptr == NULL) ? pthread-self() : *ptr);
257 #endif

Figure 15.10 pr-thread-id function: return small integer identifier for calling thread.

If the implementation does not provide a small integer identifier for a thread, the func-
tion could be more sophisticated, mapping the pthread-t values to small integers and
remembering this mapping (in an array or linked l i t) for future calls. This is done in
the thread-name function in [Lewis and Berg 19981.

Returning to Figure 15.9, we run the client three times in a row. Since we wait for
the shell prompt before starting the next client, we know that the 5-second wait is com-
plete at the server each time.

solaris % client5 /trqp/server5 55
result: 3025
solaris % client5 /trqp/server5 66
result: 4356
solaris % client5 /trqp/server5 77
result: 5929

Looking at the server output, we see that the same server thread services each client:

solaris % server5 /trqp/server5
thread id 4, arg = 55
thread id 4, arg = 66
thread id 4, arg = 77

We now start three clients at the same time:

solaris % client5 /trqp/server5 11 & client5 /trqp/server5 22 & \
client5 /trqp/server5 33 &

[21 3812
[31 3813
r41 3814
solaris % result: 484
result: 1 2 1
result: 1089

The server output shows that two new threads are created to handle the second and
third invocations of the server procedure:

372 Doors Chapter 15

thread id 4, arg = 22
thread id 5, arg = 11
thread id 6, arg = 33

We then start two more clients at the same time:

solaris % client5 /t-/server5 11 & client5 /t-/server5 22 &

[21 3830
r 31 3 8 3 1
solaris % result: 484
result: 1 2 1

and see that the server uses the previously created threads:

thread id 6, arg = 22
thread id 5, arg = 11

What we can see with this example is that the server process (i.e., the doors library that
is linked with our server code) automatically creates saver threads as they are needed.
If an application wants to handle the thread management itself, it can, using the func-
tions that we describe in Section 15.9.

We have also verified that the server procedure is a concurrent server: multiple
instances of the same server procedure can be running at the same time, as separate
threads, servicing different clients. Another way we know that the server is concurrent
is that when we run three clients at the same time, all three results are printed 5 seconds
later. If the server were iterative, one result would be printed 5 seconds after all three
clients were started, the next result 5 seconds later, and the last result 5 seconds later.

Automatic Thread Management by Server: Multiple Server Procedures

The previous example had only one server procedure in the server process. Our next
question is whether multiple server procedures in the same process can use the same
thread pool. To test this, we add another server procedure to the server process and
also recode this example to show a better style for handling the arguments and results
between different processes.

Our first file is a header named squareproc . h that defines one datatype for the
input arguments to our square function and one datatype for the output arguments. It
also defines the pathname for this procedure. We show this in Figure 15.11.

Our new procedure takes a long integer input value and returns a double contain-
ing the square root of the input. We define the pathname, input structure, and output
structure in our sq r tp roc . h header, which we show in Figure 15.12.

We show our client program in Figure 15.13. It just calls the two procedures, one
after the other, and prints the result. This program is similar to the other client pro-
grams that we have shown in this chapter.

Our two server procedures are shown in Figure 15.14. Each prints its thread ID and
argument, sleeps for 5 seconds, computes the result, and returns.

The main function, shown in Figure 15.15, opens two door descriptors and associ-
ates each one with one of the two server procedures.

ion 15.7 Examples 373

doors/squareproc.h
1 #define PATH-SQUARE-WOR "/trnp/squareproc-door"

2 typedef struct {

3 long argl;
4 } squareproc-in-t;

/ * input to squareproc0 * /

5 typedef struct { / * output from squareproc() * /
6 long resl;
7 } squareproc-out-t;

doors/squareproc.h
Figure 15.11 squareproc . h header.

doors/sqrtproc.h
1 #define PATH-SQRT-DOOR "/tmp/sqrtproc-door"

2 typedef struct I
3 long argl;
4 } sqrtproc-in-t;

5 typedef struct {

6 double resl;

/ * input to sqrtproc() * /

/ * output from sqrtproc () * /

7 } sqrtproc-out-t;
doors/sqrtproc.h

Figure 15.12 sqrtproc . h header.

4 int
5 main(int argc, char **argv)
6
7 int fdsquare. fdsqrt;
8 door-arg-t arg;
9 squareproc-in-t square-in;
10 squareproc-out-t square-out;
11 sqrtproc-in-t sqrt-in;
12 sqrtproc-out-t sqrt-out;

13 if (argc != 2)
14 err-quit("usage: client7 <integer-value>");

15 fdsquare = OpentPATH-SQUARE-DOOR, 0-RDWR);
16 fdsqrt = Open(PATH-SQRT-DOOR, 0-RDWR);

/ * set up the arguments and call squareproc0 * /
square-in.arg1 = atol(argv[l]);
arg.dataqtr = (char *) &square-in;
arg.data-size = sizeof(square-in);
arg.descqtr = NULL;
arg.desc-num = 0;
arg.rbuf = (char *) &square-out;
arg.rsize = sizeof(square-out);
Door-call(fdsquare, &arg);

374 Doors Chapter 15

/ * set up the arguments and call sqrtproc0 * /
sqrt-in.argl = atol(argv[ll);
arg.data_ptr = (char *) &sqrt-in;
arg.data-size = sizeof(sqrt-in);
arg.desc_ptr = NULL;
arg.desc-num = 0;
arg.rbuf = (char *) &sqrt-out;
arg.rsize = sizeof(sqrt-out);
Door-call(fdsqrt, &arg);

Figure 15.13 Client program that calls our square and square root procedures.

5 void
6 squareproc(void *cookie, char *dataptr, size-t datasize,
7 door-desc-t *descptr, size-t ndesc)
8 {

9 squareproc-in-t in;
10 squareproc-out-t out;

11 memcpy(&in, dataptr, min(sizeof(in), datasize)) ;

12 printf("squareproc: thread id %Id, arg = %1d\nM,
13 pr-thread-id(NULL), in.arg1);
14 sleep(5);

15 out.res1 = in.argl * in.arg1;
16 Door-return((char *) &out, sizeof (out), NULL, 0) ;
17 1

18 void
19 sqrtproc(void *cookie, char *dataptr, size-t datasize,
2 0 door-desc-t *descptr, size-t ndesc)
21 {
2 2 sqrtproc-in-t in:
23 sqrtproc-out-t out;

24 memcpy (&in, dataptr, min(sizeof (in), datasize)) ;
25 printf("sqrtproc: thread id %Id, arg = %1d\nn,
2 6 pr-thread-id(NULL), in.arg1);
27 sleep(5) ;

2 8 out.res1 = sqrt((doub1e) in.arg1);
29 Door-return((char *) &out, sizeof(out), NULL, 0);

Figure 15.14 Two server procedures.

ion 15.7 Examples 375

doors/sewer7.c
31 int
32 main(int argc, char **argv)
33 {

34 int fd;

3 5 if (argc != 1)
3 6 err-quit("usage: server7");

37 fd = Door-create (squareproc, NULL, 0) ;
3 8 unlink(PATH-SQUARE-DOOR);
3 9 Close(Open(PATH-SQUARE-DOOR, 0-CREAT I 0-RDWR, FILE-MODE)) ;

40 Fattach(fd, PATH-SQUARE-DOOR);

4 1 fd = Door-create(sqrtproc, NULL, 0);
42 unlink(PATH-SQRT-DOOR);
4 3 Close(Open(PATH-SQRT-DOOR, 0-CREAT I 0-RDWR, FILE-MODE) 1 ;
4 4 Fattach(fd, PATH-SQRT-DOOR);

45 for (; ;

46 pause (;

47 1
doors/server7.c

Figure 15.15 main function.

If we run the client, it takes 10 seconds to print the results (as we expect).

solaris % client7 77
result: 5929 8.77496

If we look at the server output, we see that the same thread in the server process han-
dles both client requests.

solaris % server7
squareproc: thread id 4, arg = 77
sqrtproc: thread id 4, arg = 77

This tells us that any thread in the pool of server threads for a given process can handle
a client request for any server procedure.

IR-UNREF Attribute for Servers

We mentioned in Section 15.3 that the DOOR- REF attribute can be specified to
door-create as an attribute of a newly created door. The manual page says that
when the number of descriptors referring to the door drops to one (that is, the reference
count goes from two to one), a special invocation is made of the door's server proce-
dure. What is special is that the second argument to the server procedure (the pointer
to the data arguments) is the constant DOOR- REF-DATA. We will demonstrate three
ways in which the door is referenced.

1. The descriptor returned by door-create in the server counts as one reference.
In fact, the reason that the trigger for an unreferenced procedure is the transition
of the reference count from two to one, and not from one to 0, is that the server
process normally keeps this descriptor open for the duration of the process.

376 Doors Chapter 15

2. The pathname attached to the door in the filesystem also counts as one refer-
ence. We can remove this reference by calling the £detach function, running
the f detach program, or unlinking the pathname from the filesystem (either
the unlink function or the rm command).

3. The descriptor returned by open in the client counts as an open reference until
the descriptor is closed, either explicitly by calling close or implicitly by the
termination of the client process. In all the client processes that we have shown
in this chapter, this close is implicit.

Our first example shows that if the server closes its door descriptor after calling
f attach, an unreferenced invocation of the server procedure occurs immediately. Fig-
ure 15.16 shows our server procedure and the server main function.

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 {

6 long arg. result;

7 if (dataptr == DOOR-UNREF-DATA) {

8 printf("door unreferenced\nn);
9 Door-return(NULL, 0, NULL, 0);

10 1
11 arg = *((long *) dataptr);
12 printf("thread id %Id, arg = %ld\n", pr-thread-id(NULL), arg);
13 sleep(61 ;

14 result = arg * arg;
15 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
16 1

17 int
18 main(int argc, char **argv)

19
2 0 int fd;

21 if (argc != 2)
2 2 err-quit("usage: server1 <server-pathname>");

23 / * create a door descriptor and attach to pathname * /
24 fd = Door-create(servproc, NULL, DOOR-UNREF);

2 5 unlink(argv[ll);
26 Close(Open(argv[l], 0-CREAT (0-RDWR, FILE-MODE));
27 Fattach(fd, argv[ll);
2 8 Close(fd1;

29 / * servproc() handles all client requests * /
3 0 for (; ;)

3 1 pause (;

32 1
doors/sewerunrefl.c

Figure 15.16 Server procedure that handles an unreferenced invocation.

:ion 15.7 Examples 377

7-10 Our server procedure recognizes the special invocation and prints a message. The
thread returns from this special call by calling door- return with two null pointers
and two sizes of 0.

8 We now c l o s e the door descriptor after f a t tach returns. The only use that the
server has for this descriptor after f a t t a c h is if it needs to call door-bind,
door-in£ o, or door-revoke.

When we start the server, we notice that the unreferenced invocation occurs imme-
diately:

solaris % serverunrefl /tmp/doorl
door unreferenced

If we follow the reference count for this door, it becomes one after door-create
returns and then two after f a t t a c h returns. The server's call to c l o s e reduces the
count from two to one, triggering the unreferenced invocation. The only reference left
for this door is its pathname in the filesystem, and that is what the client needs to refer
to this door. That is, the client continues to work fine:

solaris % clientunrefl /tmp/doorl 11
result: 121
solaris % clientunrefl /tmp/doorl 22
result: 484

Furthermore, no further unreferenced invocations of the server procedure occur.
Indeed, only one unreferenced invocation is delivered for a given door.

We now change our server back to the common scenario in which it does not c lose
its door descriptor. We show the server procedure and the server main function in Fig-
ure 15.17. We leave in the 6-second sleep and also print when the server procedure
returns. We start the server in one window, and then from another window we verify
that the door's pathname exists in the filesystem and then remove the pathname with
rm:

solaris % 1s -1 /tmp/door2
Drw-r-r- 1 rstevens other1 0 Apr 16 08:58 /tmp/door2
solaris % n n /tmp/door2

As soon at the pathname is removed, the unreferenced invocation is made of the server
procedure:

solaris % serverunref2 /tmp/door2
door unreferenced as soon as pathname is removed from filesystem

If we follow the reference count for this door, it becomes one after door-create
returns and then two after f a t t a c h returns. When we r m the pathname, this com-
mand reduces the count from two to one, triggering the unreferenced invocation.

In our final example of this attribute, we again remove the pathname from the file-
system, but onlj~ after starting three client invocations of the door. What we show is
that each client invocation increases the reference count, and only when all three clients

378 Doors

7

Chapter 15

1 #include "unpipc.hU

2 void
3 servproc(void *cookie, char *dataptr,
4 door-desc-t *descptr, size-t
5
6 long arg, result;

7 if (dataptr == DOOR-UNREF-DATA) {

size-t datasize,
ndesc)

8 printf("door unreferenced\nW);
9 Door-return(NULL, 0, NULL, 0);

10 1
11 arg = *((long ") dataptr);
12 printf("thread id %Id, arg = %1d\n1', pr-thread-id(NULL), arg);
13 sleep(6);

14 result = arg * arg;
15 printf("thread id %Id returning\nn, pr-thread-id(NULL));
16 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
17 1

18 int
19 main(int argc, char **argv)
20 1
2 1 int fd;

2 2 if (argc != 2)
23 err-quit("usage: server1 <server-pathnamez");

24 / * create a door descriptor and attach to pathname * /
25 fd = Door-create(servproc, NULL, DOOR-UNREF);

26 unlink(argv[l]);
2 7 Close(Open(argv[ll, 0-CREAT I 0-RDWR, FILE-MODE)) ;

2 8 Fattach(fd, argvtll) ;

29 / * servproc0 handles all client requests * /
3 0 for (; ;

31 pause (;

Figure 15.17 Server that does not close its door descriptor.

terminate does the unreferenced invocation take place. We use our previous server
from Figure 15.17, and our client is unchanged from Figure 15.2.

solaris % clientunref2 /tmp/door2 44 & clientunref2 /tmp/door2 55 & \
clientunref2 /tmp/door2 55 &

121 13552
[31 13553
[41 13554
solaris % rm /tmp/door2
solaris % result: 1936
result: 3025
result: 4356

while the three clients are running

xtion 15.8 Descriptor Passing 379

Here is the server output:

s o l a r i s % serverunref2 /tmp/door2
t h read i d 4, a r g = 44
thread i d 5 , a r g = 55
thread i d 6 , a r g = 66
thread i d 4 r e tu rn ing
thread i d 5 r e tu rn ing
thread i d 6 r e tu rn ing
door unreferenced

If we follow the reference count for this door, it becomes one after door-create
returns and then two after f a t t a c h returns. As each client calls open, the reference
count is incremented, going from two to three, from three to four, and then from four to
five. When we r m the pathname, the count reduces from five to four. Then as each
client terminates, the count goes from four to three, then three to two, then two to one,
and this final decrement triggers the unreferenced invocation.

What we have shown with these examples is that even though the description of
the DOOR-UNREF attribute is simple ("the unreferenced invocation occurs when the ref-
erence count goes from two to one"), we must understand this reference count to use
this feature.

5.8 Descriptor Passing

When we think of passing an open descriptor from one process to another, we normally
think of either

a child sharing all the open descriptors with the parent after a call to fork, or

all descriptors normally remaining open when exec is called.

In the first example, the process opens a descriptor, calls fork, and then the parent
closes the descriptor, letting the child handle the descriptor. This passes an open
descriptor from the parent to the child.

Current Unix systems extend this notion of descriptor passing and provide the abil-
ity to pass any open descriptor from one process to any other process, related or unre-
lated. Doors provide one API for the passing of descriptors from the client to the server,
and from the server to the client.

We described descriptor passing using Unix domain sockets in Section 14.7 of UNPvl. Berke-
ley-derived kernels pass descriptors using these sockets, and all the details are provided in
Chapter 18 of TCPv3. SVR4 kernels use a different technique to pass a descriptor, the
I-SENDFD and I-RECVFD i o c t l commands, described in Section 15.5.1 of APUE. But an
SVR4 process can still access this kernel feature using a Unix domain socket.

Be sure to understand what we mean by passing a descriptor. In Figure 4.7, the
server opens the file and then copies the entire file across the bottom pipe. If the file's
size is 1 megabyte, then 1 megabyte of data goes across the bottom pipe from the server
to the client. But if the server passes a descriptor back to the client, instead of the file

380 Doors Chapter 15

itself, then only the descriptor is passed across the bottom pipe in Figure 4.7 (which we
assume is some small amount of kernel-specific information). The client then takes this
descriptor and reads the file, writing its contents to standard output. All the file reading
takes place in the client, and the server only opens the file.

Realize that the server cannot just write the descriptor number across the bottom
pipe in Figure 4.7, as in

int fd;

This approach does not work. Descriptor numbers are a per-process attribute. Suppose
the value of f d is 4 in the server. Even if this descriptor is open in the client, it almost
certainly does not refer to the same file as descriptor 4 in the server process. (The only
time descriptor numbers mean something from one process to another is across a fork
or across an exec.) If the lowest unused descriptor in the server is 4, then a successful
open in the server will return 4. If the server "passes" its descriptor 4 to the client and
the lowest unused descriptor in the client is 7, then we want descriptor 7 in the client to
refer to the same file as descriptor 4 in the server. Figures 15.4 of APUE and 18.4 of
TCPv3 show what must happen from the kernel's perspective: the two descriptors (4 in
the server and 7 in the client, in our example) must both point to the same file table
entry within the kernel. Some kernel black magic is involved in descriptor passing, but
APIs like doors and Unix domain sockets hide all these internal details, allowing pro-
cesses to pass descriptors easily from one process to another.

Descriptors are passed across a door from the client to server by setting the
d e s c q t r member of the door-arg-t structure to point to an array of door-desc-t
structures, and setting door-num to the number of these structures. Descriptors are
passed from the server to the client by setting the third argument of door- return to
point to an array of door-desc-t structures, and setting the fourth argument to the
number of descriptors being passed.

typedef struct door-desc {

door-attr-t d-attributes; / * tag for union * /
union {

struct { / * valid if tag = DOOR-DESCRIPTOR * /
int d-descriptor; / * descriptor number * /
door-id-t d-id; / * unique id * /

1 d-desc;
) d-data;

) door-desc-t ;

This structure contains a union, and the first member of the structure is a tag that iden-
tifies what is contained in the union. But currently only one member of the union is
defined (a d-desc structure that describes a descriptor), and the tag (d-attributes)
must be set to DOOR-DESCRIPTOR.

?&ion 15.8 Descriptor Passing 381

xample

We modify our file server example (recall Figure 1.9) so that the server opens the file,
passes the open descriptor to the client, and the client then copies the file to standard
output. Figure 15.18 shows the arrangement.

,
0

0
door-desc-t desc;

, , , ,
0

client ,' I 'fd = open(1 ;
I 0 / I I desc ... = fd

Figure 15.18 File server example with server passing back open descriptor.

main() , door-return(NULL. 0. Edesc. 1) ;
{ 1

. . . main()
door-call(servfd. 1 ; I

Figure 15.19 shows the client program.

Open door, read pathname from standard input

filefd = arg.desc_ptr-> ...
while ((n = Read(fi1efd.)) > 0)

w~~~~(STDOUT-FILENO. 1 ;
1

9-15 The pathname associated with the door is a command-line argument and the door
is opened. The filename that the client wants opened is read from standard input and
the trailing newline is deleted.

Set up arguments and pointer to result

16-22 The door-arg-t structure is set up. We add one to the size of the pathname to
allow the server to null terminate the pathname.

Call server procedure and check result

23-31 We call the server procedure and then check that the result is what we expect: no
data and one descriptor. We will see shortly that the server returns data (containing an
error message) only if it cannot open the file, in which case, our call to err-quit prints
that error.

Fetch descriptor and copy file to standard output

32-34 The descriptor is fetched from the door-desc-t structure, and the file is copied to
standard output.

. . .
fd = door-create(1 ;
fattach(fd, path);
...

1

382 Doors Chapter 15

2 int
3 main(int argc, char **argv)

int door, fd;
char argbuf[BUFFSIZE], resbuf[BUFFSIZEl, buff[BUFFSIZEl;
size-t len, n;
door-arg-t arg;

if (argc != 2)
err-quit("usage: clientfdl <server-pathname>");

door = Open(argv[ll, 0-RDWR); / * open the door * /

~gets(argbuf, BUFFSIZE, stdin); / * read pathname of file to open * /
len = strlen(argbuf);
if (argbuf[len - 11 == '\n')

len--; / * delete newline from fgets0 * /

/ * set up the arguments and pointer to result * /
arg.data_ptr = argbuf; / * data argument * /
arg.data-size = len + 1; / * size of data argument * /
arg.desc_ptr = NULL;
arg.desc-nun = 0;
arg.rbuf = resbuf; / * data results * /
arg.rsize = BUFFSIZE; / * size of data results * /

Door-call(door, &arg); / * call server procedure * /

if (arg.data-size != 0)
err-quit("%.*sW, arg.data-size, arg.data_ptr);

else if (arg.desc_ptr == NULL)
errquit("desc_ptr is NULLn);

else if (arg.desc-nun != 1)
err-quit("desc-nun = %dm, arg.desc-nun);

else if (arg.descgtr-rd-attributes != DOOR-DESCRIPTOR)
errquit("d-attributes = %d", arg.descqtr->d-attributes);

fd = arg.desc_ptr->d-data.d-desc.d-descriptor;
while ((n = Read(fd, buff, BUFFSIZE)) > 0)

write (STDOUT-FILENO, buff, n) ;

exit (0) ;

doors/clientfdl .c

Figure 15.19 Client program for descriptor passing file server example.

Figure 15.20 shows the server procedure. The server main function has not
changed from Figure 15.3.

Open file for client

9-14 We null terminate the client's pathname and try to open the file. If an error occurs,
the data result is a string containing the error message.

ion 15.8 Descriptor Passing 383

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 {

6 int fd;
7 char resbuf[BUFFSIZEl;
8 door-desc-t desc;

9 dataptr[datasize - 11 = 0; / * null terminate * /
10 if ((fd = open(dataptr, 0-RDONLY)) == -1) {

11 / * error: must tell client * /
12 snprintf(resbuf, BUFFSIZE, "%s: can't open, %s",
13 dataptr, strerror(errn0)) :

14 Door-return(resbuf, strlen(resbuf), NULL, 0);

15) else {

16 / * open succeeded: return descriptor * /
17 desc.d-data.d-desc.d-descriptor = fd;
18 desc.d-attributes = DOOR-DESCRIPTOR;
19 Door-return(NULL, 0, &desc, 1);
20 1

Figure 15.20 Server procedure that opens a file and passes back its descriptor.

Success

. ~ o If the open succeeds, only the descriptor is returned; there are no data results.

We start the server and specify its door pathname as / tmpl f dl and then run the
client:

solaris % clientfdl /tmp/fdl
/etc/shadow
/etc/shadow: can't open, Permission denied
solaris % clientfdl /tmp/fdl
/no/such/file
/no/such/file: can't open, No such file or directory
solaris % clientfdl /tmp/fdl
/etc/ntp.conf a 2-linefile
multicastclient 224.0.1.1
driftfile /etc/ntp.drift

The first two times, we specify a pathname that causes an error return, and the third
time, the server returns the descriptor for a 2-line file.

There is a problem with descriptor passing across a door. To see the problem in our example,
just add a printf to the server procedure after a successful open. You will see that each
descriptor value is one greater than the previous descriptor value. The problem is that the
server is not closing the descriptors after it passes them to the client. But there is no easy way
to do this. The logical place to perform the close would be after door-return returns, once
the descriptor has been sent to the client, but door-return does not return! If we had been

384 Doors Chapter 15

using either sendmsg to pass the descriptor across a Unix domain socket, or i o c t l to pass the
descriptor across an SVR4 pipe, we could c l o s e the descriptor when sendmsg or ioc t l
returns. But the doors paradigm for passing descriptors is different from these two techniques,
since no return occurs from the function that passes the descriptor. The only way around this
problem is for the server procedure to somehow remember that it has a descriptor open and
close it at some later time, which becomes very messy.

This problem should be fixed in Solaris 2.7 with the addition of a new DOOR-RELEASE
attribute. The sender sets d -a t t r i bu t e s to DOOR-DESCRIPTOR I DOOR-RELEASE, which
tells the system to close the descriptor after passing it to the receiver.

15.9 door-server-create Function

We showed with Figure 15.9 that the doors library automatically creates new threads as
needed to handle the client requests as they arrive. These are created by the library as
detached threads, with the default thread stack size, with thread cancellation disabled,
and with a signal mask and scheduling class that are initially inherited from the thread
that called door-create. If we want to change any of these features or if we want to
manage the pool of server threads ourselves, we call door-server-create and spec-
ify our own server creation procedure.

I typedef vo id ~oor~createqroc(door~info~t *) ; I
Returns: pointer to previous server creation procedure

As with our declaration of door-create in Section 15.3, we use C's typedef to sim-
plify the function prototype for the library function. Our new datatype defines a server
creation procedure as taking a single argument (a pointer to a door-inf o-t structure),
and returning nothing (void). When we call door-server-create, the argument is
a pointer to our server creation procedure, and the return value is a pointer to the previ-
ous server creation procedure.

Our server creation procedure is called whenever a new thread is needed to service
a client request. Information on which server procedure needs the thread is in the
door-info-t structure whose address is passed to the creation procedure. The
disroc member contains the address of the server procedure, and di-data contains
the cookie pointer that is passed to the server procedure each time it is called.

An example is the easiest way to see what is happening. Our client does not change
from Figure 15.2. In our server, we add two new functions in addition to our server
procedure function and our server main function. Figure 15.21 shows an overview of
the four functions in our server process, when some are registered, and when they are
all called.

Figure 15.22 shows the server main function.

door-server-create Function 385

. . .
each thread logically

door-return () ;
I appears to continue

execute my-thread 1 executing at
when each new -thread ()

servproc as
thread is started r - ...

each client call
is serviced

door-bind (I ; ;)
door-return ()

1

i w (-+ y;cyte(1

pthread-create(, my-thread,) ;

register
my-create

door-server-create (my-create) ;

register servproc as server . . .
procedure for this door; fd = door-create(servproc,) ;

1 server procedure

i function executed
by each
server thread

t
server
creation
procedure

also execute my-create . .
to create first thread 1

Figure 15.21 Overview of the four functions in our server process.

doors/server6.c
42 int
43 main(int argc, char **argv)
44 {
45 if (argc != 2)

48 / * create a door descriptor and attach to pathname * /
4 9 Pthread~mutex~lock(&fdlock);
50 fd = Door-create(servpr0c. NULL, DOOR-PRIVATE);
5 1 Pthread~mutex~unlock(&fdlock);

52 unlink (argv [11) ;
5 3 Close(open(argv[l], 0-CREAT I 0-RDWR, FILE-MODE));
5 4 Fattach(fd, argv[ll) ;

55 / * servproc0 handles all client requests * /
56 for (; ;)

57 pause () ;

58 1
doors/server6.c

Figure 15.22 main function for example of thread pool management.

386 Doors Chapter 15

We have made four changes from Figure 15.3: (1) the declaration of the door
descriptor fd is gone (it is now a global variable that we show and desaibe in Fig-
ure 15-23), (2) we protect the call to door-create with a mutex (which we also
desaibe in Figure 15.23), (3) we call door-server-create before creating the door,
specifying our server aeation procedure (my-thread, which we show next), and (4) in
the call to door-create, the final argument (the attributes) is now DOOR-PRIVATE
instead of 0. This tells the library that this door will have its own pool of threads, called
a private server pool.

Specifying a private server pool with DOOR-PRIVATE and specifying a server cre-
ation procedure with door-server-create are independent. Four scenarios are pos-
sible.

1. Default: no private server pools and no server aeation procedure. The system
creates threads as needed, and they all go into the process-wide thread pool.

2. DOOR-PRIVATE and no server creation procedure. The system creates threads
as needed, and they go into the process-wide pool for doors created without
DOOR-PRIVATE or into a door's private server pool for doors created with
DOOR-PRIVATE.

3. N o private server pools, but a server aeation procedure is specified. The server
creation procedure is called whenever a new thread is needed, and these threads
all go into the process-wide thread pool.

4. DOOR-PRIVATE and a server aeation procedure are both specified. The server
creation procedure is called whenever a new thread is needed. When a thread is
created, it should call door-bind to assign itself to the appropriate private
server pool, or the thread will be assigned to the process-wide pool.

Figure 15.23 shows our two new functions: my-create is our server creation proce-
dure, and it calls my-thread as the function that is executed by each thread that it cre-
ates.

Server creation procedure

30-41 Each time my-create is called, we create a new thread. But before calling
pthread-create, we initialize its attributes, set the contention scope to
PTHREAD-SCOPE-SYSTEM, and specify the thread as a detached thread. The thread is
created and starts executing the my-thread function. The argument to this function is
a pointer to the door-inf o-t structure. If we have a server with multiple doors and
we specify a server creation procedure, this one server creation procedure is called
when a new thread is needed for any of the doors. The only way for this server creation
procedure and the thread start function that it specifies to pthread-create to differ-
entiate between the different server procedures is to look at the diaroc pointer in the
door-inf o-t structure.

Setting the contention scope to PTHREAD_ScoPE-SYSTEM means this thread will com-
pete for processor resources against threads in other processes. The alternative,

ction 15.9 door-server-create Function 387

doors/sewer6.c
13 pthread-mutex-t fdlock = PTHREAD-MUTEX-INITIALIZER;
14 static int fd = -1; / * door descriptor */

15 void *
16 my-thread(void *arg)
17 {

18 int oldstate;
19 door-info-t *iptr = arg;

20 if ((Door-serverqroc *) iptr->diqroc == servproc) {

2 1 Pthread~mutex~lock(&fdlock);
22 Pthread~mutex~unlock(&fdlock);

2 3 Pthread-setcancelstate(PTHREAD-CANCELLDISABLE, &oldstate);
24 Door-bind (f d) ;
25 Door-return (NULL, 0, NULL, 0) ;
26 } else
2 7 errait("my-thread: unknown function: %p", arg);
28 return (NULL) ; / * never executed * /
29 1

30 void
31 my-create(door-info-t *iptr)
32 {

33 pthread-t tid;
34 pthread-attr-t attr;

3 5 Pthread-attr-init(&attr);
36 Pthread-attr-setscope(&attr, PTHREAD-SCOPE-SYSTEM);
3 7 Pthread-attr-setdetachstate(&attr, PTHREAD-CREATE-DETACHED);
38 Pthread-create(&tid, &attr, my-thread, (void *) iptr);
39 Pthread-attr-destroy(&attr);
40 printf("my-thread: created server thread %1d\nm, pr-thread-id(&tid)) ;

Figure 15.23 Our own thread management functions.

PTHRE~-SCOPE-PROCESS, means this thread will compete for processor resources
only against other threads in this process. The latter will not work with doors, because
the doors library requires that the kernel lightweight process performing the
door-return be the same lightweight process that originated the invocation. An
unbound thread (PTHREAD-SCOPE-PROCESS) could change lightweight processes dur-
ing execution of the server procedure.

The reason for requiring that the thread be created as a detached thread is to prevent
the system from saving any information about the thread when it terminates, because
no one will be calling pthread-j oin.

Thread start function

15-20 my-thread is the thread start function specified by the call to pthread-create.
The argument is the pointer to the door-info-t structure that was passed to
my-create. The only server procedure that we have in this process is servproc, and
we just verify that the argument references this procedure.

388 Doors Chapter 15

Wait for descriptor to be valid

21-22 The server creation procedure is called for the first time when door-create is
called, to create an initial server thread. This call is issued from within the doors library
before door-create returns. But the variable f d will not contain the door descriptor
until door-create returns. (This is a chicken-and-egg problem.) Since we know that
my-thread is running as a separate thread from the main thread that calls
door-create, our solution to this timing problem is to use the mutex fdlock as fol-
lows: the main thread locks the mutex before calling door-create and unlocks the
mutex when door-create returns and a value has been stored into f d (Figure 15.22).
Our my-thread function just locks the mutex (probably blocking until the main thread
has unlocked the mutex) and then unlocks it. We could have added a condition variable
that the main thread signals, but we don't need it here, since we know the sequence of
calls that will occur.

Disable thread cancellation

23 When a new Posix thread is created by pthread-create, thread cancellation is
enabled by default. When cancellation is enabled, and a client aborts a door-call that
is in progress (which we will demonstrate in Figure 15.31), the thread cancellation han-
dlers (if any) are called, and the thread is then terminated. When cancellation is dis-
abled (as we are doing here), and a client aborts a door-call that is in progress, the
server procedure complctcs (the thread is not terminated), and the results from
door-return are just discarded. Since the server thread is terminated when cancella-
tion is enabled, and since the server procedure may be in the middle of an operation for
the client (it may hold some locks or semaphores), the doors library disables thread can-
cellation for all the threads that it creates. If a server procedure wants to be canceled
when a client terminates prematurely, that thread must enable cancellation and must be
prepared to deal with it.

Notice that the contention scope of PTHREAD-SCOPE-SYSTEM and the detached state are spec-
ified as attributes when the thread is created. But the cancellation mode can be set only by the
thread itself once it is running. Indeed, even though we just disable cancellation, a thread can
enable and disable cancellation whenever it wants.

Bind this thread to a door

24 We call door-bind to bind the calling thread to the private server pool associated
with the door whose descriptor is the argument to door-bind. Since we need the door
descriptor for this call, we made f d a global variable for this version of our server.

Make thread available for a client call

2s The thread makes itself available for incoming door invocations by calling
door-return with two null pointers and two 0 lengths as the arguments.

We show the server procedure in Figure 15.24. This version is identical to the one in
Figure 15.9.

To demonstrate what happens, we just start the server:

s o l a r i s % server6 /t1q~/door6
my-thread: c rea ted se rve r thread 4

on 15.9 door-server-create Function 389

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t "descptr, size-t ndesc)
5 I
6 long arg, result;

7 arg = * ((long *) dataptr) ;
8 printf("thread id %Id, arg = %1d\nN, pr-thread-id(NULL), arg);
9 sleep(5) ;

10 result = arg * arg;
11 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
12 1

doorslserver6.c

Figure 15.24 Server procedure.

As soon as the server starts and door-create is called, our server creation procedure
is called the first time, even though we have not even started the client. This creates the
first thread, which will wait for the first client call. We then run the client three times in
a row:

solaris % client6 /tmp/door6 11
result: 121
solaris % client6 /tmp/door6 22
result: 484
solaris % client6 /tmp/door6 33
result: 1089

If we look at the corresponding server output, another thread is created when the first
client call occurs (thread ID 5), and then thread number 4 services each of the client
requests. The doors library appears to always keep one extra thread ready.

my-thread: created server thread 5
thread id 4, arg = 11
thread id 4, arg = 22
thread id 4, arg = 33

We then execute the client three times, all at about the same time in the background.

solaris
client6
[21
[31
[41
solaris
result :
result :

% client6 /tmp/door6 44 & client6 /tmp/dwr6 55 & \
/tmp/door6 66 &

4919
4920
4921
% result: 1936
4356
3025

Looking at the corresponding server output, we see that two new threads are created
(thread IDS 6 and 7), and threads 4,5, and 6 service the three client requests:

390 Doors Chapter 15

thread id 4, arg = 44
my-thread: created server thread 6
thread id 5, arg = 66
my-thread: created server thread 7
thread id 6, arg = 55

15.1 0 door-bind, door-unbind, and door-revoke Functions

Three additional functions complete the doors API.

#include cdoor.h>

int door-bind (int fd) ;

int door-unbind(void);

int door-revoke (int fd) ;

All three return: 0 if OK, -1 on error

We introduced the door-bind function in Figure 15.23. It binds the calling thread to
the private server pool associated with the door whose descriptor is fd. If the calling
thread is already bound to some other door, an implicit unbind is performed.

door-unbind explicitly unbinds the calling thread from the door to which it has
been bound.

door-revoke revokes access to the door identified by fd. A door descriptor can be
revoked only by the process that created the descriptor. Any door invocation that is in
progress when this function is called is allowed to complete normally.

15.11 Premature Termination of Client or Server

All our examples so far have assumed that nothing abnormal happens to either the
client or server. We now consider what happens when errors occur at either the client
or server. Realize that when the client and server are part of the same process (the local
procedure call in Figure 15.1), the client does not need to worry about the server crash-
ing and vice versa, because if either crashes the entire process crashes. But when the
client and server are distributed to two processes, we must consider what happens if
one of the two crashes and how the peer is notified of this failure. This is something we
must worry about regardless of whether the client and server are on the same host or on
different hosts.

Premature Termination of Server

While the client is blocked in a call to door-call, waiting for results, it needs to know
if the server thread terminates for some reason. To see what happens, we have the

Section 15.11 Premature Termination of Client or Server 391

server procedure thread terminate by calling thread-exit. This terminates just this
thread, not the entire server process. Figure 15.25 shows the server procedure.

doms/serverintrl .c
1 #include "unpipc . h"
2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 {
6 long arg, result;

7 pthread-exi t (NULL) ; / * and see what happens at client * /
8 arg = " ((long *) dataptr) ;
9 result = arg * arg;
10 Door-return((char *) &result, sizeof (result), NULL, 0) ;
11 1

doors/serverintrl .c

Figure 15.25 Server procedure that terminates itself after being invoked.

The remainder of the server does not change from Figure 15.3, and the client does not
change from Figure 15.2.

When we run our client, we see that an error of EINTR is returned by door-call if
the server procedure terminates before returning.

solaris % clientintrl /tw/doorl 11
door-call error: Interrupted system call

Uninterruptability of door-call System Call

The door-call manual page warns that this function is not a restartable system call.
(The door-call function in the doors library invokes a system call of the same name.)
We can see this by changing our server so that the server procedure just sleeps for 6 sec-
onds before returning, which we show in Figure 15.26.

2 void
3 servproc(void *cookie, char *dataptr. size-t datasize.
4 door-desc-t *descptr, size-t ndesc)
5 {

6 long arg, result;

7 sleep(6): / * let client catch SIGCHLD * /
8 arg = *((long *) dataptr);
9 result = arg * arg;
10 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
11 1

doors/serverintr2.c

Figure 15.26 Server procedure sleeps for 6 seconds.

We then modify our client from Figure 15.2 to establish a signal handler for
SIGCHLD, fork a child process, and have the child sleep for 2 seconds and then

392 Doors Chapter 15

terminate. Therefore, about 2 seconds after the client parent calls door-call, the par-
ent catches SIGCHLD and the signal handler returns, interrupting the door-call sys-
tem call. We show this client in Figure 15.27.

void
sig-chld (int signo)
{

return;
1

/ * just interrupt door-call 0 * /

int
main(int argc, char **argv)
{

int fd;
long ival, oval;
door-arg-t arg;

if (argc != 3)
err-quit("usage: clientintr2 <server-pathname> <integer-value>");

fd = Open(argv[ll, 0-RDWR); / * open the door * /

/ * set up the arguments and pointer to result * /
ival = at01 (argv[2]) ;
arg.dataqtr = (char *) &ival; / * data arguments * /
arg.data-size = sizeof(1ong); / * size of data arguments * /
arg.descqtr = NULL;
arg.desc-num = 0;
arg.rbuf = (char *) &oval; / * data results * /
arg.rsize = sizeof(1ong); / * size of data results * /

Signal (SIGCHLD, sig-chld) ;
if (Fork() == 0) {

sleep (2) ; / * child * /
exit(0) ; / * generates SIGCHLD * /

1
/ * parent: call server procedure and print result * /

Door-call (fd, &arg) ;
printf("resu1t: %1d\nm, oval);

exit (0) ;
1

doors/clientintr2.c
Figure 15.27 Client that catches SIGCHLD after 2 seconds.

The client sees the same error as if the server procedure terminated prematurely:
EINTR.

solaris % cl ientintr2 /tw/door2 22
door-call error: Interrupted system call

This means we must block any signals that might be generated during a call to
door- call from being delivered to the process, because those signals will interrupt
door-call.

ion 15.11 Premature Termination of Client or Server 393

mpotent versus Nonidempotent Procedures

What if we know that we just caught a signal, detect the error of EINTR from
door-call, and call the server procedure again, since we know that the error is from
our caught signal and not from the server procedure terminating prematurely? This can
lead to problems, as we will show.

First, we modify our server to (1) print its thread ID when it is called, (2) sleep for 6
seconds, and (3) print its thread ID when it returns. Figure 15.28 shows this version of
our server procedure.

doors/serverintr3.~
1 #include "unpipc . h"

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 {

6 long arg, result;

7 printf("thread id %Id called\nn, pr-thread-id(NULL));
8 sleep(6) ; / * let client catch SIGCHLD * /
9 arg = * ((long *) dataptr) ;
10 result = arg * arg;
11 printf("thread id %Id returning\nu, pr-thread-id(NULL));
12 Door-returnl (char *) &result, sizeof(result), NULL, 0);

13 1
doors lserverintr3.c

Figure 15.28 Server procedure that prints its thread ID when called and when returning.

Figure 15.29 shows our client program.
2-8 We declare the global caught-sigchld and set this to one when the SIGCHLD sig-

nal is caught.
1-42 We now call door- call in a loop as long as the error is EINTR and this was caused

by our signal handler.

If we look at just the client output, it appears OK:

solaris % clientintr3 /tmg/door3 33
calling door-call
calling door-call
result: 1089

door-call is called the first time, our signal handler is invoked about 2 seconds later
and caught-sigchld is set to one, door- call returns EINTR, and we call
door-call again. This second time, the server procedure proceeds to completion and
the expected result is returned.

But looking at the server output, we see that the server procedure is called twice.

solaris % serverintr3 /tmg/door3
thread id 4 called
thread id 4 returning
thread id 5 called
thread id 5 returning

394 Doors Chapter 15

volatile sig-atomic-t caught-sigchld;

void
sig-chld(int signo)
I

caught-sigchld = 1;
return;

1
/ * just interrupt door-call() */

int
main(int argc, char **argv)
I

int fd, rc;
long ival, oval;
door-arg-t arg;

if (argc != 3)
err-quit("usage: clientintr3 <server-pathname> <integer-value>");

/ * set up the arguments and pointer to result * /
ival = atol(argv[2]);
arg.dataqtr = (char *) &ival; / * data arguments * /
arg.data-size = sizeof(1ong); / * size of data arguments * /
arg.descqtr = NULL;
arg.descpum = 0;
arg-rbuf = (char *) &oval; / * data results */
arg.rsize = sizeof(1ong); / * size of data results * /

Signal(S1GCHLD. sig-chld);
if (Fork() == 0) {

sleep(2) ; / * child * /
exit (0) ; / * generates SIGCHLD */

1
/ * parent: call server procedure and print result * /

f o r (; ;) (
printf("ca1ling door-call\nn);
if ((rc = door-call (fd. &arg)) == 0)

break; / * success */
if (errno == EINTR && caught-sigchld) {

caught-sigchld = 0;
continue; / * call door-call0 again * /

1
err-sys("door-call error");

1
printf("resu1t: %1d\nw, oval);

1
doors /clientintr3.c

Figure 15.29 Client that calls door-call again after receiving EINTR.

Section 15.11 Premature Termination of Client or Server 395

When the client calls door-call the second time, after the first call is interrupted by
the caught signal, this starts another thread that calls the server procedure a second
time. If the server procedure is idempotent, this is OK. But if the server procedure is not
idempotent, this is a problem.

The term idempotent, when describing a procedure, means the procedure can be
called any number of times without harm. Our server procedure, which calculates the
square of a number, is idempotent: we get the correct result whether we call it once or
twice. Another example is a procedure that returns the current time and date. Even
though this procedure may return different information each time (say it is called twice,
1 second apart, causing the returned times to differ by 1 second), it is still OK. The clas-
sic example of a nonidempotent procedure is one that subtracts some amount from a
bank account: the end result is wrong unless this procedure is called only once.

Premature Termination of Client

We now see how a server procedure is notified if the client terminates after calling
door-call but before the server returns. We show our client in Figure 15.30.

2 int
3 rnain(int argc, char **argv)
4 I
5 int fd;
6 long ival, oval;
7 door-arg-t arg;

8 if (argc != 3)
9 err-quit("usage: clientintrd <server-pathname> <integer-value>");

10 fd = Open(argv[ll, 0-RDWR); / * open the door * /

11 / * set up the arguments and pointer to result * /
12 ival = at01 (argv[2]) ;
13 arg.data_ptr = (char *) &ival: / * data arguments * /
14 arg.data-size = sizeof(1ong): / * size of data arguments * /
15 arg.descqtr = NULL;
16 arg.desc-num = 0;
17 arg.rbuf = (char *) &oval; / * data results * /
18 arg.rsize = sizeof(1ong); / * size of data results * /

19 / * call server procedure and print result * /
2 0 alarm(3) ;
21 Door-call (fd, &arg) ;
22 printf("resu1t: %1d\nu, oval);

24 1
abors/clientintr4.c

Figure 15.30 Client that terminates prematurely after calling door-call.

396 Doors Chapter 15
1

2 o The only change from Figure 15.2 is the call to alarm (3) right before the call to
door-call. This function schedules a SIGALRM signal for 3 seconds in the future, but
since we do not catch this signal, its default action terminates the process. This will
cause the client to terminate before door-call returns, because we will put a 6-second
sleep in the server procedure.

Figure 15.31 shows our server procedure and its thread cancellation handler.

doors lserverintr4.c
1 #include "unpipc.hU

2 void
3 servproc-cleanup(void *arg)
4 (

5 printf("servproc cancelled, thread id %1d\nn, pr-thread-id(NULL));

6 1

7 void
8 servproc(void *cookie, char *dataptr, size-t datasize,
9 door-desc-t "descptr, size-t ndesc)

10 I
11 int oldstate, junk;
12 long arg, result;

Pthread-setcancelstate(PTHREAD-CANCEL-ENABLE, &oldstate);
pthread~cleanup_push(servproc~cleanup, NULL);
sleep (6) ;
arg = *((long *) dataptr);
result = arg * arg;
pthread-cleanup_pop (0) ;
Pthread~setcancelstate(oldstate, &junk);
Door-return((char *) &result, sizeof(resu1t). NULL, 0);

21 1
doors lserverintr4.c

Figure 15.31 Server procedure that detects premature termination of client.

Recall our discussion of thread cancellation in Section 8.5 and our discussion of this
with Figure 15.23. When the system detects that the client is terminating with a
door-call in progress, the server thread handling that call is sent a cancellation
request.

If the server thread has cancellation disabled, nothing happens, the thread exe-
cutes to completion (when it calls door-return), and the results are then dis-
carded.

If cancellation is enabled for the server thread, any cleanup handlers are called,
and the thread is then terminated.

In our server procedure, we first call p thread-s e t cancel s t a t e to enable cancella-
tion, because when the doors library creates new threads, it disables thread cancellation.
This function also saves the current cancellation state in the variable oldstate, and we
restore this state at the end of the function. We then call pthread-cleanup~ush to

r
Section 15.12 Summary 397

register our function servproc-cleanup as the cancellation handler. All our function
does is print that the thread has been canceled, but this is where a server procedure can
do whatever must be done to clean up after the terminated client: release mutexes, write
a log file record, or whatever. When our cleanup handler returns, the thread is termi-
nated.

We also put a 6-second sleep in our server procedure, to allow the client to abort
while its door- call is in progress.

When we run our client twice, we see that the shell prints "Alarm clock" when our
process is killed by a SIGALRM signal.

solaris % clientintrl /tmp/door4 44
Alarm Clock
solaris % clientintrl /tmp/door4 44
Alarm Clock

If we look at the corresponding server output, we see that each time the client termi-
nates prematurely, the server thread is indeed canceled and our cleanup handler is
called.

solaris % serverintr4 /tmp/door4
servproc canceled, thread id 4
servproc canceled, thread id 5

The reason we ran our client twice is to show that after the thread with an ID of 4
is canceled, a new thread is created by the doors library to handle the second client
invocation.

15.12 Summary

Doors provide the ability to call a procedure in another process on the same host. In the
next chapter we extend this concept of remote procedure calls by describing the calling
of a procedure in another process on another host.

The basic functions are simple. A server calls door-create to create a door and
associate it with a server procedure, and then calls f a t t a c h to attach the door to a
pathname in the filesystem. The client calls open on this pathname and then
door-call to call the server procedure in the server process. The server procedure
returns by calling door- return.

Normally, the only permission testing performed for a door is that done by open
when it creates the door, based on the client's user IDS and group IDS, along with the
permission bits and owner IDS of the pathname. One nice feature of doors that we have
not seen with the other forms of IPC in this text is the ability of the server to determine
the clienvs credentials: the client's effective and real user IDS, and effective and real
group IDS. These can be used by the server to determine whether it wants to service
this client's request.

Doors allow the passing of descriptors from the client to the server and vice versa.
This is a powerful technique, because so much in Unix is represented by a descriptor:

398 Doors
7

Chapter 15

access to files for file or device I/O, access to sockets or XTI for network communication
(UNPvl), and access to doors for RPC.

When calling procedures in another process, we must worry about premature ter-
mination of the peer, something w e d o not need to worry about with local procedure
calls. A doors client is notified if the server thread terminates prematurely by an error
return of EINTR from door-call. A doors server thread is notified if its client termi-
nates while the client is blocked in a call to door-call by the receipt of a cancellation
request for the server thread. The server thread must decide whether to handle this
cancellation or not.

Exercises

How many bytes of information are passed as arguments by door-call from the client to
the server?

In Figure 15.6, do we need to call f stat to first verify that the descriptor is a door?
Remove this call and see what happens.

The Solaris 2.6 manual page for sleep (3 C) states that 'The current process is suspended
from execution." In Figure 15.9, why is the doors library able to create the second and
third threads (thread IDS 5 and 6) once the first thread (ID 4) starts running, since this
statement would imply that the entire server process blocks as soon as one thread calls
sleep?

In Section 15.3, we said that the FD-CLOEXEC bit is automatically set for descriptors cre-
ated by door-create. But we can call fcntl after door-create returns and turn this
bit off. What will happen if we do this, call exec, and then invoke the server procedure
from a client?

In Figures 15.28 and 15.29, print the current time in the two calls to print£ in the server
and in the two calls to print f in the client. Run the client and server. Why does the first
invocation of the server procedure return after 2 seconds?

Remove the mutex lock that protects f d in Figures 15.22 and 15.23 and verify that the pro-
gram no longer works. What error do you see?

If the only characteristic of a server thread that we want to change is to enable cancellation,
do we need to establish a server creation procedure?

Verify that door-revoke allows a client call that is in progress to complete, and deter-
mine what happens to door-call once the server procedure has been revoked.

In our solution to the previous exercise and in Figure 15.22, we said that the door descrip-
tor needs to be a global when either the server procedure or the server creation procedure
needs to use the descriptor. That statement is not true. Recode the solution to the previous
exercise, keeping f d as an automatic variable in the main function.

In Figure 15.23, we call pthread-at tr-ini t and pthread-at tr-des troy every time
a thread is created. Is this optimal?

Sun RPC

I Introduction

When we build an application, our first choice is whether to

1. build one huge monolithic program that does everything, or

2. distribute the application among multiple processes that communicate with
each other.

If we choose the second option, the next choice is whether to

2a. assume that all the processes run on the same host (allowing IPC to be used for
communication between the processes), or

2b. assume that some of the processes will run on other hosts (necessitating some
form of network communication between the processes).

If we look at Figure 15.1, the top scenario is case 1, the middle scenario is case 2a, and
the bottom scenario is case 2b. Most of this text has focused on case (2a): IPC between
processes on the same host, using message passing, shared memory, and possibly some
form of synchronization. IPC between threads within the same process, or within
threads in different processes, is just a special case of this scenario.

When we require network communications among the various pieces of the appli-
cation, most applications are written using explicit network programming, that is, direct
calls to either the sockets API or the XTI API, as described in UNPv1. Using the sockets
API, clients call socket, connect, read, and w r i t e , whereas servers call socket,
bind, l i s t e n , accept, read, and wri te . Most applications that we are familiar with
(Web browsers, Web servers, Telnet clients, Telnet servers, etc.) are written this way.

400 Sun RPC Chapter 16

An alternative way to write a distributed application is to use implicit network pro-
gramming. Remote procedure calls, or RPC, provide such a tool. We code our applica-
tion using the familiar procedure call, but the calling process (the client) and the process
containing the procedure being called (the server) can be executing on different hasts.
The fact that the client and server are running on different hosts, and that network 110
is involved in the procedure call, is for the most part transparent. Indeed, one metric by
which to measure any RPC package is how transparent it makes the underlying net-
working.

Example

As an example of RPC, we recode Figures 15.2 and 15.3 to use Sun RPC instead of
doors. The client calls the server's procedure with a long integer argument, and the
return value is the square of that value. Figure 16.1 is our first file, square. x.

sunrpc/squarel lsquare.~
1 s t r u c t square-in { / * input (argument) * /
2 long argl;
3 1 ;

4 s t r u c t square-out { / * output (r e s u l t) * /
5 long resl;
6 1 ;

7 program SQUARE-PROG {

8 version SQUARE-VERS {

9 square-out SQUAREPROC(squa re - in) = 1; / * procedure number = 1 */
1 0) = 1; / * version number * /
11) = 0x31230000; / * program number * /

sunrpclsquarel /square.x
Figure 16.1 RPC specification file.

These files whose name end in . x are called RPC specification files, and they define the
server procedures along with their arguments and results.

Define argument and return value

1-6 We define two structures, one for the arguments (a single long), and one for the
results (a single long).

Define program, version, and procedure

7-11 We define an RPC program named SQUARE-PROG that consists of one version
(SQUARE-VERS), and in that version is a single procedure named SQUAREPROC. The
argument to this procedure is a square- in structure, and its return value is a
square-out structure. We also assign this procedure a number of 1, we assign the ver-
sion a value of 1, and we assign the program number a 32-bit hexadecimal value. (We
say more about these program numbers in Figure 16.9.)

We compile this specification file using a program supplied with the Sun RPC pack-
age, rpcgen.

The next program we write is the client main function that calls our remote proce-
dure. We show this in Figure 16.2.

116.1 Introduction 401

sunrpc/squarel /client.c
#include "unpipc.hM / * our header * /
#include "square.hU / * generated by rpcgen * /

int
rnain(int argc, char **argv)
(

CLIENT *cl;
square-in in;
square-out *outp;

if (argc != 3)
err-quit("usage: client <hostname> <integer-value>");

cl = Clnt-create(argv[ll, SQUARE-PROG, SQUARE-VERS, "tcp");

in.arg1 = atol(argv[21);
if ((outp = squareproc-l(&in, cl)) == NULL)

err-quit("%sU, clnt-sperror(c1, argv[l]));

printf("resu1t: %ld\n", outp->resl);
exit (0) ;

1
sunrpc/squarel/client.c

Figure 16.2 Client main function that calls remote procedure.

Include header generated by rpcgen

We #include the square. h header that is generated by rpcgen.

Declare client handle

We declare a client handle named cl. Client handles are intended to look like stan-
dard I/O FILE pointers (hence the uppercase name of CLIENT).

Obtain client handle

We call clnt-create, which returns a client handle upon success.

CLIENT *clnt-create (const char *host, unsigned long prognum,
unsigned long versnum, const char *protocol) ;

1 Returns: nonnull client handle if OK, NULL on error I
As with standard I/O FILE pointers, we don't care what the client handle points to. It
is probably some structure of information that is maintained by the RPC runtime sys-
tem. clnt-create allocates one of these structures and returns its pointer to us, and
we then pass this pointer to the RPC runtime each time we call a remote procedure.

The first argument to clnt-create is either the hostname or IP address of the host
running our server. The second argument is the program name, and the third argument
is the version number, both from our square. x file (Figure 16.1). The final argument is
our choice of protocol, and we normally specify either TCP or UDP.

402 Sun RPC Chapter 16

Call remote procedure and print result

12-15 We call our procedure, and the first argument is a pointer to the input structure
(kin), and the second argument is the client handle. (In most standard 1 /0 calls, the
F I L E handle is the final argument. Similarly, the CLIENT handle is normally the final
argument to the RPC functions.) The return value is a pointer to the result structure.
Notice that we allocate room for the input structure, but the RPC runtime allocates the
result structure.

In our square .x specification file, we named our procedure SQUAREPROC, but
from the client we call squareproc-1. The convention is that the name in the . x file is
converted to lowercase and an underscore is appended, followed by the version num-
ber.

On the server side, all we write is our server procedure, which we show in Fig-
ure 16.3. The rpcgen program automatically generates the server main function.

3 square-out *
4 squareproc-1-svc(square-in *inp, s t ruct svc-req *rqstp)
5 (

6 s t a t i c square-out out;

7 out .res1 = inp->argl * inp->argl;
8 return (&out) ;

Figure 16.3 Server procedure that is called using Sun RPC.

Procedure arguments

3-4 We first notice that the name of our server procedure has -svc appended following
the version number. This allows two ANSI C function prototypes in the square.h
header, one for the function called by the client in Figure 16.2 (which had the client han-
dle as an argument) and one for the actual server function (which has different argu-
ments).

When our server procedure is called, the first argument is a pointer to the input
structure, and the second argument is a pointer to a structure passed by the RPC run-
time that contains information about this invocation (which we ignore in this simple
procedure).

Execute and return

6-8 We fetch the input argument and calculate its square. The result is stored in a struc-
ture whose address is the return value from this function. Since we are returning the
address of a variable from the function, that variable cannot be an automatic variable.
We declare it as s t a t i c .

Astute readers will note that this prevents our server function from being thread safe. We dis-
cuss this in Section 16.2 and show a thread-safe version there.

:tion 16.1 [ntroduction 403

We now compile our client under Solaris and our server under BSD/OS, start the
server, and run the client.

solaris % client bsdi 11
result: 121
solaris % client 209.75.135.35 22
result: 484

The first time we specify the server's hostname, and the second time its IP address.
This demonstrates that the c ln t- create function and the RPC runtime functions that
it calls allow either a hostname or an IP address.

We now demonstrate some error returns from cln t- create when either the host
does not exist, or the host exists but is not running our server.

solaris % client nosuchhost 11
nosuchhost: RPC: Unknown host from the RPC runtime
clnt-create error from our wrapper function
solaris % client localhost 11
localhost: RPC: Program not registered
clnt-create error

We have written a client and server and shown their use without any explicit net-
work programming at all. Our client just calls two functions (clnt- create and
squareproc-I), and on the server side, we have just written the function
squareproc-1-svc. All the details involving XTI under Solaris, sockets under
BSD/OS, and network I/O are handled by the RPC runtime. This is the purpose of
RPC: to allow the programming of distributed applications without requiring explicit
knowledge of network programming.

Another important point in this example is that the two systems, a Sparc running
Solaris and an Intel x86 running BSD/OS, have different byte orders. That is, the Sparc is
big endian and the Intel is little endian (which we show in Section 3.4 of UNPvl). These
byte ordering differences are also handled automatically by the runtime library, using a
standard called XDR (external data representation), which we discuss in Section 16.8.

More steps are involved in building this client and server than in the other p r e
grams in this text. Here are the steps involved in building the client executable:

solaris % rpcgen -C 8quare.x
solaris % cc -c c1ient.c -0 c1ient.o
solaris % cc -c square-c1nt.c -0 square-c1nt.o
solaris % cc -c square-xdr.c -0 square-xdr.0
solaris % cc -0 client c1ient.o square-c1nt.o square-xdr.0 1ibunpipc.a -1nsl

The -C option to rpcgen tells it to generate ANSI C prototypes in the square. h
header. rpcgen also generates a client stub (square-clnt .c) and a file named
square-xdr . c that handles the XDR data conversions. Our library (with functions
used in this book) is l ibunpipc .a, and -Ins1 specifies the system library with the
networking functions under Solaris (which includes the RPC and XDR runtime).

We see similar commands when we build the server, although rpcgen does not
need to be run again. The file square-svc . c contains the server main function, and

404 Sun RPC Chapter 16

square-xdr . o, the same file from earlier that contains the XDR functions, is also
required by the server.

s o l a r i s % cc -c server-c -0 server.0
s o l a r i s % cc -c square-svc.c -0 square-svc.0
s o l a r i s % cc -0 server server.0 square-svc.0 square-xdr.0 1ibunpipc.a -1nel

This generates a client and server that both run under Solaris.
When the client and server are being built for different systems (e.g., in our earlier

example, we ran the client under Solaris and the server under BSD/OS), additional
steps may be required. For example, some of the files must be either shared (e.g., NFS)
or copied between the two systems, and files that are used by both the client and server
(square-xdr . o) must be compiled on each system.

Figure 16.4 summarizes the files and steps required to build our client-server exam-
ple. The three shaded boxes are the files that we must write. The dashed lines show the
files that #include square. h.

RPC specification file ~~~

square-c1nt.c square-xdr.c square-svc.c
client stub server stub server

main procedures

Y
CC

executable executable
Figure 16.4 Summary of steps required to build an RPC client-server.

Figure 16.5 summarizes the steps that normally take place in a remote procedure
call. The numbered steps are executed in order.

0. The sever is started and it registers itself with the port mapper on the server host.
The client is then started, and it calls clnt-create, which contacts the port map-
per on the server host to find the server's ephemeral port. The clnt-create
function also establishes a TCP connection with the server (since we specified TCP

Section 16.1 Introduction 405

client process
r-------- 1
I I

c~ient.c[i routines

server process
r--------I
I I

square-svc.c
square-xdr.c

I RPC

system call = (2)
(9) process - - - - - - - . - - -. - - - - - - -

(7)
(4) process - - - - - - - - - - - - - - - -

kernel
7

network
routines

Figure 16.5 Steps involved in a remote procedure call.

as the protocol in Figure 16.2). We do not show these steps in the figure and save
our detailed description for Section 16.3.

The client calls a local procedure, called the client stub. In Figure 16.2, this proce-
dure was named squareproc-1, and the file containing the client stub was gener-
ated by rpcgen and called square-clnt . c. To the client, the client stub appears
to be the actual server procedure that it wants to call. The purpose of the stub is to
package up the arguments to the remote procedure, possibly put them into some
standard format, and then build one or more network messages. The packaging of
the client's arguments into a network message is termed marshaling. The client rou-
tines and the stub normally call functions in the RPC runtime library (e.g.,
clnt-create in our earlier example). When link editing under Solaris, these run-
time functions are loaded from the -1nsl library, whereas under BSD/OS, they
are in the standard C library.

These network messages are sent to the remote system by the client stub. This nor-
mally requires a system call into the local kernel (e.g., write or sendto).

The network messages are transferred to the remote system. The typical network-
ing protocols used for this step are either TCP or UDP.

A server stub procedure is waiting on the remote system for the client's request. It
unmarshals the arguments from the network messages.

The server stub executes a local procedure call to invoke the actual server function
(our squareproc-1-svc procedure in Figure 16.3), passing it the arguments that
it received in the network messages from the client.

When the server procedure is finished, it returns to the server stub, returning what-
ever its return values are.

406 Sun RPC Chapter 16

7. The server stub converts the return values, if necessary, and marshals them into
one or more network messages to send back to the client.

8. The messages are transferred back across the network to the client.

9. The client stub reads the network messages from the local kernel (e.g., read or
recvf rom).

10. After possibly converting the return values, the client stub finally returns to the
client function. This step appears to be a normal procedure return to the client.

History

Probably one of the earliest papers on RPC is [White 19751. According to [Corbin 19911,
White then moved to Xerox, and several RPC systems were developed there. One of
these, Courier, was released as a product in 1981. The classic paper on RPC is [Birrell
and Nelson 19841, which describes the RPC facility for the Cedar project running on sin-
gle-user Dorado workstations at Xerox in the early 1980s. Xerox was implementing
RPC on workstations before most people knew what workstations were! A Unix imple-
mentation of Courier was distributed for many years with the 4.x BSD releases, but
today Courier is of historical interest only.

Sun released the first version of its R K package in 1985. It was developed by Bob
Lyon, who had left Xerox in 1983 to join Sun. Its official name is ONC/RPC: Open Net-
work Computing Remote Procedure Call, but it is often called just "Sun RPC." Techni-
cally, it is similar to Courier. The original releases of Sun RPC were written using the
sockets API and worked with either TCP or UDI? The publicly available source code
release was called RPCSRC. In the early 1990s, this was rewritten to use TLI, the prede-
cessor to XTI (described in Part 4 of UNPvI), and works with any networking protocol
supported by the kernel. Publicly available source code implementations of both are
available from f tp : / /playground. sun. com/pub/ rpc with the sockets version
named rpcsrc and the TLI version named tirpcsrc (called TI-RPC, where "TI"
stands for "transport independent").

RFC 1831 [Srinivasan 1995al provides an overview of Sun RPC and describes the
format of the RPC messages that are sent across the network. RFC 1832 [Srinivasan
1995bl describes XDR, both the supported datatypes and their format "on the wire."
RFC 1833 [Srinivasan 1995~1 describes the binding protocols: RPCBIND and its prede-
cessor, the port mapper.

Probably the most widespread application that uses Sun RPC is NFS, Sun's network
filesystem. Normally, NFS is not built using the standard RPC tools, rpcgen and the
RPC runtime library that we describe in this chapter. Instead, most of the library rou-
tines are hand-optimized and reside within the kernel for performance reasons. Never-
theless, most systems that support NFS also support Sun RPC.

In the mid-1980s, Apollo competed against Sun in the workstation market, and they
designed their own RPC package to compete against Sun's, called NCA (Network Com-
puting Architecture), and their implementation was called NCS (Network Computing
System). NCA/RPC was the RPC protocol, NDR (Network Data Representation) was
similar to Sun's XDR, and NIDL (Network Interface Definition Language) defined the

ction 16.2 Multithreading 407

interfaces between the clients and servers (e.g., similar to our . x file in Figure 16.1). The
runtime library was called NCK (Network Computing Kernel).

Apollo was acquired by Hewlett Packard in 1989, and NCA was developed into the
Open Software Foundation's Distributed Computing Environment (DCE), of which
RPC is a fundamental element from which most pieces are built. More information on
DCE is available from ht tp : / /www . camb . opengroup. org / tech/ dce. An imple-
mentation of the DCE RPC package has been made publicly available at
f tp : / /gatekeeper. dec . com/pub/DEC/DCE. This directory also contains a
171-page document describing the internals of the DCE RPC package. DCE is available
for many platforms.

Sun RPC is more widespread than DCE RPC, probably because of its freely available imple-
mentation and its packaging as part of the basic system with most versions of Unix. DCE RPC
is normally available as an add-on (i.e., separate cost) feature. Widespread porting of the pub-
licly available implementation has not o&curred, although a Linux port is underway. In this
text, we cover only Sun RPC. All three RPC packages-Courier, Sun RPC, and DCE RPC-are
amazingly similar, because the basic RPC concepts are the same.

Most Unix vendors provide additional, detailed documentation on Sun RPC. For example, the
Sun documentation is available at http: //docs. sun. com, and in the Developer Collection,
Volume 1, is a 280-page "ONC+ Developer's Guide." The Digital Unix documentation at
http://www.unix.digital.com/faqs/publications/pub_page/V4OD_DOCS.HTM
includes a 116-page manual titled "Programming with ONC RPC."

RPC itself is a controversial topic. Eight posting5 on this topic are contained in
http://www.kohala.com/-rstevens/papers.others/rpc.coments.txt.

In this chapter, we assume TI-RPC (the transport independent version of RPC men-
tioned earlier) for most examples, and we talk about TCP and UDP as the supported
protocols, even though TI-RPC supports any protocols that are supported by the host.

6.2 Multithreading

Recall Figure 15.9, in which we showed the automatic thread management performed
by a doors server, providing a concurrent server by default. We now show that Sun
RPC provides an iterative server by default. We start with the example from the previous
section and modify only the server procedure. Figure 16.6 shows the new function,
which prints its thread ID, sleeps for 5 seconds, prints its thread ID again, and returns.

We start the server and then run the client three times:

solaris % client localhost 22 & client localhost 33 & \
client localhost 44 &

[31 25179
[41 25180
[51 25181
solaris % result: 484 about 5 seconds after the prompt is printed
result: 1936 another 5 seconds later
result: 1089 and another 5 seconds later

408 Sun RPC Chapter 16

3 square-out *
4 squareproc-1-svc(square-in *inp, s t r u c t svc-req * rqs tp)
5 I
6 s t a t i c square-out out ;

7 p r i n t f (" t h r e a d % I d s t a r t e d , a r g = %1d\nu,
8 pr-thread-id(NULL), inp -za rg l) ;
9 s l e e p (5) ;

10 ou t . r e s1 = inp- zargl * inp- zargl ;
11 p r i n t f (" t h r e a d % I d done\nn, pr-thread-id(NULL));

12 r e t u r n (&out) ;

Figure 16.6 Server procedure that sleeps for 5 seconds.

Although we cannot tell from this output, a 5-second wait occurs between the printing
of each result by the client. If we look at the server output, we see that the clients are
handled iteratively: the first client's request is handled to completion, and then the sec-
ond client's request is handled to completion, and finally the t h d client's request is
handled to completion.

s o l a r i s % server
thread 1 s t a r t e d , a r g = 22
thread 1 done
thread 1 s t a r t e d , a r g = 44
thread 1 done
thread 1 s t a r t e d , a r g = 33
thread 1 done

One thread handles all client requests: the server is not multithreaded by default.

Our doors servers in Chapter 15 all ran in the foreground when started from the shell, as in

solaris % server

That allowed us to place debugging calls to p r i n t f in our server procedures. But Sun RPC
servers, by default, run as daemons, performing the steps as outlined in Section 12.4 of
UNPvl. This requires calling syslog from the server procedure to print any diagnostic infor-
mation. What we have done, however, is specify the C compiler flag -DDEBUG when we com-
pile our server, which is the equivalent of placing the line

#define DEBUG

in the server stub (the square-svc . c file that is generated by rpcgen). This stops the server
main function from making itself a daemon, and leaves it connected to the terminal on which
it was started. That is why we can call p r i n t f from our server procedure.

The provision for a multithreaded server appeared with Solaris 2.4 and is enabled
by a -M command-line option to rpcgen. This makes the server code generated by
rpcgen thread safe. Another option, -A, has the server automatically create threads as

ion 16.2 Multithreading 409

they are needed to process new client requests. We enable both options when we run
rpcgen.

Both the client and server also require source code changes, which we should
expect, given our use of static in Figure 16.3. The only change we make to our
square. x file is to change the version from 1 to 2. Nothing changes in the declarations
of the procedure's argument and result structures.

Figure 16.7 shows our new client program.

1 #include "unpipc .h"
2 #include "square.hn

3 int
4 main(int argc, char **argv)

5 I
6 CLIENT *cl;
7 square-in in;
8 square-out out;

9 if (argc != 3)
10 err-quit("usage: client <hostname>

11 cl = Clnt-create(argv[l], SQUARE-PROG,

12 in. argl = at01 (argvL21) ;

<integer-value>");

SQUARE-VERS, "tcp");

13 if (squareproc-Z(&in, &out, cl) != RPC-SUCCESS)
14 err-quit("%sn, clnt-sperror(c1, argv[ll));

15 printf("resu1t: %ld\nn, out.res1):
16 exit (0) ;

17 1
sunrpc/square3/client.c

Figure 16.7 Client main function for multithreaded server.

Declare variable to hold result

8 We declare a variable of type square-out, not a pointer to this type.

New argument for procedure call

2-14 A pointer to our out variable becomes the second argument to squareproc-2,
and the client handle is the last argument. Instead of this function returning a pointer to
the result (as in Figure 16.2), it now returns either RPC-SUCCESS or some other value if
an error occurs. The clnt-s t at enum in the <rpc/ clnt-stat . h> header lists all the
possible error returns.

Figure 16.8 shows our new server procedure. As with Figure 16.6, it prints its
thread ID, sleeps for 5 seconds, prints another message, and returns.

New arguments and return value

3-12 The changes required for multithreading involve the function arguments and return
value. lnstead of returning a pointer to the result structure (as in Figure 16.31, a pointer
to this structure is now the second argument to the function. The pointer to the
svc-req structure moves to the third position. The return value is now TRUE upon
success, or FALSE if an error is encountered.

410 Sun RPC Chapter 16

bool-t
squareproc-2-svc(square-in *inp, square-out *outp, struct svc-req *rqstp)
I

printf("thread %Id started, arg = %1d\nn,
pr-thread-id(NULL), inp->argl);

sleep (5) ;
outp->resl = inp->argl * inp->argl;
printf("thread %Id done\nM, pr-thread-id(NULL));
return (TRUE) ;

1

13 int
14 squareqrog-2-freeresult(SVCXPRT *transp, xdrproc-t xdr-result,
15 caddr-t result)
16 I
17 xdr-free(xdr-result, result);
18 return (1 :
19 1

sunrpc /square3 1server.c
Figure 16.8 Multithreaded server procedure.

New function to free XDR memory

13-19 Another source code change we must make is to provide a function that frees any
storage automatically allocated. This function is called from the server stub after the
server procedure returns and after the result has been sent to the client. In our example,
we just call the generic xdr-f ree routine. (We talk more about this function with Fig-
ure 16.19 and Exercise 16.10.) If our server procedure had allocated any storage neces-
sary to hold the result (say a linked list), it would free that memory from this new
function.

We build our client and server and again run three copies of the client at the same
time:

solaris % client localhost 55 & client localhost 66 & \
client localhost 77 &

131 25427
[41 25428
[51 25429
solaris % result: 4356
result: 3025
result: 5929

This time we can tell that the three results are printed one right after the other. Looking
at the server output, we see that three threads are used, and all run simultaneously.

solaris % server
thread 1 started, arg = 55
thread 4 started, arg = 77

116.3 Server B i d i n g 411

thread 6 s t a r t e d , a r g = 66
thread 6 done
thread 1 done
thread 4 done

One unfortunate side effect of the source code changes required for multithreading is that not
all systems support this feature. For example, Digital Unix 4.OB and BSD/OS 3.1 both provide
the older RPC system that does not support multithreading. That means if we want to compile
and run a program on both types of systems, we need # i f def s to handle the differences in the
calling sequences at the client and server ends. Of course, a nonthreaded client on BSD/OS,
say, can still call a multithreaded server procedure running on Solaris, but if we have an RPC
client (or server) that we want to compile on both types of systems, we need to modify the
source code to handle the differences.

Server Binding

In the description of Figure 16.5, we glossed over step 0: how the server registers itself
with its local port mapper and how the client discovers the value of this port. We first
note that any host running an RPC server must be running the port mapper. The port
mapper is assigned TCP port 111 and UDP port 111, and these are the only fixed Internet
port assignments for Sun RPC. RPC servers always bind an ephemeral port and then
register their ephemeral port with the local port mapper. When a client starts, it must
first contact the port mapper on the server's host, ask for the server's ephemeral port
number, and then contact the server on that ephemeral port. The port mapper is pro-
viding a name service whose scope is confined to that system.

Some readers will claim that NFS also has a fixed port number assignment of 2049. Although
many implementations use this port by default, and some older implementations still have this
port number hardcoded into the client and server, most current implementations allow other
ports to be used. Most NFS clients also contact the port mapper on the server host to obtain
the port number.

With Solaris 2.x, Sun renamed the port mapper RPCBIND. The reason for this change is that
the term "port" implied Internet ports, whereas the TI-RPC package can work with any net-
working protocol, not just TCF and UDI? We will use the traditional name of port mapper.
Also, in our discussion that follows, we assume that TCP and UDP are the only protocols sup-
ported on the server host.

The steps performed by the server and client are as follows:

1. When the system goes into multiuser mode, the port mapper is started. The exe-
cutable name is typically portmap or rpcbind.

2. When our server starts, its main function (which is part of the server stub that is
generated by rpcgen) calls the library function svc-create. This function deter-
mines the networking protocols supported by the host and creates a transport end-
point (e.g., socket) for each protocol, binding an ephemeral port to the TCP and
UDP endpoints. It then contacts the local port mapper to register the TCP and UDP
ephemeral port numbers with the RPC program number and version number.

412 Sun RPC Chapter 16

The port mapper is itself an RPC program and the server registers itself with the
port mapper using RPC calls (albeit to a known port, 111). A description of the pro-
cedures supported by the port mapper is given in RFC 1833 [Srinivasan 1995~1.
Three versions of this RPC program exist: version 2 is the historical port mapper
that handles just TCP and UDP ports, and versions 3 and 4 are the newer RPCBIND
protocols.

We can see all the RPC programs that are registered with the port mapper by execut-
ing the rpcinf o program. We can execute this program to verify that port number
111 is used by the port mapper itself:

solaris % rpcinfo -p
program vers proto port service
100000 4 tcp 111 rpcbind
100000 3 tcp 111 rpcbind

-100000 2 tcp 111 rpcbind
100000 4 udp 111 rpcbind
100000 3 udp 111 rpcbind
100000 2 udp 111 rpcbind

(We have omitted many additional lines of output.) We see that Solaris 2.6 supports
all three versions of the protocol, all at port 111, using either TCP or UDP. The map-
ping from the RPC program number to the service name is normally found in the
file / etc /rpc. Executing the same command under BSD/OS 3.1 shows that it sup-
ports only version 2 of this program.

bsdi % rpcinfo -p
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper

Digital Unix 4.OB also supports just version 2:

alpha % rpcinfo -p
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper

Our server process then goes to sleep, waiting for a client request to arrive. This
could be a new TCP connection on its TCP port, or the arrival of a UDP datagram on
its UDP port. If we execute rpcinf o after starting our server from Figure 16.3, we
see

solaris % rpcinfo -p
program vers proto port service

824377344 1 udp 47972
824377344 1 tcp 40849

where 824377344 equals 0x3 123 00 0 0, the program number that we assigned in
Figure 16.1. We also assigned a version number of 1 in that figure. Notice that a
server is ready to accept clients using either TCP or UDP, and the client chooses
which of these two protocols to use when it creates the client handle (the final argu-
ment to clnt-create in Figure 16.2).

:ion 16.3 Server Binding 413

3. The client starts and calls clnt-create. The arguments (Figure 16.2) are the
server's hostname or IP address, the program number, version number, and a string
specifying the protocol. An RPC request is sent to the server host's port mapper
(normally using UDP as the protocol for this RPC message), asking for the informa-
tion on the specified program, version, and protocol. Assuming success, the port
number is saved in the client handle for all future RPC calls using this handle.

In Figure 16.1, we assigned a program number of 0x3 1 2 3 0 000 to our program.
The 32-bit program numbers are divided into groups, as shown in Figure 16.9.

Figure 16.9 Program number ranges for Sun RPC.

Program number

OXOOOOOOOO - Oxlf f f ff f f
0x20000000 - Ox3fffffff
0x40 0 000 0 0 - Ox5f f f f f f f
0x60000000 - OX£ f f f f f f f

The rpcinfo program shows the programs currently registered on your system.
Another source of information on the RPC programs supported on a given system is
normally the . x files in the directory /usr / include/ rpcsvc.

Description

defined by Sun
definedbyuser
transient (for customer-written applications)
reserved

etd and RPC Servers

By default, servers created by rpcgen can be invoked by the inetd superserver. (Sec-
tion 12.5 of UNPvl covers inetd in detail.) Examining the server stub generated by
rpcgen shows that when the server main starts, it checks whether standard input is a
XTT endpoint and, if so, assumes it was started by inetd.

Backing up, after creating an RPC server that will be invoked by inetd, the
/ e t c / ine td . conf configuration file needs to be updated with the server information:
the RPC program name, the program numbers that are supported, which protocols to
support, and the pathname of the server executable. As an example, here is one line
(wrapped to fit on this page) from the Solaris configuration file:

rstatd/2-4 tli rpc/datagram-v wait root
/usr/lib/netsvc/rstat/rpc.rstatd rpc.rstatd

The first field is the program name (which will be mapped to its corresponding program
number using the / et c/rpc file), and the supported versions are 2,3, and 4. The next
field specifies a XTI endpoint (as opposed to a socket endpoint), and the third field spec-
ifies that all visible datagram protocols are supported. Looking at the file
/etc/netconf ig, there are two of these protocols: UDP and /dev/ cl t s. (Chapter 29
of UNPvl describes this file and XTI addresses.) The fourth field, wait, tells inetd to
wait for this server to terminate before monitoring the XTI endpoint for another client
request. All RPC servers in / etc/ inetd . conf specify the wait attribute.

The next field, root, specifies the user ID under which the program will run, and
the last two fields are the pathname of the executable and the program name with any

414 Sun RPC Chapter 16

arguments to be passed to the program (there are no command-line arguments for this
program).

i n e t d will create the XTI endpoints and register them with the port mapper for the
specified program and versions. We can verify this with rpc inf o:

solaris % rpcinfo 1 grep statd
100001 2 udp 0.0.0.0.128.11 rstatd superuser
100001 3 udp 0.0.0.0.128.11 rstatd superuser
100001 4 udp 0.0.0.0.128.11 rstatd superuser
100001 2 ticlts \000\000\020, rstatd superuser
100001 3 ticlts \000\000\020, rstatd superuser
100001 4 ticlts \000\000\020, rstatd superuser

The fourth field is the printable format for XTI addresses (which prints the individual
bytes) and 128 x 256 + 11 equals 32779, which is the UDP ephemeral port number
assigned to this XTI endpoint.

When a UDP datagram arrives for port 32779, i n e t d will detect that a datagram is
ready to be read and it will fo rk and then exec the program
/ u s r / l i b / n e t s v c / r s t a t / r p c . r s t a t d . .Between the fork and exec, the XTI end-
point for this server will be duplicated onto descriptors O,1, and 2, and all other inetd
descriptors are closed (Figure 12.7 of UNPv1). i n e t d will also stop monitoring this XTI
endpoint for additional client requests until this server (which will be a child of inetd)
terminates-the wait attribute in the configuration file for this server.

Assuming this program was generated by rpcgen, it will detect that standard
input is a XTI endpoint and initialize it accordingly as an RPC server endpoint. This is
done by calling the RMZ functions svc-tli-create and svc-reg, two functions that
we do not cover. The second function does not register this server with the port
mapper-that is done only once by i n e t d when it starts. The RPC server loop, a func-
tion named svc-run, will read the pending datagram and call the appropriate server
procedure to handle the client's request.

Normally, servers invoked by i n e t d handle one client's request and terminate,
allowing ine td to wait for the next client request. As an optimization, RPC servers
generated by rpcgen wait around for a small amount of time (2 minutes is the default)
in case another client request arrives. If so, this existing server that is already running
will read the datagram and process the request. This avoids the overhead of a fork
and an exec for multiple client requests that arrive in quick succession. After the small
wait period, the server will terminate. This will generate SIGCHLD for inetd, causing
it to start looking for arriving datagrams on the XTI endpoint again.

16.4 Authentication

By default, there is no information in an RPC request to identify the client. The server
replies to the client's request without worrying about who the client is. This is called
null authentication or AUTH-NONE.

The next level is called Unix authentication or AUTH-SYS. The client must tell the
RMZ runtime to include its identification (hostname, effective user ID, effective group
ID, and supplementary group IDS) with each request. We modify our client-server

Section 16.4 Authentication 415

from Section 16.2 to include Unix authentication. Figure 16.10 shows the client.

sunrpc/square4/client.c
1 #include "unpipc . h"
2 #include "square.hn

3 int
4 main(int argc, char **argv)
5 {

6 CLIENT *cl;
7 square-in in;
8 square-out out;

9 if (argc != 3)
10 err-quit("usage: client <hostname> <integer-value>");

11 cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, "tcp");

14 in.argl = atol(argvL21);
15 if (squareproc-2 (&in, &out, cl) != RPC-SUCCESS)
16 err-quit("%sn, clnt-sperror(c1, argv[ll));

17 printf("resu1t: %1d\nn, out.res1);
18 exit (0) ;
19 1

sunrpc/square4/client.c

Figure 16.10 Client that provides Unix authentication.

12-13 These two lines are new. We first call auth-destroy to destroy the previous
authentication associated with this client handle, the null authentication that is created
by default. The function authsys-create-defaul t creates the appropriate Unix
authentication structure, and we store that in the cl-auth member of the CLIENT
structure. The remainder of the client has not changed from Figure 16.7.

Figure 16.11 shows our new server procedure, modified from Figure 16.8. We do
not show the squarejrog-2-f r e e r e s u l t function, wluch does not change.

6-8 We now use the pointer to the svc-req structure that is always passed as an argu-
ment to the server procedure.

struct svc-req {

u-long rurog; / *
u-long revers; / *
u-long ruroc; / *
struct opaque-auth rccred; / *
caddr-t rcclntcred; / *
SVCXPRT *rq-xprt; / *

1;

struct opaque-auth {

program number * /
version number * /
procedure number * /
raw credentials * /
cooked credentials (read-only) * /
transport handle * /

enum-t oa-flavor; / * flavor: AUTH-xxx constant * /
caddr-t oa-base ; / * address of more auth stuff * /
u-int oa-length; / * not to exceed MAX-AUTH-BYTES * /

1;

416 Sun RPC Chapter 16

3 bool-t
4 squareproc-2-svc(square-in *inp, square-out *outp, scruct svc-req *rqstp)
5
6 printf("thread %Id started, arg = %Id, auth = %d\nU,
7 pr-thread-id(NULL), inp->argl, rqstp->rq-cred.oa-flavor);
8 if (rqstp->r~cred.oa-flavor == AUTH-SYS) {

9 struct authsysqarms *au;

10 au = (struct authsysqarms *) rqstp->rq-clntcred;
11 printf("AUTH-SYS: host %s, uid %Id, gid %ld\n",
12 au->sup-machname, (long) au->sup-uid, (long) au->sup-gid);
13 1
14 sleep(5) ;
15 outp->resl = inp->argl * inp->argl;
16 printf("thread %Id done\nW, pr-thread-id(NULL)) ;

17 return (TRUE) ;
18 1

sunrpc/square4/smer.c
Figure 16.11 Server procedure that looks for Unix authentication.

The rq-cred member contains the raw authentication information, and its oa-f lavor
member is an integer that identifies the type of authentication. The term "raw" means
that the RPC runtime has not processed the information pointed to by oa-base. But if
the authentication type is one supported by the runtime, then the cooked credentials
pointed to by rq-clntcred have been processed by the runtime into some structure
appropriate for that type of authentication. We print the type of authentication and
then check whether it equals AUTH-SYS.

9-12 For Unix authentication, the pointer to the cooked credentials (rq-clntcred)
points to an authsys~arms structure containing the client's identity:

struct authsysgarms {
u-long aup-time; / * credentials creation time * /
char *sup-machname; / * hostname where client is located * /
uid-t aup-uid; / * effective user ID * /
gid-t aup-gid; / * effective group ID * /
u-int aup-len; / * #elements in aup-gids[l * /
gid-t *sup-gids; / * supplementary group IDS * /

1;

We obtain the pointer to this structure and print the client's hostname, effective user ID,
and effective group ID.

If we start our server and run the client once, we get the following output from the
server:

solaris % server
thread 1 started, arg = 44, auth = 1
AUTH-SYS: host solaris.kohala.com, uid 765, gid 870
thread 1 done

~n 16.5 Timeout and Retransmission 417

Unix authentication is rarely used, because it is simple to defeat. We can easily
build our own RPC packets containing Unix authentication information, setting the user
ID and group IDS to any values we want, and send it to the server. The server has no
way to verify that we are who we claim to be.

Actually, NFS uses Unix authentication by default, but the requests are normally sent by the
NFS client's kernel and usually with a reserved port (Section 2.7 of UNPvl). Some NFS
servers are configured to respond to a client's request only if it arrives from a reserved port. If
you.are trusting the client host to mount your filesystems, you are trusting that client's kernel
to identify its users correctly. If a reserved port is not required by the server, then hackers can
write their own programs that send NFS requests to an NFS server, setting the Unix authenti-
cation IDS to any values desired. Even if a reserved port is required by the server, if you have
your own system on which you have superuser privileges, and you can plug your system into
the network, you can still send your own NFS requests to the server.

An RPC packet, either a request or a reply, actually contains two fields related to
authentication: the credentials and the verifier (Figures 16.30 and 16.32). A common anal-
ogy is a picture ID (passport, driver's license, or whatever). The credentials are the
printed information (name, address, date of birth, etc.), and the verifier is the picture.
There are also different forms of credentials: a picture is better than just listing the
height, weight, and sex, for example. If we had an ID card without any form of identi-
fying information (library cards are often examples of this), then we would have creden-
tials without any verifier, and anyone could use the card and claim to be the owner.

In the case of null authentication, both the credentials and the verifier are empty.
With Unix authentication, the credentials contain the hostname and the user and group
IDS, but the verifier is empty. Other forms of authentication are supported, and the cre-
dentials and verifiers contain other information:

AUTH-SHORT An alternate form of Unix authentication that is sent in the verifier
field from the server back to the client in the RPC reply. It is a
smaller amount of information than full Unix authentication, and
the client can send this back to the server as the credentials in subse-
quent requests. The intent of this type of credential is to save net-
work bandwidth and server CPU cycles.

AUTH-DES DES is an acronym for the Data Encryption Standard, and this form of
authentication is based on secret key and public key cryptography.
This scheme is also called secure RPC, and when used as the basis for
NFS, this is called secure NFS.

AUTH-KERB This scheme is based on MIT's Kerberos system for authentication.

Chapter 19 of [Garfinkel and Spafford 19961 says more about the latter two forms of
authentication, including their setup and use.

5 Timeout and Retransmission

We now look at the timeout and retransmission strategy used by Sun RPC. Two time-
out values are used:

418 Sun RPC Chapter 16

1. The total timeout is the total amount of time that a client waits for the server's
reply. This value is used by both TCP and UDP.

2. The retry timeout is used only by UDP and is the amount of time between
retransmissions of the client's request, waiting for the server's reply.

First, no need exists for a retry timeout with TCP because TCP is a reliable protocol. If
the server host never receives the client's request, the client's TCP will time out and
retransmit the request. When the server host receives the client's request, the server's
TCP will acknowledge its receipt to the client's TCP. If the server's acknowledgment is
lost, causing the client's TCP to retransmit the request, when the server TCP receives
this duplicate data, it will be discarded and another acknowledgment sent by the server
TCI? With a reliable protocol, the reliability (timeout, retransmission, handling of dupli-
cate data or duplicate ACKs) is provided by the transport layer, and is not a concern of
the RPC runtime. One request sent by the client RPC layer will be received as one
request by the server RPC layer (or the client RPC layer will get an error indication if
the request never gets acknowledged), regardless of what happens at the network and
transport layers.

After we have created a client handle, we can call c ln t -cont ro l to both query
and set options that affect the handle. This is similar to calling f c n t 1 for a descriptor,
or calling getsockopt and se tsockopt for a socket.

bool-t clnt-control(CL1ENT *d, unsigned int request, char * p t r) ;

I Returns: TRUE if OK, FALSE on error

cl is the client handle, and what is pointed to by ptr depends on the request.

We modify our client from Figure 16.2 to call this function and print the two time-
outs. Figure 16.12 shows our new client.

Protocol is a command-line argument

10-12 We now specify the protocol as another command-line argument and use this as the
final argument to clnt-create .

Get total timeout

13-14 The first argument to c ln t -cont ro l is the client handle, the second is the request,
and the third is normally a pointer to a buffer. Our first request is CLGET-TIMEOUT,
which returns the total timeout in the t imeval structure whose address is the third
argument. This request is valid for all protocols.

Try to get retry timeout

15-16 our next request is CLGET-RETRY-TIMEOUT for the retry timeout, but this is valid
only for UDP. Therefore, if the return value is FALSE, we print nothing.

We also modify our server from Figure 16.6 to sleep for 1000 seconds instead of 5
seconds, to guarantee that the client's request times out. We start the server on our host

Section 16.5 Timeout and Retransmission 419

#include "square.hW

int
main(int argc, char **argv)
{

CLIENT *cl;
square-in in;
square-out *outp;
struct timeval tv;

if (argc != 4)
errquit("usage: client <hostname> <integer-value> <protocol>");

cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, argv[31);

Clnt-control(c1, CLGET-TIMEOUT, (char *) &tv);
printf("timeout = %Id sec, %Id usec\nM, tv.tv-sec, tv.tv-usec);
if (clnt~control(cl, CLGET-RETRY-TIMEOUT, (char *) &tv) == TRUE)

printf("retry timeout = %Id sec, %Id usec\nM, tv.tv-sec, tv.tv-usec);

in.arg1 = atol(argv[2]);
if ((outp = squareproc-l(&in, cl)) == NULL)

err-quit("%s", clnt-sperror(c1, argv[ll));

printf("resu1t: %1d\nv, outp->resl);
exit (0) ;

1 sunrpc/square5/client.c

Figure 16.12 Client that queries and prints the two RPC timeout values.

bsd i and run the client twice, once specifying TCP and once specifying UDP, but the
results are not what we expect:

solaris % date ; client bsdi 44 tcp ; date
Wed Apr 22 14:46:57 MST 1998
timeout = 30 sec, 0 usec this says 30 seconds
bsdi: RPC: Timed out
Wed Apr 22 14:47:22 MST 1998 but this is 25 seconds later

solaris % date ; client bsdi 55 udp ; date
Wed Apr 22 14:48:05 MST 1998
timeout = -1 sec. -1 usec bizarre
retry timeout = 15 sec. 0 usec this turns out to be correct
bsdi: RPC: Timed out
Wed Apr 22 14:48:31 MST 1998 about 25 seconds later

In the TCP case, the total timeout is returned by c ln t -cont ro l as 30 seconds, but our
measurement shows a timeout of 25 seconds. With UDP, the total timeout is returned
as -1.

To see what is happening here, look at the client stub, the function squareproc-1
in the file square-clnt . c that is generated by rpcgen. This function calls a library
function named c ln t -ca l l , and the final argument is a t imeval structure named

420 Sun RPC Chapter 16

TIMEOUT that is declared in this file and is initialized to 25 seconds. This argument to
c l n t - c a l l overrides the default of 30 seconds for TCP and the -1 values for UDP.
This argument is used until the client explicitly sets the total timeout by calling
c ln t -cont ro l with a request of CLSET-TIMEOUT. If we want to change the total
timeout, we should call c ln t -cont ro l and should not modify the structure in the
client stub.

The only way to verify the UDP retry timeout is to watch the packets using tcpdurnp. This
shows that the first datagram is sent as soon as the client starts, and the next datagram is about
15 seconds later.

TCP Connection Management

If we watch the TCP client-server that we just described using t cpdump, we see TCP's
three-way handshake, followed by the client sending its request, and the server
acknowledging this request. About 25 seconds later, the client sends a FIN, which is
caused by the client process terminating, and the remaining three segments of the TCP
connection termination sequence follow. Section 2.5 of UNPvl describes these segments
in more detail.

We want to show the following characteristics of Sun RPC's usage of TCP connec-
tions: a new TCP connection is established by the client's call to clnt-create , and this
connection is used by all procedure calls associated with the specified program and ver-
sion. A client's TCP connection is terminated either explicitly by calling
clnt-des t r o y or implicitly by the termination of the client process.

#include <rpc/rpc.h>

void clntdestroy(CL1ENT * d) ;

We start with our client from Figure 16.2 and modify it to call the server procedure
twice, then call clnt- destroy, and then pause. Figure 16.13 shows the new client.

Running this program yields the expected output:

s o l a r i s % client kalae 5
r e s u l t : 25
r e s u l t : 1 0 0

program just waits until we kill it

But the verification of our earlier statements is shown only by the tcpdump output.
This shows that one TCP connection is created (by the call to c ln t -c rea te) and is
used for both client requests. The connection is then terminated by the call to
clnt-destroy, even though our client process does not terminate.

Transaction ID

Another part of the timeout and retransmission strategy is the use of a transaction ID or
XID to identify the client requests and server replies. When a client issues an RPC call,
the RPC runtime assigns a 32-bit integer XID to the call, and this value is sent in the

Timeout and Retransmission 421

sunrpc/square9/client.c
#include "unpipc.h" / * our header * /
#include "square.hU / * generated by rpcgen * /

int
main(int argc, char **argv)
(

CLIENT *c1;
square-in in;
square-out *outp;

if (argc != 3)
errquit("usage: client <hostname> <integer-value>");

cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, "tcp");

in.arg1 = atol(argv[2]);
if ((outp = squareproc-1 (&in, cl)) == NULL)

err-quit ("%s" , clnt-sperror (cl, argv[l])) ;
printf("resu1t: %ld\nW, outp->resl);

in.arg1 *= 2;
if ((outp = squareproc-1 (&in, cl)) == NULL)

err-quit ("%s" , clnt-sperror (cl, argv[l])) ;
printf("resu1t: %1d\nw, outp->resl);

clntdestroy (cl) ;

pause () ;

exit (0) ;
1

sunrpc/square9 lc1ient.c
Figure 16.13 Client program to examine TCP connection usage.

RPC message. The server must return this XID with its reply. The XID does not change
when the RPC runtime retransmits a request. The XID serves two purposes:

1. The client verifies that the XID of the reply equals the XID that was sent with the
request; otherwise the client ignores this reply. If TCP is being used, the client
should rarely receive a reply with the incorrect XID, but with UDP, and the pos-
sibility of retransmitted requests and a lossy network, the receipt of a reply with
the incorrect XID is a definite possibility.

2. The server is allowed to maintain a cache of the replies that it sends, and one of
the items that it uses to determine whether a request is a duplicate is the XID.
We describe this shortly.

The TI-RPC package uses the following algorithm for choosing an XID for a new
request, where the A operator is C's bitwise exclusive OR:

struct timeval now;

gettimeofday(&now, NULL);
xid = getpido now.tv-sec A now.tv-usec;

422 Sun RPC Chapter 16

Server Duplicate Request Cache

To enable the RPC runtime to maintain a duplicate request cache, the server must call
svc-dg-enablecache. Once this cache is enabled, there is no way to turn it off (other
than termination of the server process).

#include <rpc/rpc.h>

int svc-dg-enablecache (SVCXPRT *xprt , unsigned long size) ;

Returns: I if OK, 0 on error

xprt is the transport handle, and this pointer is member of the svc-req structure (Sec-
tion 16.4). The address of this structure is an argument to the server procedure. size is
the number of cache entries for which memory should be allocated.

When this cache is enabled, the server maintains a FIFO (first-in, first-out) cache of
all the replies that it sends. Each reply is uniquely identified by the following:

program number,
version number,
procedure number,
XID, and
client address (IP address and UDP port).

Each time the RPC runtime in the server receives a client request, it first searches the
cache to see whether it already has a reply for this request. If so, the cached reply is
returned to the client instead of calling the server procedure again.

The purpose of the duplicate request cache is to avoid calling a server procedure
multiple times when duplicate requests are received, probably because the server proce-
dure is not idempotent. A duplicate request can be received because the reply was lost or
because the client retransmission passes the reply in the network. Notice that this
duplicate request cache applies only to datagram protocols such as UDP, because if TCP
is being used, a duplicate request never makes it to the application; it is handled com-
pletely by TCP (see Exercise 16.6).

16.6 Call Semantics

In Figure 15.29, we showed a doors client that retransmitted its request to the server
when the client's call to door-call was interrupted by a caught signal. But we then
showed that this caused the server procedure to be called twice, not once. We then cate-
gorized server procedures into those that are idempotent (can be called any number of
times without harm), and those that are not idempotent (such as subtracting money
from a bank account).

Procedure calls can be placed into one of three categories:

1 . Exactly once means the procedure was executed once, period. This type of oper-
ation is hard to achieve, owing to the possibility of server crashes.

Section 16.6 Call Semantics 423

2. At most once means the procedure was not executed at all or it was executed
once. If a normal return is made to the caller, we know the procedure was exe-
cuted once. But if an error return is made, we're not certain whether the proce-
dure was executed once or not at all.

3. At least once means the procedure was executed at least once, but perhaps more.
This is OK for idempotent procedures-the client keeps transmitting its request
until it receives a valid response. But if the client has to send its request more
than once to receive a valid response, a possibility exists that the procedure was
executed more than once.

With a local procedure call, if the procedure returns, we know that it was executed
exactly once, but if the process crashes after the procedure has been called, we don't
know whether it was executed once or not at all. We must consider various scenarios
with remote procedure calls:

If TCP is being used and a reply is received, we know that the remote procedure
was called exactly once. But if a reply is not received (say the server crashes),
we don't know whether the server procedure executed to completion before the
host crashed, or whether the server procedure had not yet been called (at-most-
once semantics). Providing exactly-once semantics in the face of server crashes
and extended network outages requires a transaction processing system, some-
thing that is beyond the capability of an RPC package.

If UDP is being used without a server cache and a reply is received, we know
that the server procedure was called at least once, but possibly more than once
(at-least-once semantics).

If UDP is being used with a server cache and a reply is received, we know that
the server procedure was called exactly once. But if a reply is not received, we
have at-most-once semantics, similar to the TCP scenario.

Given these three choices:

1. TCP,
2. UDP with a server cache, or
3. UDP without a server cache,

our recommendations are:

Always use TCP unless the overhead of the TCP connections is excessive for the
application.

Use a transaction processing system for nonidempotent procedures that are
important to do correctly (i.e., bank accounts, airline reservations, and the like).

For a nonidempotent procedure, using TCP is preferable to UDP with a server
cache. TCP was designed to be reliable from the beginning, and adding this to a
UDP application is rarely the same as just using TCP-(~.~., section 20.5 of
UNPv1).

424 Sun RPC Chapter 16

Using UDP without a server cache for an idempotent procedure is OK.

Using UDP without a server cache for a nonidempotent procedure is dangerous.

We cover additional advantages of TCP in the next section.

16.7 Premature Termination of Client or Server

We now consider what happens when either the client or the server terminates prema-
turely and TCP is being used as the transport protocol. Since UDP is connedionless,
when a process with an open UDP endpoint terminates, nothing is sent to the peer. All
that will happen in the UDP scenario when one end crashes is that the peer will time
out, possibly retransmit, and eventually give up, as discussed in the previous section.
But when a process with an open TCP connection terminates, that connection is termi-
nated, sending a FIN to the peer (pp. 36-37 of UNPvl), and we want to see what the
RPC runtime does when it receives this unexpected FIN from its peer.

Premature Termination of Server

We first terminate the server prematurely while it is processing a client's request. The
only change we make to our client is to remove the " t cp" argument from the call to
c ln t -ca l l in Figure 16.2 and require the transport protocol to be a command-line
argument, as in Figure 16.12. In our server procedure, we add a call to the abor t func-
tion. This terminates the server process, causing the server's TCP to send a FIN to the
client, which we can verify with tcpdump.

We first run our Solaris client to our BSD/OS server:

solaris % client bsdi 22 tcp
bsdi: RPC: Unable to receive; An event requires attention

When the server's FIN is received by the client, the RPC runtime is waiting for the
server's reply. It detects the unexpected reply and returns an error from our call to
squareproc-1. The error (RPC-CANTRECV) is saved by the runtime in the client han-
dle, and the call to clnt-sperror (from our Clnt-create wrapper function) prints
this as "Unable to receive." The remainder of the error message, "An event requires
attention," corresponds to the XTI error saved by the runtime, and is also printed by
clnt-sperror. About 30 different RPC-xxx errors can be returned by a client's call of
a remote procedure, and they are listed in the <rpc / c lnt-s t a t . h> header.

If we swap the hosts for the client and server, we see the same scenario, with the
same error returned by the RPC runtime (RPC-CANTRECV), but a different message at
the end.

bsdi % client solaris 11 tcp
solaris: RPC: Unable to receive; errno = Connection reset by peer

The Solaris server that we aborted above was not compiled as a multithreaded
server, and when we called abort, the entire process was terminated. Things change if
we are running a multithreaded server and only the thread servicing the client's call

~n 16.7 Premature Termination of Client or Server 425

terminates. To force this scenario, we replace the call to abort with a call to
pthread-exit , as we did with our doors example in Figure 15.25. We run our client
under BSD/OS and our multithreaded server under Solaris.

bsdi % client solaris 33 tcp
so l a r i s : RPC: Timed out

When the server thread terminates, the TCP connection to the client is not closed; it
remains open in the server process. Therefore, no FIN is sent to the client, so the client
just times out. We would see the same error if the server host crashed after the client's
request was sent to the server and acknowledged by the server's TCl?

nature Termination of Client

When an RPC client terminates while it has an RPC procedure call in progress using
TCP, the client's TCP will send a FIN to the server when the client process terminates.
Our question is whether the server's RPC runtime detects this condition and possibly
notifies the server procedure. (Recall from Section 15.11 that a doors server thread is
canceled when the client prematurely terminates.)

To generate this condition, our client calls alarm (3) right before calling the server
procedure, and our server procedure calls s l e e p (6) . (This is what we did with our
doors example in Figures 15.30 and 15.31. Since the client does not catch SIGALRM, the
process is terminated by the kernel about 3 seconds before the server's reply is sent.)
We run our client under BSD/OS and our server under Solaris.

bsdi % client solaris 44 tcp
Alarm c a l l

This is what we expect at the client, but nothing different happens at the server. The
server procedure completes its 6-second sleep and returns. If we watch what happens
with tcpdump we see the following:

When the client terminates (about 3 seconds after starting), the client TCP sends
a FIN to the server, which the server TCP acknowledges. The TCP term for this
is a half-close (Section 18.5 of TCPvl).

About 6 seconds after the client and server started, the server sends its reply,
which its TCP sends to the client. (Sending data across a TCP connection after
receiving a FIN is OK, as we describe on pp. 130-132 of UNPvl, because TCP
connections are full-duplex.) The client TCP responds with an RST (reset),
because the client process has terminated. This will be recognized by the server
on its next read or write on the connection, but nothing happens at this time.

We summarize the points made in this section.

RPC clients and servers using UDP never know whether the other end termi-
nates prematurely. They may time out when no response is received, but they
cannot tell the type of error: premature process termination, crashing of the peer
host, network unreachability, and so on.

426 Sun RPC

7

Chapter 16

An RPC client or server using TCP has a better chance of detecting problems at
the peer, because premature termination of the peer process automatically
causes the peer TCP to close its end of the connection. But this does not help if
the peer is a threaded RPC server, because termination of the peer thread does
not close the connection. Also this does not help detect a crashing of the peer
host, because when that happens, the peer TCP does not close its open connec-
tions. A timeout is still required to handle all these scenarios.

16.8 XDR: External Data Representation

When we used doors in the previous chapter to call a procedure in one process from
another process, both processes were on the same host, so we had no data conversion
problems. But with RPC between different hosts, the various hosts can use different
data formats. First, the sizes of the fundamental C datatypes can be different (e.g., a
long on some systems occupies 32 bits, whereas on others it occupies 64 bits), and sec-
ond, the actual bit ordering can differ (e.g., big-endian versus little-endian byte order-
ing, which we talked about on pp. 66-69 and pp. 137-140 of UNPvl). We have already
encountered this with Figure 16.3 when we ran our server on a little-endian x86 and our
client on a big-endian Sparc, yet we were able to exchange a long integer correctly
between the two hosts.

Sun RPC uses XDR, the External Data Representation standard, to describe and
encode the data (RFC 1832 [Srinivasan 1995b1). XDR is both a language for describing
the data and a set of rules for encoding the data. XDR uses implicit typing, which means
the sender and receiver must both know the types and ordering of the data: for exam-
ple, two 32-bit integer values followed by one single precision floating point value, fol-
lowed by a character string.

As a comparison, in the OSI world, ASN.1 (Abstract Syntax Notation one) is the normal way to
describe the data, and BER (Basic Encoding Rules) is a common way to encode the data. This
scheme also uses explicit typing, which means each data value is preceded by some value (a
"specifier") describing the datatype that follows. In our example, the stream of bytes would
contain the following fields, in order: a specifier that the next value is an integer, the integer
value, a specifier that the next value is an integer, the integer value, a specifier that the next
value is a floating point value, the floating point value, a specifier that the next value is a char-
acter string, the character string.

The XDR representation of all datatypes requires a multiple of 4 bytes, and these
bytes are always transmitted in the big-endian byte order. Signed integer values are
stored using two's complement notation, and floating point values are stored using the
IEEE format. Variable-length fields always contain up to 3 bytes of padding at the end,
so that the next item is on a 4-byte boundary. For example, a 5-character ASCII string
would be transmitted as 12 bytes:

a 4-byte integer count containing the value 5,
the 5-byte string, and
3 bytes of 0 for padding.

tion 16.8 XDR: External Data Representation 427

When describing XDR and the datatypes that it supports, we have three items to
consider:

1. How do we declare a variable of each type in our RPC specification file (our . x
file) for rpcgen? Our only example so far (Figure 16.1) uses only a long integer.

2. Which C datatype does rpcgen convert this to in the . h header that it gener-
ates?

3. What is the actual format of the data that is transmitted?

Figure 16.14 answers the first two questions. To generate this table, an RPC specifica-
tion file was created using all the supported XDR datatypes. The file was run through
rpcgen and the resulting C header examined.

We now describe the table entries in more detail, referencing each by the number in
the first column (1-15).

1. A cons t declaration is turned into a C #define.

2. A typedef declaration is turned into a C typedef.

3. These are the five signed integer datatypes. The first four are transmitted as
32-bit values by XDR, and the last one is transmitted as a 64-bit value by XDR.

64-bit integers are known to many C compilers as type long long i n t or just long
long. Not all compilers and operating systems support these. Since the generated . h file
declares the C variable of type longlong-t, some header needs to define

typedef long long longlong-t;

An XDR long occupies 32 bits, but a C long on a 64-bit Unix system holds 64 bits (e.g.,
the LP64 model described on p. 27 of UNPvl). Indeed, these decade-old XDR names are
unfortunate in today's world. Better names would have been something like int8-t,
int l6-t , int32-t, int64_t,andsoon.

4. These are the five unsigned integer datatypes. The first four are transmitted as
32-bit values by XDR, and the last one is transmitted as a 64-bit value by XDR.

5. These are the three floating point datatypes. The first is transmitted as a 32-bit
value, the second as a 64-bit value, and the third as a 128-bit value.

Quadruple-precision floating point numbers are known in C as type long double. Not
all compilers and operating systems support these. (Your compiler may allow long
double, but treat it as a double.) Since the generated . h file declares the C variable of
type quadruple, some header needs to define

typedef long double quadruple;

Under Solaris 2.6, for example, we must include the line

%#include <floatingpoint.h>

at the beginning of the . x file, because this header includes the required definition. The
percent sign at the beginning of the line tells rpcgen to place the remainder of the line in
the . h file.

428 Sun RPC
7

Chapter 16

RPC specification file (. x)

const name = value;
typedef declaration ;

char var;
short var;
int var;
long vclr;
hyper var;
unsigned char var;
unsigned short var;
unsigned int var;
unsigned long var;
unsigned hyper var;

float var;
double var;
quadruple var ;

boo1 var;
enum var { name = const, . . . 1 ;

opaque vclr [n I ;
opaque vclr<m>;

string var<m>;

datatype var [n] ;

datatype var<m>;

struct var { members . . .) ;

union var switch (int disc) {

case discmlueA : armdeclA ;
case discvalueB : armdeclB ;
. . .
default : defaultdecl;

1 ;

C header file (. h)

#define name value
typedef declaration ;

char var;
short var;
int var;
long var;
longlong_t var;
u-char var;
u-short var;
u-int var;
u-long var;
u-long long-t var ;
float vclr;
double var;
quadruple vclr;

bool-t var;
enum var { name = const, . . .) ;

typedef enum var var;
char var [n] ;
struct {

u-int var-len;
char *var-val ;

) var;
char *var;

datatype var [n] ;
struct {

u-int var-len;
datatype *var-val ;

1 var;
struct var { members . . . 1 ;
typedef struct vclr var;

struct var {

int disc;
union (

armdeclA ;
armdeclB ;
. . .
defaultdecl ;

1 var-u;
1;
typedef s truct var var;

Figure 16.14 Summary of datatypes supported by XDR and rpcgen.

tion 16.8 XDR: External Data Representation 429

The boolean datatype is equivalent to a signed integer. The RPC headers also
#define the constant TRUE to be 1 and the constant FALSE to be 0.

An enumeration is equivalent to a signed integer and is the same as C's enum
datatype. rpcgen also generates a typedef for the specified variable name.

Fixed-length opaque data is a specified number of bytes (n) that are transmitted as
8-bit values, uninterpreted by the runtime library.

Variable-length opaque data is also a sequence of uninterpreted bytes that are
transmitted as 8-bit values, but the actual number of bytes is transmitted as an
unsigned integer and precedes the data. When sending this type of data (eg ,
when filling in the arguments prior to an RPC call), set the length before mak-
ing the call. When this type of data is received, the length must be examined to
determine how much data follows.

The maximum length m can be omitted in the declaration. But if the length is
specified at compile time, the runtime library will check that the actual length
(what we show as the var-len member of the structure) does not exceed the
value of m.

A string is a sequence of ASCII characters. In memory, a string is stored as a
normal null-terminated C character string, but when a string is transmitted, it
is preceded by an unsigned integer that specifies the actual number of charac-
ters that follows (not including the terminating null). When sending this type
of data, the runtime determines the number of characters by calling strlen.
When this type of data is received, it is stored as a null-terminated C character
string.

The maximum length m can be omitted in the declaration. But if the length is
specified at compile time, the runtime library will check that the actual length
does not exceed the value of m.

A fixed-length array of any datatype is transmitted as a sequence of n elements
of that datatype.

A variable-length away of any datatype is transmitted as an unsigned integer
that specifies the actual number of elements in the array, followed by the array
elements.

The maximum number of elements m can be omitted in the declaration. But if
this maximum is specified at compile time, the runtime library will check that
the actual length does not exceed the value of m.

A structure is transmitted by transmitting each member in turn. rpcgen also
generates a typedef for the specified variable name.

A discriminated union is composed of an integer discriminant followed by a set
of datatypes (called arms) based on the value of the discriminant. In Fig-
ure 16.14, we show that the discriminant must be an int, but it can also be an
unsigned int, an enum, or a boo1 (all of which are transmitted as a 32-bit
integer value). When a discriminated union is transmitted, the 32-bit value of

430 Sun RPC Chapter 16

the discriminant is transmitted first, followed only by the arm value corre-
sponding to the value of the discriminant. The default declaration is often
void, which means that nothing is transmitted following the 32-bit value of
the discriminant. We show an example of this shortly.

15. Optional data is a special type of union that we describe with an example in
Figure 16.24. The XDR declaration looks like a C pointer declaration, and that
is what the generated . h file contains.

Figure 16.16 summarizes the encoding used by XDR for its various datatypes.

Example: Using XDR without RPC

We now show an example of XDR but without RPC. That is, we will use XDR to encode
a structure of binary data into a machine-independent representation that can be pro-
cessed on other systems. This technique can be used to write files in a machine-
independent format or to send data to another computer across a network in a machine-
independent format. Figure 16.15 shows our RPC specification file, data. x, which is
really just an XDR specification file, since we do not declare any RPC procedures.

The filename suffix of . x comes from the term "XDR specification file." The RPC specification
(RFC 1831) says that the RPC language, sometimes called RPCL, is identical to the XDR lan-
guage (which is defined in RFC 1832), except for the addition of a program definition (which
describes the program, versions, and procedures).

sunrpc/xdrl /data.x
1 enum result-t {

2 RESULT-INT = 1, RESULT-DOUBLE = 2
3 1;

4 union union-arg switch (result-t result) {

5 case RESULT-INT:
6 int intval ;
7 case RESULT-DOUBLE:
8 double doubleval;
9 default:
10 void;
11 1;

12 struct data {

13 short short-arg;
14 long long-arg ;

15 string vstring-arg < 128 >; / * variable-length string * /
16 opaque f opaque-arg [3 I ; / * fixed-length opaque * /
17 opaque vopaque-arg o; / * variable-length opaque * /
18 short f short-arg [4] ; / * fixed-length array * /
19 long vlong-arg o; / * variable-length array * /
2 0 union-arg uarg;

Figure 16.15 XDR specification file.

on 16.8 XDR. External Data Representation 431

MSB rrri"l same encoding format for unsigned char, short, unsigned short,
char :

int, unsigned int, long, unsigned long, bool, enum
byte 0 1 2 3

MSB LSB

hyper: same encoding format for unsigned hyper

byte0 1 2 3 4 5 6 7

1-bit sign
float: %bit exponent

byteO
23-bit fraction

expo fraction

I 1-bit sign
double : I I ll-bit exponent

byt!oi exP 2 3 fraction ' 4 ' 5 ' 6 ' 7152htfrad0n

l-bit sign
15-bit exponent

2 ' 3 ' 4 ' 5 6 ' 7 ' 8 fraction ' 9 ~10'11'12'13'14115112-bitfracti0n

opaque [nl : ~~~~~I fixedlength opaque data

byte 0
;bytes so thar(n + r) mod 4 = 0

h h

I L . , 8 I I lr,l I lh,,l I
0 1 m-1

4bytes ;bytes so t h a r h + r) mod 4 = 0

opaque <m>:

I\

string <m> :

* 0 1 m-1
4 bytes * ;bytes so thar(m + r) mod 4 = 0

type [n] :

. . ,

union: I discriminant I impliedarm I

variable-length opaque data lengthm

length m

type <m> :

--bytes

Figure 16.16 Encoding used by XDR for its various datatypes.

size of each el;ment a m ~ l 8 ~ l e of 4 bytes

element 0

I\

. . .

. . .

4bytes size of each eGment a mulSple of 4 bytes

I\

element 1

variable-length
array

#elements m

0

0 . . . 0 string

Y ...
I\

element 0

. . . 0

element n-1

element 1

fixed-length array

. . . element m-1

432 Sun RPC
7

Chapter 16

Declare enumeration and discriminated union

1-11 We declare an enumeration with two values, followed by a discriminated union that
uses this enumeration as the discriminant. If the discriminant value is RESULT-INT,
then an integer value is transmitted after the discriminant value. If the discriminant
value is RESULT-DOUBLE, then a double precision floating point value is transmitted
after the discriminant value; otherwise, nothing is transmitted after the discriminant
value.

Declare structure

12-21 We declare a structure containing numerous XDR datatypes.

Since we do not declare any RPC procedures, if we look at all the files generated by
rpcgen in Figure 16.4, we see that the client stub and server stub are not generated by
rpcgen. But it still generates the d a t a . h header and the data-xdr . c file containing
the XDR functions to encode or decode the data items that we declared in our data .x
file.

Figure 16.17 shows the d a t a . h header that is generated. The contents of this
header are what we expect, given the conversions shown in Figure 16.14.

In the file data-xdr . c, a function is defined named xdr-data that we can call to
encode or decode the contents of the d a t a structure that we define. (The fundion name
suffix of -data comes from the name of our structure in Figure 16.15.) The first pro-
gram that we write is called w r i t e . c, and it sets the values of all the variables in the
d a t a structure, calls the xdr-data function to encode all the fields into XDR format,
and then writes the result to standard output.

Figure 16.18 shows this program.

Set structure members to some nonzero value

12-32 We first set all the members of the d a t a structure to some nonzero value. In the
case of variable-length fields, we must set the count and that number of values. For the
discriminated union, we set the discriminant to RESULT-INT and the integer value to
123.

Allocate suitably aligned buffer

We call malloc to allocate room for the buffer that the XDR routines will store into,
since it must be aligned on a 4-byte boundary, and just allocating a cha r array does not
guarantee this alignment.

Create XDR memory stream

The runtime function xdrmem-create initializes the buffer pointed to by buff for
XDR to use as a memory stream. We allocate a variable of type XDR named xhandle
and pass the address of this variable as the first argument. The XDR runtime maintains
the information in this variable (buffer pointer, current position in the buffer, and so on).
The final argument is XDR-ENCODE, which tells XDR that we will be going from host
format (our ou t structure) into XDR format.

ion 16.8 XDR: External Data Representation 433

2 * Please do not edit this file. It was generated using rpcgen.
3 * /

6 enum result-t {

7 RESULT-INT = 1,
8 RESULT-DOUBLE = 2
9 1 ;
10 typedef enum result-t result-t;

struct union-arg I
result-t result;
union {

int intval;
double doubleval;

) union-arg-u;
1 ;
typedef struct union-arg union-arg;

19 struct data {

20 short short-arg;
21 long long-arg;
2 2 char *vstring-arg;
2 3 char f opaque-arg [3] ;
24 struct {

2 5 u-int vopaque-arg-len;
2 6 char "vopaque-arg-val;
27 1 vopaque-arg:
28 short fshort-arg 141 ;
29 struct {

3 0 u-int vlong-arg-len;
31 long "vlong-arg-val;
32) vlong-arg;
33 union-arg uarg;
34 1 ;
35 typedef struct data data;

3 6 / * the xdr functions * /
37 extern bool-t xdr-result-t(XDR *, result-t *) ;

38 extern bool-t xdr-union-arg(XDR *, union-arg *) ;

39 extern bool-t xdr-data(XDR *, data *) ;

Figure 16.17 Header generated by rpcgen from Figure 16.15.

434 Sun RPC

7

Chapter 16

sunrpclxdrl 1write.c
1 #include "unpipc-h"
2 #include "data. h"

3 int
4 main(int argc, char **argv)
5 {

/ * the structure whose values we store */
/ * the result of the XDR encoding * /

XDR xhandl e ;
data out;
char *buff;
char vop[2] ;
long vlong[31;
u-int size;

out-short-arg = 1;
out.long-arg = 2;
out.vstring-arg = "hello, world"; / * pointer assignment

out.fopaque-arg[O] = 99; / * fixed-length opaque * /
out. £opaque-arg[ll = 88;
out.fopaque-arg[2] = 77;

vop[Ol = 33; / * variable-length opaque * /
vop[l] = 44;
out.vopaque-arg.vopaque-arg-len = 2;
out.vopaque~arg.vopaque~arggval = vop;

out.fshort-arg[O] = 9999; / * fixed-length array * /
out.fshort-arg[ll = 8888;
out.fshort-arg[2] = 7777;
out.fshort-arg[31 = 6666;

vlong[O] = 123456; / * variable-length array * /
vlong[l] = 234567;
vlong[2] = 345678;
out.vlong~arg.vlong~arg~len = 3;
out.vlong~arg.vlong~arg~val = vlong;

out-uarg-result = RESULT-INT;
out.uarg.union-arg-u.intva1 =

buff = Malloc(BUFFS1ZE); /
xdrmem-create (&xhandle , buff,

if (xdr-data(&xhandle, &out)
err-quit("xdr-data error"

/ * discriminated union * /
123 ;

must be aligned on 4-byte boundary * /
BUFFSIZE, XDR-ENCODE);

= TRUE)

size = xdrgetpos(&xhandle);
Write(STD0UT-FILENO, buff, size);

exit (0) ;
I

sunrpc/xdrl /writer
Figure 16.18 Initialize the data structure and write it in XDR format.

m 16.8 XDR: External Data Representation 435

Encode the structure

-36 We call the xdr-data function, which was generated by rpcgen in the file
data-xdr. c, and it encodes the out structure into XDR format. A return value of
TRUE indicates success.

Obtain size of encoded data and write

-38 The function xdr-getpos returns the current position of the XDR runtime in the
output buffer (i.e., the byte offset of the next byte to store into), and we use this as the
size of our wri te .

Figure 16.19 shows our read program, which reads the file that was written by the
previous program, printing the values of all the members of the da ta structure.

Allocate suitably aligned buffer

-13 We call malloc to allocate a buffer that is suitably aligned and read the file that was
generated by the previous program into the buffer.

Create XDR memory stream, inltlallze buffer, and decode

-17 We initialize an XDR memory stream, this time specifying XDR-DECODE to indicate
that we want to convert from XDR format into host format. We initialize our i n struc-
ture to 0 and call xdr-data to decode the buffer buff into our structure in. We must
initialize the XDR destination to 0 (the i n structure), because some of the XDR routines
(notably xdr-string) require this. xdr-data is the same function that we called
from Figure 16.18; what has changed is the final argument to xdrmem-create: in the
previous program, we specified XDR-ENCODE, but in this program, we specify
XDR-DECODE. This value is saved in the XDR handle (xhandle) by xdrmem-create
and then used by the XDR runtime to determine whether to encode or decode the data.

Print structure values

8-42 We print all the members of our d a t a structure.

Free any XDR-allocated memory

We call xdr-f r e e to free the dynamic memory that the XDR runtime might have
allocated (see also Exercise 16.10).

We now run our w r i t e program on a Sparc, redirecting standard output to a file
named data:

solaris % w r i t e > data
solaris % 1s -1 d a t a
w - r w - r - 1 rstevens other1 76 Apr 23 12:32 data

We see that the file size is 76 bytes, and that corresponds to Figure 16.20, which details
the storage of the data (nineteen 4-byte values).

436 Sun RPC Chapter 16

sunrpclxdr1lread.c
1 #include "unpipc-h"
2 #include "data.hl'

3 int
4 main(int argc, char **argv)
5 {

XDR xhandl e ;
int i ;
char *buff;
data in;
ssize-t n;

buff = Malloc(BUFFS1ZE); I* must be aligned on 4-byte boundary *I
n = Read(STD1N-FILENO, buff, BUFFSIZE);
printf("read %ld bytes\nU, (long) n);

xdrmem-create(&xhandle, buff, n, XDR-DECODE);
memset(&in, 0, sizeof(in));
if (xdrdata(&xhandle, &in) != TRUE)

err-quit("xdr-data error");

printf("short-arg = %d, long-arg = %Id, vstring-arg = '%s'\nU,
in.short-arg, in.long-arg, in.vstring-arg);

printf("vopaqueo = ") ;

for (i = 0; i < in.vopaque-arg.vopaque-arg-len; i++)
print£(" %d", in.vopaque-arg.vopaque-arg-val[i]);

printf ('\nW) ;

printf("vlongc> = ") ;

for (i = 0; i < in-vlong-arg-vlong-arg-len; i++)
print£(" %Id", in.vlong~arg.vlong~arg~val[i]);

printf("\n");

switch (in.uarg.result) [
case RESULT-INT:

printf("uarg (int) = %d\nU, in.uarg.union-arg-u.intva1);
break;

case RESULT-DOUBLE:
printf("uarg (double) = %g\nU, in.uarg.union~arg~u.doubleval);
break;

default :
printf("uarg (void)\nn);
break;

1

xdr-free(xdr-data, (char *) &in);

exit (0) ;
45 1

sunrpc/xdrl/read.c

Figure 16.19 Read the data structure in XIlR format and print the values.

on 16.8 XDR: External Data Representation 437

4 bytes

short I 1 I

string <128>

opaque 13 I
r

opaque <>(

short [41

234567
345678

union

Figure 16.20 Format of the XDR stream written by Figure 16.18.

If we read this binary data file under BSD/OS or under Digital Unix, the results are
what we expect:

bsdi % read < data
read 76 bytes
short-arg = 1, long-arg = 2, vstring-arg = 'hello, world'
£opaque[] = 99, 88, 77
vopaqueo = 33 44
£short-arg[l = 9999, 8888, 7777, 6666
vlongo = 123456 234567 345678
uarg (int) = 123

alpha % read < data
read 76 bytes
short-arg = 1, long-arg = 2, vstring-arg = 'hello, world'
£opaque[] = 99, 88, 77
vopaqueo = 33 44
£short-arg[l = 9999, 8888, 7777, 6666
vlongc> = 123456 234567 345678
uarg (int) = 123

~mple: Calculating the Buffer Size

In our previous example, we allocated a buffer of length BUFFSIZE (which is defined to
be 8192 in our unpipc . h header, Figure C.l), and that was adequate. Unfortunately, no
simple way exists to calculate the total size required by the XDR encoding of a given

438 Sun RPC Chapter 16

structure. Just calculating the sizeof the structure is wrong, because each member is
encoded separately by XDR. What we must do is go through the structure, member by
member, adding the size that will be used by the XDR encoding of each member. For
example, Figure 16.21 shows a simple structure with three members.

sunrpclxdrl lexarnp1e.x
lconst M A X C = 4 ;

2 struct example {

3 short a;
4 double b;
5 short c[MAXCl ;

6 I ;
sunrpc/xdrl lexamp1e.x

Figure 16.21 XDR specification of a simple structure.

The program shown in Figure 16.22 calculates the number of bytes that XDR requires to
encode this structure to be 28 bytes.

sunrpclxdrl lexamp1e.c
1 #include "unpipc.h"
2 #include "examp1e.h"

3 int
4 main(int argc, char **argv)

5 {
6 int size;
7 example £00;

8 size = RNDUP(sizeof(foo.a)) + ~NDUP(sizeof(foo.b)) +
9 RNDUP(sizeof(foo.C[O])) * MAXC;

10 printf("size = %d\nW, size);
11 exit (0) ;
12 }

sunrpclxdrl lexamp1e.c
Figure 16.22 Program to calculate the number of bytes that XDR encoding requires.

8-9 The macro RNDUP is defined in the <rpc /xdr . h> header and rounds its argument
up to the next multiple of BYTES-PER-XDR-UNIT (4). For a fixed-length array, we cal-
culate the size of each element and multiply this by the number of elements.

The problem with this technique is variable-length datatypes. If we declare string
d< 10 >, then the maximum number of bytes required is RNDuP (s i z eo f (int (for the
length) plus RNDUP (s i z eo f (char) * 10) (for the characters). But we cannot calculate
a size for a variable-length declaration without a maximum, such as float e o . The
easiest solution is to allocate a buffer that should be larger than needed, and check for
failure of the XDR routines (Exercise 16.5).

Example: Optional Data

. There are three ways to specify optional data in an XDR specification file, all of which
we show in Figure 16.23.

r
Section 16.8 XDR: External Data Representation 439

sunrpclxdrl /opt1 .x
1 union optlong switch (boo1 flag) {

2 case TRUE:
3 long val;
4 case FALSE:
5 void;
6 I;

7 struct args {

8 optlong argl; I* union with boolean discriminant *I
9 long arg2 c 1 >; I* variable-length array with one element *I
10 long *arg3; I* pointer *I
11 I;

sunrpc/xdrl /opt1 .x

Figure 16.23 XDR specification file showing three ways to specify optional data.

Declare union with boolean discriminant

1-8 We define a union with TRUE and FALSE arms and a structure member of this
type. When the discriminant flag is TRUE, a long value follows; otherwise, nothing
follows. When encoded by the XDR runtime, this will be encoded as either

a 4-byte flag of 1 (TRUE) followed by a 4-byte value, or
a 4-byte flag of 0 (FALSE).

Declare variable-length array

9 When we specify a variable-length array with a maximum of one element, it will be
coded as either

a 4-byte length of 1 followed by a 4-byte value, or
a 4-byte length of 0.

Declare XDR pointer

10 A new way to specify optional data is shown for arg3 (which corresponds to the
last line in Figure 16.14). This argument will be coded as either

a 4-byte value of I followed by a 4-byte value, or
a 4-byte value of 0

depending on the value of the corresponding C pointer when the data is encoded. If the
pointer is nonnull, the first encoding is used (8 bytes), else the second encoding is used
(4 bytes of 0). This is a handy way of encoding optional data when the data is refer-
enced in our code by a pointer.

One implementation detail that makes the first two declarations generate identical
encodings is that the value of TRUE is 1, which is also the length of the variable-length
array when one element is present.

Figure 16.24 shows the . h file that is generated by rpcgen for this specification file.
14-21 Even though all three arguments will be encoded the same by the XDR runtime, the

way we set and fetch their values in C is different for each one.

440 Sun RPC Chapter 16

sunrpclxdrl /opt1 .h
7 struct optlong {

8 int flag;
9 union {

10 long val;
11 I optlong-u;
12 I;
13 typedef struct optlong optlong;

14 struct args {

15 optlong argl;
16 struct {

17 u-int arg2Jen;
18 long *arg2_val;
19 I arg2;
20 long *arg3;
23. I;
22 typedef struct args args;

sunrpclxdrl /opt1 .h
Figure 16.24 C header generated by rpcgen for Figure 16.23.

sunrpclxdrl lopt1z.c
1 #include "unpipc . h"

3 int
4 main(int argc, char **argv)

int i ;
XDR xhandl e ;
char *buff;
long *lptr;
args out;
size-t size:

out.argl.flag = FALSE;
out.arg2.arg2-len = 0;
out .arg3 = NULL;

buff = Malloc(BUFFS1ZE); I* must be aligned on 4-byte boundary *I
xdrmem-create(&xhandle, buff, BUFFSIZE, XDR-ENCODE);

if (xdr-args(&xhandle, &out) != TRUE)
errquit("xdr-args error");

size = xdrgetpos(&xhandle);

lptr = (long *) buff;
for (i = 0; i < size; i += 4)

printf("%ld\n", (long) ntohl(*lptr++));

exit (0) ;

sunrpclxdrl 1optlz.c
Figure 16.25 None of the three arguments will be encoded.

on 16.8 XDR: External Data Representation 441

Figure 16.25 is a simple program that sets the values of the three arguments so that
none of the long values are encoded.

Set values

!-id We set the discriminant of the union for the first argument to FALSE, the length of
the variable-length array to 0, and the pointer corresponding to the third argument to
NULL.

Allocate suitably aligned buffer and encode

5-19 We allocate a buffer and encode our out structure into an XDR memory stream.

Print XDR buffer

7-22 We print the buffer, one 4-byte value at a time, using the ntohl function (host-te
network long integer) to convert from the XDR big-endian byte order to the host's byte
order. This shows exactly what has been encoded into the buffer by the XDR runtime:

solaris % optlz
0
0
0

As we expect, each argument is encoded as 4 bytes of 0 indicating that no value follows.

Figure 16.26 is a modification of the previous program that assigns values to all
three arguments, encodes them into an XDR memory stream, and prints the stream.

Set values

2-18 TO assign a value to the union, we set the discriminant to TRUE and set the value.
To assign a value to the variable-length array, we set the array length to 1, and its associ-
ated pointer points to the value. To assign a value to the third argument, we set the
pointer to the address of the value.

When we run this program, it prints the expected six 4-byte values:

solaris % opt1
1 discriminant value of TRUE

variable-length array length

flag for nonnull pointer variable

ample: Linked List Processing

Given the capability to encode optional data from the previous example, we can extend
XDR's pointer notation and use it to encode and decode linked lists containing a vari-
able number of elements. Our example is a linked list of name-value pairs, and Fig-
ure 16.27 shows the XDR specification file.

1-5 Our my1 is t structure contains one name-value pair and a pointer to the next struc-
ture. The last structure in the list will have a null next pointer.

442 Sun RPC Chapter 16

sunrpclxdrl /opt1 .c
1 #include "unpipc.hU
2 #include "opt1.h"

3 int
4 main(int argc, char **argv)
5 I

int i ;
XDR xhandle ;
char *buff;
long lva12, lva13, *lptr;
args out;
size-t size;

out.argl.flag = TRUE;
out.argl.optlong~u.val = 5;

buff = Malloc(BUFFS1ZE); / * must be aligned on 4-byte boundary * /
xdrmem-create(&xhandle, buff, BUFFSIZE, XDR-ENCODE);

if (xdr-args(&xhandle, &out) != TRUE)
errquit("xdr-args error");

size = xdrgetpos(&xhandle);

lptr = (long *) buff;
for (i = 0; i < size; i += 4)

printf("%ld\nW, (long) ntohl(*lptr++));

28 I sunrpclxdrl lopt1.c

Figure 16.26 Assign values to all three arguments from Figure 16.23.

sunrpclxdrl lopt2.x
1 struct mylist {

2 string name o;
3 long value;
4 mylist *next;
5 I;

6 struct args {

7 mylist *list;
8 I; sunrpc/xdrl Iopt2.x

Figure 16.27 XDR specification for linked list of name-value pairs.

Figure 16.28 shows the . h file generated by rpcgen from Figure 16.27.

Figure 16.29 is our program that initializes a linked list containing three name-value
pairs and then calls the XDR runtime to encode it.

m 16.8 XDR: External Data Representation 443

sunrpclxdrl lopt2.h
7 struct mylist {

8 char *name;
9 long value;
10 struct mylist *next;
11 I ;
12 typedef struct mylist mylist;

13 struct args {

14 mylist *list;
15 I;
16 typedef struct args args;

sunrpc/xdrl lopt2.h
Figure 16.28 C declarations corresponding to Figure 16.27.

sunrpclxdrl lopt2.c
1 #include "unpipc.h"
2 #include "opt2.h"

int
main(int argc, char **argv)
{

int i ;
XDR xhandl e ;
long *lptr:
args out; / * the structure that we fill * /
char *buff; / * the XDR encoded result * /
mylist nameval[4] ; / * up to 4 list entries * /
size-t size;

nameval[2].name = "namel";
nameval[2] .value = 0x1111;
nameval [2] . next = &nameval [1 I ;
nameval [1 I . name = " namee2 " ;
nameval[l].value = 0x2222;
nameval [l] . next = &nameval [01 ;
nameval[O].name = "nameee3";
nameval[O].value = 0x3333;
nameval [01 . next = NULL;

23 buff = Malloc(BUFFS1ZE); / * must be aligned on 4-byte boundary * /
24 xdrmem-create(&xhandle, buff, BUFFSIZE, XDR-ENCODE);

25 if (xdr-args(&xhandle, &out) != TRUE)
26 err-quit("xdr-args error");
2 7 size = xdrgetpos(&xhandle);

28 lptr = (long *) buff;
29 for (i = 0; i < size; i += 4)
3 0 printf("%8lx\n", (long) ntohl(*lptr++));

31 exit (0) ;
32 I

sunrpclxdrl lopt2.c
Figure 16.29 Initialize linked list, encode it, and print result.

444 Sun RPC Chapter 16

lnltialize linked list

11-22 We allocate room for four list entries but initialize only three. The first entry is
nameval [2 I , then nameval [1 I , and then nameval [0 I. The head of the linked list
(out. list) is set to &nameval[2 I . Our reason for initializing the list in this order is
just to show that the XDR runtime follows the pointers, and the order of the linked list
entries that are encoded has nothing to do with which array entries are being used. We
have also initialized the values to hexadecimal values, because we will print the long
integer values in hex, because this makes it easier to see the ASCII values in each byte.

The output shows that each list entry is preceded by a 4-byte value of 1 (which we
can consider as either a length of 1 for a variable-length array, or as the boolean value
TRUE), and the fourth entry consists of just a 4-byte value of 0, indicating the end of the
list.

solaris % opt2
1
5

6e616d65
31000000

1111
1
6

6e616d65
65320000

2222
1
7

6e616d65
65653300

3333
0

one element follows
string length
n a m e
1,3 bytes of pad
corresponding value
one element follows
string length
n a m e
e 2,2 bytes of pad
corresponding value
one element follows
string length
n a m e
e e 3,1 byteofpad
corresponding value
no element follows: end-of-list

If XDR decodes a linked list of this form, it will dynamically allocate memory for
the list entries and pointers, and link the pointers together, allowing us to traverse the
list easily in C.

16.9 RPC Packet Formats

Figure 16.30 shows the format of an RPC request when encapsulated in a TCP segment.
Since TCP is a byte stream and provides no message boundaries, some method of

delineating the messages must be provided by the application. Sun RPC defines a record
as either a request or reply, and each record is composed of one or more fragments. Each
fragment starts with a 4-byte value: the high-order bit is the final-fragment flag, and the
low-order 31 bits is the count. If the final-fragment bit is 0, then additional fragments
make up the record.

This 4-byte value is transmitted in the big-endian byte order, the same as all 4-byte XDR inte-
gers, but this field is not in standard XDR format because XDR does not transmit bit fields.

r

Section 16.9 RPC Packet Formats 445

cred

verf

unsigned i n t xic

enum msg-typc

unsigned i n t rpcverz

unsigned i n t pro!

unsigned i n t verz

unsigned i n t proc

enum auth-flavo~

enum auth-f lavo:

f

IP header

TCP header

flag + length

transaction ID (XID)

message type (0 = call)

RPC version (2)

program number
--

version number

procedure number

authentication flavor

credential length

credential data

authentication flavor

verifier length

verifier data

procedure
arguments

...

20 bytes

20

4

4

4

4

4

4

4

4

4

up to
400 bytes

4

4

up to
400 bytes

Figure 16.30 RPC request encapsulated in a TCP segment.

If UDP is being used instead of TCP, the first field following the UDP header is the
XID, as we show in Figure 16.32.

With TCP, virtually no limit exists to the size of the RPC request and reply, because any num-
ber of fragments can be used and each fragment has a 31-bit length field. But with UDP, the

446 Sun RPC Chapter 16

request and reply must each fit in a single UDP datagram, and the maximum amount of data
in this datagram is 65507 bytes (assuming IPv4). Many implementations prior to the TI-WC
package further limit the size of either the request or reply to around 8192 bytes, so if more
than about 8000 bytes is needed for either the request or reply, TCP should be used.

We now show the actual XDR specification of an RPC request, taken from RFC 1831.
The names that we show in Figure 16.30 were taken from this specification.

enum auth-flavor {

AUTH-NONE = 0,
AUTH-SYS = 1,
AUTH-SHORT = 2

/ * and more to be defined * /

1;

struct opaque-auth {

auth-flavor flavor;
opaque body<400>;

1;

enum msg-type {

CALL = 0,
REPLY = 1

1;

struct call-body {

unsigned int rpcvers; / * RPC version: must be 2 * /
unsigned int prog; / * program number * /
unsigned int vers; / * version number * /
unsigned int proc; / * procedure number * /
opaque-auth cred; / * caller's credentials * /
opaque-auth verf; / * caller's verifier * /

/ * procedure-specific parameters start here * /
1;

struct rpc-msg {

unsigned int xid;
union switch (msg-type mtype) {

case CALL:
call-body cbody;

case REPLY:
reply-body rbody;

1 body;
1;

The contents of the variable-length opaque data containing the credentials and veri-
fier depend on the flavor of authentication. For null authentication (the default), the
length of the opaque data should be 0. For Unix authentication, the opaque data con-
tains the following information:

struct authsysqarms {

unsigned int stamp;
string machinename<255>;
unsigned int uid;
unsigned int gid;
unsigned int gids<l6>;

1;

Section 16.9 RPC Packet Formats 447

When the credential flavor is AUTH-SYS, the verifier flavor should be AUTH-NONE.

The format of an RPC reply is more complicated than that of a request, because
errors can occur in the request. Figure 16.31 shows the possibilities.

Figure 16.32 shows the format of a successful RPC reply, this time showing the UDP
encapsulation.

We now show the actual XDR specification of an RPC reply, taken from RFC 1831.

enum reply-stat {

MSG-ACCEPTED = 0,
MSG-DENIED = 1

1;

enum accept-stat {

SUCCESS = 0, / * RPC executed successfully * /
PROG-UNAVAIL = 1, / * program # unavailable * /
PROG-MISMATCH = 2, / * version # unavailable * /
PROC-UNAVAIL = 3, / * procedure # unavailable * /
GARBAGE-ARGS = 4, / * cannot decode arguments * /
SYSTEM-ERR = 5 / * memory allocation failure, etc. * /

1;

struct accepted-reply {

opaque-auth verf;
union switch (accept-stat stat) I
case SUCCESS:
opaque results[O]; / * procedure-specific results start here * /

case PROG-MISMATCH:
struct {

unsigned int low; / * lowest version # supported * /
unsigned int high; / * highest version # supported * /

1 mismatch-info;
default: / * PROG-UNAVAIL, PROC-UNAVAIL, GARBAGE-ARGS, SYSTEM-ERR * /
void;

1 reply-data;
1;

union reply-body switch (reply-stat stat) {

case MSG-ACCEPTED:
accepted-reply areply;

case MSG-DENIED:
rejected-reply rreply;

1 reply;

448 Sun RPC Chapter 16

MSG-ACCEPTED MSG-DENIED

/ \
SUCCESS PROG-UNAVAIL RPC-MISMATCH / \ AUTH-ERROR

PROG-MISMATCH
PROC-UNAVAIL

GARBAGE-ARGS
SYSTEM-ERR

Figure 16.31 Possible RPC replies.

ver f

IP header

UDP header

en- reply- stat I reply status (0 = accepted)

verifier length

opaque body<400> 1 I verifier data

C
enum accept-stat accept status (0 = success)

procedure
results
. . .

20 bytes

8

4

4

4

4

4

lp to
100 bytes

4

Figure 16.32 Successful RPC reply encapsulated as a UDP datagram.

Section 16.10 Summary 449

The call can be rejected by the server if the RPC version number is wrong or if an
authentication error occurs.

enum reject-stat {

RPC-MISMATCH = 0, / * RPC version number not 2 * /
AUTH-ERROR = 1 / * authentication error * /

1;

enum auth-stat {

AUTH-OK = 0, / * success * /
/ * following are failures at server end * /

AUTH-BADCRED = 1, / * bad credential (seal broken) * /
AUTH-REJECTEDCRED = 2, / * client must begin new session * /
AUTH-BADVERF = 3, / * bad verifier (seal broken) * /
AUTH-REJECTEDVERF = 4, / * verifier expired or replayed * /
AUTH-TOOWEAK = 5, / * rejected for security reasons * /

/ * following are failures at client end * /
AUTH-INVALIDRESP = 6, / * bogus response verifier * /
AUTH-FAILED = 7 / * reason unknown * /

1;

union rejectehreply switch (reject-stat stat) {

case RPC-MISMATCH:
struct {

unsigned int low; / * lowest RPC version # supported * /
unsigned int high; / * highest RPC version # supported * /

1 mismatch-info;
case AUTH-ERROR:

auth-stat stat;

1;

16.10 Summary

Sun RPC allows us to code distributed applications with the client running on one host
and the server on another host. We first define the server procedures that the client can
call and then write an RPC specification file that describes the arguments and return
values for each of these procedures. We then write the client m a i n function that calls
the server procedures, and the server procedures themselves. The client code appears
to just call the server procedures, but underneath the covers, network communication is
taking place, hidden by the various RPC runtime routines.

The rpcgen program is a fundamental part of building applications using RPC. It
reads our specification file, and generates the client stub and the server stub, as well as
generating functions that call the required XDR runtime routines that will handle all the
data conversions. The XDR runtime is also a fundamental part of this process. XDR
defines a standard way of exchanging various data formats between different systems
that may have different-sized integers, different byte orders, different floating point for-
mats, and the like. As we showed, we can use XDR by itself, independent of the RPC
package, just for exchanging data in a standard format using any form of communica-
tions to actually transfer the data (programs written using sockets or XTI, floppy disks,
CD-ROMs, or whatever).

450 Sun RPC Chapter 16

Sun RPC provides its own form of naming, using 32-bit program numbers, 32-bit
version numbers, and 32-bit procedure numbers. Each host that runs an RPC server
must run a program named the port mapper (now called RPCBIND). RPC servers bind
ephemeral TCP and UDP ports and then register with the port mapper to associate
these ephemeral ports with the programs and versions provided by the server. When
an RPC client starts, it contacts the port mapper on the server's host to obtain the
desired port number, and then contacts the server itself, normally using either TCP or
UDP.

By default, no authentication is provided by RPC clients, and RPC servers handle
any client request that they receive. This is the same as if we were to write our own
client-server using either sockets or XTI. Sun RPC provides three additional forms of
authentication: Unix authentication (providing the client's hostname, user ID, and
group IDS), DES authentication (based on secret key and public key cryptography), and
Kerberos authentication.

Understanding the timeout and retransmission strategy of the underlying RPC
package is essential to using RPC (or any form of network programming). When a reli-
able transport layer such as TCP is used, only a total timeout is needed by the RPC
client, as any lost or duplicated packets are handled completely by the transport layer.
When an unreliable transport such as UDP is used, however, the RPC package has a
retry timeout in addition to a total timeout. A transaction ID is used by the RPC client
to verify that a received reply is the one desired.

Any procedure call can be classified as having exactly-once semantics, at-most-once
semantics, or at-least-once semantics. With local procedure calls, we normally ignore
this issue, but with RPC, we must be aware of the differences, as well as understanding
the difference between an idempotent procedure (one that can be called any number of
times without harm) and one that is not idempotent (and must be called only once).

Sun RPC is a large package, and we have just scratched the surface. Nevertheless,
given the basics that have been covered in this chapter, complete applications can be
written. Using rpcgen hides many of the details and simplifies the coding. The Sun
manuals refer to various levels of RPC coding-the simplified interface, top level, inter-
mediate level, expert level, and bottom level-but these categorizations are meaning-
less. The number of functions provided by the RPC runtime is 164, with the division as
follows:

11 auth- functions (authentication),
26 clnt- functions (client side),
5 pmap- functions (port mapper access),

24 rpc- functions (general),
44 svc- functions (server side), and
54 xdr functions (XDR conversions).

This compares to around 25 functions each for the sockets and XTI APIs, and less than
10 functions each for the doors API and the Posix and System V message queue APIs,
semaphore APIs, and shared memory APIs. Fifteen functions deal with Posix threads,
10 functions with Posix condition variables, 11 functions with Posix read-write locks,
and one function with fcntl record locking.

r
Chapter 16 Exercises 451

Exercises

When we start one of our servers, it registers itself with the port mapper. But if we termi-
nate it, say with our terminal interrupt key, what happens to this registration? What hap-
pens if a client request arrives at some time later for this server?

We have a client-server using RPC with UDP, and it has no server reply cache. The client
sends a request to the server but the server takes 20 seconds before sending its reply. The
client times out after 15 seconds, causing the server procedure to be called a second time.
What happens to the server's second reply?

The XDR s t r i n g datatype is always encoded as a length followed by the characters.
What changes if we want a fixed-length string and write, say, char c [l o] instead of
s t r i n g s d o > ?

Change the maximum size of the s t r i n g in Figure 16.15 from 128 and 10, and run the
w r i t e program. What happens? Now remove the maximum length specifier from the
s t r i n g declaration, that is, write s t r i n g v s t r i n g - a r g o and compare the
data-xdr . c file to one that is generated with a maximum length. What changes?

Change the third argument to xdrmem-create in Figure 16.18 (the buffer size) to 50 and
see what happens.

In Section 16.5, we described the duplicate request cache that can be enabled when UDP is
being used. We could say that TCP maintains its own duplicate request cache. What are
we referring to, and how big is this TCP duplicate request cache? (Hint: How does TCP
detect the receipt of duplicate data?)

Given the five elements that uniquely identify each entry in the server's duplicate request
cache, in what order should these five values be compared, to require the fewest number of
comparisons, when comparing a new request to a cache entry?

When watching the actual packets for our client-server from Section 16.5 using TCP, the
size of the request segment is 48 bytes and the size of the reply segment is 32 bytes (ignor-
ing the IPv4 and TCP headers). Account for these sizes (eg , Figures 16.30 and 16.32).
What will the sizes be if we use UDP instead of TCP?

Can an RPC client on a system that does not support threads call a server procedure that
has been compiled to support threads? What about the differences in the arguments that
we described in Section 16.2?

16.10 In our r ead program in Figure 16.19, we allocate room for the buffer into which the file is
read, and that buffer contains the pointer vstr ing- arg. But where is the string stored
that is pointed to by vstr ing- arg? Modify the program to verify your assumption.

16.11 Sun RPC defines the null procedure as the one with a procedure number of 0 (which is why
we always started our procedure numbering with 1, as in Figure 16.1). Furthermore, every
server stub generated by rpcgen automatically defines this procedure (which you can eas-
ily verify by looking at any of the server stubs generated by the examples in this chapter).
The null procedure takes no arguments and returns nothing, and is often used for verify-
ing that a given server is running, or to measure the round-trip time to the server. But if
we look at the client stub, no stub is generated for this procedure. Look up the manual
page for the c ln t - ca l l function and use it to call the null procedure for any of the
servers shown in this chapter.

452 Sun RPC Chapter 16

16.12 Why does no entry exist for a message size of 65536 for Sun RPC using UDP in Figure A.2?
Why do no entries exist for message sizes of 16384 and 32768 for Sun RPC using UDP in
Figure A.4?

16.13 Verify that omitting the call to xdr-f ree in Figure 16.19 introduces a memory leak. Add
the statement

£ o r (; ;) {

immediately before calling xdrmem-create, and put the ending brace immediately
before the call to xdr-f ree. Run the program and watch its memory size using ps. Then
move the ending brace to follow the call to xdr-f ree and run the program again, watch-
ing its memory size.

Epilogue

This text has described in detail four different techniques for interprocess communica-
tion (IPC):

1. message passing (pipes, FIFOs, Posix and System V message queues),

2. synchronization (mutexes, condition variables, read-write locks, file and record
locks, Posix and System V semaphores),

3. shared memory (anonymous, named Posix, named System V), and

4. procedure calls (Solaris doors, Sun RPC).

Message passing and procedure calls are often used by themselves, that is, they nor-
mally provide their own synchronization. Shared memory, on the other hand, usually
requires some form of application-provided synchronization to work correctly. The syn-
chronization techniques are sometimes used by themselves; that is, without the other
forms of IPC.

After covering 16 chapters of details, the obvious question is: which form of IPC
should be used to solve some particular problem? Unfortunately, there is no silver bul-
let regarding IPC. The vast number of different types of IPC provided by Unix indicates
that no one solution solves all (or even most) problems. All that you can do is become
familiar with the facilities provided by each form of IPC and then compare the features
with the needs of your specific application.

We first list four items that must be considered, in case they are important for your
application.

1 . Networked versus nonnetworked. We assume that this decision has already been
made and that IPC is being used between processes or threads on a single host.

454 UNIX Network Programming

7

Epilogue

If the application might be distributed across multiple hosts, consider using
sockets instead of IPC, to simplify the later move to a networked application.

2. Portability (recall Figure 1.5). Almost all Unix systems support Posix pipes,
Posix FIFOs, and Posix record locking. As of 1998, most Unix systems support
System V IPC (messages, semaphores, and shared memory), whereas only a few
support Posix IPC (messages, semaphores, and shared memory). More imple-
mentations of Posix IPC should appear, but it is (unfortunately) an option with
Unix 98. Many Unix systems support Posix threads (which include mutexes
and condition variables) or should support them in the near future. Some sys-
tems that support Posix threads do not support the process-shared attributes of
mutexes and condition variables. The read-write locks required by Unix 98
should be adopted by Posix, and many versions of Unix already support some
type of read-write lock. Memory-mapped I/O is widespread, and most Unix
systems also provide anonymous memory mapping (either /dev/zero or
MAP-ANON). Sun RPC should be available on almost all Unix systems, whereas
doors are a Solaris-only feature (for now).

3. Performance. If this is a critical item in your design, run the programs developed
in Appendix A on your own systems. Better yet, modify these programs to sim-
ulate the environment of your particular application and measure their perfor-
mance in this environment.

4. Realtime scheduling. If you need this feature and your system supports the Posix
realtime scheduling option, consider the Posix functions for message passing
and synchronization (message queues, semaphores, mutexes, and condition
variables). For example, when someone posts to a Posix semaphore on which
multiple threads are blocked, the thread that is unblocked is chosen in a manner
appropriate to the scheduling policies and parameters of the blocked threads.
System V semaphores, on the other hand, make no such guarantee.

To help understand some of the features and limitations of the various types of IPC,
we summarize some of the major differences:

Pipes and FIFOs are byte streams with no message boundaries. Posix messages
and System V messages have record boundaries that are maintained from the
sender to the receiver. (With regard to the Internet protocols described in
UNPv1, TCP is a byte stream, but UDP provides messages with record bound-
aries.)

Posix message queues can send a signal to a process or initiate a new thread
when a message is placed onto an empty queue. No similar form of notification
is provided for System V message queues. Neither type of message queue can
be used directly with either s e l e c t or p o l l (Chapter 6 of UNPvl), although
we provided workarounds in Figure 5.14 and Section 6.9.

The bytes of data in a pipe or FIFO are first-in, first-out. Posix messages and
System V messages have a priority that is assigned by the sender. When reading
a Posix message queue, the highest priority message is always returned first.

r
UNIX Network Programming Epilogue 455

When reading a System V message queue, the reader can ask for any priority
message that it wants.

When a message is placed onto a Posix or System V message queue, or written
to a pipe or FIFO, one copy is delivered to exactly one thread. No peeking capa-
bility exists (similar to the sockets MSG-PEEK flag; Section 13.7 of UNPvl), and
these messages cannot be broadcast or multicast to multiple recipients (as is pos-
sible with sockets and XTI using the UDP protocol; Chapters 18 and 19 of
UNPv1).

Mutexes, condition variables, and read-write locks are all unnamed: they are
memory-based. They can be shared easily between the different threads within
a single process. They can be shared between different processes only if they are
stored in memory that is shared between the different processes. Posix
semaphores, on the other hand, come in two flavors: named and memory-based.
Named semaphores can always be shared between different processes (since
they are identified by Posix IPC names), and memory-based semaphores can be
shared between different processes if the semaphore is stored in memory that is
shared between the different processes. System V semaphores are also named,
using the key-t datatype, which is often obtained from the pathname of a file.
These semaphores can be shared easily between different processes.

f cntl record locks are automatically released by the kernel if the process hold-
ing the lock terminates without releasing the lock. System V semaphores have
this feature as an option. Mutexes, condition variables, read-write locks, and
Posix semaphores do not have this feature.

Each fcntl lock is associated with some range of bytes (what we called a
"record") in the file referenced by the descriptor. Read-write locks are not asso-
ciated with any type of record.

Posix shared memory and System V shared memory both have kernel persis-
tence. They remain in existence until explicitly deleted, even if they are not cur-
rently being used by some process.

The size of a Posix shared memory object can be extended while the object is
being used. The size of a System V shared memory segment is fixed when it is
created.

The kernel limits for the three types of System V IPC often require tuning by the
system administrator, because their default values are usually inadequate for
real-world applications (Section 3.8). The kernel limits for the three types of
Posix IPC usually require no tuning at all.

Information about System V IPC objects (current size, owner ID, last-
modification time, etc.) is available with a command of IPC-STAT with the three
XXXctl functions, and with the ipcs command. No standard way exists to
obtain this information about Posix IPC objects. If the implementation uses files
in the filesystem for these objects, then the information is available with the
stat function or with the Is command, if we know the mapping from the Posix

456 UNIX Network Programming Epilogue

IPC name to the pathname. But if the implementation does not use files, this
information may not be available.

Of the various synchronization techniques-mutexes, condition variables,
read-write locks, record locks, and Posix and System V semaphores-the only
functions that can be called from a signal handler (Figure 5.10) are semsost
and f cntl.

Of the various message passing techniques-pipes, FIFOs, and Posix and
System V message queues-the only functions that can be called from a signal
handler are read and write (for pipes and FIFOs).

Of all the message passing techniques, only doors accurately provide the client's
identity to the server (Section 15.5). In Section 5.4, we mentioned two other
types of message passing that also identify the client: BSD/OS provides this
identity when a Unix domain socket is used (Section 14.8 of UNPvl), and SVR4
passes the sender's identity across a pipe when a descriptor is passed across the
pipe (Section 15.3.1 of APUE).

Appendix A

Performance Measurements

1 Introduction

In the text, we have covered six types of message passing:

pipes,
FIFOs,
Posix message queues,
System V message queues,
doors, and
SunRPC,

and five types of synchronization:

mutexes and condition variables,
read-write locks,
f c n t 1 record locking,
Posix semaphores, and
System V semaphores.

We now develop some simple programs to measure the performance of these types of
IPC, so we can make intelligent decisions about when to use a particular form of PC.

When comparing the different forms of message passing, we are interested in two
measurements.

1. The bandwidth is the speed at which we can move data through the IPC channel.
To measure this, we send lots of data (millions of bytes) from one process to
another. We also measure this for different sizes of the 1 /0 operation (writes
and reads for pipes and FIFOs, for example), expecting to find that the band-
width increases as the amount of data per 1 / 0 operation increases.

458 Performance Measurements Appendix A

2. The latency is how long a small IPC message takes to go from one process to
another and back. We measure this as the time for a 1-byte message to go from
one process to another, and back (the round-trip time).

In the real world, the bandwidth tells us how long bulk data takes to be sent across an
IPC channel, but IPC is also used for small control messages, and the time required by
the system to handle these small messages is provided by latency. Both numbers are
important.

To measure the various forms of synchronization, we modify our program that
increments a counter in shared memory, with either multiple threads or multiple pro-
cesses incrementing the counter. Since the increment is a simple operation, the time
required is dominated by the time of the synchronization primitives.

The simple programs used in this Appendix to measure the various forms of IPC are loosely
based on the lmbench suite of benchmarks that is described in LMcVoy and Staelin 19961. This
is a sophisticated set of benchmarks that measure many characteristics of a Unix system (con-
text switch time, I/O throughput, etc.) and not just IPC. The source code is publicly available:
http://www.bitmover.com/lrnbench.

The numbers shown in this Appendix are provided to let us compare the techniques described
in this book. An ulterior motive is to show how simple measuring these values is. Before
making choices among the various techniques, you should measure these performance num-
bers on your own systems. Unfortunately, as easy as the numbers are to measure, when
anomalies are detected, explaining these is often very hard, without access to the source code
for the kernel or libraries in question.

A.2 Results

We now summarize all the results from this Appendix, for easy reference when going
through the various programs that we show.

The two systems used for all the measurements are a SparcStation 4/110 running
Solaris 2.6 and a Digital Alpha (DEC 3000 model 300, Pelican) running Digital Unix
4.OB. The following lines were added to the Solaris / e t c / sys tern file:

s e t msgsys:msginfo~msgmax = 16384
s e t msgsys:msginfo~msgmnb = 32768
s e t msgsys:msginfo~msgseg = 4096

This allows 16384-byte messages on a System V message queue (Figure A.2). The same
changes were accomplished with Digital Unix by specifying the following lines as input
to the Digital Unix sysconf i g program:

i p c :
msg-max = 16384
msg-mnb = 32768

tion A.2 Results 459

ssage Passing Bandwidth Results

Figure A.2 lists the bandwidth results measured on a Sparc running Solaris 2.6, and Fig-
ure A.3 graphs these values. Figure A.4 lists the bandwidth results measured on an
Alpha running Digital Unix 4.OB, and Figure A.5 graphs these values.

As we might expect, the bandwidth normally increases as the size of the message
increases. Since many implementations of System V message queues have small kernel
limits (Section 3.8), the largest message is 16384 bytes, and even for messages of this
size, kernel defaults had to be increased. The decrease in bandwidth above 4096 bytes
for Solaris is probably caused by the configuration of the internal message queue limits.
For comparison with UNPv1, we also show the values for a TCP socket and a Unix
domain socket. These two values were measured using programs in the lmbench pack-
age using only 65536-byte messages. For the TCP socket, the two processes were both
on the same host.

ssage Passing Latency Results

Figure A.l lists the latency results measured under Solaris 2.6 and Digital Unix 4.OB.

Figure A.l Latency to exchange a I-byte message using various forms of IPC.

Latency (microseconds)

In Section A.4, we show the programs that measured the first six values, and the
remaining three are from the lmbench suite. For the TCP and UDP measurements, the
two processes were on the same host.

Pipe Posix
message
aueue

System V
message
aueue

Doors SunRPC
TCP

SunRPC
UDP

TCP
socket

UDP
socket

Unix
domain
socket

460 Performance Measurements

7

Appendix A

I Bandwidth (MBvtes/sec)

Message
size

4096

16384
32768
65536

Pipe Posix
message
queue

12.7 10.2
13.1 11.6
13.2 13.4
13.7 14.4

message
queue

12.6
14.4

6.1 16.8
11.4
12.2

SunRPC SunRPC TCP 1 TCP 1 LJDP 1 socket

Figure A 2 Bandwidth for various types of message passing (Solaris 2.6).

bandwidth
(MBytes/sec)

System V message queue

- - - - -- sun IS my .

unix
domain
socket

- I I I I I I
1024 4096 8192 16384 32768

message size (bytes)

Figure A 3 Bandwidth for various types of message passing (Solaris 2.6).

ion A.2 Results 461

I I Bandwidth (MBytes,

Pipe
Message

size

4096
8192 16.5

16384
32768 15.9
65536 14.2

Posix System V Sun RPC

queue

1.8
3.5
5.9
8.6

11.7
14.0
9.4

/set)
Sun RPC

UDP

0.6
1 .o
1.8
2.5

Figure A.4 Bandwidth for various types of message passing (Digital Unix 4.OB).

--

1024 4096 8192 16384 32768

message size (bytes)

ZL -

Unix domain socket*

'------- Pipe - - - - - _ - - - - -.
bandwidth

TCP socket.

0 I I I I I

Figure A.5 Bandwidth for various types of message passing (Digital Unix 4.OB).

- 22
- 21
- 20
- 19
- 18
- 17
- 16
- 15
- 14
- 13
- 12
- 11
- 10
-9
-8
-7
-6
-5
-4
-3
-2
-1

0

462 Performance Measurements Appendix A

Thread Synchronization Results

Figure A.6 lists the time required by one or more threads to increment a counter that is
in shared memory using various forms of synchronization under Solaris 2.6, and Fig-
ure A.7 graphs these values. Each thread increments the counter 1,000,000 times, and
the number of threads incrementing the counter varied from one to five. Figure A.8 lists
these values under Digital Unix 4.OB, and Figure A.9 graphs these values.

The reason for increasing the number of threads is to verify that the code using the
synchronization technique is correct and to see whether the time starts increasing non-
linearly as the number of threads increases. We can measure f cnt 1 record locking only
for a single thread, because this form of synchronization works between processes and
not between multiple threads within a single process.

Under Digital Unix, the times become very large for the two types of Posix
semaphores with more than one thread, indicating some type of anomaly. We do not
graph these values.

One possible reason for these larger-than-expected numbers is that this program is a pathologi-
cal synchronization test. That is, the threads do nothing but synchronization, and the lock is
held essentially all the time. Since the threads are created with process contention scope, by
default, each time a thread loses its timeslice, it probably holds the lock, so the new thread that
is switched to probably blocks immediately.

Process Synchronization Results

Figures A.6 and A.7 and Figures A.8 and A.9 showed the measurements of the various
synchronization techniques when used to synchronize the threads within a single pro-
cess. Figures A.10 and A.ll show the performance of these techniques under Solaris 2.6
when the counter is shared between different processes. Figures A.12 and A.13 show the
process synchronization results under Digital Unix 4.OB. The results are similar to the
threaded numbers, although the two forms of Posix semaphores are now similar for
Solaris. We plot only the first value for f cntl record locking, since the remaining val-
ues are so large. As we noted in Section 7.2, Digital Unix 4.OB does not support the
PTHREAD-PROCESS-SHARED feature, so we cannot measure the mutex values between
different processes. We again see some type of anomaly for Posix semaphores under
Digital Unix when multiple processes are involved.

Results 463

Figure A.6 Time required to increment a counter in shared memory (Solaris 2.6).

threads

1
2
3
4
5

time to
increment
counter

in shared
memory
(seconds)

2 3 4

number of threads

Time required to increment a counter in shared memory (seconds)

Figure A.7 Time required to increment a counter in shared memory (Solaris 2.6).

Posix
mutex

0.7
1.5
2.2
2.9
3.7

Read-write
lock

2.0
5.4
7.5
13.7
19.7

Posix
memory

semaphore

4.5
9.0
14.4
18.2
22.8

Posix
named

semaphore

15.4
31.1
46.5
62.5
76.8

System V
semaphore

16.3
31.5
48.3
65.8
81.8

System V
semaphore
with DO

21.1
37.5
57.7
75.8
90.0

f c n t l
record
locking

89.4

464 Performance Measurements Appendix A

llme required to increment a counter in shared memory (seconds)

memory named semauhore sema~hore record

Figure A.8 llme required to increment a counter in shared memory (Digital Unix 4.08).

threads

1

time to
increment
counter

in shared
memory
(seconds)

fcntl

l W 7

2.9

2 3 4

number of threads

Figure A 9 llme required to increment a counter in shared memory (Digital Unix 4.08).

12.9

semaphore

13.2

semaphore

14.2 26.6

. -

with UNDO

46.6

locking

96.4

Section A.2 Results 465

llme required to increment a counter in shared memory (seconds)

Figure A.10 llme required to increment a counter in shared memory (Solaris 2.6).

Posix
mutex

#processes I I semaphore I semaphore I I with UNDO 1 locking

time to
increment
counter

in shared
memory
(seconds)

1

2 3 4

number of processes

Read-write
lock

Figure A.ll llrne required to increment a counter in shared memory (Solaris 2.6).

0.8

Posix
memory

1.9 1 13.6 1 14.3 (17.3 1 22.1 1 90.7

Posix
named

SystemV
semaphore

SystemV
semaphore

fcn t l
record

466 Performance Measurements Appendix A

Figure A.12 Time required to increment a counter in shared memory (Digital Unix 4.OB).

processes

1
2
3
4
5

time to
increment
counter

in shared
memory
(seconds) fcntl

Time required to increment a counter in shared memory (seconds)

y----- - -

-.- I::

Posix
memory

semaphore

12.8
664.8

1236.1
1772.9
2179.9

number of processes

Posix
named

semaphore

12.5
659.2

1269.8
1804.1
2196.8

20 -

0
"

Figure A.13 Time required to increment a counter in shared memory (Digital Unix 4.OB).

SystemV
semaphore

30.1
58.6
%.4

120.3
147.7

Posix memory semaphore
Posix named semaphore

I I I

- 20
-

0

SystemV
semaphore
with UNDO

49.0
95.7

146.2
197.0
250.9

fcntl
record
locking

98.1
477.1

1785.2
2582.8
3419.2

:tion A.3 Message Passing Bandwidth Programs 467

,3 Message Passing Bandwidth Programs

This section shows the three programs that measure the bandwidth of pipes, Posix mes-
sage queues, and System V message queues. We showed the results of these programs
in Figures A.2 and A.3.

pe Bandwidth Program

Figure A.14 shows an overview of the program that we are about to describe.

time
this

function

varent

Pipe (contpipe) ;
Pipe(datapipe);
if (Fork0 == 0) (- - -

1
reader () ;

exit (0) ;

}

reader()

(
Write (contpipe [ll ,) ;-
while (more to receive)

Read(datapipe[Ol,);4

1

control pipe:
#bytes to send

data pipe:
data

child

main()

(

. . .

writer () ;

exit (0) ;
1

writer()

(

bRead(contpipe[Ol.) ;

while (more to send)
- Write(datapipe[ll,) ;

1

Figure A.14 Overview of program to measure the bandwidth of a pipe.

Figure A.15 shows the first half of our b w j i p e program, which measures the band-
width of a pipe.

Command-line arguments

11-15 The command-line arguments specify the number of loops to perform (typically
five in the measurements that follow), the number of megabytes to transfer (an argu-
ment of 10 causes 10 x 1024 x 1024 bytes to be transferred), and the number of bytes for
each w r i t e and read (which varies between 1024 and 65536 in the measurements that
we showed).

Allocate buffer and touch it

16-17 valloc is a version of malloc that allocates the requested amount of memory
starting on a page boundary. Our function touch (Figure A.17) stores 1 byte of data in
each page of the buffer, forcing the kernel to page-in each page comprising the buffer.
We do so before any timing is done.

468 Performance Measurements Appendix A

benchlbulgipe.~
1 #include "unpipc.hm

2 void reader (int , int , int) ;
3 void writer(int, int);

4 void *buf;
5 int totalnbytes, xfersize;

6 int
7 main(int argc, char **argv)

int i, nloop, contpipe[2], datapipe[2];
pid-t childpid;

if (argc != 4)
err-quit("usage: bwsipe <#loops> <#mbytes> <#bytes/write>");

nloop = atoi(argv[l]);
totalnbytes = atoi(argv[2]) * 1024 * 1024:
xfersize = atoi(argvL31);

buf = Valloc(xfersize1;
Touch(buf, xfersize) ;

Pipe(contpipe);
Pipe(datapipe);

if ((childpid = Fork0 1 == 01 {

writer(contpipe[Ol, datapipe[ll
exit (0) ;

1
/ * parent */

Start-time () ;
for (i = 0; i i nloop; i++)

reader(contpipe[ll, datapipe[OI
~rintf("bandwidth: %.3f MB/sec\nm,

; /*child*/

totalnbytes);

totalnbytes / Stop-time0 * nloop);
kill(childpid, SIGTERM);
exit (0) ;

benchlbwgipe.~
Figure A.15 main function to measure the bandwidth of a pipe.

valloc is not part of Posix.1 and is listed as a "legacy" interface by Unix 98: it was required
by an earlier version of the X/Open specification but is now optional. Our Valloc wrapper
function calls malloc if valloc is not supported.

Create two pipes

18-19 Two pipes are created: contpipe [0] and contpipe [1] are used to synchronize
the two processes at the beginning of each transfer, and datapipe [OI and
datapipe [I] are used for the actual data transfer.

fork to create child

20-31 A child process is created, and the child (a return value of 0) calls the wri ter func-
tion while the parent calls the reader function. The reader function in the parent is

Section A.3 Message Passing Bandwidth Programs 469

called nloop times. Our start-time function is called immediately before the loop
begins, and our stop-time function is called as soon as the loop terminates. These
two functions are shown in Figure A.17. The bandwidth that is printed is the total num-
ber of bytes transferred each time around the loop, divided by the time needed to trans-
fer the data (stop-time returns this as the number of microseconds since
start-time was called), times the number of loops. The child is then killed with the
SIGTERM signal, and the program terminates.

The second half of the program is shown in Figure A.16, and contains the two func-
tions writer and reader.

bench1bwgipe.c
void
writer(int contfd, int datafd)
(

int ntowrite;

f o r (; ;) {
Read(contfd, &ntowrite, sizeof(nt0write)l;

while (ntowrite z 0) (

Write(datafd, buf, xfersize);
ntowrite -= xfersize;

1
1

1

void
reader (int contfd, int datafd, int nbytes)

{
ssize-t n;

Write(contfd, &nbytes, sizeof(nbytes));

while ((nbytes > 0) &&

((n = Read(datafd. buf. xfersize)) > 0)) {

nbytes -= n;
1

1
bench/ b w g i p e . ~

Figure A.16 writer and reader functions to measure bandwidth of a pipe.

writer function

33-44 This function is an infinite loop that is called by the child. It waits for the parent to
say that it is ready to receive the data, by reading an integer on the control pipe that
specifies the number of bytes to write to the data pipe. When this notification is
received, the child writes the data across the pipe to the parent, xfersize bytes per
write.

reader function

45-54 This function is called by the parent in a loop. Each time the function is called, it
writes an integer to the control pipe telling the child how many bytes to write to the
pipe. The function then calls read in a loop, until all the data has been received.

470 Performance Measurements Appendix A

Our start-t ime, stop-t ime, and touch functions are shown in Figure A.17.

2 static struct timeval tv-start, tv-stop;

3 int
4 start-time(void)
5 (
6 return (gettimeofday(&tv-start, NULL)) ;

7 1

8 double
9 stop-time (void)
10 (

11 double clockus;

12 if (gettimeofday(&tv-stop, NULL) == -1)
13 return (0.0);
14 tv-sub(&tv-stop, &tv-start);
15 clockus = tv-stop.tv-sec * 1000000.0 + tv-stop.tv-usec;
16 return (clockus);
17 1

18 int
19 touch(void *vptr, int nbytes)
20 {
21 char *cptr;
22 static int pagesize = 0;

2 3 if (pagesize == 0) (

2 4 errno = 0;
25 #ifdef -SC-PAGESIZE
26 if ((pagesize = sysconf(-SC-PAGESIZE)) == -1)
2 7 return (-1);
28 #else
29 pagesize = getpagesize(); / * BSD * /
30 #endif
31 1
32 cptr = vptr;
33 while (nbytes > 0) I
3 4 *cptr = 1;
3 5 cptr += pagesize;
3 6 nbytes -= pagesize;
37 1
3 8 return (0);

Figure A.17 Timing functions: start-t he, stop-time, and touch.

Section A.3 Message Passing Bandwidth Programs 471

The tv-sub function is shown in Figure A.18; it subtracts two timeval structures,
storing the result in the first structure.

2 void
3 tv-sub(s t ruct t imeval *out, s t r u c t timeval * in)
4 (
5 i f ((out->tv-usec -= in->tv-usec) i 0) (/ * out -= i n * /
6 --out->tv-sec;
7 out->tv-usec += 1000000;
8 1
9 out->tv-sec -= in->tv-sec;

Figure A.18 tv-sub function: subtract two timeval structures.

On a Sparc running Solaris 2.6, if we run our program five times in a row, we get

s o l a r i s % b w g i p e 5 10 65536
bandwidth: 13.722 MB/sec
s o l a r i s % b w g i p e 5 10 65536
bandwidth: 13.781 MB/sec
s o l a r i s % b w g i p e 5 10 65536
bandwidth: 13.685 MB/sec
s o l a r i s % b w g i p e 5 10 65536
bandwidth: 13.665 MB/sec
s o l a r i s % w i p e 5 10 65536
bandwidth: 13.584 MB/sec

Each time we specify five loops, 10,485,760 bytes per loop, and 65536 bytes per write
and read. The average of these five runs is the 13.7 MBytes/sec value shown in Fig-
ure A.2.

Posix Message Queue Bandwidth Program

Figure A.19 is our main program that measures the bandwidth of a Posix message
queue. Figure A.20 shows the writer and reader functions. This program is similar
to our previous program that measures the bandwidth of a pipe.

Note that our program must specify the maximum number of messages that can exist on the
queue, when we create the queue, and we specify this as four. The capacity of the IPC channel
can affect the performance, because the writing process can send this many messages before its
call to mcsend blocks, forcing a context switch to the reading process. Therefore, the perfor-
mance of this program depends on this magic number. Changing this number from four to
eight under Solaris 2.6 had no effect on the numbers in Figure A.2, but this same change under
Digital Unix 4.OB decreased the performance by 12%. We would have guessed the perfor-
mance would increase with a larger number of messages, because this could halve the number
of context switches. But if a memory-mapped file is used, this doubles the size of that file and
the amount of memory that is mmaped.

472 Performance Measurements
7

Appendix A

bench/bw_pxmsg.c
1 #include "unpipc .h"
2 #define NAME "bw_pxmsg"

3 void reader (int , mqd-t , int) ;
4 void writer(int, mqd-tl ;

5 void *buf;
6 int totalnbytes, xfersize;

7 int
8 main(int argc, char **argv)
9 (

int i, nloop, contpipe 121 ;
mqd-t mq;
pid-t childpid;
struct mq-attr attr;

if (argc != 4)
err-quit("usage: bwsxmsg <#loops> <#mbytes> <#bytes/write>");

nloop = atoi(argvCl1);
totalnbytes = atoi(argv[Z]) * 1024 * 1024;
xfersize = atoi(argv[31);

buf = Valloc(xfersize);
~ouch(buf, xfersize);

Pipe (contpipe) ;
mpunlink(Px-ipc-name(NAME)); / * error OK * /
attr.mQmamsg = 4;
attr.m%msgsize = xfersize;
mq = Mq-open(Px-ipc-name(NAME), 0-RDWR I 0-CREAT, FILE-MODE, &attr);
if ((childpid = Fork()) == 0) (

writer(contpipe[Ol, mq); / * child * /
exit (0) ;

I
/ * parent * /

Start-time () ;
for (i = 0; i i nloop; i++)

reader(contpipe[ll, mq, totalnbytes);
printf("bandwidth: %.3f MB/sec\nW,

totalnbytes / Stop-time() * nloop);

kill(chi1dpid. SIGTERM);
Mpclose (mq) ;
M~unlink(Px-ipc-name(NAME) 1 ;
exit (0) ;

40 1 bench/ bw2xmsg.c

Figure A.19 main function to measure bandwidth of a Posix message queue.

Section A.3 Message Passing Bandwidth Programs 473

bench/bwgxmsg.c
41 void
42 writer(int contfd, mqd-t mqsend)
43 (

4 4 int ntowrite;

4 5 f o r (; ;) (
4 6 ~ead(contfd, &ntowrite, sizeof(nt0write)) ;

4 7 while (ntowrite > 0) (

4 8 Mesend (mqsend, buf , xfersize, 0) ;
4 9 ntowrite -= xfersize;
50 1
51 1
52 1

53 void
54 reader(int contfd, mqd-t mqrecv, int nbytes)
55 (

56 ssize-t n;

5 7 Write(contfd, &nbytes, sizeof(nbytes));

5 8 while ((nbytes > 0) &&

59 ((n = Mereceive(mqrecv, buf, xfersize, NULL)) > 0)) (

60 nbytes -= n;
6 1 1
62 1 benchlbwgxmsg.~

Figure A.20 writer and reader functions to measure bandwidth of a Posix message queue.

System V Message Queue Bandwidth Program

Figure A.21 is our m a i n program that measures the bandwidth of a System V message
queue, and Figure A.22 shows the w r i t e r and reader functions.

void reader (int, int , int) ;
void writer (int, int) ;

struct msgbuf *buf;
int totalnbytes, xfersize;

int
main(int argc, char **arm)
I

int i, nloop, contpipe [21 , msqid;
pid-t childpid;

if (argc != 4)
err-quit("usage: bw-svmsg <#loops> <#mbytes> <#bytes/write>");

nloop = atoi(argv[ll):
totalnbytes = atoi(argv[Z]) * 1024 * 1024;
xfersize = atoi(argv[31);

474 Performance Measurements Appendix A

16 buf = Valloc(xfersize);
17 Touch(buf, xfersize);
18 buf ->mtype = 1;

19 Pipe(contpipe);
20 msqid = Msgget(1PC-PRIVATE, IPC-CREAT I SVMSG-MODE);

if ((childpid = Fork ()) == 0) {
writer (contpipe [O] , msqid) : / * child * /
exit (0) ;

1
Start-time () ;
for (i = 0; i c nloop; i++)

reader(contpipe[ll, msqid, totalnbytes);
printf("bandwidth: %.3f MB/sec\nn,

totalnbytes / Stop-time0 * nloop);

30 kill (childpid, SIGTERM) ;
31 Msgctl(msqid, IPC-RMID, NULL);
32 exit (0) ;

Figure A21 main function to measure bandwidth of a System V message queue.

bench/ bw_svrnsg.c
34 void
35 writer(int contfd, int msqid)
36 {
37 int ntowrite;

40 while (ntowrite > 0) {
41 Msgsnd(msqid, buf, xfersize - sizeof(1ong). 0);
42 ntowrite -= xfersize;
4 3 1
4 4 1
45 1

46 void
47 reader(int contfd, int msqid, int nbytes)
48 {

4 9 ssize-t n;

5 1 while ((nbytes z 0) &&

52 ((n = Msgrcv(msqid, buf, xfersize - sizeof(long), 0, 0)) > 0)) t
5 3 nbytes -= n + sizeof(1ong);
5 4 1

Figure A22 writer and reader functions to measure bandwidth of a System V message queue.

ction A.3 Message Passing Bandwidth Programs 475

3ors Bandwidth Program

Our program to measure the bandwidth of the doors API is more complicated than the
previous ones in this section, because we must fork before creating the door. Our par-
ent creates the door and then notifies the child that the door can be opened by writing
to a pipe.

Another change is that unlike Figure A.14, the reader function is not receiving the
data. Instead, the data is being received by a function named server that is the server
procedure for the door. Figure A.23 shows an overview of the program.

doors
server

procedure

time
this

function

parent

nain()

I
. . .
Pipe(contpipe);
if (Fork0 == 0) { - - - -

1
doorfd = Door-create(1;
Fattach () ;

Write(contpipe[ll,) ; /
reader () ;

exit(0);

t

server ()

I
if (end of data)
Write (contpipe [Ol ,) ; -

Door-return () ;

t

reader ()

Read (contpipe [11 ,) ; t-

I

child

main()

{

. . .

F if (Fork0 == 0) {

Read (contpipe [Ol , ;

/ doorfd = Open() ;

writer() ;

exit (0) ;

1

1

writer()

{
~ead(contpipe[Ol.) :

while (more to send) ;
Write(datapipe[ll, 1;
Door-call () ;

1

Figure A.23 Overview of program to measure the bandwidth of the doors API.

Since doors are supported only under Solaris, we simplify the program by assuming a
full-duplex pipe (Section 4.4).

Another change from the previous programs is the fundamental difference between
message passing, and procedure calling. In our Posix message queue program, for
example, the writer just writes messages to a queue in a loop, and this is asynchronous.
At some point, the queue will fill, or the writing process will lose its time slice of the
processor, and the reader runs and reads the messages. If, for example, the queue held

476 Performance Measurements Appendix A

eight messages and the writer wrote eight messages each time it ran, and the reader
read all eight messages each time it ran, to send N messages would involve N/4 context
switches (N/8 from the writer to the reader, and another N/8 from the reader to the
writer). But the doors API is synchronous: the caller blocks each time it calls
door- call and cannot resume until the server procedure returns. To exchange N mes-
sages now involves Nx2 context switches. We will encounter the same problem when
we measure the bandwidth of RPC calls. Despite the increased number of context
switches, note from Figure A.3 that doors provide the fastest IPC bandwidth up
through a message size of around 25000 bytes.

Figure A.24 shows the main function of our program. The w r i t e r , server , and
reader functions are shown in Figure A.25.

Sun RPC Bandwidth Program

Since procedure calls in Sun RPC are synchronous, we have the same limitation that we
mentioned with our doors program. It is also easier with RPC to generate two pro-
grams, a client and a server, because that is what rpcgen generates. Figure A.26 shows
the RPC specification file. We declare a single procedure that takes a variable-length of
opaque data as input and returns nothing.

Figure A.27 shows our client program, and Figure A.28 shows our server proce-
dure. We specify the protocol (TCP or UDP) as a command-line argument for the client,
allowing us to measure both protocols.

Message Passing Bandwidth Programs 477

benchlbw-d0or.c
1 #include "unpipc.h"

2 void reader (int , int) ;
3 void writer (int) ;
4 void server{void *, char *, size-t, door-desc-t *, size-t);

5 void *buf;
6 int totalnbytes, xfersize, contpipe [21;

7 int
8 main(int argc, char **argv)
9 {

int i, nloop, doorfd;
char c;
pid-t childpid;
ssize-t n;

if (argc != 5)
err-quit("usage: bw-door <pathname> <#loops> <#mbytes> <#bytes/write>");

nloop = atoi (argv[21) ;
totalnbytes = atoi(argv[3]) * 1024 * 1024;
xfersize = atoi(argv[4]);

buf = ~alloc (xfersize) :
Touch (buf , xf ersize) ;

unlink(argv[ll) ;
~lose(Open(argv[l], 0-CREAT I 0-EXCL I 0-RDWR, FILE-MODE));
Pipe (contpipe) ; / * assumes full-duplex SVR4 pipe * /

if ((childpid = Fork{ == 0) {

/ * child = client = writer * /
if ((n = Read(contpipe[O], &c, 1)) != 1)

err-quit("chi1d: pipe read returned %dW, n);
doorfd = Open(argv[ll, 0-RDWR);

writer(doorfd);
exit (0) ;

1
/ * parent = server = reader * /

doorfd = Door-create(server, NULL, 0);
Fattach(doorfd, argv[ll) ;
Write(contpipe[l], &c, 1); / * tell child door is ready * /

Start-time{) ;
for (i = 0; i < nloop; i++)

reader(doorfd, totalnbytes);
printf("bandwidth: %.3f MB/sec\nM,

totalnbytes / Stop-time () * nloop) ;
kill (childpid, SIGTERM) ;
unlink (argv[ll) ;
exit (0) ;

44 1 bench / bwd0or.c

Figure A24 main function to measure the bandwidth of the doors API.

478 Performance Measurements Appendix A

bench/ bw-d0or.c
45 void
46 writer (int doorfd)

/ * no descriptors to pass * /

/ * no return values expected * /

{

int ntowrite;
door-arg-t arg;

arg.descqtr = NULL;
arg. desc-num = 0 ;
arg.rbuf = NULL;
arg.rsize = 0;

f o r (; ;) {
~ead(contpipe[O], &ntowrite, sizeof(nt0write));

while (ntowrite > 0) {

arg.data_ptr = buf;
arg.data-size = xfersize;
Door-call(doorfd, &arg);
ntowrite -= xfersize;

1
1

1

static int ntoread, nread;

void
server(void *cookie, char *argp, size-t arg-size,

door-desc-t *dp, size-t n-descriptors)
{

char c;

nread += arg-size;
if (nread >= ntoread)

~rite(contpipe[O], &c, I); / * tell reader0 we are all done * /

Door-return (NULL, 0, NULL, 0) ;
1

void
reader (int doorfd, int nbytes)
{

char c;
ssize-t n;

ntoread = nbytes; / * globals for server0 procedure * /
nread = 0;

Write(contpipell1, &nbytes, sizeof(nbytes));

if ((n = Read(contpipe[ll , &c, 1)) != 1)
err-quit("reader: pipe read returned Bd", n);

k
bench/ bw-h0r.c

Figure A25 writer, server, and reader functions for doors API bandwidth measurement.

Section A.3 Message Passing Bandwidth Programs 479

bench/bw_sunrpc.x
1 %#define DEBUG / * so server runs in foreground * /

2 struct data-in {

3 opaque data-; / * variable-length opaque data * /
4 1;

5 program BW-SUNRPC-PROG {

6 version BW-SUNRPCYERS {

7 void BW-SUNRPC (data-in) = 1 ;
8 } = 1;
9 1 = 0~31230001; benchlbw-sunrpc.~

Figure A26 RPC specification file for our bandwidth measurements of Sun RPC.

3 void *buf;
4 int totalnbytes, xfersize;

5 int
6 main(int argc, char **argv)
7 {

int i, nloop, ntowrite;
CLIENT *cl;
data-in in;

if (argc != 6)
err-quit("usage: bw-sunrpc-client <hostname> <#loops>"

" <#mbytes> <#bytes/write> <protocol>");
nloop = atoi(argv[21);
totalnbytes = atoi(argv[3]) * 1024 * 1024;
xfersize = atoi(argv[41);

buf = ~alloc(xfersize);
Touch(buf, xfersize);

cl = Clnt-create(argv[l], BW-SUNRPC-PROG, BW-SUNRPC-VERS, argv[5] 1;

Start-time () ;

for (i = 0; i < nloop; i++) {

ntowrite = totalnbytes;
while (ntowrite > 0) {

in.data.data-len = xfersize;
in.data.data-val = buf;
if (bw-sunrpc-l(&in, cl) == NULL)

err-quit("%sW, clnt-sperror(c1, argv[ll)) ;

ntowrite -= xfersize;
1

1
printf("bandwidth: %.3f MB/sec\nW,

totalnbytes / Stop-time () * nloop) ;
exit (0) ;

34 1 benchlbw-sunrpc-c1ient.c

Figure A27 RPC client program for bandwidth measurement.

480 Performance Measurements Appendix A

6 void *
7 bw~sunrpc~l~svc(data~in * inp, struct svc-req *rqstp)
8 {
9 static int nbytes;

10 nbytes = inp->data.data-len;
11 return (mbytes); / * must be nonnull, but xdrvoid () will ignore *I

Figure A28 RPC server procedure for bandwidth measurement.

A.4 Message Passing Latency Programs

We now show the three programs that measure the latency of pipes, Posix message
queues, and System V message queues. The performance numbers were shown in Fig-
ure A.1.

Pipe Latency Program

The program to measure the latency of a pipe is shown in Figure A.29.

doit function

2-9 This function runs in the parent and its clock time is measured. It writes 1 byte to a
pipe (that is read by the child) and reads 1 byte from another pipe (that is written to by
the child). This is what we described as the latency: how long it takes to send a small
message and receive a small message in reply.

Create pipes

19-20 Two pipes are created and fork creates a child, leading to the arrangement shown
in Figure 4.6 (but without the unused ends of each pipe closed, which is OK). Two
pipes are needed for this test, since pipes are half-duplex, and we want two-way com-
munication between the parent and child.

Chiid echoes 1-byte message

22-27 The child is an infinite loop that reads a 1-byte message and sends it back.

Measure parent

29-34 The parent first calls the doit function to send a 1-byte message to the child and
read its 1-byte reply. This makes certain that both processes are running. The doit
function is then called in a loop and the clock time is measured.

Section A.4 Message Passing Latency Programs 481

2 void
3 doit(int readfd, int writefd)
4 {
5 char c;

6 write (writefd, &c, 1) ;
7 if (Read(readfd. &c. 1) != 1)
8 err-quit("read error");
9 1

10 int
11 main(int argc, char **argv)

int i, nloop, pipe1 [21 , pipe2 [21;
char c;
pid-t childpid;

if (argc != 2)
err-quit("usage: latqipe <#loops>");

nloop = atoi(argv[ll);

Pipe (pipel) ;
Pipe (pipe2) ;

if ((childpid = Fork0) == 0) {

f o r (; ;) { / * child * /
if (Read(pipel[O], &c, 1) != 1)

err-quit("read error");
Write(pipe2[1], &c, 1);

1
exit (0) ;

1
/ * parent * /

doit(pipe2[0], pipel[ll);

Start-time () ;
for (i = 0; i < nloop; i++)

doit(pipe2[0], pipel[ll) ;
printf("1atency: %.3f usec\nn, Stop-time0 / nloop);

Kill(childpid, SIGTERM);
exit (0) ;

bench/latgipe.c

Figure A.29 Program to measure the latency of a pipe.

482 Performance Measurements Appendix A

On a Sparc running Solaris 2.6, if we run the program five times in a row, we get

s o l a r i s % l a t g i p e 10000
la tency: 278.633 usec
s o l a r i s % l a t g i p e 10000
la tency: 397.810 usec
s o l a r i s % l a t g i p e 10000
la tency: 392.567 usec
s o l a r i s % l a t g i p e 10000
la tency: 266.572 usec
s o l a r i s % l a t g i p e 10000
la tency: 284.559 usec

The average of these five runs is 324 microseconds, which we show in Figure A.1. These
times include two context switches (parent-to-child, then child-teparent), four system
calls (w r i t e by parent, read by child, w r i t e by child, and read by parent), and the
pipe overhead for 1 byte of data in each direction.

Posix Message Queue Latency Program

Our program to measure the latency of a Posix message queue is shown in Figure A.30.
2s-2s Two message queues are created: one is used from the parent to the child, and the

other from the child to the parent. Although Posix messages have a priority, allowing
us to assign different priorities for the messages in the two different directions,
m ~ r e c e i v e always returns the next message on the queue. Therefore, we cannot use
just one queue for this test.

System V Message Queue Latency Program

Figure A.31 shows our program that measures the latency of a System V message
queue.

Only one message queue is created, and it contains messages in both directions:
parent-techild and child-to-parent. The former have a type field of 1, and the latter
have a type field of 2. The fourth argument to msgrcv in d o i t is 2, to read only mes-
sages of this type, and the fourth argument to msgrcv in the child is 1, to read only
messages of this type.

In Sections 9.3 and 11.3, we mentioned that many kernel-defined structures cannot be statically
initialized because Posix.1 and Unix 98 guarantee only that certain members are present in the
structure. These standards do not guarantee the order of these members, and the structures
might contain other, nonstandard, members too. But in this program, we statically initialize
the msgbuf structures, because System V message queues guarantee that this structure con-
tains a long message type field followed by the actual data.

bench/latgxmsg.c
1 #include "unpipc.h"
2 #def ine NAME1 "lat_pxmsglW
3 #def ine NAME2 " l a tqxmsg2"
4 #def ine MAXMSG 4 / * room f o r 4096 by tes on queue * /
5 #def ine MSGSIZE 1024

Section A.4 Message Passing Latency Programs 483

6 void
7 doit(mqd-t mqsend, mqd-t mqrecv)
8 {
9 char buff[MSGSIZEl;

10 M ~ s e n d (mqsend, buff, 1, 0) ;
11 if (M~receive (mqrecv, buff, MSGSIZE, NULL) != 1)
12 err-quit ("m~receive error") :
13 1

14 int
15 main(int argc, char **argv)
16 {

int i, nloop;
mqd-t mql, mq2;
char buff[MSGSIZEI;
pid-t childpid;
struct mQattr attr;

if (argc != 2)
err-quit("usage: latqmsg <#loops>");

nloop = atoi(argv[ll):

attr.mq_maxmsg = MAXMSG;
attr.mQmsgsize = MSGSIZE;
mql = Maopen(Px-ipc-name(NAME1). 0-RDWR I 0-CREAT, FILE-MODE, &attr);
mq2 = Mq_open(Px-ipc-name(NAME2). 0-RDWR I 0-CREAT, FILE-MODE, &attr);

if ((childpid = ForkO) == 0) {

for (; ; 1 { / * child * /
if (M~receive(mq1, buff, MSGSIZE, NULL) != 1)

err-quit("m~receive error");
M~send(mq2, buff, 1, 0) ;

1
exit (0) ;

1
/ * parent * /

doit(mq1, mq2);

Start-time () ;
for (i = 0; i < nloop; i++)

doit(rnq1, mq2);
printf("1atency: %.3f usec\nn, Stop-time0 / nloop);

Kill(chi1dpid. SIGTERM);
M Q C ~ O S ~ (mql) ;
M~close (mq2) ;
~~unlink(Px-ipc-name(NAME1)) ;

Mq_unlink(Px-ipc-name(NAME2));
exit (0) ;

49 1 bench/latgxmsg.c

Figure A.30 Program to measure the latency of a Posix message queue.

484 Performance Measurements Appendix A

benchllat-svmsg.c
1 #include "unpipc.hU
2 struct msgbuf pachild = t 1, { 0 1 1; / * type = 1 * /
3 struct msgbuf child2p = t 2, t 0 1 1; / * type = 2 * /
4 struct msgbuf inbuf;

5 void
6 doit(int msgid)
7 t
8 Msgsnd(msgid, &p2child, 0, 0);
9 if (Msgrcv(msgid, &inbuf, sizeof (inbuf .mtext) , 2, 0) ! = 0)
10 err-quit("msgrcv error");
11 1

12 int
13 main(int argc, char **argv)
14 t

int i, nloop, msgid;
pid-t childpid;

if (argc != 2)
err-quit("usage: lat-svmsg <#loops>");

nloop = atoi(argv[l]);

msgid = Msgget(1PC-PRIVATE, IPC-CREAT I SVMSG-MODE);
if ((childpid = Fork()) == 0) {

f o r (; ;) t / * child * /
if (Msgrcv(msgid, &inbuf, sizeof (inbuf .mtext) , 1, 0) != 0)

err-quit("msgrcv error");
Msgsnd(msgid, &child2p, 0, 0) ;

1
exit (0) ;

1
/ * parent * /

doit (msgid) ;

Start-time () ;
for (i = 0; i <nloop; i++)

doi t (msgid) ;
printf("1atency: %.3f usec\nn, Stop-time0 / nloop);

Kill(chi1dpid. SIGTERM);
Msgctl (msgid, IPC-RMID, NULL) ;
exit (0) ;

38 1
benchllat-svmsg.c

Figure A.31 Program to measure the latency of a System V message queue.

Doors Latency Program

Our program to measure the latency of the doors API is shown in Figure A.32. The
child creates the door and associates the function server with the door. The parent
then opens the door and invokes door-call in a loop. One byte of data is passed as
an argument, and nothing is returned.

Section A.4 Message Passing Latency Programs 485

benchllat-d0or.c
1 #include "unpipc . h"
2 void
3 server(void *cookie, char *argp, size-t arg-size,
4 door-desc-t *dp, size-t n-descriptors)
5 t
6 char c;

7 Door-return (&c, sizeof (char) , NULL, 0) ;
8 1

9 int
10 main(int argc, char **argv)
11 1

int i, nloop, doorfd, contpipe[21;
char c;
pid-t childpid;
door-arg-t arg;

if (argc != 3)
err-quit("usage: lat-door <pathname> <#loops>");

nloop = atoi(argv[2]);

unlink(argv[ll);
Close(Open(argv[l], 0-CREAT I 0-EXCL I 0-RDWR, FILE-MODE));
Pipe(contpipe);

if ((childpid = Fork()) == 0) {

doorfd = Door-create(server, NULL, 0):
Fattach(doorfd, argv[ll);
Write(contpipe[ll, &c, 1);

for (; ;) / * child = server * /
pause () ;

exit (0) ;
1
arg.data_ptr = &c; / * parent = client * /
arg.data-size = sizeof(char);
arg.descqtr = NULL;
arg-desc-num = 0;
arg-rbuf = &c;
arg.rsize = sizeof(char);

if (Read(contpipe[O], &c, 1) != 1) / * wait for child to create * /
err-quit("pipe read error");

doorfd = Open(argv[ll, 0-RDWR);
Door~call(doorfd, &arg); / * once to start everything * /

Start-time () ;
for (i = 0; i < nloop; i++)

Door~call(doorfd, &arg);
printf("1atency: %.3f usec\nn, Stop-time() / nloop);

Kill (childpid, SIGTERM) :
unlink (argv[l]) ;
exit (0) ;

47 I
benchllat-d0or.c

Figure A.32 Program to measure the latency of the doors API.

486 Performance Measurements Appendix A

Sun RPC Latency Program

To measure the latency of the Sun RPC API, we write two programs, a client and a
server (similar to what we did when we measured the bandwidth). We use the same
RPC specification file (Figure A.26), but our client calls the null procedure this time.
Recall from Exercise 16.11 that this procedure takes no arguments and returns nothing,
which is what we want to measure the latency. Figure A.33 shows the client. As in the
solution to Exercise 16.11, we must call clnt-call directly to call the null procedure; a
stub function is not provided in the client stub.

3 int
4 main (int argc. char **argv)
5 t
6 int i, nloop;
7 CLIENT *cl;
8 struct timeval tv;

9 if (argc != 4)
10 errquit("usage: lat-sunrpc-client <hostname> <#loops> <protocol>");
11 nloop = atoi(argv[21);

Start-time () ;

for (i = 0; i < nl-oop: i++) {
if (clnt~call(cl, NULLPROC, xdr-void, NULL,

xdr-void, NULL, tv) != RPC-SUCCESS)
err-quit("%sW, clnt-sperror(c1, argv[l]));

1
printf("1atency: %.3f usec\nm. Stop-time0 / nloop);
exit (0) ;

Figure A.33 Sun RPC client for latency measurement.

We compile our server with the server function from Figure A.28, but that function
is never called. Since we used rpcgen to build the client and server, we need to define
at least one server procedure, but we never call it. The reason we used rpcgen is that it
automatically generates the server main with the null procedure, which we need.

A.5 Thread Synchronization Programs

To measure the time required by the various synchronization techniques, we create
some number of threads (one to five for the measurements shown in Figures A.6 and
A.8) and each thread increments a counter in shared memory a large number of times,
using the different forms of synchronization to coordinate access to the shared counter.

Section A.5 Thread Synchronization Programs 487

Posix Mutex Program

Figure A.34 shows the global variables and the m a i n function for ow program to mea-
sure Posix mutexes.

#define MAXNTHREADS 100

int nl-oop;

struct {

pthread-mutex-t mutex;
long counter;

1 shared = {

PTHREAD-MUTEX-INITIALIZER

1 ;

void *incr (void *) ;

int
main(int argc, char **argv)
t

int i, nthreads;
pthread-t tid[MAXNTHREADS];

if (argc != 3)
err-quit("usage: incrqmutexl <#loops> <#threads>");

nl-oop = atoi (argv[l]) ;
nthreads = min(atoi (argv[2]) , MAXNTHREADS) ;

/ * lock the mutex * /
Pthread-mutex-lock(&shared.mutex);

/ * create all the threads * /
Set-concurrency(nthreads);
for (i = 0; i < nthreads; i++) {

Pthread-create(&tid[il, NULL, incr, NULL);
1

/ * start the timer and unlock the mutex * /
Start-time () ;
Pthread~mutex~unlock(&shared.mutex);

/ * wait for all the threads * /
for (i = 0; i < nthreads; i++) {

Pthread-join(tid[i], NULL);
1
printf("microseconds: %.Of usec\nn, Stop-time0) ;

if (shared.counter != nloop * nthreads)
printf("error: counter = %ld\nu, shared.counter);

exit (0) ;
1

bench/incr_pxrnutexl .c

Figure A.34 Global variables and main function to measure Posix mutex synchronization.

488 Performance Measurements Appendix A

Shared data

The shared data between the threads consists of the mutex itself and the counter.
The mutex is statically initialized.

Lock mutex and create threads

The main thread locks the mutex before the threads are created, so that no thread
can obtain the mutex until all the threads have been created and the mutex is released
by the main thread. Our set-concurrency function is called and the threads are cre-
ated. Each thread executes the incr function, which we show next.

Start timer and release the mutex

Once all the threads are created, the timer is started and the mutex is released. The
main thread then waits for all the threads to finish, at which time the timer is stopped
and the total number of microseconds is printed.

Figure A.35 shows the incr function that is executed by each thread.

bench/incr_pxmutexl .c
39 vo id *
40 i n c r (v o i d *arg)
41 i
42 i n t i ;

43 f o r (i = 0; i < nloop; i + +) {
44 Pthread~mutex~lock(&shared.mutex);
4 5 shared.counter++;
46 Pthread~mutex~unlock(&shared.mutex);
4 7 1
48 r e t u r n (NULL) ;

49 1
bench/incr_pxmutexl .c

Figure A.35 lncrement a shared counter using a Posix mutex.

lncrement counter in critical region

The counter is incremented after obtaining the mutex. The mutex is released.

Read-Write Lock Program

Our program that uses read-write locks is a slight modification to our program that
uses Posix mutexes. Each thread must obtain a write lock on the read-write lock before
incrementing the shared counter.

Few systems implement the Posix read-write locks that we described in Chapter 8, which are
part of Unix 98 and are being considered by the Posix.lj working group. The read-write lock
measurements described in this Appendix were made under Solaris 2.6 using the Solaris
read-write locks described in the rwlock (3T) manual page. This implementation provides
the same functionality as the proposed read-write locks, and the wrapper functions required
to use these functions from the functions we described in Chapter 8 are trivial.

Section A.5 Thread Synchronization Programs 489

Under Digital Unix 4.08, our measurements were made using the Digital thread-independent
services read-write locks, described on the tis-rwlock manual pages. We do not show the
simple modifications to Figures A.36 and A.37 for these read-write locks.

Figure A.36 shows the main function, and Figure A.37 shows the incr function.

benchlincr-rwlockl .c
#include "unpipc.hN
#include <synch.h> / * Solaris header */

void Rw~wrlock(rwlock~t *rwptr);
void Rw~unlock(rwlock~t *rwptr);

int nloop;

struct {

rwlock-t rwlock;
long counter;

1 shared;

/ * the Solaris datatype */

/ * init to 0 -> USYNC-THREAD */

void *incr (void *) ;

int
main(int argc, char **argv)
{

int i, nthreads;
pthread-t ~~~[MAXNTHREADSI;

if (argc != 3)
err-quit("usage: incr-rwlockl <#loops> <#threads>");

nloop = atoi(argv[ll);
nthreads = min(atoi(argv[2]), MAXNTHREADS);

/ * obtain write lock * /
Rw~wrlock(&shared.rwlock);

/ * create all the threads * /
Set-concurrency(nthreads);
for (i = 0; i < nthreads; i++) {

Pthread-create(&tid[il, NULL, incr, NULL);
1

/ * start the timer and release the write lock * /

/ * wait for all the threads * /
for (i = 0; i <nthreads; i++) {

Pthread-join(tid[i], NULL);
1
printf("microseconds: %.Of usec\nn, Stop-time());
if (shared.counter != nloop * nthreads)

printf("error: counter = %1d\nv, shared.counter);

exit (0) ;
1

benchlincr-rwlockl .c

Figure A.36 main function to measure read-write lock synchronization.

490 Performance Measurements Appendix A

benchlincr-rwlockl ,c
40 void *
41 incr(void *arg)
42 I
4 3 int i ;

4 4 for (i = 0; i < nloop; i++) {
4 5 RW-wrlock (&shared. rwlock) ;
46 shared.counter++;
47 ~w~unlock(&shared.rwlock);
4 8 1
4 9 return (NULL) ;

Figure A37 Increment a shared counter using a read-write lock.

Posix Memory-Based Semaphore Program

We measure both Posix memory-based semaphores and Posix named semaphores. Fig-
ure A.39 shows the main function for the memory-based semaphore program, and Fig-
ure A.38 shows its incr function.

18-19 A semaphore is created with a value of 0, and the second argument of 0 to
sem-init says that the semaphore is shared between the threads of the calling process.

20-27 After all the threads are created, the timer is started and semjos t is called once by
the main thread.

benchlincr~xsernl .c
37 void *
38 incr(void *arg)
39 I
40 int i ;

41 for (i = 0; i c nloop; i++) {
4 2 Sem-wait(&shared.mutex);

4 4 Semsost (&shared.mutex) ;
45 1
46 return (NULL) ;

Figure A.38 Increment a shared counter using a Posix memory-based semaphore.

Section A.5 Thread Synchronization Programs 491

2 #define MAXNTHREADS 100

3 int nloop;

4 struct {

5 sem-t mutex; / * the memory-based semaphore * /
6 long counter;
7 1 shared;

8 void *incr(void *) ;

9 int
10 main(int argc, char **argv)
11 {

12 int i, nthreads;
13 pthread-t tid[MAXNTHREADS];

14 if (argc != 3)
15 err-quit("usage: incr~xseml <#loops> <#threads>");
16 nloop = atoi(argv[ll);
17 nthreads = min(atoi (argvL21) , MAXNTHREADS) ;

18 / * initialize memory-based semaphore to 0 * /
19 Sem-init(&shared.mutex, 0, 0);

/ * create all the threads * /
Set-concurrency(nthreads);
for (i = 0; i < nthreads; i++) {

Pthread-create(&tid[il, NULL, incr, NULL);
1

/ * start the timer and release the semaphore * /
Start-time () ;
Sem_post(&shared.mutex);

2 8 / * wait for all the threads * /
2 9 for (i = 0; i < nthreads; i++) {
3 0 Pthread-join(tid[i] , NULL) ;
31 1
3 2 printf("microseconds: %.Of usec\nW, Stop-time());
3 3 if (shared.counter != nloop * nthreads)
3 4 printf("error: counter = %1d\nw, shared-counter);

3 5 exit (0) ;

Figure A.39 main function to measure Posix memory-based semaphore synchronization.

492 Performance Measurements
7

Appendix A

Posix Named Semaphore Program

Figure A.41 shows the main function that measures Posix named semaphores, and Fig-
ure A.40 shows its incr function.

bench/incr_pxsem2.c
40 void *

incr (void *arg)

I
int i ;

for (i = 0; i < nloop; i++) I
Sem-wait(shared.mutex);
shared.counter++;
Sem_post(shared.mutex);

1
return (NULL) ;

50 1
bench/incr_pxsem2.c

Figure A.40 Increment a shared counter using a Posix named semaphore.

System V Semaphore Program

The main function of our program that measures System V semaphores is shown in Fig-
ure A.42, and Figure A.43 shows its incr function.

20-23 A semaphore is created consisting of one member, and its value is initialized to 0.
24-29 Two semop structures are initialized: one to post-to the semaphore and one to wait-

for the semaphore. Notice that the sem-f lg member of both structures is 0: the
SEM-UNDO flag is not specified.

System V Semaphore with SEM-UNDO Program

The only difference in our program that measures System V semaphores with the
SEM-UNDO feature from Figure A.42 is setting the sem-f lg member of the two semop
structures to SEM-UNDO instead of 0. We do not show this simple modification.

Section A.5 Thread Synchronization Programs 493

2 #define MAXNTHREADS 100
3 #define NAME "incr_pxsem2"

4 int nloop;

5 struct {

6 sem-t *mutex;
7 long counter;
8 1 shared;

/ * pointer to the named semaphore * /

9 void *incr (void *) ;

10 int
11 main(int argc, char **argv)
12 I
13 int i, nthreads;
14 pthread-t tid[M?+XNTHREADS];

15 if (argc != 3)
16 err-quit("usage: incrqxsem2 <#loops> <#threads>");
17 nloop = atoi(argv[l]);
18 nthreads = min(atoi (argv[2]) , -THREADS) ;

19 / * initialize named semaphore to 0 * /
20 sem-unlink(Px-ipc-name(NAME)); / * error OK */
21 shared.mutex = Sem-open(Px-ipc-name(NAME), 0-CREAT I 0-EXCL, FILE-MODE, 0);

/ * create all the threads * /
Set-concurrency(nthreads);
for (i = 0; i < nthreads; i++) {

Pthread-create(&tid[i], NULL, incr, NULL);
1

/ * start the timer and release the semaphore */
Start-time () ;

Sem_post(shared.mutex);

/ * wait for all the threads * /
for (i = 0; i < nthreads; i++) {

Pthread-join(tid[i], NULL);
1
printf("microseconds: %.Of usec\nM, Stop-time());
if (shared-counter != nloop * nthreads)

printf("error: counter = %ld\nv, shared.counter);
Sem-unlink(Px-ipc-name(NAME));

38 exit (0) ;

Figure A.41 main function to measure Posix named semaphore synchronization.

494 Performance Measurements Appendix A

#define MAXNTHREADS 100

int nloop;

struct (

int semid;
long counter;

1 shared;

struct sembuf postop, waitop;

void *incr (void *) ;

int
main(int argc, char **argv)
I

int i, nthreads;
pthread-t tid[MAXNTHREADS];
union semun arg;

if (argc != 3)
err-quit("usage: incr-svseml <#loops> <#threads>");

nloop = atoi (argvrl]) ;
nthreads = min(atoi(argv[2]), MAXNTHREADS);

I * create semaphore and initialize to 0 * /
shared.semid = Semget(1PC-PRIVATE, 1, IFC-CREAT (SVSEM-MODE);
arg.va1 = 0;
Semctl(shared.semid. 0, SETVAL, arg);
postop.sem-num = 0; / * and init the two semop() structures * /
postop.sem-op = 1;
postop.sem-flg = 0;
waitop.sem-num = 0;
waitop.sern-op = -1;
waitop.sem-flg = 0;

/ * create all the threads * /
Set-concurrency(nthreads);
for (i = 0; i < nthreads; i++) (

Pthread-create(&tid[il, NULL, incr, NULL);
?

/ * start the timer and release the semaphore * /
Start-time () ;

Semop(shared.semid, &postop, 1); / * up by 1 * /

/ * wait for all the threads * /
for (i = 0; i < nthreads; i++) (

Pthread-join(tid[il, NULL) ;
1
printf("microseconds: %.Of usec\nU, Stop-time());
if (shared.counter != nloop * nthreads)

printf("error: counter = %ld\nV, shared.counter);
Semctl(shared.semid, 0, IPC-RMID);

exit (0) ;
1

bench/incr-svsernl.~

Figure A.42 main function to measure System V semaphore synchronization.

)n A.5 Thread Synchronization Programs 495

benchlincr-svsernl .c
48 void *
49 incr(void *arg)

50 {
5 1 int i ;

52 for (i = 0; i c nloop; i++) (
5 3 Semop(shared.semid, &waitop, 1);
54 shared.counter++;
5 5 Semop(shared.semid, &postop, 1);
5 6 1
5 7 return (NULL) ;

Figure A.43 Increment a shared counter using a System V semaphore.

t i Record Locking Program

Our final program uses f cntl record locking to provide synchronization. The main
function is shown in Figure A.45. This program will run successfully when only one
thread is specified, because f cntl locks are between different processes, not between
the different threads of a single process. When multiple threads are specified, each
thread can always obtain the requested lock (that is, the calls to writew-lock never
block, since the calling process already owns the lock), and the final value of the counter
is wrong.

-22 The pathname of the file to create and then use for locking is a command-line argu-
ment. This allows us to measure this program when this file resides on different file-
systems. We expect this program to run slower when this file is on an NFS mounted
filesystem, which requires that both systems (the NFS client and NFS server) support
NFS record locking.

The incr function using record locking is shown in Figure A.44.

benchlincrfcntll .c
44 void *
45 incr(void *arg)

46 [
47 int i ;

4 8 for (i = 0; i c nloop; i++) {
4 9 Writew-lock(shared.fd. 0, SEEK-SET, 0);
50 shared.counter++;
51 Un-lock(shared.fd, 0, SEEK-SET, 0);
52 1
5 3 return (NULL) ;

54 1
benchlincrfcntll .c

Figure A.44 Increment a shared counter using f cntl record locking.

496 Performance Measurements Appendix A

5 #define MAXNTHREADS 100

6 int nloop;

7 struct {

8 int fd;
9 long counter;
10 1 shared;

11 void *incr(void *) ;

12 int
13 main(int argc, char **argv)
14 {
15 int i, nthreads;
16 char *pathname ;
17 pthread-t tid[MAXNTHREADSl;

18 if (argc != 4)
19 err-quit("usage: incr-fcntll <pathname> <#loops> <#threads>");
2 0 pathname = argv[l];
21 nloop = atoi(argv[2]);
2 2 nthreads = min(atoi(argv[31), MAXNTHREADS);

23 / * create the file and obtain write lock * /
2 4 shared.fd = Open(pathname, 0-RDWR I 0-CREAT I 0-TRUNC, FILE-MODE);
25 Writew-lock (shared. fd, 0, SEEK-SET, 0) ;

/ * create all the threads * /
Set-concurrency(nthreads);
for (i = 0; i < nthreads; i++) {

Pthread-create(&tid[il, NULL, incr, NULL);
1

/ * start the timer and release the write lock * /
Start-time () ;
Un-lock(shared.fd, 0, SEEK-SET, 0);

/ * wait for all the threads * /
for (i = 0; i < nthreads; i++) {

Pthread-join(tid[i], NULL);
1
printf("microseconds: %.Of usec\nU, Stop-time());
if (shared.counter != nloop * nthreads)

printf("error: counter = %1d\nu, shared.counter1;
Unlink(pathname);

42 exit (0) ;
43 1

benchlincrfcntll .c
Figure A.45 main function to measure fcntl record locking.

:tion A.6 Process Synchronization Programs 497

.6 Process Synchronization Programs

In the programs in the previous section, sharing a counter between multiple threads
was simple: we just stored the counter as a global variable. We now modify these pro-
grams to provide synchronization between different processes.

To share the counter between a parent and its children, we store the counter in
shared memory that is allocated by our my-shm function, shown in Figure A.46.

2 void *
3 my-shm(size-r; nbytes)
4 {
5 void *shared;

6 #if defined(MAP-ANON)
7 shared = mmap(NULL, nbytes, PROT-READ I PROT-mITE,
8 MAP-ANON I MAP-SHARED, -1, 0) ;
9 #elif defined(HAVE_DEV-ZERO)
10 int fd;

11 / * memory map /dev/zero * /
12 if ((fd = open("/dev/zero", 0-RDWR)) == -1)
13 return (MAP-FAILED);
14 shared = mmap(NULL, nbytes, PROT-READ I PROT-m1TE MAP-SHARED, fd, 0);
15 close(fd);

16 #else
17 #error cannot determine what type of anonymous shared memory to use
18 #endif
19 return (shared) ; / * MAP-FAILED on error * /

Figure A.46 Create some shared memory for a parent and its children.

If the system supports the MAP-ANON flag (Section 124, we use it; otherwise, we
memory map /dev/zero (Section 12.5).

Further modifications depend on the type of synchronization and what happens to
the underlying datatype when fork is called. We described some of these details in
Section 10.12.

Posix mutex: the mutex must be stored in shared memory (with the shared
counter), and the PTHREAD-PROCEss-smRED attribute must be set when the
mutex is initialized. We show the code for this program shortly.

Posix read-write lock: the read-write lock must be stored in shared memory
(with the shared counter), and the PTHREAD-PROCESS-SHARED attribute must
be set when the read-write is initialized.

498 Performance Measurements Appendix A

Posix memory-based semaphores: the semaphore must be stored in shared
memory (with the shared counter), and the second argument to sem-init must
be 1, to specify that the semaphore is shared between processes.

Posix named semaphores: either we can have the parent and each child call
sem-open or we can have the parent call sem-open, knowing that the
semaphore will be shared by the child across the fork.

System V semaphores: nothing special need be coded, since these semaphores
can always be shared between processes. The children just need to know the
semaphore's identifier.

fcntl record locking: nothing special need be coded, since descriptors are
shared by the child across a fork.

We show only the code for the Posix mutex program.

Posix Mutex Program

The main function for our first program uses a Posix mutex to provide synchronization
and is shown in Figure A.48. Its i nc r function is shown in Figure A.47.

19-20 Since we are using multiple processes (the children of a parent), we must place our
shared structure into shared memory. We call our my-shm function (Figure A.46).

21-26 Since the mutex is in shared memory, we cannot statically initialize it, so we call
pthread-mutex-init after setting the PTHREAD-PROCESS-SHARED attribute. The
mutex is locked.

27-36 All the children are created, the timer is started, and the mutex is unlocked.
37-43 The parent waits for all the children and then stops the timer.

bench/inu~xmutex5.c
46 void *
47 incr(void *arg)
48 [
4 9 int i ;

50 for (i = 0; i < nloop; i++) {

51 Pthread-mutex-lock(&shared-zmutex);
52 shared->counter++;
53 Pthread-mutex-unlock(&shared->mutex);
5 4 1
5 5 return (NULL) ;
56 1

bench/incr~xmutex5.c
Figure A.47 incr function to measure Posix mutex locking between processes.

:tion A.6 Process Synchronization Programs 499

2 #define MAXNPROC 100

3 int nloop;

4 struct shared {

5 pthread-mutex-t mutex;
6 long counter;
7 1 *shared; / * pointer; actual structure in shared memory * /

8 void *incr (void *) ;

9 int
10 main(int argc, char **argv)
11 {
12 int i, nprocs;
13 pid-t childpid[MAXNPROCl;
14 pthread-mutexattr-t mattr;

15 if (argc != 3)
16 err-quit("usage: incrqxmutex5 <#loops> c#processes>");
17 nloop = atoi(argv[ll);
18 nprocs = min(atoi(argv[2]), MAXNPROC);

19 / * get shared memory for parent and children * /
20 shared = My-shm(sizeof(struct shared)):

21 / * initialize the mutex and lock it * /
2 2 Pthread-mutexattr-init(&mattr);
2 3 Pthread-mutexattr-setpshared(&mattr, PTHREAD-PROCESS-SHARED);
2 4 Pthread-mutex-init(&shared-zmutex, &mattr);
25 Pthread-mutexattr-destroy(&mattr);
26 Pthread-mutex-lock(&shared->mutex);

/ * create all the children * /
for (i = 0; i c nprocs; i++) {

if ((childpid[i] = Fork()) == 0) {

incr (NULL) ;
exit (0) ;

1
1

/ * parent: start the timer and unlock the mutex * /
Start-time () ;

3 7 / * wait for all the children */
3 8 for (i = 0; i c nprocs; i++) {
39 waitpid(childpid[iI, NULL, 0) ;
40 1
4 1 printf("microseconds: %.Of usec\nW, Stop-time());
42 if (shared->counter != nlOOp * nprocs)
43 printf("error: counter = %ld\nW, shared->counter);

44 exit (0) ;
45 1

bench/incr_pxmutex5.c

Figure A.48 main function to measure Posix mutex locking between processes.

Appendix 6

A Threads Primer

6.1 Introduction

This appendix summarizes the basic Posix thread functions. In the traditional Unix
model, when a process needs something performed by another entity, it forks a child
process and lets the child perform the processing. Most network servers under Unix,
for example, are written this way.

Although this paradigm has served well for many years, there are problems with
fork:

fork is expensive. Memory is copied from the parent to the child, all descrip-
tors are duplicated in the child, and so on. Current implementations use a tech-
nique called copy-on-write, which avoids a copy of the parent's data space to the
child until the child needs its own copy; but regardless of this optimization,
fork is expensive.

Interprocess communication (IPC) is required to pass information between the
parent and child after the fork. Information from the parent to the child before
the fork is easy, since the child starts with a copy of the parent's data space and
with a copy of all the parent's descriptors. But returning information from the
child to the parent takes more work.

Threads help with both problems. Threads are sometimes called lightweight processes,
since a thread is "lighter weight" than a process. That is, thread creation can be 10-100
times faster than process creation.

502 A Threads Primer Appendix B

All threads within a process share the same global memory. This makes the sharing
of information easy between the threads, but along with this simplicity comes the prob
lem of synchronization. But more than just the global variables are shared. All threads
within a process share:

process instructions,
most data,
open files (e.g., descriptors),
signal handlers and signal dispositions,
current working directory, and
user and group IDS.

But each thread has its own:

thread ID,
set of registers, including program counter and stack pointer,
stack (for local variables and return addresses),
errno,
signal mask, and
priority.

B.2 Basic Thread Functions: Creation and Termination

In this section, we cover five basic thread functions.

gthread-create Function

When a program is started by exec, a single thread is created, called the initial thread or
main thread. Additional threads are created by pthread- create.

int pthread-create(pthread-t *tid, const pthread-attr-t *attr
void * (*func) (void *) , void *arg) ;

Returns: 0 if OK, positive ~ x x x value on error

Each thread within a process is identified by a thread ID, whose datatype is pthread-t.
On successful creation of a new thread, its ID is returned through the pointer tid.

Each thread has numerous attributes: its priority, its initial stack size, whether it
should be a daemon thread or not, and so on. When a thread is created, we can specify
these attributes by initializing a pthread-attr-t variable that overrides the default.
We normally take the default, in which case, we specify the attr argument as a null
pointer.

Finally, when we create a thread, we specify a function for it to execute, called its
thread start function. The thread starts by calling this function and then terminates either
explicitly (by calling pthread-exit) or implicitly (by letting this function return). The

Section B.2 Basic Thread Functions: Creation and Termination 503

address of the function is specified as the func argument, and this function is called with
a single pointer argument, arg. If we need multiple arguments to the function, we must
package them into a structure and then pass the address of this structure as the single
argument to the start function.

Notice the declarations of func and arg. The function takes one argument, a generic
pointer (void *), and returns a generic pointer (void *). This lets us pass one pointer
(to anything we want) to the thread, and lets the thread return one pointer (again, to
anything we want).

The return value from the Pthread functions is normally !I if OK or nonzero on an
error. But unlike most system functions, which return -1 on an error and set errno to a
positive value, the Pthread functions return the positive error indication as the func-
tion's return value. For example, if pthread-create cannot create a new thread
because we have exceeded some system limit on the number of threads, the function
return value is EAGAIN. The Pthread functions do not set errno. The convention of 0
for OK or nonzero for an error is fine, since all the ~ x x x values in <sys /errno. h> are
positive. A value of 0 is never assigned to one of the ~ x x x names.

gthread- j oin Function

We can wait for a given thread to terminate by calling pthread-join. Comparing
threads to Unix processes, pthread-create is similar to fork, and pthread-j oin is
similar to wai tpid.

I int pthread-join(pthread-t tid, void **status);

1 Returns: 0 if OK, positive Exxx value on error

We must specify the tid of the thread for which we wish to wait. Unfortunately, we
have no way to wait for any of our threads (similar to wai tpid with a process ID argu-
ment of -1).

If the status pointer is nonnull, the return value from the thread (a pointer to some
object) is stored in the location pointed to by status.

gthread-self Function

Each thread has an ID that identifies it within a given process. The thread ID is
returned by pthread-create, and we saw that it was used by pthread-join. A
thread fetches this value for itself using pthread-self.

#include cpthread.h>

pthread-t pthread-self(void);

Returns: thread ID of calling thread
L

Comparing threads to Unix processes, pthread-self is similar to getpid.

504 A Threads Primer Appendix B

gthread-detach Function

A thread is either joinable (the default) or detached. When a joinable thread terminates,
its thread ID and exit status are retained until another thread in the process calls
pthread- j oin. But a detached thread is l i e a daemon process: when it terminates, all
its resources are released, and we cannot wait for it to terminate. If one thread needs to
know when another thread terminates, it is best to leave the thread as joinable.

The pthread-detach function changes the specified thread so that it is detached.

I int pthread-detach (pthread-t tid) ; I
1 Returns: 0 if OK, positive ~ x x x value on error 1

This function is commonly called by the thread that wants to detach itself, as in

pthread-detach(pthread-self());

gthread-exit Function

One way for a thread to terminate is to call pthread-exit.

#include <pthread.h>

void pthread-exit (void *status) ;

Does not return to caller 1

If the thread is not detached, its thread ID and exit status are retained for a later
pthread-j o i n by some other thread in the calling process.

The pointer status must not point to an object that is local to the calling thread (e.g.,
an automatic variable in the thread start function), since that object disappears when the
thread terminates.

A thread can terminate in two other ways:

The function that started the thread (the third argument to pthread-create)
can return. Since this function must be declared as returning a void pointer,
that return value is the exit status of the thread.

If the main function of the process returns or if any thread calls e x i t or -exit,
the process terminates immediately, including any threads that are still running.

Appendix C

Miscellaneous Source Code

1 unpigc .h Header

Almost every program in the text includes our unpipc . h header, shown in Figure C.1.
This header includes all the standard system headers that most network programs need,
along with some general system headers. It also defines constants such as MAXLINE
and ANSI C function prototypes for the functions that we define in the text (e.g.,
px-ipc-name) and all the wrapper functions that we use. We do not show these proto-
types.

1iblunpipc.h
1 / * Our own header. Tabs are set for 4 spaces, not 8 * /

4 #include "../config.hU / * configuration options for current OS * /
5 / * "../config.h" is generated by configure * /

6 / * If anything changes in the following list of #includes, must change
7 ../aclocal.m4 and ../configure.in also, for configure's tests. * /

csys/types.h>
csys/time.h>
ctime. h>

/ * basic system data types * /
/ * timeval{} for select0 * /
/ * timespec{} for pselecto * /

cerrno . h>
cfcntl.h> / * for nonblocking * /
climits.h> / * PIPE-BUF * /

cstdio. h>
cstdlib.h>
cstring.h>
csys/stat.h> / * for Sgxx file mode constants * /

506 Miscellaneous Source Code Appendix C

21 #ifdef HAVE-MQUEUE-H
22 #include anqueue.h>
23 #endif

/ * POS~X message queues * /

24 #ifdef HAVE-SEMAPHORE-H
25 #include <semaphore.h> / * Posix semaphores * /

26 #ifndef SEM-FAILED
27 #define SEM-FAILED ((sem-t *)(-I))
28 #endif

30 #ifdef HAVE-SYS-MMAN-H
31 #include <sys/nunan.h> / * Posix shared memory * /
32 #endif

33 #ifndef MAPFAILED
34 #define MAP-FAILED ((void *) (- I))
35 #endif

39 #ifdef HAVE-SYS-MSG-H

42 #ifdef HAVE-SYS-SEM-H
43 #ifdef bsdi-
44 #undef HAVE-SYS-SEM-H
45 #else
46 #include <sys/sem.h>
47 #endif

48 #ifndef HAVE-SEMUN-UNION
49 union semun {

50 int val ;
5 1 struct semid-ds *buf;

/ * System V IPC * /

/ * System V message queues * /

/ * hack: BSDI's semctl0 prototype is wrong * I

/ * System V semaphores */

/ * define union for semctl0 * /

52 unsigned short *array;
53 I ;
54 #endif
55 #endif / * HAVE-SYS-SEM-H * /

56 #ifdef HAVE-SYS-SHM-H
57 #include <sys/shm.h> / * System V shared memory * /
58 #endif

59 #ifdef HAVE-SYS-SELECT-H
60 #include <sys/select.h> / * for convenience * /
61 #endif

62 #ifdef HAVE-POLL-H
63 #include <poll.h>
64 #endif

/ * for convenience * /

Section C.1 unpipc . h Header 507

65 #ifdef HAVE-STROPTS-H
66 #include <stropts.h>
67 #endif

/* for convenience * /

68 #ifdef HAVE-STRINGS-H
69 #include cstrings.h> / * for convenience * /
70 #endif

/ * Next three headers are normally needed for socket/file ioctl's:
* <sys/ioctl.h>, <sys/filio.h>, and <sys/sockio.h>.
* /
#ifdef HAVE-SYS-IOCTL-H
#include <sys/ioctl.h>
#endif
#ifdef HAVE-SYS-FILIO-H
#include <sys/filio.h>
#endif

83 #ifdef HAVE-DOOR-H
84 #include <door.h>
85 #endif

/ * Solaris doors API * /

86 #ifdef HAVE-RPC-RPC-H
87 #ifdef -PSX4-NSPACE-H-TS / * Digital Unix 4.0b hack, hack, hack * /
88 #undef SUCCESS
89 #endif
90 #include <rpc/rpc.h> / * Sun RPC * /
91 #endif

92 / * Define bzeroo as a macro if it's not in standard C library. * /
93 #ifndef HAVE-BZERO
94 #define bzero (ptr, n) memset (ptr, 0, n)
95 #endif

96 / * Posix-lg requires that an #include of <poll.h> define INFTIM, but many
97 systems still define it in csys/stropts.h>. We don't want to include

98 all the streams stuff if it's not needed, so we just define INFTIM here.
99 This is the standard value, but there's no guarantee it is -1. * /
100 #ifndef INFTIM
101 #define INFTIM (-1)
102 #ifdef HAVE-POLL-H
103 #define INFTIM-UNPH
104 #endif
105 #endif

106 / * Miscellaneous constants * /
107 #ifndef PATH-MAX
108 #define PATH-MAX 1024
109 #endif

110 #define MAX-PATH 1024
111 #define MAXLINE 4096
112 #define BUFFSIZE 8192

/ * infinite poll timeout * /

/ * tell unpxti.h we defined it * /

/ * should be in clirnits.h> * /
/ * max # of characters in a pathname * /

/ * max text line length * I
/ * buffer size for reads and writes */

508 Miscellaneous Source Code

1

Appendix C

#define FILE-MODE (S-IRUSR I S-IWUSR I S-IRGRP 1 S-IROTH)
/ * default permissions for new files * /

#define DIR-MODE (FILE-MODE (S-IXUSR I S-IXGRP I S-IXOTH)
/ * default permissions for new directories * /

#define SVMSG-MODE (MSG-R (MSG-W I MSG-R>>3 I MSG-R>>6)
/ * default permissions for new SV message queues * /

#define SVSEM-MODE (SEM-R I SEM-A I SEM-R>>3 1 SEM-R>>6)
/ * default permissions for new SV semaphores * /

#define SVSHMJIODE (SHM-R I SHM-W I SHM-R>>3 I SHM-R>>6)
/ * default permissions for new SV shared memory * /

typedef void Sigfunc (int) ; / * for signal handlers * /

#ifdef HAVE-SIGINFO-T-STRUCT
typedef void Sigfunc-rt (int, siginfo-t *, void *) ;

#endi f

#define min(a,b) ((a) c (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))

#ifndef HAVE-TIMESPEC-STRUCT
struct timespec {

t ime-t tv-sec ; / * seconds * /
long tv-nsec ; / * and nanoseconds * /

1 ;
#endif

/ *
* In our wrappers for open(), -open(), and sem-open0 we handle the
* optional arguments using the va-XXXO macros. But one of the optional
* arguments is of type "mode-t" and this breaks under BSD/OS because it
* uses a 16-bit integer for this datatype. But when our wrapper function
* is called, the compiler expands the 16-bit short integer to a 32-bit
* integer. This breaks our call to va-arg0. All we can do is the
* following hack. Other systems in addition to BSD/OS might have this
* problem too . . .
* /

#ifdef -bsdi-
#define va-mode-t int
#else
#define va-mode-t mode-t
#endif

/ * our record locking macros * /
#define read-lock(fd, offset, whence, len) \

lock-reg(fd, F-SETLK, F-RDLCK, offset, whence, len)
#define readw-lock(fd, offset, whence, len) \

lock-reg(fd, F-SETLKW, FRDLCK, offset, whence, len)
#define write-lock(fd, offset, whence, len) \

lock-reg(fd, F-SETLK, F-WRLCK, offset, whence, len)
#define writew-lock(fd, offset, whence, len) \

lock-reg(fd, F-SETLKW, F-WRLCK, offset, whence, len)
#define un-lock(fd, offset, whence, len) \

lock-reg(fd, F-SETLK, F-UNLCK, offset, whence, len)
#define is-read-lockable(fd, offset, whence, len) \

!ction C.2 conf ig . h Header 509

162 lock-test(fd, F-RDLCK, offset, whence, len)
163 #define is-write-lockable(fd, offset, whence, len) \
164 lock-test(fd, F-WRLCK, offset, whence, len)

1iblunpipc.h

Figure C.l Our header unpipc . h.

conf ig . h Header

The GNU autoconf tool was used to aid in the portability of all the source code in this
text. It is available from f tp : / /prep. ai . mi t . edu/pub/gnu/ . This tool generates a
shell script named configure that you must run after downloading the software onto
your system. This script determines the features provided by your Unix system: are
System V message queues supported? is the uint8-t datatype defined? is the
gethostname function provided? and so on, generating a header named con£ ig . h.
This header is the first header included by our unpipc . h header in the previous sec-
tion. Figure C.2 shows the conf ig. h header for Solaris 2.6 when used with the gcc
compiler.

The lines beginning with #define in column 1 are for features that the system pro-
vides. The lines that are commented out and contain #undef are features that the sys-
tem does not provide.

sparc-sun-solaris2.6/config.h
1 / * c0nfig.h. Generated automatically by configure. * /
2 / * Define the following if you have the corresponding header * /
3 #define CPU-VENDOR-OS "sparc-sun-solaris2.6"
4 #define HAVE-DOOR-H 1 / * cdoor.h> * /
5 #define HAVE-MQUEUE-H 1 / * cmqueue.h> * /
6 #define HAVE-POLL-H 1 / * cpoll.h> * /
7 #define HAVE-PTHREAD-H 1 / * cpthread.hz * /
8 #define HAVE-RPC-RPC-H 1 / * crpc/rpc.h> * /
9 #define HAVE-SEMAPHORE-H 1 / * csemaphore.h> * /
10 #define HAVE-STRINGSY 1 / * cstrings.hz * /
11 #define HAVE-SYS-FILIO-H 1 / * csys/filio.h> * /
12 #define HAVE-SYS-IOCTL-H 1 / * csys/ioctl.h> * /
13 #define HAVE-SYS-IPC-H 1 / * csys/ipc.h> * /
14 #define HAVE-SYS-MMAN-H 1 / * csys/man.h> * /
15 #define HAVE-SYS-MSG-H 1 / * csys/msg.h> * /
16 #define HAVE-SYS-SEM-H 1 / * <sys/sem.h> * /
17 #define HAVE-SYS-SHM-H 1 / * csys/shm.h> */
18 #define HAVE-SYS-SELECT-H 1 / * csys/select.h> * /
19 / * #undef HAVE-SYS-SYSCTL-H */ / * <sys/sysctl.h> */
20 #define HAVE-SYS-TIME-H 1 / * csys/time.hz * /

21 / * Define if we can include ctime.hz with <sys/time.h> * /
22 #define TIME-WITH-SYS-TIME 1

23 / * Define the following if the function is provided * /
24 #define HAVE-BZERO 1
25 #define HAVE-FATTACH 1
26 #define HAVE-POLL 1

510 Miscellaneous Source Code Appendix (

27 / * #undef HAVE-PSELECT */
28 #define HAVE-SIGWAIT 1
29 #define HAVE-VALLOC 1
30 #define HAVE-VSNPRINTF 1

31 / * Define the following if the function prototype is in a header * /
32 #define HAVE-GETHOSTNAME-PROTO 1 I * <unistd.hz * /
33 #define HAVE-GETRUSAGE-PROTO 1 / * <sys/resource.hz * /
34 I* #undef HAVE-PSELECT-PROTO * / I * csys/select.hz * /
35 #define HAVE-SHM-OPEN-PROTO 1 / * csys/mman.h> * /
36 #define HAVE-SNPRINTFPROTO 1 / * cstdio.hz * /
37 #define HAVE-THR-SETCONCURRENCYYPROTO 1 / * <thread.hz * /

38 / * Define the following if the structure is defined. * /
39 #define HAVE-SIGINFO-T-STRUCT 1 / * csignal.hz * /
40 #define HAVE-TIMESPEC-STRUCT 1 / * ctime.hz * /
41 / * #undef HAVE-SEMUh-UNION */ / * csys/sem.hz * /

42 / * Devices * /
43 #define HAVE-DEV-ZERO 1

Define the following
#undef int8-t " /
#undef intl6-t * /
#undef int32-t * /
#uncle£ uint8-t * /
#undef uintl6-t * /
#undef uint32-t * /
#undef size-t * /
#undef ssize-t * /

to the appropriate datatype, if necessary * /
/ * <sys/types.hz * /
/ * csys/types.hz * /
/ * <sys/types.hz * /
/ * <sys/types.hz * /
/ * <sys/types.hz * /
/ * <sys/types.hz * /
/ * <sys/types.hz * /
/ * csys/types.hz * /

53 #define POSIX-IPC-PREFIX " / "
54 #define RPCGEN-ANSIC 1 / * defined if rpcgen groks -C option * /

Figure C.2 Our con£ ig . h header for Solaris 2.6.

C.3 Standard Error Functions

We define our own set of error functions that are used throughout the text to hand11
error conditions. The reason for our own error functions is to let us write our error han
dling with a single line of C code, as in

if (error condition)
err-sys (printf format with any number of arguments) ;

instead of

if (error condition) {

char buff [2OO] ;
snprintf (buff , sizeof (buf £1 , printf format with any number of arguments) ;
perror (buf f) ;
exit (1) ;

1

Section C.3 Standard Error Fundions 511

Our error functions use the variable-length argument list facility from ANSI C. See Sec-
tion 7.3 of [Kernighan and Ritchie 19881 for additional details.

Figure C.3 lists the differences between the various error functions. If the global
integer daemon~roc is nonzero, the message is passed to syslog with the indicated
level (see Chapter 12 of UNPvl for details on syslog); otherwise, the error is output to
standard error.

strerror
Function 1 (errno) ? / Terminate ? I level

errdump
err-msg
err-qui t
err-ret
err-sys

Figure C.3 Summary of our standard error functions.

Figure C.4 shows the five functions from Figure C.3.

#include "unpipc.hU

#include <stdarg.h> / * ANSI C header file * /
#include <syslog.hz / * for syslog0 * /

int daemon-proc; / * set nonzero by daemon-init0 * /

static void err-doit(int, int, const char *, va-list);

/ * onf fatal error related to a system call.
* Print a message and return. * /

void
err-ret(const char *fmt, ...)
I

va-list ap;

va-start(ap, frnt);
err-doit (1, LOG-INFO, frnt , ap) ;
va-end(ap);
return;

1

/ * Fatal error related to a system call.
* Print a message and terminate. * /

void
err-sys(const char *fmt,...)
{

va-list ap;

va-start (ap, fmt) ;
err-doit (1, LOG-ERR, frnt , ap) ;
va-end(ap);
exit (1) ;

512 Miscellaneous Source Code

Y

Appendix C

/ * Fatal error related to a system call.
* Print a message, dump core, and terminate. * /

void
err-dump(const char *fmt, ...)
I

va-list ap;

va-start (ap. fmt) ;
err-doit(1, LOG-ERR, fmt, ap) ;
va-end(ap);
abort () ; / * dump core and terminate * /
exit(1) ; / * shouldn't get here * /

1

/ * Nonfatal error unrelated to a system call.
* Print a message and return. * /

void
err-msg (const char *fmt , . . .)
I

va-list ap;

va-start (ap, fmt) ;
err-doit (0, LOG-INFO, fmt , ap) ;
va-end(ap);
return;

I

/ * Fatal error unrelated to a system call
* Print a message and terminate. * /

void
err-quitlconst char *fmt,...)
{

va-list ap;

va-start (ap, fmt) ;
err-doit(0, LOG-ERR, fmt, ap);
va-end(ap);
exit (1) ;

1

/ * Print a message and return to caller.
* Caller specifies "errnoflag" and "level". * /

static void
err-doit(int errnoflag, int level, const char *fmt, va-list ap)
{

int errno-save, n;
char buf [MAXLINE] ;

errno-save = errno; / * value caller might want printed * /
#ifdef HAVE-VSNPRINTF

vsnprintf(buf, sizeof(buf), fmt, ap); / * this is safe * /
#else

vsprintf (buf, fmt, ap); / * this is not safe * /
#endif

Section C.3 Standard Error Functions 513

76 if (errnof lag)
7 7 snprintf(buf + n, sizeof(buf) - n, " : %sU, strerror(errn0-save));
7 8 strcat (buf , " \nu) ;

if (daemonjroc) {
syslog (level, buf) ;

1 else {

fflush(stdout) ; / * in case stdout and stderr are the same * /
fputs (buf, stderr) ;
fflushlstderr);

I
return:

Figure C.4 Our standard error functions.

Appendix D

Solutions to Selected Exercises

Chapter 1

1.1 Both processes only need to specify the 0-APPEND flag to the open function, or
the append mode to the f open function. The kernel then ensures that each
wr i t e is appended to the file. This is the easiest form of file synchronization to
specify. (Pages 60-61 of APUE talk about this in more detail.) The synchroniza-
tion issues become more complex when existing data in the file is updated, as in a
database system.

1.2 Something like the following is typical:

#ifdef -REENTRANT
#define errno (*-errno ()

#else
extern int errno;
#endi f

If -REENTRANT is defined, references to errno call a function named -errno
that returns the address of the calling thread's errno variable. This variable is
possibly stored as thread-specific data (Section 23.5 of UNPv1). If -REENTRANT is
not defined, then errno is a global i n t .

Chapter 2

2.1 These two bits can change the effective user ID and/or the effective group ID of
the program that is running. These two effective IDS are used in Section 2.4.

516 Solutions to Selected Exercises Appendix D

2.2 First specify both 0-CREAT and 0-EXCL, and if this returns success, a new object
has been created. But if this fails with an error of EEXIST, then the object already
exists and the program must call the open function again, without specifying
either 0-CREAT or 0-EXCL. This second call should succeed, but a chance exists
(albeit small) that it fails with an error of ENOENT, which indicates that some other
thread or process has removed the object between the two calls.

Chapter 3

3.1 Our program is shown in Figure D.1.

2 int
3 rnain(int argc, char **argv)
4 {

5 int i, rnsqid;
6 struct rnsqid-ds info;

7 for (i = 0; i < 10; i++) {
8 rnsqid = Msgget(1PC-PRIVATE, SVMSG-MODE I IPC-CREAT);
9 Msgctl (rnsqid, IPC-STAT, &info) ;
10 printf("rnsqid = %d. seq = %lu\nn, rnsqid, info.rnsgqerm.seq);

Figure D.l Print identifier and slot usage sequence number.

3.2 The first call to msgget uses the first available message queue, whose slot usage
sequence number is 20 after running the program in Figure 3.7 two times, return-
ing an identifier of 1000. Assuming the next available message queue has never
been used, its slot usage sequence number will be 0, returning an identifier of 1.

3.3 Our simple program is shown in Figure D.2.

2 int
3 rnain(int argc, char **argv)
4 {

5 Msgget(1PC-PRIVATE, 0666 1 IPC-CREAT I IPC-EXCL);
6 unlink("/tmp/fifo.l");
7 Mkfifo("/tmp/fifo.ln, 0666);

8 exit (0) ;
9 I

svrnsgl test urn ask.^
Figure D.2 Test whether the file mode creation mask is used by rnsgget.

)lutions to Selected Exercises Appendix D 517

When we run this program we see that our file mode creation mask is 2 (turn off
the other-write bit) and this bit is turned off in the FIFO, but this bit is not turned
off in the message queue.

solaris % umask
02
solaris % testumask
solaris % 1s -1 /tmg/fifo.l
prw-rw-r-- 1 rstevens other1 0 Mar 25 16:05 /tmp/fifo.l
solaris % ipcs -q
IPC status from <running system> as of Wed Mar 25 16:06:03 1998
T ID KEY MODE OWNER GROUP
Message Queues:

q 200 00000000 --rw-rw-rw- rstevens other1

3.4 With f tok, the possibility always exists that some other pathname on the system
can lead to the same key as the one being used by our server. With
IPC-PRIVATE, the server knows that it is creating a new message queue, but the
server must then write the resulting identifier into some file for the clients to read.

3.5 Here is one way to detect the collisions:

solaris % find / -links 1 -not -type 1 -print I
xargs -nl f t ok l > tm.1
solaris % wc -1 tm.1
109351 temp.1

solaris % sort +O -1 tm.1 1
nawk i f (lastkey == $1)

print last l ine, $0
las t l ine = $0
lastkey = $1

1' > t m . 2
solaris % wc -1 t m . 2

82188 temp.2

In the find program, we ignore files with more than one link (since each link will
have the same i-node), and we ignore symbolic links (since the stat function fol-
lows the link). The extremely high percentage of collisions (75.2%) is due to
Solaris 2.x using only 12 bits of the i-node number. This means lots of collisions
can occur on any filesystem with more than 4096 files. For example, the four files
with i-node numbers 4096, 8192, 12288, and 16384 all have the same IPC key
(assuming they are on the same filesystem).

This example was run on the same filesystems but using the f t o k function from
BSD/OS, which adds the entire i-node number into the key, and the number of
collisions was only 849 (less than 1 %).

4.1 If f d [1 1 were left open in the child when the parent terminated, the child's read
of f d [1 1 would not return an end-of-file, because this descriptor is still open in

518 Solutions to Selected Exercises
7

Appendix D

the child. By closing f d [1] in the child, this guarantees that as soon as the parent
terminates, all its descriptors are closed, causing the child's read of fd [l l to
return 0.

4.2 If the order of the calls is swapped, some other process can create the FIFO
between the calls to open and mkf i f o, causing the latter to fail.

4.3 If we execute

solaris % mainpopen 2>temp.stderr
/etc/ntp.conf > /myfile
solaris % cat temp-stderr
sh: /myfile: cannot create

we see that popen returns success, but we read just an end-of-file with fgets.
The shell error message is written to standard error.

4.5 Change the first call to open to specify the nonblocking flag:

readfifo = Open(SERV-FIFO, 0-RDONLY I 0-NONBLOCK, 0);
This call then returns immediately, and the next call to open (for write-only) also
returns immediately, since the FIFO is already open for reading. But to avoid an
error from readline, the 0-NONBLOCK flag must be turned off for the descriptor
readf if o before calling readline.

4.6 If the client were to open its client-specific FIFO (write-only) before opening the
server's well-known FIFO (read-only), a deadlock would occur. The only way to
avoid the deadlock is to open the two FIFOs in the order shown in Figure 4.24 or
to use the nonblocking flag.

4.7 The disappearance of the writer is signaled by an end-of-file for the reader.

4.8 Figure D.3 shows our program.

2 int
3 main(int argc, char **argv)
4 {
5 int fdL21;
6 char buffL71;
7 struct stat info;

8 if (argc != 2)
9 err-quit("usage: test1 <pathname>");

10 Mkfifo(argv[l], FILE-MODE);
11 fd [0 1 = Open (argv [1] , 0-RWNLY I 0-NONBLCCK) ;
12 fd[ll = Open(argv[l], 0-WRONLY (0-NONBLOCK);

13 / * check sizes when FIFO is empty * /
14 Fstat (fd[O] , &info) ;
15 printf("fd[O]: st-size = %1d\nm, (long) info.st-size);
16 Fstat (fd[ll , &info) ;
17 printf("fd[l]: st-size = %ld\nU, (long) info.st-size);

Solutions to Selected Exercises Appendix D 519

Write(fd[ll, buff, sizeof(buff));

/ * check sizes when FIFO contains 7 bytes * /
Fstat (fd[O] , &info) ;
printf("fd[O]: st-size = %1d\nm, (long) info.st-size);
Fstat (fd[ll , &info) ;
printf("fd[l]: st-size = %1d\nu, (long) info.st-size);

exit(0);
I

pipe/testl.c

Figure D.3 Determine whether f stat returns the number of bytes in a FIFO.

4.9 select returns that the descriptor is writable, but the call to write then elicits
SIGPIPE. This concept is described on pages 153-155 of UNPv1; when a read (or
write) error occurs, select returns that the descriptor is readable (or writable),
and the actual error is returned by read (or write). Figure D.4 shows our pro-
gram.

2 int
3 rrain(int argc, char **argv)

4 {

5 int fdL21, n;
6 pid-t childpid;
7 fd-set wset;

((childpid = Fork()) == 0) { / * child * /
printf("chi1d closing pipe read descriptor\nn);
Close(fd[Ol) ;
sleep(6);
exit (0) ;

/ * parent * /
16 Close(fd[Ol) ; / * in case of a full-duplex pipe * /
17 sleep(3) ;
18 FD-ZERO (&wset) ;
19 FD-SET(fd[ll, &wset) ;
20 n = select(fd[l] + 1, NULL, &wset, NULL, NULL);
21 printf ("select returned %d\nW, n) ;

2 2 if (FD-ISSET(~~[~I, &wset)) {

23 printf("fd[ll writable\nn);
24 Write (fd[ll, "hello". 5) ;
2 5 I
2 6 exit(0) ;

Figure D.4 Determine what select returns for writability when the read end of a pipe is closed.

520 Solutions to Selected Exercises

1

Appendix D

Chapter 5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

First create the queue without specifying any attributes, followed by a call to
m ~ g e t a t t r to obtain the default attributes. Then remove the queue and create
it again, using the default value of either attribute that is not specified.

The signal is not generated for the second message, because the registration is
removed every time the notification occurs.

The signal is not generated for the second message, because the queue was not
empty when the message was received.

The GNU C compiler under Solaris 2.6 (which defines both constants as calls to
sysconf) generates the errors

testl.c:13: warning: int format, long int arg (arg 2)
testl.c:13: warning: int format, long int arg (arg 3)

Under Solaris 2.6, we specify 1,000,000 messages of 10 bytes each. This leads to a
file size of 20,000,536 bytes, which corresponds with our results from running Fig-
ure 5.5: 10 bytes of data per message, 8 bytes of overhead per message (perhaps
for pointers), another 2 bytes of overhead per message (perhaps for 4-byte align-
ment), and 536 bytes of overhead per file. Before mq_open is called, the size of
the program reported by ps is 1052 Kbytes, but after the message queue is ae-
ated, the size is 20 Mbytes. This makes us think that Posix message queues are
implemented using memory-mapped files, and that mq_open maps the file into
the address space of the calling process. We obtain similar results under Digital
Unix 4.OB.

A size argument of 0 is OK for the ANSI C memXXX functions. The original 1989
ANSI C standard X3.159-1989, also known as ISO/IEC 98991990, did not say this
(and none of the manual pages that the author could find mentioned this), but
Technical Corrigendum Number 1 explicitly states that a size of 0 is OK (but the
pointer arguments must still be valid). h t t p : / /www . l y s a t o r . l i u . se / c / is a
wonderful reference point for information on the C language.

For two-way communication between two processes, two message queues are
needed (see for example, Figure A.30). Indeed, if we were to modify Figure 4.14
to use Posix message queues instead of pipes, we would see the parent read back
what it wrote to the queue.

The mutex and condition variable are contained in the memory-mapped file,
which is shared by all processes that have the queue open. Other processes may
have the queue open, so a process that is closing its handle to the queue cannot
destroy the mutex and condition variable.

An array cannot be assigned across an equals sign in C, whereas a structure can.

The main function spends almost all of its time blocked in a call to se lec t , wait-
ing for the pipe to be readable. Every time the signal is delivered, the return from
the signal handler interrupts this call to s e l e c t , causing it to return an error of

Solutions to Selected Exercises Appendix D 521

EINTR. To handle this, our Select wrapper function checks for this error, and
calls s e 1 e c t again, as shown in Figure D.5.

again :
if ((n = select(nfds, readfds, writefds, exceptfds, timeout)) < 0) {

if (errno == EINTR)
goto again;

else
err-sys("se1ect error");

I else if (n == 0 && timeout == NULL)
errquit("se1ect returned 0 with no timeout");

return (n); / * can return 0 on timeout * /

Figure D.5 Our Select wrapper function that handles EINTR.

Page 124 of UNPvl talks more about interrupted system calls.

Chapter 6

6.1 The remaining programs must then accept a numeric message queue identifier
instead of a pathname (recall the output of Figure 6.3). This change could be
made with a new command-line option in these other programs, or the assump
tion could be made that a pathname argument that is entirely numeric is an iden-
tifier and not a pathname. Since most pathnames that are passed to ftok are
absolute pathnames, and not relative (i.e., they contain at least one slash charac-
ter), this assumption is probably OK.

6.2 Messages with a type of 0 are not allowed, and a client can never have a process
ID of 1, since this is normally the ini t process.

6.3 When only one queue is used in Figure 6.14, this malicious client affects all other
clients. When we have one return queue per client (Figure 6-19), this client affects
only its own queue.

Chapter 7

7.2 The process will terminate, probably before the consumer thread has finished,
because calling exit terminates any threads still running.

7.3 Under Solaris 2.6, omitting the call to the destroy functions causes a memory
leak, implying that the init functions are performing dynamic memory alloca-
tion. We do not see this under Digital Unix 4.OB, which just implies an implemen-
tation difference. The calls to the matching destroy functions are still required.

522 Solutions to Selected Exercises

1

Appendix D

Chapter 9

9.1

9.2

9.3

9.4

9.5

9.6

From an implementation perspective, Digital Unix appears to use the a t t r - t
variable as the attributes object itself, whereas Solaris uses this variable as a
pointer to a dynamically allocated object. Either implementation is fine.

Depending on your system, you may need to increase the loop counter from 20, to
see the errors.

To make the standard 1 /0 stream unbuffered, we add the line
setvbuf(stdout, NULL. -1ONBF. 0);

to the main function, before the f o r loop. This should have no effect, because
there is only one call to p r i n t f and the string is terminated with a newline. Nor-
mally, standard output is line buffered, so in either case (line buffered or
unbuffered), the single call to p r i n t f ends up in a single wr i t e call to the kernel.

We change the call to p r i n t f to be
snprintf(line, sizeof(1ine). "%s: pid = %Id, seq# = %d\nm,

argv[O], (long) pid. seqno);
for (ptr = line; (c = *ptr++) != 0;)

putchar(c);

and declare c as an integer and p t r as a char*. If we leave in the call to
setvbuf, making standard output unbuffered, this causes the standard 110
library to call wr i te once per character that is output, instead of once per line.
This involves more CPU time, and provides more opportunities for the kernel to
switch between the two processes. We should see more errors with this program.

Since multiple processes are allowed to have read locks for the same region of a
file, this is the same as having no locks at all for our example.

Nothing changes, because the nonblocking flag for a descriptor has no effect on
f cnt 1 advisory locking. What determines whether a call to f cnt 1 blocks or not
is whether the command is F-SETLKW (which always blocks) or F-SETLK (which
never blocks).

The loopf cntlnonb program operates as expected, because, as we showed in
the previous exercise, the nonblocking flag has no effect on a program that per-
forms f c n t l locking. But the nonblocking flag does affect the loopnonenonb
program, which performs no locking. As we said in Section 9.5, a nonblocking
call to read or wri te for a file for which mandatory locking is enabled, returns
an error of EAGAIN if the read or wr i t e conflicts with an existing lock. We see
this error as either

read error: Resource temporarily unavailable

write error: Resource temporarily unavailable

and we can verify that the error is EAGAIN by executing

Solutions to Selected Exercises Appendix D 523

9.7

9.8

9.9

9.10

Chapter 10

10.1

solaris % grep Resource /usr/include/aya/errno.h
#define EAGAIN 11 / * Resource temporarily unavailable * /

Under Solaris 2.6, mandatory locking increases the clock time by about 16% and it
increases the system CPU time by about 20%. The user CPU time remains the
same, as we expect, because the extra time is within the kernel checking every
read and write, not within our process.

Locks are granted on a per-process basis, not on a per-thread basis. To see con-
tention for lock requests, we must have different processes trying to obtain the
locks.

If another copy of the daemon were running and we open with the 0-TRUNC flag,
this would wipe out the process ID stored by the first copy of the daemon. We
cannot truncate the file until we know we are the only copy running.

SEEK-SET is always preferable. The problem with SEEK-CUR is that it depends
on the current offset in the file, which is specified by lseek. But if we call l seek
and then f cn t 1, we are using two function calls to perform what is a single oper-
ation, and a chance exists that another thread can change the current offset by call-
ing l s e e k between our two function calls. (Recall that all threads share the same
descriptors. Also recall that f c n t l record locks are for locking between different
processes and not for locking between the different threads within one process.)
Similarly, if we specify SEEK-END, a chance exists that another thread can append
data to the file before we obtain a lock based on what we think is the end of the
file.

Here is the output under Solaris 2.6:

solaris % deadlock 100
prod:
prod:
prod:
prod:

prod:
prod:
prod :
prod:

prod :

cons :
cons :
cons :
cons:
cons :

cons :
cons :
cons :

calling sem-wait (nempty)
got sem-wait (nempty)
calling sem-wait(mutex)
got sem-waithutex), storing 0

calling sem-wait(nempty)
got sem-wait(nempty)
calling sem-wait(rnutex)
got sem-wait(rnutex), storing 1

calling sem-wait(nempty)

calling sem-wait(rnutex)
got sem-wait(mutex)
calling sem-wait(nstored1
got sem-wait(nstored)
fetched 0

calling sem-wait(rnutex)
got sem-wait (mutex)
calling sem-wait(nstored)

i=U loop for producer

i=l loop for producer

start next loop, but no empty slots
context switch from producer to consumer
i=O loop for consumer

i=O loop for consumer

524 Solutions to Selected Exercises

1

Appendix D

cons: got sem-wait(nstored)
cons: fetched 1

cons: calling sem-wait(mutex)
cons: got sem-wait(mutex)
cons: calling sem-wait(nstored) consumer blocks here forever

context switch from consumer to producer
prod: got sem-wait(nempty)
prod: calling sem-wait(mutex) producer blocks here forever

This is OK given the rules for semaphore initialization that we specified when
we described sem-open: if the semaphore already exists it, is not initialized. So
only the first of the four programs that calls sem-open actually initializes the
semaphore value to 1. When the remaining three call sem-open with the
0-CREAT flag, the semaphore will already exist, so its value is not initialized
again.

This is a problem. The semaphore is automatically closed when the process ter-
minates, but the value of the semaphore is not changed. This will prevent any of
the other three programs from obtaining the lock, causing another type of dead-
lock.

If we did not initialize the descriptors to -1, their initial value is unknown, since
malloc does not initialize the memory that it allocates. So if one of the calls to
open fails, the calls to c l o s e at the label e r r o r could close some descriptor that
the process is using. By initializing the descriptors to -1, we know that the calls
to c lose will have no effect (other than returning an error that we ignore) if that
descriptor has not been opened yet.

A chance exists, albeit slight, that c l o s e could be called for a valid descriptor
and could return some error, thereby changing e r rno from the value that we
want to return. Since we want to save the value of er rno to return to the caller,
to do so explicitly is better than counting on some side effect (that c lose will not
return an error when a valid descriptor is closed).

No race condition exists in this function, because the mkf i f o function returns an
error if the FIFO already exists. If two processes call this function at about the
same time, the FIFO is created only once. The second process to call mkf i f o will
receive an error of EEXIST, causing the 0-CREAT flag to be turned off, prevent-
ing another initialization of the FIFO.

Figure 10.37 does not have the race condition that we described with Figure 10.43
because the initialization of the semaphore is performed by writing data to the
FIFO. If the process that creates the FIFO is suspended by the kernel after it calls
mkf i f o but before it wr i tes the data bytes to the FIFO, the second process will
just open the FIFO and block the first time it calls s e m - w a i t , because the newly
created FIFO will be empty until the first process (which created the FIFO) writes
the data bytes to the FIFO.

Figure D.6 shows the test program. Both the Solaris 2.6 and Digital Unix 4.08
implementations detect being interrupted by a caught signal and return EINTR.

Solutions to Selected Exercises Appendix D 525

2 #define NAME "testeintr"

3 static void sig-alrm(int);

4 int
5 main(int argc, char **argv)
6 {
7 sem-t *seml, sed:

8 / * first test a named semaphore * /
9 sem-unlink(Px-ipc_name(NAME)) ;

10 seml = sem-open (PX-ipc-name (NAME) , 0-RMR I O-CREAT I O-MCL.
11 FILE-MODE, 0) ;

12 Signal(SIGALRM, sig-alrm);
13 alarm(2) ;
14 if (sem-wait (seml) == 0)
15 printf("sem-wait returned O?\nW):
16 else
17 err-ret("sem-wait error");
18 Sem-close(sem1);

/ * now a memory-based semaphore with process scope * /
Seminit (&sem2, 1, 0) ;
alarm(2) ;
if (sem-wait(&sem2) == 0)

printf("sem-wait returned O?\nn);
else

29 static void
30 sig-alrm(int signo)
31 {

32 printf("S1GALRM caught\n0);
3 3 return;

Figure D.6 Test whether sem-wait detects EINTR.

Our implementation using FIFOs returns EINTR, because s e m - w a i t blocks in a
call to read on a FIFO, which must return the error. Our implementation using
memory-mapped 1 / 0 does not return any error, because sem-wai t blocks in a
call to pthread-cond-wait and this function does not return EINTR when
interrupted by a caught signal. (We saw another example of this with Fig-
ure 5.29.) Our implementation using System V semaphores returns EINTR,
because s e m- w a i t blocks in a call to semop, which returns the error.

10.9 The implementation using FIFOs (Figure 10.40) is async-signal-safe because
w r i t e is async-signal-safe. The implementation using a memory-mapped file

526 Solutions to Selected Exercises Appendix D

(Figure 10.47) is not, because none of the pthread-XXX functions are async-
signal-safe. The implementation using System V semaphores (Figure 10.56) is
not, because semop is not listed as async-signal-safe by Unix 98.

Chapter 11

11.1 Only one line needs to change:
i sernid = Sernget (Ftok(argv[optind] , 0) , 0, 0) ;

> sernid = atol(argv[optind]);

11.2 The call to f tok will fail, causing our Ftok wrapper to terminate. The my-lock
function could call f tok before calling semget, check for an error of ENOENT,
and create the file if it does not exist.

Chapter 12

12.1 The file size would be increased by another 4096 bytes (to 36864), but our refer-
ence to the new end-of-file (index 36863) might generate a SIGSEGV signal, since
the size of the memory-mapped region is 32768. The reason we say "might" and
not "will" is that it depends on the page size.

12.2 Figure D.7 shows the scenario assuming a System V message queue, and Fig-
ure D.8 shows the Posix message queue scenario. The calls to memcpy in the
sender occur when m ~ s e n d is called (Figure 5.30), and the calls to memcpy in
the receiver occur when m~receive is called (Figure 5.32).

receiver sender

process - - - - - - - - - - - - -
kernel

System V
message queue I

Figure D.7 Sending messages using a System V message queue.

Any read from /dev/zero returns the requested number of bytes, all contain-
ing 0. Any data written to this device is simply discarded, just like writes to
/dev/null.

The final contents of the file are 4 bytes of 0 (assuming a 32-bit int).

Figure D.9 shows our program.

r
Solutions to Selected Exercises Appendix D 527

I Posix message I
I queuein 4 I memcpy () sender
I

receiver

I shared memory
I

I

process

kernel's virtual memory algorithm
keeps regular file in sync

with memory-mapped region

Figure D.8 Sending messages using a Posix message queue implemented using map.

2 #define MAXMSG (8192 + sizeof (long))

3 int
4 main(int argc. char **argv)

int pipe1 [2], pipe2 [2] , mqid;
char c;
pid-t childpid;
fd-set rset;
ssize-t n, nread;
struct msgbuf *buff;

if (argc != 2)
err-quit("usage: svmsgread <pathname>");

Pipe (pipe1) ; / * 2-way communication with child * /
Pipe (pipe2) ;

buff = M~_S~(MAXMSG) ; / * anonymous shared memory with child * /

if ((childpid = Fork0) == 0) (

Close (pipe1 [11) ; / * child * /
Close (pipe2 LO]) ;

mqid = Msgget(Ftok(argv[l], 0). MSG7R);
f o r (; ;) (

/ * block, waiting for message, then tell parent * /
nread = Msgrcv (mqid, buff , MAXMSG, 0, 0) ;
write (pipe2 [I], &nread, sizeof (ssize-t)) ;

/ * wait for parent to say s h is available * /
if ((n = Read(pipel[O], &c, 1)) != 1)

err-quit("chi1d: read on pipe returned %dm, n);
1
exit (0) ;

1

528 Solutions to Selected Exercises
7

Appendix D

31 / * parent * /
3 2 Close(pipel[Ol);
3 3 Close(pipe2[1]);

FD-ZERO (&rset) ;
FD-SET (pipe2 [0 1 , &rset) ;
f o r (; ;) (

if ((n = select(pipe2[0] + 1, &rset. NULL. NULL, NULL)) != 1)
err-sys("se1ect returned %dm, n);

if (FD-1SSET(pipe2 [O] , &rset)) {

n = Read(pipe2 [0] , &nread, sizeof (ssize-t)) ;
if (n != sizeof (ssize-t))

err-quit("parent: read on pipe returned %d", n);

4 3 printf("read %d bytes, type = %ld\n", nread, buff->rntype);
4 4 Write(pipe1 [l] , &c, 1) ;

4 5 1 else
4 6 errquit ("pipe2 [O] not ready") ;
47 1

4 8 ~ill(chi1dpid. SIGTERM);
4 9 exit (0) ;

Figure D.9 Example of parent and child setup to use select with System V messages.

Chapter 13

13.1 Figure D.10 shows our modified version of Figure 12.16, and Figure D.ll shows
our modified version of Figure 12.19. Notice in the first program that we must
set the size of the shared memory object using £truncate; we cannot use
lseek and write.

pxshrnltest1.c
1 #include "unpipc . h"
2 int
3 rnain(int argc, char **argv)

int fd, i;
char *ptr;
size-t shmsize, mmapsize, pagesize;

if (argc != 4)
err-quit("usage: test1 <name> <shmsize> <nunapsize>");

shmsize = atoi(argv[2]);
mmapsize = atoi (argv[31) ;

/ * open shm: create or truncate; set shm size * /
fd = Shm_open(Px-ipc-name(argv[l]), 0-RDWR I 0-CREAT I 0-TRUNC,

FILE-MODE);
Ftruncate(fd, shmsize);

Solutions to Selected Exercises Appendix D 529

16 ptr = Mmap(NULL, mmapsize, PROT-READ I PROT-WRITE, MAP-SHARED, fd. 0);
17 Close (f d) ;

18 pagesize = Sysconf(-SC-PAGESIZE);
19 printf("PAGES1ZE = %1d\nu, (long) pagesize);

20 for (i = 0; i i rnax(shmsize, mapsize); i += pagesize) C
2 1 printf ("ptr [%dl = %d\nU , i, ptr [ill ;
2 2 ptrri] = 1;
23 printf("ptr[%d] = %d\n", i + pagesize - 1, ptr[i + pagesize - 11);
24 ptr[i + pagesize - 11 = 1:
2 5 1
2 6 printf ("ptr [%dl = %d\nW , i, ptr [i]) ;

2 7 exit (0) ;
28 1 pxshmltestl .c

Figure D.10 Memory mapping when m a p equals shared memory size.

pxshmltestl .c
1 #include "unpipc-h"

2 #define FILE "test.dataM
3 #define SIZE 32768

4 int
5 main(int argc, char **argv)
6 (
7 int fd, i;
8 char *ptr;

9 / * open shm: create or truncate; then map shm * /
10 fd = shm_open(Px-ipcpame(F1LE). 0-RDWR I 0-CREAT (0-TRUNC, FILE-MODE);
11 ptr = Mmap (NULL, SIZE, PROT-READ (PROT-WRITE, MAP-SHARED, fd, 0) ;

12 for (i = 4096; i i= SIZE; i += 4096) (

13 printf("setting shm size to %d\nn, il;
14 Ftruncate (fd, i) :
15 printf("ptr[%d] = %d\n", i - 1, ptr[i - 11);
16 1

17 exit (0) ;
18 1 pxshmltest1.c

Figure D.ll Memory-map example that lets the shared memory size grow.

13.2 One possible problem with *ptr++ is that the pointer returned by mmap is modi-
fied, preventing a later call to munmap. If the pointer is needed at a later time, it
must be either saved, or not modified.

530 Solutions to Selected Exercises Appendix D

Chapter 14

14.1 Only one line needs to change:

Chapter 15

15.1 There are data-size + (desc-num x s izeof (door-desc-t)) bytes of argu-
ments.

15.2 No, we do not need to call £ s t a t . If the descriptor does not refer to a door,
door-in£ o returns an error of EBADF:

solaris % doorinfo /etc/passwd
door-info error: Bad file number

15.3 The manual page is wrong. Posix.1 states correctly that "The sleep0 function
shall cause the current thread to be suspended from execution."

15.4 The results are unpredictable (although a core dump is a pretty safe bet), because
the address of the server procedure associated with the door will cause some
random code in the newly execed program to be called as a function.

15.5 When the client's door- call is terminated by the caught signal, the server pro-
cess must be notified because the server thread handling this client (thread ID 4
in our output) is then sent a cancellation request. But we said with Figure 15.23
that for all the server threads automatically created by the doors library, cancella-
tion is disabled, and hence this thread is not terminated. Instead, the call to
s l e e p (6) , in which the server procedure is blocked, appears to return prema-
turely when the client's door- call is terminated, about 2 seconds after the
server procedure was called. But the server thread still proceeds to completion.

15.6 The error that we see is

solaris % server6 /tmp/door6
my-thread: created server thread 4
door-bind error: Bad file number

When starting the server 20 times in a row, the error occurred five times. This
error is nondeterministic.

15.7 No. All that is required is to enable cancellation each time the server procedure
is called, as we do in Figure 15.31. Although this technique calls the function
pthread-setcancels t a t e every time the server procedure is invoked,
instead of just once when the thread starts, this overhead is probably trivial.

15.8 To test this, we modlfy one of our servers (say Figure 15.9) to call door-revoke
from the server procedure. Since the door descriptor is the argument to

Solutions to Selected Exercises Appendix D 531

door-revoke, we must also make f d a global. We then execute our client (say
Figure 15.2) twice:

solaris % client8 /tmp/door8 88
result: 7744
solaris % client8 /tmp/door8 99
door-call error: Bad file number

The first invocation returns successfully, verifying our statement that
door-revoke does not affect a call that is in progress. The second invocation
tells us that the error from door-call is EBADF.

15.9 To avoid making f d a global, we use the cookie pointer that we can pass to
door- create and that is then passed to the server procedure every time it is
called. Figure D.12 shows the server process.

2 void
3 servproc(void *cookie, char *dataptr, size-t datasize,
4 door-desc-t *descptr, size-t ndesc)
5 {

6 long arg, result;

7 Door-revoke(*((int *) cookie));
8 arg = *((long *) dataptr);
9 printf("thread id %Id, arg = %1d\nw, pr-thread-id(NULL), arg);

10 result = arg * arg;
11 Door-return((char *) &result, sizeof(resu1t). NULL, 0);
12 1

13 int
14 main(int argc, char **argv)
15 {
16 int fd;

17 if (argc != 2)
18 err-quit("usage: server9 <server-pathname>");

19 / * create a door descriptor and attach to pathname * /
2 0 fd = Door-create(servproc, &fd, 0);

2 4 / * servproco handles all client requests * /
2 5 for (; ;)

26 pause () ;
27 I doors/sewer9.c

Figure D.12 Using the cookie pointer to avoid making f d a global.

We could easily make the same change to Figures 15.22 and 15.23, since the
cookie pointer is available to our my-thread function (in the door-info-t

532 Solutions to Selected Exercises Appendix D

15.10

Chapter 16

16.1

16.2

16.3

16.4

16.5

16.6

structure), which passes a pointer to this structure to the newly created thread
(which needs the descriptor for the call to door-bind).

In this example, the thread attributes never change, so we could initialize the
attributes once (in the main function).

The port mapper does not monitor the servers that register with it, to try and
detect if they crash. After we terminate our client, the port mapper mappings
remain in place, as we can verify with the rpcinf o program. So a client who
contacts the port mapper after our server terminates will get an OK return from
the port mapper with the port numbers in use before the server terminated. But
when a client tries to contact the TCP server, the RPC runtime will receive an
RST (reset) in response to its SYN (assuming that no other process has since been
assigned that same port on the server host), causing an error return from
clnt-create. A UDP client's call to clnt-create will succeed (since there is
no connection to establish), but when the client sends a UDP datagram to the old
server port, nothing will be returned (assuming again that no other process has
since been assigned that same port on the server host) and the client's procedure
call will eventually time out.

The RPC runtime returns the server's first reply to the client when it is received,
about 20 seconds after the client's call. The next reply for the server will just be
held in the client's network buffer for this endpoint until either the endpoint is
closed, or until the next read of this buffer by the RPC runtime. Assume that the
client issues a second call to this server immediately after receiving the first reply.
Assuming no network loss, the next datagram that will arrive on this endpoint
will be the server's reply to the client's retransmission. But the RPC runtime will
ignore this reply, since the XID will correspond to the client's first procedure call,
which cannot equal the XID used for this second procedure call.

The C structure member is char c [10 I, but this will be encoded by XDR as ten
4-byte integers. If you really want a fixed-length string, use the fixed-length
opaque datatype.

The call to xdr-data returns FALSE, because its call to xdr-string (look at
the data-xdr . c file) returns FALSE.

When a maximum length is specified, it is coded as the final argument to
xdr-string. When this maximum length is omitted, the final argument is the
one's complement of 0, (which is 232 - 1, assuming 32-bit integers).

The XDR routines all check that adequate room is available in the buffer for the
data that is being encoded into the buffer, and they return an error of FALSE
when the buffer is full. Unfortunately, there is no way to distinguish among the
different possible errors from the XDR functions.

We could say that TCP's use of sequence numbers to detect duplicate data is, in
effect, a duplicate request cache, because these sequence numbers identify any

Solutions to Selected Exercises Appendix D 533

old segment that arrives as containing duplicate data that TCP has already
acknowledged. For a given connection (e.g., for a given client's IP address and
port), the size of this cache would be one-half of TCP's 32-bit sequence number
space, or Z3', about 2 gigabytes.

Since all five values for a given request must be equal to all five values in the
cache entry, the first value compared should be the one most likely to be
unequal, and the last value compared should be the one least likely to be
unequal. The actual order of the comparisons in the TI-RPC package is (1) XID,
(2) procedure number, (3) version number, (4) program number, and (5) client's
address. Given that the XID changes for every request, to compare it first makes
sense.

In Figure 16.30, starting with the flag/length field and including 4 bytes for the
long integer argument, there are 12 4-byte fields, for a total of 48 bytes. With the
default of null authentication, the credential data and verifier data will both be
empty. That is, the credentials and verifier will both take 8 bytes: 4 bytes for the
authentication flavor (AUTH-NONE) and 4 bytes for the authentication length
(which has a value of 0).

In the reply (look at Figure 16.32 but realize that since TCP is being used, a 4-byte
flag/length field will precede the XID), there are eight 4-byte fields, starting with
the flag/length field and ending with 4 bytes of long integer result. They total 32
bytes.

When UDP is used, the only change in the request and reply is the absence of the
4-byte flag/length field. This gives a request size of 44 bytes and a reply size of
28 bytes, which we can verify with tcpdump.

Yes. The difference in argument handling, both at the client end and at the server
end, is local to that host and independent of the packets that traverse the net-
work. The client main calls a function in the client stub to generate a network
record, and the server main calls a function in the server stub to process this net-
work record. The RPC record that is transmitted across the network is defined
by the RPC protocol, and this does not change, regardless of whether either end
supports threads or not.

The XDR runtime dynamically allocates space for these strings. We verify this
fact by adding the following line to our read program:

printf("sbrk0 = %p, buff = %p , in.vstring-arg = %p\n",
sbrk(NU~~), buff, in.vstring-arg);

The sbrk function returns the current address at the top of the program's data
segment, and the memory just below this is normally the region from which
ma1 l o c takes its memory. Running this program yields

sbrk0 = 29638, buff = 25e48, in.vstring-arg = 27e58

which shows that the pointer vstring-arg points into the region used by
malloc. Our 8192-byte buf f goes from Ox25e48 to Ox27e47, and the string is
stored just beyond this buffer.

534 Solutions to Selected Exercises Appendix D

16.11 Figure D.13 shows the client program. Note that the final argument to
c l n t - c a l l is an actual t imeval structure and not a pointer to one of these
structures. Also note that the third and fifth arguments to c l n t - c a l l must be
nonnull function pointers to XDR routines, so we specify xdr-void, the XDR
function that does nothing. (You can verify that this is the way to call a function
with no arguments or no return values, by writing a trivial RPC specification file
that defines a function with no arguments and no return values, running
rpcgen, and examining the client stub that is generated.)

sunrpc/squarelO/client.c
1 #include "unpipc.h" / * our header * /
2 #include " square. h " / * generated by rpcgen * /

3 int
4 main(int argc, char **argv)

5 {
6 CLIENT *cl:
7 struct timeval tv;

8 if (argc != 3)
9 err-quit("usage: client <hostname> <protocol>");

10 cl = Clnt-create(argv[l], SQUARE-PROG, SQUARE-VERS, argv[2]);

12 tv-tv-usec = 0:
13 if (clnt-call (cl , NULLPROC, xdrvoid, NULL,
14 xdr-void, NULL, tv) != RPC-SUCCESS)
15 err-quit ("%s" , clnt-sperror (cl, argv[l])) ;

Figure D.13 Client program that calls the server's null procedure.

16.12 The resulting UDP datagram size (65536 + 20 + RPC overhead) exceeds 65535, the
maximum size of an IPv4 datagram. In Figure A.4, there are no values for Sun
RPC using UDP for message sizes of 16384 and 32768, because this is an older
RPCSRC 4.0 implementation that limits the size of the UDP datagrams to around
9000 bytes.

Bibliography

Whenever an electronic copy was found of a paper or report referenced in this bibli-
ography, its URL is included. Be aware that these URLs can change over time, and
readers are encouraged to check the Errata for this text on the author's home page for
any changes: h t t p : //www. kohala. corn/-rstevens.

Bach, M. J. 1986. The Design of the UNlX Operating System. Prentice Hall, Englewood Cliffs, N.J.

Birrell, A. D., and Nelson, B. J. 1984. "Implementing Remote Procedure Calls," ACM Transactions
on Computer Systems, vol. 2, no. 1, pp. 39-59 (Feb.).

Butenhof, D. R. 1997. Programming with POSIX Threads. Addison-Wesley, Reading, Mass.

Corbin, J. R. 1991. The Art of Distributed Applications: Programming Techniques for Remote Procedure
Calls. Springer-Verlag, New York.

Garfinkel, S. L., and Spafford, E. H. 1996. Practical UNIX and Internet Security, Second Edition.
O'Reilly & Associates, Sebastopol, Calif.

Goodheart, B., and Cox, J. 1994. The Magic Garden Explained: The Internals of UNIX System V
Release 4, An Open Systems Design. Prentice Hall, Englewood Cliffs, N.J.

Hamilton, G., and Kougiouris, I? 1993. "The Spring Nucleus: A Microkernel for Objects," Pro-
ceedings of the 1993 Summer USENIX Conference, pp. 147-159, Cincinnati, Oh.

536 UNIX Network Programming Bibliography

IEEE. 1996. "Information Technology-Portable Operating System Interface (POSIX)-Part 1:
System Application Program Interface (API) [C Language]," IEEE Std 1003.1,1996 Edition,
Institute of Electrical and Electronics Engineers, Piscataway, N. J. (July).

This version of Posix.1 contains the 1990 base Am, the 1003.lb realtime extensions (1993), the
1003.1~ Pthreads (1995), and the 1003.li technical corrections (1995). This is also International
Standard ISO/IEC 9945-1: 1996 (E). Ordering information on IEEE standards and draft stan-
dards is available at http: / /www. i eee . org. Unfortunately, the IEEE standards are not freely
available on the Internet.

Josey, A., ed. 1997. Go Solo 2: The Authorized Guide to Version 2 of the Single UNIX Specification.
Prentice Hall, Upper Saddle River, N.J.

Also note that many of the Unix 98 specifications (e.g., all of the manual pages) are available
onlineathttp://www.UNIX-systems.org/online.html.

Kernighan, B. W., and Pike, R. 1984. The UNlX Programming Environment. Prentice Hall, Engle-
wood Cliffs, N.J.

Kernighan, B. W., and Ritchie, D. M. 1988. The C Programming Language, Second Edition. Prentice
Hall, Englewood Cliffs, N.J.

Kleiman, S., Shah, D., and Smaalders, B. 1996. Programming with Threads. Prentice Hall, Upper
Saddle River, N. J.

Lewis, B., and Berg, D. J. 1998. Multithreaded Programming with Pthreads. Prentice Hall, Upper
Saddle River, N.J.

McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S. 1996. The Design and Implementa-
tion of the 4.4BSD Operating System. Addison-Wesley, Reading, Mass.

McVoy, L., and Staelin, C. 1996. "lmbench: Portable Tools for Performance Analysis," Proceedings
of the 1996 Winter Technical Conference, pp. 279-294, San Diego, Calif.

This suite of benchmark tools, along with this paper, are available from
http://www.bitmover.com/lmbench.

Rochkind, M. J. 1985. Advanced UNIX Programming. Prentice Hall, Englewood Cliffs, N.J.

Salus, I? H. 1994. A Quarter Century of Unix. Addison-Wesley, Reading, Mass.

Srinivasan, R. 1995a. "RPC: Remote Procedure Call Protocol Specification Version 2," RFC 1831,
18 pages (Aug.).

Srinivasan, R. 1995b. "XDR: External Data Representation Standard," RFC 1832,24 pages (Aug.).

Srinivasan, R. 1995c. "Binding Protocols for ONC RPC Version 2," RFC 1833,14 pages (Aug.).

Stevens, W. R. 1992. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading,
Mass.

All the details of Unix programming. Referred to throughout this text as APUE.

Stevens, W. R. 1994. TCPIZP Illustrated, Volume 1: The Protocols. Addison-Wesley, Reading, Mass.
A complete introduction to the Internet protocols. Referred to throughout this text as TCPvl.

UNIX Network Programming Bibliography 537

Stevens, W. R. 1996. TCPIIP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX
Domain Protocols. Addison-Wesley, Reading, Mass.

Referred to throughout this text as TCPv3.

Stevens, W. R. 1998. UNlX Network Programming, Volume 1, Second Edition, Networking APls: Sock-
ets and XTI. Prentice Hall, Upper Saddle River, N. J.

Referred to throughout this text as UNPvI.

Vahalia, U. 1996. UNlX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, N.J.

White, J. E. 1975. "A High-Level Framework for Network-Based Resource Sharing," RFC 707,
27 pages (Dec.).

http://~~~.kohala.com/-rstevens/papers.others/rfc707.txt

Wright, G. R., and Stevens, W. R. 1995. TCPIlP Illustrated, Volume 2: The lmplemenfafion. Addison-
Wesley, Reading, Mass.

The implementation of the Internet protocols in the 4.4BSD-Lite operaling system. Referred to
throughout this text as TCPv2.

Index

Rather than provide a separate glossary (with most of the entries being acronyms), this
index also serves as a glossary for all the acronyms used in this book. The primary
entry for the acronym appears under the acronym name. For example, all references to
Remote Procedure Call appear under RPC. The entry under the compound term
"Remote Procedure Call" refers back to the main entry under RPC.

The notation "definition of" appearing with a C function refers to the boxed func-
tion prototype for that function, its primary description. The "definition of" notation
for a structure refers to its primary definition. Some functions also contain the notation
"source code" if a source code implementation for that function appears in the text.

4.2BSD, 198
4.3BSD, 98
4.4BSD, 311,315-316
4.4BSD-Lite, 537
64-bit architectures, 85,427

abor t function, 90,424-425
absolute time, 171
Abstract Syntax Notation One, see ASN.1
accept function, 399
accept- stat member, 447
accepted- reply structure, definition of, 447
access function, 91
ACE (Adaptive Communications Environment),

180
address, IP, 245,401,403,413,422,533
advisory locking, 203-204,217,522
aio-return function, 91
aio-suspend function, 91

AIX, xvi, 151
alarm function, 91,396,425
American National Standards Institute, see ANSI
American Standard Code for Information

Interchange, see ASCII
anonymous memory mapping, 315-317
ANSI (American National Standards Institute), 21,

402-403,505,511,520
API (application program interface), 13-14,356,

379-380,450,536
sockets, xiv, 8,14,151,398-399,403,406,

449-450,454-455
TLI, 406
XTI, 14,151,398-399,403,406,413-414,424,

449-454455
Apollo, 406
APUE (Advanced Programming in the UNIX

Environment), xiv, 536
areply member, 447

540 UNIX Network Programming Index

arm, 429
array datatype, XDR, 429
a r ray member, 288
ASCII (American Standard Code for Information

Interchange), 193,426,429,444
ASN.1 (Abstract Syntax Notation One), 426
Aspen Group, 178
asynchronous

event notification, 87
I/O, 14,101
procedure call, 356

asyncsignal-safe, 90-91,95,98,102,279,525-526
at-least-once RPC call semantics, 423,450
at-most-once RPC call semantics, 423,450
atomic, 24,59,197,214,220,286
atomicity of pipe and FIFO writes, 65-66
attributes

condition variable, 113,172-174,521
doors, 363,366,375,384
message queue, 79-82,520
mutex, 172-174
process-shared, 9-10,113,128,173,175,265,
454

read-write lock, 179
thread, 98,113,502,521,532

aup-gid member, 416
aup-gids member, 416
aup-len member, 416
aup-machname member, 416
aup-time member, 416
aup-uid member, 416
AUTH-BADCRED constant, 449
AUTH-BADVERF constant, 449
AUTH-DES constant, 417
AUTH-ERROR constant, 448-449
AUTH-FAILED constant, 449
AUTH-INVALIDRESP constant, 449
AUTH-KERB constant, 417
AUTH-NONE constant, 414,446-447,533
AUTH-OK constant, 449
AUTH-REJECTEDCRED constant, 449
AUTH-REJECTEDVERF constant, 449
AUTH-SHORT constant, 417,446
AUTH-SYS constant, 414,416,446-447
AUTH_TOOWEAK constant, 449
auth-destroy function, 415
auth-f lavor member, 446
auth-stat member, 449
authentication

null, 414
RPC, 414-417
Unix, 414

authsys-create-default function, 415
authsysqarms structure, 416

definition of, 416,446
autoconf program, 509
awk program, xvii, 13

Bach, M. J., 36,535
bandwidth, 457

performance, message passing, 467-480
basename program, 13
Basic Encoding Rules, see BER
Bass, J., 198
Bausum, D., xvi
Bentley, J. L., xvii
BER (Basic Encoding Rules), 426
Berg, D. J., 371,536
bibliography, 535-537
bii-endian byte order, 403,426,444
binary semaphore, 219,281
bind function, 399
Birrell, A. D., 406,535
black magic, 380
body member, 446
boo1 datatype, XDR, 429
Bostic, K., 311,536
Bound, J., xvi
bounded buffer problem, 161
Bourne shell, 13,5272
Bowe, G., xvi
Briggs, A., xvi
BSD/OS, 53,59,66,84,111,209-210,213,316,

403-405,411-412,425,437,456,517
buf member, 288
buffers, multiple, 249-256
BUFFSIZE constant, definition of, 507
bullet, silver, 453
Butenhof, D. R., xvi, 9,95,160,163,180,192,535
byte

order, big-endian, 403,426,444
order, little-endian, 403,426
range, 197
stream, 67,74,76,444,454

BYTES-PER-XDR-UNIT constant, 438

C function prototype, 21,105,363,384,402-403,
505

C shell, 72
C standard, 21,90,511,520

c9x, 21
Technical Corrigendum, 520

CALL constant, 446

UNIX Network Programming Index 541

call semantics
at-least-once RPC, 423,450
at-most-once RPC, 423,450
exactly-once RPC, 422-423,450
RPC, 422-424

call-body structure, definition of, 446
c a l l o c function, 84,136
cancellation, thread, 174,180,183,187-192384,

388,396-398,530
carriage return, see CR
c a t program, 52-53,64-66
cbody member, 446
CDE (Common Desktop Environment), 15
Cedar, 406
cfget ispeed function, 91
cf getospeed function, 91
cf se t i speed function, 91
c f setospeed function, 91
cgid member, 33-34,131,283
Chang, W., xvi
char datatype, XDR, 427
chd i r function, 91
chmod function, 91
chmod program, 205
chown function, 91
chown program, 33
cl-auth member, 415
Clark, J. J., xvii
Cleeland, C., xvi
CLGET-RETRY-TIMEOUT constant, 418
CLGET-TIMEOUT constant, 418
client

handle, definition of, 401
identity, 83-84,365,369,397,415-477.456
stub, 403,405

c l i e n t function, 48,54-55,72,142,144,147,149
CLIENT structure, 401 -402,415
clnt -ca l l function, 419-420,424,451,486,534
clnt-control function, 418-420

definition of, 418
clnt-create function, 401,403-405,412-413,

418,420,532
definition of, 401

clnt-destroy function, 420
definition of, 420

clnt-sperror function, 424
c ln t - s t a t structure, 409
clock-gettime function, 91
c lose function, 12,61,63,65,73,77,91,114,214

260,265,279,330,376-378,383-384,524
Clouter, M., xvi
CLSET-TIMEOUT constant, 420
coding style, 12.90

Columbus Unix, 28
Common Desktop Environment, see CDE
concurrency, thread, 163,165-166,488
concurrent server, 66-67,147,357,372,407
condition variables, 159-175

attributes, 113,172-1 74,521
c0nfig.h header, 509-510
conf igure program, 509
connect function, 399
cons t datatype, XDR, 427
contention scope, 386,388,462
conventions, source code, 1 I
cooperating processes, 203
cooperative locks, 161
Coordinated Universal Time, see UTC
copy-on-write, 501
Corbin, J. R., 406,535
counting semaphore, 221,281
Courier, 406
Cox, J., 36,311,535
cpio program, 13
CR (carriage return), 67
c r e a t function, 91
creator ID, 33
cred member, 446
credentials, 417,446,449,533
critical region, 159,177,197
cuid member, 33-34,131,283

d-a t t r i b u t e s member, 380,384
d-data member, 380
d-desc structure, 380

definition of, 380
d-descriptor member, 380
d-id member, 380
daemon, 60,174,203,408,502,504,511,523

starting one copy, 213-214
daemonjroc variable, 511
Data Encryption Standard, see DES
d a t a q t r member, 357,362-363,367-369
data- size member, 357,362,530
datatypes, XDR, 427-430
dc-egid member, 365
dc-euid member, 365
d c q i d member, 365
dc-rgid member, 365
dc-ruid member, 365
DCE (Distributed Computing Environment), 407
deadlock, 56,143,238,279,518,523-524
DEBUG constant, 408
delta time, 171
denial-of-service, see DoS

542 UNIX Network Programming

7

Index

DES (Data Encryption Standard), 417
des c-nun member, 357,362-363,530
d e s c q t r member, 357,362-363'380
descriptor passing, 84,379-384
detached thread, 98,384,386-388,504
/ d e v / c l t s device, 413
/ dev/null device, 526
/dev/ zero device, 315-317,322-323,325,454,

497,526
/dev/zero memory mapping, 316-317
dg-echo function, 256
d i -a t t r ibu tes member, 366
di-data member, 366,384
d i q r o c member, 366,384, ,386
di-target member, 366
di-uniqui f i e r member, 366
Digital Equipment Corp., xvi
Digital Unix, xvi, 15,20-21,37,51,73,77,79,82,

98,l00,104,109,154,163,209-210,213,225,
231-232,238,296,319,331,333,342,351,370,
407,411-412,437,458-459,461-462,464,
466,471,489,520-522,524

Dijkstra, E. W., 220
DIR-MODE constant, definition of, 508
discriminant, 429
discriminated union, 429
Distributed Computing Environment, see DCE
Door- createqroc datatype, 384
DOOR-DESCRIPTOR constant, 380,384
DOOR-LOCAL constant, 366
WOR-PRIVATE constant, 364,366,386
DOOR-QUERY constant, 366
DOOR-RELEASE constant, 384
DOORREVOKE constant, 366
Door-servergroc datatype, 363
DOOR-mREF constant, 364,366,375-379
DOOR-mREFDATA constant, 364,375
door-arg-t structure, 363,380-381

definition of, 362
door-bind function, 377,385-386,388,390,532

definition of, 390
door-call function, 357-358,360-364,367,369,

388,390-393,395-398,422,476,484,530-531
definition of, 361

door-create function, 357-358,361,363-364,
375,377,379,384-386,388-389,397-398,531

definition of, 363
door-cred function, 365,369

definition of, 365
door-cred-t structure, 365

definition of, 365
door-desc-t structure, 362-363,380-381,530

definition of, 380

door-in£ o function, 365-367,377,530
definition of, 365

door-in£ o-t structure, 364,366,384,386-387,
531

definition of, 366
door- return function, 358,361-362,364-365,

377,380,383,385,387-388,396-397
definition of, 365

door-revoke function, 366,377,390,398,
530-531

definition of, 390
door-server-create function, 384-390

definition of, 384
door-unbind function, 390

definition of, 390
doors, 355-398

attributes, 363,366,375,384
premature termination of client, 390-397
premature termination of server, 390-397
thread management, 370-375

Dorado, 406
DoS (denial-of-service), 65-67
double buffering, 251
double datatype, XDR, 427
dup function, 91
dup2 function, 91
duplicate data, 418,421,451,532
duplicate request cache, RPC server, 421-424,451,

532-533

E2BIG error, 83,133
EACCES error, 24,32,199,216,225
EAGAIN error, 1259-60,93,121,124,132,199,

205,227,260,269,276,286,293,339,503,522
EBADF error, 52,530-531
EBUSY error, 90,121,160,178,184,192
echo program, 64
EDEADLK error, 238
EEXIST error, 23-24,31-32,54,74,111,214-215,

235,260,284,294,516,524
effective

group ID, 23,25,33-34,131,283,365,414,416,
515

user ID, 23,25,33-34,84,131,283,365,
369-370,414,416,515

EIDRM error, 132-133,286
EINTR error, 90,121,124,132-133,149,227,279,

286,391-394,398,521,524-525
EMSGSIZE error, 13,83
ENOBUFS error, 341
ENOENT error, 24,32,115,516,526
ENOMSG error, 133,139

UNIX Network Programming Index 543

ENOSPC error, 24,32
enum datatype, XDR, 429
environment variable

PATH, 52
PX-IPC-NAME, 21

EN XI^ error, 59
ephemeral port, 404,411,414,450
EPIPE error, 60
err- doit function, source code, 512
err-dump function, 511

source code, 512
err-msg function, 511

source code, 512
e r r q u i t function, 381,511

source code, 512
e r r r e t function, 511

source code, 511
err- sys function, 11-12511

source code, 511
errata availability, xvi
- errno function, 515
errno variable, 11-13,18,49,116,267,269,274.

279,502-503,511,515,524
cerrno. h> header, 13,18
error functions, 510-513
ESPIPE error, 54
ESRCH error, 121
/ e t c / i n e t d . con£ file, 413
/e tc /netconf ig file, 413
/ e t c / rpc file, 412-413
/e tc /sysconf ig tab file, 38
/etc/system file, 37,458
ETIMEDOUT error, 171
exactly+nce RPC call semantics, 422-423.450
examples road map, 15-16
exec function, 9-10,13,58,73,364,379-380,398,

414,502,530
execle function, 91
execve function, 91
exercises, solutions to, 515-534
e x i t function, 9,48,90,226,504,511,521
- e x i t function, 9-10,91,226,504
expIicit

file I/O, 322
network programming, 4,399,403
synchronization, 161
thread termination, 502
typing, 426

external data representation, see XDR

F-GETFL constant, 58
F-GETLK constant, 199-200

F-RDLCK constant, 199
F-SETFL constant, 58-59
F-SETLK constant, 199-200,522
F-SETLKW constant, 199,201,522
F-UNLCK constant, 199
F-WRLCK constant, 199
FALSE constant, 409,418,429,439,441,532
f a t t a c h function, 357,359,364,376-377,379,397
f c n t l function, 58,91,174,193-194,198-200,

202,205,207,274-217,398,418,4%
455-456,462,495,522-523

definition of, 199
FD-CLOEXEC constant, 10,364,398
fdatasync function, 91
f detach function, 364,376
f detach program, 364
f dopen function, 68
f g e t s function, 48,53,71,249,518
FIFO (first in, first out), 54-60

limits, 72-73
NFS and, 66
order, lock requests, 210
order, message queue, 133,138,143
order, queued signals, 100,102,104-105
order, RPC server reply cache, 422
permissions, 54
used for implementation of Posix semaphores,

257-262
writes, atomicity of pipe and, 65-66

f i f 0 . h header, 56
file I/O, explicit, 322
file locking

using Posix semaphores, 238
using System V semaphores, 294-296
versus record locking, 197-198

file mode creation mask, 23,33,55
file permissions, 203,205,216,397
FILE structure, 52,401-402
File Transfer Protocol, see ETP
FILE-MODE constant, 55,79

definition of, 508
filesystem persistence, 6-7,78,311
FIN (finish flag, TCP header), 420,424-425
f ind program, 39,517
finish flag, TCP header, see FIN
first in, first out, see FIFO
f l avor member, 446
f l o a t datatype, XDR, 427
floating point format, IEEE, 426
f lock function, 198
f lock structure, 199-201

definition of, 199
f open function, 54,68,71,149,515

544 UNIX Network Programming Index

fork function, 4,9-10,13,44-47,51,55,58,
66-67,73,91,102,147,149,151,174,200,207,
217,240,256,267,305,307,309,311,315,322,
332,364,379-380,391,414,475,480,
497-498,501,503

fpathconf function, 72-73,91
fputs function, 249
fragment, XDR, 444
Franz, M., xvii
f r e e function, 21,260,275
FreeBSD, 29,288
Friesenhahn, R., xvi
FSETLKW constant, 215
f stat function, 21,44,74,91,115,262,327-328,

330-331,342,398,519,530
defi

ni

tion of, 328
f sync function, 91
f tok function, 28-31,38-39,130,135,138,273,

275,293,344,346,348-349,517,521,526
definition of, 28

FTP (File Transfer Protocol), 67,337
£truncate function, 113,217,263,320,327-328,

333,342,351,528
definition of, 327

full-duplex pipe, 44,50-52,127,475

Gallmeister, B. O., xvi
GARBAGE-ARGS constant, 447-448
Garfinkel, S. L., 417,535
GETALL constant, 288,290
getconf program, 73
getegid function, 91
geteuid function, 91
getgid function, 91
getgroups function, 91
ge thos tbyaddr function, 245
gethos t n m e function, 509
GETNCNT constant, 288
getopt function, 78,82
Get opt wrapper function, 78
getpgrp function, 91
GETPID constant, 288
getpid function, 91,370,503
getppid function, 91
getsockopt function, 418
getuid function, 91
GETVAL constant, 277,288
GETZCNT constant, 288
gf-time function, 207
g i d member, 33-34,131,134,283,288,345,446
g ids member, 446
Gierth, A., xvi
Glover, B., xvi

GNU (GNU'S Not Unix), xvii, 509,520
Goodheart, B., 36,311,535
gpic program, xvii
Grandi, S., xvi
granularity, locking, 198
grep program, 161
grof f program, xvii
group ID, 328,397,417,502

effective, 23,25,33-34,131,283,365,414,416,
515

real, 365
supplementary, 25,414,416

GSquared, xvi
g t b l program, xvii
Guerrieri, P., xvii

half-close, 425
Hamilton, C., 356,535
Hanson, D. R., xvii
Haug, J., xvi
Hewlett Packard, 407
high member, 447,449
hostname, 245,401,403,413-414,416-417,450
HTTP (Hypertext Transfer Protocol), 67,337
hyper datatype, XDR, 427
Hypertext Transfer Protocol, see HTTP

I-RECVFD constant, 379
I-SENDFD constant, 379
IBM, xvi
idempotent, 393-395,422-423
identifier reuse, System V IPC, 34-36
identity, client, 83-84,365,369,397,415-417,456
IEC (International Electrotechnical Commission),

13-14,520,536
IEEE (Institute of Electrical and Electronics

Engineers), 13-14,121,180,262,536
floating point format, 426

IEEEIX, 13
implementation

of Posix message queues using memory-
mapped 110, 106-126

of Posix read-write lock using mutexes and
condition variables, 179-187

of Posix semaphores using FIFOs, 257-262 -
of Posix semaphores using memory-mapped

I/O, 262-270
of Posix semaphores using System V

semaphores, 271 -278
implicit

synchronization, 161
thread termination, 502
typing, 426

UNIX Network Programming Index 545

indent program, xvii
i ne td program, 413-414

RPC and, 413-414
i n i t program, 4,48,521
initial thread, see main thread
i-node, 28-29,349,517
Institute of Electrical and Electronics Engineers, see

IEEE
i n t datatype, XDR, 427
in t l6- t datatype, 427
int32-t datatype, 427
int64-t datatype, 427
int8-t datatype, 427
International Electrotechnical Commission, see IEC
International Organization for Standardization, see

IS0
Internet Protocol, see IP
Internet Protocol version 4, see IPv4
interprocess communication, see IPC
i o c t l function, 379,384
IP (Internet ProtocoD, address, 245,401,403,413,

422,533
IPC (interprocess communication)

identifier reuse, System V, 34-36
kerneI limits, System V, 36-38
key, 28
name space, 7-9
names, Posix, 19-22
networked, 453
nonnetworked, 453
permissions, Posix, 23,25-26,84,115,225,232,

267,327
permissions, System V, 31-35,39,130-131,

282-283,343-345
persistence, 6-7
Posix, 19-26
System V, 27-39

IPC-CREAT constant, 31-32,38,130,283-284,
294,344

IPC-EXCL constant, 31-3238,130,135,141,273,
283-284,289,294,344

IPC-NOWAIT constant, 87,132-133,139,143,276,
286-287.290

IPC-PRIVATE constant, 29-31,38-39,130,134,
147,155,344,517

IPC-RMID constant, 35,134,137,275,288-289,
345-346,351

IPC-SET constant, 33,134,288,345
IPC-STAT constant, 38,134,274,285,289-290,

294,345,347-348,351,455
i p c q e r m structure, 30-35,38,129-130,282-283,

343
definition of, 30

ipcrm program, 36
ipcs program, 36,134,138-140,348-349,455
IPv4 (Internet Protocol version 4), 446,451,534
is-read-lockable function, definition of, 202
is-write- lockable function, definition of, 202
IS0 (International Organization for

Standardization), 13-14,520,536
iterative, server, 66-67,144,372,407-408

Johnson, M., mi
Johnson, S., mi
joinable thread, 387,504
Josey, A., 15,536
justice, poetic, 517

Kacker, M., xvi
Karels, M. J., 311,536
Kerberos, 417
kernel limits, System V IPC, 36-38
kernel persistence, 6,75,77,226
Kernighan, B. W., mi-xvii, 12,511,536
key, IPC, 28
key-t datatype, 8,28-30,455
k i l l function, 91,101
Kleiman, S., 180,536
KornShell, 72-73
Kougiouris, I?, 356,535

1-len member, 199-200
l q i d member, 199
1-s tar t member, 199-200
1-type member, 199
1-whence member, 199-200
last in, first out, see LIFO
latency, 361,458

performance, message passing, 480-486
leak, memory, 114,175,452,521
Leisner, M., xvi
Lewis, B., 371,536
LF (linefeed), 67
LIFO (last in, first out), 104
lightweight process, 501
l i m i t program, 72
limits

FIFO, 72-73
pipe, 72-73
Posix message queue, 86-87
Posix semaphore, 257
System V IPC kernel, 36-38
System V message queue, 152-154
System V semaphore, 296-300
System V shared memory, 349-351

546 UNIX Network Programming

7

Index

d i m i ts . h> header, 72
linefeed, see LF
l i n k function, 91,215-216
Linux, mi, 288,356,407
l i s t e n function, 399
little-endian byte order, 403,426
lmbench program, 458-459
local procedure call, 355
lock priority, 180,207-213
lock-reg function, 202
lock- test function, 202
lockd program, 216
lockf function, 198
lockf c n t l program, 203-204
locking

advisory, 203-204,217,522
conflicts, 170-171
file locking versus record, 197-198
granularity, 198
lock files, 214-216
mandatory, 204-207,217
NFS, 216
priorities of readers and writers, 207-213
record, 193-217
shared-exclusive, 177
versus waiting, 165-167

locking function, 198
locknone program, 203-204,207,217
LOG-ERR constant, 511
LOG-INFO constant, 511
long datatype, XDR, 427
long double datatype, 427
long long datatype, 427
long jmp function, 90
long long-t datawe, 427
loom program, xvii
loop£ c n t l program, 205-206,217
loopf cntlnonb program, 217,522
loopnone program, 205-206
loopnonenonb program, 217,522
low member, 447,449
l p program, 193
LP64, 427
l p r program, 193
1s program, 36,81,205,360,455
lseek function, 5,54,91,113,115,200,202,310,

322,327,523,528
l s t a t function, 21,44
Lyon, B., 406

machinename member, 446
magic number, 109,117,181,258,262,271

main thread, 93,190,235,388,488,490,502
malloc function, 117,160,432,435,467-468,524,

533
mandatory locking, 204-207,217
many-to-few thread implementation, 163
MAP-ANON constant, 315-316,322,454,497
MAP-FIXED constant, 309
MAP-PRIVATE constant, 309-310,323
MAP-SHARED constant, 309-311,315,323
Marquardt, D., mi
marshaling, 405
MAX-PATH constant, definition of, 507
MAXLINE constant, 49,505

definition of, 507
McKusick, M. K., 311,536
McVoy, L., mi, 458,536
memcpy function, 127,526
memory

leak, 114,175,452,521
mapping, anonymous, 315-317
mapping, /dev/ zero, 316-317
object, 326

memory-mapped
file, 78,107,111,127,308,310-311,313,322,

325-326,471,520,525
I/O, 303,525
I/O, used for implementation of Posix message

queues, 106-126
I/O, used for implementation of Posix

semaphores, 262-270
mesg structure, 149
mesg-recv function, 69-71,141-142,144,149
mesg-send function, 69-70,141-142.194
mesg . h header, 68
Mesg-recv function, 149
message

boundary, 67,76,444,454
queue attributes, 79-82.520
queue descriptor, definition of, 77
queue ID, 129-130,139-140,142,147,149,151,

154
queue limits, Posix, 86-87
queue limits, System V, 152-154
queue priority, 82-83,85-86,109,123-124,126,

143,482
queues, implementation using memory-

mapped I/O, Posix, 106-126
queues, Posix, 75-128
queues, System V, 129-155
queues with p o l l function, System V, 151-152
queues with s e l e c t function, Posix, 95-98
queues with s e l e c t function, System V,

151-152

UNIX Network Programming Index 547

messages
multiplexing, 142-151
streams versus, 67-72

Metz, C. W., xvi
mismatch-in£ o structure, definition of, 447,449
mkdir function, 91
mkf if o function, 39,54-58,74,91,518,524

definition of, 54
mkf ifo program, 54
mlock function, 322
mlockall function, 322
mmap function, 14,109,113,115,263,265,303,

307-311,315-320,322-323,325-328,
330-334,337,342-343,363,369,471,527,529

definition of, 308
mode member, 31-34,134,283,289,345
mode-t datatype, 110-111
MQ-OPEN-MAX constant, 86
MQ-PRIO-MAX constant, 82-83,86
mq-at tr structure, 80,83

definition of, 80
mq-close function, 76-79,109,116-117,126-127

definition of, 77
source code, 116

mq-curmsgs member, 80,123-124
mq-f lags member, 80,108,118
mq-getattr function, 79-83,85,117,126,520

definition of, 79
source code, 1 18

mq-hdr structure, 109,113,117,119
-in£ o structure, 106,108-109,113,115-118
mq-maxmsg member, 76,80,86,112,123,127
mq-msgsize member, 76,80,83,86,112,127
mq-notify function, 87-99,117,119,126-127

definition of, 87
source code, 120

mq-open function, 19-20,22,25,76-80,82,106,
109,111-114,116,126-127,326-327.520

definition of, 76
source code, 109

mq-receive function, 24,76,82-86,88,90,93,
115,121,124,126,482,526

definition of, 83
source code, 125

mq-send function, 13,24,82-86,109, 121,124,
126-127,471,526

definition of, 83
source code, 122

mq-setattr function, 7Y-82,118,126
definition of, 79
source code, 119

mq-unlink function, 76-79,117,126,327
definition of, 77
source code, 117

mqd-t datatype, 8,77,95,109,326
mqh-attr structure, 108
mqh-event structure, 119
mqh-free member, 108-109,113
mqh-head member, 108-109,113,124
mqh-nwait member, 121,124
mqhgid member, 119
mqh-wait member, 121
MQI-MAGIC constant, 109
mqi-f lags member, 109
mqi-hdr member, 109
mqi-magic member, 109
mqueue . h header, 106
MS-ASYNC constant, 310
MS-INVALIDATE constant, 310
MS-SYNC constant, 310
MSG-ACCEPTED constant, 447-448
MSG-DENIED constant, 447-448
MSG-NOERROR constant, 83,133
MSG-PEEK ~~ns tan t , 152,455
MSG-R constant, 33
MSG-TRUNC constant, 83
MSG-w constant, 33
msg-cbytes member, 129,134
msg-ctime member, 129,131
msg-f irst member, 129
msg-hdr structure, 109,113, l u , 126,310
msg-las t member, 129
msg-len member, 109
msg-lrpid member, 129,131
msg-lspid member, 129,131
msg-next member, 108-109,124
msggerm structure, 131,134

definition of, 129
msggrio member. 109
msg-qbytes member, 129,131-132 134
msg-qnum member, 129,131
msg-r t ime member, 129,131
msg-st ime member, 129,131
msg-type member, 446
msgbuf structure, 131,134,136,482

definition of, 131
msgctl function, 35,38,134-135,137

definition of, 134
msgget function, 33-35,38,130-131,135,139,

154,516-517
definition of, 130

msghdr structure, 126
msgmap variable, 37
msgmax variable, 37-38,152,458
msgmnb variable, 37-38,152,458
msgmni variable, 37-38,152

548 UNIX Network Programming

1

Index

msgrcv function, 83,87,131-134,137-139,143,
149,151-152,304,323,482

definition of, 132
msgseg variable, 37,152,458
msgsnd function, 34,131-132,135,143,154,304

definition of, 131
msgssz variable, 37,152
msgtql variable, 37-38,152
msqid-ds structure, 130,132,134

definition of, 129
msync function, 307-311

definition of, 310
mtext member, 131
M-to-N thread implementation, 163
mtype member, 131
multiple buffers, 249-256
multiplexing messages, 142-151
multithreading, RPC, 407-411
munlock function, 322
munlockall function, 322
munmap function, 117,267,307-311,363,369,529

definition of, 309
mutex, 159-175

and condition variables, used for
implementation of Posix read-write lock,
179-187

attributes, 172-174
mutual exclusion, 159,194,221
my-create function, 386-387
my-lock function, 194,196-197,200-202,214,

217,238,279,294,296,526
my-sh function, 323,497-498
my-thread function, 386-388,531
my-unlock function, 194,196-197,200,202,238,

279,294
mymesg structure, 68

name space, IPC, 7-9
named pipe, 43,54
names, Posix IPC, 19-22
National Optical Astronomy Observatories, see

NOAO
NCA (Network Computing Architecture), 406
NCK (Network Computing Kernel), 407
NCS (Network Computing System), 406
NDR (Network Data Representation), 406
Nelson, B. J., 406,535
Nelson, R., xvi
network programming, explicit, 4,399,403
Network Computing Architecture, see NCA
Network Computing Kernel, see NCK
Network Computing System, see NCS
Network Data Representation, see NDR

Network File System, see NFS
Network Interface Definition Language, see NIDL
Network News Transfer Protocol, see NNTP
networked IPC, 453
NFS (Network File System), 404,406,411,417,495

and FIFO, 66
locking, 216
secure, 417

NIDL (Network Interface Definition Language),
406

NNTP (Network News Transfer Protocol), 67
NOAO (National Optical Astronomy

Observatories), xvi
nonblocking, 24,58-59,80,85,87,93,109,132,143,

160,184,205,217,260,262,269,276,286,293,
518,522

noncooperating processes, 203-204
nondeterministic, 197,217,530
nonnetworked IPC, 453
n toh l function, 441
null

authentication, 414
procedure, 451,486,534
signal, 121

0-APPEND constant, 515
0-CREAT constant, 22-25,31,54,77,110-111,115,

214-216,225,228-229,239,258,260,263,
265,273-274,279,285,327,334,516,524

0-EXCL constant, 22-25,31,54,77,111,214-215,
225,235,260,273,327,516

0-NONBLOCK constant, 22.24.58-60,77,93,121,
124,217,260,518

0-RDONLY constant, 22,25-26,61,63,77,115,225,
327

0-WRONLY constant, 22,25-26,61,77,115,216,
225

oa-base member, 416
oa-f l avo r member, 416
oa-length member, 416
od program, 313,319,331
ONC (Open Network Computing), 406
opaque data, 429
opaque datatype, XDR, 429
opaque-auth structure, definition of, 416,446
open systems interconnection, see OSI
open function, 22-23,26,31,49,54,56,58,61,63,

65-66,71,74,91,111,115,214-217,260,265,
273,310-311,315-317,325-327,342,357,
361,364,367,376,379-380,382-383,397,
515,518,523-524

UNIX Network Programming Index 549

Open Group, The, 14-15
Open Network Computing, see ONC
Open Software Foundation, see OSF
OPEN-MAX constant, 72-73
Operation Support Systems, 28
optarg variable, 82
opt ind variable, 78
OSF (Open Software Foundation), 14
OSI (open systems interconnection), 426
owner ID, 25,33,38,397

packet formats, RFC, 444-449
Papanikolaou, S., xvii
PATH environment variable, 52
PATH-MAX constant, 19,22
pathconf function, 72-73,91
pause function, 90-91,230,359,420
pclose function, 52-53,73

definition of, 52
- PC-PIPE-BUF constant, 72
PDP-11, 37
performance, 457-499

message passing bandwidth, 467-480
message passing latency, 480-486
process synchronization, 497-499
thread synchronization, 486-496

permissions
FIFO, 54
file, 203,205,216,397
Posix IPC, 23,k-26,84,115,225,232,267,327
System V IPC, 31-35,39,130-131,282-283,

343-345
persistence, 6

filesystem, 6-7,78,311
IPC, 6-7
kernel, 6,75,77,226
process, 6

pid-t datatype, 194
Pike, R., 12,536
pipe, 44-53

and FIFO writes, atomicity of, 65-66
full-duplex, 44,50-52,127,475
limits, 72-73
named, 43,54

pipe function, 44,50,56,58,68,73,91
definition of, 44

PIPE-BUF constant, 59-60,65,72-73,260
po l 1 function, 95,151,155,171,339,454

System V message queues with, 151-152
polling, 87,167,214
popen function, 52-53,73-74,518

definition of, 52

port
ephemeral, 404,411,414,450
mapper, 404,406,411-414,450-451,532
reserved, 417

Portable Operating System Interface, see Posix
portmap program, 411
Posix (Portable Operating System Interface), 13-14

IPC, 19-26
IPC names, 19-22
IPC permissions, 23,25-26,84,115,225,232,

267,327
message queue limits, 86-87
message queues, 75- 128
message queues, implementation using

memory-mapped I/O, 106-126
message queues with s e l e c t function, 95-98
read-write lock, implementation using mutexes

and condition variables, 179-187
realtime signals, 98-106
semaphore limits, 257
semaphores, 219-279
semaphores between processes, 256-257
semaphores. file locking using, 238
semaphores, implementation using FIFOs,

257-262
semaphores, implementation using memory-

mapped 110, 262-270
semaphores, implementation using System V

semaphores, 271 -278
shared memory, 325-342

Posix.1, 8.14-16,19,44,59,73,83,87,98,101,159,
173,178, 198,205,214,225,240,256,266,279,
309,325,328,364,468,482,530,536

definition of, 14
Rationale, 14,223,240,262,328

Posix.lb, 14,99,536
Posix.lc, 14,536
Posix.lg, 8
Posix.li, 14,536
Posix. 1 j, 178,488
Posix.2, 14-16

definition of, 13
P0six.4, 99
POSIX-IPC-PREFIX constant, 22
- POSIX-C-SOURCE constant, 13
- POSIX-MAPPED-FILES Constant, 9
- POSIX-MESSAGE-PASSING constant, 9
-POSIX-REALTIME-SIGNALS constant, 9
- POSIX-SEMAPHORES constant, 9
- POSIX-SHARED-MEMORY-OBJECTS constant, 9
- POSIX-THREAD-PROCESS-SHARED constant, 9,

173
- POSIX-TKREADS constant, 8-9

550 UNIX Network Programming

.
Index

PostScript, xvij
pr-thread-id function, 370-371
source code, 371

printf function, 90,102,127,205,217,279,383,
398,408,522

priority
lock, 180,207-213
message queue, 82-83,85-86,109,123-124,
126,143,482

thread, 160,502
private server pool, 386,388,390
proc member, 446
PROC-UNAVAIL constant, 447-448
procedure call
asynchronous, 356
local, 355
synchronous, 356-357,476

procedure, null, 451,486,534
process
lightweight, 501
persistence, 6

processes, cooperating, 203
process-shared attribute, 9-10,113,128,173,175,

265,454
producer-zonsumer problem, 161-165,233-238,

242-249
prog member, 446
PROG-MISMATCH constant, 447-448
PROG-UNAVAIL Constant, 447-448
PROT-EXEC constant, 309
P R o T - ~ E constant, 309
PROT-READ constant, 308-309
PROT-WRITE constant, 308-309
ps program, 127,175,367,452,520
pselect function, 171
FTHREAD-CANCEL constant, 188
FTHREAD-COND_INITIALIZER constant, 167,

172
PTHREAD-MUTEX-INITIALIZER constant, 160,

172
Pthread-mut ex-lock wrapper function, source

code, 12
PTHREAD-PROCESS-PRIVATE constant, 173,179
PTHREAD-PROCESS-SHARED constant, 113,128,

173,179,193,239,256,265,462,497-498
PTHREAD-RWLOCK-INITIALIZER constant,

178-179
FTHREAD-SCOPE-PROCESS Constant, 387
FTHREAD-SCOPE-SYSTEM constant, 386,388
pthread-attr-destroy function, 398
pthread-attr-init function, 398
pthread-at tr-t datatype, 502

pthread-cancel function, 187,190
definition of, 187

pthread-cleanupqop function, 187,191
definition of, 187

pthread-cleanupqush function, 187,396
definition of, 187

pthread-condattr-destroy function, 175
definition of, 172

pthread-condat tr-getpshared function,
definition of, 173

pthread-condattr-init function, 114,175
definition of, 172

pthread-condattr-setpshared function,
definition of, 173

pthread-condattr-t datatype, 172
pthread-cond-broadcast function, 171,175,

186
definition of, 171

pthread-cond-destroy function, definition of,
172

pthread-cond-init function, definition of, 172
pthread-cond-signal function, 124,126,

167-171,175,186-187,227,268-269
definition of, 167

pthread-cond-t datatype, 8,167,256
pthread-cond-timedwai t function, 171
definition of, 171

pthread-cond-wai t function, 121,167-171,
175,183-184,187,190-192,227,269,525

definition of, 167
pthread-create function, 163,217,356,

385-388,502-504
definition of, 502

pthread-de tach function, 502-504
definition of, 504

pthread-exi t function, 174,187,425,502-504
definition of, 504

pthread-j oin function, 357,387,502-504
definition of, 503

pthread-mutexattr-destroy function, 175
definition of, 172

pthread-mutexattr-getpshared function,
definition of, 173

pthread-mutexattr-ini t function, 113-114,
175,265

definition of, 172
pthread-mutexat tr-se tpshared function,

113,265
definition of, 173

pthread-mutexattr-t datatype, 172-173
pthread-mutex-des troy function, definition

of, 172

UNIX Network Programming Index 551

pthread-mutex-init function, 113,160,
172-173,265,498

definition of, 172
pthread-mutex-lock function, 12,160,190,221

definition of, 160
pthread-mutex-t datatype, 8,160,172,256,279
pthread-mutex-trylock function, 160

definition of, 160
pthread-mutex-unlock function, 221

definition of, 160
pthread-rwlockattrdestroy function,

definition of, 179
pthread-rwlockattr-getpshared function,

definition of, 179
pthread- rwlockat t r - in i t function, definition

of, 179
pthread- rwlockat tr-se tpshared function,

definition of, 179
pthread-rwlockattr-t datatype, 179
pthread-rwlock-des t r o y function, 179,181,

192
definition of, 179
source code, 182

pthread-rwlock. h header, 180
pthread-rwlock-ini t function, 179,181

definition of, 179
source code, 182

pthread-rwlock-rdlock function, 178-179,
183,190-191

definition of, 178
source code, 183

pthread-rwlock-t datatype, 8,178,180-181,
183,188,193,256

pthread-rwlock-tryrdlock function, 184
definition of, 178
source code, 184

pthread-rwlock-trywrlock function, 184
definition of, 178
source code,. 185

pthread-rwlock-unlock function, 178-179,
186,190,192

definition of, 178
source code, 186

pthread-rwlock-wrlock function, 178-179,
183-184,190-191

definition of, 178
source code, 185

pthread- self function, 502-504
definition of, 503

pthread-setcancelstate function, 396,530
pthread-se tconcurrency function, 163
pthread-sigmask function, 95
pthread-t datatype, 370-371,502

<pthread. h> header, 180
Pthreads, 15
putchar function, 217
PX-IPC-NAME environment variable, 21
px-ipc-name function, 21-22,26,78,235,505

definition of, 21
source code, 22

quadruple datatype, XDR, 427
Quarterman, J. S., 311,536
queued signals, 100,102

FIFO order, 100,102,104-105

Rafsky, L. C., xvi
Rago, S. A., xvi
r a i s e function, 91
rbody member, 446
rbuf member, 357,362-363,367-369
read ahead, 251
read function, 5-6,43,49-52,54,59,61,63,70,

83,90-91,142,161,200,204-207,249,254,
260,262-263,278,304,310-311,322,399,406,
435,451,456-457,467,469,471,482,
517-519,522-523,525-526,533

read-lock function, 207
definition of, 202

readers-and-writers
locks, 178
problem, 177

r ead l ine function, 61,63,74,518
readw-lock function, 207-208

definition of, 202
read-write lock, 177-192

attributes, 179
implementation using mutexes and condition

variables, Posix, 179-187
real

group ID, 365
user ID, 365,369

realtime
scheduling, 14,160,171,454
signals, Posix, 98-106

record, 75
locking, 193-217
locking, file locking versus, 197-198

recv function, 152
recvf rom function, 152,406
recvmsg function, 83,152
Red Hat Software, xvi
- REENTRANT constant, 13,515
Regina, N., xvii
Reid, J., xvi

552 UNIX Network Programming Index

re ject-stat member, 449
re jected-reply structure, definition of, 449
remote procedure call, see RPC
remote procedure call language, see RPCL
remote procedure call source code, see RPCSRC
remote terminal protocol, see Telnet
rename function, 91
REPLY constant, 446
reply-body structure, definition of, 447
reply-stat member, 447
Request for Comments, see RFC
reserved port, 417
reset flag, TCP header, see RST
results member, 447
retransmission, 424,532

RPC timeout and, 417-422
RFC (Request for Comments)

1831, 406,430,446-447
1832, 406,426,430
1833, 406,412

Ritchie, D. M., 511,536
rm program, 36,376-377,379
rmdir function, 91
RNDUP function, 438
road map, examples, 15-16
Rochkind, M. J., 27,536
round-trip time, 451,458
RPC (remote procedure call), 355,399-452

and inetd program, 413-414
authentication, 414-417
call semantics, 422-424
call semantics, at-least-once, 423,450
call semantics, at-most-once, 423,450
call semantics, exactly-once, 422-423,450
multithreading, 407-411
packet formats, 444-449
premature termination of client, 424-426
premature termination of server, 424-426
secure, 417
server binding, 411-414
server duplicate request cache, 421-424,451,

532-533
TCP connection management, 420
timeout and retransmission, 417-422
transaction ID, 420-422

RPC-CANTRECV constant, 424
RKMISMATCH constant, 448-449
RPC-SUCCESS constant, 409
rpc-msg structure, definition of, 446
rpcbind program, 406,411-412,450
rpcgen program, 400-406,408-409,411,

413-414,419,427-429,432-433,435,
439-440,442,449-451,476,486,534

rpcinf o program, 412-414,532
RPCL (remote procedure call language), 430
RPCSRC (remote procedure call source code), 406,

534
rpcvers member, 446
rq-clntcred member, 415
rq-cred member, 415-416
rq-proc member, 415
rq-prog member, 415
rq-vers member, 415
rq-xprt member, 415
rreply member, 447
r s i ze member, 357,362-363,367-368
RST (reset flag, TCP header), 425,532
RTSIG-MAX Constant, 100
Rw-MAGIC constant, 181
xcondreaders member, 183,186
rw-condwriters member, 184,186
x m a g i c member, 181
rw-rnutex member, 181,183
-waitreaders member, 183,191
-waitwriters member, l83-l84,l9O-l9l
rw-ref count member, 181,183-184186
rwlock-cancelrdwait function, 191
rwlock-cancelwrwai t function, 191

S-IRGRP constant, 23
S-IROTH constant, 23
S-IRUSR constant, 23
S-ISDOOR constant, 367
S-ISFIFO macro, 44
S-IWGRP constant, 23
S-IWOTH constant, 23
S-IWUSR constant, 23
S-IXUSR constant, 111,263
S-TYPEISMQ macro, 21
S-TYPEISSEM macro, 21
S-TYPEISSHM macro, 21
SA-RESTART constant, 106
SA-SIGINFO constant, 100-102,105-106,127
sa-f lags member, 106
sa-handler member, 106
sa-mask member, 106
sa-sigaction member, 105-106
Salus, P. H., 43,536
sar program, 39
sbrk function, 533
-SC-CHILD-MAX constant, 297
scheduling, realtime, 14,160,171,454
Schmidt, D. C., 180
-SC-MQ-OPEN-MAX constant, 87
-SC-MQ-PRIO-MAX constant, 87
scope, contention, 386,388,462

UNIX Network Programming Index 553

- SC-OPEN-MAX constant, 72
- SC-PAGESIZE constant, 317,470,529
- SC-RTSIG-MAX constant, 102
- SC-SEM-NSEMS-MAX constant, 257
- SC-SEM-VALUE-MAX constant, 257,265
Secure

NFS, 417
RPC, 417

Security, hole, 328
SEEK-CUR constant, 200,217,523
SEEK-END constant, 200,217,523
SEEK-SET constant, 200,217,523
select function, 74,95,98,151-152 155,171,

323,339,454,519-521,528
Posix message queues with, 95-98
System V message queues with, 151-152

select wrapper function, source code, 521
sem structure, 273,282-283

definition of, 282
SEM-A constant, 33,283
SEM-FAILED constant, 225
SEM-MAGIC constant, 258,262
SEM-NSEMS-MAX constant, 257
semqost wrapper function, source code, 11
SEM-R constant, 33,283
sEM-uNDo constant, 174,286-287,290,294,296,

492
SEM-VALUE-MAX constant, 225,257
sem-base member, 282-283
sem-close function, 224-226,228,235,260,267,

275
definition of, 226
source code, 261,267,275

sem-c time member, 282-283,289
sem-destroy function, 224,238-242

definition of, 239
sem-f lg member, 276,285-286,492
sem-getvalue function, 224-225,227,262,269,

277
definition of, 227
source code, 270,278

sem-init function, 224,238-242,256,315,339,
490,498

definition of, 239
sem-magic member, 258,262
sem-nsems member, 282-283,290
sem-num member, 285-286
sem-op member, 285-287
sem-open function, 19,22,25-26,224-226,

228-229,232,235,239-240,242,256,258,
260,263,265-267,271,273-274,279,285,
326-327,333,498,524

definition of, 225
source code, 258,264,271

sem-o t ime member, 273-274,282-285,296
semqerm structure, 283,288-289

definition of, 282
semqost function, 11,90-91,221-225, W, 238,

242,256-257,260,267,275,279,287,456,490
definition of, 227
source code, 261,268,276

sem-t datatype, 8,225,238-240,242,256,258,
260,262-263,265-266,271,275,326

sem-trywai t function, 224-227,262,269,276,
339

definition of, 226
source code, 270,277

sem-unlink function, 224-226,235,242,260,
267,275,305,327,333

de

fini

tion of, 226
source code, 261,268,276

sem-wai t function, 221 -227,Z30,232,236,238,
242,256,258,262,268-269,275-276,279,
287,339,524-525

definition of, 226
source code, 262,269,277

semadj member, 10,286-287,294
semaem variable, 37-38,296
semaphore. h header, 258,262,271
semaphores

between processes, Posix, 256-257
binary, 219,281
counting, 221,281
file locking using Posix, 238
file locking using System V, 294-296
ID, 271,283,290,300
implementation using FIFOs, Posix, 257-262
implementation using memory-mapped I/O,

Posix, 262-270
implementation using System V semaphores,

Posix, 271-278
limits, Posix, 257
limits, System V, 296-300
Posix, 219-279
System V, 281 -300

sembuf structure, 285-286,290,296
definition of, 285

semctl function, 273-275,277,283-284,287-290,
294

definition of, 287
semget function, 34,38,257,273-275,282-285,

290,294,526
definition of, 282

semid-ds structure, 282-284288-290
definition of, 282

semmap variable, 37
s e m i variable, 37-38,296

554 UNIX Network Programming Index

s e m s variable, 37,296
semmnu variable, 37,296
semmsl variable, 37-38,296
sernncnt member, 282-283,286-288
semop function, 273,275-276,283-287,290,294,

296,492,525-526
definition of, 285

semopm variable, 37-38,296
sempid member, 282-283,288
semume variable, 37-38,296
semun structure, 506

definition of, 288
semval member, 282-283,286-288
SEMVMX constant, 273
semvmx variable, 37-38,296
semzcnt member, 282-283,286-288
sendmsg function, 384
sendto function, 405
seq member, 34-35,38
sequence number, slot usage, 34
server

binding, RPC, 411 -414
concurrent, 66-67,147,357,372,407
creation procedure, 384
duplicate request cache, RPC, 421 -424,451,

532-533
iterative, 66-67,144,372,407-408
stub, 405

se rve r function, 48-49,54-55,63,72,141-142,
144,149

session, 4
s e t-concurrency function, 163,165,488
SETALL constant, 283-284,288,290
s e t g i d function, 91
set-group-ID, 26,198,205
se tpgid function, 91
s e t r l i m i t function, 72
s e t s i d function, 91
setsockopt function, 418
s e t u i d function, 91
set-user-ID, 26,205,369
SETVAL constant, 273,283-284,288
setvbuf function, 522
sh program, 52
Shar, D., 180,536
shared memory, 303-351

ID, 344,351
limits, System V, 349-351
object, 325
Posix, 325-342
System V, 343-351

shared-exclusive locking, 177
SHM-R constant, 33

SHM-RDONLY constant, 345
SHM-RND constant, 344
SHM-w constant, 33
s b a t i m e member, 343
s-cnat t ch member, 343
shm-cpid member, 343
s-c t ime member, 343,345
s-dtime member, 343
s-lpid member, 343
s w n a t t ch member, 343,348
s b o p e n function, 19,22,25,308,325-328,330,

333-334,337,342-343
definition of, 326

shmgerm structure, 345
definition of, 343

s h ~ s e g s z member, 343
shm_unlink function, 326-327,329,333,337,342

definition of, 326
s h a t function, 343-347,351

definition of, 344
s h c t l function, 345-348,351

definition of, 345
s h d t function, 345

definition of, 345
s h g e t function, 34,38,343-344,346-349,351

definition of, 344
s h i d - d s structure, 345,348

definition of, 343
SHMLBA constant, 344
shmmax variable, 37-38,349
s h i n variable, 37-38
shmmnb variable, 349
shmmni variable, 37-38,349
s h s e g variable, 37-38,349
s h o r t datatype, XDR, 427
SI-ASYNCIO constant, 101
SI-MESGQ constant, 101,121
SI-QUEUE Constant, 101,104,121
SI-TIMER constant, 101
sI-USER constant, 101
si-code member, 101,104,121
si-signo member, 101
si-value member, 101
SIG-DFL constant, 106
SIG-IGN constant, 60,106
s igac t ion function, 91,100,105
s igac t i o n structure, definition of, 106
s igaddset function, 91
SIGALRM signal, 100,106,396-397,425
SIGBUS signal, 320
SIGCHLD signal, 48,149,391-393,414
s igde l se t function, 91
sigemptyset function, 91

UNIX Network Programming Index 555

s i g e v structure, 98
SIGEV-NONE constant, 98
SIGEV-SIGNAL constant, 89,98,121
SIGEV-THREAD Constant, 98,128
sigev-notif y member, 88-89,98
sigev-not if y -a t t r i bu t e s member, 88,98
sigev-no t i f y-f unct ion member, 88,98
sigev-signo member, 88,90
sigev-value member, 88,98
s igevent structure, 87,89,91,100,119,121

definition of, 88
s i g f i l l s e t function, 91
Sigfunc-rt datatype, 105
s i g i n f o-t structure, 95,101,121

definition of, 101
SIGINT signal, 100
s I G I 0 signal, 256
sigismember function, 91
SIGKILL signal, 100
signal

disposition, 60,502
handler, 60,88-91,93,95,98,100-102,105-106,

121,149,227,256,286,391,393,456,502,520
mask, 93,95,384,502
null, 121
Posix realtime, 98-106
synchronous, 60

s i g n a l function, 88,90-91,105
s ignal- rt function, 102,105-106

source code, 105
s igpause function, 91
sigpending function, 91
SIGPIPE signal, 59-60,519
sigprocrnask function, 91,93,95,102
sigqueue function, 91,101,121
SIGRTMAX signal, 100,102,127
SIGRTMIN signal, 100,127
SIGSEGV signal, 174,267,309,318-320,526
sigset function, 91
sigsuspend function, 91,93
SIGTERM signal, 469
sigtimedwai t function, 95
SIGUSRl signal, 88-91,93,95
s i g v a l structure, 100-101

definition of, 88
s igwa i t function, 93-95

definition of, 95
s igwa i t i n f o function, 95
silver bullet, 453
Simple Mail Transfer Protocol, see SMTP
Single Unix Specification, 15
Sitarama, S. K., xvi
s iva l - i n t member, 88,102

s i v a l q t r member, 88
Skowran, K., xvi
s l e e p function, 91,93,127,190,215,296,398,425,

530
sleep-us function, 339
slot usage sequence number, 34
Smaalders, B., xvi, 180,536
SMTP (Simple Mail Transfer Protocol), 67
Snader, J. C., xvi
snp r in t f function, 21
socket, Unix domain, 84,341,379-380,384,456,

459
socket function, 399
socketpa i r function, 44,50
sockets API, xiv, 8,14,151,398-399,403,406,

449-450,454-455
Solaris, xvii, 15,20-21,29,37,51,53,59,73,77-78,

82,98,100,104,109,154,163,165,209-210,
213,225,232,238,322,331,333,342,348,
356-357,362,367,370,384,398,403-405,
408,411-413,424-425,427,454,458-460,
462-463,465,471,475,482,488,509-510,
517,520-524

solutions to exercises, 515-534
source code

availability, xvi
conventions, 11

Spafford, E. H., 417,535
Spec 1170, 15
spinning, 167
s p r i n t f function, 21
spurious wakeup, 121,170
squareproc-1 function, 402-403,405,419,424
Srinivasan, R., 406,412,426,536
s t-dev member, 28-30
s t q i d member, 328
st- ino member, 28-30
st-mode member, 21,44,115,267,328,367
s t-si ze member, 74,262,328
st- uid member, 328
Staelin, C., 458,536
Stallman, R. M., 13
stamp member, 446
standards, Unix, 13-15
s tar t- t ime function, 469-470

source code, 470
s t a t function, 21,28-29,44,91,115,262,267,455,

517
s t a t member, 449
s t a t structure, 21.28-29,44,74,115,262,267,

328,367
definition of, 328

s t a t d program, 216

556 UNIX Network Programming

1

Index

Stevens, D. A., xvi
Stevens, E. M., xvi
Stevens, S. H., xvi
Stevens, W. R, xiv, 536-537
Stevens, W. R, xvi
stop-t ime function, 469-470

source code, 470
strchr function, 63
streams versus messages, 67-72
strerror function, 49,511
string datatype, XDR, 429,438,451
strlen function, 429
struct datatype, XDR, 429
stub

client, 403,405
server, 405

SUCCESS constant, 447-448
Sun Microsystems, 406
SunOS 4, 316
superuser, 25,33-34,216,369-370,414,417
supplementary group ID, 25,414,416
svc-create function, 411
svc-dg-enablecache function, 422

definition of, 422
svcreg function, 414
svc-req structure, 409,415,422

definition of, 415
svc-run function, 414
svc-t li-create function, 414
SVCXPRT structure, 415
SVMSG-MODE constant, 35

definition of, 508
svmsg . h header, 140,144
SVR2 (System V Release 2), 198
SVR3 (System V Release 3), 98,198,205
SVR4 (System V Release 4), 34,44,50-51,84,152,

311,315-317,322,359,379,384,456
SVSEM-MODE constant, 274

definition of, 508
SVSHM-MODE constant, definition of, 508
SYN (synchronize sequence numbers flag, TCP

header), 532
synchronization

explicit, 161
implicit, 161

synchronize sequence numbers flag, TCP header,
see SYN

synchronous
procedure call, 356-357,476
signal, 60

sysconf function, 72-73,86,91,100,102,257,
265,318,520

sysconf is program, 37,458

sysconf igdb program, 38
sysdef program, 37
<sys/errno. h> header, 13,503
<sys/ ipc . h> header, 30
syslog function, 336,408,511
<sys/msg . h> header, 33,129,131,134
<sys/sem. h> header, 33,282,288
<sys/shm. h> header, 33,343
<sys/stat.h> header, 23,54
system call, 5,198,205,220,303,361,391,405,482

interrupted, 121,124,132-133,149,151,227,
279,286,391-392,395,521,524-525

slow, 286
system function, 134
System V

IPC, 27-39
IPC identifier reuse, 34-36
IPC kernel limits, 36-38
IPC permissions, 31-35,39,130-131,282-283,

343-345
message queue limits, 152-154
message queues, 129-155
message queues with poll function, 151-152
message queues with select function,

151-152
Release 2, see SVR2
Release 3, see SVR3
Release 4, see SVR4
semaphore limits, 296-300
semaphores, 281-300
semaphores, file locking using, 294-296
semaphores. used for implementation of Posix

semaphores, 271 -278
shared memory, 343-351
shared memory limits, 349-351

SYSTEM-ERR constant, 447-448
<sys/ types. h> header, 28

tar program, 13
Taylor, I. L., xvi
tcdrain function, 91
tcf l o w function, 91
tcf lush function, 91
tcgetattr function, 91
tcge tpgrp function, 91
TCP (Transmission Control Protocol), 67,74,401,

404-407,411-412,418-426,444-446,
450-451,454,459,476,532-533

connection management, RPC, 420
for Transactions, see T/TCP,
three-way handshake, 420

tcpdump program, 420,424-425,533

UNIX Network Programming Index 557

TCPvl (TCP/IP Illustrated, Volume I), xiv, 536
TCPv2 (TCP/IP Illustrated, Volume 2), xiv, 537
TCPv3 (TCP/IP Illustrated, Volume 3), xiv, 537
tcsendbreak function, 91
t c s e t a t t r function, 91
t c se tpg rp function, 91
Teer, R., xvi
Telnet (remote terminal protocol), 336,399
termination of client

doors, premature, 390-397
RPC, premature, 424-426

termination of server
doors, premature, 390-397
RPC, premature, 424-426

Thomas, M., xvi
thr-setconcurrency function, 163
thread- exit function, 391
threads, 5-6,501-504

attributes, 98,113,502,521,532
cancellation, 174,180,183,187-192,384,388,

396-398,530
concurrency, 163,165-166,488
detached, 98,384,386-388,504
ID, 502
ID, printing, 371
implementation, many-to-few, 163
implementation, M-to-N, 163
implementation, two-level, 163
joinable, 387,504
main, 93,190,235,388,488,490,502
management, doors, 370-375
priority, 160,502
start function, 98,187,386-387,502
termination, explicit, 502
termination, implicit, 502

three-way handshake, TCP, 420
time

absolute, 171
delta, 171
round-trip, 451,458

t i m e function, 91
timeout, 67,171,424,426

and retransmission, RPC, 417-422
TIMEOUT constant, 420
timer- getoverrun function, 91
t i m e r - g e t t i m e function, 91
timer- settime function, 91,101
times function, 91
timespec structure, 171,508

definition of, 171
t imeval structure, 418-419,471,534
TI-RPC (transport independent RFC), 406-407,

411,421,446,533

TLI (Transport Layer Interface), API, 406
touch function, 467,470

source code, 470
transaction ID, see XID
Transmission Control Protocol, see TCP
transport independent RPC, see TI-RPC
Troff, xvii
TRUE constant, 409,418,429,435,439,441,444
T / T B (T B for Transactions), 537
Tucker, A., xvi
tv-nsec member, 171,508
tv-sec member, 171,508
tv-sub function, 471

source code, 471
two-level thread implementation, 163
typedef datatype, XDR, 427

typing
explicit, 426
implicit, 426

UDP (User Datagram Protocol), 68,74,83,246,
341,401,405-407,411-414,418-425,
445-447,450-452,454-455,459,476,
532-534

u i d member, 33-34,131,134,283,288,345,446
uint8-t datatype, 509
u l imi t program, 72-73
umask function, 23,91
umask program, 23,39
un-lock function, definition of, 202
unarne function, 91
uniform resource locator, see URL
union datatype, XDR, 429
i u n i s t d . h> header, 8,86,173,257
Unix

95, 15
98, 8,16,33-34,36,44,84,90,129,159, 163, 173,

178,192,205,282,284,288,364,454,468,482,
488,526,536

98, definition of, 15
authentication, 414
Columbus, 28
domain socket, 84,341,379-380,384,456,459
Specification, Single, 15
standards, 13-15
System 111, 43,198
Version 7, 98,198
versions and portability, 15

unl ink function, 56,58,77,91,115,117,214-216,
226,260,267,275,327,342,359,376

unpipc. h header, 21,55,105,111,274,288,
505-509

source code, 505

558 UNIX Network Programming [ndex

UNPvl (UNIX Network Programming, Volume I),
xiv, 537

unsigned c h a r datatype, XDR, 427
unsigned hyper datatype, XDR, 427
unsigned i n t datatype, XDR, 427
unsigned long datatype, XDR, 427
unsigned s h o r t datatype, XDR, 427
URL (uniform resource locator), 535
Usenet, iii
User Datagram Protocol, see UDP
user ID, 328,397,413,417,502

effective, 23,25,33-34,84,131,283,365,
369-370,414,416,515

real, 365,369
UTC (Coordinated Universal Time), 171
utirne function, 91
UUCP, 198

va-arg function, 111,260
va-mode-t datatype, 111,260,263,273

definition of, 508
v a - s t a r t function, 260
Vahalia, U., 311,537
v a l member, 288
v a l l o c function, 467-468
v e r f member, 446-447
verifier, 417,446,449,533
v e r s member, 446
v i program, xvii, 13
vo id datatype, 503-504

w a i t function, 91,413-414
Wait, J. W., xvi
waiting, locking versus, 165-167
w a i t p i d function, 48,73,91,149,503
wakeup, spurious, 121,170
wc program, 161
well-known

key, 147
pathname, 60,215

White, J. E., 406,537
Wolff, R., xvi
Wolff, S., xvi
wrapper function, 11-13

source code, Pthread-rnut ex-lock,
source code, S e l e c t , 521
source code, ems so st , 11

Wright, G. R, xiv, xvii, 537

w r i t e function, 5,43,52,54,59-60,65,83,90-91,
95,98,142,161,200,204-205,207,249,260,
263,278,304,310-311,315,317,322,327,399,
405,435,451,456-457,467,469,471,482,515,
519,522-526,528

w r i te-lock function, definition of, 202
writew-lock function, 495

definition of, 202

XDR (external data representation), 403,406,
426-444,450,532-534

datatypes, 427-430
fragment, 444

XDR datatype, 432
XDR-DECODE constant, 435
XDR-ENCODE constant, 432,435
xdr-data function, 432,435,532
xdr-f r e e function, 410,435,452
xdr-getpos function, 435
xdr-s tr i n g function, 435,532
xdr-void function, 534
xdrmem-create function, 432,435,451-452
Xenix, 198
Xerox, 406
XID (transaction ID), 420-422,532-533
x i d member, 446
X/Open, 14,198

Portablity Guide, see XPG
Transport Interface, see XTI

XOPEN-REALTIME constant, 9 -
XPG (X/Open Portablity Guide), 15,198,284,468
XTI (X/Open Transport Interface), API, 14,151,

398-399,403,406,413-414,424,449-450,455

yacc program, 13

zombie, 48,149

Function prototype Page

long pr-thread-id (pthread-t *ptr) ; 371

char *px-ipc-n~(const char *rWIe); 21

int sen-close (sem-t *sem) ;

int sen-destroy(sem-t *sem);

int sen-init (sem-t *sem, int shared, unsigned int value) ;

sem-t *sen-men (const char *name, int ofag, . . .
/ * mode-t mode, unsigned int value * /) ;

int sensost (sem-t *sent) ;

int sen-trywait (sem-t Isem) ;

int sen-unlink (cons t char *name) ;

int gem-wait (sen-t *sent) ;
-

int semctl (int semid, int semnum, int cmd, . . . / * union semun arg * /) ; 287

int s-et (key-t key, int nsems, int ofag) ; 282

int s-p (int semid, struct sembuf *opsptr, size-t nops) ; 285

int shm-men(const char *name, int ofag, mode-t mode); 326

int shm_unlink(const char *name); 326

int shmctl (int shmid, int cmd, struct shmid-ds *buff) ; 345

int shmdt (const void 'shmaddr) ; 345

int shmget (key-t key, size-t size, int of2ag) ; 344

sigfunc-rt *signal-rt (int sipo, Sigf unc-rt *func) ; 105

int sigwait (const sigset-t *set, int *sig) ; 95

int start-tims(v0id) ; 470

double stop-tims(void); - 470

int mrc-dg-enablecache (SVCXPRT *xprt , unsigned long size) ; 422

int touch (void *vptr, int nbytes) ; 470

void tv-sub (s truct timeval *out, s truc t timeval *in) ; 471

Structure Definitions
accepted-reply
authsysjarms

call-body

d-desc
door-arg-t
door-cred-t
door-desc-t
door-info-t

flock

ipcqerm

mismatch-info
mcattr
msgbu f
msgqerm

msqid-ds

opaque-au th

rejected-reply
replybody

rpc-msg

sem
sembuf
semid-ds
semqerrn
semun
shmid-ds
s-errn
sigaction
sigeven t
siginfo-t
sigval
Stat
svc-req

