

GTK+
PROGRAMMING

IN (

Another quality scan by

Kremilek and Vochomurka

ISBN 0-13-014264-6

9 780130 142641

90000

I

EditoriallProduction SupervlSlon: Argosy
AcqUlsltJons Editor: Gregory Doench
Editonal Assistant: Brandt Kenna
Marketmg Manager: Debby vanDijk
Cover Design Director: Jerry Votta
Cover Designer: Talar Agasyan-Boorujy
Art Director: Gail Cocker-Bogusz
Project Coordinator: Anne R Garcia
Manufacturing Manager: Alexis Heydt-Long

© 2002 Prentice Hall PTR

Prentice-Hall, Inc,

Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any fonn or by any means, without pennission in
writing from the author and publisher.

The publisher offers discounts on this book when ordered 10 bulk quantitJes. For more infonnation contact:
Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458. Phone: 800-382-3419;
FAX: 201-236-7141; E-m?il: corpsaleS@prenhall.com

Names such as company names, trade names, font names, service names, and product names appearing in this
book may be registered or unregistered trademarks or service marks, whether or not identified as such. All such
names and all registered and unregistered trademarks, service marks, and logos appearing in the book or on its
cover are used for identification purposes only and are the property of their respective owners.

Printed in the United States of America

10 9 8 7 6 5 4 3 2

ISBN 0-13-014264-6

Pearson Education Ltd
Pearson Education Australia PTY, Ltd
Pearson Education Singapore, P te Ltd
Pearson Education North Asia Ltd
Pearson Education Canada, Ltd
Pearson Educaci6n de Mexico, S A de C V
Pearson Education -- Japan
Pearson Education Malaysia, P te Ltd
Pearson Education, Upper Saddle River, New Jersey

GTK+
PROGRAMMING

IN (

SYD LOGAN

•
Prentice Hall PTR

Upper Saddle River, New Jersey 07458
www.phptr.com

Library of Congress Cataloging. in· Publication Data

Logan, Syd.
Gtk+ programming in C / by Syd Logan.

p. cm.
ISBN 0·13·014264·6 (pbk.)

1. C (Computer programming language) 2. GTK+. 3. Graphical user interfaces (Computer systems)
1. Title.

QA76.73.C15 L63 2001
005.2' 84··dc21 2001032173

TABLE OF (ONTENTS

I N T RO D V (T I O N . XX I X

(H A P T E R 1

G T K+ I N (O N T E XT . 1

The X Window System . 1

Architecture of X . 2

The X Protocol .. 2
The X Server . 3
The Client (Xlib) . 4

Toolkits . 4

Window Managers . 6

Desktop Environments . 7

CDE . 8
GNOME . 8
KDE . 9

Summary . 9

(H A P T E R 2

H E L LO G T K+! . 1 1

Beginnings .. 11

A Simple Example: Hello Gtk+! . 12

Adding Interactive Features to a

Console Application . 1 3

A Paradigm Shift . 14

Understanding the Gtk+ Hello World Sample . 16

Building the Sample Client . 22

v

vi Table of Contents

Debugging the Sample Client . 23

Application Startup, Termination, and Main Loop Functions 26

Application Startup . 26
Modules . 28
Debug Arguments . 29

Compile Time . 29
Runtime . 30

Application Termination . 32
Gtk+ Main Loop Functions . 33

Terminating the Main Loop . 33
Controlling the Main Loop . 33
Checking for Pending Events . 34
lnit and Quit Functions . 34
Destroying Objects When a Main Loop Exits 36

Timeouts and Idle Processing . 36
Adding a Timeout . 37
Removing a Timeout . 37
Timeout Example . 3 8
Timeout Precision . 3 8

Idle Functions . 3 9
Adding an Idle Function . 3 9
Idle Function Priorities . 40
Destroying Idle Functions . 4 1

Snooping Key Presses . 4 1
Summary . 45

(H A P T E R 3

S I G N AL. S, EV E N TS, O BJ E (TS, A N D TY P E S 47

Signals . 47

An Example: GtkButton Signals . 47
Handling Signals . 48

Client Callback Data Example . 49
Events . 5 1

Event Callback Function Prototypes . 52
Event Types 57

GdkEventExpose . 59
GdkEventNoExpose . 59
GdkEventVisibility . 60
GdkEventMotion . 60
GdkEventButton . 62
GdkEventKey . 63
GdkEventCrossing . 64
GdkEventFocus . 65
GdkEventConfigure 66
GdkEventProperty . 66

Table of Contents vii

GdkEventSelection . 67
Selection Protocol . 68

GdkEventClient . 70
GdkEventAny . 7 1

Signal and Event APIs . 7 1
Signal Lookup 72

Emitting Signals . 74
Emitting Signals-An Example . 75
Analysis of the Sample . 77

Controlling Signals . 78
Objects . 82

Button Widgets as Objects . 83
Object API . 86
Object Attributes . . 89
Getting and Setting Object Attributes . 94
Associating Client Data with an Object or Widget . 97

When to Use Client Data . 99
Types . 1 0 1

Summary . 1 03

C H A P T E R 4

W I D G E TS . 1 0 5

Why Widgets? . 1 05

Simplifying User Interface Development . 1 06
API Simplification. 1 06
Abstraction . 1 06

Simplification for Users . 1 08
GtkWidget . 1 08

Class Name . 1 08
Parent Class Name . 1 08
Macros . 1 08
Miscellaneous Macros 1 09
Signal Function Prototypes . . 1 1 3
Supported Arguments .. 118
Application-Level API Synopsis . 1 1 9
Class Description . 1 25

Widget Creation . 1 25
Widget Reference Counts . 1 27
Destroying Widgets . 1 28
Manipulating Widget Arguments .. 130
Realizing, Mapping, and Drawing Widgets 1 3 1
Showing Widgets . 1 35
Hiding Widgets . 1 36
Accelerators and Mnemonics . 1 3 8
Accelerator Groups . 1 39
Event-Related Functions . 1 42
Activating a Widget . 1 44

Vlll Table of Contents

Reparenting a Widget . 1 44
Showing a Widget at a Specific Location . 1 45
Computing the Intersection of a Widget and an Area 1 45
Grabbing Focus . 145
Specifying Widget Sensitivity . 1 46
Setting the Position and Size of a Widget . 1 47
Top-Level and Ancestor Widgets , and Transient Windows 1 47
Querying the Pointer Position . 148
Colormap and Visual Functions . 1 49
Styles . 1 5 3
Gtk+ Style System Details . 1 54
Stacking Styles, Visuals, and Colormaps . 1 59
Style, Colormap, and Visual Defaults . 1 6 1

Summary . 1 63

(H A P T E R 5

LA B E LS A N D B VTTO N S . 1 6 5

Controls and Containers . 1 65

GtkLabel . 1 66
Class Name . 1 66
Parent Class Name . 1 66
Macros . 1 66
Supported Arguments . 1 66
Application-Level API Synopsis . 1 67
Class Description . 1 68

Creating a Label Widget . 1 6 8
Setting and Retrieving Label Text . 1 68
Label Attributes . 1 69
Placing Underscores in the Label . 1 72

Buttons . 1 7 3

GtkButton . 1 75
Class Name . 1 75
Parent Class Name . 1 75
Macros . 1 75
Signal Function Prototypes . 1 75
Supported Arguments . 1 76
Application-Level API Synopsis . 1 76
Class Description . 1 77

Signals . 178
Creating a Button . 1 7 8
Changing the Label Text . 1 79
Generating Synthetic Events . 1 79
Relief Styles . 1 80

GtkToggleButton . 1 8 1
Class Name . 1 8 1
Parent Class Name . 1 8 1
Macros . 1 8 1
Signal Function Prototypes . 1 8 1
Supported Arguments . 1 8 1
Application-Level API Synopsis . 182

Table of Contents IX

Class Description . 1 82
Signals . 1 84
Creating Toggle Buttons . 184
Getting and Setting the State of a Toggle Button 1 84
Miscellaneous Functions . 1 86

GtkCheckButton . 1 87
Class Name . 1 87
Parent Class Name . 1 87
Macros . 1 87
Application-Level API Synopsis . . . 1 87
Class Description . 1 87

Creating a Check Button . 188
GtkRadioButton . 188

Class Name . 1 88
Parent Class Name . 1 8 8
Macros . 1 8 8
Supported Arguments . 1 89
Application-Level API Synopsis . 1 89
Class Description . 1 90

Creating a Radio-Button Widget . 1 90
Summary . 1 93

C H A P T E R 6

L I STS . 1 9 5

GtkList . 1 96
Class Name . 1 96
Parent Class Name . 1 96
Macros . 1 96
Signal Function Prototypes . . 1 97
Application-Level API Synopsis . 1 97
Class Description . 1 98

Selection Modes . 1 99
Creating a List . 20 1
Setting the Selection Mode . 20 1
Adding Items to the List . 20 1
Displaying Arbitrary Widget Content in a List 203
Removing Items from a List . 205
Locating an Item in a List . 206
Selecting and Unselecting Items in a List . 206

GtkCList . 208
Class Name . 208
Parent Class Name . 208
Macros . 208
Signal Function Prototypes . . 209
Supported Arguments . 2 1 1
Application-Level API Synopsis . 2 1 1
Class Description . 2 1 8

A Sample . 2 1 8
Creating a Clist Widget . 2 1 9
Adding and Removing Content from a Clist 220
Getting and Setting Row Data . 22 1
Displaying Pixmaps . 222

x Table of Contents

GDK Pixmaps . 222
GtkCList Pixmap Functions . 226

Setting the Shadow Type. 227
Selection Modes . 228
Button Actions . 228
Making a Clist Reorderable . 229
Freezing and Thawing a Clist . 230
Column API. 230
Row and Cell API . 236

Cell Styles . 237
Associating Client Data with a Row . 24 1
Selection Functions . 245
Moving and Sorting Rows . 247

Scrollbars . 254
Summary . 260

(H A PT E R 7

W I N D OW S A N D D I A LO G S . 2 6 1

GtkWindow . 262
Class Name . 262
Parent Class Name . 262
Macros . 262
Supported Signals . 262
Signal Function Prototypes . . 262
Supported Arguments . 262
Application-Level API Synopsis . 263
Class Description . 264

Creating a Window Widget . 264
Window Types . 265
Setting the Window Title . 266
Setting the Window Position . 267
Setting the Class of the Window . 268
Setting Policy Hints . 268
Making a Window Transient . 269
Setting Geometry Hints . 270
Setting the Default Size of a Window . 273
Modal Windows . 273
Window Focus . 274
The Focus Widget . 275
Default Widgets . 275

GtkDialog . 279
Class Name . 279
Parent Class Name . 279
Macros . 279
Application-Level API Synopsis . 280
Class Description . 280

Creating a Dialog . 28 1
Dialog Sizing . 282

Table of Contents xi

GtkFileSelection . 284
Class Name . 284
Parent Class Name . 284
Macros . 284
Application-Level API Synopsis . 284
Class Description . 285

Creating an Instance of GtkFileSelection . 287
Modifying the File-Selection Widget . 288
Showing and Hiding the Fileop Buttons . 289
Responding to OK and Cancel Buttons . 290
Adding Arbitrary Widget Content to a File-Selection Widget 292

GtkFontSelection . 293
Class Name . 293
Parent Class Name . 293
Macros . 294
Application-Level API Synopsis . 294
Class Description . 295

Font-Selection Widget User Interface . 295
Creating a Font-Selection Widget . 298
Modifying the Font-Selection Widget . 298

Setting The Filter . 298
Setting and Retrieving the Preview Text 303
Initializing the Font Name . 304
Retrieving the Font Selected by the User 304

GtkFontSelectionDialog . 305
Class Name . 305
Parent Class Name . 305
Macros . 305
Application-Level API Synopsis . 305
Class Description . 306

Creating an Instance of GtkFontSelectionDialog 308
GtkColorSelectionDialog . 309

Class Name . 309
Parent Class Name . 309
Macros . 309
Application-Level API Synopsis . 309
Class Description . 309

Creating a Color-Selection Dialog . 3 10
Example . 3 10

GtkCoiorSe1ection . 313
Class Name . 313
Parent Class Name . 3 1 3
Macros . 3 13
Supported Signals . 3 1 4
Signal Function Prototypes . . 3 1 4
Supported Arguments . 3 1 4
Application-Level API Synopsis . 3 1 4
Class Description . 3 1 5

Creating a Color-Selection Widget . 3 15
Color-Selection Widget Attributes . 3 1 5
What Is Opacity? .. 3 J 6
Setting and Retrieving Colors . 3 17

Summary . 3 17

xiI Table of Contents

(H A P T E R 8

S E P A RATO R S, A R ROWS, I MAG E S, P I XMA P S,

A N D E N T RY W I D G E T S . 3 1 9

Separators . 3 1 9

GtkSeparator . 32 1
Class Name . 32 1
Parent Class Name . 32 1
Macros . 32 1
Application-Level API Synopsis . 32 1
Class Description . 32 1

GtkHSeparator . 322
Class Name . 322
Parent Class Name . 322
Macros . 322
Application-Level API Synopsis . 322
Class Description . 322

GtkVSeparator . 325
Class Name . 325
Parent Class Name . 325
Macros . 326
Application-Level API Synopsis . 326
Class Description . 326

GtkArrow . 328
Class Name . 328
Parent Class Name . 328
Macros . 328
Supported Arguments . 328
Application-Level API Synopsis . 329
Class Description . 329

Arrow and Shadow Types . 329
Creating an Arrow Widget . 330
Setting Arrow Attributes . 330

Images and Pixmaps . 33 1

GtkPixmap . 332
Class Name . 332
Parent Class Name . 332
Macros . 332
Application-Level API Synopsis . 332
Class Description . 333

Creating a Pixmap Widget . 333
Setting and Getting the Pixmap Data . 333
GtkPixmap Example . 333
Insensitive Pixmaps . 335

GtkImage . 337
Class Name . 337
Parent Class Name . 337
Macros . 337
Application-Level API Synopsis . 337
Class Description . 338

Imaging in GDK . 338
An Example Us ing l ibtiff . 339
Creating an Image with GDK . 34 1

Table of Contents XIll

Setting the Image Data . 34 1
Reading a Pixel Value from an Image . 343
Destroying an Image . 344

Retrieving Image Data from a Window . 344
Creating the GtkImage Widget . 344
Modifying the Image . 347
Retrieving the Image Data and Clip Mask . 347

GtkEntry . 348
Class Name . 348
Parent Class Name . 348
Macros . 348
Supported Arguments . 348
Application-Level API Synopsis . 349
Class Description . 350

Creating an Entry Widget . 350
Setting and Getting the Value of the Text Buffer 350
Changing the Attributes of an Entry Widget 35 1
Changing the Editable Attribute of an Edit Widget 352
Setting the Position of the Caret . 352
Simplifying Entry Widget Creation . 3 5 3
Selecting Text . 3 5 3

Summary . 354

C H A PT E R 9

M E N V S . 3 5 5

GtkltemFactory . 357
Class Name . 357
Parent Class Name . 357
Macros . 357
Application-Level API Synopsis . 357
Class Description . 359

Creating an Item Factory . 362
Menus . 362
Menu Items . 363
Check Menu Items . 363
Radio Menu Items . 364
Separators 364
Tearoff Menus . 365

Creating the Application Menu Bar and Menus 365
Creating the Item Factory . 365
Adding Menu Items to the Item Factory 366
Retrieving the Item Factory Widget . 366

Retrieving the Widget Corresponding to an Item in the Menu 367
Retrieving an Item Factory and Path from a Widget 367
Retrieving Widgets Based on Action . 368
Deleting Items from an Item Factory .. 368
Pop-up Menus . 369

Pop-up Data . 37 1
Using Pop-up Menu Data . 372

Option Menus . 375
Translating Menu Paths . 377

XIV Table of Contents

GtkMenuBar . 378
Class Name . 378
Parent Class Name . 378
Macros . 378
Supported Arguments . 378
Application-Level API Synopsis . 378
Class Description . 379

Creating a Menu Bar . 379
Adding Menu Items to the Menu Bar . 379
Setting the Shadow Type . 380

GtkMenuItem . 3 8 1
Class Name . 3 8 1
Parent Class Name . 3 8 1
Macros . 3 8 1
Supported Signals . 3 8 1
Signal Function Prototypes . 3 8 1
Application-Level API Synopsis . 3 8 1
Class Description . 382

Creating a Menu Item . 383
Submenus . 383
Right-Justifying Menu Items . 384
Selecting and Unselecting Menu Items . 3 84
An Example . 385

Creating the Menu Bar and Attaching the Accelerator Group 387
Creating the Menus . 387
Adding Menu Items . 388
Associating the Menu with Its Menu Item 3 89

Check Menu Items and Radio Menu Items . 389

GtkCheckMenuItem . 390
Class Name . 390
Parent Class Name . 390
Macros . 390
Supported Signals . 390
S ignal Function Prototypes . . 390
Application-Level API Synopsis . 390
Class Description . 39 1

Creating Check Menu Items . 392
U sing Check Menu Items . 392
Setting the State of a Check Menu Item . 393

GtkRadioMenultem . 395
Class Name . 395
Parent Class Name . 395
Macros . 395
Application-Level API Synopsis . 395
Class Description . 396

Creating a Radio Menu Item . 396
Retrieving a Radio Button' s Radio Group . 396
An Example . 397
Setting the Radio Group of a Radio Menu Item 398

GtkTearoffMenuItem . 399
Class Name . 399
Parent Class Name . 399
Macros . 399
Application-Level API Synopsis . 399

Table of Contents xv

Class Description . 399
U sing a Tearoff Menu . 400
Creating a Tearoff Menu . 400

GtkMenu . 401
Class Name . 40 I
Parent Class Name . 40 1
Macros . 40 1
Application-Level API Synopsis . 401
Class Description . 402

Creating a Menu . 402
Adding Menu Items . 402
Popping Up a Menu . 403
An Example . 403
Popping Down a Pop-up Menu . 407
Getting and Setting the Active Menu Item in a Menu 407
Accelerator Groups . 408

GtkOptionMenu . 409
Class Name . 409
Parent Class Name . 409
Macros . 409
Application-Level API Synopsis . 409
Class Description . 4 1 0

Creating an Option Menu . 410
Setting and Getting the Menu . 410
Initializing the Option Menu Selection . 414

Summary . 415

C H A P T E R 1 0

CO N TA I N E R A N D B I N C LA S S E S 41 7

GtkContainer . 4 1 8
Class Name . 4 1 8
Parent Class Name . 4 1 8
Macros . 418
Supported Signals . 4 1 9
Signal Function Prototypes . 419
Supported Arguments . 420
Application-Level API Synopsis . 420
Class Description . 421

Setting the Border Widget of a Container . 421
Adding and Removing Children . 42 1
Iterating a Container' s Children . 423
Retrieving a List of a Container' s Children 424
Changing Focus . 425

GtkFixed . 425
Class Name . 425
Parent Class Name . 425
Macros . 425
Application-Level API Synopsis . 426
Class Description . 426

Creating an Instance of GtkFixed . 426
Adding a Child Widget . 427

xvi Table of Contents

Moving a Child Widget . 427
An Example . 427

GtkBox . 429
Class Name . 429
Parent Class Name . 430
Macros . 430
Supported Arguments . 430
Application-Level API Synopsis . 430
Class Description . 43 1

Box Creation . 432
Box Placement. 432
Box Nesting . 432
Widget Placement . 432
Packing Options . 432
Homogeneous, Spacing, Expand, Fill, and Padding Attributes 438

Homogeneous . 439
Spacing . 439
Expand . 439
Fill . 439
Padding . 439

Packing Boxes . 439
Making a Box Homogeneous . 44 1
Setting the Spacing . 44 1
Repositioning Children . 44 1
Setting and Getting Packing Attributes . 442

GtkVBox . 443
Class Name . 443
Parent Class Name . 443
Macros . 443
Application-Level API Synopsis . 443
Class Description . 444

GtkHBox. 444
Class Name . 444
Parent Class Name . 444
Macros . 444
Application-Level API Synopsis . 445
Class Description . 445

GtkButtonBox . 445
Class Name . 445
Parent Class Name . 446
Macros . 446
Application-Level API Synopsis . 446
Class Description . 447

Setting and Getting the Layout Style . 448
Setting and Getting the Default Child Size . 450
Getting and Setting the Current Child Size Minimums 45 1
Setting and Getting the Child Internal Padding Values 45 1
Setting and Getting the Interchild Spacing . 452

GtkVButtonBox . 453
Class Name . 453
Parent Class Name . 453
Macros . 45 3
Application-Level API Synopsis . 453

Table of Contents x vii

Class Description . 454
Creating a Vertical Button Box . 454
Getting and Setting the Interchild Spacing . 454
Setting and Getting the Layout Style . 454

GtkHButtonBox . 455
Class Name . 455
Parent Class Name . 455
Macros . 455
Application-Level API Synopsis . 455
Class Description . 456

Creating a Horizontal Button Box . 456
Getting and Setting Interchild Spacing . 456
Getting and Setting the Default Layout Style 456

GtkNotebook . 457
Class Name . 457
Parent Class Name . 457
Macros . 457
Supported Signals . 457
Signal Function Prototypes . 457
Supported Arguments . 457
Application-Level API Synopsis . 458
Class Description . 46 1

Creating an Instance of GtkNotebook . 464
Creating and Adding Pages . 464
Creating and Adding Pages to a Notebook: An Example 465
Implementing a Pop-up menu . 467
Removing a Page from a Notebook . 47 1
Reordering the Notebook Pages . 47 1
Page Functions . 472
Traversing Pages . 472
Preference Functions . 473
Analysis of Listing 1 0.4 . 477
Setting the Orientation of the Tabs . 479
Scrollable Tabs . 479
Miscellaneous Tab Attributes . 479
Tab Labels . 480
Pop-up Menu Functions . 48 1
Tab Label Packing Functions . 482

Summary . 484

C H A PT E R 1 1

M O R E CO N TA I N E R C LA S S E S . 4 8 5

GtkPaned . 486
Class Name . 486
Parent Class Name . 486
Macros . 486
Application-Level API Synopsis . 486
Class Description . 487

Creating an Instance of GtkPaned . 489
Adding Children with Default Resize and Shrink Attributes 490
Controlling the Resize and Shrink Attributes 490
Miscellaneous Functions . 491

XVlll Table of Contents

GtkVPaned . 492
Class Name . 492
Parent Class Name . 492
Macros . 493
Application-Level API Synopsis . 493
Class Description . 493

GtkHPaned . 494
Class Name . 494
Parent Class Name . 494
Macros . 494
Application-Level API Synopsis . 494
Class Description . 494

GtkPacker . 495
Class Name . 495
Parent Class Name . 495
Macros . 495
Supported Arguments . 495
Application-Level API Synopsis . 496
Class Description . 498

Creating a Packer Widget . 498
Adding Children to a Packer . 498
Examples . 500
Nesting Packers . 503
Fill X and Fill Y . 505
Expand Option. 509
Anchoring . 5 1 0
Border Width and Padding . 5 1 1
Reordering Children . 5 1 3

GtkFrame . 5 1 5
Class Name . 5 1 5
Parent Class Name . 5 1 5
Macros . 5 1 6
Supported Arguments . 5 1 6
Application-Level API Synopsis . 5 1 6
Class Description . 5 1 7

Creating a Frame Widget . 5 1 7
An Example . 5 1 7
Setting the Frame Label . . . 5 1 9
Setting the Alignment of the Label . 5 1 9
Setting the Shadow Type of the Frame . 520

GtkAspectFrame . 520
Class Name . 520
Parent Class Name . 520
Macros . 520
Supported Arguments . 520
Application-Level API Synopsis . 5 2 1
Class Description . 52 1

Creating an Aspect Frame Widget . 522
Setting the Aspect Frame Attributes . 522

GtkTable . 525
Class Name . 525
Parent Class Name . 525
Macros . 526
Supported Arguments . 526
Application-Level API Synopsis . 527
Class Description . 528

Table of Contents XIX

Cell Attributes . 529
Cell Coordinates and Adding Children . 529
Creating a Table Widget . 5 3 1
Resizing the Table . 5 3 1
Changing the Homogeneous Setting . 5 3 1
Adding Cells to a Table . 532
Adding a Table Cell with Defaults . 5 3 2
Setting Row and Column Spacings . 5 3 3
A n Example : Tic-Tac-Toe Board . 5 3 3

GtkToolbar . 539
Class Name . 539
Parent Class Name . 539
Macros . 539
Supported Signals . 5 3 9
Signal Function Prototypes . 539
Application-Level API Synopsis . 540
Class Description . 542

Creating a Toolbar . 543
Adding Toolbar Children . 543
An Example . 544
Button Spacings . 547
Adding Children of Arbitrary Type 548
Convenience Functions . 552
Setting the Toolbar Orientation . 553
Setting the Toolbar Style . 553
Enabling and Disabling Tooltips . 553
Setting and Getting the Button Relief Attribute 554

GtkHandleBox . 555
Class Name . 555
Parent Class Name . 555
Macros . 555
Supported Signals . 555
Application-Level API Synopsis . 555
Class Description . 556

Creating a Handle-Box Widget . 557
Setting the Shadow Type . 558
Setting the Handle Location . 558
Setting the Snap Edge . 558

GtkEventBox . 559
Class Name . 559
Parent Class Name . 559
Macros . 559
Application-Level API Synopsis . 560
Class Description . 560

Creating an Event Box Widget . 564
GtkScrolledWindow . 565

Class Name . 565
Parent Class Name . 565
Macros . 565
Supported Arguments . 565
Application-Level API Synopsis . 566
Class Description . 567

Creating a Scrolled Window . 567
Adding a Child to a Scrolled Window . 568
Setting and Getting the Horizontal and Vertical Adjustment Objects 568
Overriding the Default Adjustment Objects : An Example 568

xx Table of Contents

Setting the Scrolling Policy . 573
Controlling Scrollbar Placement . 574

GtkLayout . 575
Class Name . 575
Parent Class Name . 575
Macros . 575
Application-Level API Synopsis . 575
Class Description . 576

Creating a Layout Widget . 577
Adding a Child Widget . 577
Repositioning a Child Widget . 577
Setting the S ize of the Layout Virtual Area 577
Adjustments . 578
Handling Expose Events . 579
Setting and Getting the Layout Adjustment Objects 583
Layout Widgets : A Final Example . 583

Summary . 586

(H A P T E R 1 2

T R E E S . 5 8 7

Why Use Trees? . 5 87

Using GtkTree and GtkTreeltem . 590
An Example . 5 9 1

GtkTree . 599
Class Name . 599
Parent Class Name . 599
Macros . 599
Miscellaneous Macros . 599
Supported S ignals . 599
S ignal Function Prototypes . . 600
Application-Level API Synopsis . 600
Class Description . 60 1

Creating an Instance of GtkTree . 60 1
Adding Items . 602
Removing Items from a Tree . 603
Removing Items Based on Position . 605
Selecting Items . 605
View Modes 608

GtkTreeltem . . 609
Class Name . 609
Parent Class Name . 609
Macros . 609
Supported Signals . 609
Signal Function Prototypes . 6 1 0
Application-Level API Synopsis . 6 1 0
Class Description . 6 1 1

Creating a Tree Item Widget . 6 1 1
Subtrees . 6 1 7

Table of Contents xxi

Tree Operations . 6 1 7
Selecting and Deselecting Tree Items 6 1 7
Expanding and Collapsing Tree Items 6 1 8

GtkCTree . 6 1 9
Class Name . 6 1 9
Parent Class Name . 6 1 9
Macros . 6 1 9
Supported Signals . 6 1 9
Signal Function Prototypes . 620
Supported Arguments . 620
Application-Level API Synopsis . 62 1
Class Description . 627

A First Example 628
Creating a GtkCTree Instance . 63 1
Inserting Nodes . 632
Analyzing the Sample Code . 633
A Second Example . 635
Displaying the Contents of a Directory . 637
Removing Nodes from a Tree . 640
Setting the Indentation . 640
Setting the Spacing . 64 1
Setting the Line Style of a CTree . 64 1
Setting the Expander Style . 642
Sorting Functions 643
Recursive Functions . 644

Passing Client Data to a Traversal Function 645
Querying Tree and Node Attributes . 648
Attaching and Retrieving Client Data . 649
Searching for Nodes Based on Client Data . 649
Performing Custom Searches . 652
Moving, Expanding, Collapsing, and Selecting Rows 652

Moving a Node . 652
Expanding a Node . 653
Collapsing a Node . 653
Retrieving the State of a Node . 654
Recursively Expanding and Collapsing Nodes 654
U sing the Keyboard to Collapse and Expand a Tree 654

Selecting and Unselecting Nodes . 655
Miscellaneous Functions . 656

Checking Whether a Coordinate Is in the Expander Box 656
Setting and Getting the Text Displayed in a Column 656
Setting and Getting Pixmap Data . 657
Retrieving and Modifying Node Attributes 659
Setting a Column Offset . 660
Getting and Setting the Selectable Attribute of a Node 660
Determining the Type of a Cell . 660
Setting and Getting Style Objects . 66 1
Setting Foreground and Background Colors 662
Determining Whether a Node Is Visible 663
Scrolling a CTree to Make a Specific Node Visible 663

Summary . 663

XXll Table of Contents

(H A P T E R 1 3

RA N G E W I D G E TS A N D A DJ V S TM E N T O BJ E (T S 6 6 5

Scale Widgets . 666

GtkHScale . 667
Class Name . 667
Parent Class Name . 667
Macros . 667
Supported Arguments . 667
Application-Level API Synopsis . 667
Class Description . 668

GtkVScale . 668
Class Name . 668
Parent Class Name . 668
Macros . 668
Supported Arguments . 669
Application-Level API Synopsis . 669
Class Description . 669

GtkScale . 669
Class Name . 669
Parent Class Name . 670
Macros . 670
Supported Arguments . 670
Application-Level API Synopsis . 670
Class Description . 67 1

Setting the Number of Significant Digits . 67 1
Showing and Hiding the Scale Value . 67 1
Setting the Value Label Position . 67 1
Miscellaneous Scale Widget Functions . 672
An Example . 672

Scrollbars . 675
GtkHScrollbar . 676

Class Name . 676
Parent Class Name . 676
Macros . 676
Application-Level API Synopsis . 676
Class Description . 677

GtkVScrollbar . 677
Class Name . 677
Parent Class Name . 677
Macros . 677
Application-Level API Synopsis . 678
Class Description . 678

GtkScrollbar . 678
Class Name . 678
Parent Class Name . 678
Macros . 679
Application-Level API Synopsis . 679
Class Description . 679

Adjustment Objects . 679
Implementation of Adjustment Objects 680

GtkAdjustment . 682
Class Name . 682
Parent Class Name . 682

Table of Contents XXlll

Macros . 682
Supported Signals . 683
Signal Function Prototypes . . 683
Application-Level API Synopsis . 683
Class Description . 684

Creating an Adjustment Object . 684
Changing Adjustment Object Attributes . 684
Working with Adjustment Objects . 685

GtkRange . 690
Class Name . 690
Parent Class Name . 690
Macros . 690
Supported Arguments . 69 1
Application-Level API Synopsis . 69 1
Class Description . 69 1

Setting the Update Policy of a Range Widget 692
Setting the Range Widget Adjustment Object 692

Summary . 693

(H A P T E R 1 4

T E XT A N D S P I N B VTTO N W I D G E TS 6 9 5

GtkText . 695
Class Name . 695
Parent Class Name . 695
Macros . 696
Supported Arguments . 696
Application-Level API Synopsis . 696
Class Description . 697

Scrolling Text . 698
Creating a Text Widget . 698
Changing the Adjustment Objects . 699
Making a Text Widget Editable or Read-Only 699
Word Wrap . 699
Text Widget Buffer Manipulation . 700

The Insertion Point . 700
Setting and Getting the Insertion Point 700
Getting the Length of the Text Buffer 700
Inserting and Deleting Text . 70 I
Deleting Text . 702
Freezing and Thawing the Text Widget 703

Retrieving Text . 704
GtkSpinButton . 705

Class Name . 705
Parent Class Name . 705
Macros . 705
Supported Arguments . 705
Application-Level API Synopsis . 706
Class Description . 707

Keyboard and Mouse Events . 708
Creating a Spin Button Widget . 709
Understanding the Climb Rate . 7 1 0
Configuring the Spin Button Widget . 7 1 0

XXIV Table of Contents

Setting and Getting the Adjustment Object. 7 1 0
Setting the Number of Significant Digits

Displayed by a Spin Button . 7 1 1
Setting and Getting the Value of a Spin Button 7 1 1
Changing the Spin Button Update Policy . 7 1 2
Using Numeric Mode . 7 1 2
Setting the Value of a Spin Button . 7 1 3
Controlling the Wrapping of Values . 7 1 4
Setting the Shadow Type. 7 1 4
The Snap-to-Ticks Attribute . 7 1 4
Causing the Spin Button to Redraw . 7 1 5
An Example . 7 1 5
Analysis . 7 1 9

Handling Images . 7 1 9
Creating the Spin Button Controls . 720
Implementing the value_changed Signal Function 720
Implementing the Next and Previous Buttons 72 1
Implementing the Slide Show . 72 1

Summary . 723

C H A P T E R 1 5

M I S C E L LA N E O V S W I D G E T S . 7 2 5

GtkRuler . 726
Class Name . 726
Parent Class Name . 726
Macros . 726
Supported Arguments . 726
Application-Level API Synopsis . 726
Class Description . 727

Setting the Ruler Metric . 727
Setting the Range of a Ruler . 728
Tracking Mouse Movement . 730
Sample Code . 73 1

GtkHRuler . 732
Class Name . 732
Parent Class Name . 732
Macros . 732
Application-Level API Synopsis . 732
Class Description . 732

GtkPreview . 733
Class Name . 733
Parent Class Name . 733
Macros . 733
Supported Arguments . 733
Application-Level API Synopsis . 733
Class Description . 734

Creating a Preview Widget . 737
Setting the Image Size . 738
Setting the Expand Attribute . 738
Setting the Image Data . 739
Drawing the Image Data . 740
Miscellaneous GtkPreview Functions . 741

Table of Contents xxv

Setting the Dither Preference . 74 1
Setting the Gamma . 742
Retrieving Global Information About Preview Widgets 742

GtkProgress . 743
Class Name . 743
Parent Class Name . 743
Macros . 743
Supported Arguments . 743
Application-Level API Synopsis . 744
Class Description . 745

Initialization . 746
Text . 747
Value and Percentage . 749
Activity Mode . 749

GtkProgressBar . 750
Class Name . 750
Parent Class Name . 750
Macros . 750
Supported Arguments . 750
Application-Level API Synopsis . 75 1
Class Description . 752

Creating Progress Bar Widgets . 753
Setting the Progress Bar Style . 753
Controlling the Speed of an Activity Progress B ar 754
Setting the Bar Size of an Activity Progress B ar 754
Setting the Progress Bar Orientation . 755
Sample Program . 755

GtkTooltips . 7 6 1
Class Name . 76 1
Parent Class Name . 76 1
Macros . 762
Application-Level API Synopsis . 762
Class Description . 762

Using Tooltips . 763
Displaying Context-Sensitive Help . 763
Display Application Data . 764

Tooltips Widgets . 764
Creating a Tooltips Widget . 764
Setting the Widget-to-Tooltip Mapping . 764
Enabling and Disabling Tooltips . 765
Setting the Tooltips Delay . 765
Changing the Foreground and Background Colors 766

GtkTipsQuery . 766
Class Name . 766
Parent Class Name . 766
Macros . 766
Supported Arguments . 766
Application-Level API Synopsis . 767
Class Description . 767

Creating an Instance of GtkTipsQuery . 768
The widgecselected Signal . 768
Handling the widgecentered S ignal . 769
Placing a Widget into Query Mode . 770
An Example Using GtkTipsQuery . 770
Leaving Query Mode . . 772
Setting the Text Displayed by Widgets Without Tooltips 772

XXVI Table of Contents

GtkCombo . 773
Class Name . 773
Parent Class Name . 773
Macros . 773
Application-Level API Synopsis . 773
Class Description . 774

Creating a Combo Box Widget . 775
Setting the Combo Box Content . 775
An Example . 776
Enabling and Disabling Use of Arrow Keys 780
Forcing Users to Match the Pop-up List Contents

During Data Entry . 780
Disabling the Combo Widget Activate Function 78 1

GtkStatusbar . 78 1
Class Name . 78 1
Parent Class Name . 7 8 1
Macros . 78 1
Supported Signals . 782
Signal Function Prototypes . 782
Application-Level API Synopsis . 782
Class Description . 783

Creating a Statusbar Widget . 784
Pushing a Status Message onto the Stack . 785
Handl ing the texcpushed Signal . 785
Getting a Context ID . 786
Popping an Item from the Stack . 786
Substacks . 786
Handling the texCpopped Signal . 787
Removing an Arbitrary Item from the Stack 787
Final Thoughts . 787

GtkAccelLabel . 787
Class Name . 787
Parent Class Name . 788
Macros . 788
Supported Arguments . 788
Application-Level API Synopsis . 788
Class Description . 789

Creating an Accel Label Widget . 789
Retrieving the Width of an Accel Label Widget 789
Mapping an Accel Label Widget to the Widget It Supports 789

GtkDrawingArea . 790
Class Name . 790
Parent Class Name . 790
Macros . 790
Application-Level API Synopsis . 790
Class Description . 7 9 1

Creating a Drawing Area Widget . 79 1
Setting the Drawing Area Widget Size . 79 1
U sing the Drawing Area Widget . 792
Analysis . 797

GtkCalendar . 802
Class Name . 802
Parent Class Name . 802
Macros . 802
Supported Signals . 802
Signal Function Prototypes . 802

Table of Contents xxvii

Application-Level API Synopsis . 803
Class Description . 804

Creating a Calendar Widget . 805
Setting and Retrieving the Date Displayed by the Calendar 805
Marking Days . 806
Setting Display Options 807
Freezing and Thawing the Calendar Display 808
Example Program . 808

Summary. 8 1 1

A P P E N D I X

G T K+ 1 . 2 W I D G E T H I E RA R (H Y

I N D E X

8 1 3

. 8 1 7

I NTRO D V (T I O N

Gtk+ was originally developed by two University of California at Berkeley students,

Spencer Kimball and Peter Mattis . They had developed, as a part of a school project, an

image manipulation called The GNU Image Manipulation Program (The GIMP,

www.gimp.org). Originally it was written in Motif, but due to the (at the time) closed

source nature of Motif and, as a result, its scarcity on freely available open-source UNIX

platforms, they decided to come up with an open-source toolkit, inspired by Motif, to

which The GIMP could then be ported. The goal was not to develop a general-purpose
toolkit for the X Window System, although that is what Gtk+ has become. Hundreds if

not thousands of programs have been written using Gtk + to date, ensuring that Gtk + will

be around for some time to come. More information on the history of Gtk+ (and The

GIMP) can be found at www.gimp.orgl-sjburgeslgimp-history.html.

About Th is Book

This book covers the 1 .2 version of the GIMP Toolkit (Gtk+) and was written with

the following goals in mind:

• To provide a general introduction to programming applications with Gtk+ 1 .2

• To provide a detailed description of the Gtk + 1 .2 widget set

• To provide a quick reference to the Gtk+ 1 .2 widget set for those programmers

already familiar with Gtk +

For those of you looking for an introduction to Gtk+ programming, I suggest

reading Chapters 1 through 4 first, followed by Chapter 1 0, "Container and Bin

Classes." The first few chapters (Chapters 1 , 2 , and 3) describe the architecture of
Gtk+ and provide information needed to program and build a simple Gtk+ appli

cation. Most readers will want to skim through Chapter 4, "Widgets ," which

describes GtkWidget. GtkWidget is the parent class from which the remaining

widgets in the Gtk+ class hierarchy inherit much of their functionality. Container

widgets are used to organize the layout of other widgets in a window (or within
other containers) . The concept of container widgets is described in the first few

sections of Chapter 10 . The GtkBox widgets are by far the most versatile of the
container widgets implemented by Gtk+ 1 .2 and, as a result, are the most com-

xxix

xxx Introduction

monly used. GtkBox, GtkHBox, and GtkVBox are all described in Chapter 1 0 of

this book.

The remaining chapters provide detailed descriptions of the bulk of the widget

classes implemented in Gtk+ 1 .2. I have made every effort to describe in detail the

application-level programming interfaces exposed by the Gtk+ widget sets covered in

this book. I have included most of the code I wrote while investigating the Gtk + widget

set. In some cases, the source code consists of a full-size (although functionally lim

ited) application. In all other cases, I simply present short code snippets that help to

illustrate points made in the surrounding text. Complete source-code examples for the

book can be found on my Web site at www.cts.comlcrashlslsloganlgtkbook.html.

I have placed Gtk+ widget reference material directly in the main body of the text

(as opposed to placing it at the end of the book in an appendix). The reference material

provides function prototypes for each of the application-level functions that have been
exposed by the widgets described in the book and a one-line sentence describing the

purpose of each of these functions. In the reference section, I also enumerate all of the

object attributes that can be set and/or retrieved on the widget (see the "Object

Attributes" section in Chapter 3, "Signals, Events, Objects, and Types") . I also list the

signals that can be generated by the widget, if any. For each signal, I supply the func

tion prototype of the application-level signal handler invoked when the signal fires (see

the "Signals" section in Chapter 3). The reference material provides an introduction to

the widget for first -time programmers and can serve as a quick reference for program

mers who are already familiar with widgets. More information about the structure of

the reference section is spelled out in Chapter 4 (see the reference section for the Gtk

Widget widget) .

This book focuses on describing the Gtk + widget set. This book does not cover

the Gtk+ Drawing Kit (GDK), or the G Library (Glib), or widget writing in any

detail (except where unavoidable). For GDK and GLib, I refer you to one or both

of the following books : Developing Linux Applications with GTK + and GDK by

Eric Harlow and GTK +IGnome Application Development by Havoc Pennington.

You can also find reference material on these topics at www.gtk. org. I do plan to

provide an additional chapter on Gtk+ widget development on my Web site ; it

should be available shortly after this book goes to press . Hopefully, this material

will be included in a subsequent edition of this book.

Sou rce Code

I have placed source code throughout the book to provide illustrative examples of
the concepts discussed. In some cases, line numbers are prefixed to each line of

source code, like this :

0 1 4 s t a t i c void

0 1 5 C l i c kedC a l lbac k (GtkWidget *widget , GtkWidget * d i a l o g_window)

0 1 6 {
0 1 7 GtkWidget *wi ndow , * l ab e l F r ame , * l ab e 1 Te s t , * vbox ;

0 1 8
0 1 9 wi ndow = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 2 0 g t k_wi ndow-po s ition (GTK_WI NDOW (window) , GTK_WIN_POS_MOUSE) ;

0 2 1 gtk_widget_s et_ll s i z e (window , 3 2 0 , - 1) ;

Introduction XXXI

0 2 2 vbox = gtk_vbox_new (FALSE , 0) ;
0 2 3 gtk_container_add (GTK_CONTAINER (window) , vbox) ;

For code that is simple to read or relatively short (a few lines or so in length), I

will often omit the line numbers. Full (and, in some cases, incomplete but long)

listings of example code are prefixed with a listing number and title as follows :

Listing 1 . 1 GtkLabel Attribute S ample Code

0 0 1 #inc lude < g t k / gtk . h

0 0 2 #inc lude < s tdio . h>

0 0 3
0 0 4 static GtkWidget * l e ftButton , * r i ghtButton , * c e nterButton ;

0 0 5 static GtkWidget * trueButton , * f a l s eButton ;

0 0 6
0 0 7 static void

0 0 8 QuitC a l lbac k (GtkWidget *widget , GtkWidget * d i a l o g_window)

0 0 9 {
0 1 0 gtk_ma i n_qu it () ;

0 1 1 exit (0) ;

I plan to make the source code for this book available online. Please go to

www. users. cts. comlcrashlslsloganlgtkbook. html for further details .

Onward . . .

By purchasing this book, you have decided to develop an application for Linuxl

UNIX, and you have also decided to develop this application using Gtk +. In addition

to learning about Gtk+, you should take some time to learn more about the desktop

environment(s) within which users will be executing your application. If you are tar

geting GNOME-and some of you are-you should learn about developing for the

GNOME environment using the books and Internet resources available. This book

covers the Gtk+ toolkit, upon which all GNOME applications are based, but I do not

cover GNOME application development specifically within these covers.

Acknowledgments

I 'd like to thank several people for their help in the development of this book. First

of all, I 'd like to thank Greg Doench at Prentice Hall for taking the time to discuss

this project with me when it was just an idea, for consenting to read my proposal,
and for making this project possible. I'd also like to thank Jim Markham, also at

Prentice Hall, for guiding me through the bulk of the editorial work. Amy Lepore
applied her substantial copy editing skills to the manuscript, and somehow turned

my gibberish into something that hopefully appeals to software developers and

English teachers alike. Caroline Roop coordinated the copy edit process and helped

to shape the format of the book which you now hold in your hands. To my reviewers ,

Ariel Rios (GNOME project) and Rob Flynn (maintainer of GAIM), I extend my
thanks for a job well done. Any errors that may remain in the text are, of course, my

xxxii Introduction

responsibility alone. Joe Hewitt produced the nonscreenshot figures for this book,

and for this I am most thankful . I would like to thank the people who contributed

ideas and suggestions for the book, including Ramiro Estrugo (formerly of Eazel),

who pointed out the possibility of including reference material within the main body

of the text. Finally, I 'd like to thank the vast number of people who made Gtk+ and

GNOME possible. It is through efforts like theirs that desktop Linux is becoming a

reality for more and more users .

Each and every line of the original manuscript was written on a GNUlLinux system

using the VIM editor (an open-source vi clone that is available, usually by default, on

GNUlLinux systems and by download for Win32, Mac, and other platforms; see

www. vim. org). Screen shots were grabbed using The GIMP (www.gimp.org), a freely

available image-editing program that was, in fact, the first Gtk+ application ever writ

ten. Sample programs were also created in VIM, compiled using gee, and in some

cases, debugged with gdb. The gdb debugger was also used to inspect Gtk+ internals

during its execution in order to leam more about the operation of certain widgets.

During the review process, a Hypertext Markup Language (HTML) version of the

book was developed using the Gtk+-based Bluefish editor (http://bluefish.openof

fice.nll). The output from Bluefish, prior to being uploaded to reviewers, was proofed

using a development version of Netscape 6 (www.netscape. com). which in tum was

derived from the open-source browser Mozilla (www.mozilla.org). All of this work

was done, of course, on a GNUlLinux system.

(HAPTER

CTK+ IN (ONTEXT

Gtk + is a toolkit designed for use in the development of applications for the X Window System.

It is just a part of the overall picture, however. To fully appreciate Gtk+, you need to have a

basic understanding of the X Wmdow System. For those of you already familiar with the X

Window System and its components, feel free to skip to Chapter 2, "Hello Gtk +! ," where I pro

vide an overview of Gtk+.

The X Window System

The X Window System (called X, XI I , or sometimes X Windows) is a network-based, client

server user interface technology developed by the MIT X Consortium in the mid 1980s. The

architect of the X I I system was Robert Schiefler. He, along with a small team of developers

at MIT, formed the nucleus of what was known as the MIT X Consortium. Their job was to

oversee and guide the development of the X Window System and to develop and release a

sample implementation of the X server and the core client libraries (Xlib, Xt, and so forth) to

member companies of the consortium.
The member companies of the X Consortium each had a business interest in ensuring

that a vendor-neutral, interoperable user interface for the UNIX operating system flour

ished. These companies contributed source code to the sample implementation, created

products that were based on it, or did a little of both. I was very fortunate to work for one

of these member companies during this time. AGE Logic, founded in the late 1980s, ini

tially focused on taking the MIT sample implementation and using it to develop the soft

ware portion of several X terminals developed during this period of time. In the early 1990s,

an X terminal was the least expensive way to run X-based applications on a desktop. The
alternative was to dedicate a workstation (e.g., a Sun, HP, or RS/6000) to each user; such a

solution could easily decrease the bank account of a company given the cost of workstations
(tens of thousands of dollars) as well as increase the workload of system administrators.

The alternative, X terminals, cost one or two thousand dollars, were easier to maintain,
were much less expensive to own, and since X terminals could be optimized for running an

X server, often improved the overall performance of X-based applications because they
were able to execute X faster.

Once Microsoft Windows 3.0 became available, the industry focus shifted away from X

terminals toward PC-based X server software. This software allowed users to access X client
applications executing on workstations from their personal computer desktops and further

reduced the cost of accessing X-based applications.

1

2 Chapter 1 • Gtk+ in Context

All along, the major workstation vendors pumped large amounts of money and resources

into XII on both sides of the X Protocol pipe (client and server). When MS Windows 3.0

arrived, it was clearly seen as a threat to their market share. MS Windows was maturing,

PC-based systems were becoming more capable in terms of their performance, and graph

ical user interfaces (as opposed to command-line interfaces) were being demanded by more

and more end users, thus making UNIX a less attractive alternative. Efforts were made to

develop desktop environments such as CDE (discussed later in this chapter) in an attempt

to answer the threat. These efforts came up short, and as a result of this and other (perhaps

more influential) factors, MS Windows and MacOS dominated desktops during the 1 990s,

and they continue to do so today.

To those involved, the early to mid 1 990s were fertile times for the X Window System and

the industry it supported. Numerous products were on the market, there were magazines ded

icated specifically to X l 1 -based software development, and there were even yearly major

industry trade shows and developer conferences, such as Xhibition and X World, that attracted

dozens of vendors and hundred of attendees.

The X Consortium made its last major release, X 1 1R6, in 1994 and disbanded shortly

thereafter. Since then, energy has shifted from the X Consortium to a collaborative effort of

X.org (www.x.org), an organization of the Open Group, and XFree86 (www . .ifree86.org). This

shift has neatly coincided with an explosion in the availability of free UNIX-like operating

systems such as GNUlLinux, FreeBSD, and NetBSD, each of which is capable of executing

on consumer-level PC hardware. The X servers available today continue to expand on the

X 1 1 R6 sample implementation, perhaps most notably by providing extensive support for PC

based video drivers. The combination of freely available PC-based UNIX and X software has,

for the most part, made X terminals and PC-based X server software things of the past, and

desktop X is a reality for everyone who desires it, including home users. But the promise of

a Linux-based desktop has yet to be fully realized. Microsoft still dominates the end-user mar

ketplace, although a few open-source efforts show promise in advancing Linux on the desk
top. One of them, GNOME, has its roots in Gtk+, the topic of this book. I will have more to

say on this issue later in this chapter.

Architecture of X

Now that we know something about the history of the X Window System, let's take a look at

its architecture. X consists of three components: a client, a server, and the protocol that exists

between them. The following sections describe each in detail, starting with a look at the X
Protoco1.

The X Protocol

The X Protocol forms the basis of any X-based software system. It is an application-level pro
tocol that exists between the X server and X client applications, both of which are described

in the following sections. The protocol consists of requests, which are sent by the client to the
server, as well as events and errors, which are sent by the server to a client. A request initiates
an action to be performed by the X server. Examples include the creation of a window (Cre-

Architecture of X 3

ateWindow) and the drawing of a line (DrawLine). Events, sent by the server, tell the client

about state changes within the server, such as the pressing of a key or mouse button by the

user or the resizing of a window. Errors are sent by the server in response to invalid or unex
ecutable protocol requests sent by the client. For example, a BadDrawable error is sent by the

X server to the client if the client specifies an invalid window as part of a DrawLine protocol

request.
Two attributes of the X Protocol are worth mentioning. The first is that the protocol was

designed in such a way that the client and server can execute either on the same host or on

separate hosts connected by a network (usually communicating over the Transmission Con
trol Protocol/Intemet Protocol [TCPIIP]) . For PC UNIX users, most of the time, the client

and server are executing on the same machine. Certainly, the X server is always executing

on the desktop machine, be it PC UNIX or an X terminal. In some installations, a user may

need to telnet into a host on a remote system to execute a specific client; this might be the
case for commercial or custom software running on a proprietary UNIX system for which

the user has obtained a license to execute. To tell the client which X server to connect to,
the user specifies the IP address of the server on his desktop by setting his or her DISPLAY

variable, as in the following:

$ typeset -x DISPLAY= 1 5 6 . 2 7 . 6 0 . 4 : 0

This will cause the client running on the remote system to display its windows and to
draw its graphics on the X server running on the desktop machine with the IP address of

156.27.60.4. Mouse and keyboard events that occur on the machine running the X server

will be sent to the machine on which the client is executing.
The second attribute of fundamental interest is the lack of policy imposed by the X Pro

tocol on user interface look and feel. The X protocol was designed to support only the most

fundamental tasks required of a Graphical User Interface (GUI), such as the capability to

create a window, draw a line, and report keyboard presses and mouse button presses and

movement. How the user interface looks is outside the scope of the X Protocol. There is no

such thing as a menu, a list box, or a push button in X. All of these things are abstractions

provided by toolkits, and they are implemented by combining X Protocol requests in a way

that achieves the abstraction desired, as I will discuss later in this chapter. The end result is
rather remarkable. Because the protocol does not enforce a policy, X supports any policy

that a toolkit designer can dream up, provided it is consistent with the core architecture of
x. Hence, we see the prolific number of toolkits in existence today: Gtk+, XtlMotif,

XtlXaw, Qt, XView, and so on.

The X Server

An X server is the program that manages the screen and its input devices (usually a mouse

and keyboard). The X server always runs on the machine in front of which the user inter
acting with the application (or client) sits. Using TCPIIP, the client software connects to the
server and sends requests to it using the X Protocol. The X server, once it has been started,
listens for incoming TCPIIP client connections on a well-known port. Assume that a client

has connected to the server and that the client wants to create a window and draw a line
inside of it. To do so, the client sends a Create Window request to the server to create the

4 Chapter 1 • Gtk+ in Context

window. To draw a line in the window, the client then sends a DrawLine request to the X

server. More protocol requests than these are actually required for a real client to operate,

but hopefully you get the idea. Upon receiving a DrawLine request, the X server validates
the request, making sure that the window to which the line is to be drawn actually exists.

Then it either performs the request if valid or, if there was an error of some kind, sends an

error message back to the client. As another example, if the user moves the mouse, the X
server will respond by sending a MotionNotify event (if it was solicited) to the client to tell

it about the change made to the position of the mouse.

The Client (Xlib)

By now, I think I have adequately defined the role of the client in the X Window System.

To summarize, it connects to a server and then sends requests to the server to create win

dows, draw graphics, and perform other operations involving the user interface of a client.

The client also receives and responds to events sent from the X server to report any state

changes made by the user to the mouse, the keyboard, or other input devices supported by

the server and of interest to the client application.

One aspect of the client I have not mentioned is the interface library used by client devel
opers . With few exceptions, all client applications ultimately make calls to a library of func

tions known as Xlib. Xlib was developed by the X Consortium, dating back to the early

years of X. Xlib is a fairly simple Application Programming Interface (API), providing little

more than a layer above the X Protocol. To draw a line in a window, for example, you issue
a call to XDrawLineO. Arguments to XDrawLineO identify the server to which the request

should be sent, the window within which the line is to be drawn, and the endpoints of line.

Xlib applications are typically difficult to program because the level of abstraction is too

low; Xlib, as I described, does not provide controls like menus, buttons, or dialogs, which

are essential to modem GUI applications. Applications that need such features must either

program them themselves or use a toolkit. Programming these abstractions is not an option

because it is difficult, error prone, and inefficient. X applications, therefore, are for the most

part written using a toolkit.

Toolkits

A toolkit is code that forms an abstraction layer directly above Xlib. The toolkit we are

studying in this book is Gtk+. Toolkits provide two major benefits to application develop
ers. First, they abstract the X Protocol, providing meaningful objects with which applica

tions can be more easily developed. Implementing menus in Xlib is difficult because Xlib
does not support the notion of a menu. To implement a menu in Xlib, you would have to

write code that draws the menu as a series of windows containing text, appropriately posi
tioned on the user's desktop. Drawing the window is perhaps the easy part; responding to

mouse movement as it occurs over the menu items, popping up and down the menu, sup
porting accelerators, and so forth, could easily make the task more difficult than writing the

rest of the application. Similar arguments can be made for other user interface abstractions

Toolkits 5

such as buttons, scrollbars, lists, toolbars, and so forth. Instead of writing all this code your

self, you link: to a toolkit library and use the API it provides instead of Xlib.

The second benefit provided by the use of a toolkit is user interface consistency. Simply

put, if each and every application on a system were written using a single toolkit, the user,

in theory, could learn one application and then be instantly comfortable using other appli

cations. This is because the abstractions he or she encountered in the first application (but

tons, menus, scrollbars) would be the same in all other applications, making the second and

subsequent applications easier to learn and use. In practice, this is not always true. A toolkit

almost never enforces the labels used on dialog buttons; one application might label buttons

in a dialog "OK" and "Cancel" while another uses "Yes" and "No" or changes the order of

button placement. A "style guide" is one strategy that helps toolkit applications be more

consistent. Style guides define rules or suggestions for the design of menus, the placement

of buttons, and the behavior of dialogs, among other things. In practice, not all toolkits

define style guides, and when they are defined, not all programmers follow them. The other

strategy a toolkit can use to promote GUI consistency is to provide higher abstractions that

remove the ability of programmers to make choices. For example, to display a message to
a user, the toolkit might require an application to use a "message" widget. The "message"

widget would create the "OK" button that the user presses to dismiss the dialog, removing
from the programmer the choice of what label is displayed by that button. For the most part,

toolkits that have been developed for use in X-based clients do not specify style guidelines

and tend to not provide abstractions such as the "message" widget I just described. Motif

is one toolkit that has taken a multifaceted approach to the problem. The core set of widgets

provided in Motif gives the programmer the flexibility he or she may need as well as

abstractions that promote consistency among Motif applications, if used. Motif also has a

published style guide for use by application developers.

I've used the word "widget" often thus far, so perhaps it is time I defined it. Simply put,
a widget is the source code that implements a user interface abstraction. In Gtk+, the widget

that implements a push button is known as GtkButton. The term "widget" will be used time

and again in this book, and you will no doubt become accustomed to its use as you read the

chapters that follow.
Historically, toolkit programming in X has, for the most part, been achieved via Xt

Intrinsics (referred to as Xt from this point on) . Xt is another technology developed by the

X Consortium. Xt is a set of functions and a widget hierarchy. The widget hierarchy is min
imal, and only the highest level widget classes are provided. A widget set such as the Athena
Widget Set (Xaw) or Motif provides the remaining levels of the widget class hierarchy, and

it is from these widgets that an application can construct a user interface.
There are many books on Xt and Motif, so I will not go into any significant details here.

There are some points, however, that I would like to make about Xt. First of all, Xt, in a way

similar to the X Protocol, is independent of any user interface look-and-feel policy. Xt only
provides a core set of tbree widget classes; the widget set (e.g., Motif) that you link to pro

vides all of the look-and-feel policy. The open-source community can and has developed
open-source widget sets for use with Xt. One such widget set, LessTif (www.Lesstif.org),

was designed as a freely available, open-source version of OSF Motif. In theory, someone

could even write an Xt-based version of Gtk+ or Qt or design a completely new widget set

that has its own look and feel. Second, programmers that learn how to develop to the Xt

6 Chapter 1 • Gtk + in Context

Intrinsics can transfer their knowledge from one widget set to another. Most of the calls in

an Xt-based application are made to functions in the Xt API; the arguments passed to these

functions define the widget set used. To create a button widget in Motif, for example, one

can call XtVaCreateManagedWidgetO, as follows:

Widget button ;

button = XtVaCreateManagedWidget (" button " , xmPushButtonWidgetClas s ,
parent , NULL) ;

The argument xmPushButtonWidgetClass tells Xt to create an instance of the XmPush

ButtonWidget class. Assume that a Gtk+ widget set for Xt was implemented and that the

widget class for push buttons was called GtkButtonWidgetClass. Then we might see the

following code in a port of the application from Xt/Motif to Xt/Gtk+:

Widget button ;

but ton = XtVaCreateManagedWidget (" button " , gtkButtonWidgetClas s ,
parent , NULL) ;

As you can see, the changes necessary (on this line) to perform a port from Motif to the

Gtk-like widget set were minimal. It is really never quite this easy; the application developer

has responsibilities that can drastically affect widget set portability. However, like no other

toolkit I know of, Xt was designed with the portability of an application from one widget set

to another in mind. The decisions made by the designers of Xt to ensure the portability of wid

get sets also resulted in a dramatically reduced API size as well. Thus, only a small set of func

tions must be leamed by application developers to create, configure, and destroy widgets; this

knowledge is completely reusable as the developer switches from one widget set to another.

Window Managers

A window manager is a specialized client that is responsible for bringing order to the user's

desktop. Window managers control the initial placement of windows on the desktop; without

a window manager, windows likely would all be placed on top of each other at location 0, 0

(unless otherwise specified by the client application, which is not commonly done). The title

bar of a window is actually created by the window manager, not by the client application. To

set the title of a window, the application sends a hint in the form of a property on the X server
for the window; this hint is read by the window manager application, which uses it to draw

the title text in the title bar window that it manages.

The window manager is also responsible for providing controls that enable the user to
move, resize, minimize, and iconify windows on the desktop. Without these controls, each
application would need to provide some mechanism for its users, which is highly impractical.

Many window managers, especially the more recently developed ones, add features such
as virtual desktops, taskbars, and command menus. Since a window manager is an applica

tion, it is relatively easy to add such features.

Desktop Environments 7

There are numerous window managers in existence. Some are older and date back to the

early days of X. Many are newer and are open-ourced. Although in some cases there may

be some indirect benefit for users to run a window manager that has been designed with a

specific toolkit in mind (Motif applications and the mwm window manager come to mind),

it is impossible to predict what window manager the user will be running. For that reason,

it is not practical to write an application that assumes a given window manager will be

present.
Generally, Gtk+ will handle any interaction your application must have with the window

manager. An example is setting the text of the window title bar label. As previously men

tioned, the title bar is a window created by the window manager, not your application. There

fore, your application cannot (easily) draw text in this window. Instead, your application must

set a property on the X window that specifies the window title. The window manager will be

notified when this property changes, will retrieve the text it contains, and then will draw the

text specified by the client in the title bar of the window. All that your application needs to do

is call the Gtk+ function gtk_window_sectitleO (see Chapter 7, "Windows and Dialogs"),

passing it a reference to the window and a string that specifies the desired window title.

Desktop Environments

A desktop environment is one step beyond the window manager. To understand why a desk
top environment is important, let's take a look at mainstream desktop environments like MS

Windows and MacOS. Both of these environments have more control over the look and feel

of applications, the desktop, and the set of applications that comes with default installations

than does XlI, which is, in contrast, indifferent to these issues by definition. While this

indifference certainly makes X flexible and resilient to constantly changing requirements,

it does have the undesirable side effect of promoting inconsistency for the end user.

Without control over the environment, a user is faced with running applications developed

with different toolkits, minimizing the advantage of past experience with a given application.

While the claim that a MacOS user only has to learn one application and then instantly knows

the rest is taking things a bit far, there is some truth to the claim. Anyone who has used Motif
scrollbars in one application and Xaw scrollbars in another certainly can attest to the vast dif

ferences that can exist among X -based toolkits. Lists in Motif work very differently than those
in Gtk +. Gtk + supports tree widgets, while tree widgets are not a part of the core Motif widget

set. The examples are numerous.
Users may find themselves running one window manager at work and another window

manager at home. Contrast this to MS Windows users ; regardless of where they may be,

Windows 98 behaves more or less the same.
Any given X installation may have applications that are not present in another. The early

X distributions provided sample applications like xcalc and xclock, and generally speaking,
you can expect these applications to be present. Historically, however, X has not provided
consistent access to default applications (or accessories, as they are sometimes called).

A desktop environment attempts to correct these inconsistencies. A desktop environ
ment is all of the following:

8 Chapter 1 • Gtk+ in Context

• A toolkit that promotes a consistent look and feel among applications that execute

within the environment.

• A set of applications, written using the preceding toolkit, preferably written to some

set of standards enforced by the toolkit or described by a published style guide. These

applications must give the user the capability to control and configure the environ

ment and perform any basic tasks that may be needed. Clocks, calculators, text edi

tors, games, and other "accessory" applications fall into this category. The style guide

(or toolkit) ensures that applications have consistently named menus, consistently

placed and labeled buttons in pop-up dialogs, and so forth.

• A window manager that gives the desktop a consistent look and feel from one system

to another. In the best of worlds, the window manager is written using the same tool

kit used to write the applications provided by the environment and adheres to the

same user interface guidelines established for applications.

The following sections describe a few of the major desktop environments.

CDE

The first major desktop environment for X was the Common Desktop Environment

(CDE), developed as part of the Common Open Software Environment (COSE) initiative

back in the 1 990s. CDE uses Motif as its toolkit, expands the widget set with some CDE

specific widgets, and provides a number of accessory applications, a file manager, and a

window manager (dtwm). CDE has been the desktop for major workstation vendors such

as IBM (AIX) and HP (HPIUX) for some time now and has enjoyed relative success. It

is available for GNU-based systems as well. Although it has done well in the workstation

marketplace, it suffers in open-source environments such as Linux due to its closed

source. (Motif has since gone "open source" but perhaps too late for the trend toward

other toolkits and desktop environments to be reversed.) You can find out more about

CDE at www.opennc.orgltechldesktoplcdelcde.data.sheet.htm.

GNOME

GNOME (www.gnome.org) is one of the two desktop environments currently gaining wide

spread adoption in the open-source community (the other is KDE). It is the standard desktop

environment of the GNU project. The toolkit for GNOME is Gtk+ 1 .2, which is described in
this book. GNOME also expands the Gtk+ widget set with a set of GNOME-specific widgets
that attempt to strengthen the consistency of applications that execute within the environment.

At this point in time, there is no published set of user interface style guidelines, though my
expectation is that one will evolve over time. A rich set of applications exists, but it is not clear

to me that consistency has been fully achieved in the presentation of these applications. Con

sider, for example, Red Hat 6.2 configured to use the GNOME desktop. 'TWo calculator pro

grams can be launched from the GNOME system menu; one brings up a Gtk+-based

calculator, while the other brings up xcalc, which was written with the Athena widgets. The

Summary 9

File menu in the GNOME calculator has an Exit menu item, while the File menu in Midnight
Commander, which is a file system browser, does not have an Exit menu item. It is this kind

of inconsistency that needs to be overcome for mainstream users to fully adopt an environ

ment like GNOME as their desktop of choice.

In contrast to CDE, GNOME does not provide or standardize on a window manager. The

major strengths of GNOME are its adoption by the open-source community, an extremely

aggressive amount of application development (again, based on Gtk:+), and its inclusion as

a desktop option by most of the Linux distributions.

KDE

The K Desktop Environment (KDE, see www.kde.o�) is another open-source desktop environ

ment. The toolkit for KDE is Qt (www.trolltech.com). developed by Trolltech. The Qt toolkit

is C++ based, in contrast to Gtk+ which is based on C. Qt has also been the center of contro

versy in the open-source community, given that it is maintained by a business (Trolltech) as

opposed to an open-source effort. KDE provides a window manager (kwm), a Web browser, a

suite of office applications, and an assortment of accessory applications. Some feel that KDE

is a more solid and self-consistent environment as compared to GNOME (whkh may be true),

and over time, this could lead it to dominate the desktop market. However, its dependency on

a single company for the Qt toolkit and the requirement that applications be developed in C++

seem to be holding it back from widespread domination.

Summary

In this chapter, I introduced the X Window System. At the lowest level, X consists of a pro

tocol that exists between a client and a server. The X server is software that responds to

requests sent by the client and represents the desktop that users interact with. Requests

allow the client to create windows and draw text and graphics, all of which are displayed

on the server. The X server notifies the client whenever the user moves the mouse, presses

a key on the keyboard, or clicks a mouse button by sending the client an event. The X Pro

tocol supports only basic primitives that are required by all GU! applications. The applica

tion programming interface to the X Protocol, Xlib, provides a very thin layer above the X
Protocol itself. It is via the API provided by Xlib that clients issue requests to the X server

and receive errors and events from the X server. The client and X server can either exist on

the same machine, or they can be running on different machines separated by a network.

Communication between the client and server always occurs over TCP/IP.

Sitting on top of Xlib are toolkits such as Xt/Motif, GDKlGtk:+, and Qt. These toolkits

provide higher-level widgets than abstract user interface components that are commonly

found in GUI applications. Menus, buttons, scrollbars, and lists are examples of widgets

found in all of the major toolkits. Each of the toolkits ultimately uses Xlib to implement

these abstractions in software on the client side of the X Protocol. The toolkits themselves
vary in terms of look and feel, and their API. These variations are based upon decisions that

were made by the toolkit designer. Gtk:+ is the toolkit described by this book.

10 Chapter 1 • Gtk+ in Context

A window manager is an application that allows the user to organize applications that

are executing on the desktop. Window placement and iconification are the principle features

provided by a window manager. Window managers are generally written to be independent

of the client applications that they manage, but some, like the Motif Window Manager, are

designed to take advantage of certain simple features made available by the toolkit for

which they were designed.

A desktop environment combines a window manager with a set of applications that were

written using a single toolkit. The Common Desktop Environment (CDE), GNOME, and KDE

are familiar desktop environments. Desktop environments typically provide a suite of simple

desktop applications like calendars, clocks, simple text editors, and calculators. In many ways,

a desktop environment strives to provide a workspace to UNIX users that is similar to that pro

vided by commodity PC operating systems such as MacOS and Microsoft Windows. In order

for a desktop environment to be successful, it must provide applications that are self-consistent

in terms of user interface and interoperability. Such consistency is provided by the use of a sin

gle toolkit (e.g., Gtk+), or it can be obtained by adhering to conventions described in a style

guide designed specifically for the toolkit or desktop environment.

(HAPTER

HELLO GTK+!

In this chapter, we' ll take our first look at what it is like to develop a Gtk+ application. First

I will introduce the basic structure of a Gtk+ application. Then I ' ll go on to describe how

to build and debug a Gtk+ application using tools such as gmake(1) , gcc(1), and gdb(1) .

We'll also take a look at Gtk+ functions that must be called in order to initialize Gtk+ upon

startup and tear down Gtk+ at application exit. As you' ll see, most of the action in a Gtk+

application happens once mainO makes a call to a routine named gtk_mainO.

In this chapter, we also look at several routines that allow a Gtk+ application to modify

the behavior of the main loop. For example, an application can arrange for gtk_mainO to

call application code at idle time or whenever a timeout has been triggered.

Beginnings

Learning a lower-level user interface API such as Win32, Xlib, or MacOS Toolbox becomes

easier, I believe, when the programmer is presented a basic skeleton application from which

more complicated, real-life applications can be constructed. One of the reasons that a template

or skeleton is helpful is that each of the preceding APls requires the application programmer

to code an event loop. In this event loop, events received from the user interface API (e.g.,

Win32, Xlib, or MacOS Toolbox) are dispatched to other portions of the application for pro

cessing. The details associated with programming the event loop can be overwhelming for the

uninitiated.
However, Gtk+ is not that kind of programming environment. If there did exist a skele

ton application for Gtk+, it would be a very minimal one, along the lines of the following

code snippet:

inc lude <gtk/gtk . h>

int
main (int argc , char *argv [])
{

/ * Initialize Gtk+ * /

1 1

12

gtk_set_Iocale () ;
gtk_init (&argc , &argv) ;

Chapter 2 • Hello Gtk+ !

/ * Create bas ic user interface here and arrange for Gtk+
to call your application when something interest ing
happens . The code here wi l l vary from one app l i cat ion
to the next . * /

/ * Cal l into Gtk+ . Gtk_main () wi l l proces s event s and call
your application as prearranged by the code above . * /

gtk main () ;
return (0) ;

As you can see, our mainO makes two calls to allow Gtk+ to initialize itself. This initial

ization code is always followed by application-specific code that will instantiate widgets

and arrange for Gtk+ to make calls back to the application whenever something interesting

happens in the user interface. Finally, mainO disappears into a routine called gtk_mainO,

which does not return until the application is ready to exit. The event processing that an Xlib

programmer typically needs to provide is handled within gtk_mainO. Therefore, when you

program in Gtk+, a skeleton application is not really needed because Gtk+ has implemented

the basic skeleton of your application for you.

Readers experienced with the Xt Intrinsics will find Gtk+ to be a very natural and familiar

paradigm. This is because the structure of a Gtk+/GDK application shares much in common

with its XtlXlib counterpart. Programmers with experience programming to APIs such as

Xlib, MacOS Toolbox, or Win32 will find that Gtk+ provides a welcome level of abstraction

above the details these APIs expose, as was hinted to in the preceding discussion. However,

knowledge of any of these APIs, especially Xlib, is never a bad thing in my opinion and will

help when it comes time to understand GDK, which is the thin layer of code that sits directly

above Xlib in the UNIX implementation.

For those of you totally new to GUI programming, don't worry. We' ll start from very

humble beginnings, namely with character-based console applications, and work forward

from there.

The bulk of this chapter consists of a discussion of how to build a simple Gtk + application
using make(l) and gcc(l). I will also discuss how to use a debugger (gdb(l) to discover and

fix those pesky crash bugs that will inevitably occur during the course of program develop

ment. Let's get started.

A Simple Example: Hello Gtk+!

Programmers who know the C language will no doubt be familiar with the following code:

Adding Interactive Features to a Console Application

Listing 2.1 Hello World!, Console I/O Version

inc lude < s tdio . h>

int
main (int argc , char *argv [])
{

print f (" He l l o World ! \n ") ;

13

Obviously, what this program does is print to stdout (i .e. , the console) the string "Hello

World !" . To build the application, we make use of gcc(1) :

$ g c c foo . c
$

Assuming we received no compiler errors, we can now run the executable as follows:

$ a . out
He llo World !
$

Note that gcc(l) generates an a.out by default. Use -0 to specify some other name for the

generated executable.

Adding Interactive Features to a
Console Application

To make things interesting, let's modify this simple application just a little bit. Instead of

assuming that the person wants to see "Hello World !" each time, we are going to change the

program so that it prompts the user for the string to be displayed. If the user responds by hit

ting the Enter key, the application will exit without printing anything. If the user types in a

string with a nonzero length, however, that string will be displayed to the console, followed

by application exit. In essence, this program does exactly what echo(l) does: print whatever

the user types (including nothing).
Here is Hello World ! , version 2.0:

Listing 2.2 Hello World, Console I/O Version, Interactive

include < s tdio . h>

int
main (int argc , char *argv [])
{

char buf [BUFS IZE] ; / * should be enough * /

fget s (buf , BUFS I Z , stdin) ;
i f (strlen (buf))

14 Chapter 2 • Hello Gtk+ !

print f (" % s \n " , buf) ;

This application is also built using gcc(1) in the same way that was done for Hello
World ! version 1 . The following example illustrates what the user might see when the above

code is executed:

$ a . out
He l l o Big World
He l l o Big World
$

< - - - - the user types thi s . . .
< - - - - and He llo World ! version 2 prints this

A Paradigm Shift

You must be wondering at this point, "Why is he talking so much about console applications?

This book is supposed to be teaching me how to develop GUI-based applications in Gtk+ !"

The reason is simple: For those of you new to GUI applications, you are about to face a major

paradigm shift, and understanding the difference is critical to understanding how to program

a GUI application with Gtk+.

In non-GUI console applications, flow of control goes from one statement to the next.

Thus, in Hello World ! versions 1 and 2, each line is executed in sequence, one after another.

If the program must wait for user input, as is done when fgets(3) in Hello World ! version 2 is

called, the program will block and only resume execution after the input request has been sat

isfied. Even control structures such as while and for loops impose a serial, one-after-another

flow of control on the application. Execution starts at the top of the loop with the first state

ment in the body of the loop and then goes to the second statement, and so forth. When at the

bottom, control returns to the top of the loop, and the process starts all over again.

In Gtk+, things are different. To see how, let's dive right in and look at Hello World !

version 3, written using the Gtk+ toolkit:

Listing 2.3 Hello World ! , Gtk+ Version

0 0 1 # inc lude < stdio . h>
0 0 2 # inc lude <gtk/gtk . h>
0 0 3
0 0 4 stat i c GtkWidget * entry ;
0 0 5
0 0 6 void
0 0 7 PrintAndExit (GtkWidget *widget , GtkWidget *window)
0 0 8
0 0 9
0 1 0

char *str ;

0 1 1 s t r = gtk_entry_get_text (GTK_ENTRY (entry)) ;
0 1 2 i f (s t r ! = (char *) NULL)
0 1 3 print f (" % s \n " , s t r) ;
0 1 4
0 1 5 gtk_widget_destroy (window) ;

A Paradigm Shift

0 1 6 gtk_main_qui t () ;
0 1 7
0 1 8
0 1 9 void
0 2 0 PrintByeAndExit (GtkWidget *widget , gpointer data)
0 2 1 {
0 2 2 print f (" Goodbye , world ! \n ") ;
0 2 3 gtk exit (O) ;
0 2 4
0 2 5
0 2 6 int
0 2 7 main (int argc , char *argv [])
0 2 8 {
0 2 9 GtkWidget *window , * label , *vbox , *hbox , *button , * s eparator ;
0 3 0
0 3 1 gtk_set_Iocale () ;
0 3 2
0 3 3 gtk_init (&argc , &argv) ;
0 3 4
0 3 5 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
0 3 6 gtk_window_set-pol icy (GTK_WINDOW (window) , FALSE , FALSE , FALSE) ;
0 3 7
0 3 8 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
0 3 9 GTK_S IGNAL_FUNC (PrintByeAndExit) , NULL) ;
0 4 0
0 4 1 gtk_window_set_t i t l e (GTK_WINDOW (window) , " He l l o Gtk+ ! ") ;
0 4 2 gtk_container_border_width (GTK_CONTAINER (window) , 0) ;
0 4 3
0 4 4 vbox = gtk_vbox_new (FALSE , 0) ;
0 4 5 gtk_container_add (GTK_CONTAINER (window) , vbox) ;
0 4 6
0 4 7 hbox = gtk_hbox_new (FALSE , 0) ;
0 4 8 gtk_box-pack_start (GTK_BOX (vbox) , hbox , FALSE , FALSE , 0) ;
0 4 9
0 5 0 label = gtk_Iabe l_new (" Enter a mes sage : ") ;
0 5 1 gtk_box-pack_start (GTK_BOX (hbox) , labe l , FALSE , FALSE , 0) ;
0 5 2 entry = gtk_entry_new () ;
0 5 3 gtk_entry_set_text (GTK_ENTRY (entry) , " ") ;
0 5 4 gtk_edi table_select_region (GTK_EDI TABLE (entry) , 0 , - 1) ;
0 5 5 gtk_box-pack_start (GTK_BOX (hbox) , entry , FALSE , FALSE , 0) ;
0 5 6
0 5 7 separator = gtk_hseparator_new () ;
0 5 8 gtk_box-pack_start (GTK_BOX (vbox) , separator , FALSE , FALSE , 0) ;
0 5 9
0 6 0 but ton = gtk_button_new_with_labe l (" Print ") ;
0 6 1 gtk_s ignal_connect_object (GTK_OBJECT (button) , " c l i cked " ,
0 6 2 GTK_S IGNAL_FUNC (PrintAndExit) , GTK_OBJECT (window)) ;
0 6 3 gtk_box-pack_start (GTK_BOX (vbox) , button , FALSE , FALSE , 0) ;
0 6 4 GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
0 6 5 gtk_widget_grab_default (button) ;
0 6 6

15

16 Chapter 2 • Hello Gtk:+ !

0 6 7 gtk_widget_show_al l (window) ;
0 6 8
069 gtk main () ;
0 7 0
0 7 1 return (0) ;
0 72

As you can see, Gtk+ Hello World ! applications can be rather lengthy compared to the

length of the console version. Before we take a look at the code, let's first understand what

the application is designed to do.

Understanding the Gtk+ Hello World Sample

The premise of this example is similar to that of Hello World ! version 2: to echo a string

supplied by the user (or nothing should the user not type in a string) . The application starts

out as shown in Figure 2. 1 . The dialog displayed contains a text edit field, below which is

a button labeled Print. When the user presses the Print button, the application prints the text

entered by the user in the text field to stdout and exits. If the user does not enter any text,

nothing is printed.

Figure 2.1 Hello World !

Lines 001 and 002 identify the include files required by the source code. We include

<stdio.h> because we will use printfO to display the text entered by the user. <gtk/gtk.h>

is required because this is a Gtk+ application. The Gtk+ includes should be located in
/usr/include/gtk on your system. If the compiler has problems finding gtk.h, it might be

located somewhere else; check with your systems administrator if you can't locate them

and need help.

The include file gtk.h includes the remaining include files found in /usr/include/gtk.

Including <gtk/gtk.h> is all you need to do to bring in the types, constants, and macros

needed by your source code. This is in contrast to the Motif development environment,
where typically programmers are required to individually include header files correspond

ing to widgets needed by the application, one by one.

Our main routine starts on line 027. On line 029, several variables of type GtkWidget *

are declared. A GtkWidget is roughly analogous to the Widget type in Motif. For readers not

familiar with widgets (I will use the term "widget" to describe the object represented by the
GtkWidget type), for now think of a widget as an opaque data type representing a window

or a control that the user sees on the display and interacts with. We'll spend a lot of time talk

ing about widgets in this book because learning Gtk+ largely amounts to learning about the

Understanding the Gtk+ Hello World Sample 17

widgets that the toolkit provides and how to make good use of them when constructing an

application user interface.
On line 03 1 , gtk_seUocaleO is called. This is actually a wrapper function that calls

gdk_seUocaleO, which in tum calls setlocale(3).

Line 033 introduces our first major Gtk+ routine, gtk_initO. All Gtk+ clients must call

gtk_initO at the beginning of the application before creating any widgets. gtk_initO takes

as arguments the argc and argv arguments that were passed to mainO by the runtime envi

ronment. gtk_initO will inspect each argument that was passed to the application on the

command line, processing and removing those arguments that are recognized. A modified

argc, argv will be returned to the application if any arguments were processed by gtk_initO,

with the processed arguments removed from argv and the value of argc decremented

accordingly. Later in this chapter, we will look at some of the command-line arguments

handled by gtk_initO. Other tasks performed by gtk_initO include signal initialization, get

ting the system default colormap and visual, and registering an exit function so that cleanup

can be performed should the application not exit in a clean manner.

Our user interface definition starts with line 035, where we create a top-level window.

For us, the top-level window represents a place within which the text edit field and Print

button will be placed. As we will see, it is a bit more complicated than this because the top

level window is actually a container not only for the text field and the button, but for other

widgets that are not visible to the user but are needed by the application to help manage the

placement of the visual controls (the text field and the button) within the top-level window.

Figure 2.2 Widget Instance Hierarchy Tree

Figures 2.2 and 2.3 should help to make this clear. Figure 2.2 illustrates the widget

instance hierarchy for our example application. Widgets that are higher in the hierarchy

18 Chapter 2 • Hello Gtk+ !

(e.g. , closer to the top widget, or the root of the inverted tree) are parent widgets to widgets

residing lower in the hierarchy. A widget residing immediately below a given widget in the

tree is the child widget of the widget above it in the hierarchy.

Figure 2.3 Widget Instance Hierarchy, GUI Perspective

Window

Vertical Box

Horizontal Box

Entry

Horizontal Separator

Button

'----- Label

Figure 2.3 illustrates the same instance hierarchy in a different way. Items on the left side

of the drawing are higher in the widget instance hierarchy than widgets on the right side of

the drawing. Note that it is clear in this figure that some of the widgets are visible to the

user of the application, while, as we shall see, there are nonvisible widgets used to control

how the visible widgets are laid out and organized.

The top-level widget in our application then is a window that will hold the components

making up our application's user interface. This window will be a target for the decorations

and menus placed around it by the window manager application (e.g., twm, MWM, fvwm,
sawfish) that will allow the user to move, resize, iconify, and close the application, as desired.

Note that we save the return value of gtk_window_newO in a variable named window,

which is of type GtkWidget *. We do this for two reasons. First, the window is going to be
used as the parent widget of widgets lower than it in the instance hierarchy. So we need a

handle to the widget to pass to the functions used to create the child widgets in order to

identify the window as their parent. Second, there are functions we will call to modify

attributes of the window, and we need to tell these functions for which window they must

perform their task.

Understanding the Gtk+ Hello World Sample 19

The next several lines of source illustrate this. On lines 038 and 039, we register a signal
handler, or callback, with Gtk+. Without going into much detail, what we are doing here is

telling Gtk+ that when the window is destroyed (meaning when it is closed by the user via the

window manager or when the application exits normally), we would like Gtk+ to call our

function PrintByeAndExitO. We might use PrintByeAndExitO to perform any cleanup chores

necessary, such as saving user input, before the application exits. In our example, there is

nothing to clean up, however, so we simply print the string "Goodbye, world!" and exit.

0 3 8
0 3 9

gtk_si gnal_connect (GTK_OBJECT (wi nd ow) , "d estroy " ,
GTK_S IGNAL_FUNC (Pri ntByeAnd Exi t) , &wi nd ow) ;

Notice the use of the macros GTK_OBJECT and GTK_SIGNAL_FUNCTION. These

macros coerce variables of a given type to some other type. If coercion is needed but not used,

warnings will be generated at compile time. To illustrate this, I removed the GTK_OBJECT

and GTK_SIGNAL_FUNC macros from the preceding lines and recompiled with the follow

ing result:

bash$ gmake
gcc - g ' gtk- confi g - - cflags' - c he llogtk+ . c -0 hel l ogtk+ . o
he llogtk+ . c : I n functi on ' mai n ' :
hellogtk+ . c : 4 1 : warni ng : pas si ng arg 1 of ' gtk_si gnal_connect ' from
i ncompati ble poi nter type
hellogtk+ . c : 4 1 : warni ng : passi ng arg 3 of ' gtk_si gnal_connect ' from
i ncompati ble poi nter type
gcc -g ' gtk- confi g - - li bs' hel l ogtk+ . o -0 he l l ogtk+

The use of signals is an example of how a Gtk + application differs greatly from a console

application such as Hello World! version 2.0. In a console application, flow is predictable. The
program spends its time executing one statement after another, falling into and returning from

function calls, or waiting, blocked until an I/O request has finished. In a Gtk+ application,
there are plenty of times when the application will be executing code in a serial fashion but

will find itself inside of a routine, such as PrintByeAndExitO, as if by magic.

This "we' ll call you later" paradigm is used extensively in Gtk+ applications. It is the

mechanism by which an application can find out that it is going to close. It is also the mech

anism by which Gtk+ makes an application aware that a push button has been clicked by
the user, that a menu item has been selected, or even that a window has been resized or
exposed and we need to redraw its contents.

Writing a Gtk+ application, then, amounts to developing code that creates the user interface,
defining functions that will get executed as the user interacts with your application, and con

necting the user interface components to these functions so that Gtk+ can call the application
when something of interest has happened. We'll see examples of this paradigm time and time
again in this book, so if the concept isn't clear now, don't worry too much about it. Before long,
it will seem like second nature.

Line 041 calls the function gtk_window_seCtitleO to set the window title of our top
level window to "Hello Gtk+". Line 042 calls the function gtk30ntainer_bordecwidthO
to set the width of the window's border to zero pixels. At this point, you may have noticed

a trend in the naming convention used for Gtk+ functions. Generally, the convention is the

20 Chapter 2 • Hello Gtk+ !

string "gtk" followed by the name of the class to which the function belongs (or the class

of the object that is being operated upon by the function), followed by something that

describes what the function does. Underscore characters separate all of these components.

For the function gtk_window_seCtitleO, then, the class being operated on is window, and

the functionality performed is described by seCtitle. Note that the class component of the

function name will identify, usually, the type of the first argument. As you can see, the first

argument to gtk_window_sectitleO is cast to GTK_WINDOW, and the first argument to

gtk_containecbordecwidthO is cast to GTK_CONTAlNER. Note that this convention

does not always hold. For example, the first argument to the function gtk_signaCconnectO

is of type GTK_OBJECT, as we saw on line 037.

0 4 1
0 4 2

gtk wi nd ow set ti t l e (GTK WINDOW (wi nd ow) , "Hello Gtk+ ! ") ; - - - -

gtk_contai ner_bord er_wid th (GTK_CONTAINER (wi nd ow) , 0) ;

Now that we have created our main window, let's turn our attention to code that will create

and arrange the user interface components with which the user will interact. In our case, these

include a text edit field and a push button. We'll also add a separator widget to the user inter

face to visually separate the text edit field from the push button in the dialog. A label is used

to give some context to the text edit field.

Before we create the label, text field, separator, and button, we first create a container
within which these widgets will reside. This is done on lines 044 and 045 . The routine

gtk_ vbox_newO allocates a vertical box widget. On line 045, we add this widget to the win

dow. Note on line 045 that the window is being cast to the container widget class using the

macro GTK_CONTAINER. Because the window class is a subclass of the container class,
such an operation is permissible. A window can act as a container (but not the other way

around). A vertical box widget is another form of container but with special behavior. As
widgets are added by a program to a vertical box, they are placed vertically below the pre

viously added widget by the vertical box widget. If the client prefers, widgets can be packed

into a vertical box in the opposite direction, with newly added widgets placed above previ
ously added widgets. The vertical box widget enables the application to control some

aspects of how its widget children (the items added to the vertical box) are placed. For
example, the client can specify whether widgets are to be expanded to fill the entire area of

the vertical box. The client can also control such things as right and left justification and

centering of child widgets. We' ll spend time discussing the box widgets in a later chapter.

Box widgets are pretty much the mechanism by which widget layout in a dialog or window

is achieved in Gtk+ applications.

044
0 4 5

box = gtk_vbox_new (FALSE , 0) ;
gtk_contai ner_add (GTK_CONTAINER (wi nd ow) , box) ;

The next widget created is a horizontal box widget; this is done on lines 047 and 048.

The horizontal box widget will hold the text edit field and its label. On line 050, a label wid

get is created and then is added to the horizontal box on line 05 1 . Following this, the text
edit, or entry, widget is created on line 052 and is added to the horizontal box on line 053 .

Because entry widgets are used to implement text edit fields in Gtk+, I will try to use the
term "entry" whenever I am talking about text edit fields from now on.

Understanding the Gtk+ Hello World Sample 21

On line 053, we initialize the text displayed by the entry widget to the empty string " ", and

on line 054, we make the entry widget editable, allowing a user to click in the entry widget

and modify the text displayed using the keyboard. On line 055, we add the widget as a child

to the horizontal box widget. The first argument to gtk_box_pack_startO is the horizontal box

widget, and the second argument is the entry widget being added. The third argument, which

is a boolean that is set in this case to FALSE, directs (if set to TRUE) the box widget to expand

the entry field so that it fits its entire allocated area. The fourth argument, which is ignored
unless the third argument is set to TRUE, detennines whether, during expansion, extra space

is allocated around the child widget (FALSE) to fill the area into which the child is expanding,

or the child grows horizontally to consume the entire area being filled (TRUE).
On lines 057 and 058, we create and add to the vertical box container widget a separator

widget. Separator widgets come in two types: horizontal and vertical. We use a horizontal
separator because we want the line to run left to right and visually separate the work area
of our dialog (consisting of the entry widget) from the action or button area of our dialog

(consisting of the Print button). Most (if not all) of the dialogs in this book will be designed

with two areas : a work area consisting of widgets that allow the user to input data or per

form a task, and an action area containing buttons that allow the user to commit or cancel
changes made in the work area and to dismiss the dialog. These two areas will always be

separated by a horizontal separator widget.

0 5 7 separator = gtk_hseparator_new () ;
0 5 8 gtk_box-pack_start (GTK_BOX (box) , separator , TRUE , TRUE , 0) ;

Now it is time to create our action area. We only have one button in the action area,

labeled Print. It is created and then added to the dialog on lines 060 through 063 .

On line 060, the widget is created. Using gtk_button_new_with_labeIO enables us to create

the widget and assign its label in one function call. On line 061 , we again make use of the sig

nal/callback facility of Gtk+. This time, we register a signal function with Gtk+ that will be

invoked when Gtk + detects that the user has pressed our button. The first argument specifies the

widget we want Gtk+ to monitor, which is the button created on line 060. The second argument

tells Gtk+ which event or signal to monitor. Here, the string "clicked" represents just what you

think, a button press. The third argument to gtk_signal30nnecCobjectO is the address of the

function we want to have called by Gtk+ when the button press occurs. The final argument is

simply data that we want Gtk+ to pass to PrintAndExitO when it is invoked. We will see later
how important this final argument can be to the design of a Gtk+ application that supports mul
tiple, simultaneously open dialogs, each of which corresponds to a specific instance of user data

(much like a word processor that has multiple documents open at the same time).
On line 063, we add the button to the vertical box widget, just as was done for the pre

ceding horizontal box and separator widgets.

0 6 0 button = gtk_button_new_wi th_labe l (" Pri nt ") ;
0 6 1 gtk_si gnal_connect_obj ect (GTK_OBJECT (button) , " c li cked " ,
0 6 2 GTK_S IGNAL_FUNC (Pri ntAnd Exi t) , GTK_OBJECT (wi nd ow)) ;
0 6 3 gtk_box-pack_start (GTK_BOX (vbox) , button , FALSE , FALSE , 0) ;

Now that all of the user interface widgets have been created, we must make them eligible
for drawing by calling gtk_ widgeCshow _allO, passing the window widget as an argument.

22 Chapter 2 • Hello Gtk+ !

The routine gtlC widgeCshow _aliO will make visible the widget passed in as an argument

and all of its children, visible. The routine gtk_ widgecshowO also takes a widget as an

argument, but only that widget, not its children (if any), will be eligible for drawing. We
could have added a gtk_ widgecshowO for each widget in the application, and you will see

Gtk+ code on the Internet that does just that, but in this case, it seems cleaner to just do it

all at the end with a single function call.

0 6 7

Finally, on line 069, we go into the black hole known as gtk_mainO. As long as our applica
tion is running, we will not return from gtk_mainO. In concert with widget code that you need

not be concerned with (we will design our own widget later in this book), gtk_mainO is where

all of the power in a Gtk + application resides.

0 6 9
0 7 0
0 7 1
0 7 2

gtk mai n () ;

return (0) ;

Well, we've certainly covered a lot in the last several pages. Maybe it is time to catch

your breath, perhaps take the dog for a walk or take a well-deserved nap. Once you are back,

refreshed, and ready to go, fire up an editor, type in the source code for hellogtk+, compile

it, and give it a try. The remainder of this chapter will show you how to build, execute, and

(gasp!) debug the hellogtk+ application.

Building the Sample Client

To build our example client, we invoke the following command line:

$ gee he l l ogtk+ . e -0 he llogtk+ ' gtk- eonfi g - - eflags' ' gtk- eonfi g - - li bs'

The ' gtk-config --cflags ' and ' gtk-config --libs ' portions of the command line are used
to derive compiler and linker flags and arguments needed to compile a Gtk+ application in

your environment. On my Red Hat system, executing

$ gtk- eonfi g - - e f lags

results in the following output:

- I /usr/Xl lR6 /i ne lud e - I /usr/ li b/glib/i nelud e

Executing

$ gtk - eonfi g - - li bs

results in the following:

- L/usr/ li b - L/usr/Xl lR6 / 1i b - lgtk - lgd k - rd ynami e - lgmod ule - lgli b - ld l \
- lXext - lXll - 1m

This output will be pasted into the command line and passed to the compiler.

Assuming the build is successful, we will be left with a binary named hellogtk+, which
we can then execute:

$ he l l ogtk+

Debugging the Sample Client 23

To simplify the addition of multiple source files, provide support for maintaining include

file dependencies, and eliminate the need to type difficult command lines to build a project,

the use of gmake(1) is recommended. Here is a makefile that can be used to build hellogtk:+:

CC = gcc - g - I /usr/i nc lud e /gd k

all : he llogtk+

he llogtk+ : he l l ogtk+ . o
$ (CC) ' gtk- confi g - - li bs ' he llogtk+ . o -0 hel l ogtk+

he llogtk+ . o : hel l ogtk+ . c
$ (CC) ' gtk- confi g - - cflags ' - c he l l ogtk+ . c -0 hellogtk+ . o

cl ean :
rm - f * . 0 he l l ogtk+

The gtk-config command used in the command line corresponding to the hellogtk+ depen
dency is passed the --libs argument. When building hellogtk+.o, it is passed the --cflags argument.

This is because, in the first case, we are linking, so we only need to pass linker flags. In the second

case, we are building the .0, and in this case, we need to pass compiler flags.

To remove all binaries and do a clean build, type the following:

$ gmake clean

Once all of the binaries have been removed, you can build hellogtk: + by typing the following:

$ gmake

Debugging the Sample Client

You may have noticed that when the Print button is pressed, nothing is printed to the console,
and hellogtk:+ exits without doing anything (or it prints garbage to the screen or even crashes).

For me, it was printing garbage.
You may be able to figure out what is causing this bug simply by inspecting the code. How

ever, it is more often the case that a bug cannot be figured out by code inspection. Here's
where a debugger like gdb(l) comes in handy.

To use gdb, make sure to add a -g flag and remove any optimization flags from the compiler
build line, as was done in the CC macro in the preceding makefile. Once you have built with
-g and have a debug binary, invoke gdb using the following command line:

$ gd b hel l ogtk+

Doing so, you should see the following output from gdb:

GNU gd b 4 . 1 7
Copyri ght 1 9 9 8 Free Software Found ati on , Inc .
GDB i s free software , covered by the GNU General Publi c Li cense , and
you are welcome to change i t and /or di stri bute copi es of i t und er
certai n condi ti ons .
Type " show copyi ng " to see the condi ti ons .

24 Chapter 2 • Hello Gtk+!

There i s absolutely no warranty for GDB . Type " show warranty" for
detai l s . Thi s GDB was conf igured as " i 3 8 6 - redhat - l inux " . . . (no
debugging symbol s found) . . .
(gdb)

Once gdb loads your binary, it will display a prompt and wait for a command. To debug our

problem, we first take a guess as to where the problem is most likely to be. Since the routine

PrintAndExitO is responsible for printing the output to the screen, it seems reasonable to start

our search there. To do this, we will set a breakpoint on the routine PrintAndExitO by typing

the following command:

(gdb) b PrintAndExit
Breakpoint 1 at Ox8 0 4 8 c 0 6
(gdb)

Once we hit the breakpoint, we will single step the routine, one line at a time, in an attempt

to discover what is going wrong.

To start execution of the application, we type in the following:

(gdb) run
Start ing program : /home / syd/book/src/ chapter3 /hel logtk+

Once hellogtk:+ starts, type the string "Hello gdb" into the text edit field and hit the Print

button. Once you've done this, hellogtk:+ should stop executing. Return to the console win

dow in which gdb is executing. You should see the following printed by gdb:

Breakpoint 1 , PrintAndExit (widget= Ox8 0 6 1 f 9 0 , window= Ox8 0 6 1 f 9 0) at
he l l ogtk+ . c : 1 1

1 1 gtk_entry_get_text (GTK_ENTRY (entry)) i
(gdb)

This indicates that gdb is stopped in PrintAndExitO on the line that is currently being

displayed (line 1 1) . We can tell that the widget and window arguments are both pointing to

address Ox806 1f90. We can print out what they are pointing to with the print command:

(gdb) print *widget
$1 = { obj ect = { klass = Ox8 0 6 1 f f 8 , f l ags = 2 6 4 14 4 , ref_count = 1 ,

obj ect_data OX8 0 6 7 2 6 8 } , private_f lags = 0 , state = 0 ' \ 0 0 0 ' ,
saved state = 0 ' \ 0 0 0 ' , name = OxO , style = Ox8 0 6 5a8 0 ,

req�i s i t ion = { width = 1 7 8 , he ight = 9 7 } , allocat ion { x = 0 , Y
width = 1 7 8 , he ight 9 7 } , window = Ox8 0 6 9dbO , parent = OxO }

(gdb) print *window
$ 2 = { obj ect = { klass Ox8 0 6 1 f f 8 , flags = 2 6 4 14 4 , re f_count = 1 ,

obj ect_data Ox8 0 6 7 2 6 8 } , private_f lags = 0 , state = 0 ' \ 0 0 0 ' ,
saved_state = 0 ' \ 0 0 0 ' , name = OxO , style = Ox8 0 6 5a8 0 , requi s i t ion

= 1 7 8 ,

0 ,

= { width

he ight = 9 7 } , al locat ion
window = Ox8 0 6 9dbO , parent

{x = 0 , y = 0 , width = 1 7 8 , he ight = 9 7 } ,
OxO }

These seem normal enough, so the arguments coming into PrintAndExitO appear to be
fine. Let's single step a few instructions and see what happens:

Debugging the Sample Client

(gdb) n
1 2
(gdb) n
1 3

25

i f (str ! = (char *) NULL)

print f (" % s\n " . str) ;

Because, for me, garbage was being printed, I was fairly certain that the printf statement

was being reached, and the debugger has confirmed this. I know from experience that the

printf statement is well formed, so what I want to know is the value of str. It should be
"Hello gdb". First let's use "print" to determine the value of the string and the value it is

pointing to:

(gdb) print str
$ 3 = Oxbf f f f 3 8 0 " a ' \n@ ·· 6Yld_\ 0 0 6@\22 0 \ 0 3 7 \ 0 0 6 \b "
(gdb)

Well, it certainly looks like str is pointing to garbage. Notice that the value of str is

Oxbfff380. That looks a little odd, given that widget and window have a value of Ox806 1 f90

and we see other pointers in widget and window that are nearby, such as klass = Ox806 1 ff8
and style = Ox8065a80. Perhaps str is pointing to bad memory, but we can't be sure. So let's

take a look at the code again and see how str is being assigned:

0 0 6 void
0 0 7 PrintAndExit (GtkWidget *widget . GtkWidget *window)
0 0 8 {
0 0 9
0 1 0
0 1 1
0 1 2
0 1 3
0 1 4
0 1 5
0 1 6
0 1 7

char * s t r ;

gtk_entry_get_text (GTK_ENTRY (entry)) ;
i f (str ! = (char *) NULL)

print f (" %s \ n " . str) ;

gtk_widget_destroy (window) ;
gtk_main_quit () ;

As you can see, we declare str on line 009, and we use it on lines 0 12 and 0 1 3 , but we

never give it a value. Oops! The prototype for gtk_entry....geCtextO, found in gtkentry.h, is

as follows:

gchar *
gtk_entry_get_text (GtkEntry * entry) ;

To fix our code, we need to assign the return value from gtk3ntrygeUextO to the variable

str. So quit out of the debugger, fire up an editor, and change line 0 I I to the following:

0 1 1 str = gtk_entry_get_text (GTK_ENTRY (entry)) ;

Recompiling and executing hellogtk+ should show that the preceding change was what
was needed to fix our bug.

I will have more to say in the next section about debugging when I discuss the various
debug command-line arguments supported by Gtk+.

26 Chapter 2 • Hello Gtk+ !

Application Startup, Termination, and Main Loop
Functions

This section takes a look at the functions that must be called by an application to initialize
Gtk+/GDK at startup, as well as routines that should be called by an application to tear

down Gtk+ cleanly prior to application exit.

Appl ication Startup

The first routine we' ll look at is gtk_seUocaleO:

gchar*
gtk set locale (void)

gtk_seUocaleO must be called before gtk_initO, if your application decides to call i t at

all. gtk_seUocaleO is a wrapper that calls gdk_seUocaleO, which in tum calls setlo
cale(LC_ALL," "), causing the localization database to be read in for the locale defined by

the LANG environment variable set in the user's environment. For details on international

izing your application, refer to the man page for setlocale(1) and the locale(7) man page. If

you don't call gtk_seUocaleO, the locale defaults to the portable "C" locale.

In addition to setlocaleO, two Xlib routines are called by gtk_seUocaleO: XSupportsLo

caleO and XSetLocaleModifiersO. If XSupportsLocaleO fails, then X does not support the

locale defined by the LANG environment variable, and the application reverts to the portable

"C" locale. XSetLocaleModifiersO reads the XMODIFIERS environment variable, which

consists of a series of "@category=value" strings. A locale modifier is an X extension to the

LANG variable processed by setlocaleO. The only standard modifier category defined as of

R6 is "im", which is used to specify the input method to be used for internationalized text

input for the locale. Refer to XSetLocaleModifiers(7) for more information.
gtk_seclocaleO will generate one or more warning messages should setlocaleO, XSup

portsLocaleO, or XSetLocaleModifiersO fail. Regardless of success or failure, the current

locale string will be returned. To ensure that the user's locale choice has been honored, you
should compare the returned string to the LANG environment variable and exit if they don't

match, as follows:

gchar * envlang , * l ang ;

envlang = getenv (" LANG ") ;
lang = gtk_set_locale () ;

i f (envlang ! = (char *) NULL && strcmp (lang , envlang)) {
fprint f (stderr , " Unable to set locale to % s \n " , envlang) ;
exit (1) ;

The next optional function we'll look at is gtk_check_versionO:

Application Startup, Termination, and Main Loop Functions 27

gchar *
gtk_check_version (guint maj or , guint minor , guint micro)

gtlccheck3ersionO takes three arguments: a major, minor, and micro number. Calling this

routine enables your application to ensure that the version of Gtk+ to which your application

is bound at runtime, if built as a shared executable, meets minimum version requirements that

you have set. If the major number of the Gtk+ lib is greater than major, or the major number is

equal to major and the minor number is greater than minor, or the major number and minor

number are equal to major and minor, respectively, and the micro number is greater than or

equal to micro, then NULL is returned, indicating that the shared Gtk+ library linked to the

application meets the version requirements set by the application. Otherwise, a pointer to a

nonlocalized error string is returned. For example, if the major number is too small, the follow

ing string is returned:

" Gtk+ version too old (maj or mi smatch) "

The next routine, gtk_initO, must be called by all Gtk+ applications:

void
gtk init (int *argc , char * * *argv)

The purpose of gtk_initO is to initialize the GDK and Gtk+ libraries for use by your

application. A Gtk+ application cannot run unless Gtk+ and GDK have been initialized by

calling gtk_initO early in mainO before any widgets are instantiated. If gtk_initO fails (for

example, a connection to the X server cannot be established), your application will exit.

gtk_initO searches argv for runtime arguments that it recognizes. Each argument that is

recognized is processed and removed from the argv vector. Upon return, argv contains

those arguments that were not recognized by Gtk+, and argc holds the number of arguments

that remain in argv. The arguments listed in Table 2. 1 are all recognized by the 1 .2 version

of Gtk+.

Table 2.1 Command-Line Arguments Recognized by Gtk+

Argument Name

--gtk-module module

--g-fatal-warnings

--gtk-debug flags

--gtk-no-debug flags

--gdk-debug flags

--gdk-no-debug flags

Description

Load the specified module at startup. Modules are
described in a later section.

Warnings and errors generated by Gtk+/GDK
will cause the offending application to exit.

Tum on specific Gtk+ trace/debug messages. I
will describe trace and debug messages for Gtk+
and GDK later in this chapter.

Tum off specific Gtk+ trace/debug messages.

Tum on GDK trace/debug messages.

Tum off specific Gtk+ trace/debug messages.

28 Chapter 2 • Hello Gtk+ !

Table 2.1 Command-Line Arguments Recognized by Gtk+ (Continued)

Argument Name

--display h:s .d

--sync

--no-xshm

--name progname

--class classname

Description

Connect to the specified X server, where "h" is
the hostname, "s" is the server number (usually
0), and "d" is the display number (typically
omitted). If --display is not specified, the
DISPLAY environment variable is used.

Call XSynchronize (display, True) after the X
server connection has been established. This
makes debugging X protocol errors easier
because X request buffering will be disabled and
X errors will be received immediately after the
protocol request that generated the error has been
processed by the X server.

Disable use of the X Shared Memory Extension.

Set program name to "progname". If not
specified, program name will be set to argv[O] .

Following Xt conventions, the class of a program
is the program name with the initial character
capitalized. For example, the class name for
gimp is "Gimp". If --class is specified, the class
of the program will be set to "classname".

The --gtk-module argument, as well as the arguments --gtk-debug, --gtk-no-debug,

--gdk-debug, and --gdk-no-debug, all need further explanation. These are covered in

the next few sections.

Modules

Gtk + (via Glib) allows applications to load shared library code at runtime and execute routines

that the shared library exports. The mechanism that Glib provides is essentially that of a wrap

per to the routines described by the dlopen(3) man page. Now might be a good time to look at

the man page for dlopen(3) if you are not familiar with this facility. Gtk+ requires the shared

library to export a function named gtk_module_initO, which will be called by Gtk+ once the

module has been loaded. The function gtk_module_initO is required to conform to the follow
ing function prototype:

G MODULE EXPORT void - -

gtk_module_init (gint *argc , gchar * * * argv) ;

In Windows, G_MODULE_EXPORT is a #define for _dec1spec(dllexport). In UNIX, this
defines to nothing. The arguments argc and argv are pointers to the command-line argu
ments that were passed to the application at startup. This allows the shared library code to

inspect the command-line arguments, processing and removing any arguments that are spe
cific to the module.

Application Startup, Termination, and Main Loop Functions 29

The module facility can be used to add plug-in support to an application. We will look

more at modules when I discuss Glib, but for now, all you need to be aware of is that --gtk

module is one of the ways of specifying a shared library (or plug-in) to be loaded by your

application at runtime.
If --gtk-module is required by a shipping product, it would be better to wrap its use in a

script, presenting a simpler interface to users. For example, say your application is a word

processor, and you provide a spell checker plug-in module in a shared library called lib

spell .so. Instead of forcing the user to type

$ myedit - - gtk-module spe l l myf i l e

i t would be easier for the user to provide a shell script named runedit that accepts a -s argu

ment, for example

$ runedit - s myf i l e

and let the script construct the preceding myedit command line and execute i t on behalf of

the user. Or, perhaps better, place all of the options the user wants in a preference file and

have your script read that file and create the appropriate command line.

An alternate way to specify any modules to be loaded by Gtk+ at application startup is

to use the GTK_MODULES environment variable. Each component in this variable con

sists of a module name, separated by the ' : ' character. For example, to load the modules

libfoo.so, libfee.so, and libbar.so, you would set GTK_MODULES as follows:

$ typeset -x GTK_MODULES=foo : fee : bar

Debug Arguments
The remaining command-line arguments (--gtk-debug, --gtk-no-debug, --gdk-debug, and

--gdk-no-debug) all control the amount of debug information displayed by Gtk+, GDK,

and Glib at application runtime. Some of the debug output will be of interest to application

designers ; other information is really only important to those working on specific portions

of Gtk+, GDK, or Glib. In this section, I ' ll try to cover all aspects of debug support, both

at compile time and at runtime, in addition to the command-line arguments listed here.

Compile Time. At compile time, there are four defines that can be used to control the

amount of debug information supplied by an application at runtime.

• G_ENABLE_DEBUG This compile-time flag is recognized by Gtk+, GDK,

and Glib code. If defined, the only area that is impacted in Glib, as of Glib 1 .2 .0,
is the gdate module, which will generate informational messages in a few places

should any abnormal circumstances occur. Gtk+ must be built with

G_ENABLE_DEBUG in order for the --gtk-debug, --gtk-no-debug, --gdk-debug,
and --gdk-no-debug command-line arguments to be parsed at startup and for the

GDK_DEBUG and GTK_DEBUG environment variables (discussed in the next
section) to be recognized. Various Gtk+ and GDK modules must be built with
G_ENABLE_DEBUG in order for debugging support that they provide to be

enabled. For example, building GDK with G_ENABLE_DEBUG enables debug

ging support in the drag-and-drop, X Input Method (XIM), visual, and color-con

text modules. Whether or not a module actually generates debug output is

30 Chapter 2 • Hello Gtk+ !

controlled by the debug command-line arguments and/or the GDK_DEBUG flag,

as we will see in the next section.

• G_DISABLE_ASSERT If enabled, Glib's �assertO and �assert_nocreachedO

macros are defined to do nothing. Otherwise, the g_assertO and

�assert_nocreachedO macros, used extensively throughout Gtk+, Glib, and GDK,

will be enabled.

• G_DISABLE_CHECKS If enabled, Glib's g_retum_iCfaiIO and

�retum_ vaUCfailO macros are defined to do nothing. Like g_assertO and

g_assert_nocreachedO, these macros are used throughout Glib, GDK, and Gtk+.

• GTK_NO_CHECK_CASTS If enabled, checking is not performed when casts

occur between different object types. In Chapter 3, "Signals, Events, Objects, and

Types," I ' ll introduce objects and casting. Macros such as GTK_OBJECT,

GTK_ WINDOW, and GTK_BUTTON, which are used to cast a widget or an object

variable to another widget or object class, will execute extra code to verify that the

cast is valid. Enabling GTK_NO_CHECK_CASTS disables this check.

You can enable or disable G_ENABLE_DEBUG, G_DlSABLE_ASSERT, G_DlSABLE_

CHECKS, and GTK_NO_CHECK_CASTS at the time Gtk+ is configured. The configure

script accepts an --enable-debug option. If set to "minimum", which is the default, only

inexpensive sanity checking will be performed, and GTK_NO_CHECK_CASTS will be

set, disabling object casting checks. If set to "yes", then G_ENABLE debug is set. If set to

"no" or if the configure script option --disable-debug is specified, then all debugging sup

port is disabled by setting G_DlSABLE_ASSERT, G_DlSABLE_CHECKS, and GTK_

NO_CHECK_CASTS.

Runtime. If Gtk+ was compiled with debugging enabled (Le., G_ENABLE_DEBUG

was defined), then various debug information will be printed out as conditions warrant it.

As stated earlier, the output of debug information at runtime is controlled on a module-by

module basis with the GTK_DEBUG and GDK_DEBUG environment variables as well as

the --gtk-debug, --gdk-debug, --gtk-no-debug, and --gdk-no-debug command-line argu

ments supported by Gtk+. The environment variables are applied first, if present, followed

by the command-line arguments. The values assigned to the environment variables and

command-line arguments share the same syntax, which consists of a colon-separated list of

modules. The value "all" is used to denote all modules that allow their debug output to be

controlled via the debug environment variables and command-line arguments . Table 2.2

lists the supported modules and indicates how the command-line arguments and environ

ment variables affect each.

Table 2.2 Arguments and Variables Affecting Debug at Runtime

Module Environment Command Une

objects --gtk-*

Comment

Traces creation and
destruction of objects and
prints a summary when
program terminates

Application Startup, Termination, and Main Loop Functions

Table 2.2 Arguments and Variables Affecting Debug at Runtime (Continued)

Module Environment Command Line Comment

misc Both All Miscellaneous
messages/debug

signals GTK_DEBUG --gtk-* Traces emission of signals

dnd All Drag-and-drop
messages/debug

events GDK_DEBUaa) --gdk-* Traces X event reception

plugsocket GTK_DEBUG --gtk-* GtkSocket messages

color-context GDK_DEBUG --gdk-* Color-context module
messages

xim GDK_DEBUG --gdk-* X Input Method module
messages

(a) Can also be enabled or disabled at runtime by calling gd1csecshow _events()

31

Of the preceding, only objects, events, and signals are likely to be of interest to applica

tion developers. The rest are mostly in place for the maintainers of the modules.

For example, say you have linked an application, foo, to Gtk+/GDK libraries that were

built with G_ENABLE_DEBUG, and you would like to trace signal emission and event

reception. The following are all ways to accomplish this :

$ setenv GDK_DEBUG all ; setenv GTK_DEBUG a l l ; fcc

$ setenv GDK DEBUG event s ; setenv GTK_DEBUG signals ; fcc

$ fcc - - gdk- debug=event s - - gtk - debug=s igna l s

In the preceding, we turned on all messages for Gtk+ and GDK, including signals and events.

Error messages are generated to stdout or stderr depending on the error level set for the

individual message, as listed in Table 2 .3 .

Table 2.3 Debug Output Error Levels

G_LOG_LEVEL_ERROR

G_LOG_LEVEL_CRITICAL

G_LOG_LEVEL_ WARNING

G_LOG_LEVEL_MESSAGE

G_LOG_LEVEL_INFO

Comment

Always fatal

Fatal if --g-fatal-wamings

Fatal if --g-fatal-wamings

32

Table 2.3 Debug Output Error Levels (Continued)

Error Level Comment

Chapter 2 • Hello Gtk+ !

Error levels lower in the table are smaller in value. Messages with error levels greater than

or equal to G_LOG_LEVEL_MESSAGE will go to stderr, while the rest of the messages will

go to stdout.

Recall the --g-fatal-warnings flag previously mentioned. Specifying this flag causes your

application to exit should any of the debug messages you have enabled generate a message

that has an error level greater than or equal to G_LOG_LEVEL_ WARNING.

Application Termination

To exit a Gtk+ application, call gtk_exitO:

void
gtk_exi t (int errorcode)

gtk_exitO is, in Gtk+ 1 .2, a wrapper for gdk_exitO, which just calls exit(l) , passing
errorcode as its argument. Generally, a value of zero indicates success, and a nonzero error

code indicates failure.

Try to avoid calling exit(l) in place of gtk_exitO. It is unclear what, if any, additional

functionality may be placed in gtk_exitO in future versions. Also, as Gtk+ is ported to new

environments, the implementation of gtk_exitO and/or gdk_exitO is subject to change.

Gtk+ and GDK register exit functions, using g_atexitO, at initialization time. Modules

(or widget implementations) may also register an exit function in the same manner. An exit

function is called by the system when the exit(1) system call is invoked. GtkObject is an

example of a widget that makes use of this functionality, registering a routine called

gtk_objeccdebugO. At exit time, if "object" debugging has been enabled, a list of objects

still active in the application will be displayed to the screen by the exit function. The exit

functions registered by Gtk+ and GDK are used mainly to clean up the application and X

environments at exit. You can register your own exit handlers using the Glib function

g_atexitO :

void
g_atexit (GVoidFunc func)

GVoidFunc is simply a pointer to a function that takes a void argument, for example:

void
MyExitFunc (void
{

}

g_atexitO is a wrapper of the UNIX function atexit(3).

Application Startup, Termination, and Main Loop Functions 33

Gtk+ Main Loop Functions

Earlier in this chapter, I introduced the function gtk_mainO:

void
gtk_main (void)

We've seen that once a Gtk+ application calls gtk_mainO, Gtk+ takes control.

gtk_mainO is essentially a loop, endlessly waiting for user input such as key presses and

mouse movement and making calls to signal functions registered with widgets by your

application in response to whatever input is received. It is within these signal functions that

the logic of your application resides, and other than the code in main leading up to

gtk_mainO, the bulk of the code in your application resides within the context of a signal

function. Of course, there are exceptions to this rule that we will look at later in the book:

UNIX signal functions, X error handlers, and such, are among these exceptions.

Terminating the Main Loop

To leave gtk_mainO, your application must make a call to gtk_main_quitO :

void
gtk_main_quit (void)

gtk_main_quitO basically causes gtk_mainO to break out of its loop and return. Most

applications will make the call to gtk_main_quitO from within a signal function associated

with a Quit or Exit button or menu item.

Gtk+ allows nesting of gtk_mainO, which is helpful since there may be times when you

will need to call gtk_mainO from inside a signal function. I ' ll cover the use of nested calls

to gtk_mainO later when I discuss dialogs. Note that each call to gtk_mainO should be

matched with a call to gtk_main_quitO.

An application can determine the current level of gtk_mainO nesting by calling

gtk_main_IeveIO:

guint
gtk_main_leve l (void)

A return value of zero means your application is not currently executing within the context
of gtk_mainO. A value of I indicates that a single call to gtk_mainO is in effect, and so forth.

Controlling the Main Loop

In situations similar to those that would require nesting of gtk_mainO, an application might

instead call gtk_main_iterationO. gtk_main_iterationO causes Gtk+ to make a single pass
through the main loop, processing the next available event and allowing widgets to invoke

signal functions, and so forth. Init and quit functions, described later in this chapter, are not

invoked, however; these are only invoked via a call to gtk_mainO. The following is the

function prototype for gtk_main_iterationO.

gint
gtk_main_i terat ion (void)

34 Chapter 2 • Hello Gtk+ !

The advantage of using gtk_mainO is that gtk_mainO executes a loop that will run indefi

nitely until the application calls gtk_main_exitO from inside signal function. If your program

has registered init and quit functions, these will be called each time the loop is entered. If these

init and/or quit functions are vital to your application, meaning they need to be called fre

quently, then use gtk_mainO. If they do not need to be called or are somehow harmful to the

application if called in the context in which nested main loop iteration is being performed,

then use gtk_main_iterationO instead because neither init nor quit functions are invoked from

within gtk_main_iterationO.

It is unlikely that a single call to gtk_main_iterationO will accomplish what your appli

cation needs to accomplish. Typically, your application will need to go into a loop, calling

gtk_main_iterationO until some flag is set from within a signal function. For example:

f l ag = 0 ;
whi l e (! f l ag

gtk_main_i terat ion () ;

In this case, the expectation is that flag will eventually be set in a signal function that is

triggered from within gtk_main_iterationO.

Checking for Pending Events

Applications can determine if any events are pending in the event queue by calling

gtk3vents_pendingO:

gint
gtk_event s-pending (void)

gtk_events_pendingO will return FALSE if there are no events to process at the time of the

call; otherwise, it returns TRUE. gtk_events_pendingO will not block, nor will it process,

events that might be waiting in the event queue. We can modify the preceding loop to perform

application-specific tasks when there are no events waiting to be processed, as follows:

f l ag = 0 ;
whi l e (! f l ag

i f (gtk_events-pending () == TRUE
gtk_main_iterat ion () ;

else
do_something () ;

Here, if gtk_events_pendingO returns TRUE, there is an event to dispatch, and this is handled
by calling gtk_main_iterationO. Otherwise, do_somethingO is called to do whatever it is that

do_somethingO does. Timeout or idle functions, described later in this chapter, are another and

perhaps better way to organize such a loop, with Gtk + calling your code periodically as opposed
to your code calling Gtk+.

Init and Quit Functions

You can register init functions with Gtk+ that will be called the next time your application
makes a call to gtk_mainO. Any number of functions can be registered, but each must have

the following prototype:

Application Startup, Termination, and Main Loop Functions 35

void
funct ion (gpointer data) ;

To add a function, call gtldnicaddO:

void
gtk init add (GtkFunct ion function , gpointer data)

The first argument i s a pointer to the function you want called; the second can be any

value cast to a gpointer. If you need to pass more than one value to the init function, store

these values in a struct and pass a pointer to the struct. You must ensure that data is valid at

the time the init function is called by Gtk+.

Each time gtk_inicaddO is called, the function and data passed are added to a list main

tained by Gtk+. The next time gtk_mainO is called, before Gtk+ enters its event loop, it will
call each function, removing the function and data from the list once the function returns.

Quit functions are analogous to init functions but are called after gtk_mainO has left its

event loop, which is triggered by a call to gtk_main_quitO. The function prototype for a quit

function is mostly the same as that of an init function, except it must return a gint status.

This status return is explained later in this section. A quit function can be registered with

Gtk+ by calling gtk_quicaddO:

guint
gtk_quit_add (guint main_leve l , GtkFunction funct ion , gpointer dat a)

The arguments to gtk_quicaddO are the same as those for gtk_iniCaddO, except that

gtk_quicaddO requires an additional argument, main_level, which tells Gtk+ to which nest

ing level of gtk_mainO the quit function pertains. If zero, the quit function will be executed

every time gtk_main_quitO is invoked. If nonzero and greater than or equal to 1 , the function

will only be executed when gtk_main_quitO for that nesting level has been called.

Your quit function, as previously mentioned, must return a status value. If the return

value is zero, the quit function will be removed from the list of quit functions maintained

by Gtk+, never to be called again unless it is returned to the list via a call to gtk_quiCaddO.

If nonzero, the quit function is subject to further invocation, according to the main_level

value originally passed to gtk_quiCaddO. That is, if your application in the future reaches

a nesting level of gtk_mainO equal to main_level, then each call to gtk_main_quitO that
corresponds to that nesting level will cause the quit function to be invoked, assuming that

the function continues to return a nonzero return value. If, on the other hand, the quit func
tion was added with a main_level equal to zero, returning zero from the quit function will

guarantee that it is invoked each time gtk_main_quitO is called, unless of course it returns

nonzero, which will cause the quit function to be removed from Gtk+'s list.

gtk_quicaddO returns a guint ID value. This ID value can then be passed to

gtk_quicremoveO to remove the quit function from Gtk+'s list:

void
gtk_quit_remove (guint id)

36 Chapter 2 • Hello Gtk+ !

If there is no quit function on the list that can be identified by the passed 10, the call to

gtk_quicremoveO is a no-op.

Your application can also remove a quit function that is identified by the data Gtk+ will pass

to it when invoked. The routine capable of performing this task is gtk_quicremove_by _data():

void
gtk_qui t_remove_by_data (gpointer data)

The argument data i s the same data that was passed to gtk_quicaddO. Note that only the

first quit function found on the quit list that corresponds to data will be removed. If you have

registered more than one quit function that accepts the same data argument, you will need

to invoke gtk_quicremove_by _dataO once for each such quit function. Because gtk_quiC

remove_by _dataO does not return a value, there is no way to know if the routine found and

removed a quit function or not, so it is up to your application to remember how many such

quit functions there are that would need to be removed. An improvement to

gtk_quicremove_by _dataO would be for it to return a status that indicates whether the

remove was performed or not. By checking this status, an application would know whether

there are additional quit functions to remove that correspond to the data value. Additionally,

a function that removes all quit functions associated with a given data value would seem to

me to be a reasonable addition to the Gtk+ API.

Destroying Objects When a Main Loop Exits

Gtk + allows applications to register objects for automatic destruction whenever the application

leaves a main loop (i.e., gtk_main_exitO has been called). For applications that have a single

main loop and exit the application upon returning from gtk_mainO, there is no need for this
because the environment will ensure that destruction of objects occurs at application exit. How

ever, gtk_quiCadd_destroyO provides a convenient way for objects to be destroyed automati

cally by those applications that make use of nested main loops.

void
gtk_quit_add_destroy (guint main_l eve l , GtkObj ect * obj ect)

The argument main_level is the level of the (nested) main loop that, when left by a call

to gtk_main3xitO, will cause the object to be destroyed. main_level must be greater than

zero in value. object is the object ID of the object to be destroyed.

Timeouts and Idle Processing

An application may need to perform a task that has some uncertainty involved with regard to
the amount of time it will take for the task to complete, whether or not the task will complete

at all, or both. Also, some applications must perform one or more tasks at some predefined

interval (e.g., once every 30 seconds). Both of these issues can be addressed through the use
of timeouts.

An e-mail package like Mozilla, Z-Mail, or MUSH provides an excellent example of an
application potentially well-suited for the use of timeouts. Most mail user agents are designed

to poll for new mail from the mail server or local mailbox at a user-specified interval. When

Application Startup, Termination, and Main Loop Functions 37

it comes time for the mail user agent to check for mail on a mail server, the mail user agent

will send a command to the mail server, requesting information that can be used to determine

whether new mail has arrived, and will wait for a response from the server. In short, the fol

lowing steps are involved in polling for new mail:

1 . Waiting for the duration of the polling interval (e.g. , 2 minutes) to transpire

2. Sending a command to the mail server, requesting mailbox information (e.g., how

many messages are in the mailbox), and waiting for a response from the mail server

As I will illustrate, both of these tasks can be implemented in part by using a timeout

facility such as the one provided by Gtk+.

There are two routines in Gtk+ that provide timeout support: gtk_timeouCaddO and

gtk_timeoucremoveO. The function prototypes are

guint
gtk_t imeout_add (guint 3 2 interval , GtkFunct ion function , gpointer
data)

and

void
gtk_t imeout_remove (guint tag)

Adding a Timeout

The first argument to gtk_timeoucaddO, interval, is an unsigned 32-bit value, indicating the

amount of time (in milliseconds) that Gtk + must wait before the timer expires. Once the time

out interval has expired, the routine specified by the function argument to gtk_timeoucaddO

is invoked, with the value specified by the data argument passed by Gtk+ to the function as its

single argument. The prototype for the timeout function is as follows:

gint
function (gpointer data)

If the timeout function returns a nonzero value, Gtk+ will restart the interval timer, and

your timer function will be invoked once again when the timeout interval has expired. If

zero is returned by your timeout function, the timeout will be unregistered by Gtk+ and will
no longer be triggered.

Removing a Timeout

gtk_timeouCaddO returns a unique handle of type guint. This handle may be passed to

gtk_timeoucremoveO to unregister the timeout it references before the timeout is triggered.

Calling gtk_timeouCremoveO is equivalent to returning zero from the timeout function when
called. gtk_timeouCremoveO is needed by applications that use timeouts as a way to ensure

that some operation completes during a specified period of time. If the timed operation com

pletes before the timeout is triggered, the timeout is no longer needed and should be removed

by the application with a call to gtk_timeoucremoveO.

38 Chapter 2 • Hello Gtk+ !

Timeout Example

Let's revisit the e-mail application and see how Gtk+ timeouts might be applied. To enable

a mail polling feature that triggers every n seconds, a Gtk+ e-mail application would call

gtk_timeoucaddO to specify the polling interval and to register with Gtk+ the function that

will be called each time the polling interval transpires. This routine, when called, will con

tact the mail server to determine whether new mail has arrived and perhaps to read the mail

headers and ensure that the user interface is updated in case new mail has arrived. The tim

eout routine should return a nonzero value; this will cause Gtk+ to reset the interval timer

and call the timeout function the next time the specified interval has transpired. The user

might at any time want to disable polling for new mail; this can be implemented easily by

calling gtk_timeoucremoveO. The user might also want to change the polling interval

itself; this can be done by removing the timeout and reregistering it with a call to

gtk_timeouCaddO, specifying the same function and the new polling interval as arguments.

Inside the timeout function, we will need to establish a network connection to the mail

server, assuming mail is being read from a POP or IMAP4 mail server, and then send a com

mand requesting the status of the remote mailbox. In both of these instances (Le . , when con

necting and when sending the status request), we should register a timeout function that will

be triggered in the event that the connection cannot be established or the server does not

respond to the status command that we send. Should the connection occur or we receive a

response to the status command before the timeout expires, we need to remove the timeout

with a call to gtk_timeouCremoveO. The timeout function, if it is triggered, might perform

cleanup chores associated with the failed connection or command and let the user know that

there was a failure by displaying a message. The timeout function should always return zero

to ensure that it will not be called again by Gtk+.

Timeout Precision

It is important to realize that the timeouts themselves are what I would call low-precision, in
the sense that Gtk+ is traversing the list of registered timeouts once during each iteration of

the main loop, comparing the current time with the time at which a timeout is due to trigger

and firing those timeouts for which the timeout interval has expired since the last time the list

was checked. Thus, there is the potential for a latency associated with the triggering of a given

timeout should Gtk + not get through an iteration of the main loop in time to handle a timeout

that has just expired. For example, at time to, Gtk+ might invoke an application callback in

response to an event. If a timeout is due to expire at time t1 and the callback function does not

return or give control back to the main loop until after time t l , then Gtk+ cannot dispatch the

timeout function at time t1 as was intended. There are two ways to deal with this.
The first way would be to ensure that cycles are being given to the main loop during oper

ations that are of a duration that is long enough to potentially impact the timely processing

of timeouts by Gtk+. This can be done by making frequent calls to gtk_main_iterationO, as

previously described. Each call to gtk_main_iterationO will cause Gtk+ to make a single

pass through the main loop and process any timeouts that may have triggered.

The second way would be to not use Gtk+ timeouts at all and instead use the UNIX
alarm(2) system call to implement timeouts in your application. Although the use of alarms

will eliminate any latency issues, your application cannot enjoy the benefit associated with
Gtk+ passing user data to your timeout function because alarms do not provide this facility.

Application Startup, Termination, and Main Loop Functions 39

Idle Functions

Idle functions differ from timeouts in that idle functions are called each pass through the

Gtk+ main loop. Because of this, there is a latency involved. Just as Gtk+ cannot guarantee

the frequency with which timeouts are evaluated and their associated functions invoked,

Gtk+ cannot guarantee that an application's idle functions will be invoked at a fixed, reli

able rate. This is something that for idle functions is much less of a concern, however, due

to the sort of processing that an application would tend to perform in an idle function.

So, what would one do in an idle function? The general answer is, anything that takes a

long time to accomplish. Such time-consuming tasks could be just about anything: rendering

a fractal image, reading a file from a network server, or computing prime numbers. Perform

ing tasks that take a long time to complete should, in general, not impede a user's ability to

interact with an application, nor should it impede the application's ability to respond to system

events. A program such as Netscape Communicator would be very unfriendly if it did not

allow its users to perform other tasks during a lengthy file download, such as surfing the Web

or reading newly arrived mail messages. A program performing a file transfer will usually

provide the user with a way to cancel the operation; in a GUI program, this is usually in the

form of a Cancel button. Gtk+ must get cycles in its main loop in order to process the user

event associated with clicking the Cancel button. Gtk+ also needs to be given time to process

system events such as window exposures. A well-written GUI application will redraw

exposed portions of its user interface soon after the exposure occurs, not after the file transfer

it has been performing has completed. This can only be achieved if time is being shared

between processing being performed by the application and the Gtk+ main loop. Idle func

tions are one way to allow this to happen.

Adding an Idle Function

Adding an idle function is just like adding a timeout except there is no need to specify an

interval. The routine to call to register an idle function with Gtk+ is gtk_idle_addO:

guint
gtk_idle_add (GtkFunct ion funct ion , gpointer data l

The argument function is the idle function that will be invoked by Gtk+, and data is the
argument of type gpointer that the function will be passed. A handle of type guint is returned;
this handle can be used to remove the idle function, as I will discuss later in this chapter. The
idle function provided by your application must adhere to the following function prototype:

gint
function (gpointer data l i

An idle function returning a value of zero will be destroyed by Gtk+ and will no longer

be called unless reregistered by the application. A nonzero return value will ensure that the

idle function remains to be invoked during the next iteration of the gtk main loop.

40 Chapter 2 • Hello Gtk+ !

Idle Function Priorities

Idle functions can be assigned a priority value by the application at the time they are added

by calling gtk_idle_add_priorityO:

guint
gtk_idle_add-priority (gint priori ty , GtkFunction function ,

gpo inter data l

Functionally, gtk_idle_add_priorityO is the same as gtk_idle_addO except for an extra

argument, priority. The Gtk+ and Glib headers define the priority values in Table 2.4.

Table 2.4 Priority Levels

Priority

G_PRIORITY _HIGH

G_PRIORITY _DEFAULT

G_PRIORITY _HIGH_IDLE

G_PRIORITY _DEFAULT_IDLE

G_PRIORITY _LOW

GTK_PRIORITY _REDRAW

GTK_PRIORITY _RESIZE

GTK_PRIORITY _HIGH

GTK_PRIORITY _INTERNAL

GTK_PRIORITY _DEFAULT

GTK_PRIORITY _LOW

Value

-100

o

100

200

300

G_PRIORITY _HIGH_IDLE + 20

G_PRIORITY _HIGH_IDLE + 10

G_PRIORITY _HIGH

GTK_PRIORITY _REDRAW

G_PRIORITY_DEFAULT_IDLE

G_PRIORITY_LOW

The default priority, assigned by Gtk+ when an idle function is registered by a call to

gtk_idle_addO, is GTK_PRIORITY _DEFAULT. Smaller values are higher in priority;

greater values are lower. It is perfectly reasonable for applications to register idle functions

at GTK_PRIORITY _DEFAULT + 30, for example, if they so choose.

Idle functions at the same priority level are executed in a round-robin fashion. Gtk+ will
only execute those idle functions having the highest priority of all idle functions currently

registered. Idle functions that are lower in priority are not eligible to be invoked until all
higher priority idle functions have been destroyed. Because of this, an application must be

careful when using idle functions. Idle functions that are lower in priority will experience

starvation if one or more idle functions have been registered by the application at a higher
priority, and these higher priority idle functions are never destroyed. Gtk+, Glib, or GDK

may register idle functions for internal purposes; for these idle functions to receive cycles,

applications must ensure that no application-registered idle functions of a higher priority
exist.

Application Startup, Termination, and Main Loop Functions 41

Basically, it is safest to register idle functions with gtk_idle_addO, or with gtk_idle_

add_priorityO with a priority of GTK_PRIORITY _DEFAULT. If you must add an idle

function at priorities other than GTK_PRIORITY _DEFAULT, the best way to ensure that

the idle function is not starved by higher-priority idle functions, and in tum that it does not

starve idle functions lower in priority, would be to return zero from all idle functions, ensur

ing that that they are destroyed after they are executed. Idle functions that need to be exe

cuted multiple times should be given lower priority or be utilized in a way that ensures that

other idle functions are not being starved.

Destroying Idle Functions

As previously mentioned, an idle function can be destroyed or unregistered by returning 0

from within the idle function, once it has been called. Another way to destroy an idle function

is to call gtk_idle_removeO, passing the guint value returned by gtk_idle_add_priorityO or

gtk_idle_addO:

void
gtk_idle_remove (guint tag)

Idle functions can also be removed based on the user data that was registered with the idle

function at the time of its creation. This can be done by calling gtk_idle_remove_by_dataO
and passing as an argument the gpointer argument that was passed to gtk_idle_add*O at the

time of the idle function's creation. The function prototype for gtk_idle_remove_by_dataO is

as follows:

void
gtk_idle_remove_by_data (gpointer data)

Snooping Key Presses

The final main loop routines that I'd like to discuss in this chapter include gtk_key_

snoopecinstallO and gtk_key _snooper_removeO. The function prototypes for these rou

tines are as follows:

guint
gtk_key_snooper_instal l (GtkKeySnoopFunc snooper , gpointer func_dat a)

void
gtk_key_snooper_remove (guint snooper_id)

gtk_key _snoopecinstallO accepts as arguments a pointer to a snooper function (described

later in this chapter) and user data in the form of a gpointer that will be passed to the snooper

function each time it is invoked by Gtk+. A unique ID or tag value is returned by

gtk_key _snoopecinstalIO. This ID can be used by the application to identify the "key

snooper" when attempting to remove it with a call to gtk_key _snoopecremoveO.

The function prototype for the snooper function is as follows:

gint
function (GtkWidget *widget , GdkEventKey * event , gpointer data)

42 Chapter 2 • Hello Gtk+!

The argument widget is the widget receiving the key event. The argument event describes

the key event in detail. GdkEventKey is defined as follows:

typede f struct _GdkEventKey
{

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;
guint 3 2 t ime ;
guint state ;
guint keyval ;
gint l ength ;
gchar * string ;
GdkEventKey ;

Perhaps the fields of most interest to snooper functions include the type field, which will

be set to GDK_KEY _PRESS, and keyval, which is the ASCII code for the key that was

pressed. The time value might be of interest to game developers who support keyboard

input, when reaction to the key press is based in part on how frequently a key is being

pressed. In the following source code, we make use of the keyval and string fields to imple

ment a password input dialog. Events in general are described in more detail in Chapter 3 .

Multiple snooper functions may be registered with Gtk+ by an application. As a key is

pressed, each snooper function registered by the application is invoked until one of the
snooper functions returns a nonzero value, indicating that the snooper function has swal

lowed the key press event or there are no further snooper functions to invoke. When a
snooper function returns 0, this is basically telling Gtk+ to continue processing the key

press as though the snooper function were never called in the first place. If some snooper

function returns 0, then Gtk+ does not process the key press event further, and the key press

event is discarded.

An application might do several interesting things using a key snooper. One of them, as

previously mentioned, is a password-entry dialog. To provide some measure of security, a

password-entry dialog should not echo the characters being typed by the user. This reduces

the ability of a person (or a camera) to monitor the dialog and discover the password being

typed. The following snooper function implements this feature:

0 0 4 gint
0 0 5 foo t GtkWidget *widget , GdkEventKey *event , gpointer data)
0 0 6 {
0 0 7
0 0 8
0 0 9
0 1 0

stat ic char tmp [2] ;
static char pas sword [1 0 2 4]
char c ;

11 11 ;

0 1 1 i f ((c = (char) event - >keyval) = = ' \n ' I I c = = ' \ r ') {
0 1 2 print f (" Pas sword i s ' % s ' \n " , pas sword) ;
0 1 3 gtk_exi t (0) ;
0 14
0 1 5
0 1 6
0 1 7

tmp [O]
tmp [l]

c ;
' \ 0 ' ;

Application Startup, Termination, and Main Loop Functions 43

0 1 8
0 1 9
0 2 0
0 2 1

strcat (password , tmp) ;
event - >keyval = event - > string [O]
return (0) ;

' * ' ;

The function fooO maintains a statically allocated buffer of characters, named password,

to hold the characters typed by the user, up to the carriage return or newline character that

signifies the end of data entry. On line 0 1 1 , the keyval field of the key press event is

retrieved and stored for later use. If the character corresponding to the key press is a newline

or carriage return, the password that was accumulated by the snooper function is printed to

the console, and the application is terminated. (This is just an example application. In an

actual application, the password would be stored somewhere accessible to the rest of the

application, and the dialog used to obtain the password would be tom down.)

Otherwise, the snooper function creates a character string on lines 016 and 0 1 7, using

the character retrieved from the key press event, and then concatenates this string to the

password string being constructed by the snooper function.

On line 019, the keyval and string fields of the key event are changed so that the key event

indicates a pressing of the asterisk (*) key (Shift+8). On line 020 we return a 0, which tells

Gtk+ to continue processing the event. Assuming that no other snooper function exists to

claim the key press event, Gtk+ will dispatch the key press event to the widget that has key

board focus. In the case of the GtkEntry widget, this will result in the display of an asterisk,

effectively hiding the password being typed by the user from any prying eyes.

There is one problem with the preceding algorithm; it does not correctly deal with back

space and delete characters typed by the user. It is a simple matter to fix this problem; I

leave this as an exercise to the reader. The complete code for the sample password entry

application is as follows:

Listing 2.4 Password Entry Sample

0 0 1 # inc lude < stdio . h>
0 0 2 # inc lude <gtk/gtk . h>
0 0 3
0 0 4 gint
0 0 5 foo (GtkWidget *widget , GdkEventKey *event , gpointer data)
0 0 6 {
0 0 7
0 0 8

stat ic char tmp [2] ;
static char pas sword [1 0 2 4]

0 0 9 char c ;
0 1 0

11 11 ;

0 1 1 i f ((c = (char) event - >keyval) = = ' \n ' I I c = = ' \ r ') {
0 1 2 print f (" Pas sword i s ' % s ' \ n " , password) ;
0 1 3 gtk_exi t (0) ;
0 1 4
0 1 5
0 1 6
0 1 7
0 1 8
0 1 9
0 2 0

tmp [O] = c ;
tmp [l] = ' \ 0 ' ;
strcat (password , tmp) ;
event - >keyval = event - >string [O]
return (0) ;

I * I ;

44

0 2 1
0 2 2
023 int
0 2 4 main (int argc , char *argv [])
0 2 5 {
0 2 6 GtkWidget *window , *box , * entry ;
0 2 7
0 2 8 gtk s e t locale () ;
0 2 9
0 3 0 gtk_init (&argc , &argv) ;
0 3 1
0 3 2 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

Chapter 2 • Hello Gtk+ !

0 3 3 gtk_window_set_t i t l e (GTK_WINDOW (window) , " Enter Pas sword ") ;
0 3 4
0 3 5 box = gtk_vbox_new (FALSE , 0) ;
0 3 6 gtk_container_add (GTK_CONTAINER (window) , box) ;
0 3 7
0 3 8 ent ry = gtk_entry_new () ;
0 3 9 gtk_entry_set_text (GTK_ENTRY (entry) , " ") ;
0 4 0 gtk_editable_select_region (GTK_EDITABLE (entry) , 0 , - 1) ;
0 4 1 gtk_box-pack_start (GTK_BOX (box) , entry , TRUE , TRUE , 0) ;
0 42
0 4 3 gtk_key_snooper_instal l (foo , (gpointer) NULL) ;
0 44

046
047 gtk_main () ;
0 4 8
0 4 9 return (0) ;
0 5 0

Our mainO basically consists of three sections. The first of these, on lines 028 through 030,

initializes Gtk+ as described earlier in this chapter. The second section, on lines 032 through

04 1 , creates the user interface for the application, which is essentially just a window (lines 032

and 033) and a GtkEntry widget (lines 038 and 041). A vertical box widget is used to provide a

container in the window for the GtkEntry widget. The final section consists of lines 045 through

the end of mainO. The structure of our mainO, as we have seen, is a fairly typical one for a Gtk +

application. Between section 2 and section 3, we make a call to gtk_key _snoopecinstallO to

register the key snooper function that will be called when the user types in the GtkEntry widget.

For this example, it really did not matter where we registered the key snooper as long as it
occurred after section 1 and before the call to gtk_mainO in section 3. In a real-life Gtk+ appli

cation, however, the key snooper should be registered just prior to the display of the password
entry dialog and should be removed once the dialog is dismissed with a call to

gtk_key _snoopecremoveO. The snooper function should also take care to ensure that the key

event it is processing actually occurred inside of the GtkEntry field, especially if the password

entry dialog is nonmodal or if there are other widgets (entry or otherwise) that could obtain key

board focus while the password entry field is accessible to the user. A fairly simple way to

accomplish this would be to pass the widget handle of the GtkEntry field as the func_data argu

ment to gtk_key_snoopecinstalIO. Gtk+ will then pass this data as the third argument to the

Summary 45

snooper function. A slight modification to the snooper function would be for it to compare its

data and widget arguments for equality and immediately return 0 if they are not the same

because this is an indication that the key press was not made in the password entry field.

Summary

In contrast to console applications, Gtk+ applications are event driven. A Gtk+ program
creates a user interface and then enters a main loop, gtk_mainO. User interaction with but

tons, menu items, and other widgets in the user interface results in the invocation of signal

functions, or callbacks, implemented by the application and registered with the controls or

widgets that invoke them. It is within the context of a signal function that the application

responds to user input and performs meaningful work. Time was spent analyzing a simple

Gtk+ application, and we also took a look at how to compile and debug a Gtk+ application.

The rest of the chapter focused on functions related to the main loop of a Gtk + application,

and this included a discussion of the use of timeout and idle functions.

(HAPTER

S IG NAL S , EVENTS ,
O BJ E (TS , AN D TY P E S

This chapter begins with a discussion of signals and signal handling. The topic of signals is

an important one. A typical Gtk+ application will perform all of its useful work within the

context of a signal handler, as we will see time and again throughout the course of this book.

In addition to signals, we' ll also cover Gtk+ events and objects, defining what they are and

how they can be used and manipulated by an application. The chapter will close with a short

discussion on Gtk+ types.

Signals

Signals provide the mechanism by which a widget communicates useful information to a

client about some change in its state.

In Chapter 2, "Hello Gtk+! ," we developed and discussed three "Hello World!" applications.

Two of these were console-based, using standard YO to display output to the screen and retrieve

input from the user. We saw that flow of control in these programs was synchronous, meaning

that statements were executed one after another, and when YO was needed, the program would

block in a routine such as fgetsO until the input data needed by the application was entered by

the user. The third of our "Hello World!" applications was also our first Gtk+ application. 1\vo

signal functions or callbacks were implemented in hellogtk+. Neither of these functions was

called directly by hellogtk+. lnstead, one of these functions was invoked by Gtk+ in response to

the user pressing the "Print" button. The other was invoked in response to the application being

closed (via a window manager control, for example).

An Example: GtkButton Signals

To better understand the functionality provided by signals, let's take a closer look at how

signals are used by the GtkButton widget class.

GtkButton, the widget class that implements push button in Gtk+, generates a signal

whenever one of the following events is detected:

• The pointer enters the rectangular region occupied by the button.

• The pointer leaves the rectangular region occupied by the button.

• The pointer is positioned over the button, and a mouse button is pressed.

47

48 Chapter 3 • Signals, Events, Objects, and Types

• The pointer is positioned over the button, and a mouse button is released.

• The user clicks the button (a combination of pressing and releasing a mouse button

while the pointer is positioned over the button).

Each widget class implements signals needed to make that widget class useful to applica

tion designers. In addition, widget classes inherit signals from classes higher in the Gtk + class

hierarchy. For example, a signal is emitted when a push button is destroyed. This signal is

actually generated by a superclass of GtkButton. The signals implemented by a superclass

represent functionality needed by many classes of widget. It is better to implement this func

tionality once in a superclass, allowing child classes to inherit the behavior, than it is to repli

cate the same functionality in each of the widget classes that need it.

Gtk+ does not force clients to use any of the signals that a class implements. However,

in order to be useful, most applications will need to make use of at least one of the signals

provided so that the widget can communicate useful information back to the client.

Handling Signals

Handling a signal in a Gtk+ application involves two steps. First, the application must imple

ment a signal handler; this is the function that will be invoked by the widget when the signal

triggers. Second, the client must register the signal handler with the widget. Registering a sig

nal handler with a widget occurs after the application has created or instantiated the widget,

by calling the Gtk+ routine gtk_signal30nnectO. The prototype for this function is:

gint
gtk_s ignal_connect (

GtkObj ect * obj ect ,
gchar *name ,
GtkS ignal Func func ,
gpointer func_data) ;

/ * the widget * /
/ * the signal * /
/ * the signal handler * /
/ * application- private data * /

The first argument, object, tells Gtk+ from which widget instance we would like the sig

nal to be generated. This widget pointer is returned by a call to one of the gtk_ * _new func

tions. For example, if the widget we are registering the signal handler with is a GtkButton,

then the object argument is the return value from the function gtk_button_newO or gtk_

button_new_with_labeIO. Because both of these functions return a variable of type Gtk

Widget * , we must use one of the casting macros provided by Gtk+ to coerce the GtkWidget
* variable holding the widget instance pointer to the type GtkObject * . For example:

GtkWidget *button ;

but ton = gtk_button_new_with_labe l (" Print ") ;
gtk_s ignal_connect (GTK_OBJECT (button) , . . .) ;

Signals 49

The second argument to gtk_signaCconnectO is the name of the signal we would like to

associate with the signal handler. For those signals implemented by GtkButton, this will be

one of the following strings:

• enter The pointer entered the rectangular region occupied by the button.

• leave The pointer left the rectangular region occupied by the button.

• pressed The pointer was positioned over the button, and a mouse button was pressed.

• released The pointer was positioned over the button, and a mouse button was released.

• clicked The user clicked the button (a combination of pressing and releasing the

mouse button while the pointer was positioned over the button) .

The third argument to gtk_signal_connectO is a pointer to the function that should be
invoked by the widget when the signal specified by argument two, name, is triggered. The

final argument to gtk_signal_connectO is a pointer to private data that will be passed to the

signal handler by the widget when the signal handler is invoked.

Unfortunately, signal functions do not adhere to a single function prototype. The arguments

passed to a signal handler will vary based on the widget generating the signal. The general form

of a Gtk+ signal handler is as follows:

void
callback_func (GtkWidget *widget , gpointer cal lback_data) ;

I will describe the function prototypes for signal handlers in later chapters, along with

the widgets that generate them. However, at this point, I can say a couple of things about

callback function arguments that hold true regardless of the widget class involved:

• The first argument of the signal handler will always be a pointer to the widget that

generated the signal.

• The callback_data argument will always be the last argument passed to the signal handler.

• Any arguments that are specific to the widget or to the signal will occur between the

first and last arguments of the signal handler.

The final argument passed to the callback function, callback_data, contains a pointer to

data that is private to the application and has no meaning whatsoever to the widget. The use

of private callback data is a practice that Gtk + borrowed from XtIMotif, and it has powerful
implications for application design.

Client Callback Data Example

To illustrate the use of client data, let's design a simple application. Here's the code:

Listing 3 . 1 Passing Client Data to a Callback

0 0 1 # inc lude < stdio . h>
0 0 2 # inc lude < t ime . h>
0 0 3 # include <gtk/gtk . h>
0 0 4
0 0 5 void
0 0 6 Update (GtkWidget *widget , char * t imestr)

50

0 0 7
0 0 8
0 0 9
0 1 0
0 1 1
0 1 2
0 1 3
0 1 4 void

Chapter 3 • Signals, Events, Objects, and Types

t ime_t t imeval ;

t imeval = t ime (NULL) ;
strcpy (t imest r , ct ime (&t imeval)) ;

0 1 5 PrintAndExit (GtkWidget *widget , char t imestr [] [2 6])
0 1 6
0 1 7
0 1 8
0 1 9
0 2 0
0 2 1
0 2 2
0 2 3
024 int

int i i

for (i = 0 ; i < 4 ; i + +)
print f (" t imestr [%d] is % s " , i , t imestr [i]) ;

gtk_main_quit () ;

0 2 5 main (int argc , char *argv [])
0 2 6 {
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1
0 4 2
0 4 3
0 4 4
0 4 5
0 4 6
0 4 7
0 4 8

0 4 9
0 5 0
0 5 1
0 5 2
0 5 3
0 5 4
0 5 5
0 5 6
0 5 7
0 5 8

GtkWidget *window , *box , *button ;

static char t imes [4] [2 6] =

{ "Unset\n" , " Unset\n" , "Unset\n" , " Unset \ n " } ;

gtk set locale () ;

gtk_init (&argc , &argv) ;

gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
GTK_S IGNAL_FUNC (PrintAndExi t) , t imes) ;

gtk_window_set_title (GTK_WINDOW (window) , " S ignals 1 ") ;
gtk_container_border_width (GTK_CONTAINER (window) , 0) ;

box = gtk_vbox_new (FALSE , 0) ;
gtk_container_add (GTK_CONTAINER (window) , box) ;

button = gtk_button_new_wi th_labe l (" Update 0 ") ;
gtk_s ignal_connect (GTK_OBJECT (button) , " cl i cked " ,

GTK_S IGNAL_FUNC (Update) , &t imes [O]) ;
gtk_box-pack_start (GTK_BOX (box) , button , TRUE , TRUE , 0) ;

button = gtk_but ton_new_wi th_labe l (" Update 1 ") ;
gtk_s ignal_connect (GTK_OBJECT (button) , " c l i cked " ,

GTK_S IGNAL_FUNC (Update) , &t imes [l]) ;
gtk_box-pack_start (GTK_BOX (box) , button , TRUE , TRUE , 0) ;

but ton = gtk_button_new_wi th_labe l (" Update 2 ") ;
gtk_s ignal_connect (GTK_OBJECT (button) , " cl i cked" ,

Events

0 5 9
0 6 0
0 6 1
0 6 2
0 6 3
0 6 4
0 6 5
0 6 6
0 6 7
0 6 8
0 6 9
0 7 0
0 7 1
0 7 2

GTK_S IGNAL_FUNC (Update) , &t imes [2]) ;
gtk_box-pack_start (GTK_BOX (box) , button , TRUE , TRUE , 0) ;

button = gtk_button_new_wi th_labe l (" Update 3 ") ;
gtk_s ignal_connect (GTK_OBJECT (button) , " c l icked " ,

GTK_S IGNAL_FUNC (Update) , &t imes [3]) ;
gtk_box-pack_start (GTK_BOX (box) , button , TRUE , TRUE , 0) ;

gtk main () ;

return (0) ;

51

The purpose of this example is to illustrate how private data can be passed to a callback rou

tine. On lines 029 and 030, we declare an array of four 26-character strings, 26 characters being

what is needed to hold the value returned by the ctime(3) function. These strings are initialized

to the value "Unset\n" so that the callback routine that will be invoked when we exit, PrintAn

dExitO, has something sensible to print should the user not change one or more of the string's

values. On lines 048, 053, 058, and 083, we register the signal function UpdateO with the Gtk

Button that was created a line or two earlier, using gtk_signal30nnectO. Each of these calls to

gtk_signal_connectO is passed a different func_data argument; the first call is passed the

address of the first cell in the array of times, the second call is passed the address of the second

cell of times, and so forth.
Whenever the user clicks one of the buttons labeled "Update 0", "Update I ", "Update 2",

or "Update 3", UpdateO will be invoked. The timestr argument will be set by Gtk+ to the pri

vate data assigned when the callback or signal function was registered.

This may be a silly example, but it illustrates a very important technique. Note that we

have no logic inside of UpdateO that concerns itself with the button pressed by the user; we

simply don't need to know this. All we need to know is that the callback function is being

passed a pointer to a string presumed to be big enough to hold the ctime(3) result that is

going to be stuffed into it.

It is easy to extend this example to a real-life application such as a word processor or to

any application that allows a user to manipulate more than one document at a time, such as
a spreadsheet or a photo manipulation program like xv or GIMP. Whenever a callback is

designed to manipulate data of some kind, try to make that data available to the callback
function via the func_data argument. This will enable reuse of callbacks and minimize the

need for maintaining global data.

Events

Events are similar to signals in that they are a method by which Gtk+ can tell an application
that something has happened. Events and signals differ mainly in what it is they provide

notification of. Signals make applications aware of somewhat abstract, high-level changes,

such as GUI (not mouse) button presses, toggle button state changes, or the selection of a

52 Chapter 3 • Signals, Events, Objects, and Types

row in a list widget. Events mainly provide a way for Gtk+ to pass along to the client any

X I I events that have been received over the X server connection in which the client has

expressed an interest.

Events and signals share the same Gtk+ APls. To register a callback function for an

event, use gtk_signal_connectO. The APls involved will be discussed later in this chapter.

Event Cal lback Function Prototypes

The function prototype for event callbacks is slightly different than for signals:

gint
cal lback_func (GtkWidget *widget , GdkEvent * event ,

gpointer callback_data) ;

widget is the Gtk+ widget to which the event pertains, event is a GDK data structure that

contains information about the event, and callback_data is the application-specific data that

was registered with the handler by the client at the time that gtk_signal30nnectO was called.
Most event callbacks adhere to the preceding prototype, but there are variations. In the

following section where individual events are described, I will provide the callback func

tion prototype that is most appropriate for each event.

Table 3 . 1 defines each of the events supported by Gtk+ 1 .2. Note that the names all start

with GDK_ because the events all originate from within GDK code.

Table 3 . 1 GDK Events

Event Name

GDK_NOTHING

GDK_DELETE

Description

No event. (You should never see this value.)

This is a client message, likely from a window
manager, requesting that a window be deleted.

Maps to the X I I DestroyNotify event. A window
has been destroyed.

Maps to an X I I Expose or GraphicsExpose
event. If Expose, some portion of a window
was exposed and is in need of a redraw. If
GraphicsExpose, then X protocol was CopyArea
or CopyPlane, and the destination area could not
be completely drawn because some portion of the
source was obscured or unmapped.

Maps to an X I I NoExpose event. X protocol was
Copy Area or CopyPlane, and the destination area
was completely drawn because all of source was
available.

Events

Table 3.1 GDK Events (Continued)

Event Name

GDK_BUTTON_RELEASE

GDK_KEY _PRESS

53

Description

Maps to an X I I MotionNotify event. The pointer
(controlled by mouse, keyboard, touchpad, or
client via X protocol) was moved.

Maps to an XI I ButtonPress event. A mouse
button was pressed.

GDK detected a mouse double-click while
processing an X I I ButtonPress event.

GDK detected a mouse triple-click while
processing an X I I ButtonPress event.

Maps to an X I I ButtonRelease event.

Maps to an X I I KeyPress event. Reports all keys,
including Shift and Ctrl.

Maps to an XI I KeyRelease event. Reports all
keys, including Shift and Ctrl.

Maps to an X I I EnterNotify event. The pointer
has entered a window.

Maps to an X I I LeaveNotify event. The pointer
has left a window.

Maps to an XI I FocusIn or FocusOut event. A
field in the event structure is used to indicate
which. A window has obtained or lost server focus.

Maps to an X I I ConfigureNotify event. Some
change in the size, location, border, or stacking
order of a window is being announced.

Maps to an X I I MapNotify event. A window 's

state has changed to mapped.

Maps to an X I I UnmapNotify event. A window's
state has changed to unmapped.

Maps to an XI I PropertyNotify event. A property
on a window has been changed or deleted.

Maps to an X I I SelectionClear event. See the
following discussion.

Maps to an X I I SelectionRequest event. See the
following discussion.

54

Table 3 . 1 GDK Events (Continued)

Event Name

GDK_DRAG_ENTER

GDK_DRAG_LEAVE

GDK_DRAG_MOTION

GDK_DRAG_STATUS

GDK_DROP _START

GDK_DROP _FINISHED

GDK_CLIENT_EVENT

Chapter 3 • Signals, Events, Objects, and Types

Description

Maps to an XI I SelectionNotify event. See the
following discussion.

Used by X Input Extension-aware programs that
draw their own cursors.

Used by X Input Extension-aware programs that
draw their own cursors.

Motif Drag and Drop top-level enter.

Motif Drag and Drop top-level leave.

Motif Drag and Drop motion.

Motif Drag and Drop status message.

Motif Drag and Drop start.

Motif Drag and Drop finished.

Maps to an XI I ClientMessage event which is a
message or event that was sent by a client.

Maps to an XI I VisibilityNotify event. A window
has become fully or partially obscured, or it has
become completely unobscured.

Note that there are XI I events that are not passed on to your Gtk+ application. For example,

MappingNotify events are responded to by GDK by calling XRefreshKeyboardMappingO,
which is the standard way for Xlib clients to handle the reception of this event. Unless you take

extraordinary means to look for it, your application will never see a MappingNotify event.

In X I I , clients must tell the server which events the client is interested in receiving by

soliciting the events. If an event is not solicited by a client, it will not be sent. There are a

few exceptions, however: MappingNotify, ClientMessage, and the Selection* events are all

nonmaskable and will always be sent to the client.

In Gtk+/GDK, clients must also solicit the events in which they have interest. This is done

on a per-widget basis, using a technique that is very similar to calling XSelectInputO from an
Xlib program. In Gtk+, the routine to call is gtk_widgeCseCeventsO. Here is its prototype:

void
gtk_widget_set_event s (GtkWidget *widget , gint event s)

The argument events is a bitmask used to indicate the types of events the client would
like to receive notification of from Gtk+, and widget is the handle of the Gtk+ widget to

which the event notification pertains. The X server will only send events specified in the

events mask that belong to the window defined by the widget. This implies that widgets that

Events 55

do not create a window cannot receive events (we'll return to this issue later in this book).

Events that are not solicited for a window are not transmitted to the client by the X server.

Unless you plan to handle a specific event in your application, there is really no need for

you to call this routine. This does not mean that events will not be solicited for the widget;

it is very likely that one or more events will be solicited by the widget implementation.

The events bitmask can be constructed by OR' ing together one or more of the constants

defined by GDK (see Table 3.2).

Table 3.2 GDK Event Masks

Mask Evenl(s) Solicited

GDK_EXPOSURE_MASK Expose event (but not GraphicsExpose or
NoExpose)

GDK_POINTER_MarION_MASK Fewer pointer motion events

GDK_BUTION_MarION_MASK Pointer motion while any mouse button down

GDK_BUTIONCMarION_MASK Pointer motion while mouse button 1 down

GDK_BUTION2_MarION_MASK Pointer motion while mouse button 2 down

GDK_BUTION3_MarION_MASK Pointer motion while mouse button 3 down

GDK_BUTION_PRESS_MASK Pointer button down events

GDK_BUTION_RELEASE_MASK Pointer button up events

GDK_KEY _PRESS_MASK Key down events

GDK_KEY_RELEASE_MASK Key up events

GDK_ENTER_NarIFY_MASK Pointer window entry events

GDK_LEAVE_NarIFY_MASK Pointer window leave events

GDK_FOCUS_CHANGE_MASK Any change in keyboard focus

GDK_STRUCTURE_MASK Any change in window configuration

GDK_PROPERTY_CHANGE�ASK Any change in property

GDK_ VISIBILITY _NarIFY _MASK Any change in visibility

GDK_PROXIMITY_IN_MASK Used by X Input Extension programs

GDK_PROXIMITY_OUT_MASK Used by X Input Extension programs

GDK_SUBSTRUCTURE_MASK Notify about reconfiguration of children

GDK_ALL_EVENTS_MASK All of the above

S6 Chapter 3 • Signals, Events, Objects, and Types

The masks in the preceding table are not one-to-one with the events listed in Table 3. 1 .

Some o f the masks will lead to the reception of more than one event, and your callback

function may have to check to see which event was received, depending on the application.

Table 3 .3 should clarify the mapping that exists between masks and events.

Table 3.3 Event Mask-to-Event Mappings

Mask Event(s) Solicited

GDK_EXPOSURE_MASK GDK_EXPOSE

GDK_POINTER_MOTION_MASK GDK_MOTION_NOTIFY

GDK_POINTER_MOTION_HINT_MASK GDK_MOTION_NOTIFY

GDK_BUTTON_MOTION_MASK GDK_MOTION_NOTIFY

GDK_BUTTONl_MOTION_MASK GDK_MOTION_NOTIFY

GDK_BUTTON2_MOTION_MASK GDK_MOTION_NOTIFY

GDK_BUTTON3_MOTION_MASK GDK_MOTION_NOTIFY

GDK_BUTTON_PRESS_MASK GDK_BUTTON_PRESS
GDK_2BUTTON_PRESS
GDK_3BUTTON_PRESS

GDK_BUTTON_RELEASE_MASK GDK_BUTTON_RELEASE

GDK_KEY _PRESS_MASK GDK_KEY _PRESS

GDK_KEY_RELEASE_MASK GDK_KEY_RELEASE

GDK_ENTER_NOTIFY _MASK GDK_ENTER_NOTIFY

GDK_BUTTON_RELEASE_MASK GDK_BUTTON_RELEASE

GDK_LEAVE_NOTIFY _MASK GDK_LEAVE_NOTIFY

GDK_FOCUS_CHANGE_MASK GDK_FOCUS_CHANGE

GDK_STRUCTURE_MASK GDK_DESTROY
GDK_CONFIGURE
GDK_MAP
GDK_UNMAP

GDK_PROPERTY _CHANGE_MASK GDK_PROPERTY _NOTIFY

GDK_ VISIBILITY _NOTIFY_MASK GDK_ VISIBILITY_NOTIFY

GDK_PROXIMITY _IN_MASK GDK_PROXIMITY _IN

GDK_PROXIMITY _OUT_MASK GDK_PROXIMITY _OUT

Events

Table 3.3 Event Mask-to-Event Mappings (Continued)

Mask Evenl(s) Solicited

GDK_DESTROY
GDK_CONFIGURE
GDK_MAP
GDK_UNMAP

All of the above

57

What happens if you specify a mask that does not contain bits set by the widget? For
example, the GtkButton widget selects GDK_BUTTON_PRESS_MASK for its window

when the buttons' window is created. Let's say your client calls gtk_secwidgeceventsO,
and the mask you supply does not have the GDK_BUITON_PRESS_MASK bit set, as in

the following code:

button = gtk_button_new_with_labe l (" Print ") ;
gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " c l icked " ,

GTK_S IGNAL_FUNC (PrintString) , GTK_OBJECT (window» ;

gtk_widget_set_event s (button , GDK_POINTER_MOTION_MASK) ;
gtk_s ignal_connect (GTK_OBJECT (button) , " motion_not i fy_event " ,

GTK_S IGNAL_FUNC (Mot ionNot i fyCal lback) , NULL) ;

In this case, button press events will be sent to the client and processed by the GtkButton

widget, in addition to MotionNotify events that will be handled by the client in MotionNo

tifyCallbackO.
What about selecting an event that has already been selected by a widget? For example:

button = gtk_button_new_with_label (" Print ") ;
gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " cl i cked" ,

GTK_S IGNAL_FUNC (PrintString) , GTK_OBJECT (window» ;

gtk_widget_set_event s (button , GDK_BUTTON_PRESS_MASK) ;
gtk_s ignal_connect (GTK_OBJECT (button) , " button-pres s_event " ,

GTK_S IGNAL_FUNC (ButtonPressCal lback) , NULL) ;

This too will not affect the widget. When a button press occurs, Gtk+ will first call But
tonPressCallbackO and then call PrintStringO. Note that we really did not need to call

gtk_widgeCseceventsO to select GDK_BUITON_PRESS_MASK for the GtkButton

widget because that event was already selected by the widget itself, but it didn't hurt.

Event Types

Earlier we introduced the function prototype for the callback function invoked by Gtk+
upon reception of a signal that the client has solicited and for which a signal function has

been registered. The prototype, once again, is as follows :

58

void

Chapter 3 • Signals, Events, Objects, and Types

gint
cal lback_func (GtkWidget *widget , GdkEvent * event ,

gpointer callback_data) ;

GdkEvent is actually a C union of structures, one structure for each signal type listed in

Table 3 . 1 :

union GdkEvent

} ;

GdkEventType
GdkEventAny
GdkEventExpose
GdkEventNoExpose
GdkEventVi s ibi l i ty
GdkEventMotion
GdkEventButton
GdkEventKey
GdkEventCross ing
GdkEventFocus
GdkEventConfigure
GdkEventProperty
GdkEventSelect ion
GdkEventProximity
GdkEventClient
GdkEventDND

type ;
any ;
expose ;
no_expose ;
vi s ibi l ity ;
mot ion ;
button ;
key ;
cross ing ;
focus_change ;
conf igure ;
property ;
selection ;
proximity ;
c l i ent ;
dnd ;

The following describes each of the structures encapsulated within the GdkEvent union (with

the only exceptions being GdkEventProxirnity, which is not covered, and GdkEventDND,

which is an internal event type used in the implementation of Drag and Drop, also not discussed

in this book). Each of the preceding names is a typedef for a struct that has the same name but

is prefixed with '_' . For example:

typede f struct _GdkEventExpose GdkEventExpose ;

In each of the following structures, as well as in the preceding GdkEvent, GdkEvent'JYpe is
an enum that defines the events in Table 3. 1 . Thus, in a callback function that is supposed to

process LeaveNotify events, the event type can be verified using code similar to the following:

LeaveFunc (GtkWidget *widget , GdkEvent * event , gpointer cal lback_data)
{

i f (event = = (GdkEvent *) NULL I I event - >type 1 =GDK_LEAVE_NOTI FY) {
ErrorFunction (" LeaveFunc : NULL event or wrong type \n") ;
return ; / * bogus event * /

/ * event i s good * /

Events 59

In the preceding routine, we leave the signal function if the event pointer is NULL or if

the type of the event is not GDK_LEAVE_NOTIFY.

GdkEventExpose

struct _GdkEventExpose
{

} ;

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;
GdkRectangle area ;
gint count ;

Event Name String

expose_event

Callback Function Prototype

gint

/* GDK EXPOSE * /

/ * I f non- zero , how many more event s fol low * /

func (GtkWidget *widget , GdkEventExpose * event , gpointer arg) ;

Description

Expose events are identified by a type field set to GDK_EXPOSE. Window identifies the

window that needs repainting, and area defines the region that this expose event describes.

If more than one region in a window becomes exposed, multiple expose events will be sent

by the X server. The number of events pending for the window is identified by count. If your

code ignores the area field and redraws the entire window in the expose signal function,

then your code should wait until it receives an expose event with a count field equal to zero.

GdkEventNoExpose

struct _GdkEventNoExpose
{

} ;

GdkEventType type ;
GdkWindow *window ;
gint8 send_event ;

Event Name String

no_expose_event

Callback Function Prototype

gint
func (GtkWidget *widget , GdkEventAny * event , gpointer arg) ;

Description

NoExpose events are received if Copy Area or Copy Plane X protocol is performed success

fully. This will happen only if all values in the source image were able to be copied by the

60 Chapter 3 • Signals, Events, Objects, and Types

X server, with no portions of the source window obscured, and if the graphics_exposures

flag in the X GC used in the CopyArea or CopyPlane request was set to True.

XCopy Area is invoked by both gdk_draw _pixmapO and gdk_ window_copy _areaO.

GdkEventVisibility

struct _GdkEventVi s ibil ity

} ;

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;
GdkVi s ibi l i tyState state ;

Event Name String

visibility_notify _event

Callback Function Prototype

gint

/* GDK VISIBILITY NOTI FY * /

func (GtkWidget *widget , GdkEventVi sibi l i ty * event , gpointer arg) ;

Description

Visibility events are sent when the visibility of a window has changed. The state field of the

event describes the nature of the change and can be one of the following values in Table 3 .4.

Table 3 .4 Visibility Event States

Value

GdkEventMotion

struct _GdkEventMotion

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;

Meaning

Window was partially obscured, fully obscured,
or not viewable, and became viewable and
completely unobscured.

Window was viewable and completely
unobscured, or not viewable, and became
viewable and partially unobscured.

Window was viewable and completely
unobscured, or viewable and partially
unobscured, or not viewable, and became
viewable and fully unobscured.

/ * GDK MOTION NOTIFY * /

Events

} ;

guint 3 2 t ime ;
gdouble X ;

gdouble y ;
gdouble pres sure ;
gdouble xt i l t ;
gdouble yt i l t ;
guint state ;
gint 1 6 i s hint ;
GdklnputSource source ;
guint 3 2 deviceid ;
gdouble x_root , y root ;

Event Name String

motion_notify 3vent

Callback Function Prototype

gint
func (GtkWidget *widget , GdkEventMotion * event , gpointer arg) ;

Description

61

Motion notify events indicate that the pointer has moved from one location of the screen to

another. The time field indicates the time of the event in server-relative time (milliseconds

since the last server reset). If the window is on the same screen as the root (which is usually

the case), then x and y are the pointer coordinates relative to the origin of the window; oth
erwise, they are both set to O. x_root and y _root are the coordinates relative to the root win

dow. Pressure is always set to the value 0.5, and xtilt and ytilt are always set to the value O.
Source is always set to GDK_SOURCE_MOUSE, and deviceid is always set to the value
GDK_CORE_POINTER. Is_hint is set to 1 if the mask used to select the event was

GDK_POINTER_MOTION_HINT_MASK; otherwise, it will be O. If is_hint is I e, then

the current position information needs to be obtained by calling gdk_ window _

gecpointerO. State is used to specify the state of the mouse buttons and modifier keys just

before the event. The values possible for state are constructed by OR' ing any of the follow

ing bits in Table 3.5 .

Table 3.5 Motion Event States

Value Meaning

GDK_SHIFCMASK

GDK_LOCK_MASK

GDK_CONTROL_MASK

GDK_MODl_MASK

GDK_MOD2_MASK

shift key is pressed.

lock key is pressed.

control key is pressed.

modI is pressed (typically AIeL or AleR).

mod2 is pressed (typically Num_Lock).

62

Table 3.5 Motion Event States (Continued)

Value

GDK_MOD3_MASK

GDK_MOD4_MASK

GDK_MOD5_MASK

GDK_BUTTON I_MASK

GDK_BUTTON2_MASK

GDK_BUTTON3_MASK

GDK_BUTTON4_MASK

GDK_BUTTON5_MASK

Chapter 3 • Signals, Events, Objects, and Types

Meaning

mod3 is pressed.

mod4 is pressed.

mod5 is pressed.

Button l is pressed (typically the left button).

Button2 is pressed (typically the right button).

Button3 is pressed (typically the middle button).

Button4 is pressed.

Button5 is pressed.

shift, lock, control, modI through mod5, and Button 1 through Button5 are logical names

in X 1 1 and are subject to remapping by the user. The X 1 1 user command for performing

this remapping is xmodmap(1) . The xmodmap(1) command can also be used to view the

current logical name to keysym mapping, for example:

bash$ xmodmap -pm
xmodmap : up to 2 keys per modi f i e r , (keycodes in parenthe ses) :

shi f t
lock
control
modl
mod2
mod3
mod4
modS

Shi ft_L (Ox3 2) , Shi ft R (Ox3 e)
Caps_Lock (Ox4 2)
Control_L (Ox2 S) , Control R (Ox6d)
Al t_L (Ox4 0) , Al t_R (Ox7 1)
Num Lock (Ox4d)

Scroll Lock (Ox4 e)

GdkEventButton

s t ruct GdkEventButton

GdkEventType type ;

GdkWindow *window ;
gint 8 send_event ;
guint 3 2 t ime ;
gdouble x ;
gdouble y ;
gdouble pres sure ;
gdouble xt i l t ;
gdouble yt i l t ;
guint state ;
guint but ton ;

/ * GDK_BUTTON_PRESS , GDK_2BUTTON_PRESS ,
GDK_3BUTTON_PRESS , GDK_BUTTON_RELEASE * /

Events

} ;

GdklnputSource source ;
guint 3 2 deviceid ;
gdouble x_root , y_root ;

Event Name Strings

button_press_event

button_release_event

Callback Function Prototype

gint
func (GtkWidget *widget , GdkEventButton * event , gpointer arg) ;

Description

63

Button events indicate that a mouse button press or release has occurred. The time field

indicates the time of the event in server-relative time (milliseconds since server reset). If the

window receiving the button press or release is on the same screen as the root (which is usu

ally the case), then x and y are the pointer coordinates relative to the origin of window; oth

erwise, they are both set to zero. X_root and y _root are the coordinates of the press or

release relative to the root window. Pressure is always set to the value 0.5, and xtilt and ytilt

are always set to the value zero. Source is always GDK_SOURCE_MOUSE, and deviceid

is always set to the value GDK_CORE_POINTER. State is used to specify the state of the

mouse buttons and modifier keys just before the event. The values possible for state are the

same values as those previously described for GdkEventMotion. Button indicates which

button the event is for, with 1 indicating button 1 , 2 indicating button 2, and so on.

GdkEventKey

struct _GdkEventKey
{

} ;

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;
guint 3 2 t ime ;
guint s tate ;
guint keyval ;
gint length ;
gchar * string ;

Event Name Strings

key _press3vent

key_release_event

Callback Function Prototype

gint
func (GtkWidget *widget , GdkEventKey * event , gpointer arg) ;

64 Chapter 3 • Signals, Events, Objects, and Types

Description

Key events indicate that a keyboard key press or key release has occurred. The time field indi

cates the time of the event in server-relative time (milliseconds since server reset). State is used

to specify the state of the mouse buttons and modifier keys just before the event. The values

possible for state are the same as those previously described for GdkEventMotion. Keyval indi

cates which key was pressed or released. Keyval is the keysym value that corresponds to the

key pressed or released. Keysyms values are symbolic values that represent the keys on the

keyboard. Keyboards generate hardware-dependent values that are mapped by Xlib to keysyms

using a table provided by the X server. For example, the hardware code generated when the

user presses the key labeled ''A'' is converted to the keysym value XK_A. It is this value (e.g.,

XK_A) that is stored inside the keyval field. String contains a string of ASCII characters that

were obtained by GDK by calling the Xlib function XLookupStringO. Usually, the string will

be of length 1 and will correspond directly to the glyph or symbol displayed on the key that

was pressed or released (e.g., for XK_A, the string will be ''A''). However, clients can associate

an arbitrarily long string with a key using XRebindKeysymO. The length of this string, which

is limited to 16 characters by GDK, is stored in length, and string contains the value of the

string (truncated if necessary to 16 characters) returned by XLookupStringO.

GdkEventCrossing

struct _GdkEventCross ing
{

} ;

GdkEventType type ;
GdkWindow *window ;
gint8 send event ;
GdkWindow * subwindow ;
guint 3 2 t ime ;
gdouble X ;

gdoubl e y ;
gdoubl e x_root ;
gdoubl e y_root ;
GdkCro s s ingMode mode ;
GdkNot i fyType detai l ;
gboolean focus ;
guint s tate ;

Event Name Strings

entecnotify _event
leave_notify 3vent

Callback Function Prototype

gint
func (GtkWidget *widget , GdkEventCrossing * event , gpointer arg) ;

Events 65

Description
Crossing events indicate that the mouse pointer has entered or left a window. The window into

which the pointer has entered, or from which it has left, is indicated by window. If the event

type is GDK_LEAVE_NOTIFY and the pointer began in a child window of window, then

subwindow will be set to the GDK ID of the child window, or else it will be set to the value

NULL. If the event type is GDK_ENTER_NafIFY and the pointer ends up in a child win

dow of window, then subwindow will be set to the GDK ID of the child window, or else it will

be set to the value NULL. The time field indicates the time of the event in server-relative time

(milliseconds since server reset). If window is on the same screen as the root (which is usually

the case), then x and y specify the pointer coordinates relative to the origin of window; other

wise, they are both set to zero. X_root and y _root are the coordinates of the pointer relative to

the root window. If the enter or leave event was caused by normal mouse movement or if it

was caused by a pointer warp (that is, the client has explicitly moved the mouse), then mode

will be set to GDK_CROSSING_NORMAL. Or, if the crossing event was caused by a pointer

grab, mode will be set to GDK_CROSSING_GRAB . Finally, if the crossing event was caused

by a pointer ungrab, then mode will be set to the value GDK_CROSSING_UNGRAB . If the

receiving window is the focus window or is a descendant of the focus window (subwindow is

not NULL), then focus will be set to TRUE; otherwise, it will be set to FALSE. State specifies

the state of the mouse buttons and modifier keys just before the event. The values possible for

state are the same as those previously described for GdkEventMotion.

The final field, detail, is a bit complicated to describe. Here we' ll simply list the GDK

values that can be stored in this field and the X I I values to which they map. In practice,

X I I client applications (and, by extension, Gtk+ applications) rarely, if ever, will make use

of the data in this field (see Table 3.6).

Table 3.6 Event Crossing Event Detail Field

Xll Value

NotifyInferior

Notify Ancestor

NotifyVirtual

Notify Nonlinear

NotifyNonlinearVirtual

GdkEventFocus

struct GdkEventFocus

} ;

GdkEventType type ;
GdkW indow *window ;
gint B send_event ;
gint 16 in ;

GDK Value

GDK_NOTIFY _INFERIOR

GDK_NOTIFY _ANCESTOR

GDK_NOTIFY_VffiTUAL

GDK_NOTIFY_NONLINEAR

GDK_NOTIFY _NONLINEAR_VIRTUAL

66

Event Name Strings

focus_in_event

focus_ouCevent

Callback Function Prototype

gint

Chapter 3 • Signals, Events, Objects, and Types

func (GtkWidget *widget , GdkEventFocus * event , gpo inter arg) ;

Description

Focus events indicate a change in keyboard focus from one window to another. When keyboard

focus changes, two events are sent. One event is sent for the window that had the keyboard

focus just prior to the focus change. The other is sent for the window that just obtained the key

board focus. The in field is used to define the type of focus change. If the Xl I event type is

FocusIn, then the window identified by window received focus, and in will be set to TRUE.
Otherwise, the X 1 1 event type was FocusOut, the window identified by window lost input

focus, and in will be set to FALSE.

GdkEventConfigure

s t ruct _GdkEventConf igure

} ;

GdkEventType type ;
GdkWindow *window ;
gint8 s end_event ;
gint 1 6 x , y ;
gint 1 6 width ;
gint 1 6 height ;

Event Name String

configure_event

Callback Function Prototype

gint

/* GDK CONFIGURE * /

func (GtkWidget *widget , GdkEventConf igure * event , gpointer arg) ;

Description

Configure events indicate a change in the size and/or location of a window. The window
field identifies the window that was moved or resized. The x and y fields identify the new
x and y locations of the window in the root window coordinate space. Width and height

identify the width and the height of the window.

GdkEventProperty

struct _GdkEventProperty
{

GdkEventType type ;

Events

} ;

GdkWindow *window ;
gint 8 send_event ;
GdkAtom atom ;
guint3 2 t ime ;
guint state ;

Event Name String

property_notify_event

Callback Function Prototype

gint

67

func (GtkWidget *widget , GdkEventProperty * event , gpointer arg) ;

Description

Property events indicate a change of a property. Properties are named data associated with a

window. This data is stored on the X server to which your Gtk+ client is connected. Properties

have a unique ID that either is predefined or is assigned by the X server at the time the prop

erty is installed. This ID is identified by the atom field in the preceding event struct. Several

standard properties are used to help the window manager do its job. For example, when you

call gtk_sec window _titleO, GDK will set the XA_ WM_NAME atom of the window to the

character string that was passed to gtk_seC window _title(). The window manager will be noti

fied of this property change by the X server via a PropertyNotify event. Upon receiving the

event, the window manager will redraw the title displayed in the window title bar decoration

that the window manager has placed around your application's top-level window.

While the major use of properties is in satisfying window manager protocols (such as

specifying window titles and icon pixmaps) or client notification of window deletion, prop

erties can also be used as a form of interprocess communication among cooperating clients.

GDK provides routines that allow you to create, modify, and destroy properties.

The time field stores the time that the event occurred in server-relative time (milliseconds

since server reset). State identifies the type of change that has occurred. PropertyNewValue indi

cates that the value of the property identified by atom has changed. PropertyDelete indicates that
the property identified by atom no longer exists on the server.

GdkEventSelection

s t ruct _GdkEventSelection
{

} ;

GdkEventType type ;

GdkWindow *window ;
gint 8 send_event ;
GdkAtom selection ;
GdkAtom target ;
GdkAtom property ;
guint3 2 requestor ;
guint3 2 t ime ;

/ * GDK_SELECTION_CLEAR GDK_SELECTION_REQUEST
GDK_SELECTION_NOTIFY * /

68

Event Name Strings

selection_clear_event

selection_requesCevent

selection_notify _event

Callback Function Prototype

gint

Chapter 3 • Signals, Events, Objects, and Types

func (GtkWidget *widget , GdkEventSelect ion *event , gpointer arg) ;

Selections are an important form of interprocess communication available to all X clients,

including those written in Gtk+. Selections provide the mechanism by which copy and

paste operations among clients are performed. The classic example of such an operation is

highlighting text in an xterm(1) and using mouse button 2 to paste the highlighted text in

another xterm window. The xterm in which the text is highlighted is referred to as the owner

client, and the xterm into which the text is pasted is referred to as the requestor client.

Owner clients have data currently selected, and requestor clients want that data. Selections

allow the requestor to become aware that data is available and provide the mechanism by

which the owner can convert the data into a form that is useful by the requestor. A client (or

a widget) can either be an owner or a requestor, as the need arises.

Selection Protocol. Basically, the protocol between the owner and requestor is as follows.

In this example, we'll assume we are performing copy and paste between text edit (entry) wid

gets in two different clients. We'll refer to the text edit widget in client 1 as entry- l and the

text edit widget in client 2 as entry-2.

When the user selects text in entry- l (we ignore here how that is done), client 1 will call

gtk_selection_ownecsetO to obtain ownership of the selection atom named GDK_

SELECTION_PRIMARY (XA_PRIMARY). If successful and client 1 did not already own

the selection, a SelectionClear (GDK_SELECTION_CLEAR) event will be sent to the pre

vious owner (perhaps client 2, but this could be any X 1 1 client connected to the X server,

written using Xlib, Motif, or any other XI I toolkit). The client receiving the SelectionClear

event will respond by unhighlighting the previously selected text. Notice that all we have

done so far is switch the ownership of the primary selection atom from one client to another.

No data has been transferred at this point.

Assume now that the text edit widget in client 2 (entry-2) obtains focus, and the user ini

tiates a paste operation in some application-specific way. Client 2 now takes on the role of

requestor and calls gtk_selection30nvertO to obtain the data. Gtk_selection30nvertO will call
gdk_selection_convertO, which in turn will call XConvertSelectionO. XConvertSelectionO is

passed a window ID, the GDK_SELECTION]RIMARY atom, and a target atom. The target

atom is used to indicate the data type to which the requestor would like the selected data to be

converted, if necessary or even possible, by the owner prior to transferring the selected data to

the X server. A base set of targets is predefined by Xl I 's Inter-Client Communication Conven

tions Manual (ICCCM). Table 3.7 illustrates some predefined target atoms in XI I .

Events

Table 3.7 Predefined Target Atoms in X l l

Atom

XA_ARC

XA_POINT

XA_ATOM

XA_RGB_COLOR_MAP

XA_BITMAP

XA_RECTANGLE

XA_CARDINAL

XA_STRING

XA_COLORMAP

XA_ VISUALID

XA_CURSOR

XA_WINDOW

XA_DRAWABLE

XA_ WM_HINTS

XA_FONT

XA_INTEGER

XA_ WM_SIZE_HINTS

XA_PIXMAP

xu Data Type

XArc

XPoint

Atom

Atom (standard colormap)

Pixmap (depth I)

XRectangle

int

char *

Colormap

VisualID

Cursor

Window

Drawable

XWMHints

Font

int

XSizeHints

Pixmap (depth 1)

69

After the requestor has successfully called gtlcselection_convert(), the owner receives a
SelectionRequest (GDK_SELECTION_REQUEST) event. Selection identifies the selection

to which the request pertains. Usually, selection will be GDK_SELECTION_PRIMARY
unless the Owner is supporting multiple selections. Target is the target atom (for example, one
of the atoms listed in Table 3.7). Property identifies the atom or property where the selected

data should be placed. Requestor identifies the window of the client that is making the request.
Now that the owner has received the GDK_SELECTION_REQUEST event, it attempts to

convert the selection it owns to the requested type. If the owner is unable to perform the conversion
(for example, the data associated with the selection is text and the requestor wants it converted to
a colormap), then the owner creates and sends to the requestor a GDK_SELECITON_NOTlFY

event with the property field set to GDK_NONE. If the conversion was successful, the owner also
sends a GDK_SELECTION_NOTIFY event but with the property field set to the same value

70 Chapter 3 • Signals, Events, Objects, and Types

received by the owner in the GDK_SELECTION_REQUEST event The selection and target

fields in any GDK_SELECTION_NarIFY event should be the same values as those received in
the GDK_SELECTION_REQUEST event

The final major portion of the selection protocol happens back on the requestor. The requestor

will receive a GDK_SELECTION_NarIFY event. If the property field is GDK_NONE, then

the requestor knows that the selection failed. Otherwise, the selection was successful, and the

requestor then reads the property specified in the property field for the converted data.

GdkEventClient

struct GdkEventClient

GdkEventType type ;
GdkWindow *window ;
gint 8 s end_event ;
GdkAtom mes sage_type ;
gushort data_format ;
union {

char b [2 0] ;
short s [1 0] ;
l ong 1 [5] ;

} data ;
} ;

Event Name String

cliencevent

Callback Function Prototype

gint

/* GDK CLIENT EVENT * /

func (GtkWidget *widget , GdkEventClient * event , gpointer arg) ;

Client events provide a mechanism by which one client can send an event to some other

client executing on the same X server. An example of this was illustrated when we discussed

selections. The owner of a selection, in response to a GDK_SELECTION_REQUEST event,

will send a GDK_SELECTION_NOTIFY event to the requestor client to indicate the result

of the request.

Any event type can be sent by a client to another client using this mechanism. In practice,

however, use of client events is generally restricted to selections, where it is needed to satisfy
the selection protocol, or to window managers which use them to notify clients of some pend
ing event, such as the destruction of a window.

Client events are never selected by the receiving client; they will always be sent to the

receiving client regardless of the event mask associated with the receiving clients ' window.
Message_type is an atom that is used to identify the type of the message sent. It is up to

the clients that send and receive messages of this type to agree on the value of this field.

Data_format specifies the format of the message sent in the event and must have one of these
values: 8, 1 6, or 32. This is necessary so that the X server can do the necessary swapping of

Events 71

bytes. Data contains the actual data sent in the message, either 20 8-bit chars, 10 16-bit shorts,

or 5 32-bit longs.

GdkEventAny

struct _GdkEventAny
{

} ;

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;

Event Name Strings

destroy 3vent

delete_event

map_event

unmap_event

no_expose_event

Callback Function Prototype

gint

/ * any event type i s possible here * /

func (GtkWidget *widget , GdkEventAny * event , gpointer arg) ;

GdkEventAny is a convenient, event-independent means by which the type, window, and

send_event fields of any event can be accessed. Generally, your signal functions will map to

a specific type of event, and you will never make use of this type. However, several events

only communicate type and window information, and so they make use of GdkEventAny to

pass event information into a callback function, perhaps at the cost of decreased code clarity.

Event types that have GdkEventAny * in their callback prototypes include GDK_DESTROY,

GDK_DELETE, GDK_UNMAP. GDK�AP, and GDK_NO_EXPOSE.

Signal and Event APls

Each widget in Gtk+ supports signals that, when triggered, represent a change in the state
of the widget. Signal functions, or callbacks, are the way that the logic of your application

is connected to the occurrence of these events.
As a programmer, you are free to register none, one, or multiple callbacks for any signal

supported by an object. Gtk+ will invoke each of the signal functions registered for an
object in the order they were registered by the programmer. In addition, a "class function"
associated with the signal is also invoked by Gtk+. This class function is what would nor

mally be executed by Gtk+ for that widget. Unless you are overriding the behavior of the
widget, you generally need not be concerned with the class function. But there are times
when you might, and I will present an example in this chapter. You can control whether or
not your callback function is called after all the class functions by registering your callback
with gtk_signal30nneccafterO. It is up to the widget designer to determine what the

72 Chapter 3 • Signals, Events, Objects, and Types

default is for a given widget; the choices include calling the class function before, after, or

both before and after your callbacks for the widget have been called.

Let's look at the functions that are available to application programmers for use in creating,
controlling, and destroying signals. In doing so, we will discuss a few interesting tidbits about

signals not covered so far.

Signal Lookup

The first function is gtk_signal_IookupO. The prototype for this function is as follows:

gint
gtk_s ignal_lookup (gchar * name , gint obj ect_type)

What gtk_signal_IookupO does is search the widget hierarchy for the signal identified
by name, starting with the object type specified by objecUype and searching recursively

higher to include the object type's parents if needed. If the search is successful, then the

signal identifier, a unique number that identifies the signal, will be returned. If the search is

not successful, then gtk_signal_IookupO returns O.
To use this function, you need to know what object types and signal names are. Let's start with

object types. Each widget class in Gtk + has an object type, defined by the widget programmer.
The naming convention for object types seems to be GTK_OBJECC *, where * is replaced with

the name of the widget class. For example, the object type that corresponds to the GtkButton wid
get class is GTK_OBJECCBUTTON. The object type is defined in the header file for the widget

class, usually gtk.h, where type is the name of the widget class. Again, using GtkButton as our

example, the header file in which the GTK_OBJECT_BUTTON macro is defined is named gtk
button.h. The object macro is defined to be a call to a function also defined by the widget writer.

There is a convention for the naming of this function, too; in this case it is gtk_ * �eCtypeO,

which for the GtkButton class would be gtk_button�euypeO.
Now let's tum to signal names. In the example code presented earlier in this chapter, we

connected a callback routine to the "destroy" signal of the window object that represented

our application's main window with the following code:

0 3 8
0 3 9

gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
GTK_S IGNAL_FUNC (PrintAndExit) , t imes) ;

Here, destroy is an example of a signal name. Another signal that we connected to our
application was the "clicked" signal, defined by the GtkButton widget class. Each widget
class defines some number of signals that are specific to the widget class. Signals that are
common to more than one class will be defined in a parent class, from which the widget
classes that share that signal can inherit.

When I introduce a widget class in the chapters that follow, I will specify the name of
the object type macro that corresponds to the widget class as well as the name and behavior
of each signal supported by the widget class.

Let's now take a quick look at how gtk_signal_IookupO might be called. To make the
example familiar, we'll simply modify the earlier example to use gtk_signal_IookupO to val-

Signal Lookup 73

idate the signal name we pass to gtlCsignal30nnectO. Note that this is sort of a contrived

example, but it does illustrate how to call gtk_signal_IookupO.

/* The " destroy" s ignal i s implemented , go ahead and register the
signal funct ion with the widget * /

else

gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
GTK_S IGNAL_FUNC (PrintAndExit) , t imes) ;

fprint f (stderr , " ' destroy ' i s not implemented\n") ;

The following is another way to make the call to gtk_signal_IookupO:
GtkObj ect * obj ect ;

obj ect = GTK_OBJECT (window) ;
i f (gtk_s ignal_lookup (" destroy " , GTK_OBJECT_TYPE (obj ect)))

The GTK_OBJECT_TYPE macro takes a GtkObject * argument. I ' ll discuss objects in

detail later in this chapter. Notice that the preceding code promotes reusability. We can use

this strategy to define a function that can be called to search for support for a given signal

name in an arbitrary widget:

/ * Returns 0 i f signal name is not def ined , otherwi se 1 * /

gint
HasSignal (GtkWidget *widget , char *name)
{

GtkObj ect * obj ect ;
int retval = 0 ;

obj ect GTK_OBJECT (widget) ;
i f (obj ect 1 = (GtkObj ect *) NULL)

retval = gtk_s ignal_lookup (name ,
GTK_OBJECT_TYPE (obj ect)) ;

return (retval) ;

Gtk + also defines a function that takes a signal number and returns that signal's character

string name. Here is its prototype:

gchar*
gtk_signal_name (gint signal_num)

Gtk+ maintains a global table of signal names. A signal number in Gtk+ is merely an

index into this table, so what this function really does is return the string that is stored in
the table indexed by signal_num (or 0 if signal_num is not a valid index into the table).

74 Chapter 3 • Signals, Events, Objects, and Types

Emitting Signals

Although in practice this may not be a very common thing to do, Gtk+ does give a client

the ability to cause events and signals to trigger. This can be done by calling one of the

gtk_signal_emit* functions :

void
gtk_s ignal_emi t (GtkObj ect * obj ect , gint signal_type , . . .)

void
gtk_s ignal_emi t_by_name (GtkObj ect *obj ect , gchar *name , . . .)

The first argument to either function is the object from which the signal or the event will
be generated. The second argument to gtk_signal_emitO is the type of the signal. This can be

found by calling gtk_signal_IookupO, as previously described (or the function HasSignalO,
as previously developed). The second argument to gtk_signal_emicby_nameO is the event

name; gtk_signal_emicby _nameO will do the lookup operation itself. If you already have the

signal type value, it is more efficient to call gtk_signal3mitO to avoid the overhead incurred

by gtk_signal_emiCby _nameO to look up the event name string and convert to the signal type

value accepted by gtk_signal_emitO.

The remaining arguments to the gtk_signal_emit* functions will vary in type and num

ber based on the signal being emitted. For example, the prototype for the map_event

(GDK_MAP) callback function is as follows:

gint
func (GtkWidget *widget , GdkEventAny *event , gpointer arg) ;

The call to gtk_signal_emiCby _nameO would then be as follows:

GdkEventAny event ;
gint retval ;

gtk_s ignal_emit_by_name (GDK_OBJECT (window) , "map_event " , &event ,
&retval) ;

The third argument to gtk_signal_emicby _nameO is a pointer to a GdkEventAny struct,

and it is passed as the second argument to the signal callback function. The fourth param
eter is a pointer to hold the value returned by the callback function, which is of type gint.
If the callback function being invoked is void, we would simply omit the final argument to
the gtk_signal_emit* function (as in the example that follows).

Note that the application making the preceding call would need to fill in the fields of
event, including the event type, the window ID, and the send_event fields. The third and
final argument to the callback is the application-specific pointer or data that was passed to
gtk_signal_connectO.

As a second example, the callback function for the GtkButton widget "pressed" signal
has the following function prototype:

Signal Lookup 75

0 0 1
0 0 2
0 0 3
0 0 4
0 0 5
0 0 6

void
func (GtkWidget *button , gpointer data) ;

To invoke this handler, we would call gtk_signal_emicby _nameO as follows:

gtk_s ignal_emi t_by_name (GTK_OBJECT (button) , "pressed ") ;

Since there is no return value from the callback (the function is void), we need not pass a

pointer to hold the return value, and so we pass NULL instead. Also, the callback function has no
arguments (except for the obligatory widget pointer and application-private data that all callback

functions are passed), so we pass no additional arguments to the gtk_signal_emit* function.

Some widget signal functions do take arguments. For example, the callback function

invoked by the GtkCList widget (which we will talk about in detail later in this book) when

a row is selected by the user has the following function prototype:

void
select_row_cal lback (GtkWidget *widget , gint row , gint column ,

GdkEventButton * event , gpointer data) ;

The function seleccrow3alibackO takes three arguments-row, column, and event

in addition to the widget and data arguments that are passed to every signal function. The
call to gtk_signal_emiCby _nameO in this case would be as follows:

GtkWidget * c l i s t ;
int row , column ;

gtk_s ignal_emit_by_name (GTK_OBJECT (c l i st) , " select_row" , row ,
column , NULL) ;

The value NULL will be passed as the "event" argument to seleccrow 3allbackO.

Emitting Signals-An Example

Now might be a good time to provide some example code. This example creates a top-level

window with a GtkDrawingArea widget child. Every second, the application generates and

handles a synthetic mouse motion event. It also handles actual mouse motion events that occur
in the same window when the user moves the mouse over the window.

inc lude < s tdio . h>
inc lude < t ime . h>
inc lude <gtk/gtk . h>
inc lude <unistd . h>
inc lude < s ignal . h>

0 0 7 stat ic GtkWidget *drawing ;
0 0 8
0 0 9 void
0 1 0 AlarmFunc (int foo)
0 1 1 {
0 1 2 GdkEvent event ;
0 1 3 gint retval ;

76 Chapter 3 • Signals, Events, Objects, and Types

0 14
0 1 5 gtk_s ignal_emit (GTK_OBJECT (drawing) ,
0 1 6 gtk_s ignal_lookup ("motion_not i fy_event " ,
0 1 7 GTK_OBJECT_TYPE (drawing)) , &event , &retval) ;
0 1 8
0 1 9 alarm (lL) ;
0 2 0
0 2 1
0 2 2 static void
023 mot ion_not i fy_cal lback (GtkWidget *w , GdkEventMot ion * event , char *arg)
0 2 4 {
0 2 5 static int count = 1 ;
0 2 6
0 2 7 fprint f (stderr , " In motion_noti fy_cal lback %s % 0 3 d\n " , arg , count + +) ;
0 2 8 f f lush (stderr) ;
0 2 9
0 3 0
0 3 1 void
0 3 2 Exi t (GtkWidget *widget , gpointer arg)
0 3 3
0 3 4 gtk_main_quit () ;
0 3 5
0 3 6
0 3 7 int
0 3 8 main (int argc , char *argv []
0 3 9 {
0 4 0 GtkWidget *window , *box ;
0 4 1 struct s igact ion old , act ;
042
043 gtk_set_Iocale () ;
044
0 4 5 gtk_init (&argc , &argv) ;
0 4 6
0 4 7 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
0 4 8
0 4 9 gtk_signal_connect (GTK_OBJECT (window) , " destroy " ,
0 5 0 GTK_S IGNAL_FUNC (Exit) , NULL) ;
0 5 1
0 5 2 gtk_window_set_title (GTK_WINDOW (window) , " Event s 3 ") ;
0 5 3 gtk_container_border_width (GTK_CONTAINER (window) , 0) ;
0 5 4
0 5 5 box = gtk_vbox_new (FALSE , 0) ;
0 5 6 gtk_container_add (GTK_CONTAINER (window) , box) ;
0 5 7
0 5 8 drawing = gtk_drawing_area_new () ;
0 5 9 gtk_widget_set_event s (drawing ,
0 6 0 GDK_POINTER_MOTION_MASK) ;
0 6 1 gtk_s ignal_connect (GTK_OBJECT (drawing) , "motion_not i fy_event " ,
0 6 2 GTK_S IGNAL_FUNC (motion_not i fy_cal lback) , " Hello World") ;
0 6 3 gtk_box-pack_start (GTK_BOX (box) , drawing , TRUE , TRUE , 0) ;
0 6 4
0 6 5 gtk_widget_show_al l (window) ;

Signal Lookup 77

0 6 6
0 6 7 act . sa_handler = AlarmFunc ;
0 6 8 act . sa_f lags = 0 ;
0 6 9 s igaction (SIGALRM , &act , &old) ;
0 7 0 alarm (1 L) ;
0 7 1
0 7 2 gtk main () ;
0 7 3
0 7 4 s igaction (SIGALRM , &ol d , NULL) ;
0 7 5 return (0) ;
0 7 6

Analysis of the Sample

On line 058, a GtkDrawingArea widget is created, and then on lines 059 and 060, the event

mask for the GtkDrawingArea widget is set to GDK_POINTER_MarION_MASK, enabling

motion_notify event notification for the widget. On lines 061 and 062, the signal callback func
tion motion_notify 3allbackO, implemented on lines 023 through 029, is registered with Gtk+

to be invoked when motion_notify _events in the GtkDrawingArea widget are received.

0 5 8 drawing = gtk_drawing_area_new () ;
0 5 9 gtk_widget_set_event s (drawing ,
0 6 0 GDK_POINTER_MOTION_MASK) ;
0 6 1 gtk_s ignal_connect (GTK_OBJECT (drawing) , " mot ion_not i fy_event " ,
0 6 2 GTK_S IGNAL_FUNC (motion_not i fy_cal lback) , " Hello World") ;

On lines 067 through 070, we use POSIX signal function sigaction(2) to register a

SIGALRM signal handler named AlarmFuncO, which is implemented on lines 009 through

020. Then, on line 070, we call alarm(2) to cause the SIGALRM signal to fire one second

later. When SIGALRM is triggered, AlarmFuncO is entered.

0 0 9 void
0 1 0 AlarmFunc (int foo)
0 1 1 {
0 1 2 GdkEvent event ;
0 1 3 gint retval ;
0 1 4
0 1 5 gtk_signa 1_emi t (GTK_OBJECT (drawing) ,

0 1 6 gtk_signal_Iookup (" mot ion_not i fy_event " ,
0 1 7 GTK_OBJECT_TYPE (drawing)) , &event , &retval) ;
0 1 8
0 1 9 alarm (lL) ;
0 2 0

In AlarmFuncO, we call gtk_signal_emitO to generate a motion_notify _event on the win
dow associated with the GtkDrawingArea widget named drawing. Doing this will cause our

signal callback function, motion_notify3allbackO, to be called by Gtk+. Motion_
notify 3allback() simply prints a message that includes a serial number and the application
dependent data that was registered with the signal callback function, the string "Hello World".

There are two reasons why I made use of alarm(2) in this example. The first is that
alarm() provides a convenient method by which an asynchronous event can be generated at

78 Chapter 3 • Signals, Events, Objects, and Types

a fixed interval, giving me an opportunity to generate the motion_notify 3vents needed to

illustrate the main idea of this example. The second reason for using alarmO is to point out

a possible point of confusion with regards to terminology. It is important to note that signals

in Gtk+/GDK are not the same thing as UNIX signals, as described in signal(7) and handled

by UNIX functions such as signal(2) and sigaction(2).

There are certainly times when sending a signal to yourself is appropriate. I will give one

such example when I discuss the GtkDrawingArea later in this book.

Controlling Signals

Gtk + provides a few functions that allow applications to control signals in a variety of ways.

The first of these functions is gtk_signal_emiCstopO:

void
gtk_s ignal_emi t_stop (GtkObj ect *obj ect , gint signal_type)

The function gtk_signaCemiCstopO stops the emission of a signal. A signal emission is

defined as the invocation of all signal callback functions that have been registered with a

widget for a given signal type. For example, should an application register with a widget a

dozen callback functions for an event or signal, the emission of that signal will begin once

the event occurs and will continue until each of the callback functions registered by the

application has been called. The argument signal_type is obtained in the same way as the

argument of the same name passed to gtk_signal_emitO. If you'd rather identify the signal

by name instead of by signal_type, call gtk_signaI3micstop_by_nameO:

void
gtk_s ignal_emit_stop_by_name (GtkObj ect *obj ect , char *name)

An example should make this clear. I modified the preceding example slightly so that

five different signal callback functions are registered with the GtkDrawingAreaWidget:

1 1 7 gtk_s ignal_connect (GTK_OBJECT (drawing) , "mot ion_not i fy_event " ,
1 1 8 GTK_S IGNAL_FUNC (mot ion_noti fy_cal lback1) , " Hello World1 ") ;
1 1 9 gtk_s ignal_connect (GTK_OBJECT (drawing) , "mot ion_not i fy_event " ,
1 2 0 GTK_S IGNAL_FUNC (mot ion_noti fy_cal lback2) , " Hello World2 ") ;
1 2 1 gtk_s ignal_connect (GTK_OBJECT (drawing) , "motion_not i fy_event " ,
1 2 2 GTK_S IGNAL_FUNC (mot ion_noti fy_cal lback3) , " Hello World3 ") ;
1 2 3 gtk_s ignal_connect (GTK_OBJECT (drawing) , "mot ion_not i fy_event " ,
1 24 GTK_S IGNAL_FUNC (mot ion_noti fy_callback4) , " He l l o World4 ") ;
1 2 S gtk_s ignal_connect (GTK_OBJECT (drawing) , "mot ion_not i fy_event " ,
1 2 6 GTK_S IGNAL_FUNC (motion_noti fy_cal lbackS) , " Hello WorldS ") ;

Each signal callback function (motion_notify3allbacklO, etc.) will be invoked by the

GtkDrawingArea widget after AlarmFuncO calls gtk_signal_emitO. I then modified each call

back function slightly to generate a random number in the range [0, 100] . If the random number
falls below 50, then the signal callback function makes a call to gtk_signal_emiCstop_by _nameO

to stop the emission of the signal. For example:

Signal Lookup 79

0 1 2 #de f ine RAND (value) (((f loat) random () / RAND_MAX) * value)

0 2 7 static void
0 2 8 mot ion_noti fy_cal lback1 (GtkWidget *widget , GdkEventMot ion *event , char
0 2 9 *arg)
0 3 0
0 3 1 static int count = 1 ;
0 3 2
0 3 3 fprint f (stderr , " In mot ion_not i fy_cal lback1 % s % 0 3d\n " , arg , count + +) ;
0 3 4 f f lush (stderr) ;
0 3 5 i f (RAND (1 0 0) < 5 0)
0 3 6 gtk_s ignal_emit_stop_by_name (GTK_OBJECT (drawing) ,
0 3 7 "motion_not i fy_event ") ;
0 3 8

The effect of this change i s that, should one of the signal callback functions gen
erate a random number below 50, the remaining signal callback functions will not be

invoked for the signal emission because signal emission will be stopped. In testing

this function, motion_notify 3allback20 was called approximately half as often as

motion_notify 3allback l 0, motion_notify _callback30 was called approximately
half as often as motion_notify _callback20, and so on. At least this demonstrates that

my random number macro was performing approximately as it should have been.

Note that we do not need to reconnect the signal callback functions after an emission is
stopped. The next time the signal is generated, all functions are once again eligible for invo

cation. Also, calling gtk_signal_emicstop*O for a signal that is not being emitted is a no-op.

I mentioned that connecting a signal with gtk_signal_connectO will cause the registered
signal function to be invoked after all signal functions previously registered with the widget

for that signal and prior to the default class signal function implemented for the widget.

However, applications can arrange to have signal callback functions invoked after the class

signal callback function by registering the callback with gtk_signal30nneccafterO:

gint
gtk_s ignal_connect_after (GtkObj ect * obj ect , gchar * name ,

GtkS ignal Func func , gpointer func_data)

A slightly different way to connect a signal to a signal callback function is to call
gtk_signaCconneccobjectO, which has the following prototype:

gint
gtk_s ignal_connect_obj ect (GtkObj ect * obj ect , gchar * name ,

GtkS ignal Func func , GtkObj ect * s lot_obj ect)

The major difference between gtk_signal_connecCobjectO and the other signal connection

functions-gtk_signal30nnectO and gtk_signal30nneccafter()-is reflected in the function

prototypes of the gtk_signal30nnect* functions and in the function prototypes of the signal
callback functions that are invoked.

80 Chapter 3 • Signals, Events, Objects, and Types

The final argument to gtIcsignal30nnectO and gtk_signal_connecCafterO is application

private data. The first argument to a callback function registered using gtk_signal30nnectO

and gtk_signal30nneccafterO is the widget or object with which the signal callback function

was registered. In contrast, gtk_signal_connecCobjectO takes as its final argument a GtkOb

ject pointer, which is the first (and only) argument passed to the signal callback function when

the signal or event is triggered. The effect is that an event happening in the widget with which
the signal callback function was registered will cause a callback function to be invoked as

though the event or signal happened in some other object.

The function gtk_signal_conneccobjeccafterOis analogous to gtk_signal30nneccafterO

in that the signal callback function will be invoked after the default widget class signal function
for the widget has been invoked:

gint
gtk_s ignal_connect_obj ect_after (GtkObj ect *obj ect , gchar * name ,

GtkSignalFunc func , GtkObj ect * s lot_obj ect)

The classic example of gtk_signaCconneccobjectO is in tying together the press of a

Quit, Cancel, or Dismiss GtkButton object with the destruction of the dialog or window in

which the button is being displayed. The following code fragment taken from testgtk.c, an
example application that is a part of the Gtk+ distribution, illustrates how this can be done:

GtkWidget *button , *box2 ;

but ton = gtk_button_new_with_label (" Close ") ;
gtk_box-pack_start (GTK_BOX (box2) , button , TRUE , TRUE , 0) ;
gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " c l icked " ,

GTK_S IGNAL_FUNC (gtk_widget_destroy) , GTK_OBJECT (window)) ;

Here, the clicked signal supported by the GtkButton class is registered with the GtkBut

ton instance defined by button. When the "clicked" signal is triggered, the function
gtk_ widgecdestroyO will be invoked. The function prototype for gtk_ widgecdestroyO is

as follows:

void
gtk_widget_destroy (GtkWidget *widget) ;

Note that gtk_widgecdestroyO takes only one argument, which in this case is a widget
to destroy. The widget argument passed to gtk_ widgeCdestroyO is the same object that was
passed as the last argument to gtk_signaI30nnecCobjectO.

It is likely that the only time you will ever use this technique is when handling the destruction
of simple dialogs such as those used to display an error or warning message to the user. There
is little need for an application signal callback function to deal with the cancellation or dismissal
of such a dialog, and so the preceding technique works well. However, if you have a dialog that

allows users to make changes to data, you'll want to register an application-specific signal call
back function with the "clicked" signal of "Cancel" or "Dismiss" button so that your application

will have the opportunity to verify the cancellation operation.

Signal Lookup 81

Gtk+ supplies two functions that can be used by an application to disconnect a previ

ously registered signal callback function from a signal or event. The first of these is

gtk_signaCdisconnectO:

void
gtk_s ignal_disconnect (GtkObj ect * obj ect , gint id) ;

The argument object is the object with which the signal was registered, corresponding

to the first argument that was passed to the gtk_signal30nnect* family of functions. As I

pointed out earlier, more than one signal callback function can be registered with a given

signal, so the id argument to gtk_signal_disconnectO is needed to identify which of the reg

istered signal callback functions is to be disconnected. The argument id is the value

returned by the gtk_signal_connect* function used to connect the signal callback function

to the signal. In the following example, a signal callback function is connected to a clicked

signal, and then is immediately disconnected, to illustrate the techniques involved:

GtkWidget *button ;
gint id ;

button = gtk_button_new_with_labe l (II Close ll) ;
id = gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " c l i cked " ,

GTK_S IGNAL_FUNC (gtk_widget_destroy) , GTK_OBJECT (window » ;
gtk_s ignal_disconnect (GTK_OBJECT (button) , id) ;

gtk_disconnecCby _dataO performs the same operation as gtk_signal_disconnectO, but

instead of identifying the signal callback function by its id, the signal function is identified
by the application data passed as the func_data argument to gtk_signaCconnectO or

gtk_signal_connecCafterO, or by the sloCobject argument passed to either gtk_signal_

connecCobjectO or gtk_signal_connecCobjeccafterO. Here is the function prototype:

void
gtk_s ignal_disconnect_by_data (GtkObj ect * obj ect , gpointer data) ;

Note that multiple signal callback functions can be disconnected with a call to

gtk_signaCdisconneccby _dataO, as every signal callback function registered with the
object or application data to which data pertains will be disconnected by this function.

Gtk+ also allows an application to temporarily block the invocation of a signal callback

function. This can be done by calling gtk_signal_handlecblockO:

void
gtk_s ignal_handler_block (GtkObj ect * obj ect , gint id) ;

The arguments passed to gtk_signal_handlecblockO are analogous to those passed to
gtk_signal_disconnectO. The first argument, object, is the object with which the signal
being blocked was registered by calling one of the gtk_signal30nnect* functions. The

argument id is the value returned by the gtk_signal_connect* function that registered the
signal callback function with the object.

82 Chapter 3 • Signals, Events, Objects, and Types

A similar function, gtlcsignaChandlecblock_by_dataO, performs the same task as

gtlcsignaChandlecblockO, but the data argument is used to identify the signal callback func

tion(s) to be blocked. This is similar to how the data argument gtk_signal_disconneccby _dataO
is used to identify the signal callback functions to be disconnected. Here is the function proto

type for gtk_signal_handlecblock_by _dataO:

void
gtk_s ignal_handler_block_by_data (GtkObj ect *obj ect , gint dat a) ;

The argument blocking a signal handler function is not the same as stopping signal emis
sion by calling gtk_signal_emiCstopO. When signal emission is stopped, it is only for the

emissions corresponding to the triggering of a single event. The next time the event or signal

is triggered, each and every signal callback function is once again eligible for invocation.
When a signal callback function is blocked, it will not be invoked until it has been unblocked,

no matter how many times the signal or event is triggered.

Each signal callback function registered with an object maintains a "blocked" count
that starts at 0 and is incremented each time the signal is blocked by a call to a gtk_signal_

handler_block* function.

Signal callback functions that are blocked can be unblocked at any time by a call to gtk_

signal_handlecunblockO:

void
gtk_s ignal_handler_unblock (GtkObj ect *obj ect , gint id) ;

This decrements an object's blocked count by one. When the blocked count goes to zero,

the signal callback function for the specified object, identified by id, will become eligible

for invocation the next time the signal or event is triggered. The function

void
gtk_s ignal_handler_unblock_by_data (GtkObj ect *obj ect , gint data) ;

is analogous to gtk_signal_disconneccby _dataO in that it has the ability to unblock more

than one blocked signal callback function.

The final function that operates on signals that I will discuss in this section is gtk_signal_

handlers_destroyO :

void
gtk_s ignal_handlers_destroy (GtkObj ect *obj ect) ;

gtk_signaChandlers_destroyO destroys all signal callback functions that have been reg
istered with the specified object. This will not, however, destroy the class signal and event

functions that are implemented by the object or widget.

Objects

The very first argument passed to gtk_signaCconnectO is a pointer to variables of

type GtkObject. Example code in the preceding section made use of a macro named
GTK_OBJECT to coerce variables that were declared as GtkWidget * to GtkObject *

Objects 83

so that the code would conform to the function prototype of the routine being called.

Objects have played a part in nearly every function that has been discussed so far in

this chapter. However, until now, I 've not really defined yet what an object is . Obtaining

a basic understanding of objects is the main idea behind this section.

Many of you will no doubt have some previous experience with C++, Smalltalk, or some

other object-oriented language or programming paradigm. Perhaps you have heard about object

oriented programming but have no actual experience in its use. Or perllaps you have no idea at

all what I am talking about when I use the terms "object" and "object-oriented programming."

It is not within the scope of this book to present an in-depth look at object-oriented systems
or design. Gtk+ is a C-based toolkit, and C is not considered to be an object-oriented lan

guage, although object-oriented designs can in fact be implemented in C.

For us, a widget is the practical manifestation of what it is that we talk about when we

refer to objects in Gtk+. Widgets, as we will come to see in the chapters that follow, are

characterized by both visual representation and functionality. Visual representation defines

how the widget appears in the user interface of the application. A widget's functionality

defines how that widget will respond to input events directed towards it by Gtk+.

Button Widgets as Objects

The GtkButton widget can be used to illustrate both of these widget attributes. Visually, buttons

are simply rectangular areas in a window that have labels that identify the action that the appli
cation will perform when the button is clicked. The button's label can be a text string, which is

usually the case, or it can be in the form of a pixmap that graphically represents the operation

that will be performed by the application when the button is clicked. Figure 3 . 1 illustrates

instances of the GtkButton widget.

Figure 3 . 1 Button Widgets

Functionally speaking, a GtkButton widget will invoke an application-registered callback

function when any one of the following events occur (these events were mentioned earlier in
this chapter but are repeated here for convenience):

• The pointer enters the rectangular region occupied by the button.
• The pointer leaves the rectangular region occupied by the button.

• The pointer is positioned over the button, and a mouse button is pressed.
• The pointer is positioned over the button, and a mouse button is released.

84 Chapter 3 • Signals, Events, Objects, and Types

• The user clicks the button (a combination of pressing and releasing a mouse button

while the pointer is positioned over the button) .

The behavior of a widget often corresponds to visual change, as is the case with the Gtk

Button widget, which will change its appearance after one of the preceding events has

occurred. For example, as the pointer enters the rectangular region occupied by the button,

the widget will redraw the button in a different color (a lighter shade of gray) to provide

visual feedback to the user that the pointer is in a region owned by the button (see Figure

3 .2). Should the user press mouse button 1 while the pointer is positioned over a GtkButton
widget, the widget will redraw itself as shown in Figure 3 .3 .

Figure 3.2 Pointer Positioned Over Button 3

Figure 3.3 Button 3 Clicked

Let's now take a look at another Gtk+ widget, the GtkToggleButton, and see how it compares
to the GtkButton widget.

Toggle buttons are used by an application to represent a value that can have one of two
states. Examples include On or Off, Up or Down, and Left or Right.

In the nontoggled state, a GtkToggleButton widget has an appearance much like that of
a GtkButton widget (see Figure 3 .4). GtkToggleButton widgets are rectangular in shape and

have a label. Like GtkButton, a GtkToggleButton widget's label can be either a text string

or a pixmap. Visually, a user would be hard-pressed to tell a button from a toggle button in
a user interface at first glance.

Objects 85

Figure 3.4 GtkToggleButton Widgets

Functionally, GtkToggleButton and GtkButton are closely related. Both respond basically

the same way to the pointer entering or leaving the region occupied by a widget instance. The

GtkToggleButton widget supports the same signals as GtkButton, plus a new signal, "toggled."

The GtkToggleButton widget will emit this signal after the user positions the pointer over a

toggle button and presses mouse button 1 , the same condition that leads GtkButton to emit a

"clicked" signal. In fact, a GtkToggleButton widget can also emit a "clicked" signal if the

application so desires.
As the pointer enters the area occupied by a GtkToggleButton widget, the widget will

redraw itself in a lighter shade of gray, just as a GtkButton widget does. However, GtkToggle

Button's visual response to presses and releases is different. In the toggled state, a toggle button
will appear as in Figure 3.5, which corresponds to the pressed state of GtkButton. In the untog

gled state, a toggle button will appear as in Figure 3.4, corresponding to the unpressed state of
GtkButton. The transition between the toggled and untoggled state occurs at the time of the

button release (assuming the pointer is still within the area of the button at the time of release;

otherwise, the toggle button widget will revert to its prior state).

Figure 3.5 GtkToggleButton Widget in Toggled State

We've nOw established that GtkButton and GtkToggleButton share much in terms of
look, feel, and functionality. So, how does this relate to objects?

86 Chapter 3 • Signals, Events, Objects, and Types

Widgets in Gtk + are organized as a hierarchy of classes. Each class in the Gtk + widget class

hierarchy is ultimately a descendant of the class named GtkObject. Refer to the appendix for a

listing of the Gtk + class hierarchy as of Gtk + 1 .2.

The GtkObject class represents a parent class from which all classes in the widget hierarchy

inherit basic behavior. GtkObjects' contribution is minimal but important. Among the func

tionality provided by GtkObject is the signal mechanism. As one descends the hierarchy, visual

representation (if any) and functionality become increasingly specialized. Each node in the

class hierarchy diagram that has descendants provides a base class from which those descen

dants can, if they choose, inherit their look and feel or functionality. A child class will always

replace some (perhaps all) of the look and feel or functionality of its parent class or introduce
new look and feel or functionality that was not present in the parent class.

Such is the case with GtkButton (the parent) and GtkToggleButton (the child) . Much of

the implementation of GtkToggleButton is inherited from GtkButton. GtkToggleButton

overrides the semantics of button presses and button releases and introduces the "toggled"
signal, but essentially, a toggle button is really a button for the most part.

Object API

GtkObject implements an API that can be used by widget implementations and client devel

opers. Here I just focus on a few of the application-level functions in this API so we can

obtain a better understanding of what objects are from the perspective of an application.
The first routine is gtk_objeccdestroyO:

void
gtk_obj ect_destroy (GtkObj ect * obj ect

gtk_objeccdestroyO takes an object as a parameter and destroys it. This routine can be

called from any place that gtk_ widgeCdestroyO is called. We saw one example of the use of

gtk_widgecdestroyO earlier in this chapter when I discussed gtk_signal_connecCobjectO.

For example, let's say you have a GtkButton widget that you need to destroy. You can
perform the destruction using either of the following techniques :

GtkButton *button ;

or

GtkButton *button ;

gtk_obj ect_destroy (GTK_OBJECT (button)) ;

To be complete, you could declare the button as GtkObject, in which case:

Objects 87

GtkObj ect *button ;

gtk_widget_destroy (GTK_WIDGET (button)) ;

or

GtkObj ect *button ;

/ * No cast needed , i t i s already an obj ect * /

gtk_obj ect_destroy (button) ;

Finally, we could declare the button as GtkWidget, and then it would be:

GtkWidget *but ton ;

/ * No cast needed , it i s already a widget * /

gtk_widget_destroy (button) ;

or

GtkWidget *button ;

gtk_obj ect_destroy (GTK_OBJECT (button)) ;

Regardless of how it's done, in the end, the button will be destroyed. Notice the use of the

casting macros. If a routine expects an object and you have a widget, use GTK_OBJECT to

convert the widget to an object. And, going the other way, use GTK_ WIDGET to cast an

object to a widget when a widget is needed.
These casting macros are not restricted to just GtkWidget and GtkObject. All widget

classes in the widget hierarchy implement a macro that can be used to convert from one
widget class to another. In later chapters, I will point out the macro name when I discuss
the corresponding widget class, but as a general rule of thumb, the name of the macro can

be formed by taking the widget class name, converting it to all uppercase, and inserting
an underscore C) after the initial GTK. For example, the casting macro for GtkButton is

GTK_BUTTON. It is not actually this easy; additional underscores are added in some
cases in which the class name is formed by a concatenation of words. For example, the
casting macro for the class GtkDrawingArea is GTK_DRAWING_AREA.

These "casting" macros do not perform just a simple C-style cast. They also make sure that
the item being cast is non-NULL and that the class to which the object is being cast either is

88 Chapter 3 • Signals, Events, Objects, and Types

of the same class (making the cast a no-op) or is a super-class in the widget instance hierarchy.

Thus, a cast from any widget class (e.g., GtkButton) to GtkWidget will be successful because

all buttons inherit from GtkWidget. A cast from GtkList to GtkText will fail because GtkList

does not inherit from GtkText. The casting macros generate warning output if, for whatever

reason, the cast being performed is illegal.

As you become moderately experienced as a Gtk+ programmer, deciding when and

when not to use the casting macros will become somewhat second nature.

Here is a source code snippet that illustrates casting at a few different levels :

Listing 3 .2 ObjectlWidget Casting Example

0 0 1 # include <gtk/gtk . h>
0 0 2
0 0 3 void
0 04 PrintAndExi t (GtkWidget *widget , char * foo)
0 0 5
0 0 6 i f (foo
0 0 7 print f (" % s\n" , foo) ;
0 0 8
0 0 9
0 1 0 int
0 1 1 main (int argc , char *argv []
0 1 2 {
0 1 3 GtkWidget *widget ;
0 1 4 GtkBut ton *button ;
0 1 5 GtkObj ect *obj ect ;
0 1 6
0 1 7 gtk s e t locale () ;
0 1 8
0 1 9 gtk_init (&argc , &argv) ;
0 2 0

0 3 7 / * button * /
0 3 8
0 3 9 button = (GtkButton *) gtk_button_new_wi th_labe l (" foo ") ;
0 4 0
0 4 1 gtk_s ignal_connect (GTK_OBJECT (button) , " destroy " ,
042 GTK_S IGNAL_FUNC (PrintAndExit) , "button , obj ect destroy ") ;
0 4 3
0 4 4 gtk_obj e c t_de s t roy (GTK_OBJECT (but ton)) ;

0 4 5
0 4 6 but ton = (GtkButton *) gtk_button_new_wi th_labe l (" foo ") ;
0 4 7
0 4 8 gtk_s ignal_connect (GTK_OBJECT (button) , " destroy " ,
0 4 9 GTK_S IGNAL_FUNC (PrintAndExi t) , " button , widget destroy ") ;
0 5 0
0 5 1 gtk_widget_destroy (GTK_WIDGET (button)) ;
0 5 2

0 6 9 return (0) ;
0 7 0

The application basically creates and destroys six buttons. Here, I only show the lines

pertaining to creating the button and storing its handle in a variable of GtkButton *. The full

application contains code that creates and destroys instances of GtkButton, storing them as

GtkObject * and as GtkWidget *. Our first need for a cast occurs on line 039. Here, the

return value from gtk_button_new _ with_IabelO is GtkWidget *, and I am required to cast
this result to (GtkButton *) to eliminate a compile-time warning from gcc(1) . Note that all

gtk_ * _newO functions return a handle of type GtkWidget * because buttons, scroll bars,

labels, toggle buttons, and so on, are all widgets. I personally feel that using "GtkButton

*button;" to declare a variable that is going to hold a widget handle to a GtkButton to be

better style, but adding the casts is annoying, so I suggest all widgets be declared as Gtk

Widget *. There are other good reasons for doing this, but avoiding the need for adding

casts all over the place is reason enough.
On lines 041 and 042, we register a signal callback function with Gtk+ for the "destroy" sig

nal. The user data argument is a string that identifies the operation; in this case, "button, object

destroy" means we have stored the widget in a "button" variable (Le., a variable of type GtkBut

ton *) and we are going to call gtk_objecCdestroyO as opposed to gtk_widgecdestroyO to

destroy the widget. On line 044, we destroy the widget by making a call to gtk_objeccdestroyO.

Note that the argument is cast by the GTK_OBJECT macro because the widget instance was

stored in a GtkButton * variable, but gtk_objeccdestroyO requires a variable of GtkObject * .

The same basic logic prevails on lines 046 through 05 1 , except this time, the button is

destroyed with a call to gtk_ widgeCdestroyO, requiring us to cast the button variable from

a GtkButton to a GtkWidget using GTK_ WIDGET.

Object Attributes

In Gtk+, objects have attributes. When you instantiate a GtkButton widget with a call to

gtk_button_new_with_labeIO, for example, you are setting the button widget'S label to the
string that was passed in as an argument. Actually, there is more going on than just this, but

from an application's perspective, this is effectively what happens.
Usually, perhaps ideally, applications will not make use of the following functions.

However, it is worthwhile to look at them because it will strengthen your concept of what

an object is in Gtk+.
The first function we'll look at is gtk_objeccquery_argsO:

GtkArg *
gtk_obj ect_query_args (GtkType type , guint 3 2 * * f lags , guint *nargs) ;

The function gtk_objeccquery _argsO can be used to obtain the list of attributes supported

Ly a widget class. This can only be done after the application has instantiated at least one

instance of the class being queried. The argument type defines the class to be queried. The
best way to obtain the value of type is to call a routine provided by the class implementation.
For the GtkButton class, this is gtk_button�eCtypeO. For other classes, it will be named

90 Chapter 3 • Signals, Events, Objects, and Types

gtk_ * �eCtypeO by convention (the actual names are documented along with the widget

classes as they are discussed later in this book).

The second argument, flags, is a pointer to an array of unallocated guint32 (or guint) values.

You can pass (gunit32 **) NULL here or the address of a variable of type guint32 * :

args gtk_obj ect_query_args (type , (guint 3 2 * *) NULL , . . .) ;

or

guint 3 2 * f lags ;

args = gtk_obj ect_query_args (type , &flags , . . .) ;

The second argument is ignored if NULL. If non-NULL, gtk_objeccquery_argsO will
allocate an array of 32-bit unsigned ints, each corresponding to an attribute supported by the

widget class. The number of elements in this array is stored in the value returned in nargS, a

pointer to an unsigned int, which is the third and final argument to gtk_objeccquery_argsO.
Once you are done with the flags array, you must free it by calling g_freeO:

g_free (f l ags) ;

The flags in Table 3 .8 are supported by Gtk+.

Table 3.8 Flags Supported by gticobjeccquery_argsO

Flag

GTK_ARG_READABLE

GTK_ARG_ WRITABLE

GTK_ARG_CONSTRUCT

GTK_ARG_CONSTRUCT_ONLY

GTK_ARG_CHILD_ARG

Meaning

Attribute's value can be read

Attribute's value can be written

Can be specified at object construction time

Must be specified at object construction time

Attribute applies to children of widget (used by
containers)

Same as GTK_ARG_READABLE I
GTK_ARG_ WRITABLE

The flags relevant to applications include GTK_ARG_READABLE, GTK_ARG_ WRITABLE,
and GTK_ARG_READWRITE. These flags specify whether an application can query the
value of an argument, change its value, or do either, respectively. The remaining flags are

relevant to the widget writer and do not concern us here.
gtk_objeccquery _argsO returns a pointer to an array of type GtkArg. The array will

have nargS entries in it. Once you are finished with the array, it must also be freed with a
quick call to g_freeO.

Objects 91

If you are curious about the contents of GtkArg, the structure is defined in gtktypeutils.h.
However, you can, and should, access the fields in this structure using accessor macros

defined by Gtk+. Table 3.9 lists the possible simple data types that an attribute can have,

along with the accessor macros that can be used to obtain the data for each type.

Table 3.9 Nonaggregate Accessor Macros

Type

gchar

guchar

gboolean

gint

guint

glong

gulong

gfloat

gdouble

gchar *

gint

guint

gpointer

gpointer

GtkObject *

Accessor Macro

GTK_ VALUE_CHAR(a)

GTK_ VALUE_UCHAR(a)

GTK_ VALUE_BOOL(a)

GTK_ VALUE_INT(a)

GTK_ VALUE_UINT(a)

GTK_ VALUE_LONG(a)

GTK_ VALUE_ULONG(a)

GTK_ VALUE_FLOAT(a)

GTK_ VALUE_DOUBLE(a)

GTK_ VALUE_STRING(a)

GTK_ VALUE_ENUM(a)

GTK_ VALUE_FLAGS(a)

GTK_ VALUE_BOXED(a)

GTK_ VALUE_POINTER(a)

GTK_ VALUE_OBJECT(a)

Accessor macros are also defined for the following aggregate types in Table 3 . 1 0.

Table 3.10 Aggregate Accessor Macros

Accessor Macro Type

struct
GtkS ignal Func f ;
gpointer d ;

signal_data ;

92 Chapter 3 • Signals, Events, Objects, and Types

Table 3.10 Aggregate Accessor Macros (Continued)

Accessor Macro

GTK_ VALUE_FOREIGN(a)

Type

struct
gint n_args ;
GtkArg *args ;

} args_data ;

struct {
GtkCallbackMarshal marshal ;
gpointer data ;
GtkDestroyNot i fy not i f y ;

callback_data ;

struct {
GtkFunct ion func ;
gpo inter func_data ;

} c_cal lback_data ;

struct {
gpo inter data ;
GtkDestroyNot i fy not i f y ;

foreign_data ;

To determine the type of an attribute, use the macro GTK_FUNDAMENTAL_TYPEO,
passing the type field of the GtkArg struct from which data is to be accessed:

GTK_FUNDAMENTAL_TYPE (a . type) ;

The following code snippet illustrates how to call gtk_objeccquery_argsO.

Lines 008, 009, and OlD declare the variables needed for the call to gtk_objeccquery _argsO.

0 0 8 GtkArg * args ;
0 0 9
0 1 0

0 2 1

guint nArgs ;
guint 3 2 * f lags (guint 3 2 *) NULL ;

0 2 2 i f (args = = (GtkArg *) NULL) {
0 2 3 fprint f (stderr , " unable to query widget ' s args \ n ") ;
0 2 4 exi t (1) ;
0 2 5

On line 020, we call gtk_objeccquery _argsO. Then, on lines 029 through 080, we iterate

through the array of GtkArg structs returned. For each argo we determine its type using
GTK_FUNDAMENTAL_TYPE (line 032). Then, in the switch statement, we print that

type as a string to stdout:

0 2 9 for (i = 0 ; i < nArgs ; i + +) {
0 3 0 print f (" Name : ' % s ' , type : " args [i j . name) ;

Objects

0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1

0 8 0

switch (GTK_FUNDAMENTAL_TYPE (args [i l . type)) {
case GTK_TYPE_CHAR :

print f (" GTK_TYPE_CHAR , ") ;
break ;

case GTK TYPE UCHAR : - -

print f (" GTK_TYPE_UCHAR , ") ;
break ;

case GTK TYPE BOOL : - -

print f (" GTK_TYPE_BOOL , ") ;
break ;

93

Following the switch, on lines 08 1 through 1 0 1 , we interpret the corresponding entry in

the flags array that was returned. Remember, if NULL is sent as the second argument to

gtIcobjecCquery _argsO, then no flags will be returned.

0 8 1
0 8 2
0 8 3
0 8 4
0 8 5
0 8 6
0 8 7
0 8 8
0 8 9
0 9 0
0 9 1
0 9 2
0 9 3
0 9 4
0 9 5
0 9 6
0 9 7
0 9 8

0 9 9
1 0 0
1 0 1

print f (" Flags : ") ;
swi tch (f lags [i l) {
case

case

case

case

GTK ARG READABLE
print f (" GTK_ARG_READABLE\ n "
break ;

GTK ARG WRITABLE :
print f (" GTK_ARG_WRITABLE\ n "
break ;

GTK ARG CONSTRUCT :
print f (" GTK_ARG_CONSTRUCT\ n "
break ;

GTK ARG CONSTRUCT ONLY - - - :

) ;

) ;

) ;

print f (" GTK_ARG_CONSTRUCT_ONLY\n"
break ;

case GTK_ARG_CHILD_ARG :
print f (" GTK_ARG_CHILD_ARG\n") ;
break ;

c a s e GTK ARG READWRITE :
print f (" GTK ARG_READWRITE\n") ;
break ;

) ;

Finally, on lines 106 through 109, the flags and args pointers are freed by a call to g...freeO.

1 0 4 / * not really needed , as we are exi t ing * /
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9
1 1 0

i f

i f

f l ags)
g_f ree (

args)
g_free (

f l ags) ;

args) ;

94

I I I
1 1 2

return (0) ;

Chapter 3 • Signals, Events, Objects, and Types

Getting and Setting Object Attributes

Now that we know how to obtain a list of the attributes supported by a widget class, let's

discuss how to get and set the values of attributes in a widget or object instance. To retrieve

attribute data from a widget, we need only make minor changes to the preceding source.

Two routines can be used to read attribute data. The first is gtlcobjeccarg�etO:

void
gtk_obj ect_arg_get (GtkObj ect *obj ect , GtkArg *arg , GtkArgInfo * info)

The first argument, object, is the widget from which object data is to be retrieved. The sec

ond argument, arg, is effectively the element in the vector returned by gtlcobjeccquery _argsO
that corresponds to the attribute being queried. You can use gtlCobjecCquery_argsO to obtain

this value, or you can allocate a GtkArg variable on the stack and set the name field to the

attribute you want to query, for example:

GtkArg myArg ;
GtkWidget *myBut ton ;

myArg . name = " GtkButton : : labe l " ;
gtk_obj ect_arg_get (GTK_OBJECT (myButton) , &myArg , NULL) ;

The final argument, info, should always be passed as NULL. In fact, there are no examples

of gtk_objeccaruetO usage in the Gtk+ source code where this argument is set to anything
but NULL. gtk_objeccaruetO will retrieve the value internally if you pass NULL, so per

haps this argument will be deprecated in a future version of Gtk+.

On return, my Arg will contain the data that was requested. If the data could not be obtained

for whatever reason (for example, the attribute does not exist), gtk_objecUlfUetO will gen

erate output to the console, for example:

Gtk -WARNING * * : gtk_obj ect_arg_get () : could not f ind argument " Yabbadabba " in
the ' GtkButton ' class ancestry

The type field in the GtkArg struct will be set to GTK_TYPE_INVALID. This can be
checked using code similar to the following:

/ * Attribute could not be read for some reason * /
e l se

/ * Attribute was read * /

The second routine that can be used to retrieve attribute values is as follows:

Objects 95

void
gtk_obj ect_getv (GtkObj ect * obj ect , guint n_args , GtkArg *args)

This routine is nearly identical to gtk_objecCarwet(), except that it can be used to
retrieve multiple attributes with a single function call. The argument n_args holds the number

of elements in args; args is a vector of GtkArg structs.
The following code snippet illustrates how to call gtk_objeccarg�et() using the return

value from gtk_objecCquery _args(). The majority of the code is the same as in the previous

listing. Here I ' ll just show the loop used to obtain the attribute values, one for each element

in the array of GtkArg elements returned by gtk_objecCquery _args():

0 1 7 widget = gtk_button_new_with_labe l (" This i s a test ") ;
0 1 8
0 1 9
0 2 0

args

0 2 1 i f (args = = (GtkArg *) NULL) {
0 2 2 fprint f (stderr , " Unable t o query widget ' s args \n") ;
0 2 3 exi t (1) ;
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1
0 4 2
0 4 3
0 4 4
0 4 5
0 4 6
0 4 7
0 4 8
0 4 9

0 7 4
0 7 5
0 7 6
0 7 7
0 7 8

for i = 0 ; i < nArgs ; i + +

print f (" Name : ' % s ' , value : " args [i) . name) ;

i f (f l ags [i) = = GTK_ARG_READABLE
I I f l ags [i) == GTK_ARG_READWRITE) {

gtk_obj ect_arg_get (GTK_OBJECT (widget) , &args [i) ,
NULL) ;

switch (GTK FUNDAMENTAL_TYPE (args [i) . type)) {
case GTK TYPE CHAR : - -

print f (" %c \ n " ,

break ;
case GTK TYPE UCHAR : - -

print f (" %c \ n " ,
GTK VALUE UCHAR (args [i] l l ;

break ;
case GTK TYPE BOOL : - -

print f (" % s \ n " ,
(GTK_VALUE_BOOL (args [i) ==TRUE ?
" TRUE " : " FALSE ")) ;

break ;

case GTK_TYPE_STRING :
print f (" % s \ n " ,

GTK_VALUE_STRING (args [i)) ;
g_free (GTK_VALUE_STRING (args [i)) ;
break ;

96

0 9 5
0 9 6
0 9 7
0 9 8
0 9 9
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5

1 1 5

Chapter 3 • Signals, Events, Objects, and Types

case GTK TYPE INVALID :
print f ("Attribute is invalid\n") ;
break ;

case GTK TYPE NONE :
print f ("Attribute i s none \n") ;
break ;

de fault :
break ;

On line 017, we create an instance of the GtkButton class. We need to pass an object to

gtlcobjecCarg...getO to identify the object we are querying, and we also need, in this example,

to create an instance of GtkButton so that gtk_objeccquery _argsO can do its job.

On line 019, we call gtk_objecCquery_argsO to obtain a list of the attributes supported by

the GtkButton widget class. Then, on lines 026 through 105, we iterate through the array

returned by gtk_objecCquery _argsO. For each element, we make a call to gtk_objecCaruetO;

this occurs on line 033. We then switch on the type field set by gtk_objecCaruetO, accessing
this value using the GTK_FUNDAMENTAL_TYPE macro as previously described. In the

switch statement, we simply use the type to determine the fonnat string passed to printf and use

the accessor macro needed to retrieve the value from the GtkArg element. Note the use of
g...freeO, which is needed to release storage allocated by Gtk+ for GTK_TYPE_STRING

attributes, as shown on lines 074 through 078.
Gtk+ provides two routines for setting attribute values in a widget. They are:

void
gtk_obj ect_set (GtkObj ect *obj ect , const gchar * f irst_arg_name , . . .)

and

void
g tk_ob j e c t_setv (GtkObj ect * obj e c t , guint n_args , GtkArg * a rgs)

Both can be used to set multiple attributes. gtk_objeccsetvO would be the more conve

nient routine to call after obtaining a GtkArg vector from gtk_objeccquery_argsO, although
this is not required, of course. In all other cases, gtk_objecCsetO is probably the easiest of the
two to use.

gtk_objeccsetvO takes the very same arguments as gtk_object...,getvO. The only difference
is that the elements in the args vector need to contain that data to which the attribute is being

set and the type. To do this, use the accessor macros used to read data from a GtkArg struct.

For example, to change the label of a button, we might code the following:

Objects

GtkArg arg ;
GtkWidget *widget ;

arg . type = GTK_TYPE_STRING ;
arg . name = " GtkButton : : labe l " ;
GTK_VALUE_STRING (arg) = " Yabba Oabba 000 " ;
gtk_obj ect_setv (GTK_OBJECT (widget) , 1 , &arg) ;

97

The function gtlcobject_setO accepts a variable argument list. Each attribute to be set is
specified in the argument list by its name, such as GtkButton: : label, followed by a variable

number of arguments that specify the value of that attribute. In some cases, a single argu

ment can be used to specify a value, for example, a button label value is a string. In some
cases, the attribute being set is an aggregate, and in this case, the value arguments will cor

respond to the fields of a structure or the elements of a table.

The final argument to gtlCobjeccsetO must be NULL to indicate the end of the argu

ment list (if you forget the NULL, gtk_objeccsetO will read beyond the stack, leading to

unpredictable behavior).

The preceding example, using gtk_objecCsetO, is reduced to the following:

GtkWidget *widget ;

gtk_obj ect_set (GTK_OBJECT (widget) , " GtkButton : : label " ,
" Yabba Oabba 000 " , NULL) ;

Associating Client Data with an Object or Widget

Gtk+ allows applications to associate an arbitrary amount of indexed data with a widget

instance. An index is nothing more than a character string used to uniquely identify the data.

The data associated with an index is of type gpointer. Gtk+ maintains one list of indexed

data per object or widget; there is no practical limit to the number of data items that can be

attached to the list. The only restriction is that each entry on the list must have a unique

index. Adding an entry using an index that corresponds to an entry already on the list will

cause Gtk+ to replace that entry's data with the newly specified data.
Let's take a quick look at the functions involved, and then we' ll discuss how this facility

might be useful to an application.
To add an entry to an object's list, applications can use gtk_objecCsecdataO or gtk_

objeccsecdata_fullO·
The first function, gtk_objeccseCdataO, takes an object, a key, and a data value as arguments:

void
gtk_obj ect_set_data (GtkObj ect * obj ect , const gchar *key ,

gpointer data)

An item on the object's data list will be added by Gtk+ as a result of making this call.
The second function is gtk_objecCseCdata_fullO:

98 Chapter 3 • Signals, Events, Objects, and Types

void
gtk_obj ect_set_data_ful l (GtkObj ect * obj ect , const gchar *key ,

gpointer dat a , GtkDestroyNot i fy destroy)

gtlcobjeccsecdatajullO takes the same arguments plus an additional argument named
destroy, which is a pointer to a function that will be called by Gtk+ should the data indexed

by key be destroyed. Destruction means that the entry indexed by key was removed from

the list. The function prototype for destroy is as follows:

void
DestroyFunc (gpointer data)

You may pass NULL as the last argument to gtk_objeccsecdatajullO, but then the call

effectively becomes equivalent to calling gtk_objeccsecdataO.
If an entry indexed by key already exists on the object's list prior to calling either

gtk_objeccseCdataO or gtk_objeccsecdata_fullO, then the gpointer stored by that entry

will be replaced by data. A new entry on the list will not be created because indexes on the

list must be unique.

To retrieve data from an object's list, call gtk_objecCgeCdataO:

gpointer
gtk_obj ect_get_data (GtkObj ect *obj ect , const gchar *key)

The function gtk_objeccgecdataO takes an object and a key. If there is no entry on the
object's list indexed by key, then NULL is returned. Otherwise, the data that is stored on

the list indexed by key will be returned.

To remove an entry from an object's list, call gtk_objeccremove_dataO or

gtk_objeccremove_no_notifyO:

void
gtk_obj ect_remove_data (GtkObj ect *obj ect , const gchar *key)

void
gtk_obj ect_remove_no_not i fy (GtkObj ect *obj ect , const gchar *key)

Either function will remove the entry indexed by key from the list maintained by object,

if such an entry exists . If gtk_objeccremove_dataO was called, the destroy function regis

tered with the entry, if any, will be invoked, and a copy of the data stored by that entry will

be passed as an argument as previously discussed. If gtk_objecCremove_no_notifyO is
used, then the destroy function will not be invoked.

Gtk+ supports the following two convenience functions :

void
gtk_obj ect_set_user_data (GtkObj ect * obj ect , gpointer data)

gpointer
gtk_obj ect_get_user_data (GtkObj ect *obj ect)

Objects 99

Calling one of these functions is equivalent to calling gtlcobjecCseCdataO or gtk_

object�ecdataO, respectively, with a key argument that has been set to user_data.

Please be aware that some widget implementations will add a usecdata entry, so setting

or removing this entry may lead to incorrect behavior of the widget and your application.

Calling gtk_object�ecdataO or gtk_object�eCuser_dataO and obtaining a NULL return

value cannot be taken as an indication that the list does not contain an entry indexed by

user_data. It could be that the entry exists and, at the time of calling, is storing a NULL

pointer as its data item. Therefore, until Gtk+ provides a routine that can be used to test for

the existence of an item on a list indexed by key, I recommend playing it safe and avoid

adding, setting, or removing entries keyed by usecdata. Also, take reasonable precautions

to ensure that keys used by your application are unique and do not collide with keys that

might be in use internally by a widget implementation.

When to Use Client Data

How might one use indexed data in an application? An obvious application would be a word

processor, a text editor, or for that matter, any application that allows the concurrent editing

of more than one document. An image-editing tool such as The GIMP is an example of such

an application.
The GIMP allows users to display and edit more than one image at a time. Each image

being edited has an associated set of attributes, including width, height, image type (RGB,

grayscale), the name of the file from which the image was read and to which it will be saved

by default, and a flag that indicates whether or not the image is dirty and needs to be saved

before the user exits The GIMP. Some of this information is reflected in the title bar of the

window displaying the image data (Figure 3 .6).

Figure 3 .6 Title Bar of a GIMP Window

So how might The GIMP maintain information about images currently being edited? A
convenient method for organizing this data would be to maintain a data structure for each

image being edited. A possible candidate data structure is the following:

100

type s t ruct _idata {
gchar * f i lename ;
gu int width ;
guint height ;
gboo l ean dirty ;

gint type ;
gint f i l l_type ;
GdkWindow *win ;

s t ruct idata * next ;

I mageData ;

Chapter 3 • Signals, Events, Objects, and Types

/ * f i l e name , or NULL i f unt i t led * /

/ * image width * /
/ * image height * /

/ * I f TRUE , needs t o b e saved * /
/ * IMAGE_GRAY , I MAGE_RGB * /
/ * F I LL BG , F I LL WH I TE , F I LL CLEAR * /

/ * Window handle for e d i t window * /

/ * next node i n l i s t o r NULL * /

Now that we have a way to represent this data, where should we store this data structure?

Whatever method we choose, we must be able to easily associate the image currently being

edited or displayed by the user with the data about that image.

One possibility would be to store it in a global linked list. Whenever the user selects a

window and it is brought to the front, we search the linked list for the entry with a "win"

field that contains the window handle of the window that was raised; this record will contain

the information about the image being edited in the window. This is a perfectly fine solu

tion. The only problem is that the application will need to maintain code needed to support

the linked list.

An alternate solution would be to use indexed data. To associate image data with a window,

we simply use gtk_objecCseCdataO at the time the image is created or opened. For example,
the routine that creates a new image and its window might perform the following:

I mageData * imageData ;
GtkWidget * d i a l og ;

imageData = (ImageData *) ma l l oc (s i zeof (ImageData)) ;
imageData- > f i l ename = (gchar *) NULL ;

imageDa t a - >di rty = FALSE ;

/ * s e t de f aul t s * /

imageDa t a - width
imageDat a - > type
imageData - > type

imageDa t a - >he ight
F I LL_BG ;
IMAGE_RGB ;

/ * create a window * /

250;

d i a l og = CreateGIMP ImageD ialog (imageData) ;
imageDa t a - >win = GTK_WIDGET (dialog)- >window ;

/ * a s s o c i a t e the image data with the dialog * /

gtk_ob j e c t_se t_data (GTK_OBJECT (dialog) , " image_dat a " ,
(gpointer) imageData) ;

Types

vo i d

101

In the preceding, CreateGIMPImageDialogO is a hypothetical routine that creates a dialog

or window using the image attributes passed to it as an argument. For example, the width and

height fields are used to define the size of the window.
There are two advantages in using the preceding technique. First, we didn't need to provide

the linked list code; gtlcobjeccsecdataO takes care of this for us. Second, the image data is

tightly coupled with the dialog being used to display it. The result is that finding the image

data that corresponds to a dialog is a straightforward task.

For example, we could associate a signal function with the dialog widget that will fire

when the window becomes destroyed, as follows:

gtk_s igna l_connec t (GTK_OBJECT (di a l og) , " de s t roy " ,
GTK_S IGNAL_FUNC (Handl eDe s t roy) , NULL) ;

HandleDestroyO can then retrieve the image_data entry from the dialog and, if the image

data is "dirty", give the user the opportunity to save changes to a file:

Handl eDe s t roy (GtkWidget *widge t , gpo int e r data)

{
ImageData *pt r ;

/ * get the image data attached to the widget * /

/ * i f we f ound i t , and the data i s di rty , give user opportunity t o

save i t * /

i f (ptr ! = (ImageDat a *) NULL && p t r - >di rty TRUE)
LetUserSaveData (ptr) ;

/ * f ree the image data * /

i f (ptr ! = (ImageDat a *) NULL)

free (p t r) ;

Well, that ends my coverage of objects in this chapter. You should now have a good idea of

what an object is and be aware of some of the ways that objects can be used in a Gtk + application.

Types

You may have noticed that the code snippets and function prototypes presented in this chap

ter make use of nonstandard C types such as gpointer, gint, and gchar *. These types, which
are defined by Glib in glib.h, are intended to aid in the portability of Gtk+, GDK, and Glib

and the applications that make use of these toolkits.

102 Chapter 3 • Signals, Events, Objects, and Types

You should get in the habit of using these types, particularly when declaring variables

that will be passed as arguments to the Glib, GDK, or Gtk+ APIs. Using C language types

such as void *, int, or char * is acceptable in other cases. Declaring a loop index variable as

int as opposed to gint will not lead to any problems, unless perhaps the index variable is

used as an argument to a Glib function that requires gint, for example. While perhaps

unlikely, it is not guaranteed that a gint will map to an int in all implementations.

Table 3 . 1 1 lists the basic types defined by Glib for UNIX and Linux.

Table 3.1 1 Glib Types

C Language Type Glib Type

char gchar

signed char gint8

unsigned char guint8

unsigned char guchar

short gshort

signed short gint 1 6

unsigned short guint1 6

unsigned short gushort

int gint

int gboolean

signed int gint32

unsigned int guint32

unsigned int guint

long glong

unsigned long gulong

float gfloat

double gdouble

void * gpointer

const void * gconstpointer

Where more than one Glib type maps to the same C type (for example, gboolean and gint
both map to int in the preceding table), avoid interchanging Glib types. In other words, if a func
tion prototype mandates the use of a gboolean, do not use a gint in its place; use a gboolean.

Summary 103

Summary

In this chapter, we discussed signals and signal handling. Signals are the way in which wid

gets communicate changes back to your application and are a required part of any meaningful

Gtk+ application. You will, as a Gtk+ programmer, do much of your programming within the

context of signal functions. We also covered Gtk+ events and objects and dl;:scribed the asso

ciated functions for each. Events are low-level when compared to signals, corresponding to

events that exist at the X protocol level. Many (most) of the events we discussed are inter

cepted by widgets on behalf of your application and are translated into their higher level signal

counterparts. Some applications, however, can make good use of events (this is especially true

for applications that involve interactive graphics of some kind). We also discussed objects.

Objects are fundamental to the architecture of the Gtk+ toolkit. In a practic:al sense, you will

find yourself using the terms "object" and "widget" interchangeably. All Gtk+ widgets are

descendants of GtkObject in the object/widget hierarchy. This chapter descJibed what objects

are as well as the API that exists for manipulating them. The chapter ended with a short dis
cussion of Gtk + data types. For the sake of portability, you should strive to use the Gtk + types

(e.g., use "guint" instead of "unsigned int"), although, as I will illustrate time and again in this

book, use of the Gtk+ types is by no means a requirement.

(HAPTER

WII)CETS

In this chapter and the next several chapters that follow, I will describe most of the Gtk + widget

classes provided by Gtk+ 1 .2. I will start in this chapter by describing the Gtk+ base widget

class, GtkWidget. GtkWidget is the base widget class because most, if not all, of the Gtk+

classes you will work with as a Gtk+ programmer inherit functionality from GtkWidget. For

this reason alone, GtkWidget is perhaps the most important widget class to understand com

pletely, and it is a good place for us to start.
When describing GtkWidget and the remaining Gtk+ widgets in the chapters that follow,

I will strive to provide the following information:

• An overview of the basic design of the widget, such as what it looks like and how and

when it may be used in a Gtk+ application.

• Where in the widget hierarchy the widget resides. (I'll have more to say about widget

hierarchies later in this chapter.)

• How instances of the widget are created and, if notable, destroyed by a Gtk + application.

• Any modifications, features, or options supported by the widget.

• The signals supported by the widget and, in some cases, examples of their use.

• Any functions supported by the widget class (including a quick reference).

Source code will be used to illustrate concepts. However, I will try to get my points

across with as little code as possible. Because of the "open source" nature of Gtk+ and the

relatively large number of applications that make use of it, the Internet provides source code

for numerous full-size Gtk+ application that you can download and study.

Why Widgets?

The following are the basic goals of a widget set:

• To simplify user interface development for application developers

• To promote the development of user interfaces and behavior consistent from one

application to the next, simplifying application use.

Let's take a look at each of these goals independently.

1 05

106 Chapter 4 • Widgets

Simplifying User Interface Development

There are several ways in which a toolkit can simplify user-interface development. The fol

lowing sections explore some of the ways Gtk+ simplifies the development process.

API Simplification

One way to simplify development is to provide developers with a consistent programming API.

In Gtk+, instances of a widget are created by calling a function provided by the widget class.

The name of this function conforms to the naming convention gtIC <class> _new _ <modi

fier>O, where <class> is the lowercase name corresponding to the widget class and <modifier>

is an optional string describing additional functionality provided by the widget creation func

tion at the time it is called. For example, to create an instance of a button widget (GtkButton),

an application could call gtk_button_new(void), which will create a push button with no label,

or gtIcbutton_new_with_label(gchar *label), which will create a push button with an appli

cation-specified label (in this case, "with_label" is the <modifier> portion of the function

name). Names of public functions defined by a widget writer generally are of the form gtIC
<class> _<function>, where <class> is the lowercase name of widget class and <function>

describes the functionality provided by the routine. For example, gtIcentry _sectextO sets the

text displayed by an instance of the GtkEntry widget class.

Readers with Xt experience will note, with some justification, that creation of a widget

instance in Xt is even simpler. While the number of functions in Gtk+ for widget creation

is essentially directly proportional to the number of widget classes in the Gtk+ toolkit, only

a few routines are provided for widget creation in Xt. In Xt, the widget class is identified

by passing its name as an argument to the widget creation function, eliminating the need

for the widget class to define a publicly callable widget creation function. It should be a

simple matter to create a macro or function for Gtk+ that will accept a class identifier as an

argument and use that identifier in a switch statement to call the appropriate Gtk+ widget

creation function.

Widget classes are consistently named Gtk<class>, where <class>, as previously stated,

describes the functionality provided by the widget class.

Finally, instances of widgets belonging to any class type can be stored as a variable of

type GtkWidget *.

We'll see several examples of how Gtk+ provides API consistency throughout this book.

Abstraction

Another way in which the programming simplicity of a toolkit can be evaluated is by looking
at the level of abstraction provided by the toolkit's widgets. When I refer to abstraction, it is

in regard to how well the programmer is protected from the details of the underlying, native

user-interface toolkit and the type of controls and user-interface "goodies" that the toolkit pro
vides. In general, the higher the level of abstraction provided, the better.

Suppose the users of an application you are developing need to be given the capability

to enter or select a calendar date, such as March 1 2, 2003. As a programmer using Xlib, a

user interface for this feature is potentially difficult to implement. This is because Xlib pro

vides no support for data entry of any type. An Xlib programmer would need to be very cre

ative, designing a user interface suitable for the user to select or enter a calendar date. The

Why Widgets? 107

level of sophistication provided by the user interface (at the lower end, a text field with per

haps a label or two; at the higher end, a more elaborate control) is perhaps linearly related

to the amount of effort and time that the developer will need to spend developing it. The

programmer would be forced to consider functionality (e.g, validation of user input, ensur

ing that a date such as "February 3 1 " is not entered) of the control as well.

Because of the level of abstraction provided by Gtk: +, the programmer using Gtk: + should

have a much less difficult task implementing such a user interface. There are several ways that

widgets in the Gtk:+ hierarchy could be combined by a programmer to come up with a user

interface capable of calendar date entry, in less time than it would take an Xlib programmer
to achieve the same. However, combining existing Gtk:+ widgets to create a calendar date con

trol still requires substantial effort from the programmer. For instance, the programmer must

be creative in designing the user interface of the control. Should the control be implemented

as a text edit field (GtkEntry) into which the user will type a formatted date string? Or should

the control function more like a real calendar, displaying a specific month chosen by the user,

for example July 2003, and allowing her to click on the desired day? How should the user be

allowed to specify the month and year displayed by the control? Besides the user-interface

design issues, the Gtk:+ programmer is still faced with identifying and implementing the func

tional aspects of the control, such as date validation, and providing a way for the application

to retrieve the date entered/selected by the user.
Mainly because of the preceding concerns, the ideal solution for a programmer would

be to use a toolkit that provides programmers with a date entry widget class. It would be

unrealistic to expect the Gtk: + designers to anticipate all of the controls that might be needed

by application developers now and in the future. As time goes on, needs of user interfaces

change; many of you reading this book will remember the time before tab controls were

introduced and used widely. To accommodate the development of new user-interface con

trols, Gtk:+ was designed to be expandable in that new widget classes can be added to the
Gtk:+ widget hierarchy. Our hypothetical programmer can choose to implement her date

entry control as a new widget class in the Gtk:+ widget hierarchy, contributing it back to the

Gtk:+ development effort for inclusion in a future release of the Gtk:+ toolkit. Developers

should expect to see incremental additions to the Gtk:+ widget hierarchy as programmers

contribute new widgets to Gtk:+ and subsequent releases of the toolkit are made.

Earlier in this section, I suggested that the amount of effort and time required to develop the

user interface and functionality of a new control is perhaps linear with respect to the level of
sophistication provided by the control that results. The degree to which this linearity holds is

largely dependent on the tools used and the skill of the developer. Difficulty would generally
be greater for an Xlib implementation and less for an implementation based on a combination

of pre-existing Gtk: + widgets.

If the control desired by the programmer is already provided by the Gtk:+ widget set,
then the expected amount of effort needed to implement the control in the application user

interface is constant. The use of a label, a button, a pop-up menu, or a date entry control
should all require about the same amount of effort from a programmer, effort that is far less
than that needed by the programmer creating the control from scratch. The reasons for this
should be clear; the user interface of the control, and its functionality, have already been

provided by the widget. All the programmer needs to do is instantiate the widget and inter

act with it at runtime using the API provided by the widget implementation.

108 Chapter 4 • Widgets

Simplification for Users

This brings us to the second goal of a toolkit like Gtk+, which is to make life easier, not

only for developers but for end users of the application. The way this is done is again

through consistency. If the widget set provides a date entry widget, programmers will use

that widget (assuming it is sufficient for most programmers' needs, which a good widget
design will ensure) instead of implementing one of their own. This will result in a consistent

user interface as well as stable and predictable behavior shared among different applica

tions . A user who leams an application that makes use of a control instantiated from the

Gtk+ widget set only needs to learn that control once because it will behave in the same

manner in all other applications. This holds true for all toolkits, not just Gtk+.

Now that you have a better understanding of some of the benefits of toolkit-based program

ming, let's dive into the details of the first widget class we will look at in this book: GtkWidget.

Since this is the first widget class described in this book, I will be overly verbose in describing

how the material is organized (such descriptions in the following are italicized). Subsequent

widget classes will be described using the same basic organization as presented here.

GtkWidget

Class Name

GtkWidget

This is the name of the class being described.

Parent Class Name

GtkObject

This is the name of the class in the Gtk+ widget hierarchy that is the parent of this widget class.
Additional capabilities supported by a widget class can be discovered by reading about the parent
widget class, and its parent, and so on, since a child class will inherit attributes and capabilities
from its parents.

Macros

Macros are found in the widget class's include file, which in this case is named gtkwindow.h. Your
application need only include gtklgtk.h to access these macros.

GtkWidget

Macros (Continued)

Widget type macro: GTK_TYPILWIDGET

This is the type constant associated with the widget class. Casting a widget to GtkObject and
passing the result to the GTK_OBJECT_TYPE macro was illustrated in Chapter 3, "Signals,

Events, Objects, and Types:'

Object to widget cast macro: GTK_WIDGET (obj)

109

This macro casts a widget or an object belonging to an arbitrary class to the GtkWidget class. It
is accepted practice to store the handle of a widget instance, returned by Gtk+ when the widget is
created, in a variable of type GtkWidget * and then use the "object to widget cast" macro to coerce
this variable to the type of class needed. We saw several examples of this in both Chapter 2, "Hello

Gtk+!;' and Chapter 3.

Widget type check macro: GTK_IS_WIDGET (obj)

This macro returns TRUE if the object being checked is an instance of GtkWidget; otherwise,
FALSE is returned. If the variable holding the widget instance being checked is not stored in a

variable of type GtkObject *, use the macro GTK _ OBJECT() to coerce the variable and avoid

runtime errors. For example:,

GtkWidget *foo;
gboolean result;

result = GTK_IS_WIDGET{ GTK_OBJECT{ foo));
if (result == TRUE) { . . . }

Miscellaneous Macros

Any additional macros supported by the widget class are listed as in Table 4.1.

Table 4.1 GtkWidget Miscellaneous Macros

Macro

GTK_ WIDGET_TYPE(w)

GTK_ WIDGET_STATE(w)

Description

Widget type.

Widget state (GTK_STATE.-NORMAL,
GTK.-STATE_ACfIVE,
GTK_STATE_PRELIGHT,
GTK_STATE_SELECTED,
GTK_STATE_INSENSITIVE).

Widget saved state.

1 10

Table 4.1 GtkWidget Miscellaneous Macros (Continued)

MIICTtJ Description

GTIC WIDGET_FLAGS(w) Widget flags.

Chapter 4 • Widgets

GTK_ WIDGET_TOPLEVEL{w) If nonzero, it is a widget and is top-level.

GTK_ WIDGET�O_ WINDOW(w) If nonzero, it is a widget and has no window.

GTK_ WIDGET...REALIZED(w) If nonzero, it is a widget and has been realized.

G� WIDGET_MAPPED(w) If nonzero, it is a widget and has been mapped.

GTK_ WIDGET_ VISmLE(w) If nonzero, it is a widget and is visible.

G� WIDGET_DRAWABLE(w) If nonzero, it is a widget that is mapped and is
visible.

GTK_ WIDGECSENSlTIVE(w) If nonzero, it is a widget and is sensitive.

GTK_ WIDGET_PARENT_SENSlTIVE(w) If nonzero, it is a widget and its parent is sensitive.

GTK_ WIDGET_IS.:..SENSlTIVE(w) If nonzero, it is a widget and both it and its parent
are sensitive.

GTK_ WIDGET_CAN_FOCUS(w) GTK_CAN_FOCUS bit in widget flags is set.

� WIDGET_HASYOCUS(w) GTK_HAS_FOCUS bit in widget flags is set.

GTK_ WIDGET_CAN_DEFAULT(w) GTK_CANJ>EFAULT bit in widget flags is set

GTK_ WIDGET_HAS_DEFAULT(w) GTK_HAS_DEFAULT bit in widget flags is set.

G� WIDGET_HAS_GRAB(w) GTK_HAS_GRAB bit in widget flags is set.

GTK_ WIDGET.-RC_STYLE(w) GTK_RC_STYLE bit in widget flags is set.

GTK_ WIDGET_COMPOSITE_ODLD<w) GTK_COMPOSITE_CHILD bit in widget flags
is set

GTK_ WIDGET_APP _PAINTABLE(w) GTK_APP �PAINTABLE flag in widget flags is
set

GTK_ WIDGET_RECEIVES_DEFAULT(w) GTK_RECEIVES_DEFAULT flag in widget
flags is set

GTK_ WIDGET_SET_FLAGS(w,flag) Set flag (or flags) for widget w.

GTK_ WIDGET_UNSET_FLAGS(w,flag) Clear flag (or flags) for widget w.

Signals were described in Chapter 3. Here we'll simply name the supported signals and
what causes them to trigger. Table 4.2 lists the function prototypes/or each of the signals.

GtkWidget

Table 4.2 Signals

Signal Name

show

hide

map

unmap

realize

unrealize

draw

grab30cus

event

button..,press_event

button_release_event

key _press_event

key_release_event

Condition Causing Signal til Trigger

The widget has been shown.

The widget has been hidden.

The widget has been mapped.

The widget has been unmapped.

The widget has been realized.

The widget has been unrealized.

The widget needs to be drawn.

1 1 1

The widget has focus and needs to be drawn.

The widget has been made the default and needs
to be drawn.

The widget needs to compute its requisition.

The widget has been allocated a size.

The state of the widget has been changed.

The parent of the widget has been set.

The style of the widget has been set.

An accelerator was added.

An accelerator was removed.

The widget has grabbed the focus.

An XII event has been received.

An XII button press event has been received.

An XII button release event has been received.

An XII motion notify event has been received.

An XII window delete event has been received.

An XII window destroy event has been received.

An XII window expose event has been received.

An XII key press event has been received.

An XII key release event has been received.

112

Table 4.2 Signals (Continued)

Signa/Name

selection_clear_event

selection_requescevent

selection�et

dralt-motion mouse

Chapter 4 • Widgets

Conditio" Causing Signal to Trigger

An XII enter notify event has been received.

An XII leave notify event has been received.

An XII configure event has been received.

An XlI focus in event has been received.

An XII focus out event has been received.

An XII window map event has been received.

An XII window unmap event has been received.

An XII property notify event has been received.

An XII selection clear event has been received.

An XII selection request event has been

received.

An XII selection notify event has been received.

The contents of a selection have been requested

and received.

A selection has been retrieved.

An XInput extension proximity in event has been

received.

An XInput extension proximity out event has

been received.

A drag has begun.

Motion has occurred during drag and drop.

A drag leave event was received (e.g., the mouse

left the drop site).

A drop has occurred.

A request to the source for drag-and-drop data has
been made.

Data has been received by the receiving
client/widget, or it has failed.

A request from the source to delete data after a

drop has been made.

GtkWidget 1 13

Table 4.2 Signals (Continued)

Signal Name

dra�end

visibility Jlotify _event

cliencevent

Signal Function Prototypes

Condition Causing Signal to Trigger

A drag has ended.

An XII visibility notify event has been received.

An X 11 client event has been received.

An XII no expose event has been received.

A request to display a debug message has been

made.

This section provides the C function prototypes of the signalfunctions supported by the widget class.
The name of the function prototype identifies the corresponding signal in the preceding table.

void
show(GtkWidget *widget, gpo inter user_data);

void
hide(GtkWidget *widget, gpointer user_data);

void
map(GtkWidget *widget, gpointer user_data);

void
unmap(GtkWidget *widget, gpointer user_data);

void
realize(GtkWidget *widget, gpointer user_data);

void
unrealize(GtkWidget *widget, gpo inter user_data) ;

void
draw(GtkWidget *widget, GdkRectangle *area, gpo inter user_data) ;

void
draw_focus(GtkWidget *widget, gpo inter user_data);

void
draw_default(GtkWidget *widget, gpointer user_data);

void
size_request (GtkWidget *widget, GtkRequisition *requisition, gpointer
user_data) ;

1 14 Chapter 4 • Widgets

Signal Function Prototypes (Continued)

void

size_allocate (GtkWidget *widget, GtkAllocation *allocation, gpointer
user_data) ;

void

state_changed{ GtkWidget *widget, GtkStateType state, gpointer
user_data);

void
parent_set (GtkWidget *widget, GtkObject *old-parent, gpointer
user_data) ;

void
style_set (GtkWidget *widget, GtkStyle *previous_style, gpointer
user_data) ;

void
add_accelerator (GtkWidget *widget, guint accel_signal_id,
GtkAccelGroup *accel_group, guint accel_key, GdkModifierType
accel_mods, GtkAccelFlags accel_flags, gpointer user_data);

void
remove_accelerator (GtkWidget *widget, GtkAccelGroup *accel_group,
guint accel_key, GdkModifierType accel_mods, gpointer user_data);

void
grab_focus (GtkWidget *widget, gpo inter user_data);

gboolean
event (GtkWidget *widget, GdkEvent *event, gpointer user_data);

gboolean
button-press_event (GtkWidget *widget, GdkEventButton *event, gpointer
user_data);

gboolean
button_release_event (GtkWidget *widget, GdkEventButton *event,
gpointer user_data);

gboolean
motion_notify_event (GtkWidget *widget, GdkEventMotion *event,
gpointer user_data);

GtkWidget 1 15

Signal Function Prototypes (Continued)

gboolean
delete_event{ GtkWidget *widget, GdkEvent * event , gpointer user_data);

gboolean
destroy_event{ GtkWidget *widget, GdkEvent * event , gpointer
user_data) ;

gboolean
expose_event{ GtkWidget *widget, GdkEventExpose * event , gpointer
user_data) ;

gboolean
key-press_event{GtkWidget *widget, GdkEventKey * event , gpointer
user_data) ;

gboolean
key_release_event{ GtkWidget *widget, GdkEventKey * event , gpointer
user_data) ;

gboolean
enter_notify_event{ GtkWidget *widget, GdkEventCrossing *event,
gpointer user data);

gboolean
leave_notify_event{ GtkWidget *widget, GdkEventCrossing *event,
gpointer user data);

gboolean
configure_event { GtkWidget *widget, GdkEventConfigure *event, gpointer
user_data);

gboolean
focus_in_event{ GtkWidget *widget, GdkEventFocus * event , gpointer
user_data);

gboolean
focus_out_event{ GtkWidget *widget, GdkEventFocus * event , gpointer
user_data) ;

gboolean
map_event{GtkWidget *widget, GdkEvent *event, gpointer user_data);

gboolean
unmap_event{ GtkWidget *widget, GdkEvent * event , gpointer user_data);

116 Chapter 4 • Widgets

Signal Function Prototypes (Continued)

gboolean
property_notify_event (GtkWidget *widget, GdkEventProperty *event,
gpo inter user_data);

gboolean
selection_clear_event (GtkWidget *widget, GdkEventSelection *event,
gpointer user data);

gboolean
selection_request_event (GtkWidget *widget, GdkEventSelection *event,
gpointer user_data);

gboolean
selection_notify_event(GtkWidget *widget, GdkEventSelection *event,
gpointer user data) ;

void
selection_get (GtkWidget *widget, GtkSelectionData *data, guint info,
guint time, gpointer user_data);

void
selection_received(GtkWidget *widget, GtkSelectionData *data, guint
time, gpointer user_data);

gboolean
proximity_in_event (GtkWidget *widget, GdkEventProximity *event,
gpointer user_data);

gboolean
proximity_out_event (GtkWidget *widget, GdkEventProximity *event,
gpointer user_data);

void
drag_begin (GtkWidget *widget, GdkDragContext *drag_context, gpointer
user_data) ;

void
drag_end (GtkWidget *widget, GdkDragContext *drag_context, gpointer
user_data) ;

void
drag_data_delete (GtkWidget *widget, GdkDragContext *drag_context,
gpo inter user_data);

GtkWidget

Signal Function Prototypes (Continued)

void
drag_leave (GtkWidget *widget, GdkDragContext *drag_context, guint
time, gpointer user_data) ;

gboolean

1 17

drag_motion (GtkWidget *widget, GdkDragContext *drag_context, gint x,
gint y, guint time, gpo inter user_data);

gboolean
drag_drop (GtkWidget *widget, GdkDragContext *drag_context, gint x,
gint y, guint time, gpointer user_data);

void
drag_data_get (GtkWidget *widget, GdkDragContext * drag_cont ext ,
GtkSelectionData *data, guint info, guint time, gpointer user data) ;

void
drag_data_received (GtkWidget *widget, GdkDragContext *drag_context,
gint x, gint y, GtkSelectionData *data, guint info, guint time,

gpointer user data) ;

gboolean
client_event (GtkWidget *widget, GdkEventClient * event , gpointer
user_data);

gboolean
no_expose_event (GtkWidget *widget, GdkEventNoExpose *event, gpointer
user_data);

gboolean
visibility_notify_event (GtkWidget *widget, GdkEvent * event , gpointer
user_data) ;

void
debug_msg (GtkWidget *widget, gchar *message, gpointer user_data) ;

1 1 8 Chapter 4 • Widgets

Supported Arguments

See the discussion of gtk_objeccsetv(), gtk_objeccgetv(), and gtk_objeccarg�et() in Chapter 3
and gtk_widgecnew() and gtk_widgecnewv() later in this chapter.

Prefix: GtkWidget::

Generally, the prefix will be of the form <class name>::.

Table 4.3 GtkWidget Arguments

Name Type Permissions

name GTK_TYPE_STRING GTK_ARG_READWRITE

parent GTK_TYPE_CONTAUNER GTK_ARG_READ�TE

x GTK_TYPE_INT GTK_ARG_READ�TE

Y GTK_TYPE_INT GTK_ARG_READWRlTE

width GTK_TYPE_INT GTK_ARG_READWRITE

height GTK_TYPE_INT GTK_ARG_READWRITE

visible GTK_TYPE_BOOL GTK_ARG_READWRlTE

sensitive GTK_TYPE_BOOL GTK_ARG_READWRITE

app_paintable GTK_TYPE_BOOL GTK_ARG_READWRITE

can_focus GTK_TYPE_BOOL GTK_ARG_READWRITE

has_focus GTK_TYPE_BOOL GTK_ARG_READWRITE

can_default GTK_TYPE_BOOL GTK_ARG_READWRITE

has_default GTK_TYPE_BOOL GTK_ARG_READWRITE

receives_default GTK_TYPE_BOOL GTK_ARG_READWRITE

composite_child GTK_TYPE_BOOL GTK_ARG_READWRITE

style GTK_TYPE_STYLE GTK_ARG_READWRITE

events GTK_TYPE_GDK_EVENT_MASK GTK_ARG_READWRITE

extension_events GTK_TYPE_GDK_EVENT_MASK GTK_ARG_READWRITE

GtkWidget

Application-Level API Synopsis

In this section, the external or public functions are listed along with a brief description of the
functionality that each routine provides. A later section describes each function in more detail.

Return constant GTK_TYPE_ WIDGET at runtime:
GtkType
gtk_widget_get_type (void);

Create an instance of a widget of a specific type, varargs interface:
GtkWidget *
gtk_widget_new (GtkType type, const gchar *first_arg_name, ...);

Create an instance of a widget of a specific type:
GtkWidget *
gtk_widget_newv (GtkType type, guint nargs, GtkArg *args);

Increase a widget reference count by 1:
void
gtk_widget_ref (GtkWidget *widget);

Decrease a widget reference count by 1:
void
gtk_widget_unref (GtkWidget *widget);

Destroy a widget:
void
gtk_widget_destroy (GtkWidget *widget);

Set a widget pointer to NULL when the specified widget is destroyed:

void

119

gtk_widget_destroyed (GtkWidget *widget, GtkWidget **widget-pointer);

Get the value of a single named argument from widget:
void
gtk_widget_get (GtkWidget *widget, GtkArg *arg);

Get the values of a set of named arguments from widget:
void
gtk_widget_getv (GtkWidget *widget, guint nargs, GtkArg *args);

Set widget values, varargs interface:
void
gtk_widget_set (GtkWidget *widget, const gchar *first_arg_name, ...);

Set widget values:
void
gtk_widget_setv (GtkWidget *widget, guint nargs, GtkArg *args);

120

Application-Level API Synopsis (Continued)

Disassociate a widget from its parent:
void
gtk_widget_unparent (GtkWidget *widget);

Make a widget eligible for mapping. If its parent is mapped, then map it:
void
gtk_widget_show (GtkWidget *widget);

Chapter 4 • Widgets

Show a widget and, if it is an unmapped top-level widget, wait for the map_event signal before

returning:
void
gtk_widget_show_now (GtkWidget *widget);

Show a widget and all of its children:
void
gtk_widget_show_all (GtkWidget *widget);

Unmap a widget:
void
gtk_widget_hide (GtkWidget *widget);

If widget supports "hide all" functionality, invoke it:
void
gtk_widget_hide_all (GtkWidget *widget);

Realize a widget, if needed, and then display it:
void
gtk_widget_map (GtkWidget *widget);

Hide the window associated with the widget:
void
gtk_widget_unmap (GtkWidget *widget);

Prepare a widget and its parent, if necessary, for mapping:
void
gtk_widget_realize (GtkWidget *widget);

Unmap a widget and its children, destroying their windows:
void
gtk_widget_unrealize (GtkWidget *widget);

Add an accelerator to a widget/accelerator group:
void
gtk_widget_add_accelerator (GtkWidget *widget, const gchar

*accel_signal, GtkAccelGroup *accel_group, guint accel_key,
guint accel_mods, GtkAccelFlags accel_flags);

GtkWidget

Application-Level API Synopsis (Continued)

Remove an accelerator from a widget/accelerator group:
void
gtk_widget_remove_accelerator (GtkWidget *widget, GtkAccelGroup

*accel_group, guint accel_key, guint accel_mods);

Remove all accelerators from a widget (visible_only is unused in Gtk+ 1.2):
void
gtk_widget_remove_accelerators (GtkWidget *widget,

const gchar *accel_signal, gboolean visible_only) ;

Retrieve the signal ID associated with a given accelerator:
guint
gtk_widget_accelerator_signal (GtkWidget *widget,

GtkAccelGroup *accel_group, guint accel_key,
guint accel mods);

Disable the capability to add accelerators to or remove accelerators from a widget:

void
gtk_widget_lock_accelerators (GtkWidget *widget);

Re-enable the capability to add accelerators to or remove accelerators from a widget:
void
gtk_widget_unlock_accelerators (GtkWidget *widget);

121

Generate an event to be sent to the specified widget. Return nonzero if the widget is destroyed as

a result:
gint
gtk_widget_event (GtkWidget *widget, GdkEvent *event);

If the widget supports an activate signal, generate it and return TRUE; otherwise, return FALSE:
gboolean
gtk_widget_activate (GtkWidget *widget);

Change a widget's parent to specified a widget:
void
gtk_widget_reparent (GtkWidget *widget, GtkWidget *new-parent);

Show a widget at a specific x, y location:
void
gtk_widget-popup (GtkWidget *widget, gint x, gint y);

Compute a region of intersection between a widget and a rectangle:
gint
gtk_widget_intersect (GtkWidget *widget, GdkRectangle *area,

GdkRectangle *intersection);

122

Application-Level API Synopsis (Continued)

Make a widget the focus widget of its containing widget:
void
gtk_widget_grab_focus (GtkWidget *widget);

Make a widget the default widget of its containing widget:
void
gtk_widget_grab_default (GtkWidget *widget);

Set widget position:
void

Chapter 4 • Widgets

gtk_widget_set_uposition (GtkWidget *widget, gint x, gint y);

Set widget size:
void
gtk_widget_set_usize (GtkWidget *widget, gint width, gint height);

Set the event solicitation mask:
void
gtk_widget_set_events (GtkWidget *widget, gint events);

Append events to the event solicitation mask:
void
gtk_widget_add_events (GtkWidget *widget, gint events);

Get the event mask associated with a widget:
gint
gtk_widget_get_events (GtkWidget *widget);

Get the top-level widget (highest ancestor in widget instance hierarchy) of widget:
GtkWidget *
gtk_widget_get_top-level (GtkWidget *widget);

Find the closest ancestor to a widget of a specific widget type:
GtkWidget *
gtk_widget_get_ancestor(GtkWidget *widget, GtkType widget_type) ;

Retrieve the colormap of a widget:
GdkColormap *
gtk_widget_get_colormap (GtkWidget *widget);

Retrieve the visual of a widget:
GdkVisual *
gtk_widget_get_visual (GtkWidget *widget);

Set the widget colormap (call prior to realizing widget):
void
gtk_widget_set_colormap (GtkWidget *widget, GdkColormap *colormap);

GtkWidget

Application-Level API Synopsis (Continued)

Set the widget visual (call prior to realizing widget):
void
gtk_widget_se t_vi sual (GtkWidge t *widget , GdkVi sual *vi sual) ;

Retrieve the x, y position of pointer:
void
gtk_widget_get -pointe r(GtkWidge t *wi dget , g i nt *x, g i nt *y) ;

Check whether a widget is an ancestor of another widget in the instance hierarchy:
g i nt
gtk_widge t_i s_anc e st o r(GtkWi dget *wi dget , GtkWidget *anc e stor) ;

Call gtk_ widgeChideO and return TRUE:
g i nt
gtk_widget_hide_o n_de l e t e (GtkWidget *wi dget) ;

123

Make a widget (in)sensitive (a widget is only actually sensitive if its parent, if any, is also sensitive):
void
gtk_widget_set_se nsi t ive (GtkWidget *wi dget , g bool e an sensi t ive) ;

Associate a name with a widget and perform a new rc lookup if no user style for the widget is set

(see text):
void
gtk_widget_set_name (GtkWidget *wi dget , co nst gc har *name) ;

Retrieve the name associated with a widget:
gc har *
gtk_widge t_ge t_name (GtkWidge t *wi dget) ;

Set and activate a widget's style attribute:
vo id
gtk_widget_set_style (GtkWidget *wi dget , GtkS tyle *styl e) ;

Determine a widget's style from rc setting and then apply it:
vo id

gtk_wi dget_set_rc_style (GtkWi dge t *wi dge t) ;

Make sure that either a user-defined or rc style has been applied to a widget:
voi d
gtk_wi dge t_e nsure_style (GtkWidget *wi dge t) ;

Retrieve style data for a widget, retrieving rc style settings if needed:
GtkS tyl e *
gtk_widget_get_style (GtkWidget *wi dge t) ;

Restore the default style of widget:
void
gtk_widget_re sto re_def aul t_style (Gt k Wi dget *wi dge t) ;

124

Application-Level API Synopsis (Continued)

Recursively set rc style on all widgets that do not have user styles set:
voi d
g tk_w i dget_re set_rc_style s(GtkWidget *wi dge t) ;

Chapter 4 • Widgets

Push a style to the top of the style stack. The style will override any default styles set for the widget:
vo i d
gtk_w i dget-push_sty l e (GtkS tyle *styl e) ;

Push a colonnap to the top of the colormap stack. The colonnap will override any default

colormap set for the widget:
voi d

g tk_wi dge t-push_co l o rmap(GdkCol o rmap *cmap) ;

Push a visual to the top of the visual stack. The visual will override any default visual set for the widget:
voi d
g tk_wi dget-push_vi sual (GdkVi sual *vi sual) ;

Remove a style from a style stack:
voi d
g tk_w i dge t-po p_style (voi d) ;

Remove a colormap from a colormap stack:
voi d

gtk_w i dget-po p_co l o rmap(vo i d) ;

Remove a visual from a visual stack:
voi d
g tk_w i dge t-po p_vi sual (voi d) ;

Set the default style for a widget:
voi d
gtk_w i dget_se t_de f aul t_styl e (GtkS tyle *styl e) ;

Set the default colormap for a widget:
voi d
gtk_w i dget_se t_de f aul t_colorma p(Gdk Co l o rma p *colormap) ;

Set the default visual for a widget:
vo i d

gtk_w i dget_se t_de f aul t_vi sual (GdkVi sual *vi sual) ;

Retrieve the default style for a widget:
GtkS tyle *
g tk_widge t_ge t_de f aul t_styl e (voi d) ;

GtkWidget

Application-Level API Synopsis (Continued)

Retrieve the default colonnap for a widget:
Gdk Colormap *

gtk_widget_get_de f aul t_colormap(voi d) ;

Retrieve the default visual for a widget:
GdkVi sual *
gtk_widget_get_def aul t_vi sual (voi d) ;

Class Description

125

GtkWidget is the class from which all widget implementation classes in the Gtk+ widget hier

archy descend. GtkWidget provides functionality that is common to all widget classes falling

below it in the Gtk+ widget class hierarchy. What makes an instance of the GtkButton widget

class differ from an instance of GtkWidget is the functionality that GtkButton adds to make an

instance of GtkButton look and behave as a button should. What GtkButton inherits from Gtk

Widget is all the code and data that make an instance of GtkButton a widget. Each and every

instance of GtkButton is an instance of GtkWidget in the sense that an instance of GtkButton

is able to make use of the functionality it inherits from GtkWidget.

For example, any instance of a GtkWidget can be destroyed by calling gtk_ widgecdestroyO.
Because GtkButton is a descendant of GtkWidget, gtk_ widgeCdestroyO can also be used to

destroy an instance of GtkButton. As long as the Gtk+ class descends from GtkWidget, the Gtk

Widget functions and macros described here can be used for instances of the class. The relation

ship between a widget class and GtkWidget is also apparent by noting that most Gtk+

applications store instances of widgets, regardless of the actual widget class, in variables

declared as GtkWidget *. This further substantiates the fact that all widgets can be viewed as

instances of GtkWidget. This is done simply as a convenience to the programmer, mostly to

eliminate the need to cast a widget instance variable to GtkWidget * when passed as an argu

ment to functions and macros defined by GtkWidget.

Widget Creation
GtkWidget provides functions that allow you to create an instance of a widget belonging to

a specific widget class. One of these functions provides a varargs interface, while the other

requires that arguments be passed in as a vector. Each of these functions produces the same

result; which one you use is largely a matter of personal taste.

Perhaps neither of these functions is actually used very often by application program
mers. Typically, a function provided by the widget class is what most applications will call

to instantiate a widget. However, using the GtkWidget interfaces allows the programmer to

specify attributes of the widget instance at creation time that would normally require addi
tional function calls using some other method. I'll return to this issue after we first take a

look at the functions provided by GtkWidget.

126 Chapter 4 • Widgets

The varargs function is gtk_widgecnewO:

GtkW i dget *

gtk_widget_new (GtkType t ype , cons t gchar * f irs t_arg_name , . . .) ;

The first argument is a type that defines which widget class the instance will belong to

(e.g. , GtkButton). This type can be the widget type macro documented for each widget class

by this book (e.g., GTK_TYPE_ WINDOW), or it can be a call to the widget's type func

tion, the name of which is formed by concatenating the string "gtk_", the class name, and

"�ectype" (e.g., gtk_ window �ectypeO in the case of GtkWidget). It is probably better

style to use the widget type macro.

The remaining arguments to gtk_ widgeCnewO specify attributes to be assigned to the

newly created widget. Each of these attributes is specified by a pair of arguments. The first

of these is a string that identifies the attribute to be set. The argument that immediately fol

lows it is the value of that attribute. The universe of attributes that can be set derives from

those accepted by the widget class, by GtkWidget, or by any widget class that resides

between the widget class being instantiated and GtkWidget in the class hierarchy. In the

case of GtkButton, we can set values for "label", which is of type GTK_TYPE_STRING,

and "relief', which is of type GTK_TYPE_RELIEF _STYLE. The arguments that can be

set are defined in this book in the section "Supported Arguments" documented for each
widget class. As you can see from earlier in this chapter, a large number of attributes can

be set for GtkWidget, including x and y positions ("x" and "y") and the widget's width and

height ("width" and "height"). The argument list is terminated by a single NULL.

For example, to create an instance of GtkButton, we might execute the following code:

GtkWi dget * but ton;

but t o n = gtk_widget_new (GTK_TYPE_BUTTON , " l abe l " , " Pre s s me ! " ,

NULL) ;

In this example, we created a button labeled "Press me!". Here there is little advantage

in using the gtk_ widgecnewO function to perform this task since we can make use of

gtk_button_new _ with_labelO to perform the same thing:

GtkWidget * but ton;

Using gtk_button_new _ with_labelO is better in most cases because it is easier to read and

provides a simpler interface. However, assume we want to create a button that is insensitive

(e.g. , the button is displayed as dimmed and does not respond to key presses). Using the Gtk

Button API, we would need to do the following:

GtkWidget

GtkWidget *but t o n ;

but t o n = gtk_but t o n_new_wi t h_l abe l (" Pre ss me ! ") ;
gtk_widget_se t_se nsi t ive (but t o n , FALSE) ;

Using gtk_widgecnewO, this could be done using a single function call :

GtkWidget *but t o n ;

but t o n gtk_widget_new(GTK_TYPE_BUTTON ,
" l abe l " , " Pre ss me ! " ,
" se nsi t ive " , FALSE ,

NULL) ;

127

There seems to be little advantage in using gtk_ widget_newO in this example, but the ben

efit of using gtk_ widgeCnewO increases as the number of arguments passed is increased. In

the end, it is really a matter of programmer preference, but when setting more than a few
attributes, it would seem to me to be easier to understand and modify a single call to

gtk_ widgecnewO than to perform the equivalent task with a series of function calls, one

for each attribute of the widget being set. The choice of using gtk_ widgecnewO or the

functions provided by the widget class is again up to you to make.

The second function for creating a widget is gtk_ widgecnewvO:

GtkWidget *
gtk_widget_newv(GtkT ype t ype , gui nt narg s, GtkArg *args) ;

The only difference between gtk_ widgeCnewO and gtk_ widgecnewvO is in how the

arguments are passed. The first argument to gtk_ widgeCnewvO is the type of the widget to

be created, specified exactly the same as for gtk_widgecnewO. The second argument,

nargs, is the number of arguments being passed. The final argument is a vector containing

nargs arguments, each of type GtkArg. The use of GtkArg was described in Chapter 3 when

gtk_objeccsetvO was introduced. Unless you are working with a vector of GtkArg values
that was obtained through some other means (such as a call to gtk_objeccgetv()), I recom

mend that you avoid using gtk_ widgeCnewvO and instead use gtk_ widgecnewO, which
has a much simpler interface (this is assuming that the widget creation function exposed by
the widget class is not the best alternative of all, using the guidelines previously provided).

Widget Reference Counts
A widget can have its reference count increased and decreased by one by a call to gtk_
widgeCrefO and geCwidgeCunrefO, respectively:

128 Chapter 4 • Widgets

vo i d

gtk_wi dge t_re f (GtkWidget *widget) ;

vo i d

gtk_wi dget_unre f (GtkWidget *widget) ;

When a widget is first created, it is given a reference count of one. If the reference count

of a widget goes to zero, the widget will be destroyed. Destroying a widget in this manner

is not recommended, however (use gtk_widgeCdestroyO; see the next section). You should

make sure that calls to gtk_ widgecrefO and gtk_ widgeCunrefO are matched evenly.

Increasing the reference count of a widget ensures that it will persist during some operation

that might otherwise lead to the destruction of the widget. Internally, Gtk + does this in several

places. One example is when Gtk+ handles a delete event in its main loop, as exhibited by the

following code:

switch (event - > type)

case GDK DELETE :
gtk_widge t_re f (event_widge t) ;
i f (l gtk_widge t_event (event_widget , event) &&

l GTK_OBJECT_DESTROYED (event_widge t))

gtk_widge t_de st roy (event_widge t) ;
gtk_widget_unre f (event_widget) ;

break ;

In the preceding code, it is possible for the call to gtk_ widgeceventO to result in destruction
of the widget or, if there was some failure, for the widget to still exist after the function returns

and then need to be destroyed explicitly. To test whether the destruction actually occurred, the

code checks both the return value from gtk_widget_eventO and the widget'S "object

destroyed" attribute, which can only be done if the widget persists after the call to

gtk_ widgecdestroyO was made. This is ensured by increasing the reference count of the wid

get by one before gtk_ widgeceventO is called. If the widget destruction is successful in

gtk_ widgeceventO, the widget will still exist because the reference count is nonzero, but the
call to gtk_ widgecunrefO will cause the widget destruction to occur. If, on the other hand, the

call to gtk_ widgeceventO fails and the object was not destroyed, gtk_ widgeCdestroyO,
which is called in this case, will still not result in widget destruction until the call to

gtk_widgeCunrefO is made and the reference count goes down to zero.

Destroying Widgets

To destroy a widget, applications can call gtk_widgeCdestroyO:

vo id
gtk_wi dge t_de s t roy (GtkWidget *widget) ;

The function gtk_ widgecdestroyO takes a single argument, a pointer to a widget. Calling
this function causes the widget to be destroyed, assuming that its reference count goes to zero,
as previously discussed. Otherwise, the first subsequent call to gtlcwidgecunrefO that

reduces the widget's reference count to zero will result in the actual destruction of the widget.

GtkWidget 129

A call to gtk_widgeCdestroyO, regardless of whether or not the widget is actually

destroyed, will cause the following actions to be performed:

• Widget implementation-specific destruction code will be invoked, if any.

• Any grab that the widget may have is released.

• The reference count of the style object associated with the widget will be decreased by

one. Styles will be discussed later in this chapter. If the count goes to zero, the style

object will be destroyed.

• The destroy method of the parent class will be called.

GtkWidget defines a convenience routine that you can arrange to have called at the time

a widget is destroyed. This routine, gtk_ widgecdestroyedO, has the following prototype:

vo id
gtk_widge t_de s t royed (GtkWidget *widge t , GtkWidget * * widget-point e r) ;

The first argument is the widget being destroyed; the second is a pointer to a variable in

your code of type GtkWidget *. As an application programmer, you never call this routine

directly. Instead, you register this function as a destroy signal handler or callback using

gtk_signal30nnectO. The following code, adapted from testgtk.c in the Gtk+ distribution,

illustrates a typical use for this feature:

0 1 vo id MyCreateWindow (vo id) {
0 2
0 3 stat i c GtkWidge t *mywindow = (GtkWidget *) NULL ;

0 4
05 i f (! window) {
0 6 mywindow = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 7

0 8 gtk_s igna l_connec t (GTK_OBJECT (mywindow) , " de s t roy " ,

0 9 GTK_S I GNAL_FUNC (gtk_wi dget_de s t royed) , &mywindow) ;

On line 03, we declare a GtkWidget * variable named my window as a static; thus, the variable

and its value will persist across calls to MyCreateWindowO. The first time MyCreateWindowO

is called, my window will have a value of NULL, and this will cause the code in lines 06 through

09 to be invoked. On line 06, a new top-level window is created, and the handle for that window

returned by Gtk+ is stored in my window. The next time a call is made into MyCreateWindowO,

the value of my window will be non-NULL (assuming the window was not destroyed), so the
code on lines 06 through 09 will not be invoked. The lines we are most interested in for this dis

cussion are lines 08 and 09. Here, a call is made to gtk_signal_connectO (discussed in Chapter 3)
to add gtk_ widgecdestroyedO to the list of functions invoked when a destroy signal is received

by the widget. Signal functions are passed two arguments, as discussed in Chapter 3: The handle

of the widget receiving the signal is the first argument, and the second argument passed to the sig

nal function is the final argument passed to gtk_signal30nnectO. The implementation of
gtk_widgecdestroyedO in Gtk+ 1 .2 is simply:

130 Chapter 4 • Widgets

vo i d

gtk_wi dge t_de st royed (GtkWidget *widget , GtkWidget * * widge t-po int e r)

{
/ * Don ' t make any as sump t i ons about the

* value o f widge t !
* Even check widge t-po int e r .

* /
i f (wi dge t-po int e r)

* w i dget-point er = NULL ;

The effect of all this is that upon widget destruction, the static variable named my window

will be set to NULL. The very next time MyCreateWindowO is invoked, a new window will

be created because the expression !window, on line 05, will evaluate to be non-zero (TRUE).

Manipulating Widget Arguments

As we saw in the beginning of this section, GtkWidget supports many arguments. GtkWidget

provides convenience routines that allow an application to set and get values of these argu

ments. Because these functions are largely wrappers to functions provided by GtkObject that

were discussed in Chapter 3, I will not spend much time on them here other than to mention

how they map to equivalent routines in GtkObjectO.

The first function, gtk_ widget...getO, allows an application to retrieve the value of a single
argument defined for a widget. The function prototype is as follows:

vo i d
gtk_w i dget_get (GtkWidget *widget , GtkArg * arg } ;

The following code:

GtkW i dget *widget ;
GtkArg myArg ;

gtk_wi dge t_ge t (widge t , &myArg } ;

is equivalent to:

GtkWidget *widge t ;

GtkArg myArg ;

gtk_ob j e c t_getv (GTK_OBJECT (widget) , 1 , &myArg) ;

Before calling gtk_ widget�etO, you must fill in fields of the GtkArg struct that is passed. See
the discussion of gtk_object�etvO in Chapter 3 for more details .

To get mUltiple argument values from a widget, call gtk_ widget�etvO. The only difference
between gtk_ widget�etvO and gtk_ widget�etO is a vector of GtkArg variables, and its size
(cardinality, not size in bytes) is passed as arguments. Like gtk_ widget�etO, gtk_ widget�etvO
calls gtk_object�etvO, only with a vector and count that are greater than one (typically) in size

and value. The following is the prototype of gtk_widget�etvO:

GtkWidget 131

vo id
gtk_widge t_ge tv (GtkWidget *widge t , guint nargs , GtkArg * args) ;

This is the same prototype for gtlCobject..getvO, but the first argument to gtlCobject..getvO
is GtkObject *, not GtkWidget * .

Widget arguments can also be set with a varargs interface with gtk_widgecsetO:

vo id
gtk_widget_s e t (GtkWidget *widge t , const gchar * f i r s t_arg_name , . . .) ;

The equivalent GtkObject routine is gtk_objecCsetO. The prototypes for these two functions

are the same, except that gtk_objeccsetO takes a GtkObject * as its first argument, while

gtk_widgeuetO takes a GtkWidget *.

Finally, there is gtk_ widgecsetvO:

vo id
gtk_widge t_s etv (GtkWidget *widge t , guint nargs , GtkArg * args) ;

Calling gtk_widgecsetvO is equivalent to calling gtk_objeccsetvO, except that, as you

might have guessed, the first argument to gtk_objeccsetvO is a pointer to a GtkObject, not

to a GtkWidget.
Note that for all of these functions, you should feel free to make a call to the GtkObject

function if it is more convenient. Just remember that if you are dealing with a variable of

type Gtk Widget *, you will need to cast the widget pointer it holds to a GtkObject *, which

is best done using the macro GTK_OBJECT as in the following example:

GtkWidget * f oo ;
GtkArg args ;
guint s i z e ;

gt k_obj ect_setv (GTK_OBJECT (foo) , s i z e , &args [O]) ;

Realizing, Mapping, and Drawing Widgets

One area of confusion for new Gtk + (and XtlMotit) programmers is understanding the distinction
between "realizing" a widget and "mapping" a widget. Before I introduce the next several func
tions, I would like to briefly clarify exactly what these two terms mean.

The good news is that, for the most part, you don't really need to know what the distinction

is if you don't want to. Generally speaking, the only routines you need to be aware of to write

a Gtk+ application are gtk_widgeCshow*O and gtk_widgechide*O, which are discussed

later in this chapter.
To realize a widget in Gtk+ effectively means to create the X window it will occupy upon

being drawn. To map a window means to make it visible on the screen. GDK provides the

routines that perform the actual work of creating a window and making it visible; these rou
tines are used by Gtk+ and are themselves layered above X I I , so ultimately the behavior
of Gtk+ is dependent on that of X I I . In X I I , the creation of a window and its display are

132 Chapter 4 • Widgets

separate actions. One of the reasons for this separation is efficiency. X I I (and Gtk+) is a

network-based GUI technology, which means that the application generating the user inter

face and the device displaying the user interface can be running on separate machines on a

network, an intranet, or the Internet. Because of this separation and the inefficiencies it

implies, it is in the best interest of the toolkit and application programmers to reduce the

amount of traffic sent across the network between the application and the display server.

One way to do this is to separate the operations of creating and destroying a window from

the operations of making it visible or hidden. Granted, efficiency is not the only reason for

this separation; as it turns out, other UI toolkits such as Mac Toolbox also provide this sep

aration at the API level. But in X, the efficiency results can often be a big win. In Win32, a

warning or message is usually displayed by a call to MessageBoxO. MessageBoxO creates

and displays a modal dialog that is destroyed when dismissed by the user. In a network envi

ronment, inefficiencies in this approach may not matter in the case of a message dialog

being displayed once or twice by an application, but they quickly increase their influence

on the user if all dialogs in the application adopt the same approach.

Also, bear in mind that a typical message dialog has several windows and widgets associated

with it. This includes the containing window or dialog, the push button that is pressed by the user

to dismiss the dialog, and two label widgets: one used to display the message text and another

used to display the label on the button used to dismiss the dialog.

Here is a routine I coded for my freeware application, sportslog, which I call to display

a message dialog. I called it, appropriately, MessageBoxO:

Listing 4.1 MessageBoxO

inc lude <gtk/gtk . h >

/ *
* S imp l e Me s s ageBox
* /

vo id
Me s sageBox (char *me s s age)

{
GtkWidget * l abe l . *button . * d i a l og_window ;

0 1 d i a l og_window = gtk_dial og_new () ;
0 2 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) .

0 3 GTK_WIN_POS_MOUSE) ;

0 4 gtk_s igna l_connect (GTK_OBJECT (dialog_window) . " de s t roy " .
0 5 GTK_S I GNAL_FUNC (gtk_widget_de s t royed) . &di a l og_window) ;

0 6 gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) . " Me s sage ") ;
0 7 gtk_container_borde r_width (GTK_CONTAINER (dial og_window) . 0) ;

GtkWidget 133

0 8 button = gtk_but ton_new_with_l abe l (" OK ") ;

0 9 GTK_WI DGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;

1 0 gtk_box-pack_s tart (

1 1 GTK_BOX (GTK_D IALOG (dial og_window) - > a c t i on_area) ,

1 2 but t on , TRUE , TRUE , 0) ;

1 3 gtk_signal_connec t_obj e c t (GTK_OBJECT (button) , " c l i cked " ,

1 4 GTK_S I GNAL_FUNC (gtk_wi dge t_de s t roy) ,

1 5 GTK_OBJECT (di a l og_window » ;

1 6 label = gtk_l abe l_new (me s s age) ;

1 7 gtk_misc_set-padding (GTK_M I S C (l abel) , 1 0 , 1 0) ;

1 8 gtk_box-pack_s tart (GTK_BOX (GTK_D IALOG (di a l og_window) - >vbox) ,

1 9 l abe l , TRUE , TRUE , 0) ;

2 0 gtk_widget_grab_de f au l t (button) ;
2 1 gtk_widget_show_a l l (di a l og_window) ;

}

Each time I call this routine, several widgets are created. First, a dialog is created on line

0 1 . Next, a button (and its label) are created on line 08. Finally, on line 16, a label widget is

created to display the text of the message. When the user dismisses the dialog, each of these

widgets is, in turn, destroyed and must be created once again. For each widget creation, we

must realize the widget (create a window); this results in traffic between the X server and the

application. We must also map or display each window, which is additional traffic (the call to

gtlC widgecshow _alIO, on line 2 1 , results in calls to map each of the widgets that are children

of the dialog, including the OK button and the message label).
A more efficient alternative is the following, regardless of our being on the network or

not. It assumes that we are displaying only one message window at a time, which is a fair

assumption to make.

Listing 4.2 A More Efficient MessageBoxO

inc lude <gtk/gtk . h >

/ *
* S imp l e Me ssageBox , more e f f i c i ent

* /

vo id
Me s s ageBox (char *me s s age)

{
0 1 s t a t i c GtkWidget * l abe l , *button , * d i a l og_window
0 2

0 3 i f (dial og_window = = (GtkWi dge t *) NULL) {
0 4 dial og_wi ndow = gtk_d i a log_new () ;
0 5

(GtkWidget *) NULL ;

0 6 gtk_signal_conne c t (GTK_OBJECT (di a l og_window) , " de s t roy " ,
0 7 GTK_S I GNAL_FUNC (gtk_wi dget_de s t roye d) , &di a l og_window) ;

134 Chapter 4 • Widgets

0 8

0 9 gtk_window_s et_t i t l e (GTK_WINDOW (di a l og_window) , " Me s sage ") ;

1 0 gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;
1 1
1 2 but t on = gtk_button_new_with_l abe l (" OK ") ;

1 3 GTK_WI DGET_SET_FLAGS (button , GTK_CAN DEFAULT) ;
1 4 gtk_box-pack_start (

1 5 GTK_BOX (GTK_D IALOG (dial og_window) - >ac t i on_are a) ,
1 6 but ton , TRUE , TRUE , 0) ;

1 7 gtk_s igna l_connec t_obj e c t (GTK_OBJECT (button) , " c l i cked " ,
1 8 GTK_S I GNAL_FUNC (gtk_widge t_hi de_a l l) ,
1 9 GTK_OBJECT (di a l og_window)) ;
2 0

2 1 label = gtk_l abe l_new (me s sage) ;
2 2 gtk_m i s c_set-padding (GTK_M I S C (l abel) , 1 0 , 1 0) ;

2 3 gtk_box-pack_s tart (GTK_BOX (GTK_D IALOG (dialog_window) - >vbox) ,
2 4 labe l , TRUE , TRUE , 0) ;
2 5 e l s e
2 6 gtk_labe l_se t_text (labe l , me s s age) ;

2 7
2 8 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUS E) ;
2 9 gtk_wi dge t_grab_de f au l t (button) ;
3 0 gtk_widge t_show_a l l (di a l og_window) ;

}

The differences in this version of MessageBoxO start on line 0 1 , where the GtkWidget *

variables are all declared to be static. The first reason for doing this is seen on line 03. Here,

a check is made to see if the variable dialog is NULL. If it is NULL, then this is the first call

to MessageBoxO. (There is another possible reason that the dialog can be NULL; I will men

tion how a little later.) Because it is the first call, we can perform each of the following tasks

that are performed by lines 04 through 24:

• Create a dialog.

• Set dialog attributes (such as name).

• Create a button with an OK label.

• Set the button attributes.

• Create a label for the message and set its value.

The dialog, button, and label widgets are stored in static variables and will be available

the next time MessageBoxO is called. On line 28, the window is positioned based on the
current mouse position, the button is made the default widget for the dialog, and each of the

widget's windows are realized and mapped by calling gtk_widgecshow_alIO.
On lines 06 and 07, a call is made to gtk_signal30nnect to associate the destroy signal for

the dialog with the routine gtk_ widgecdestroyedO in a manner identical to that described earlier

when gtk_ widgeCdestroyedO was introduced. If for some reason the dialog (and, as a result, its

children) is destroyed, the "dialog" static variable will be cleared so that the following call to our
MessageBoxO routine will result in a new window being created. It may be that the user decides
to dismiss the MessageBox dialog by using a window manager control as opposed to clicking

GtkWidget 135

the OK button; this will result in destruction of the widget, which we must detect in this case and

handle. Another way to handle this situation would be to register a GDK_DELETE handler for

the widget and deny the user the ability to close the window in the handler. This is an acceptable

way, but it reduces the flexibility of the user to dismiss the dialog in the way he or she chooses.

On lines 17 through 19, we arrange for gtk:_ widgechide_allO (discussed in the next section)

to be called when the OK button is clicked. The handle for the dialog widget will be passed as

an argument to gtk_ widgechide_alIO, which will unmap the dialog and the windows of its chil

dren widgets (the OK button and the message label). To redisplay the dialog and the children,

we simply need to remap the dialog. This is discussed in the next paragraph.

Let's see what happens the second time MessageBoxO is called (we assume that the dialog

was not destroyed somehow, in which case "dialog" will be NULL and we revert back to the

logic previously described). In this case, dialog will be non-NULL, and we skip all of the code

on lines 04 through 24. As previously mentioned, to cause the dialog to redisplay, we need to

remap the dialog and its children. Before we do that, however, we change the label of the but

ton to reflect the message passed into MessageBoxO with a call to gtk_IabeCsectextO on line

26. We then set the position of the window to reflect the current mouse position, which very

likely has changed since the last time the message dialog was displayed, make the button the

default widget for the dialog, and display the dialog and its children. This is all done on lines

28 through 30, exactly as was done when the message dialog was first created. However, there

is one difference: In the call to gtk_widgecshow_alIO, Gtk:+ only needs to map the widgets

(instead of realizing and mapping them) because their windows were not destroyed when the

user dismissed the dialog that last time it was shown.

Showing Widgets

By now you should have an understanding of the calls I am about to discuss that are related

to widget realizing and mapping, so let's take a look at them in detail.

The first routine is gtk:_ widgecshowO:

vo id
gtk_widget_show (GtkWidget *widget) ;

The function gtk_ widgecshowO performs two operations. The first of these is to realize the

widget (Le. , create its window), but only if the widget has not already been realized. The second

is to map the widget (i.e., make the widget visible) and arrange for its content to be drawn.
Only the widget you specified as an argument will be realized and mapped. If that widget

is a dialog, for example, and has children that are not yet realized and mapped, these child

widgets will not be shown. These widgets can be displayed individually via separate calls to

gtk_ widgecshowO, or you can call gtk:_ widgeCshow _aliO as described later in this section.

A related function, gtk_ widgecshow _nowO, will show a widget and, if it is an unmapped

top-level widget, wait until a map3vent signal, indicating that the window is visible, is received

before returning:

vo id
gtk_widget_show_now (GtkWidget *widget) ;

136 Chapter 4 • Widgets

As previously stated, calling gtlC widget_showO on a widget containing child widgets

that are not yet shown (realized and mapped) will not cause the child widgets to be shown.

The scenario is illustrated by the following code, which creates a dialog, creates a button,

and then adds the button to the dialog as a child widget:

GtkWidget *dialog ;
GtkWi dge t *button ;

d i a l og = gtk_dial og_new () ;

but t on = gtk_butt on_new_with_l abe l (" Press me ! ") ;

gtk_box-pack_s tart (GTK_BOX (GTK_D IALOG (di a l og) - >action_area) ,
but ton , TRUE , TRUE , 0) ;

gtk_widge t_show (dialog) ;

Here, the dialog will show, but the button will not be visible because the code did not call

gtk_ widgecshowO for the button. A way to fix this problem would be to call gtk_ widgeuhowO

for the button, and often this is exactly what is done. Another way to solve the problem would be

to display the dialog widget with a call to gtk_ widgeuhow _alIO:

vo i d
gtk_w i dge t_show_a l l (GtkWidget *widget) ;

Calling gtk_ widgecshow _allO will ensure that any widgets that are children of the widget

being shown will be shown as well. Whether you use gtk_ widgeCshow _allO on the parent

window or gtk_ widgeCshowO on each of the child widgets is largely a matter of convenience

and personal preference on your part.

Hiding Widgets

To hide a widget, making it invisible to the user (also known as unmapping a widget), call

gtk_ widgechideO:

vo i d
gtk_widget_hide (GtkWidget *widget) ;

The function gtk_ widgechideO takes a single argument: the widget to hide.
gtk_widgeChideO does the opposite task of gtk_widgecmapO. The widget's window is
unmapped, but the window remains realized; it is not destroyed. You may be wondering
how hiding a parent widget affects its child widgets. We now know that showing a parent

widget with gtk_widgecshowO does not cause the child widgets to show. But does hiding
a parent widget cause the child widgets to disappear? In our previous example, where we

have a push button child of a dialog, the answer is yes. If there is a parent/child relationship,

then hiding the parent will cause the child widget(s) to be hidden as well.

GtkWidget 137

Some widget classes implement a "hide all" function. To be precise, all widget classes

have this entry point, but most widget classes do not implement this function and instead

inherit from GtkWidget. In GtkWidget, the two entry points implement the same semantics
because effectively gtk_ widgecshowO is called by the "hide all" function.

There are a few widget classes that, at the time of this writing, implement a "hide all" API.

These are GtkContainer, GtkMenu, GtkMenuItem, GtkOptionMenu, and GtkWidget. The

function prototype for gtk_widgechide_alIO is:

void
gtk_widget_hi de_a l l (GtkWidget *widget) ;

Finally, we have gtk_ widgeChide_on_deleteO:

gint
gtk_widge t_hi de_on_de l e t e (GtkWidget *widget) ;

The routine gtk_widgeChide_on_deleteO calls gtk_widgechideO and returns the value

TRUE.

We know that showing a widget means to realize it and then map it and that hiding a widget

means to unmap it. GtkWidget allows you to perform each of these tasks independently by expos

ing the following functions: gtk_ widgecmapO, gtk_ widgecunmapO, and gtk_ widgecrealizeO .
There i s little difference between gtk_widgeCshowO and gtk_widgeCmapO; both will

realize the window if it has not been realized yet and then map the window. However, in the

case of gtk_widgeCshowO, the mapping only occurs if, when the widget has a parent, that

parent is mapped. gtk_ widgeCmapO, on the other hand, maps the window with no strings

attached. Both gtk_ widgeCunmapO and gtk_ widgecrealizeO do generally what you might

expect; gtk_widgecunmapO will hide the widget, and gtk_widgeCrealizeO will realize the

widget (i.e., create the widget's window and set the state of the widget to realized). Here

are the function prototypes :

vo id
gtk_widget_map (GtkWidget *widget) ;

vo id
gtk_widge t_unmap (GtkWidget *widget) ;

vo id
gtk_widge t_real i z e (GtkWidget *widget) ;

Unrealizing a widget is the opposite of realizing and mapping a widget. The widget, if

visible, will be unmapped, and its window will be destroyed. If the widget is a container
widget (e.g. , it manages child widgets), then each of the child widgets it manages is unre

alized as well . The function prototype for gtk_ widgecunrealizeO is what you might expect:

void
gtk_widge t_unrea l i z e (GtkWidget *widget) ;

138 Chapter 4 • Widgets

Accelerators and Mnemonics

Accelerators provide a way for Gtk+ application programmers to associate menu and

menu-item selection with "command-key equivalents" that will activate a menu or menu

item without requiring the user to rely on a mouse or pointing device. In some cases, it may

be a requirement for the user interface to be operated solely via keyboard input due to

restrictions imposed by the operating environment (for example, the application is going to

be run in an environment where space is very limited or the hardware is specialized and a

mouse cannot be provided). More commonly, users will often demand support for acceler

ators because many end users find it more efficient to use shortcuts to select menu items

versus using a mouse. Accelerators provide a solution for users that may be experiencing

trouble with their pointing device due to device failure or, in the case of touchpad mice,

erratic behavior that will occur should the users' fingers become excessively moist. Some

users will not become proficient with a touchpad mouse without significant practice and

may prefer to use the keyboard until proficiency has been attained.

Support for keyboard shortcuts, menus, and menu items is fairly consistent among Motif

applications, although there are exceptions. Users of Motif applications have come to expect

not only that File, Edit, and Help menus exist in the menu bar, but that these menus can be

activated by selecting AIHF, Alt+E, and Alt+H, respectively. Users also expect that once a

menu has become active, any other menu on the menu bar can be made active by traversing

the items in the menu bar using the right and left arrow keys. Once a menu is active, users also

expect to be able to traverse through its items using the up and down arrow keys. Finally, once

the user has highlighted a desired menu item, the expectation is that the menu item will acti

vate once the Enter key has been pressed. This consistency is due to the Open Software Foun
dation (OSF) having the foresight to define a style guide for programmers.

The OSFIMotif Style Guide defines a base set of menus, menu items, and command-key

mnemonics that should be present or used by OSFlMotif applications. However, a similar
style guide does not exist for Gtk+. Because it is said that Gtk+ is Motif-like, I rely on the

OSFIMotif Style Guide as the basis for the decisions I make regarding menus, their place

ment, and the mnemonics that the menus and menu items map to. I realize that my Gtk+

applications often will be sharing the desktop with OSFlMotif applications from time to

time. By adopting OSFlMotif style guidelines as much as possible, I am making my appli

cation much easier to use for users that have Motif application experience. Also, I will be

making it easier for my users to transition to a Motif-based application in the future.

In this book, when I use the term "mnemonic," I am referring to a command-key equivalent

or shortcut. For example, the mnemonic that activates the File menu is AlHF, and the mnemonic

that activates the File menu Open menu item is Ctrl+O. This is consistent with OSFlMotif usage

and puts both Motif and Gtk+ on a level playing field. When I use the term "accelerator;' I am
referring to the Gtk+ feature used by application developers to implement mnemonics.

In this chapter, I won't provide a comprehensive discussion of menu bars, menus, menu

items, or accelerators. These subjects will be covered in far more detail in a later chapter.
Here we are simply concerned with documenting the functions that GtkWidget provides

that relate to accelerators and accelerator groups.

GtkWidget 139

Accelerator Groups

An accelerator group is an object you associate with a widget that you want to respond to

mnemonics key presses. This widget must be either an instance of GtkWindow (or one of

its descendants) or an instance of GtkMenuShell (or one of its descendants).

To create an accelerator group, you must call gtk_accel...group_newO. Once the accelerator

group has been created, it can be associated with a window by calling gtk_accel...,group_attachO.
The following code illustrates how to create an accelerator group and associate it with a window

object:

GtkWidget *window ;
GtkAc celGroup * a c c e l_group ;

window = gtk_window_new () ;
acce l_group = gtk_acce l_group_new () ;
gtk_acce l_group_a t t ach (acce l_group , GTK_OBJECT (window)) ;

Once you have an accelerator group and it is associated with a window, you add mnemonics

to one of its child widgets by calling gtk_ widgecadd_accelerator() :

vo id
gtk_widget_add_a c c e l e rator (GtkWidget *widge t ,

cons t gchar *acce l_s igna l , GtkAc c e lGroup * acce l_group ,

guint acce l_key , guint acce l_mods ,
GtkAc c e l F l ags acce l_f l ags) ;

Here, widget is the widget we had associated with the accelerator group by the call to
gtk_accel...,group_attachO (or one ofits child widgets). The argument signal is a signal supported

by the widget class that will trigger when the mnemonic is detected. The argument accel...,group
is the accelerator group to which the mnemonic is being added. The argument accel_key is the

key that represents the mnemonic. The argument acceCmods is a bitmask of modifier keys, if

any, that must be present when accel_key is pressed in order for the signal to be triggered.

Finally, acceUlags is a bitmask consisting of one or more of the flags listed in Table 4.4.

Table 4.4 Accel_flags Bitmask Values

Flag

GTK_ACCEL_ VISffiLE

Meaning

The mnemonic should be displayed by the

widget, if supported by the widget.

The signal associated with the mnemonic should

be displayed by the widget, if supported by the

widget.

This entry cannot be removed from accelerator

group, replaced, or modified.

140 Chapter 4 • Widgets

Examples of widgets capable of displaying the mnemonic and the signal as of this writing

include GtkCheckMenuItem, GtkMenuItem, and GtkRadioMenuItem. For other widgets,

specifying GTK_ACCEL_ VISIBLE and GTK_ACCEL_SIGNAL_ VISIBLE is a no-op.

The following code associates hitting the Fi key with the "clicked" signal of a button

widget. The "clicked" signal will normally trigger when the button has focus and the Return

key is pressed, or when mouse button i is clicked. Here, we cause the button's "clicked"
signal to trigger when the dialog has focus (not just the button) and the F i key is pressed.

Although typically mnemonics are associated with menus and menu items, this code illus

trates that they can also be used in association with other widget types.

Listing 4.3 Accelerator Example

inc l ude <gtk/gtk . h >

include < s t d i o . h >
include < gdk /gdkkeysyms . h>

stat i c vo i d
C l i ckedCa l lback (GtkWidget *widge t , GtkWidget *dial og_window)

{
fprint f (s tderr , " I n C l i ckedCal lback\n ") ;

f f lush (s tderr) ;

ma in (int argc , char * a rgv [])

{
GtkW i dget *button , *dial og_window ;
GtkAc c e lGroup * acce l_group ;

gtk_in i t (&argc , &argv) ;

d i a l og_window = gtk_dial og_new () ;
gtk_window-F0s i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

gtk_a c c e l_group_attach (acce l_group , GTK_OBJECT (di a l og_window)) ;
gtk_wi dget_add_accelerator (button , " c l i cked " , acce l_group , GDK_F l , 0 ,

GTK_ACCEL_LOCKED) ;

GTK_WI DGET_SET_FLAGS (button , GTK_CAN_DE FAULT) ;
gtk_window_se t_de f aul t (GTK_WINDOW (dial og_window) , but t on) ;
gtk_box-Fack_s tart (GTK_BOX (

GTK_D IALOG (dial og_window) - >act ion_area) ,
but t on , TRUE , TRUE , 0) ;

gtk_s ignal_conne ct (GTK_OBJECT (button) , " c l i cked " ,
GTK_S I GNAL_FUNC (C l i ckedCa l lback) , but t on) ;

GtkWidget 141

gtk ma in () ;

A mnemonic can be removed from an accelerator group, assuming it is not locked, by

calling gtk_ widgecremove_acceleratorO:

vo id
gtk_widge t_remove_a c c e l erator (GtkWidget *widge t ,

GtkAc c e l Group * acce l_group ,
guint acce l_key , guint acce l_mods } ;

The arguments widget, acceCgroup, accel_key, and accel_mods are the same arguments that

were passed to gtk_ widgeCadd_accelerator(), and they are used to identify the accelerator to be
removed. If the accelerator exists and is not locked (by virtue of the GTK_ACCEL_LOCKED

flag specified at creation time or because of a call made to gtk_ widgeUock_acceleratorsO, see

the following), it will be removed from the specified accelerator group.

Accelerators with the GTK_ACCEL_ VISIBLE flag set that also trigger a specified signal

can be removed by calling gtk_ widgeCremove_acceleratorsO:

vo id
gtk_widget_remove_a c c e l e rators (GtkWidget *widge t ,

cons t gchar * acce l_s ignal , gboo l ean vi s ib l e_only} ;

The arguments widget and acceCsignal correspond to the same arguments that were
passed to gtk_widgeCadd_acceleratorO. The argument visible_only is unused in Gtk+ 1 .2

and presumably later releases.
Given a widget, an accet..group, an accel_key, and acceCmods arguments passed to

gtk_ widgecadd_acceleratorO, an application can determine the signal associated with the

mnemonic by calling gtk_ widgecacceleratocsignalO. The returned value, of type guint, is

the same value that would be returned by passing the accel_signal argument passed to

gtk_ widgeCadd_acceleratorO as an argument to gtk_signal_IookupO. For example:

guint

gtk_widget_add_a c c e l e rator (button , " c l i cked " , acce l_group , GDK_F l , 0 ,

GTK_ACCEL_LOCKED } ;
s i gnal_id = gtk_widget_acce l erator_s igna l (button , acce l_group ,

GDK_F l , GTK_ACCEL_LOCKED } ;

The function prototype for gtk_ widgeCacceleratocsignalO is as follows:

guint
gtk_widget_a c c e l e rator_s i gnal (GtkWidge t *widge t ,

GtkAc c e lGroup * acce l_group ,
guint acce l_key , guint acce l_mods } ;

To disable the ability for accelerators to be added to or removed from a given widget,

call gtk_ widgeUock_acceleratorsO :

142 Chapter 4 • Widgets

vo i d
gtk_widget_lock_accel erators (GtkWidget *widget) ;

Once gtk_ widgeUock_acceleratorsO has been called, its effects can be undone by calling

gtk_ widgecunlock_acceleratorsO:

vo i d

gtk_wi dge t_unlock_accel erators (GtkWidget *widget) ;

Notice that the preceding calls are no-ops if the GTK_ACCEL_LOCKED attribute was
set at the time the accelerator was created. These functions are designed to give applications

the ability to temporarily lock and unlock the accelerators on a widget that were not created

with the GTK_ACCEL_LOCKED flag set, should that be deemed necessary.

Event-Related Functions

Events can be sent by an application to a widget by calling gtk_ widgeceventO:

gint
gtk_wi dge t_event (GtkWi dget *widget , GdkEvent * event) ;

The first argument is the target widget; the second is a pointer to an event structure of

type GdkEvent. The following code from GtkDrawingArea provides a usage example and

illustrates, in a fairly generic way, how a call to gtk_ widgeceventO might be made:

s t a t i c vo i d
gtk_drawing_area_send_conf igure (GtkDrawingArea * dare a)

{
GtkWidget *widge t ;
GdkEvent Conf igure event ;

w i dget = GTK_WIDGET (darea) ;

event . type = GDK_CONF IGURE ;
event . window = widge t - >window ;
event . x = widget - >al locat ion . x ;
event . y = widge t - >al locat ion . y ;
event . width = widge t - > a l l ocat ion . width ;
event . he ight = widget - >a l locat ion . height ;

gtk_wi dge t_event (widget , (GdkEvent *) &event) ;

This routine allocates a GdkEventConfigure structure on the stack, fills in its fields, and

then uses gtk_ widgeceventO to dispatch the event to the target GtkDrawingArea widget
instance that was passed to gtk_drawin�area_send_configureO as an argument. The
important thing to note here is that, although gtk_widgeCeventO takes a GdkEvent * as its
second argument, you will always be passing a pointer to a more specific GDK event struc
ture that, as in this example, you will cast to GtkEvent * .

GtkWidget 143

One place in which GtkDrawingArea makes a call to this routine is at the end of its internal

realize function, which is called when the widget is realized (i.e., its window is created, as dis

cussed earlier in this chapter). The end result of sending this event is that GtkWindow will

receive and process the event in its configure event handling code, thus allowing it to handle

aspects of the configure event. For example, if the window needs to be redrawn because its
contents have become invalid due to the configure event (e.g., it was resized), GtkWidget will

itself make a call to gtk_ widgeceventO, this time to send an expose event back to the widget.

It is the responsibility of the expose event handler in GtkWidget to handle redrawing of the

window's content by invoking the proper routine to handle the event. GtkDrawingArea
doesn't handle expose events itself, which is why GtkWidget once again comes into play.

Although there are places within the Gtk+ implementation where making calls into

gtk_ widgeceventO makes sense, does it make sense for application programs to call it?

The answer probably will be "no" more often than not, but there might be special circum

stances in which it might be useful.
Two routines exposed by GtkWidget can be used to solicit events of interest to the application.

The first of these, gtk_ widgecseceventsO, was described in Chapter 3, "Signals, Events,

Objects, and Types." Its function prototype is as follows:

vo id
gtk_widget_se t_event s { GtkWidget *widge t , gint event s) ;

widget is the handle of the widget for which event interest is being expressed. events is

a bitmask containing the logical or of one or more of the following values:

GDK_EXPOSURE_MASK, GDK_POINTER_MOTION_MASK, GDK_POINTER_

MOTION_HINT_MASK, GDK_BUTTON_MOTION_MASK, GDK_BUTTON I

MOTION_MASK, GDK_BUTTON2_MOTION_MASK, GDK_BUTTON3_MOTION_

MASK, GDK_BUTTON_PRESS_MASK, GDK_BUTTON_RELEASE_MASK, GDK_

KEY _PRESS_MASK, GDK_KEY _RELEASE_MASK, GDK_ENTER_NOTIFY_

MASK, GDK_LEAVE_NOTIFY_MASK, GDK_FOCUS_CHANGE_MASK, GDK_
STRUCTURE_MASK, GDK_PROPERTY _CHANGE_MASK, GDK_ VISIBILITY_

NOTIFY_MASK, GDK_PROXIMITY _IN_MASK, GDK_PROXIMITY _OUT_MASK,

and GDK_SUBSTRUCTURE_MASK.

A special value, GDK_ALL_EVENTS_MASK, represents the set of all masks listed

here. Refer to Chapter 3 for explanations of each of these masks.
You can also append events to the list of currently solicited events for a widget by calling

gtk_ widgecadd3ventsO :

vo i d
gtk_widge t_add_event s { GtkWidget *widge t , g i n t events) ;

As before, widget is the handle of the widget for which the event mask is to be modified,
and events is a bitmask that contains a logical or of the same values previously described

for gtk_widgecseceventsO.

At any time, an application can query the events solicited for a widget by calling
gtk_ widgecgeceventsO:

gint

144 Chapter 4 • Widgets

gtk_wige t_ge t_events (GtkWidget *widget) ;

The argument widget specifies the widget being queried for its event mask. You can use

gtk_ widget..geceventsO and gee widgeeseeeventsO to implement a function that clears

one or more events in a widgets event mask :

gint

C l earEvent s (GtkWidget *widge t , gint events)

{
gint ma sk ;

ma sk gtk_widge t_get_events (widget) ;

ma sk ma sk & -event s ;
gtk_widget_se t_events (widget , ma sk) ;

re turn (ma sk) ;

This function simply reads the current event mask for the widget, clears the bits in the

mask returned, and then resets the event mask of the widget to the new value. It also returns

the new mask as an added bonus.

Activating a Widget

An application can cause the "activate" signal handler of a specific widget to be executed by

calling gtk_ widgeeactivateO. We discussed the meaning of the activate signal earlier in this

chapter. Here is the function prototype:

gboo l e an
gtk_widget_act ivate (GtkWidget *widget) ;

Reparenting a Widget

Gtk+ allows applications to reparent a widget. This functionality has limited use in an end-user

Gtk+ application, but it is used in a few places in the Gtk+ widget set to implement various fea

tures. The prototype is as follows:

vo i d
gtk_wi dge t_reparent (GtkWidget *widget , GtkWidge t * new-parent) ;

You must ensure that the new parent widget belongs to GtkBin or a class that inherits

from GtkBin. The following wrapper function can be used to perform the task of reparent

ing if the new parent is of the correct type:

gint
WrapGtkWidgetReparent (GtkWidget *widget , GtkWidget *new-parent

{
g_re turn_val_i f_f a i l (GTK_I S_B IN (new-parent) , FALSE) ;

gtk_widge t_reparent (widge t , new-parent) ;
return (TRUE) ;

GtkWidget 145

Showing a Widget at a Specific Location

To show a widget at a specific x and y location on the screen, you can call gtk_ widgecpopupO:

vo id
gtk_widget-popup (GtkWidget *widge t , gint x, gint y) ;

The widget will be realized and mapped as necessary, and then it will be moved to the

specified x and y coordinates.
Gtk+ uses this function in the implementation of its tooltips widget. The implementation is

fairly straightforward. Using functions provided by the GtkTooltips widget, the application

program creates an object that contains the text of the tooltip and associates this object with a

widget (e.g., a button, menu item, or entry widget). Each time an enter_notify event is detected

for the object, a timeout is registered (the default timeout is 500ms). When the timeout is

expired, a function is called that will pop up the tooltips window over the object, using

gtk_ widgecpopupO, and display in that window the tooltips text associated with that object.

To hide a window that has been popped up, use gtlC widgechideO.

Computing the Intersection of a Widget and an Area

To compute a region of intersection between a widget and a rectangle, call gtk_ widgeUntersectO:

gint
gtk_widget_intersec t (GtkWidget *widge t , GdkRec t ang l e * area ,

GdkRec t angl e * intersect i on) ;

The intersection is computed between widget and area. The result is placed in intersection,

if intersection is non-NULL. If the rectangles intersect, TRUE is returned. Otherwise, FALSE

is returned.

Grabbing Focus
GtkWidget provides two convenience functions that layer above the GtkWmdow routines

gtk_window_setjocusO and gtk_window_seCdefaultO. These functions are, respectively,

gtk_widget...,grab_focusO and gtk_widget..grab_default(). Each takes a widget as its argument.
gtk_widget..grab_focusO will make widget the focus widget in its containing window, and the

widget will be redrawn to indicate the change. Likewise, gtk_widget...,grab_defaultO will make the

widget the default widget in its containing window, and the widget will be redrawn to indicate the
change. However, if the widget cannot be made a default widget, then gtk_widgecgrab_defaultO
will simply return without doing anything. See gtk_ window _secdefaultO for information on how

to make a widget eligible to become a default widget.

Function prototypes for gtlc widget�rab_focusO and gtlC widget�ab_defau1tO are as
follows:

voi d
gtk_widge t_grab_focus (GtkWidget *widget) ;

vo id
gtk_widge t_grab_de f aul t (GtkWidget *widget) ;

146 Chapter 4 • Widgets

Specifying Widget Sensitivity

Often it is necessary to change the sensitivity of a widget based on the state of the application

or the state of controls in the user interface. A sensitive widget is one that behaves normally,

meaning it renders in a way that implies it is usable and will respond to events such as key

board input or mouse presses. An insensitive widget, on the other hand, is rendered by the

toolkit to imply that it is not functional.
Usually a widget indicates that it is insensitive by dimming itself and not responding to

user input. Figure 4. 1 shows several widgets in their sensitive and insensitive states.

Figure 4.1 Sensitive Widgets

Mousing over an insensitive widget should result in no change in the appearance of the

widget, further conveying to the user of the application that the widget is inactive. Widgets
that are insensitive cannot obtain input focus, and they cannot be selected with the mouse

or by Tab-key traversal .

When should you make a widget insensitive? The answer will vary based on the needs
and design of the application. Sometimes it will be the state of the application that drives

the sensitivity of a widget. For example, a text editor might disable the Save menu item and

enable the Save As menu item for new documents, enable the Save menu item after it has

been saved the first time, and regardless of whether it is a new document or not, disable the

Save and the Save As menu items until the user has typed in text or has made a change that

needs saving. The state of one or more widgets in the user interface may also influence the

sensitivity of other widgets. For example, a printer dialog might provide two radio buttons,

one labeled "Printer" and the other labeled "File," to allow the user to select a destination

for the print job. Also in the dialog would be a push button that, when clicked, would dis
play a file selection dialog, allowing the user to choose a destination file. It would make
sense to enable (make sensitive) the file selection button only when the File radio button is

selected and make it insensitive at all other times since selecting a file does not make sense

if the user wants to print to the printer.
To make a widget sensitive or insensitive, call gtk_widgecsecsensitiveO:

vo i d
gtk_wi dge t_set_sen s i t ive (GtkWidget *widget , gbool ean sens i t ive) ;

GtkWidget 147

The first argument to gtlC widgeCsecsensitiveO is the widget, and the second is a gboolean.

If sensitive is TRUE, the widget will be made sensitive; if FALSE, it will be made insensitive.

Setting the Position and Size of a Widget

A widget's position can be set using gtk_widgeCseCupositionO:

vo id
gtk_widget_set_upo s i t i on (GtkWidget *widge t , g i nt x, gint y) ;

Here, widget is the widget to be moved, and the arguments x and y specify the coordinates

(with 0, 0 representing the upper-left comer) coinciding with the widget's upper-left comer

after the move. The routine also accepts nonstandard x and y values that are treated specially.

If either of the values for x or y is set to -2, that value will not be changed. If, for example, you

want to simply change the x position of the widget to 100 and keep the same y position, you

would call gtk_ widgeCsecpositionO as follows:

gtk_widget_se t_upos i t i on (widge t , 1 0 0 , - 2) ;

To set the size of a widget in terms of the width and height of its window, call gtk_

widgecseCusizeO:

vo id
gtk_widget_set_us i z e (GtkWidget *widge t , gint width , gint height) ;

Again, the argument widget is the handle of the widget affected. Width is the width of the win

dow, and height is the height of the window after resizing. As with gtk_ widgecseCupositionO,

the value -2 has special meaning; specifying -2 for either width or height leaves that value

unchanged.

Top-Level and Ancestor Widgets, and Transient Windows

Sometime, it is convenient to be aware of the top-level widget in the instance hierarchy of

a particular widget. The function gtk_widget..geuopleveIO starts with the widget's parent,

if any, and then checks to see what its parent is, and so forth. If the widget passed to

gtk_ widgecgeUoplevelO

GtkWidget *
gtk_widget_get_top l eve l (GtkWidget *widget) ;

has no parent, it is returned because it is the top-level widget. Typically a top-level widget
is a dialog or window widget or some widget that inherits from the GtkWindow class.

As discussed earlier in this chapter, a transient window is a special type of window that,
among other attributes, will iconify along with the top-level window of the application

should the top-level window be iconified. To ensure this behavior, the client must call

gtk_window_seCtransienCforO, passing the window ID of the top-level window and the

window 1D of the window being made transient. To obtain the window ID of the top-level
window, it is enough to know the widget ID of any widget contained by the top-level win

dow. With this information, you can do the following:

148 Chapter 4 • Widgets

vo i d
S e t T rans i entFor (GtkWindow *win , GtkWidget *widget)

{
GtkWidget * t op ;

top = gtk_widge t_ge t_topl eve l (widget) ;

i f (top ! = (GtkWidget *) NULL) {
gtk_window_s e t_t ran s i ent_for (widge t - >window ,

t op - >window) ;

A related function, gtlC widgecgecancestorO, also walks up the parent list of a window,

but instead of searching for the topmost widget in the instance hierarchy, it searches for the

first widget belonging to a specific widget class. Here is its function prototype:

GtkWidget *
gtk_wi dge t_ge t_ance s tor (GtkWidget *widge t , GtkType widget_type) ;

widget is the widget in the instance hierarchy to start the search. widgeCtype is the type of wid

get being searched. If searching for a GtkButton, you would either pass GTK_TYPE_BUlTON,

which is the preferred method, or call the routine gtk_button...,gectypeO.

If the return value is (GtkWidget *) NULL, then no such widget exists above the widget

in the instance hierarchy to which the widget belongs.

Given a pair of widgets, it can be determined whether one is the ancestor of the other by

calling gtk_ widgeUs_ancestorO:

gint
gtk_widge t_i s_ance s tor (GtkWidget *widget , GtkWidget * ance s t or) ;

The first argument is the widget for which the query is being made, and the second is the

widget that is potentially an ancestor of the first. The call returns TRUE if ancestor is an

ancestor of widget; otherwise, the return value is FALSE.

Querying the Pointer Position

At any time, your application can query the x and y coordinate location of the mouse by

calling gtk_ widgecgecpointerO:

vo i d
gtk_wi dge t_ge t-po inter (GtkWidget *widge t , g i n t * x , g i n t * y) ;

This routine takes a pointer to a widget and two pointers to gint that will hold the x and
y coordinate values upon return.

It may seem strange at first glance that this routine requires a pointer to a widget as one

of its arguments. The reason for the widget argument is that the routine returns the position
of the mouse relative to the window associated with the specified widget. If the widget is

not yet realized, then - 1 is returned in both x and y. To obtain the mouse position relative to
the screen (not a widget), call gdk_ window...,gecpointerO:

GtkWidget 149

gint x, y ;

gdk_window_ge t-po inter (NULL , &x , &y , NULL) ;

Colormap and Visual Functions

Colormaps and visuals in X are a rather complex subject, but they're an important one for

Gtk+ programmers to become familiar with. Because Gtk+/GDK is layered on top of X 1 1

in the UNIX implementation (which is the focus of this book), it is best that I refer you to

a book on Xlib (such as O 'Reilly Volume 1, Xlib Programming Manual) for details on col

ormaps and visuals. If the program you are designing has anything to do with colors or

image processing, it is really a requirement that you take the time to leam about color in

X 1 1 . The reason this is important is due to the design of X 1 1 . The X server component of

the X Window System was designed to accommodate a wide variety of display hardware

types, ranging from I -bit-deep terminals supporting the display of black and white only, to

8-bit displays (common years ago and still in use today) capable of displaying 256 colors

at the same time, to I 6-bit and 24-bit TrueColor displays that one can almost consider stan

dard on today's desktop Linux systems. There are many variants to the preceding list; I

recall back when my work focused on the X server running on hardware designs where each

window displayed by the X server would be given its own private hardware colormap. Such

systems are rarely, if ever, encountered, but the X server can be made to support them. As

a Gtk+ programmer, I'd venture to say that the majority of display types you will encounter

will be either 8-bit-deep PseudoColor or I 6-bitl24-bit TrueColor. Supporting these two is

perhaps a minimum, and you are advised to include each in your testing if color is important

to your program. But also be aware that Gtk+ applications are, fundamentally, X applica

tions. So, it is within the realm of possibility for your users to set their DISPLAY variables

to point to a I -bit-deep StaticGray X server and expect it to work.
Because in reality the number of users with such hardware is practically zero, it does not

make much sense to support such a display. I just want you to be aware of the issue and

know that X provides a solution. Here I will discuss the routines that GtkWidget provides

for getting and setting colormaps and visuals. You might want to refer back to this section

briefly after you've familiarized yourself with colors and visuals.

With that said, you can obtain the colormap associated with a given widget by calling

gtk_ widget�eCcolormapO:

GdkCo lormap *
gtk_widget_get_colormap (GtkWidge t *widget) ;

widget, of course, is the handle of the widget you are querying. On return, a pointer to a
GdkColormap structure is returned.

Several routines in GDK require a GdkColormap * as an argument. Most of these func

tions layer on top of X I I functions that allocate cells and colors in an X colormap. A Gdk
Colormap is not an X colormap, but you can think of it as a client-side data structure that

points to an X colormap and caches data about the colormap, notably the colors allocated in
the X server colormap. As you may know, it is possible for a client other than your application

150 Chapter 4 • Widgets

to make changes to an X colormap (this is especially true regarding the default server color

map, the resource ID of which is made known to all clients during client startup). Because of

this, the GDK colormap code periodically queries the colors in the X colormap pointed to by

each GdkColormap allocated to ensure that values stored by the GdkColormap are correct.

More often than not, the colormap you will be passing as an argument to the GDK colormap

routines will be the colormap you have obtained from a call to gtk_widgeCgeCcolormapO.ln

most cases, this colormap will end up being the same colormap used by all other widgets in

your GUI and in fact will be the X server default shared colormap. If you are, for example, allo

cating colors from a colormap that you will later be using to draw in a GtkDrawingArea wid

get, you should ensure that the colors allocated come from the colormap being used by that

drawing area widget; to do this, use gtk_widget..geCcolormapO.

A visual is another X data structure/concept that is best described perhaps by a book on

Xlib (the same book you used to learn about colormaps will also talk about visuals, and
since they are related, the information is probably in the same chapter). The short descrip

tion of a visual is that it basically describes the structure of colormaps for the display device

to which the client is currently connected. Usually, a given X display or server will support

more than one visual type. The X I I visual classes are listed in Table 4.5 .

Table 4.5 X I I Visual Classes

Visual Class Modifiable Colormaps?

PseudoColor Yes

GrayScale Yes

DirectColor Yes

StaticColor No

StaticGray No

TrueColor No

Typical Depth

8-bit

8-bit

1 6-bit, 24-bit

Less than 8-bit (e.g., 4-bit)

I -bit

1 6-bit, 24-bit

For the most part, X servers and terminals developed since 1990, but prior to the wide

spread adoption of 1 6-bit and 24-bit graphics cards, are 8-bit-deep PseudoColor terminals

with modifiable colormap entries. Usually the number of colors in a PseudoColor colormap

of size 256 will be enough for most clients, but a common problem is running several color

map-intensive applications (e.g., The GIMP and Netscape) together on the same X server.
Potentially, one of these clients will find that it cannot allocate or match the colors it needs in

the default colormap because the other client(s) have allocated them already, and so the client
either will give up and exit or will revert to installing a private colormap so it can get all of its
colors. The problem here is one that is familiar to many users; as focus leaves a client using
the default colormap and falls on the client using a private colormap, the X server swaps out

the hardware colormap that displayed the default colormap colors and swaps in the hardware

colormap associated with the private colormap of the other client. In doing so, the colors of
all applications using the shared default colormap will go "technicolor." This is one reason it

GtkWidget 151

is preferable for your application to use a shared default colormap whenever possible. It is

very possible that your application will be running on an 8-bit PseudoColor display; colormap

flashing is not something you want to put your users through.

Most systems nowadays (since the late 1 990s) come with 1 6-bit and 24-bit displays.

Here the palette is huge, and the visual class most likely to be defaulted by the X server is

TrueColor or perhaps DirectColor. There is little worry with such a visual that colors

needed by an application are not already allocated (in the case of TrueColor, which is a
static visual class) or cannot be allocated (in the case of DirectColor).

When would you need a visual? A visual gives your application information that can

help it decide whether it makes sense to attempt what the application needs to do, and how
to do it. Let's say you are writing a GIF image viewer. Let's cite a few possible scenarios :

If the visual class is StaticGray and the number of map entries in the colormap is 2, then

you need to either put up a dialog telling the user to buy a modem computer with a reason

able display or dither your images to bitonal before pushing the pixels into the frame buffer.

If the visual class is PseudoColor and 8-bit deep, your code will need to determine whether

it is feasible to use the default shared colormap or install a private colormap. If the visual

is TrueColor and the number of distinct colormap entries is large, then your application

only needs to worry about mapping pixel values in the image palette to colormap cells in

the colormap.

Each window in an application can have its own visual class. This complicates things a

bit, but in general, the situation is just like the one for colormaps in that most, if not all,

widgets will reference the same visual: the X server default visual. To obtain the visual

associated with a widget, call gtk_ widgecgeC visualO:

GdkVi sual *
gtk_widget_get_vi sual (GtkWidge t *widget l ;

You can specify the colormap of a widget prior to it being realized (which, in most cases,

means before gtk_ widgeCshow*O is called) by calling the function gtk_ widgeueCcolormapO:

vo id
gtk_widge t_s et_colormap (GtkWidget *widge t , GdkCo lormap * colormap l ;

widget is a Gtk + widget that has yet to be realized. colormap is a pointer to a GdkColormap
struct. You can obtain the colormap with gtk_widgeCgeccolormapO or by creating a color

map using various means using routines provided by GDK. As you previously learned, typi
cally a widget's colormap will be the X server default coiormap shared by all widgets and

other clients running on the same X server. Exceptions will be when the visual class and

default X server colormap usage demand for certain applications dealing with images or a
large number of colors to install a private colormap so that content is rendered accurately.

You can also specify the visual class of a widget. Setting the visual class of a widget to one
that is not the same as the default visual class of the server will cause a private colormap to be

created at the time the widget's window is being created. The visual class is specified by passing
a pointer to a variable of type GdkVisual. The function prototype of gtk_ widgecsec visualO is

as follows:

152 Chapter 4 • Widgets

vo i d

gtk_widge t_s e t_vi sual (GtkWidget *widge t , GdkVi sual *vi sual) ;

You can obtain a GdkVisual pointer by calling gtk_widget..geCvisuaIO. If you have a

window ID, you can also use gdk_ window �eC visualO to obtain the same pointer. Several

routines provided by GDK can be called to obtain a visual; these routines are summarized

here.
To return the system default visual :

GdkVi sua l *
gdk_vi sua l_get_sys t em (vo i d)

To return the best visual (e.g. , the visual that has the greatest depth):

GdkVi sua l *
gdk_vi sua l_get_best (vo i d)

To return the best visual that matches the specified depth:

GdkVi sua l *
gdk_vi sua l_get_bes t_with_depth (g int dep t h)

To return the best visual that matches the specified visual class:

GdkV i s ua l *
gdk_vi sua l_get_bes t_with_type (GdkVi sual Type vi sual_type)

To return the best visual that matches both the specified depth and the visual class:

GdkV i s ua l *
gdk_vi sua l_ge t_bes t_with_both (g int depth , GdkVi sua l Type vi sua l_type)

To return the GDK visual that maps to the specified X visual:

GdkV i s ua l *
gdk_vi sual_l ookup (Vi sual * xvi sual)

To return the GDK visual that maps to the X visual having the specified visualid:

GdkV i s ua l *
gdkx_vi sua l_get (Vi sua l I D xvi sua l i d)

GtkWidget 153

Styles
A style defines the look and feel for a particular widget in a given state. As I briefly mentioned

earlier in this chapter, GtkWidget defines a macro, named GTK_ WIDGET_STATE, that will

return one of the values listed in Table 4.6, indicating the state of a widget:

Table 4.6 Widget States

State

GTK_STATE_INSENSITIVE

Generic Meaning

Sensitive widget as it appears without having the

focus and not active.

Sensitive widget that is active (e.g., a

button that is pressed). Similar to

GTK_STATE_SELECTED for some widgets.

Sensitive widget that has the focus (e.g. , a button

that has been moused-over).

Widget is selected. For example, a row in a CList

widget.

Widget that is insensitive. It cannot be made

active, it cannot be selected, and it cannot be

placed in a prelight state.

Note that not all widgets honor these states . Only the GtkCList, GtkCListltem,
GtkCTree, GtkCTreeltem, GtkEntry, and GtkText widget classes support the idea of

GTK_STATE_SELECTED, for example.
Each of the preceding states has a distinct look and feel that helps the user be

aware of what a widget ' S state is at any given moment. Figure 4 .2 illustrates , left to

right, GTK_STATE_NORMAL, GTK_STATE_PRELIGHT, GTK_STATE_ACTIVE,

GTK_STATE_SELECTED, and GTK_STATE_INSENSITIVE for a toggle button widget

(GtkToggleButton). When a toggle button is rendered as GTK_STATE_NORMAL, a user knows

(from experience) that the toggle button state cannot be changed (to GTK_STATE_ACTIVE) until

the mouse is moved over it, placing the widget in GTK_STATE_PRELIGHT state. The strange
appearance of GTK_STATE_SELECTED is due to the fact that a toggle button never goes
into that state (my example is somewhat artificial in that sense). What the widget has done

here is rendered itself in the colors associated with a selected state, appropriate for, perhaps,
an item in a list (the background color is dark blue) but not a toggled button that, again, can

never be "selected."

Figure 4.2 Toggle Button States

154 Chapter 4 • Widgets

The difference in appearance from one state to another is maintained by widgets in a

Gtk+ data structure named GtkWidgetStyle, which is defined in gtkstyle.h. Mostly, this

information consists of colors. One such color is the background color of the widget.

Because there are five distinct states that a widget can be in, five colors are recorded as the

background color of a widget, one color for each widget state previously listed.

Normally, you (and your users) will control the various style attributes via a Gtk+ rc file.

While not as powerful as resources in the Xt (Motif) world, the basic idea behind the Gtk+
rc file is similar. Resources in Gtk+ and Xt are not compatible with each other; for example,

Gtk+ applications do not understand Motif resource files, and Motif applications are not

able to read Gtk+ rc files.

Let's first take a look at rc files and the style system implemented by Gtk+. Then I will

describe the relevant GtkWidget API.

Gtk+ Style System Details

As previously mentioned, a widget can be in one of five distinct states. Each of these states

can be represented by a change in the widget's appearance. For each widget state, an rc file

allows the attributes in Table 4.7 to be specified:

Table 4.7 Style Attributes

Attribute Meaning Example

fg Foreground color 0.0, 0.0, 0.0

bg Background color 1 .0, 1 .0, 1 .0

b!Lpixmap Background pixmap marble.xpm

base Base color 1 .0, 0.0, 0.0

text Text color 0.5, 0.5, 0.5

The base attribute is used by several widget classes to specify the background color of

its widgets. The GtkText class uses the text attribute to define the foreground color and base

to define the background color of its widgets. In the chapters that follow, I will specify the
default values for each of the preceding attributes and will mention which of the attributes

is actually used by the widget class.

As you can see in the preceding table, colors can be expressed using a triplet of floating
point values. The allowable range for each component in such a triplet is [0.0, 1 .0] .
Together, the three component values represent an RGB color; the first component indicates
the amount of red in the color, the second represents the amount of green, and the third rep

resents the amount of blue. In the preceding examples, fg is set to black, bg is set to white,
base is set to red, and text is set to a medium gray. Gray values are formed by setting r, g,
and b to equal values; white (1 .0, 1 .0, 1 .0) and black (0.0, 0.0, 0.0) are grayscale values at
the extreme ends of the possible range. You may, if you choose, use decimal or hexadecimal

constants instead of floating-point constants. Non-floating-point values must be scaled to

GtkWidget 155

65,535. For example, 1 .0 is expressed as 65535 decimal or Oxffff hex; 0.5 can be expressed

roughly as 32768 decimal or Ox8000 hex.

The preceding table contains only widget attributes used to show the state of a widget.

A few additional attributes can be specified for a widget or widget instance in an rc file; I

will discuss these widget attributes later in this section.

Attributes can be mapped to a widget class or to a specific instance of a widget created by

an application. A widget class, naturally enough, corresponds to one of the Gtk+ widget

classes, such as GtkButton. A name can be associated with a Gtk+ widget instance by assign

ing it a name after it is created, and just before it is shown, by calling gtk_ widgecseCnameO:

vo id gtk_widge t_s et_name (GtkWidget *widge t , gchar * name) ;

For example:

GtkWidget *but t on ;

button = gtk_wi dge t_but ton_new () ;

gtk_widget_set_name (but ton , " my_button ") ;

In the preceding example, "my_button" is the name assigned to this instance of the Gtk

Button widget class.
Both the widget class and the instance name can be used in an rc file to assign widget

attributes. The following example maps the style named "global-button-style" to the Gtk

Button widget class.

widget_c l a s s " GtkBut ton " style " gl oba l - button - styl e "

The result of the preceding entry in an rc file is that all instances of GtkButton will render

according to the style named "global-button-style." We will see how to define a style later

in this section.
A specific instance of a widget can also be mapped to a style, as shown in the following

example:

widget " my_button " style " in s t ance - button - styl e "

In the preceding example, any widget assigned the name "my_button" will use the style

named "instance-button-style."

Both the widget class name (used in widgecclass) and the widget instance name can be
specified using regular expressions. For example, "Gtk*Scale", when used as a widgecclass
name (as in the following example):

widget_c l a s s " Gt k * S c a l e " style " s c a l e "

will match the GtkHScale, GtkVScale, and GtkScale widget classes. Patterns that contain ' * '
or '? ' characters are accepted by the parser, with ' * ' and ' ? ' having the standard interpretation.

One or more widgets can be identified by specifying a path consisting of widget class

names and widget instance names. Components in the path are delimited by a period (.) .

For example:

widget " my window . GtkBut ton . GtkLabe l " style " l abe l - styl e "

156 Chapter 4 • Widgets

Here, labels of buttons that are children of the widget named "my window" will reference

the style named "label-style".

The style "instance-button-style", used earlier, might be defined in an rc file as follows:

style " instanc e - button - styl e "

{
bg [NORMAL] = { 6 5 5 3 5 , 1 . 0 , Oxf f f f

Here w e specify that the background color of the widget, when it i s in a NORMAL state,

should be rendered using white. The constants 65535, 1 .0, and Oxffff all represent the same

component value; use of floating-point, decimal, or hex values is largely a matter of personal

preference. Only the background color of the widget in the NORMAL state will be affected

by this style. The background color of the widget, in all other states (e.g., PRELIGHT) will

remain unaffected by the application of this style. Other attributes (e.g., fg) are unaffected by

this style definition.

Assigning attributes to a widget instance takes precedence over assigning the same

attributes to a widget class. Widget class attributes, on the other hand, take precedence over

default attributes defined by the widget implementation.

Within an rc file, styles can be used in the definition of other styles. For example, suppose

we want to define a second GtkButton instance style that shares the same attributes as

"instance-button-style" but overrides the fg and bg attributes corresponding to the button's

INSENSITIVE state. To do this, we might use the following syntax:

s t y l e " new- ins tanc e - button - styl e " = " instanc e - button - style "

{
fg [INSENS I T IVE]
b g [INSENS I T IVE]

1 . 0 , 0 , 1 . 0

1 . 0 , 0 , 1 . 0

The style "new-instance-button-style" inherits all style information defined by the style

"instance-button-style", modifying only the fg and bg attributes associated with the

INSENSITIVE state.

The attribute "<parent>" is used to specify that an attribute should be set to the same

value as set for the widget's parent in the widget instance hierarchy. Modifying the preced

ing "new-instance-button-style" style to illustrate:

s t y l e " new- instanc e - button - styl e " = " instanc e - button - s tyle "

{
fg [INSENS I T IVE]
b g [INSENS I T IVE]

" <parent > "

{ 1 . 0 , 0 , 1 . 0

Here the INSENSITIVE state foreground color of any widget using this style will be set

to the INSENSITIVE state foreground color of that widget's parent in the runtime instance
hierarchy.

GtkWidget 157

The bg..pixmap resource specifies the name of the xpm file to be used to define the window

background pixmap tile used by some of the widgets in the Gtk+ widget set The syntax should be

simple to understand at this point. Modifying, once again, the ''new-instance-button-style'' style:

style " new- instance - button - styl e " = " instanc e - button - s tyle "

{
fg [INSENS I T lVE] = " <parent > "
bg [INSENS I T lVE] = { 1 . 0 , 0 , 1 . 0
bg -pixmap [NORMAL] = " foobar . xpm "

So that Gtk+ can find your pixmap, you must specify a path. The path consists of UNIX

pathnames separated by a colon (:) ; each component of the path is searched until the xpm

file being sought is located. To specify the xpm search path, add a pixmap_path entry to the

rc file:

pixmap""path " /usr/ include / X l lR6 /pixmaps : - / . sport s l og "

Using the preceding path, xpm files are searched for starting in the standard XI IR6 pixmap

directory and then in the application-specific directory created by the "sportslog" application

in the user's home directory.
One additional widget-style attribute that can be set by users in an rc file is the font

attribute. The font name must be specified using the syntax defined by the X Logical Font

Description (XLFD) format, for example:

- adobe - * - bo l d - i - normal - * - 2 0 - * - 1 0 0 - * - * - * - * - *

For more information on XLFD, see the online man page for xfontsel, a tool developed by the

X Consortium and included with XFree86 that can be used to browse various XLFD settings.

The following style illustrates a font attribute specification:

style ' my_font_style '

{
f ont = " - adobe - he l ve t i c a - medium - r - norma l - - * - l O O - * - * - * - * - * - * "

To associate an rc file with your application, you must add a call to gtk_rc_parseO to

your main application, after gtk_initO has been called and before any widgets affected by
style settings are created:

vo i d gtk_rc....parse (char * f i l ename) ;

The argument filename is the pathname to the rc file. It is up to you to devise a policy

for the creation and location of your rc file. One suggestion would be to store it in the home
or login directory of each user. Your application would create the file the first time the user

runs the application, just prior to calling gtk_rc_parseO:

char rC""path [MAXPATH] ;
int f d ;

158 Chapter 4 • Widgets

sprint f (rc...,path , " % s / sport s l og . rc " , get env (" HOME ")) ;

/ * t e s t t o see o f the f i l e exi s t s . i f not , create one * /

i f f d = open (rc...,pat h , O_RDONLY)) - 1)
MyCreate l ni t i a lRCFi l e (rc...,path) ;

e l s e
c l o s e t fd) ;

gtk_rc...,parse (rc...,path) ;

In the preceding code, open(2) is called to test whether the file exists . Here, rc_path is

simply the concatenation of the user's HOME environment variable, the name of the appli
cation (which in this case is "sportslog"), and the string ".rc". If your application supports

multiple rc files, it may call gtk_rc_parseO once for each rc file supported. Styles parsed by

later calls to gtk_rc_parseO will nullify the same styles defined by earlier calls.

A final style type is the user style. A user style is simply a style associated with a widget

by the application via a call to gtk_widgeCseCstyleO:

vo i d
gtk_w i dge t_s e t_s tyle (GtkWidge t *widge t , GtkStyle * s tyl e) ;

A user style takes precedence over both a default style and an rc style. Once a user style

has been specified, it can be overridden by setting the widget's rc style. You can obtain a

pointer to a GtkStyle struct from another widget by calling gtk_ widget....geCstyleO:

GtkS tyle *
gtk_wi dge t_get_s tyle (GtkWidget *widget) ;

If necessary, rc style will be applied to the widget before the GtkStyle data is returned.
To summarize, a style is a collection of attributes that dictates how a widget is rendered

when in one of five states. A default style is associated by the widget implementation. The

default style can be overridden by an rc style defined by the application developer or the

end user. A widget class style is a style in an rc file that pertains to any instance of the spec

ified widget class. A widget instance style maps style information to a specific instance of

a widget class. To perform this mapping, the application must assign a name to the widget

instance. This is done by calling gtk_ widgecseCnameO after the widget is created but

before it is shown:

vo i d
gtk_wi dget_se t_name (GtkWidget *widge t , const gchar * name) ;

The argument widget is the widget to which the name is being assigned. If, at this point,
no user style has yet been applied to the widget, Gtk+ will look up the style information
that pertains to the assigned name and then apply it to the widget instance. If a user style

was already applied, then only the name is associated with the widget; style information is
not read. To force reading of the style information, call gtk_widgecsecrc_styleO:

vo i d
gtk_widget_se t_rc_s tyl e (GtkWidge t *widget) ;

GtkWidget 159

If a user style has been set for the widget, it will be overridden by this call.

You can retrieve the name associated with a widget instance by calling gtlC widget�ecnameO:

gchar *
gtk_widget_get_name (GtkWidget *widget) ;

If user and rc styles have not yet been set for a widget, the widget's rc style settings can

be activated by calling gtk_widgeCensure_styleO:

vo id
gtk_widge t_ensure_s tyle (GtkWidget *widget) ;

Any user or rc styles applied to a widget can also be nullified and replaced with the widget's

default style by calling gtk_widgeCrestore_defauICstyleO:

vo id
gtk_widget_re s t ore_de faul t_s tyl e (GtkWidget *widget) ;

Finally, an rc style can be applied to a widget, and recursively to all of its children, by

calling gtk_ widgeCreseCrc_stylesO:

vo id
gtk_widge t_re se t_rc_s tyles (GtkWidget *widget) ;

Stacking Styles, Visuals, and Colormaps

You know now that several sources of style data exist. In decreasing order of precedence, these

are user style, rc style, and default style. A fourth source of style data is the "style stack" main

tained by GtkWidget. If the style stack is nonempty at the time a widget is being initialized,
and if user style and rc style have not been applied to the widget, then the style definition at the

top of the style stack will be used by the widget. Style information on the style stack is only

referenced at the time the widget is created. To place a style at the top of the style stack, call

gtk_ widgecpush_styleO:

vo id
gtk_widge t-push_s tyle (GtkStyle * s tyl e) ;

To pop or remove a style from the top of the style stack, call gtk_widgecpop_style() :

vo i d
gtk_widget-pop_s tyl e (void) ;

Colormaps and visuals also have their own stacks maintained by GtkWidget. If the colormap
stack is nonempty, then the colormap used by a widget will be the colormap currently at the top
of the colormap stack. Similarly, if the visual stack is nonempty, then the visual at the top of the
visual stack will be used by the widget being created. To push a colormap onto the colormap
stack, call gtk_ widgeCpush_colormapO:

vo i d
gtk_widget-push_colormap (GdkColormap * cmap) ;

160 Chapter 4 • Widgets

To push a visual, call gtk:_ widgeCpush_ visualO:

vo i d

gtk_widget-push_vi sual (GdkVi sual *vi sua l) ;

To pop or remove the top colormap from the colormap stack, call gtk_ widget...,poP3010rmap():

vo i d

gtk_w i dget-pop_colormap (vo i d) ;

Similarly, to pop or remove the top visual from the visual stack, call gtk_ widgecpop_ visualO:

vo i d
gtk_widget-pop_visual (vo i d) ;

In either case, calling gtk:_ widgecpop*O against an empty stack is a no-op.
Colormaps and visuals should be pushed onto their respective stacks as a pair; it is up to

your application to ensure that the tops of the colormap and visual stacks are compatible with

each other. The purpose of a visual is to describe the structure of a colormap, such as how its
colors are decomposed into RGB primaries or how deep its pixels are . A colormap is really

nothing more than a list of colors compatible with its associated visual. To illustrate, the GDK

function gdk_colormap_newO, which creates a new colormap, requires that a pointer to a
GdkVisual be passed as one of its arguments. This visual is used by gdk3010rmap_newO to

determine how to create and initialize the colormap and is stored by gdk_colormap_newO in

the private area of the GdkColormap for later use.

If you have a valid GdkColormap, you can obtain a pointer to the corresponding GdkVisual
struct by using the following code:

GdkCo l o rmap *myCo lormap ;
GdkVi sual *myVisual ;

myVi sual = gdk_colormap_get_vi sual (myColormap) ;

Similarly, to get a colormap for a given visual, you can create a new colormap using

gdk_colormap_newO as previously described:

GdkCo l o rmap *myColormap ;

GdkVi sual *myVi sual ;

myCo lormap = gdk_colormap_new (myVi sual) ;

To get the server's default colormap and visual, which are compatible with each other, your
application can call, respectively, gdk3010rmap�ecsystemO and gdk_ visual�ecsystemO:

GtkWidget

GdkColormap *

gdk_colormap_ge t_sys t em (vo i d)

GdkVi sua l *
gdk_vi sua l_ge t_sys t em (voi d)

161

You should not free the pointers returned by either of these functions because they are

maintained internally by GDK.

The following code can be used to verify that a given visual and colormap are compatible

with each other:

gboo l ean
Vi sual sAreEqua l (GdkCo lormap * cmap , GdkVi sua l *vi sua l)

{
GdkVisua l Privat e * a , *b ;
GdkVi sua l * cmapVisua l ;

cmapVi sua l = gdk_colormap_get_visual (cmap) ;
a ((GdkVi sual Privat e *) vi sua l) - >xvisual ;

b = ((GdkVi sual Privat e *) cmapVisua l) - >xvi sua l ;

i f (a - >visua l i d = = b - >vi sua l id

return TRUE ;

e l s e
re turn FALSE ;

To compare the colormap and visual on top of the GtkWidget colormap and visual

stacks, you can do something like the following:

GdkColormap * cmap ;
GdkVi sua l *visua l ;
gboo l ean ;

cmap = gtk_wi dge t-pop_colormap () ;
vi sual = gtk_widget-pop_visua l () ;

i f cmap & & vi sual)
ret = Vi sual sAreEqua l (cmap , vi sua l) ;

i f cmap)
gtk_widget-push_colormap () ;

i f vi sual)
gtk_widge t-push_vi sua l () ;

Style, Colormap, and Visual Defaults

GtkWidget maintains defaults for style, colormap, and visual. In the absence of any other set
tings (e.g., rc styles, explicit setting of colormap), these defaults are what Gtk + associates with
a new widget instance at creation time. The default values for colormap and visual are the
server or system colormap and visual, respectively. As for style, the default is obtained by a call

to gtk_style_new():

162

GtkStyl e *

gtk_s tyl e_new (vo i d)

Chapter 4 • Widgets

You don't need to call this function, of course; it is done for you by gtk+. Gtk_style_newO,

as of Gtk+ 1 .2, sets the following default style attributes. (In Table 4.8, RGB values are in

hexadecimal):

Table 4.8 Default Style Attributes

Style

font

black

white

prelightjg

insensitive_fg

prelighCbg

insensitive_bg

Value

-adobe-helvetica-medium-r-normal--*- 1 20-*-*

--*-*, or fixed if that can't be loaded

0, 0, 0

Oxifff, Oxifff, Oxifff

0, 0, 0

0, 0, 0

0, 0, 0

Oxifff, Oxifff, Oxifff

Ox7530, Ox7530, Ox7530

Oxd6d6, Oxd6d6, Oxd6d6

Oxc350, Oxc350, Oxc350

Oxea60, Oxea60, Oxea60

0, 0, Ox9c40

Oxd6d6, Oxd6d6, Oxd6d6

In the preceding, normal_fg corresponds to the foreground color in NORMAL state,

prelighCbg corresponds to the background color in PRELIGHT state, and so on.

The text color for each state is set to the same color set for the foreground color in the

same state, and the base color for each state is set to white. The only exceptions are the text
and base colors corresponding to INSENSITIVE state. In both cases, the default value is

insensitive_bg, shown in the preceding table.
You can override the default style for all widgets easily by obtaining a style (e.g., by calling

gtk_style_newO and changing one or more of its fields) and calling gtk_ widgeuecdefaulUtyleO:

vo i d
gtk_widget_se t_de f aul t_styl e (GtkStyle * s tyl e) ;

style is a previously allocated style. Other ways to obtain this style include calling

gtk_widget�ecstyleO and gtk_widgecpop_styleO, described earlier.

Summary 163

Similarly, the default colormap and default visual can be replaced with calls to

gtk_ widgecsecdefaulccolormapO and gtk_ widgecset_defauic visualO, respectively :

vo i d

gtk_widget_s e t_de fau l t_c o l o rmap (GdkC o l o rmap * c o l o rmap) ;

vo i d
gtk_widget_s e t_de fau l t_vi sual (GdkVi sual *vi sual) ;

Retrieving the default style, colormap, and widget is also easy to do. To get the default

style, call gtk_ widge(...geCdefaulcstyleO:

GtkStyl e *

gtk_widget_get_de fau l t_s tyl e (vo i d) ;

To retrieve the default colormap for widget, use the following:

GdkColormap *
gtk_widget_get_de fau l t_c o l o rmap (vo i d) ;

And finally, to retrieve the default visual for widget, use the following:

GdkVi sual *

gtk_widget_get_de fau l t_vi sual (vo i d) ;

Summary

We started this chapter by looking at some of the advantages of widget-based development.

These advantages include abstraction and simplification for the programmer, and user interface

consistency within and among applications for the end user. The remainder of this chapter

described GtkWidget, a class that provides a great deal of functionality and from which most

of the remaining Gtk+ widget classes inherit directly. The key point to remember is that any

class in the widget hierarchy inheriting from GtkWidget (e.g., GtkButton) is in fact an instance

of GtkWidget as well, so you can apply any of the functions implemented by GtkWidget to

instances of these classes. If, for example, you need to set the event mask of a button widget,
you would call gtk_widgeCseceventsO, not some function implemented by the GtkButton
class. This chapter also introduced the format by which widget classes are presented in the

remainder of this book.

(HAPTER

LAB E LS AN D BVTTONS

In the preceding chapter, I described the GtkWidget widget class in detail. There, we learned

that GtkWidget is unique among Gtk+ classes in that it provides a base class from which most

of the remaining widget classes in Gtk+ inherit behavior. Although there is little doubt as to

the importance of GtkWidget, an application's user interface cannot be built using GtkWidget

alone. To construct a user interface, you, as a programmer, will need to utilize widget classes

located elsewhere in the Gtk+ widget hierarchy.

Controls and Containers

In general, there are two fundamental widget types in Gtk +. The first type consists of widgets

visible at runtime and with which users can control the behavior of the application. Push but

tons, pop-up menus, text-entry fields, toggle buttons, and check buttons are some of the wid

get types that fall into this category. I refer to widgets of this type as control widgets because

they represent the basic "controls" with which users of your application interact. The second

type of widget provides application programmers with widgets that can be used to organize

the layout of control widgets within the application's user interface. Widgets that belong to
this category act like containers; as an application programmer, you often add control widgets

and, at times, other container widgets to a container widget when constructing your user inter

face. A container widget is responsible for managing the widgets that have been added to it.

For example, it is a container widget that ultimately must act on the resizing of a window by

adjusting the geometries of its child widgets in a way best suited to the new window size.

In this chapter, we'll start our look at control widgets, covering GtkLabel as well GtkButton

and related classes, as summarized in Table 5 . 1 .

Table 5.1 Widgets Covered in This Chapter

Wulget

GtkLabel

GtkButton

Description

Displays static (noneditable) text.

The standard push button (e.g., used to implement

OK and Cancel buttons).

1 65

166 Chapter 5 • Labels and Buttons

Table 5.1 Widgets Covered in This Chapter (Continued)

Widget

GtkCheckButton

GtkToggleButton

GtkRadioButton

Description

Allows multiple buttons within a group to be
selected simultaneously ("n of many"). The label
of each button is placed adjacent to the button.

Similar to GtkCheckButton. The button label is
placed on the button as with GtkButton, not

adjacent to it.

Similar to GtkCheckButton but mUltiple buttons

in a group cannot be simultaneously selected

("one of many").

We'll start our discussion of the preceding widget classes with what is perhaps the most
simple of the control widgets: GtkLabel. Strictly speaking, GtkLabel is not a control widget,
but because it plays a part in many of the control widgets discussed (for example, the text dis

played by an instance of GtkButton is actually an instance of GtkLabel), I think. it is important

that we start our look at Gtk+'s control widgets here.

GtkLabel

Class Name

GtkLabel

Parent Class Name

GtkMisc

Macros

Widget type macro: GTK_TYPE_LABEL

Object to widget cast macro: GTK _LABEL (obj)

Widget type check macro: GTK _ IS_LABEL (obj)

Supported Arguments

Prefix: GtkLabel : :

GtkLabel

Table 5.2 GtkLabel Arguments

Name

label

pattern

justify

Type

GTK_TYPE_STRING

GTK_TYPE_STRING

GTK_TYPE_JUSTIFICATION

Application-Level API Synopsis

Return GTK_TYPE_LABEL at runtime:
guint
gtk_label_get_type (void) ;

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

Create a new instance of GtkLabel with a specified string as the label value:
GtkWidget *
gtk_label_new (const char * str) ;

Set the text of the GtkLabel widget instance to a specified string:
void
gtk_label_set_text (GtkLabel * l abe l , const char * str) ;

Set justification of the GtkLabel widget instance:
void
gtk_label_set_just i fy (GtkLabel *label , GtkJus t i f i cation jtype) ;

Set the underline segment pattern for the GtkLabel instance to a specified string:
void
gtk_label_set-pattern (GtkLabel * label, const gchar *pattern) ;

Specify whether an instance of GtkLabel should perform word wrap:
void
gtk_label_set_l ine_wrap (GtkLabel *label , gbool ean wrap) ;

Retrieve the label value string from a GtkLabel instance:
void
gtk_label_get (GtkLabel * labe l , char * * str) ;

1 67

Evaluate the menu item label for an accelerator key, remove the leading underscore, and set the
label's underline segment pattern (by calling gtkJabeCseCpattern):
guint
gtk_label-parse_ul ine (GtkLabel * label , const gchar * string) ;

168 Chapter 5 • Labels and Buttons

Class Description

GtkLabel is the widget class that allows for the display of static text objects in a window. This

widget class is often used directly by an application and is also used by several widget classes

in the GtkWidget hierarchy that are in need of displaying labels or text, including, but not

limited to, the GtkButton, GtkToggleButton, GtkCheckButton, and GtkRadioButton wid
get classes described in this chapter. GtkLabel has limited functionality, which is appropriate

for a widget class designed to do nothing more than display static text in a window. For those

of you unfamiliar with the term "static text," it means text that cannot be directly manipulated

by the user of the application during runtime. This is in contrast to text displayed by GtkEntry,

Gtk+'s text entry widget; most of the time, users are given the ability to modify the text in a

GtkEntry widget. Users can, however, indirectly affect the text displayed by a GtkLabel wid

get, as I will illustrate in this section. For the most part, however, once the text associated with

a GtkLabel widget is set, it will usually not change during the lifetime of the window or appli

cation in which it is being displayed.

The functionality that GtkLabel provides is available through its API, which I will describe

in this section. Applications can perform the following tasks: create a GtkLabel widget

instance, set the text displayed by the GtkLabel widget, tell a GtkLabel widget how it should

justify its text (e.g., justify right or left), and obtain the text currently being displayed by a Gtk

Label widget. GtkLabel also provides routines that allow an application to identify the portions

of a GtkLabel's text that should be rendered with an underscore character U beneath them.

Creating a Label Widget

To create a new instance of GtkLabel, call gtk_IabeCnewO:

GtkWidget *
gtk_labe l_new (const char * str) ;

The argument str is a NULL-terminated string that represents the text displayed by the

label. If str is NULL, then gtk_IabeCnewO will fail, returning NULL as its result.

Setting and Retrieving Label Text

As previously mentioned, GtkLabel is designed to be used to display static text in a window.

While the user may not be able to change this text, your application can at any time. To change

the text displayed by a label widget, you must call gtk_IabeCseUextO:

void
gtk_label_set_text (GtkLabel *label, const char * str) ;

label is an instance of GtkLabel, as returned by a call to gtk_Iabel_newO. Str is a NULL
terminated string representing the new value of the label after the call completes. If either

label or str is NULL, the routine will fail, and the text associated with the label widget will

remain unchanged.

Your application can also retrieve the text currently associated with a label widget by

calling gtk_Iabel...,getO:

GtkLabel 169

void
gtk_label_get (GtkLabel * label , char * * st r) ;

The argument label is an instance of GtkLabel, and str is a pointer to a char * variable

you have declared, as in the following example:

GtkWidget * label ;
char *str ;

It is important that you do not free the memory returned through str by Gtk+.

Label Attributes

In addition to setting and getting the text of a label, applications can also specify how a label

widget justifies its text when rendered and whether or not word wrap should be performed.

The function gtk_IabeCsetjustificationO is used to specify the desired justification setting:

void
gtk_label_set_j ust i fy (GtkLabel * label , GtkJust i f icat ion j type) ;

label is an instance of GtkLabel. jtype is the desired justification value and can be set to

one of the values in Table 5.3 .

Table 5.3 Justification Values

Value

GTK_JUSTIFY _LEFf

GTK_JUSTIFY _RIGHT

GTK_JUSTIFY _CENTER

GTK_JUSTIFY _FILL

Meaning

The origin of text on a line is at x = O.

The origin of text on a line is placed as far to the

right as possible.

Text is centered on a line (default).

Wrapped text is rendered so that each line
consumes the entire width of the area allocated to
the label.

To specify whether text should be word wrapped or not, call gtk_IabeCsecline_ wrapO:

void
gtk_label_set_l ine_wrap (GtkLabel * label , gboolean wrap) ;

label, of course, is an instance of GtkLabel. Setting wrap to TRUE will tum on word wrap;
setting wrap to FALSE will tum it off.

170 Chapter 5 • Labels and Buttons

It is probably best to see an example usage of word wrap and justify to best appreciate

how these two label attributes work together. Figures 5 . 1 through 5.6 are some screen shots

that illustrate the settings in various combinations:

Figure 5.1 Left, Right, Center, Wrap=TRUE Figure 5.2 Fill, Wrap=TRUE

Figure 5.3 Left, Wrap=FALSE Figure 5.4 Right, Wrap=FALSE

Figure 5.5 Center, Wrap=FALSE Figure 5.6 Fill, Wrap=FALSE

The source code for the application that generated the preceding screen shots shows how

to call both gtk_Iabel_setjustify() and gtk_IabeCseUine_ wrap():

Listing 5.1 GtkLabel Attribute Sample Code

0 0 1 #include <gtk/gtk.h
0 0 2 #include <stdio.h
0 03
0 04 static GtkWidget * leftBut ton , * rightButton , *centerButton , * f i l lBut ton;
0 0 5 stat ic GtkWidget * t rueBut ton , * falseButton;
0 0 6
0 0 7 static void
0 08 QuitCallback (GtkWidget *widget , GtkWidget *dialog_window)

GtkLabel

0 0 9
0 1 0 gtk_main_quit{) ;
0 1 1 exit { 0) ;
0 1 2
0 13
0 14 static void
0 1 5 Cl ickedCal lback{GtkWidget *widget , GtkWidget * dialog_window)
0 1 6 {
0 1 7 GtkWidget *window , * labelFrame , * labelTest , *vbox ;
0 18
0 1 9 window = gtk_window_new{ GTK_WINDOW_TOPLEVEL) ;
0 2 0 gtk_window-pos it ion (GTK_WINDOW (window) , GTK WIN_POS_MOUSE) ;
0 2 1 gtk_widget_set_usi ze{ window , 3 2 0 , - 1) ;
0 2 2 vbox = gtk_vbox_new (FALSE , 0) ;
0 2 3 gtk_container_add (GTK_CONTAINER (window) , vbox) ;
0 2 4
0 2 5 labelFrame = gtk_frame_new (" Test Label ") ;
0 2 6 gtk_box-pack_start (GTK_BOX (vbox) , labelFrame , TRUE , TRUE , 1 0) ;
0 2 7 labelTest = gtk_Iabel_new (" Line l\n "
0 2 8 " This i s Line 2\n "
0 2 9 "And thi s i s Line 3\n "
03 0 "And final ly, this i s Line 4\n "
03 1
03 2) ;

033 gtk_container_add (GTK_CONTAINER (labeIFrame) , labeITest) ;
034
03 5 i f (GTK_TOGGLE_BUTTON{leftButton) - >act ive == TRUE) {
03 6 gtk_Iabel_set_j usti fy{ GTK_LABEL{labeITest) ,
03 7 GTK_JUSTI FY_LEFT) ;
038 } else i f (GTK_TOGGLE_BUTTON{rightButton) - >act ive = = TRUE) {
03 9 gtk_Iabel_set_j usti fy{ GTK_LABEL{labeITest) ,
04 0 GTK_JUSTI FY_RIGHT) ;
04 1 } else i f (GTK_TOGGLE_BUTTON{centerButton) - >act ive == TRUE) {
042 gtk_Iabel_set_j usti fy{ GTK_LABEL{labeITest) ,
043 GTK_JUSTI FY_CENTER) ;

044 } else i f (GTK_TOGGLE_BUTTON{f iIIButton) - >act ive = = TRUE) {
0 4 5 gtk_Iabel_set_j usti fy{ GTK_LABEL{labeITest) ,
0 4 6 GTK_JUSTIFY_FILL) ;
04 7
048 i f GTK_TOGGLE_BUTTON{trueButton) - act ive = = TRUE) {
0 4 9 gtk_Iabel_set_Iine_wrap (GTK_LABEL{labeITest) , TRUE) ;
0 5 0 gtk_Iabel_set_text{ GTK_LABEL{labeITest) ,

171

0 5 1 " This i s a huge l ine that I am hoping wi l l l ine wrap when I
set l ine wrap to on because , wel l , i t i s big and it ought to l ine wrap ") ;
0 5 2 e l s e {
0 53 gtk_Iabel_set_Iine_wrap (GTK_LABEL{labeITest) , FALSE) ;
0 54
0 5 5 gtk_widget_show_all{ window) ;
0 5 6

172 Chapter 5 • Labels and Buttons

The mainO routine, not shown here, creates the application's main dialog. When the button in

this dialog, labeled Refresh, is pressed, the routine ClickedCallbackO, as shown in the preceding

code, is invoked. A window is created, and within this window, a GtkFrame widget is instantiated.

This GtkFrame widget has a single child that is the GtkLabel containing the text we are to display.

Based on the settings made in the main dialog, text justification and line wrap attributes are

applied to the GtkLabel widget. If line wrapping is disabled, a series of four text lines of differing

lengths are displayed. Each of these lines is terminated by a C newline character (\0). If line wrap

ping is enabled, a single line of text of considerable length is displayed, illustrating the ability of

the GtkLabel widget to wrap long lines of text within a region. The window is set to be 320 pixels

in width to give the GtkLabel widget a fixed area, with the size of our choosing, within which to

wrap its text. If line wrap is enabled, aU justification settings except for GTK_JUSTIFY _FILL

give the same result, as shown in Figure 5.1. If line wrap is enabled, setting

GTK_JUSTIFY _FILL causes the text to fill, as shown in Figure 5.2. The justification settings

GTK_JUSTIFY_LEFT, GTK_JUSTIFY_RIGJIT, and GTK_JUSTIFY_CENTER are inter

preted as shown in Figures 5.3, 5.4, and 5.5 only when line wrap is disabled. Specifying

GTK_JUSTIFY _FILL with line wrap disabled (see Figure 5.6) gives the same result as setting

GTK_JUSTIFY _LEFT with line wrap also disabled.

Placing Underscores in the Label

The final functionality provided by the GtkLabel API allows an application to specify

which characters, if any, in the text of GtkLabel widget should be rendered with an under

score character C) attribute applied to them. The function is rather simple:

void
gtk_label_set-pattern (GtkLabel * label , const gchar *pattern) ;

The length of the pattern must be equal to the length of the text associated with the GtkLabel

instance passed as the first argument. In this pattern, an underscore U character indicates that

the character occurring at the same position in the label's text should have an underscore applied

to it. If the character in the pattern is anything else (the convention is to use a space), then the

corresponding character in the label's text will render without an underscore accompanying it.

For example, given the label text "File ... " and the pattern "_ ", we can expect the

label to render with an underscore beneath the "F' character of the label text.

The major use of gtk_Iabel_secpatternO and the routine I am about to discuss,

gtk_IabeCparse_ulineO, is in GtkItemFactory, which uses it to specify the character of a

menu item label that should be associated with an accelerator. An accelerator, as discussed

in Chapter 4, is a key that, when pressed at the same time as an Alt or Ctrl key (depending
on the context), will cause a menu to appear or a menu item to activate. These characters in

a menu item or menu bar item are, by convention, rendered with an underscore.
A programmer using the GtkItemFactory to specify a menu item would specify the position

of the accelerator key (in the case of a "File ... " menu item, with the following string: "_File ... ").

GtkMenultem passes this string, and the instance of GtkLabel associated with the menu item,
to gtk_IabeLparse_ulineO:

guint
gtk_label-parse_ul ine (GtkLabel * label , const gchar * str ing);

Buttons 173

The job of gtk_Iabel_parse_ulineO is to take the passed string, parse it for any embedded

underscore characters, and construct the appropriate pattern string that will be set for the

label with gtk_Iabel_secpatternO. The text of the label is also set to the value of string

minus any embedded underscore characters. In the following example:

Gtkwidget *label ;

label = gtk_label_new ("Yabba Dabba Doo") ;
gtk_label.J>arse_ul ine (label , "_F i le . . . ") ;

the text associated with label will be "File ... ", and the label's pattern will be set to an under

score. Note that the text and the pattern are the same length. Before drawing a character of a

label's text, GtkLabel will look at the pattern and see if the character at the same position in

the pattern is an underscore. If the character in the pattern is an underscore, then the corre

sponding letter in the text of the label will be drawn with an underscore immediately below it.

Buttons

In the next several sections, I will present Gtk+'s button classes. These button classes

include GtkButton, GtkToggleButton, GtkCheckButton, and GtkRadioButton. Each is

related to one other in the Gtk+ class hierarchy as depicted in Figure 5.7. I will cover the
Gtk+ button classes in a top-down order starting with the GtkButton class, which is the

highest class in the hierarchy and from which the remaining button classes are based, and

finishing with GtkRadioButton, which is the lowest in the class hierarchy.

Figure 5.7 Button Widget Hierarchy

Buttons are among the most useful of the widgets provided by Gtk+. Nearly every dialog

contains an instance of GtkButton or a derived class. An instance of GtkButton provides

users with a way to initiate some action. In contrast, instances of GtkToggleButton,
GtkCheckButton, and GtkRadioButton convey information to users and provide a way for

users to make selections or choose options from the information presented, and activating
an instance of one of these classes typically will not result in an action being performed.

174 Chapter 5 • Labels and Buttons

Figures 5.8, 5.9, and 5.10 illustrate three dialogs, each containing three buttons labeled

Apples, Oranges, and Pears.

Figure 5.8 Radio Buttons

Figure 5.9 Toggle Buttons

Figure 5.10 Check Buttons

The buttons in Figure 5.8 are instances of GtkRadioButton, while the buttons in Figure 5.9

and Figure 5.10 are instances of GtkToggleButton and GtkCheckButton, respectively. Radio

buttons (see Figure 5.8) allow a user to make a "one of many" choice. Radio buttons, in this

case the buttons labeled Apples, Oranges, and Pears, are related to each other by placing them

in a "radio group." Only one radio button at a time can be selected in a radio group. Given the

state of the radio group depicted in Figure 5.8, clicking on the button labeled Oranges will

cause that button to become selected and will cause the button labeled Apples to become unse
lected. The GtkToggleButton and GtkCheckButton classes, on the other hand, allow for

"many of many" selections to be made by users of your application. For example, a user could

select both Apples and Pears, as shown in Figure 5.10. The GtkToggleButton and GtkCheck

Button widget classes are similar in functionality; the only difference between the two classes

is the appearance of the widget, as can be seen by comparing Figures 5.9 and 5.10.

GtkButton 175

GtkButton

Class Name

GtkButton

Parent Class Name

GtkBin

Macros

Widget type macro: GTK_TYPE_BUTTON

Object to widget cast macro: GTK _BUTTON (6bj)

Widget type check macro: GTK_IS_BUTTON (obj)

Table 5.4 Signals

Signal Name

pressed

released

clicked

enter

leave

Signal Function Prototypes

void

Condition Causing Signal to Trigger

A button widget was logically "pressed."

A "pressed" button widget was logically released.

The button widget was logically clicked.

The mouse pointer entered the region occupied
by the button.

The mouse pointer left the region occupied by the
button.

pressed (GtkButton *button , gpointer user_data) ;

void
released (GtkButton *button , gpo inter user_data) ;

176 Chapter 5 • Labels and Buttons

Signal Function Prototypes (Continued)

void
c l i cked (GtkButton *button , gpointer user_data) ;

void
ente r (GtkButton *button , gpointer user_data) ;

void
leave (GtkButton *button , gpointer user_data) ;

Supported Arguments

Prefix:GtkButton : :

Table 5.5 GtkButton Arguments

Name

label

relief

Type

GTK_TYPE_STRING

GTK_TYPE_RELIEF _STYLE

Application-Level API Synopsis

Retrieve the value GTK_TYPE_BUTTON at runtime:
GtkType
gtk_but ton_get_type (void) ;

Create an instance of GtkButton with no label string:
GtkWidget *
gtk_but ton_new (void) ;

Create an instance of GtkButton with the specified label string:
GtkWidget *
gtk_button_new_with_labe l (const gchar *label) ;

Trigger a pressed signal for the specified GtkButton instance:
void
gtk_button-pressed (GtkButton *button) ;

Trigger a released signal for the specified GtkButton instance:
void
gtk button released (GtkButton *button) ; - -

Trigger a clicked signal for the specified GtkButton instance:
void
gtk button clicked (GtkButton *button) ; - -

Permissions

GTK_ARG_READvnuTE

GTK_ARG_READvnuTE

GtkButton

Application-Level API Synopsis (Continued)

Trigger an enter signal for the specified GtkButton instance:
void
gtk_button_enter (GtkButton *button) i

Trigger a leave signal for the specified GtkButton instance:
void
gtk_button_leave (GtkButton *button) i

Set the relief style for the specified GtkButton instance:
void
gtk_button_set_re l i e f (GtkButton *button , GtkRe l i e f Style newstyle) i

Retrieve the current relief style for the specified GtkButton instance:
GtkReliefStyle
gtk_button_get_re l i e f (GtkButton *button) i

Class Description

177

GtkButton is perhaps the most fundamental of the control widgets provided by the Gtk+ widget

set (or by any other widget set, for that matter). The simplest and perhaps most universally used

dialog imaginable is the message dialog, an example of which is shown in Figure 5.11. The only

control widget needed to implement a dialog of this type is GtkButton, which, in this case, pro

vides the push button that the user clicks to dismiss the dialog after the message has been read.

Figure 5.11 Button Widget

GtkButton is very simple, both in terms of its layout and appearance (refer to Figure 5.11)

and in how it interacts with an application. With regard to appearance, a push button is little

more than a rectangular area that displays a label. In the case of GtkButton, this label is an

instance of GtkLabel. The parent class of GtkButton, which is GtkBin, reflects the fact that
the button is a container managing an instance of GtkLabel. I will discuss the implications of

this later in this chapter when I discuss the functions for creating an instance of GtkButton.

178 Chapter 5 • Labels and Buttons

Signals

In terms of interaction, most applications are mainly interested in knowing when the button has

been clicked, which is a logical term that indicates the button has been pressed and released by

the user. Here again, in more detail, are the signals supported by the GtkButton widget:

• clicked This signal indicates that the user has physically pressed and released the

mouse button within the area managed by the GtkButton instance, and as a result, the

push button has been logically pressed, or clicked. The response to receiving this

event should be to invoke the functionality implied by the label of the push button.

• enter This signal indicates that the mouse has entered the region managed by the

push-button widget.

• pressed This signal occurs when the user has physically pressed the mouse button

in the area owned by the push button. Receiving this event does not indicate that the

user has logically pressed the push button; an application should not perform the

action associated with the button upon receiving this event.

• released This signal is sent when the user has physically released the mouse button

in the area owned by the push button. If this event follows a pressed event, then the

push button was logically pressed, or clicked.

• leave This signal indicates that the mouse has left the region managed by the push

button widget.

Most applications need only handle the clicked event, and all other events generated by

GtkButton for the most part can be safely ignored.

Creating a Button
Creating an instance of GtkButton is trivial. Gtk + provides two functions for this purpose. The

first of these, gtk_button_new _ with_IabeIO, is perhaps the most widely used of the two:

GtkWidget *
gtk but ton new with label (const gchar * labell ; - - - -

The argument label is a NULL-terminated C string that represents the label displayed by

the push button. To create an instance of GtkButton without specifying a label, call

gtk_button_newO:

GtkWidget *
gtk_button_new (voidl ;

When you create a push button by calling gtk_button_new_with_labeIO, GtkButton

automatically creates and initializes an instance of GtkLabel, makes the label a child of the

push button, and sets its text to the value you passed in as an argument. None of this is done,

however, when you call gtk_button_newO. When would you ever want to create a push but

ton that has no label? There are times when this makes sense. Perhaps the most familiar

example would be to display a button that can be used to select a color. For example, instead

of labeling a series of three buttons Red, Green, and Blue, a more effective (and more easily

GtkButton 179

internationalized) user interface would display push buttons without a label, setting the

background colors of the buttons to red, green, and blue, respectively, to convey to the user

the action associated with pressing each of the buttons.

Changing the Label Text
Your application can set or change the text label of a button anytime via the label argument.

Here is a short routine that illustrates the technique:

void
SetButtonLabel (GtkWidget *button , char * label

{
gtk_obj ect_set (GTK_OBJECT (button) ,

" GtkButton : : label " , label , NULL) ;

Refer to Chapter 3, "Signals, Events, Objects, and Types," for more information on

gtk_objeccsetO.

Because the label is an instance of GtkLabel, you can make use of any of the functions

provided by GtkLabel in order to modify the text. To get a handle to the GtkLabel widget

managed by an instance of GtkButton, you can use the syntax illustrated by the following

example, which sets the underscore pattern of the label to "_ ":

GtkWidget *button , *chi l d ;

child = GTK_BIN (button) - >chi l d ;
i f (child & & GTK_I S_LABEL (chi ld))

gtk_label_set""pattern (GTK_LABEL (chi ld) , " ") ;

Generating Synthetic Events

GtkButton supports functions that allow applications to synthetically generate each of the signals

supported by GtkButton. These functions include gtk_button_pressedO, gtk_button_releasedO,

gtk_button3nter(), gtk_button_leaveO, and gtk_button3lickedO, corresponding to GtkBut

tons's pressed, released, enter, leave, and clicked events, respectively. Each takes a single argu
ment: an instance of GtkButton. Their function prototypes are as follows:

void
gtk_button....pres sed (GtkButton *but ton) ;

void
gtk_button_released (GtkButton *button) ;

void
gtk_button_cl icked (GtkButton *button) ;

void
gtk_button_enter (GtkButton *button) ;

180 Chapter 5 • Labels and Buttons

void
gtk_but ton_leave (GtkButton *button) ;

The ability to generate synthetic events is provided mainly for use by widget writers and

is not typically needed by application designers.

Relief Styles

GtkButton allows you to set the relief style of a GtkButton instance. The following relief styles are

supported: GTK_RELIEF _NORMAL, GTK_RELIEF _HALF, and GTK_RELIEF _NONE. The

default relief style for GtkButton is GTK_RELIEF _NORMAL. GTK_RELIEF _HALF and

GTK_RELIEF _NORMAL are synonymous in Gtk 1.2 because GtkButton only distinguishes

between GTK_RELIEF _NONE and other styles. Specifying GTK_RELIEF _NONE tells Gtk

Button not to draw a frame around a button; all that will appear when the widget does not have the

focus is the text of the button. Specifying GTK_RELIEF _NORMAL or GTK_RELIEF _HALF

results in a frame drawn around the button, as shown in Figures 5.12 ands 5.13.

To set the relief style for the specified GtkButton instance, you can call gtk_button_secreliefO:

void
gtk_button_set_re l ief (GtkButton *but ton , GtkRelie fStyle newstyl e) ;

To retrieve the current relief style for the specified GtkButton instance, you can call

gtlcbutton�eCreliefO:

GtkRel i e fStyle
gtk_button_get_re l ief (GtkButton *button) ;

GtkToggleButton 181

GtkToggleButton

Class Name

GtkToggleButton

Parent Class Name

GtkButton

Macros

Widget type macro: GTK _ TYPE _TOGGLE_BUTTON

Object to widget cast macro: GTK_TOGGLE_BUTTON (obj)

Table 5.6 Signals

Condition Causing Signal to Trigger Signal Name

toggled The toggle-button widget changed the state (for

example, from on to oft).

Signal Function Prototypes

void toggled (GtkToggleButton * togglebutton , gpointer user_data) ;

Supported Arguments

Prefix:GtkToggleButton : :

Table 5.7 GtkToggleButton Arguments

Name

active

draw_indicator

Type

GTK_TYPE�OOL

GTK_TYPE_BOOL

Permissions

GTICARG_READWRITE

GTK_ARG_READ�TE

182 Chapter 5 • Labels and Buttons

Application-Level API Synopsis

Retrieve the constant GTI<..TYPE_TOGGLE�UITON at runtime:
GtkType
gtk_toggle_button_get_type (void) i

Create a new instance of GtkToggleButton without a label:
GtkWidget *
gtk_toggle_button_new (void) i

Create a new instance of GtkToggleButton with the specified label:
GtkWidget *
gtk_toggle_button_new_with_label (const gchar * label) i

Toggle on or off the display of a toggle button indicator:
void
gtk_toggle_button_set_mode (GtkToggleButton *toggle_button ,

gbool ean draw_indicator) i

Set the GtkToggleButton instance as active (selected):
void
gtk_toggle_button_set_act ive (GtkToggleButton * toggle_button ,

gboolean i s act ive) i

Get the active state of GtkToggleButton instance:
gbool ean
gtk_toggle_button_get_active (GtkToggleButton * toggle_button) i

Generate a toggled signal for the specified GtkToggleButton widget instance:
void
gtk_toggle_button_toggled (GtkToggleButton * toggle_button) i

Class Description

GtkToggleButton is closely related to GtkButton (described previously), which is no surprise

given that it is a child class of GtkButton. As a child class, an instance of GtkToggleButton

can make use of all the facilities supported by GtkButton. This includes GtkButton's API and
signals as well as its arguments.

For example, the routine SetButtonLabelO, presented earlier, can also be used to change the

label text of a toggle-button widget. This is because the GtkButton:: label argument, defined

by GtkButton, works for any class derived from GtkButton, including GtkToggleButton.

The main difference between GtkButton and GtkToggleButton is in how instances of these

classes are used by an application. You use an instance of GtkButton to give your users a con

trol that will perform an action when clicked, and you use an instance of GtkToggleButton to

GtkToggleButton 183

represent a state (e.g., on or off or perhaps active or inactive). A toggle button may also per

form an action when it is clicked; this depends on the logic of your application.

The following screen shot of the popular Gtk+ IRC client X-Chat illustrates both types

of buttons in use. Instances of GtkButton include the buttons located in the bottom-right

comer of the screen, labeled Op, DeOp, Ban, and so forth. When pressed, these buttons all

perform an action.

Figure 5.14 X-Chat Screen Shot

An instance of GtkButton will change its appearance as the button is clicked, and again
as it is released, to indicate the activation operation as it is being performed. After the user

releases the button, it reverts to its original visual state.

The buttons labeled "T," "N," "S," "I," "P," "M," and "L" near the upper-right comer of

Figure 5.14 are instances of GtkToggleButton. Each of these buttons shows state informa
tion. The button that looks pressed in, labeled "N", is active or selected. The other buttons

are all inactive. The default state of an instance of GtkToggleButton is inactive, which

changes to active upon the first click by the user and then back to inactive upon the second

click by the user, and so forth.

GtkToggleButton allows clients to change the state of the button at any time. X Chat uses
this functionality in the following way. A user may click a toggle button to cause the asso

ciated action to be performed. Should the action be performed successfully, the state of the

184 Chapter 5 • Labels and Buttons

button will remain in the active state to indicate to the user that the mode represented by

the button is currently active. If the action fails or it cannot be performed, the button will

revert back to the inactive state. This logic is controlled by the application, and not by the

toggle button widget.

Signals

When the user clicks on a toggle button, a "toggled" signal is generated by the widget to

tell the application that the state of the widget has changed. The toggle signal can be regis

tered as in the following example:

gtk_s ignal_connect (GTK_OBJECT (my_toggle_button) , " toggled " ,
GTK_S IGNAL_FUNC (toggle_changed) , NULL) ;

The function prototype for the toggle_changedO signal function is as follows:

void
toggled_s ignal_funct ion (GtkWidget *toggle_button , gpointer arg)

I'll have more to say about this function later in this chapter.

Creating Toggle Buttons

Now that we have an understanding of what GtkToggleButton instances can be used for,

let's take a look at the API provided by the GtkToggleButton class.

To create an instance of GtkToggleButton without a label, your application can call

gtk_toggle_button_newO:

GtkWidget *
gtk_toggle_button_new (void) ;

This call is analogous to gtk_button_newO in the GtkButton widget class API. You can

add or change the label of the toggle button after creation by setting the GtkButton::label

argument for the widget, as described earlier. To create an instance of GtkToggleButton

with a label, an application can call gtk_toggle_button_new _ with_IabeIO:

GtkWidget *
gtk_toggle_button_new_with_label (const gchar * label) ;

Getting and Setting the State of a Toggle Button

The user generally should control the state of a toggle button. Because a toggle button looks

and acts similar to a push button, users will be inclined to click on it, and this should be the

catalyst for a change in the visual state of a toggle button. However, there are times when
your application may want to control the state of the button. An example would be to set

the initial state of a button to the active state. Another example would be to reverse the state

change made by the user because of some inability to deal with the action associated with

the state change, as was illustrated earlier. To change the state of a toggle button, applica

tions can call gtk_toggle_button_secactiveO:

GtkToggleButton

void
gtk_toggle_but ton_set_act ive (GtkToggleButton * toggle_button ,

gboolean i s_act ive) ;

185

If is_active is TRUE, the state of the widget is changed so that the button takes on the

pressed-in look associated with the active state. If is_active is FALSE, the button is set to

the look associated with the inactive state. If the state changes as a result of this call, Gtk+

simulates a button click on the toggle button, meaning that any click signal functions reg

istered for the toggle button will be invoked as a result of calling this function. Also, the

toggled signal will be triggered as a result, so if a signal function has been registered by

your application for the toggled signal for this widget instance, then it too will be called.

You can query the state (active or inactive) of a toggle-button widget by calling

gtk_toggle_button�ecactive():

gboolean
gtk_toggle_but ton_get_act ive (GtkToggleButton * t oggle_button) ;

The argument toggle_button is an instance of GtkToggleButton (or, as we shall see later,

a subclass of GtkToggleButton). If TRUE is returned, the button is active; otherwise, FALSE

is returned.

There are two situations in which I can envision an application making use of the preceding

call. The first is when inside of a toggled signal function. Here, you will often want to know

what the current state of the widget is. Thus, the typical toggled signal function will be struc

tured something like this:

void
toggled_s ignal_funct ion (GtkWidget *w, gpointer arg)

{
gboolean state ;

state = gtk_toggle_button_get_act ive (
GTK_TOGGLE_BUTTON (w)) ;

i f (state == TRUE)

II do something here
else

II do something else here

The other time when calling gtk_toggle_button�eCactiveO is important would be in the

signal function associated with closing a dialog, or in a Save/Save As menu handler. Here your

code will want to check the state of toggle buttons to obtain content as a part of the save oper

ation. Let's look at a concrete example. Assume we pop up a dialog that contains three toggle

buttons labeled, respectively, Apples, Oranges, and Pears. Below these toggle buttons are push

buttons labeled Print and Quit. The user clicks on one or more of the toggle buttons to specify,

for example, the fruits that the user eats on a regular basis. If the user clicks the Quit button, the

dialog is dismissed and nothing is done. If the user clicks the Print button, the clicked signal

function associated with the Print button will query the state of the toggle buttons and print the

186 Chapter 5 • Labels and Buttons

results to stdout. Here I assume that the toggle-button widgets are stored in global variables for

the sake of simplicity.

void
print_clicked_funct ion (GtkWidget *w, gpointer arg)

{
gboolean apples , oranges , pears ;

apples = gtk_toggle_button_get_act ive{
GTK_TOGGLE_BUTTON{ apples_toggle_button_widget)) ;

oranges = gtk_toggle_button_get_active{
GTK_TOGGLE_BUTTON{ oranges_toggle_button_widget)) ;

pears = gtk_toggle_button_get_act ive{
GTK_TOGGLE_BUTTON{ pears_toggle_button_widget)) ;

printf{ " I % s apples , % s oranges , and %s pears regularly\n " ,
apples == TRUE? " eat " : " do not eat ") ,
oranges == TRUE? " eat " : " do not eat ") ,
pears == TRUE? " eat " : " do not eat ")) ;

Miscellaneous Functions

Your application can cause the toggled signal functions registered for an instance of Gtk

ToggleButton to be invoked at any time by calling gtk_toggle_button_toggledO:

void
gtk_toggle_button_toggled{GtkToggleBut ton * toggle_button) ;

The visual state of the toggle-button widget is not changed by this call.

The final function exposed by GtkToggleButton that I will describe is

gtk_toggle_button_secmodeO:

void
gtk_toggle_button_set_mode{GtkToggleButton * toggle_button ,

gboolean draw_indicator) ;

This function takes two arguments: an instance of a GtkToggleButton widget and a gbool

ean. This gboolean argument controls the visibility of the toggle-button widget. If set to

FALSE, the toggle button is hidden from view. If TRUE, the toggle button is made visible.

Effectively, passing TRUE acts as though gtk_ widgecshow _allO has been called on the toggle
button, while passing FALSE has the opposite effect, causing the toggle button to be hidden.

GtkCheckButton

GtkCheckButton

Class Name

GtkCheckButton

Parent Class Name

GtkToggleButton

Macros

Widget type macro: GTK _TYPE _ CHECK_BUTTON

Object to widget cast macro: GTK _ CHECK_BUTTON (obj)

Widget type check macro: GTK _IS_CHECK _BUTTON (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_CHECK_BUTI'ON at runtime:
GtkType
gtk_check_button_get_type (void) ;

Create a new instance of GtkCheckButton without a label:
GtkWidget *
gtk_check_button_new (void) ;

Create a new instance of GtkCheckButton with the specified label:
GtkWidget *
gtk_check_button_new_with_label (const gchar * labe l) ;

Class Description

187

The next widget class in the GtkButton hierarchy is GtkCheckButton. This widget class

inherits from GtkToggleButton, meaning it has full access to the functions and attributes
provided by GtkToggleButton as well as those provided by GtkButton, which, as we saw
earlier, is the parent of GtkToggleButton. Everything described earlier for GtkToggleBut
ton applies to this class as well; when calling the functions or using the macros, simply pass
an instance of GtkCheckButton instead of an instance of GtkToggleButton.

188 Chapter 5 • Labels and Buttons

The only real difference between GtkCheckButton and GtkToggleButton is in how the

widget is rendered (see Figure 5.10). The sensitive portion of the widget (Le. , the area that is

receptive to mouse events) consists of the rectangular area that contains both the button and

its label.

The API for GtkCheckButton only consists of instance-creation functions. Once again,

the real functionality is provided by GtkToggleButton and its parent, GtkButton, and those

classes combined define the functionality available to GtkCheckButton.

Creating a Check Button

To create a new instance of GtkCheckButton without a label, call gtk3heck_button_new():

GtkWidget *
gtk check button new (void) ; - - -

To create a new instance of GtkCheckButton with a label, call gtk_check_button_

new _ with_Iabel() :

GtkWidget *
gtk_check_button_new_wi th_label (const gchar *label) ;

For details on gtk_check_button_newO and gtk_check_button_new _ with_IabeIO, refer to the infor

mation presented earlier for gtk_toggle_button_newO and gtk_toggle_button_new_with_labeIO,

respectively.

Now let's tum our attention to GtkRadioButton, which is the remaining widget class in

the GtkButton hierarchy.

GtkRadioButton

Class Name

GtkRadioButton

Parent Class Name

GtkCheckButton

Macros

Widget type macro: GTK _ TYPE _RADIO_BUTTON

Object to widget cast macro: GTK _RADIO_BUTTON (obj)

Widget type check macro: GTK_IS_RADIO_BUTTON (obj)

GtkRadioButton

Supported Arguments

Prefix:GtkRadioButton : :

Table 5.8 GtkRadioButton Arguments

Name

group

Application-Level API Synopsis

Retrieve the GTK_TYPE_RADIO_BUTTON constant at runtime:
GtkType
gtk_radio_button_get_type (void) i

Permissions

Create a new GtkRadioButton instance with no label and optionally add it to a button group:
GtkWidget *
gtk_radio_but ton_new(GSList *group) i

189

Create a new GtkRadioButton instance with the specified label and optionally add it to a button group:
GtkWidget *
gtk_radio_button_new_with_label (GSList * group , const gchar * labe l) i

Same as gtlcradio_button_new, but pass a widget from which the radio group to attach the new
radio button will be determined:
GtkWidget *
gtk_radio_button_new_from_widget (GtkRadioButton *group) i

Same as gtlCradio_buttoD..-new_with_label, but pass a widget from which the radio group to
attach the new radio button will be determined:
GtkWidget *
gtk_radio_button_new_with_labe l_from_widget (GtkRadioButton * group ,

const gchar * label) i

Retrieve the radio button group to which the specified GtkRadioButton widget instance belongs:
GSList *
gtk_radio_button_group (GtkRadioButton * radio_button) i

Associate a GtkRadioButton instance with the specified radio button group:
void

gtk_radio_button_set-9roup(GtkRadioButton *radio_button, GSList *group);

190 Chapter 5 • Labels and Buttons

Class Description

GtkRadioButton is far and away the most functional and specialized of the widget classes

inheriting from GtkButton. An instance of GtkRadioButton differs from an instance of

GtkCheckButton in appearance and in functionality. The square-shaped buttons of GtkCheck

Button instances are diamond-shaped in GtkRadioButton. And, while GtkCheckButton allows

for "many of many" selections, you will use a set of GtkRadioButton instances to implement

"one of many" selections. Thus, you would use GtkCheckButton to implement a user interface

that allows a user to, for example, respond to the question, "Which of the following are your

favorite types of ice cream?" by selecting multiple answers. GtkRadioButton might be used to

implement a user interface with which the user might respond to a question such as "In which

month were you born?" Here, of course, only one choice is possible.

To implement "one of many" selections, GtkRadioButton requires you to group related

instances of GtkRadioButton together. Doing so gives GtkRadioButton the ability to ensure

that only one of the radio buttons in the group will be selected at any given moment. When
ever one of the radio buttons in the group is selected by the user (or by the application with

a call to gtk_toggle_button_secactiveO), GtkRadioButton will ensure that each of the other

toggle buttons in the radio group is unselected.

Creating a Radio-Button Widget

Creating an instance of GtkRadioButton is slightly different than creating an instance of

GtkCheckButton. The functions gtk_radio_button_newO and gtk_radio_button_new_with_labeIO

create a radio button with and without a label, respectively:

GtkWidget *
gtk_radio_button_new{GSList *group) ;

GtkWidget *
gtk_radio_button_new_with_label{GSList *group , const gchar * label) ;

Each of these functions has an additional argument, group. When creating the first radio

button in a group of related radio buttons, the group argument should be set to (GSList *)
NULL. When creating subsequent radio buttons that belong to the same group, you use the

widget ID of any widget that belongs to same group in order to specify the group to which the

new radio button should be added. The following code and discussion should make this clear:

GtkWidget *apples , *oranges , *pears ;

oranges = gtk_radio_button_new_with_label {
gtk_radio_button_group (GTK_RADIO_BUTTON (apples)) ,
" Oranges ") ;

pears gtk_radio_button_new_with_label {
gtk_radio_button_group (GTK_RADIO_BUTTON (oranges)) ,
" Pears ") ;

GtkRadioButton 191

Here, the group argument of the first button, labeled Apples, is set to NULL because we

are defining the group. The group argument of the button labeled Oranges is set to the radio

group to which the Apples button belongs, and the group argument of the button labeled

Pears is set to the group to which the Oranges button belongs. Alternately, you could have

set the Pears button radio group as follows:

pears = gtk_radio_button_new_with_label
gtk_radio_but ton_group (GTK_RADIO_BUTTON (apples)) ,
" Pears ") ;

Ultimately, any radio button in the group will work. I tend to use the first widget that was

added to the group using code similar to the following:

GtkWidget *apples , *oranges , *pears , *group ;

apples = gtk_radio_button_new_with_label (NULL , "Apples ") ;
group = apples ;

oranges = gtk_radio_button_new_with_label {
gtk_radio_button_group (GTK_RADIO_BUTTON (group)) ,
" Oranges ") ;

pears gtk_radio_button_new_with_label {
gtk_radio_button_group (GTK_RADIO_BUTTON (group)) ,
" Pears ") ;

That is all there really is to creating a radio group. The function gtk_radio_button�roupO:

GSList *
gtk_radio_button_group{GtkRadioButton * radio_button) ;

retrieves the radio button group to which the specified GtkRadioButton instance belongs.

1\\'0 alternate functions exist for creating a radio button and adding it to a radio group. The

first, gtk_radio_button_new_from_widgetO, is similar to gtk_radio_button_newO, except that

it takes a GtkRadioButton widget as an argument and uses that widget to determine the radio
group to which the new instance of GtkRadioButton should be added. Here is the prototype:

GtkWidget *
gtk_radio_button_new_from_widget{GtkRadioButton *group) ;

The second of the alternate functions allows you to specify the label associated with the
new instance of GtkRadioButton:

GtkWidget *
gtk_radio_button_new_with_label_from_widget{GtkRadioBut ton *group ,

const gchar * label) ;

Let's rewrite the Apples, Oranges, and Pears example using these new functions:

192 Chapter 5 • Labels and Buttons

GtkWidget *apples , *orange s , *pears ;

oranges = gtk_radio_button_new_with_label_from_widget (apples ,
" Oranges ") ;

pears gtk_radio_button_new_with_labe l_from_widget (apples ,
" Pears ") ;

Of the three styles, the preceding is probably the easiest to read.

The final routine we will look at here is gtk_radio_button_set....groupO. This function

allows you to associate a radio button with a group after the radio button has been created:

void
gtk_radio_button_set_group (GtkRadioButton * radio_button ,

GSList *group) ;

The first argument is an instance of GtkRadioButton returned by any of the

gtk_radio_button_new*O functions mentioned earlier in this section. The argument group

is a radio button group, returned by a call to gtk_radio_button....groupO. One final time, let's

look at our fruity example and see yet another way to create the set of radio buttons:

GtkWidget *apples , *oranges , *pears ;

II create radio but ton widgets

apples = gtk_radio_button_new_with_labe l (NULL , "Apples ") ;
oranges = gtk_radio_button_new_with_labe l (NULL , " Oranges ") ;
pears = gtk_radio_button_new_with_label (NULL , " Pears ") ;

II group together apples , oranges , and pears

gtk_radio_button_set_group (GTK_RADIO_BUTTON (apple s) ,
gtk_radio_button_group (GTK_RADIO_BUTTON (pears))) ;

gtk_radio_button_set_group (GTK_RADIO_BUTTON (oranges) ,
gtk_radio_button_group (GTK_RADIO_BUTTON (pears))) ;

In the preceding code, I changed my tactics slightly by associating the Apples and

Oranges radio buttons with the Pears radio button, as opposed to associating the Oranges

and Pears radio buttons with the Apples radio button as I had done in the previous examples.
It does not matter which widget in the group is passed to gtk_radio_button....groupO to
obtain the group ID, nor is it required that you pass the first radio-button widget of the group
that was created.

However, the order in which you add radio buttons to a radio group does affect the
choice of the widget that, when the widgets are shown, is toggled active. In the preceding
code, the Pears radio button will be made active upon display. This is because, in the pre

ceding code, we first add the Apples radio button to the Pears radio group. The Pears radio

group does not yet exist, so a radio group is created by Gtk+ and Pears is added to the list.

Summary 193

Behind Pears on this list is the Apples radio button, followed eventually by the Oranges

radio button. The first radio button on the list defines the radio button that will be active

by default, unless your code explicitly sets the active radio button with a call to gtk_

toggle_button_secactiveO after the radio group is constructed.

Summary

In this chapter, we covered several widget classes. The first, GtkLabel, is used to display

static text in a window or container widget. GtkButton, the next widget discussed, is used

to implement push buttons such as the typical OK and Cancel buttons used in dialogs. The

remaining classes discussed, GtkCheckButton, GtkToggleButton, and GtkRadioButton; all

derive from GtkButton. The GtkCheckButton and GtkToggleButton controls allow users to

make choices from a small group of (one or more) items. (Lists, discussed in Chapter 6,

"Lists," should be used when the number of items from which the selections are to be made

is large.) A set of toggle-button and check-button widgets can be combined to present the

user with a way of selecting one or more items from a set of related choices (e.g. , "Which

of these flavors are your favorite?"). Radio buttons are similar to check-button and toggle

button widgets, except they enforce a "one of many" policy; only one item in a radio group

(a set of radio buttons) can be selected at any one time.

(HAPTER

L I S T S

This chapter continues the discussion of the Gtk+ control widgets that was started in the

preceding chapter. In this chapter, I present the Gtk+ widget classes listed in Table 6.1.

Table 6.1 Widgets Covered in This Chapter

Widget Description

GtkList Single-column list

GtkCList Multiple-column list

Figures 6.1 and 6.2 depict each of these widgets in typical use:

Figure 6.1 Multicolumn List Widget (GtkCList)

195

196

Fuel
M agnetos
Carbu rator Heat

Figure 6.2 List Widget (GtkList)

Chapter 6 • Lists

Without further delay, let's begin our discussion of these widgets by taking a look at GtkList.

GtkList

Class Name

GtkList

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_TYPE_LIST

Object to widget cast macro: GTK_LI ST (obj)

Widget type check macro: GTK_IS_LIST (obj)

Table 6.2 Signals

SiglUll Name

selection....changed

selecCchild

unseleccchiid

Condition Causing SiglUll to Trigger

The selection state of the list has been changed.

An item in the list changed the state to selected.

An item in the list changed the state to unselected.

GtkList 197

Signal Function Prototypes

void
selection_changed (GtkList * l ist , gpointer user_data) ;

void
select_chi ld (GtkList * l ist , GtkWidget *widget , gpointer user_data) ;

void
unselect_chi ld (GtkList * l ist , Gtkwidget *widget , gpointer user_data) ;

Application-Level API Synopsis

Return GTK_ TYPE_LIST at runtime:
guint
gtk_l ist_get_type (void) ;

Create an instance of GtkList:
GtkWidget *
gtk_l ist_new (void) ;

Add a set of items to a list starting at the specified position:
void
gtk_l ist_insert_it ems (GtkList * l i st , GList * items , gint pos ition) ;

Add a set of items to the end of a list:
void
gtk_l ist_append_items (GtkList * l i st , GList * items) ;

Add a set of items to the start of a list:
void
gtk_l ist-prepend_items (GtkList * l ist , GList * items) ;

Remove a set of items from a list, releasing child widgets:
void
gtk_l ist_remove_items (GtkList * l ist , GList * i tems) ;

Remove a set of items from a list without releasing child widgets:
void
gtk_l ist_remove_items_no_unref (GtkList * l ist , GList * i tems) ;

Remove the set of list items in the specified range:
void
gtk_l ist_clear_items (GtkList * l ist , gint start , gint end) ;

198

Application-Level API Synopsis (Continued)

Select an item in a list:
void
gtk_l ist_select_item (GtkList * l i st , gint item) ;

Unselect an item in a list:
void
gtk_l i st_unselect_item (GtkList * l i st , gint item) ;

Select the item that corresponds to the specified widget:
void
gtk_l ist_select_chi ld (GtkList * l ist , GtkWidget *chi ld) ;

Unselect the item that corresponds to the specified widget:
void
gtk_l i st_unselect_chi ld (GtkList * l i st , GtkWidget *chi ld)

Determine the position in a list of an item that corresponds to a widget:
gint

Chapter 6 • Lists

gtk_l ist_chi ld-posit ion (GtkList * l ist , GtkWidget *chi ld) ;

Set list selection mode:
void
gtk_l ist_set_selection_mode (GtkList * l ist , GtkSelectionMode mode) ;

Select all of the items in a list:
void
gtk_l ist_select_all (GtkList * l i st) ;

Unselect all of the items in a list:
void
gtk_l i st_unse lect_all (GtkList * l i s t) ;

Toggle the row corresponding to the specified widget to selected or unselected:
void
gtk_l i st_toggl e_row (GtkList * l ist , GtkWidget * item) ;

Class Description

GtkList is a simple class that supports the display of text strings in a single-column list, such
as the one illustrated in Figure 6.2. Users of your program can select items in a list, and your

program can arrange for a callback to be invoked as items in the list become selected or unse

lected. Your program can query a list at any time to determine which items have been selected.
Your program can also select or unselect items programmatically if needed.

GtkList 199

Selection Modes
There are four different selection modes, as listed in Table 6.3.

Table 6.3 GtkList Selection Modes

Mode Meaning

Default mode: zero or one item is selectable at a
time.

Similar to GTK_SELECTION_SINGLE, but

(except when the list is initially displayed) one

item is always selected.

More than one non-continuous selection can be
made at a time.

Continuous selections over multiple rows are
possible.

These modes not only affect how many selections a user can make from the list at a time,

but also how navigation from one item in the list to another is performed.

In GTK_SELECTION_SINGLE mode, a single item in the list can be selected at a time
by positioning the pointer over the item in the list and pressing mouse button 1. Any previ

ously selected item in the list will become unselected as a result. Positioning the pointer

over an item in the list and pressing mouse button 2 or mouse button 3 causes the list widget

to obtain focus and a solid border to be drawn around the item immediately below the

pointer, as shown in Figure 6.3. I refer to an item in this mode as "preselected." Items that

are neither "selected" nor "preselected" are referred to as "unselected." You can also make

an item preselected by using the up arrow key or down arrow key to navigate to another

item in the list from a selected item.

Figure 6.3 Preselected Item (Fuel Pump)

If the Enter key is pressed while an item in the list is preselected, the item becomes
selected. If the up arrow key or down arrow key is pressed while an item in the list is prese

lected, the item immediately above or below the preselected item, respectively, will become
preselected, and the item previously preselected will revert to unselected mode. The only
exception to this is when the preselected item is the first or the last item in the list. If the up

200 Chapter 6 • Lists

arrow is pressed while the first item in the list is preselected, or if the down arrow is pressed

while the last item in the list is preselected, no change in the state of the list will occur.

In GTK_SELECTlON_BROWSE mode, only one item in the list can be, and usually is,

selected at a time. Mouse button 1 behaves as in GTK_SELECTlON_SINGLE mode;

clicking on an item in the list with mouse button I selects the item. This is also what will

happen if you position the mouse over an item and click on mouse button 2 or 3. Using the

up arrow key or down arrow key to traverse the list will cause the selection to follow the

traversal ; thus, there is no preselected state in GTK_SELECTlON_BROWSE mode.

GTK_SELECTlON_MULTlPLE mode is like GTK_SELECTlON_SINGLE mode in

terms of how it responds to arrow-key movement and mouse-button pressing. The difference

is that users can select only one item in the list at a time in GTK_SELECTlON_SINGLE
mode, while GTK_SELECTlON_MULTlPLE mode allows more than one item in the list to

be selected.

The final mode, GTK_SELECTlON_EXTENDED, is a bit of a variation on each of the
three other modes and then some. A single click of mouse button l over an item will select an

item and cause the previously selected item to become unselected. Moving the up arrow key or

down arrow key from a selected item will cause the item above or below that item, respectively,

to be selected and the previously selected item to become unselected. Positioning the pointer

over an unselected item and clicking mouse button 2 or mouse button 3 will cause that item to

become preselected. The previously selected item will remain selected until the up arrow key

or down arrow key is moved, at which point the item that is above or below the preselected

item, respectively, becomes selected. To emulate GTK_SELECTlON_MULTIPLE, users

must depress the Ctrl+left or Ctrl+right key while making selections to preserve previously

selected items in the list.

The major difference in GTK_SELECTlON_EXTENDED mode occurs when mouse

button I is pressed while the Shift key is held down. If the list contains no selected items,

then the item below the pointer becomes selected, and the fact that the Shift key is being

pressed has no influence. If there is already a selected item in the list, however, then that

item, the item below the pointer, and all of the items in the list between these two items will

become selected.

As you can see, you have many choices when it comes to the list selection mode. Some

examples should help clarify when one mode might be preferable over another. A list from

which the user must select his or her country of birth would be best served by the use of

GTK_SELECTlON_SINGLE or GTK_SELECTlON_BROWSE mode because only one

item will need to be selected, and use of either of these modes will keep the user from select

ing more than one item. For a list from which the user is asked to select all of the countries
that he or she has visited at least once, GTK_SELECTlON_MULTIPLE would be a good
choice because it is an easy mode to use, and it is unlikely that the user will want to select a
range of countries from the list. The ease of GTK_SELECTlON_MULTIPLE is due to the

ability of users to select multiple items from the list without having to press and hold down
the Ctrl or Shift keys. GTK_SELECTlON_EXTENDED is the most general of the supported
selection modes. Its use is most appropriate in place of GTK_SELECTlON_MULTIPLE
when the user is likely to want to select a range of items in a list (e.g., a block of e-mail mes
sages to be deleted in an e-mail application). Since GTK_SELECTlON_EXTENDED allows

the user to make single-item, multiple-item, and range selections, it is the most flexible mode

GtkList 201

of them all and probably should be used wherever the enforcement of a single selection from

the list is not required. Depending on the experience of the target end users, your documenta

tion should make the user aware of the use of the Ctrl and Shift keys whenever GTK_

SELECTION_EXTENDED mode is utilized. The use of the Ctrl and Shift keys will not be

obvious to more inexperienced users.
Now that you have an understanding of the various selection modes, let's take a look at

the API exposed by GtkList.

Creating a List
To create a new instance of GtkList, call gtk_liscnewO:

GtkWidget *
gtk l i st new (void) ; - -

gtk_IiscnewO takes no arguments and returns a variable of type GtkWidget * . As is the

case with all widget creation functions, it is generally best to save the returned value in a

variable of type GtkWidget * and cast it to other types (such as GtkList *) using the pro

vided macros (e.g. , GTK_LIST) whenever necessary.

Setting the Selection Mode
Sometime after you create the list, you need to specify the list selection mode unless you

plan on using the default mode of GTK_SELECTION_SINGLE. To select the mode, call

gtk_Iiscsecselection_modeO:

void
gtk_Ii st_set_select ion_mode (GtkList * l ist , GtkSelect ionMode mode) ;

list is the list returned by gtk_lisCnew*O. mode is one of the modes listed in the preced

ing table.

Adding Items to the List
Once you have a list widget, you will need to add items to it. The process is perhaps best

described by looking at some example code:

0 1 GtkWidget * l i s t , * l i st_i t em ;
0 2 GList * i tem_Ii st ;
03
04 l i st = gtk_Ii st_new () ;
0 5 item l i st NULL ;
0 6 l i s t item gtk_Ii st_i tem_new_with_Iabel (" Spring ") ;
0 7 item l i s t g_l i st_append (item_l i st , l i st_item) ;
08 l i s t item gtk_Ii st_item_new_wi th_label (" Summer ") ;
0 9 i tem l i st g_l i st_append (i tem_l i s t , l i st_item) ;
1 0 l i st item gtk_Iist_item_new_with_Iabel (" Fal l ") ;
1 1 item l i st g_l i st_append (item_l i s t , l i st_item) ;
1 2 l i s t item gtk_Ii st_item_new_with_Iabel (" Winter ") ;
13 item_l i s t g_l i st_append (item_l i st , l i st_item) ;
14 gtk_Ii st_insert_items (GTK_LIST (l i st) , i tem_list , 0) ;

202 Chapter 6 • Lists

On line 04, I allocate a new instance of GtkList with a call to gtk_liscnewO. Lines 05

through 14 illustrate how to add the strings "Spring", "Summer", "Fall", and "Winter" to
this list. The process involves creating a vector, or list, that contains the items to be added
to the list. Once the list is created, it is then passed to gtk_lisUnserUtemsO to be added to

the list:

void
gtk_l i s t_insert_i tems (GtkList * l ist , GList * i tems , gint pos it ion) ;

The first argument to gtk_lisUnserUtemsO is an instance of GtkList. In the preceding code,

we pass the list returned by gtk_liscnewO, which is what a typical application will do. The sec
ond argument to gtk_lisUnserUtemsO is a list of "list items." It is not possible to specify the

items in a list as a set of C-Ianguage, NULL-terminated strings. Instead, you must create, for

each item in the list, an instance of the Gtk + widget class GtkListltem. A list of these "list items"

(of size 1 or greater) can then be passed as the second argument to gtk_IisCinserUtemsO in

order to specify the list. The final argument to gtk_lisUnserUtemsO is the position in the list

where the first item of the items vector should be placed. To place the list of items at the start of

the list, pass the value zero or use the function gtk_list-prepend_itemsO:

void
gtk_l i s t-prepend_items (GtkLi st * l ist , GList * items) ;

The arguments passed to gtk_liscprepend_itemsO are the same as those passed to

gtk_lisUnserUtemsO, except for position, which is not needed. Similarly, to add to the

end of a list, call gtk_liscappend_itemsO:

void
gtk_l i st_append_items (GtkList * l i st , GList * items) ;

Let's return to the preceding sample code. To create the list of items to pass to gtk_lisC

insert_itemsO, gtk_lisCprepend_itemsO, and gtk_liscappend_itemsO, simply follow the rec

ipe provided by lines 05 through 07:

0 1 GtkWidget * l i st_item ;
0 2 GList * i tem_l ist ;

0 5 item l i s t NULL ;
0 6 l i st item gtk_l ist_item_new_with_label (" Spring ") ;
0 7 item l i s t g_l ist_append (item_l ist , l i st_item) ;

The variable item_list is the list of items that will be passed to gtk_lisUnsert_itemsO,
gtk_liscprepend_itemsO, or gtk_liscappend_itemsO.

First, I initialize item_list to NULL. Following that, I create an instance of GtkListltem

by calling gtk_lisUtem_new _ with_IabeIO, passing the text of the item to be displayed in

the list as an argument. Finally, on line 07, I add the instance of GtkListItem to item_list by
calling g_liscappendO. The first argument to �liscappendO is item_list; the second argu

ment is the list item to add. g_liscappendO will place NULL at the end of the list for you
as a part of the call to mark the end. Simply repeat lines 06 and 07 for each item you want

GtkList 203

to add to the list. Once the list is constructed, you can then call gtlclisUnsercitemsO,
gtk_liscappend_itemsO, or gtk_lisCprepend_itemsO to add the list of items to the GtkList

instance.

Displaying Arbitrary Widget Content in a List
You are not restricted to using plain text as an item in a GtkList. Since the GtkListltem wid
get is a child of GtkContainer in the widget hierarchy, it is possible for you to instantiate

arbitrary widgets to act as items in a list. To do this, call gtk_lisCitem_newO to create a new

list item instead of gtk_lisUtem_new_with_IabeIO (gtk_lisUtem_new_with_IabeIO
instantiates a GtkLabel widget and makes it a child of the GtkListltem container). Then call

gtk30ntainer_addO to place the widget within the container, as in the following example:

0 1 GtkWidget * l ist , * l i st_item , *pixmap ;
0 2 GLi st * item_l i s t ;
0 3
0 4 l i st = gtk_l i st_new () ;
0 5 item_l i s t = NULL ;
0 6 l i st_item = gtk_l ist_item_new () ;
0 7 pixmap = MyCreatePixmap () ;
0 8 gtk_container_add (GTK_CONTAINER (l i s t_item) , pixmap) ;
0 9 item_l ist = g_l i st_append (i tem_l i s t , l i s t_item) ;

The function MyCreatePixmapO, in the preceding code, creates an instance of GtkPix

map. I will discuss GtkPixmap in more detail in Chapter 8, "Separators, Arrows, Images,

Pixmaps, and Entry Widgets." GDK pixmaps are discussed in the section on GtkCList,

which can be found later in this chapter.

Again, anything that can be added to a container can also be added to a list item, includ

ing boxes (which are discussed in Chapter 10, "Container and Bin Classes"). You therefore

have the ability, with GtkList, to create lists such as the one depicted in Figure 6.4, in which

each item in the list is a horizontal box widget that itself contains a GtkPixmap and GtkLa

bel widget.

Figure 6.4 List Displaying Pixmaps and Labels Packed in Horizontal Boxes

The code used to construct this list is as follows:

GtkWidget * l ist , * l i st_item ;
GList * i tem_l i s t ;
GtkWidget *box1 , *box2 , *box3 , * labe l , *pixmap ;

II create 3 boxes , each with the same pixmap , and a unique labe l

204 Chapter 6 • Lists

box1 = gtk_hbox_new (FALSE , 0) ;
pixmap = MyCreatePixmap () ;
gtk_box-pack_start (GTK_BOX (box1) , pixmap , FALSE , FALSE , 0) ;
label = gtk_labe l_new (
List i t em 1 ") ;
gtk_box-pack_s tart (GTK_BOX (box1) , label , FALSE , FALSE , 0) ;

box2 = gtk_hbox_new (FALSE , 0) ;
pixmap = MyCreatePixmap () ;
gtk_box-pack_start (GTK_BOX (box2) , pixmap , FALSE , FALSE , 0) ;
labe l = gtk_labe l_new (" List item 2 ") ;
gtk_box-pack_start (GTK_BOX (box2) , label , FALSE , FALSE , 0) ;

box3 = gtk_hbox_new (FALSE , 0) ;
pixmap = MyCreatePixmap () ;
gtk_box-pack_start (GTK_BOX (box3) , pixmap , FALSE , FALSE , 0) ;
labe l = gtk_labe l_new (" List item 3 ") ;
gtk_box-pack_start (GTK_BOX (box3) , label , FALSE , FALSE , 0) ;

II c reate an instance of GtkList

II create the GList of GtkList l t ems . Each GtkListl tem contains
II one of the box widgets created above .

i t em l i s t = NULL ;
l i s t_item = gtk_l ist_item_new () ;
gtk_container_add (GTK_CONTAINER (l i st_i tem) , box1) ;
i tem_l i s t = g_l i st_append (item_l ist , l ist_item) ;
l i st_i tem = gtk_l ist_item_new () ;
gtk_container_add (GTK_CONTAINER (l i st_i tem) , box2) ;
i tem_l i s t = g_l i st_append (item_l i st , l ist_item) ;
l i s t_item = gtk_l ist_item_new () ;
gtk_container_add (GTK_CONTAINER (l i st_i tem) , box3) ;
i tem_l i s t = g_l i st_append (item_l ist , l ist_item) ;

II Add the items to the GtkList widget

There are widgets you should avoid adding as children of GtkListItem. In the preceding
code, for example, adding a GtkEntry or GtkButton widget as a child of the horizontal box

will result in a button or entry widget that does not perform as expected. The problem is
that GtkList will be handling the mouse and keypress events that occur within the boundary
of the GtkList widget, and they will never be passed along to the button or text-entry field.

Generally speaking, widgets that do not process keyboard or mouse events as part of

their normal operation are good candidates for widgets to place below GtkListltem in the

widget instance hierarchy. GtkButton and GtkLabel are examples of widget classes that
will work well in this situation.

GtkList 205

Removing Items from a List
To remove a list of items from a GtkList, you call gtIcliscremove_itemsO. The first argument

is an instance of GtkList, and the second is a list of items to remove. Note that you are not

removing strings; you are removing instances of GtkListItem. Therefore, the vector you pass

in must contain instances of GtkItemList that were added to the list previously with a call to

gtk_IisUnserUtemsO, gtk_liscappend_itemsO, or gtk_liscprepend_itemsO. Here is the

function prototype for gtk_liscremove_itemsO:

void
gtk_l ist_remove_items (GtkList * l i st , GList * i tems) ;

By removing items with a call to gtk_liscremove_itemsO, you are releasing the widgets

of type GtkListltem that were allocated by your application with its calls to gtk_lisUtem_

new _ with_IabeIO. The release of GtkListItems will also happen should you destroy the

GtkList widget. On return from gtk_liscremove_itemsO, the contents of the items vector

will be set to NULL. You can, if desired, arrange to remove items from a GtkList instance

without causing the GtkListltems to be released. You might want to do this should your
application need to insert and/or remove items from a list more than once, to minimize the

overhead involved with creating and destroying instances of GtkListItem. To remove items

from a list in this manner, call gtk_liscremove_items_no_unrefO:

void
gtk l i st remove items no unref (GtkList * l ist , GList * i tems) ; - - - - -

Gtk+ will increment the reference count on the list items removed so that they are not

released. Note, however, that the contents of the items vector will be set to NULL, so you

will need to store the items in some persistent location in your application in order to reuse

them. You can make a copy of a GList by calling �lisccopyO:

GList *
g_l i st_copy (GList * l ist) ;

The argument list is the GList you want to copy. The function g_lisccopyO returns a

new list upon successful execution, or (GList *) NULL.

The arguments to gtk_liscremove_items_no_unrefO are the same as those passed to
gtk_liscremove_itemsO·

The function gtk_liscc1ear_itemsO can be used to remove a set of items from a list in a

specific range:

void
gtk_l ist_clear_items (GtkList * l ist , gint start , gint end) ;

The argument start is the index of the first item in the range, and end is the index of the

last item in the range. If n is the number of items in the list, the allowable range for these
arguments is 0 (the first item in the list) to n - I (the last item in the list) . If start is greater
than or equal to end, then the function will return. Setting end to a value less than zero rep

resents the end of the list, thus

206 Chapter 6 • Lists

gtk_l i s t_c lear_items (GTK_LIST (myl ist) , 3 , - 1) ;

will result in the removal of all the elements in the list except for the first three (those located

at indexes 0, 1 , and 2).

Locating an Item in a List

We know that an item in the list is an object of type GtkListItem. Given a handle to an instance

of GtkListItem, we can determine the index (in the range 0, n - 1) where that item is located

in the list.

gint
gtk_l i s t_child-pos it ion (GtkList * l i st , GtkWidget * child) ;

Selecting and Unselecting Items in a List

The remaining functions in the GtkList API allow applications to select and unselect items

in the list. Generally, you will not want to control selections from a list programmatically
because your users will want to have control over making selections. However, you might

want to initialize a list by selecting an item at the time the list is created. For example, sup

pose you are writing a program for a car dealership that will be used by office personnel to
schedule service appointments for customers. One of these dialogs might consist of a

scrolled list of months. It might make sense for your program to default the selection in this

list to either the current month or perhaps the first month with a free slot in the schedule

that can be allocated to the customer.

To select an item in a list:

void
gtk_l i s t_select_item (GtkList * l i st , gint item) ;

item is the index in the list (0, n - 1) of the item to select. After the call is made, the item

specified will be selected. If the list selection mode is GTK_SELECTION_SINGLE or

GTK_SELECTION_BROWSE, the previously selected item will become unselected. If the

mode is GTK_SELECTION_MULTIPLE, previous selections will persist. If the mode is

GTK_SELECTION_EXTENDED, the item selected and the current status of the selection

dictate the result. In short, the response of selecting an item in a list with gtlcselecClisUtemO

is similar to what would happen if the user were making the selection.

Unselecting an item, naturally, can also be performed. The call that allows this is

gtk_liscunselecUtemO:

void
gtk_l i st_unselect_item (GtkList * l i st , gint item) ;

You can also select and unselect items knowing the widget ID of the GtkListltem widget

of the item to be selected or unselected. To select the item that corresponds to a widget, use
gtk_lisCseleccchildO:

void
gtk_l ist_select_chi ld (GtkList * l i st , GtkWidget * child) ;

GtkList 207

To unselect the item that corresponds to a specific widget, you can call gtk_IisC

unseleccchildO:

void
gtk l i st unselect child (GtkList * l i st , GtkWidget * child) ; - - -

Most users will find it easy to select the first item in the list and use the Shift key and mouse

button 1 to select all of the items in a list while the list is in GTK_SELECTION_EXTENDED

mode. However, selecting an entire list of items in this way can become bothersome, especially

when the number of items in the list is large (consider selecting and removing 1 ,000 e-mail

messages from a mailbox folder). To ease the selection and unselection of an entire list, con

sider adding Select All and Unselect All buttons to the user interface of your application. In the

signal function for the "Select All" button, you can then call gtk_liscseleccallO to select the

entire list, and in the signal function for the "Unselect AlI" button, a call gtk_lisCunseleccallO

can be made to unselect the entire list.
The function prototypes for gtk_liscseleccallO and gtk_IisCunselecCallO are as follows:

void
gtk_l ist_select_a l l (GtkList * l i s t) ;

void
gtk_l ist_unselect_all (GtkList * l i st) ;

The final function I will discuss can be used to toggle the state of a single item in the list,

corresponding to a specific GtkItemList widget, from selected to un selected or vice versa.

To toggle the state, you can call the gtk_lisCtoggle_rowO function:

void
gtk_l ist_toggle_row (GtkList * l i s t , GtkWidget * i tem) ;

Now that we have discussed GtkList in some detail, it is a good time to take a look at a

similar Gtk+ class, GtkCList. Although they are similar, GtkCList and GtkList are not

related to each other in the widget hierarchy. As you will see, GtkCList is more functional

than GtkList. My suggestion is to try to use GtkList for simple, single-column lists. If you

need multiple-column lists or are in need of the additional functionality provided by Gtk
CList, use GtkCList instead.

208 Chapter 6 • Lists

GtkCList

Class Name

GtkCList

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_TYPE_CLIST

Object to widget cast macro: GTK_CLIST (obj)

Widget type check macro: GTK_IS_CLIST (obj)

Table 6.4 Signals

Signal Name

seleccrow

unselecCrow

toggle_focus_row

seleccall

unselecCall

undo_selection

Condition Causing Signal to Trigger

An item in the list changed the state to selected.

An item in the list changed the state to unselected.

A row in the list was moved to a new position
with gtk_clisCrow _moveO.

A column header button in the list was clicked.

A column was resized by the user.

The focus row selected state has toggled.

A select all operation was performed on the list.

An unselect all operation was performed on the
list.

The list reverted to the previous selection state.

GtkCList

Table 6.4 Signals (Continued)

Signal Name

starCselection

Condition Causing Signal to Trigger

Not used as of Gtk+ 1 .2.8.

209

The left Shift key was released while the cllst has
keyboard focus.

extend_selection

scroll_vertical

Signal Function Prototypes

void

The add mode for the clist has toggled.

The current selection has been extended.

The vertical scrollbar position has changed.

The horizontal scrollbar position has changed.

A column resize has been aborted.

select_row (GtkCList *cl ist , gint row , gint column , GdkEventButton
*event , gpointer user_data) ;

void
unselect_row (GtkCList *clist , gint row , gint column , GdkEventButton
*event , gpointer user_data) ;

void
row_move (GtkCList *clist , gint argl , gint arg2 , gpointer user_data) ;

void
click_column (GtkCList *cl ist , gint column , gpointer user_data l ;

void
res i ze_column (GtkCList *clist , gint column , gint width , gpointer
user_data) ;

void
toggle_focus_row (GtkCList *clist , gpo inter user_data l ;

void
select_al l (GtkCList *clist , gpointer user_data l ;

210 Chapter 6 • Lists

Signal Function Prototypes (Continued)

void
unse lect_all {GtkCList *cl ist , gpointer user_data) ;

void
undo_selection {GtkCList *clist , gpointer user_data) ;

voi d
s tart_select ion (GtkCList *clist , gpointer user_data) ;

void
end_selection { GtkCList * c l i st , gpointer user_data) ;

void
toggle_add_mode (GtkCList * c l ist , gpointer user_data) ;

void
extend_selection (GtkCLi st *clist , GtkScrollType scrol l_type , gfloat
pos ition , gboolean auto_start_select ion , gpointer user_data) ;

void
scrol l_vertical (GtkCList *clist , GtkScrollType scrol l_type , gf loat
pos i t ion , gpointer user_data) ;

void
scrol l_horizontal {GtkCList *clist , GtkScrollType scrol l_type , gfloat
pos i t ion , gpo inter user_data) ;

void
abort_column_resize { GtkCList *clist , gpointer user_data) ;

GtkCList 2 1 1

Supported Arguments

Prefix: GtkCLi st : :

Table 6.5 GtkCList Arguments

Name Permissions

GTK_ARG�ADWRITE I
GTK_ARG_CONSTRUCT_

ONLY

reorderable

GTK...TYPE_SHAOOW _TYPE

GTK_TYPE_SELECTION_MODE

GTK_TYPE_UINT

GTILTYPEJ300L

GTK_TYPE_BOOL

GTK...TYPE_BOOL

Application-Level API Synopsis

Return GTK_TYPE_CLlST at runtime:
guint
gtk_clist_get_type (void) ;

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTILARG_READWRITE

GTK�G_READWRITE

GTK_ARG_READWRITE

Create a new instance of GtkCList with the specified number of columns:
GtkWidget *
gtk_clist_new (gint columns } ;

Create a new instance of GtkCList with the specified number of columns and column header labels:
GtkWidget *
gtk_c l i st_new_with_t itles (gint columns , gchar *titles []) ;

Set the horizontal adjustment of the clist:
void
gtk_clist_set_hadj usotment (GtkCList * c l i s t , GtkAdj ustment
* adj ustment) ;

212

Application-Level API Synopsis (Continued)

Set the vertical adjustment of the clist:
void
gtk_cl i st_set_vadj ustment (GtkCList *clist , GtkAdjustment
*adjustment) ;

Retrieve the horizontal adjustment of the clist:
GtkAdjustment *
gtk_c l i st_get_hadjustment (GtkCList *clist) ;

Retrieve the vertical adjustment of the clist:
GtkAdjustment *
gtk_c l i st_get_vadj ustment (GtkCList * c l i st) ;

Set the border style of the clist:
void

Chapter 6 • Lists

gtk_cl i s t_set_shadow_type (GtkCList *clist , GtkShadowType type) ;

Set the selection mode of the clist:
void
gtk_cl i s t_set_selection_mode (GtkCList *clist , GtkSelectionMode
mode) ;

Enable or disable the ability of a clist to have its rows reordered:
void
gtk_c l i s t_set_reorderable (GtkCList *clist , gbool ean reorderable) ;

Enable or disable the use of drag icons:
void
gtk_cl i s t_set_use_drag_icons(GtkCList *clist , gbool ean use_icons) ;

Set clist button actions:
void
gtk_cl i s t_set_button_actions (GtkCList *clist , guint button ,
guint 8 button actions) ;

Freeze (disable) visual updates on the clist widget:
void
gtk_c l i s t_freeze (GtkCList * c l i st) ;

Thaw (re-enable) visual updates on the clist widget:
void
gtk_c l i st_thaw (GtkCLi st *clist) ;

Show the title buttons appearing above columns in a clist:
void
gtk_c l i st_column_t itles_show (GtkCList * c l i st) ;

GtkCList

Application-Level API Synopsis (Continued)

Hide the title buttons appearing atIJ¥e colUmns in a clist:
void
gtk_c list_column_t itles,t.!li!idie (GtkCList *clist) ;

Set the column title to be actiVe (�ive to button presses, prelights, and keyboard focus):
void
gtk_clist_column_title_active (GtkCList *clist , gint column) ;

213

Set the column title to be inactive (unresponsive to button presses, prelights, and keyboard focus):
void
gtk_clist_column_title-pass ive (Gtk€uist *clist , gint column) ;

Set all column titles to be active (responsive to button presses, prelights, and keyboard focus):
void
gtk_clist_column_titles_a�tive (GtkCList * clist) ;

Set all column titles to be inactive (1JtIreSpOnsive to button presses, prelights, and keyboard focus):
void
gtk_clist_column_titles-pass ive (GtkCList *clist) ;

Set the title of a column's title button to specified string!
void
gtk_clist_set_column_title (GtkCList *cl i st , gint column ,

const gchar *title } ;

Retrieve the text label of a colUmn�s title button:
gchar *
gtk_clist_get_co1umn_tit�e (GtkCDist *clist , gint column) ;

Specify a widget as the "label" of a cOlUmn's title button instead of using a text label:
void
gtk_clist_set_column_wi�et (GtkCList *olist , gint column ,

GtkWi�et -widget) 1

Retrieve the widget parented by a column's title button:
GtkWidget *
gtk_clist_get_column_wi�t (GtkCList *olist , gint column) ;

Specify the justification setting of a column in a clist:
void
gtk_cl ist_set_column� ustification {Gtk€List *cl ist , gint column ,

GtkJustificltion �ustific�ion) ,

Show or hide a column in the Wist:
void
gtk_clist_set_column_visibili� (Gtk€List * 0 1 ist , gint column ,

gboo1ean vis ible } ;

214

Application-Level API Synopsis (Continued)

Enable or disable column resize operations by mouse for a specific column:
void

Chapter 6 • Lists

gtk_c l i s t_set_column_res i zeable (GtkCList * c l ist , gint column ,
gboolean res i zeable) ;

Specify whether a column should automatically resize itself to an optimal width based on its content:
void
gtk_c l i s t_set_column_auto_res i z e (GtkCList * c l i st , gint column ,

gboolean auto_re s i z e) ;

Make all columns in the cllst automatically resize themselves to an optimal size based on their content:
gint
gtk c l i s t columns autos ize (GtkCList * c l i st) ; - - -

Retrieve the minimum size needed to display all content in the specified column, unclipped:
gint
gtk_c l i st_optimal_column_width (GtkCList * c l i s t , gint column) ;

Explicitly set the column width of a row:
void
gtk_cl i s t_set_column_width (GtkCList * c l ist , gint column , gint width) ;

Set the minimum width of a column:
voi d
gtk_cl i s t_set_column_min_width (GtkCList * c l ist ,

gint column , gint min_width) ;

Set the maximum width of a column:
void
gtk_cl i s t_set_column_max_width (GtkCList * c l i s t , gint column ,

gint max width) ;

Set the height of a row. The value 0 causes the height to be the same as the current font:
void
gtk_c l i s t_set_row_height (GtkCList * c l i s t , guint height) ;

Scroll the viewing area of the clist to the given column and row:
void
gtk_c l i st_moveto (GtkCList * c l i s t , gint row , gint column ,

gfloat row_al ign , gf loat col_align) ;

Return visibility of a specified row in the clist:
GtkVi s ibi l i ty
gtk_cl i st_row_is_vi sible (GtkCList * c l i s t , gint row) ;

Obtain the cell type of the specified cell in the dist:
GtkCe l l Type
gtk_c l i st_get_cel l_type (GtkCList * c l i s t , gint row , gint column) ;

GtkCList

Application-Level API Synopsis (Continued)

Set the text displayed by the cell in the cllst at the specified row and column:
void
gtk_clist_set_text (GtkCList * c l ist , gint row , gint column ,

const gchar *text) ;

Retrieve text displayed at the specified row and column of a clist:
gint
gtk_c l i st_get_text (GtkCList * c l i st , gint row , gint column ,

gchar * * text) ;

Set the pixmap of the cell at the specified location in the cllst:
void
gtk_c l i s t_set-pixmap (GtkCList * c l i st , gint row , gint column ,

GdkPixmap *pixmap , GdkBitmap *mask) ;

Get the pixmap of the cell at the specified location in the cllst:
gint
gtk_c l i st_get-pixmap (GtkCList * c l i st , gint row , gint column ,

GdkPixmap * *pixmap , GdkBi tmap * *mask) ;

215

Set the pixmap and text of the cell at the specified location in the cllst, replacing its current contents:
void
gtk_cl i s t_set-pixtext (GtkCList * c l i st , gint row , gint col ,

const gchar *text , guint B spacing , GdkPixmap *pixmap ,
GdkBitmap *mask) ;

Get the pixmap and text of the cell at the specified location in the clist:
gint
gtk_c l i st_get-pixtext (GtkCList * c l i s t , gint row , gint column ,

gchar * * text , guint B * spacing , GdkPixmap * *pixmap ,
GdkBi tmap * *mask) ;

Set the foreground color of a row to a previously allocated color:
void
gtk_c l i s t_set_foreground (GtkCList * c l i st , gint row , GdkColor *color) ;

Set the background color of a row to a previously allocated color:
void
gtk_c l i s t_set_background (GtkCList * c l i s t , gint row , GdkColor * color) ;

Set the style of the cell at the specified location:
void
gtk_cl i s t_set_cel l_style (GtkCList * c l i s t , gint row , gint column ,

GtkStyle * s tyle) ;

Get the style of the cell at the specified location:
GtkStyle *
gtk_clist_get_cel l_styl e (GtkCList * c l i st , g int row , gint column) ;

216

Application-Level API Synopsis (Continued)

Set the style of the specified row:
void

Chapter 6 • Lists

gtk_c l i st_set_row_style (GtkCList *clist , gint row , GtkStyle * style) ;

Get the style of the specified row:
GtkStyle *
gtk_c l i st_get_row_style (GtkCList *clist , gint row) ;

Set the horizontal and vertical shifts for drawing the contents of a cell:
void
gtk_c l i s t_set_shif t (GtkCList * c l ist , gint row , gint column ,

gint vert ical , gint horizontal) ;

Set the selectable attribute of a specified row:
void

gtk_ c l ist_set_selectable(GtkCList *clist , gint row , gboolean selectable) ;

Retrieve the selectable attribute of a specified row:
gboolean
gtk_c l i s t_get_selectable (GtkCList *clist , gint row) ;

Prepend a row into the clist, returning the index of the row just added:
gint
gtk_c l i st-prepend (GtkCList *clist , gchar * text []) ;

Append a row into the clist, returning the index of the row just added:
gint
gtk_cl i st_append (GtkCList *clist , gchar * text []) ;

Insert a row at the specified index. Return the row it was actually inserted as; this may vary based
on sorting attributes of the clist:
gint
gtk_c l i s t_insert (GtkCList *clist , gint row, gchar * text []) ;

Remove the specified row from the clist:
void
gtk_cl i st_remove (GtkCList *clist , gint row) ;

Associate arbitrary (client) data with a row:

void
gtk_c l i s t_set_row_data (GtkCList * c l i st , gint row , gpointer data) ;

Associate arbitrary (client) data with a row, with destroy notification:
void
gtk_clist_set_row_data_ful l (GtkCList *clist , gint row , gpointer data ,

GtkDes troyNot ify destroy) ;

Retrieve arbitrary (client) data associated with the specified row:
gpointer
gtk_c l i st_get_row_data (GtkCList *clist , gint row) ;

GtkCList

Application-Level A PI Synopsis (Continued)

Find the row associated with the client data:
gint
gtk_clist_f ind_row_from_data (GtkCList * c l ist , gpointer data) ;

Select a specified row and colUmn in the elist:
void
gtk_clist_select_row (GtkCList *clist , gint row , gint column) ;

Unselect the specified row and column in the clist:
void
gtk_clist_unsel ect_row (GtkCList * c l i s t , gint row , gint column) ;

Undo the last selection made:
void
gtk_c l i st_undo_select ion (GtkCList * c l i st) ;

Remove all items in the clist:
void
gtk_clist_clear (GtkCList * c l i st) i

Return the row and column corresponding to the specified x and y locations:
gint
gtk_clist_get_selection_info (GtkCList *clist , gint x , gint y ,

gint * row, gint * column) ;

Select all rows (supported for multiple and extended selection modes only):
void
gtk_clist_select_all (GtkCList * c l i s t) j

Unselect all rows and columns (except browse mode):
void
gtk_clist_unse lect_all (GtkCList *clist) ;

Swap the contents of the two specified rows in the clist:
void
gtk_c l i st_swap_rows (GtkCList *clist , gint rowl , gint row2) ;

Move a row from one locatiOn to another:
void

217

gtk_c l i st_row_move (GtkCList *clist , gint source_row , gint dest_row) ;

Set a sorting compare function, replacing the default or last value set:
void
gtk_cl i st_set_compare_func (GtkCList *clist ,

GtkCListCompareFunc cmp_func) ;

Specify the column to sort by prior to a sorting operation:
void
gtk_clist_set_sort_column (GtkCList *clist , gint column) ;

218

Application-Level API Synopsis (Continued)

Specify sorting type prior to a sorting operation:
void

Chapter 6 • Lists

gtk_c l i st_set_sort_type (GtkCList *clist , GtkSortType sort_type) ;

Sort a list, using the current sorting function and type, on the previously specified column:
void
gtk_cl i st_sort (GtkCList * c l ist) ;

Tell GtkCList to sort automatically upon any insertions into the clist:
void

Class Description

The primary use of GtkCList, like GtkList, is to display a set of text strings organized as a

list from which a user can make selections. GtkList, which was previously described,

allows users to select items using four different selection modes: single, browse, multiple,

and extended. GtkCList supports the very same set of selection modes.

GtkCList provides additional features beyond item selection; the two features important

to users are as follows:

• The ability to sort rows based on an arbitrary sort criteria

• The ability to organize data in a row as a series of sizeable columns.

Although I will cover all of the API exposed by GtkCList, I will tend to focus on the
functions in the API that involve the management of columns and the sorting of data.

A Sample

Figure 6.5 Sample GtkCList

Let's start by using the basic functions to create and display a clist like the one depicted
in Figure 6.5 . There are a few things to note about Figure 6.5 . First, this is a three-column

GtkCList 219

clist, with column one displaying the name of a person, column two displaying that person's
date of birth, and column three displaying the birth location. In a clist, columns are num

bered, left to right, starting with 0 and ending with n - 1 , where n is the number of columns

in the clist. Rows are numbered as in GtkList, with the topmost row assigned row number
o and the last row assigned m - 1 , where m is the number of rows in the table. Above the

data, at the very top of the clist, is a title area that displays titles assigned to each of the col

umns in the clist by your program. Each of these titles is actually a button that, if your pro

gram so desires, can be made active and attached to a clicked signal function that will

trigger when the title button is clicked by the user. By default, the user can change the

widths of columns in the table by positioning the pointer over the boundary that separates

a pair of title buttons, clicking the left mouse button and then dragging the column bound
ary to a new location. Your program can control various attributes of individual columns,

including their minimum and maximum widths and whether or not an individual column

can be resized by the user.
As with GtkList, your program can add or remove rows from a list at runtime. The only

static attribute of a clist is the number of columns that each row has, and this must be spec

ified at the time the clist is created.

Creating a Clist Widget

To create a clist, your application invokes one of the following functions: gtk3lisCnewO
or gtk_cliscnew_with_titlesO. Here are the function prototypes for these two functions :

GtkWidget *
gtk_clist_new (gint columns) ;

GtkWidget *
gtk_c l i st_new_with_t itles (gint columns , gchar * t itles [l) ;

The first routine, gtk3lisCnewO, creates an instance of GtkCList that does not have a

set of column title buttons. However, be aware that without column titles, GtkCList will not

correctly display content that you add to the clist unless you make additional calls to explic

itly set the widths of the list columns. This is because, by default, GtkCList will size the

columns based on the length of the strings in the column titles, not based on the content

being displayed with a cell. To cause cells (and columns) to size based on their content, call
gtk_cliscseccolumn_auto_resizeO. Calling this function will ensure that the column spec

ified is appropriately sized for its content. I ' ll talk more about column sizing a bit later in

this section.
The second GtkCList instance creation routine is gtk3liscnew _ with_titlesO. This rou

tine takes an extra argument, a vector of char * values. Each of the C strings in the titles

argument is used as a column title. Column 1 's title is contained in titles[O] , column 2's

titles is contained in titles[l] , and so forth. As previously mentioned, the default width of a

column is based on the width of the column titles ' text.
The following code creates an instance of GtkCList and sets the column titles to reflect

the name, date of birth, and location of birth data that will be managed by the clist:

0 1 GtkWidget *dialog_window , *hbox , * l i st ;
0 2

220 Chapter 6 • Lists

0 3 static char * t i t les []
0 4
0 5 " Name " ,
0 6 " Date of Birth " ,
0 7 " Bi rth Locat ion " ,
0 8 } ;
0 9
1 0 gtk_ini t (&argc , &argv) ;
1 1
12 dialog_window = gtk_dialog_new () ;
1 3 gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;
14
15 hbox = gtk_hbox_new (FALSE , 0) ;
1 6 gtk_container_add (GTK_CONTAINER (GTK_DIALOG (dialog_window) - >vbox) ,
1 7 hbox) ;
1 8
1 9 l i s t = gtk_c l i st_new_with_t itles (3 , t i t les) ;

Notice that the titles vector is an array of size 3; each element contains a variable of type

char * . This is how you should structure the titles vector passed into gtk3liscnew _ with_

titlesO. If you want to dynamically create the title at runtime, the vector should contain
pointers to the first character of dynamically created strings. Line 1 9 illustrates the call to

gtk_cliscnew_with_titlesO that creates the clist. Creating a default clist couldn' t be any
easier. Of course, you will still need to add content to the list, and you will probably want

to control other aspects of the clist as well. Such tasks can be performed using the routines

that I will discuss in the next sections.

Adding and Removing Content from a Clist

To add content to an instance of GtkCList, you must first construct an array that contains

pointers to NULL-terminated C strings representing the content to be displayed. Using the

preceding example GtkCList instance, suppose I wanted to add a row containing the fol

lowing data: name = "Rod", birthdate = " 1 1 / 1811 964", and location= "Honolulu, HA". I

would then declare the following array:

char * rowData [] = { " Rod " , " 1 1 / 1 8 / 1 9 6 4 " , " Honolulu , HA " } ;

Most likely, you will not be hard-coding the clist data in your program as I have done
here; the preceding is just to make it clear that the row data is an array of pointers to C

strings.

Once you have the data, it is easy to add it to the clist. You may add the data to the head

of the list (prepend) or to the end of the list (append), or you can add it at some specific
location within the clist. To add the data to the head of the list, call gtk3liscprependO:

gint
gtk_c l i st-prepend (GtkCList * c l i s t , gchar * text []) ;

The first argument is an instance of GtkCList. The second argument, text, is a vector of

NULL-terminated C strings. In this vector, element 0 points to a string containing the data
to display in the first column of the row being added, element 1 points to a string containing

GtkCList 221

the data to display in the second column of the row being added, and so forth. The number

of elements in text must be equal to the number of columns specified when the clist was

created. gtlccliscprependO returns the index of the row where the data was inserted by the

call. This may be different than row ° if sorting is being performed on rows by the CList

widget instance. The return value will always be in the range [0, m - I] , where m is the num

ber of rows in the clist after the new row is added.
Your application can also insert a row at the end of a clist by calling the function gtk_

cliscappendO:

gint
gtk_c l i st_append (GtkCList * c l i s t , gchar * text []) ;

The arguments passed to gtk3liscappendO are identical to those passed to gtk3lisC

prependO. gtk_cliscappendO also returns a value in the range of [0, m-l] . If sorting is

enabled, the row number of the inserted data will be arbitrary. If sorting is not enabled, then

the value m - 1 will be returned.
An additional function that can be used to add a row to an instance of GtkCList is

gtk_clisUnsertO:

gint
gtk_clist_insert (GtkCList * c l i s t , gint row , gchar * t ext []) ;

The arguments clist and text are the same as described for gtk3list...,prependO. The argument

row is the row that this data will occupy after insertion should sorting be disabled for the Gtk

CList widget. row must be in the range [0, m - 1] , where m is the number of rows in the clist

after the insertion is performed. As was the case for gtk3liscappendO and gtk3lisCprependO,
the actual row where the data is inserted is arbitrary if sorting has been enabled for the GtkCList

instance. The returned value specifies the actual location of the row in the clist after sorting has

been performed.

Getting and Setting Row Data
GtkCList allows applications to change the content of an existing row of data. This can be

done at the column level, meaning you can change the data in a specific row and column of

the clist. The function gtk_cliscseuextO is the function that provides this capability:

void
gtk_c l i st_set_text (GtkCList * c l i st , gint row , gint column ,

const gchar * t ext) ;

The arguments to gtk3liscseCtextO should be obvious. The value of row must be in
the range [0, m - 1] , where m is the number of rows in the list, while column must be in the

range [0, n - 1] , where n is the number of columns in a row. text is the NULL-terminated
string that will be displayed in the specified cell, and clist is an instance of GtkCList that

contains m rows of n columns.
You can retrieve the text displayed at a given row and column in a clist with a call to

gtk_ vlist....geuextO:

222 Chapter 6 • Lists

gint
gtk_c l i st_get_text (GtkCList * c l i s t , gint row , gint column ,

gchar * * text) ;

clist is an instance of GtkCList, as always. row and column indicate the cell from which

to retrieve text and must be in the range [0, m - 1] and [0, n - 1] , respectively, as described

for gtk_cliscseCtextO. text is a pointer to a gchar pointer. On return, this pointer will point

at a NULL-terminated string that contains the text displayed at row, column in the clist. If

row or column is out of range or some other problem is encountered, then the value of text

will not be changed. On success, gtk3list..geCtextO returns I ; otherwise, ° is returned to

indicate failure.

Be careful not to free or modify the memory pointed to by the value returned via the text

argument to gtk_clist..geCtextO. This value points to the actual string maintained by the

GtkCList widget, not a copy of it.

Displaying Pixmaps

Clist cells can also display a pixmap in addition to text. GtkCList provides several routines

that can be used to associate a pixmap with a cell. Each of these routines accepts a GdkPix

map, which contains the pixmap data that will be displayed, along with a GdkBitmap mask

that defines the pixels within the pixmap that will be displayed in the cell.

GDK Pixmaps. Before I describe the routines, we need to go into some detail regarding

the use of pixmaps in GDK. GDK provides routines that can be used to create pixmap data.

GDK's pixmap routines are a thin layer of code that sits above Xlib routines that provide

the same functionality. Pixmaps and bitmaps are X server resources; pixmaps contain
image data with a depth that is consistent with the depth of the window into which the pix

map will be rendered, while bitmap data is always I -bit deep. In terms of X, and GDK, pix

maps and bitmaps are the same; the only difference is in their depths (n-bit vs. I -bit) .

Pixmaps can be created using data local to your program or via X Pixmap (XPM) files

stored on disk. An XPM file is an ASCII file that is best created and manipulated using a

tool such as xpaint(1 } . XPM files are usually stored in a file with an .xpm extension, but this

is not a requirement. Bitmap files are best manipulated using a tool such as xpaint(1 } or bit

map(1 } . There are numerous examples of bitmap files in /usr/inc/udelXl llbitmaps. Both

bitmap and xpaint are available on Linux and UNIX systems and, if not, can be easily
obtained via ftp. For more information on these programs, consult their respective online

man pages.

You can choose to read the xpm and xbm data into your program at runtime using GDK
functions that I will discuss in this section, or you can incorporate the data at compile time by
including the content of the XBM or XPM file(s} in your source. If you choose to provide the
data at compile time, I recommend that you #include the xpm or xbm file. For example:

inc lude " Myl con . xpm "

This will give you the ability to maintain the data more easily using a program like
xpaint or bitmap (as opposed to editing the C source file). In the end, the amount of data

involved is so minor that reading it at runtime from a file, or including it at compile time,

is largely a matter of style. For more information about X pixmaps and bitmaps, refer to any

good text on the X Window System.

GtkCList 223

The following is a sample bitmap file, xlogol6, taken from lusrlinclude/xl ll bitmaps.

The image stored is a I 6 x I 6, I -bit deep image of the X Window System logo (xlogol6) :

#def ine xlogo1 6_width 1 6
#def ine xlogo 1 6_height 1 6
static unsigned char xlogo1 6_bit s [] = {

OxO f , Ox8 0 , Oxle , Ox8 0 , Ox3 c , Ox4 0 , Ox7 8 , Ox2 0 , Ox7 8 ,
Oxl O , Oxf O , Ox0 8 , Oxe O , Ox0 9 , Oxc o , Ox0 5 , Oxc O , Ox02 , Ox4 0 , Ox0 7 ,
Ox2 0 , OxO f , Ox2 0 , Oxle , Oxl O , Oxle , Ox0 8 , Ox3 c , Ox04 , Ox7 8 , Ox02 ,
Oxf O } ;

The following is the content of an example xpm file. In the example, the width, height,

number of colors, and how many ASCII characters are used to represent each pixel in the
pixmap are all encoded in the first quote-delimited string of the vector openfile. You should

be able to easily determine the structure of the pixmap by viewing the ASCII data (in this

example, the bitmap represents a check mark) :

/ * XPM * /
static char *openf i l e [] = {
/ * width he ight num colors chars-per-pixel * /

1 0 9 5 1 " ,
/ * colors * /

c None " ,
" # c # 0 0 0 0 0 0 " ,
lO y c # 6 6 6 6 6 6 " ,
" i c # f f l f O O " ,
" # c # 9 f 9 f 9 f " ,
/ * pixels * /

. " ,

. yy " ,

. yy . ,

. yy . . ,

. yyy . yy . . . ,

. . yyyy ,

. . . yy ,

Let's take a look at a few of the functions provided by GDK for creating GdkPixmap
data, referring to the sample data previously provided.

The first function, gdk_bitmap3reate_from_dataO, is the only function GDK provides
for creating a I -bit-deep GdkPixmap from X bitmap data (such as xlogol6) :

GdkPixmap *
gdk_bitmap_create_from_data (GdkWindow *window , const gchar *data ,
gint width , gint he ight) ;

224 Chapter 6 • Lists

The first argument, window, is a handle to a GdkWindow; typically this will be the window

into which the bitmap data is going to be displayed. You can obtain a window handle from an

instance of GtkWidget with code similar to the following:

GtkWidget *myWidget ;
GdkWindow *myWindow ;

my Window = myWidget - >window ;

The argument data is the bitmap data; width and height are self-explanatory. In the case

of xiogo16, you would pass xlogo I6_bits as the data argument, xlogo I6_width as the width

argument, and xlogo I6_height as the height argument.

On return, you will be returned a pointer to a GdkPixmap, usable wherever I -bit Gdk

Pixmap data is required.

To create an n-bit-deep GdkPixmap from X bitmap data (e.g. , xiogol6), call

gdk_pixmap_create_from_dataO:

GdkPixmap *
gdk-pixmap_create_from_data (GdkWindow *window , const gchar * data ,

gint width , gint height , gint depth , GdkColor * f g ,
GdkColor *bg) ;

The argument window is the handle of a GdkWindow, with the same visual class, color

map, and depth as the window into which the pixmap will be displayed. Ideally, you will
pass the window associated with the widget into which the GdkPixmap you are creating

will eventually be displayed. If you pass -1 , then the X server root window will be used.

The argument data is the same as in the preceding (e.g., xlogo I6_bits), as are width and

height (e.g., xlogo I6_width and xlogoI 6_height, respectively). The argument depth is the

depth of the pixmap on return or, if you pass -1 , is the depth of the visual associated with

the window you passed as the first argument. You should ensure that the depth of the pixmap

you are generating is compatible with the depth of the window into which the pixmap will

later be displayed, or the X server will generate an X error event (e.g. , BadMatch). The

arguments fg and bg are the foreground and background pixels to be used in the resulting
pixmap; any " I " cells in the input bitmap data will be converted into foreground pixels,

while any "0" cells will be converted into background pixel data.

Now that you know how to deal with X bitmap data, let's take a look at how to work with
X pixmap data (e.g., XPM data such as "openfile").

The first routine I ' ll discuss is gdk_pixmap3010rmap3reate_from_xpmO:

GdkPixmap*
gdk-pixmap_colormap_create_from_xpm (GdkWindow *window ,

GdkColormap *colormap , GdkBitmap * *mask ,
GdkColor * transparent_color , const gchar * f i l ename l ;

The argument window is a window handle, which in most cases should be the window
into which the pixmap will ultimately be displayed or at least a window that shares the same
visual class and colormap as the window into which the pixmap will be displayed. Passing

GtkCList 225

NULL will cause gdk_pixmap3010rmap3reatejrom_xpmO to use the X server root win

dow. The argument colormap is an instance of GdkColormap. You can obtain this colormap

by calling gdk_window�eCcolormapO and passing a window (of type GdkWindow *) as

an argument. In most cases, you will simply want to set colormap to NULL; by doing so,

gdk_pixmap_colormap3reate_from_xpmO will obtain the colormap for you using the

window you passed in (or using the X server root window if window was set to NULL).

The argument mask is a pointer to a variable of type GdkBitmap * . On return from this

function, if mask was non-NULL, mask will point to a bitmap. In this bitmap, each fore

ground pixel is represented by a ' I ' bit, and each background pixel in the image is repre
sented by a '0' bit. This mask can be passed directly to the GdkCList functions described

in the following section. The argument transparenCcolor can usually be set to NULL. Pass

ing in a pointer to a GdkColor will cause gdk_pixmap_colormap_create_from_xpmO to

use the specified color as the transparent color for the pixmap.
The final argument, filename, is the path (either absolute or relative) to the file that con

tains the X pixmap data. The function gdk_pixmap_colormap_create_from_xpmO will

open and read the file for the pixmap data on behalf of the caller.
The next routine, gdk_pixmap3reate_from_xpmO, is identical in functionality to gdk_

pixmap3010rmap3reate_from_xpmO, except it does not take a colormap as an argument:

GdkPixmap *
gdk-pixmap_create_from_xpm (GdkWindow *window , GdkBi tmap * *mask ,

GdkColor * transparent_color , const gchar * f i l ename) ;

The two remaining functions I will present here mirror the functionality of

gdk_pixmap_colormap3reate_from_xpmO and gdk_pixmap3reate_from_xpmO, with the

exception that they do not accept a path to an XPM file. Rather, both of these functions require

you to pass the contents of an XPM file. These routines are used when you provide your XPM

data at compile time, which again is best done by including an XPM file using a #include. If

you find yourself opening the XPM file and reading it to obtain the data to pass to either of

these functions, then you should be using gdk-pixmap3reate_from_xpmO or gdk-pixmap_

colormap_create_from_xpmO, allowing it to open and read the file for you.

Both of these routines accept a pointer to a gchar * . To create a pixmap using the example

XPM data previously shown, you would simply pass openfile as the final argument. For example:

#include " foo . xpm " I I dec l ared the char * array " openf i l e "

GdkPixmap *myPixmap ;
GdkWindow *myWindow ;
GdkBitmap *mask ;

myPixmap = gdk-pixmap_colormap_create_from-pixmap_d (my Window , NULL ,
&mask , NULL , openfile) ;

The function gdk-pixmap_colormap_create_from_xpm_dO takes the same arguments as
gdk_pixmap3010rmap3reate_from_xpmO except for the final argument, as I just mentioned.

226 Chapter 6 • Lists

GdkPixmap *
gdk-pixmap_colormap_create_from_xpm_d (GdkWindow *window , GdkColormap
* colormap , GdkBitmap * *mask , GdkColor * transparent_color ,

gchar * * data) ;

The functions gdlcpixmap_create_from_xpm_dO and gdk_pixmap3010rmap3reate_

from_xpm_dO are equivalent, except gdk_pixmap3reate_from_xpm_dO does not require

a colormap argument.

GdkPixmap *
gdk-pixmap_create_from_xpm_d (GdkWindow *window , GdkBitmap * *mask ,

GdkColor * transparent_color , gchar * *dat a) ;

GtkCList Pixmap Functions. Now that I have described the routines you can use to

obtain pixmap data and corresponding masks, let's continue with our discussion of Gtk

CList and look at the routines that make use of pixmap data.

The first function, gtk_cliscsecpixmapO, allows you to specify a pixmap to be dis

played along with text in a cell of a GtkCList instance:

void
gtk_c l i st_set-pixmap (GtkCList * c l i s t , gint row , gint column ,

GdkPixmap *pixmap , GdkBitmap *mask) ;

The argument clist is an instance of GtkCList, row and column specify the cell to which
the pixmap data is to be associated, pixmap is a pointer to a GdkPixmap (returned by one

of the functions previously described), and mask is a pointer to a GdkBitmap, also obtained
as previously described. Since the function is void, you cannot tell if the operation was suc

cessful (except by calling gtk3liscgecpixmapO, see the following code) .
Your application can retrieve the pixmap associated with a cell at a specified location in

the clist by calling gtk_cliscgeCpixmapO:

gint
gtk_c l i st_get-pixmap (GtkCList * c l i s t , gint row , gint column ,

GdkPixmap * *pixmap , GdkBitmap * *mask) ;

The arguments to gtk_clist..gecpixmapO and gtk3lisCseCpixmapO are the same,

except you must pass pointers to GdkPixmap and GdkBitmap pointers as the final two argu

ments, respectively. On return, gtk3liscgecpixmapO will set pixmap and mask to values

maintained by GtkCList; do not free this memory. If the function is successful (e.g. , the
arguments are valid), I is returned; otherwise, 0 is returned to indicate failure.

A function similar to gtk_cliscsecpixmapO is gtk_cliscseCpixtextO. The difference
between these two functions is that gtk_cliscsecpixtextO allows you to set the text and the

pixmap of the cell as opposed to just the pixmap. You also specify a spacing argument that
defines how far apart the text and the pixmap are plotted from each other horizontally

within the cell in pixels :

void
gtk_c l i s t_set-pixtext (GtkCList * c l i st , gint row , gint col ,

const gchar *text , guint S spacing , GdkPixmap *pixmap ,
GdkBitmap *mask) ;

GtkCList 227

Again, GdkCList does not pass back an indication of success or failure.

You can also retrieve the text, pixmap, and spacing between them by calling the function

gtk_clist...,gecpixtextO:

gint
gtk_c l i st_get-p ixtext (GtkCList * c l i s t , gint row , gint column ,

gchar * * text , guint 8 * spac ing , GdkPixmap * *pixmap ,
GdkBitmap * *mask) ;

The arguments clist, row, and column are identical to the same arguments as described

for gtk3liscsecpixtextO. The remaining four arguments are addresses of variables of type

gchar * , guint8 * , GdkPixmap * , and GdkBitmap * . On return, these will be set to the text,

spacing, pixmap, and mask associated with the cell at location [row,column] in the Gtk

CList, respectively. If the function fails (e.g. , because of bad arguments), the value 0 will

be returned. A return value of 1 indicates success.

Setting the Shadow Type

The border (or shadow) type of clist can be set with gtk3Iiscsecshadow_typeO:

void
gtk_c l i st_set_shadow_type (GtkCList * c l i s t , GtkShadowType type) ;

The shadow type can be one of the values shown in Figures 6.6 through 6.9. To my eyes,

it is fairly difficult to discern the differences among these shadow types when using a
default border width, so I have supplied pixel magnifications (obtained using xmag(I » that

show how the upper-right comer of a clist appears with each possible shadow type value.

228 Chapter 6 • Lists

Personally, I usually go with the default shadow type defined by GtkCList.

Selection Modes

To set the selection mode of the clist, call gtk3liscseCselection_modeO:

void
gtk_c l i s t_set_selection_mode (GtkCList * c l i st , GtkSelectionMode mode) ;

Table 6.6 is a reproduction of one that was presented for GtkList earlier in this chapter.
GtkCList and GtkList selection modes are identical; for more information on selection modes

and how they affect the user, refer to the "Class Description" section for GtkList presented

earlier in this chapter.

Table 6.6 GtkCList Selection Modes

Selection Mode

GTK_SELECTION_SINGLE

GTK_SELECTION_BROWSE

GTK_SELECTION_MULTIPLE

GTK_SELECTION_EXTENDED

Button Actions

Meaning

Default mode: One item is selectable at a time.

Similar to GTK_SELECTION_SINGLE.

More than one noncontinuous selection at a time.

Continuous selections over multiple rows are
possible.

GtkCList supports "button actions," which specify the actions bound to each of the buttons
on the user's mouse or pointing device. X l I supports mice with up to five buttons. Most
X I I programs are written with, at most, three buttons in mind (which is why three-button

GtkCList 229

mouse emulation on systems with mice containing only two buttons is a good option to

choose when configuring an X server).
GtkCList supports the following actions in Table 6.7. These actions apply to the rows of

a clist, not the buttons in the title area.

Table 6.7 GtkCList Button Actions

Action

GTK_BUTTON_IGNORED

GTK_BUTTON_SELECTS

GTK_BUTTON_DRAGS

Meaning

Pressing the button does nothing.

Pressing the button selects the row.

The button can be used to drag a row from one
location in the list to another.

The actions supported by a given button are expressed as the logical OR of the preceding

values. By default, button 0 (in X I I , buttons are numbered starting at 1 , but GtkCList starts
them at 0) is set to GTK_BUTTON_SELECTS I GTK_BUTTON_DRAGS. The remaining

four buttons (1 through 4) are each set to GTK_BUTTON_IGNORED. I would suggest

using these defaults because many other Gtk+ applications will also use the same defaults,

and by changing the actions, you may confuse the users of your application who have

become accustomed to a default GtkCList behavior. If you do need to change the actions,

however, you can do so by calling gtk_cliscseCbutton_actionsO:

void
gtk_clist_set_button_actions (GtkCList * c l i s t , guint button ,

guint 8 button_actions) ;

clist is an instance of GtkCList; button is the button number (the left button is 0, the mid

dle button is 1 , and the right button is 2, unless remapped by the user). Button actions con

sist of GTK_BUTTON_IGNORED or any combination of the remaining values in the

preceding table logically OR'd together.

Making a Clist Reorderable
To enable the ability of your users to drag a row from one place in the clist to another, you
not only have to ensure that one of the buttons has a GTK_BUTTON_DRAGS action
(again, by default, button 0 has this so you need do nothing), you must also explicitly enable

dragging ability by calling the function gtk3liscseCreorderableO:

void
gtk_cl i s t_set_reorderable (GtkCList * c l i s t , gboolean reorderabl e) ;

clist is an instance of GtkCList. reorderable is a boolean value that, when set to TRUE,
allows users to drag rows from one location in the clist to another. Setting reorderable to
FALSE disables this ability. By default, reordering of rows by the user is disabled by GtkCList.

230 Chapter 6 • Lists

Freezing and Thawing a Clist
Some clist operations, such as adding items to a clist, deleting items from a clist, or setting

the text or pixmap of cells in the clist, require the clist to redraw its contents. This includes

not only the cells that were modified but, at times, other cells in the clist. Doing a group of
these operations at a single time, such as in the following code taken from the Gtk+ distri

bution, can result in a large number of redraws, which is visually unappealing to the user

as well as being inefficient because, ideally, a clist needs to redraw its content only once,
after all of the changes to the clist have been made.

for (i = 0 ; i < 1 0 0 0 ; i + +) {
sprint f (text [0] , " CLis tRow %d" , rand () % 1 0 0 0 0) ;
row = gtk_clist_append (clist , text s) ;
gtk_clist_setJixtext (cl i s t , row , 3 , " gtk+ " , 5 , pixmap , mask) ;

A client can, when necessary, disable or "freeze" redrawing during the time that updates
to a clist are made and re-enable or "thaw" redrawing when the updates have been com

pleted.

To freeze (disable) visual updates of a clist widget, call gtk_clistjreezeO:

void
gtk_clist_freeze (GtkCList *cl i st) ;

To thaw (re-enable) visual updates of a clist widget, call gtk3lisCthawO:

void
gtk cl i s t thaw (GtkCList *cl i st) ; - -

The preceding code, using freezes and thaws, can be rewritten as follows:

gtk_cl i s t_freeze (cl ist) ;
for (i = 0 ; i < 1 0 0 0 ; i + +) {

sprint f (text [0] , " CListRow %d" , rand () % 1 0 0 0 0) ;
row = gtk_clist_append (cl i s t , text s) ;
gtk_clist_setJixtext (cl i st , row , 3 , " gtk+ " , 5 , pixmap , mask) ;

Column API

In this section, I will discuss the numerous functions supported by GtkCList that relate to
columns, and the titled buttons used to label them. I will first present the routines related to
column titles. Then I will discuss the routines related to the columns themselves.

Column titles are displayed as a series of push buttons above the content of a clist, as
shown in Figure 6.9 and other figures in this section. There are a few things to note about
the column titles. First, the width of a column title always corresponds to the width of the

column it labels. Second, users can resize columns by grabbing the left or right edge of the
column title button above the column, using mouse button 0, and dragging the mouse to the

left or right, respectively. Finally, column title buttons can be made to respond to mouse
button presses.

GtkCList 231

By default, title buttons are displayed above every instance of GtkCList, but your applica

tion can show or hide them at will. To hide the title buttons, call gtk_clisCcolumn_titles_hideO:

void
gtk_clist_column_t itles_hide (GtkCList * c l i st) ;

Sensible user-interface practice would urge the avoidance of hiding and showing column

titles during the execution of an application; the decision to show or hide column titles

should probably be made at the time the clist is created. By default, title buttons show. If

your plans involve a clist without column titles, you should make the preceding call before

calling gtlC widgecshowO on the GtkCList widget instance.

Showing the title buttons is done by calling gtk_clisCcolumn_titles_showO:

void
gtk_clist_column_t itles_show (GtkCList * c l i st) ;

Title buttons, by default, are responsive to mouse-button presses, prelights, and key
board focus. In many cases, you will not want this behavior regardless of the default chosen

by the designers of GtkCList. To make the title buttons inactive, call gtk3lisccolumn_

title_passiveO:

void
gtk_clist_column_t i t l e-pass ive (GtkCList * c l i s t , gint column) ;

The argument column is the column to be made passive, in the range [0, m - 1] , where

m is the number of columns in the clist. GtkCList allows you to re-enable a column title

button by calling gtk_clisccolumn_title_activeO:

void
gtk_clist_column_t i t l e_act ive (GtkCList * c l i s t , gint column) ;

The argument column is the same as previously described for gtk_clisCcolumn_title_passive().

Your application can make all column title buttons in an instance of GtkCList active or passive.

This can be done by calling gtk_clisccolumn_titles_active() or gtk_clisCcolumn_titles...,passiveO,
respectively. Both of these functions take a single argument, which is an instance of GtkCList:

void
gtk_c l i s t_column_t itles_act ive (GtkCList * c l i st) ;

void
gtk_c l i s t_column_t itles-pass ive (GtkCList * c l i st) ;

If a column title button is active, its appearance will change as the user mouses over it.
This indicates that it is something that can be pressed. Should an application decide to make

a column title button active, it should be designed to do something meaningful if the user
clicks on the title button, something that includes visual feedback; otherwise, the user of
the application will become confused into thinking that the button is inoperative or broken.

Your application can register a signal function to be called when any one of the column
title buttons of a clist is clicked. Detailed information on Gtk+ signals can be found in

232 Chapter 6 • Lists

Chapter 3, "Signals, Events, Objects, and Types." The following code illustrates registra

tion of a "click_column" signal function named my _click_columnjuncO:

gtk_s ignal_connect (GTK_OBJECT (cl i st) , " cl ick_column " ,
(GtkSignal Func) my_click_column_func , NULL) ;

The function my 3lick30lumn_funcO is defined as follows:

void
cl i s t_cl ick_column (GtkCList *clist , gint column , gpointer dat a)

{
print f (" Column title button number %d was pressed " ,
column + 1) ;

The first argument to the signal function is the instance of GtkCList that is managing the

column title button that was pressed. column is the number of the column title button

pressed; the leftmost button is numbered 0, and the rightmost button is numbered m - 1 ,

where again m i s the number of columns in the clist. data i s client data passed to all signal
functions if so desired by the application. See the discussion of gtk_signal30nnectO in

Chapter 3 for more information on this argument.

As illustrated earlier, clist column titles are specified at the time the clist is created. Column

title button text can also be set during program execution, although I do caution against making

dynamic changes to column heading text. As a matter of style, I feel that column titles are best

determined at the time the clist is instantiated and should generally remain fixed throughout the

execution of the program.

However, you may have a special need to change or retrieve the text displayed by a column

title button. To set the text displayed by a column title button, call gtk_cliscseccolumn_titleO:

void
gtk clist set column title (GtkCList *clist , gint column , - - - -

const gchar * t i t l e) ;

The argument column is the number of the column that will be changed, starting on the

left as always with O. The argument title is a NULL-terminated C string that will, upon

return, be the title displayed by the specified column.

You can retrieve the text displayed by a column-title button by calling gtk_clisc

geCcolumn_titleO:

gchar *
gtk_cl ist_get_column_t itle (GtkCList *clist , gint column) ;

The returned value is a NULL-terminated string maintained by the instance of GtkCList
passed as the first argument. Do not free the memory associated with this string or modify

it in any way; it is owned by GtkCList.
Because all GtkCList column titles are buttons and buttons (GtkButton) inherit from

GtkContainer, you can choose to replace the text displayed by the column button with some
other widget. An obvious replacement for a text label would be an instance of GtkPixmap.

Using icons instead of text can result in a more visually appealing and intuitive user inter
face. Using pixmaps instead of text also makes applications easier to internationalize.

GtkCList 233

To specify a widget as the "label" of a column's title button, instead of using a text label,

call gtk3liscseccolumn_ widgetO:

void
gtk_clist_set_column_widget (GtkCList * c l i s t , gint column ,

GtkWidget *widget) i

The argument clist is an instance of GtkCList, column is the column corresponding to

the button widget being manipulated, and widget is an instance of GtkWidget (e.g. , GtkPix

map). The following code illustrates how easy it is to set the column label of column 2 in a

three-column clist to an icon:

GtkWidget * l i st , *pixmap i

stat ic char * t itles [] =

II Name " ,
" Date of Birth " ,
" Birth Location " ,
} i

l i s t = gtk_c l i st_new_with_t itles (3 , t i t l e s) i
pixmap = MyCreatePixmap () i
gtk_c list_set_column_widget (GTK_CLIST (l i st) , 1 , pixmap) i

The pixmap in the preceding code is an instance of GtkPixmap. Notice that I still set the

text of the column to "Date of Birth". GtkCList takes care of disassociating this text from

the column title button and using the specified widget in its place. When calling

gtk_clisCnew_with_titlesO, make sure all of the titles in the vector are non-NULL. I could
have set the second title to " ", but it really doesn't matter if the string is empty or not.

You can obtain the widget parented by a column title button by calling gtk_clisCgec

column_widgetO. The function accepts as arguments an instance of GtkCList and a column

number and returns an instance of GtkWidget. Here is the function prototype:

GtkWidget *
gtk_c l i st_get_column_widget (GtkCList * c l i s t , gint column) i

The remaining column functions all set attributes on columns, as listed in Table 6 .8 .

Table 6.8 Functions Used to Set Column Attributes on a Clist Widget

Attribute Function(s)

Column justification gtk_cliscseccolumn.JustificationO

Column visibility

Column resize

gtk_clisccolumns_autosizeO

234 Chapter 6 • Lists

Table 6.8 Functions Used to Set Column Attributes on a Clist Widget (Continued)

Attribute

Column width

Function(s)

gtlCcliscoptimal30lumn_ widthO

gtk_cliscseccolumn_ widthO

gtk_cliscseccolumn_min_widthO

gtk_cliscseccolumn_max_widthO

The function gtk_cliscseccolumnjustifyO allows you to specify the justification of a

column in a clist:

void
gtk_c l i st_set_column_j ust i f i cation (GtkCList * c l i s t , gint column ,

GtkJus t i f i cation j us t i f i cation) ;

The argument clist is an instance of GtkCList, and column is the number of the column

for which the justification style is being set. The argument justification specifies the justifi
cation style for the column and must be one of the GtkJustification enumeration values

shown in Table 6.9.

Table 6.9 Column Justification Options

Option

GTK_JUSTIFY _LEFf

GTK_JUSTIFY _CENTER

GTK_JUSTIFY _FILL

Meaning

The initial character is displayed at the first

position of the cell.

The last character is displayed at the last position

of the cell.

Text is centered within the cell.

Identical to GTK_JUSTIFY _CENTER (the

source code treats these two constants the same,
which is perhaps an error).

Columns can be shown or hidden by calling gtk3liscseccolumn_ visibilityO at runtime:

void
gtk_c l i s t_set_column_vi s ibil ity (GtkCList * c l i s t , gint column ,

gboolean vis ible) ;

If visible is set to TRUE, the column will show; if set to FALSE, it will be hidden. Column

visibility should be controllable by the user (e.g., via preference settings). For example, a

"Show Date of Birth" toggle button might be used in a preferences dialog to control the dis
play of the "Date of Birth" column in the clist example presented earlier.

GtkCList 235

As I mentioned earlier, users can resize columns by positioning the pointer over either

end of the column title button, clicking mouse button I , and dragging the button to its new

size. Your application, however, can disable (or re-enable) this ability on a per-column basis

by calling gtk3liscseccolumn_resizeableO:

void
gtk_clist_set_column_res i zeable (GtkCList * c l i s t , gint column ,

gboolean res i zeable) ;

If the argument resizeable is set to TRUE, the column can be sized by the user (this is

the default) . If set to FALSE, the column size cannot be changed by the user.

The initial size of columns in a clist can be controlled by several routines provided by
GtkCList. A column can be "autosized," in which case the column width is set so that the

largest item displayed by the list will be visible. Otherwise, the column size is determined

by the amount of space it takes to display the column title buttons.

Autosizing can be specified on a per-column basis, or once for all of the columns in a

GtkCList. To specify if a column should automatically resize itself to an optimal width

based on its content, call gtk_cliscseCcolumn_auto_resizeO:

void
gtk_clist_set_column_auto_res i ze (GtkCList * c l i s t , gint column ,

gboolean auto res i ze) ;

The arguments clist and column should be familiar by now. If auto_resize is set to

TRUE, the specified column will resize itself as data is added to or removed from the clist,

to ensure that all data is viewable. If FALSE, the size of the column will be based on the

width of the column's title button. You can autosize all columns in a clist with a call to

gtk_clisccolumns_autosizeO:

gint
gtk clist columns autos i z e (GtkCList * c l i st) ; - - -

The routine gtk_cliscoptimal_column_widthO returns the column size needed to display

all content in the column:

gint
gtk_c l i st_opt imal_column_width (GtkCList * c l i s t , gint column) ;

This size is the same size that would be assigned to the column if the column were auto

sized.
Your application can explicitly set the width of a column to a specified value with a call

to gtk_cliscseccolumn_ widthO:

void
gtk_clist_set_column_width (GtkCList * c l i s t , gint column , gint width) ;

The argument width is the desired width. If the column is not autosized, you might call
gtk_cliscoptimal_column_ widthO, which was previously described, to determine a col
umn width that will show all content in the column without clipping.

236 Chapter 6 • Lists

Column sizes, including those made by GtkCList for autosized columns, can be con

trolled by your application by specifying maximum and minimum widths. If you specify a

minimum column width, this minimum is applied before any changes are made to a col

umn's width; if the computed or specified width is less than the minimum column size, the

minimum column size is used in its place. The same holds true for maximum column sizes;
a column with a maximum size will not be allowed to grow beyond that size, regardless of

the content or autosize attribute of the column.

To set the minimum width of a column, call gtk_cliscseccolumn_min_ widthO:

void
gtk_cl i s t_set_column_min_width (GtkCList *cl i st , gint column ,

gint min_width) ;

To set the maximum width of a column, call gtk_cliscseccolumn_max_ widthO:

void
gtk_c l i s t_set_column_max_width (GtkCList *cl i st , gint column ,

gint max_width) ;

The arguments to the preceding functions should be self-explanatory. As always, remem

ber that columns in a clist are numbered, left to right, starting at 0 and ending at m - 1 , where

m is the number of columns in the clist.

Row and Cell API
Now let's look at some of the functions applicable to rows of data in a clist, as well as indi

vidual cells.
Row height, by default, is set to the height of the current font. The height of a row does

not include the spacing that exists between rows in the clist. You can override the computed

height of a row with a call to gtk_cliscseCrow _heightO:

void
gtk_cl i s t_set_row_height (GtkCList *clist , guint height) ;

Passing a height of 0 causes the height to be the same as the current font.

Each cell in a clist has a specific type. Cell types are defined in Table 6. 1 0.

Table 6.10 Cell Types

Cell Type

GTK_CELL_EMPTY

GTK_CELL_TEXT

GTK_CELL_PIXMAP

GTK_CELL_PIXTEXT

GTK_CELL_ WIDGET

Meaning

The cell contains no data.

The cell contains text.

The cell contains pixmap data.

The cell contains both text and pixmap data.

This type is unimplemented in Gtk+ 1 .2.

GtkCList 237

To retrieve the cell type of a cell at row = m, column = n, call gtlccliscgeccelCtypeO:

GtkCellType
gtk_cl i st_get_cel l_type (GtkCList * c l i st , gint row , gint column) ;

If the cell does not exist, gtlccliscgeccelUypeO returns -1 .
The foreground color and background color of a clist row can be set by calling

gtk3liscsetjoregroundO and gtk3lisCsecbackgroundO, respectively:

void
gtk_c list_set_foreground (GtkCList * c l i st , gint row , GdkColor * color) ;

void
gtk_c list_set_background (GtkCList * c l i st , gint row , GdkColor * color) ;

Both of these functions take a pointer to a GdkColor. The following code sets the fore

ground color of the fifth row of a clist to the color blue:

GdkColor color ;
GtkWidget * c l i s t ;

color . red = color . green = 0 ; color . blue = Oxf f f f ;
gtk_c l i st_set_foreground (GTK_CLI ST (c l i st) , 4 , &color) ;

It is important to ensure that the clist has been realized before setting the foreground or

background colors. Refer to Chapter 4 for details on showing and realizing widgets .

Cell Styles. Styles, discussed in Chapter 4, encapsulate rendering attributes of a widget, such

as font and foreground, background, and text colors. Styles are mapped to various states that a

widget may be in at runtime. For example, a GtkButton, which is typically in GTK_
STA1E_NORMAL, will transition to GTK_STA1E_PRELIGHT whenever the user positions

the pointer over the button. If the user presses mouse button 1 when an instance of GtkButton is

in GTK_STA1E_PRELIGHT, the button will transition to GTK_STA1E_ACTIVE. GtkButton

maintains a style for each of these states; each state, therefore, has a unique look and feel that
visually conveys to the user of the application the state the widget currently is in.

An instance of GtkCList has two styles associated with it that are applied to cells in the

clist at the time they are rendered. One of these defines how the cell or row will appear nor
mally, and the other defines how the cell or row appears when it is selected. The correspond

ing states are GTK_STA1E_NORMAL and GTK_STA1E_SELEC1ED, respectively. Styles

can be applied to individual rows in a clist or to individual cells in a row. If your application

applies a style to a cell, it overrides any style that may have been applied to the row that con
tains the cell, as well as the global style applied to the clist. Likewise, a style to a row overrides
the clist global style but not a style that has been applied to an individual cell.

The function gtk_clisCseCcell_styleO can be used to set the style of a cell at the specified
location in the clist:

238 Chapter 6 • Lists

void
gtk_c l i s t_set_cel l_style (GtkCList * c l i s t , gint row , gint column ,

GtkStyl e * s tyle) ;

The arguments c1ist, row, and column should be familiar to you by now. The argument

style is a pointer to a GtkStyle. This can either be a style that your application has allocated

or a copy of the style maintained by the GtkCList instance. You can retrieve a copy of the

style using gtk_style30pyO:

GtkStyl e *
gtk_styl e_copy (GtkStyle * styl e)

The return value i s a newly allocated style; the argument passed i s the style that needs
to be copied. Here is an example of its use:

GtkStyle * s tyle ;
GtkWidget * c l i st ;

style = gtk_styl e_copy (GTK_WIDGET (c l i st) - >styl e) ;

With a copy of the clist's current style, your application can make any changes necessary to
the style while preserving default settings. In the code that follows, I will modify the cell located

at row = 0, column = 3 by changing the foreground color for the GTK_STATE_ACTIVE state

to red and the foreground color for the GTK_STATE_SELECTED state to green. I will also

change the font used by both of these states to 16-point Helvetica.

GdkColor color ;

I I f i rst , set up the act ive state color

color . red Oxf f f f ;
color . green 0 ;
color . blue 0 ;

style - >fg [GTK_STATE_ACTIVE] = color ;

In the preceding, I simply set up a GdkColor struct to describe the color red and assigned

this color to the GTK_STATE_ACTIVE element of the style's fg member. The same is done
in the following code, except the color is changed to green:

I I next , set up the selected state colors

color . red 0 ;
color . green oxff f f ;
color . blue 0 ;

style - >fg [GTK_STATE_SELECTED] color ;

GtkCList 239

In the following code, the font is changed to 16-point Helvetica, and the new style infonna

tion is associated with a call to gtlccliscseccell_styleO:

I I now change the font

gdk_font_unref (style - >font) ;
style - >font =

gdk_font_load (I - * - helvetica - * - * - * - * - 1 6 - * - * - * - * - * - * - * ") ;

I I f inal ly, get the new style

The function gdkjoncunrefO takes an argument of type GdkFont * . It decrements the

font's reference count by 1 . If the reference count goes to 0, the font (or fontset) is freed.

The function gdk_fonCloadO creates a new GdkFont, sets its reference count to 1 , and

returns a reference to the font (also a GdkFont *) . We simply set the font field of the style

to the value returned by gdk_fonUoadO in order to change the style'S font. With the

attributes of the style having been changed, a call to gtk_clisCseccell_styleO is made to

associate the modified style with the cell at location 0, 3 in the clist.

A subtle point about the preceding code is that we obtained a copy of the clist's global
style for use as a template for our changes. This global style was assigned to the clist at the

time it was realized by GtkCList. Let's say we've made the changes to cell 0, 3, and later

in the application we want to modify it once again (maybe changing the font to something

else). There are two options here. One would be to once again make a copy of the clist's

global style, make the same changes done before (set the foreground of the GTK_

STATE_ACTIVE and GTK_STATE_SELECTED states), and then set the new font. The

other option would be to grab a copy of the cell 's style, which already has the desired fore

ground colors set, and just modify the font. To get a copy of the cell 's style, you can use

gtk_cliscgeccell_styleO as follows:

GtkStyle * s tyle ;

style = gtk_c l i st_get_cel l_style (GTK_CLIST (l i s t) , 0 , 3) ;
style = gtk_style_copy (style) ;

At this point, you can modify the style to set the new font, as was illustrated earlier, and
then call gtk3liscseccell_styleO to affect the change. The function prototype for gtk_

cliscgeccelCstyleO is as follows:

GtkStyle *
gtk_c l i st_get_cel l_style (GtkCList * c l i s t , gint row , gint column) ;

The arguments to gtk_c1isCgecceICstyleO should be self-explanatory. If any of the

arguments are invalid (GtkStyle *) , NULL is returned. Similarly, if the cell does not yet

have a style associated with it, NULL is returned.

240 Chapter 6 • Lists

Functions similar to gtk_clisCseCcell_styleO and gtk3Iis(...geCceICstyleO exist for

rows in a clist. The function gtk_cliscsetJow _styleO sets a style that will be applied to all

cells in the row for which a cell style has not been set:

void
gtk_c l i st_set_row_style (GtkCList * c l i s t , gint row , GtkStyl e * style) ;

The function gtk3list..geCrow_styleO is analogous to gtk_clist...,gecceICstyleO. The style
retrieved, however, is the one applied to cells in a row that do not have a cell style applied to

them. As was the case with cell styles, if no row style has yet been applied to the specified row,

NULL will be returned. The following is the function prototype for gtk_clist...,gecrow_styleO:

GtkStyle *
gtk_c l i st_get_row_style (GtkCList * c l i s t , gint row) ;

Your application may find it necessary to apply a vertical and/or horizontal offset to the

upper-left comer of the pixmap or text displayed in a cell. If so, you can call gtk3liscseCshiftO

to specify these offsets:

void
gtk_c l i s t_set_shi ft (GtkCList * c l i s t , gint row , gint column ,

gint vert ical , gint hori zontal) ;

The arguments clist, row, and column specify the clist and the cell to which to apply the

offset. The arguments vertical and horizontal are the number of pixels, greater than or equal

to 0, that should be added to the upper-left origin of the text or pixmap rendered in the cell.

By default, as I discussed earlier, a cell 's height is the height of the font used to render the
cell content, and the width of a cell is defined by the width of the column title button of the

column in which the cell is located. Adding an offset to the origin of the data displayed in

a cell may result in clipping of the data; the cell will not be resized so that the data displayed

is visible. Making a column autoresize does not help either; the size attribute is determined

before the offset or shift is applied. The only way to ensure that the width of the column is

sufficient to display content with a horizontal offset is to explicitly set the column width

using one of the GtkCList functions I described earlier. However, I know of no obvious way

to ensure that content with a vertical offset will not be clipped.

Your application can control the selectability of rows in a clist by calling gtk_clisC

secselectableO:

void
gtk_c � i s t_set_selectable (GtkCList * c � i s t , gint row ,

gboolean selectable) ;

If selectable is set to FALSE, the row cannot be selected by the user. If set to TRUE
(default), the row can be selected by the user. It is a good idea to make rows in a view-only

list nonselectable; this will minimize the confusion of users who select a row and then have
no operation that can be applied to the row. You can also determine at runtime whether a
row is selectable by calling gtk3list...,gecselectableO:

GtkCList 241

gboolean
gtk_c list_get_selectable (GtkCList * c l i s t , gint row) ;

If TRUE is returned, the specified row can be selected by the user. Otherwise, FALSE is

returned.

A row can easily be removed from a clist with a call to gtlccliscremoveO:

void
gtk clist remove (GtkCList * c l i s t , gint row) ; - -

Clist is the instance of GtkCList, and row is the row in clist to remove. Row must be in

the range [0, m-l] , with m equal to the number of rows in the clist. To remove all rows in a

clist, use gtk_clisCclearO:

void
gtk_clist_c lear (GtkCList * c l i st) ;

Associating Client Data with a Row. An application can associate arbitrary, application
specific data in the form of a gpointer with a row in a clist. This data can be retrieved at any

time by the application. Associating client data with a row can at times be a powerful tech

nique, depending on the application.
Let's suppose you are using Gtk+ to develop the GUI front end of a database application.

To keep it simple, the database contains a list of associates, friends, and families. Each

record in the database records the contact's name, address, e-mail address, phone number,

fax number, cell phone number, and up to 1 ,024 bytes of text that can be used to store arbi

trary, unstructured data about the contact. We can ignore the details of the database in gen
eral, with the exception that we will assume the database software provides an API that can

be used to retrieve a pointer to a data structure that contains the information about a contact

in the database. Such a data structure might be represented in C as follows:

typedef struct -record
char *name ; II name
char * address ; II street addres s
char * emai l ; II e - mail addres s
char *phone ; II phone number
char *ppre f ix ; II phone area code
char * fax ; II fax number
char * fpre f ix ; II fax area code
char *cel l ; II cell number
char * cpre f ix ; II cell area code
char *data ; II mi sce l l aneous data
char dirty ; II record needs to be wri tten to database
char delete ; II record needs to be de leted from database
struct record * next ; II - assume we organize thi s in a one - way l i s t
Record ;

Upon startup, the application reads all of the records in the database, places them in an
internal data structure such as a tree or a linked list of Record nodes, and then displays the

data to the user using a clist. Below the clist are three buttons labeled Add, Delete, and Edit.

242 Chapter 6 • Lists

Clicking the Add button brings up a dialog that can be used to enter information about the con

tact. Once that data has been entered, it is added to the clist for display as well as to the internal

data structure. The dirty field in the data structure is set to 1 to indicate that the data needs to
be written to the database. Clicking on the Delete button marks the selected contact for dele

tion by setting the delete field in the data structure to 1 . If the item has already been marked

for deletion, the Delete key performs an undelete operation and changes the delete field value

back to O. Clicking on the Edit button causes the selected contact to be displayed in the same

dialog used by the Add function. Changes made to contact data in this dialog are displayed in

the clist but are not yet written to the database. As was the case with the Add function, the

dirty field in the data structure used to store the contact is set to 1 to indicate that it needs to

be written to the database.

Upon exit, if contacts were added or modified by the user (the dirty field of a record has

been set to 1) or if contacts were deleted (the delete field of a record has been set to 1) , then

the user is asked whether the changes made to the data should be committed to the database.

If the response from the user is to commit the changes, then all new contacts should be

added to the database, any modified contacts should be rewritten to the database, and any

deleted records should be removed from the database.

Let's focus now on how application data associated with a row in a clist can be used to

implement the preceding features. Each row in the clist displays one of the nodes in our

internal representation of the database, be it a linked list or a tree. Each of these nodes is a

pointer to a Record (e.g. , its type is Record *) . As we read records from the stored database

and construct the linked list maintained by the application, we also call gtk_clisCappendO
to add the data to the clist, to display the content of the record to the user. At this time, we

also set the client data field of the record to point to the node added to the linked list. The
following pseudo code illustrates the process :

for a l l records in the data base
do

done

read a record from the database ;
al locate a node of type Record ;
add the node to our internal l inked l i s t ;
append a new row to the c l i s t ;
set the cl ient data of the row to point to the corresponding

node in the c l i s t ;

Notice that each row in the clist now has access to the data stored in the list. We could

choose to only display a subset of the data in the clist (for example, just the name and phone
number fields), but we would have immediate access to the rest of the data by dereferencing
the client data stored with the row.

The practical advantages of associating each row in the clist with one node in the list

become apparent as we look at how one might implement the add, modify, and delete oper

ations that our application requires. Let's first assume that the selection mode of the clist
has been set to GTK_SELECTION_SINGLE (which is the default mode). Thus, when the
user hits any one of the three action buttons (add, modify, or delete), we can be sure that
only one item in the list has been selected. What I am describing here can be extended, of
course, to work with clists using other selection modes. The other thing I assume is that we

GtkCList 243

have a seleccrow signal function tracking the current selection, as well as a function that

we can call to retrieve the selection. For example:

stat ic gint gCurrentSelect ion = - 1 ;

gint
GetCurrentSelect ion (void)

{
return (gCurrentSelect ion) ;

void
SetCurrentSelect ion (GtkWidget *widget , gint row , gint column ,

GdkEventButton * event , gpointer data)

gCurrentSelect ion = row ;

The data argument passed to SetCurrentSelectionO by Gtk+ is not the client data that
was associated with the row by the application (using the functions I am about to intro

duce). It is, however, the client data that was passed as the fourth argument to

gtk_signal30nnectO, which was called by the application to register SetCurrentSelectionO
as the signal handler function for the clist's seleccrow signal. (See Chapter 3 for more

information on signals and signal functions.)

The following function, Deleteltem, is the signal function called when the Delete button

located below the clist is pressed.

void
Deletel tem (GtkCList *widget , gpointer c l i ent data

{
Record *myNode ;

I I grab the c l i ent data

i f gCurrentSelect ion
return ;

- 1)

I I no selection

myNode = (Record *) gtk_c l i st_get_row_data ((GTK_CLIST (c l i st) ,
gCurrentSelect ion) ;

i f (myNode - >delete == 1)

else
myNode - >delete 0 ;

myNode - >delete 1 ;
UpdateDeletedRowGUI (c l i s t , gCurrentSelection , myNode - >delete) ;

The first thing DeleteltemO does is check that a selection has been made by the user. If
gCurrentSelection is -1 , then there is no selection and the function returns (a more user

friendly response would be to display a message dialog that instructs the user to select an

244 Chapter 6 • Lists

item first and try again). With the selection in hand, gtlcclisCgeCrow_dataO is called. The

function prototype for gtlcclist..geCrow _dataO is:

gpo inter
gtk_c l i s t_get_row_data (GtkCList * c l i s t , gint row) ;

The argument clist is the clist from which to retrieve client data, and row is the row from

which it is to be retrieved. The argument row, as always, is in the range [0, m - 1] with m

equal to the number of rows currently in the clist. The return value of the function is a

generic pointer of type gpointer. As you can see, I cast the return value to type Record * and

assigned it to a local variable of the same type. Now that the application has retrieved the

pointer from the row, it can do what it must to respond to the request to delete the item,

which is to toggle the deleted state of the item. Finally, a function named UpdateDeleted

RowGUIO is called to change the style associated with the deleted (or undeleted) row. In

this example, I might call gtlccliscseCrow_styleO to change the foreground color of the

row marked as deleted to red or to revert the foreground color of a row that has been unde

leted to the default color of black. An example of how to set the foreground color of a row

was presented earlier when I described how styles work in GtkCList.

The basic logic for these buttons is as follows. You will need to implement a dialog that
can be displayed by the clicked signal function associated with the Add and Modify but

tons. The same dialog can be used for both. In the case of Modify, this dialog displays all

of the data associated with the selected row, allowing it to be edited by the user. The func

tion gtk3liscgecrow _dataO can be called to retrieve the contact data corresponding to the

selected row from the linked list. In the case of an Add operation, the controls of the dialog

are uninitialized, and the dialog is used to obtain information about the new contact. A Can

cel button in the dialog can be used to dismiss the dialog and cancel the Add or Notify oper

ation. An OK button in the dialog can be used to accept changes made to the data. In the

OK button clicked signal function, the data from the dialog is retrieved and then written to

a node in the linked list. In the case of a Modify operation, this node already exists in the

linked list and is already associated with a row in the clist. In the case of an Add operation,

the application must create a new node of type Record, add it to the linked list, and set its
fields to the data entered by the user. In addition, the application must append a new row to

the clist and associate the node just added to the clist with this row. To make the association

between the node in the linked list and the row in the clist, the application must call the

function gtk_cliscsecrow _dataO:

void
gtk_c l i st_set_row_data (GtkCList * c l ist , gint row , gpointer data) ;

The arguments to gtk_cliscsecrow _dataO are simple. The argument clist is the instance

of GtkCList containing the row being mapped to client data. The argument row is the index
of the row (in the range [0, m - 1]) with which the client data will be associated. The value
of row in our example would be the return value of the function gtk_clisCappendO, which
was called to add the row to the clist. Finally, data is the client data that will be associated

with the row by this function.

GtkCList 245

Yet another way to associate data with a row is gtk_cliscsecrow _data_fullO. This function

accepts the same arguments as gtk_clisCseCrow_dataO plus one additional argument, as can

be seen in the following function prototype:

void
gtk_cl i st_set_row_data_ful l (GtkCList * c l i s t , gint row , gpointer data ,

GtkDestroyNot i fy destroy) ;

The argument destroy is a pointer to a function with the following prototype:

void
MyDestroyNot i fy (gpointer data)

The function you specify will be called when the row is deleted from the clist. GtkCList

will call this function, passing the data argument that was specified as the third argument to

gtk_cliscsecrow _data_fullO. This function comes in handy when you have client data asso

ciated with a row that is only needed by the application during the lifetime of the row. A

DestroyNotify function makes it easy for you to be notified when the row has been deleted as

well as to obtain the value of the client data that is no longer required and can be released.
Given a pointer, a client can determine which row (if any) has the pointer as its client

data by calling gtk3lisCfind_row_from_dataO:

gint
gtk_c l i s t_f ind_row_from_data (GtkCList * c l i s t , gpointer data) ;

The argument clist is an instance of GtkCList to search, and data is the client data to be
searched for. The return value will be in the range [0, m - 1] if some row in the clist has the

specified data as its client data. Otherwise, -1 is returned to indicate that the search failed.

If multiple rows in the clist have specified data as their client data, only the first row in the

list found will be returned. There is no mechanism provided by GtkCList for iterating

through rows that share the same client data.

Selection Functions. The next several functions involve application-initiated selections.

Normally, the user is the one that controls the selection and "unselection" of rows in a clist

and does so via keyboard or mouse control. However, there are times when it might be nec
essary for an application to select or unselect rows or cells in a clist without user involve
ment. First, I will describe the GtkCList functions involved with the selection and
unselection of items in a clist, and then I will discuss situations when the use of these func

tions might be appropriate.

To select a specified row and, optionally, a column in the clist, you can call gtk3lisC

seleccrowO:

void
gtk_c l i st_select_row (GtkCList * c l i s t , gint row , gint column) ;

The arguments clist, row, and column specify an instance of GtkClist and the location of
a cell in the clist to select. If column is -1 , all cells in the specified row will be selected.

To select all rows (and all columns or cells) in a clist. the function to call is gtk_clisCselecCallO:

246 Chapter 6 • Lists

void
gtk_c l i s t_select_al l (GtkCList * c l i st) ;

Selection of mUltiple rows is only supported for the multiple and extended list selection

modes (GTK_SELECTION_MULTIPLE and GTK_SELECTION_EXTENDED).

What can be selected in a clist can also be unselected. To unselect a specified row and

column in a clist, call gtk3lisCunselecCrowO:

void
gtk_c l i s t_unselect_row (GtkCList * c l i s t , gint row , gint column) ;

All rows in a clist can be unselected with a call to gtk3lisCunselecCallO:

void
gtk_c l i s t_unselect_all (GtkCList * c l i st) ;

Selection of multiple rows can be performed in all selection modes except for GTK_

SELECTION_BROWSE.

Selection or unselection operations performed either by the user or by your application

can be undone with a call to gtk3liscundo_selectionO:

void
gtk c l i s t undo select ion (GtkCList * c l i st) ; - - -

Calling this function reverts the selection state of rows and cells in a clist to their value

prior to the last selection made by the user. You might provide users with an Undo Last

Selection button that calls this routine from inside of its clicked signal handler.

When might it be appropriate for an application to control selections made in a clist? Let's

look at an example. Assume we have been asked to write a calendar application (Le., one sim

ilar to Gnome Calendar). We have decided in our calendar application to use a clist to display

a day's agenda. Our application has the following feature requirement: The user can, at any
time, invoke a search feature to locate, for example, all appointments in the month of June that

contain the string "Engineering Meeting". The results of the search must be displayed by

going into a "View Results" mode. Entering this mode, the calendar application displays the

agenda of the first day containing a match and selects the first agenda item on that day that

matches the search string entered by the user. A button labeled Next unselects the currently
selected agenda item and selects the next one, switching the day of the month displayed as

necessary. Similarly, a button labeled Back moves the selection to the previously matching

agenda item. Hitting the button labeled Cancel takes the user out of the "View Results" mode.
To implement this feature, we would use gtk3liscseleccrowO to select a row in the clist
upon entering "View Results" mode and as matching agenda items are highlighted as the Next
and Back buttons are pressed by the user. gtk_cliscunselecCrowO would be used to unselect
the currently selected row before the next/previous match is highlighted.

Given an x and y coordinate relative to a clist's window, you can obtain the row and column
that correspond to the coordinate by calling gtk3list..gecselection_infoO:

GtkCList

gint
gtk_cl ist_get_select ion_info (GtkCList *cl i s t , gint x, gint y, gint

* row , gint *column) ;

247

The following code (taken from Gtk+) illustrates how one can determine the following

from a GDK button event:

1 . That the button event occurred within the clist window

2. The row and column of the clist cell below which the button event occurred

GdkEventButton * event ;
gint x , y , row , column ;
GtkCList *cl i st ,

i f (event - >window == clist - >cl i st_window)
x = event - >x ;
y = event - >y ;
gtk_cl i s t_get_select ion_info (clist , x , y , &row , &column) ;

If the clist argument is not valid (clist is not an instance of GtkCList) or the x, y value

does not correspond to a row in the clist, then 0 is returned. Otherwise, a return value of 1

indicates success.

Moving and Sorting Rows. GtkCList provides several routines for manipulating the

position of rows in a clist. The first, gtk3liscswap_rowsO, lets you exchange the data

located at two rows in the clist:

void
gtk_cli st_swap_rows (GtkCList *cl i s t , gint rowl , gint row2) ;

Both the arguments row l and row2 must be in the range of [0, m - 1] , where m is the

number of rows in the clist.

I discussed earlier how the user can drag rows from one location in a clist and drop them to

another with the mouse. Dragging can be performed as long as one of the buttons on the mouse

has an actions mask specifying GTK_BUTION_DRAGS (see gtk3liscseCbutton_actions())
and the clist has been marked "reorderable" (see gtk_clisCsecreorderable()). An application

can also control the display of drag icons during a drag operation.
Drag icons are enabled or disabled by calling gtk_cliscsecuse_dra�iconsO:

void
gtk_clist_set_use_drag_icons (GtkCList *cl i st , gboolean use_icons) ;

The argument clist specifies the clist of interest. Setting use_icons to TRUE enables drag

icons for the clist, while setting dra�icons to FALSE disables them.

Your application can move a row from one location to another with a call to gtk_clisC
row_moveO:

248 Chapter 6 • Lists

void
gtk_c l i s t_row_move (GtkCList * c l i s t , gint source_row , gint dest_row) ;

The arguments source_row and desCrow specify the location of the row in the clist to

be moved and the location of that row's data after the move, respectively. Both source_row

and descrow must be in the range [0, m - 1] .
GtkCList provides sorting facilities that can be of great use to applications. B y default,

sorting is disabled by GtkCList; to enable it, your code must call gtk_cliscsecauto_sortO:

void
gtk_c l i st_set_auto_sort (GtkCList * c l i s t , gboolean auto_sort) ;

Setting auto_sort to TRUE enables sorting, while setting it to FALSE disables it. By default,

sorting, when enabled, is performed by a clist each time a new item is added to a clist. Sorting

is also performed each time gtk3liscseCauto_sortO is called to toggle automatic sorting from
disabled to enabled. Because sorting is performed each time an item is added, you may find it

more efficient to disable sorting while your application is adding a large number of items to a

list and then re-enable sorting as soon as the list has been constructed. For example:

I I add items here

gtk c l i s t set auto sort (c l i s t , TRUE) ; - - - -

The sort order of a c1ist, by default, is set to GTK_SORT_ASCENDING (this can be

changed by calling gtk_c1isCseCsort_typeO, as shown later in this chapter). By default,

sorting is performed on column 0 of the c1ist; other columns are not a factor in the sorting

results. The sort used by GtkCList (which is a merge sort) uses a compare function based

on strcmp(3). The ramification of this is that data in the clist column that is being sorted is

done so based on ASCII value. Although this is suitable for sorting strings of characters, it

is not appropriate for use in sorting numeric data. For example, sorting the strings " 1 ", "2",

" 1 3", and " 1 234" in ascending order gives you " I ", " 1234", " 1 3", and "2", which is not

likely to be the desired result. To get around this, you will need to create your own compare

function to replace the default supplied by GtkCList. This can be done using the function

gtk_cliscseccomparejuncO:

void
gtk_c l i st_set_compare_func (GtkCLi st * c l i s t ,

GtkCListCompareFunc cmp_func) ;

The argument c1ist is, as usual, an instance of GtkCList, and cmpjunc is a pointer to a

C function used to compare list items during the sort. The prototype of this function must

match the following:

gint
MyCompareFunc (GtkCList * c l i s t , gconstpointer pl , gconstpointer p2)

Passing NULL as the second argument to gtk3liscseccompare_funcO reverts the
compare function back to the GtkCList-supplied default.

GtkCList 249

It is probably worth taking a look at the default compare function supplied by Gtk+ 1 .2.

You should use this function as a basis for the development of your own compare functions:

Listing 6.1 Default Gtk+ 1 .2 Compare Function

0 0 1 static gint
0 0 2 de faul t_compare (GtkCList *cl i s t , gcons tpointer ptr1 , gconstpointer ptr2)
0 0 3 {
0 0 4 char *text 1
0 0 5 char *text2
0 0 6

NULL ;
NULL ;

0 0 7 GtkCListRow * row1
0 0 8 GtkCListRow * row2
0 0 9

(GtkCListRow *) ptr1 ;
(GtkCListRow *) ptr2 ;

0 1 0 switch (row1 - >ce l l [cl ist - >sort_column] . type)
0 1 1
0 1 2 case GTK_CELL_TEXT :
0 1 3 text 1 = GTK_CELL_TEXT (row1 - >ce l l [cl ist - >sort_column]) - >text ;
0 1 4 break ;
0 1 5 case GTK_CELL_PIXTEXT :
0 1 6 text 1 = GTK_CELL_PIXTEXT (row1 - >ce l l [cl i s t - >sort_column]) - >text ;
0 1 7 break ;
0 1 8 de fault :
0 1 9 break ;
0 2 0
0 2 1
0 2 2 switch (row2 - >ce l l [cl ist - >sort_column] . type)
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2
0 3 3

case GTK CELL TEXT : - -

text2 = GTK_CELL_TEXT (row2 - >ce l l [cl i s t - > sort_column]) - >text ;
break ;

case GTK_CELL_PIXTEXT :
text2 = GTK_CELL_PIXTEXT (row2 - >ce l l [cl ist - >sort_column]) - >text ;
break ;

de fault :
break ;

0 3 4 i f (! text2)
0 3 5 return (text 1 ! = NULL) ;
0 3 6
0 3 7 i f (! text 1)
0 3 8 return - 1 ;
0 3 9
0 4 0 return strcmp (text 1 , text2) ;
0 4 1 }

The preceding function is rather straightforward. On lines 007 and 008, the generic pointers
passed into the function are assigned to variables of type GtkCListRow. This allows us to easily
access the content of the column being sorted in each of the rows. Lines 010 through 020

extract the data to be compared for row number 1 , and Lines 022 through 032 do the same for

250 Chapter 6 • Lists

row number 2. On line 010, we access the cell type for the column being sorted; the type deter

mines how the text to be compared is obtained from a cell. Note that this check only applies to

row 1 and is why there are two switch statements; it is possible that the type of data in row 1

will be different than the type of data in row 2. The cases of the switch statement on lines 012

through 017 illustrate how to extract GTK_CELL_TEXT and GTK_CELL_PIXTEXT data

from a row. Lines 022 through 032 perform the same extraction but for row number 2.

clist->sorccolumn is the column in the row on which the sorting is based. Lines 034

through 040 ensure that the extracted text is valid, and finally, on line 040, a call is made to

strcmp(3), which performs the actual comparison of the strings.

There are several ways to expand upon this function. First of all, the preceding default

compare function is where the limitation of GtkCList to sort only on a single column of data

is introduced. Notice that we select only the text from the cell specified by clist->sort_column.

We can convert this function to sort based on all of the cells in a row if needed. The following
is a modified version of defaulCcompareO that illustrates how this can be done:

Listing 6.2 Sorting Based on All Cells in a Row

0 0 1 stat i c gint
0 0 2 CompareEnt i reRow (GtkCList * c l i s t , gconstpointer ptr1 , gconstpointer ptr2)
0 0 3 {
0 0 4
0 0 5

char * text 1
char * text2

NULL ;
NULL ;

0 0 6 int i , ret ;
0 0 7
0 0 8
0 0 9
0 1 0

GtkCL i s tRow * rowl
GtkCListRow * row2

(GtkCListRow *) ptr1 ;
(GtkCListRow *) ptr2 ;

0 1 1 f o r (i = 0 ; i < c l i s t - >columns ; i + +) {
0 1 2 swi tch (rowl - >ce l l [i] . type)
0 1 3
0 1 4
0 1 5
0 1 6
0 1 7
0 1 8
0 1 9
0 2 0
0 2 1
0 2 2
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2

case GTK CELL TEXT : - -

text 1 = GTK_CELL_TEXT (row1 - >cell [i]) - >text ;
break ;

case GTK CELL PIXTEXT : - -

text 1 = GTK CELL PIXTEXT (row1 - >cell [i]) - t ext ;
break ;

de fault :
break ;

swi tch (row2 - >ce l l [i] . type)

case GTK CELL TEXT : - -

text 2 = GTK CELL TEXT (row2 - >ce l l [i]) - >text ;
break ;

case GTK CELL PIXTEXT :
text2 = GTK_CELL_PIXTEXT (row2 - >cel l [i]) - >text ;
break ;

de faul t :

GtkCList

0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1
0 4 2
0 4 3
0 4 4
0 4 5

break ;

i f (! text2)
return (text l ! = NULL) ;

i f (! text l)
return - 1 ;

ret = strcmp (text l , text2) ;
i f (ret ! = 0)

return (ret) ;

251

0 4 6 return (0) ;
0 4 7

The major difference in this routine i s that we've added a loop, and instead of comparing

a single column in each of the rows, we compare, left to right, each of the columns in the

row. The number of columns in a row is specified by the columns field of the GtkCList
pointer we have been passed. On lines 042 through 044, we obtain the return value from

strcmpO. If this value is 0, then the column being compared contained the same value in

both of the rows, and we continue at the top of the loop with the next row. If the return value

is nonzero, then the rows are different and we can stop our search. If we iterate through all

of the columns in the row and they all contain the same value, we will arrive at line 046,

where we return a 0 to indicate that the rows contain the same data.
To make the preceding sort function the default for a clist, you need only call the follow

ing before adding content to the dist:

gtk_cli st_set_compare_func (GTK_CLIST (c l i s t) , CompareEnt ireRow) ;

The remaining topic of discussion related to compare functions concerns the data being

sorted. The preceding compare functions both assume that the data is ASCII. Suppose,

however, your data is numeric or is based on calendar dates or some strange formatting

that is incompatible with an ASCII-based compare function. The solution to the problem

is to replace the call to strcmpO (as on line 042 in the preceding listing) with a call to a

function that is suited to the type of data being compared. The following are examples of

functions that can perform content-specific comparisons. The first function, CompareIntO,
compares two strings based on the integer values they represent, not the ASCII value of

the characters that make up the strings :

Listing 6.3 Comparing Integers

I I Return - 1 , 0 , or 1 i f text l is less than , equal to , or greater
II than text2 , respectively , as an intege r , not as an ASC I I string .

int
Comparelnt (char * text l , char * text2)

{
int val l , val 2 ;

252

val l
val 2

i f (

else

else

atoi (text l) ;
atoi (text2) ;

val l < val 2
return (- 1) ;

i f (val l > val 2
return (1) ;

return (0) ;

Chapter 6 • Lists

)

The second function, CompareDateO, can be used to compare date strings in the format

MMlDDIYYYY:

Listing 6.4 Comparing Dates

I I Return - 1 , 0 , or 1 i f text l is less than , equal to , or greater than text 2 ,
I I respe c t ive l y , as a date , not as an ASCI I string . The date must be in the
II format m { m } /d { d } /y { y } , where m , d, and y are all in range [0 , 9]

int
CompareDate { char * text l , char * text2)

(
char
int
char

*ml , *m2 , *dl , *d2 , *yl , *y2 ;
iml , im2 , idl , id2 , iyl , iy2 ;
de l im ;

char t lbuf [NAME_MAX] , t2buf [NAME_MAX] ;

I I hold part s of date s t r s
I I integer counterparts
I I strtok needs a char *

I I holds copies for s t rtok

1* make copies to st rings otherwise st rtok wi l l mangle them

s trncpy { t lbuf , text l , NAME_MAX) ;
s trncpy { t2buf , text2 , NAME_MAX) ;

1 * parse the f i rs t date * 1

de l im = I I ' ;
ml s t rtok { t lbuf , &de l im) ;
dl s t rtok { NULL , &de l im) ;
yl s t rtok { NULL , &de l im) ;

1 * parse the second date * 1

m2 s t rtok { t2buf , &de l im) ;
d2 s trtok { NULL , &de l im) ;
y2 s t rtok (NULL , &de l im) ;

1 * make sure that we have something for each component

i f ! m l I I ! m 2 I I ! d l I I ! d 2 I I ! y l I I ! y 2)
return (°) ;

* 1

1 * convert the components t o integers s o we can do the comparisons * 1

iml = atoi (m l) ; idl = atoi (d l) ; iyl = atoi (y l) ;

GtkCList

im2 = atoi (m2) ; id2 = atoi (d2) ; iy2 = atoi (y2) ;

1 * Year has precedence over month , whi ch has precedence over day * 1

i f iy1 < iy2)
return (- 1) ;

e l s e i f (iy1 > iy2)

e l s e
return (1) ;

I I the year i s the same

i f im1 < im2
return (- 1) ;

else i f (im1 > im2)
return (1) ;

e l s e

I I t h e year and t h e month a r e t h e same

i f id1 < id2)
return (- 1) ;

e l s e i f (id1 > id2)
return (1) ;

I I f a l l through s ince date s are equal

return (0) ;

253

As previously mentioned, your application can specify a sort column to be used by compare

functions in computing row equality. The default column is column O. However, you can make

it any column you want by calling gtk_clisCsecsort30IumnO:

void
gtk_c list_set_sort_column (GtkCList * c l i s t , gint column) ;

The argument column is a value in the range [0, n - 1] , where n is the number of columns
in a row. A mail user agent provides a familiar example of when an application might want

to change the default sort column. A clist can be used to display the contents of a folder,

where each row in the dist is a message, a sender, a date, a subject, and other information
in the message being displayed as columns in a row. Mail users often want to sort e-mail
messages by date or by sender and perhaps less often by other message fields that would be
displayed as columns in the folder dist. To enable this feature, the mail program would reg

ister a callback on the buttons used as column titles (we discussed how this is done earlier).

In the callback, the corresponding column in the dist would be made the sort column for
the dist, and the dist would be sorted by making a call to gtk3liscsortO:

void
gtk clist sort (GtkCList * c l i st) ; - -

The function gtk_cliscsortO takes a single argument, an instance of GtkCList. Calling

this function will cause the list to be sorted using the sort column and the compare function

254 Chapter 6 • Lists

specified by the client with gtk3liscsecsorCcolumnO and gtk_cliscseccompare_funcO,

respectively, or defaults if the client has not specified alternates. The implementation of the

signal function might look like this :

void
c l i st_c l i ck_column (GtkCList * c l i st , gint column , gpointer dat a)

gtk_c l i st_set_sort_column (c l i s t , column) ;
gtk_c l i s t_sort (c l i s t) ;

The final GtkCList sorting function discussed here allows an application to specify the

ordering of items in a clist after a sort. There are two possible choices, as listed in Table 6. 1 1 .

Table 6. 1 1 Sorting Order Values

Sort Order Meaning

Row 0 has the smallest value and increases with

row number.

Row 0 has the largest value and decreases with

row number.

Both of these values are defined by the Gtk+ enumeration type GtkSortType. To specify

the order of items after a sort, call gtk3liscseCsort_typeO:

void
gtk_c l i st_set_sort_type (GtkCList * c l ist , GtkSortType sort_type) ;

The argument clist is an instance of GtkCList. The argument sort_type specifies the
ordering after a sort and must be one of the values specified in the preceding table.

Scrollbars

An instance of GtkCList displays itself within an area managed by its containing widget.

The containing widget may be a box, a window, or some other widget that can be used for
this purpose (see Chapter 10, "Container and Bin Classes"). The content of the clist may be

(or may become, as content is changed or added at runtime) large enough that it cannot be

displayed in the area provided, resulting in horizontal or vertical clipping. To get around

this problem, your application must do one of the following:

• Increase the size of the containing widget. This may be the correct solution if the con

tent of the list is relatively small and remains static.

• Provide horizontal and/or vertical scrollbars that allow users to navigate the clist to

view content that might otherwise be clipped.

Although GtkCList supports the use of scrollbars, it cannot create them. To obtain scroll
bars on a clist, an application can either make the clist a child of a container widget class
that provides scrollbars or instantiate scrollbars and wire them to the clist directly. Details

GtkCList 255

on scrollbars and adjustments can be found in Chapter 13 , "Range Widgets and Adjustment
Objects." In this section, I 'm simply going to point out the issues involving GtkCList and

discuss briefly the functions that GtkCList exposes.
Generally speaking, the decision to add scrolling to a clist will be based on how the clist

is going to be used and how many items are going to be displayed in the list. I've come up

with three possible cases:

1 . The list is small and doesn't change (at runtime, can't add or delete an arbitrary

number of rows).

2. The list can change.
3. Case 1 or case 2 with rows that contain a large number of columns or columns that

contain lengthy data.

For case 1 , a vertical scrollbar is not needed. The container that will hold your clist

should size itself to the contents of the clist, in the absence of any code that specifically sets
the size of the container widget. As long as the size of the clist (and thus the container) is

not overly large, you need not worry about scrollbars. For case 2, if the potential changes

to the list do not include adding items to the list that would cause resizing of the container

in an undesirable way, then once again, a scrollbar is not needed. But you need to be careful.

The following code illustrates this point rather nicely :

Listing 6.S Comparing Dates

0 0 1 # inc lude <gtk/gtk . h>
0 0 2
0 0 3 stat ic GtkWidget * l ist ;
0 04
0 0 5 stat ic void
0 0 6 QuitCal lback (GtkWidget *widget , GtkWidge t *dialog_window)
0 0 7 {
0 0 8 gtk_main_quit () ;
0 0 9 exit (0) ;
0 1 0
0 1 1
0 1 2 stat ic void
0 1 3 AddCal lback (GtkWidget *widget , GtkWidget *dialog_window)
0 1 4 {
0 1 5 char *texts [5] ;
0 1 6
0 1 7

int i i

0 1 8 for i = 0 ; i < 1 0 0 ; i + +) {
0 1 9 texts [0] " 3 6 1 2 3 -A " ;
0 2 0 text s [1] " Wood Chi sel Set " ;
0 2 1
0 2 2
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7

text s [2] " 9 . 9 9 " ;
text s [3] " 1 " ;
text s [4] " 9 . 9 9 " ;
gtk_c l i st_append (GTK_CLIST (l i st) , text s) ;

256

0 2 8 main (int argc , char *argv [])
0 2 9 {
0 3 0 GtkWidget *button , *hbox , * dialog_window ;
0 3 1 char * t ext s [5] ;
0 3 2
0 3 3 static char * t i t l e s []
0 3 4 {

Chapter 6 • Lists

0 3 5 " Part # " , " Description " , " Unit Price " , " Quant i ty " , " Total "
0 3 6 } ;
0 3 7
0 3 8 gtk_init (&argc , &argv) ;
0 3 9
0 4 0 dialog_window = gtk_dialog_new () ;
0 4 1 gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;
0 4 2
0 4 3 hbox = gtk_hbox_new (FALSE , 0) ;
0 44 gtk_container_add (GTK_CONTAINER (GTK_DIALOG (dialog_window) - >vbox) ,
0 4 5 hbox) ;
0 4 6
0 4 7 l i s t = gtk_c l i st_new_with_t itles (5 , t i t les) ;
0 4 8
0 4 9 text s [0] = " 3 6 1 2 3 -A" ; text s [1] = "Wood Chi sel Set " ;
0 5 0 text s [2] = " 9 . 9 9 " ; texts [3] = " 1 " ; text s [4] = " 9 . 9 9 " ;
0 5 1 gtk_c l i st_append (GTK_CLIST (list) , text s) ;
0 5 2
0 5 3 text s [0] = " 4 5 6 6 1 -A" ; texts [1] = "Work Gloves " ;
0 5 4 t exts [2] = " 5 . 9 9 " ; text s [3] = " 1 " ; text s [4] = " 5 . 9 9 " ;
0 5 5 gtk_c l i st_append (GTK_CLIST (l i st) , text s) ;
0 5 6
0 5 7 texts [0] = " 3 4 9 9 1 - Q " ; texts [1] = " Claw Hamme r " ;
0 5 8 text s [2] = " 7 . 9 9 " ; text s [3] = " 1 " ; text s [4] = " 7 . 9 9 " ;
0 5 9 gtk_c l i st_append (GTK_CLIST (l i st) , texts) ;
0 6 0
0 6 1 texts [0] = " 3 0 1 2 5 - S " ; text s [1] = " Deluxe Lawn Rake " ;
0 6 2 texts [2] = " 1 2 . 9 9 " ; text s [3] = " 1 " ; text s [4] = " 1 2 . 9 9 " ;
0 6 3 gtk_c l i s t_append (GTK_CLIST (l i s t) , text s) ;
0 6 4
0 6 5 gtk_box-pack_start (GTK_BOX (hbox) , l i s t , FALSE , FALSE , 0) ;
0 6 6
0 6 7 but ton = gtk_button_new_with_labe l (" Quit ") ;
0 6 8 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,
0 6 9 but t on , TRUE , TRUE , 0) ;
0 7 0 gtk_s ignal_connect (GTK_OBJECT (button) , " c l icked " ,
0 7 1 GTK_S IGNAL_FUNC (QuitCal lback) , dialog_window) ;
0 7 2 but ton = gtk_button_new_with_label ("Add ") ;
0 7 3 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,
0 7 4 but ton , TRUE , TRUE , 0) ;
0 7 5 gtk_s ignal_connect (GTK_OBJECT (button) , " c l icked " ,
0 7 6 GTK_S IGNAL_FUNC (AddCal lback) , dialog_window) ;
0 7 7 gtk_widget_show_all (dialog_window) ;
0 7 8 gtk_main () ;
0 7 9

GtkCList 257

The main routine creates a dialog that consists of a clist placed in a GtkBox container,

below which two buttons are added: one labeled Quit and the other labeled Add. The clist

is initialized with four rows of data on lines 049 through 063 . When executed, a top-level

dialog is displayed that is sized to the clist (the size of the clist being determined by its con

tents) and to the Quit and Add buttons below it. The problem comes in when the Add button

is hit, invoking the callback routine on lines 0 1 2 through 026. In this callback, 1 00 rows are

added to the clist. The results are disastrous ; the clist resizes itself to accommodate the new

content, which in turn causes the box and its parent, the dialog, to resize as well. On my

Linux system running the Enlightenment window manager, the dialog resizes such that the

bottom of the dialog, and the Add and Quit buttons, is located well below the screen. Even

if the sizing were to leave all portions of the window visible on the screen, it is better to add

scrollbars to the clist and let them come and go as needed than to have the geometry of the

dialog change as the clist contents grow and shrink. With that in mind, the approach I rec

ommend for handling case 2 is to either size the clist or its container to a sufficiently large

size to accommodate the addition of new items without causing a resize, or add a vertical

scrollbar to the clist.
The most straightforward way to get scrollbars on a clist is to place the clist in a scrolled

window (GtkScolledWindow) container. I will discuss this widget in detail in Chapter 1 1 ,

"More Container Classes." The following code illustrates the types of changes to the pre

ceding listing that are necessary to get scrollbars on the clist. The differences occur in the

first several lines of mainO:

0 0 1 main (int argc , char * argv []
0 0 2 {
0 0 3 GtkWidget *button , * scro l led_win , *dialog_window ;
0 0 4 char *texts [5] ;
0 0 5
0 0 6 stat ic char * t itles []
0 0 7 {
0 0 8 " Part # " ,
0 0 9 " Descript ion " ,
0 1 0 " Unit Price " ,
0 1 1 " Quant i ty " ,
0 1 2 " Total " ,
0 1 3 } ;
0 1 4
0 1 5 gtk_init (&argc , &argv) ;
0 1 6
0 1 7 dialog_window = gtk_dialog_new () ;
0 1 8 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;
0 1 9

0 2 1
0 2 2 gtk_widget_set_us ize (scro l led_win , 3 0 0 , 1 0 0) ;
0 2 3
0 2 4 gtk_container_set_border_width (GTK_CONTAINER (scrolled_win) , 5) ;

258 Chapter 6 • Lists

0 2 5 gtk_scrol led_window_set-pol icy (GTK_SCROLLED_WINDOW (scrolled_win) ,
0 2 6 GTK_POLI CY_AUTOMATI C , GTK_POLICY_AUTOMATIC) ;
0 2 7
0 2 8 gtk_container_add (GTK_CONTAINER (GTK_DIALOG (dialog_window) - >vbox) ,
0 2 9 scrol led_win) ;
0 3 0
0 3 1 l i s t gtk_c l i st_new_with_titles (5 , titles) ;
0 3 2
0 3 3

Instead of using an instance of GtkBox to contain the clist, I use an instance of Gtk

ScrolledWindow. GtkScrolledWindow (Chapter 1 1) is similar to GtkBox (Chapter 10) in the

sense that it knows how to contain a widget. It differs from GtkBox in that it can be made to

add and remove vertical and horizontal scrollbars as required by the size of the content that

scrolled window manages. The scrolled window is created on line 020. On line 022, an initial

size is given to the scrolled window. This size defines a viewport through which the child win

dow contained by the scrolled window widget is visible, one that I found to be more pleasing

than the default that was computed by the scrolled window widget. Lines 025 and 026 set the

scrolled window scrollbar policy. Here, GTK_POLICY _AUTOMATIC tells the scrolled win
dow to automatically add a scrollbar as needed in both the vertical and the horizontal dimen

sions. If, for example, there is no vertical scrollbar, the number of rows in the clist is small

enough so that each of the rows can be displayed within the area of the scrolled window, with

out clipping. Finally, on lines 028 and 029, the scrolled window is made a child of the dialog

widgets' vertical box widget instance. With these minor changes, our clist now has all of the
scrollbar capability it could possibly need.

The final case, case 3, is really a special case of Case 2 but applied to the horizontal
dimension. Here I would suggest adding a horizontal scrollbar. The preceding code that I

provided handles the horizontal case because I set the vertical and horizontal scrollbar pref

erences to GTK_POLICY _AUTOMATIC.

The following scrollbar-related functions are generally not used by application develop
ers, but I will document them for completeness. In particular, see Chapter 1 3 for details

about adjustments.

The first two functions can be used whenever a vertical scrollbar has been attached to a

clist. The function gtk_cliscrow _is_ visibleO can be used to determine if a given row, in the

range of [0, m - 1] , is visible to the application user. The function prototype is as follows:

GtkVi s ibi l i ty
gtk c l i st row is visible (GtkCList *cl ist , gint row) ;

- - - -

The argument clist is an instance of GtkCList, and row is the number of the row of interest.
The return value is of type GtkVisibility and can be one of the following in Table 6. 12.

Table 6.12 Row Visibility

Value Meaning

The row is not visible.

GtkCList

Table 6.12 Row Visibility (Continued)

Value

GTK_ VISIBILITY_PARTIAL

GTK_ VISIBILITY_FULL

259

Meaning

The row is clipped (either top or bottom).

The row is completely visible vertically.

A row with a visibility of GTK_ VISIBIl..ITY _FULL does not necessarily mean that all

columns in the row are visible; gtlCclisCrow _is_ visibleO only reports visibility in the vertical

dimension, and not in the horizontal dimension.

An application can cause the scrollbars to be moved so that the cell at a given row and
column is visible. An application that allows searching of a clist for content might want to

position the scrollbars so that the matching cell(s) are visible upon completion of the

search. The function gtk_cliscmovetoO provides this capability:

void
gtk_clist_moveto (GtkCList * c l i s t , gint row , gint column ,

gfloat row_al ign , gfloat col_align) ;

The arguments clist, row, and column specify the clist of interest and the row and column

to display, respectively. The arguments row and column are in the usual ranges of [0, m - 1]

and [0, n - 1] , where m i s the number of rows i n the clist and n i s the number of columns i n a
row. Specifying a value that is less than 0 (e.g., -1) will leave the scrollbar position for that

dimension unchanged. The arguments row_align and col_align define where the row and col

umn, respectively, are displayed after the scroll. The values for these arguments are floating

point and must be in the range [0, 1] inclusive. A value of 0.0 specified for row_align and

coCalign places the cell at the top of the clist vertically and as the leftmost cell horizontally,

respectively. A value of 1 .0 specified for row_align and col_align places the cell at the bottom

of the clist vertically and as the rightmost cell horizontally, respectively. Setting row_align

and coCalign to 0.5 should place the cell in the center of the viewable portion of the clist.

Other values in the range [0, 1] should do as expected, for example:

gtk_clist_moveto (c l i s t , myRow , - 1 , 0 . 3 , 0) ;

This should position the row approximately one-third of the viewable area down from the
top of the c1ist. In this case, coCalign was ignored because -1 was specified as the column

argument.
The final scrollbar routines I discuss here are used to specify and retrieve horizontal and

vertical adjustments. Once again, I will talk more about adjustments in Chapter 1 3 .
To set the horizontal adjustment o f the clist, call gtk_cliscseChadjustmentO:

void
gtk_c l i st_set_hadj ustment (GtkCList * c l i s t , GtkAdj ustment *adj ustment) ;

Similarly, to set the vertical adjustment of the clist, an application can call gtk3lisC
seC vadjustment:

void
gtk_clist_set_vadj ustment (GtkCList * c l i s t , GtkAdj ustment *adj ustment) ;

260 Chapter 6 • Lists

Retrieving adjustments is also straightforward. To obtain the horizontal and vertical

adjustments of a clist, call gtlcclist..gechadjustmentO and gtlcclisCgec vadjustmentO,

respectively :

GtkAdj ustment *
gtk_c l i st_get_hadj ustment (GtkCList * c l i st) ;

GtkAdj us tment *
gtk_c l i s t_get_vadj ustment (GtkCList * c l i st) ;

Summary

In this chapter, we looked at two widgets capable of displaying data as a list. GtkList is a rel

atively simple widget that can be used for lists that consist of a single column of data. Gtk

CList is a much more complex widget (as can be evidenced by the size of its API) that can

display rows consisting of one or more columns of data. Both widgets have their advantages

and differences. For example, GtkList is more flexible in terms of the type of data it displays

and is capable of displaying arbitrary widgets. GtkCList, on the other hand, only supports the
display of text with an optional pixmap. GtkCList is capable of sorting its data, while GtkList

is not. Both widgets allow an application to add content dynamically and users to select data

from a list in one of several modes (e.g., single- or multiple-row selection).

(H A P TE R

W I N D OWS AN D D IALOGS

In this chapter, we will take a look at the GtkWmdow widget class. GtkWindow is a fairly simple

class that allows clients to create and manage windows. Several widget classes in Gtk+ reside

below GtkWmdow in the widget class hierarchy and thus inherit functionality from GtkWin

dow. Pemaps the most important of these child classes is GtkDialog, which is also discussed in

this chapter. The widgets covered in this chapter are summarized in Table 7.1.

Table 7.1 Widgets Covered in This Chapter

Class Name

GtkWindow

GtkDialog

GtkFileSelection

GtkFontSelection

GtkFontSelectionDialog

GtkColorSelection

GtkColorSelectionDialog

Description

Capable of creating a window into which content
can be added. The base class for dialog classes
discussed in this chapter.

Implements a dialog that contains a vertical box
to hold dialog content, and an action area
designed to hold OK, Cancel, and related buttons.

A file-selection dialog widget that allows users to
traverse a file system, select a directory or file,
and perform other file system-related functions.

A widget (not related to GtkWindow) that can be
used to select a font.

A dialog that presents a font-selection dialog to
the user and provides buttons useful in such a
dialog.

A widget (not related to GtkWindow) that can be
used to select a color.

A dialog that presents a color-selection widget to
the user as well as buttons useful in such a dialog.

Although GtkFontSelection and GtkColorSelection are not related to GtkWindow, they
are described in this chapter. I present them here because I feel that an understanding of

their operation is crucial to the understanding of the GtkWindow-derived classes to which
they correspond (GtkFontSelectionDialog and GtkColorSelectionDialog, respectively),

261

262 Chapter 7 • Windows and Dialogs

and it makes sense to describe them all in One chapter instead of spreading them throughout

the book.

Now that the agenda for the chapter has been set, let's take a look at the top of the GtkWin

dow widget hierarchy, which is, to nO great surprise, the GtkWmdow widget itself.

GtkWi ndow

Class Name

GtkWindow

Parent Class Name

GtkBin

Macros

Widget type macro: GTK _TYPE_WINDOW

Object to widget cast macro: GTK _WINDOW (obj)

Widget type check macro: GTK_I S_WINDOW (obj)

Supported Signals

Table 7.2 Signals

Signa/Name Condition Causing Signal to Trigger

secfocus A widget in the window has obtained focus.

Signal Function Prototypes

void
set_focus (GtkWindow *window , GtkWidget *widget , gpointer user_data)

Supported Arguments

Prefix: GtkWindow::

GtkWindow 263

Table 7.3 GtkWindow Argument

Name Type Permissions

type GTK....TYPE_ WINDOW_TYPE GTK_ARG_READ�

title GTK,..TYPE_STRlNG GTK_ARG_READWRlTE

auto_shrink GTK_TYPE_BOOL GTK_ARG_READWRITE

allow_shrink GTK_TYPE_BOOL GTK_ARG_READ�

allow--YQw GTK_TYPE_BOOL GTK_ARG_READ�

modal GTK,..TYPE_BOOL GTK_ARG_READWRITE

window_position GTK_TYPE_ WINDOW _POSmON GTK_ARG_READ�

Application-Level API Synopsis

Retrieve the window type constant GTK_TYPE_ WINDOW at runtime:
GtkType
gtk_window_get_type (vo i d) ;

Create a new instance of GtkWindow of the specified type, which can be
GTK_WINDOW_TOPLEVEL , GTK_WINDOW_DIALOG , or GTK_WINDOW_POPUP :
GtkWidget *
gtk_window_new (GtkWindowType type) ;

Set the window title as displayed in the window manager decoration:
void
gtk_window_set_t i t l e (GtkWindow *window , const gchar * t i t le) ;

Set the window manager class and class name:
void
gtk_window_set_wrnclass (GtkWindow *window , const gchar *wrnclass_name ,

const gchar *wrnclass_c l as s) ;

Set the window policy hints:
void
gtk_window_set-pol icy (GtkWindow *window , gint a l l ow_shrink ,

gint a l low_grow , gint auto_shrink) ;

Set the x and y positions of window:
voi d
gtk_window_set-pos i t i on (GtkWindow *window , GtkWindowPos i t ion

pos i t i on) ;

Set the focus widget of a window:
void
gtk_window_set_focus (GtkWindow *window , GtkWidget * focus) ;

264 Chapter 7 • Windows and Dialogs

Application-Level API Synopsis (Continued)

Activate a window's focus widget
gint
gtk_window_activate_focus(GtkWindow *window)i

Set the default widget of a window:
void
gtk_window_set_default(GtkWindow *window,

GtkWidget *default_widget);

Activate a window's default widget
gint
gtk_window_activate_default(GtkWindow *window);

Make a window transient:
void
gtk_window_set_transient_for(GtkWindow *window, GtkWindow *parent);

Set window manager geometry hints:
void
gtk_window_set_geometry_hints(GtkWindow *window, GtkWidget
*geometry_widget, GdkGeometry *geometry, GdkWindowHints geom_mask);

Set a window's default size:
void
gtk_window_set_default_size(Gtkwindow *window, gint width,

gint height);

Make the specified window modal:
void
gtk_window_set_modal(GtkWindow *window, gboolean modal);

Class Description

The GtkWindow class provides functionality needed by applications to create and manipulate

windows.

Creating a Window Widget
Wmdow creation in Gtk+ is performed by calling gtk_window_newO. This routine accepts a

single argument that is the type of window to be created. A window in Gtk+ can be a top-level
window (GTK_ WINDOW _TOPLEVEL), a dialog (GTK_ WINDOW _DIALOG), or a pop-up
window (GTK_ WINDOW _POPUP). Each of these window types will be discussed in the fol

lowing section. First, the following code snippet illustrates the creation of a top-level window.

GtkWindow

GtkWidget *window ;

i f (window ! = (GtkWidget *) NULL) {

The function prototype for gtlC window _newO is:

GtkWidget *
gtk_window_new (GtkWindowType type) ;

265

The type can be GTK_ WINDOW _TOPLEVEL, GTK_ WINDOW _DIALOG, or GTK_

WINDOW_POPUP, as previously described.

The preceding code illustrates two points worth mentioning. First, as I discussed earlier,

the convention is for widgets, regardless of their type, to be stored in a variable of type Gtk

Widget *. You'll notice in the following code that I make use of the macro GTK_ WINDOW

to coerce this variable to a GtkWindow * as needed by some of the functions in the Gtk

Window class API that require a GtkWindow * argument. Second, it is generally a good

idea, especially during development, to always check the return value of the widget creation
function, regardless of the Gtk+ widget class being instantiated, to ensure that the routine

did not fail and that a widget was actually created. If failure occurs, the return type will be

NULL; this holds true for all widget classes supported in Gtk+ 1.2. A widget creation func

tion might fail for one of any number of reasons specific to the widget class or the widget

creation function. Most widget creation functions fail if the application passes one or more

incorrect arguments to the widget creation function (in this case, an invalid window type

argument will lead to failure). Another cause for failure is an internal failure of some kind,

such as an inability of the widget creation function to allocate needed memory.

Window Types
A top-level window (GTK_ WINDOW _TOPLEVEL) is a window that has no parent window

(in reality, the parent window will be the X server's root window). In other words, it exists on
its own, independent of other application windows on the use's desktop. Typically, this window
type will be used in the creation of an application's main window. Gtk+ top-level windows par

ticipate in window manager protocols; support for these protocols is requested by GDK on

behalf of Gtk+ when the top-level window is created. The two window manager protocols sup
ported by top-level windows include WM_DELETE_ WINDOW and WM_TAKE_FOCUS.

Readers who are interested in the details of these window manager protocols can refer to The

Xlib Programming Manual, Volume One, from O'Reilly & Associates.
A dialog window (GTK_ WINDOW _DIALOG) is similar to a top-level window in that

it does not have a parent window (its parent is the X server root window). And, like a top
level window, a dialog also participates in the WM_DELETE_ WINDOW and

WM_ TAKE_FOCUS window manager protocols. It differs from a top-level window in that

the window is transient. In X, a dialog is almost always made transient by a call to

266 Chapter 7 • Windows and Dialogs

XSetTransientForHintO, and this is what GDK does on behalf of Gtk+ when a dialog win

dow is created. A transient window is temporary in the sense that it is visible on the desktop

for only a short amount of time (in contrast to a top-level window, like the main window of
your application). By marking a window as transient, window managers may (and should)

treat the window differently than they do a top-level window. Window manager decorations

may be rendered differently for a dialog window. Some window managers, such as twm,

will allow the user to control placement of top-level windows (by grabbing the pointer and

presenting an outline of the window that the user must drag to a desired location, followed

by a click of the left mouse button to position the application on the desktop). This is not

done for dialog windows; they are placed on the desktop with no interaction required of the

user. Finally, a transient window should (depending on the window manager) iconify along

with the application's top-level window when iconified by the window manager or user.

Note that in Gtk+ 1.2, there appear to be bugs in the implementation. See my discussion

of gtk_ window _seCtransientjorO, later in this chapter, for details.

A pop-up window (GTK_ WINDOW _POPUP) is an X window that has its override_

redirect and save_under attributes set at the time of creation. Otherwise, it is basically the same

as a top-level window. The override_redirect attribute tells the window manager not to intercept
the mapping of the window; thus, the window manager is not given the opportunity to add dec

orations to the window (such as a title bar, a menu, or minimize, maximize, and close buttons).

Pop-up windows should be used only for very temporary windows, such as menus, or at times

when it is important for a window to not be given window decorations. A save under window

is handled specially by the X server when it is mapped and unmapped. When a save under win

dow is mapped, the area beneath the save under window is saved by the X server to off-screen

memory. Once the save under window is popped down and unmapped, the X server restores

the contents of the window beneath the save under window automatically. Contrast this to a

non-save under window; if a pop-up window was not marked as save_under, then the X server

would need to send an expose event to the client, asking the client to redraw the contents that

were destroyed, which is a highly inefficient operation in comparison. Windows typically cre

ated as pop-up windows include menus, option menus, about boxes, and splash screens.

Setting the Window Title

Applications should assign a title to each window they create (except for pop-up windows,

which do not require a title). A window title is typically used by the window manager,

which will display the window title in the title bar decoration or will use the title as a label

to identify windows that have been iconified. In most cases, a title should be assigned

before the window is displayed by the application. However, a title can be changed anytime
after the window has been displayed. To set or change the title of a top-level or dialog win

dow, call the function gtk_ window _seCtitleO:

vo id
gtk_window_set_t i t l e (GtkWindow *window , cons t gchar * t i t l e) ;

The argument window is a handle to an instance of type GtkWindow. The argument title

is a C-Ianguage, null-terminated string that is the (new) title of the window to be displayed
by the window manager.

GtkWindow 267

Applications that allow the users to create documents-word processors, text editors, and

image-manipulation programs like The GIMP-often need to change the title of windows
they have created. Let's consider a text editor for a moment. A text editor will usually provide

New and Save As items in its File menu. A sensible convention for naming newly created,

unsaved text documents might be to assign them a name of the form Untitled-n, where n is 0

for the first newly created document, 1 for the second newly created document, and so forth.

For example, if the user has already created three new text documents, the next "new" docu

ment created would be assigned the title Untitled-3. Once the user selects New, our text editor

will respond by creating a new top-level window by making a call to gtlcwindow_newO.

Then, once a title for the document is generated, gtk_ window _sectitleO will be called. Again,

this should be done before the window manager maps the window.

Now, say the user invokes Save As and saves this document to a file named Ihome/bert/

mydocument. Most editors would extract the filename from the path (in this case, the result

would be mydocument) after the Save As operation and use this string as the new window title.

In Gtk+, we would make a call to gtk_window_seCtitleO to perform this change.

Setting the Window Position
Applications can control the x and y positions of windows on the user's desktop at the time

the window is mapped by calling gtk_window_seCpositionO before showing the window.

This routine takes two arguments: the window to be moved and a constant belonging to the

enum type GtkWindowPosition that describes the desired location, as the following code

snippet illustrates:

GtkWidget *window ;

The function prototype for gtk_window_secpositionO is as follows:

void
gtk_window_set-pos i t ion (GtkWindow *window ,

GtkWindowPos i t ion pos i t i on) ;

The argument position can be set to one of the values listed in Table 7.4.

Table 7.4 Window Positions

Value

GTK_ WIN_POS_CENTER

GTK_ WIN_POS_MOUSE

Meaning

The window manager decides window placement. If no
window manager is executing, the position of the upper-right
corner of the window will likely be fixed at 0, o.

The window is placed in the center of the user's desktop.

The window is centered beneath the pointer location.

268 Chapter 7 • Windows and Dialogs

Setting the Class of the Window

An application can set the res_class and res_name fields of the XA_ WM_CLASS property

for the application by calling gtk_ window_sec wmclassO:

voi d
gtk_wi ndow_set_wmc lass (GtkWindow *window , const gchar *wmc las s_name ,

const gchar *wmc l a s s_c las s) ;

The argument window is an instance of GtkWindow; usually this will be the top-level or

main window of the application. The arguments wmclass_name and wmclass3lass are the
application name and application class, respectively. Generally speaking, wmclass_name is

the value argv [O] passed to the application's mainO, while wmclass_class is argv[O] with

the initial letter capitalized. Thus, wmclass_name for The GIMP would be set to gimp, and

wmclass_class would be set to Gimp. The value of wmclass_name can be used by the win

dow manager to derive the title bar of the application's main window; note the potential for

conflict with gtk_ window _seCtitleO. The value of wmclass_class can be used by the win

dow manager to look up resources for the application that might be stored in the resource

database. This function should be called before the window has been realized.

Setting Policy Hints
The GtkWindow class allows the application to set window manager policy hints regarding win

dow shrink and grow capabilities. The function gtk_ window _secpolicyO provides this support:

vo i d
gtk_window_set-pol i cy (GtkWindow *window , gint a l l ow_shrink ,

gint a l l ow_grow , gint auto_shrink) ;

If gtk_ window _secpolicyO is not called by your application, GtkWindow will internally set

the defaults to allow_shrink = FALSE, allow....grow = TRUE, and auto_shrink = FALSE. For

most applications, these are suitable defaults, and gtk_ window _set-policyO need not be called.

The argument allow_shrink tells the window manager that the size of the window can be

made smaller by the user, while allow �row tells the window manager that the width and/or

height of the window can be increased by the user.

Note that these are hints to the window manager and should be used to control the ability

of the user to resize windows. These hints may or may not affect the application's ability to

do the same, and your mileage may vary based on the window manager being used. For

example, I experimented with fvwm2, and with allow_shrink and allow �row both set to

FALSE, I was unable to resize windows using the window manager, but the application was
able to resize windows by calling gtk_ widgecsecusizeO. This may not be the case, how
ever, with other window managers. Internally, Gtk+ (actually GDK) implements this fea
ture with a call to XSetWMNormalHintsO, setting the PMinSize and PMaxSize flags set as

appropriate (see O'Reilly's Volume One, previously mentioned, for details). With these

flags, the window manager is being told that users may not override the window manager's

choice of size and that the application may override the window manager's choice of size

but only if the window manager cooperates.

GtkWindow 269

The auto_shrink flag controls resizing as widgets are added to or removed from the window,

once the window has been realized (made visible). If set to TRUE, the window will automati

cally resize itself to accommodate the addition or removal of widgets. If set to FALSE, widgets

added to a window may be hidden or partially obscured, or the removal of a widget may result

in a less-than-optimal window layout where areas of the window previously owned by the wid

get that was removed go unused.

Making a Window Transient

In the preceding discussion of gtk_ window _newO, I mentioned that a dialog window
(GTK_ WINDOW _DIALOG) is a transient window, and I explained what it means for a

window to be transient. A nondialog window can be made transient by calling gtk_

window _seCtransiencforO:

void
gtk_window_set_tran s i ent_for (GtkWindow *window , GtkWindow *parent) ;

The argument window is the instance of GtkWindow that should be marked transient, and

parent is the instance of GtkWmdow that is the window's parent. Transient windows are handled

specially by the window manager. A transient window is supposed to be iconified along with its

parent window when the parent is iconified. In addition, a transient window may be decorated

differently by a window manager than top-level windows and, like pop-up windows, is often

placed on the desktop without user intervention. To get full cooperation from the window man

ager, it is important to mark the window transient just prior to it being realized by a call to

gtk_ widgeuhowO or gtk_ widgecshow _allO.

The following code snippet illustrates how to mark a dialog window transient:

GtkWidget * t op , *dialog ;

top gtk_window_new (GTK WINDOW TOP LEVEL) ;

dialog = gtk_window_new (GTK_WINDOW_D IALOG) ;
gtk_window_set_t ran s i ent_for (GTK_WINDOW (dialog) , GTK_WINDOW (top)) ;

After reading the source code for gtk_ window _newO and gdk_ window _newO, one would
be correct in concluding that a GTK_ WINDOW _DIALOG window is a transient window, as it

is made transient by GDK with a call to XSetTransientForHintO. However, the parent window

passed to X by GDK is the X server's root window. Because of this, iconifying the top-level win

dow of your application will not result in iconification of your application's dialog windows.

The correct parent window for a transient window, in most cases, will be the top-level window

of the application. To ensure that transient (dialog) windows behave as they should, applications

270 Chapter 7 • Windows and Dialogs

should implement a strategy similar to the one previously presented, until Gtk + has had a chance

to address this issue in a future release.

Setting Geometry Hints

X allows clients to communicate hints to the window manager. These hints help the window

manager perform operations, such as window resizing and placement, in a way best suited

to the needs of the application. We saw an example of this earlier: gtk_ window _secpolicyO

can be used to set window manager hints that control the ability of the user to resize appli

cation windows. In fact, these hints set by gtk_window_secpolicyO belong to a larger

group of hints called size hints or normal hints in the X I I world. In Gtk+, these hints are

called geometry hints and can be set by calling gtk_window_secgeometryO:

voi d
gtk_window_set_geometry_hint s (GtkWindow *window ,

GtkWidget *geomet ry_widget , GdkGeomet ry *geome t ry ,
GdkWindowHint s geom_mask) ;

The argument window is a GtkWindow instance for which the specified hints will apply.

The window can be of any type except GTK_ WINDOW _POPUP because a pop-up win

dow does not need geometry hints. The argument geometry_widget is a widget contained

by the window. Gtk+ uses this widget to help it make sizing computations; the widget itself

is not communicated to the window manager, just the window. The arguments geometry

and geom_mask together define the hints to be set and their values. Table 7.5 relates

geom_mask values to fields in the geometry struct and briefly describes their meanings:

Table 7.5 Geometry Hints

Field

min_width,
min_height

max_width,
max_height

base_width,
base_size

width_inc,
heighUnc

min_aspect,
max_aspect

Mask Meaning

Program-specified minimum
size

Program-specified maximum
size

Program-specified base size

Program-specified resize
increments

Program-specified min and
max aspect ratios

Invoking gtk_ window _set..geometry _hintsO is easy and is best done before the window

is realized. The following code snippet sets the minimum and base sizes for a window that

contains a drawing area widget:

GtkWidget
GdkWindowHint s

*window , *drawing ;
geo_mask ;

GtkWindow

GdkGeometry geome t ry ;

/ * Minimum al lowabl e s i z e i s 3 0 0 x 2 0 0 * /

geometry . min_width = 3 0 0 ;
geometry . min_he ight = 2 0 0 ;

gtk_window_set_geometry_hint s (GTK_WINDOW (window) , drawing ,
&geomet ry , geo_mask) ;

271

Let's now take a closer look at each of the hints. GTK_IDNT_MIN_SIZE defines a minimum
size for the window, using the min_width and min_height fields of the GdkGeometry struct to define

the minimum width and height allowable for the window, respectively. Most window managers

won't allow users to resize windows to be smaller than this size. Likewise, GTK_IDNT_MAJCSIZE

defines the maximum width and height to which the window will be allowed to grow; these values

are specified in the max_width and max_width fields, respectively.

In some cases, an application might want to do something like fix the height of a window to

200 pixels and let the width of the window be variable. One way to do this would be to set the

min_height and max_height fields to 200, the min_width field to some reasonable value, and

finally the max_height field to G_MAXINT. Make sure to set both the GDK_IDNT_MIN_SIZE

and GDK_IDNT_MAX_SIZE bits in the mask passed to gtk_window_set...,geometry_hintsO.

GDK_IDNT_BASE_SIZE overrides GTK_HINT_MIN_SIZE ifboth are set. The base width

is specified by the base_width field, and the base height is specified by the base_height field.

GTK_HINT_RESIZE_INC can be specified to define the algorithm used by the window

manager in computing window sizes during a resize operation initiated by the user. For

example, a word processor might desire a resize increment that corresponds to a font's

width and height to ensure that characters displayed in the window are not clipped verti

cally or horizontally. Or an application displaying 32x32-pixel image thumbnails might

request a 32-pixel resize increment to ensure that only complete thumbnails are visible in

the window after a resize.
According to O'Reilly's Volume One (mentioned previously), the algorithm used by the

window manager to compute resizes should result in a value that is a positive integer multiple

of heighUnc offset from base_height, and/or an integer multiple of width_inc offset from

base_width. In other words:

width = bas e width + (i * width_inc)
he ight = base_he ight + (j * he ight_inc)

GTK_HINT_ASPECT is a hint to the window manager that should result in window

sizes that conform to an application-defined aspect ratio. An aspect ratio is a value that
defines how the width of a window relates to its height as a ratio of width-to-height. The

standard American television set, for example, has an aspect ratio of 4:3. X allows clients

272 Chapter 7 • Windows and Dialogs

to specify minimum and maximum aspect ratios; the ratio of window width to height must

fall somewhere between these two extremes after a window resize.

The fields min_aspect and max_aspect hold the values that define the aspect ratios used.

Both of these values are of type gdouble and should be greater than 0 and less than or equal to

G_MAXINT. Table 7.6 defines how the x and y components of the aspect ratio are computed:

Table 7.6 Computing the Aspect Ratio

Value X Component

max_aspect <= 1

YComponent

Let's look at some example values just using min_aspect (both min_aspect and

max_aspect computations are the same). If we set it to 1 .0, the X component will be
G_MAXINT, and the Y component will be G_MAXINT, resulting in an x-to-y ratio of 1 : 1 .

In this case, after resizing, the window should have equal width and height attributes. Now

let's pick a value greater than 1 .0, for example, 2.0. In this case, the X component will be
the constant G_MAXINT, while the Y component is computed as G_MAXINT/2. The final

x-to-y ratio will therefore be 2: 1 , meaning that after a resize, the window should have a

width that is twice as large as its height. Finally, let's see what happens with min_aspect

values less than 1 .0 in value. Let's choose 0.5. In this case, the X component will be

G_MAXINT * 0.5, and the Y component will be G_MAXINT. The x-to-y ratio then is 1 :2,

meaning that after a resize, we'd like the window manager to leave us with a window having

a height attribute that is twice as large as its width.

The following code snippet illustrates the preceding concept and shows how to set the

min_aspect and max_aspect fields. In this case, the minimum aspect is set to 1 : 1 , and the

maximum aspect is set to 2: 1 .

GtkWidget
GdkWindowHints
GdkGeomet ry

*window , *drawing ;
geo_mask ;
geometry ;

geomet ry . min_aspect 1 . 0 ;
geometry . max_aspect 2 . 0 ;

gtk_window_set_geometry_hint s (GTK_WINDOW (window) , drawing ,
&geometry , ge�_mask) ;

GtkWindow

Setting the Default Size of a Window

The default size of a window can be set with gtlcwindow_seCdefauICsizeO:

vo id
gtk_window_set_de faul t_s i z e (GtkWindow *window , gint width ,

gint he ight) ;

273

This routine is fairly easy to understand. It accepts an instance of GtkWindow, a width, and

a height. Disregarding the use of the GDK_HINT_BASE_SIZE and GTK_HINT_MIN_SIZE

hints as previously described, not calling this routine (nor gtk_ widgeCseCusizeO; see Chapter

4, "Widgets") will cause the size of the window to be made small enough to reasonably contain

the child widgets of the window, if any. Calling this routine (and not gtk_widgecseCusize())

will cause the size of the window, when it is first displayed, to be the greater of the size needed

to contain the child widgets and the size specified by its width and the height arguments. Once

the window has been displayed, the window can be resized to a size smaller than the specified

width and height but no smaller than the minimum needed to display the contained child wid

gets. Contrasting this to gtk_ widgeCseCusizeO, the window will be displayed exactly using

the size specified, regardless of the needs of the contained child widgets. Resizing is allowed

as long as it is greater than or equal to the initially specified width and height. Thus,

gtk_ widgecseCusizeO gives more control over the initial size of the window and allows resiz

ing to any size possible as long as it is no smaller than the initial size specified. On the other

hand, gtk_ window _seCdefaulCsizeO gives less control over the initial size of the window; the

window can generally be any size desired by the client, but it must reasonably display any of

its children. gtk_ window _seCdefaulCsizeO allows resizing of the window to any size with the
condition that the minimum size must allow for the reasonable display of the window's child

widgets. My recommendation is to use gtk_widgecsecusizeO for specifying window sizes,
mostly because it will fix the minimum window size to be no smaller than the specified size.

The minimum size allowable by gtk_ window _secdefauICsizeO, although it may take into
account the needs of its child widget sizes, is not always going to be the best, depending on the

size and layout needs of the child widgets contained by the window.

Modal Windows

A modal window, while realized, is the only window in the application that is receptive to

events, such as mouse button presses and keyboard input, generated by the user. Most win
dows in an application need not, and should not, be modal. Making a window modal is

restrictive to a user because other parts of the application normally accessible to a user are

not available during the time a modal window is in effect. However, there are times when a
modal window is an appropriate tool. There may be times when an application finds itself
unable to continue without certain input from the user. In such a circumstance, displaying

a modal dialog to retrieve the user input is often the correct thing to do. While a modal dia
log is in effect, a program need not concern itself with the activation of controls or menu
items provided by other portions of the user interface. Usually, displaying a modal dialog

is the application's way of saying "I cannot continue until I receive the information I am
requesting." Because only the modal dialog can receive input from the user, Gtk+ is helping
protect the application from receiving input that it is not prepared to deal with during the

time the modal dialog is active.

274 Chapter 7 • Windows and Dialogs

Making a window modal is straightforward and can be done by calling the routine

gtlC window _secmodaIO :

voi d
gtk_window_set_modal (GtkWindow *window , gbool ean modal) ;

The first argument to gtlC window _seCmodalO is an instance of GtkWindow. This is the win

dow that is to have its modality changed. The second argument, modal, is used to make the win

dow modal (TRUE) or nonmodal (FALSE). It is best to call gtk_ window _seCmodalO prior to

making the window visible to ensure that only that window will receive input once it is made
visible. It is possible to make a nonmodal window modal after it has been realized, but this situ

ation is rarely encountered. Likewise, modal dialogs usually remain modal during their lifetimes;

therefore, it is unlikely that an application will ever need to call gtk_ window _seCmodalO with
the modal argument set to FALSE in order to switch a realized window from modal to nonmodal.

Gtk+ implements modality by looking at events arriving at the application from the X

server. If the widget to which the event was directed (the event widget) is a child of a modal

widget, then the event is passed to the event widget for processing. Otherwise, the event is

passed to the modal widget (which, in most cases, will drop the event on the floor). Not all

events get redirected to the modal window or its children. Those that do get redirected

include the following:

• GDK_BUTTON_PRESS, GDK_2BUTTON_PRESS, GDK_3BUTTON_PRESS

• GDK_BUTTON_RELEASE

• GDK_KEY _PRESS, GDK_KEY _RELEASE

• GDK_MOTION_NOTIFY

• GDK_PROXIMITY _IN, GDK_PROXIMITY _OUT

• GDK_ENTER_NOTIFY and GDK_LEAVE_NOTIFY

All other events are sent to the original event widget.

Window Focus
Somewhat related to modality is the concept of window focus. Basically, window focus
defines which menu, control, button, or to be more general, widget will receive events such

as key and mouse button presses. Usually, the user interface provides visual clues to help

the user become aware of what widget has obtained the current focus as focus moves from

widget to widget. GtkEntry, for example, indicates input focus by changing the cursor to an

I -beam cursor once an instance of GtkEntry has obtained the focus, and it reverts the cursor
back to its previous value once focus is lost by the widget. The GtkButton widget class
changes the color of a button from a darker shade of gray to a lighter shade of gray to indi

cate that the button has mouse and keyboard focus. Once the focus is lost, GtkButton
restores the button to its original color as a visual clue to the user.

It is the user that typically controls which widget in a window has the focus, and this is

how it should be in most cases. However, I can imagine there are times when an application

might want to set the focus to a particular control or widget in a dialog. For example,
assume we are developing a loan package for a bank, and one of its dialogs is an application

that allows an applicant to enter his or her name, street, city, state, ZIP code, and loan

GtkWindow 275

amount. It may make sense for our application to set the widget focus to the name field

before the dialog is first displayed because this is where most users will want to start work

ing. See the discussion of default widgets later in this chapter.

As another example, assume that after the user has finished entering data in the previously

mentioned form, he or she hits an OK or Submit button that, when pressed, causes our appli

cation to validate the data entered by the user to ensure that all fields were entered and that all

of the data entered is sensible (for example, a numeric amount was entered in the ZIP code

field). Should our application find an invalid field, it might want to keep the dialog up, display

a modal message dialog telling the user which field is invalid, and once this message dialog

is dismissed, set the window focus to the widget that corresponds to the data found to be

invalid so that the user may enter it once again.

To set the focus to a particular widget in a window, an application should call gtk_

window _setjocusO:

void
gtk_window_set_focus (GtkWindow *window , GtkWidget * focus) ;

window is the instance of GtkWindow that contains the widget specified by the argument

focus. focus is the instance of GtkWidget and is the widget in the specified window to which

input focus will be set once the call returns.

The Focus Widget

For each window, Gtk+ maintains a focus widget, which is the widget in the window that

currently has focus. Calling gtk_window_setjocusO changes the focus widget to the spec

ified widget. As the user makes focus changes with the mouse or keyboard, the focus widget

is changed by Gtk+ to record which widget currently has the focus.

A window's focus widget is activated by calling gtk_window_activatejocusO:

gint
gtk window activate focus (GtkWindow *window) ; - - -

Some widget classes, including both GtkButton and GtkMenuItem, implement what is

referred to as an "activate" signal. This signal is triggered by a call to gtk_widgecactivateO.

In the case of the GtkButton class, the activate signal is actually an alias for GtkButton's
"clicked" signal. If the focus widget for a window is an instance of GtkButton, and if the Gtk+

application has registered a signal function to handle clicked signals for that instance (see

Chapter 3, "Signals, Events, Objects, and Types"), then calling gtk_window_activate_focusO

on the window will result in the execution of the clicked signal function registered by the

application.

Default Widgets
Windows also maintain a default widget. A default widget is the widget in a window or dialog

that is assigned the keyboard focus when no widget is defined as the focus widget. A default

widget is sort of a fallback focus widget that responds to Enter and Return key presses without

having the focus. The focus widget always has precedence over the default widget; if some

widget has the focus, it will receive the keyboard input, not the default widget.

276 Chapter 7 • Windows and Dialogs

Most likely, you will make an instance of GtkButton the default widget. A common

example is a prompt dialog, similar to the one shown in the following figure:

Figure 7.1 Prompt Dialog

Here, the button labeled Yes acts as the default widget. If the user hits the Enter key, the

operation will be accepted. For the No button to respond to the return key in the same way,

the user must tab to the No key. Doing so causes the No button to become the focus widget,

and at this point, it will respond to a press of the return key press.

To make a widget the default widget, call gtk_window_secdefaultO:

vo i d
gtk_window_set_de fault (GtkWindow *window , GtkWidget * de faul t_widget) ;

Prior to making the preceding call the first time for a widget, you must set a flag maintained

by the widget to let Gtk+ know that the widget is allowed to be made a default widget. The

call looks something like the following:

GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;

In the preceding statement, button was declared GtkWidget *. If you do not do this (i.e., use
the GTK_ WIDGET_SET_FLAGS macro), Gtk+ will generate an error message at runtime,

and the widget will not be made the default widget for the dialog. Here is a complete example
of a routine that creates and manages a transient, modal dialog that allows a user to respond to

a question with a Yes/No, OK! Cancel type of response. The dialog created looks like the one

depicted in Figure 7. 1 . Several parts of this example will be new to a reader at this point of the

book, but perhaps it doesn't hurt to talk a little ahead of ourselves at this point. The code also

illustrates the use of some of the GtkWindow class functions already discussed. Here is the

code; a discussion will follow:

0 0 1 # inc lude <gtk/gtk . h>
0 0 2
0 0 3 / *
0 04 * S impl e Ye s /No OK/ Cancel dialog
0 0 5 * /
0 0 6
0 07 s t at i c gbool ean resul t ;
0 08
0 09 s t a t i c void
0 1 0 OkC l i ckedCal lback (GtkWidget *widget , GtkWidget *dial og_window)
0 1 1 {
0 1 2 result = TRUE ;
0 1 3 gtk_wi dget_de s troy (dial og_window) ;

GtkWindow

0 14 gtk_main_qui t () ;
0 1 5
0 1 6
0 17 stat i c void
0 18 Cance l C l i ckedCal lback (GtkWidget *widget , GtkWidget *dialog_window)
0 19 {
0 2 0 result = FALSE ;
0 2 1 gtk_widget_de s t roy (dial og_window) ;
0 2 2 gtk_main_qui t () ;
0 2 3
0 2 4
0 2 5 gboolean
0 2 6 Que s t ionBox (GtkWidget * parent , char *me s sage , char * ok_labe l ,
0 2 7 char * cance l_labe l , gbool ean okI sDefault)
0 2 8
0 2 9 GtkWidget * labe l , *but ton , *dialog_window ;
0 3 0
0 3 1 dialog_window = gtk_dialog_new () ;
0 3 2 gtk_window-pos i t i on (GTK_WINDOW (dial og_window) , GTK_WIN_POS_MOUSE) ;
0 3 3
0 3 4 gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " de s t roy " ,
0 3 5 GTK_S IGNAL_FUNC (gtk_widget_de s t royed) , &dialog_window) ;
0 3 6
0 3 7 gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " Message ") ;
0 3 8 gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;
0 3 9
04 0 button = gtk_but ton_new_wi th_labe l (ok_labe l) ;
04 1 GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
0 4 2 i f (okI sDefau l t = = TRUE)

277

04 3 gtk_window_set_de faul t (GTK_WINDOW (dialog_window) , but t on) ;
044 gtk_box-pack_s tart (GTK_BOX (GTK_DIALOG (dialog_window) - >act ion_area) ,
0 4 5 but ton , TRUE , TRUE , 0) ;
04 6 gtk_s ignal_connect (GTK_OBJECT (button) , " c l i cked " ,
047 GTK_S IGNAL_FUNC (OkCl i ckedCal lback) , dial og_window) ;
048
049 but ton = gtk_button_new_with_l abe l (cance l_labe l) ;
0 5 0 GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
051 i f (okI sDe fau1t = = FALSE)
0 5 2 gtk_window_set_de faul t (GTK_WINDOW (dialog_window) , but ton
) ;
0 5 3 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) ->ac t i on_area) ,
0 54 button , TRUE , TRUE , 0) ;
0 5 5 gtk_s ignal_connect (GTK_OBJECT (button) , " c l i cked " ,
0 5 6 GTK_S IGNAL_FUNC (Cance l C l i ckedCal lback) , dialog_window) ;
0 57
0 58 labe l = gtk_labe l_new (me s sage) ;
0 59 gtk_mi sc_set-padding (GTK_MISC (l abe l) , 1 0 , 1 0) ;
0 6 0 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) , labe l ,
0 6 1 TRUE , TRUE , 0) ;
0 6 2 i f (parent ! = NULL)
0 6 3 gtk_window_set_tran s ient_for (GTK_WINDOW (dial og_window) ,
0 64 GTK_WINDOW (parent)) ;

278 Chapter 7 • Windows and Dialogs

065 gtk_window_set_modal (GTK_WINDOW (dialog_window) , TRUE) ;
066 gtk_widge t_show_a l l (dial og_window) ;
067 gtk_ma in () ;
068 return (result) ;
069

The basic idea behind this routine is to display a modal dialog and wait until the user makes

a choice before returning. The arguments passed to QuestionBoxO include the following:

• GtkWidget *parent This argument is NULL if the dialog has no parent. Otherwise,

it is the widget instance handle of a GtkWindow. Most likely, this will be the top-level

application window, but it doesn't have to be.

• char *message This argument is the question being posed of the user. This should

be suitable for the responses represented by ok_label, and cancel_label.

• char *ok_label This argument is the label for the button that causes QuestionBox to

return TRUE when pressed.

• char *canceClabel This argument is the label for the button that causes Question

Box to return FALSE when pressed.

• gboolean okIsDefault If set to TRUE, the button labeled by ok_label is made the

default button of the dialog. Otherwise, the button labeled by canceUabel will be the

default button of the dialog.

QuestionDialogO first creates an instance of GtkDialog; this is done on line 03 1 . GtkDi

alog, as we shall see, is a child of GtkWindow, so we can make use of functions in the Gtk

Window API as we do in several places of this routine. The first use of these routines is line

032, where we call the routine gtk_ window _positionO to cause the dialog window, when

displayed, to position itself beneath the current pointer position. Other calls include line

037, which sets the title of the window to "Message," lines 063 and 064, where the dialog

is made transient (if the passed parent was non-NULL), and line 066, where the window is

made modal. We have already talked about each of the routines involved in this chapter. On
line 040, we create an instance of GtkButton, labeling it with the ok_label that was passed

by the caller. On line 04 1 , we make the window eligible to be the default widget for the win

dow by using the macro GTK_ WIDGET_SET_FLAGS to set the GTK_CAN_DEFAULT

flag. And, on lines 042 and 043, we check to see if the caller wants the button to be the

default for the dialog. If so, then the gtk_ window _secdefaultO routine is called to register

the button as the default widget. Notice how here, and in the other gtk_window* calls, we

use the macro GTK_ WINDOW to coerce the GtkWidget * to a GtkWindow *.
While we are here, I might as well discuss a few other things related to this routine and its

implementation. The GtkButton widget class implements a clicked signal; if the application

registers a signal function for this signal, it will be invoked when the button is pressed. Here

we register a separate signal function for each button, one that is invoked by the "OK"

instance, and one that is invoked by the "Cancel" instance. Each passes as user data the
instance handle for the dialog. At the bottom of the routine, after we cause the dialog and its
children to display with a call to gtk_widgecshow_alIO, we invoke a nested gtk main loop

with the call to gtk_mainO. We will stay in this loop until it is exited with a call to

GtkDialog 279

gtk_main_exitO, which is invoked by either of the clicked signal functions that we registered.

Before the signal function calls gtk_main_exitO, however, it will set a global variable that will

be TRUE if OkClickedCallbackO was invoked or FALSE if the other signal function, Cancel

ClickedCallbackO, was invoked. Here is the code for OkClickedCallbackO again:

007 stat i c gbool ean result ;
008
009 stat i c voi d
0 1 0 OkC l i ckedCal lback (GtkWidget *widget , GtkWidget * dialog_window)
0 1 1 {
012 result = TRUE ;
013 gtk_widget_de s t roy (dialog_window) ;
014 gtk_main_qui t () ;
015

Just as the focus widget in a window can be activated by calling the routine

gtk_ window _activate_focusO, the default widget can be activated by calling gtk_ window_

active_defaultO:

gint
gtk_window_act ivate_de fau l t (GtkWindow *window) ;

Refer to the preceding discussion of gtk_ window _activate_focusO; what was written there

holds true here, except activation will be of the window's default widget, not the window's

focus widget.

GtkDialog

Class Name

GtkDialog

Parent Class Name

GtkWindow

Macros

Widget type macro: GTK_TYPE_DIALOG

Object to widget cast macro: GTK_Dl:ALOG (obj)

Widget type check macro: GTK_IS_DIALOG (obj)

280

Application-Level API Synopsis

Retrieve the constant GTICTYPEJ)IALOG at runtime:
GtkType
gtk_dialog_get_type (void) ;

Create a new instance of GtkDialog:
GtkWidget *
gtk_d i a log_new (void) ;

Class Description

A dialog (in Gtk+) is a window that consists of two areas:

Chapter 7 • Windows and Dialogs

• A content area, which contains the basic content presented by the dialog

• An action area, which consists of buttons that, when clicked, perform an action on the

content of the dialog and/or dismiss the dialog

A horizontal separator is situated between the content and action areas of a dialog, as a

way to help the user distinguish between the action and content areas. See Figure 7.2.

Figure 7.2 Areas of a Dialog Widget

Dialogs can be simple (see Figure 7.3), with a small content in either the content or the

action area, or they can be arbitrarily complex, as shown in Figure 7.4. Generally speaking,

content in the action area typically consists of only instances of GtkButton, although Gtk

Dialog does not enforce this.

Figure 7.3 Simple Dialog Widget

GtkDialog

Figure 7.4 Complex Dialog Widget

281

The content area of a dialog widget consists of a vertical box widget (GtkVBox). The

action area of a dialog widget is a horizontal box widget (GtkHBox). A vertical box is used

for the content area because, typically, applications will tend to pack dialog content from

top to bottom (or from bottom to top). A horizontal box widget is used for the action area

because, typically, buttons in this area will be packed from left to right (or from right to

left). An application can easily add a horizontal box as a child of the vertical box in the con

tent area in order to arrange items in the content area from left to right. GtkHBox and

GtkVBox widgets are described in Chapter 1 0, "Container and Bin Classes." You should be

comfortable with both GtkHBox and GtkVBox widgets before attempting to use a dialog

widget in your application.

Creating a Dialog
To create an instance of GtkDialog, call gtk_dialog_newO:

GtkWidget *
gtk_dial og_new (void) ;

The following example code was used to create the dialog shown in Figure 7.3 :

Listing 7 . 1 Creating a Message Dialog

001 # inc lude <gtk/gtk . h>
002
003 ma in (int argc , char *argv [))
004 {
005 GtkWidget *dialog , * labe l , *but ton ;

282

006
007 gtk_ini t (&argc , &argv) ;
008 dialog = gtk_dial og_new () ;
009
0 1 0 gtk_widget_set_us i z e (dialog , 2 14 , 1 17) ;

Chapter 7 • Windows and Dialogs

0 1 1 gtk_window_set- pol i cy (GTK_WINDOW (dialog) , FALSE , FALSE , FALSE) ;
012
013 gtk_window_set_t i t l e (GTK_WINDOW (dialog) , "Alert ") ;
014
015 l abe l = gtk_l abe l_new (" You have new ma i l ! ") ;
016 gtk_box- pack_s tart (GTK_BOX (GTK_DIALOG (dialog) - >vbox) ,
017 label , TRUE , TRUE , 0) ;
018
019 but t on = gtk_button_new_wi th_l abel (" OK ") ;
02 0 GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
02 1 gtk_box- pack_s tart (GTK_BOX (GTK_DIALOG (dialog) - >ac t i on_area) ,
02 2 button , FALSE , FALSE , 0) ;
02 3 gtk_wi dget_grab_de fault (button) ;
024
025 gtk_wi dget_show_a l l (dialog) ;
026
027 gtk_ma in () ;
028

Dialog Sizing
The preceding source code brings to mind the issue of dialog sizing. A dialog of the type

shown in Figure 7.3 looks best when it is a certain size. To determine what I felt to be an

optimal size, I simply ran the program and resized the window until its size looked pleasing

to me. Then I added line 0 I 0 to the program:

01 0 gtk_widget_set_u s i z e (dialog , 2 14 , 1 17) ;

This set the initial size of the window to the result of my experiments, in this case a widget

of 214 and a height of 1 17 . On the following line, I added a call to gtk_ window _seCpolicyO:

01 1 gtk_window_set- pol i cy (GTK_WINDOW (dialog) ,
FALSE , FALSE , FALSE) ;

The preceding change ensures that the user cannot resize the dialog, avoiding any

strange (and visually unappealing) layout results that might occur if the user were given the

ability to resize the dialog.

Figure 7.S Packing Content with No Border or Padding

GtkDialog 283

Obviously, 2 1 7 X 1 1 7 is only appropriate for the content being displayed in this example.

A more generic implementation would support the display of arbitrary text in the content

area. Instead of hard-coding the width and height of the dialog, you might consider alter

natives such as setting the border width of the dialog and/or applying a padding value to the

label when it is packed into the vertical box. Figure 7 .5 illustrates a "You have new mail !"

message that has been packed into a dialog sized for its content, with no border width

applied to the container or padding applied to the label in the box. Figure 7.6 illustrates the

result when a 5-pixel border width has been added to the dialog and the text has been

packed into the action area with 20 pixels of padding. Note that the vbox padding is only

applied above and below the label, not to the left or right; if we were packing a horizontal

box, it would be applied to the left and right of the label, not to the top and bottom). To set

a 5-pixel border for the dialog and a 20-pixel label padding for the label, lines 0 1 5 through

0 1 8 were modified as follows:

015 gtk_container_set_border_width (GTK_CONTAINER (dialog) , 5) ;
016 label = gtk_labe l_new (" You have new mai l ! ") ;
017 gtk_box-pack_s tart (GTK_BOX (GTK_D IALOG (di a l og) - >vbox) ,
018 l abe l , TRUE , TRUE , 2 0) ;

Figure 7.6 Figure 7.5 with Padding and Border Added

Also, line 0 10

0 1 0 gtk_widget_set_u s i z e (dialog , 2 14 , 1 17) ;

was removed from the listing, enabling the dialog to size itself as necessary. See Chapter
10 for more information about gtk30ntainer_seCbordecwidthO and gtk_box_pack_
startO. Also, see Chapter 5, "Labels and Buttons," for information on how to cause text in

a label widget to wrap and fill its container (in particular, refer to the functions gtk_labeC
setjustifyO and gtk_labeCseUine_ wrap()).

284 Chapter 7 • Windows and Dialogs

GtkFi leSelection

Class Name

GtkF i l eS e lect ion

Parent Class Name

GtkWindow

Macros

Widget type macro: GTK_TYPE_FI LE_SELECTION

Object to widget cast macro: GTK_FI LE_SELECTION (obj)

Widget type check macro: GTK_I S_FI LE_SELECTION (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_FlLE_SELECTION at runtime:
GtkType
gtk_f i l e_selection_get_type (void) ;

Create a new instance of GtkFileSelection:
GtkWidget *
gtk_f i l e_select ion_new (const gchar * t i t le) ;

Set the filename (selection) field of the file-selection widget:
void
gtk_f i l e_se l e c t i on_set_f i lename (GtkFi leSelect ion * f i le s e l ,

const gchar * f i l ename) ;

Retrieve the directory/file selected by the user:
gchar *
gtk_f i le_s e l e c t i on_get_f i lename (GtkF i l eSelect ion * f i le s e l) ;

Set the initial path/file displayed by the file-selection dialog:
void
gtk_f i l e_se l e c t i on_complete (GtkFi leSelection * f i le s e l ,

const gchar *pattern) ;

Show the Create Dir, Delete File, and Rename File buttons:
void
gtk_f i le_s e l e c t i on_show_f i leop_buttons (GtkFi leSelect ion * f i l e s e l) ;

GtkFileSelection

Application-Level API Synopsis (Continued)

Hide the Create Dir, Delete File, and Rename File buttons:
void
gtk_f i l e_selection_hide_f i leop_but tons (GtkFi leSelect ion * f i l e s e l) ;

285

__ 001l=00 ____ **77**m**I __ ** _____ 7719771 ___ '77_**=_400** __ £ _____ 177

Class Description

Figures 7.7 and 7.8 illustrate instances of GtkFileSelection:

Figure 7.7 Opening a File

286

Figure 7.8 Saving a File

Chapter 7 • Windows and Dialogs

Figure 7.7 illustrates an instance of GtkFileSelection as it might be typically used to request

a filename from a user during a file Open operation. Figure 7.8 illustrates a file-selection widget

as it is typically used during a file Save As operation. These are the two most common reasons

for using a file-selection widget, requesting from the user the location and name of a file to

which to save content or from which to load content. Figures 7.7 and 7.8 differ only in the but

tons labeled Create Dir, Delete File, and Rename File, which are seen only in Figure 7.8. In

fact, these buttons are available regardless of how the file-selection widget is being used,

although they make more sense at the time a user is saving a file; for example, the user might

want to create a new directory into which to place the newly created file. As we shall see later,

an application can show or hide these buttons as it sees fit.

GtkFileSelection

figS - 1 2 .gif

fIgS - 1 3 .gif
fIgS-2.gif
figS-3.glf
fIgS-4.gif

fIgS-5.gif
fIgS-6.gif
figS-8.gif
figS-9 .gif

flgiH .gif

fIg6-2.gif

Figure 7.9 A File-Selection Widget with Custom Content

287

Figure 7.9 illustrates a file-selection widget used by The GIMP to open an image file. As

you can see, there is extra content in the dialog that is not present in either Figure 7.7 or 7.8

(specifically, the frame labeled Open Options). I will illustrate how to add such content in

the following discussion.

Creating an Instance of GtkFileSelection
Creating a file-selection widget is fairly straightforward. To do so, you call gtlCfile_

selection_newO:

GtkWidget *
gtk_f i l e_se l e c t i on_new (cons t gchar * t i t l e) ;

The argument title will be displayed by the window manager in the title bar of the file

selection dialog when it is shown by the application. Passing the return value to gtk_

widgecshowO is all that is needed to cause it to be displayed as a dialog window. You do

not add a file-selection widget as a child of a container widget, as you would do with a but

ton or label.

288 Chapter 7 • Windows and Dialogs

Modifying the File-Selection Widget

By default, the current working directory will be displayed in the Directories and Files lists.

The Selection text-edit field will be empty. To change the directory to be displayed before

showing the file-selection dialog, call gtlcfile_selection30mpleteO:

voi d
gtk_f i l e_selection_complete (GtkFi leSelection * f i l e s e l ,

cons t gchar *pat tern) ;

The first argument is an instance of GtkFileSelection. The second is a NULL-terminated

pathname. The path can be relative or absolute. If the path names a directory, then the direc

tory and its contents will be displayed in the Directories and Files lists, and the Selection

field will remain empty. If the path names a file, then the directory portion of the path will

be shown in the Directories list; the file itself will be shown in the Files list as well as being

set in the Selection text-edit field. The path can contain ? and * wild-card characters. For
example, Itmpl*.dat will cause all files in the Itmp directory that end with the characters .dat

to be listed in the Files list. Shell-based expressions such as -I (user's home directory) are

also supported.

You can also set the filename, which will be displayed in the Selection text field upon display

of the file-selection dialog. This can be done by making a call to gtlcfile_selection_secfilenameO:

voi d
gtk_f i l e_select ion_set_f i l ename (GtkF i l eSelection * f i l e s e l ,

const gchar * f i l ename) ;

It is not required that an application call gtk_file_selection_completeO to set the filename;

these functions are independent of each other. However, a call to one will override the other

if both result in a change to the filename displayed in the Selection text field. For example:

gtk_f i l e_se l e c t i on_set_f i l ename (GTK_F ILE_SELECTION (f i l eSel) ,
" f i l e . txt ") ;

gtk_f i l e_se l e c t i on_complete (GTK_FI LE_SELECTION (f i l eSe l) ,
" / tmp / f ig5 - 14 . gi f ") ;

This will cause the directory contents of Itmp to be displayed in the Directories list and

fig5-14.gif to display in the Files list and Selection text field. If the order of the calls is

changed, as follows:

gtk_f i l e_s e l e c t i on_complete (GTK_FI LE_SELECTION (f i leSe l) ,
" / tmp/ f ig5 - 14 . gi f ") ;

gtk_f i l e_se l e c t i on_set_f i l ename (GTK_FILE_SELECTION (f i l eSel) ,
" f i l e . txt ") ;

then, once again, the directory contents of Itmp will be displayed in the Directories list, the
Files list will display the file contents of Itmp, and the Selection field will display file. txt, as

shown in the following figure:

GtkFileSelection 289

Showing and Hiding the Fileop Buttons
As previously mentioned, a file-selection dialog contains three buttons labeled Create Dir,

Delete File, and Rename File. The use of these buttons is self-explanatory. You need not (in

fact, cannot) attach a signal handler to these buttons; GtkFileSelection implements their

functionality internally on behalf of the application. You can, however, show or hide these

buttons as required. By default, they are visible. To hide them, your application must call

gtk_file_selection_hide_fileop_buttonsO:

vo id
gtk_f i l e_se l e c t i on_hide_f i l eop_buttons (GtkFi l e S e l e c t i on * f i l e s e l) ;

To show them again, you can call gtk_file_selection_show_fileop_buttonsO:

vo id
gtk_f i l e_se l e c t i on_show_f i l eop_buttons (GtkFi leSelect ion * f i l e s e l) ;

Both functions take a file-selection widget instance as their only argument.

The final function in the GtkFileSelection API is used to extract the filename selected by

the user. The function prototype for gtk_file_selection....gecfilenameO is:

290 Chapter 7 • Windows and Dialogs

gchar *
gtk_f i l e_se l e c t i on_get_f i l ename (GtkFi leSelection * f i l e s e l) ;

The return value is the absolute (complete) path of the file selected by the user. If the user

did not supply a value in the Selection text field, then the result will be a directory. You can

test whether the return value is a file or a directory by passing it to the following function,

which returns TRUE if the path represents a file. Otherwise, it returns FALSE:

inc lude < sys / s tat . h>

gboo l e an
I s F i l e (char *path)
{

s t ruct stat buf ;

l s tat (path , &buf) ;
return (S_I SREG (buf . s t_mode)) ;

Responding to OK and Cancel Buttons

Now that we know how to get the selection and how to initialize the dialog for our needs
(as well as display it), it is time to investigate how one might go about responding to clicks

of the OK and Cancel buttons by the user. A file-selection widget manages three buttons,

displayed at the bottom of the dialog below the Selection text field. These widgets are
ok_button, cancel_button, and help_button. The help button is not, by default, visible in the

dialog, so if you want to make use of it, you must show it using code like the following:

GtkWidget * f i leSel ;

Registering clicked signal functions for these buttons is straightforward, as illustrated by

the following code snippet:

GtkWidget * f i leSel ;

gtk_s ignal_connect (GTK_OBJECT (
GTK_FI LE_SELECTION (f i l eSe l) - >ok_button) ,
" c l i cked " , (GtkS ignal Func) F i l eSelOk , f i leSel) ;

I I the f o l l owing i s only called i f the he lp button i s made v i s ible
gtk_s ignal_connect (

GTK_OBJECT (GTK_F ILE_SELECTION (f i l eSel) - >help_but ton) ,
" c l i cked " , (GtkS ignal Func) Fi leSe lHelp , f i leSel) ;

GtkFileSelection

gtk_s ignal_connect_obj ect (GTK_OBJECT (
GTK_FI LE_SELECTION (f i l eSe l) - >cance l_button) , " c l icked " ,
(GtkS ignal Func) F i l e S e l Cance l , GTK_OBJECT (f i leSe l » ;

291

The GtkButton "clicked" signal is described in Chapter 5. Its handler takes two arguments :

The first is the button widget instance, and the second is client data of type gpointer. Here I

have arranged to pass the file-selection widget as client data. This enables the OK button sig

nal function to retrieve the file selected by the user as follows:

void
F i l eSelOk (GtkWidget * w , gpointer arg)
{

GtkFi l e S e l e c t i on * f i leSel GTK F ILE_SELECTION (arg) ;

I I get the select ion

char * name = gtk_f i l e_se l e c t i on_get_f i l ename (f i l eSe l) ;

I I do something useful with i t

print f (" % s \ n " , name) ;

I I hide the f i l e select ion dialog

Similarly, the Cancel button clicked signal function:

void
Fi leSelCance l (GtkWidget * w , gpointer arg)
{

GtkFi l e S e l e c t i on * f i l eSel = GTK FILE_SELECTION (arg) ;
gtk_widget_hide (GTK_WIDGET (f i l e S e l)) ;

The Help function, FileSelHelpO, is left for the reader as an exercise. Notice that the code
is hiding the file-selection dialog instead of destroying it. You can either do the same or destroy
the file-selection widget and create a new one each time a file-selection widget is needed. How
ever, hiding the dialog has the nice side effect of retaining the path last traversed to by the user.

As a user, I often find it annoying that after I use a file-selection dialog to traverse to some loca
tion, open a file, and process it, if I then want to save the file in the same location or perhaps
open a related file, also in the same location, I am forced to traverse to that location once again

because the application has forgotten to where it was that I had last traversed. You can, of
course, put logic into your application to remember the file system location last traversed to by

the user and restore this location (by calling gtk_file_selection30mplete()) once the new file
selection widget has been created. However, I prefer to avoid this work, and instead, I create a

single file-selection widget that I show and hide when needed. An additional benefit of using
this technique is it reduces (to one) the number of times that a file-selection widget must be

292 Chapter 7 • Windows and Dialogs

created. The following code snippet illustrates the technique for creating a file-selection widget

in this manner:

stat i c GtkWidget * f i leSel (GtkWidget *) NULL ;

i f f i l e S e l == (GtkWidget *) NULL) {
f i l e S e l = gtk_f i l e_selection_new { " Fi l e Selection ") ;

i f (type = = OPEN)
gtk_f i l e_selection_hide_f i l eop_but tons {

GTK_FI LE_SELECTION { f i l eSe l)) ;
e l se

gtk_f i l e_selection_show_f i l e op_buttons {
GTK_FILE_SELECTION { f i l eSel)) ;

gtk_widget_show { f i leSel) ;

The static variable fileSel will initially be set to NULL and, once the file-selection widget

has been created, will hold the file-selection widget created within the body of the if statement.

A variable (''type'' in this example) is used by the application to specify whether the dialog is

being used to open a file or to save one. If type is OPEN (OPEN is an application-defined con

stant), then the Create Dir, Delete File, and Rename File buttons are hidden; otherwise, they

are shown. The last statement shows the file-selection widget.

Adding Arbitrary Widget Content to a File-Selection Widget

The remaining topic to be discussed is adding arbitrary content to a file-selection widget,

as was done in the example illustrated by Figure 7.9. The technique is rather simple. The

content displayed above the Selection entry widget is contained in a vertical box widget

named main_ vbox, which is managed by the file-selection widget. To add content, just cre

ate it and pack it into this vertical box widget. The following code adds a checkbox widget

to the file-selection dialog:

GtkWidget * hbox , * checkbut ton ;

hbox = gtk_hbox_new { FALSE , 0) ;

gtk_box-Fack_s tart { GTK_BOX {
GTK_F I LE_SELECTION { f i leSel) - >main_vbox) ,
hbox , FALSE , FALSE , 0) ;

checkbutton = gtk_check_button_new_wi th_labe l {
"Automat ically create a l og f i l e ") ;

gtk_box-Fack_start { GTK_BOX { hbox) , checkbutton , FALSE , FALSE , 0) ;

gtk_widget_show { hbox) ;
gtk_wi dget_show { checkbut ton) ;

GtkFontSelection 293

See Chapter 10 for information on how to work with vertical and horizontal boxes. The

results of the preceding code are shown in Figure 7. 1 1:

Figure 7. 1 1 Adding Content to a File-Selection Widget

GtkFontSelection

Class Name

GtkFontSelect i on

Parent Class Name

GtkNotebook

294 Chapter 7 • Windows and Dialogs

Macros

Widget type macro: GTK_TYPE_FONT_SELECTION

Object to widget cast macro: GTK_FONT_SELECTION (obj)

Widget type check macro: GTK _IS_FONT _SELECTI ON (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_FONT_SELECTION at runtime:

GtkType
gtk_font_selection_get_type (vo i d) ;

Create a new font-selection widget:

GtkWi dget *
gtk f ont select i on new (void) ; - - -

Retrieve the XLFD name of the currently selected font:

gchar *
gtk_f ont_selection_get_font_name (GtkFontSelec t i on * font s e l) ;

Open and retrieve the currently selected font:

GdkFont *
gtk_font_selection_get_font (GtkFontSelect i on * font sel) ;

Set the XLFD font name to be displayed by the font-selection widget:

gboolean
gtk_font_selection_set_font_name (GtkFontSelect i on * fontse l ,

const gchar * fontname) ;

Set the filter applied to the font displayed by the selection widget:
void
gtk_font_selection_set_f i l ter (GtkFontSelection * fontse l ,

GtkFontFilterType f i l ter_type , GtkFontType f ont_type ,
gchar * * foundries , gchar * *weight s , gchar * * s lants ,
gchar * * setwidths , gchar * * spac ings , gchar * * charset s) ;

Retrieve the preview text displayed by the font-selection widget:
gchar *
gtk_font_selection_get-preview_text (GtkFontSelect ion * font s e l) ;

Set the text displayed by the font-selection widget:
void
gtk_font_selection_set-previ ew_text (GtkFontSelect ion * fontse l ,

cons t gchar * text) ;

GtkFontSelection 295

Class Description

A GtkFontSelection widget is used to retrieve a font from a user, much like an instance of Gtk

ColorSelection is used to retrieve a color from a user. Either an X Logical Font Description

(XLFD) name or an open instance of a font can be obtained directly from a font-selection widget.

Font-Selection Widget User Interface

A font-selection widget consists of three panels, illustrated in Figures 7. 12, 7. 1 3, and 7. 14

(the OK button in these dialogs is not part of the font-selection widget). The Font panel

(Figure 7. 1 2) is where font selection takes place. Three lists (Font, Font Style, and Size) are

used to select a specific font. As can be seen in Figure 7. 1 2, the user has selected a 9-point

medium courier font. The XFLD name of the font (on my machine, given the fonts I have

installed and my current font path), as returned by the font-selection widget, is: -bitstream

courier-medium-r-normal-*-*-90-*-*-m-*-is08859- 1.

Figure 7.12 Font Panel

296

F o u n dry:
Fami ly : courie r
Weight: m e d i u m

Slant: roman
S et Width : normal
A d d Sty l e :

P ixel S i z e :
90

Figure 7.13 Font Information Panel

Chapter 7 • Windows and Dialogs

c ourie r

medium
roman
normal
(n i l)

9
90
75
75

This font name can be used to obtain an open font by calling gdkjonUoadO and passing

the font name an argument, as illustrated in the following code snippet:

GdkFont * font ;
char * name ;

name = II - b i t s t ream- courier-medium- r - normal - * - * - 9 0 - * - * - m- * - i s o8859 - 1 " ;
f ont = gdk_font_l oad (name) ;
i f (f ont 1 = (GdkFont *) NULL) {

I I success

A reference count is maintained within the GdkFont structure, initialized to I by

gdk_foncloadO when the font is loaded. An application can increment this reference count
by calling gdk_foncrefO:

gdk_font_ref (font) ;

Releasing a font is done by calling gdk_fonCunrefO and passing the GdkFont reference
as an argument:

gdk_font_unre f (font) ;

Only when the reference count goes to zero will the font actually be released.

GtkFontSelection 297

Figure 7.14 Filter Panel

Let's look at the remaining font-selection panels. The Font Information panel, shown in

Figure 7. 1 3, can be used to view the Requested Font Name (this is the font name returned

by the font-selection widget when queried for an XFLO font name). The actual name of the

font that, on a given machine, satisfies the requested font name is displayed as the Actual

Font Name. This is the name of the font that would be opened by a call to gdkjonUoadO,

were it called. A multicolumn list above the font names is used to explain the meaning of

the requested and actual font names in human-understandable terms.

The final panel, Filter, is shown in Figure 7. 14. The Filter panel is basically used to narrow

(or increase) the fonts displayed in the Font panel. As you can see in Figure 7. 14, I have
restricted the foundry to bitstream and the charset to is08859- 1. All other font characteristics

(weight, slant, set width, and spacing) are set to *, which is the XLFD way of saying "match
all." The result of this is that, in the Font panel, only bitstream is08859- l fonts are available

for selection. If I want to further restrict the set of fonts available in the Font panel to bold

fonts, I would select bold in the Weight list. The Foundry, Weight, Charset, Slant, Set Width,

and Spacing list widgets each allow multiple selections (unless * is selected, as this will clear
all other selections made by the user). For example, it is possible to set the filter to display

only adobe and bitstream fonts by selecting "adobe" and "bitstream" in the Foundry list. A
button, Reset Filter, can be used to reset the choices in the Filter panel to the default values.

298 Chapter 7 • Windows and Dialogs

Creating a Font-Selection Widget

Now that we know how the various panels in a font-selection widget are used, let's take a

look at how to create and add a font-selection widget to a user interface.

To create a font-selection widget, call gtk_foncselection_newO:

GtkWidget *
gtk_font_s e l e c t ion_new {void) ;

The return value is in the form of an instance of GtkWidget. You can convert this widget

to a GtkFontSelection widget with the GTK_FONT_SELECTION macro:

GtkWidget *widget ;
GtkFont S e l ect ion * f s ;

widget = gtk_font_s electi on_new {) ;
f s = GTK_FONT_SELECTION { f s) ;

Modifying the Font-Selection Widget

Once created, you can modify a font-selection widget by doing the following:

• Setting its filter

• Specifying the preview text displayed by the font-selection widget

• Setting the font name

I will describe how to do these optional steps in the following three sections.

Setting The Filter. In some cases, you will want to preset the choices in the Filter panel

of the font-selection widget. For example, if a font-selection widget is being used to retrieve

a bold font from the user, then it makes sense to initialize the filter so that only bold fonts

will be selectable. Specification of the filter can also ease the process of selecting a font for

the user by reducing the number of choices the user has to select from. To set the filter, you

must call gtk_foncselection_filterO:

vo id
gtk_f ont_se l e c t i on_s et_f i l ter { GtkFontSelection * font s e l ,

GtkFont F i l terType f i l ter_type , GtkFontType font_type ,
gchar * * foundries , gchar * *we ights , gchar * * s l ant s ,
gchar * * se twidths , gchar * * spac ings , gchar * * charse t s) ;

The argument fontsel is an instance of GtkFontSelection. The filtectype argument can
be one of the following values in Table 7.7.

Table 7.7 Filter Types

Filter Type

GTK]ONT_FlLTER_BASE

GTK_FONT_FlLTER_USER

Meaning

The user cannot modify this filter.

The user can modify, or reset, the filter.

GtkFontSelection 299

Setting filtectype to GTK_FONT_FILTER_BASE causes a font-selection widget to

restrict the changes you can make to the filter, based on the font filter attributes (foundries,

weights, slants, set widths, spacings, and charsets) that you pass as arguments. These

restrictions are reflected in the Filter panel, as shown in Figure 7. 1 5:

To obtain the results in Figure 7. 1 5, I set filtectype to GTK_FONT_FILTER_BASE and

used the foundries and charsets arguments to set the foundry to bitstream and the charset to

is08859- 1 . All other attributes of the font were left to default values. As you can see, all

choices in the Foundry and Charset lists are dimmed, and therefore unselectable, except for

* and the values that I specified. Setting the filtectype to GTK_FONT_FILTER_USER

would yield the same results, except all foundries and charsets would be selectable by the

user, as shown in Figure 7. 1 6:

300 Chapter 7 • Windows and Dialogs

The fonCtype argument is a mask consisting of one or more of the values bit-wise OR'd

together (see Table 7.8).

Table 7.8 Font Types

Font Type

GTK_FONT_BITMAP

GTK_FONT_SCALABLE

GTK_FONT_SCALABLE_BITMAP

GTK_FONT_ALL

Meaning

Show only bitmap fonts.

Show only scalable fonts.

Show only scalable bitmap fonts.

Show all fonts.

The convention specified by the XLFD (as of X l lR4) is that a scalable font is a font that

has an XLFD name that has no wildcards and contains the single digit "0" in the

PIXEL_SIZE, POINT_SIZE, and AVERAGE_WIDTH fields. The XLFD goes on to state

that scalable fields of an XLFD name are PIXEL_SIZE, POINT_SIZE, RESOLUTION_X,
RESOLUTlON_ Y, and AVERAGE_WIDTH.

GtkFontSelection 301

The font type (GTK_FONT_SCALABLE, GTK_FONT_BITMAP, or GTK_FONT_

SCALABLE_BITMAP) is determined by the following code executed by the font-selec

tion widget:

i f (pixe l s == 0 && point s == 0) {

e l se

i f (re s_x = = 0 && res_y == 0)

e l s e
type GTK_FONT_SCALABLE ;

In the preceding code, the variables pixels, points, res_x, and res-y refer to the PIXEL_

SIZE, POINT_SIZE, RESOLUTION_X, and RESOLUTION_ Y portions of an XLFD font

name, respectively. The interpretation is that by setting the fonctype argument of

gtkjoncselection_seUilter() to GTK_FONT_SCALABLE, you are telling the font-selec

tion widget to only display fonts that have "0" values in the PIXEL_SIZE, POINT_SIZE,

RESOLUTION_X, and RESOLUTION_ Y fields of the XLFD name. By setting fonctype to

GTK_FONT_SCALABLE_BITMAP, you are instructing the font-selection dialog to display

only fonts with a 0 value in the PIXEL_SIZE and POINT_SIZE fields, and either

RESOLUTION_X and RESOLUTION_ Y must be nonzero. Finally, by setting fonuype to

GTK_FONT _BITMAP, only fonts with a nonzero PIXEL_SIZE or POINT_SIZE field in the

XLFD name will be displayed.
Some of you may have noticed that the AVERAGE_WIDTH field is not being checked

for in the preceding code snippet. This is based on an assumption that a font that has no

pixel size and no point size cannot have a nonzero width, which may be true. However, to

be literal to the XLFD spec, the font-selection widget should probably be checking for

AVERAGE_WIDTH set to 0 as well before determining a font to be scalable.

The remaining arguments to gtk_foncselection_seCfilterO specify font attributes used

by the filter to determine the set of fonts selectable by the user. In each case, the argument

is a pointer to an array of pointers to char, with the last pointer in the array set to NULL.

Or, if you don't want to change the default for a particular filter, specifying NULL will

cause gtk_foncselection_seCfilterO to ignore that attribute. In Figure 7. 1 5, I allow the user
to select only bitstream is08859- 1 fonts. The code that implements this is as follows:

char * foundri e s [] = { " b i t s t ream" , NULL } ;
char * charset s [] = { " i so8859 - 1 " , NULL } ;

gtk_widget_show_a l l (window) ;
gtk_font_se l e c t i on_set_f i l ter (GTK_FONT_SELECTION (font Sel) ,

GTK_FONT_FI LTER_USER , GTK_FONT_ALL ,
f oundries , NULL , NULL , NULL , NULL , charsets) ;

302 Chapter 7 • Windows and Dialogs

By setting the weights, slants, set widths, and spacings arguments to the value NULL,

these attributes of the filter are unaffected by my call. Notice that I call gtk_ widgeCshow _aliO

to display the window that is the parent of the font-selection widget before calling gtk_

foncselection_seCfilterO. 1t so happens that Gtk+ will generate errors and incorrectly display

the window and font-selection widget if the window containing the font-selection widget is

not made visible at the time gtk_fonCselection_seCfilterO is called (this is a bug in Gtk+ 1 .2

apparently).

Let's take a look at what values can be specified for these remaining arguments passed

to gtk_foncselection_seCfilterO. All of these are defined by the XLFD. Here I simply sum

marize what the XLFD states about these attributes and refer those readers in need of more

information to the XLFD for more details.

• foundries Entries in this vector correspond to the FOUNDRY field of the XLFD

font name. Examples include "bitstream" and "adobe." Names in this field have been

registered with the X Consortium.

o weights The weight name is a string that identifies the typographic weight of the font

(e.g., its nominal "blackness"), according to the judgment of the foundry. Perhaps the most

common weights are "bold" and "normal." Others include such names as "demibold,"

"demi bold," "light;' "black;' and "regular:' Each entry in this vector corresponds to the

WEIGHT_NAME field in the XLFD name of the font.

o slants A slant defines how upright characters rendered in the font will appear. Most

fonts are either roman (upright) or italic. The XLFD defines the codes that can be

used as entries in this vector, as summarized in Table 7.9.

Table 7.9 XLFD Slant Codes

Code Translation

"R" "Roman"

"I" "Italic"

"0" "Oblique"

"RI" "Reverse italic"

"RO" "Reverse oblique"

"OT" "Other"

numeric Polymorphic

Description

Upright design

Italic design, slanted clockwise from

the vertical

Obliqued upright design, slanted

clockwise from the vertical

Italic design, slanted

counterclockwise from the vertical

Obliqued upright design, slanted

counterclockwise from the vertical

Other

See XLFD, Section 6 for more details

GtkFontSelection 303

The slant of a font is described by the SLANT field of the XLFD name.

• setwidths Entries in this vector correspond to the SETWIDTH_NAME field of the

XLFD font name. Examples include "Normal," "Condensed," "Narrow," and "Wide."

• spacings Entries in this vector correspond to the SPACING field in the XLFD name

of a font. Table 7 . 1 0 lists the possible values.

Table 7.10 XLFD Spacing Values

Value Translation

Up" "Proportional"

"M" "Monos paced"

"e" "CharceU"

Meaning

Logical character width varies for each
glyph.

Every glyph in the font has the same
logical width.

Glyphs in the font must fit within a
"box" of constant width and height.

• charsets A charsets vector entry corresponds to a concatenation of the

CHARSET_REGISTRY and CHARSET_ENCODING portions of an XLFD font

name. There will always be a single dash (-) character in such a string to separate

these two components. The CHARSET_REGISTRY portion is a name registered with

the X Consortium that identifies the registration authority that owns the specified

encoding. CHARSET_ENCODING is a registered name that identifies the coded

character set as defined by the registration authority and, optionally, a subsetting hint.

Examples of strings that can be passed include "jisx020 1 . 1976-0," "is08859- 1 ,"

"adobe-fontspecific," and "sunolglyph- l ."

Setting and Retrieving the Preview Text. Preview text is text displayed in the Preview
area of the Font panel (see Figure 7. 1 2). As the user changes the attributes of the font, the

font-selection widget will redraw the text in the Preview area to give the user an indication

of what the effect of the selected font is on the preview text.
To set the preview text, call gtk_fonCselection_secpreview _textO:

voi d
gtk_font_s e l e c t ion_set-previ ew_text (GtkFont S e l e c t i on * font se l ,

cons t gchar * text) ;

The fontsel argument is an instance of GtkFontSelection, and text is a NULL-terminated

C string that will be displayed in the Preview area of the Font panel. A copy of the string is

made by GtkFontSelection, so you are free to release or modify the memory pointed to by

text in any way you see fit, once gtk_foncselection_secpreviewO has returned, of course.
The default preview text is "abcdefghijk ABCDEFGHIJK." You can obtain a copy of the

current preview text by calling gtk_fonCselection�ecpreviewO:

304 Chapter 7 • Windows and Dialogs

gchar *
gtk_font_se l e c t i on_get-previ ew_text (GtkFontSelection * font s e l) ;

The returned value is not a copy of, but a pointer to, the NULL-terminated C string main

tained by the font-selection widget. Therefore, your application must make a copy of it if it plans

to modify the string in any way.

Initializing the Font Name. You can initialize the font selection by passing the XLFD

font name of the font to the function gtk_foncselection_setjoncnameO:

gboo l ean
gtk_font_se l e c t i on_set_font_narne (GtkFontSelect ion * font s e l ,

const gchar * fontnarne) ;

The fontname argument is the XLFD name of the desired font. For example:

GtkWidget *widget ;
gboo lean ret ;

ret = gtk_font_s e l e c t i on_set_font_narne (GTK_FONT_SELECTION (widget) ,
II - b i t s t rearn- courier - rnediurn- r - norrnal - - 15 - 1 4 0- 75 - 75 - rn- 9 0 - i so8859 - 1 ") ;

If the font name was valid, TRUE is returned; otherwise, FALSE is returned. If successful

(i.e., TRUE is returned), then this call nullifies a previous call made either to this function or
to gtk_foncselection_secfilterO, even if the filter you describe happens to match the font

name you pass.

Retrieving the Font Selected by the User. You can query the font-selection widget for
the XLFD name of the font chosen by the user, or you can request that the font-selection

widget open and return a reference to the font on your behalf. To get the XLFD name of the

font, call gtkjoncselection�etjoncnameO:

gchar *
gtk_font_s e l e c t ion_get_font_narne (GtkFontSelect ion * font s e l) ;

If the user has not yet selected a font, then NULL is returned. To open the current

selected font and obtain a handle to that font, you can call gtkjoncselection�ecfontO:

GdkFont *
gtk_font_se l e c t i on_get_font (GtkFontSelect ion * font s e l) ;

Again, if the user has not selected a font or if some error causes the call to fail, then

NULL will be returned. Otherwise, a GdkFont with a ref count of 1 will be returned.

GtkFontSelectionDialog

GtkFontSelectionDialog

Class Name

GtkFontSelectionDialog

Parent Class Name

GtkWindow

Macros

Object to widget cast macro: GTK_FONT_SELECTION_DIALOG (obj)

Application-Level API Synopsis

Retrieve the constant G�TYPE_FONT_SELECTIONJ)IALOG at runtime:
GtkType
gtk_font_selection_dialog-get_type(void) i

Create a new font-selection dialog widget:
GtkWidget *
gtk_font_selection_dialog_new(const gchar * t itle) i

Retrieve the XLFD font name of the selected font or NUlL if no font has been selected.
Corresponds to gtk_foncselection...,geCfoncnameO:
gchar *
gtk_font_selection_dialog_get_font_name (GtkFontSelectionDialog * fsd) ;

305

Open the font selected by the user, returning a GdkFont reference or NULL if the font could not
be opened. Corresponds to gtk30ncselection-Jet30nt():
GdkFont *
gtk_font_selecti on_dial og_get_font(GtkFontSe lectionDialog *fsd) i

Initialize the XLFD name of the selected font. Corresponds to
gtk_foncselection_set30nt_nameO:
gboolean
gtk_font_selection_dialog_set_font_name(GtkFontSelectionDialog *fsd ,

const gchar * fontname) j

306 Chapter 7 • Windows and Dialogs

Application-Level API Synopsis (Continued)

Set the filter applied to fonts selectable by the user. Corresponds to gtlCfoncselection_seCfilter():
void
gtk_font_selection_dialog_set_fil ter (GtkFontSelectionDialog *fsd,

GtkFontFilterType filter_type, GtkFontType font_type,
gchar * * foundries , gchar **weight s , gchar **slants,
gchar **setwidths, gchar **spacings, gchar **charsets);

Retrieve the preview text displayed by the font-selection dialog widget. Corresponds to
gtk30ncselection...,get:..preview _textO:
gchar *
gtk_font_selection_dialog_get-preview_text (GtkFontSelectionDialog * fsd) ;

Set the preview text displayed by the font-selection dialog widget. Corresponds to
gtkJoncselection_set:..preview_textO:
void
gtk_font_selection_dialog_set-preview_text (GtkFontSelectionDialog * fsd,

const gchar *text) ;

Class Description

The GtkFontSelectionDialog widget is simply an instance of GtkFontSelection that has

been conveniently placed inside of a dialog, as shown in Figure 7. 1 7:

The font-selection dialog adds three buttons, labeled OK, Cancel, and Apply. The Apply

button is, by default, hidden from users, much in the same way that the Help button is hidden

by the FileSelection widget.

The functions supplied by the GtkFontSelectionDialog widget API are, with only one

exception (gtlcfoncselection_dialo�new), wrappers of functions provided by GtkFont

Selection. The only difference between the GtkFontSelection function and its counterpart

in GtkFontSelectionDialog is in the name of the function and the type of its first argument.

To determine the corresponding function in the GtkFontSelection API, given a function

from the GtkFontSelectionDialog API in the following form:

< ret type >
gtk_font_selection_dialog_<x> (GtkFontSelect ionDialog * f s d ,

argl , . . . , argn) ;

the corresponding GtkFontSelection function will be:

< ret type >
gtk_font_selection_<x> (GtkFontSelection * font sel , argl , . . . , argn } ;

GtkFontSelectionDialog 307

Figure 7.17 GtkFontSelectionDialog

In the preceding, <rettype> is the type of the function return value, and <x> is the portion

of the function name that describes what the function actually does. For those who might

still be confused, the following example should help make things clearer. In the following

font-selection dialog function:

GtkWidget *
gtk_font_s e l e c t i on_dialog_set-previ ew_text (GtkFontS e l e c t i onDialog

* f s d , const gchar * text) ;

<rettype> is GtkWidget *, and <x> is "seCpreview _text." Thus, the function that will cor

respond to gtkjoncselection_dialog_secpreview _textO in the GtkFileSelection API is as

follows:

GtkWidget *
gtk_font_se l e c t i on_set-previ ew_text (GtkFont S e l e c t i on * font se l ,

const gchar * text) ;

Because the GtkFontSelectionDialog documentation for a given function is (again,
except in only one case) identical to the documentation for the corresponding function in

GtkFontSelection, I refer you to the GtkFontSelection documentation previously presented

for descriptions on how the functions are called and behave. In the API reference section

308 Chapter 7 • Windows and Dialogs

for GtkFontSelectionDialog, I mentioned, for each GtkFontSelectionDialog function, the

name of the corresponding function in GtkFontSelection. In this section, I will cover how

to create a font-selection dialog and will also show how to handle presses of the OK, Can

cel, and Apply buttons.

Creating an Instance of GtkFontSelectionDialog

To create an instance of GtkFontSelectionDialog, an application must call gtlCfonC

selection_dialog_newO:

GtkWidget *
gtk_font_s election_dial og_new (cons t gchar * t i t l e) ;

The title argument specifies the title displayed in the title bar of the dialog by the window

manager.

In the section on GtkFileSelection earlier in this chapter, I described a basic strategy for

creating, showing, hiding, and destroying a file-selection widget. All of what I said there

applies to the font-selection dialog as well. Once you have created a font-selection dialog,

you can optionally initialize it in the same manner that you would initialize a font-selection

widget, as described in the earlier section on GtkFontSelection. Once the font-selection dia

log has been initialized, calling gtk_ widgecshowO causes the dialog to display, and calling

gtk_widgechideO hides the dialog (so that it can be shown once again the next time the

user places your application in a state that requires a font-selection dialog to be shown). Or

you can destroy the font-selection dialog widget by calling gtk_widgecdestroyO, passing

the font-selection dialog widget instance as an argument. Destroying or hiding the font

selection dialog is done in the button "clicked" signal function of the ok_button and

cancel_button button widget instances maintained by the font-selection dialog widget.

Refer to the section "Responding to OK and Cancel Buttons" in the earlier section on Gtk

FileSelection for details on how to handle OK and Cancel buttons in a font-selection dialog.

The font-selection dialog widget does not have a Help button like the file-selection widget

(which is perhaps a consistency issue that should be addressed because, from my point of

view, a font-selection dialog is probably a widget that is going to confuse more users than a

file-selection widget).

The font-selection dialog has an Apply button, which is hidden by default. To show the

Apply button, you can call gtk_widgeCshowO as in the following code snippet:

GtkWidget * f sd ;

Just as with the other buttons (OK and Cancel), a "clicked" signal function can and

should be assigned to the Apply button. In this function, you should query the font-selection

dialog widget for the currently selected XLFD font name, or the corresponding font, and

apply it in the manner that is appropriate for your application. My suggestion would be to

leave the dialog up, instead of hiding or destroying it in the clicked signal function, because

GtkColorSelectionDialog

the user might decide after applying the font that the result is not what was intended anc

want to select (and apply) another font.

GtkColorSelection Dialog

Class Name

GtkColorSelec.t ionDialos

Parent Class Name

GtkWindow

Macros

Widget type macro: GTI(_'l'YI!Tium�.ii.�BLBCTlo!U):tALOG

Object to widget cast macro: GTI(_�SBLBCTlo!U)ULOG (obj)

Widget type check J.ll8ClOl GTI(_D_�R_SBLECTION3lrIAI..OG (obj)

Application-Level API Synopsis

Retrieve the constant eTK..� SBt.BCTI� at runtime:
GtkType
gtk_color_select ion_tia1OS...Jl&t_type (will) ;

Create a new instance if �:
GtkWidget *

gtk_color_selection_dialog_new (voi41 ;

Class Description

A color-selection dialog displays a dialog like the one shown in Figure 7. 1 8. With this dia

log, a user can select a color by specifying either HSV (Hue, Saturation, Value) or ROB

(Red, Green, Blue) values or by positioning the pointer over the desired color displayed by
a color wheel and clicking mouse button 1 .

310 Chapter 7 • Windows and Dialogs

Figure 7.18 GtkColorSelectionDialog

The action area of a color-selection dialog displays three buttons labeled OK, Cancel,

and Help, respectively. Clicked signal functions are not registered for these buttons by the

color-selection widget; the application must assign a clicked signal function to each of

these buttons (or hide the buttons that are not desired, as I will illustrate later). To use a

color-selection dialog, an application must call functions provided by the GtkColorSelec

tion widget API that is described later in this chapter. I will briefly illustrate the use of these

functions in the sample code presented in this section.

Creating a Color-Selection Dialog

GtkColorSelectionDialog provides only one function, gtk3010cselection_newO, that can

be used to create an instance of a color-selection dialog:

GtkWidget *
gtk_color_s e l e c t i on_dialog_new (void) ;

Like most widget creation functions in Gtk+, the return value is an instance of GtkWidget.

Usually, an application will create an instance of GtkColorSelectionDialog from within the

clicked handler of a button or the activate handler of a menu item. The corresponding button
or menu item should be labeled in a way that indicates to the user that a color will be solicited

by the application when the control is activated (e.g., "Select a color ... ").

Example

The following code illustrates how to use a color-selection dialog in an application. The

focus here is on application structure; details regarding the color-selection widget (GtkCol

orSelection), which forms the basis of the color-selection dialog widget, are provided in

detail later in this chapter.

GtkColorSelectionDialog

Listing 7.2 Using a Color-Selection Dialog

001 # inc lude <gtk/gtk . h>
002
003 vo id
0 04 ColorSe lDialogOk (GtkWidget *widget , GtkWidget * colorsel)
005 {
006 GtkColorS e l e c t i onDialog * c s e ldialog =

0 07 GTK_COLOR_SELECTION_DIALOG (colorsel) ;

311

008 GtkColorSelect i on * c sel = GTK_COLOR_SELECTION (c se ldialog - >colorse l) ;
009 gdouble color [4] ;
01 0
01 1 gtk_color_se l e c t i on_get_color (c s e l , color) ;
0 1 2
0 1 3 print f (" r %d g %d b %d\n " , (int) (color [O] * 2 5 5) ,
014 (int) (color [1] * 2 5 5) , (int) (color [2] * 2 5 5)) ;
0 1 5 gtk_widget_de stroy (colorsel) ;
0 1 6
017
018 voi d
019 ColorSelDialogCancel (GtkWidget *widget , GtkWidget * colorsel)
02 0 {
02 1 gtk_widget_de st roy (colorsel) ;
02 2
02 3
024 voi d
02 5 PopupColorSelect ion (GtkWidget *widget , gpointer ignored)
02 6 {
027 GtkWidget * colorse l ;
028
029 colorsel = gtk_color_s e l e c t i on_dialog_new (" S elect a color ! ") ;
03 0
03 1 gtk_s ignal_connect (GTK_OBJECT (
03 2 GTK_COLOR_SELECTION_DIALOG (colorsel) - >ok_button) ,
03 3 " c l i cked " , GTK_S IGNAL_FUNC (ColorSe lDialogOk) , colorsel) ;
034
03 5 gtk_s ignal_connect (GTK_OBJECT (
0 3 6 GTK_COLOR_SELECTION_DIALOG (colorsel) - >cancel_but ton) ,
037 " c l i cked " , GTK_S IGNAL_FUNC (ColorSe lDialogCancel) , colorsel) ;
038
039 gtk_widget_show_a l l (colorsel) ;
04 0
04 1 gtk_widget_hide (GTK_WIDGET (
04 2 GTK_COLOR_SELECTION_DIALOG (colorsel) - >he lp_button)) ;
04 3
044
04 5 ma in (int argc , char *argv [])
04 6 {
047 GtkWidget *button , *dialog_window ;
048
049 gtk init (&argc , &argv) ;

312 Chapter 7 • Windows and Dialogs

05 0
05 1 dialog_window = gtk_dialog_new () ;
052 gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUS E) ;
0 5 3
054 but t on = gtk_button_new_wi th_labe l (" Get Color . . . ") ;
05 5 gtk_s ignal_connect (GTK_OBJECT (button) , " c l i cked " ,
05 6 GTK_S IGNAL_FUNC (PopupCol orSe lect ion) , NULL) ;
057 gtk_box-pack_start (GTK_BOX (GTK_D IALOG (dialog_window) - >ac t ion_area) ,
058 but ton , FALSE , FALSE , 0) ;
05 9
06 0 gtk_widget_show_a l l (dialog_window) ;
06 1
0 6 2 gtk main () ;
06 3

In the preceding code, mainO creates a dialog with a single button in its action area

labeled "Get Color ... ". Clicking on this button causes the clicked signal function PopupCol

orSelectionO to be invoked. In this function, a new instance of GtkColorSelectionDialog is
created (line 029). On line 03 1 , I set the clicked signal function of the OK button to Col

orSelDialogOkO, which I will describe later in this chapter. The action area, as I mentioned,

has three buttons labeled OK, Cancel, and Help. You can reference the GtkButton widget

instances corresponding to these buttons as fields of the color-selection dialog, as illustrated
on lines 032 (ok_button), 036 (cancel_button), and 042 (help_button). For example, the OK

button can be accessed as follows:

GtkWidget * colors e l , *button ;

button = GTK_COLOR_SELECTION_DIALOG (colorsel) - >ok_button ;

On line 041 , I hide the Help button because my sample program is incapable of providing

help. Generally, applications should not hide the OK button but may decide to hide the Cancel

button if selection of a color is for whatever reason mandatory.

The Cancel button signal function is set to ColorSelDialogCancelO on lines 035 through

037. The color-selection dialog widget is passed as client data; it is the job of this callback

to simply destroy the color-selection dialog:

018 void
01 9 ColorSe lDialogCance l (GtkWidget *widget , GtkWidget * colorsel)
02 0 {
02 1 gtk_widget_de stroy (colorsel) ;
02 2 }

The OK button signal function, ColorSelDialogOkO, is much more interesting:

003 void
004 ColorSelDialogOk (GtkWidget *widget , GtkWidget * colorsel)
005 {
006 GtkColorSelectionDialog * c s e ldialog =

007 GTK_COLOR_SELECTION_DIALOG (colors e l) ;
008 GtkColorSe lect ion * c s e l = GTK_COLOR_SELECTION (c seldialog- >colorsel) ;

GtkColorSelection 313

0 09 gdouble color [4] ;
01 0
0 1 1 gtk_color_se l e c t i on_get_color (c s e l , color) ;
0 1 2
0 1 3 print f (" r %d 9 %d b %d\n " , (int) (color [O] * 2 5 5) ,
014 (int) (color [l] * 2 5 5) , (int) (color [2] * 255 » ;
015 gtk_widget_de st roy (colorse l) ;
016

ColorSelDialogOkO, like ColorSelDialogCancelO, receives as client data the color-selection

dialog containing the button that was pressed. On line 006, I convert the client data to an instance

of GtkColorSelectionDialog, and then, on the very next line, I retrieve from the color-selection

dialog the instance of GtkColorSelection that it manages (line (08). It is at this point that I must

use the API of GtkColorSelection. The goal here is to retrieve the color selection made by the

user so that I can display it. On line 009, a gdouble array with four elements is allocated. This

array is passed to gtk3010r_selection�eCcolor() on line OI l . The first three elements of this

array contain, in order, the red, green, and blue components of the color that was selected. The

range of these values is [0.0, 1.0]. On line 013 and 014, I scale these values to integer RGB com

ponents in the range [0, 255], and then I display them to the console. Finally, on line 015, I

destroy the color-selection dialog widget by calling gtk_ widgecdestroyO, just as I had done in

ColorSelDialogCancelO. More details on gtk_color_selection�eccolor() are provided in the

next section, which describes the GtkColorSelection widget API.

GtkColorSelection

Class Name

GtkColorSelection

Parent Class Name

GtkVBox

Macros

�dget � m�: GTK_TYPE_COLOR_SELECTIaN

Object to widget cast �: GTK _COLOR_SELECTION (obj)

�dget type check �: GTK_Is....;.COLOR_SELECTl aN (obj)

314 Chapter 7 • Windows and Dialogs

Supported Signals

Table 7. 1 1 Signals

SigMI Name Condition Causing Signal to Trigger

color_changed The user has selected a different color.

Signal Function Prototypes

void
color_changed(GtkColorSelection *colorselection, gpointer user_data);

Supported Arguments

Prefix: GtkColorSelection : :

Table 7.12 GtkColorSelection Arguments

Name

policy

Type

GTK_TYPE_UPDATE_TYPE

GTK_TYPEJ300L

Application-Level API Synopsis

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

Retrieve the constant GTK_TYPE_COLOR_SELECTION at runtime:
GtkType
gtk_color_selection_get_type(void);

Create a new instance of GtkColorSelection:
GtkWidget *
gtk_color_selection_new(void);

Set the update policy of the color-selection widget to GTK_UPDATE_CONTINUOUS,
G�UPDATE_DISCONTINUOUS, or GTK_UPDATE_DELAYED:
void
gtk_color_selection_set_update-policy(GtkColorSelection *colorsel,

GtkUpdateType pol i cy);

Enable or disable the use of opacity by the color-selection widget:
void
gtk_color_selection_set_opacity(GtkColorSelect ion *colorsel ,

gint use_opacity);

GtkColorSelection

Application-Level API Synopsis (Continued)

Set the color of the color ectioo WitIga:
void
gtk_color_select ion_s et_col(jr (Gtl��Select ion * colorsel ,

gdoubl e *sQl!ID:J ,

Get the color of the colOr-selection WitIga:
void
gtk_color_selection-9E!t_cQl(jr �olorselection *colorse l ,

gdouble *eQl(jr) ;

Class Description

315

The preceding section described GtkColorSelectionDialog, a widget that displays an instance

of GtkColorSelection in a dialog and provides buttons that can be used to accept the changes

made by the user (OK), cancel the color-selection dialog (Cancel), or get help from the appli

cation (Help). In this section, I describe GtkColorSelection. While most applications will use

GtkColorSelectionDialog to retrieve a color selection from users, GtkColorSelection is useful

if you want to embed the color-selection widget in a dialog of your own design (e.g., a dialog

that allows the user to choose a foreground and a background color).

Creating a Color-Selection Widget
Color-selection widgets are fairly easy to use. To create one, an application must call

gtk3010cselection_newO:

GtkWidget *
gtk_color_se l e c t i on_new (void) ;

Once the widget is created, it can be added to a dialog or some other container widget.

Color-Selection Widget Attributes
There are two attributes of a color-selection widget that you can control. The first is its update
policy. This basically is a preference that globally controls the update policy of the scale widgets
the color-selection widget displays that can be used to change HSV, RGB, and opacity values

in the widget. To change the update policy, call gtk_color_selection_secupdate_policyO:

void
gtk_color_se l ec t i on_s et_update-po l i cy (GtkColorS e l e c t i on * colorse l ,

GtkUpdateType policy) ;

The argument colorsel is an instance of GtkColorSel, and policy is one of the following
constants : GTK_UPDATE_CONTINUOUS, GTK_UPDATE_DISCONTINUOUS, or

GTK_UPDATE_DELAYED. See the description of gtk_range_seCupdate_policyO in

316 Chapter 7 • Windows and Dialogs

Chapter 1 3, "Range Widgets and Adjustment Objects," for more details on the effect these

values have on the scale widgets displayed by the color-selection dialog.

The other attribute that can be changed is the use of opacity in the selection of a color. By

default, opacity is disabled (but a bug in the color-selection widget results in the opacity scale

still displaying in the user interface, a problem I will address later in this chapter). To enable or

disable the use of opacity by the color-selection widget, call gtlccolor_selection_secopacityO:

voi d
gtk_color_s e l e c t i on_set_opacity (GtkColorSelection * colors e l ,

g int use_opac ity) ;

The argument use_opacity can be set to either FALSE (default) or TRUE. Before I describe

what opacity is, let's get to the issue of how to hide the opacity scale and label in the dialog

when opacity is disabled. Internally, the label for the opacity scale is stored in a field of the

color-selection widget named opacity_label. The entry widget into which an opacity value

may be typed is stored in a vector named entries at element 6, and the scale widget is stored

in a vector named scales, also located at element 6. So after you have shown (realized and

mapped) the color-selection widget, you can hide the widgets I just described to remove the

opacity-related controls from the widget by executing code like the following:

GtkWidget * colorse l ;

gtk_wi dget_show (colorsel) ;
gtk_wi dget_hide (GTK_COLOR_SELECTION (colorsel) - >opac i ty_label) ;
gtk_wi dget_hide (GTK_COLOR_SELECTION (colorsel) - >scales [6]) ;
gtk_widget_hide (GTK_COLOR_SELECT ION (colorsel) - >ent ri e s [6]) ;

This sort of code is obviously highly dependent on the internal structure of GtkColorSelection

and is not recommended in code that needs to be portable to more than one version of Gtk+; the

correct solution would be for the color-selection widget to show and hide the opacity controls

based on the opacity attribute currently set by the application.

What Is Opacity?
Opacity is a value in the range [0.0, 1.0] that describes the transparency of a color relative

to its background. A fully opaque color (opacity = 1.0) will, when placed over a back

ground, completely replace the pixel below it in the background. A fully transparent color

(opacity = 0.0) will allow the background color to show through completely. A color with
an opacity of 0.25 will contribute 25% of the color that is shown, while the background con
tributes 75%. An opaque color is computed at rendering time using a blending equation:

pixel = color * opac ity + (1 - opacity) * background

With an opacity of 0.25, the equation reduces to the following:

color * 0 . 25 + 0 . 75 * background .

Summary 317

Some image fonnats encode pixels as RGBA. The fourth channel (A) is referred to as

an alpha channel and is usually 8 bits in depth (opacity values falling in the range [0.0, 1 .0]

would be scaled to the range [a, 255] in this case).

You only need to request opacity values if your application makes use of them in some

way. Most applications do not need to retrieve opacity values when asking for a color.

Setting and Retrieving Colors
Some applications need to initialize the color-selection widget to reflect a color that is being

changed. For example, a color-selection widget that requests the value of a new background

color should be initialized to display the current background color. All applications must

retrieve the color that was set by the user; otherwise, there is little purpose in displaying a

color-selection dialog in the first place (granted, there might be exceptions).

To set the color and (if enabled) the opacity values displayed by a color-selection widget,

you can call gtk3010r_selection_seCcolorO:

vo id
gtk_color_s e l e c t i on_s e t_color (GtkColorSe l e c t i on * c o l ors el ,

gdoubl e * color) ;

The argument colorsel is an instance of GtkColorSel, and color is a vector of type gdouble

that contains four elements. The first element holds the red component of the color, the second

holds the green component, the third holds the blue component, and finally, the fourth holds

the opacity value. All of the values must be in the range of [0.0, 1 .0] .

To retrieve the current color and opacity values from a color-selection widget, you can

call gtk3010cselection�eccolorO:

vo i d
gtk_color_s e l e c t i on_get_color (GtkCol orSel e c t i on * colors e l ,

gdoubl e * color) ;

The arguments passed to gtk_colocselection�eccolorO are the same as those previously

described for gtk_color_selection_seccolorO.

Summary

In this chapter, we took a look at the following widgets: GtkWindow, GtkDialog, GtkFile

Selection, GtkFontSelection, GtkFontSelectionDialog, GtkColorSelection, and GtkCol

orSelectionDialog. An instance of GtkWindow can be used to create a window into which

context is placed by an application. Chapter 10 will discuss widgets that can be used to

organize such content. GtkDialog is a class that makes the creation of certain types of win
dows easier on applications by preloading a window with a content area and an action area,

both instances of GtkBox (boxes are also discussed in Chapter 1 0) . A file-selection widget

(GtkFileSelection) puts a dialog up that allows a user to traverse the file system and select
a file. Controls are provided that allow users to create directories and delete files. We also

illustrated how custom content can be added to a file-selection widget. GtkFontSelection-

318 Chapter 7 • Windows and Dialogs

Dialog and GtkColorSelectionDialog are similar in concept to GtkFileSelection, except

these two widgets put up dialogs that allow the user to select a font and a color, respectively.

Two classes not related to GtkWindow, GtkFontSelection and GtkColorSelection were

described in this chapter due to their importance to the operation of GtkFontSelectionDia

log and GtkColorSelectionDialog, respectively. The rest of the widgets (GtkFileSelection,

GtkFontSelectionDialog, and GtkColorSelectionDialog) all derive from GtkWindow and

thus can make use of the functionality described in the section on GtkWindow.

(H A P T E R

S E P ARATO R S , AR ROWS ,
I MAC E S , P I XMAP S ,

AN D E N T RY W I D C E TS

This chapter concludes the presentation of Gtk + base widget classes by taking a look at those

listed in Table 8. 1 .

Table 8.1 Widgets Covered in This Chapter

Class Name

GtkSeparator

GtkHSeparator

GtkVSeparator

GtkArrow

Gtklmage

GtkPixmap

GtkEntry

Separators

Description

Base widget class for horizontal and vertical

separators (GtkHSeparator, GtkVSeparator)

Horizontal separator widget

Vertical separator widget

Arrow widget

Image display widget

Widget that supports pixmap data

Single-line, text-edit field widget

A separator is a horizontal (GtkHSeparator) or vertical (GtkVSeparator) line placed by an

application at an arbitrary location in a window or dialog. This is not a line in the computer

graphics sense of a line (i.e., a part of a drawing or graphic). Instead, separators are used by
applications to create distinct areas within a dialog, and each area contains controls that are

related to one another in some way. Using separators in this way will make it easier for your
users to identify related controls, and this, in turn , will make your application's user interface

more effective and easy to use.
One of the most common uses of a separator widget is to visually separate the control and

action areas of a dialog. Figure 7-3 (see Chapter 7, "Windows and Dialogs") illustrates an

3 1 9

320 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

instance of GtkDialog. The control area, which is the area above the horizontal separator, is
where the controls specific to the dialog are placed, and this is where the user performs the

primary task of the dialog. The action area, located below the horizontal separator, is where

the user decides how the content of the dialog is to be applied (in this case, the dialog is simply
dismissed by a press of the OK button). Most, if not all, of your application's dialogs should

be organized using separate control and action areas and be separated by a horizontal separa

tor, as shown in the illustration. GtkDialog does this for you automatically.

Horizontal and vertical separators also can be used within the control area of a dialog to

group related controls, although GtkFrame provides a better solution in some cases (Gtk

Frame is discussed in Chapter 1 1 , "More Container Classes").

Horizontal separators are also used in menus to create groups of related menu items. Figure
8. 1 shows a typical Edit menu with horizontal separators. It is easy to see how horizontal sep

arators are used to break the menu items up into groups of related items, making the menu

much easier for a user to work with.

Figure 8.1 Menu Using Horizontal Separators to Group Related Items

GtkSeparator 321

Now that we have an idea of what separators are used for, it is time to take a detailed
look at the three Gtk+ separator classes: GtkSeparator, GtkHSeparator, and GtkVSeparator.

GtkSeparator

Class Name

GtkSeparator

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK_TYPliLSBllARA'.I!01t

Object to widget cast macro: GTK _ SB'ARA'.I!01t (obj)

Widget type check macro: GTK_ IS_SBPARA'l'OR (obj)

Application-Level API Synopsis

Obtain GTK_TYPE.-8EPARATOR at runtime:
GtkType
gtk_separator_get_type (void) ;

Class Description

GtkSeparator provides the widget class from which the GtkHSeparator and GtkVSeparator

classes, discussed in the following sections, inherit.

322 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

GtkHSeparator

Class Name

GtkHSeparator

Parent Class Name

GtkSeparator

Macros

Widget type macro: GTK_TYPE_HSEPARATOR

Object to widget cast macro: GTK_HSEPARATOR (obj)

Widget type check macro: GTK_IS_HSEPARATOR (obj)

Application-Level API Synopsis

Obtain the GTK_TYPE_HSEPARATOR constant at runtime:

GtkType
gtk_hseparator_get_type (void) ;

Create a new instance of GtkHSeparator:
GtkWidget *
gtk_hseparator_new (void) ;

Class Description

GtkHSeparator is a simple class that creates a horizontal separator (similar to the one that
is often used to separate groups of related menu items in a menu or the control and action
areas of a dialog) . To create an instance of GtkHSeparator, call gtk_hseparator_newO:

GtkWidget *
gtk_hseparator_new (void) ;

The horizontal separator that is returned must be added to a container widget in order to be
displayed. For a horizontal separator, most likely this will be a vbox (see Chapter 10, "Container

and Bin Classes"). Adding a separator to a menu will be discussed in Chapter 9, "Menus." The

following code illustrates the creation of a simple message box. In Chapter 4, "Widgets," I

GtkHSeparator 323

presented a routin�, MessageBoxO, that creates a message box using GtkDialog. I have dupli

cated the code for MessageBoxO here:

Listing 8.1 MessageBox

inc lude <gtk/gtk . h>

/ *
* S imple Me ssageBox
* /

voi d
Me s s ageBox (char *me s s age)
{

GtkWidget * l abe l , *button , *dial og_window ;

dialog_window = gtk_dialog_new () ;
gtk_window-pos i t ion (GTK_WINDOW (dialog_window) ,

GTK_WIN_POS_MOUSE) ;

gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " destro:r " ,
GTK_S IGNAL_FUNC (gtk_widget_de st royed) , &dialog_window) ;

gtk_window_set_t i t l e (GTK_WINDOW (di a log_window) , " Mess a.ge ") ;
gtk_container_border_width (GTK_CONTAINER (di a log_windo'�) , 0) ;

but ton = gtk_button_new_with_labe l (" OK ") ;
GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
gtk_box-pack_start (

GTK_BOX (GTK_DIALOG (dialog_window) - >ac t i on_area) ,
but ton , TRUE , TRUE , 0) ;

gtk_s ignal_connect_obj ect (GTK_OBJECT (but ton) , " c l i cked " ,
GTK_S IGNAL_FUNC (gtk_widget_de s t roy) ,
GTK_OBJECT (dialog_window» ;

label = gtk_l abe l_new (me s sage) ;
gtk_mi sc_set-padding (GTK_MISC (l abe l) , 1 0 , 1 0) ;
gtk_box-pack_s tart (GTK_BOX (GTK_D IALOG (di a l og_window) - >vbox) ,

labe l , TRUE , TRUE , 0) ;
gtk_widget_grab_de fau l t (button) ;
gtk_widget_show_al l (dial og_window) ;

The routine MessageBox20, presented in Listing 8.2, performs basically the same tasks as

MessageBoxO (see Listing 8. 1). Instead of using GtkDialog, which provides the control area, the

action area, and the horizontal separator that exists between them, MessageBm20 creates its own

action area, control area, and horizontal separator. The control area is a verti::al box, arranging
items that are added to it vertically. The action area is a horizontal box because buttons in an
action area are arranged horizontally, left to right. The control area, the horizontal separator, and

324 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

the action are all packed into a single vertical box widget in that order, so the control area is top

most, followed by the separator, which is then followed by the action area.

Listing 8.2 MessageBox Without Using GtkDialog

inc lude <gtk/gtk . h>

/ *
* S imp l e Me s s ageBox , without us ing GtkDialog
* /

void
Me s s ageBox2 (char *me s sage)
{

GtkWidget * hbox , *vboxl , *vbox2 , * s eparator , * labe l , *but ton ,
*dialog_window ;

dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window-po s i t ion (GTK_WINDOW (dialog_window) ,

GTK_WIN_POS_MOUSE) ;

gtk_ s ignal_connect (GTK_OBJECT (dialog_window) , " destroy " ,
GTK_S IGNAL_FUNC (gtk_widget_de st royed) , &dialog_window) ;

gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " Me s s age ") ;
gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;

/ * create the outer vbox that holds the cont rol area vbox , the action
area hbox , and the s eparator between them * /

vboxl = gtk_vbox_new (FALSE , 0) ;
gtk_container_add (GTK_CONTAINER (dialog_window) , vboxl) ;

/ * create the vbox that represents the control area . The me s s age (as an
instance of GtkLabe l) wi l l be added to thi s vbox . Add the cont rol
area vbox to the outer vbox * /

vbox2 = gtk_vbox_new (FALSE , 0) ;
gtk_box-pack_s tart (GTK BOX (vboxl) , vbox2 , TRUE , TRUE , 0) ;

/ * create the separator , and add i t to the outer vbox * /

s eparator = gtk_hseparator_new () ;
gtk_box-pack_start (GTK_BOX (vboxl) , separator , TRUE , TRUE , 0) ;

/ * create the hbox that represent s the act ion area . The OK but ton wi l l
b e added to thi s hbox . Add the action area hbox to the outer vbox .
Al so , set the border width of the container so that the OK but t on
and the hor i z ontal separator have enough spacing between them to be
vis ible . * /

Gtk.VSeparator

hbox = gtk_vbox_new (FALSE , 5) ;
gtk_container_set_border_width (GTK_CONTAINER (hbox) , 1 0) ;

gtk_box-pack_start (GTK_BOX (vbox1) , hbox , TRUE , TRUE , 0) ;

325

/ * now , create the mes sage labe l and the OK but ton , and add them to the
cont rol and action areas , respe c t ive l y . * /

but ton = gtk_but ton_new_with_l abe l (" OK ") ;
GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
gtk_box-pack_start (GTK_BOX (hbox) , button , TRUE , TRUE , 0) ;
gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " c l i cked " ,

GTK_S IGNAL_FUNC (gtk_widget_de s t roy) ,
GTK_OBJECT (dialog_window)) ;

l abel = gtk_labe l_new (me s s age) ;
gtk_mi sc_set-padding (GTK_M I S C (labe l) , 1 0 , 1 0) ;
gtk_box-pack_s tart (GTK_BOX (vbox2) , labe l , TRUE , TRUE , 0) ;
gtk_widget_grab_de fau l t (button) ;
gtk_widget_show_al l (dialog_window) ;

Figure 8.2 illustrates the results attained by the preceding code.

Figure 8.2 MessageBox with a Horizontal Separator

GtkVSeparator

Class Name

GtkVSeparator

Parent Class Name

GtkSeparator

326 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

Macros

Widget type macro: GTK_TYPE_VSEPARATOR

Object to widget cast macro: GTK _ VSEPARATOR (obj)

Widget type check macro: GTK_IS_ VSEPARATOR (obj)

Application-Level API Synopsis

Obtain the GTK_TYPE_ VSEPARATOR constant at runtime:
GtkType
gtk_vseparator_get_type (void) ;

Create a new instance of GtkVSeparator:

GtkWidget *
gtk_vseparator_new (void) ;

Class Description

A vertical separator is very similar to a horizontal separator, except vertical separators draw

themselves vertically, top to bottom, in the containing widget, as opposed to left to right, as

is done by instances of GtkHSeparator.

Figure 8.3 MessageBox with a Vertical Separator

My personal preference would be to use an instance of GtkFrame (see Chapter 1 1) to

provide both vertical and horizontal separation in a control area, and my suspicion is that
vertical separators, specifically, are rarely if ever used. Be that as it may, your application
might find a need for a vertical separator widget. Although such an arrangement of items in
a dialog is uncommon, the following code creates a message box dialog, similar to the one
created by MessageBox20 but with the control and action areas arranged left to right in a

horizontal box and with a vertical separator widget between the two. Figure 8 .3 illustrates

the result attained by this code. The routine gtlC vseparatocnewO is used to create the ver

tical separator; its function prototype is as follows:

GtkVSeparator 327

GtkWidget *
gtk_vseparator_new (vo i d) ;

The code for MessageBox30 is presented in the following listing:

Listing 8.3 MessageBox with Vertical Separator

inc lude <gtk/gtk . h>

/ *
* S impl e Me ssageBox , without us ing GtkDialog
* /

vo i d
Me s sageBox3 (char *me s sage)
{

GtkWidget *vbox1 , *vbox2 , * hbox , * s eparator , * l abe l , *button ,
*dialog_window ;

dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVE L) ;
gtk_window-pos i t i on (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " de s t roy " ,
GTK_S IGNAL_FUNC (gtk_widget_de st royed) , &dialog_window) ;

gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " Me s s age ") ;
gtk_container_border_width (GTK_CONTAINER (di a log_window) , 0) ;

/ * create the outer hbox that holds the control area vbox , the act i on
area hbox , and the separator between them * /

hbox = gtk_hbox_new (FALSE , 0) ;
gtk_container_add (GTK_CONTAINER (di a log_window) , hbox) ;

/ * create the vbox that represent s the cont rol area . The me s sage (as an
ins tance of GtkLabe l) wi l l be added to thi s vbox . Add t he cont rol
area vbox to the outer hbox * /

vbox1 = gtk_vbox_new (FALSE , 0) ;
gtk_box-pack_s tart (GTK BOX (hbox) , vbox1 , TRUE , TRUE , 0) ;

/ * c reate the separator , and add i t to the outer hbox * /

s eparator = gtk_vseparator_new () ;
gtk_box-pack_s tart (GTK_BOX (hbox) , s eparator , TRUE , TRUH , 0) ;

/ * create the vbox that repres ent s the act i on area . The OK button wi l l
b e added to thi s vbox . Add the act i on area vbox to the outer hbox * /

vbox2 = gtk_vbox_new (FALSE , 5) ;
gtk_container_set_border_width (GTK_CONTAINER (vbox2) , 1 0 : ;

328 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

gtk_box-pack_start (GTK_BOX (hbox) , vbox2 , TRUE , TRUE , 0) ;

/ * now , create the me s sage labe l and the OK but ton , and add them to the
cont rol and action areas , respe c t ively . * /

but ton = gtk_button_new_wi th_labe l (" OK") ;
GTK_WIDGET_SET_FLAGS (button , GTK_CAN_DEFAULT) ;
gtk_box-pack_start (GTK_BOX (vbox2) , button , TRUE , TRUE , 0) ;
gtk_s i gnal_connect_obj ect (GTK_OBJECT (button) , " c l i cked " ,

GTK_S IGNAL_FUNC (gtk_widget_de s t roy) ,
GTK_OBJECT (dialog_window)) ;

label = gtk_label_new (me s sage) ;
gtk_mi s c_set-padding (GTK_MISC (l abe l) , 1 0 , 1 0) ;
gtk_box-pack_s tart (GTK_BOX (vbox1) , labe l , TRUE , TRUE , 0) ;
gtk_widget_grab_de fault (button) ;
gtk_widget_show_al l (dialog_window) ;

GtkArrow

Class Name

GtkArrow

Parent Class Name

GtkM i s c

Macros

Widget type macro: GTK _ TYPE _ARROW

Object to widget cast macro: GTK _ARROW (obj)

Widget type check macro: GTK _ I S_ARROW (obj)

Supported Arguments

Prefix: GtkArrow : :

GtkArrow

Table 8.2 GtkArrow Arguments

Name Type

GTK....TYPE_ARROW _TYPE

GTK_TYPE_SHADOW3YPE

Application-Level API Synopsis

Retrieve the GTK_TYPE..ARROW constant at runtime:
GtkType
gtk_arrow_get_type (void) ;

Create a new instance of GtkArrow:
GtkWidget *

Permissiom

GTK_ARG._READWRITE

GTK_ARG._READWRITE

gtk_arrow_new (GtkArrowType arrow_type , GtkShadowType shadow_type) ;

Set the arrow type and shadow type of an instance of GtkArrow:
void
gtk_arrow_set (GtkArrow * arrow , GtkArrowType arrow_type ,

GtkShadowType shadow_type) ;

Class Description

329

GtkArrow is a seldom-used widget that can be used to add an arrow decoration to a user

interface. GtkArrow is similar to GtkLabel in that it does not generate ar y signals. If signal

generation is required, the arrow must be placed in a container capable of generating a sig

nal of the desired type, such as an instance of GtkEventBox or GtkButton. I will illustrate

in the following how to incorporate an instance of GtkArrow into an instmce of GtkB utton.

Arrow and Shadow Types
An arrow can be one of four different types as well as one of four different shadow types.

The shadow type selected has a dramatic impact on the way the arrow ap pears, as illustrated

in Figure 8.4.

Figure 8.4 Arrow Types and Shadow Types

330 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

From left to right, the shadow types are GTK_SHADOW _IN, GTK_SHADOW _OUT,

GTK_SHADOW _ETCHED_IN, and GTK_SHADOW _ETCHED_OUT. The arrow type

defines the orientation of the arrow, as described in Table 8 .3 .

Table 8 .3 Arrow Types

Type

GTK_ARROW _UP

GTK_ARROW _DOWN

GTK_ARROW _LEFT

GTK_ARROW _RIGHT

Orientation

Arrow points to top of screen.

Arrow points to bottom of screen.

Arrow points to left edge of screen.

Arrow points to right edge of screen.

Figure 8.4 illustrates the arrow types listed in Table 8.3 (from left to right: GTK_ARROW_UP,

GTK_ARROW _DOWN, GTK_ARROW _LEFT, and GTK_ARROW _RIGHT).

The two functions provided by GtkArrow, described in the following, both allow you to
specify these attributes, either at widget-creation time or sometime after widget creation.

Creating an Arrow Widget

Creating a new instance of GtkArrow is performed by calling gtk_arrow _newO:

GtkWidget *
gtk_arrow_new (GtkArrowType arrow_type , GtkShadowType shadow_type) ;

Arrow_type is GTK_ARROW_UP, GTK_ARROW_DOWN, GTK_ARROW_LEFT, or

GTK_ARROW _RIGHT, and shadow type is GTK_SHADOW _IN, GTK_SHADOW _OUT,
GTK_SHADOW _ETCHED_IN, or GTK_SHADOW _ETCHED_OUT, as shown and described

in the preceding figure and tables.

Setting Arrow Attributes
Once an arrow has been created, the arrow type and shadow type attributes can be changed

by calling gtk_arrow _setO :

vo i d
gtk_arrow_s et (GtkArrow * arrow , GtkArrowType arrow_type ,

GtkShadowType shadow_type) ;

arrow is an instance of GtkArrow. arrow _type and shadow_type are the same as those of
the same name passed to gtk_arrow _newO.

Each of the objects in Figure 8.4 is a button widget that can be clicked by a user {an instance
of GtkButton}. As we discussed in Chapter 5, "Labels and Buttons," GtkButton is a container

widget that typically manages an instance of GtkLabel. We can create an instance of GtkButton

without a label and ask it to manage some other widget. In this case, I have chosen to have it

manage an instance of GtkHBox. Within the hbox, I added an instance of GtkLabel ("Click

Images and Pixmaps 331

me") and, to the right of it, an instance of GtkArrow. The following code snippet illustrates the

creation of the button having the GTK_ARROW _UP and GTK_SHADOW _IN attributes:

Gtkwidget *button , * arrow , * hbox , * l abe l ;

I I create a button

I I create an instance of GtkHBox to hous e the l abel and t he arrow
I I widget , and add i t to the button . gtk_container_add () wi l l fai l i f
I I the button i s already managing a chi ld widget

hbox = gtk_hbox_new (FALSE , 0) ;
gtk_container_add (GTK_CONTAlNER (button) , hbox) ;

I I create a labe l , and add i t to the hbox , spe c i fying a spac ing o f 5
I I to keep i t vi sua l ly d i s t inct from the arrow that fol lows

l abel = gtk_l abel_new (" C l ick me ") ;
gtk_box-pack_s tart (GTK_BOX (hbox) , l abe l , TRUE , TRUE , 5) ;

I I create an arrow , and add i t to the hbox

arrow = gtk_arrow_new (GTK_ARROW_UP , GTK_SHADOW_I N) ;
gtk_box-pack_s tart (GTK_BOX (hbox) , arrow , TRUE , TRUE , 5) ;

Images and Pixmaps

Gtk+ 1 .2 implements two classes, GtkImage and GtkPixmap, that provid.e wrappers above

GDK's image and pixmap support, respectively. Although GDK provide:; most of the code

necessary to support the creation and manipulation of the actual image and pixmap data,

GtkImage and GtkPixmap encapsulate this functionality and allow images and pixmaps to

be used in places where a GtkWidget is necessary. For example, we saw in Chapter 6,

"Lists," how pixmap data can be added to a cell of an instance of GtkCList. In that chapter,
I illustrated how to use GDK routines to create the actual pixmap data and then use GtkPix
map functions to create a widget that could be added to a GtkCList cell.

Information on how to use GDK to create pixmap data, as well as how GtkPixmap makes
use of this data, can be found in the discussion of GtkCList in Chapter 6. Irl this section, I will

describe the process behind creating an instance of GtkImage, including how you can use
GDK routines to create and modify the image data. The APls supported by both GtkImage

and GtkPixmap will also be discussed in detail here.

332 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

GtkPixmap

Class Name

GtkPixmap

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK_TYPE_PIXMAP

Object to widget cast macro: GTK_PIXMAP (obj)

Widget type check macro: GTK_I S_PIXMAP (obj)

Application-Level API Synopsis

Retrieve the GTK_TYPE_PIXMAP constant at runtime:
GtkType
gtk-pixmap_get_type (void) ;

Create a new instance of GtkPixmap, passing a previously created GDK pixmap and mask:
GtkWidget *
gtk-pixmap_new (GdkPixmap *pixmap , GdkBi tmap *mask) ;

Set the mask and GDK pixmap associated with an instance of GtkPixmap:
void
gtk-pixmap_set (GtkPixmap *pixmap , GdkPixmap *val , GdkBi tmap *mask) ;

Retrieve the mask and GDK pixmap associated with an instance of GtkPixmap:
void
gtk-pixmap_get (GtkPixmap *pixmap , GdkPixmap * *val , GdkBi tmap * *mask) ;

Specify whether Gtk+ should maintain an insensitive version of the pixmap or bitmap
corresponding to the GtkPixmap instance. If the GtkPixmap is visible at the time of the call, queue
a redraw to reflect the change:
void
gtk-pixmap_set_build_insens it ive (GtkPixmap *pixmap , guint bui l d) ;

GtkPixmap 333

Class Description

In Chapter 6, I described how to use GDK routines to create pixmap data based on XPM files
or XPM data embedded in your application's source code. I also illustrate d how to create an

instance of GtkPixmap from this data and use it to set the pixmap cell dala of an instance of
GtkCList. In this section, I will document the functions provided by GtkPixmap. Refer to

Chapter 6 for an example of how these functions can be used.

Creating a Pixmap Widget

To create an instance of GtkPixmap, you first need to create a GdkPixmap and mask using

routines supplied by GDK, passing a previously created GDK pixmap and mask. Routines
such as gdk_pixmap_colormap_create_from_xpmO, described in Chapter 6, can be used to

create the necessary GDK data. Given this data, you then call gtk_pixmap_newO to create

the GtkPixmap wrapper class that can be used with Gtk+ functions that accept GtkPixmap
widgets. The function prototype for gtk_pixmap_newO is as follows:

GtkWidget *
gtk-pixmap_new (GdkPixmap *pixmap , GdkBi tmap *mask) ;

The first argument is a GdkPixmap. This pixmap can be prepopulated with pixmap data

(e.g., using one of the functions described in Chapter 6).

Setting and Getting the Pixmap Data

You can change the pixmap and mask associated with an instance of GtkPixmap by calling

gtk_pixmap_setO:

void
gtk-pixmap_set (GtkPixmap *pixmap , GdkPixmap *val , GdkBi tmap *mask) ;

The argument pixmap is an instance of GtkPixmap. The arguments val and mask are the

pixmap and mask data, respectively, that were obtained using the GDK routines described

in Chapter 6.
Likewise, you can retrieve the pixmap and mask data from a GtkFixmap instance by

calling gtk_pixmap�etO:

void
gtk-pixmap_get (GtkPixmap *pixmap , GdkPixmap * *val , GdkB i tmap * *mas k) ;

The argument pixmap is an instance of GtkPixmap, and on return, val will point to a Gdk·
Pixmap pointer, and mask will point to a GdkBitmap pointer. Your applicadon will be returnee
pointers to the GdkPixmap and GdkBitmap being managed by the GtkPixmap widget, not cop·
ies. Therefore, be sure not to release the memory that these pointers refen:nce.

GtkPixmap Example
The following source is a complete application that uses the preceding functions to creatf
and swap the image data displayed by two instances of GtkButton. A click of either button

334 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

will cause their images to be swapped. The code will be followed by a detailed description.

The code also makes use of some of the GDK pixmap routines described in Chapter 6.

Listing 8.4 GtkPixmap Sample Application

0 1 # i nc lude <gtk/gtk . h>

0 2

0 3 GtkWidget *pixmap l , *pixmap2 ;

0 4

0 5 s t a t i c voi d

0 6 Swi t chCa l lback (GtkWidget *widget , GtkWidget *dialog_window)
0 7 (
0 8

0 9

0 0

GdkPixmap * gdkPixmap l , *gdkPixmap2 ;

GdkB i tmap *gdkBi tmap l , *gdkBi tmap2 ;

1 1 / * retrieve current values * /

1 2

1 3 gtk-pixmap_get (GTK_PIXMAP (pixmap l) , &gdkPixmapl , &gdkBi tmap l) ;

14 gtk-pixmap_get (GTK_PIXMAP (pixmap2) , &gdkPixmap2 , &gdkBi tmap2) ;

1 5

1 6 / * and swap them * /

1 7

1 8 gtk-pi xmap_set (GTK_PIXMAP (pixmapl) , gdkPixmap2 , gdkBi tmap2) ;

1 9 gtk-pixmap_set (GTK_PIXMAP (pixmap2) , gdkPixmap l , gdkBi tmapl) ;

2 0

2 1

2 2 s t a t i c GtkWidget *

2 3 new-pixmap (char * f i l e , GdkWindow *window , GdkColor *background)

24 (
2 5 GdkPixmap *pmap ;

2 6 GdkB i tmap *mask ;

2 7

2 8 pmap = gdk-pixmap_create_f rom_xpm (window , &mask , background , f i l e) ;

2 9 return (gtk-pixmap_new (pmap , mask)) ;

3 0

3 1

3 2 ma in (int argc , char *argv [])

3 3 (
3 4 GtkWidget *button , *hbox , *dialog_window ;

3 5

3 6 gtk_ini t (&argc , &argv) ;

3 7

3 8 dial og_window = gtk_dialog_new () ;

3 9 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

4 0

4 1 gtk_widget_show (dial og_window) ;

4 2

4 3 hbox = gtk_hbox_new (FALSE , 0) ;

4 4 gtk_container_add (GTK_CONTAINER (GTK_DIALOG (dialog_window) - >vbox) ,
4 5 hbox) ;

4 6

4 7 pixmap 1 = new-pixmap (" te s t 1 . xpm " , dialog_window- >window ,

4 8 &dialog_window- >style - >bg [GTK_STATE_NORMAL]) ;
4 9 gtk_box-pack_s tart (GTK_BOX (hbox) , pixmap 1 , TRUE , TRUE , 0) ;
5 0 pixmap2 = new-pixmap (" test2 . xpm " , dialog_window- >window ,
5 1 &dialog_window- > style - >bg [GTK_STATE_NORMAL]) ;

OtkPixmap 335

5 2 gtk_box-pack_start (GTK_BOX (hbox) , pixmap2 , TRUE , TRUE , 0) ;

5 3

5 4 button = gtk_button_new_wi th_l abe l (" Switch Pixmaps ") ;

5 5 gtk_box-pack_start (GTK_BOX (

5 6 GTK_DIALOG (dialog_window) - >action_area) , button , TRUE , TRUE , 0) ;

5 7 gtk_s ignal_connec t (GTK_OBJECT (button) , " c l i cked " ,

5 8 GTK_S IGNAL_FUNC (SwitchCal lback) , dialog_window) ;

5 9

6 0 gtk_widget_show_al l (dialog_window) ;

6 1 gtk_main () ;

6 2

This application creates a dialog and instantiates i n its action area a button labeled Switch

Pixmaps that, when clicked, invokes a routine named SwitchCallbackO, di:icussed in the next

paragraph. Two GtkPixmaps are instantiated by separate calls to new_pixmapO. The first pix

map's image will be based on the XPM data stored in testl.xpm, while the second pixmap's

image is defined by the XPM file test2.xpm. The function new _pixmapO illustrates both

gdk_pixmap3reatejrom_xpmO and gtk_pixmap_newO calls on lines 28 and 29.

When the user presses the Switch Pixmaps button, SwitchCallbackO is invoked. This

routine reads the pixmap and mask data from the two GtkPixmap instances, using code on

lines 1 3 and 14. On lines 1 8 and 1 9, gtk_pixmap_setO is called to set the pixmap and mask
of the first pixmap with the pixmap and mask retrieved from the second pixmap and then

again to set the pixmap and mask of the second pixmap with those retrieved from the first,
effectively swapping the pixmaps. Figure 8.5 illustrates the application in one of its states.

Figure 8.5 OtkPixmap Sample Application Screen Shot

Insensitive Pixmaps

A final function supported by GtkPixmap can be illustrated with a small change to the pre

ceding listing. The function gtk_pixmap_seCbuild_insensitiveO can be called by an appli
cation to tell GtkPixmap whether an insensitive version of a pixmap should be displayed by
GtkPixmap. The function prototype is as follows :

voi d
gtkJlixmap_set_bui l d_insens i t ive (GtkPixmap *pixmap , guinl: bui l d) ;

The argument pixmap is an instance of GtkPixmap. The argument build is a flag that, if set

to 1 , causes GtkPixmap to display an insensitive version of a pixmap whenever the pixmap is
made insensitive by the application with a call to gtk_ widgeCseCsensitivt�O. If build is set to
0, the pixmap will not visually change as its sensitivity is changed by the application.

The following is a modification of new _pixmapO from the preceding that illustrates how

to call gtk_pixmap_seCbuild_sensitiveO:

336 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

stat i c GtkWidget *
new-p ixmap (char * f i l e , GdkWindow *window , GdkColor *background)
{

GdkPixmap *pmap ;
GdkB i tmap *mask ;
GtkWidget *wpmap ;

pmap = gdk-pixmap_create_from_xpm (window , &mask , background , f i l e) ;
wpmap = gtk-pixmap_new (pmap , mask) ;
gtk-pixmap_set_bu i l d_insens i t ive (GTK_P IXMAP (wpmap) , 1) ;
re turn (wpmap) ;

The preceding code illustrates how gtlcpixmap_seCbuild_insensitiveO can be called

immediately after the pixmap widget has been created.

The callback function SwitchCaUbackO has been modified in the following so that button

presses by the user will not only swap the buttons' pixmaps, but also cause pixmap sensitivity

to toggle from sensitive to insensitive. A static variable, makeSensitive, keeps track of the cur

rent sensitivity of the two pixmaps between invocations of the callback.

stat i c vo id
swi t chCal lback (GtkWidget *widget , GtkWidget *dialog_window)
{

GdkPixmap *gdkPixmap1 , *gdkPixmap2 ;
GdkB i tmap *gdkBi tmap1 , *gdkB i tmap2 ;
static int makeSens i t ive = 0 ;

/ * retrieve current values * /

gtk-p ixmap_get (GTK_PIXMAP (pixmap1) , &gdkPixmap1 , &gdkB i tmap1) ;
gtk-pixmap_get (GTK_PIXMAP (p ixmap2) , &gdkPixmap2 , &gdkB i tmap2) ;

/ * and swap them * /

gtk-pixmap_set (GTK_PIXMAP (pixmap1) , gdkPixmap2 , gdkB i tmap2) ;
gtk-pixmap_set (GTK_PIXMAp (pixmap2) , gdkPixmap1 , gdkB itmap 1) ;

i f (makeSens it ive = = 0)

} e l s e {

/ * make pixmaps insens it ive * /

makeSens it ive = 1 ;
gtk_widget_set_sens i t ive (pixmap1 , FALSE) ;
gtk_widget_set_sensit ive (pixmap2 , FALSE) ;

/ * otherwi se , make pixmaps sens it ive * /

makeSens it ive = 0 ;
gtk_widget_set_sens i t ive (pixmap1 , TRUE) ;
gtk_widget_set_sens it ive (pixmap2 , TRUE) ;

GtkImage 337

Figure 8.6 illustrates the insensitive versions of the pixmaps that were illustrated in Figure 8.5.

Figure 8.6 Insensitive Pixmaps

Gtklmage

Class Name

GtkImage

Parent Class Name

GtkMisc

Macros

Widget type macro: GTK_TYPE_IMAGE

Object to widget cast macro: GTK _IMAGE (obj)

Widget type check macro: GTK _I S_IMAGE (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_IMAGE at runtime:
GtkType
gtk_image_get_type (void) ;

Create an instance of GtkImage, supplying a clip mask and a previously create d GDK image:
GtkWidget *
gtk_image_new (GdkImage *val , GdkBi tmap *mask) ;

Set the GDK image and clip mask associated with an instance of GtkImage:
void
gtk_image_set (GtkImage * image , GdkImage *va l , GdkBi tmap *mask) ;

338 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

Application-Level API Synopsis (Continued)

Retrieve the GDK image and clip mask associated with an instance of GtkImage:
voi d
gtk_image_get (Gtklmage * image , Gdklmage * *val , GdkBi tmap * *mask) ;

Class Description

The purpose of GtkImage is to provide a Gtk+ widget wrapper class for the image display

and manipulation facilities and objects provided by GDK. GtkImage allows image data to

be used in certain places where Gtk+ requires a widget to be present. Much of understand
ing Gtklmage comes from being able to work with GDK image data. In this section, I will

do my best to describe GDK's image support and to show how it is used with GtkImage.

Imaging in GDK

GDK's image support itself acts as a wrapper, in this case, layered above the image support

provided by the core X 1 1 protocol. As of this writing, GD K does not make use of the features

provided by the XI I R6 X Image Extension (XIE).
For an application to support image formats such as PNG or JPEG, it typically will need

to make use of an image support library (e.g. , libpng or libjpeg). Such a library is capable

of converting the image data stored in an encoded form into an unencoded form that can be

passed to GDK at the time the GDK image object is created. I will illustrate this later in this

section, using TIFF as the image format/encoding for the example.

An image is nothing more than a rectangular grid of pixels. The grid has both a width and
a height, measured in terms of pixels. Each pixel in the grid has a depth, usually specified in

terms of bits but occasionally specified in terms of bytes. The pixel depth of an image defines

how many colors can potentially be displayed for each pixel of the image. The pixel depth of

the image alone is insufficient to determine how many colors can actually be displayed per

pixel, however, because this is also a function of the window into which the image is going to

be displayed.

Each window has an associated colormap. Typically, applications and windows will

share a common colormap, the X server default colormap, but X allows clients to install

private colormaps on windows if they so desire. Colormaps are nothing more than lookup
tables . A simple example will illustrate how they work. Let's suppose you have an image,
and each pixel in the image is set to the color blue. Each pixel in the image will contain the
RGB triplet (R = 0, G = 0, B = 255), assuming RGB component intensities are in the range
[0, 255], with 0 used to represent fully off, or no intensity, and 255 used to represent full

intensity. For the X server to correctly display image data, the client must convert each pixel
in the image into a value indexing a cell of the colormap associated with the window into

which the image is to be displayed. The client must also ensure that a colormap cell being
indexed by a pixel value in the image contains the appropriate RGB intensity. So, for this

example, we need to allocate a single cell in the colormap, store the RGB triplet (0, 0, 255)

GtkImage 339

in that cell, and convert all pixels in the image from the RGB triplet (0, 0, 255) to the index

of that cell in order for the image to be displayed correctly.
X l I was designed to support a wide variety of display types, from s Imple, l -bit-deep,

monochrome displays to 24-bit-deep color displays. Images come in a wide variety of pixel

depths. For example, CCITT G32D FAX image data is I -bit deep, while JPEG supports 8-bit

grayscale and 24-bit color image data. To keep things simple here, I will assume we are dis

playing 24-bit color image data into a 24-bit TrueColor window. In this case, the image data

is already in the form of pixel values correctly indexing the colormap of the window. The set

of visual classes supported by X I I is listed in Table 8.4.

Table 8.4 Visual Classes

VISual Class Pixel Depth Image Type (Typical) Modifiable Colormap?

StaticGray I bit Grayscale, bitonal No

StaticColor 4 bits Color No

TrueColor 16 or 24 bits Color No

GrayScale 8 bits or less Grayscale Yes

PseudoColor 8 bits Color Yes

DirectColor 16 or 24 bits Color Yes

To effectively write image-display software for Gtk+, or XI I , you must consider both the

structure of pixels in the the image being displayed and the visual class and pixel depth of the

display onto which the image data will be displayed, and you must write your software so that

it can work with various combinations of image and visual/display types. Books that discuss

color and image-display programming in XI I include Introduction to The X Window System

(Prentice Hall), Xlib Programming Manual, Volume I (O'Reilly & Associall:s), and Developing

Imaging Applications with XIElib (Prentice Hall). I am going to avoid this topic here by assum

ing that we are displaying a 24-bit TIFF image into a 24-bit TrueColor wndow. In this case,

there is no need to convert image pixels into colormap indexes because intensity values stored

in cells of a 24-bit TrueColor colormap are equal in value to the pixel values used to index them.

An Example Using IibtitT

Let's now take a look at some code that we can use to open and read our 24-bit TIFF image
and get uncompressed intensity values compatible with the image we are constructing.
Along the way, we will see how to create and use a GtkImage widget.

The following sample code is based on libtiff, which is included with most Linux distri
butions as lusrllibllibtijJ.a (or lusrlliblligtijJ.so). The header file for libtiff can be found at
lusrlincludeltiffio.h. Source code for libtiff can be obtained from various locations on the

net, includingjtp:l/ftp.uu.net/graphics/tiff/. Using a library like libtiff i�. a great timesaver;
other image libraries that may prove useful include libjpeg (www. ijg.org), libpng

(www.cdrom.comlpublpng) and the Portable Pixmap Libraries (libppm, libpgm, and lib

pbm, which can be found on the Internet at various locations).

340 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

Reading a 24-bit TrueColor image with libtiff is easy. To use libtiff, include the file

<tiffio.h> and link libtiff with your application, adding -ltiff to the build command line. The

following code illustrates what is needed to open a TIFF image file and obtain information

about the image data it stores. I assume here that the first argument to the application contains

the name of the TIFF file to be opened and read.

T I FF * t i f ;
uint16 b i t spersample , sample sperpixe l ;
uint 3 2 width , he ight ;

t i f = T I FFOpen (argv [1] , " r ") ;

i f (! t i f) {
print f (" Unable to open t i f f f i l e % s \ n " , argv [l]) ;
exit (1) ;

T I FFGe t F i e l d (t i f , T I FFTAG_IMAGEWIDTH , &width) ;
TI FFGe t F i e l d (t i f , T I FFTAG_IMAGELENGTH , &he ight) ;
TI FFGe t F i e l d (t i f , TIFFTAG_B ITSPERSAMPLE , &bi t spersample) ;
TI FFGe t F i e l d (t i f , T I FFTAG_SAMPLESPERPIXEL , &sample sperpixe l) ;

i f (b i t spersample ! = 8 I I sample sperpixel ! = 3)
print f (" Error : image i s not RGB or i s not 24 - b i t \ n ") ;
exit (1) ;

We use width and height later when creating a GDK image. Both width and height can also
be used to size the window into which the image data will be displayed. The variables

bitspersample and samplesperpixel can be used to check whether the image data we have read

is grayscale (samplesperpixel == 1) or color (samplesperpixel = 3) and whether the image

is 24 bits (bitspersample == 8 && samplesperpixel = 3). The uncompressed image data can

then be obtained as a single raster by calling the function TIFFReadRGBAlmageO:

uint 3 2 * raster ;

ras t e r = (uint 3 2 *) mal loe (width * he ight * s i zeof (uint 3 2)) ;
i f (! raster) {

perror (" ma l l oe ") ;

exi t (1) ;

i f (! TI FFReadRGBAImage (t i f , width , he ight , raster , 0)) {
printf (" T I FFReadRGBAImage fai led\n ") ;
exit (1) ;

Before calling TIFFReadRGBAlmage(), we must allocate a buffer to hold width * height
pixels, each of size uint32.

GtkImage 341

Creating an Image with GDK
Now that we have the TIFF image data read in, we can allocate a GDK image with a call to

gdlcimage_newO, using the width and height information obtained from the TIFF image data:

Gdklmage *
gdk_image_new (GdklmageType type , GdkVi sual *visua l , gint \ddth ,

gint he ight) ;

The arguments width and height define the raster dimensions of the image data. The

argument type can be one of the following values in Table 8 .5 .

Table 8 .5 GdklmageType Values

Type

GDK_IMAGE_SHARED

GDK_IMAGE_NORMAL

GDK_IMAGE_FASTEST

Meaning

The image is stored in shared memory.

The image is not stored in shamd memory.

The fastest of the preceding two techniques is
used.

Your application can safely set type to GDK_IMAGE_FASTEST, as this will cause

GDK to first create the image as GDK_TYPE_SHARED and, if that fails . then try to create

the image a second time using GDK_IMAGE_NORMAL.

The argument visual defines the display characteristics of the windo\\< and is analogous

to the Visual type of Xlib. As you can see in the following, I obtain this visual directly from
the GtkWindow widget into which the image data will be displayed, with a call to the Gtk

Widget function gtk_widgecgeCvisuaIO. Here is the code that is relevan t to creating a new

GdkImage instance:

Gdklmage *gimage ;
GdkVi sual *vi sual ;
GtkWidget *window ;

window gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
vi sual gtk_widget_get_vi sual (window) ;

g image = gdk_image_new (GDK_lMAGE_FASTEST , vi sual , width . he ight) ;

Setting the Image Data
The next step in creating our GDK image is to transfer the image data from the raster that
was read using libtiff into our newly created GDK image. This can be done using gdk_

image_pucpixeIO:

vo id
gdk_image-put-pixe l (Gdklmage * image , g int x, gint y , gui n t 3 2 pixel) ;

342 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

The argument image is the GDK image that was previously created with

gtlcimage_newO. The values x and y specify where in the image the data is to be placed.

Images in X I I are organized such that pixel (x = 0, y = 0) is located in the upper-left comer

of the image, and pixel (x = width- I , Y = height- I) is located in the lower-right corner of the

image. In TIFF, the rows run from the bottom to the top; hence, pixel (x = 0, y = 0) is located

at the bottom-left corner of the image, while pixel (x = width- I , Y = height- I) is located in

the upper-right corner. Because of this, we must pack image data read from row i of the raster

into row height-i of the GDK image. Pixel (x, y) can be pulled from the raster as follows:

uint 3 2 RGB ;

RGB = raster [y * width + xl ;

Each pixel in the raster is 32 bits in length and contains the R, G, B, and A (alpha com
ponent) of the pixel (each of these is 8 bits in length). The R, G, and B components can be

extracted easily from the raster with the libtiff macros TIFFGetR, TIFFGetG, and TIFF
GetB , respectively. Each of these takes as a single argument a 32-bit pixel from the raster.

Once extracted from the raster, the next step is to pack them into a 32-bit value that can then

be placed at the corresponding pixel location of the GDK image. Each component occupies

its own 8-bit segment of the 32-bit pixel. We must take into consideration the X server

image byte order when constructing the GDK image pixel . If the image byte order of the
server is LSBFirst, then we want to pack image pixels as RGBRGBRGB . . . ; otherwise, the

image byte order is MSBFirst, and we will want to pack image pixels as BGRBGRBGR. . . .

We can use the GdkVisual obtained i n the preceding to determine the image byte order

of the X server:

int byteOrder ;
GdkVi sual *visual ;

byteOrder = vi sual - >byte_order ;

Then we can compute shift values that can be used when creating the GDK image pixel values:

int rshi f t , gshi f t , bshi f t ;

gshi f t = 8 ;
i f (byteOrder

rshi ft
bshi ft

} e l se {

== LSBFirst
16 ;
o · ,

rshi ft 0 ;
bshi ft 16 ;

) {

Now all that remains is to extract pixels from the raster and pack them into the GDK

image. Here is the code:

GtkImage

int i , j ;
uint 3 2 RGB , pixe l , * raster ;

for (i = 0 ; i < he ight ; i + +
for (j = 0 ; j < width ; j + +) (

RGB = ras ter [i * width + j 1 ;

pixel TI FFGetR (RGB) « rshi f t
TI FFGetG (RGB) « gshi f t
T I FFGetB (RGB) « bshi f t ;

gdk_image-put-pixe l (gimage , j ,
(he ight - 1) - i , pixel) ;

343

In the preceding code, we simply iterate over each row in the image and over each pixel
in a row. For each pixel in a row, we read the TIFF RGBA value and compute a pixel value

by using the TIFFGet* macros and shifting the components as required by the image byte

order. Then we call gdlcimage_puCpixelO to place the pixel into the GDK image at the

correct location while taking into consideration the inverted row order of TIFF vs. X I I
image data.

Now that we have created a GDK image, we can use GtkImage to construct a Gtk+ wid

get that can be placed in a container widget of some sort so that the image data can be dis

played. Before we get to that, let's quickly look at some of the other fun,:tions provided by

GDK's image support API.

Reading a Pixel Value from an Image
A pixel at a given x, y location can be read from a GDK image using the function gdk_

image�ecpixelO:

guint 3 2
gdk_image_get-pixe l (Gdklmage * image , g int x , g int y) ;

The pixel returned is packed using the X server image byte format. If LSBFirst, the RGB

components can be obtained as follows:

guint S r, g, b ;
guint 3 2 pixe l ;

r pixe l & Oxf f O O O O ;
9 pixel & Oxff O O ;
b pixel & Oxf f ;

For MSBFirst, the code would be as follows:

r pixel & Oxf f ;
9 pixe l & Oxff O O ;
b pixel & Oxf f O O O O ;

344 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

Destroying an Image

Once your application is done working with a GDK image, it can be destroyed by calling

gdk_image_destroyO:

voi d
gdk_image_de s t roy (Gdklmage * image) ;

Retrieving Image Data from a Window

GDK image provides a function named gdk_image�etO that can be used to create a GDK

image containing the contents of a window:

Gdklmage *
gdk_image_get (GdkWindow *window , gint x , gint y , gint widt h ,

gint he ight) ;

The argument window is a GDK window. Given a GtkWidget, you can obtain the corre
sponding GDK window with the following code:

GtkWidget *myWidget ;
GdkWindow *myWindow ;

my Window = myWidget - >window ;

The x, y, width, and height attributes define a rectangular region within the specified

window from which the image data will be obtained. To obtain the entire contents of the

window, set x and y to 0 and set width and height to the width and height of the window,

respectively. Upon return, the GdkImage variable will be ready to use with GtkImage, as I

will describe next.

Creating the GtkImage Widget
Now that we have constructed a GDK image, it is time to create an instance of GtkImage.

Recall that GtkImage is a wrapper above the GDK image that allows an application to place

image data within a Gtk container widget so that it can be displayed; the GDK image main

tains all of the nitty-gritty image detail.

Given a GDK image and an optional mask, it is trivial to create a corresponding GtkImage.

All you need to do is call gtk_image_newO, passing the GDK image and mask as arguments:

GtkWidget *
gtk_image_new (Gdklmage *val , GdkB i tmap *mask) ;

An instance of GtkImage is returned (as a GtkWidget *) . In most cases, you can set the

mask argument to NULL. However, you can use a non-NULL mask to specify a clip mask,
and if so, it must be a I -bit-deep pixmap (i.e. , a GdkBitmap). If a bit in the bitmap is set to 1 ,

then the corresponding pixel in the image will render. Pixels that are not represented by a set

bit in the clip mask will not be rendered, and as a result, the window below the pixel will

remain unchanged.
One way to create a clip mask is to call gdk_bitmap_create_from_dataO:

GtkImage 345

GdkPixmap *
gdk_bitmap_create_from_data (GdkWindow *window , const gcha r *data ,

gint width , g int he ight) ;

This function was discussed in detail in Chapter 6. The returned GdkPixmap * can be

cast to GdkBitmap * and be passed directly to gtlcimage_newO.

The following is the complete program that can be used to display a TIFF 24-bit True

Color image in a window using GtkImage:

Listing 8.5 GtkImage Sample Application

#include < t i f f i o . h>

include < stdlib . h>

inc lude <gtk/gtk . h>

#include <X1 1 /xlib . h>

inc lude " mask . bmp " I I c l ip mas k , XBM image data

int main (int argc , char *argv [])

uint 3 2 RGB , pixe l , width , he ight , * raster ;

uint 1 6 bit spersamp l e , s amplesperpixe l ;

int i , j , byteOrde r , rshi f t , gshi f t , bshi f t ;

TIFF * t i f ;

GtkWidget *window , * image , *vbox ;

GdkImage *gimage ;

GdkVi sual *visua l ;

GdkBitmap *mask ;

1 * ini t i a l i z e Gtk+ , and c reate a topleve l window to di splay the

image data in * 1

gtk_ini t (&argc , &argv) ;

window = gtk_window_new (GTK WINDOW_TOPLEVEL) ;

i f (I window) {
print f (" Unable to create a window\n") ;

exi t (1) ;

1 * retrieve the vi sual o f the window , then , us ing the server by te

orde r , compute shi f t values used when comput ing pixel values

f rom data read f rom the TIFF image raster * 1

visual = gtk_wi dget_get_vi sual (window) ;

byteOrder = vi sual - >byte_order ;

gshi f t = 8 ;

i f (byteOrder = = LSBFirst) {
rshi f t 1 6 ;

} e l se {
bshi f t 0 ;

rshi f t 0 ;

bshi f t 1 6 ;

346 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

/ * open and parse the T I FF image f i l e , path i s argument 1 * /

t i f = TI FFOpen (argv [l] , " r ") ;

i f (! t i f) {
print f (" Unable to open t i f f f i l e % s \ n " , argv [l]) ;

exi t (1) ;

/ * ret r i eve width , height , and f i elds that are used to determine i f

the image i s color and 2 4 -bit * /

TI FFGe t F i e l d (t i f , T I FFTAG_IMAGEWIDTH , &width) ;

TI FFGe t F i e l d (t i f , T I FFTAG_IMAGELENGTH , &he ight) ;

TI FFGe t F i e l d (t i f , T I FFTAG_B ITS PERSAMPLE , &bi t spersamp l e) ;

TI FFGe t F i e l d (t i f , T I FFTAG_SAMPLESPERPIXEL , &samplesperpixe l) ;

/ * make sure it is the kind of image we support * /

i f b i t spersampl e ! = 8 I I samplesperpixel ! = 3) {
printf (" Error : image is not RGB or i s not 2 4 - b i t \ n ") ;

exit (1) ;

/ * a l l ocate a buf fer big enough to hold the uncompres sed image * /

raster = (uint 3 2 *) mal loc (width * height * s i zeof (uint 3 2 » ;

i f (! raster) (
perror (" mal loc ") ;

exi t (1) ;

/ * retrieve the uncompressed image data * /

i f (! TI FFReadRGBAImage (t i f , width , he ight , ras ter , 0 » {
printf (" TI FFReadRGBAImage fai led\ n ") ;

exi t (1) ;

/ * set the window to the s i z e o f the image , and create a vert ical

box widget into which the GtkImage wi l l be placed */

gtk_widget_set_u s i z e (window , widt h , height) ;

vbox = gtk_vbox_new (FALSE , 0) ;

gtk_container_add (GTK_CONTAINER (window) , vbox) ;

/ * create a GDK image * /

gimage = gdk_image_new (GDK_IMAGE_FASTEST , visual , width , he ight) ;

i f (! gimage) {
print f (" Unable to create a GDK image \ n ") ;

exit (1) ;

/ * extract RGB values f rom TIFF raster , and store in the GDK image * /

for (i = 0 ; i < height ; i + +) {

GtkImage

for (= 0 ; < width ; j ++) {
RGB raster [i * width + j 1 ;

pixel TI FFGetR (RGB) « rshi f t

TI FFGetG (RGB) « gshi f t

TI FFGetB (RGB) « bshi f t ;

gdk_image.Jlut.Jlixel (gimage , j ,

(height - 1) - i , pixel) ;

/ * create a c l ip mask . Norma l l y , app l i cations wi l l not do this e Kcept

for special e f fect s , I do it here to i l lustrate how it is don e * /

mask = (GdkBi tmap *) gdk_bitmap_create_from_data (window- >window ,

mask_b i t s , mask_width , mask_he ight) ;

/ * create the gtk image . Mos t app l i ca t i ons wi l l pass NULL as the

second argument if no c l ip mask is des i red * /

image = gtk_image_new (gimage , mask) ;

i f (! image) {
print f (" Unable to create a Gtk+ image \ n ") ;

exit (1) ;

/ * add the Gtklmage widget to the vbox , and show everything * /

gtk_box.Jlack_start (GTK_BOX (vbox) , image , TRUE , TRUE , 0) ;

gtk_widget_show_a l l (window) ;

gtk _main () ;

Modifying the Image

347

Once you have a GtkImage widget, you can change the GdkImage and/or mask with a call

to gtk_image_setO:

void
gtk_image_set (Gtklmage * image , Gdklmage *val , GdkB i tmap * mask) ;

The argument image is an instance of GtkImage, val is an instance of GdkImage, and
mask is an instance of GdkBitmap (or, a I -bit-deep GdkPixmap). The arguments val or
mask can be set to NULL if desired. Setting val to NULL will cause the GtkImage widget's
requisition to be set to width = 0, height = 0, which will likely cause the eontaining widget

to be resized. Setting mask to NULL will remove the clip mask applied to the image so that
all pixels in the image will be rendered to the display.

Retrieving the Image Data and Clip Mask
To retrieve the GDK image and clip mask associated with an instance of GtkImage, call
gtk_image�etO:

348 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

vo id
gtk_image_get { GtkImage * image , GdkImage * *va l , GdkB itmap * *mask) ;

The argument image is an instance of GtkImage. The argument val is a pointer to a variable
of type GdkImage *, and mask is a pointer to a variable of type GdkBitmap * . On return,

GdkImage will hold a reference to the GdkImage instance maintained by the GtkImage, and

mask will hold a reference to its clip mask (or NULL, if no clip mask has been specified for

the GtkImage instance).

GtkEntry

Class Name

GtkEnt ry

Parent Class Name

GtkEdi table

Macros

Widget type macro: GTK _TYPE_ENTRY

Object to widget cast macro: GTK _ENTRY (obj)

Widget type check macro: GTK _ IS _ENTRY (obj)

Supported Arguments

Prefix: GtkEntry : :

Table 8.6 GtkEntry Arguments

Name

visibility

Type

GTK_TYPE_UINT

GTK_TYPE_BOOL

Permissions

GTK_ARG_READ�

GTK_ARG_READ�

GtkEntry

Application-Level API Synopsis

Obtain the constant GTK..TYPE.-ENTRY at runtime:
GtkType
gtk_entry_get_type (void) ;

Create a new instance of GtkEntry:
GtkWidget *
gtk_entry_new (vo i d) ;

Create a new instance of GtkEntry with the specified max length attribute:
GtkWidget *
gtk_entry_new_with_max_length (guint 1 6 max) ;

Set the text associated with the entry field:
void
gtk_ent ry_set_text (GtkEntry * entry , const gchar * text) ;

Append the text to the current text associated with the entry field:
void
gtk_entry_append_text (GtkEntry * entry , const gchar * t ext) ;

Prefix the current text associated with the entry field with text:
void
gtk_entry--.prepend_text (GtkEntry * entry , const gchar * text) ;

Move the caret to a specified position:
void
gtk_entry_set--'pos i t ion (GtkEntry * entry , gint pos it ion) ;

Obtain a reference to the current text:
gchar *
gtk_entry_get_text (GtkEntry * entry) ;

Select a range of characters from the currently displayed text:
void
gtk_entry_select_region (GtkEntry * entry , gint start , gint end) ;

349

Hide or show text in an entry field. When hidden, characters that are otherwise v: sible are replaced

by *:
void
gtk_entry_set_vis ibi l i ty (GtkEntry * entry , gboolean vi s ible) ;

Enable or disable the user's ability to edit text:
void
gtk_ent ry_set_editabl e (GtkEntry * entry , gbool ean editabl e) ;

Specify the maximum length for text, truncating the current value if needed:
void
gtk_entry_set_max_length (GtkEntry * entry , guint 1 6 max) ;

350 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

Class Description

GtkEntry is Gtk+'s text field edit widget. GtkEntry supports single-line text-edit fields.

Multiple-line text-editing support in Gtk+ is provided by the GtkText widget, which I will

discuss in a later chapter.

The GtkEntry widget API allows you to do the following:

• Set the value displayed in the text-edit field.

• Append text to the end or prepend text to the front of the current text.

• Retrieve the value displayed in the text-edit field.

• Set the maximum length of text in a text field.

• Select text in a text field as though it were selected by the user using a pointer.

• Make text visible or invisible. Characters in an invisible text-edit field display as a

series of asterisks (*) .

• Make text editable (read/write) or noneditable (read-only).

• Change the position of the I-beam caret.

I will discuss each of the preceding functions in this section.

Creating an Entry Widget

There are two ways to create an instance of GtkEntry. The first is by calling gtk3ntry _newO:

GtkWidget *
gtk_ent ry_new (vo i d) ;

Like most gtk_ * _newO functions, gtk_entry _newO takes no arguments. It simply creates

an instance of GtkEntry. The other function for creating an instance of GtkEntry is gtk_entry_

new _ with_max_IengthO:

GtkWidget *
gtk_ent ry_new_wi th_max_l ength (guint16 max) ;

The argument max is used to specify a maximum length for the text to be managed by the

text-edit field. Specifying a value of 0 causes GtkEntry to use the largest length allowable,

which in Gtk + 1 .2 is 2,047 characters. This is also the default maximum that will be set if you

call gtk_entry _newO to create the GtkEntry widget instance.

There are many times that setting the max length of a text-edit field, either at creation

time or later, will be appropriate. One example would be edit fields for numeric values such
as Social Security numbers, dates, phone numbers, and so forth. By fixing the length of the
text allowable in the edit field, you are making it easier for users to give your application
correctly formatted values.

Setting and Getting the Value of the Text ButTer
To set the value of the text buffer, call gtk_entry _sectextO:

voi d
gtk_ent ry_set_text (GtkEnt ry * entry , const gchar * text) ;

GtkEntry 351

The first argument is a pointer to the GtkEntry widget, and the second, text, is a pointer

to the text that should be displayed. GtkEntry will make a copy of the text that you pass, so

you are free to modify the passed-in string or release its memory after the I;all has returned.

Two additional but perhaps seldom-used functions are gtk_entry _append_textO and

gtk_entry _prepend_textO. The function gtk3ntry _append_textO allows you to add text to

the end of the text managed by an instance of GtkEntry:

void
gtk_ent ry_append_text (GtkEnt ry * entry , cons t gchar * text) ,

The function gtk_entry _prepend_textO, on the other hand, takes the passed-in text and

adds it to the front of the text managed by the GtkEntry widget.

void
gtk_ent ry-prepend_text (GtkEnt ry * entry , const gchar * t ext : ;

To obtain the text from an instance of GtkEntry, call gtk_entry -$ectextO:

gchar *
gtk_ent ry_get_text (GtkEnt ry * ent ry) ;

The GtkEntry will return a pointer to a buffer that it manages, so be cardul not to change

the contents or free the memory returned.

Changing the Attributes of an Entry Widget

To change the maximum length of an existing text-edit field, call gtk_entry_!.ecmax_IengthO:

void
gtk_ent ry_set_max_length (GtkEntry * ent ry , guint 1 6 max) ;

As previously mentioned, setting this value to 0 or to a value greater than 2,047 will

cause Gtk+ to use the value 2,047. Changing this length argument to a value that is less than

the length of the currently displayed text will cause that text to be truncated.

Another attribute you can set is the visibility of the text displayed by the GtkEntry widget.

The function to call is gtk_entry_secvisibilityO:

voi d
gtk_entry_set_vi s i b i l i ty (GtkEnt ry * entry , gboolean visibl ·�) ;

The argument entry, as always, is an instance of GtkEntry. The argument visible, a
gboolean, can be either TRUE or FALSE. The default value of visible for a newly created

instance of GtkEntry is TRUE. If visible is set to TRUE, all characters in the text string dis
played by the GtkEntry widget will be visible. If visible is set to FALSE, GtkEntry will dis
play each character in the string as an asterisk (*), so that the true value of the text string is

hidden from the user. As the user types characters into a field that is invisible, asterisks (*)

will appear in place of the characters that are typed.

352 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

Figure 8.7 Invisible Text-Entry Field

The most common use for an invisible text-edit field is to collect a password from the user,
as shown in Figure 8.7. The first field, labeled Usemame, has its visibility attribute set to the

default TRUE value, while the field labeled Password has its visibility attribute set to FALSE.

Changing the Editable Attribute of an Edit Widget

You can cause the text displayed in a GtkEntry field to change from editable to noneditable,
or from noneditable to editable, with gtlcentry_seceditableO. The default for a newly cre

ated instance of GtkEntry is TRUE. The following is the function prototype for gtk_entry_

seceditableO:

vo i d
gtk_ent ry_set_editable (GtkEnt ry * entry , gboolean editable) ;

If editable is TRUE, the user can type into the field and make changes. If editable is

FALSE, then the text is static and read-only.

One thing you might expect to happen when setting the editable attribute to FALSE

would be for the GtkEntry field to become insensitive with the text rendered in a grayish
color. This is not the case, however. To make a widget noneditable and insensitive, you must

also call gtk_ widgecsecsensitiveO, as shown in the following function:

vo i d
ChangeEdi tableAttribute (GtkEnt ry * w , gboolean editable
{

}

gtk_ent ry_set_editabl e (w , editable) ;
gtk_widget_set_sens i t ive (GTK_WIDGET (w) , editable) ;

In some cases, users may find it confusing for an editable field that they cannot type into
to be sensitive. Because of this, I recommend that you consider ensuring that the editable
state and the sensitivity of the GtkEntry widget be set to the same value at all times.

Setting the Position of the Caret

The final function that allows you to set or change an attribute of a GtkEntry widget is
gtk_entry _secpositionO:

GtkEntry 353

void
gtk_ent ry_set-pos i t ion (GtkEnt ry * ent ry , gint pos i t i on) ;

Position is the index of the character that will appear to the right of the caret after the

call is made. To set the caret to the head of the text, pass the value O.

Simplifying Entry Widget Creation

As we saw in the preceding, the gtk_entry _new*O functions only allow you to specify the

max length attribute of the text at creation time. A more general-purpose function for creating

an instance of GtkEntry would also allow you to specify the text to be displ ayed (whether or

not the field is editable), its visibility, its max length, and a selection range for the text. Here

is a function that does all of this :

GtkWidget *
CreateGtkEntry (gchar * t ext , gboolean editable , gboolean visible ,

guint 1 6 max , g int start , gint end)

GtkWidget * w ;

w = gtk_ent ry_new_wi th_max_l ength (max) ;
i f (w ! = (GtkWidget *) NULL) {

ChangeEdi tableAt t ribute (w , editable) ;
gtk_ent ry_set_vis ibi l i ty (w , vi s ible) ;
i f (start < end)

gtk_ent ry_select_region (w , sts rt , end) ;
i f text)

gtk_ent ry_set_text (w , text) ;

return (w) ;

Here is a description of the arguments to CreateGtkEntryO:

• text If non-NULL, the entry text will be set to the NULL-terminated string pointed

to by text.

• editable If TRUE, the entry field is editable. If FALSE, it cannot be edited. The

entry field becomes disabled if FALSE. This is due to the call to ChangeEditableAt

tributeO.

• visible If TRUE, the text will be displayed normally. If FALSE, the text will display

as a series of asterisks (*) .

• max See the preceding description of gtk_entry_secmax_IengthO.

• start, end If start is greater than or equal to end, these arguments are ignored. Oth

erwise, the text starting at index start and ending at index end will be selected.

Selecting Text

You can select a range of characters in the currently displayed text by calling gtk3ntry_
seleccregionO:

354 Chapter 8 • Separators, Arrows, Images, Pixmaps, and Entry Widgets

void
gtk_ent ry_select_region (GtkEnt ry * ent ry , gint start , gint end) ;

The argument entry is an instance of GtkEntry. The argument start is the index of the first
or leftmost character of a substring of the text currently displayed that is to be selected. The

argument end is the index of the last or rightmost character to be selected. The index of the

first character in an entry field is 0, while the index of the last character is the length of the

text minus 1 . GtkEntry does not provide a function with which you can query the current

length of the text displayed. You can, however, compute the length by retrieving the text with

gtk_entry�eCtextO and pass the result to strlenO, or you can make use of the texUength

field of the GtkEntry widget pointer. For example:

GtkWidget * ent ry ;
guint 1 6 s i ze ;

s i ze = GTK_ENTRY (ent ry) - >text_l ength ;

I recommend that you use the gtk_entry �eCtextO/strlenO approach because it is not

going to break if the implementation of GtkEntry changes, and the texclength field ceases

to exist. A much better solution would be for the GtkEntry widget to implement a function

that could be called to obtain the current length of the text that it manages.

Summary

In this chapter, we looked at several base control classes in Gtk +. Of these, perhaps the most
commonly used widget is GtkEntry. An entry widget is used to retrieve single-line text

input from a user. GtkText, which is described in Chapter 14, ''Text and SpinButton Wid

gets," can be used to retrieve multiline text. Separators, also discussed in this chapter, can

be used to partition the content of a window or dialog into distinct areas. Use separators

sparingly; too many can become distracting to users. Perhaps the most common use of a

separator is to delimit the control and action areas in a dialog. In some cases, a frame (Gtk

Frame, see Chapter 1 1) is a more appropriate way to separate content in a window. Hori

zontal separators are also used in menus; see Chapter 9 for more details. This chapter also

spent some time discussing GtkArrow, Gtklmage, and GtkPixmap.

(HAPTER

MENVS

In this chapter, I will cover menus and the Gtk+ widget classes listed in Table 9. 1 .

Table 9.1 Widgets Covered in This Chapter

Class Name

GtkItemFactory

GtkMenu

GtkMenuBar

GtkMenultem

GtkCheckMenultem

GtkRadioMenultem

GtkTearoffMenultem

GtkOptionMenu

Description

A class that facilitates the creation of menus.

Vertical grouping of menu items.

Horizontal grouping of menu items.

A selectable item in a menu or menu bar.

A menu item that can be toggled on or off; more
than one check menu item can be toggled on at a

time.

A menu item that can be toggled on or off; only

one radio menu item in a group can be toggled on
at a time.

A menu item that facilitates tear-away menus.

A dialog control that consists of a button and a
menu; selections from the menu change the label
displayed by the button.

An additional class, GtkMenuShell, which provides a base class for both GtkMenu and
GtkMenuBar, will not be covered in this chapter.

Figure 9. 1 illustrates most of the Gtk + menu system components that I discuss in this chapter.

In this figure, you can see a menu bar (GtkMenuBar) that contains four menu items (GtkMenu

Item) labeled File, Edit, Options, and Help. The Help menu item is activated, showing a menu
(GtkMenu) that has three menu items (GtkMenultem) labeled One, 1\\'0, and Three . The menu

item labeled 1\\'0 is activated, showing a pullright menu (GtkMenu) that contains five radio

355

356 Chapter 9 • Menus

menu items (GtkRadioItem) labeled A, B, C, D, and E. The second of these radio menu items

(labeled B) is in the selected state, meaning the user has the pointer currently positioned over the

menu item but has not activated the menu item by either hitting the Enter key or releasing mouse
button 1. Only one radio menu item can be selected at a time by the user (radio menu items are

somewhat analogous to radio buttons, which are discussed in Chapter 5, "Labels and Buttons").

Figure 9.1 Menu System Components

Figure 9.2 illustrates the same menu bar (GtkMenuBar) shown in Figure 9. 1 but with the

Options menu item activated. The dashed line immediately below the Options menu item

is a tearoff menu item (GtkTearOftMenuItem) that will, when activated, cause the entire

Options menu to display on the user's desktop detached from the parent menu or menu bar.

The Options menu's menu items are all instances of GtkCheckMenultem. GtkCheckMenu

Item is similar to GtkRadioMenultem except that more than one check menu item can be

selected at a time by the user.

Figure 9.2 Tearoff Menus

GtkItemFactory 357

Three classes listed in Table 9.1 that are not represented in the preceding figures are Gtk

MenuShell, GtkItemFactory, and GtkOptionMenu. Briefly, GtkMenuShell :.s a parent class for
GtkMenu and GtkMenuBar. GtkMenu and GtkMenuBar are related in that they both provide a

container widget for menu item children. Implementation details that would otherwise be shared
by GtkMenu and GtkMenuBar are instead implemented in GtkMenuShell; GtkMenu and Gtk

MenuBar in turn inherit this common functionality from GtkMenuShell. GtkItemFactory is a

widget class that helps simplify the creation of application menus. For many of you, GtkItem

Factory is all you will need to know to add a menu to your application, and for that reason, I will
present a discussion of GtkItemFactory early in this chapter.

GtkOptionMenu is the final menu widget class that I will be discussing in this chapter.

GtkOptionMenu is a subclass of GtkButton. When clicked, an option menu displays a menu;

selecting one of the menu items in the menu changes the value of the option menu to reflect

the selected menu item. Because an option menu requires the programmer to create menu

items, I cover option menus here instead of in Chapter 5 (which covers GtkButton and related

classes).

GtkltemFactory

Class Name

GtkltemFactory

Parent Class Name

GtkObj ect

Macros

Widget type macro: GTK_TYPE_lTEM_FACTORY

Object to widget cast macro: SlllUIlTEl'lL FACTORY (obj)

Application-Level API Synopsis

Return the constant G�TYPB'�croRY at runtime:
GtkType
gtk_item_factory�et_type(void);

358 Chapter 9 • Menus

Appl ication-Level API Synopsis (Continued)

Create an instance of GtkItemFactory with an optional acceleration group:
Gtk l t emFactory *
gtk_item_factory_new (GtkType container_type , const gchar * pa t h ,

GtkAcce lGroup * acce l_group) ;

Given a path (such as the path passed to gtk_item3actory_new()) and an item factory, obtain the
corresponding widget (e.g., menu bar):
GtkWidget *
gtk_i tem_factory_get_widget (Gtkl temFactory * i factory ,

const gchar *path) ;

Given a widget (e.g. , menu bar), find the corresponding item factory:
Gtk l temFactory *
gtk_item_factory_f rom_widget (GtkWidget *widget) ;

Given a widget (e.g., menu bar) find the corresponding path:
gchar *
gtk_i t em_factory-path_f rom_widget (GtkWidget *widget) ;

Equivalent to gtk_item_factory �ec widgetO, except retrieval is based on the numeric action that
was specified at creation time:
GtkW i dget *
gtk_i tem_factory_get_widget_by_act ion (GtkltemFactory * i factory ,

guint act ion) ;

Add a new item to the factory:
void

gtk_i t em_factory_create_i tem (GtkltemFactory * i factory ,
Gtk l temFactoryEntry * entry , gpointer callback_data ,

guint cal lback_type) ;

Add a set of new items to the factory:
void

gtk_i tem_factory_create_items (GtkltemFactory * i factory ,
guint n_ent ries , Gtk l temFactoryEntry * entries ,
gpo inter cal lback_dat a) ;

Delete an item matching the specified path from the factory:
voi d
gtk_i tem_factory_de lete_item (Gtkl temFactory * i f actory ,

const gchar *path) ;

Delete an item matching the specified entry from the factory:
void gtk_i t em_factory_de lete_ent ry (GtkltemFactory * i f ac tory ,

Gtkl temFactoryEntry * entry) ;

Delete items matching the specified entries from the factory:
voi d
gtk_i t em_factory_del e t e_entries (Gtkl t emFactory * i factory ,

guint n_ent ries , GtkltemFactoryEntry * entries) ;

GtkIternFactory 359

Application-Level API Synopsis (Contin ued)

Display the menu defined by the factory as though the user clicked a specific mouse button at a
given location and time. Factory must be for a menu (not a menu bar or an option menu):
void

-

gtk_i tem_factory-popup (GtkltemFactory *ifactory, guint x. guint y ,
guint mouse_button , guint32 t ime) ;

Same as gtlcitem_factory -popupO, except specify a function to be invoked whc�n the menu is

destroyed and generic data that will be passed to the destroy function:
void

gtk_item_factory-popup_with_data (GtkltemFactory * i facto�{ ,
gpointer popup_data , GtkDest royNot ify des t roy , '�int x,

guint y , guint mouse_button , guint32 t ime) ;

Retrieve pop-up data from an ifactory:
gpo inter
gtk_item_factory-popup_data (GtkltemFactory *ifactory) ;

Given an ifactory's menu widget, obtain pop-up data:
gpointer
gtk_item_factory-popup_data_f rom_widge t (GtkWidget *widgel�) ;

Specify a translation function that can be applied to menu paths as items are added to the factory:
void
gtk_i tem_factory_se t_t rans late_func (GtkltemFactory * i fac1�ory ,

GtkTranslateFunc func , gpointer data,
GtkDest royNoti fy notify) ;

Class Description

An item factory provides a convenient way for applications to create and manage menus, menu

bars, and option menus. Using an item factory amounts to defining a data structure in your
source code and making a few calls to the GtkItemFactory API. The data struc;ture specifies the

labels used for the menus and menu items and associates each menu item with a callback func
tion that will be invoked by Gtk+ should the menu item be activated by the user.

The following is the data structure used to specify menus:

typede f struct _Gtk l t emFactoryEnt ry

{
gchar *path ;
gchar *accelerator ;
GtkltemFactoryCal lback cal lback ;
guint cal lback action ;
gchar * i t em_type ;

GtkltemFactoryEnt ry ;

360 Chapter 9 • Menus

The path field defines the logical position of a menu or menu item in the menu hierarchy, as

well as the (untranslated) label that will be displayed by the menu or menu item in the user

interface. (I have more to say about menu label translation later in this chapter.) Paths always

begin with a slash (I) character and consist of one or more nodes separated by I characters. The
last node in a path may have a single underscore U character used to define an accelerator key

for the menu or menu item. If the node that contains an underscore represents a menu, the menu
can be activated by the user by holding down the Alt key and pressing the key prefixed by the

underscore. If the node containing the underscore is the last node in the path, then the menu

item the node represents can be activated by displaying the menu and then depressing the key

that is prefixed by the underscore.
The accelerator field defines the command key equivalent for the menu item. The format

of this argument is a string of zero or more modifiers, followed by a string of characters

used to represent a single key on the keyboard of the user. Modifiers can be any one of the

following listed in Table 9.2.

Table 9.2 Modifiers

Modifier

<alt>

<cd>, <ctrl>, <control>

<shft>, <shift>

<modI>, <mod2>, . . . , <modS>

Key

Alt+ _L or Alt+_R

X Modifier keys

Values of modI through modS are X server-dependent; to see them, you can run xmodmap:

$ xmodmap -pm
xmodmap : up to 2 keys per modi f i e r , (keycode s in parenthe s e s) :

shi f t
lock

cont rol
modI
mod2
mod3

Shi f t_L (Ox3 2) , Shi ft_R (Ox3 e)
Caps_Lock (Ox4 2)

Cont rol_L (Ox2S) , Cont rol R (Ox6d)
Al t_L (Ox4 0) , Al t_R (Ox7I)
Num_Lock (Ox4 d)

mod4 Meta_L (Ox7 3) , Meta_R (Ox74)
modS Scrol l_Lock (Ox4 e)

The string of characters following the modifiers defines the key to be pressed, and these
strings are recognized by the Xlib function XStringToKeysym(3Xll). Standard KeySym
names are obtained from <XII/keysymdef.h> by removing the XK_ prefix from each name.

Additional names may be supported in an implementation-dependent manner. Certain keys
are not supported for use as accelerators; the GDK defines that correspond to these unsup
ported keys are: GDK_BackSpace, GDK_Delete, GDK_KP _Delete, GDK_ShifeL, GDK_
ShifeR, GDK_ShifeLock, GDK_Caps_Lock, GDK_ISO_Lock, GDK_Control_L, GDK_
Control_R, GDK_Meta_L, GDK_Meta_R, GDK_SupeCL, GDK_SupeCR, GDK_

GtkItemFactory 361

HypeCL, GDK_HypeCR, GDK_Mode_switch, GDK_Num_Lock, GDK_Multi_key,

GDK_ScroICLock, GDK_Sys_Req, GDK_Up, GDK_Down, GDK_Left, GDK_Right,
GDK_Tab, GDK_ISO_Left_Tab, GDK_KP _Up, GDK_KP _Down, GDK_KP _Left, GDK_

KP _Right, GDK_KP _Tab, GDKY'irsC VIrtual_Screen, GDK_Prev_ VIrtual_Screen, GDK_

Nexc VIrtual_Screen, GDK_LasC VIrtual_Screen, GDK_Terminate_Se:rver, and GDK_

AudibleBelCEnable.
You may notice that lock, mod2, mod4, and modS are not legal modiliers for the server

that generated the preceding xmodmap output because GDK_Lock, GDK_Num_Lock,

GDK_Meta_L, GDK_Meta_R, and GDK_ScroICLock are all in the list of unsupported
keys. For this reason, it is probably best to not use <modI> through <moldS> as modifiers
because it is possible that the X server assigned values for these meta keys cannot be used
as accelerators with Gtk+. <lock> is not a valid modifier string to begin with, so it can never

be used regardless of the X server.
The field callback is a function that will be invoked once a menu item is activated. The

prototype for the function depends on the callback type specified when th e item is added to
the item factory. Using the GtkMenuItem API discussed here, the prototype will always be

as follows:

void
cal lback_fun (gpointer data , guint cal lback_act i on , GtkWi dget *w) ;

An alternate API is supported for backward compatibility with GtkMe:nuFactory, which

is not discussed in this book, and is subject to deprecation in a future relc�ase of Gtk+.
The field callback_action is an arbitrary unsigned integer value that is not interpreted by

Gtk+ (however, we shall see that callback_action can be used to create categories of menus

and menu items that can be acted upon as a group by some of the GtkltemFactory func

tions). The field widget is the widget associated with the item factory; see the following dis

cussion of gtk_itemjactory �eC widget() .
The field item_type defines the type of the item in the factory, and is a string in one the

following possible formats listed in Table 9.3.

Table 9.3 Factory Item Types

Type

NULL, "", "<Title>", or "<Item>"

"<CheckItem>", "<Toggleltem>"

"<RadioItem>"

"path"

"<Separator>"

"<Branch>"

" <LastBranch>"

Meaning

Simple menu item

Check menu item

Radio menu item

Path of the radio item group to which the menu
item being defined belongs

Menu item separator

An item to hold subitems

Right-justified item to hold subitems

362

Table 9.3 Factory Item Types (Continued)

Type

"<'fearoff>"

Creating an Item Factory

Chapter 9 • Menus

Meaning

Tearoff menu items

Typically, you create an array of GtkItemFactory structures and initialize the preceding
fields of each element in the array to describe your menu. The following declaration defines

the menu that was illustrated in Figure 9. 1 :

stat i c Gtk l temFactoryEnt ry menu_items[] =

001 "/_F i l e " , NULL , NULL , 0 , "<Branch>" } ,
002 "/ F i l e /_New" , "< control >N" , handl e_new , 0 , NULL } .
003 "/ F i l e /_Open" , "< control >O" , handl e_open , 0 , NULL } .
004 "/ F i l e / _Save", "< cont rol > S " , handle_save , 0 , NULL } .
005 "/ F i l e / Save _As" , NULL , handle_save_as , 0 , NULL } .
006 "/ F i l e / s ep 1 " , NULL , NULL , 0 , "< Separator>" } ,
007 "/ F i l e / Qu i t " , "< control >Q" , 9tk_main_quit , 0 , NULL } ,
008 "/_Ed i t " , NULL , NULL , 0 , "<Branch>" } ,
009 "/Edi t / Cu_t" , "< control >X" , handle_cut , 0 , NULL } .
010 "/Edit /_Copy" , "< control >C" , handl e_copy , 0 , NULL } .
011 "/Edit /_Paste", "< control >V" , handl e-paste , 0 , NULL } .
012 "/_Op t i ons", NULL , NULL , 0 , "<Branch>" } .
01 3 "/Op t i ons/Option1" , NULL , handl e_option , 1 , "<Checkl t em>" } ,
014 "/Op t i ons/Option2 " , NULL , handl e_option , 2 , "< Checkltem>" } .
01 5 "/Op t i ons/Option3 " , NULL , handl e_option , 3 , "<Checkl t em>" } .
01 6 "/Op t i ons/Option4 " , NULL , handl e_option , 4 , "<Checkl t em>" } ,
01 7 "/_He lp" , NULL , NULL , 0 , "<LastBranch>" } .
01 8 "/He lp/One" , NULL , handl e_he lp , 1 , NULL } ,
019 "/He lp/Two" , NULL , NULL , 0 , "<Branch>" } .
02 0 "/He lp/Two/A" , NULL , handl e_he lp , 'A' , "<Rad i o l t em>" } ,
02 1 "/He lp/Two/B" , NULL , handl e_he lp , 'B' , "/He lp/ Two/A" } .
02 2 "/He lp/Two/C", NULL , handl e_he lp , 'C' , "/He lp/ Two /A" } ,
02 3 "/He lp/Two/D" , NULL , handl e_he lp , 'D' , "/He lp/Two /A" } .
02 4 "/He lp/Two/E" , NULL , handl e_he lp , 'E' , "/He lp/Two/A" } ,
02 5 "/He lp/Three" , NULL , handl e_he lp , 3 , NULL } .
} ;

Menus. There are five menus in the preceding array; each is denoted by an item_type
field set to <Branch> (lines 001, 008, 012, and 019) or <LastBranch> (line 017) . Of these

entries, those with an item_type of <Branch> that contain a single I define menus in the
menu bar (the object being created by the item factory in this example is a menu bar).

<Branch> entries that contain more than one I character represent submenus (e.g. , line 01 9).
Using <LastBranch> causes the menu to be located to the far-right end of the menu bar.
Only the last menu bar menu that is specified in the preceding array can be given an
item_type of <LastBranch>.

GtkItemFactory 363

Menu Items. Entries with an item_type field of NULL (lines 002 through 005 , 007, 009

through 01 1 , 0 1 8, and 025) are simple menu items (e.g. , New, Open, Save, Cut, Copy,

Paste). Each menu item can be mapped to a callback function that will be invoked by Gtk+

when the user activates the menu item. On line 002, for example, the menu item IFile/ _New
is mapped to the function handle_newO:

void
handl e_new (GtkWidget *w, gpointer data , guint cal lback_�ction)

Each simple menu item may have an accelerator, for example, <control>N is the accel
erator for the IFileLNew menu item, or none (denoted by NULL). Menu items also specify
a callback_action, which is an unsigned integer passed to the callback function as the third

argument. For most of the menu items here, I pass 0 because the callback function makes

no use of the callback_action argument. However, notice that handle_optionO (lines 0 1 3
through 016) and handle_helpO (lines 0 1 8, 020 through 025) both pass a callback_action

argument. In handle_optionO, the callback_action argument identifies which menu item

was selected by the user, as in the following example:

void
handl e_option (GtkWidget * w , gpointer dat a , guint cal lba=k_action

{
switch (cal lback_action) {

} ;

case 1 : print f ("Option1 was s e l e c ted\:J.") ;
di spl ay_opt i on1_he lp () ;
break ;

case 2 : print f ("Option2 was selected\:J.") ;
display_opt i on2_he lp () ;
break ;

case 3 : print f ("Option3 was s e l e c ted\:J.") ;
display_opt i on3_he lp () ;
break ;

case 4 : print f ("Option4 was selected\:J.") ;
di spl ay_option4_he lp () ;
break ;

Simple menu items can all be defined with an item_type of "", NULL, <Title>, or <Item>.

Check Menu Items. Lines 0 13 through 0 1 6 all define check menu items:

0 1 3 " /Options/Option1 " , NULL , handl e_option , 1 , u<Checkltem> " }.
0 1 4 " /Options/Option2 " , NULL , handl e_option , 2 , "<Checkl tem> " }.
0 1 5 " /Options/Option3 " , NULL , handl e_option , 3 , "<Checkl tem> " }.
0 1 6 " /Options / Option4 " , NULL , handl e_option , 4 , "<Check l t em> " }.

A check menu item is by default unchecked; this is illustrated in Figure 9.2. Activation
of a check menu item causes the check menu item's state to toggle betwc�en unchecked and
checked; Figure 9.3 shows how the menu item labeled Option2 would display when
selected. More than one check menu item can be selected at a single time. Determining the

364 Chapter 9 • Menus

checked state of a check menu item will be discussed in the section later in this chapter that

covers GtkCheckMenultem.

Figure 9.3 A Checked Check Menu Item

The item_type <Toggleltem> can be used in place of <CheckItem> if desired.

Radio Menu Items. Radio menu items are similar to check menu items, with the exception
that only one menu item in a set of radio menu items can be selected at one time. Selecting a

radio menu item causes the previously selected radio menu item to become unselected. Radio

menu items are defined on lines 020 through 024:

02 0 "/He lp/Two/A" , NULL , handl e_he lp , 'A' , "<Radi ol t em>" } .
02 1 "/He lp/Two/B" , NULL , handle_he lp , 'BI , "/He lp/Two/A" } .
02 2 "/He lp/Two/ C" , NULL , handl e_he lp , 'C' , "/He lp/Two/A" } .
02 3 "/He lp/Two/D" , NULL , handle_he lp , '0' , "/He lp/Two/A" } .
02 4 "/He lp/Two/E" , NULL , handl e_he lp , IE' , "/He lp/ Two/A" } .

To define a radio group, create a menu item with an item_type of <RadioItem>. This
menu item defines the radio menu group and its first member; specifying the path of this

item in place of <Radioltem> when defining additional menu items adds them to the radio
menu group. This is illustrated by the menu items defined on lines 02 1 through 024, each

of which specifies /Helpffwo/A as the item_type to add themselves to the radio group

defined on line 020. I will discuss how to retrieve the state of radio items (selected vs. unse

lected) in the section on GtkRadioMenultem presented later in this chapter.

Separators. Separators are defined by specifying the path of the separator and an
item_type of <Separator>. The path defines the location of the separator, similar to the way
in which the location of a menu item is specified. The only difference is that a Gtk+ hori
zontal separator widget is used as the label of the menu item, and the menu item is not
selectable. The callback_action can be assigned an arbitrary value (as is the case for other
menu items); the remaining fields should be set to NULL.

GtkItemFactory 365

TearotT Menus. Tearoff menus are, like separators, a special type of menu item. A tearoff

menu should be specified as the first menu item of a menu. Like a separator, a path must be

supplied. The name assigned to the tearoff menu is not used as a label; it is only used to
identify the menu item. A series of dashes is displayed as the label of the menu item to indi

cate to the user that the menu is a tearoff menu. Generally speaking, the remaining fields

should be set to NULL or zero, where applicable. The following example illustrates how

one might define a File menu as a tearoff menu:

static Gtkl t emFactoryEntry file_menu_items []

{ " / _File " , NULL , 0 , 0 , " <Branch> " },
{ " / File/tearof f l " , NULL , 0 , 0 , II <Tearo f f > " },
{ " / Fil e / _New " , u<control >N" , new_cb , 0 , NULL },
{ " / File/ _Open " , II <contro l > O " , open_cb , 0 , NULL },
{ " / File/ _Save " , " <control >S " , save_cb , 0 , NULL },
{ " / File/Save _As . . . " , NULL , s aveas_cb , 0 , NULL }

The tearoff menu item is identified by the path lFile/tearoffl in the preceding example.
Tearoff menus are described in more detail later in this chapter.

Creating the Application Menu Bar and Menus
Given an array of GtkItemFactoryEntry elements as previously described, it is really a sim

ple matter to create a menu bar and the menus to which it provides access.

Creating the Item Factory. The first step is to create an instance of GtkItemFactory.

This is done with a call to gtk_itemjactory_new():

Gtkl temFactory *
gtk_i tem_factory_new { GtkType container_type , cons t gchar *path ,

GtkAccelGroup *acce l_group) i

The argument containectype defines the type of menu being defined. Possible values
include GTK_TYPE_MENU_BAR, GTK_TYPE_MENU, and GTK_TYPE_OPTION_

MENU. Here I describe how to use GTK_TYPE_MENU_BAR; I will describe the other
container types later. The argument path is a unique string that can be used to identify the

item factory instance. Just about any string of printable ASCII characters will do. The argu
ment accet..group can be set to NULL, in which case accelerators will not be supported, or
it can be an instance of GtkAccelGroup, which GtkItemFactory will use when processing
accelerators specified by menu item elements in your GtkItemFactoryEntry array.

The following code illustrates the creation of an an item factory named <main>, of type
GTK_TYPE_MENU_BAR, that supports accelerators :

GtkAccelGroup * acce l_grouP i
GtkltemFactory * i tem_factorYi

i tem_factory = gtk_item_factory_new { GTK_TYPE_MENU_BAR , "<main>",
acce l_group) i

366 Chapter 9 • Menus

Adding Menu Items to the Item Factory. The next step involved with making our

menu bar is to add the items specified by the array of GtkItemFactoryEntry elements to the

item factory. This can be done in one of two ways. The easiest way is to call the function
gtIcitem_factory _create_itemsO:

vo i d
gtk_i t em_factory_create_i tems (GtkltemFactory * i factory ,

guint n_entries , Gtkl t emFactoryEnt ry * ent ri e s ,
gpointer callback_dat a) ;

The first argument, ifactory, is the item_factory returned by the call to gtIcitem_

factory _newO. The argument n3ntries is the number of elements in the array of GtkItemFac

toryEntry elements. Assuming the name of the array is menu_items, as in the preceding, pass

the value sizeof(menu_items) I sizeof(GtkItemFactoryEntry). The argument entry is the

address of the first element in the array of GtkItemFactoryElement elements. The argument

callback_data is data passed by Gtk+ to the callback function as the first argument (and is of
type gpointer, see the preceding discussion of callback function prototypes). If you have no

data to pass to the callback, set this argument to NULL. Continuing the preceding example:

gtk_i t em_factory_create_it ems (i tem_factory ,
s i zeof (menu_items) / s i zeof (GtkltemFactoryEnt ry) ,
menu_i tems , NULL) ;

The other way to add the items in the array would be to iterate the array and, for each

item, call gtk_item_factory _create_itemO:

voi d
gtk_i tem_factory_create_i tem (GtkltemFactory * i factory ,

GtkltemFactoryEnt ry * entry , gpointer cal lback_data ,
guint cal lback_type) ;

The argument ifactory is the item factory to add the item to, entry is a pointer to the ele

ment of type GtkItemFactoryEntry describing the item to be added, callback_data is the

same as previously described for gtk_itemjactory 3reate_itemsO, and callback_type

should always be set to the value 1 . Code that is equivalent to the preceding code which
used gtk_itemjactory _create_itemsO is:

int i ;

for (i = 0 ; i < s i zeof (menu_items) / s i zeof (GtkltemFactoryEnt ry) ; i + +)
gtk_item_factory_create_item (item_factory ,

&menu_items [i j , NULL , 1) ;

Retrieving the Item Factory Widget. Now that we have supplied the item factory with a
description of our menu bar and the menus it contains, we need to obtain a widget that can be
added to the user interface. This can be done by calling gtk_item_factory �eC widgetO, pass
ing it the item factory and the path to the menu bar:

GtkItemFactory

GtkWidget *
gtk_i tem_factory_get_widge t (GtkltemFactory * i factory ,

const gchar *path) ;

To conclude our menu bar example, we would execute the following code:

GtkWidget *menu_bar ;

367

The returned widget (assuming it is not (GtkWidget *) NULL) can be added to the user

interface like any other widget, for example, to a vertical box:

GtkWidget *vbox ;

At this point, the menu bar is a fully functioning part of our user interface.

Retrieving the Widget Corresponding to an Item in the Menu

We can obtain the widget corresponding to any element of the menu hierarchy we described

to the item factory. The following code will return the GtkRadioMenuItem widget described

by /HelpffwolB in the item factory:

myWidget = gtk_i tem_factory_get_widget (i t em_factory , "/He lp/Two / B") ;

We can then use the result to interact with the radio menu item widget directly by using

the functions provided by GtkRadioMenuItem and its parent classes.

Retrieving an Item Factory and Path from a Widget

We can also go the other way. Given a widget, and obtain the corresponding item factory

(if any) from a widget by calling gtk_itemjactory _from_ widgetO:

GtkltemFactory *
gtk_item_factory_from_widge t (GtkWidget *widget) ;

Given the same widget, we can also find the corresponding path:

gchar *
gtk_i tem_factory-path_from_wi dget (GtkWidget *widget) ;

Thus, the following code is possible:

Gtk l temFactory *myFactory ;
GtkWidget *myWidget ;
gchar *path ;

/ * obtain the widget at path "/He lp/Two/B" f rom i t em factory * /

my Widget = gtk_item_factory_get_widget (i t em_factory , "/He lp/Two/B") ;

/ * after the f o l l owing cal l , myFactory and i tem_factory should be the

368 Chapter 9 • Menus

same * /

/ * a f t e r the following cal l , path should point t o the string
"He lp/Two /B" * /

Retrieving Widgets Based on Action

Equivalent to gtlcitem_factory �eC widgetO, except retrieval is based on the numeric

action specified at creation time, is the GtkItemFactory function gtk_item_factory �eC

widgeCby _actionO:

GtkWidge t *
gtk_it em_factory_get_widget_by_act ion (Gtklt emFactory * i f actory ,

guint act ion) ;

For the preceding function to be useful, you should assign unique values to the

callback_action field of the GtkItemFactoryEntry elements in your item array that describes

your menus. Otherwise, gtk_item_factory �eC widgecby _actionO returns the first
encountered item with the specified action argument.

Deleting Items from an Item Factory

Deleting an item from the item factory can be done in one of several ways. The first of these

methods deletes the item from the factory matching a path specified at factory creation
time. This can be done by calling gtk_item_factory _delete_itemO:

void
gtk_item_factory_de lete_item (GtkltemFactory * i factory ,

const gchar *path) ;

The argument ifactory is, of course, the item factory. The argument path is the path of
any menu or menu item. You must ensure that any underscore C) characters that were used

to define accelerators have been removed from the path argument. For example, to delete

the Copy menu item defined on line 010 earlier in this chapter:

010 { " /Edi t / _Copy" ,

You would call:

"< cont rol >C" , handle_copy , 0, NULL } .

gtk_i t em_factory_de lete_i tem (item_factory , "/Edi t / Copy") ;

The code assumes that itemjactory is a handle to the item factory. If the item being
deleted is a <branch> item (for example, /Edit), then each child of that branch will also be
deleted. I noticed that in Gtk+ 1 .2, deleting /Edit does not remove the Edit menu itself from
the menu bar, which is likely a bug that may be fixed in a later version of Gtk+.

You can also delete an item matching the specified entry from the factory by calling

gtk_itemjactory _delete_entryO:

voi d
gtk_ i t em_factory_de lete_ent ry (GtkltemFactory * i factory ,

GtkItemFactory 369

GtkltemFactoryEnt ry * entry) ;

The argument entry is the address of the GtkItemFactoryEntry structure that was used to
define the item. To delete the same entry as in the preceding example, you would call

gtIcitemjactory _delete_entryO as follows:

gtk_item_factory_de lete_i t em (i tem_factory , &menu_items [9]) ;

This is because the /Edit/Copy menu item is the 1 0th entry in the menu_items vector.

More than one entry can be deleted by passing an array of GtkItemFactoryEntry elements
to gtk_item_factory _delete_entriesO:

void
gtk_item_factory_de lete_entrie s (GtkltemFactory * i factory ,

guint n_entries , Gtkl t emFactoryEnt ry * ent ries) ;

The argument n_entries is the number of elements being passed, and entries is the

address of the first element in the item factory. To delete the entire menu and all of its items

(using the preceding example):

gtk_i tem_factory_de lete_ent r i e s (i tem_factory ,
s i zeof (menu_items) / s i zeof (Gtkl temFactoryEnt ry) ,
menu_i t ems) ;

You must ensure that the n3ntries elements pointed to by entries are valid and match

the entries used to define the item factory in the first place.

Pop-up Menus
Given an item factory, you can display the menu defined by the factory as a pop-up menu,
as though the user clicked a specific mouse button at a given location and time. For this to

work, the item factory must correspond to a menu (not a menu bar or an option menu); the

container_type argument passed to gtk_item_factory _newO to create the item factory must

be set to GTK_ TYPE_MENU for the item factory to be used as a pop-up. The function used

to pop up a menu created by an item factory is gtk_item_factory _popupO:

void
gtk_i tem_factory-popup (Gtklt emFactory * i factory , guint x , guint y ,

guint mouse_button, guint 3 2 t ime) ;

The argument ifactory is the item factory. The remaining arguments define the nature of the
button press that was used to pop up the menu. These arguments may be created by your appli
cation or come from an event. x and y specify screen-relative (not window-relative) coordinates
where the menu should be placed, mouse_button is the button that was pressed, and time is the
time at which the button was pressed. As I mentioned, these values can be manufactured by your
application if the situation requires you to do so, but most applications will retrieve the x, y,
mouse_button, and time arguments from a button_press_event event.

The following code snippet creates a File menu as a pop-up and invokes it each time the
user clicks one of the mouse buttons anywhere in the application's 300X200 top-level win
dow. The event passed to the button_press3vent callback is used as a source for most of the
arguments passed to gtk_item_factory _popupO.

370

0 0 1 Gtk I t emFactory * item_factory ;

0 0 2

0 0 3 gint
004 ButtonPre s s Cal lback (GtkWidget *widget , GdkEventBut ton * event ,

0 0 5 gpointer cal lback data)

0 0 6

0 0 7 gint x , y ;

0 0 8
0 0 9 gdk_window_get_origin (widge t - >window , &x , &y) ;

0 1 0

Chapter 9 • Menus

0 1 1 gtk_item_factory-popup (i tem_factory , event - >x + x , event - >y + y ,

0 1 2 event - >button , event ->t ime) ;

0 1 3

0 1 4
0 1 5 stat i c Gtk I temFactoryEnt ry menu_items [] = {

{ " / F i l e " , NULL , NULL , 0 , " <Branch> "
-

{ " / F i l e / _New " , u< control >N " , print_he l l o , 0 , NULL

{ " / F i l e /_Open " , n<contro l > O " , print_he l l o , 0 , NULL

{ " / F i l e /_Save " , " < control >S " , print_he l l o , 0 , NULL

{ " / F i l e / Save _As " , NULL , NULL , 0 , NULL },

},
},
},
},

0 1 6

0 1 7

0 1 8

0 1 9

0 2 0

0 2 1

0 2 2

0 2 3

0 2 4

{ " / Fi l e / sep1 " , NULL , NULL , 0 , " < Separator > "

{ " / F i l e / Qu i t " , " < contro l > Q " , gtk_main_quit ,

} ;

0 2 5 void get_main_menu (GtkWidget *window

0 2 6

0 2 7 GtkAc c e lGroup *acce l_group ;

0 , NULL
} ,
},

0 2 8 gint nmenu_items = s i zeof (menu_i tems) / s i zeof (menu_items [O]) ;

0 2 9
0 3 0 acce l_group = gtk_accel_group_new () ;

0 3 1
0 3 2 i tem_fac tory = gtk_item_factory_new (GTK_TYPE MENU , " <main> " ,

0 3 3 acce l_group) ;

0 3 4
0 3 5 gtk_i tem_factory_create_i tems (i tem_factory , nmenu_items , menu_i tems , NULL) ;

0 3 6
0 3 7 gtk_accel_group_attach (acce l_group , GTK_OBJECT (window» ;

0 3 8

0 3 9
0 4 0 int ma in (int argc , char *argv [])

0 4 1

0 4 2 GtkWidget *window ;

0 4 3 GtkWidget *menu ;

0 4 4
0 45 gtk_init (&argc , &argv) ;
0 4 6
0 4 7 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
0 4 8 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
0 4 9 GTK_S IGNAL_FUNC (gtk_main_qui t) , " WM destroy " } ;
050 gtk_window_set_t i t l e (GTK_WINDOW (window) , " I tem Factory " } ;
0 51 gtk_widget_set_us i z e (GTK_WIDGET (window) , 3 0 0 , 2 0 0) ;
052
0 53 get_ma in_menu (window) ;
0 54
0 55 gtk_widget_set_events (window , GDK_BUTTON_PRESS_MASK) ;

GtkItemFactory 371

0 56 gtk_s ignal_connect (GTK_OBJECT (window) , " buttonJlres s _event " ,

0 57 GTK_S IGNAL_FUNC (ButtonPre ssCal lback) , NULL) ;

058

059 gtk_widget_show (window) ;

0 6 0 gtk_main () ;

0 6 1

0 6 2 return (0) ;

0 6 3

The item factory i s defined on lines 0 1 5 through 023. Lines 025 through 038 illustrate
how the item factory is created, as discussed earlier in this chapter. Note that the call to

gtk_itemjactory _newO sets the container type to GTK_TYPE_MENU. In mainO, on lines
045 through 062, I create a simple top-level window and give it a size of 300X200. On line

053, I then call geCmain_menuO to create the pop-up menu. Then the final major task of

mainO is to solicit button press events from the window (line 055) and register ButtonPress

CallbackO as the signal function to be invoked should a button press be made.

ButtonPressCallbackO, on lines 003 through 013, is passed an event structure, which we

use to retrieve the x, y, button, and time arguments passed to gtk_item_factory _popupO. The

x and y coordinates reported are window-relative, so a call to gdk_window....geCoriginO is

made to retrieve the screen-relative position of the window; these offsets are added to the

event coordinates to derive the screen-relative position of the mouse button press passed to

gtk_item_factory _popupO.

Pop-up Data. A similar function, gtk_item_factory _popup_ with_dataO, can be used in

place of gtk_item_factory _popupO. The function gtk_itemjactory _popup_ with_dataO
requires you to specify a function to be invoked when the menu is destroyed and generic
data that will be passed to the destroy function. Its function prototype is as follows:

void
gtk_item_factory-popup_with_data (GtkltemFactory * i factory ,

gpointer popup_data , GtkDe st royNot i fy de s t roy ,
guint x, guint y , guint mouse_but ton , guint 3 2 t ime) ;

The function prototype for the GtkDestroyNotifiy callback function, destroy, is as follows:

vo id
DestroyNot i fyFunc (gpo inter data) ;

The argument data is set by Gtk+ to the value of the popup_data argument that was
passed to gtk_item_factory_popup_with_dataO. The destroy (noitify) callback function is
called by Gtk+ when the user selects an item from the pop-up menu or dismisses the menu

by clicking outside of it (or hitting the Escape key).
You can retrieve the pop-up data associated with an item factory by making a call to

gtk_item_factory _popup_dataO:

gpointer
gtk_item_f actory-popup_data (GtkltemFactory * i factory) ;

372 Chapter 9 • Menus

Or, given an item factory's menu widget, you can obtain the pop-up data by calling

gtlcitem_factory _popup_data_from_ widgetO:

gpo inter
gtk_i t em_factory-popup_data_from_widget (GtkWidget *widget) ;

Widget can be obtained from an item factory with gtk_itemjactory�ecwidgetO.

Using Pop-up Menu Data. You might wonder what purpose there would be in associating

data with a pop-up menu. Pop-up menu data provides a way to set the context for a pop-up

menu that can be retrieved from a menu item callback indirectly through the item factory. An
example is probably the easiest way to illustrate the concept. Assume you have an application
that implements an image map. An image map essentially associates portions of an image
(defined as regions with an x, y offset, width, and height) with logic or data. A user mousing

over, or clicking on, one portion of the image has a different context than the same operation if

it were to occur over (or on) a different portion of an image. For example, a Web page might
display as an image map an image of a house. Clicking on the roof might take the user to a page

that discusses how roofs are built. The browser uses the x and y coordinates of the mouse press
to determine in which portion of the image the button press occurred. It then performs the

action associated with that portion of the image, as defined by the Web page designer.

An application might choose to implement a feature similar to Web image maps, but
instead of associating an action with a button press, the application might instead pop up a

menu with options for the user to select from. Referring back to the house image map exam
ple, we might display a menu with options such as Techniques, Style, Materials, Colors, and

so forth, whenever the user clicks a mouse button on a particular portion of the house. What

we want is for the selection of any of these menu items to be driven by the position of the

menu when it was popped up. If the mouse was positioned over the image of a roof when
clicked, then, for example, selecting the menu item Styles should result in the display of

something related to styles of roofing. To implement such a feature, we might execute the

following steps in the button press handler:

1 . Correlate the button press to an object in the image, for example, a roof or a window.
2. Obtain a reference to an object that contains, or can be used to obtain, detailed

information about the image object obtained in step 1 .

3 . Call gtk_item_factory_popup_with_dataO to pop up the menu, setting the
popup_data argument to the reference obtained in step 2.

Assume that we have the following data structure:

typede f s t ruct _houseData {
char * t echnique s ;
char * s tyles ;
char *materi a l s ;
char * colors ;

HouseData ;

And the following declaration:

GtkItemFactory

#def ine WINDOW °
#def ine DOOR 1
#def ine ROOF 2

HouseData myHous eData [] = {
"Cut a hol e in the wal l , ins t a l l the window" ,
"Round , Square , Cl ear , Opaque" ,
"Saw , hammer , nai l s , and one window (wood , aluminum) " ,
"Any color can b e used" },
"Cut a hol e in the wal l , ins t a l l the door" ,

"Square" ,
"Saw , hammer , nai l s , and one door (wood , steel , aluminum) " ,

"Any color can b e used" },

373

{ "Cut a hol e in the c e i l ing , ins t a l l the roof (shake , t i l e) " ,

"Gable , f lat",

0 0 0 gint

} ;

"Saw , hammer , nai l s , and one roo f " ,
"Brown , rus t , gray , red"

Element 0 of myHouseData contains data about windows, element 1 contains data about

doors, and element 2 has data about roofs. The image for this example is 500 pixels wide

and 400 pixels high, and there are three windows, two doors, and one roof located within

the image, as defined by the following regions (the coordinates are somewhat arbitrary, and

the actual values are not relevant to this discussion):

XRectangle roof = { 50, 50, 400, 75 } ;
XRectangle doors [] = { { 300, 275, 40, 100 }, { 10, 275, 40, 100} } ;
XRectangle windows [] = { { 200, 140, 20, 30 }, { 140, 200, 20, 30 },

{ 380, 200, 25, 75 } } ;

An XRectangle is defined in XIIIXlib.h as follows:

typede f s t ruct {
short x, y ;
uns igned short width , he ight ;

XRectangle ;

Given the preceding, we might code the button_press_event callback for the window
displaying the image as follows:

001 But tonPres sCal lback (GtkWidget *widget , GdkEventButton * event ,
0 0 2 gpointer cal lback_data)

0 0 3
0 0 4 gint i , x , y;

0 0 5 gint found = 0 ;

0 0 6 gpointer data = (gpoint e r) NULL ;

0 0 7
0 0 8 / * map the coordinate of the button pre s s to a n image obj ect * /

0 0 9
0 1 0 / * check roof * /

0 1 1
0 1 2 i f (event - >x > = roof . x && event - >x < roof . x + roof . width & &

374

0 1 3

0 1 4

0 1 5

0 1 6

0 1 7

Chapter 9 • Menus

event - >y >= roof.y && event - >y < roof .y + roof.he ight) (
data = &myHouseData [ROOF 1 ;

found = 1 ;

0 1 8 / * i f not the roof , check for windows * /

0 1 9

0 2 0
0 2 1

0 2 2
0 2 3

0 2 4

i f found = = 0)

for (i 0 ; i < s i zeof (windows) / s i zeof (XRectangl e) ; i ++)

i f (event - >x >= windows [i l .x &&
event - >x < windows [i l .x + windows [i l .width &&

event - >y > = windows [i l .y &&

0 2 5 event - >y < windows [i l .y + windows [i l .he i ght

0 2 6 data = &myHouseData [WINDOW 1 ;

0 2 7 found = 1 ;

0 2 8

0 2 9
0 3 0 / * f inal l y , check for doors * /

0 3 1
0 3 2

0 3 3
0 3 4
0 3 5

0 3 6

0 3 7

0 3 8

0 3 9

04 0

0 4 1

i f found = = 0)

for (i 0 ; i < s i zeof (doors) / s i zeof (XRectangl e) ; i ++
i f (event - >x >= doors [i l .x &&

event - >x < doors [i l .x + doors [i l .width &&

event - >y >= doors [i l .y &&

event - >y < doors [i l .y + doors [i l .he ight

data = &myHouseData [DOOR 1 ;

found = 1 ;

0 4 2 / * i f u s e r c l i cked i n any of the image maps , then display a popup

0 4 3 menu , otherwi se j ust return * /

0 4 4

0 4 5

0 4 6

0 4 7

0 4 8

0 4 9
050

051

i f found = = 1) (
gdk_window_get_origin (widget - >window , &x , &y) ;

gtk_i tem_factory-popup_with_data (i tem_factory , data ,

NULL , event - >x + x , event - >y + y , event - >but ton ,

event - >time) ;

Basically, the preceding code checks to see if the mouse button press maps to any of the

regions in the window that represent the roof or one of the doors or windows.

If a match is found, then the variable data is set to the address of the element in

myHouseData that pertains to the type of object that was clicked on. On line 038, for exam

ple, data is assigned to the address of myHouseData[DOOR] because the coordinates of the
mouse button press fell inside the boundaries of one of the regions specified in the array

doors. The function gtk_item_factory_popup_with_dataO is then called, with the popup_

data argument set to data.

The final step is to extract the pop-up data argument from the item factory in the callback

function of the pop-up menu, if and when the user selects one of the items in the pop-up

menu that was displayed in the preceding. For example, the callback for the Techniques
menu item would be as follows:

GtkltemFactory

void
handle_techniques(GtkWidget *w, gpointer data,

guint callback_action)

/* assume here that item_factory is a global */

void DisplayHelp(char *text);
HouseData *myHouseData;

myHouseData = (HouseData *)
gtk_item_factory-popup_data(item_factory) ;

DisplayHelp(myHouseData->techniques);

375

Here, we simply call gtlcitemjactory_popup_data() to obtain the popup_data we
assigned back in ButtonPressCallback(). The data that is retrieved is stored in a variable of
type HouseData * so that we can access the techniques field, which is passed to a hypothetical

function DisplayHelp(), which in tum displays the help text to the user.

Option Menus

Option menus are similar in many ways to regular or pop-up menus. However, while regular

and pop-up menus are displayed dynamically, an option menu is a dialog control and is given
a fixed position in the layout of the dialog. Option menus are typically used in a situation in

which a user needs to select an item from a larger number of choices; for example, a dialog that

lets the user select a color from a palette of 10 colors might display the color names in an option
menu. The current selection of an option menu will always be displayed by the option menu,

even when it is not activated. In this section, I won't go too deeply into the details of option

menus, except to show how they can be created with the help of an item factory. The technique

is similar to the technique used to create a menu, as described earlier in this chapter. Although

gtk_item_factory_newO takes a container type argument of GTK_TYPE_OPTION_MENU,

it is better to use item factory for creating the menu items displayed by the option menu and

use the GtkOptionMenu API to tie the menu created to the option menu. I will now illustrate

how this can be done. See the section on GtkOptionMenu later in this chapter for more details

on the GtkOptionMenu API functions used in the following discussion.
The following is an array of GtkItemFactoryEntry elements that can be used to create

the menu portion of an option menu:

static GtkltemFactoryEntry menu_items[] =

{ "/Option1", NULL , handle_option, 1, NULL } ,
{ "/Option2", NULL , handle_option, 2, NULL } ,
{ "/Option3", NULL , handle_option, 3, NULL } ,
{ "IOption4", NULL , handle_option, 4, NULL } ,

} ;

Notice that the item_type in each of these entries is NULL. Generally, items in an option
menu will be regular menu items, so you will want to specify NULL, " ", "<Title>", or

"<Item>". You can, if desired, specify <separator>, <Radioltem>, or <CheckItem>, but for
option menus, these choices are generally not appropriate given the way in which option

376

0 0 1

0 0 2
0 0 3

0 0 4

0 0 5

0 0 6

0 0 7
0 0 8
0 0 9

Chapter 9 • Menus

menus are used. The path should consist of a slash (I) character concatenated with the menu

item name. Hierarchies (e.g., Ifoolbar) are not usable in option menus. The rest of the

GtkItemFactoryEntry fields can be set as desired. Many applications will want to specify a

callback function so that changes to the option menu can be recorded as they are made.

Notice in the preceding that I register the same callback function for each menu item and

use the callback_action argument to communicate to the callback function which menu

item was selected by the user.
Once you have constructed a vector similar to menu_items, as shown in the preceding

code, call gtk_itemjactory _newO to obtain the menu. The first argument to gtk_item_

factory_newO should be GTK_TYPE_MENU; the remaining arguments are as discussed ear

lier. Once you have the menu, you need to create an option menu and associate it with the

menu created by the item factory. The following code shows how this can be done:

s t a t i c Gtk l t emFactoryEnt ry menu_items [] =

{ " /Opt i onl " , NULL , handl e_option , 1 , NULL },
{ " /Opt i on2 " , NULL , handl e_option , 2 , NULL },
{ " /Opt i on3 " , NULL , handl e_option , 3 , NULL },
{ " /Opt i on4 " , NULL , handl e_opt ion , 4 , NULL },

} ;

0 1 0 voi d

0 1 1 get_op t i on_menu_menu (GtkWidget *window , GtkWidget * *menu)

0 1 2 {
0 1 3 GtkAcc e lGroup *acce l_group ;

0 1 4

0 1 5

g i n t nmenu_items = s i zeof (menu_i tems) / s i zeof (menu_items [O]) ;

0 1 7

0 1 8 i t em_fac tory =

gtk_item_f actory_new (GTK_TYPE_MENU , " <main> " , acce l_group) ;

0 1 9

0 2 0 gtk_item_factory_create_i tems (i tem_factory , nmenu_items , menu_i tems ,

NULL) ;

0 2 1

0 2 2 gtk_acce l_group_attach (acce l_group , GTK_OBJECT (window » ;

0 2 3
0 2 4 i f (menu)

0 2 5 / * return t h e actual menu created b y t h e item factory . * /

0 2 6 *menu = gtk_item_factory_get_widget (i tem_factory , " <main> ") ;
0 2 7

0 2 8
02 9 GtkWidget *window , *menu , * optionMenu ;
0 3 0
0 3 1 get_opti on_menu_menu (window , &menu) ;
0 3 2 opt ionMenu = gtk_option_menu_new () ;

0 3 3 gtk_option_menu_set_menu (GTK_OPTI ON_MENU (opt ionMenu) , menu) ;

GtkItemFactory 377

The function geCoption_menu_menuO, called on line 03 1 , creates the menu defined by

menu_items, using GtkItemFactory. It is nearly identical to the function geCmain_menuO
that I presented earlier in this chapter. The second argument, on return from gecoption_

menu_menuO, contains the menu widget created by the item factory. On line 032, we create

an option menu with a call to gtk_option_menuO and, finally, associate the menu created by
the item factory with the option menu with a call to gtk_option_menu_secmenuO on line

033. Both gtk_option_menuO and gecoption_menu_seCmenuO are described later in this

chapter. Because the menu created by the item factory is a child of the option menu after the

call to gtk_option_menu_secmenuO, there is no need to call gtk_widgecshowO on the

menu; ensuring that the option menu widget is visible is all that is required.

Translating Menu Paths

The final item factory function I will describe allows a client to specify a translation to

menu paths as they are added to a menu by the item factory:

void
gtk_item_factory _set_translate_func (GtkltemFactory *ifactory ,

GtkTranslateFunc func , gpointer data , GtkDestroyNotify
notify) ;

The argument ifactory specifies the item factory, func is the translation function that your
application provides, data is call data that will be passed by GtkItemFactory to the translation

function (and to the notify function), and notify is a function that will be called when either
the translation function previously associated with the same item factory is replaced with a

new translation function (with a call to gtk_item_factory_sectranslatejunc()) or the item

factory itself has been destroyed. In Gtk+ 1 .2, for the notify function to be called, the data

argument must be non-NULL.
The function prototype for a translation function is as follows :

gchar *
TranslateFunction (const gchar *path , gpointer func_data);

The path argument is the path to be translated, and func_data is the data argument that your

application passed to gtk_item_factory_sectranslate_funcO. The entire path, including any

hierarchy separators (I) and accelerator key prefixes U that were present when the path was
defined, are also present in the passed-in path.

Although it is important to preserve each of the hierarchy separators in the path, everything

else is subject to change as your translation function sees fit.

As I mentioned earlier, GtkItemFactory provides most, and for many all, of what is

needed to add a menu bar and menus to your application. The rest of this chapter details

most of the menu-related Gtk+ classes that GtkItemFactory makes use of. I recommend, at
some point, that you take the time to read though the remainder of this chapter. Most of you,

however, will find that GtkItemFactory is all you need to know to work with menus.

378

GtkMenu Bar

C lass Name

GtkMenuBar

Parent Class Name

GtkMenuShe l l

Macros

Widget type macro: GTK _ TYPE _MENU_BAR

Object to widget cast macro: GTK _MENU_BAR (obj)

Widget type check macro: GTK _ IS _MENU_BAR (obj)

Supported Arguments

PTefix: GtkMenuBar : :

Table 9.4 GtkMenuBar Arguments

Name Type

shadow GTK_TYPE_SHADOW _TYPE

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_MENU_BAR at runtime:
GtkType
gtk_menu_bar_get_type (void) ;

Create a new instance of GtkMenuBar:
GtkWidget *
gtk_menu_bar_new (void) ;

Insert a menu item at the end of the menu bar:
void

Chapter 9 • Menus

Permission

gtk_menu_bar_append (GtkMenuBar *menu_bar , GtkWidget * child) ;

GtkMenuBar

Application-Level API Synopsis

Insert a menu item at the head (position 0) of a menu bar:
void
gtk_menu_bar-prepend (GtkMenuBar *menu_bar , GtkWidget * chi l d) ;

Insert a menu item at an arbitrary location m a menu bar:
void
gtk_menu_bar_insert (GtkMenuBar *menu_bar , GtkWidget * chi l d , gint pos i t i on) ;

Set the shadow type of the menu bar:
void
gtk_menu_bar_set_shadow_type (GtkMenuBar *menu_bar , GtkShadowType type) ;

Class Description

379

A menu bar should be thought of as being a container widget designed to present and man

age a set of menu items (Le. , instances of GtkMenultem or a related class) in an application

window or dialog. Most applications require only one menu bar, displayed in the applica

tion's main window. Gtk+ allows you to place a menu bar in any window or dialog, how

ever, as needed (an example of an application that makes good use of menu bars in more

than one window is the Mozilla Web browser). Your application can also have more than

one menu bar in a window, but doing so is not generally considered to be a good user-inter

face-design decision.

Creating a Menu Bar
Using GtkMenuBar is fairly easy. The first step is to create the menu bar; this is done by

calling gtk_menu_bar_newO:

GtkWidget *

gtk menu bar new (void) ;
- - -

Adding Menu Items to the Menu Bar
The next step is to add menu items to the menu bar. Menu items are displayed in a menu

bar from left to right (as opposed to being displayed in a menu from top to bottom). In most
cases, you add menu items to the menu bar by appending them. The first menu item

appended to the menu bar will be the leftmost menu item displayed in the menu bar, and

the last menu item appended to the menu bar will be displayed as the rightmost menu item.
Menu items can also be prepended to the menu bar, in which case the ordering is

reversed: The first menu item that is prepended will be the rightmost menu item displayed

in the menu bar. Finally, menu items can be inserted at arbitrary positions in a menu bar
based on their index.

GtkMenuBar provides functions for appending (gtk_menu_bar_append()), prepending

(gtk_menu_bar_prepend()), and inserting (gtk_menu_bar_insert()) menu items into a menu

380 Chapter 9 • Menus

bar. The prototypes for gtk_menu_bar_appendO and gtk_menu_bar_prependO are identical

(except for the names):

void
gtk_menu_bar_append(GtkMenuBar *menu_bar, GtkWidget *child);

void
gtk_menu_bar-prepend(GtkMenuBar *menu_bar, GtkWidget *child);

The argument menu_bar is an instance of GtkMenuBar created by a call to gtk_menu_
bar_newO. The argument child is an instance of GtkWidget, an instance of GtkMenuItem (or one

of its subclasses) that has been cast to GtkWidget using the GTK_ WIDGET macro.

The function gtlcmenu_bar_insertO allows you to place a menu item at an arbitrary

location in the menu bar:

void
gtk_menu_bar_insert(GtkMenuBar *menu_bar, GtkWidget *child,

gint position);

The function gtk_menu_bar_insertO takes an additional argument, position. Assume that

the menu bar, prior to calling gtk_menu_bar_insertO, has n items. Setting position to -1 , n, or

any value that is greater than n has the same effect as making a call to gtk_menu_bar_appendO.

Setting position to 0 is equivalent to calling gtk_menu_bar_prependO. Setting position to a

value in the range [1 , n - 1] will cause the menu item to be inserted at the corresponding posi

tion in the menu bar.

Setting the Shadow Type
The final function discussed here, gtk_menu_bar_secshadow _typeO, allows you to set the

shadow type applied to the menu bar as a whole:

void
gtk_menu_bar_set_shadow_type(GtkMenuBar * menu_bar ,

GtkShadowType type);

For a description of the possible values for type, and illustrations, see the discussion of

gtk_cliscsecshadow _typeO in Chapter 6.

I will present code in the next section that illustrates the use of the functions gtk_menu_

bar_newO and gtk_menu_bar_appendO. To present a meaningful example, I will first need to

describe how GtkMenuItem works, which I will do in the following section.

GtkMenuitem

GtkMenultem

Class Name

GtkMenuI t em

Parent Class Name

GtkItem

Macros

Widget type macro: GTK_TYPE_MENU_ITEM

Object to widget cast macro: GTK_MBNU _ITEM (obj)

Widget type check macro: GTK_IS_MENU_ITEM (obj)

Supported Signals

Table 9.5 Signals

Signal Name Condition Causing Signal to Trigger

activate The menu item was activated by the user.

Signal Fu nction Prototypes

void
act ivat e (GtkMenuItem *menuitem , gpointer user dat a) ;

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_MENU_ITEM at runtime:
GtkType
gtk_menu_it em_get_type (void) ;

Create a new instance of GtkMenultem:
GtkWidget *
gtk_menu_item_new (void) ;

381

382

Application-Level API Synopsis (Continued)

Create a new instance of GtkMenultem with a label:
GtkWidget *
gtk_menu_item_new_with_label(const gchar *label);

Associate a menu with a menu item:
voi d

Chapter 9 • Menus

gtk_menu_item_set_submenu (GtkMenuItem *menu_item, GtkWidget * submenu) ;

Disassociate a menu from a menu item:
void
gtk_menu_item_remove_submenu(GtkMenuItem *menu_item) ;

Set the placement attribute (GTK_TOP _BO'ITOM or GTK_LEFCRIGHT) of a submenu that is

associated with a menu item:
voi d

gtk_menu_item_set-placement (GtkMenuItem *menu_item ,

GtkSubmenuPlacement placement) ;

Cause the specified menu item to be displayed in the selected mode (Le., as if the user had popped
up the menu containing the menu item and had traversed to the menu item without activating it):
void
gtk_menu_item_select(GtkMenuItem *menu_item);

Undo the effects from a call to gtk_menu_item_selectO or from a user manually selecting a menu

item:
void
gtk_menu_item_deselect(GtkMenuItem *menu_item);

Activate the specified menu item (emulates the user clicking mouse button 1 or hitting Enter when
the menu item is in the selected state):
void
gtk_menu_item_activate(GtkMenuItem *menu_item);

Make the last menu item in the menu bar right-justified:
void
gtk_menu_item_right_j ustify (GtkMenuItem *menu_item);

Class Description

GtkMenultem implements the visual appearance and behavior of menu items. A menu item is

displayed as text in a menu bar (e.g., File, Edit, Help) or a menu (e.g., Open, Save, Quit). A

menu item can be selected and activated by the user to display a menu (in the case of menu
items in a menu bar, or menu items in a menu that have a submenu associated with them).
Selecting and activating menu items in a menu that are not assigned a submenu causes Gtk:+ to

call an activate signal function that has been associated with the menu item by the application.

GtkMenultem 383

Creating a Menu Item
Creating a new instance of GtkMenultem is similar to creating a new instance of GtkLabel.

To create a menu item without a label, just call gtk_menu_item_newO:

GtkWidget *
gtk menu item new (void) ;

- - -

GtkMenuItem is a descendent of GtkContainer, and so a label can be associated with a

menu item by calling gtk_containecaddO. For example:

GtkWidget *label, *menu_item;

label = gtk_label_new("File");
gtk_container_add(GTK_CONTAINER(menu_item), label);

I will illustrate the importance of separately creating menu items and their labels, as previously

shown, later in this section when I illustrate how to create menu bar menu items without the use

of GtkItemFactory.
If you prefer, the label displayed by a menu item can also be specified at the time the

menu item is created by calling gtk_menu_item_new _ with_labelO:

GtkWidget *
gtk_menu_item_new_with_label(const gchar *label);

The argument label is a NULL-terminated C string. Notice that gtk_menu_item_

new _ with_labelO will not, at least in Gtk + 1 .2, parse any underscore U characters that you

specify in the label to identify accelerator keys. For this reason, gtk_menu_item_newO is a

better choice should the menu item need to have an accelerator key sequence associated

with it. I present an example illustrating why this is so at the end of this section.

Submenus

A submenu can be associated with any menu item. A menu item that does not have a submenu,

when activated, results in the invocation of the activate signal function assigned to the menu

item, as I previously mentioned. Activating a menu item that has a submenu results in the dis

play of the submenu. (If the menu item selected is located in the menu bar, the submenu will
usually be displayed vertically. If the menu item selected is located in a menu, then the sub
menu will usually be displayed as a pUllright menu.)

It is fairly easy to associate a submenu with a menu item or to remove a submenu from a menu

item. To set the submenu of a menu item, simply make a call to gtk_menu_item_secsubmenuO:

void
gtk_menu_item_set_submenu(GtkMenultem *menu_item, GtkWidget *submenu) ;

The argument menu_item is an instance of GtkMenultem or one of its subclasses. The
argument submenu is an instance of GtkMenu. An example call to this function will be

given in the following code.

384 Chapter 9 • Menus

To remove a menu item's submenu, call gtk_menu_item_remove_submenuO:

void
gtk_menu_item_remove_submenu(GtkMenultem *menu_item) ;

A menu item's placement defines how a submenu is placed relative to the menu item that, when

activated, leads to the submenu being displayed. The routine gtk_menu_item_secplacementO

allows you to specify this preference:

void
gtk_menu_item_set-placement(GtkMenultem *menu item,

GtkSubmenuPlacement placement) ;

The argument placement can be either GTK_TOP _BOTTOM or GTK_LEFCRIGHT.

By default, the placement of submenus corresponding to menu items in a menu bar is

GTK_ TOP _BOTTOM, and the placement of submenus corresponding to menu items in

traditional menus is GTK_LEFCRIGHT.

Right-Justifying Menu Items

Most readers have seen a menu bar that includes a menu item labeled Help and is located on the

far right of the menu bar, as illustrated in Figure 9. 1 . The function gtk_menu_item_rightjustifyO

is what you call in Gtk+ to position a menu in this manner:

void
gtk_menu_item_right_j ustify(GtkMenultem *menu_item) ;

The function gtk_menu_item_rightjustifyO takes a single argument, the menu item to

be positioned at the far right of the menu bar. It is important that the menu item be the last

menu item in the menu bar; there can be no menu items to the right of the specified menu

item (see gtk_menu_bar_insertO earlier). If this is not the case, the call to gtk_menu_item_

rightjustifyO is a no-op.

Selecting and Unselecting Menu Items

The remaining calls in the GtkMenultem API will rarely, if ever, find their way into a typical

Gtk+ application.

The first, gtk_menu_item_selectO, can be used to cause the specified menu item to be
displayed in the selected mode. That is, gtk_menu_item_selectO acts as if the user had

popped up the menu containing the menu item and had traversed to the menu item without
activating it (see gtk_menu_item_activateO later in this section):

void
gtk_menu_item_select(GtkMenultem *menu_item) ;

The argument menu_item, of course, is an instance of GtkMenultem that defines the

menu item to be selected. To undo the effect of a selected menu item, an application can
call gtk_menu_item_deselectO:

void
gtk_menu_item_deselect(GtkMenultem *menu_item) ;

GtkMenuItem 385

static
0 01 {
0 02 {
0 03 {
0 04 {
0 0 5 {
0 0 6 {
0 0 7 {
O O B {
0 0 9 {
010 {
a l l {
012 {
013 {
014 {
0 1 5 {
0 1 6 {
017 {
a l B {
019 {
020 {
021 {
022 {
023 {
024 {
025 {
} ;

Activating a selected menu item will cause the menu item to go to the unselected state

and the activate signal function assigned to the menu item, if there is one, to be invoked. An

application can activate a selected menu item with a call to gtk_menu_item_activateO :

void
gtk_menu_item_activate(GtkMenultem *menu_item);

As I mentioned earlier, I don't see the preceding functions (gtk_menu_item_selectO,

gtk_menu_item_deselectO, and gtk_menu_item_activate()) being used much, if at all, in an

average application. These functions are used by other Gtk+ classes, however; gtk_

menu_item_selectO and gtk_menu_item_deslectO are used by GtkMenuShell (not covered
in this book), while gtk_menu_item_activateO is used by subclasses of GtkMenultem (e.g. ,

GtkCheckMenultem).

An Example

The goal of this example is to illustrate another way of implementing the GtkItemFactory

example discussed earlier in this chapter. In the following, I have reproduced the declara

tion of the GtkItemFactoryEntry presented earlier, which was used to create the File, Edit,

Options, and Help menus using GtkItemFactory:

GtkltemFactoryEntry menu_items[] = {
,, / _File " ,
" /File/ _New" ,
" /File/ _Open " ,
" /File/ _Save " ,
" /File/Save _As " ,
" /File/sep1 " ,
" /File/Quit " ,
" / _Edit" ,
" /Edit/Cu_t " ,
" /Edit/ _Copy " ,
" /Edit/ _Paste " ,
" /_Options " ,
" /Options/Option1 " ,
" /Options/Option2 " ,
" /Options/Option3 " ,
" /Options/Option4 " ,
" / _Help " ,
" /Help/One " ,
" /Help/Two" ,
" /Help/Two/A" ,
" /Help/Two/B " ,
" /Help/Two/ C " ,
" /Help/Two/D " ,
" /Help/Two/E " ,
" /Help/Three " ,

NULL,
" <control>N " ,
" <control>O " ,
" <control>S " ,
NULL,
NULL,
" <control>Q " ,
NULL,
" <control>X " ,
" <control>C " ,
" <control>V " ,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

NULL, 0, " <Branch> " } ,
handle_new, 0 , NULL } ,
handle_open, 0 , NULL } ,
handle_save, 0 , NULL } ,
handle_save_as, 0 , NULL } ,
NULL, 0 , " < Separator> " } ,
gtk_main_quit, 0 , NULL } ,
NULL, 0 , " <Branch> " } ,
handle_cut, 0 , NULL } ,
handle_copy, 0 , NULL } ,
handle-paste, 0 , NULL } ,
NULL, 0 , " <Branch> " } ,
handle_option, 1, " < Checkltem> " } ,
handle_option, 2, " < Checkltem> " } ,
handle_option, 3, " <Checkltem> " } ,
handle_option, 4 , " < Checkl t em> " } ,
NULL, 0, " <LastBranch>" } ,
handle_help, 1 , NULL } ,
NULL, 0 , " <Branch> " } ,
handle_help, ' A ' , " <Radioltem> " } ,
handle_help, ' B ' , " /Help/Two/A " } ,
handle_help, ' C ' , " /Help/Two/A " } ,
handle_help, ' D ' , " /Help/Two/A " } ,
handle_help, 'E ' , " /Help/Two/A " } ,
handle_help, 3, NULL } ,

386 Chapter 9 • Menus

For this example, I will still make use of GtkItemFactory to create the File, Edit, Options,

and Help menus, but I won't use GtkItemFactory to create the menu bar or the menu items in

the menu bar. Instead, I will use the functions provided by GtkMenuBar and GtkMenultem

to create the menu bar; create the File, Edit, Options, and Help menu items; and attach to these

menu items the menus created by the GtkItemFactory. If you are not familiar with GtkItem

Factory, I recommend that you ret1lrn to the start of this chapter and read about it.

The following are the GtkItemFactoryEntry vectors used to create the menus that will
be attached to the File, Edit, Options, and Help menus.

static GtkltemFactoryEntry menu_ items 1 [] =
-

{ ,, / _New" , "<control>N" , print_hello , 2 , NULL } .
{ ,, / _Open" , "<control>O" , print_hello , 0 , NULL } .
{ ,, /

-
Save" , "<control>S" , print_hello , 0 , NULL } .

{ "/ Save _As" , NULL , NULL , 0 , NULL } .
{ "/sep1" , NULL , NULL , 0 , "<Separator>" } .
{ "/Quit" , "<control>Q" , gtk_main_qui t , 0 , NULL } .

} ;

static GtkltemFactoryEntry menu_ items 2[] = {
-

{ "/ Cu_t" , "<control>X" , print_ hello , 0 , NULL } .
{ ,, / _Copy" , "<control>C" , print_ hello , 0 , NULL } .
{ ,, / Paste" , "<control>V" ,

-
print_hello , 0 , NULL } .

} ;

static GtkltemFactoryEntry menu_items_3[] = {

} ;

static

{ "/Option1" , NULL , handle_option , 1 , "< Checkltem>" } ,
{ "/Option2" , NULL , handle_option , 2 , "<Toggleltem>" } .
{ "/Option3" , NULL , handle_option , 3 , "<Checkltem>" } .
{ "/Option4" , NULL , handle_option , 4 , "<Toggleltem>" } .

GtkltemFactoryEntry menu_items_4[] =

{ "/One" , NULL , NULL , 0 , NULL } .
{ "/Two" , NULL , NULL , 0 , "<Branch>" } .
{ "/Two/A" , NULL , NULL , 0 , "<Radioltem>" } .
{ "/Two/B" , NULL , NULL , 0 , "/Two/A" } .
{ "/Two/C" , NULL , NULL , 0 , "/Two/A" } .
{ "/Two/D" , NULL , NULL , 0 , "/Two/A" } .
{ "/Two/E" , NULL , NULL , 0 , "/Two/A" } .
{ "/Three" , NULL , NULL , 0 , NULL } .

Essentially what I 've done here is remove the <Branch> menu items associated with the
File, Edit, Options, and Help menus, as well as the portion of the path associated with each

of these branches from the remaining paths in the declarations. For example, I removed the
following line:

012 { "/_Options" , NULL , NULL , 0 , "<Branch>" } .

and I changed the following line:

GtkMenultem

0 1 3

to:

" /Opt i ons/Option1 " , NULL , handle_opt ion , 1 , " < CheckItem> " } ,

" /Opt ion1 " , NULL , handl e_option , 1 , " < CheckI t em> " } ,

381

The only change to line 013 , as you can see, is that the IOptions portion of the path, cor·

responding to line 0 1 2 that was removed, has been removed from the path that defines the

Option l menu item.

I placed the menu definitions in separate GtkItemFactoryEntry vectors because we are

going to create separate instances of GtkItemFactory for each menu.

Creating the Menu Bar and Attaching the Accelerator Group. The first code of inter·
est creates an instance of GtkMenuBar:

GtkWidget *menubar ;

The function gtk_menu_bar_newO was described earlier in this chapter. After adding

the menu bar widget to the window, I then create an accelerator group that is used to manage

the accelerators (keyboard shortcuts) for each of the menu items in the menu bar as well a�

each of the menu items in the menus created by GtkItemFactory:

GtkWidget *window ;
GtkAccelGroup * acce l_group ;

acce l_group = gtk_accel_group_new () ;
gtk_accel_group_attach (accel_group , GTK_OBJECT (window)) ;

We will only need one accelerator group attached to the window within which the mem

bar, and the menus that it manages, are placed.

Creating the Menus. Next I call the functions that create the menus previously described

utilizing GtkItemFactory for this purpose. To make the code a little easier to read for thi!

sample, I wrote one function for each menu (File, Edit, Options, and Help) created. The

function geCfile_menuO, for example, is used to create the File menu:

voi d
get_f i l e_menu (GtkWidget * *menu , GtkAcce lGroup * acce l_group
{

gint nmenu_items_1 = s i zeof (menu_i tems_1) /
s i zeof (menu_items_1 [0]) ;

i tem_factory = gtk_item_factory_new (GTK_TYPE_MENU ,
" <main_1 > " , acce l_group) ;

gtk_i tem_factory_create_i t ems (i t em_factory , nmenu_i tems_1 ,
menu_i t ems_1 , NULL) ;

/ * Return the actual menu bar created by the item factory . * /

388

if (menu)

Chapter 9 • Menus

*menu gtk_item_factory_get_widget (item_factory ,
"<main_I>") ;

This function is similar to the function geCmain_menuO presented earlier in the chapter;

a major difference is that we now pass an accelerator group to geCfile_menuO as opposed to

creating one (because all menus can share the same accelerator group, as I mentioned earlier).
The call to gecfile_menuO looks like this:

GtkWidget *menul;

The code presented so far should be no surprise if you read the description of Gtkltem

Factory presented earlier in the chapter. Now that we have the menus and a menu bar, let's

take a look at how to add the File, Edit (and so on) menu items to the menu bar and associate

the menus created with GtkltemFactory with these menu items.

Adding Menu Items. Let's start with the File menu. First we create a menu item for the

File menu:

Notice that I did not use gtk_menu_item_new _ with_IabeIO. To get the Alt+F accelerator

to work with the menu item, you must create the menu item and its label separately. For

example, the following code will not work in Gtk+ 1 .2 :

menu_item_l = gtk_menu_item_new_with_Iabel("_File") ;

This is because gtk_menu_item_new_with_IabeIO does not process underscore C) char

acters embedded in the label. To get the accelerator to work, we make use of GtkAccelLabel:

GtkWidget *label;

We also make use of gtk_Iabel_parse_ulineO (described in Chapter 5):

guint accel_key;

The returned accelerator key (in this case, GDK_F) is associated with the menu item and
the accelerator group with a call to gtk_widgecadd_acceleratorO:

Check Menu Items and Radio Menu Items

gtk_widget_add_accelerator (menu_item_l, " activate_item " ,
accel_group, accel_key, GDK_MODl_MASK, GTK_ACCEL_LOCKED) ;

389

Associating the Menu with Its Menu Item. That does it for the complicated work. Now

all we need to do is add the label to the menu item (recall that a menu item is a container),

add the menu item to the menu bar, and then associate the File menu we created earlier with

GtkItemFactory with our menu item. The following three lines of code accomplish this :

gtk_container_add(GTK_CONTAINER(menu_item_l), label) ;
gtk_menu_bar_append(GTK_MENU_BAR(menubar), menu_item_l) ;
gtk_menu_item_set_submenu(GTK_MENU_ITEM(menu_item_l), menul) ;

One additional call i s made to cause the Help menu item t o be displayed at the far-right

end of the menu bar:

I I Help menu

Check Menu Items and Radio Menu Items

The next two classes I will cover in this chapter, GtkCheckMenultem and GtkRadioMenu

Item, are subclasses of GtkMenultem. Instances of either class may be used wherever an

instance of GtkMenultem is used. Each of these subclasses adds to the core functionality
of GtkMenultem. GtkCheckMenultem allows users to toggle the menu item on or off, as

does GtkRadioMenultem. In the case of GtkCheckMenultem, more than one check menu

item can be toggled on in a menu, which is not the case for menus containing radio menu

items. In menus containing radio menu items, only one radio menu item in a menu may be

toggled on at any given time. Toggle indicators are displayed to the left of the menu item

label for both check menu and radio menu items. Squares are used for check menu items,

and diamonds are used for radio menu items. Figures 9. 1 and 9.2 illustrate menus that use

radio menu and check menu items, respectively.

Because the only differences between GtkCheckMenultem and GtkRadioMenultem are

in how the toggled indicator is rendered and the number of toggled items allowed in a menu,
GtkRadioMenultem is implemented as a subclass of GtkCheckMenultem. This means that

all attributes, signals, and APls associated with GtkMenultem are available for use by
instances of GtkCheckMenultem, and similarly, GtkRadioMenultem may make use of

whatever functionality is available to either GtkCheckMenultem or GtkMenultem.

390

GtkCheckMenu ltem

Class Name

GtkCheckMenuItem

Parent Class Name

GtkMenu I t em

Macros

Widget type macro: GTK_TYPE_CHECK_MENU_ITEM

Object to widget cast macro: GTK _ CHECK_MENU _I TEM (obj)

Widget type check macro: GTK_I S_CHECK_MENU_I TEM (obj)

Supported Signals

Table 9.6 Signals

Chapter 9 • Menus

Signal Name Condition Causing Signal to Trigger

toggled

Signal Function Prototypes

Generated whenever the menu item is activated or

an application toggles the menu item.

voi d toggled (GtkCheckMenuItem * checkmenuitem, gpointer user data) ;

Application-Level API Synopsis

Obtain the constant GTK_TYPE_CHECK_MENU_lTEM at runtime:
GtkType
gtk_check_menu_i tem_get_type (void) ;

Create a new instance of GtkCheckMenultem without a label:
GtkWidget *
gtk_check_menu_i tem_new (void) ;

GtkCheckMenultem

Application-Level API Synopsis

Create a new instance of GtkCheckMenultem with a label:
GtkWidget *
gtk_check_menu_item_new_with_labe l (cons t gchar * l abel) ;

Activate a check menu item (or a radio menu item):
void
gtk_check_menu_item_se t_act ive (GtkCheckMenul t em * check_menu_i t e m ,

gboolean i s_ac t ive) ;

Specify whether toggles should be shown always or only during prelight:
voi d
gtk_check_menu_item_se t_show_toggl e (GtkCheckMenu l t em *menu_i t em ,

gboolean a lways) ;

Class Description

391

A menu containing check menu items provides users with a way to choose one or more of

the items present in the menu. A toggle indicator, rendered as a filled square to the left of

the menu item label, indicates the selections that have been made by the user. Selecting a

check menu item results in the invocation of a callback menu of the same type invoked for

a regular menu item (GtkMenuItem). This allows an application to easily associate an

action in response to the toggling of a check menu item by the user.

Because GtkCheckMenultem inherits from GtkMenultem, you should take the time to

become familiar with GtkMenultem (described earlier in this chapter). With the exception

of the functions gtk_menu_item�eCtypeO, gtk_menu_item_newO, and gtk_menu_

item_new _ with_labelO, all of the functions available to instances of GtkMenuItem can also
be used by instances of GtkCheckMenuItem. For example, if you want to set the submenu

of a check menu item, your application may call gtk_menu_item_secsubmenuO. The func

tion gtk_menu_item_seCsubmenuO, as well as the other functions provided by GtkMenu

Item, take a GtkMenultem instance as an argument; therefore, you will need to cast
instances of GtkCheckMenultem (or instances of GtkWidget, depending on how you

declared the variable holding the instance of GtkCheckMenuItem) to GtkMenuItem using

the GTK_MENU_ITEM macro. For example:

GtkWidget *myCheckMenu l t em j

Check menu items prove themselves useful in much the same context as a group of check

buttons (see GtkCheckButton, Chapter 5) proves useful. Both allow a user to choose multiple
options from a set of many. However, using check menu items allows the programmer to

392 Chapter 9 • Menus

embed the choices to be provided to the user in a menu. Often, this will require far less space

than would be required by an equivalent set of check buttons displayed in a dialog.

Creating Check Menu Items

Menus with check menu items are constructed just like menus containing regular menu items.

You can use GtkItemFactory (described earlier in this chapter) to create menus containing

check menu items by specifying "<CheckItem>" instead of "<ltem>", " ", or NULL as the

item type of the check menu item in the GtkItemFactoryEntry vector.

Check menu items can also be created using functions similar to those used to create

instances of GtkMenultem. The function gtk3heck_menu_item_newO creates a menu item

without a label:

GtkWidge t *
gtk_check_menu_item_new (voi d) ;

The function gtk_check_menu_item_new _ with_IabeIO, on the other hand, creates an instance
of GtkCheckMenuItem with a label:

GtkWidget *
gtk_check_menu_it em_new_with_l abe l (cons t gchar * l abel) ;

Analogous routines defined by GtkMenultem are gtk_menu_item_newO and gtk_

menu_item_new _ with_IabeIO, respectively. If your application must provide accelerators

for one or more of its check menu items and you will not be using GtkItemFactory to define

your menus, then you should read the sections on gtk_menu_item_newO and

gtk_menu_item_new _ with_IabelO that I presented earlier in this chapter (see the section on

GtkMenultem).

Using Check Menu Items

As I mentioned, check menu items are useful because they allow an application user to select

more than one item from a set of menu items being displayed in a menu. Check menu items

provide visual feedback to the user indicating their state, either active (a filled box to the left

of the menu item label) or inactive (an unfilled box to the left of the menu item label). This

state will persist during the lifetime of the GtkCheckMenultem instance and goes away as

soon as the GtkCheckMenultem instance is destroyed. Often, an application will want to per

sist with the choices made by the user across subsequent invocations of the application.

To implement such a feature, an application must track all selections made by the user in the

menu, record these changes somewhere, and then, in subsequent invocations of the menu, activate
the check menu items corresponding to previously made selections prior to showing the menu to

the user. Tracking check menu item selections can be achieved by registering a ''toggled'' signal

function with the check menu item. If the menu item was created using GtkItemFactory, the check

menu item instance can be obtained by calling gtk_itemjactory ..,geC widgetO or gtk_item_
factory ..,geC widgeCby _actionO (see GtkItemFactory, described earlier in this chapter).

The toggled signal function will be passed the check menu item instance as an argument,

so a single toggled signal function can be used for all check menu items in a menu. The

following code illustrates how one might code a toggled signal function to track selections

GtkCheckMenuItem 393

in a menu containing three check menu items, as well as register the signal function with

each check menu item instance. The code assumes that the three check menu items have

already been created and that their handles are stored in variables named checkMenultem 1 ,

checkMenultem2, and checkMenultem3. To make the example simple, three gint variables

are statically declared to hold the toggled state of each check menu item and are passed by

reference to the signal function via the signal function callback data argument.

GtkWidget * chMenu l t eml , * chMenu l t em2 , * chMenu l t em3 ;
static gint i t emlStat e , i t em2 S tate , i t em3 State ;

I I register the toggled s ignal funct i on with each menu item

gtk_s ignal_connect (GTK_OBJECT (checkMenu l t eml) , " toggled " ,
GTK_S IGNAL_FUNC (ToggledFunct ion) , (gpoint e r) &itemlState) ;

gtk_s ignal_connect (GTK_OBJECT (checkMenu l t em2) , " toggled " ,
GTK_S IGNAL_FUNC (ToggledFunct ion) , (gpoint e r) &item2 State) ;

gtk_s ignal_connect (GTK_OBJECT (checkMenul tem3) , " toggled " ,
GTK_S IGNAL_FUNC (ToggledFunct ion) , (gpoint e r) &item3 State) ;

The toggled signal function simply casts the passed-in widget to an instance of

GtkCheckMenuItem (checkMenultem) and the passed-in callback_data argument to a

pointer to gint (state). It then retrieves the toggled state from the widget, storing it the vari

able pointed to by state:

void
ToggledFunct i on (GtkWidget *widget , gpointer cal lback_data)
{

GtkCheckMenul tem * checkMenul t em = (GtkCheckMenultem *)
widget ; gint * state = (gint *) cal lback_data ;

* s tate = checkMenultem- >act ive ;

Setting the State of a Check Menu Item
As it turns out, GtkCheckMenultem (as of Gtk+ 1 .2) does not provide a function that can

be called to check the toggled state of a check menu item. However, the active "member"
of the GtkCheckMenultem instance does indicate the toggled state of the menu item. If tog

gled on, the value will be 1 ; otherwise, it will be O. When the application exits, it can store

these values to disk so that they can be used, the next time the application is invoked, to set

the initial state of the check menu items. To set the toggled (or active) state of a check menu

item, an application calls gtk_menu_item_secactiveO :

394 Chapter 9 • Menus

void
gtk_check_menu_item_set_active(GtkCheckMenultem * check_menu_item ,

gboolean is_active) ;

The first argument is an instance of GtkCheckMenuItem, and the second argument is a

gboolean (possible values are TRUE (1) and FALSE (0» . The following code illustrates

how one might set the toggled state of the three check menu items in the previous example

using state that was stored to disk by the application when it last exited:

GtkWidget * chMenuIteml , *chMenultem2 , *chMenultem3 ;
static gint itemlState , item2State , item3State ;

I I read previously saved values from disk

ReadStateFromDisk(&itemlState , &item2State , &item3State) ;

I I set state of checked menu items based on this state

gtk_check_menu_item_set_active(GTK_CHECK_MENU_ITEM(chMenulteml) ,
itemlState) ;

gtk_check_menu_item_set_active(GTK_CHECK_MENU_ITEM(chMenultem2) ,
item2State) ;

gtk_check_menu_item_set_active(GTK_CHECK_MENU_ITEM(chMenultem3) ,
item3State) ;

The final function defined by GtkCheckMenultem that is discussed here specifies

whether an inactive toggle indicator displayed to the left of a check menu item label will be

displayed always or only when the check menu item is in prelight mode (e.g. , when the

mouse is positioned over the check menu item by the user) . By default, check menu items

that are active will always display an indicator, and inactive check menu items will not. The

function gtk3heck_menu_item_seCshow _toggleO changes the default setting:

void
gtk_check_menu_item_set_show_toggle(GtkCheckMenultem *menu_item ,

gboolean always) ;

The argument menu_item is an instance of GtkCheckMenultem (or GtkRadioMenuItem).

The argument always is a boolean that specifies, when set to TRUE (I), that the toggled

(active) indicator should be displayed regardless of the active state of the check menu item. If

set to FALSE (0), the indicator should only be drawn for the check menu item when the check
menu item state is active or toggled on.

The next class discussed in this chapter, GtkRadioMenultem, inherits from the Gtk
CheckMenuItem class, so everything previously presented for check menu items is appli

cable to radio menu items, except where noted in the following.

GtkRadioMenultem

GtkRadioMenultem

Class Name

GtkRadioMenuI tem

Parent Class Name

GtkCheckMenuI tem

Macros

Widget 'JYpe Macro: GTK_TYPE_RADIO_MENU_ITEM

Object to Widget Cast Macro: GTK_RADIO_MENU_ITEM (obj)

Widget 'JYpe Check Macro: GTK _IS_RADIO _MENU_ITEM (obj)

Application-Level API Synopsis

Retrieve the constant GTK._TYPE_RADIO_MENU_ITEM at runtime:
GtkType
gtk_radio_menu_item_get_type {yoid) i

Create a new radio menu item widget:
GtkWidget *
gtk_radio_menu_item_new (GSLis t *group) i

Create a new radio item widget with a label:
GtkWidget *
gtk_radio_menu_item_new_with_label (GSList *group ,

const gchar * l abel) i

Get the radio group associated with a radio menu item:
GSList *
gtk_radio_menu_item_group (GtkRadioMenuItem * radio_menu_item) i

Set the radio group associated with a radio menu item:
void
gtk_radio_menu_item_set_group (GtkRadioMenuItem

GSList *group) i
* radio menu item - -

395

396 Chapter 9 • Menus

Class Description

GtkRadioMenuItem is fundamentally the same as GtkCheckMenuItem, except for one major

difference: Applications can define groups of radio menu items such that GtkRadioMenultem

will guarantee that only one radio menu item in a group can be toggled active by the user at

any given time. The functions defined by GtkRadioMenuItem enable applications to create

instances of GtkRadioMenuItem and manage groups of radio menu items. Additional func

tionality is inherited from GtkCheckMenuItem and GtkMenultem.

Creating a Radio Menu Item

Working with GtkRadioMenuItem is easy and is best illustrated by an example. Assume we are

creating a menu that allows the user to select his or her month of birth (e.g., January, February,

and so on). We can create radio menu items using one of two functions. The function gtk_radio_

menu_item_newO creates a radio menu item without a label:

GtkWidget *
gtk_radio_menu_i tem_new (GSLi s t *group) ;

The function gtk_radio_menu_item_new _ with_IabelO creates a radio menu item with

the specified label:

GtkWidget *
gtk_radio_menu_i tem_new_with_l abe l (GSList *group , cons t gchar * l abe l) ;

These functions are similar to the instantiation functions provided by GtkMenultem and

GtkCheckMenuItem; refer to the descriptions of gtk_menu_item_newO and gtk_menu_

item_new_with_IabeIO earlier in this chapter for basic information on how to use these

functions correctly. These functions differ from their counterparts in GtkMenultem and

GtkCheckMenultem in that they both accept an argument of type GSList * as their first

parameter. This argument can be used to specify the radio group to which the menu item

belongs. If group is set to NULL, a new radio group is created for the radio menu item,

which is added to the radio group as its first member. Also, the radio menu item is made

active. If, however, group is non-NULL, then group defines the radio group to which the

radio menu item is to be added.

Retrieving a Radio Button's Radio Group

Before we get into the example that I just mentioned, I need to describe one remaining function,

gtk_radio_menu_item�upO:

GSL i s t *
gtk_radio_menu_it em_group (GtkRadioMenultem * radio_menu_i tem) ;

The function gtk_radio_menu_item�oupO retrieves the radio group from the specified

radio menu item, returning it to the caller.

GtkRadioMenultem 397

An Example
Now I have presented enough information to create the example I promised earlier. Here is

the listing:

0 0 1 typede f struct _menutype {
0 0 2 uns igned char type ;
0 0 3 char *name ;
0 0 4 GtkS ignal Func func ;
0 0 5 MenuType ;
0 0 6
0 0 7 vo id
0 0 8 event_menu_cb (GtkWidget *widget , int cal lback_data)

0 0 9 {
0 1 0 }
0 1 1
0 1 2 MenuType event s [] = {
0 1 3 RUNNING , " Running " , GTK_S IGNAL_FUNC (event_menu_cb) } ,
0 1 4 CYCLING , " Cyc l ing " , GTK_S IGNAL_FUNC (event_menu_cb) } ,
0 1 5 BLADING , " B l ading " , GTK_S IGNAL_FUNC (event_menu_cb) } ,
0 1 6 JOGGING , " Jogging " , GTK_S IGNAL_FUNC (event_menu_cb) } ,
0 1 7 WALKING , " Walking " , GTK_S IGNAL_FUNC (event_menu_cb) }
0 1 8 } ;
0 1 9
0 2 0 GtkWidget *
0 2 1 bui ld_menu (MenuType *menudata , s i ze t s i z e
0 2 2 {
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1
0 4 2
0 4 3
0 4 4

GtkWidget *menu ;
GtkWidget *menuitem ;
GSL i s t *group ;
int i ;

group NULL ;

for (i = 0 ; i < s i ze / s i zeof (MenuType) ; i + +) {
menuitem = gtk_radio_menu_i tem_new_with_labe l (group ,

menudata [i] . name) ;
gtk_si gnal_c onne c t (GTK_OBJECT (menuitem) , " ac t ivat e " ,

(GtkS ignal Func) menudata [i] . func ,
(gpoint e r) menudata [i] . type) ;

group = gtk_radio_menu_i tem_group (
GTK_RADIO_MENU_ITEM (menui tem)) ;

gtk_menu_append (GTK_MENU (menu) , menuitem) ;
gtk_wi dget_show (menui tem) ;

return menu ;

0 4 5 main (int argc , char *argv []
0 4 6 {
0 4 7 GtkWidget *menu ;

398

0 4 8

0 4 9

0 5 0

Chapter 9 • Menus

bui ld_menu (&event s [O] , s i zeof (events)) ;

The idea behind the example is to show how to create a menu that contains radio menu
items. Each of the radio menu items in the menu will be placed in a single radio group; this

ensures that only one item in the menu can be selected at a time by the user.

On lines 001 through 005, I define a type, MenuType, which contains three fields. The first

of these fields, type, is an integer passed via the callback_data argument of the "activate" signal

function, evencmenu3bO, which is defined on lines 007 through 010. The advantage to pass

ing this type value (each constant is given a unique value, e.g., RUNNING is set to 1 ,
CYCLING i s set to 2) as an argument to the signal function i s that i t communicates to the signal

function which of the radio menu items was activated. The second field of the MenuType type
defines the label of the radio menu item. The third and final field is a pointer to the signal func

tion that will be invoked when the radio menu item is made active by the user. The definition

of all the radio menu items included in the menu is shown on lines 012 through 01 8.

The function build_menuO is responsible for creating a menu based on the MenuType vector
passed to it as an argument (see line 049 for an example call). On line 028, an instance of Gtk

Menu is created; each radio menu item created in the loop on lines 03 1 through 041 will be

appended to this menu (this is done on line 039 with a call to gtk_menu_append()).

Let's focus now on how the radio menu items are created and added to the radio group.

On line 029, the variable "group" is set to NULL. This will be its value when gtk_radio_

menu_item_new _ with_labelO is called on line 032 the first time through the loop. Since the

first radio menu item is created with a NULL radio group, a new radio group will be created

by GtkRadioMenuItem, and the Running radio menu item will be added to the group as its

only member. On line 037, the code queries the group of the Running radio menu item and
stores it in the "group" variable. Thus, the next time that gtk_radio_menu_item_

new _ with_labelO is called, the "group" argument will be set to the radio to which the Run
ning radio menu item belongs. The result is that the next radio menu item, Cycling, will be

added to the same group to which the Running menu item belongs. From here on out, the

call to gtk_radio_menu_item�roupO is actually unnecessary because the group returned

will always be the same group to which the previously created radio menu items belong.

Therefore, all of the radio menu items will be placed in the same radio group, which is the

desired result.

Setting the Radio Group of a Radio Menu Item

The final function supported by GtkRadioMenuItem is gtk_radio_menu_item_set�roup() :

voi d
gtk_radio_menu_i t em_set_group (GtkRadioMenultem * radi o_menu_item ,

GSL i s t *group) ;

This function takes a radio menu item and a group (retrieved from some other radio

menu item with a call to gtk_radio_menu_item�roup()). The radio menu item will be
removed from the group it currently belongs to and be placed in the specified group.

GtkTearoffMenultem

GtkTearoffMenultem

Class Name

GtkTearof fMenu I t em

Parent Class Name

GtkMenu I t em

Macros

Widget type macro: GTK_ TYPE_ TEAROFF _MENU_ITEM

Object to widget cast macro: GTK_ TEAROFF _MENU_ITEM (obj)

Widget type check macro: GTK_I S_TEAROFF _MENU_ITEM (obj)

Appl ication-Level API Synopsis

Retrieve the constant GTK..TYPE_TEAROFF _MENUJTEM at runtime:
GtkType
gtk_t earo f f_menu_ite�get_type (void) ;

Create a new instance of Gtk:'IearoffMenuItem:
GtkWidget *
gtk_t earo f f_menu_item_new (void) ;

Class Description

399

GtkTearoffMenultem is a subclass of GtkMenuItem. For the most part, this means that Gtk·

TearoffMenultem instances can be used anywhere that an instance of GtkMenultem is used,
However, tearoff menu items are a special type of menu item in that a tearoff menu item

does not have a callback function, nor does it have the ability to manage or contain a label.
The Options menu shown in Figure 9.3 is a tearoff menu. Visually, a tearoff menu looks like
any other menu, except a tearoff menu has a tearoff menu item, which is represented by �

series of dashes seen in Figure 9.3 above the Option ! menu item.

400 Chapter 9 • Menus

Using a TearotT Menu

Positioning the mouse over the tearoff menu item and pressing mouse button I will cause the

tearoff menu to detach and display in its own top-level window, as illustrated in Figure 9.4.
The tearoff menu item, as you can see, is still visible; selecting it once again will cause the

tearoff menu to dismiss. The tearoff menu can also be dismissed by repeating the steps that

were followed to display the tearoff menu item and detach it from the menu bar in the first

place. While a tearoff menu is detached, selecting a menu item in the tearoff menu will result

in the same behavior as if the menu item were selected from the menu while still attached in

its original, undetached location. Users may redisplay the menu in its undetached state and

select an item from it. Generally, this is not a problem. For example, making a menu item

insensitive with a call to gtk_widgeCseCsensitiveO will cause both of the menu items, the

one displayed in the detached tearoff menu and the one displayed in the attached menu, to be

made insensitive.

Figure 9.4 Detached Tearoff Menu

Creating a TearotT Menu
Tearoff menu items should be made the first menu item in the menu to which they are added

and should be the only tearoff menu item added to the menu. To add a tearoff menu item to

a menu, create a GtkTearoftMenultem instance by calling gtk_tearoff_menu_item_newO:

GtkWidget *
gtk tearof f menu item new (void) ;

- - - -

Once the menu item has been created, you can add the menu item to the menu with a call
to gtk_menu_appendO or an equivalent function, as in the following example code:

GtkWidget *menu , *menu_item ;

menu_item = gtk_tearoff_menu_item_new () ;
gtk_menu_append (GTK_MENU (menu) , menu_item) ;
gtk_widget_show (menu_item) ;

GtkMenu 401

This ends my discussion of GtkMenultem and related classes. The next class that I will
discuss, GtkMenu, is similar to GtkMenuBar in that the basic purpose of a menu is to act

as a container for menu items, just like a menu bar. The major difference between menu

bars and menus, of course, is that a menu arranges menu items vertically, while a menu bar

arranges them horizontally.

GtkMenu

Class Name

GtkMenu

Parent Class Name

GtkMenuShe l l

Macros

Widget type macro: GTK_TYPE_MENU

Object to widget cast macro: GTK _MENU (obj)

Widget type check macro: GTK _ I S _MENU (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_MENU at runtime:
GtkType
gtk_menu_get_type (void) i

Create a new instance of GtkMenu:
GtkWidget *
gtk_menu_new (void) ;

Add a menu item (child) to the end of the menu:

voi d
gtk_menu_append (GtkMenu *menu , GtkWidget * chi ld) i

Add a menu item (child) to the start of the menu:

voi d
gtk_menu-prepend (GtkMenu *menu , GtkWidget * child) i

402

Application-Level API Synopsis (Conti nued)

Insert a menu item (child) at an arbitrary position in the menu:
voi d

Chapter 9 • Menus

gtk_menu_insert (GtkMenu *menu , GtkWidget * chi l d , gint pos i t ion) ;

Pop up a menu, using an optional function to compute its position on the screen:
voi d

gtk_menu-popup (GtkMenu *menu . GtkWidget *parent_menu_shel l .

GtkWidget *parent_menu_item, GtkMenuPo s i t ionFunc func .

gpointer dat a . guint button . guint3 2 act ivate_t ime) ;

Pop down a menu and remove its X server grab:
voi d
gtk_menu-popdown (GtkMenu *menu) ;

Query for the currently active menu item in a menu:
GtkWidget *
gtk_menu_get_act ive (GtkMenu *menu) ;

Set the active menu item of a menu:
void
gtk_menu_se t_act ive (GtkMenu *menu , guint index) ;

Set the accelerator group of a menu:
voi d
gtk_menu_se t_acce l_group (GtkMenu *menu , GtkAccelGroup *acce l_group) ;

: ; _1111: wnwnlll1iii_III1II111J _III1-_W ____ III1II111III111MOIll1WmimIll1IWmillllIiliiiiii_mlmi: : ______ mil __

Class Description

GtkMenu is similar to GtkMenuBar in that both classes are designed to manage a group of

menu items. Visually, menus differ from menu bars; menus are rendered vertically, while

menu bars are rendered horizontally. Also, a menu bar is usually always visible, while
menus are only displayed if and when the user selects a menu item (from a menu bar or

from another menu) that has a submenu attached to it.

Creating a Menu
Creating a new menu is achieved by calling gtk_menu_newO:

GtkWidget *

gtk_menu_new (void) ;

Adding Menu Items

Menu items can be added to an instance of GtkMenu using one of three functions. The function
gtk_menu_appendO places the menu item at the end of the list of menu items for the menu,

gtk_menu_prependO places the menu item at the head of the list, and gtk_menu_insertO places

GtkMenu 403

the menu item at a specific location (specified by a position parameter in the range [0, n] , where

n - 1 is the number of menu items in the menu prior to making the call). Setting position to - 1

i s equivalent to calling gtk_menu_appendO. The function prototypes for gtk_menu_appendO,

gtk_menu-prependO, and gtk_menu_insertO are as follows:

void
gtk_menu_append (GtkMenu *menu , GtkWidget * ch i l d) ;

void
gtk_menu-prepend (GtkMenu * menu , GtkWidget * ch i l d) ;

void
gtk_menu_insert (GtkMenu * menu , GtkWidget * chi l d , gint pos i t i on) ;

Popping Up a Menu
Earlier in this chapter, the GtkItemFactory functions gtk_itemjactory _popupO and gtk_

item_factory _popup_ with_dataO were described as a way to pop up menus created by GtkItem

Factory. As it turns out, both of these functions call the GtkMenu function gtk_menu_popupO
to actually pop up the menu. The function prototype for gtk_menu-POpupO is as follows:

void
gtk_menu-popup (GtkMenu * menu , GtkWidget *parent_menu_she l l ,

GtkWidget *parent_menu_item , GtkMenuPo s i t ionFunc func ,
gpointer data , guint button , guint 3 2 act ivate_t ime) ;

The argument menu is an instance of GtkMenu. The arguments parencmenu_shell and

parencmenu_item are both instances of GtkWidget and can usually be set to NULL. The argu

ments func and data may be optionally used to specify a function to compute the position of

the pop-up menu on the screen. The specified function must be of type GtkMenuPositionFunc,

which means it must be a pointer to a function that has the following prototype:

void
MyPo s i t ionMenu (GtkMenu *menu , gint *x, gint * y , gpointer func_dat a)

The first argument i s the menu to b e positioned. The second and third arguments, x and

y, are pointers to int that on return will hold the desired location of the menu when it is
popped up. The final argument, func_data, corresponds to the data argument passed to
gtk_menu_popupO. If func is set to NULL, GtkMenu will position the menu based on the

location of the pointer at the time gtk_menu_popupO is called.
The final arguments to gtk_menu_popupO are mouse_button, which more often than not

will be the number of the mouse button pressed by the user, and time, which will usually
be the time at which the user pressed the button. As I will show below in Listing 9. 1 , both

mouse_button and time can be obtained from the X event that triggered the posting of the

pop-up menu.

An Example
Now it is time for an example. This example presented is similar to the example given for
GtkItemFactory (see the section "Pop-up Menus" earlier in this chapter). Here I will use

404 Chapter 9 • Menus

GtkItemFactory to create the menu and illustrate how it can be popped up from a

button_press_event signal function using gtk_menu_popupO.

Listing 9. 1 Creating and Displaying a Pop-up Menu

0 0 1 # inc lude <gtk/gtk . h>

0 0 2 # inc lude < t ime . h>

0 0 3 # inc lude < s tdio.h>

0 0 4

0 0 5 s t a t i c Gtk l t emFactory * i tem_factory ;

0 0 6

0 0 7 typedef s t ruct -po s i t ion
0 0 8 {
0 0 9 int X ;

0 1 0 int y ;

0 1 1 Pos i t i on ;

0 1 2
0 1 3 stat i c voi d
0 1 4 pos i t i on_menu (GtkMenu *menu , gint * x , gint * y , gpointer func_dat a)

0 1 5 {
0 1 6 pos i t i on *pos = func_data ;

0 1 7

0 1 8

0 1 9
0 2 0

0 2 1

0 2 2 gint

*x

*y

pos - >x + 2 0 ;

pos - >y + 2 0 ;

0 2 3 But tonPressCal lback (GtkWidget *widget , GdkEventButton * event ,

0 2 4 gpointer cal lback_data)

0 2 5
0 2 6 GtkWidget *menu = (GtkWidget *) cal lback_data ;

0 2 7 gint x , y ;

0 2 8 pos i t i on pos ;

0 2 9
0 3 0 gdk_window_get_origin (widget - >window , &x , &y) ;

0 3 1
0 3 2 pos . x = event - >x + x ;

0 3 3 pos . y = event - >y + y ;

0 3 4 gtk_menu-popup (GTK_MENU (menu) , NULL , NULL , pos i t i on_menu , &pos ,

0 3 5 event - >button , event - >t ime) ;

0 3 6

0 3 7
0 3 8 stat i c Gtk l temFactoryEntry menu_i tems [] = {
0 3 9

0 4 0

0 4 1
0 4 2
0 4 3
0 4 4
0 4 5

" /-F i l e ll , NULL , NULL , 0 , u <Branch> II } .
" / F i l e / _New " ,

" / F i l e / _Open " ,
" / F i l e /_Save " ,
" / Fi l e / Save _As " ,

II < contro l >N " I

II <control >O " ,
II < control > S " ,
NULL ,

NULL , 0 , NULL },
NULL , 0 , NULL } .
NULL , 0 , NULL } .
NULL , 0 , NULL } .

" / F i l e / sep1 " , NULL , NULL , 0 , 11 < Separator> II

0 4 6 } ;
0 4 7
0 4 8

" / F i l e / Quit " , u<contro l > Q " , gtk_main_quit , 0 ,

0 4 9 voi d CreateMenu (GtkWidget *window , GtkWidget * *menu)
050 {
0 51 GtkAc c e lGroup *acce l_group ;

NULL
} .
} .

GtkMenu 405

0 52 gint nmenu_items = s i zeof (menu_items) / s i zeof (menu_items [O]) ;

0 53
0 54 accel_group = gtk_accel_group_new () ;

0 55
0 56 item_factory = gtk_i tem_factory_new (GTK_TYPE_MENU , " <popup_samp l e > " ,

0 57 acce l_group) ;

058
0 59 gtk_item_factory_create_items (i tem_factory , nmenu_items , menu_items , NULL) ;

0 6 0
0 6 1 gtk_acce l_group_attach (acce l_group , GTK_OBJECT (window)) ;

0 6 2

0 6 3 i f (menu)

0 6 4 *menu = gtk_item_factory_get_widget (i tem_factory , " <popup_sampl e > ") ;

0 6 5

0 6 6
0 6 7 int main (int argc , char * a rgv [])

0 6 8

0 6 9 GtkWidget *window ;

0 7 0 GtkWidget *menu ;

0 7 1

0 7 2 gtk init (&argc , &argv) ;

0 7 3
0 7 4 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 7 5 gtk_s ignal_connect (GTK_OBJECT (window) , " de s t roy " ,

0 7 6 GTK_SIGNAL_FUNC (gtk_main_qui t) , " WM de stroy ") ;

0 7 7 gtk_window_set_t i t l e (GTK_WINDOW (window) , " Popup Menu Example ") ;

0 7 8 gtk_widget_set_u s i z e (GTK_WIDGET (window) , 3 0 0 , 2 0 0) ;

0 7 9
0 8 0 CreateMenu (window , &menu) ;

0 8 1
0 8 2 gtk_widget_set_event s (window , GDK_BUTTON_PRESS_MASK) ;

0 8 3 gtk_s ignal_connec t (GTK_OBJECT (window) , " buttonyres s_event " ,

0 8 4 GTK_S IGNAL_FUNC (ButtonPres sCal lback) , menu) ;

0 8 5
0 8 6 gtk_widget_show (window) ;

0 8 7 gtk_main () ;

0 8 8

0 8 9 return (O) ;

0 9 0

Let's look at the code i n a top-down fashion, starting with mainO on line 067. O n lines

074 through 078, after Gtk+ is initialized, a 300 X 200 window is created. On line 080, I call
CreateMenuO, which is defined on lines 049 through 065 . CreateMenuO creates a File

menu, which will be popped up in the 300 X 200 window when the user presses mouse but

ton 1 (for details on functions like CreateMenuO, refer to the discussion of GtkltemFactory

earlier in this chapter). CreateMenuO also returns the widget representing the menu cre

ated. On line 082, I solicit button press events on the top-level window created earlier. Then,
on line 083, I register the function ButtonPressCallbackO as the signal function to handle
any button_press_event signals that occur within the window (refer to Chapter 3, "Signals,

Events, Objects, and 'TYpes," for information on signals and event solicitation in Gtk+).

Notice that callback data passed to ButtonPressCallbackO is the menu created by Create

MenuO.

406 Chapter 9 • Menus

The function ButtonPressCallbackO, shown on lines 022 through 036, is called by Gtk+

when the user positions the mouse over the window and clicks one of the mouse buttons:

0 2 2 gint

0 2 3 But tonPres sCal lback (GtkWidget *widget , GdkEventButton * event ,
0 2 4 gpointer cal lback_data)
0 2 5

0 2 6 GtkWidget *menu = (GtkWidget *) callback_data ;
0 2 7 gint x , y ;
0 2 8 Pos it ion pOS ;
0 2 9

0 3 0 gdk_window_get_origin (widge t - >window , &x , &y) ;
0 3 1
0 3 2 pos . x = event - >x + x ;

0 3 3 pos . y = event - >y + y ;

0 3 4 gtk_menu-F0pup (GTK_MENU (menu) , NULL , NULL , pos i t i on menu ,

0 3 5 &pos , event - >but ton , event - >t ime) ;
0 3 6

The argument callback_data, as just described, is the GtkMenu that was created with the
call to CreateMenu. On line 026, I assign callback_data to a variable named menu, making it

easier to work with. On line 030, gdk_window�eCoriginO is called to obtain the x and y

positions of the window within which the button press event occurred. The window origin is

needed because the coordinates of the button press event, passed via the second argument to

ButtonPressCallbackO, are window-relative. ButtonPressCallbackO must convert these win

dow-relative coordinates to screen-relative values when computing the coordinates that will

be used by gtk_menu_popupO; this is done on lines 032 and 033. Finally, a call to

gtk_menu_popupO is made. The address of the variable pos is passed as argument 5, and the

address of the function position_menuO is passed as argument 4. Because arguments 4 and 5

are not NULL, this triggers GtkMenu to call position_menuO, passing the address of pos as

an argument, and to use the screen-relative x and y positions that position_menuO computes

as the location where the menu will be popped up on the screen. The type of the variable pos

is a user-defined type, Position, defined on lines 007 through OI l . position_menuO only
accepts a single callback_data argument, so I invented a structure to hold the x and y coordi

nates, and to pass the address of a variable of type Position as the callback data, with the fields

of that variable holding the x and y coordinate values needed.

The function position_menuO is defined on lines 0 1 3 through 020. This function must

conform to the function prototype defined by GtkMenuPositionFunc.

0 1 3 s t a t i c vo i d

014 pos i t i on_menu (GtkMenu *menu , gint * x ,
gint * y , gpointer func_dat a)

0 1 5
0 1 6 Pos i t ion *pos = func_data ;
0 1 7
0 1 8 * x pos - >x + 2 0 ;
0 1 9 * y pos - >y + 2 0 ;
0 2 0

GtkMenu 407

The first argument passed by GtkMenu to position_menuO is the instance of GtkMenu

to be popped up. Here I ignore this argument because it does not factor in the computation

of the pop-up location. The arguments x and y are pointers that position_menuO will set to

the screen-relative x and y locations, respectively, of the upper-left corner of the menu when

it is popped up by GtkMenu. func_data is a generic pointer that, on line 016, I assign to a

variable of type Position * so that I can access the x and y coordinates that were placed there

by ButtonPressCallbackO. The function position_menuO, to make things interesting, adds
an offset of 20 pixels to each coordinate. This will cause the menu to display 20 pixels down

and 20 pixels to the right of the pointer position at the time the mouse button was pressed

by the user (see Figure 9.5).

Figure 9.S Pop-up Menu

Popping Down a Pop-up Menu
It is said that "what goes up, must come down." The same is true with a pop-up menu. Most

of the time, a pop-up menu will be dismissed by the user when he or she selects and acti

vates an item in the menu or clicks outside of the menu (or even hits the Escape key). How

ever, if the application deems it necessary (often it is not), it can pop down the menu with

a call to gtk_menu_popdownO:

vo id
gtk_menu-popdown (GtkMenu *menu) ;

The only argument to gtk_menu_popdownO is an instance of GtkMenu.

Getting and Setting the Active Menu Item in a Menu

An application can query a menu for the currently active menu item, or even set the active menu
item of a menu, by making calls to gtk_menu...,gecactiveO and to gtk_menu_seCactiveO,

respectively. The function gtk_menu...,gecactiveO accepts a GtkMenu instance and returns an

instance of GtkWidget:

GtkWidget *
gtk_menu_get_act ive (GtkMenu *menu) ;

408 Chapter 9 • Menus

The function gtlcmenu_secactiveO sets the menu item at offset index active:

voi d
gtk_menu_set_act ive (GtkMenu *menu , guint index) ;

Both of these functions are used in the implementation of GtkOptionMenu. It is not

likely that you will need to use either of these functions in a typical application.

Accelerator Groups

Earlier in this chapter, I illustrated how to associate an accelerator group with a menu cre
ated using GtkIternFactory. An accelerator group was created with a call to gtk_

accel�roup_newO and was then passed as the third argument to gtk_itemjactory_newO:

GtkWidget *window ;
GtkAc c e lGroup * acce l_group ;
Gtk l t emFactory * i tem_factory ;

i t em_factory = gtk_item_factory_new (GTK_TYPE_MENU , " <main> " ,
acce l_group) ;

The accelerator group was also attached to the top-level window containing the menu

with a call to gtk_accel�oup_attachO:

gtk_accel_group_at tach (acce l_group , GTK_OBJECT (window)) ;

The routine gtk_menu_secaccel�oupO can be used to set the accelerator group for a

window that was not created with GtkIternFactory:

voi d
gtk_menu_set_acc e l_group (GtkMenu *menu , GtkAccelGroup *accel_group) ;

The argument menu is the GtkMenu instance to which the accelerator group is being
assigned, and accel�up is the accelerator group (created by a call to gtk_accel�up_new()).

You can even use gtk_menu_secaccel�upO to assign the accelerator group of a menu cre

ated using GtkItemFactory, although this is more difficult:

GtkWidget *window ;
GtkAc c e lGroup * acce l_group ;
Gtk l temFactory * i tem_fact ory ;
GtkMenu *myMenu ;

I I create the acce l e rator group

I I create the menu using an item factory

i t em_factory = gtk_item_factory_new (GTK_TYPE_MENU , " <main> " ,
NULL) ;

I I get the instance of GtkMenu created above

GtkOptionMenu

myMenu (GtkMenu *) gtk_item_factory_get_widget (i tem_factory ,

" <main> ") ;

I I set the accel erator group us ing gtk_menu_s e t_acce l_group ()

I I attach the accelerator group to the window

GtkOption Menu

Class Name

GtkOptionMenu

Parent Class Name

GtkButton

Macros

Object to widget cast macro: GTK_ OPTION_MENU (obj)

Widget type check macro: GTK_IS_OPTION_MENU (obj)

Appl ication-Level API Synopsis

Retrieve the constant GTK...;.TYPE...,:OPTION->1ENU at runtime:
GtkType
gtk_option_menu_get_type (void) ;

Create a new instance of OtkQptionMenu:
GtkWidget *

gtk_opt ion_menu_new (void) ;

Retrieve the instance of GtkMenu associated with an instance of GtkOptionMenu:
GtkWidget *
gtk_option_menu_get_menu (GtkOpt ionMenu *option_menu) ;

409

410

Application-Level API Synopsis

Set the GtkMenu instance associated with an instance of GtkOptionMenu:
voi d

Chapter 9 • Menus

gtk_op t ion_menu_set_menu (GtkOpt ionMenu *opt ion_menu , GtkWidget *menu) ;

Remove the GtkMenu associated with an instance of GtkOptionMenu:
void
gtk_opt ion_menu_remove_menu (GtkOpt ionMenu *option_menu) ;

Set the active menu item in the instance of GtkOptionMenu:
voi d

gtk_op t ion_menu_set_history (GtkOpt ionMenu *opt ion_menu , guint index) ;

Class Description

An option menu is a control that, when clicked, displays a menu. The label of an option

menu displays the last menu item currently selected by the user from the menu. Figure 9.6

illustrates several instances of GtkOptionMenu. An option menu is easily identified by the

small rectangle displayed to the right of the option menu's label; an instance of GtkButton

is similar in appearance but does not display a rectangle next to the button label. The option

menu in Figure 9.6 labeled Type of Event is one such example.

Creating an Option Menu

Creating an option menu requires that an instance of GtkOptionMenu be created, as well as

an instance of GtkMenu and the instances of GtkMenuItem contained by the GtkMenu

instance. To create the instance of GtkOptionMenu, make a call to gtk_option_menu_newO:

GtkWidget *
gtk_op t ion_menu_new (void) ;

In this chapter, we have seen that menus can be created using GtkItemFactory or directly using

GtkMenuItem and GtkMenu. My recommendation is that you use GtkItemFactory to create the
menu and menu items for your option menu. I will show an example of this in Listing 9.2.

Setting and Getting the Menu
Once the menu and menu items have been created, you will need to bind the menu to the
option menu with a call to gtk_option_menu_secmenuO:

vo id
gtk_op t ion_menu_s et_menu (GtkOptionMenu * opt ion_menu , GtkWidget *menu) ;

GtkOptionMenu

Figure 9.6 Dialog with Several Option Menu Widgets

411

The argument option_menu is an instance of GtkOptionMenu, and menu is an instance of
GtkMenu (cast to GtkWidget *). A complementary function, gtk_option_menu...,gecmenuO,
can be used to retrieve the menu bound to an option menu:

GtkWidget *
gtk_option_menu_ge t_menu (GtkOptionMenu * opt ion_menu) ;

The returned instance of GtkWidget can be cast to GtkMenu.

The option menu's menu can be unbound by calling gtk_option_menu_remove_menuO:

void
gtk_option_menu_remove_menu (GtkOp t ionMenu * opt ion_menu) ;

412 Chapter 9 • Menus

The following function replaces the menu bound to an option menu with another menu

and returns the menu that was previously bound to the option menu:

GtkWidget *
Repl aceOp t i onMenuMenu { GtkOptionMenu *optionMenu , GtkWidget * newMenu)
{

GtkWidget *previousMenu ;

I I check our argument s

g_return_i f_fail (optionMenu ! = NULL) ;
g_return_val_i f_f a i l (GTK_IS_OPTION_MENU (optionMenu) , TRUE) ;
g_return_i f_f a i l (newMenu ! = NULL) ;
g_return_val_if_f a i l (GTK_I S_MENU (newMenu) , TRUE) ;

I I get the previously set opt ion menu menu , i f any

I I set the new opt ion menu menu

return (previousMenu) ;

The function gtk_option_menu_secmenuO makes a call to gtk_option_

menu_remove_menuO before setting the new menu; because of this, it is not necessary for

ReplaceOptionMenuMenuO to call gtk_option_menu_remove_menuO before calling gtk_

option_menu_secmenuO.

The following code illustrates how to create an option menu with four options using

GtkltemFactory:

Listing 9.2 Example Option Menu

0 0 1 #inc lude <gtk/gtk.h>

0 0 2

0 0 3 Gtkl t emFac tory * i t em_f actory ;
0 0 4

0 0 5 stat i c void
006 handl e_op t i on (gpointer dat a , guint cal lback_action , GtkWidget *w)

0 0 7 {
0 0 8 GtkMenul tem *menultem = (GtkMenu l t em *) w ;

0 0 9
0 1 0
0 1 1
0 1 2

0 1 3
0 1 4
0 1 5
0 1 6
0 1 7

s t a t i c Gtkl temFactoryEntry menu_items !] =

{ " /Opt ion1 " , NULL , handle_option ,

{ " /Opt i on2 " , NULL , handl e_option ,

{ " /Opt i on3 " , NULL , handl e_option ,

{ " /Opt i on4 " , NULL , handl e_opt ion ,

} ;

1 , NULL

2 , NULL
3 , NULL
4 , NULL

} ,
} ,
} ,
} ,

GtkOptionMenu

0 1 8 void get_option_menu (GtkWidget * *menu)

0 1 9 {
0 2 0 GtkAccelGroup *acce l_group ;

0 2 1 gint nmenu_items = s i zeof (menu_items) / s i zeof (menu_i t ems [O]) ;

0 2 2
0 2 3 i tem_factory = gtk_i tem_factory_new (GTK_TYPE_MENU , " <op t i ons > " , NULL) ;

0 2 4
0 2 5 gtk_item_factory_create_i tems (i tem_factory , nmenu_i tems , menu_i tems , NULL) ;

0 2 6
0 2 7 i f (menu)

0 2 8 *menu = gtk_item_factory_get_widget (i t em_factory , " <options > ") ;

0 2 9

0 3 0
0 3 1 int main (int argc , char * argv [])

0 3 2
0 3 3 GtkWidget *menu ;
0 3 4 GtkWidget *op t ionMenu ;

0 3 5

0 3 6 gtk_init (&argc , &argv) ;

0 3 7

0 3 8

0 3 9

0 4 0 get_option_menu (&menu) ;

0 4 1 opt ionMenu = gtk_op t ion_menu_new () ;

0 4 2 gtk_option_menu_set_menu (GTK_OPTION_MENU (opt ionMenu) , menu) ;

0 4 3
0 4 4

0 4 5
0 4 6 gtk_main () ;
0 4 7

0 4 8 return (O) ;

0 4 9 }

413

On line 040, a call is made to gecoption_menuO. This function (shown on lines 0 1 8

through 029) creates the menu that will be bound to the option menu. On line 04 1 , an

instance of GtkOptionMenu is created. The menu created on line 040 is bound to the option

menu on line 042 with a call to gtk_option_menu_seCmenuO.
The menu is defined on lines 01 1 through 016. Note that the accelerator field of the

GtldternFactoryEntry struct defining each menu item is set to NULL. Jypically, accelerators
are not used in option menus. The function handle_optionO will be invoked each time the user
selects an item in the option menu. Each menu item has a unique callback_action field (1 , 2,

3, or 4) that will be passed as the second argument to the callback function handle_optionO.
The function handle_optionO can use this argument to tell which menu item in the menu was
selected by the user and thereby track changes as they are made to the option menu by the
user. I find it useful to store the callback_action somewhere; if the user commits the changes
made to the dialog containing the option menu, the last recorded value is what I will save. For
example, say the option menu contains the options Red, Green, and Blue, and the option menu

is being used to edit a field named "color" in some data structure:

typedef struct _myData
{

gint color ;

414

MyData ;

stat i c MyData myData ;

I might define the following constants:

#de f ine COLOR RED OxO O
#de f ine COLOR GREEN OxOl
#de f ine COLOR BLUE Ox02

and the following static variable to hold the current selection:

s t a t i c gint color ;

The menu would be defined using the following:

s t at i c Gtkl temFactoryEnt ry menu_items [] =

Chapter 9 • Menus

{ " /Red " , NULL , handle_opt ion , COLOR_RED , NULL } ,
{ " /Green " , NULL , handle_opt ion , COLOR_GREEN , NULL } ,
{ " /Blue " , NULL , handle_opt ion , COLOR_BLUE , NULL } ,

} ;

The callback function would be coded as follows:

stat i c void
handl e_opt ion (gpointer data , guint cal lback_action , GtkWidget *w)

{
color = cal lback_action ;

When the user commits the dialog containing the option menu, the value stored in the

variable "color" would be copied into myData in the "clicked" signal function assigned to

the Commit or OK button of the dialog:

myData . color color ;

Initializing the Option Menu Selection

There is one final issue regarding option menus that needs to be addressed: how to initialize
the current selection of the option menu's menu. For example, if the last selection made in
the preceding "color" menu was Green, we would want to initialize the option menu's menu
so that Green was the current selection the next time the option menu was displayed for that
data. To set the selection of an option menu's menu, call gtk_option_menu_seChistory():

void
gtk_op t ion_menu_set_history (GtkOptionMenu * option_menu , guint index) ;

Summary 415

The argument option_menu is an instance of GtkOptionMenu. The argument index is in
the range [0, n - l] , where n is the number of menu items in the option menu's menu. Notice

in the preceding how I defined the constants COLOR_RED, COLOR_GREEN, and
COLOR_BLUE to be 0, 1 , and 2, respectively. This makes it easy to initialize the option

menu directly from the data, for example:

GtkOptionMenu *myOptionMenu;

gtk_option_menu_set_history(myOptionMenu , myData . color) ;

You may call gtk_option_menu_seChistoryO any time after the option menu has been
created (with a call to gtk_option_menu_new()) and its menu has been attached (with a call

to gtk_option_menu_secmenuO). Most applications will only set an option menu 's history
once before making the option menu available to the user because, generally speaking,

changes made to an option menu should only be made by the user, not by the application.

Summary

Gtk+ 1 .2 supports a wide variety of menu-related widgets. The easiest way to add a menu

to your application is to use GtkItemFactory, the first widget class described in this chap

ter. To use GtkItemFactory, you simply create a data structure that defines the organiza

tion and content of your menu and that specifies callback functions to be invoked for each

of the menu items in your menus. You then pass this data structure to GtkltemFactory,

which will implement the menu system you have described. You can then retrieve from
GtkltemFactory a widget that implements the menu and add this widget to one of your

application windows.
The content of a menu is made of up menu items. For example, the Edit menu in most

applications has Cut, Copy, and Paste menu items. Gtk+ supports several types of menu

item widgets. Besides the typical menu items seen in most menus (instances of GtkMenu
Item), radio menu items (GtkRadioMenultem), which allow the user to select one of many

items in a menu, and check radio menu items (GtkCheckMenultem), which allow the user
to select several of many items in a menu, are both supported. Tearoff menus are menus that

can be detached from their parent and displayed in a separate window. Tearoff menus per

sist on the desktop until they are explicitly dismissed by the user or by the application. Gtk+
allows menus to be popped up in an arbitrary window location; I illustrated the technique

for popping up and popping down menus in this chapter. Finally, Gtk+ supports option
menus. Option menus solve the problem of providing users with a control from which one
of several items can be selected, when the list of items is too large to be displayed as a set
of radio buttons and is too small to be displayed in a list widget. Option menus are also used
at times when the amount of user interface real estate is restricted (i.e. , when a set of radio
buttons or a list simply takes up too much space) .

(H APTER

(ONTA I NE R AN D

B I N (LAS S ES

This chapter, and the one that follows, will introduce the container widgets that make up the

Gtk+ toolkit as of Gtk+ 1 .2.
Container classes play a crucial role in Gtk+, as they do in other toolkits and widget sets

for the X Window System, MacOS, and MS Windows (and countless other platforms). In

the X Window System world, Xaw, Motif, and others all supply widgets that in one way or

another are analogous to the Gtk+ container widgets.

So what exactly is a container widget? A container widget is simply a widget that manages

other widgets. A window is a familiar example of a container. The purpose of a window is to
provide an area within which user-interface objects such as buttons, text fields, radio buttons,
and labels are presented to the user of an application. How this presentation is performed by

a container widget helps to separate one container widget class from another. There are two
attributes of a container widget that help to define it and separate it from other container wid

gets in the toolkit.
The first of these attributes is visibility: Is the container visible to the user or not? Windows,

obviously, are visible to the user. So are button widgets, which act as a container for their labels

(buttons are discussed in Chapter 5, "Labels and Buttons"). But many container widgets, as we

shall see, are not visible to the user, working behind the scenes to compute the layout of the
children they manage and to respond to changes in the geometry of the application windows,

which in tum act as their containers.
The second attribute is the container's layout policy: How does the container place its children

within the container? Some containers, such as GtkFixed in Gtk+ or Motif's BulletinBoard wid

get, require the programmer to precompute widget positions, specifying them at compile time or
in tables read by the application at runtime. Once specified, these widget locations are, in effect,
hard coded and typically will not vary once the container and its children have been instantiated
and realized by the application. The majority of container widgets, in Gtk+ and in other toolkits,
allow a programmer to specify abstract relationships that exist between the container and the wid
gets it contains, between widgets themselves within the container, or both. An example of a rela
tionship that might exist between a container and a child widget is how the widget relates to the

edges of the container. For example, are widgets, as they are added to the container, added from
the left edge of the container or from the right (or perhaps from top to bottom or from bottom to

top)? Or is a widget anchored to the top edge of a container (or to the left, to the right or bottom
edge, or perhaps to one of the four comers), maintaining that position as the container is resized?

4 1 7

418 Chapter 10 • Container and Bin Classes

Container widgets often define similar relationships that exist among children of the container.

One commonly encountered relationship is the amount of space that exists between widgets in

the container, both vertically and horizontally. Another attribute, homogeneity, determines
whether children in the container are given different sizes, each based on the needs of the widget,

or are given the same size (typically the size given to a homogeneous set of children is the size

needed to correctly display the largest child in the set).
Container widgets are useful because they allow programmers to easily build a user

interface that not only displays its components in a consistent manner, but that responds

well to changes made by a user, particularly window size. Because of container widgets, a

programmer does not need to compute x, y, width, and height values for each user-interface
component, spending hours trying to arrange widgets so that they center correctly or are

horizontally or vertically aligned. Gone are the days when windows had to be given a fixed
size that a user couldn' t change, in the face of a resulting widget layout that was either dif

ficult to recompute or, if computed at all, gave a visually unappealing or inconsistent result.

The more you become familiar with the various container widgets supplied by a toolkit, in

this case Gtk+, the more likely it is that you will choose container widgets wisely and provide

to your users a well-designed and visually appealing user interface that will keep its shape as

the user interacts with it.

In this chapter, and the one that follows, I will present the container widget classes provided

by Gtk+ 1 .2 and will provide numerous examples of their use. The two container widget

classes to which you should pay particular attention are GtkContainer, discussed immediately,

and GtkBox and its children, GtkVBox and GtkHBox, which are described later in this chapter.

A solid knowledge of these widget classes is, I believe, required if you are planning to write
even the most basic Gtk+ application.

GtkContainer

Class Name

GtkContainer

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK _TYPE_CONTAINER

Object to widget cast macro: GTK _CONTAINER (obj)

GtkContainer

Macros (Conti nued)

Widget type check macro: GTK _ IS _CONTAINER (obj)

Supported Signals

Table 10. 1 Signals

Signal Name

add

remove

focus

set3ocus3hild

Signal Function Prototypes

void

Condition Causing Signal to Trigger

The child was added to the container.

The child was removed from the container.

The check resize function was called on a
container.

The container (or child) obtained focus.

The focus child of the container was set.

419

add (GtkContainer * container , GtkWidget *widge t , gpointer use r_dat a) ;

void
remove (GtkContaine r * containe r , GtkWidget *widge t , gpo inter
user_data) ;

void
check_re s i z e (GtkContainer * container , gpoint e r user_data) ;

GtkDire c t i onType
focus (GtkContainer * container , GtkDirect ionType direct ion ,

gpointer user_data) ;

void
set_focus_chi ld (GtkContainer * container , GtkWidget *widge t ,

gpointer user_dat a) ;

420 Chapter 10 • Container and Bin Classes

Supported Argu ments

Prefix: GtkContaine r : :

Table 10.2 GtkContainer Arguments

Name

child

Type

GTK3YPE_ULONG

GTICTYPE_RESIZE_MODE

GTK_TYPE_ WIDGET

Application-Level API Synopsis

Return the constant GTK_TYPE_CONTAINER at runtime:
GtkType
gtk_container_get_type (vo i d) ;

Set the border width of the container widget (default is 0):
voi d

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_�ABLE

gtk_container_set_border_width (GtkContainer * containe r , guint
border_width) ;

Add a child widget to a container:
voi d
gtk_conta iner_add (GtkContainer * container , GtkWidget *widget) ;

Remove a child widget from a container:
voi d
gtk_conta iner_remove (GtkContainer * container , GtkWidget *widget) ;

Invoke a callback on each child in a container:
voi d
gtk_container_foreach (GtkContainer * containe r , GtkCal lback cal lback ,

gpo inter cal lback_dat a) ;

Obtain a list of each container child (one level down):
GLi s t *
gtk_container_children (GtkContainer *container) ;

Set focus to the container, or to one of its children, based on a specified focus direction:
gint
gtk_containe r_focus (GtkContainer * containe r , GtkDirec t i onType

direc t i on) ;

GtkContainer 421

Class Description

GtkContainer is a parent class to a broad category of widget classes supported by Gtk+ that

are designed to manage the layout of other widgets within an area of a window. Many widget
classes in Gtk+ descend from GtkContainer in the Gtk+ widget hierarchy, and most of them

will be described in this chapter.
You may never actually create an instance of GtkContainer in your application; an instance

of GtkContainer exists because some other class you have instantiated has inherited from it.

Therefore, there is no gtk30ntainecnewO function for you to call. However, there are a few

functions in the GtkContainer API that you may find useful. In particular, gtk30ntainecaddO
will be used often in your application, as we shall see.

It is probably best to skim this section to get the general idea of what the GtkContainer

class offers. Other classes described in this chapter will prove to be more useful to you as

you develop your application code.

Setting the Border Widget of a Container

Let's start our look at the GtkContainer class by considering the border width of a container.
The border width of a container, which defaults to 0 in Gtk+, defines how much space (in

pixels) is given above and below the container, in addition to the amount of space needed

by the container to lay out its children. To set the border width of a container widget, you

call gtk_container_seCborder_ widthO:

vo id
gtk_container_se t_borde r_width (GtkContainer * containe r ,

guint borde r_width) ;

Because you are unable to create an instance of GtkContainer directly from your appli
cation, you will either be working with an instance of GtkWidget or with some widget

inheriting from GtkContainer (such as GtkVBox). Therefore, you must cast the first argu
ment gtk_container_secborder_widthO to a GtkContainer by using the macro GTK_

CONTAINER, as in the following example:

GtkWidget *widget ;

The same tactic is required for all of the other functions defined by the GtkContainer API
because they all take as a first argument an instance of GtkContainer.

Adding and Removing Children

Child widgets can be added to most GtkContainer-derived classes with a call to
gtk30ntainer_addO:

vo id
gtk_conta ine r_add (GtkContainer * containe r , GtkWidge t *widget) ;

422 Chapter 10 • Container and Bin Classes

Similarly, a previously added child widget can be removed from a GtkContainer

derived class by calling gtk_containecremoveO:

vo id
gtk_cont ainer_remove (GtkContainer * cont ainer , GtkWidge t * widget) ;

Adding and removing children from a container will usually result in a redraw of the

container and its contents to accommodate the change in the widget's child list.

GtkContainer actually does not provide implementations of gtk30ntainecaddO or gtk_
containecremoveO. These functions are supplied by classes inheriting from GtkContainer.

Most of these functions are listed in Table 10.3.

Table 10.3 Add and Remove Functions

Class Add Function

GtkBin gtk_bin_addO

GtkBox gtk_box_addO

GtkButton gtk_button_addO

GtkFixed gtk_fixed_addO

GtkHandleBox gtk_handle_box_addO

GtkList gtk_liscaddO

GtkNotebook gtk_notebook_addO

GtkPacker gtk_packer_containecaddO

GtkPaned gtk_paned_addO

GtkScrolledWindow gtk_scrolled_ window _addO

GtkTable gtk_table_addO

GtkToolbar gtk_toolbar_addO

GtkTree gtk_tree_addO

Gtk Viewport gtk_ viewport_addO

Remove Function

gtk_button_removeO

gtk_fixed_removeO

gtk_handle_box_remove()

gtk_packeccontainecremove()

gtk_table_removeO

gtk_toolbar_removeO

gtk_tree_removeO

gtk_ viewport_removeO

In some cases, such as GtkBin and (most of) its child classes, the add function does little
more than simply record the child widget and force a redraw. In a class that provides more
functional APIs for adding child widgets, one of its add functions will be invoked, called with
defaults selected by the widget implementation. In the case of GtkBox, for example, the func
tion that will be invoked is gtk_box_pack_start_defaultsO (gtk_box_pack_start_defaultsO is

GtkContainer 423

described in this chapter in the section on GtkBox). Table 1 0.4 lists how gticcontainecaddO
is implemented in Gtk+ 1 .2 by each of the classes listed in Table 10.3 .

Table 10.4 Add Function Implementations

Class

GtkBin

GtkBox

GtkButton

GtkFixed

GtkHandleBox

GtkList

GtkNotebook

GtkPacker

GtkPaned

GtkScrolledWindow

GtkTable

GtkToolbar

GtkTree

Add Function Implementations

Internal

gtk_box_pack_starCdefaultsO<ltr

Internal, gtk_bin_addO

gtk_fixed_put(fixed, child, 0, 0)

Internal, gtk_bin_addO

Internal

gtk_notebook_insercpage_menu(notebook,
child, NULL, NULL, - I)

gtk_packer_add_defaults(packer, child,

GTK_SIDE_TOP, GTK_ANCHOR_CENTER, 0)

gtk_paned_packl (paned, child, FALSE, TRUE)

Internal

gtk_table_attach_defaults(table, child, 0, 1 , 0, I)

gtk_toolbar_append_ widget(toolbar, child,

NULL, NULL)

Internal

For the most part, you should try to directly call the add and remove functions provided

by implementation classes, when possible. However, should the defaults be acceptable,

both gtk_containecaddO and gtk_containecremoveO can be used instead if desired.

Iterating a Container's Children
An application can arrange to have a callback function invoked for each child widget in a

container by making a call to gtk_containecforeachO:

vo id
gtk_container_f oreach (GtkContainer * cont aine r , GtkCa l l back cal lback ,

gpointer cal lback dat a) ;

The argument container is an instance of GtkContainer (for example, an instance of
GtkVBox), callback is a pointer to a callback function in your application, and callback_data

is a pointer to application data you want to have passed to the callback function.
The callback function needs to have the following prototype:

424 Chapter 10 • Container and Bin Classes

vo id
func t ion (GtkWidget *widget , gpointer data)

The argument widget i s the child widget in the container, and data i s the callback_data
you passed to gtk30ntainecforeachO.

The following code, taken from the testgtk.c source code supplied with Gtk+ 1 .2, illus

trates how this functionality might be used.

vo i d
show_a l l-page s (GtkButton *but ton , GtkNotebook *notebook)
{

gtk_container_foreach (GTK_CONTAINER (not ebook) ,
(GtkCal lback) gtk_widget_show , NULL) ;

The routine is called in response to a button "clicked" event (the first argument is the
button that was clicked, the second is the callback_data, an instance of GtkNotebook) to

show all of the "pages" managed by a notebook widget. A similar function might be written

to hide all of the pages. What happens here is that each child of the notebook will be passed

to gtk_ widgecshowO, which will then show the widget.

Many of you will notice that gtk_ widgeCshowO takes only one argument, but we are
passing two (the widget and the callback data). Passing additional arguments is permissible

in C (although it is not terribly elegant). Here, it is only required that the first argument exist

and be of type GtkWidget * .

Retrieving a List of a Container's Children

The next function described here, gtk30ntainecchildrenO, can be used to obtain a list of

each child widget existing one level below the specified container:

GLi s t *
gtk_container_chi ldren (GtkContainer * container) ;

The following implementation of the GtkButton "clicked" callback previously presented,

show _all_pagesO, illustrates how to retrieve and traverse the list of children returned by

gtk30ntainecchildrenO:

vo i d
show_a l l-page s (GtkButton *button , GtkNotebook *notebook)

{
GLi s t *myL i s t ;

myL i s t = gtk_container_chi l dren (GTK_CONTAINER (notebook)) ;
whi le (myL i s t ! = (GL i s t *) NULL) {

gtk_show_widget ((GTK_WIDGET (myL i s t - >data)) ;
myL i s t = myL i s t - >next ;

GtkFixed 425

Changing Focus
The final GtkContainer function discussed here, gtlccontainecfocusO, is used to set the

focus to a container or to one of its children:

gint
gtk container focus (GtkContainer * containe r ,

- -

GtkDirectionType dire c t i on) ;

direction can be GTK_DIR_TAB_FORWARD, GTK_DIR_TAB_BACKWARD, GTK_

DIR_UP, GTK_DIR_DOWN, GTK_DIR_LEFT, or GTK_DIR_RIGHT.

The focus widget will be selected by GtkContainer based on the direction specified as well as

the child widget that currently has the focus. Not all directions are applicable to all containers.

The basic logic employed by GtkContainer when assigning focus is as follows. First, only draw

able widgets and widgets that are sensitive can attain focus. If the container is either not drawable

or is currently insensitive, then gtk30ntainecfocusO returns. If the container itself is capable of
obtaining focus (GtkButton is an example of a container-derived class that can obtain focus), then

focus is given to the container, and gtk_containecfocusO returns. Otherwise, a list of container
child widgets is retrieved, and all of the child widgets that cannot obtain the focus (i.e., widgets

that are either not drawable or insensitive) are discarded from the list.
The function gtk30ntainerjocusO then executes code, specific to the desired direction,

to switch the focus to one of the child widgets obtained in the previous step.

GtkFixed

Class Name

GtkFixed

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_TYPE_FIXED

Object to widget cast macro: GTK_FIXED (obj)

Widget type check macro: GTK_I S_FIXED (obj)

426

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_FIXED at runtime:
GtkType
gtk_f ixed_get_type (vo i d) ;

Create a new instance of GtkFixed:
GtkWidget *
gtk_f ixed_new (vo i d) ;

Chapter 10 • Container and Bin Classes

Place a child widget inside an instance of GtkFixed at location x, y:
voi d
gtk_fixed-put { GtkFixed * f ixed , GtkWidget *widge t , gint 1 6 x , gint 1 6 y) ;

Move a child widget inside an instance of GtkFixed to location x, y:
voi d
gtk_f ixed_move { GtkFixed * f ixed , GtkWidget *widget , gint 1 6 x , gint 1 6 y) ;

Class Description

Perhaps the simplest of the container classes is GtkFixed. Unlike most of the container classes,
GtkFixed relies on the application to make decisions about the placement of child widgets

within the real estate being managed by GtkFixed. In most other cases, the application supplies

the container widget with a set of constraints (constraints are implied by the container class and

often refined via the widget class API); the container widget is responsible for placing child

widgets on the screen, based on the implied and specified constraints. In the case of GtkFixed,

however, the application must explicitly specify the x, y coordinate of the widget within the

container, and GtkFixed will happily honor the request.

You only need to use GtkFixed when the constraint system provided by the other Gtk+

container widgets does not meet the needs of your application or when you want to control
the placement of child widgets explicitly. In the following section, I will provide an example

that uses GtkFixed.

Creating an Instance of GtkFixed

To create an instance of GtkFixed, call gtk_fixed_newO:

GtkWidge t *

gtk_f ixed_new (vo i d) ;

The returned widget must be added to another container (for example, a window); this can
be done using gtk30ntainecaddO. You also must show the widget using gtk_ widgecshowO

(or by calling gtk_widgecshow_allO on its parent).

GtkFixed 427

Adding a Child Widget

To place a child widget inside an instance of GtkFixed at location x, y, call gtk_fixed_putO:

void
gtk_f ixed-put (GtkFixed * f ixed , GtkWidget *widge t , gint 1 6 x , gint 1 6 y) ;

The argument fixed is an instance of GtkFixed, and widget is the child widget to be

placed in the fixed container. The widget location is specified by the arguments x and y.

Moving a Child Widget

To reposition a child widget of an instance of GtkFixed to location x, y, an application can

call gtk_fixed_moveO:

void
gtk_f ixed_move (GtkFixed * f ixed , GtkWidget *widge t , gint 1 6 x,

gint 1 6 y) ;

The arguments to gtk_fixed_moveO are the same as to gtk_fixed_putO.

An ExampJe

Now it's time for an example. The example code creates a window and 10 widgets (here, I create

instances of GtkLabel). A timer is created that fires 10 times a second. The timer handler

(fixed_timeout()) computes a random x and y increment that is applied to the position of each
widget, and uses gtk_fixed_moveO to change the position of the widget. If the label widget goes

off-screen in either the x or y direction, its direction of movement for that direction (x_trend and

y _trend, see Listing 10. 1) is changed so that the label remains within the area of the window.

A bug in GtkFixed shows up if line 069 is removed. If you run without line 069, you will

notice that GtkFixed does not erase the widget at its current location before being moved.

Calling gtk_ widgeCqueue_clearO explicitly erases the widget from the window before it

is moved.

Listing 10. 1 GtkFixed Example

0 0 1 # inc lude <gtk/gtk . h>

0 0 2 # inc lude < stdlib . h>

0 0 3
0 0 4 / * number o f GtkLabe1 widget s * /
0 0 5
0 0 6 #de f i ne NUM_LABELS 1 0

0 0 7
0 0 8 / * width , height of window . used to compute i f w e need to change the

0 0 9 direction of movement * /

0 1 0
0 1 1 #def ine WIN_WIDTH 3 0 0
0 1 2 #def ine WIN_HE IGHT 2 0 0

0 1 3
0 1 4 / * information on a l abe l : i t s widget , i t s current pos i t ion , and direction

0 1 5 o f movement * /
0 1 6
0 1 7 typedef struct _l abel s
0 1 8 {

428 Chapter 10 • Container and Bin Classes

0 1 9 GtkWidget * w ;

0 2 0 gint x ;

0 2 1 gint y ;

0 2 2 gint x_t rend ;

0 2 3 gint y_t rend ;
0 2 4 Labe l s ;

0 2 5
0 2 6 s t a t i c Labe l s labe l s [NUM_LABELS l ;

0 2 7 stat i c GtkWidget * f ixed ;

0 2 8
0 2 9 / * cal l ed 1 0 t ime s a second to compute new pos i t i ons f o r a l l of the l abe l s ,

0 3 0 and adj ust directions o f movement i f nec e s sary * /

0 3 1

0 3 2 gint

033 f ixed_t imeout (gpointer dat a)

0 3 4 {
0 3 5 gint x_inc , y_inc ;

0 3 6 int i ;

0 3 7
0 3 8 f o r (i = 0 ; i < NUM_LABELS ; i + +) (
0 3 9

0 4 0
0 4 1

0 4 2

0 4 3

0 4 4

0 4 5

0 4 6
0 4 7

0 4 8

04 9

0 5 0
0 5 1
0 5 2
0 5 3

0 5 4

0 5 5

0 5 6

0 5 7

0 5 8

0 5 9

0 6 0
0 6 1

0 6 2

0 6 3

0 6 4
0 6 5
0 6 6
0 6 7
0 6 8
0 6 9
0 7 0

0 7 1
0 7 2

0 7 3
0 7 4
0 7 5
0 7 6

/ * compute new movement in range of 0 to 1 0 pixe l s * /

((f l oat) rand () / RAND_MAX) * 1 0 ;
((f loat) rand () / RAND_MAX) * 1 0 ;

/ * add (or subtract) inc rement to (f rom) both x and y
pos i t ions of widget * /

l abe l s [i l . x + = x inc * labe l s [i l . x_trend ;
l abe l s [i l . y += y_inc * labe l s [i l . y_trend ;

/ *

* /

i f label has gone o f f - screen , f l ip the direction of
movement for the label (only f l ip the component that

went o f f - screen)

i f labe l s [i l . x > WIN_WIDTH

labe l s [i l . x_trend = - 1 ;
e l s e i f (labe l s [i l . x < 0)

labe l s [i l . x_trend = 1 ;
i f (labe l s [i l . y > WIN_HE IGHT)

labe l s [i l . y_t rend = - 1 ;

e l s e i f (labe l s [i l . y < 0)

labe l s [i l . y_trend = 1 ;

/ * c l ear the previous pos i t ion , as GtkFixed doesn ' t do thi s
very c l eanly * /

/ * repo s i t ion the widget * /

gtk_f ixed_move (GTK_FIXED (f ixed) , labe l s [i l . w ,

labe l s [i l . x , labe l s [i l . y) ;

GtkBox

0 7 7
0 7 8
0 7 9 int ma in (int argc , char * argv [])

0 8 0
0 8 1 GtkWidget *window ;

0 8 2 int i , time r ;

0 8 3
0 8 4 gtk_init (&argc , &argv) ;

0 8 5

0 8 6 / * create a window , s e t s i t s s i z e and t i t l e * /

0 8 7

0 8 8 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 8 9 gtk_s ignal_connec t (GTK_OBJECT (window) , " de st roy " ,

0 9 0 GTK_S IGNAL_FUNC (gtk_main_qui t) , " WM destroy ") ;

0 9 1 gtk_window_set_t i t l e (GTK_WINDOW (window) , " Fixed ") ;

0 9 2 gtk_widget_set_us i z e (GTK_WIDGET (window) , WIN WIDTH , WIN_HE IGHT) ;

0 9 3

0 94 / * create an instance of GtkFixed , add it to the window * /

0 9 5
0 9 6 f ixed = gtk_f ixed_new () ;

0 9 7 gtk_container_add (GTK_CONTAINER (window) , f ixed) ;

0 9 8 gtk_widget_show (f ixed) ;

0 9 9

1 0 0 / * create the l abe l s , plac ing them i n the middle of the window

1 0 1 us ing gtk_f ixed-put () . Set the direc t i on t rends to random

1 0 2 value s * /

1 0 3

1 0 4 for (i 0 ; i < NUM_LABELS ; i + +) {
1 0 5 l abe l s [i] . w = gtk_labe l_new (" Gtk+ Rul e s ! ") ;

1 0 6 l abe l s [i] . x = WIN_WI DTH / 2 ; l abe l s [i] . y - WIN_HE IGHT / 2 ;

1 0 7 labe l s [i] . x_trend = (rand () > RAND_MAX / 2 ? 1 - 1) ;

1 0 8 labe l s [i] . y_trend = (rand () > RAND_MAX / 2 ? 1 : - 1) ;

1 0 9 gtk_widget_show (labe l s [i] . w) ;

1 1 0 gtk_f ixed-put (GTK_FIXED (f ixed) , labe l s [i] . w ,

1 1 1 labe l s [i] . x , labe l s [i] . Y) ;

1 1 2

1 1 3

1 1 4 gtk_widget_show (window) ;

1 1 5

1 1 6 / * regi ster a timeout cal lback with Gtk+ to f i re every l O Oms * /

1 1 7
1 1 8 t imer = gtk_t imeout_add (1 0 0 , f ixed_t imeout , NULL) ;
1 1 9 gtk_main () ;
1 2 0
1 2 1 return (O) ;
1 2 2

GtkBox

429

lII __ IIII ____________ rulllffiIWIllIll _________ lIIll11i1 _I_! ilII!

Class Name

GtkBox

430

Parent Class Name

GtkContaine r

Macros

Widget type macro: GTK _TYPE_BOX

Object to widget cast macro: GTK _BOX (obj)

Widget type check macro: GTK_IS_BOX (obj)

Supported Arguments

Prefix: GtkBox : :

Table 10.5 GtkBox Arguments

Name Type

spacing GTK_TYPE_INT

homogeneous GTK_TYPE_BOOL

expand GTK_TYPE_BOOL

fill GTK_TYPE_BOOL

padding GTK_TYPE_ULONG

pack_type GTK_TYPE_PACK_TYPE

position GTK_TYPE_LONG

Appl ication-Level API Synopsis

Retrieve GTK_TYPE_BOX at runtime:
GtkType

gtk_box_ge t_type (void) ;

Chapter 10 • Container and Bin Classes

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRlTE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

Pack a child widget into a box, left to right for a horizontal box or top to bottom for a vertical box:
vo id
gtk_box-pack_s tart (GtkBox *box , GtkWidget * chi l d , gbool ean expand ,

gboo l ean f i l l , guint padding) ;

GtkBox 431

Appl ication-Level API Synopsis (Contin ued)

Pack a child widget into a box, right to left for a horizontal box or bottom to top for a vertical box:
void
gtk_box-pack_end (GtkBox * box , GtkWidget * chi l d , gbool ean expand ,

gbool ean f i l l , guint padding) ;

Same as gtk_box_pack_startO, but use Gtk+ defaults for expand, fill, and padding:
void
gtk_box-pack_s tart_de faul t s (GtkBox *box , GtkWidge t *widget) ;

Same as gtk_box-pack_endO, but use Gtk+ defaults for expand, fill, and padding:
vo id
gtk_box-pack_end_de faul t s (GtkBox * box , GtkWidget *widget) ;

Make a box homogeneous (see text):
void
gtk_box_set_homogeneous (GtkBox *box , gbool ean homogeneous) ;

Set spacing that is added between objects in the box:
void
gtk_box_se t_spacing (GtkBox *box , gint spac ing) ;

Relocate a child of the box at a new position:
void
gtk_box_reorder_chi l d (GtkBox *box , GtkWidget * chi l d , gint pos i t i on) ;

Retrieve packing settings of a child in the box:
void
gtk_box_query_chi l d-packing (GtkBox *box , GtkWidget * chi l d , gboo l e an

* expand , gboolean * f i l l , guint *padding ,
GtkPackType *pack_type) ;

Change packing settings of a child in the box:
void
gtk_box_se t_ch i l d-packing (GtkBox *box , GtkWidget * chi l d . gbool ean

expand , gbool ean f i l l , guint padding , GtkPackType pack_type) ;

Class Description

GtkBox (and its related child classes, GtkVBox and GtkHBox) is by far the most popular

of the container widget classes implemented by Gtk+. This is due to the overall simplicity
and flexibility that GtkBox provides; nearly any kind of layout imaginable can be achieved

using the relatively small API set that GtkBox provides.
There are two types of GtkBox. Vertical boxes (implemented by GtkVBox) lay out their

children vertically from top to bottom (or from bottom to top based on the packing order

432 Chapter 10 • Container and Bin Classes

you specify). Horizontal boxes (implemented by GtkHBox) lay out their children horizon

tally from left to right (or from left to right, again, based on the packing order you specify).

Using boxes involves the following steps:

Box Creation

Boxes are created using functions provided by GtkVBox and GtkHBox (both classes are

described later in this chapter). Horizontal boxes can be created using the function
gtk_hbox_newO, while vertical boxes are created with gtk_ vbox_newO.

Box Placement

A newly created box widget must be placed inside of another container widget. Typically,

the first vertical or horizontal box you add will be the immediate child of a window widget

or the immediate child of the vbox child of a dialog.

Box Nesting

To achieve more complicated layouts, additional instances of GtkVBox and/or GtkHBox

can be created and placed as children of previously created box widgets, as the user-inter

face requirements dictate. Doing so forms a hierarchy of box widgets such as the one illus
trated in Figure 10.8 later in this chapter. A newly instantiated box can be added within a

hierarchy at any arbitrary position; however, boxes are typically added top to bottom
(GtkVBox) or left to right (GtkHBox) .

Widget Placement
The last step is to add the user-interface widgets that the user will see and interact with to the

boxes placed in the hierarchy by the previous step. Such widgets include buttons, labels, images,

and so forth. As is the case with box placement, GtkBox is flexible with regard to when and

where the user-interface widgets are placed within box widgets in the box instance hierarchy.

The box nesting and widget placement steps can be, and often are, interwoven, as I will

illustrate in the following section.

Packing Options

As I previously mentioned, there are two types of box. The horizontal box (GtkHBox)

packs its children (other boxes or widgets) in a left to right, or right to left, manner. Vertical
Boxes, on the other hand, pack children from top to bottom or from bottom to top. The

direction of packing (e.g. , top to bottom or bottom to top) is based on the function used by

your application to add a child to the box (I' ll describe the functions used in detail later).

GtkBox

Figure 10.1 Window with a Vertical Box

433

The two possible packing options are "pack start" and "pack end." Figure 1 0. 1 illustrates
a window containing a single instance of GtkVBox. The box is not visible, as boxes do not

draw themselves. Adding an instance of GtkButton to this box (using the default packing

attributes I will discuss later) results in the layout depicted in Figure 10.2. The layout shown

could have been achieved by packing the button into the vertical box with "pack end" or

"pack start." Since there was no other widget yet packed into the vertical box, it did not

really matter. It also does not matter whether the box containing the button, in this instance,

is vertical or horizontal; the same result would have been obtained using either a vertical or

horizontal box because, at this point, there is only one child that has been packed into the

box.

434

Figure 10.2 Vertical Box with a Single Button

Chapter 10 • Container and Bin Classes

Now let's add a second button to the vertical box. At this point, the use of a vertical or

horizontal box widget as the top-level container becomes relevant. Because we are adding
to a vertical box, packing with either "pack end" or "pack start" will give us the result

shown in Figure 1 0.3 (a different result would be obtained if the first button was packed
using "pack end"). The addition of a third button, however, is influenced by the packing

direction selected both for the button being added and for the button added before it (button

number 2). Figures 1 0.4 through 10.7 illustrate each of the possible results. In these figures,

the order and method of packing is defined by the button label. "Start" indicates that the

box was packed using "pack start," and "End" indicates a box packed using "pack end." The

order of packing immediately follows 1 , 2, or 3 .

GtkBox

Figure 10.3 Box 1 and 2, Pack Start

Figure 10.4 Box 1 , 2, and 3, Pack Start

435

436

End 3 Box .807b550

Figure 1O.S Box 1 and 2. Pack Start; Box 3 Pack End

Start 3 Box B 0 7 b550

Figure 10.6 Box 1 and 3 Pack Start; Box 2 Pack End

Chapter 10 • Container and Bin C

GtkBox

Figure 10.7 Box 1 Pack Start; Box 2 and 3 Pack End

437

The way to think about ''pack start" and "pack end" is to imagine that a virtual, invisible

widget exists at both the top and bottom sides of a vertical box (and at the left and right sides
of a horizontal box). Adding a widget to this box using "pack start" binds the widget to the

virtual widget attached to the top edge, while adding a widget using "pack end" binds the wid
get to the virtual widget attached to the bottom. Analogous situations exist for horizontal

boxes, where "pack start" corresponds to the virtual widget bound to the left side of the box

and "pack end" corresponds to the virtual widget bound to the right side of the box.

Once a widget has been attached to the virtual widget, that widget represents the new

location to which widgets added to that end will be bound. I find it easy to think of this wid

get as representing the top of a stack that grows toward the other end of the box. Adding a

new widget to a box results in pushing that widget onto the top of the stack that corresponds

to the specified edge.
The next two examples illustrate the creation of a more complicated layout and emphasize

the flexibility that GtkBox provides-allowing you to choose one of several possible ways to

obtain a given layout. The layout is shown in Figure 10.8.

438

Figure 10.8 Complicated Window Layout

Chapter 10 • Container and Bin Classes

The first strategy adds two horizontal boxes, B and C, to a vertical box A. Both A and B,
in this example, are added using "pack start." Then three button widgets, 1, 2, and 3, are added

to horizontal box C using "pack start." Next, a vertical box D is added to box B using "pack

end," and button widget 4 is also added to box B using "pack start." This causes the vertical

box D to attach to the right-hand side of B, and button 4 to attach to the left-hand side of B.
Finally, three button widgets, 5, 6, and 7, are added to the vertical box D with "pack start" to

complete the layout.

The second strategy begins by adding horizontal box B using "pack start" to the vertical

box A. Then button 4 is added to box B using "pack start." Next, vertical box D is added to
box B using "pack start." This is followed by adding buttons 7, 6, and 5, in that order, to

vertical box D using "pack end." Next, horizontal box C is added to vertical box A using

"pack start," and buttons 1 , 3 , and 2 are added, in this order, to box C using "pack start,"
"pack end," and "pack start," respectively.

Take some time to convince yourself that both of the preceding strategies result in exactly

the same layout.

Homogeneous, Spacing, Expand, Fill, and Padding Attributes
Now that you understand the basics of box orientation and child positioning, I can describe
the attributes that can be applied to boxes. These attributes are used by your application to

provide hints to a box widget, telling it how you would like the box widget to lay out its
children. You should keep in mind the orientation of the box when using these attributes.

For example, if the box you are packing child widgets into is a vertical box, these attributes
define how child widgets will be packed vertically but not horizontally.

The attributes are described in the following sections.

GtkBox 439

Homogeneous. If homogeneous is set to TRUE, all children in a box are given the same
size, based on the size required for the largest of the children to draw. If homogeneous is

set to FALSE, each child widget is given only the space necessary for the child to draw itself
correctly. This does not mean that the widget will actually draw itself to eonsume the entire

size it has been given by the box. Whether this happens or not depends on the fill attribute,

described below.

Spacing. This attribute defines the amount of space placed by the box between child widgets.

This attribute is honored regardless of the homogeneous setting.

Expand. This attribute is only valid if homogeneous is FALSE. If homogeneous is
FALSE and expand is FALSE, then widgets are packed tightly together at the end to which

they have been added. If homogeneous is FALSE and expand is TRUE, then child widgets

are packed so that the entire area of the box is used.

Fill. This attribute applies regardless of the homogeneous setting.
First let's consider the case when homogeneous is set to FALSE. Then, if expand is

FALSE, fill is ignored. If expand is TRUE, then we have two cases-fill is FALSE or TRUE.

If fill is TRUE, then widgets draw themselves to fill all of the space given to them by the

expand attribute. If fill is FALSE, then a widget only draws large enough to render its content

correctly.
Second, we have the case that homogeneous is TRUE. This ends up being much like the

case in which homogeneous is FALSE, and it is sometimes hard to distinguish the two cases

visually. Recall that homogeneous means that if your window is, say, 210 pixels wide, widgets

packed into a horizontal box that consumes the entire width of the window will each be given

70 pixels of space. Fill controls whether or not the widget resizes itself to fill the entire space
allocated. If fill is TRUE, the widget will resize itself; if fill is FALSE, it won't.

Padding. The final attribute is padding. Padding is somewhat independent of the preceding

attributes, including homogeneous. Padding merely adds pixels around what normally would

be allocated by the child widget for it to draw itself correctly. If padding is, say, 20 and the

box you are packing the child widget into is horizontal, then 20 pixels will be added to the left

and to the right of the widget. Or, if the box is vertical, 20 pixels will be added above and
below the widget.

Packing Boxes
GtkBox supplies several functions that can be used to pack child widgets into a box. The
first of these functions, gtk_box_pack_startO, can be used to pack a child widget from left

to right for a horizontal box or from top to bottom for a vertical box.

voi d
gtk_box-pack_s tart (GtkBox *box , GtkWidget * chi l d , gbool e an expand ,

gbool ean f i l l , guint padding) ;

The argument box is an instance of GtkVBox or GtkHBox (there are no construction
functions provided by GtkBox; see GtkVBox and GtkHBox later in this chapter for the

440 Chapter 10 • Container and Bin Classes

details on creating instances of vertical and horizontal boxes, respectively) . If you store the

instance of GtkHBox or GtkVBox in a variable of type GtkWidget *, then use the macro

provided by GtkBox to cast it to an instance of GtkBox. For example:

GtkW i dget *myWidge t ;

gtk_box-pack_s tart { GTK_BOX { my Widget) , ) ;

The preceding holds true for the remaining GtkBox functions, all of which take an instance

of GtkBox as their first parameter.

The second argument, child, is the child widget being packed into the box. You must also cast

this widget; if not stored in a variable of type GtkWidget *, use the macro GTK_ WIDGETO to

perform the cast operation.
The expand, fill, and padding arguments were all described previously.

You can pack a child widget in the other direction, from right to left for a horizontal box

or from bottom to top for a vertical box, with a call to gtk_box_pack_endO:

vo id
gtk_box-pack_end { GtkBox *box , GtkWi dget * chi l d , gboo l ean expand ,

gboo l ean f i l l , guint padding) ;

The arguments for gtk_box-pack_endO are identical to those passed to gtk_box_pack_startO.
In some situations, you may want to pack a child into a box using defaults provided by Gtk +

for expand, fill, and padding. If that is the case, use gtk_box_pack_start_defaultsO to pack the
child widget from left to right or from top to bottom, or gtk_box_pack3nd_defaultsO to pack

the child widget from right to left or from bottom to top:

vo id
gtk_box-pack_s tart_de fau l t s { GtkBox *box , GtkWidget *widget) ;

vo id
gtk_box-pack_end_de faults { GtkBox *box , GtkWidget *widget) ;

The defaults used in Gtk+ 1 .2 are listed in Table 1 0.6.

Table 10.6 GtkBox Default Packing Attributes

Attribute

Expand

Fill

Padding

Value

TRUE

TRUE

o

GtkBox 441

Making a Box Homogeneous
As described earlier, packing attributes are influenced by the homogeneous attribute of the box

into which the child widget is being packed. Setting homogeneous to TRUE tells a box to divide
the vertical (in the case of GtkVBox) or horizontal (in the case of GtkHBm{) dimension equally
among each of the widgets being packed. The default homogeneous setting for a box is FALSE.

You can change the homogeneous setting of a box widget at any time simply by calling

gtk_box_seChomogeneousO:

void
gtk_box_set_homogeneous (GtkBox *box , gbool ean homogeneous) ;

The argument homogeneous can be either TRUE or FALSE.

Setting the Spacing

Spacing between widgets can be set by calling gtk_box_secspacingO :

vo id
gtk_box_set_spacing (GtkBOx *box , gint spacing) ;

The default spacing assigned by GtkBox as of Gtk+ 1 .2 is O.

Repositioning Children
Once packed into a box, a child widget can be repositioned in one of two ways. The first

method involves calling gtk_box_reordecchildO. In a box, each child is assigned a position

in the range [0, n - 1] , where n is the number of child widgets, of whatever type, currently

packed into the box. Let's say we have a vertical box packed with 10 button widgets, as

shown in Figures 1 0.9 through 1 0. 1 1 , all packed using gtk_box_pack_.startO.

Figure 10.9 Vertical Box
with 10 Buttons

Figure 10.10 Moving
Button 9 to Position 0

Figure 10. 1 1 Moving
Button 0 to Position 9

442 Chapter 10 • Container and Bin Classes

As you can see, I have labeled the buttons "button 0," "button 1 ," and so forth, to indicate

the positions of each button in the box. Assume the vertical box into which the buttons have

been packed is stored in the variable vbox, while the button widgets themselves are stored

in a vector named button.

gtk_box_reorder_chi l d (GTK_BOX (vbox) , button [9 1 , 0) ;

The preceding call will move the button previously at the bottom of the box to the top
position (position 0), pushing the remaining buttons down one position (incrementing their

positions within the box by one). See Figure 10. 10.

gtk_box_reorder_chi ld (GTK_BOX (vbox) , button [0 1 , 9) ;

Similarly, the preceding moves the button originally at the top of the box to the bottom,
causing the remaining buttons to decrement their previous position attribute by one. This is

illustrated in Figure 10. 1 1 .

The function prototype for gtk_box_reorder3hildO should be obvious at this point:

vo id
gtk_box_reorder_chi l d (GtkBOx *box , GtkWidget *chi l d , gint pos i t ion) ;

Here, box is the vertical or horizontal box that contains the widget specified by the argument
child (which is the widget that will be given a new position). position, once again, is in the

range [0, n - 1] . It is important to understand that position values increment from top to bottom

in vertical boxes when "pack start" is used and from bottom to top in vertical boxes when "pack

end" is used. Likewise, position values increment from left to right in horizontal boxes when
pack start is used and from right to left in horizontal boxes when pack end is used.

Setting and Getting Packing Attributes

The other way to reposition a child within a box is by changing its packing attributes using
gtk_box_secchild_packingO:

voi d
gtk_box_s et_chi ld-packing (GtkBox *box , GtkWidget * chi l d ,

gboolean expand , gboolean f i l l , guint padding ,
GtkPackType pack_type) ;

The arguments box, child, expand, fill, and padding have all been described previously.

The argument pack_type is an enum that can be set to either GTK_PACK_START or

GTK_PACK_END. Changing the pack_type of a child widget moves it to the other end of

the box, placing it at the next available position in the box as though it were being adding
to the box using gtlcbox_pack_startO or gtk_box_pack_endO.

You can retrieve the packing settings of a child in the box by calling gtk_box_query_
child_packingO:

vo id
gtk_box_query_chi ld-packing (GtkBox *box , GtkWidget * chi l d ,

gboolean * expand , gboolean * f i l l , guint *padding ,
GtkPackType *pack_type) ;

GtkVBox 443

The arguments box and child are as always: the box of interest and the child being managed

by that box. The arguments expand, fill, padding, and pack_type are pointers to variables of

type gboolean, gboolean, guint, and GtkPackType, respectively. On return, these variables will

contain the settings that apply to the child being queried.

Now that we have a good understanding of the base class GtkBox, we can take a look at the
Gtk+ classes that inherit from GtkBox, namely GtkVBox and GtkHBox. There is relatively little

to say about these classes other than how to create instances of each.

GtkVBox

Class Name

GtkVBox

Parent Class Name

GtkBox

Macros

Object to widget cast macro: GTK _ VBOX (obj)

Widget type check macro: GTK_ I S _ VBOX (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_ VBOX at runtime:
GtkType
gtk_vbox_get_type (vo i d) ;

Create a new instance of GtkVBox:
GtkWidget *
gtk_vbox_new (gboolean homogeneous , gint spac ing) ;

444 Chapter 10 • Container and Bin Classes

Class Description

GtkVBox is a subclass of GtkBox, which was previously described. An instance of GtkVBox

will pack its children from top to bottom when added to the box using the function gtk_box_

pack_startO or from bottom to start when children are added to the box with gtk_box_

pack_endO. To create an instance of GtkVBox, simply call gtk_ vbox_newO:

GtkWidge t *
gtk_vbox_new (gbool ean homogeneous , gint spac ing) ;

The arguments homogeneous and spacing are described in the preceding section on GtkBox.

Briefly, setting homogeneous to TRUE tells the box to give equal area to child widgets packed

into the box in the vertical dimension. So, for example, if three children are packed into the box,

each widget occupies one third of the vertical area available in the box. If homogeneous is

FALSE, the vertical space within the box is handed out on an as-needed basis.

The argument spacing defines how many pixels are placed between children in the box,

also in the vertical dimension.

All of the functions supplied by GtkBox are available for use by instances of GtkVBox.
When a GtkBox argument is called for, cast it to GtkBox * using the GTK_BOXO macro.

GtkH Box

Class Name

GtkHBox

Parent Class Name

GtkBox

Macros

Widget type macro: GTK _TYPE _ HBOX

Object to widget cast macro: GTK _ HBOX (obj)

Widget type check macro: GTK _IS _ HBOX (obj)

GtkButtonBox

Appl ication-Level API Synopsis

Retrieve the constant G1'ICTYPE_HBOX at runtime:
GtkType
gtk_hbox_get_type (vo i d) ;

Create a new instance of GtkHBox:
GtkWidget *
gtk_hbox_new (gbool ean homogeneous , gint spac ing) ;

Class Description

445

Similar to GtkVBox, GtkHBox is a subclass of GtkBox. Instances of GtkHBox will pack

children from left to right when added to the box using the function gtk_box_pack_startO
or from right to left when children are added to the box with gtk_box_pac:k_endO. To create

an instance of GtkHBox, simply call gtk_hbox_newO:

GtkWidge t *
gtk_hbox_new (gboo l ean homogeneous , gint spac ing) ;

The arguments homogeneous and spacing were described in the previous section on GtkBox.
When homogeneous is set to TRUE, the box gives equal area to child widgets packed into the

box in the horizontal dimension. So, for example, if three child widgets are packed into the box,

each widget occupies one third of the horizontal area available in the box. If homogeneous is

FALSE, the horizontal space within the box is allocated on an as-needed basis.
The argument spacing defines how many pixels are placed between children in the box,

also in the horizontal dimension.

All of the functions supplied by GtkBox are available for use by insumces of GtkHBox.

When a GtkBox argument is called for by one of the GtkBox functions, cast it to GtkBox *
using the GTK_BOXO macro.

GtkButton Box
__ mIllM ___ IIIIWIIIMIIIWIMi*lIIlIIlIIlIIlIIilll __ III_Illi_mw� __ I;1

Class Name

GtkButtonBox

446 Chapter 10 • Container and Bin Classes

Parent Class Name

GtkBox

Macros

Widget type macro: GTK _TYPE _BUTTON_BOX

Object to widget cast macro: GTK_BUTTON_BOX (obj)

Widget type check macro: GTK_IS_BUTTON_BOX (obj)

Application-Level API Synopsis

Retrieve the constant G�TYPE..BUTI'ON_BOX at runtime:
GtkType
gtk_but ton_box_get_type (vo i d) ;

Retrieve the default minimum width and minimum height values for child widgets:
voi d
gtk_but ton_box_get_chi l d_s i z e_def ault (gint *min_width ,

gint *min_he ight) ;

Retrieve the default button box padding:
voi d
gtk_but ton_box_get_chi l d_ipadding_de faul t (g int * ipad_x ,

gint * ipadJ) ;

Set the default minimum width and minimum height values for child widgets:
voi d
gtk_but ton_box_se t_chi l d_s i z e_de faul t (gint min_width ,

gint min_height) ;

Set the default button box padding:
voi d
gtk_but ton_box_se t_chi ld_ipadding_de faul t (gint ipad_x , g i n t ipad_y) ;

Retrieve the interchild spacing:
gint
gtk_button_box_get_spac ing (GtkButtonBox *widget) ;

Get the button box style (see text):
GtkButtonBoxStyle
gtk_but ton_box_get_l ayout (GtkButt onBox *widget) ;

Retrieve the child size:
void
gtk_but ton_box_ge t_chi ld_s i z e (GtkButtonBox *widge t , gint *min_width ,

gint *min_he ight) ;

GtkButtonBox

Appl ication-Level API Synopsis (Conti nued)

Retrieve the child padding:
void
gtk_button_box_get_chi l d_ipadding (GtkBut tonBox *widget ,

gint * ipad_x , gint * ipad_y) ;

Set the interchild spacing:
void
gtk_button_box_set_spacing (GtkButtonBox *widge t , gint spac ing) ;

Set the button box style (see text):
void
gtk_button_box_set_layout (GtkBut tonBox *widget ,

GtkButtonBoxStyle layout_s tyle) ;

Set the child size:
void
gtk_button_box_set_chi l d_s i z e (GtkButtonBox *widge t , gint min_widt h ,

gint min_he ight) ;

Set the child padding:
void

447

gtk_button_box_set_child_ipadding (GtkButtOnBox *widge t , gint ipad_x ,
gint ipad_y) ;

Class Description

Button boxes inherit from GtkBox, just as instances of GtkVBox and GtkHBox do. There

fore, functions in the API set previously described for GtkBox can be called on to operate

on button boxes. However, results will not always be as I described �:arlier. For example,

gtk_box_pack_startO and gtk_box_pack_endO can be used to add children to a button box,

but these two functions will give the exact same result (which is equivalent to the result
obtained by calling gtk30ntainecaddO to add a child to the button box; the widget will be

added from left to right when added to a horizontal button box or from top to bottom when

added to a vertical button box).
Table 1 0.7 summarizes the applicability of the GtkBox API when applied to an instance

of GtkButtonBox:

Table 10.7 GtkBox Functions Applied to a Button Box

Function

gtk_box_pack_startO

gtk_box_pack3ndO

Notes

Packing direction, arguments ignored.

Packing direction, arguments ignored.

448 Chapter 10 • Container and Bin Classes

Table 10.7 GtkBox Functions Applied to a Button Box (Continued)

Function

gtk_box_pack_starCdefaultsO

gtk_box_pack3nd_defaultsO

gtk_box_sechomogeneous()

gtk_box_set_spacingO

gtk_box_reordecchiidO

gtk_box_query _child_packingO

gtk_box_secchild_packing()

Notes

Packing direction ignored.

Packing direction ignored.

Not applicable, no-op.

Not applicable, no-op.

Fully functional.

Results should be ignored.

Results are ignored.

As you can see, only three of the GtkBox API functions-gtk_box_pack_startO, gtk_

box_pack_endO, and gtk_box_reorder_child(�an be used with button boxes, and only

one of those, gtk_box_reordecchildO, is fully functional if used with button boxes.

Although GtkButtonBox can be used to manage any Gtk+ widget class (including other

button boxes), it was designed mainly to support the organization of instances of GtkButton.

Although GtkHBox and GtkVBox certainly provide all of the capabilities necessary for man

aging a group of push buttons, GtkButtonBox simplifies the task considerably.

Both vertical (GtkVBox) and horizontal (GtkHBox) button boxes are supported by Gtk+.

Children added to a horizontal button box are added from left to right, while children added

to a vertical button box are added from top to bottom. Most applications will use a horizontal

button box to organize buttons, but of course, you may decide to organize a set of buttons (or

instances of any other widget class) vertically for whatever reason you find necessary.

At this point, let's take a look at the GtkButtonBox API and learn more about how button

boxes can be used.

Setting and Getting the Layout Style

Every button box has a layout style attribute. This attribute defines how child widgets managed

by the box are laid out. The layout styles supported by GtkButtonBox are illustrated by Figures

10. 12 through 10. 15 .

Figure 10.12 GTK_BUTIONBOX_SPREAD

GtkButtonBox 449

The default style, GTK_BUTfONBOX_DEFAULT_STYLE, is equivalent (in Gtk+ 1 .2)

to specifying GTK_BUTfONBOX_EDGE.

To specify a layout style (in lieu of using the default layout style), you can call gtk_

button_box_seClayoutO:

vo id
gtk_button_box_s et_l ayout (GtkButt onBox *widge t ,

GtkButt onBoxS tyle layout_styl e) ;

The argument widget is an instance of GtkVButtonBox or GtkHButtonBox. The argument
layout style is one of the following: GTK_BUTfONBOX_SPREAD, GTK_BUTTONBOX_
EDGE, GTK_BUTTONBOX_START, GTK_BUTTONBOX_END, or GTK_

BUTTONBOX_DEFAULT_STYLE.
Determining the layout style of a button box is easily done by calling gtk_button_

box�ecstyleO:

GtkButtonBoxS tyle
gtk_button_box_ge t_l ayout (GtkButt onBox *widget) ;

450 Chapter 10 • Container and Bin Classes

One of the constants GTK_BUTIONBOX_SPREAD, GTK_BUTTONBOX_EDGE,

GTK_BUTTONBOX_START, or GTK_BUTTONBOX_END is returned by this function.

Setting and Getting the Default Child Size

GtkButtonBox maintains a default minimum width and height for its children. In Gtk+ 1 .2,

the default minimum child width is 85, and the default minimum child height is 27.

You can set new defaults by calling gtk_button_box_secchild_size_defaultO, and you

can determine the current default minimum width and minimum height values for child

widgets with a call to gtk_button_box�ecchild_size_defaultO. The function prototypes

for these two functions are, respectively:

voi d

gtk_but ton_box_set_chi l d_s i z e_de fault (gint min_width ,
gint min_he ight) ;

voi d
gtk_button_box_get_child_s i z e_de fault (gint *min_width ,

gint *min_he ight) ;

In addition to default child height and width values, every instance of GtkButtonBox

maintains a current child height and width. When a button box is asked by its containing

widget to compute its size requirement, it executes the following code, which takes into
account both the current and default widths and heights:

I I grab the default width and height values

gtk_but ton_box_get_chi ld_s i z e_default (&width_de f aul t ,
&he ight_de faul t) ;

I I i f the current width has been set by the app l i cation to
II non - de faul t value , use that , e l se use the de faul t width

! = GTK BUTTONBOX DEFAULT
- -

I I i f the current he ight has been set by the app l i cation to a
I I non - de faul t value , use that , e l s e use the de fault he ight

chi l d_min_he ight = bbox - chi ld_min_he ight ! =GTK_BUTTONBOX_DEFAULT
? bbox - child_min_he ight : he ight_de faul t ;

Remember that the default width and height are maintained for (and shared by) all

instances of GtkButtonBox created by your application. The current width and height values,
however, are maintained separately for each instance of GtkButtonBox. Therefore, if you
should decide to change the default width or height value, this change will affect all instances

of GtkButtonBox in your application, while the current minimum width and height, if they
are changed, will only affect the instance of GtkButtonBox that you specify.

Most of you will never need to change either the default or the current child size values. How
ever, should you find a need to do so, you are likely dealing with one of the following cases:

GtkButtonBox 451

1. You need to increase or decrease the minimum width, minimum height, or both for

all button boxes in your application, which will share these values.

2. The default values are suitable for most, but not all, of the button boxes in your

application.
3. Same as case 2, but the default width or height also needs to be changed.

For case 1 , call gtk_button_box_secchild_size_defaultO once and pass it the desired

defaults before adding children to the button boxes; all child widgets added to button boxes

in your application will use the specified values.
For case 2, use gtk_button_box_seCchild_sizeO to set the current child size value for

the button box(es) that must use nondefault minimum width or height values.

For case 3, follow the steps outlined for case 1 and then the steps outlined for case 2.

Getting and Setting the Current Child Size Minimums

To retrieve the current child size width and height values, your application can call

gtk_button_box�eCchild_sizeO:

vo id
gtk_button_box_get_child_s i z e (GtkButtOnBOx *widget , gint *min_width ,

gint *min_he ight) ;

The argument widget is the button box being queried. On retum, min_width and

min_height hold the current minimum width and minimum height values, respectively. To

change the current minimums, call gtk_button_box_seCchild_sizeO:

void
gtk_button_box_se t_child_s i z e (GtkButtonBox *widge t , gint min_width ,

gint min_he ight) ;

The argument widget, once again, is the button box of interest. The arguments min_width

and min_height are the new current minimums that will be applied to the button box.

Setting and Getting the Child Internal Padding Values

Each button box has two intemal padding values that are applied to each child when computing

its width and height. One of these values, ipad_x, is added to both the left- and right-hand sides
of each child. The other, ipad...,y, is added to both the top and bottom of each child. Just like the

minimum child width and height values, GtkButtonBox maintains both defimlt and current val

ues for both ipad_x and ipad...,y. And, as was the case for the width and height minimum values,
your application can retrieve and set both the default and current values as needed. The scenarios

involved are the same as described for the minimum width and height values, including the three

cases previously described. Of course, the functions involved are different. To retrieve the default

intemal padding values, your application can call gtk_button_box�eCchild_ipadding...defaultO:

vo id
gtk_button_box_get_ch i l d_ipadding_de faul t (gint * ipad_x , gint * ipad_y) ;

452 Chapter 10 • Container and Bin Classes

The arguments ipad_x and ipad-y, on return, will hold the internal padding defaults for

the x and y dimensions, respectively. To set new default padding defaults, call gtk_button_

box_seCchild_ipaddin�defaultO:

void
gtk_button_box_set_child_ipadding_default(gint ipad_x, gint ipad_y) ;

The arguments ipad_x and ipad-y specify the new default values.

The functions for retrieving and setting the current padding values fall along the same lines

as those for minimum widths and heights but require as a first argument the button box of

interest. To retrieve the current padding values, call gtk_button_box�eCchild_ipaddingO:

void
gtk_button_box_get_child_ipadding(GtkButtonBox *widget, gint *ipad_x,

gint *ipad_y) ;

To change the current padding values, call gtk_button_box_secchild_ipaddingO:

void
gtk_button_box_set_child_ipadding(GtkButtonBox *widget, gint ipad_x,

gint ipad_y) ;

The arguments for both of these functions should be self-explanatory.

Setting and Getting the Interchild Spacing

There is an additional button box attribute that we have some control over: the amount of

space that exists between children in the box. Spacing is only added to the major orientation
of the button box. For example, if we are working with a vertical button box, spacing will

only be added between children along the y-axis, not the x-axis. As of Gtk+ 1 .2, default

spacing for vertical button boxes is 30 pixels, while the default spacing for horizontal button

boxes is 1 0 pixels (we will see later that both of these values can be changed) .

To obtain the interchild spacing, you can call gtk_button_box�ecspacingO:

gint
gtk_button_box_get_spacing(GtkButtonBox *widget) ;

The argument widget is the GtkButtonBox instance of interest. To set the interchild

spacing value, call gtk_button_box_secspacingO:

void
g tk_but t o n_box_set_spaci ng (GtkBu t t onBox * w i dge t , gint spaci ng) ;

The argument widget, again, is the button box of interest, and spacing is the new interchild
spacing value.

Now that we have a good grasp of button boxes, it is time to look at how we can create
instances of vertical (Gtk:VButtonBox) and horizontal (GtkHButtonBox) button box widgets. We

will also discover how the default spacing values can be changed and queried by your application.

GtkVButtonBox

GtkVButton Box

Class Name

GtkVButtonBox

Parent Class Name

GtkBut tonBox

Macros

Widget type macro: GTK _TYPE_BOTTON _BOX

Object to widget cast macro: GTK _ VBOTTON _BOX (obj)

Widget type check macro: GTK_ IS _ VBOTTON _BOX (obj)

Application-Level API Synopsis

Retrieve the constant GTK...TYPE_BUTION_BOX at runtime:
guint
gtk_vbut ton_box_get_type (void) ;

Create a new instance of GtkVButtonBox:
GtkWidget *
gtk_vbut ton_box_new (void) ;

Get the default interchild spacing:
gint
gtk_vbut ton_box_get_spacing_de fault (void) ;

Set the default interchild spacing:
void
gtk_vbutton_box_set_spacing_de faul t (gint spac ing) ;

Retrieve the default box layout style:
GtkBut tonBoxStyle
gtk_vbut ton_box_get_layout_de f aul t (vo i d) ;

Set the default box layout style:
void
gtk_vbutton_box_set_layout_de f aul t (GtkButtonBoxStyle layout) ;

453

454 Chapter 1 0 • Container and Bin Classes

Class Description

Vertical button boxes were introduced in an earlier section (see GtkButtonBox). Less commonly

used than horizontal button boxes (GtkHButtonBox, below), a vertical button box arranges its

child widgets vertically based on layout style, interchild spacing, and child internal padding

attributes that your application can optionally specify. If you haven't yet done so, take the time

to read about GtkButtonBox (see the previous section), which is the parent class of GtkVBut

tonBox, to learn more about these attributes and their default values.

Creating a Vertical Button Box

Creating an instance of GtkVButtonBox is relatively easy and can be done with a call to

gtk_ vbutton_box_newO:

GtkWidget *
gtk_vbut t on_box_new (void) ;

The return value is an instance of GtkWidget. As is typical, this will need to be cast to GtkBut

tonBox if passed as the first argument to GtkButtonBox functions, using the GTK_BUTION_

BOX macro. None of the GtkVButtonBox functions accept an instance of GtkVButtonBox, so

casting is not relevant when dealing with them.

Getting and Setting the Interchild Spacing

GtkVButtonBox maintains defaults for interchild spacing and layout style. It is possible for your

application to query these defaults or to change them. For vertical button boxes, the default inter

child spacing is 10 pixels, and the default layout style is GTK_BUTIONBOX_EDGE. To

retrieve the default interchild spacing, call gtk:3button_box....geCspacin�defaultO:

gint
gtk_vbut ton_box_get_spacing_de faul t (void) ;

gtk_ vbutton_box_seCspacin�defaultO can be used to set the default interchild spacing:

vo i d
gtk_vbut ton_box_set_spacing_de faul t (gint spac ing) ;

Setting and Getting the Layout Style
To retrieve the default box layout style, make a call to gtk_ vbutton_box....geClayouCdefaultO:

GtkBut tonBoxS tyle
g tk_vbutton_box_ge t_l ayout_de f aul t (vo i d) ;

To set the default box layout style, gtk_vbutton_box_seclayoucdefaultO can be called:

void
gtk_vbut ton_box_set_l ayout_de faul t (GtkBut tonBoxStyle layout) ;

Refer to the discussion of GtkButtonBox for illustrations depicting the various layout

styles as applied to vertical button boxes.

GtkHButtonBox

GtkH ButtonBox

Class Name

GtkHButtonBox

Parent Class Name

GtkButtonBox

Macros

Object to widget cast macro: GTK_HBUTTON_BOX (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_BUTIONJJOX at runtime:
guint
gtk_hbut ton_box_get_type (void) ;

Create a new instance of GtkHButtonBox:
GtkWidget *
gtk_hbut ton_box_new (vo i d) ;

Get the default interchild spacing:
gint
gtk_hbut ton_box_get_spac ing_defaul t (vo i d) ;

Get the default box layout style:
GtkBut tonBoxStyle
gtk_hbut ton_box_get_layout_de faul t (voi d) ;

Set the default interchild spacing:
void
gtk_hbut ton_box_se t_spacing_de faul t (gint spacing) ;

Set the default box layout style:
void
gtk_hbut ton_box_se t_layout_de fault (GtkButtonBoxStyle layout) ;

455

456 Chapter 10 • Container and Bin Classes

Class Description

Horizontal button boxes were introduced previously (see GtkButtonBox). A horizontal button

box arranges its child widgets horizontally based on layout style, interchild spacing, and child

internal padding attributes that an application can optionally specify. If you haven't yet done
so, take the time to read about GtkButtonBox (see the previous section), which is the parent

class of GtkHButtonBox, to learn more about these attributes and their default values.

Creating a Horizontal Button Box

Creating an instance of GtkHButtonBox is relatively easy and can be done with a call to

gtk_hbutton_box_newO:

GtkWidget *
gtk hbut ton box new (void) ;

- - -

The return value is an instance of GtkWidget. As is typical, this will need to be cast to GtkBut

tonBox if passed as the first argument to GtkButtonBox functions, using the GTK_BUITON_

BOX macro. None of the GtkHButtonBox functions accept an instance of GtkHButtonBox, so

casting is not relevant when dealing with them.

Getting and Setting Interchild Spacing
GtkHButtonBox maintains defaults for interchild spacing and layout style. It is possible for your

application to query these defaults or to change them. For horizontal button boxes, the default

interchild spacing is 30 pixels, and the default layout style is GTK_BUITONBOX_EDGE. To

retrieve the default interchild spacing, call gtk_hbutton_box�eCspacin�defaultO:

gint
gtk_hbutton_box_get_spac ing_de fault (void) ;

The function gtk_hbutton_box_secspacin�defaultO can be used to set the default

interchild spacing:

voi d
gtk_hbut ton_box_set_spac ing_de faul t (gint spac ing) ;

Getting and Setting the Default Layout Style

To retrieve the default box layout style, you can make a call to gtk_hbutton_box_

geUayouCdefaultO:

GtkButtonBoxStyle
gtk_hbutton_box_get_layout_de f ault (void) ;

To set the default box layout style, gtk_hbutton_box_seClayoucdefaultO can be called:

vo id
gtk_hbut ton_box_set_layout_de fault (GtkBut tonBoxStyl e layout) ;

Refer to the discussion of GtkButtonBox for illustrations depicting the various layout

styles as applied to vertical button boxes.

GtkNotebook

GtkNotebook

Class Name

GtkNotebook

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_ TYPE_NOTEBOOK

Object to widget cast macro: GTK _NOTEBOOK (obj)

Widget type check macro: GTK_I S_NOTEBOOK (obj)

Supported Signals

Table 10.8 Signals

Signol Name Condition Causing Signal to Trigger

457

The current page in the notebook was switched.

Signal Function Prototypes

void
switch-page { GtkNotebook * notebook , GtkNotebookPage * page ,

gint page_num , gpointer user_data) ;

Supported Arguments

Prefix: GtkNotebook : :

Table 10.9 GtkNotebook Arguments

Name Permissions

page

458 Chapter 10 • Container and Bin Classes

Table 10.9 GtkNotebook Arguments (Continued)

Name Type

tab_pos GTK_TYPE�SnnON_TYPE

tab_border GTK_TYPE_UINT

tab_hborder GTK_TYPE_UINT

tab_vborder GT�TYPE_UINT

show_tabs GTK_TYPE_BOOL

show_border GTK_TYPE_BOOL

scroUable G�TYPE..BOOL

enable_popup G�TYPE..BOOL

tab_label GTK_TYPE_STRING

menu_label GTK_TYPE_STRING

position GTK_TYPE_INT

tab_fill GTK_TYPE_BOOL

tab_pack GTK_TYPE_BOOL

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_NOTEBOOK at runtime:
GtkType
gtk_notebook_get_type (vo i d) ;

Create a new instance of GtkNotebook:
GtkWidget *
gtk_not ebook_new (vo i d) ;

Append a widget to the notebook with the specified label:
voi d

Permissions

GTK_ARG_READWRITE

GTK_ARG_ WRITABLE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK--ARG-.READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK--ARG-.READWRITE

G�ARG_READWRITE

GTK_ARG_READWRITE

gtk_notebook_append-page (GtkNot ebook *notebook , GtkWidget * chi l d ,
GtkWidget * t ab_labe l) ;

Append a widget to the notebook with the specified label and add a menu item to the notebook
pop-up menu:
void
gtk_notebook_append-page_menu (GtkNotebook *notebook ,

GtkWidget * chi l d , GtkWidget * t ab_l abe l , GtkWidget *menu_labe l) ;

GtkNotebook

Application-Level API Synopsis (Continued)

Prepend a widget to the notebook with the specified label:
void
gtk_notebook-prepend-page (GtkNotebook * notebook , GtkWidget *chi l d ,

GtkWidge t * tab_l abe l) ;

459

Prepend a widget to the notebook with the specified label and add a menu item to the notebook

pop-up menu:
void
gtk_not ebook-prepend-page_menu (GtkNotebook * notebook ,

GtkWidget * chi l d , GtkWidget * t ab_l abe l , GtkWidget *menu_labe l) ;

Insert a widget into the notebook with the specified label:
void
gtk_not ebook_insert-page (GtkNot ebook * notebook , GtkWidget * chi l d ,

GtkWidget * t ab_labe l , gint pos i t i on) ;

Insert a widget into the notebook with the specified label and add a menu item to the notebook

pop-up menu:
void
gtk_not ebook_insert-page_menu (GtkNot ebook * notebook ,

GtkWidget * chi l d , GtkWidget * tab_l abe l , GtkWidget *menu_l abe l ,
gint pos i t i on) ;

Remove a page from the notebook:
void
gtk_not ebook_remove-page (GtkNotebook * notebook , gint page_num) ;

Retrieve the index of the currently shown page:
gint
gtk_notebook_get_current-page { GtkNot ebook *notebook) ;

Retrieve the widget corresponding to the nth page of the notebook:
GtkWidget *
gtk_notebook_get_nth-page (GtkNotebook * notebook , gint page_num) ;

Given a widget, detennine its page number in the notebook:
gint
gtk_not ebook-page_num { GtkNotebook * notebook , GtkWidget * ch i l d) ;

Display the specified page:
voi d
gtk_notebook_se t-page (GtkNotebook * no tebook , g i n t page_.num) ;

Traverse to the next page in the notebook:
void
gtk_notebook_next-page { GtkNotebook *notebook) ;

Traverse to the previous page in the notebook:
vo id
gtk_notebook-prev-page { GtkNotebook *notebook) ;

460 Chapter 10 • Container and Bin Classes

Application-Level API Synopsis (Continued)

Toggle the display of a border:
voi d
gtk_notebook_s e t_show_border (GtkNotebook *notebook ,

gboolean show border) ;

Toggle the display of tabs:
voi d

gtk_notebook_set_show_tabs (GtkNot ebook *notebook ,
gbool ean show tabs) ;

Change the location of tabs in the notebook:
voi d
gtk_notebook_s e t_tab-pos (GtkNotebook *notebook ,

GtkPo s i t i onType pos) ;

Enable (disable) homogeneous (same-sized) notebook tabs:
voi d
gtk_notebook_set_homogeneous_tabs (GtkNotebook *notebook ,

gbool ean homogeneous) ;

Set the border width of tabs:
voi d
gtk_notebook_set_tab_border (GtkNotebook *notebook ,

guint border width) ;

Set the horizontal border width of tabs:
voi d
gtk_notebook_se t_t ab_hborder (GtkNotebook *notebook ,

guint tab hborder) ;

Set the vertical border width of tabs:
voi d
gtk_notebook_s e t_tab_vborder (GtkNotebook *notebook ,

guint t ab vborder) ;

Enable (disable) the ability of the notebook to scroll:
voi d
gtk_notebook_set_scrol labl e (GtkNotebook *notebook ,

gbool ean scro l l able) ;

Enable the display of the notebook pop-up menu:
voi d
gtk_notebook-popup_enabl e (GtkNotebook *notebook) ;

Disable the display of the notebook pop-up menu:
void
gtk_notebook-popup_disable (GtkNotebook *notebook) ;

Retrieve the label of the tab associated with the specified widget:
GtkWidget *
gtk_notebook_get_tab_labe l (GtkNotebook *notebook , GtkWidge t * chi l d) ;

GtkNotebook

Appl ication-Level API Synopsis (Continued)

Set the label of the tab associated with the specified widget:
void
gtk_notebook_set_tab_labe l (GtkNotebook *notebook , GtkWidget * chi l d ,

GtkWidget * t ab_labe l) ;

Set the text of the label tab associated with the specified widget:
void

gtk_notebook_set_tab_l abel_text (GtkNotebook *notebook , GtkW
idget * chi l d , const gchar * t ab_text) ;

Get the menu label associated with the specified widget:
GtkWidget *
gtk_notebook_get_menu_l abel (GtkNot ebook * notebook ,

GtkWidget * ch i l d) ;

Set the menu label associated with the specified widget:
void

461

gtk_notebook_set_menu_labe l (GtkNotebook * notebook , GtkWidget * chi l d ,
GtkWidget *menu_label) ;

Set the text of the menu label associated with the specified widget:
void
gtk_notebook_set_menu_labe l_text (GtkNot ebook * notebook ,

GtkWidget * chi l d , const gchar *menu_text) ;

Query the packing of a notebook tab:
void
gtk_notebook_query_tab_labe l-packing (GtkNotebook * notebook ,

GtkWidget * chi l d , gbool ean * expand , gbool ean * f i l l ,
GtkPackType *pack_type) ;

Set the packing of a notebook tab:
void
gtk_not ebook_se t_tab_l abel-packing (GtkNotebook * notebook ,

GtkWidget *chi l d , gboolean expand , gboolean f i l l ,
GtkPackType pack_type) ;

Change the position of a tab in the notebook:
voi d
gtk_not ebook_reorder_chi l d (GtkNotebook * notebook , GtkWi dget * chi l d ,

gint pos i t i on) ;

] r 2W==�

Class Descri ption

Notebook widgets help solve a problem that is often faced by user-interlace designers: the need
to present a large set of user-interlace controls in a way that minimizes the amount of screen or

462 Chapter 10 • Container and Bin Classes

dialog real estate used. Notebook widgets work particularly well when the user-interface con

trols that must be presented all fall within a somewhat general category and the category can

be partitioned into a relatively small set of subcategories. The notebook widget itself can be
used to represent the general category, while panels (or pages) of the notebook can be used to
represent the partitioning of the general category into its constituent subcategories.

A preferences dialog provides a particularly good example of this sort of user-interface situ

ation. Many application user interfaces contain a menu item or a button labeled Preferences or

perhaps Edit Preferences. When the menu item or button is selected by the user, a dialog will

typically be displayed. If the number of preference items or controls is small, they usually can
be fit into a single dialog. If a partitioning of preference items exists, then horizontal separators

or frames may be used to group together items that are related.

Figure 10.16 Preferences Panel

However, if the number of preference controls is large, then a notebook is an ideal choice

for organizing the content. Figure 1 0. 1 6 illustrates how a set of related controls might be

organized in panels of a notebook widget. Notice how controls related to each other within

a panel are further grouped together by surrounding them with frames.

Let's take a look at the basic components of a notebook control. All notebooks contain

one or more (usually two or more) panels. A panel consists of both a tab and a content area.

The tab displays a label that identifies the panel to the user (an image can also be displayed

if desired) . In Figure 1 0. 1 6, the panel with the tab labeled Video Settings is the current
panel. A panel can be made current by positioning the mouse pointer over the panel's tab

and clicking mouse button 1 .
GtkNotebook allows applications to create a pop-up menu that can be used at runtime to

change the current panel of the notebook. The pop-up menu contains one menu item for each

panel in the notebook. The labels of the menu items in the pop-up menu correspond to the
labels displayed by the tabs in the notebook control. To activate the pop-up menu, the user
positions the mouse pointer over any one of the panel tabs and then clicks mouse button 2.
Selecting a menu item from the pop-up menu will cause the panel corresponding to the
selected menu item to be made the current panel. When scrollbars are active it is possible that
the tab corresponding to a panel will not be visible, making it difficult to select the panel with
out first scrolling the tab into view. In cases like this, the pop-up menu solution may provide

GtkNotebook 463

an easier way for users to select the current panel. My advice is that when you enable scrolling

tabs, you should also support the pop-up menu just described.

The default behavior of a notebook is to display all panel tabs, resizing them as necessary

so that they are all visible to the user. If a relatively large number of tabs exists or their labels
are relatively long, it may be best to enable scrolling. Figure 10. 1 7 illustrates a notebook with

scrolling disabled, and Figure 1 0. 1 8 shows the same with scrolling enabled.

Figure 10.17 Notebook with Several Tabs

Figure 10. 18 Figure 1 0. 1 7 as a Scrollable Notebook

An additional notebook attribute you can specify is the placement of the tabs. GtkNotebook

supports four orientations: above or below the notebook or along the left- or right-hand side of

the notebook. The first two cases cause the tabs to be drawn horizontally (left to right), while

the tabs in the other two cases are drawn vertically. Figure 10. 19 illustrates tabs that have been
placed along the bottom.

Figure 10.19 Figure 1 0. 1 7 with Tabs Along the Bottom

464 Chapter 1 0 • Container and Bin Classes

Creating an Instance of GtkNotebook

Now that we know a bit about notebooks, let's take a look at the functions GtkNotebook pro

vides. The function gtk_notebook_newO can be called to create a new instance of GtkNotebook:

GtkWidget *
gtk_notebook_new (void) ;

As usual, the return value is an instance of GtkWidget. The remainder of the GtkNotebook

functions require that you pass an instance of GtkNotebook as the first argument. You can do this

by casting the GtkWidget * variable to GtkNotebook using the GTK_NOTEBOOKO macro:

GtkWidget * not ebook ;

gtk_not ebook_append-page (GTK_NOTEBOOK (notebook) , . . .) ;

Creating and Adding Pages
Once you have a notebook, the next step is to create pages and add them to the notebook.

A page consists of a container widget (e.g., a box) and its children. Once you have created

the page, you add it to the notebook as a child. You can pretty much use any of the container
widgets I describe in this chapter; this includes another notebook widget (although doing

so might result in a less-than-ideal user interface/experience).

Pages can be appended to a notebook, prepended to a notebook, or added to the notebook
at a specific location. In a notebook that has tabs running along the top or bottom of the

notebook, the tab order is from left to right, while the tab order is from top to bottom when

located on the left- or right-hand sides of the notebook. The first tab (the leftmost or top) is

located at index 0, and the last tab (the rightmost or bottom) is at location n - 1 , where n is

the number of tabs or panels in the notebook.

In addition to the location of the tab or panel in the notebook, the other thing you must

decide when adding a panel is whether or not the tab will be shown in the pop-up menu

(when enabled). All of these choices result in six different functions that can be used to add

a panel to a notebook.

To append a page to a notebook, making it the nth page of the notebook, your application

can call gtk_notebook_append_pageO:

voi d
gtk_not ebook_append-page (GtkNot ebook *not ebook , GtkWidget * chi l d ,

GtkWidget * t ab_label) ;

The argument notebook is an instance of GtkNotebook that was returned by gtk_
notebook_newO. The argument child is the container widget that holds the content of the page
being added. The argument tab_label is the widget (a container or a control) containing the

text and/or image that will be displayed in the tab as its label. Passing NULL as tab_label will
cause a default label to be provided by GtkNotebook. The default label in Gtk+ 1 .2 is Page

<number>, where <number>is the position of the page in the notebook, plus 1 . See

gtk_notebook_seuab_labeLtextO for a simple way to set the text label of a notebook tab.

GtkNotebook 465

Prepending a page to the notebook (making it the first page) can be done with a call to

gtk_notebook_prepend_pageO:

void
gtk_notebook-prepend-page (GtkNotebook * notebook , GtkWidget * chi l d ,

GtkWidget * t ab_labe l) ;

The arguments are the same as those passed to gtk_notebook_append_pageO. To insert

a page at an arbitrary position, call gtk_�tebook_insert_pageO:

void
gtk_notebook_insert-page (GtkNotebook * notebook , GtkWidget * chi l d ,

GtkWidget * t ab_labe l , gint pos i t ion) ;

The final argument, position, specifies where the page will be located after being added

to the notebook. This can be in the range of [0, n] in a notebook that contains n pages prior

to the insert operation being performed.

Creating and Adding Pages to a Notebook: An Example

The following code illustrates the creation of a simple three-panel notebook using the func

tion gtk_notebook_append_pageO. The child of each panel is an instan(:e of GtkVBox that

contains a single GtkLabel widget as a child. The tab label is also an instance of GtkLabel.

Although it displays the same text as the label managed by the panel vbox, we must use a

separate instance of GtkLabel because an instance of GtkLabel (or any widget for that mat

ter) can only be managed by one parent.

Listing 10.2 GtkNotebook Example

0 0 1 # inc lude <gtk/gtk . h>
0 0 2
0 0 3 int main (int argc , char *argv [])
0 0 4

0 0 5
0 0 6
0 0 7
0 0 8
0 0 9
0 1 0
0 1 1
0 1 2
0 1 3
0 1 4
0 1 5
0 1 6
0 1 7
0 1 8
0 1 9
0 2 0
0 2 1
0 2 2

GtkWidget *window , *vbox , *not ebook , * labe l , * tab_labe l ;

gtk_ini t (&argc , &argv) ;

I I create a window

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_s igna1_connect (GTK_OBJECT (window) , " de s t roy " ,

GTK_S IGNAL_FUNC (gtk_main_qu i t) , " WM de s t roy ") ;
gtk_window_se t_t i t l e (GTK_WINDOW (window) , " Notebook ") ;
gtk_widget_set_us i z e (GTK_WIDGET (window) , 2 0 0 , 1 0 0) ;

I I create a notebook and add i t to the window

not ebook = gtk_notebook_new () ;
gtk_conta iner_add (GTK_CONTAINER (window) , notebook) ;

gtk_widget_show (notebook) ;

466

0 2 3

0 2 4

0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2
0 3 3
0 3 4
0 3 5
0 3 6
0 3 7
0 3 8
0 3 9
0 4 0
0 4 1
0 4 2
0 4 3
0 4 4
0 4 5
0 4 6
0 4 7
0 4 8
0 4 9
0 5 0
0 5 1
0 5 2
0 5 3
0 5 4
0 5 5
0 5 6
0 5 7
0 5 8
0 5 9
0 6 0
0 6 1
0 6 2
0 6 3
0 6 4
0 6 5
0 6 6
0 6 7
0 6 8
0 6 9
0 7 0
0 7 1
0 7 2
0 7 3

Chapter 10 • Container and Bin Classes

I I create the f i r s t pane l , which cons i s t s of an instance o f
I I GtkVBox , which in turn manages a n instance of GtkLabel

vbox = gtk_vbox_new { FALSE , 1 0) ;

label = gtk_l abe I_new { " Pane l I ") ;
gtk_wi dget_show { label) ;
t ab_labe l = gtk_Iabel_new { " Pane l I ") ;
gtk_widget_show { tab_labe l) ;
gtk_box-pack_s tart_de faul t s { GTK_BOX { vbox) , label) ;

gtk_not ebook_append-page { GTK_NOTEBOOK { notebook) ,
vbox , tab_labe l) ;

I I create the second pane l

vbox = gtk_vbox_new { FALSE , 1 0) ;

l abe l = gtk_l abe I_new { " Pane l 2 ") ;
gtk_widget_show { labe l) ;
t ab_labe l = gtk_I abe l_new { " Pane l 2 ") ;
gtk_widget_show { tab_l abe l) ;
gtk_box-pack_start_de faults { GTK_BOX { vbox) , labe l) ;

gtk_not ebook_append-page { GTK_NOTEBOOK { notebook) ,
vbox , tab_labe l) ;

I I create the f inal pane l

vbox = gtk_vbox_new { FALSE , 1 0) ;

l abe l = gtk_Iabe l_new { " Pane l 3 ") ;
gtk_wi dget_show { label) ;
t ab_l abe l = gtk_Iabe l_new { " Pane l 3 ") ;
gtk_widget_show { tab_labe l) ;
gtk_box-pack_s tart_de faul t s { GTK_BOX { vbox) , label) ;

gtk_notebook_append-page { GTK_NOTEBOOK { notebook) ,
vbox , tab_labe l) ;

I I show the main window and call the main loop

gtk_widget_show { window) ;
gtk main () ;

GtkNotebook 467

0 7 4
0 7 5 return (0) ;

0 7 6

Implementing a Pop-up menu
I mentioned earlier that GtkNotebook supports a pop-up menu that contains menu items

corresponding to panels or pages in the notebook. A user can select a panel by right-clicking

on the notebook, displaying the pop-up menu, and then selecting the desired panel from the

pop-up menu.
GtkNotebook provides three functions that can be used to add a notebook page and, at the

same time, add a menu item to the notebook pop-up menu. These functions are analogous to the

preceding functions for appending, prepending, and inserting pages, but they take an additional

argument, menu_label, which is a widget (typically an instance of GtkLabel, but it also can be

a container) that will be displayed in the pop-up menu as a menu item that corresponds to the

panel being added. To append a page and have a menu item added to the notebook pop-up menu,

call gtk_notebook_append_page_menuO:

vo id
gtk_notebook_append-page_menu (GtkNot ebook * notebook , GtkWidget * chi l d ,

GtkWidget * tab_labe l , GtkWidget *menu_labe l) ;

The function gtk_notebook_append_page_menuO is analogous to gtk_notebook_

append_pageO but results in a menu item being added to the notebook's pop-up menu.

Finally, the functions gtk_notebook_prepend_page_menuO and gtk_notebook_inserc
page_menuO are analogous to gtk_notebook_prepend_pageO and gtk_notebook_insert_

pageO, respectively, but like gtk_notebook_append_page_menuO also result in a menu

item being added to the notebook's pop-up menu, labeled with the label specified with the

menu_label argument:

void
gtk_notebook-prepend-page_menu (GtkNotebook * not ebook ,

GtkWidget * chi l d , GtkWidget * t ab_l abe l , GtkWidget *menu_l abe l) ;

vo id
gtk_notebook_insert-page_menu (GtkNotebook *notebook , GtkWidget * chi l d ,

GtkWidget * tab_labe l , GtkWidget *menu_label , gint pos i t ion) ;

Another way to set the menu text corresponding to a page is to make a call to

gtk_notebook_secmenu_labeIO.

The following code is similar to the example presented earlier but with the following differences:

1. It sets the page tab label to a container that manages both an image and a label.
2. It creates pop-up menu items for each page, which also consist of a container man

aging an image and a label.

A call is made to gtk_notebook_popup_enableO to enable the pop-up menu:

vo id
gtk_notebook-popup_enabl e (GtkNotebook * notebook) ;

468 Chapter 10 • Container and Bin Classes

You can also disable the pop-up menu (this is default) with a call to gtlcnotebook_

popup_disableO:

voi d
gtk_notebook-popup_di sable (GtkNotebook *notebook) ;

Figure 10.20 Pop-up Notebook Menu (See Listing 10.3)

Both functions take an instance of GtkNotebook as their only argument. Here is the code to

implement the notebook described in this section. Figure 10.20 illustrates the result in action.

Listing 10.3 GtkNotebook Pop-up Menu Example

0 0 1 # inc lude <gtk/gtk . h>

0 0 2
0 0 3 s t a t i c GtkWidget *notebook ;

0 0 4

0 0 5 I I funct i on to create a new pixmap
0 0 6

0 0 7 s t at i c GtkWidget *
0 0 8 new-pixmap (char * f i l e , GdkWindow *window , GdkColor *background)

0 0 9 {
0 1 0 GdkPixmap *pmap ;

0 1 1 GdkBitmap *mask ;

012 GtkWidget *wpmap ;

0 1 3

0 1 4 pmap = gdk-pixmap_create_f rom_xpm (window , &mask , background , f i l e) ;

0 1 5 wpmap = gtk-pixmap_new (pmap , mas k) ;

0 1 6 gtk-p ixmap_set_bu i l d_insens i t ive (GTK_PIXMAP (wpmap) , 1) ;

0 1 7 return (wpmap) ;

0 1 8
0 1 9
0 2 0 I I ensure the popup i s disabled before exi ting main loop t o avoid warnings
0 2 1

0 2 2 voi d

0 2 3 CloseDown (GtkWidget *widget , gpointer unused)
0 2 4 {
0 2 5 I I d i s able the popup menu
0 2 6
0 2 7 gtk_not ebook-popup_disab1e (GTK_NOTEBOOK (notebook)) ;
0 2 8 gtk_main_qui t () ;
0 2 9

GtkNotebook

0 3 0
0 3 1 int main (int argc , char * argv []

0 3 2 (
0 3 3 GtkWidget * t ab_l abe l , *pixmap , *window , * hbox , *vbox ,

0 3 4 *hbox_menu , * l abe l ;

0 3 5

0 3 6 gtk_init (&argc , &argv) ;

0 3 7

0 3 8 I I create a window

0 3 9

0 4 0 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 4 1 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,

0 4 2 GTK_SIGNAL_FUNC (CloseDown) , " WM des t roy ") ;

0 4 3 gtk_window_set_t i t l e (GTK_WINDOW (window) , " Notebook ") ;

0 4 4 gtk_widget_set_us i z e (GTK_WIDGET (window) , 2 5 0 , 1 0 0) ;

0 4 5 gtk_widget_show (window) ;

0 4 6

0 4 7 I I create a notebook and add it to the window

0 4 8

0 4 9 notebook = gtk_notebook_new () ;

0 5 0 gtk_notebook-popup_enabl e (GTK_NOTEBOOK (notebook)) ;

0 5 1 gtk_container_add (GTK_CONTAlNER (window) , notebook) ;

0 5 2

0 5 3 gtk_widget_show (notebook) ;

0 5 4

0 5 5 I I create f i r s t pane l . vbox i s the pane l content

0 5 6

0 5 7 vbox = gtk_vbox_new (FALSE , 1 0) ;

0 5 8 gtk_widget_show (vbox) ;

0 5 9

0 6 0 I I add a label t o the vbox , this i s what the pane l displays , and

0 6 1 I I the user sees

0 6 2

0 6 3 label = gtk_l abe l_new (" Panel 1 ") ;

0 6 4 gtk_box-pack_start_de f aul t s (GTK_BOX (vbox) , l abel) ;
0 6 5 gtk_widget_show (l abel) ;

0 6 6

0 6 7 I I create the panel tab content , which wi l l b e a pixmap and label

0 6 8 I I managed by a hori zontal box widget . First create the pixmap .

0 6 9

0 7 0 pixmap = new-pixmap (" te s t 1 . xpm " , window- >window ,
0 7 1 &window- > s tyle - >bg [GTK_STATE_NORMAL]) ;
0 7 2 gtk_widget_show { pixmap) ;
0 7 3
0 7 4 I I then create the label
0 7 5
0 7 6 tab_label = gtk_label_new (" Pane l 1 ") ;

0 7 7 gtk_widget_show (tab_labe l) ;
0 7 8

0 7 9 I I pack both of these into the hori zontal box
0 8 0
0 8 1 hbox = gtk_hbox_new { FALSE , 1 0) ;

0 8 2 gtk_box-pack_start_de f aul t s { GTK_BOX (hbox) , pixmap) ;

0 8 3 gtk_box-pack_start_de f aul t s { GTK_BOX { hbox) , tab_labe l) ;
0 8 4

0 8 5 I I next create the menu item . Thi s a l so cons i s t s of a n image ana

0 8 6 I I l abel packed into a horizontal box . W e mus t create new instar. ces

469

470 Chapter 10 • Container and Bin Classes

0 8 7 I I o f each (the image , the box , and the labe l) s ince any given

0 8 8 I I widget can only b e managed b y one parent

0 8 9

0 9 0 pixmap = new-Fixmap (" te s t 1 . xpm " , window- >window ,

0 9 1 &window- >style - >bg [GTK_STATE_NORMAL]) ;

0 9 2 gtk_wi dget_show (pixmap) ;

0 9 3

0 9 4 t ab_l abe l = gtk_Iabe l_new (" Pane l 1 ") ;

0 9 5 gtk_wi dget_show (tab_label) ;

0 9 6
0 9 7 hbox_menu = gtk_hbox_new (FALSE , 1 0) ;

0 9 8 gtk_box-Fack_start_de f aul t s (GTK_BOX (hbox_menu) , pixmap) ;

0 9 9 gtk_box-Fack_s tart_de faults (GTK_BOX (hbox_menu) , tab_label) ;

1 0 0

1 0 1 I I now that w e have the panel content , the tab labe l , and the

1 0 2 I I popup menu item, c a l l gtk_notebook_append-Fage_menu () t o
1 0 3 I I add a l l three to the notebook .

1 0 4

1 0 5 gtk_not ebook_append-Fage_menu (GTK_NOTEBOOK (notebook) ,

1 0 6 vbox , hbox , hbox_menu) ;

1 0 7
1 0 8 I I repeat the above steps for pane l s 2 and 3 . First , pane l 2 .

1 0 9
1 1 0 vbox = gtk_vbox_new (FALSE , 1 0) ;

1 1 1
1 1 2 gtk_wi dget_show (vbox) ;

1 1 3
1 1 4 l abe l = gtk_Iabe l_new (" Pane l 2 ") ;

1 1 5 gtk_box-Fack_s tart_de faults (GTK_BOX (vbox) , l abel) ;

1 1 6 gtk_wi dget_show (label) ;

1 1 7

1 1 8 pixmap = new-Fixmap (" te s t 2 . xpm " , window- >window ,

1 1 9 &window- > s tyl e - >bg [GTK_STATE_NORMAL]) ;

1 2 0 gtk_widget_show (pixmap) ;

1 2 1
1 2 2 t ab_label = gtk_Iabe l_new (" Pane l 2 ") ;

1 2 3 gtk_widget_show (tab_label) ;

1 2 4
1 2 5 hbox = gtk_hbox_new (FALSE , 1 0) ;
1 2 6 gtk_box-Fack_start_de faul t s (GTK_BOX (hbox) , pixmap) ;

1 2 7 gtk_box-Fack_st art_de faul t s (GTK_BOX (hbox) , tab_l abe l) ;

1 2 8
1 2 9 pixmap = new-Fixmap (" test2 . xpm" , window- >window ,
1 3 0 &window- >styl e - >bg [GTK_STATE_NORMAL]) ;

1 3 1 gtk_widget_show (pixmap) ;

1 3 2
1 3 3 t ab_labe l = gtk_l abe I_new (" Pane l 2 ") ;
1 3 4 gtk_widget_show (tab_l abe l) ;
1 3 5
1 3 6 hbox_menu = gtk_hbox_new (FALSE , 1 0) ;
1 3 7 gtk_box-Fack_s tart_de f aul t s (GTK_BOX (hbox menu) , pixmap) ;
1 3 8 gtk_box-Fack_s tart_de faul t s (GTK_BOX (hbox_menu) , tab_labe l) ;
1 3 9
1 4 0 gtk_not ebook_append-Fage_menu (GTK_NOTEBOOK (notebook) ,
1 4 1 vbox , hbox , hbox_menu) ;
1 4 2

1 4 3 I I f inal ly , d o pane l 3

GtkNotebook

1 4 4
1 4 5 vbox = gtk_vbox_new (FALSE , 1 0) ;

1 4 6

1 4 8
1 4 9 label = gtk_labe l_new (" Pane l 3 ") ;

1 5 0 gtk_box-pack_s tart_de faults (GTK_BOX (vbox) , l abel) ;

1 5 1 gtk_widget_show (l abel) ;

1 5 2
1 5 3 pixmap = new-pixmap (" t e s t 3 . xpm " , window - >window ,

1 5 4 &window- > s tyle - >bg [GTK_STATE_NORMAL]) ;

1 5 5 gtk_widget_show (pixmap) ;

1 5 6
1 5 7 tab_label = gtk_l abe l_new (" Pane l 3 ") ;

1 5 8 gtk_widget_show (tab_l abe l) ;

1 5 9
1 6 0 hbox = gtk_hbox_new (FALSE , 1 0) ;

1 6 1 gtk_box-pack_start_de f aul t s (GTK_BOX (hbox) , pixmap) ;

1 6 2 gtk_box-pack_start_de f au l t s (GTK_BOX (hbox) , t ab_l abe l) ;

1 6 3
1 6 4 pixmap = newyixmap (" t e s t 3 . xpm " , window- >window ,

1 6 5 &window- > s tyle - >bg [GTK_STATE_NORMAL]) ;

1 6 6 gtk_widget_show (pixmap) ;

1 6 7
1 6 8 tab_l abe l = gtk_l abe l_new (" Pane l 3 ") ;

1 6 9 gtk_widget_show (tab_label) ;

1 7 0
1 7 1 hbox_menu = gtk_hbox_new (FALSE , 1 0) ;

1 7 2 gtk_box-pack_start_de fau l t s (GTK_BOX (hbox_menu) , pixmap) ;

1 7 3 gtk_box-pack_s tart_de fau l t s (GTK_BOX (hbox_menu) , tab_labe l) ;

1 7 4

1 7 5 gtk_notebook_appendyage_menu (GTK_NOTEBOOK (notebook) ,

1 7 6 vbox , hbox , hbox_menu) ;

1 7 7
1 7 8 gtk_main () ;

1 7 9
1 8 0 return (O) ;

1 8 1

Removing a Page from a Notebook

To remove a page from the notebook, call gtk_notebook_remove_pageO:

voi d
gtk_notebook_remove-page (GtkNotebook * notebook , gint page_num) ;

471

The argument notebook is the instance of GtkNotebook from which the page will be

removed, and page_num is the page, in the range [0, n - 1] , that will be removed upon call

ing this function.

Reordering the Notebook Pages
Given a notebook child (page) widget instance, an application can specify a new position

in the notebook for the child/page using gtk_notebook_reordecchildO:

472 Chapter 1 0 • Container and Bin Classes

voi d

gtk_notebook_reorder_chi ld (GtkNot ebook *notebook , GtkWidget * chi l d ,

gint pos i t ion) ;

Page Functions
Several functions in the GtkNotebook API deal with pages. To get the index of the currently

active page, call gtk_notebook�et3urrenCpageO:

gint
gtk_not ebook_get_current-page (GtkNot ebook *notebook) ;

The return value, not surprisingly, will be in the range [0, n - 1] . To get the child widget that

corresponds to a given position in the notebook, you can call gtk_notebook�ecnth_pageO:

GtkWidget *
gtk_not ebook_get_nth-page (GtkNotebook *notebook , gint page_num) ;

The argument page_num must be in the range of [0, n - 1] . If no such page is found, the

value (GtkWidget *) NULL will be returned. The inverse can also be done; given a child

widget, you can call gtk_notebook_page_numO to determine its position in the notebook:

gint
gtk_not ebook-page_num (GtkNotebook *notebook , GtkWidget * chi l d) ;

The following code snippet shows the relationship of these two functions and should,

when called, cause the value 3 to be assigned to the variable position:

int pos i t i on ;
GtkWidget *notebook ;

pos i t i on = gtk_notebook-page_num (GTK_NOTEBOOK (notebook) ,
gtk_notebook_get_nth-page (GTK_NOTEBOOK (notebook) , 3)) ;

Traversing Pages
Three functions can be used to control page traversal programmatically. Although most

applications will rely on the user interacting with the notebook pop-up menu or tabs to
traverse from page to page, an application might want to warp the notebook to a specific

page based on some other control in the user interface or even initialize the notebook so that

a given page is displayed to the user upon the notebook being realized. To set, or initialize,

a notebook to a specific page, call gtk_notebook_seCpageO:

void
gtk_not ebook_set-page (GtkNotebook *notebook , gint page_num) ;

Once again, page_num is in the range [0, n - 1] , where n is the number of pages currently
in the notebook.

The remaining two functions allow a program to position the current page at the next or
previous page relative to the currently active page. Not surprisingly, the functions that support

this are named gtk_notebook_nexcpageO and gtk_notebook_prev_pageO, respectively:

GtkNotebook 473

void
gtk_notebook_next-page (GtkNotebook *notebook) ;

void
gtk_notebook-prev-page (GtkNotebook * notebook) ;

Preference Functions
The remaining set of functions in the GtkNotebook API set can be used to set various

attributes that control how an instance of GtkNotebook is rendered.

The first, gtk_notebook_seCshow_tabsO, can be used to control the display of the user

selectable tabs that, by default, are drawn for each panel in the notebook:

void
gtk_not ebook_set_show_tabs (GtkNot ebook *notebook , gboolean show_tabs) ;

If show _tabs is set to FALSE, the tabs will not be drawn; otherwise, the default case of

TRUE causes them to be drawn. Note that if your application decides to hide tabs, it must

provide some user-interface control by which panel traversal can be achieved by the user.

One option is to enable the notebook pop-up menu as previously described and add panels

using the gtk_notebook_ * _page_menuO functions. The other option would be to provide

some facility by which calls to gtk_notebook_seCpageO, gtk_notebook_prev _pageO,
and/or gtk_notebook_nexcpageO are made, with these functions performing the necessary

page traversal.

If tabs are hidden by your application, you can also control the rendering of the page border

that, by default, is drawn whenever tabs are showing:

void
gtk_notebook_set_show_border (GtkNotebook * notebook ,

gbool ean show_borde r) ;

The function gtk_notebook_secshow _border() is a no-op unless gtk_notebook_secshow _tabsO
has been called to tum off the display of tabs. By hiding the border, the panel area of the notebook

will look more to the user like the portion of a dialog or window being managed by an instance of

GtkBox because boxes do not add a border around the area they manage. The only difference will be

that the notebook now provides the application with a way to easily control the display of multiple

pages within the area managed by the notebook. In some applications, this can be powerful. An
example of this would be a wizard dialog. A wizard leads a user through a series of panels, asking the
user questions and performing tasks based on the information gathered. An example of a wizard

would be an application installer.
The code to implement this wizard is as follows:

474 Chapter 10 • Container and Bin Classes

Listing 10.4 Implementing a Wizard with GtkNotebook

0 0 1 # inc lude <gtk/gtk . h>

0 0 2

0 0 3 s t at i c i n t current-page = 0 ;

0 0 4 s t a t i c GtkWidget *prev_button , *next_button , * f ini sh_button ;
0 0 5

0 0 6 void
007 Set Sens i t ivity ()

0 0 8 {
0 0 9 i f (current-page = = 2)
0 1 0 gtk_widget_set_sens i t ive (next_button , FALSE) ;

0 1 1 e l s e

0 1 2 gtk_widget_set_sens i t ive (next_button , TRUE) ;

0 1 3 i f (current-page > 0)
0 1 4 gtk_widget_set_sens i t ive (prev_button , TRUE) ;

0 1 5 e l s e
0 1 6 gtk_widget_set_sensit ive (prev_button , FALSE) ;

0 1 7 i f (current-page = = 2)
0 1 8 gtk_widget_set_sens i t ive (f ini sh_button , TRUE) ;

0 1 9 e l s e

0 2 0 gtk_widget_set_sens i t ive (f ini sh_button , FALSE) ;

0 2 1

0 2 2

0 2 3 voi d
0 2 4 NextCa l lback (GtkWidget *widget , GtkNot ebook *notebook)

0 2 5 {
0 2 6 i f (current-page < 2)

0 2 7 current-page + + ;
0 2 8 SetSens i t ivity () ;
0 2 9 gtk_not ebook_set-page (notebook , current-page) ;

0 3 0

0 3 1

0 3 2

0 3 3 voi d
0 3 4 PreviousCal lback (GtkWidget *widget , GtkNotebook *not ebook)

0 3 5 {
0 3 6 i f (current-page > 0)

0 3 7 current-page - - ;
0 3 8 SetSens i t ivity () ;

0 3 9 gtk_not ebook_set-page (notebook , current-page) ;

0 4 0

0 4 1
0 4 2 void
0 4 3 Fini shCal lback (GtkWidget *widget , GtkNotebook *notebook)

0 4 4 {
0 4 5 gtk_ma in_qui t () ;
0 4 6
0 4 7
0 4 8 voi d
0 4 9 Creat ePane lOne (GtkWidget *notebook
0 5 0 {
0 5 1 GtkWidget * f rame , *vbox , * radi o1 , * radio2 , * radio3 ;
0 5 2

0 5 3 f rame = gtk_f rame_new (" Select a Video Depth") ;
0 5 4 gtk_wi dget_show (f rame) ;
0 5 5

GtkNotebook

0 5 6 vbox = gtk_vbox_new (FALSE , 1 0) ;

0 5 7 gtk_widget_show (vbox) ;

0 5 8 gtk_container_add (GTK_CONTAINER (frame) , vbox) ;

0 5 9

0 6 0 radiol = gtk_radio_but ton_new_with_l abe l (NULL , " 8bpp ") ;

0 6 1 gtk_box-pack_start (GTK_BOX (vbox) , radiol , TRUE , TRUE , 0) ;
0 6 2 gtk_widget_show (radiol) ;

0 6 3

0 6 4 radio2 = gtk_radio_button_new_wi th_label (

0 6 5 gtk_radio_but ton_group (GTK_RADIO_BUTTON (radiol » ,

0 6 6 " 1 6bpp ") ;

0 6 7 gtk_box-pack_start (GTK_BOX (vbox) , radio2 , TRUE , TRUE , 0) ;

0 6 8 gtk_widget_show (radio2) ;

0 6 9 radio3 = gtk_radio_but ton_new_wi th_labe l (

0 7 0 gtk_radio_but ton_group (GTK_RADIO_BUTTON (radio2 » ,

0 7 1 " 2 4bpp ") ;

0 7 2 gtk_box-pack_start (GTK_BOX (vbox) , radio3 , TRUE , TRUE , 0) ;

0 7 3 gtk_widget_show (radio3) ;

0 7 4

0 7 5 gtk_notebook_append-page (GTK_NOTEBOOK (notebook) , f rame , NULL) ;

0 7 6

0 7 7
0 7 8 voi d

0 7 9 Create Pane lTwo (GtkWidget *notebook

0 8 0 {
0 8 1 GtkWidget * frame , *vbox , * radiol , * radio2 , * radio3 ;

0 8 2

O B 3 f rame = gtk_f rame_new (" Se l e c t a Resolut ion ") ;

0 8 4 gtk_widget_show (f rame) ;

O B 5
0 8 6 vbox = gtk_vbox_new (FALSE , 1 0) ;

0 8 7 gtk_widget_show (vbox) ;

0 8 8 gtk_container_add (GTK_CONTAINER (f rame) , vbox) ;

O B 9

0 9 0 radiol = gtk_radio_but ton_new_wi th_labe l (NULL , " B O Ox6 0 0 ") ;

0 9 1 gtk_box-pack_start (GTK_BOX (vbox) , radiol , TRUE , TRUE , 0) ;

0 92 gtk_widget_show (radiol) ;

0 9 3

0 9 4 radio2 = gtk_radio_but ton_new_with_labe l (

0 9 5 gtk_radio_button_group (GTK_RADIO_BUTTON (radio l » ,

0 9 6 " 1 024x7 6 8 ") ;

0 9 7 gtk_box-pack_s tart (GTK_BOX (vbox) , radio2 , TRUE , TRUE , 0) ;
0 9 8 9tk_widget_show { radio2) ;
0 9 9 radio3 = gtk_radio_button_new_with_labe l (

1 0 0 gtk_radio_but ton_group (GTK_RADIO_BUTTON (radio2 » ,
1 0 1 " 1 2 B Oxl 02 4 ") ;

1 0 2 gtk_box-pack_s tart (GTK_BOX (vbox) , radio3 , TRUE , TRUE , 0) ;
1 0 3 gtk_widget_show (radio3) ;
1 0 4

1 0 5 gtk_notebook_append-page (GTK_NOTEBOOK (notebook) , f rame , NULL) ;
1 0 6

1 0 7

l O B voi d
1 0 9 Create Pane lThree (GtkWidget * notebook)

1 1 0 {
1 1 1 GtkWidget *vbox , * labe l ;

1 1 2

475

476 Chapter 10 • Container and Bin Classes

1 1 3 vbox = gtk_vbox_new (FALSE , 1 0) ;

1 1 4
1 1 5 gtk_wi dget_show (vbox) ;

1 1 6
1 1 7 l abe l = gtk_l abe l_new (" Use Finish to commit changes , or Quit to exi t . ") ;

1 1 8 gtk_widget_show (label) ;
1 1 9 gtk_box-pack_start_de faults (GTK_BOX (vbox) , label) ;

1 2 0
1 2 1 gtk_not ebook_append-page (GTK_NOTEBOOK (notebook) ,

1 2 2 vbox , NULL) ;
1 2 3

1 2 4

1 2 5 i n t main (i n t argc , char *argv [])
1 2 6

1 2 7 GtkWidget *window , *vbox , *hbox , *button , *notebook ;

1 2 8
1 2 9 gtk_ini t (&argc , &argv) ;

1 3 0
1 3 1 I I create a window
1 3 2

1 3 3 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

1 3 4 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,

1 3 5 GTK_S IGNAL_FUNC (gtk_main_qui t) , " WM des t roy ") ;

1 3 6 gtk_window_set_t i t l e (GTK_WINDOW (window) , "Video Sett ings ") ;

1 3 7 gtk_widget_set_us i z e (GTK_WIDGET (window) , 3 0 0 , 2 0 0) ;

1 3 8
1 3 9 I I create a notebook and add i t t o the window

1 4 0

1 4 1 vbox = gtk_vbox_new (FALSE , 1 0) ;
1 4 2 gtk_container_add (GTK_CONTAlNER (window) , vbox) ;

1 4 3

1 4 4 gtk_wi dget_show (vbox) ;
1 4 5
1 4 6 notebook = gtk_notebook_new () ;

1 4 7 gtk_not ebook_set_show_tabs (GTK_NOTEBOOK (notebook) , FALSE) ;

1 4 8 gtk_not ebook_set_show_border (GTK_NOTEBOOK (notebook) , FALSE) ;

1 4 9

1 5 0 gtk_box-pack_s tart_de faul t s (GTK_BOX (vbox) , notebook) ;

1 5 1

1 5 2 gtk_wi dget_show (notebook) ;

1 5 3

1 5 4 Create Pane lOne (notebook) ;

1 5 5 Create Pane lTwo (notebook) ;

1 5 6 Create Pane lThree (notebook) ;

1 5 7

1 5 8 hbox = gtk_hbox_new (TRUE , 1 0) ;
1 5 9 gtk_box-pack_start (GTK_BOX (vbox) , hbox , FALSE , FALSE , 1 0) ;
1 6 0 gtk_widget_show (hbox) ;
1 6 1

1 6 2 but ton = gtk_button_new_with_labe1 (" Quit ") ;
1 6 3 gtk_box-pack_start (GTK_BOX (hbox) , button , TRUE , FALSE , 0) ;
1 6 4 gtk_widget_show (button) ;
1 6 5 gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " c l icked " ,
1 6 6 GTK_S IGNAL_FUNC (gtk_widget_destroy) ,
1 6 7 GTK_OBJECT (window» ;
1 6 8

1 6 9 prev_but ton = but ton = gtk_button_new_with_1 abe 1 (" Previous ") ;

GtkNotebook

1 7 0 gtk_box-pack_start (GTK_BOX (hbox) , button , TRUE , FALSE , 0) ;

1 7 1 gtk_widget_show (but ton) ;

1 7 2 gtk_signal_connec t (GTK_OBJECT (button) , " c l i cked " ,

1 7 3 GTK_SI GNAL_FUNC (PreviousCal lback) , notebook) ;

1 7 4 gtk_widget_set_sens i t ive (button , FALSE) ;

1 7 5

1 7 6 next_button = button = gtk_but ton_new_with_labe l (" Next ") ;

1 7 7 gtk_box-pack_start (GTK_BOX (hbox) , button , TRUE , FALSE , 0) ;

1 7 8 gtk_widget_show (button) ;

1 7 9 gtk_signal_connect (GTK_OBJECT (button) , " c l i cked " ,

1 8 0 GTK_S IGNAL_FUNC (Next Cal lback) , notebook) ;

1 8 1

1 8 2 f ini sh_button = but ton = gtk_but ton_new_wi th_l abe l (" Fini sh") ;

1 8 3 gtk_box-pack_start (GTK_BOX (hbox) , but ton , TRUE , FALSE , 0) ;

1 8 4 gtk_widget_show (button) ;

1 8 5 gtk_s ignal_connect_obj ect (GTK_OBJECT (button) , " c l i cked " ,

1 8 6 GTK_S IGNAL_FUNC (gtk_widget_de stroy) ,

1 8 7 GTK_OBJECT (window » ;

1 8 8 gtk_widget_set_sens i t ive (button , FALSE) ;

1 8 9

1 9 0 I I show the main window and c a l l the main l oop

1 9 1

1 9 2 gtk_widget_show (window) ;

1 9 3 gtk_main () ;

1 9 4

1 9 5 return (O) ;

1 9 6

Analysis of Listing 10.4
The notebook contains three pages, as illustrated in Figures 1 0.2 1 through 10.23.

Figure 10.21 Video Settings Wizard, Page 0

477

478

Figure 10.22 Page I of the Wizard

Figure 10.23 Page 2 of the Wizard

Chapter 10 • Container and Bin Classes

The function SetSensitivityO controls the sensitivity of the Previous, Next, and Finish

push buttons, based on the current page visible in the notebook. PreviousCallbackO and

NextCallbackO are callbacks tied to the Previous and Next buttons, respectively. Both use

gtk_notebook_secpageO to change the current page as the user clicks either of these but

tons and call SetSensitivityO to ensure that the Previous button is inactive when Page 0 is
active (and active otherwise) and that the Next button is inactive when Page 2 is active (and
active otherwise) .

Functions CreatePanelOneO, CreatePanelTwoO, and CreatePanelThreeO create the various

notebook pages displayed by the wizard. The code in each of these has been explained in pre
vious chapters. The function gtk_notebook_append_pageO is used by each to add the panel
being created to the notebook.

On line 146 of mainO, the notebook itself is created. Following its creation, on lines 147
and 148, the notebook tabs and border are disabled, which gives it the main point of this

example. The push buttons that lead to page traversal in the notebook are created on lines

GtkNotebook 479

169 through 1 80. Because these buttons exist, there is really no need for the display of tabs;
the Next and Previous buttons provide all that is needed for the user to traverse the wizard

in a sequence that the application (may) require.
If, in a wizard, random access of panels can be allowed without disrupting the flow of

the wizard (in many cases, panels must be traversed serially, so random access of panels by

the user is not possible), it is, in my opinion, reasonable to enable the notebook pop-up

menu. Using tabs, however, seems to me to be a bad user-interface design decision in the

context of wizards such as the one previously illustrated.

Setting the Orientation of the Tabs

As I mentioned earlier, an application can specify both the orientation and location of the

notebook tabs. There are two vertical orientations (either on the left of the notebook or on

the right) and two horizontal orientations (either above the notebook or below it) . To set the

orientation and placement of the tabs in a notebook, call gtk_notebook_sectab_posO:

void
gtk_notebook_set_tab-pos (GtkNot ebook *notebook , GtkPo s i t i onType pos) ;

The argument pos can be one of the following: GTK_POS_LEFf, GTK_POS_RIGHT,

GTK_POS_TOP, or GTK_POS_BOTTOM. Depending on which value you pass, the tabs

will display on the left side, right side, top, or bottom of the notebook widget, respectively.

The default for a notebook widget is to display panel tabs above the panels (i.e., the default

is GTK_POS_TOP).

Scrollable Tabs

A notebook, by default, will draw all of the tabs (when tabs are made visible). In a notebook
that contains a large number of tabs or tabs with labels that are rather lengthy, it may not be

possible for the notebook to display all of the tabs without truncating tab labels. One way to

overcome this problem is to enable scrollbars on the notebook. If enabled, scrollbars are dis

played should truncation of the notebook tabs be otherwise unavoidable. The notebook dis

plays panel tabs without truncation when scrollbars are enabled and displays left and/or right

scrollbars to allow traversal by the user to panels to the left, or to the right, of the currently dis

played panel tabs, as necessary. To enable the display of scrollbars, call gtk_notebook_sec

scrollableO:

vo id
gtk_notebook_se t_scro l l able (GtkNotebook * notebook ,

gbool ean s c ro l l able) ;

If scrollbar is TRUE, the notebook will display scrollbars as needed.

Miscellaneous Tab Attributes
A few preference functions address tab attributes. Homogeneous tabs are tabs that have equal

size, regardless of the labels they display. The size assigned to the tabs is based on the size needed
to display the tab with the largest label. Tabs in a notebook widget can be mack: homogeneous by

calling gtk_notebook_seChomogeneous_tabsO and setting homogeneous to TRUE:

480 Chapter 10 • Container and Bin Classes

voi d
gtk_notebook_set_homogeneous_tabs (GtkNotebook * notebook ,

gboolean homogeneous) ;

Setting homogeneous to FALSE has the opposite effect of causing tabs sizes to be based

solely on their respective labels. By default, tabs in GtkNotebook are nonhomogeneous.

Homogeneous also affects how packing works; see the section ''Tab Label Packing Functions"

later in this chapter for details.

A tab contains two borders. One, the horizontal border, consists of pixels to the left and

right of a tab's label (or the container that bounds whatever widgets are displayed by the appli

cation in the tab). The other, the vertical border, is composed of pixels above and below the

label. By default, both the horizontal and vertical borders are set to 2 pixels. Specifically, 2

pixels are added to both the left- and right-hand sides of the tab label, and 2 pixels are added
above and below the tab label. Your application can change either the horizontal spacing or

the vertical spacing. To change both at the same time, call gtk_notebook_seuab_borderO;

vo i d
gtk_not ebook_set_tab_border (GtkNot ebook *notebook ,

guint border_width) ;

For example, the set both the vertical and horizontal tab spacing to 5 pixels, make the

following call:

GtkWidget *notebook ;

To set the horizontal or the vertical notebook tab spacing individually, you call either

gtk_notebook_sectab_hborderO or gtk_notebook_sectab_ vborderO, respectively:

voi d
gtk_not ebook_set_tab_hborder (GtkNotebook *not ebook ,

guint tab_hborde r) ;

voi d
gtk_not ebook_set_tab_vborder (GtkNotebook * notebook ,

guint tab_vborde r) ;

Both of the preceding take an instance of GtkNotebook as a first argument and a spacing
value (greater than or equal to 0) as a second argument.

Tab Labels

The tab label widget (see the previous discussion) for a given panel can be retrieved by calling

gtk_notebook....geCtab_labeIO:

GtkWidget *

gtk_not ebook_get_tab_labe l (GtkNotebook *notebook , GtkWidget * child) ;

GtkNotebook 481

The first argument, notebook, is the notebook of interest. The second argument, child, is

the widget representing the page. You might call this function to obtain the tab label child

instance so that modifications can be made to it. What modifications are possible (e.g., chang

ing the text of the table, showing or hiding one of its children) or even appropriate is entirely

dependent on the widget your application decided to use to represent the tab label.

You can also set the tab label widget for a specific panel by making a call to gtk_

notebook_sectab_labeIO:

void
gtk_notebook_set_tab_labe l (GtkNot ebook *notebook , GtkWidget *chi l d ,

GtkWidget * t ab_l abe l) ;

The first two arguments, notebook and child, are the same as those passed to

gtk_notebook....geCtab_labeIO. Passing NULL as the third argument causes the default tab

label to be used by GtkNotebook for the panel (e.g., Page 3 for the page located at position 2

in the notebook).

As I discussed earlier, the label of a tab can be an instance of GtkLabel or perhaps an

instance of GtkHBox that manages a pixmap and a label widget. If your application simply

wants to use a text label, perhaps the easiest way to achieve that is to set the tab_label argument

to the gtk_notebook_ * _page*O function (e.g., gtk_notebook_append_pageO and related func

tions) to NULL and call gtk_notebook_sectab_Iabel_textO to specify the tab label:

void
gtk notebook set t ab labe l t ext (GtkNotebook *notebook ,

- - - - -

GtkWidget * chi l d , cons t gchar * t ab_t ext) ;

The function gtk_notebook_seCtab_labeCtextO takes an instance of GtkNotebook (note

book), the widget that represents the panel or page of the notebook corresponding to the tab

that is having its label set (child), and a simple C-Ianguage, NULL-terminated string (tab_text)

that defines the label displayed by the tab after the call to gtk_notebook_sectab_labeUextO is

made. This function provides a way to dynamically change the text of a page during application

execution, if this is deemed necessary (and in some cases it is).

Pop-up Menu Functions

We saw that the gtk_notebook_ * _page_menuO functions can be used to add a page to a
notebook and give it representation in the notebook pop-up menu so that a user can pop up

the menu, select the menu item corresponding to the page, and traverse the notebook to that
page for viewing. The Gtk+ API exposes functions that allow you to query the child widget
that corresponds to the pop-up menu item or to change the child, much like was possible

for the panel tab label widget. To retrieve the menu label widget corresponding to a given
panel in the notebook, call gtk_notebook....geCmenu_labeIO:

GtkWidget *
gtk_notebook_get_menu_labe l (GtkNotebook * notebook , GtkWidget * ch i l d) ;

notebook is an instance of GtkNotebook, and child is the widget that represents the page

corresponding to the menu label widget being queried. The menu label widget will be

482 Chapter 10 • Container and Bin Classes

returned or NULL if there is no menu label widget (e.g., your application had never specified

a menu item for the page).

To set the menu item label widget corresponding to a page in the notebook, call gtk_

notebook_secmenu_labeIO:

voi d
gtk_not ebook_set_menu_l abe l (GtkNotebook *notebook , GtkWidget * chi l d ,

GtkWidget *menu_labe l) ;

Here, notebook is the notebook widget, child is the page that was previously added to the

notebook, and menu_label is the widget you would like to have displayed in the notebook

pop-up menu for the specified page.

The simplest way to create a menu item in the notebook pop-up menu for a page is to

call gtk_notebook_secmenu_labeCtextO:

voi d
g t k notebook set menu labe l text (GtkNotebook *notebook ,

- - - - -

GtkWidget * chi l d , cons t gchar *menu_text) ;

This function takes as arguments a notebook, a child widget that defines the page that

will correspond to the menu item in the pop-up menu, and a C-Ianguage, NULL-terminated

string that will be displayed in the notebook pop-up menu for the page.

Tab Label Packing Functions

GtkNotebook maintains attributes that are similar to those defined for GtkBox for expand,

fill, and packing order, and are used to specify how labels are packed into notebook tabs.

Table 10 . 1 0 lists the attributes and their default values :

Table 10.10 Tab Label Packing Attribute Defaults

Packing Attribute

expand

fill

Default Value

FALSE

TRUE

To query the current settings, call gtk_notebook_query _tab_Iabel_packingO:

vo id
gtk_not ebook_query_tab_labe l-packing (GtkNotebook * notebook ,

GtkWidget * chi l d , gboolean * expand , gboolean * f i l l ,
GtkPackType *pack_type) ;

The arguments notebook and child define, respectively, the GtkNotebook instance and the
panel to query. The remaining arguments, expand, fill, and pack_type, are pointers to variables

of type gboolean (expand and fill) and GtkPack1Ype (pack_type). The possible returned values

GtkNotebook 483

for expand and fill are TRUE and FALSE; pack_type can be either GTK_PACK_START or

GTK_PACK_END.

The preceding attributes can be set by calling gtk_notebook_seUab_labeCpackingO :

void
gtk_notebook_se t_tab_labe l-packing (GtkNotebook * notebook ,

GtkWidget * chi l d , gboolean expand , gbool ean f i l l ,
GtkPackType pack_type) ;

The argument pack_type can be set to either GTK_PACK_END or GTK_PACK_START.

You can use the pack_type attribute to achieve effects similar to those achieved when packing

boxes using gtk_box_pack_startO and gtk_box_Pack3ndO. Figure 10.24 illustrates three

pages in a box. Two of these pages (those leftmost) have labels that were packed with

GTK_PACK_START (the default), while the third was packed with GTK_PACK_END by

calling gtk_notebook_seuab_labeCpackingO, as follows:

gtk_notebook_set_tab_l abe l-packing (GTK_NOTEBOOK (notebook) , vbox ,
FALSE , FALSE , GTK_PACK_END) ;

Here, vbox is a vertical box that represents the content of the panel and is used to identify

the panel for which the tab label packing attributes are being set. Obviously, you must call

gtk_notebook_seuab_labeCpackingO only after the child panel has been added to the

notebook. Notice how the third panel is visually isolated from the other two as a result of

the preceding call.

Figure 10.24 Tab Label Packing Example

You can reverse the order (visually) of all tabs in a notebook by inverting their pack_type

attribute. For example, the first (leftmost) tab becomes the rightmost, while the last (right
most) tab becomes leftmost. Note that this does not change the position attribute of the panel.

The panel that was added first will continue to have a position attribute of 0, regardless of how
the tabs have been packed into the tab display area or panel.

Let's look at expand and fill now. expand set to TRUE causes the tab that is specified to
expand to fill the area remaining within the tab area of the notebook. fill causes the (label)
widget, when possible, to completely fill the tab that manages it. If you use label widgets for

tab label children or use gtk_notebook_seCtab_labeIO to set the tab label, then fill is a no-op.

However, Figure 10.25 illustrates tab label children consisting of hbox widgets that are each

managing a pixmap and label. The notebook has been set to use homogeneous tabs so that

484 Chapter 1 0 • Container and Bin Classes

each has the same size, and expand is set to TRUE so that the entire tab area is consumed by

the tabs. Pages I and 2 have fill set to TRUE (the default), while Page 3 has fill set to FALSE.

Figure 10.25 Effect of Setting Page 3 Fill Attribute to FALSE

Summary

In this chapter, I introduced container widgets. A purpose of a container widget is to orga

nize and display, in some meaningful fashion, a set of child widgets it has been asked to

manage by an application. How the container widget places its children in the area it has

been allocated is based on the layout policy of the container widget and is based on con

straints or hints provided by the application. Last, but not least, the resulting layout is

affected by the content that the container widget has been asked to manage.

In this chapter, I discussed several container classes. The first class, GtkContainer, is a parent

class to the remaining classes in the container widget hierarchy. A fixed widget (GtkFixed) lays

its children out based on x and y coordinates supplied for each child by the application and is

the most primitive of the container classes. A box widget (GtkBox, GtkHBox, and GtkVBox) is

probably the most heavily used of the Gtk + container widget classes. By packing boxes within

boxes, arbitrarily complex layouts can be achieved; for this reason, boxes are arguably the most

versatile of the container widgets supported in Gtk+ 1 .2. A button box widget (GtkButtonBox)

is a special case of a box widget designed to layout buttons, such as those one might find in the

action area of a dialog (e.g., OK and Cancel buttons). A notebook widget (GtkNotebook) allows

an application to organize related content as a series of panels or pages. A tab can (by default)

be displayed above, below, to the left, or to the right of a panel to describe the panel content.

Users can traverse a notebook either by clicking on a panel tab or by invoking a pop-up menu,

if implemented by the application. Panel tabs can be hidden if desired, which increases the ver

satility of the notebook widget, provided some other mechanism for panel traversal is provided

by the application. A notebook widget with hidden tabs was used in this chapter to implement a
video settings wizard. In the following chapter, I will continue my discussion of the Gtk+ con

tainer widget classes.

(H APTER

MO RE (ONTA I NE R (LAS S ES

In the preceding chapter, I introduced Gtk+ container widgets. Container widgets are widgets

designed to manage a group of children. The major responsibility of a container widget is to

place child widgets within the area of the window (or other container) for which the container

widget is responsible. Child widget placement is based on a placement algorithm that is

implemented by the container widget. Widget placement occurs when a child widget is added

to the container or when geometry changes to the container have been made (for example, the

user has resized the window within which the container exists).

In Chapter 10, "Container and Bin Classes," the most commonly used container widget,

GtkBox, was described. Chapter 10 also described several additional container widget classes

that are useful in situations for which GtkBox was not designed. This chapter continues the

presentation of the Gtk+ container widget classes by describing the widget classes listed in

Table 1 1 . 1 .

Table 1 1 . 1 Widgets Described i n This Chapter

Class Name

GtkPaned

GtkVPaned

GtkHPaned

GtkPacker

GtkFrame

GtkAspectFrame

GtkTable

GtkToolbar

Purpose

Manages a pair of child widgets; the amount of
space given to each child can be adjusted by the
user at runtime.

The vertical instance of GtkPaned widget.

The horizontal instance of GtkPaned widget.

Implements layout policy similar to Tk's Packer

widget.

Places a labeled frame around its only child.

Same as GtkFrame but maintains a desired aspect
ratio.

Child widgets occupy cells organized as an NxM
grid.

Implements an application toolbar.

485

486 Chapter 11 • More Container Classes

Table 1 1 . 1 Widgets Described i n This Chapter (Continued)

Class Name

GtkHandleBox

GtkEventBox

GtkLayout

GtkScrolledWindow

GtkPaned

Class Name

GtkPaned

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_TYPE_PANED

Purpose

The child widget can be detached and displayed

as a floating window and then later reattached.

Provides an X window for widgets that do not

create an X window of their own.

Similar to GtkFixed (Chapter 10) but implements

an infinitely sized region.

Provides viewport into a child widget that users

can navigate using scrollbars.

Object to widget cast macro: GTK _PANED (obj)

Widget type check macro: GTK_IS_PANED (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_PANED at runtime:
GtkType
gtk-paned_get_type (void) i

Set the top or left pane child using packing defaults:
void
gtk-paned_addl (GtkPaned *paned , GtkWidget * child) i

GtkPaned

Application-Level API Synopsis (Continued)

Set the bottom or right pane child using packing defaults:
void
gtk-paned_add2 (GtkPaned *paned , GtkWidget * child) ;

Set the top or left pane child:
void
gtk-paned-packl (GtkPaned *paned , GtkWidget * child , gboolean res ize ,

gboolean shrink) ;

Set the bottom or right pane child:
void
gtk-paned-pack2 (GtkPaned *paned , GtkWidget * chi ld , gboolean res ize ,

gboolean shrink) ;

Set the position of the handle (control grip or sash) in pixels:
void
gtk-paned_set-pos i t ion (GtkPaned *paned , gint pos i tion) ;

Set the height and width of the handle in pixels:
void
gtk-paned_set_handle_size (GtkPaned *paned , guint16 s ize) ;

Set the height or width of the gutter in pixels:
void
gtk-paned_set_gutter_size(GtkPaned *paned , guint16 s ize) ;

Class Description

487

A paned widget (an instance of GtkPaned) is designed to manage a pair of child widgets. Gtk:
Paned places a gutter between these two widgets; the position of the gutter is modifiable by the

program or, more appropriately, by a user to change the relative size given to the two child wid

gets that the paned widget manages. The location of the gutter is shown by a groove, which is
an inset horizontal or vertical line. The size of the gutter can be changed by the application (the
default is 6 pixels); the width or height of the groove remains the same (2 pixels) regardless of
the size of the gutter.

The user can move the gutter by positioning the mouse pointer over a control grip
located on the groove, pressing down on mouse button 1 and dragging the location of the
gutter to the desired position. Each child widget, once mouse button 1 is released, will
resize and redraw itself to fit the new size it has been given.

There are two types of paned widget, represented by the two GtkPaned subclasses Gtk:V
Paned and GtkHPaned. In a vertical paned widget (Gtk:VPaned), the two child widgets are

arranged vertically and are separated by a horizontal gutter. A horizontal paned widget (GtkH
Paned) arranges its child widgets horizontally, placing a vertical gutter between them.

488 Chapter 11 • More Container Classes

In most cases, you want to add container widgets as children of a paned widget, as

opposed to control-like widgets such as buttons or check boxes. A paned widget is most

effective when it is used to separate two work areas from each other while, at the same time,

giving the user the ability to control how much of each work area dominates the total area

controlled by the paned widget. You, as the developer, will need to decide whether the user

should be given the ability to change the relative sizes of the two work areas or not. Figure

1 1 . 1 should help illustrate the issues involved in making this decision.

close instead of send? why dont you hit enter to

send? ©
23:51:06 SlOGAN621: cause I like using the mouse

23:51:09 SlOGAN6Z1: I guess

23:51:13 RobFlYl'm: hehehe GUI BOY!

23:51:15 RobFlynl1: hehehe Yk

Figure 1 1 . 1 Conversation Log Window i n GAIM (Default)

The conversation window of an instant-messaging or chat client, such as the Gtk+ GAIM
instant-messaging client (see Figure 1 1 . 1), provides an example of when it is appropriate to

use a paned widget. As can be seen, the dialog is, by default, split into two major areas: a com
pose area, where the sender of an instant message composes messages, and a conversation log

area, where a history of the conversation can be viewed as it unfolds. Usually messages are

short, hence the default shown in Figure 1 1 . 1 that gives more space to the conversation log
and much less space to the compose area. For composing a long message, this default layout

is not appropriate; the relative sizes of the two areas shown in Figure 1 1 .2 increase the size of
the compose window, making the task of typing in a long message easier on the user.

GtkPaned

Figure 1 1.2 Conversation Log Window in GAIM, After Resize

489

A paned widget solves the problem of not knowing the optimal sizes of the compose and

conversation log areas of the window at compile time by giving the user the ability to change

their relative sizes at runtime.
Paned widget children can themselves be instances of GtkPaned. This can lead to very

interesting and powerful user interfaces when used wisely.

Creating an Instance of GtkPaned

As with GtkBox, GtkPaned provides no functions with which an instance may be created.

To create an instance of GtkPaned that's compatible with the functions provided by this

class, you must use the widget creation functions provided by GtkHPam:d and GtkVPaned.
To create a vertical paned widget, you call the function gtk_ vpaned_newO:

GtkWidget *widget ;

The function gtk_ vpaned_newO takes no arguments and returns an instance of GtkWidget.
Similarly, to create a horizontal paned widget, you can call gtk_hpaned_newO, which

has the same prototype as gtk_ vpaned_newO.

490 Chapter 11 • More Container Classes

Adding Children with Default Resize and Shrink Attributes

The next major step involved in using a GtkPaned widget is associating a child widget with

each pane. In a vertical paned widget, the topmost pane is referred to as pane 1 , and the pane

below it is known as pane 2. In a horizontal paned widget, pane 1 is the leftmost pane, and

pane 2 is the rightmost pane. Regardless, to specify the child widget bound to pane 1 , you

can call gtk_paned_add l0:

void
gtk-paned_addl (GtkPaned *paned, GtkWidget * chi ld) ;

Similarly, to set the pane 2 child widget, you can call gtk_paned_add20 :

void
gtk-paned_add2 (GtkPaned *paned , GtkWidget * child) ;

Both of these functions have the same argument list. The first argument, paned, is an

instance of GtkPaned. The second argument, child, is the child widget that will be managed

by GtkPaned. As I previously mentioned, the child is typically a container widget instance

(for example, another instance of GtkPaned or an instance of GtkBox).
By using gtk_paned_add l0 and/or gtk_paned_add20, you are telling GtkPaned to pick

defaults for both the resize and shrink attributes of a paned widget child. The resize
attribute, a boolean, affects the size of the child widget at the time of creation relative to the
size of the other child being managed by the paned widget. The shrink attribute tells Gtk

Paned whether the child can have its size reduced to accommodate an increase in the size

of the other child, in response to a repositioning of the gutter by the user or the application.

For pane 1 , the defaults assigned by GtkPaned when gtk_paned_add l0 is used to add

children are resize = FALSE, and shrink = TRUE. For gtk_paned_add20, the defaults are

resize = TRUE and shrink = TRUE.

Controlling the Resize and Shrink Attributes

The net result of adding children with default resize and shrink values is that pane 1 is given

its needed size, and pane 2 is given the remainder of the area managed by the paned widget.
Since shrink is set to TRUE for both panes, the gutter can be moved by the user to any loca

tion, causing either of the panes to shrink below the size needed to correctly display the

child. In many cases, this is desired behavior-it often should be left to the user to decide
whether one child pane has greater importance than the other and thus can be maximized

at the cost of not fully showing the content in the other pane. However, in some cases you,
as the application developer, may decide that one (or both) panes should not be resizable
below the minimum size needed to display their content fully. If this is the case, you must
override the defaults assigned by GtkPaned. This can be done by using the following two
functions to add children to the paned widget.

The first of these functions, gtk_paned_packl O, is used to specify child 1 of the paned
widget:

void
gtk-paned-packl (GtkPaned *paned , GtkWidget * chi l d , gboolean resi ze ,

gboolean shrink) ;

GtkPaned 491

The first two arguments to gtlcpaned_packl O are the same as those passed to gtk_paned_

add I O. The argument resize, a boolean, specifies how much of the total paned widget area is
initially given to child I . If TRUE, child I will be given either the same amount of space given

to child 2 or the remainder of the total paned widget area after child 2 is given the amount of
area needed to display itself correctly. If FALSE, child I will be given only the area that is

needed to display itself correctly, while child 2 will be given the remaindf:r.

The argument shrink controls whether the gutter can be positioned by the user such that
child I is given less area than is needed to correctly draw itself (TRUE) or not (FALSE).

The function gtk_paned-pack20 takes the same arguments as gtk_paned_packIO. However,

the meaning of the resize argument is influenced by the value of the resize argument passed to

gtk_paned_packIO.

If the resize argument to gtk_paned_packl O is set to FALSE, then effectively the resize
argument to gtk_paned_pack20 is ignored---child 1 will always be given its needed size,

and child 2 will always be given what remains. If the resize argument to gtk_paned_pack I 0
is set to TRUE and the resize argument to gtk_paned_pack20 is FALSE, then child 2 will

be given the size needed to display its content correctly, and child I will be given whatever

remains. If the resize arguments to both gtk_paned_packl O and gtk_paned_pack20 are set

to TRUE, then both child widgets are given equal amounts of the area managed by the

paned widget. The function prototype for gtk_paned_pack20 is as follows:

void
gtk-paned-pack2 (GtkPaned *paned , GtkWidget * chi l d , gboolean resi ze ,

gboolean shrink) ;

To set the position of the gutter from your application, you must call gtk_I>lmed_set-POsitionO:

void
gtk-paned_set-posit ion (GtkPaned *paned , gint posi tion) ;

The first argument is an instance of GtkPaned, and the second is the position of the gutter
after the call has been made. Setting position to -I (or to any negative number) will cause
the gutter to revert to its original position. The position you specify will be clipped based on

the shrink setting of the child widget toward which the gutter is being moved. For example,

if the topmost (child I) widget in a vertical paned widget has a minimum height of 10 pixels

and you attempt to position the gutter at pixel 5, the position of the gutter will instead be set
to 10, preserving the minimum size requirement of child 1. Likewise, if the minimum height

of the bottom child (child 2) is 10 and the total height of the paned widget is 1 00 pixels, set
ting the position of the gutter to 95 will cause GtkPaned to position the gutter instead at loca
tion 90 so that the bottom child will be given the minimum size it requires.

Miscellaneous Functions

The preceding functions take care of the bulk of what the GtkPaned API set provides. Two
additional functions supplied by GtkPaned can be used to control the size of the handle and
the size of the gutter that separates the two pane children. I don't imagine that these functions
will be of much use by most applications; the handle and gutter sizes that are assigned as
defaults by GtkPaned should be suitable in most instances.

492 Chapter 11 • More Container Classes

To set the height and the width of the separator handle or sash, you can call gtlcpaned_

seChandle_sizeO:

void
gtk-paned_set_handle_size (GtkPaned *paned , guint16 si z e) ;

The size you pass defines both the width and the height of the sash, which is the square
control that the user can use to reposition the separator and change the relative sizes of the
paned child widgets. The sash is located a few pixels from the rightmost end of the groove in
a vertical paned widget and a few pixels from the bottom of the groove in a horizontal paned
widget. Again, I recommend that you not call this function and instead use the default values
assigned by GtkPaned. Some readers may have noticed that the size argument is guint16. This

means you cannot revert to the default handle size simply by passing a - 1 . The default value

can be restored by calling gtlcpaned_sechandle_sizeO with a size argument set to 10.
The gutter height can also be changed, although I recommend that applications not call

this function either and simply use the default size (6 pixels) set by GtkPaned. The function

prototype for gtk_paned_secguttecsizeO is as follows:

void
gtk-paned_set_gutter_size (GtkPaned *paned , guint16 size) ;

Changing the size of the gutter will not affect the size of the groove, which is always 2

pixels in height. In a vertical paned widget, half of the gutter will be placed above the

groove, and the other half will be placed below the groove. In a horizontal paned widget,

the groove separates the right and left halves of the gutter from each other.

Two following subclasses of GtkPaned-GtkVPaned and GtkHPaned--can be used to
create vertical and horizontal instances of GtkPaned, respectively.

GtkVPaned

Class Name

GtkVPaned

Parent Class Name

GtkPaned

GtkV Paned

Macros

Widget type macro: GTK_TYPE_PANED

Object to widget cast macro: GTK_ VPANED (obj)

Widget type check macro: GTK_IS _ VPANED (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_PANED at runtime:
guint
gtk_vpaned_get_type (void) ;

Create a new instance of GtkVPaned:
GtkWidget *
gtk_vpaned_new (void) ;

Class Description

493

GtkVPaned is used to create a vertical paned widget, as illustrated in Figure 1 1 .3. The only func

tion of interest is gtk_ vpaned_newO, which is used to create a new vertical paned widget instance:

GtkWidget *
gtk_vpaned_new (void) ;

Figure 1 1.3 Vertical Paned Widget

The returned value can be cast to GtkPaned using the GTK_PANED macro and then
passed to any of the functions defined by GtkPaned (see the preceding description of Gtk

Paned for more details).

494

GtkHPaned

Class Name

GtkHPaned

Parent Class Name

GtkPaned

Macros

Widget type macro: GTK_TYPE_PANED

Object to widget cast macro: GTK _ HPANED (obj)

Widget type check macro: GTK_IS_HPANED (obj)

Application-Level API Synopsis

Retrieve the constant G�TYPE_PANED at runtime:
guint
gtk_hpaned_get_type (void) ;

Create a new instance of GtkHPaned:
GtkWidget *
gtk_hpaned_new (void) ;

Class Description

Chapter 11 • More Container Classes

GtkHPaned is identical to GtkVPaned, except it is used to create a horizontal paned widget

(as illustrated in Figure 1 1 .4) as opposed to a vertical paned widget. Like GtkVPaned, the
only function of interest in GtkHPaned is the function used to create a widget instance,
which, in this case, is gtk_hpaned_newO:

GtkWidget *
gtk_hpaned_new (void) ;

GtkPacker

Figure 1 1.4 Horizontal Paned Widget

495

The returned value can be cast to GtkPaned with the GTK_PANED macro and then
passed to any of the functions defined by GtkPaned (see GtkPaned for more details).

GtkPacker

Class Name

GtkPacker

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_TYPE_PACKER

Object to widget cast macro: GTK_PACKER (obj)

Widget type check macro: GTK_IS_PACKER (obj)

Supported Arguments

Prefix: GtkPacker: :

496

Table 1 1.2 GtkPacker Arguments

Name Type

spacing GTK_TYPE_UINT

defaulCbordecwidth GTK_TYPE_UINT

defaulcpad_x GTK_TYPE_UINT

defaulcpad-y GTICTYPE_UINT

defaulUpad_x GTK_TYPE_UINT

defaulUpad-y GTK_TYPE_UINT

side GTK_TYPE_SIDE_TYPE

anchor GTK_TYPE_ANCHOR_TYPE

expand GTK_TYPE_BOOL

fill_x GTK_TYPE_BOOL

fill-y GTK_TYPE_BOOL

use_default GTK_TYPE_BOOL

bordec width GTK_ TYPE_UINT

pad_x GTK_TYPE_UINT

pad-y GTK_TYPE_UINT

ipad_x GTK_TYPE_UINT

ipad-y GTK_TYPE_UINT

position GTK_TYPE_LONG

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_PACKER at runtime:
GtkType
gtk-packer_get_type (void) ;

Create a new instance of GtkPacker:
GtkWidget *
gtk-packer_new (void) ;

Chapter 11 • More Container Classes

Permissions

GTK_ARG_READ�

GTK_ARG_READ�

GTK_ARG_READ�

GTK_ARG_READ�

GTK_ARG_READvnliTE

GTK_ARG_READvnliTE

GTK_ARG_READvnliTE

GTK_ARG_READvnliTE

GTK_ARG_READ�

GTK_ARG_READ�

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READ�

GTK_ARG_READ�

GTK_ARG_READ�

GTK_ARG_READWRITE

GTK_ARG_READ�

GTK_ARG_READ�

GtkPacker 497

Application-Level API Synopsis (Continued)

Add a child widget to an instance of GtkPacker using default padding values and border width:
void
gtkJ>acker_add_de faul t s (GtkPacker *packer , GtkWidget *chi l d,

GtkS ideType side, GtkAnch6rType anchor,
GtkPackerOptions options) ;

Add a child widget to an instance of GtkPacker:
void
gtkJ>acker_add (GtkPacker *packer, GtkWidget *child, GtkSideType s ide,

GtkAnchorType anchor, GtkPackerOptions options,
guint border_width, guint pad_x, guint pad-y, guint iJ>ad_x,

guint iJ>ad_y) ;

Change the packing attributes of a GtkPacker child widget:
void
gtkJ>acker_set_childJ>acking (GtkPacker *packer, GtkWidget * child,

GtkS ideType side, GtkAnchorType anchor,
GtkPackerOptions opt ions, guint border_width, guint pad_x,
guint pad-y, guint iJ>ad_x, guint iJ>ad-y) ;

Move a child of GtkPacker to the specified position:
void
gtkJ>acker_reorder_child (GtkPacker *packer, GtkWidget *child,

gint pos i tion) ;

Set spacing (unused in Gtk 1.2):
void
gtkJ>acker_set_spacing (GtkPacker *packer, guint spacing) ;

Set the packer default border width:
void
gtkJ>acker_se t_de faul t_border_wi dth(GtkPacker *packer,

guint border) ;

Set default padding:
void
gtkJ>acker_set_de faultJ>ad (GtkPacker *packer, guint pad_x,

guint pad-y) ;

Set default internal padding:
voi d
gtkJ>acker_set_default_ipad(GtkPacker *packer, guint i_pad_x,

guint iJ>ad-y);

498 Chapter 11 • More Container Classes

Class Description

GtkPacker is a container widget that implements a layout policy equivalent to the one

implemented by the Tclffk Packer geometry manager. Geometry managers in Tclffk are,
more or less, equivalent to container widgets in Gtk+.

GtkPacker is intended for programmers who are familiar with Tclffk and need to write

code using Gtk+ or who are porting code from Tclffk to C and Gtk+. In general, program
mers unfamiliar with Tclffk will want to focus their attention on using GtkBox and the

classes that derive from it (GtkHBox and GtkVBox). However, if you are more comfortable
using the Tclffk Packer, or have some Tclffk user-interface code to port, GtkPacker may be

what you are looking for.
In this section, I will describe each of the functions exposed by the GtkPacker API and

will try to give readers familiar with Tclffk a feeling for how to port Tclffk packer-based

user interfaces to the GtkPacker widget.

In my experience, which includes porting sample Tclffk code from Brent Welch's Practi
cal Programming in Tel and Tk, 3rd Edition (Prentice Hall), Tclffk packer and GtkPacker dif

fer only in terms of the syntax used. That is, GtkPacker seems to accurately implement the
semantics of a Tclffk packer. I will present a few of these samples (thanks to Brent Welch for

granting me permission to do this) so that you can obtain a feeling for what it takes to port

Tclffk packer user interfaces to GtkPacker.
A packer is much like a box widget. Like the box widget, a packer manages some area of

a window or dialog. Children added to a packer are positioned based on the layout algorithm

that packer implements as well as layout hints that you provide to GtkPacker when you create

the packer widget and add child widgets to it.

Creating a Packer Widget

Probably the best way to get started is to look at some sample code that shows how to create
a packer widget and add some child widgets to it. However, let's first take a look at a couple

of functions. To create an instance of GtkPacker, call gtk_packecnewO:

GtkWidget *
gtk-packer_new (void) ;

The return value is an instance of GtkWidget, which can be cast to an instance of Gtk

Packer using the macro GTK_PACKER.

In Tclffk, a frame acts as the container to which child widgets are added. The Tclffk

Packer geometry manager decides how to place children in a frame. In Gtk+, the GtkPacker
widget acts as both the container and the geometry manager. Calling gtk_packecnewO is
roughly equivalent to executing a frame statement in a Tclffk program.

Adding Children to a Packer

In Tclffk, one or more child widgets are added to a packer by executing a pack statement.
In Gtk+, child widgets are added to a packer widget by calling one of two functions:

GtkPacker 499

void
gtk-packer_add_de faul t s (GtkPacker *packer , GtkWidget * child ,

GtkS ideType side , GtkAnchorType anchor ,
GtkPackerOptions options) ;

The function gtlcpackecadd_defaultsO adds a child widget to an instance of GtkPacker
using default padding values and border width. The function gtk_packer_addO performs

the same function but allows the application to specify border width and padding values,

overriding the defaults supplied by GtkPacker:

void
gtk-packer_add (GtkPacker *packer , GtkWidget * chi l d , GtkS ideType s ide ,

GtkAnchorType anchor , GtkPackerOptions options ,
guint border_width , guint pad_x , guint pad_y , guint i-pad_x ,
guint i-pad_y) ;

The arguments that gtk_packecadd_defaultsO and gtk_packecaddO share in common

are defined in Table 1 1 .3 .

Type Name

GtkPacker * packer

GtkWidget * child

GtkSide'!Ype side

GtkAnchor'!Ype anchor

Comment

The instance of GtkPacker to which the child is being
added (similar to a Tclffk frame in this context).

The child being added to the frame or container.

Equivalent to the -side argument to the Tclffk pack

command. Can be one of the following:

GTK_SIDE_lOP (-side top)

GTK_SIDE_BOITOM (-side bottom)

G�SIDE_LEFI' (-side left)

GTK_SIDE_RIGHT (-side right)

The equivalent Tclffk syntax is shown in parentheses.

Equivalent to the -anchor argument of the Tcllrk pack
command. Possible values include:

GTK_ANCHOR_CENTER
GTK_ANCHOR_NORTH (GTK_ANCHOR_�
GTK_ANCHOR_NORTH_WEST (GTK_ANCHOR_NW}
GTK_ANCHOR_NORTH_EAST (GTK_ANCHOR_NE)
GTK_ANCHOR_SOUTH (GTK_ANCHOR_S)
GTK_ANCHOR_SOUTH_ WEST (GTK_ANCHOR_SW)
GTK_ANCHOR_SOUTH_EAST (GTK_ANCHOR_SE)
GTK_ANCHOR_ WEST (GTK_ANCHOR_ W)
GTK_ANCHOR_EAST (GTK_ANCHOR_E)

Aliases are shown in parentheses (e.g., GTK_ANCHOR_N
is an alias for GTK_ANCHOR_NORTH).

500 Chapter 11 • More Container Classes

Table 11.3 Arguments for gtlcpackecadd_defaultsO and gtk_packer_addO

Type Name Comment

GtkPackerOptions options A set of flags, OR'd together, that implement the

following pack command arguments:

Examples

Flag

GTK_PACK_EXPAND

GTK_FILL_X

GTK_FILL_Y

Argument

-expand true

-fill x

-fill Y

Some examples should help illustrate the basics behind using packer widgets. These examples

are derived from the book Practical Programming in Tel and Tk, which was mentioned earlier.

Here I will present Tclffk code for the first few examples; interested readers should refer to

Practical Programming in Tel and Tk for the complete set of Tclffk listings.
The results of the first example are illustrated in Figure 11.5. The Tclffk code that

implements this example is as follows:

. config -bg black
f rame . one -width 40 -he ight 40 -bg white
f rame . two -width 100 -height 50 -bg grey50
pack . one . two -side top

The preceding code basically creates two frames: one that is 40X40 in size with a white

background and another that is 100xSO with a middle-gray background. The two frames
are then placed in the containing window by packing them against the top edge. The result

is very similar to using a vertical box (GtkVBox) and packing two widgets against the top

edge using gtk_box_pack_startO (refer to Chapter 10, "Container and Bin Classes," for

more information on GtkBox).

Figure 11.5 GtkPacker Example 1

A short Gtk+ program that implements the preceding Tclffk code is provided in the follow
ing listing:

GtkPacker 501

Listing 11.1 GtkPacker Example 1 Source

001 #include <gtk/gtk . h>
002
003 int main { int argc , char *argv [])
004 {
005 GtkWidget *window ;
006 GtkWidget *packer ;
007 GtkWidget *one , * two ;
008 GdkColor color ;
009 GtkStyle *style ;
010 GtkPackerOptions opt ions ;
011
012 gtk_init (&argc , &argv) ;
013
014 window = gtk_window_new { GTK_WINDOW_TOPLEVEL) ;
015 gtk_signal_connect { GTK_OBJECT { window) , " destroy" ,
016 GTK_S IGNAL_FUNC { gtk_main_qui t) , "WM destroy ") ;
017 gtk_window_set_t i t l e { GTK_WINDOW { window) , " Packe� ") ;
018 style = gtk_style_new {) ;
019 color . red = OxO ;
020 color . green = OxO ;
021 color . blue = OxO ;
022 style - >bg [GTK_STATE_NORMAL] color ;
023 gtk_widget_set_style { window , style) ;
024
025 packer = gtk-packer_new {) ;
026 opt ions = 0 ;
027
028 one = gtk_drawing_area_new {) ;
029 gtk_widget_set_usize { one , 40 , 40) ;
030 gtk-packer_add_defaults { GTK_PACKER { packer) , one ,
031 GTK_S IDE_TOP , GTK_ANCHOR_CENTER , opt ions) ;
032 style = gtk_style_new {) ;
033 color . red = Oxf f f f ;
034 color . green = Oxf f f f ;
035 color . blue = Oxf f f f ;
036 sty1e - >bg [GTK_STATE_NORMAL] = color ;
037 gtk_widget_set_style { one , style) ;
038 gtk_widget_show { one) ;
039
040 two = gtk_drawing_area_new {) ;
041 gtk_widget_set_usize { two , 100 , 50) ;
042 gtk-packer_add_de faul ts (GTK_PACKER { packer) , l:wo ,
043 GTK_S IDE_TOP , GTK_ANCHOR_CENTER , opt ions) ;
044 styl e = gtk_style_new {) ;
045 color . red = Ox8000 ;
046 color . green = Ox8000 ;
047 color . blue = Ox8000 ;
048 style ->bg[GTK_STATE_NORMAL] = color ;
049 gtk_widget_set_style { two , style) ;
050 gtk_widget_show { two) ;

502

051
052 gtk_widget_show (packer) ;

Chapter 11 • More Container Classes

053 gtk_container_add (GTK_CONTAINER (window) , packer) ;
054 gtk_widget_show (window) ;
055
056 gtk_main () ;
057
058 return (O) ;
059

On lines 014 through 023, a window with a black background is created, corresponding

to the Tcl!fk code

. conf ig -bg black

On line 025, I then create an instance of GtkPacker. The packer widget is made a child

of the window on line 053. The next step involves creating a pair of drawing-area widgets

that will represent the two frames (one white, the other grey50) that are packed by the

Tcl!fk application into the top-level window. The first drawing area is created on line 028,
and its size is set to 40X40 on the following line.

028 one = gtk_drawing_area_new () ;
029 gtk_widget_set_usize (one , 40 , 40) ;

Next I add the child widget to the packer by calling gtk_packecadd_defaultsO on line 030:

030 gtk-packer_add_de faults (GTK_PACKER (packer) , one ,
031 GTK_S IDE_TOP , GTK_ANCHOR_CENTER , opt ions) ;

These lines are intended to be equivalent to the following Tcl!fk line:

pack . one -side top

The side argument to gtk_packecadd_defaultsO is set to GTK_SIDE_TOP, which corre
sponds to "-side top" in the preceding Tcl!fk: source code. The anchor argument to gtk_
packecadd_defaultsO is set to GTK_ANCHOR_CENTER, which will probably be the typ

ical default value for most applications. Earlier in the program, options is set to O. Therefore,
no fill or expand options are passed to GtkPacker in this example. The code shown on lines
032 through 037 causes the background color of the drawing area to be set to white, corre

sponding to the "-bg white" portion of the Tcl!fk: code executed to create the 4OX40 frame,

which the Gtk+ code tries to emulate.

Code on lines 040 through 050 creates the second "frame," which again is in the form of
a drawing-area widget in this example. The corresponding code in Tcl!fk is as follows:

f rame . two -width 100 -height 50 -bg grey50
pack . two -side top

It would be worthwhile for you, as an exercise, to take the preceding Gtk+ source code
and try experiments with various side arguments (e.g., GTK_SIDE_RIGHT, GTK_SIDE_

LEFT, and GTK_SIDE_BOTTOM). Try packing the first drawing area using GTK_SIDE_
RIGHT and the other using GTK_SIDE_LEFT or GTK_SIDE_BOTTOM. By doing so,

GtkPacker 503

you will gain a good intuition for how packing works. You are free to pack an arbitrary num

ber of child widgets to arbitrary sides of the packer widget in whatever order is needed to

create the desired layout.

Nesting Packers
As is the case with boxes, a packer widget will accept another container widget (e.g., a box

or a packer) as a child. By nesting packer widgets within packer widgets (or boxes within
packer widgets, or packer widgets within boxes), you can achieve practically any layout

desired. The following example, also derived from Brent Welch's book, illustrates two levels
of nesting (see Figure 1 1.6 for the resulting window). First, the Tcl!fk code is as follows:

001 frame . one -bg white
002 frame . two -width 100 -height 50 -bg grey50
003 foreach b { alpha beta} {
004 button . one . $b -text $b
005 pack . one . $b - s ide left
006
007 frame . one . right
008 for each b { delta eps i l on} {
009 button . one . right . $b - text $b
010 pack . one . right . $b - side bottom
011
012 pack . one . right - s ide right
013 pack . one . two -side top

Figure 11.6 GtkPacker Example 2

Basically, the preceding code does the following. On line 001 , a frame (.one) with a
white background is created. The frame is packed along the top edge of the window later
on line 0 1 3. One line 002, a second frame, 1 00 pixels wide and 50 pixels tall with a gray
background, is created. It is also packed into the window on line 0 1 3 , but because it follows
frame .one in the packing order, it will be placed below frame .one. On lines 003 through
006, two buttons are created. Line 004 creates the button, and line 005 packs it into frame
.one in a left-to-right order (-side left). Since the button labeled alpha is created first, it will
be packed against the far-left edge of the frame. The second button, labeled beta, will be

packed immediately to its right.
On line 007, a new frame named .one.right is created. On lines 008 through 0 1 1 , two

additional buttons are created and packed into this frame. As you can see on line 0 10, the
buttons are packed against the bottom side. The button labeled delta is lower in the frame

504 Chapter 11 • More Container Classes

since it was packed first, while the button labeled epsilon is packed second, immediately

above the delta button.
On line 012, the frame containing the delta and epsilon buttons is packed into the same

frame into which the alpha and beta buttons were packed earlier, but against the right edge of

that frame (using -side right) as opposed to the left edge as the buttons were on line 005.

Finally, the two frames (.one and .two) are packed into the containing window on line 013.
Let's look at some GtkPacker code that basically implements the Tclffk: code I just described:

026 packer = gtk-packer_new () ;
027 opt ions = 0;

On line 026, a packer widget is instantiated. This packer corresponds to the window into

which the Tclffk: code packs its other frames on line 013 of the TclfTk code.

029 one = gtk-packer_new () ;
030 gtk-packer_add_de faults (GTK_PACKER (packer) , one ,
031 GTK_S IDE_TOP , GTK_ANCHOR_CENTER , options) ;
032 gtk_widget_show (one) ;

On line 029, I create a packer that is analogous to frame .one in the Tclffk: code. On lines
030 and 031, this frame is packed into the top-level packer widget (packer); side is set to

GTK_SIDE_TOP to emulate the -side top on line 013 . The next several lines create buttons

and pack them into the "one" packer widget, this implementing lines 003 through 006 of
the TclfTk code:

034 but ton = gtk_button_new_with_label (" alpha ") ;
035 gtk_widget_show (button) ;
036 gtk-packer_add_de faults (GTK_PACKER (one) , but ton ,
037 GTK_S IDE_LEFT , GTK_ANCHOR_CENTER , opt i ons) ;
038
039 button = gtk_button_new_with_label (" beta ") ;
040 gtk_widget_show (button) ;
041 gtk-packer_add_de faults (GTK_PACKER (one) , button ,
042 GTK_S IDE_LEFT , GTK_ANCHOR_CENTER , options) ;

The alpha and beta buttons are packed along the left side of the packer by setting the side

argument to gtk_packecadd_defaults to GTK_SIDE_LEFT. The next few lines (044 through

047) create and show the packer that emulates the one. right frame in the Tclffk: code:

044 one_right = gtk-packer_new () ;
045 gtk_widget_show (one_right) ;
046 gtk-packer_add_de faul ts (GTK_PACKER (one) , one_right ,
047 GTK_SIDE_LEFT , GTK_ANCHOR_CENTER , opt ions) ;

As you can see, the one_right packer is packed into the one packer along the left side,
adjacent to the buttons that were packed into the one packer on lines 034 through 042. Next,

we create the epsilon and delta buttons and pack them into packer one_right:

049 button = gtk_button_new_with_label (" epsi lon ") ;
050 gtk_widget_show (button) ;

GtkPacker

051
052
053

gtk-packer_add_defaults (GTK_PACKER (one_right) , button ,
GTK_S IDE_TOP , GTK_ANCHOR_CENTER , options) ;

054 button = gtk_button_new_with_label (" de l t a ") ;
055 gtk_widget_show (button) ;
056 gtk-packer_add_defaul ts (GTK_PACKER (one_right) , button ,
057 GTK_S IDE_TOP , GTK_ANCHOR_CENTER , opt ions) ;

50S

Here I've decided to throw a slight monkey wrench into the process. Notice how I
packed the epsilon button first and then the delta button. This is the opposite order from

which the TclfTk code packed its buttons into the .one.right frame. Why does this give us

the same results? Careful readers will notice that the TclfTk code packed the buttons using
-side bottom, while in the Gtk+ code I packed them (in reverse order) by setting the

gtk_packecadd_defaultsO side argument to GTK_SIDE_TOP. Packing a set of buttons

with side set to GTK_SIDE_TOP in the order 0, 1, 2, ... , n - 1 is equivalent to packing the
same set of buttons with side set to GTK_SIDE_BOTTOM but packing them in the order

n - 1, n - 2, n - 3, . . . , O. A similar argument holds true for packing widgets against GTK_

SIDE_LEFf and GTK_SIDE_RIGHT.
To complete this sample, I create, on lines 059 through 069, a drawing-area widget with

a medium-gray background and pack it into the top-level "packer" packer below the "one"

packer widget:

059 two = gtk_drawing_area_new () ;
060 gtk_widget_set_usize (two , 100 , 50) ;
061 gtk-packer_add_de fault s (GTK_PACKER (packer) , two ,
062 GTK_S IDE_TOP , GTK_ANCHOR_CENTER , opt ions) ;
063 style = gtk_style_new () ;
064 color . red = Ox8000 ;
065 color . green = Ox8000 ;
066 color . blue = Ox8000 ;
067 style -bg [GTK_STATE_NORMAL) = color;
068 gtk_widget_set_style (two , style) ;
069 gtk_widget_show (two) ;

Fill X and Fill Y
Let's look at some more examples. The following examples are designed to illustrate the
various options that can be specified using the options argument to both gtk_packer_addO
and gtk_packecadd_defaultsO. So far, I have set the options argument to 0 in each of the
examples presented. The first example presented here (Figure 11.7) is no different; I create

a few widgets and pack them without specifying options. Examples that follow illustrate
the effects that can be achieved when various options are specified by the application. The
source code for the first example, which I use to illustrate the GTK_FlLL_X and GTK_
FlLL_ Y flags, is as follows :

506 Chapter 11 • More Container Classes

Figure 11.7 Fill X and Fill Y Example 1

Listing 11.2 Source Code for Figure 11.7

001 # inc lude <gtk/gtk . h>
002
003 int main (int argc , char *argv [])
004 {
005 GtkWidget *window , *packe r , *one , * two , *three;
006 GdkColor color;
007 GtkStyle * s tyl e;
008 GtkPackerOptions opt ions;
009
010 gtk_init (&argc , &argv) ;
011
012 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
013 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
014 GTK_S IGNAL_FUNC (gtk_main_qui t) , "WM destroy ") ;
015 gtk_window_set_title (GTK_WINDOW (window) , " Packer ") ;
016
017 style = gtk_style_new () ;
018 color . red = OxO;
019
020
021
022
023

color . green = OxO;
color . blue = OxO;
style - >bg [GTK_STATE_NORMAL]
gtk_widget_set_style (window ,

024 packer = gtk-Facker_new () ;
025 options = 0;
026
027 one = gtk_drawing_area_new () ;

color;
style) ;

028 gtk_widget_set_us ize (one , 100, 50) ;
029 gtk-Facker_add_defaults (GTK_PACKER (packer) , one ,
030 GTK_S IDE_BOTTOM , GTK_ANCHOR_CENTER , opt ions) ;
031 style = gtk_s tyle_new () ;
032 color . red = Ox8000;
033 color . green = Ox8000;
034 color . blue = Ox8000;
035 sty1e ->bg [GTK_STATE_NORMAL] = color;
036 gtk_widget_set_style (one , style) ;
037 gtk_widget_show (one) ;
038
039 two = gtk_drawing_area_new () ;

GtkPacker

040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062

gtk_widget_set_us i z e (two , 40 , 40) ;
gtk-packer_add_de faults (GTK_PACKER (packer) , two ,

GTK_S IDE_BOTTOM , GTK_ANCHOR_CENTER , options) ;
style = gtk_style_new () ;
color . red = Oxf f f f;
color . green = Oxf f f f;
color . blue = Oxf f f f;
style ->bg [GTK_STATE_NORMAL] = color;
gtk_widget_set_style (two , style) ;
gtk_widget_show (two) ;

three = gtk_drawing_area_new () ;
gtk_widget_set_us i z e (three , 20 , 20) ;
gtk-packer_add_defaul ts (GTK_PACKER (packer) , three ,

GTK_S IDE_RIGHT , GTK_ANCHOR_CENTER , opt ions) ;
style = gtk_style_new () ;
color . red = Oxb f f f;
color . green = Oxb f f f;
color . blue = Oxb f f f;
style - >bg [GTK_STATE_NORMAL] = color;
gtk_widget_set_style (three , style) ;
gtk_widget_show (three) ;

063 gtk_widget_show (packer) ;
064 gtk_container_add (GTK_CONTAINER (window) , packer) ;
065
066 gtk_widget_show (window) ;
067
068 gtk_main () ;
069
070 return (0) ;
071

507

In the preceding sample, I create a window and set its background to black (lines 0 1 2
through 022). O n line 024, a packer widget i s created. This packer will hold each o f the

three drawing-area widgets created by the remainder of the code. On lines 027 through 037,

a 100 X 50 gray drawing area is created and packed into the bottom edge of the packer. On
lines 039 through 049, a 40 X40 white drawing-area widget is created and is also packed
against the bottom of the packer, which causes it to be placed above the previously packed
(gray) drawing area. Finally, on lines 051 through 06 1 , a 20X20 light-gray drawing area is
packed against the right side of the packer. It is placed higher than the second (white) draw

ing area because the second drawing-area widget effectively owns the space to its left and
right (horizontally) in the packer widget. Figure 1 1 .7 illustrates the result.

Table 1 1 .4 presents the GTK_FILL_X and GTK_FILL_ Y options I mentioned earlier.

Table 11.4 GTK_FILL_X and GTK_FILL_Y Options

Flag

GTK_FILL_X

GTK_FILL_Y

TcVTk pack Argument

-fill x

-fill Y

508 Chapter 11 • More Container Classes

We can apply these options to the preceding code to see how fill works. The only change

needed is on line 025 :

025 options = GTK_FILL_X;

The result is illustrated in Figure 1 1 .8 :

Figure 11.8 Setting GTK_FILL_X Option

What has happened here is relatively simple. Without specifying GTK_FILL_X, the
drawing-area widgets will only occupy the space they need. Drawing area one is the widest
of the drawing areas and thus defines the width of the area into which the other drawing

areas are later added. Let's see what happens when we specify GTK_FILL_X as an option.
First of all, since drawing area one is the widest of the widgets packed into the parent packer

widget, it consumes the entire width of the packer. Thus, there is nothing for it to fill into.

This is not the case for drawing area two, however. Drawing area two, being less wide than
drawing area one, will be resized by the packer so that its width is the same as that of the
"cavity" into which it is being packed. Regardless of whether or not FILL_X is specified,

this cavity is, in a sense, preallocated for drawing area two, which is why drawing area three

is located above drawing area two even though drawing area three was packed to the right

in the parent frame.

You will notice that drawing area three does not consume the entire width of the packer;
it remains 20 X20 in size even though we specified GTK_FILL_X for it as well. Why is

this? The reason is that when we pack a widget along the bottom, the top, the left, or the

right, the widget owns that side. For example, drawing areas one and two own the bottom
side of their respective areas since they were packed with GTK_SIDE_BOTTOM. Thus,
they are only free to fill in the x direction. Drawing area three, on the other hand, was
packed using GTK_SIDE_RIGHT. Therefore, it is free to fill in the y direction, and the
GTK_FILL_X option is ignored for this widget. Thus, drawing area three retains its origi

nal size after packing. This leads us to Table 1 1 .5.

Table 11.5 Applicable GTK_FILL_X and GTK_FILL_ Y Packing Options

Options

GTK_FILL_X

GTK_FILL_Y

AppUcable Packing

GTK_SIDE_TOP, GTK_SIDE_BOTIOM

GTK_SIDE_LEFT, GTK_SIDE_RIGHT

GtkPacker S09

This table is not valid if GTK_PACK_EXPAND is specified as an option (see the follow

ing discussion).
The following figures illustrate what happens when we resize the window of the previous

two sample clients. Figure 1 1 .9 illustrates what happens with options set to 0, and Figure

1 1 . 1 0 illustrates with options set to GTK_FILL_X. Neither of the drawing areas one or two

in Figure 1 1 .9 resize to fill the width of the window, but they do resize in Figure 1 1 . 10.

Figure 11.9 Resizing Window Depicted in Figure 11.7

Figure 11.10 Resizing Window Depicted in Figure 11.8

By the way, OR' ing together GTK_FILL_X and GTK_FILL_ Y, as in the following, is the
same as specifying "-fill both" in Tcl!fk:

options = GTK_FILL_X GTK_FILL_Y;

Expand Option

The final options flag is GTK_PACK_EXPAND. This flag corresponds to the Tcl!fk packer
argument -expand true. It is often easy to confuse GTK_PACK_EXPAND with GTK_FILL_X
and GTK_FILL_ Y. After all, the previous example illustrates drawing-area widgets that have
been expanded into their allocated cavities. The key to understanding the difference is to realize

510 Chapter 11 • More Container Classes

that the GTK_Fll...L_X and GTK_Fll...L_ Y options tell the widget to fill the cavity they have

been allocated, while GTK_PACK_EXPAND causes the cavity itself to be expanded.

Let's look at our original example and see how this works (refer now to Figure 1 1 .7). By

changing the options argument to GTK_PACK_EXPAND:

opt ions = GTK_PACK_EXPAND ;

we obtain the result in Figure 1 1 . 1 1 :

Figure 11.11 Figure 11.7 Options Set to GTK_PACK_EXPAND

The cavity owned by drawing area three expanded itself horizontally to fill the remaining
area of the window. The 20x20 drawing area is placed in the center of this cavity because

we specified an anchor of GTK_ANCHOR_CENTER. Now let's add a GTK_FILL_X flag

to the options argument:

opt ions = GTK_PACK_EXPAND I GTK_FILL_X ;

Adding GTK_FILL_X causes the 20X20 drawing area three to expand itself into the
cavity created because we also specified GTK_PACK_EXPAND as an option, as shown

in Figure 1 1 . 1 2 .

Anchoring
In all of the preceding examples, the anchor argument to gtk_packecaddO has been set to
GTK_ANCHOR_CENTER, which is a good default value to use. For those of you familiar
with Tcl!fk packers, the anchor argument to gtk_packecaddO is equivalent to the -anchor
argument of the pack command.

Let's return to the example shown in Figure 1 1 .7. If we were to change the anchor argu
ment to any other value (say, GTK_ANCHOR_NORTH) when packing drawing area three,

we would still get the same result because the size of drawing area three and the cavity into
which it has been packed are the same. Therefore, the anchor argument only really applies
if the cavity is larger than the widget being packed into it. This is why, in Figure 1 1 . 1 1 ,
drawing area three is centered within the cavity; we have caused the cavity to become larger

GtkPacker 5 1 1

than the drawing area, thereby adding significance to the anchor argument. If we want to

force the drawing area to the right edge of the cavity in this case, we would specify an

anchor argument of GTK_ANCHOR_EAST:

024 packer = gtk-packer_new () ;
025 options = GTK_PACK_EXPAND;

051 three = gtk_drawing_area_new () ;
052 gtk_widget_set_us i z e (three , 20 , 20) ;
053 gtk-packer_add_de faults (GTK_PACKER (packer) , three ,
054 GTK_S IDE_RIGHT , GTK_ANCHOR_EAST , opt ions) ;

GtkPacker will use whatever it can of the anchor argument that makes sense for the cavity

into which the widget is being packed. If the height of the cavity is the same as the widget, then

north and south components of the anchor are ignored. Likewise, if the width of the cavity

equals the width of the child being packed, the east and west components are ignored. For
example, the anchor GTK_ANCHOR_NORTH_EAST is equivalent to specifying GTK_

ANCHOR_NORTH if the width of the cavity is the same as that of the child being packed and
is equivalent to GTK_ANCHOR_EAST if the height of the cavity is the same as that of the
child being packed. If the child size and the cavity size are the same, effectively the anchor

argument can be set to anything, although I would recommend that you use GTK_ANCHOR_
CENTER and make sure to check your application to ensure that any geometry changes to the

containing window (e.g., window resizes) behave as you intend them to.
For a more detailed discussion of anchoring and additional Tclffk code examples, refer

to Brent Welch's book.

Border Width and Padding

You can set a border width that will be applied to all children packed into a packer widget

by calling gtk_packecseCdefauICbordecwidthO:

void
gtk-packer_set_default_border_width (GtkPacker *packe r , guint borde r) ;

The argument packer is an instance of GtkPacker, and border is the desired border width
as an unsigned integer. Figure 1 1. 13 illustrates the effect on the layout shown in Figure 1 1.7

by setting a 5-pixel border around each child:

Figure 11.13 Figure 11.7 with a Default Border Width of 5 Pixels

512 Chapter 1 1 • More Container Classes

GtkPacker recognizes two kinds of padding. Both of these paddings control how much space

is allocated to widgets packed into the packer in addition to the space requested by the widget

being packed. With internal padding, the size of the widget is increased by the specified value,
and the widget will resize itself to accommodate that new size. With external padding, the size

of the widget will not change, but GtkPacker will add extra space around the widget in much the

same way that a border width is added around each widget if the border width for the packer is
nonzero. The border width and external packing are two different things, however. Specifying a
border width of 5 and an external padding of 5 is the visual equivalent of setting either the border

width or the external padding to 10 (and setting the other value to 0). External and internal pad
ding can be specified separately for the x and y dimensions; spacing, on the other hand, is
applied both to the x and y dimensions (e.g., is added to both the width and height of the child).

Figure 1 1 . 14 illustrates the effect of setting the default external padding to 5 in the x

dimension and 20 in the y dimension. The border width is set to 0 in this example. Figure

1 1 . 15 illustrates setting the internal padding to similar values. Notice, however, that the size

of the widget has changed to accommodate the area it has been allocated.

Figure 11.14 Figure 1 1 .7 with External Padding X=5, Y=20

Figure 11.15 Figure 1 1 .7 with Internal Padding X=5, Y=20

GtkPacker 513

To set the default external padding of a packer in the x and y dimensions, call gtk_

packecsecdefaulcpadO:

void
gtkyacker_set_de faul tyad (GtkPacker *packer , guint pad_x ,

guint pad_y) ;

The arguments pad_x and pad-y specify the external padding that will be added to all chil

dren of the packer.

To set the default internal padding, call gtk_packecseCdefauIUpadO:

void
gtkyacker_set_de fault_ipad (GtkPacker *packer , guint iyad_x ,

guint iyad_y) ;

The arguments are the same as passed to gtk_packecsecdefaulcpadO, except the padding

affected is the internal padding, not the external padding.

You can use gtk_packecseccbild-packingO to set all of the packing options for a given

packer widget at one time, overriding any values that may have been specified at the time the child

was originally added to the packer. The function prototype for gtk_packer_seCcbild_packingO
is as follows:

void
gtkyacker_set_chi ldyacking (GtkPacker *packer , GtkWidget * chi l d ,

GtkS ideType s ide , GtkAnchorType anchor ,
GtkPackerOptions opt ions , guint border_width , guint pad_x ,
guint pad_y , guint iyad_x , guint iyad_y) ;

The arguments are equivalent to those passed to gtk_packecaddO.

Reordering Children

The final function discussed here can be used to move a child of GtkPacker to a specified

position in the packing order of the packer:

void
gtkyacker_reorder_chi ld (GtkPacker *packe r , GtkWidget *child ,

g i n t p o s i t i on) ;

The argument packer is the relevant instance of GtkPacker, child is the widget being
moved, and position is the new position in the packing order of that child after
gtk_packer_reordecchildO has returned. Position must be in the range of [0, n - 1] , where
n is the number of children being managed by the packer. Assume we have three child wid
gets-a, b, and c-Iocated at positions 0, 1, and 2. If we change the position of child a to
position I, child b will be located at position 0, and child c will remain at position 2. A move
from position m to some other position n < m will cause widgets at locations m through m

- 1 to increase their position by 1 . Moving a child m to some location p > m will cause wid
gets at locations m + 1 through p to decrease their position value by 1 .

514

Figure 11.16 Five Buttons, Packed Left to Right

Chapter 1 1 • More Container Classes

The following client positions five GtkLabel widgets in a packer. From left to right, the labels

are one, two, three, four, and five, corresponding to positions 0, 1, 2, 3, and 4 in the packer (see
Figure 11.16). The program arranges to fire a timer once a second. The timer callback maintains
a static index variable that holds the last-assigned position of the one label widget child; the timer
callback increments the value stored in this static and then calls gtk-packecreordecchildO to

move the one widget to the location specified. Notice the use of gtk-packecsecdefaulcpadO on

line 033 and the setting of GTK_PACKER_EXPAND and GTK_FllL_X options on line 034.

You might try commenting out the call to gtk_packecseCdefaulcpadO, set options to 0, and see

what the effect is on the layout of the child widgets in the packer.

Listing 11.3 Sample Using gtk_packecreordecchildO

001 # inc lude <gtk/gtk . h>
002
003 GtkWidget *one , * two , * three , * four , * f ive;
004
005 gint
006 TimeoutFunc (gpointer data)
007 {
008 static int position = -1;
009 GtkPacker *packer (GtkPacker *) data;
010
011 pos it ion++;
012 i f (pos it ion = = 5
013 pos i t ion = 0;
014 gtk-packer_reorder_chi ld (packer , one , position) ;
015 return TRUE;
016
017
018 int main (int argc , char *argv [])
019
020 GtkWidget *packer;
021 GtkWidget *window;
022 GtkPackerOp t i ons op t i ons ;

023
024 gtk_init (&argc , &argv) ;
025
026 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
02 7 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
028 GTK_SIGNAL_FUNC (gtk_main_quit) , " WM destroy ") ;
029 gtk_window_set_t itle (GTK_WINDOW (window) , " Packer ") ;
030
031 packer = gtk-packer_new () ;

GtkFrarne

032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067

gtk_t imeout_add (1000 , TimeoutFunc , (gpointer) pa·::ker) ;
gtk-packer_set_default-pad (GTK_PACKER (packer) , 20 , 0) ;
opt ions = GTK_FILL_X I GTK_PACK_EXPAND;

one = gtk_labe l_new (" one ") ;
gtk-packer_add_defaul ts (GTK_PACKER (packer) , one ,

GTK_S IDE_LEFT , GTK_ANCHOR_CENTER , options) ;
gtk_widget_show (one) ;

two = gtk_labe l_new (II two II) ;
gtk-packer_add_de faul t s (GTK_PACKER (packer) , two ,

GTK_S IDE_LEFT , GTK�CHOR_CENTER , options) ;
gtk_widget_show (two) ;

three = gtk_label_new (" three ") ;
gtk-packer_add_de faul ts (GTK_PACKER (packer) , three ,

GTK_S IDE_LEFT , GTK_ANCHOR_CENTER , options) ;
gtk_widget_show (three) ;

four = gtk_labe l_new (" four ") ;
gtk-packer_add_de faul t s (GTK_PACKER (packer) , four ,

GTK_S IDE_LEFT , GTK_ANCHOR_CENTER , opt iom!) ;
gtk_widget_show (four) ;

f ive = gtk_labe l_new (lI f ive ll) ;
gtk-packer_add_de faul t s (GTK_PACKER (packer) , f ive ,

GTK_S IDE_LEFT , GTK_ANCHOR_CENTER , options) ;
gtk_widget_show (f ive) ;

gtk_widget_show (packer) ;
gtk_container_add (GTK_CONTAINER (window) , packer) ;

gtk_widget_show (window) ;
gtk_main () ;
return (O) ;

GtkFrame

515

_ WIIl _____________ _

Class Name

GtkFrame

Parent Class Name

GtkBin

516

Macros

Widget type macro: GTK _TYPE_FRAME

Object to widget cast macro: GTK_FRAME (obj)

Widget type check macro: GTK_I S_FRAME (obj)

Supported Arguments

Prefix: GtkFrame : :

Table 11.6 GtkFrame Arguments

Name

label

label_xalign

labeCyalign

shadow

Type

GTK_TYPE_STRING

GTK.-TYPE_FLOAT

GTK_TYPE_FLOAT

GTK_TYPE_SHADOW _TYPE

Application-Level API Synopsis

Retrieve the constant GTK_TYPE..FRAME at runtime:
GtkType
gtk_frame_get_type (void) ;

Chapter 1 1 • More Container Classes

Permissions

GTK_ARG_READvnuTE

GTK..ARG_READvnuTE

GTK_ARG_READWRITE

GTK_ARG_READvnuTE

Create an instance of GtkFrame with an optional label (pass NULL if no label is desired):
GtkWidget *
gtk_frame_new (const gchar * l abel) ;

Set the label of an instance of GtkFrame to value (pass NULL if no label is desired):
voi d
gtk_frame_set_l abe l (GtkFrame * frame, cons t gchar * l abe l) ;

Set the alignment of label for an instance of GtkFrame:
void
gtk_frame_se t_labe l_al ign (GtkFrame * frame, g f l oat xal ign, g f l oat
yal ign) ;

Set the shadow type for an instance of GtkFrame:
voi d
gtk_frame_set_shadow_type (GtkFrame * f rame , GtkShadowType type) ;

GtkFrame 517

Class Description

GtkFrame is a container class, like the others described in this chapter, used to manage

instances of other widget classes. The parent class of GtkFrame is GtkBin, which in tum is a

child class of GtkContainer. GtkFrame differs from GtkBin in that it draws a visual boundary,
or a frame, around its children to indicate the area it manages. The frame can contain a label to

help the user identify more readily the logical grouping to which the conbuls or other items in
the frame belong. Like any container, an instance of GtkFrame can manage other containers,

including instances of GtkFrame, GtkBox, and so forth.

Creating a Frame Widget

A frame can be created by making a call to gtk_frame_newO:

GtkWidget *
gtk_frame_new (const gchar * label) ;

The argument label, if non-NULL, points to a NULL-terminated C string that will be

used by GtkFrame to label the frame. If your application does not require the use of a label,

then simply pass (gchar *) NULL.

An Example

In the following code, I create a dialog containing three instances of GtkList, each list containing
the same number of items. The lists are packed, left to right, in the conb"Ol area of the dialog. A
#define, USE_FRAMES, will cause each of the lists to be wrapped by an instance of GtkFrame.

As can be seen in Figures 11.17 and 11.18, not only do the frames provide better visual separa
tion of the three lists, the frame labels help to identify the content of each of the lists.

Figure 11.17 Three Lists Without Frames

518

Figure 11.18 Three Lists with Frames

Chapter 1 1 • More Container Classes

Listing 11.4 Partial Source Listing for Figures 1 1 . 17 and 1 1 . 1 8

inc lude <gtk/gtk . h>

void
GtkFrameDialog ()
{

GtkWidget * frame , *dialog_window , *hbox1 , *outervbox ,
* l i s t , * l ist_item;

GLi s t * i tem_I i st;

dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " destroy " ,
GTK_S IGNAL_FUNC (gtk_widget_destroyed) , &dialog_window) ;

gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " GtkFrame Demo ") ;
gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;

01 outervbox = gtk_vbox_new (FALSE , 0) ;
02 gtk_container_add (GTK_CONTAINER (dialog_window) , outervbox) ;

03 hbox1 = gtk_hbox_new (FALSE , 0) ;
04 gtk_box-pack_start (GTK BOX (outervbox) , hbox1 , TRUE , TRUE , 0) ;

05 # i f de f ined (USE_FRAMES
0 6 frame = gtk_frame_new (" Shirt ") ;
07 gtk_box-pack_start (GTK_BOX (hboxl) , frame , TRUE , TRUE , 0) ;
08 #endi f

l i s t = gtk_I i st_new () ;
item l i s t NULL;
l i s t item gtk_I ist_item_new_with_Iabel (" Dress , short sleeve ") ;
item l i s t g_l i st_append (i tem_l i s t , l i st_item) ;
l i s t item gtk_I ist_item_new_with_Iabe l (" Dress , long s leeve ") ;
i tem l i st g_l i st_append (i tem_l i s t , l i s t_item) ;
l i s t i t em gtk_I ist_item_new_with_Iabel (" Polo") ;

GtkFrame 519

item list = g_l i st_append (i tem_l i s t , l i s t_item) ;

l i st item gtk_l ist_item_new_with_labe l (" Gol f ") ;

item list g_l i st_append (i tem_l i st , l i s t_i tem) ;

l i s t item gtk_l ist_item_new_wi th_label (" T-Shirt ") ;

item_l ist g_l i st_append (item_l i st , l i st_item) ;
gtk_l ist_insert_items (GTK_LIST (l ist) , i tem_l ist , 0) ;

09 # i f def ined (USE_FRAMES)
10 gtk_container_add (GTK_CONTAINER (frame) , l i s t) ;
11 #else
12 gtk_box-pack_start GTK BOX (hboxl) , l i st , TRUE , TRUE , 0) ;
13 #endi f

}

I've only included the code needed to create the first of the three lists; the remainder of the

routine follows along a similar path. On line 01, I create an instance of GtkVBox to hold the hor

izontal box into which the three lists (and frames) are placed, the action area, and the separator

between them. Line 02 adds the vbox to the dialog. On lines 03 and 04, I create the hbox used

to hold the three frames/lists and add that to the vbox previously created. All that remains for the

control area is to create the three lists and pack them into the hbox (or, altemately, to create and

pack the three frames). On lines 05 through 08, if the code is built with USE_FRAMES turned

on, I create a frame and add that to the hbox. The call to gtk_frame_newO is passed the name of

the label that will be displayed by the frame. The lines that follow this create the list and populate

it with items; see Chapter 6, "Lists," for more information on GtkList. On lines 09 through 13 ,

I add the list to the frame i f USE_FRAMES i s defined; otherwise, I add it to the hbox.

The preceding code should take care of illustrating most, if not all, of the cases in which

a frame can be used in place of adding a control directly to a container such as a horizontal

or vertical box.

Setting the Frame Label

You can change (or remove) the label of a frame with gtk_frame_seUabeIO:

void
gtk_frame_set_label (GtkFrame * frame , const gchar * l abel) ;

The argument frame is an instance of GtkFrame, created by gtk_frame_newO. label is a

NULL-terminated C string, which will, after the call, be used as the label of the frame. Passing
(const gchar *) NULL as the label argument will cause the current label to be removed. Without

a label, GtkFrame simply draws a solid line around the area that it manages.

Setting the Alignment of the Label

Alignment of the label can be controlled with gtk_frame_seUabeCalignO:

void
gtk_frame_set_label_al ign (GtkFrame * f rame , gf loat xal ign ,

gfloat yal ign) ;

By default, 0.0 and 0.5 are assigned to the xalign and yalign attributes, respectively, of

a new frame when it is first created. Labels are always located on the upper horizontal edge

of the frame, as shown in Figure 1 1 .17. Alignment defines where along this edge the label

520 Chapter 1 1 • More Container Classes

is placed. The yalign value, in Gtk+ 1 .2, is not used and will not be discussed further, other

than to say the vertical position of the label is computed so that the topmost horizontal edge

of the frame vertically bisects the label, and this computation is based on the height of the

font, not the yalign value. An xalign of 0.0 places the label at the far left-end of the edge,

while the value 1 .0 places it at the far-right edge. The label is positioned so that all charac

ters in the label are visible. Passing an xalign or yalign value that is outside of the range

[0.0, 1 .0] will cause GtkFrame to clip the value so that it falls within this range.

Setting the Shadow Type of the Frame

The final function supported by GtkFrame allows you to set the shadow type of a frame.

The function, gtk_frame_secshadow _typeO, is analogous to gtk_cliscseCshadow _typeO,

which is described in Chapter 6.

void
gtk_frame_set_shadow_type (GtkFrame * frame , GtkShadowType type) ;

Most applications need not call gtk_frame_secshadow _typeO and instead can use the

default type assigned by GtkFrame, GTK_SHADOW _ETCHED_IN.

GtkAspectFrame

Class Name

GtkAspectFrame

Parent Class Name

GtkFrame

Macros

Object to widget cast macro: GTK_ASPECT_FRAME (obj)

Widget type check macro: GTK_I S_AS PECT_FRAME (obj)

Supported Arguments

Prefix: GtkAspectFrame : :

GtkAspectFrame

Table 11.7 GtkAspectFrame Arguments

Name Type

xalign GTK_TYPE_FLOAT

yalign GTK_TYPE_FLOAT

ratio GTK_TYPEJ1LOAT

obey_child GTK_TYPE_BOOL

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_ASPECT_FRAME at runtime:
GtkType
gtk_aspect_f rame_get_type (void) ;

Create a new instance of GtkAspectFrame:
GtkWidget *

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_AR<:CREADWRITE

GTK_ARG_READWRITE

gtk_aspect_frame_new (cons t gchar * l abe l , gf l oat xal ign ,
g f l oat yal ign , g f l oat rat io , g int obey_chi ld) ;

Change attributes of an existing aspect frame:
void
gtk_aspect_frame_s e t (GtkAspectFrame * aspec t_f rame , gf loat xa l ign ,

g f l oat yal ign , gfloat rat io , gint obey_chi l d) ;

Class Description

521

GtkAspectFrame is similar to GtkFrame, previously described, except that it allows the applica

tion to control the aspect ratio of the frame. The aspect ratio is used to compute the width of the

frame based on its height. An aspect ratio of 1 .0 results in a frame that has equal width and
height, while a ratio set to 0.5 will cause the width of the frame to be one-half the height of the

frame. The default ratio for an aspect frame widget is 1 .0, and the allowable range is [0.0001 ,
10000.0] . A client can disable the aspect ratio setting and allow the child widget managed by the

frame to determine the width and height of the frame by setting the obey 3hild attribute to

TRUE. The default obey 3hild setting is TRUE.

Two additional attributes are supported by aspect frames: xalign and yalign. These attributes

(which both default to 0.5), define how a frame is placed within the container that manages it

whenever there is unused space, either vertically or horizontally, within the container of the

frame due to the aspect ratio chosen for the frame. The following example should help clarify

the use of xalign and yalign.

Assume that the aspect ratio of the frame is 0.5 and that we are placi ng the frame within

a window that is 1 00 pixels tall and wide. In this case, we have a franle that is 1 00 pixels

522 Chapter 1 1 • More Container Classes

tall and 50 pixels wide, and we have 50 pixels of unused space to the left and/or right of the

frame. The xalign attribute is used to control the location of the frame horizontally within

the container and, as a result, how the unused space is distributed in the container relative

to the frame. If xalign is set to 0.0, the x origin of the frame will be located at x = 0, and all

50 pixels of unused space will be situated to the right of the frame. If xalign is set to 0.5,

the frame will be horizontally centered within the container, with, in this example, 25 pixels

of unused parent space located to the left of the frame and 25 pixels of unused parent space

to the right of the frame. This behavior is true whenever the aspect ratio is less than 1 .0.

If the aspect ratio is greater than 1 .0, unused space will exist either above or below the

frame, and the yalign attribute is then used to determine the location of the y origin of the frame

and, therefore, how the unused vertical space is distributed. If yalign is set to 0.0, the y origin

of the frame will be set to 0, and unused vertical space will be located below the frame. If yalign

is set to 0.5, the frame will be vertically centered in the frame, with half of the unused space

occurring above and below the frame. Finally, if yalign is set to 1 .0, the frame will be placed at

the bottom of the container, and all unused vertical space will be located above the frame.

The valid range of values for xalign and yalign is [0.0, 1 .0] . Effectively, xalign is ignored

whenever ratio is 1 .0 or greater, and yalign is ignored whenever ratio is 1 .0 or less.

Creating an Aspect Frame Widget
To create a new instance of GtkAspectFrame, call gtk_aspectjrame_new O :

G t kW i d g e t *

g t k_a s p e c t_f rame_new (c ons t gchar * l abe l , g f l oa t xa l i gn , g f l oa t ya l i gn ,

g f l oa t rat i o , g i n t obey_ch i l d) ;

The label argument defines the text label that will be displayed by the aspect frame. The

arguments xalign, yalign, and ratio were all previously defined, as was obey 3hild. If

obey _child is set to true, ratio is ignored, but the xalign and yalign arguments will be honored.

Depending on the size requirements of the child, its aspect ratio could be not equal to 1 .0,

resulting in unused space above or below (or to the left or right) of the frame. The defaults for

xalign, yalign, ratio, and obeY3hild are 0.5, 0.5, 1 .0, and TRUE, respectively.

Setting the Aspect Frame Attributes
After you have created an aspect frame, you can change any of its settings by calling

gtk_aspecCframe_setO :

vo i d

g t k_a s p e c t_f rame_s e t (GtkAspe c t F rame * a spec t_frame , g f l oa t xa l i gn ,

g f l oa t ya l i gn , g f l oat rat i o , g i n t obey_ch i l d) ;

The arguments to gtk_aspeccframe_setO are the same as to gtk_aspeccframe_newO,

except for the first argument, which in an instance of GtkAspectFrame created by an earlier call

to gtk_aspectjrame_newO. You can change the label with a call to gtk_frame_seUabeIO:

G t kW i dg e t * a F rame ;

OtkAspectFrame 523

aFrame gtk_aspect_frame_new (" He l lo " , 0 . 5 , 0 . 5 , 1 . 0 , TRUE) ;

The following program illustrates the GtkAspectFrame API, showing the effects of various

alignment and ratio settings. A timer is fired twice a second, and the callback invokes

gtk_aspectjrame_setO to change the xalign, yalign, and ratio attributes of the frame. Chang

ing any of these values causes GtkAspectFrame to fire an expose event that is handled by the

child widget of the frame, which, in this case, is an instance of GtkDrawingArea. The drawing

area widget has a signal function registered to capture the expose event. and in this signal

function, it draws a number of rectangles that help to illustrate the effect of the aspect ratio

change made by the timer callback. Figures 1 1 . 19 through 1 1 .22 contain screen grabs of the

client in various stages of operation.

Figure 11.19 Figure 11.20

Figure 11.21 Figure 11.22

Listing 11.5 OtkAspectFrame Example

0 0 1 # inc lude <gtk/gtk . h>
0 0 2
0 0 3 stat i c gint
0 0 4 DrawingExposeFunc (GtkWidget *widget , GdkEvent * event , gpointer user_data)
0 0 5 {
0 0 6 GtkDrawingArea * darea ;
0 0 7 GdkDrawable *drawable ;
0 0 8 GdkGC *black_gc , *gray_gc , *whit e_gc ;

524 Chapter 1 1 • More Container Classes

0 0 9 guint max_width , max_he ight ;

0 1 0
0 1 1 darea = GTK_DRAWING_AREA (widget) ;
0 1 2 drawabl e = widge t - >window ;
0 1 3 whi t e_gc = widget - > s tyl e - >white_gc ;
0 1 4 gray_gc = widget - >styl e - >bg_gc [GTK_STATE_NORMAL] ;
0 1 5 b l ack_gc = widget - > styl e - >black_gc ;
0 1 6 max_width = widget - >al locat ion . width ;
0 1 7 max_he ight = widget - >al locat ion . height ;
0 1 8
0 1 9
0 2 0
0 2 1
0 2 2
0 2 3
0 2 4
0 2 5
0 2 6
0 2 7
0 2 8
0 2 9
0 3 0
0 3 1
0 3 2

gdk_draw_rectangl e

gdk_draw_rectangle

(drawable ,
TRUE ,
0 ,
0 ,
max_width ,
max_height

(drawable ,
TRUE ,
0 ,
max_he ight
max_width ,
max_he ight

whi te_gc ,

/ 2) ;

black_gc ,

/ 2 ,

/ 2) ;

0 3 3 gdk_draw_rectangle (drawable , gray_gc ,
0 3 4 TRUE ,
0 3 5 max_width / 3 ,

0 3 6 max_he ight / 3 ,
0 3 7 max_width / 3 ,
0 3 8 max_he ight / 3) ;
0 3 9
0 4 0 return TRUE ;
0 4 1
0 4 2
0 4 3 voi d
044 MyTimeout Func (GtkAspect Frame * frame)
0 4 5 (
0 4 6 stat i c f l oat xal ign = 0 . 0 ;
0 4 7 s t at i c f l oat yal ign = 0 . 0 ;
0 4 8 s t at i c f l oat rat io = 0 . 1 ;
0 4 9
0 5 0 gtk_aspect_f rame_set (f rame , xal ign , yal ign , rat io , FALSE) ;
0 5 1 xal ign + = 0 . 1 ;
0 5 2 i f (xal ign > 1 . 0)

0 5 3 xal ign = 0 . 0 ;
0 5 4 yal i gn + = 0 . 1 ;
0 5 5 i f \ yal ign > 1 . 0)
0 5 6 yal ign = 0 . 0 ;
0 5 7 rat io + = 0 . 1 ;
0 5 8 i f (rat io > 2 . 0)
0 5 9 rat io = 0 . 1 ;
0 6 0
0 6 1
0 6 2 vo i d
0 6 3 GtkFrameDialog ()
0 6 4 {
0 6 5 GtkWidget * f rame , *dialog_window , *drawing ;

GtkTable

0 6 6
0 6 7 dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 6 8 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUS E) ;

0 6 9
0 7 0 gtk_s ignal_connec t (GTK_OBJECT (dialog_window) , " de st roy " ,

0 7 1 GTK_S IGNAL_FUNC (gtk_widget_des troyed) , &dialog_window) ;

0 7 2
0 7 3 gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " GtkAspect Frame ") ;

0 7 4 gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;

0 7 5
0 7 6 frame = gtk_aspect_frame_new (" Drawing " , 0 . 5 , 0 . 5 , 1 . 0 , TRUE) ;
0 7 7 gtk_t imeout_add (5 0 0 , MyTimeoutFunc , frame) ;
0 7 8 gtk_f rame_set_label_align (GTK_FRAME (f rame) , 0 . 0 , 0 . 0) ;

0 7 9 gtk_container_add (GTK_CONTAINER (dialog_window) , frame) ;

0 8 0
0 8 1 drawing = gtk_drawing_area_new () ;
0 8 2 gtk_drawing_area_s i z e (GTK_DRAWING_AREA (drawing) , 1 0 0 , 1 0 0) ;

0 8 3 gtk_signal_connect (GTK_OBJECT (drawing) , " expose_event " ,

0 8 4 GTK_S IGNAL_FUNC (DrawingExposeFunc) , NULL) ;

0 8 5 gtk_widget_set_event s (drawing , GDK_EXPOSURE_MASK) ;

0 8 6
0 8 7
0 8 8 gtk_container_add (GTK_CONTAINER (f rame) , drawing) ;

0 8 9
0 9 0 gtk_widget_show_a l l (dialog_window) ;

0 9 1
0 9 2
0 9 3 main (argc , argv
0 9 4 int argc ;
0 9 5 char *argv [] ;

0 9 6 (
0 9 7 gtk_ini t (&argc , &argv) ;

0 9 8
0 9 9 GtkFrameDialog () ;

1 0 0
1 0 1 gtk_main () ;

1 0 2

GtkTable

Class Name

GtkTable

Parent Class Name

GtkContainer

525

526

Macros

Widget type macro: GTK_TYI?E_TABLE

Object to widget cast macro: GTK _TABLE (obj)

Widget type check macro: GTK_IS_TABLE (obj)

Supported Arguments

Prefix: GtkTable : :

Table 11.8 GtkTable Arguments

Name Type

n_rows GTK3YPE_UINT

n_columns G�TYPE_UINT

row_spacing GTK_TYPE_UINT

column_spacing GTK_TYPE_UINT

homogeneous GTK_TYPE_BOOL

left_attach GTK_TYPE_UINT

righcattach GTK3YPE_UINT

top_attach GTK_TYPE_UINT

bottom_attach GTK_TYPE_UINT

x_options G�TYPE�TTACH_OPTIONS

y_options GTK_TYPE_ATTACH_OPTIONS

x_padding GTK_TYPE_UINT

y_padding G�TYPE_UINT

Chapter 1 1 • More Container Classes

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

G�ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GtkTable

Application-Level API Synopsis

Return the constant GTK_TYPE_TABLE at runtime:
GtkType
gtk_tabl e_get_type { void} ;

Create a new instance of Gtk1able:
GtkWidget *
gtk_table_new { guint rows , guint columns , gbool ean homogeneous) ;

Change the number of rows and/or columns in a table:
void
gtk_table_re s i z e { GtkTabl e * t able , guint rows , guint columns) ;

Add a cell to a table:
void
gtk_tabl e_attach { GtkTable * t able , GtkWidget * chi l d ,

guint left_attach , guint right_at tach , guint top_at tach ,
guint bottom_attach , GtkAttachOptions xopt i ons ,
GtkAttachOpt ions yoptions , guint xpadding ,
guint ypadding) ;

Add a cell to a table using default xoptions, yoptions, xpadding, and ypadding values:
vo id
gtk_table_attach_defaul ts (GtkTable * tabl e , GtkWidget *widget ,

guint l e f t_attach , guint right_attach , guint top_attach ,
guint bottom_attach} ;

Set the row spacing for a specific table row:
void

527

gtk_table_set_row_spacing { GtkTable * t abl e , guint row , guint spacing) ;

Set the column spacing for a specific table column:
void
gtk_table_set_col_spacing (GtkTable *table , guint column , guint spacing) ;

Set the row spacing for all rows:
void
gtk_tabl e_set_row_spac ings (GtkTable * tabl e , guint spacing) ;

Set the column spacing for all columns:
voi d
gtk_table_set_col_spac ings { GtkTable * table , guint spacing) ;

Change the table's homogeneous setting:
void
gtk_table_set_homogeneous { GtkTabl e * t abl e , gbool ean homogeneous) ;

528 Chapter 11 • More Container Classes

Class Description

A table widget manages a group of cells that are organized as an NxM matrix or grid. Cells
in a table may be empty or may contain a child widget. If a cell is empty (i .e. , it does not

contain a child), the space that would otherwise be occupied by a child is displayed by the

table widget if and only if at least one of the following is true:

• The table is homogeneous.

• Some other cell in the same row or column of the table contains a visible child widget.

For the purpose of our discussion here, each table cell is given the coordinate (r, c) ,
where r is the row, and c is the column. Rows can range in value from 0 to N - 1 , where N

is the number of rows in the table. Columns range in value from 0 to M - 1 , where M is the

number of columns in the table.

Figure 11.23 Table Widget

Figure 1 1 .23 illustrates an instance of GtkTable containing three rows and three columns.

GtkButton children have been added to the following table cells: (0, 1) (Button 1), (1 , 0)

(Button 2), (1 , 1) (Button 3), and (1 , 2) (Button 4). The homogeneous setting for the table

shown in Figure 1 1 .23 has been set to TRUE. (I will discuss how to make a table homoge

neous later in this chapter.) As a result, each cell in row 3 of the table, even though it does

not manage a child, has been allocated space in the user interface by the table widget. The

same table, but with the homogeneous attribute set to FALSE, is illustrated in Figure 1 1 .24.

This time, no space is allocated for row 3 since it contains no cells.

Figure 11.24 Table Widget with Homogeneous Set to FALSE

A child widget added to a table can be made to span multiple columns or rows, as illustrated

in Figure 1 1 .25. 1 will describe how this can be done later in this chapter.

GtkTable 529

Figure 11.25 Table with Cell Spanning Multiple Columns

Cell Attributes

Each cell supports a set of attributes that can affect how a child is placed in the cell. These
attributes are defined in Table 1 1 .9.

Table 11.9 GtkTable Cell Attributes

Attribute Effect

The table will expand to use the space available in

the window or container.

If the table is allocated less space than requested,
child widgets in the table will shrink to fit table

cells. If GTK_SHRINK is not specified, cells in

the table may be clipped.

Children will grow to fill available space in a cell .

The preceding attributes must be specified independently, for both the x and the y dimen
sions, at the time the cell is added to the table. The default value for both the x and y dimensions

is GTK_EXPAND I GTK_FILL.
Each cell has two additional attributes, xpadding and ypadding, which control how much

padding is placed around a child in its cell. The default padding for both the x and y dimen
sions is O. Padding is added to both sides of the child. For example, specifying an xpadding

of 5 will add 10 pixels to the horizontal size of the child, with 5 pixels added to both the left

and right sides of the child.

Cell Coordinates and Adding Children

As previously mentioned, each cell in a table has a unique x and y coordinate. The y component
ranges from 0 to N - 1 rows, and the x component ranging from 0 to M - I columns. Figure

1 1 .26 illustrates the coordinate system used by a 3 X 3 table. Vertical and horizontal lines in
bold identify edges in the table. Edges in the table are numbered in increasing order from left
to right (0 to M) and from top to bottom (0 to N). The edges are important when it comes to
adding a child to the table, as I will now describe.

530

3

left_attach

1

t

righLattach

2

+- CeIl 2,2 �

�

Chapter 1 1 • More Container Classes

3

lop_attach = 1 , bottom_attach = 2, laft_attach = 1 , rlghLattach = 2

Figure 1 1 .26 3 X 3 Table Widget Coordinates

To add a child to a table, you simply specify the edges that, as a group, form the boundaries

of the cell into which the child is being placed. The GtkTable functions name the four bound

aries of a cell lefCattach, righCattach, top_attach, and bottom_attach (see Figure 11.26).

A couple of examples should make this clear. The first example adds a child to the upper

left corner of the table. The left, right, top, and bottom edges of the cell located in the upper

left corner of a table are 0, I, 0, and 1, respectively (see Figure 11.26). Therefore, to add the

child to this cell, we set left_attach to 0, righCattach to 1, top_attach to 0, and
bottom_attach to 1. The left, right, top and bottom edges of the lower-right cell are 2, 3, 2,

and 3, respectively (again, see Figure 11.26) . To add a child there, we set left_attach to 2,
righcattach to 3, top_attach to 2, and bottom_attach to 3 .

GtkTable allows you to specify a bottom_edge and/or righcedge that will cause the
child widget to span multiple rows and/or columns of a table. Figure 11.27 illustrates an

example. Here, a button widget occupies cell (1, 0) in a 3 X5 table widget (left_attach = 0,
righcattach = 1, top_attach = 1 , and bottom_attach = 2 were used to add the button widget).
The remaining cells in row 2 are consumed by a GtkEntry widget. This was accomplished
by setting lefcattach = 1, righcattach = 5, top_attach = 1, and bottom_attach = 2 when add

ing the entry widget to the table.

Figure 1 1 .27 Spanning Multiple Cells

By now you should have a good idea how to use GtkTable. Let's take a look at the GtkTable
API set to see how it is used.

GtkTable 531

Creating a Table Widget
Creating an instance of GtkTable is much like creating an instance of any other GtkWidget

class and is done with a call to gtk_table_newO:

GtkWidget *
gtk_table_new (guint rows , guint columns , gboolean homogeneous) ;

The rows argument specifies the number of rows that will be in the table, and columns
is the number of columns in the table. The argument homogeneous, when TRUE, causes all

cells to have the same size; this is the size that is needed to display the largest child in the

table in terms of both width and height. If set to FALSE, the height of a row in the table is

set to the height needed to display the tallest child in that row, and the width of a column is

set so that it can display the widest of the child widgets located in that column.

Resizing the Table
After a table has been created, gtk_table_resizeO can be called to change the number of rows

and/or columns in the table:

void
gtk_table_resize (GtkTabl e *table , guint rows , guint columns) ;

The argument table is the instance of GtkTable being resized. The arguments rows and

columns specify the number of rows and/or columns in the table after the resize has been
performed. Passing a rows or columns value that is less than or equal to 0 will cause Gtk

Table to substitute the value 1 in its place (the minimum size of a table is 1 X 1). The func

tion gtk_table_resizeO requires you to specify both the rows and the columns-unlike some

widgets APIs in Gtk +, you cannot pass a -1 as a way to tell the widget that the correspond

ing attribute should retain its current value. If you size a table such that it would eliminate
cells in the table that are occupied by a child, GtkTable will set the size of the table so that

the cells in the table will remain. Therefore, if the highest numbered row in the table that
contains a child is row p, then the number of rows in the table will be set to MIN(p, rows).

Likewise, if the highest number column containing a child is q, then the number of columns

in the table will be set to MIN(q, columns).

Changing the Homogeneous Setting
Similarly, you can change the homogeneous setting of a table at any time with a call to

gtk_table_seChomogeneousO:

void
gtk_table_set_homogeneous (GtkTable * table , gboolean homogeneous) ;

The argument homogeneous can be set to either TRUE or FALSE.

532 Chapter 1 1 • More Container Classes

Adding Cells to a Table
There are two ways to add a cell to a table widget. The more complicated of the two,

gtk_table_attachO, allows you to specify the location of the cell that the child widget will

occupy as well as the attributes I described earlier, as summarized in Table 11.10.

Table 11.10 gtk_tab1e_attachO Option Arguments

Argument

xoptions

yoptions

xpadding

ypadding

Meaning

Any combination of GTK_EXPAND,

GTK_FILL, and GTK_SHRINK OR'd together

Same as xoptions

The amount of space, in pixels, added to the left

and right of the child

The amount of space, in pixels, added above and

below the child

The function prototype for gtk_table_attachO is:

void
gtk_table_at tach (GtkTable *table , GtkWidget * chi l d , guint left attach ,

guint right_attach , guint top_attach , guint bot tom_attach ,
GtkAttachOptions xoptions , GtkAttachOptions yoptions ,
guint xpadding , guint ypadding) ;

The argument table is the instance of GtkTable to which the child is being added. The argu
ment child is the widget (either another container widget or a control widget) being added. The

arguments left_attach, righcattach, top_attach, and bottom_attach specify the location of the

cell at which the child will be located (these arguments were described earlier in this section).

The arguments xoptions, yoptions, xpadding, and ypadding were all described earlier in this
section and are summarized in the preceding table.

Adding a Table Cell with Defaults

To add a cell to a table using default values for xoptions, yoptions, xpadding, and ypadding,
call gtk_table_attach_defaultsO:

void
g t k_t ab l e_at t a c h_de faul t s (Gt kTab l e * t abl e , GtkWidget * chi l d ,

guint left_at tach , guint right_attach , guint top_attach ,
guint bot tom_attach) ;

The arguments table, child, left_attach, righcattach, top_attach, and bottom_attach are
the same as described earlier for gtk_table_attachO. Default values for xoptions and
yoptions (GTK_FILL I GTK_EXPAND), as well as xpadding and ypadding (both of these
attributes default to 0), are set by gtk_table_attach_defaultsO.

GtkTable 533

Setting Row and Column Spacings

GtkTable allows you to set a spacing value for a specific row or column in the table. The
spacing value specifies the amount of space, in pixels, that will be added between the spec

ified row or column and the row or column, respectively, that follows it. For that reason,

you cannot set spacing for the last row or column in a table; doing so w ill cause a warning

to be generated by GtkTable. The function gtk_table_secrow _spacingO is used to set the

row spacing for a specific row:

void
gtk_table_set_row_spac ing (GtkTable * tabl e , guint row , guint spac ing) ;

The argument table is the GtkTable widget instance, row is the row being modified (in

the range [0, N - 2]), and spacing is the number of pixels that will be placed between the
specified row and the row that follows it, once the change has been made. To set the column

spacing, call gtk_table_seccol_spacingO:

void
gtk_table_set_col_spac ing (GtkTable *table , guint column ,

guint spacing) ;

The argument column is the column in the table that is being modified, in the range [0,
M - 2] . The argument spacing is the number of pixels that will be placed between the col

umn and the one that follows it, after the call has been made.
The default row and column spacing is 0 pixels. Setting spacing to a value less than 0 is

not caught by GtkTable, and the results are undefined.
Spacing values that will be applied to all rows or columns in a table can be set by calling

gtk_table_secrow _spacingsO or gtk_table_seccoCspacingsO, respectively:

void
gtk_table_set_row_spac ings (GtkTable *table , guint spac ing) ;

void
gtk_table_set_col_spac ings (GtkTable *tabl e , guint spac ing) ;

An Example: Tic-Tac-Toe Board

The following example illustrates how an instance of GtkTable might be used to implement
a simple tic-tac-toe game. A vertical box widget is used in a window to hold, from top to
bottom, a 3X3 table widget (the game board), an instance of GtkHSeparator, two GtkEntry
widgets used to accept a board position from the user when it is time for the user to make
a move, and an instance of GtkButton that, when clicked, invokes a callback that reads the
row and column entered into the entry fields and places an X, if possible, in the specified
location (the computer is the opponent in the game and assumes the role of player 0).
Below the entry fields and Move button, another horizontal separator is added. A button box
is placed below this horizontal separator, to which New Game and Quit buttons are added.
The code for creating the dialog is located on lines 1 00 through 1 7 1 in the following listing.
The table widget code, in particular, is located on lines 121 and 122 and is rather simple
a call to gtk_table_newO followed by a call to gtk_box_pack_startO to add the table widget

as a child of the vertical box widget.

534

Figure 11.28 Tic-Tac-Toe Dialog

Chapter 1 1 • More Container Classes

Each cell in the table has a single child, which is a 32 X 32 pixel pixmap. Three pixmaps

are used by the game. For empty squares on the board, a solid yellow pixmap is used. For
X and ° squares, a yellow pixmap superimposed with an X or 0, each drawn in different

color, is used (see Figure 1 1 .28). I discussed GtkPixmap in Chapter 8, "Separators, Arrows,

Images, Pixmaps, and Entry Widgets." The routine CreateXSquareO on lines 02 1 through
032 is used to create a GtkPixmap instance representing an X square. Similar code, not
shown in the following listing, is used to create the blank and ° squares.

The board itself is represented by the data structure defined on lines 0 1 0 through 0 1 3 and
the array of cells declared on lines 0 1 5 through 0 1 9. The Square data type holds a type,

which can be SQUARE_X, SQUARE_O, or SQUARE_BLANK, and the child widget that
is currently occupied by the corresponding cell in the table. Incidentally, the cell located at

row = i, column = j is indexed in the array as i * 3 + j , where row and column are both in
the range [0, 2] .

GtkTable 535

Cells in the tic-tac-toe playing board are initialized with SQUARE_BLANK pixmaps by

calling the function InitializeBoardO, as shown on lines 051 through 069. This is done before
each game is played. InitializeBoardO petfonns the following for each square on the playing
board: First, on line 059, a SQUARE_BLANK GtkPixmap is created with a call to Make

BlankSquareO. On line 06 1 , a check is made to see if the cell in the table already has a pixmap

child widget. If it does, we call gtk_ widgeCdestroyO to destroy the pixmap because it will be

replaced by a pixmap of a different type and is no longer needed. (There arf: two optimizations
that can be made here. First, if the cell is SQUARE_BLANK already, we do not need to do

anything for that cell. Second, if the cell is not SQUARE_BLANK, we could store the pixmap

in a cache to be used later when a pixmap of the same type is needed.) Next, on lines 064 and

065, we attach the new pixmap to the cell of the table with a call to gtk_table_attach_defaultsO.
Lines 066 and 067 record in the board array the type of the square (SQUARE_BLANK) and

the pixmap widget so that it can be destroyed later in the game when an X or 0 piece is moved

to this location on the playing board by the user or computer.

The routine TryMoveToO uses these same principles to move an 0 to one of the nine

board locations and is listed on lines 034 through 049.

Listing 1 1.6 Tic-Tac-Toe Source

001 # inc lude <gtk/gtk . h>
002 # inc lude < stdl ib . h>
003
004 #def ine SQUARE_X 0
005 #def ine SQUARE_O 1
006 #de f ine SQUARE_BLANK 2
007
008 stat ic GtkWidget *table , *dialog , * entryrow , * entrycol;
009
010 typedef struct _square
011 uns igned char type;
012 GtkWidget * chi ld;
013 Square;
014
015
016
017
018
019
020

static Square board [9]
{ SQUARE_BLANK , NULL } ,
{ SQUARE_BLANK , NULL } ,
{ SQUARE_BLANK , NULL } ,
} ;

021 stat ic GtkWidget *

= {
{ SQUARE_BLANK,
{ SQUARE_BLANK ,
{ SQUARE_BLANK ,

022 MakeXSquare (GtkWidget *window)
023 {
024 GdkPixmap *pixmap ;
025 GdkBitmap *mask ;
026 GtkWidget *wpmap;
027

NULL } , { SQUARE _B LANK ,
NULL } , { SQUARE _B LANK,
NULL } , { SQUARE _B LANK ,

028 pixmap = gdk-Fixmap_create_from_xpm (window-window , &mask ,
029 &window->sty1e - >bg [GTK_STATE_NORMAL] , " x . xpm ") ;
030 wpmap = gtk-Fixmap_new (pixmap , mask) ;

NULL } ,
NULL } ,
NULL }

536 Chapter 1 1 • More Container Classes

031 return (wpmap) ;
032
033
034 stat i c int
035 TryMoveTo (int row , int col)
036 {
037 GtkWidget *widget ;
038 i f (board [row * 3 + coI l . type = = SQUARE_BLANK) {
039 widget = MakeOSquare (dialog) ;
040 gtk_table_attach_defaults (GTK_TABLE (table) ,
041 widget , col , col + 1 , row , row + 1) ;
042 gtk_widget_destroy (board [row * 3 + coI l . child) ;
043 gtk_widget_show (widget) ;
044 board [row * 3 + coI l . type = SQUARE_O ;
045 board [row * 3 + coI l . child = widget ;
046
047

return (1) ;

048 return (0) ;
049
050
051 stat i c void
052 Ini t i a l i zeBoard (void)
053 {
054 GtkWidget *blank , *button ;
055 int i , j ;
056
057 for (i 0; i < 3; i + +)
058 for (j = 0; j < 3; j ++) {
059 blank = MakeBlankSquare (dialog) ;
060 gtk_widget_show (blank) ;
061 i f (board [j * 3 + i l . child ! = NULL
062 gtk_widget_destroy (
063 board [j * 3 + i 1 • chi ld) ;
064 gtk_table_attach_defaults (GTK_TABLE (table) ,
065 blank , i , i + 1 , j , j + 1) ;
066 board [j * 3 + i 1 • type = SQUARE_BLANK ;
067 board [j * 3 + i 1 . child = blank ;
068
069
070
071 stat i c void
072 MakeMove (gpointer ignored)
073 {
074 char *text ;
075 int row , col ;
076 GtkWidget *widget ;
077
078
079
080
081

text = gtk_ent ry_get_text (GTK_ENTRY (entryrow
row = atoi (text) ;
text = gtk_entry_get_text (GTK_ENTRY (entrycol
col = atoi (text) ;

) ;

) ;

GtkTable 537

O B 2 i f (row < 1 I I row > 3 I I col < 1 I I col > 3)

O B 3 return ;

O B 4 row- - ; col - - ;

O B 5 i f (board [row * 3 + coI l . type = = SQUARE_BLANK) {
O B 6 widget = MakeXSquare (dialog) ;

O B 7 gtk_t abl e_att ach_de faul t s (GTK_TABLE (table) , widget ,

O B B
O B 9
0 9 0
0 9 1
0 9 2
0 9 3
0 9 4
0 9 5
0 9 6
0 9 7
0 9 B
0 9 9

col , col + 1 , row , row + 1) ;
gtk_widge t_de st roy (board [row * 3 + coI l . ch i l d) ;
gtk_widge t_show (widget) ;
board [row * 3 + coI l . type = SQUARE_X ;
board [row * 3 + coI l . child = widget ;

i f (CheckForWin ())
NewGame (NULL) ;

e l s e
MakeComputerMove () ;

1 0 0 static GtkWidget *
1 0 1 GtkTTTDialog (void
1 0 2 {
1 0 3 GtkWidget *move , * qui t , *newgame , * l abe l , * rule , *bbox , * rlabe l ,

1 0 4 *dialog_window , * outervbox , *hbox ;

1 0 5
1 0 6 dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

1 0 7 gtk_window-pos i t ion (GTK_WINDOW (dial og_window) , GTK_WIN_POS_MOUSE) ;

l O B
1 0 9 gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " de s t roy " ,

1 1 0 GTK_S IGNAL_FUNC (gtk_main_quit) , &di al og_window) ;

1 1 1
1 1 2 gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " GtkTi cTacToe ") ;

1 1 3 gtk_window_set-pol i cy (GTK_WINDOW (dial og_window) , FALSE , FALSE ,

1 1 4 FALSE) ;

1 1 5 gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;

1 1 6
1 1 7 outervbox = gtk_vbox_new (FALSE , 0) ;

1 1 B gtk_box_s et_spac ing (GTK_BOX (outervbox) , 1 0) ;

1 1 9 gtk_container_add (GTK_CONTAINER (dialog_window) , outervbox) ;
1 2 0
1 2 1 table = gtk_tabl e_new (3 , 3 , TRUE) ;
1 2 2 gtk_box-pack_s tart (GTK_BOX (outervbox) , t abl e , FALSE , FALSE , 0) ;
1 2 3
1 2 4 rule = gtk_hseparator_new () ;
1 2 5 gtk_box-pack_s tart (GTK_BOX (outervbox) , rule , FALSE , FALSE , 0) ;
1 2 6
1 2 7 hbox = gtk_hbox_new (FALSE , 0) ;
1 2 B gtk_box-pack_s tart (GTK_BOX (outervbox) , hbox , FALSE , FALSE , 0) ;
1 2 9
1 3 0 hbox = gtk_hbox_new (FALSE , 0) ;
1 3 1 gtk_box_set_spacing (GTK_BOX (hbox) , 1 0) ;
1 3 2 gtk_box-pack_s tart (GTK_BOX (outervbox) , hbox , TRUE , TRUE , 0) ;

538

133
134 rlabel = gtk_labe l_new (" Row ") ;

Chapter 1 1 • More Container Classes

135 gtk_box-pack_start (GTK_BOX (hbox) , rlabe l , TRUE , TRUE , 0) ;
136
137 ent ryrow = gtk_entry_new () ;
138 gtk_widget_set_us i z e (entryrow , 30 , -1) ;
139 gtk_box-pack_start (GTK_BOX (hbox) , entryrow , TRUE , TRUE , 0) ;
140
141 rlabe l = gtk_label_new (" Column ") ;
142 gtk_box-pack_start (GTK_BOX (hbox) , rlabel , TRUE , TRUE , 0) ;
143
144 entrycol = gtk_entry_new () ;
145 gtk_widget_set_us ize (entrycol , 30 , -1) ;
146 gtk_box-pack_start (GTK_BOX (hbox) , entrycol , TRUE , TRUE , 0) ;
147
148 move = gtk_button_new_wi th_label (" Move ") ;
149 gtk_box-pack_start (GTK_BOX (hbox) , move , TRUE , TRUE , 10) ;
150 gtk_s ignal_connect (GTK_OBJECT (move) , " c l icked " ,
151 GTK_S IGNAL_FUNC (MakeMove) , NULL) ;
152
153 rule = gtk_hseparator_new () ;
154 gtk_box-pack_start (GTK_BOX (outervbox) , rule , FALSE , FALSE , 0) ;
155
156 bbox = gtk_hbutton_box_new () ;
157 gtk_box-pack_start (GTK_BOX (outervbox) , bbox , TRUE , TRUE , 0) ;
158
159 newgame = gtk_button_new_with_label ("New Game ") ;
160 gtk_box-pack_start (GTK_BOX (bbox) , newgame , FALSE , FALSE , 10) ;
161 gtk_s ignal_connect (GTK_OBJECT (newgame) , " c l icked " ,
162 GTK_S IGNAL_FUNC (NewGame) , NULL) ;
163
164 qui t = gtk_button_new_with_label (" Quit ") ;
165 gtk_box-pack_start (GTK_BOX (bbox) , quit , FALSE , FALSE , 10) ;
166 gtk_s ignal_connect_obj ect (GTK_OBJECT (quit) , " c l icked " ,
167 GTK_S IGNAL_FUNC (gtk_widget_destroy) ,
168 GTK_OBJECT (dialog_window» ;
169 gtk_widget_show_all (dialog_window) ;
170 return (dialog_window) ;
171
172
173 main (argc , argv
1 7 4 int argc ;
175 char *argv [] ;
176 {
177 gtk_ini t (&argc , &argv) ;
178
179 dialog = GtkTTTDialog () ;
180 NewGame (NULL) ;
181 gtk main () ;
182

GtkToolbar 539

GtkToolbar

Class Name

GtkToolbar

Parent Class Name

GtkContainer

Macros

Widget type macro: None defined

Object to widget cast macro: GTK _ TOOLBAR (obj)

Widget type check macro: GTK_IS_TOOLBAR (obj)

Supported Signals

Table 1 1 . 1 1 Signals

Signal Name

orientation_changed

Signal Function Prototypes

vo id

Condition Causing Signal to Trigger

The orientation of the toolbar was changed.

The style of the toolbar was changed.

orientation_changed (GtkToolbar * toolbar , GtkOr ientation orientation ,
gpo inter user_dat a) ;

void
s tyle_changed (GtkToolbar * toolbar , GtkToolbarStyle styl e ,

gpointer user data) ;

540

Application-Level API Synopsis

Retrieve the GtkToolbar type at runtime:
guint
gtk_toolbar_get_type (void) ;

Chapter I I • More Container Classes

Create an instance of GtkToolbar with the specified orientation and style:
GtkWidget *
gtk_toolbar_new (GtkOrientation orientat ion , GtkToolbarStyle style) ;

Append an item to the bottom of a vertical toolbar or to the rightmost end of a horizontal toolbar

(the child type of the item is GTK_TOOLBAR_ClllLD_BUTTON):
GtkWidget *
gtk_toolbar_append_item (GtkToolbar *toolbar , const char *text ,

const char * toolt ip_text , const char * tool t ip-private_text ,
GtkWidget * icon , GtkS ignalFunc cal lback , gpointer user_data) ;

Prepend an item to the top of a vertical toolbar or to the leftmost end of a horizontal toolbar (the

child type of the item is GTK_TOOLBAR_ClllLD_BUTTON):
GtkWidget *
gtk_toolbar-prepend_i tem (GtkToolbar *toolbar , const char * t ext ,

const char * tool t ip_text , const char * tool t ip-private_text ,
GtkWidget * icon , GtkS ignal Func cal lback , gpointer user_data) ;

Insert an item into the toolbar at the specified location (the child type of the item is

GTK_TOOLBAR_CHILD_BUTTON):

GtkWidget *
gtk_toolbar_insert_item (GtkToolbar *toolbar , const char * t ext ,

const char * toolt ip_text , const char * tool t ip-private_text ,
GtkWidget * icon , GtkS ignal Func cal lback , gpointer user_data ,
gint pos i t ion) ;

Append a space to the bottom of a vertical toolbar or to the rightmost end of a horizontal toolbar:
void
gtk_toolbar_append_space (GtkToolbar * toolbar) ;

Prepend a space to the top of a vertical toolbar or to the leftmost end of a horizontal toolbar:
void
gtk_toolbar-prepend_space (GtkToolbar *toolbar) ;

Insert a space into the toolbar at the specified location:
void
gtk_toolbar_insert_space (GtkToolbar * toolbar , gint pos i t ion) ;

Append an element of the specified type to the toolbar:
GtkWidget *
gtk_toolbar_append_element (GtkToolbar *toolbar ,

GtkToolbarChi ldType type , GtkWidget *widget ,
const char *text , const char * tool t ip_text ,
const char * tool t ip-private_text , GtkWidget * icon ,
GtkS ignalFunc cal lback , gpointer user_data) ;

GtkToolbar

Application-Level API Synopsis (Continued)

Prepend an element of the specified type to the toolbar:
GtkWidget *
gtk_toolbar-prepend_e l ement { GtkToolbar * t oo lbar ,

GtkToolbarChildType type , GtkWidget *widge t ,
const char * t ext , const char * tool t ip_text ,
cons t char * too l t ip-private_t ext , GtkWidget * i con ,

GtkS ignal Func cal lback , gpointer user_data) ;

Insert an element of the specified type into the toolbar:
GtkWidget *
gtk_toolbar_insert_e lement { GtkToolbar * t oolbar ,

GtkToolbarChildType type , GtkWidget *widge t ,
const char * t ext , cons t char * tool t ip_text ,
const char * tool t ip-private_text , GtkWidget * i c on ,
GtkS ignal Func c a l l back , gpoint e r user_dat a , gint pos i t i on) ;

Append an item of type GTK_TOOLBAR_CHILD_ WIDGET to the toolbar:
void

541

gtk_toolbar_append_widget { GtkToolbar * toolbar , GtkWidget *widge t ,
const char * toolt ip_text , const char * tool t ip-privat e_t ext) ;

Prepend an item of type GTK....TOOLBAR_CHILD_ WIDGET to the toolbar:
void
gtk_toolbar-prepend_widget { GtkToolbar * toolbar , GtkWidget *widge t ,

const char * toolt ip_text , const char * too l t ip-private_t ext) ;

Insert an item of type GTK_TOOLBAR_CHlLD_ WIDGET into the toolbar:
void
gtk_toolbar_insert_widget { GtkToolbar * t oolbar , GtkWidget *widge t ,

cons t char * tool t ip_text , const char * tool t ip-private_t ext ,
gint pos i t ion) ;

Change the orientation of the toolbar to vertical or horizontal:
void
gtk_toolbar_set_orientation { GtkToolbar * t oolbar ,

GtkOrientation orientat ion) ;

Set the toolbar style:
void
gtk_toolbar_set_styl e { GtkToolbar * t oolbar , GtkToolbarStyle s tyl e) ;

Set the size of spaces in the toolbar, in pixels:
void
gtk_toolbar_set_space_s i z e { GtkToolbar * t oolbar , gint space_s i z e) ;

Set the space style of spaces in the toolbar:
void
gtk_toolbar_set_space_styl e { GtkToolbar * t oolbar ,

GtkToolbarSpace S tyle space_styl e) ;

542

-

Chapter I I • More Container Classes

Application-Level API Synopsis (Continued)

Enable or disable tooltips for the menu bar:
voi d

gtk_toolbar_set_too l t ips (GtkToolbar * toolbar , gint enabl e) ;

Set the button relief style:
void
gtk_toolbar_set_but ton_re l i e f (GtkToolbar * t oolbar ,

GtkRe l i e fStyle re l i e f) ;

Get the button relief style:
GtkRe l i e f S tyle
gtk_toolbar_get_but ton_re l i e f (GtkToolbar * t oolbar) ;

__ IIk_llIIlloooo __ oomm_lIIloolmllmllllllllllllllmlmlm _____ _

Class Description

The GtkToolbar class is designed specifically for use by applications that need to implement

toolbars such as the ones shown in Figure 1 1 .29.

A toolbar manages a set of buttons that a user can click on to activate application tasks or to

bring up application dialogs. For many users, toolbars provide an easier and more intuitive way

to access the features of an application than the alternatives, such as selecting an item from a

menu. Because a toolbar is always visible to the user, application options presented as buttons

in the toolbar can be easier to discover for users than options available as items in a menu.

Figure 11.29 Toolbar

GtkToolbar 543

To add a toolbar to your application, you need to follow these steps:

1. Create an instance of GtkToolbar by calling gtk_toolbar_newO. At this point, the

orientation (horizontal or vertical) and style of the toolbar are specified.

2. Add child items (typically buttons) to the toolbar.
3. (Optional) Set attributes on the toolbar that control its appearance.

Once the toolbar has been created, it can then be added as a child of some other container

in the application user interface (for example, a window or vertical box widget).

A toolbar's orientation controls how the toolbar is drawn, either horizontally or verti

cally. A vertical toolbar can be obtained by setting the orientation to GTK_

ORIENTATION_VERTICAL, and a horizontal toolbar can be obtained by setting the ori

entation to GTK_ORIENTATION_HORIZONTAL. The style of a toolbar controls what is

displayed by the toolbar for each button. Setting the style to GTK_TOOLBAR_ICONS
causes only button icons to be displayed. Setting the style to GTK_TOOLBAR_TEXT

results in the display of the text label only. Setting the toolbar style to GTK_TOOLBAR_

BOTH will cause both the button icon and the text label to be displayed for each button in

the toolbar.

Creating a Toolbar

Now that we know a bit about toolbars, let's see how to create an instance of GtkToolbar.

To create an instance of GtkToolbar, call gtk_toolbar_newO :

GtkWidget *
gtk_toolbar_new (GtkOrient ation orientation , GtkToolbarStyle styl e) i

The first argument, orientation, can be set to either GTK_ORIENTATION_ VERTICAL
or GTK_ORIENTATION_HORIZONTAL. Possible values for style are GTK_

TOOLBAR_ICONS, GTK_TOOLBAR_TEXT, and GTK_TOOLBAR __ BOTH.

Adding Toolbar Children

Once you have created a toolbar, it is time to add children. At this point, you must make a
decision regarding what kind of children will be added. Most Gtk+ applications will choose

to add button (instances of GtkButton) children to the toolbar. If your tool bar consists of but

tons, one of the following three functions can be used to add your children to the toolbar. The
three functions gtk_toolbar_appendO, gtk_toolbar_prependO, and gtk_toolbar_insertO are
essentially the same in terms of their function prototypes and differ only in where they place
the child widget in relation to child widgets that have been previously added to the toolbar.

The first function, gtk_toolbar_appendO, creates a button child and appends it to the bottom
of a vertical toolbar or to the end of a horizontal toolbar:

GtkWidget *
gtk_toolbar_append_item (GtkToo lbar * t oolbar , cons t char * t ext ,

const char * toolt ip_t ext , const char * t oo l t ip-private_t ext ,
GtkWidget * i con , GtkS igna l Func cal lback , gpo inter user_data) i

The arguments to gtk_toolbar_append_itemO are as follows:

544 Chapter 1 1 • More Container Classes

• toolbar This is the instance of GtkToolbar to which the button is being added.

• text This is the label text that will be displayed by the button.

• tooItip_text This is the tooltip text shown by the button when the user mouses over

it while tooltips are enabled.
• tooltip_private_text In most cases, you can set this to NULL. Or you can pass a string

that will be used as an identifier for the tooltip in conjunction with a GtkTipsQuery widget.

• icon This is an instance of GtkPixmap that will be used as the icon displayed by the

button. Each button must have its own GtkPixmap instance because a widget can only

be managed by one parent at a time.
• callback This is the signal function that will be invoked when the user clicks on the

toolbar button being added. The function prototype of the callback is identical to the

prototype of the GtkButton "clicked" signal function.
• user_data This is the client data that will be passed to callback by GtkButton when

the toolbar button is clicked.

An Example

The following code snippet implements the toolbar illustrated in Figure 1 1 .30. Each toolbar

is linked to a single callback that displays to stdout the text message it is passed via its second

argument, data.

Figure 1 1.30 Simple Toolbar

Listing 1 1.7 Code Snippet that Implements Figure 1 1 .30

0 0 1 # inc lude <gtk/gtk . h>
0 0 2
0 0 3 stat ic void
004 button_cal lback (GtkWidget *widget , gpointer data)
0 0 5 {
0 0 6 print f (" % s \ n " , (char *) data) ;
0 0 7
0 0 8
0 0 9 stat i c GtkWidget *
0 1 0 make_toolbar (GtkWidget *window)
0 1 1 {

GtkToolbar

0 1 2 GtkWidget *toolbar ;
0 1 3
0 1 4 toolbar gtk_toolbar_new (GTK_ORIENTATION_HORI ZONTAL ,
0 1 5 GTK_TOOLBAR_BOTH) ;
0 1 6
0 1 7 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Go " ,

545

0 1 8 " Green Means Go " , NULL , new--'pixmap (" go . xpm " , wi ndow- >window ,
0 1 9 &window- >style - >bg [GTK_STATE_NORMAL]) ,
0 2 0 (GtkS ignalFunc) button_cal lback , " Go button was pressed") ;
0 2 1 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Caut ion " ,
0 2 2 " Ye l low Means Caut ion " , NULL , new--'pixmap (" caut ion . xpm " ,
0 2 3 window- >window , &window- >style - >bg [GTK_STATE_NORMAL]) ,
0 2 4 (GtkS ignal Func) button_cal lback ,
0 2 5 " Caut ion button was pressed") ;
0 2 6 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Stop " ,
0 2 7 " Red Means Stop " , NULL , new--'pixmap (" stop . xpm" ,
0 2 8 window- >window , &window- > style - >bg [GTK_STATE_NOI�]) ,
0 2 9 (GtkS ignal Func) button_cal lback , " Stop button was pressed") ;
0 3 0 return toolbar ;
0 3 1
0 3 2
0 3 3 main (argc , argv
0 3 4 int argc ;
0 3 5 char *argv [] ;
0 3 6 {
0 3 7 GtkWidget *window , *toolbar , *vbox ;
0 3 8
0 3 9 gtk_init (&argc , &argv) ;
0 4 0
0 4 1 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
0 4 2 gtk_widget_show (window) ;
0 4 3 gtk_window--.p0s i t ion (GTK_WINDOW (window) , GTK_WIN_POS_CgNTER) ;
0 4 4
0 4 5 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,
0 4 6 GTK_S IGNAL_FUNC (gtk_widget_destroy) , &window) ;
0 4 7
0 4 8
0 4 9
0 5 0
0 5 1
0 5 2
0 5 3
0 5 4
0 5 5

gtk_window_set_t i t l e (GTK_WINDOW (window) , " GtkToolbar Sample ") ;
gtk container border width (GTK CONTAINER (window) , 0) ; - - - -

toolbar = make_toolbar (window) ;

vbox = gtk_vbox_new (FALSE , 0) ;
gtk_container_add (GTK_CONTAINER (window) , vbox) ;

0 5 6 gtk_box--'pack_start (GTK_BOX (vbox) , toolbar , FALSE , FAl.SE , 0) ;
0 5 7 gtk_widget_show_all (vbox) ;
0 5 8
0 5 9 gtk_main () ;
0 6 0

Most of the interesting work happens in the function make_toolbar() on lines 009 through
031. On line 014, a horizontal toolbar that displays both the button image and the text on each

546 Chapter 1 1 • More Container Classes

toolbar button is created by calling gtluoolbacnewO. On lines 017 through 026, calls are

made to gtk_toolbar_append_itemO to create each of the buttons in the toolbar:

0 1 7 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Go " ,
0 1 8 " Green Means Go " , NULL , new-pixmap (" go . xpm " , window-window ,
0 1 9 &window- style-bg [GTK_STATE_NORMAL]) ,
0 2 0 (GtkS ignalFunc) button_cal lback , " Go button was pressed") ;

For example, on line 0 1 7, a button is created with the text label "Go," tooltip text set to

"Green Means Go," and an image based on the xpm image contained in the file go.xpm.

The function new _pixmapO is a function provided by the application and creates an

instance of GtkPixmap based on the image file passed as its first argument. The remaining

arguments to gtk_toolbar_append_itemO specify the "clicked" signal function that will be
invoked whenever the toolbar button is pressed, and its data argument, which will be printed
to stdout by the signal function when it is invoked.

Care needs to be taken when creating or selecting the pixmap that will be used as the

toolbar button image to ensure that the background of the image integrates correctly with

the color of the toolbar button. The GIMP can be used to create an image that is appropriate

for use as a toolbar button pixmap. For example, to create a 20 X 19 xpm file like the ones
used in Figure 1 1 .30, you might follow these steps:

1 . Launch The GIMP (by typing "gimp" at the shell command-line prompt).
2. Once The GIMP loads, select New from the File menu.

3. In the dialog that displays, specify the width and height of the icon (in this example,

width = 20 and height = 19), select the Transparent radio button from the Fill Type

radio group, and then click OK. Resize the window that results and use the "=
" key

to zoom in, as this will make editing the pixmap easier.
4. Use tools provided by The GIMP to draw the image desired and then use Save As

from the File menu to save the image as an XPM file.

The key step in the preceding process is specifying a fill type of Transparent when the
image is first created. I have tried creating pixmap images that contain transparent fill types

using xpaint(l) but have been unsuccessful.
The next two functions are identical to gtk_toolbar_append_itemO, for the most part.

The function gtk_toolbar_prepend_itemO takes exactly the same arguments as gtk_t
oolbar_append_itemO. The difference is that it prepends the button to the top of a vertical

toolbar or to the leftmost end of a horizontal toolbar.

GtkWidget *
gtk_toolbar-prepend_item (GtkToolbar *toolbar , const char * t ext ,

const char * toolt ip_text , const char * tool t ip-private_text ,
GtkWidget * icon , GtkS ignal Func cal lback , gpointer user_data) ;

The final function in this group, gtk_toolbar_inserUtemO, can be used by an application to
add a button at a specified location in the toolbar. Each button in a toolbar is assigned a position
in the range [0, n - 1] , where n is the total number of buttons in the toolbar. Position 0 is the
leftmost button, and position n - 1 is the rightmost button in a horizontal toolbar. In a vertical
toolbar, position 0 is the topmost button, and position n - 1 is the bottommost button. the func-

GtkToolbar 547

tion prototype for gtk_toolbacinserUtemO is the same as for gtk_toolbacappend_itemO and
gtk_toolbar_prepend_itemO, except for an additional argument, position, which specifies the

location of the button in the toolbar upon return from the function:

GtkWidget *
gtk_toolbar_insert_i tem { GtkToolbar * toolbar , const char *text ,

const char * tool t ip_text , const char * toolt ip-private_text ,
GtkWidget * icon , GtkS ignal Func cal lback , gpointer user_data ,
gint pos i t ion) ;

The argument position must be in the range [0, n], where n is the number of buttons in

the toolbar before the call is made. Setting position to 0 is equivalent to calling gtk_toolbar_

prepend_itemO, while setting position to n is equivalent to calling gtk_toolbar_append_

itemO.

Button Spacings

For purely aesthetic reasons, applications can place one or more spaces within a toolbar to

provide visual separation between two buttons or two sets of unrelated buttons in the tool
bar. Essentially, you can think of space items in a toolbar as buttons that do not display text
or pixmap data and that are insensitive to user input. The reason you might think of them

as buttons is that they occupy a position in the toolbar. For example, appending a space item
to a toolbar places it at position 0 and increments the position value of the remaining space

items and buttons in the toolbar.
To append a space to the bottom of a vertical toolbar (or to the leftmost end of a horizontal

toolbar), call gtk_toolbar_append_spaceO:

void
gtk_toolbar_append_space { GtkToolbar * toolbar) ;

Similarly, to prepend a space to the top of a vertical toolbar (or to the rightmost end of

a horizontal toolbar), call gtk_toolbar_prepend_spaceO:

void
gtk_toolbar-prepend_space {GtkToolbar * toolbar) ;

Finally, you can insert a space into the toolbar at a specified location with a call to
gtk_toolbar_insert_spaceO:

void
gtk_toolbar_insert_space { GtkToolbar *toolbar , gint pos it ion) ;

Two attributes apply to space items in a toolbar. The first, the size of the space, is a value

in pixels that determines how much space, vertically in a vertical toolbar and horizontally
in a horizontal toolbar, is consumed by each space inserted into the toolbar. You can set this
space value by calling gtk_toolbar_secspace_sizeO:

void
gtk_toolbar_set_space_s i z e { GtkToolbar *toolbar , gint spa=e_s i z e) ;

548 Chapter 1 1 • More Container Classes

The argument space_size is specified in pixels.

The second attribute, space style, can be one of two values:

• GTK_TOOLBAR_SPACE_EMYfY The space is just that, empty space between

adjacent buttons.

• GTK_TOOLBAR_SPACE_LINE A vertical separator (horizontal toolbars) or hori

zontal separator (vertical toolbars) is placed in the middle of the area occupied by each

space item in the toolbar. Figure 1 1 .3 1 illustrates a toolbar that contains a space between

the Go and Caution buttons and that is using GTK_TOOLBAR_SPACE_LINE style

spaces.

You can set the space style with a call to gtlctoolbar_secspace_styleO:

void
gtk_toolbar_set_space_style (GtkToolbar *toolbar ,

GtkToolbarSpaceStyle space_style) ;

The argument space_style can be set to either GTK_TOOLBAR_SPACE_LINE or
GTK_TOOLBAR_SPACE_EMPTY. The default space value (used when gtk_toolbar_

secspace_styleO is not called by your application) is GTK_TOOLBAR_SPACE_EMPTY.

Adding Children of Arbitrary Type
Now that I have covered how applications can add buttons with images and text to a toolbar,
I can present the more general GtkToolbar API that can be used to add widgets of arbitrary
type as elements of a toolbar. If your application is among those that only adds buttons and
spaces to a toolbar, you can get by using the functions already described, and the next six
GtkToolbar functions that I will describe are probably not meaningful to you. One major
exception will be application authors who want their toolbar buttons to behave like toggle
buttons or radio buttons. If you are such an author, the following will be of interest to you.

GtkToolbar 549

The three functions gtk_toolbacappend3IementO, gtk_toolbacprepend_elementO,
and gtk_toolbacinsert3lementO that I am about to describe differ from their gtk_toolbar_
* _itemO counterparts (which I previously described) in that they take two additional argu
ments: a type and a widget. The gtk_toolbac * _itemO functions previou�ly described create
and manage a button widget for you automatically; all you must do is pass a pixmap image

and label for the button, and these functions take care of creating and managing the button

widget that displays them.
There are five values that can be passed as the type, as defined in the enum GtkToolbar

Child'!Ype:

typede f enum
{

GTK_TOOLBAR_CHILD_SPACE ,
GTK_TOOLBAR_CHILD_BUTTON ,
GTK_TOOLBAR_CHILD_TOGGLEBUTTON ,
GTK_TOOLBAR_CHI LD_RADIOBUTTON ,
GTK_TOOLBAR_CHILD_WIDGET

GtkToolbarChildType ;

Let's look at each of these values individually. When GTK_TOOLBAR __ CHILD_SPACE is

passed as type, a space is added to the toolbar. The widget argument to gtk_toolbar_ * _elementO
is ignored. Other arguments ignored include the text, tooltip_text, tooltip_private_text, icon,

callback, and usecdata arguments. Making a call to one of the gtk_toolbar_ * _spaceO functions

will give identical results and is the recommended way to add spaces to your toolbars.
Setting type to GTK_TOOLBAR_CHILD_BUTTON gives the same results as calling the

gtk_toolbar_ * _itemO functions. In this case, you also must pass a NULL widget argument

because GtkToolbar expects to allocate it for you. The rest of the arguments are honored, how

ever. Like GTK_TOOLBAR_CHILD_SPACE, there is little need for most Gtk+ applications

to use this function, and I recommend that, for buttons, you stick with one of the gtk_

toolbar_ *_itemO functions.
Setting type to GTK_TOOLBAR_CHILD_TOGGLEBUTTON causes GtkToolbar to

instantiate and add to the toolbar an instance to GtkToggleButton. widget must be NULL or

an error will occur. The remainder of the arguments are honored and act identically to those

passed to the gtk_toolbar_ * _itemO functions. A toggle button might be used in lieu of a reg
ular button to communicate a state that is independent of other buttons in the toolbar (that is,
the selection of one button does not imply the selection, or deselection, of other buttons in the
toolbar). If you need to communicate the state of a button that is not mutually exclusive of the
state of other buttons in a toolbar, you can use the set of buttons in this category as radio button
toggle buttons by setting the type field to GTK_TOOLBAR_CHILD_RADIOBUTTON. If

widget is NULL, the radio button created and returned defines a radio button group to which
other radio buttons can be added. Figure 1 1 .32 illustrates a typical use of radio buttons in a

toolbar. Here I have created a toolbar that contains the standard Play, Stop, Pause, Back, and
Forward buttons that you might find in a CD-ROM player or similar application.

550

Figure 11.32 Using Radio Buttons in a Toolbar

Chapter 1 1 • More Container Classes

The Back and Forward buttons are regular toolbar buttons, and therefore I used

gtk_toolbar_append_itemO to add both of these buttons to the toolbar. The reason for this is
that these buttons do not convey state; when pressed, they simply do their job and then return

to a deselected state. The remaining buttons, however, need to act like toggle buttons, on the
one hand, because it is desirable for the Play button to be inset when the CD-ROM (or what
ever) is being played, for example. But it is not possible for the player to simultaneously play,

pause, and stop the CD-ROM; only one state can be active at any one time. For this reason,
each of these buttons is a radio button and has been made to belong to the same radio group.

The relevant code (similar to code presented earlier) is as follows:

0 3 0 s t a t i c GtkW i dge t *

0 3 1 Creat e Cont rolToolbar (GtkWidget *window)

0 3 2 {
0 3 3 GtkWidget * t oolba r ;

0 3 4 GtkWidget * radio_group ;

0 3 5
0 3 6 t o o l b a r = gtk_toolbar_new (GTK_ORI ENTATION_HORI ZONTAL , GTK_TOOLBAR_BOTH) ;

0 3 7 gtk_t oolbar_set_space_s i z e (GTK_TOOLBAR (toolbar) , 2 0) ;

0 3 8

0 3 9 radi o_group = gtk_toolbar_append_e l ement (GTK_TOOLBAR (toolbar) ,

0 4 0 GTK_TOOLBAR_CHI LD_RAD IOBUTTON , NULL , " Pl a y " ,

0 4 1 " C l i ck here t o p l ay the current s e l e c t i on " , NULL ,

0 4 2 newy i xmap (" p l ay . xpm " ,

0 4 3 w indow - >wi ndow , &window - > s tyl e - >bg [GTK_STATE_NORMAL]) ,

0 4 4 (GtkS ignal Func) but ton_c a l lback , " ") ;

0 4 5 gtk_toolbar_append_e l ement (GTK_TOOLBAR (toolbar) ,

0 4 6 GTK_TOOLBAR_CHI LD_RADI OBUTTON , radi o_group , " Paus e " ,

0 4 7 " C l i ck here t o pau s e the current s e l e c t i on " , NULL ,

0 4 8 newyixmap (" paus e . xpm " , window - >window ,

0 4 9 &window - > s tyl e - >bg [GTK_STATE_NORMAL]) ,

0 5 0 (Gt k S i gna l Func) but t on_c a l lback , " ") ;

0 5 1 gtk_toolbar_append_space (GTK_TOOLBAR (toolbar)) ;

0 5 2 gtk_t oolbar_append_e l ement (GTK_TOOLBAR (toolbar) ,

0 5 3 GTK_TOOLBAR_CHI LD_BUTTON , NULL , " Ba ck " ,

0 5 4 " C l i ck here t o g o t o previous s e l e c t i on " , NULL ,

GtkToolbar

0 5 5 newyixmap (" back . xpm " , window- >window ,
0 5 6 &window- >styl e - >bg [GTK_STATE_NORMAL]) ,
0 5 7 (GtkSignal Func) button_cal lback , " ") ;
0 5 8 gtk_toolbar_append_e lement (GTK_TOOLBAR (toolbar) ,
0 5 9 GTK_TOOLBAR_CHILD_BUTTON , NULL , " Forward " ,
0 6 0 " Cl ick here t o g o t o next selection " , NULL ,
0 6 1 newyixmap (" forward . xpm " , window- >window ,
0 6 2 &window- >styl e - >bg [GTK_STATE_NORMAL]) ,
0 6 3 (GtkSignal Func) but ton_cal lback , " ") ;
0 6 4 gtk_toolbar_append_space (GTK_TOOLBAR (toolba r)) ;
0 6 5 gtk_toolbar_append_e lement (GTK_TOOLBAR (toolbar) ,
0 6 6 GTK_TOOLBAR_CHI LD_RADIOBUTTON , radio_group , " Stop " ,
0 6 7 " Cl i ck here t o stop the current selection " , NULL ,
0 6 8 newyixmap (" stop . xpm " , window- >window ,
0 6 9 &window- >styl e - >bg [GTK_STATE_NORMAL]) ,
0 7 0 (GtkSignal Func) button_cal lback , " ") ;
0 7 1 return toolbar ;
0 7 2

SSt

On lines 052 and 058, the Back and Forward buttons are created. Since they are basic tool

bar buttons, I could have created them by calling gtk_toolbar_append_itemO. On line 039, I
create the Play button and, at the same time, define the radio group to which the Pause and Stop

buttons are later added (on lines 045 and 066, respectively). Gtlctoolbar __ append_spaceO is

also called on lines 051 and 064 to add some visual separation to groups of related buttons. I

could have used gtk_toolbar_append_elementO here as well, setting type to GTK_

TOOLBAR_CHILD_SPACE, but that would have made the code harder to read, (perhaps

immeasurably) slower to execute, and would have gained nothing. The final type of toolbar

item that can be created is GTK_TOOLBAR_CHILD_ WIDGET. Here we have license to add

pretty much any widget that we like in place of a button. For example, you might add a widget

of your own design that displays an animated PNG graphic or a text-edit field (i.e., an instance

of GtkEntry). Of course, the application will need to register its own signal functions as appro

priate for the widget being added. The argument widget must be an instance of GtkWidget (or

a derived class) that is not currently managed by a container widget (e.g. , it'S parent is NULL).

The arguments tooltip_text and toolkiCprivate_text are supported by Gtk1bolbar for widgets

of arbitrary type. The arguments text, icon, callback, and usecdata are all ignored when type

is set to GTK_TOOLBAR_CHILD_ WIDGET and should be set to NULL.

Now that we understand the theory and usage behind the gtk_toolbar_ * _elementO func
tions, let' s look at the function prototypes. To append the element to the toolbar, call

gtk_toolbar_append_elementO:

GtkWidget *
gtk_toolbar_append_el ement (GtkToolbar * toolbar ,

GtkToolbarChildType type , GtkWidget *widget , const char *text ,
const char * tool t ip_text , const char * tool t ip-pri vate_text ,
GtkWidget * i con , GtkS ignalFunc cal lback , gpointer user_data) ;

To prepend an element, call gtk_toolbacprepend_elementO:

552 Chapter 1 1 • More Container Classes

GtkWidget *
gtk_toolbar-prepend_e lement (GtkToolbar *toolbar ,

GtkToolbarChildType type , GtkWidget *widget , const char * t ext ,
const char * toolt ip_text , const char * tool t ip-private_text ,
GtkWidget * icon , GtkS ignalFunc cal lback , gpointer user_data) ;

And predictably, to insert an element, call gtlctoolbacinsert_elementO :

GtkWidget *
gtk_toolbar_insert_e lement (GtkToolbar * toolbar ,

GtkToolbarChildType type , GtkWidget *widget , const char *text ,
const char * toolt ip_text , const char * tool t ip-private_text ,
GtkWidget * icon , GtkS ignalFunc cal lback , gpointer user_data ,
gint pos it ion) ;

The arguments to each of these functions were previously described.

Convenience Functions

GtkToolbar supplies three convenience functions that can be used to add widgets to a tool

bar. I call these convenience functions because they simply wrap calls to gtk_toolbac *ele

mentO and require you to only pass a subset of arguments actually used by GtkToolbar

when adding toolbar children of type GTK_TOOLBAR_CHILD_WIDGET. The argu

ments omitted are type (it defaults to GTK_TOOLBAR_CHILD_ WIDGET), text, icon,

callback, and usecdata. As you might expect, three functions are supported: one to append

a widget, one to prepend a widget, and one to insert a widget into the toolbar. To append an

item of type GTK_TOOLBAR_ CHILD_WIDGET to the toolbar, call gtk_toolbar_

append_ widgetO :

void
gtk_toolbar_append_widget (GtkToolbar *toolbar , GtkWidget *widget ,

const char * tool t ip_text , const char * tool t ip-private_text) ;

The arguments toolbar, widget, tooltip_text, and tooltip_private_text were all as

described earlier for gtk_toolbar_append_elementO when type is set to GTK_TOOLBAR_

CHILD_WIDGET.

To prepend an item of type GTK_TOOLBAR_CHILD_WIDGET to the toolbar, call

gtk_toolbar_prepend_ widgetO:

void
gtk_toolbar-prepend_widget (GtkToolbar *toolbar , GtkWidget *widget ,

const char * toolt ip_text , const char * toolt ip-private_text) ;

The arguments to gtk_toolbar_prepend_ widgetO are identical to those passed to
gtk_toolbar_append_widgetO. Finally, to insert a widget at an arbitrary location of a tool bar,
call gtk_toolbar_insert_ widgetO:

void
gtk_toolbar_insert_widget (GtkToolbar *toolbar , GtkWidget *widget ,

const char * tool t ip_text , const char * toolt ip-private_text ,
gint pos i t ion) ;

GtkToolbar 553

The arguments toolbar, widget, tooltip_text, and tooltip_private_text are the same as

described for gtk_toolbar_append_ widgetO and gtk_toolbar_prepend_ widgetO. The argument

position specifies the location of the widget in the toolbar after the routine returns; it must be

in the range [0, n] , where n is the number of items in the toolbar after the insertion is performed.

Setting the Toolbar Orientation

The remaining GtkToolbar functions have to do with visual presentation of the toolbar and

the control of tooltips.

The orientation (vertical or horizontal) is specified at the time the toolbar is created with

gtk_toolbar_newO. However, GtkToolbar allows the orientation to be changed after the

toolbar is created. You might find it appropriate to allow users to control the orientation of

the toolbar via a preference of some sort; upon changes to the preference, a call to
gtk_toolbar_secorientationO can be made to change the orientation as desired:

void
gtk toolbar set orientat ion (GtkToolbar * t oolbar , - - -

GtkOrientat ion orientat ion) ;

orientation can be either GTK_ORIENTATION_ VERTICAL for a vertical toolbar or

GTK_ORlENTATION_HORIZONTAL for a horizontal toolbar.

Setting the Toolbar Style

The toolbar style, which also was initially set with gtk_toolbar_newO, can be changed at

runtime with a call to gtk_toolbar_seCstyleO:

void
gtk_toolbar_set_style (GtkToolbar * toolbar , GtkToolbarStyle style) ;

The style argument can be one of the following listed in Table 1 1. 1 2.

Table 11.12 Toolbar Styles

Style

GTK_TOOLBAR_ICONS

Meaning

Show only icons

Show only text

Show both text and icons

Note that style is only applicable to buttons in the toolbar (e.g. , the child type must be
GTK_TOOLBAR_CHILD_BUTTON, GTK_TOOLBAR_CHILD_TOGGLEBUTTON,
or GTK_TOOLBAR_CHILD_RADIOBUTTON). Other widgets managed by the toolbar

are not affected by the style setting.

Enabling and Disabling Tooltips
To enable or disable tooltips for the menu bar, call gtk_toolbar_seCtooltipsO:

554 Chapter 1 1 • More Container Classes

void
gtk_toolbar_set_tooltips (GtkToolbar *toolbar , gint enable) ;

If enable is TRUE, tooltips will be enabled; if it's FALSE, tooltips will be disabled. Like the
orientation and style settings, the hiding and showing of tooltips can be performed at runtime.

Setting and Getting the Button Relief Attribute

The final two functions in the GtkToolbar API deal with button relief settings. You can get

the current relief setting with gtk_toolbar�eCbutton_reliefO:

GtkRe l i efStyle
gtk_toolbar_get_button_re l i e f (GtkToolbar * toolbar) ;

The possible relief styles returned are GTK_RELIEF _NORMAL, GTK_RELIEF _HALF,

and GTK_RELIEF _NONE. GTK_RELIEF _NORMAL and GTK_RELIEF _HALF appear

to be identical in Gtk+ 1.2 (or GTK_RELIEF _HALF is not supported). See Figure 11.32 for

buttons drawn with GTK_RELIEF _NORMAL and see Figure 11.33 for the same buttons
drawn with GTK_RELIEF _NONE.

Figure 1 1.33 GTK_RELIEF _NONE Relief (See Also Figure 1 1 .32)

You can change the relief style at runtime by making a call to gtk_toolbar_seCbutton_reliefO:

void
gtk_toolbar_set_button_re lief (GtkToolbar * toolbar ,

GtkRe l i e fStyle relief) ;

The argument relief must be GTK_RELIEF _NORMAL, GTK_RELIEF _HALF, or
GTK_RELIEF _NONE. See the preceding description of gtk_toolbar�ecbutton_reliefO.

GtkHandleBox 555

GtkHandleBox

Class Name

GtkHandl eBox

Parent Class Name

GtkBin

Macros

Widget type macro: Not defined

Object to widget cast macro: GTK _HANDLE_BOX (obj)

Supported Signals

Table 1 1.13 Signals

Condition Causing Sig1Ul1 to Trigger Sig1Ul1 Name

child_attached The child widget became attached to the parent.

The child widget became detached from the

parent.

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_BIN at runtime:
guint
gtk_handl e_box_get_type (vo i d) ;

Create a new instance of GtkHandleBox:
GtkWidget *
gtk_handl e_box_new (vo i d) ;

Set the shadow type of the handle box (G�SHADOW flONE, G�SHADOW _IN,

GTK_SHADOW _OUT, G�SHADOW _ETCHEDJN, or GTK_SHADOW _ETCHED_OUT) :

vo id
gtk_handle_box_set_shadow_type (GtkHandl eBox * handle_box ,

GtkShadowType type) ;

556 Chapter 1 1 • More Container Classes

Application-Level API Synopsis (Continued)

Set the position of the handle in the handle box (GTK_POS_LEFr, GTK_POS_RIGHT,
GTK_POS_TOP, or GTK_POS_BOTTOM):

void
gtk_handle_box_set_handle-pos i t ion (GtkHandl eBox * handle_box ,

GtkPos itionType pos i t ion) ;

Set the snap edge (GTK_POS_LEFr, GTK_POS_RIGHT, GTK.-POS_TOP, or

GTK_POS_BOTTOM) of the handle box (see text):
void
gtk_handle_box_set_snap_edge (GtkHandleBox *handle_box ,

GtkPos i t ionType edge) ;

Class Description

Figure 1 1 .34 illustrates a handle-box widget used to contain a toolbar widget (see Figure 1 1 .32
for the same toolbar parented in a vertical box widget). Handle boxes are container widgets that

have a unique property: Application users are allowed to drag the child of the handle box to an
area that is outside the area occupied by the handle-box widget; this operation is referred to as

"detaching" a child. To detach a child, the user moves the mouse so that the pointer is over a

grip or handle located along either the top, bottom, left (default), or right edge of the handle box.

The user then presses mouse button 1 and drags the child to the desired location on the desktop.
Figure 1 1 .35 illustrates the same handle-box widget that was shown in Figure 1 1 .34 but with its

child detached. A child that has been detached will be reparented in a floating window.

Figure 11.34 Toolbar Parented by a Handle Box

Figure 11.35 Detached Handle-Box Widget

GtkHandleBox 557

The handle box, when a child detaches, is redrawn as a "ghost window:' This ghost window

provides a location to which the user can move the floating window in order to reattach the child
to the handle box. Depending on the snap-edge attribute of the handle box and the container wid

get that manages the handle box, reattaching a floating window to its handlt: box parent can be

a somewhat difficult task for users to become accustomed to. I ' ll have more to say about this

issue later when I discuss the snap-edge attribute.

A child that has been detached from a handle box can be moved back (attached) to the

handle box from which it was detached again by way of the grip or handle (which remains

attached to the child).

Creating a Handle-Box Widget

GtkHandleBox is a relatively easy class to use. To create a new instance of GtkHandleBox,

call gtk_handle_box_newO:

GtkWidget *
gtk handle box new (void) ; - - -

The widget that is returned by gtk_handle_box_newO is a container widget. As a result, a

child widget (e.g., another container such as GtkVBox or a noncontainer widget such as Gtk

Button) can be easily added with a call to gtk_containecaddO. The following code creates a

handle box and an instance of GtkToolbar and makes the toolbar a child of the handle box.

GtkWidget *hdlbox , * tbar ;

I I create a toolbar

II add chi ldren to the toolbar

AddSomeToolbarButtons (tbar) ;

I I create a handle box

II make the toolbar a chi ld of the handle box

gtk container add (GTK CONTAINER (hdlbox) , tbar) ; - - -

At this point, you know all that you need to know to effectively use handle-box widgets
in your applications.

Handle box does not implement a sophisticated child placement algorithm like other
container-derived classes such as GtkBox or GtkTable. GtkHandleBox can only manage a
single child. Therefore, to group a set of widgets together in a handle box, the widgets must

be parented by an instance of some other container widget class such as GtkTable, GtkBox,
and so forth. This container widget can then be added as the child of the handle box. The

558 Chapter 1 1 • More Container Classes

preceding toolbar example is an example of this technique. (The toolbar is the container
class that is made a child of the handle box, while the toolbar buttons added by AddSome

ToolbarButtonsO are children managed by the instance of GtkToolbar.)

Setting the Shadow Type

Most applications will do fine using the defaults provided by GtkHandleBox and therefore

can ignore the three functions I am about to discuss.

An application can change the shadow type of the handle box by making a call to
gtk_handle_box_secshadow _typeO:

void
gtk_handle_box_set_shadow_type (GtkHandleBox *handle_box ,

GtkShadowType type) ;

The type argument must be one of the following: GTK_SHADOW _NONE, GTK_
SHADOW_IN, GTK_SHADOW _OUT, GTK_SHADOW _ETCHED_IN, or GTK_

SHADOW _ETCHED_OUT. The default is GTK_SHADOW _OUT.

Setting the Handle Location

An application can also control where the handle is located in the handle box. To position

the handle or grippy along the left, right, bottom, or top edge of a handle box, an application
can call gtk_handle_box_seChandle_positionO:

void
gtk_handle_box_set_handle-pos i t ion (GtkHandleBox *handle_box ,

GtkPos itionType pos ition) ;

The possible values are GTK_POS_LEFf (default), GTK_POS_RIGHT, GTK_POS_TOP,

and GTK_POS_BarroM.

Setting the Snap Edge

The snap edge, which can be set to the same value as the handle position, is used by
GtkHandleBar to detect when the user has moved a detached child back into the handle box.

First, let's look at the function that can be called to change the snap edge,
gtk_handle_box_secsnap_edgeO:

void
gtk_handle_box_set_snap_edge (GtkHandleBox *handle_box ,

GtkPos i t ionType edge) ;

The arguments you pass to gtk_handle_box_seCsnap_edgeO are the same as those you
pass to gtk_handle_box_secshadow_typeO. Setting edge to - 1 , however, causes GtkHan

dleBox to derive its own snap edge value that is based on the handle position. If the handle

position is GTK_POS_LEFf or GTK_POS_RIGHT, GtkHandleBox will use a snap edge
of GTK_POS_TOP. Otherwise, a snap edge of GTK_POS_LEFf will be used.

How is snap edge used, exactly? First of all, if the user detaches and then reattaches a

child in a single drag (e.g., there is no button release between the point at which the detach

GtkEventBox 559

occurred and the reattach is performed), then the snap edge does not matter, and reattach

ment occurs when the user moves the pointer to the same position that it occupied when the

drag was initiated.
If a user drags a child window away from the handle box and releases the mouse button to

place the floating (child) window on the desktop, then the snap-edge attribute of the handle
box may have a more direct effect on how easy it will be for the user to reattach the child wid
get to the handle box. In short, the edge of the floating (detached) window that corresponds

to the snap-edge attribute of the handle box must be aligned (within tolerances) to that same

edge of the handle-box ghost window in order for reattachment to be performed. If the size or

position of the ghost window is different than the size or position of the handle box before the

child was detached, and the snap edge chosen by your application for the handle box does not

take this size or position change into account, users may find reattaching the detached child

to the handle box difficult or perhaps impossible.
To combat this problem, you should parent the handle box so that the snap edge you

choose (or the default supplied by GtkHandleBox as previously described) does not

become repositioned after a detach operation is performed.

GtkEventBox

Class Name

GtkEventBox

Parent Class Name

GtkBin

Macros

Object to widget cast macro: GTK_ EVENT_BOX (obj)

Widget type check macro: GTK_IS_EVENT_BOX (obj)

560 Chapter 1 1 • More Container Classes

Application-Level API Synopsis

Retrieve the constant GTICTYPE_EVENTJ30X at runtime:
GtkType
gtk_event_box_get_type (void) ;

Create a new instance of GtkEventBox:
Gtkwidget *
gtk_event_box_new (void) ;

Class Description

Many Gtk+ widget classes do not create a separate X window for each instance they are
asked by an application to instantiate. Many of these widget classes are container widget

classes that create instances that are never visible to users and therefore do not need a win
dow. Others rely on a parent in the widget instance hierarchy to provide a window into

which their content is rendered.

The following is a list of some of the Gtk+ widget classes that do not create a new X
window for each widget instantiated: GtkFrame, GtkAspectFrame, GtkCTree, GtkHBBox,

GtkVBBox, GtkHBox, GtkVBox, GtkHSeparator, GtkVSeparator, GtkToolbar, GtkImage,

GtkLabel, GtkOptionMenu, GtkPacker, GtkPixmap, and GtkTable.

Let's focus on GtkTable for the remainder of the discussion. GtkTable does not create a

window for itself or its cells. The content of a table cell either is drawn into a window pro
vided by the widget that occupies the cell or is drawn into a window created by a widget

higher in the widget instance hierarchy (Le., an ancestor of the GtkTable widget instance).

In the tic-tac-toe example presented earlier in this chapter, the playing board is an instance

of GtkTable. The table contains nine cells, organized as three rows of three columns each.

Each cell in the table manages an instance of GtkPixmap (the pixmap represents the current
occupant of the cell, either an X or an 0 move or an unoccupied cell) . Each pixmap draws

itself into the top-level window (an instance of GtkWindow) based on the layout computed

for it by the GtkTable widget instance. Figure 1 1 .36 illustrates the instance hierarchy of the

tic-tac-toe board I have just described:

GtkEventBox

Figure 1 1 .36 Tic-Tac-Toe Instance Hierarchy

561

Let's say the window created by the GtkWindow instance receives an expose event (the
window was mapped, or some portion of the window became unobscured, perhaps due to the
user moving a window that was higher in the window stacking order away and exposing a por
tion of the window). To handle this event, the GtkWindow instance will (in effect) pass this
event down to each of its children (which in this case is a single instance of GtkTable). The
GtkTable instance will receive the event and will handle it by calling on each of its children
(instances of GtkPixmap in this case) to handle the expose event. Each instance of GtkPixmap
will, in tum, handle the expose event by drawing itself in the window it is provided. Clearly,
there is no need in this case for a table to create a window for itself, or for each of its children,

562 Chapter 1 1 • More Container Classes

nor is it necessary for each instance of GtkPixmap to create a window. Some widgets, on the

other hand, do find it necessary to create their own windows. Once such class is GtkButton.

Besides needing to draw itself (if that were its only requirement, it would not need a window),

it must handle button press and key press events and respond to enter and leave events, which
trigger redraws as the button transitions to and from prelight state.

If we were to place buttons, instead of pixmaps, as children of our tic-tac-toe table widget,
we would gain the ability to click on them, and the buttons would respond to enter and leave

notify events in the same way that any button would.

Let's say, however, that we want our pixmap widget instances to respond to one of the

events to which a button widget would normally respond. How might we achieve this, given

that pixmaps don't have a window and thus cannot be the target of X events? Well, there
are a couple of ways we can do this. One way would be to simply replace our pixmaps with

instances of GtkButton and make the pixmaps children of the buttons (see the discussion of
GtkButton in Chapter 5, "Labels and Buttons"). This would work fine, but we may not want

to inherit all of the overhead and extra functionality associated with using a button widget.

As another option, we might choose to associate a signal function with button press

events that occur in the window created by the GtkWindow instance. The main problem

with this approach is that we would need to implement code that determines which cell in

the table, if any, should receive and process the button press events received by the window.

This is work that is generally best left for a widget to perform, not an application. However,

the solution is a reasonable one; if a mouse event were to fall inside of the area owned by

one of the table cells, we would receive it, figure out which cell owned the event, and then

call the function in our application that is most appropriate for handling a button press

within that cell receiving the event.
Even better, we might decide to use an instance of GtkEventBox to implement our feature.

GtkEventBox is designed to supply an X window to widgets that are not able to create an X
window of their own. We can use the event box as a wrapper to the widget it contains; instead
of creating a pixmap and adding it as the child of a cell in the table, we create a pixmap and an

instance of GtkEventBox, add the pixmap as the child of the event box, and add the event box

as a child of the table. The instance hierarchy of a tic-tac-toe game that applies this strategy is

shown in Figure 1 1 .37:

GtkEventBox

Figure 11.37 Tic-Tac-Toe Instance Hierarchy. with Event Box Widgets

563

If the user clicks mouse button l over a tic-tac-toe board cell, a button press event will be

sent to the GtkEventBox widget associated with the cell over which the pointer was positioned,
not to the GtkWmdow instance of which the table widget instance is a child. The application

564 Chapter 1 1 • More Container Classes

can easily associate a unique button press callback function with each cell, as opposed to hav

ing to perfonn callback function dispatching itself based on the location of the mouse button

press in the parent window. Because each cell has its own window, the application can now

modify event handling on a per-cell basis if desired (it might not want to process events

received by an unoccupied cell, for example).

Creating an Event Box Widget

The function gtk_evencbox_newO is used to create an instance of GtkEventBox:

GtkWidget *

gtk_event_box_new { void) ;

The returned value, an instance of GtkWidget, is a container that creates a unique X window

for its child. A child can be added to the container using gtk_container_addO, as shown in the

following example.

The following code creates an instance of GtkEventBox, adds a GtkPixmap widget to

the event box as its child, and solicits motion notify events on the event box. The callback

function MotionNotifyCallbackO will be invoked as the user moves the pointer over the

pixmap drawn in the window created by the GtkEventBox instance:

GtkWidget *pixmap , * ebox ;

GtkPixmap *pixmap ;

II c reate the event box

II sol i c i t mot i on not i fy events on the event box , and ass ign
II a s ignal handler funct i on

gtk_widget_set_event s { ebox , GDK_POINTER_MOTION_MASK) ;
gtk_s ignal_connect { GTK_OBJECT { ebox) , " motion_not i fy_event " ,

GTK_S IGNAL_FUNC { Mot ionNot i fyCal lback) , NULL) ;

II create an instance of GtkPixmap , and make i t a chi ld of the
II event box widget

pixmap = CreatePixmap {) ;

gtk_container_add { GTK_CONTAINER { ebox) , GTK_P IXMAP { widget) ;

The details of MotionNotifyCallbackO are not terribly relevant; here I simply print a

message to stdout:

gint

Mot ionNot i fyCal lback { GtkWidget *widget , GdkEvent * event ,

gpo inter data)

print f { " A mot i on not i fy event was rece ived\n ") ;

GtkScrolledWindow

GtkScrolledWindow

Class Name

GtkScrolledWindow

Parent Class Name

GtkBin

Macros

Widget type macro: GTK_ TYPE_SCROLLED _WINDOW

Object to widget cast macro: GTK _SCROLLED_WINDOW (obj)

Supported Arguments

Prefix: GtkScrolledWindow : :

Table 11.14 GtkScrolledWindow Arguments

Name Type

hadjustment G�TYPE_ADJUSTMENT

vadjustment OTK_TYPE_ADJUSTMENT

hscrollbacpolicy G�TYPEYOLICY _TYPE

vscrollbar-POlicy G�TYPE_POLICY_TYPE

window-placement GTK_TYPE_CORNER_TYPE

565

Permissions

GTK-.ARG_READWRITE I
GTICARG_CONSTRUCT

GTK_ARG_READWRITE I
GTK_ARG_CONSTRUCT

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

566 Chapter II • More Container Classes

Application-Level API Synopsis

Retrieve the constant GTK.-TYPE_SCROlLED_ WINDOW at runtime:
GtkType
gtk_sc rolled_window_get_type (void) ;

Create an instance of GtkScrolledWindow, optionally specifying adjustments:
GtkWidget *
gtk_scro l led_window_new (GtkAdjustment *hadjustment ,

GtkAdjustment *vadjustment) ;

Set or replace the horizontal adjustment of a scrolled window:
void
gtk_scrolled_window_set_hadjustment (GtkScrolledWindow

* scrolled_window, GtkAdjustment *hadjustment) ;

Set or replace the vertical adjustment of a scrolled window:
void
gtk_sc rolled_window_set_vadjustment (GtkScrol ledWindow

* scrolled_window , GtkAdjustment *vadjustment) ;

Get the horizontal adjustment of a scrolled window:
GtkAdjustment *
gtk_scrolled_window_get_hadjustment (GtkScrolledWindow

* scrolled_window) ;

Get the vertical adjustment of a scrolled window:
GtkAdjustment *
gtk_scro l l ed_window_get_vadjustment (GtkScro l ledWindow

* scrolled_window) ;

Set the scrolling policies for both the horizontal and vertical scrollbars:
void
gtk_sc rol led_window_set-pol i cy (GtkScrolledWindow * scrolled_window ,

GtkPolicyType hscrollbar-policy ,
GtkPolicyType vscrollbar-pol icy) ;

Set the scrollbar placement preference for the scrolled window:
void
gtk_scrolled_window_set-placement (GtkScrolledWindow

* scrolled_window , GtkCornerType window-placement) ;

Add a child widget to the scrolled window:
void
gtk_scrolled_window_add_with_viewport (GtkScrolledWindow

* s crol led_window , GtkWidget * child) ;

GtkScrolledWindow 567

Class Description

A scrolled window consists of a region within which content that is managed by the scrolled
window is presented to the user. A pair of scrollbars that can by used by the user to navigate

the content will be displayed by the scrolled window widget if the size of the content is greater

than the size of the scrolled window region. A scrolled window can act as the parent of any

widget, but typically it will parent a widget that displays user or application data. Here are

some examples of Gtk+ widgets that might be parented by a scrolled window widget:

• A GtkCList widget that displays a record for each employee in a company

• A GtkText widget that displays the text of a document or memo

• A GtkDrawingArea widget that displays a large image

• A GtkTable widget that contains a large number of rows and/or columns

A scrolled window widget, as the preceding examples imply, addresses the problem of
displaying large amounts of data within a finitely sized window or dialog (or a finitely sized
portion of a window or dialog when the scrolled window shares a window or dialog with

other widgets).
Using a scrolled window is fairly easy. First you create the scrolled window and make it

the child of a dialog, window, or some other container widget. You then create a widget and

add it as a child of the scrolled window widget.

You must decide on a scrollbar policy when creating the scrolled window. The default
scrollbar policy is for GtkScrolledWindow to display scrollbars on an as-needed basis. That

is, scrollbars will only be displayed when the child being managed by the scrolled window

is larger in size than the area allocated to the scrolled window widget. This is the default

policy, and it works well for most applications. The other scrollbar policy is to always dis

play horizontal and vertical scrollbars, regardless of the size of the scrolled window or the

child being managed.
How you add the child is determined by the type of child being added. There are two

basic cases : either the child supports scrollbar adjustments or it does not. If the child does

support scrollbar adjustments, you can use gtk_container_addO to add the child to the

scrollbar. I will describe how to handle the other case in the section "Adding a Child to a

Scrolled Window."

Creating a Scrolled Window

To create an instance of GtkScrolledWindow, call gtk_scrolled_ window _newO:

GtkWidget *
gtk_scro l l ed_window_new (GtkAdj us tment * hadj us tment ,

GtkAdj us tment *vadj us tment) ;

Like all gtk_ * _new functions, a GtkWidget instance is returned. You can cast this to an
instance of GtkScrolledWindow by using the GTK_SCROLLED _WINDOW macro. The
hadjustment and vadjustment arguments specify adjustment objects that you have created or
that have been obtained from some other widget that uses adjustments. In most cases, you will
want to set these to NULL and use the adjustment objects created for you automatically by

568 Chapter 11 • More Container Classes

GtkScrolledWindow. I will have more to say about how to use and manipulate adjustment

objects later in this section.

Adding a Child to a Scrolled Window

To add a child to a scrolled window, you can do one of two things:

• Add the child using gtk30ntainecaddO if the child widget class supports scrollbar

adjustments.

• Add the child by calling gtk_scrolled_ window _add_ with_ viewportO.

You can use gtk30ntainer_addO to add child widgets belonging to the following classes

(and those that derive from them): GtkCList, GtkLayout, and GtkText. All other widget class

children must be added by making a call to gtk_scrolled_window_add_with_viewportO:

void

gtk_s c ro l l ed_window_add_with_viewport (GtkScro l l edWindow

* s crol led_window , GtkWidget * child) ;

The argument scrolled_window is an instance of GtkScrolledWindow, and child is the

widget that is being made the child of the scrolled window.

Setting and Getting the Horizontal and Vertical Adjustment Objects

You can replace the horizontal or vertical adjustment objects of a scrolled window widget by

calling gtk_scrolled_ window _seChadjustmentO or gtk_scrolled_ window_sec vadjustmentO,

respectively:

void

gtk_s c ro l l ed_window_set_hadj ustment (GtkScro l ledWindow
* s crol led_window , GtkAdj ustment *hadj ustment) ;

voi d
gtk_s c ro l l ed_window_set_vadj ustment (GtkScro l l edWindow

* s cro l l ed_window , GtkAdj us tment *vadj us tment) ;

Both functions take an instance of GtkScrolledWindow as their first argument and an

instance of GtkAdjustment as their second argument. Setting the adjustment argument to
NULL will cause the GtkScrolledWindow object to create an adjustment object of its own,

replacing the current adjustment object. As I mentioned earlier, most applications will want
to let GtkScrolledWindow create adjustment objects on its own (this behavior is obtained

by passing NULL as both arguments to gtk_scrolled_window_new()). However, there may
be times when linking the scrolled window adjustment objects with some other widget (or
widgets) can be used to achieve a more intuitive or powerful user interface.

Overriding the Default Adjustment Objects: An Example

In the following example code, I create an instance of GtkTable that contains 40 rows and 40
columns. Each table manages an instance of GtkButton. The idea is to place below the table
two spin button widgets that can be used to select a specific cell in the table; one of the spin
buttons specifies the row, and the other specifies the column. Each of the spin buttons creates

GtkScrolledWindow 569

an adjustment object. By overriding the adjustment objects of the scrolled window, changes
that are made by the spin buttons will automatically cause the scrolled window to update its

position. Here is the code:

Listing 1 1.8 Overriding the Default Adjustment Objects

0 0 1 # inc lude <gtk/gtk . h>

0 0 2

0 0 3 #def ine ROWS 4 0

0 0 4 #de f ine COLS 4 0

0 0 5

0 0 6 void

007 CreateScrolledWindow ()

0 08 (
0 0 9 GtkWidget * spinne r , * sw , *button , *vbox , * hbox , * dlog , * t abl e ;

0 1 0 GtkAdjus tment * adj1 , * adj2 ;

0 1 1 int i , j ;

0 1 2 char buf [3 2] ;

0 1 3

0 1 4 dlog = gtk_window_new (GTK_WINDOW_TOPLEVE L) ;

0 1 5 gtk_window- pos i t ion (GTK_WINDOW (dl og) , GTK_WIN_POS MOUSE) ;

0 1 6 gtk_widget_set_us i z e (GTK_WIDGET (dlog) , 2 0 0 , 2 0 0) ;

0 1 7

0 18 gtk_s ignal_connect (GTK_OBJECT (dlog) , " de s troy " ,

0 1 9 GTK_S IGNAL_FUNC (gtk_widget_des t royed) , &dlog) ;

0 2 0

0 2 1 gtk_window_set_t i t l e (GTK_WINDOW (dl og) ,

0 2 2 " GtkScro l l edWindow Demo ") ;

0 2 3 gtk_container_border_width (GTK_CONTAlNER (dl og) , 0) ;

0 2 4

0 2 5 vbox = gtk_vbox_new (FALSE , 0) ;

0 2 6 gtk_container_add (GTK_CONTAINER (dlog) , vbox) ;

0 2 7

0 2 8 sw = gtk_scro l l ed_window_new (NULL , NULL) ;

0 2 9

0 3 0 gtk_box- pack_start (GTK_BOX (vbox) , s w , TRUE , TRUE , 0) ;

0 3 1

0 3 2 table = gtk_tabl e_new (ROWS , COLS , TRUE) ;

0 3 3

0 3 4 gtk_scro l l ed_window_add_with_vi ewport (

0 3 5 GTK_SCROLLED_WINDOW (s w) , tabl e) ;

036
0 3 7 for (i = 0 ; i < ROWS ; i + +)

0 3 8 f o r (j = 0 ; j < COLS ; j + +) (
0 3 9 sprint f (buf , " %d , % d " , i , j) ;

0 4 0 button = gtk_button_new_wi th_labe l (bUf) ;

0 4 1 gtk_tabl e_attach_de fau l t s (GTK_TABLE (table) ,

0 4 2

0 4 3

0 4 4

button , j , j + 1 , i , i + 1) ;

0 4 5 hbox = gtk_hbox_new (FALSE , 0) ;

0 4 6 gtk_box- pack_end (GTK_BOX (vbox) , hbox , FALSE , FALSE , 0) ;

0 4 7

048 adj1 = (GtkAdjustment *) gtk_adjustment_new (0 . 0 , 0 . 0 ,

0 4 9 (gf loat) COLS - 1 , 1 . 0 , 1 . 0 , 0 . 0) ;

0 5 0 spinner = gtk_spin_button_new (adj1 , 0 , 0) ;

570 Chapter 11 • More Container Classes

0 5 1 gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner) , TRUE) ;

0 5 2 gtk_box-pack_s tart (GTK_BOX (hbox) , spinne r , TRUE , TRUE , 0) ;

0 5 3

0 5 4 adj2 = (GtkAdjustment *) gtk_adjustment_new (0.0 , 0.0 ,

0 5 5 (g f l oat) ROWS - 1 , 1.0 , 1.0 , 0.0) ;

0 5 6 spinner = gtk_spin_button_new (adj2 , 0 , 0) ;

0 5 7 gtk_spin_button_s et_wrap (GTK_SPIN_BUTTON (spinner) , TRUE) ;

0 58 gtk_box-pack_s tart (GTK_BOX (hbox) , spinner , TRUE , TRUE , 0) ;

0 5 9

0 6 0 gtk_s crol led_window_set_hadjustment (GTK_SCROLLED_WI NDOW (s w) , adj1) ;

0 6 1 gtk_s crol led_window_set_vadjustment (GTK_SCROLLED_WI NDOW (sw) , adj2) ;

0 6 2

0 6 3 gtk_widge t_show_a l l (dlog) ;

0 6 4

0 6 5

0 6 6 main (i n t argc , char * argv []

0 6 7 {
0 68 gtk_ini t (&argc , &argv) ;

0 6 9

0 7 0 Creat e S c ro l l edWindow () ;

0 7 1

0 7 2 gtk_ma in () ;

0 7 3

Unfortunately, this strategy does not actually work as we would like. Before I discuss

the problem, let's take a look at the relevant portions of the code. On line 028, I create a

scrolled window and pack it into a vertical box used to hold the scrolled window and the

spin boxes that will later be added below the scrolled window. On lines 032 through 035, a

table containing 40 rows and 40 columns is created and added to the scrolled window by

making a call to gtk_scrolled_window_add_with_viewportO. On lines 037 through 043,

the cells of the table are populated with instances of GtkButton. This completes the work

needed to create the scrolled window and its child. CreateScrolledWindowO, on lines 045
through 058, creates a pair of spin box widgets: one for selecting a row and the other used

for selecting a column in the table managed by the scrolled window. The ranges of the

adjustment objects are set to 0, 39, corresponding to the number of rows and columns in the
table. On lines 060 and 06 1 , the following code sets the horizontal and vertical adjustment

objects of the scrollbar to those used by the spin button widgets :

0 6 0 gtk_s cro l led_window_set_hadj us tment (GTK_SCROLLED_WINDOW (s w) , adj 1) ;

0 6 1 gtk_s c ro l led_window_set_vadj us tment (GTK_SCROLLED_WINDOW (s w) , adj 2) ;

As I stated earlier, this strategy doesn't work. If you were to execute the preceding pro

gram, you would see that the adjustment ranges we specified for the spin boxes (0, 39) have
been overridden by the range of pixel values that define the horizontal and vertical extent of
the scrolled window child (i.e., the range of the horizontal spin box will match the range of
the horizontal scrollbar, and the range of the vertical spin box will match the range of the ver
tical scroll bar). The problem is that the scrollbar ranges are in pixels, while the spin box

ranges we tried to set are in logical units (the number of rows and columns in the table). To
achieve the effect we desire, it is required that we decouple the spin box widgets from the
scrolled window and allow each to have its own private adjustments. To synchronize the

adjustments, we must listen to each adjustment for changes and manually set the related

GtkScrolledWindow 571

adjustment in the other widget as those changes occur. The code that sets an adjustment must

convert from its range to the range used by the corresponding adjustment in the other widget.

To implement this, the value3hanged callback must have access to the corresponding adjust

ment in the related widget. The following routines allow an application to retrieve the scrolled
window horizontal and vertical adjustments. To get the horizontal adjustment of a scrolled

window, call gtk_scrolled_ window �echadjustmentO:

GtkAdj ustment *
gtk_scrol led_window_get_hadj ustment (GtkScro l l edWindow

* scro l l ed_window) ;

The return value is an instance of GtkAdjustment. The argument scrolled_window is the
scrolled window for which the horizontal adjustment is being requested.

To get the vertical adjustment, call gtk_scrolled_window�eCvadjustmentO:

GtkAdj ustment *
gtk_scrol led_window_get_vadj ustment (GtkScro l l edwindow

* scro l led_window) ;

The argument scrolled_window specifies the scrolled window being queried, and the

return value is the vertical adjustment object of the scrolled window.

The following listing illustrates how to connect spin buttons that select rows and columns
in the table with the vertical and horizontal scrollbars of the scrolled window widget:

Listing 1 1.9 Connecting Spin Buttons to Scrollbars

0 0 1 # include <gtk/gtk . h>

0 0 2

0 0 3 #def ine ROWS 4 0

0 0 4 #de f ine COLS 4 0

0 0 5
0 0 6 static GtkWidget * sw , * hspinne r , *vspinner ;

0 0 7

0 0 8 static void
0 0 9 Hori zontalSpinChanged (GtkWidget *widget , gpointer data)

0 1 0 {
0 1 1 GtkAdj us tment * adj ;
012 gint value ;
0 1 3
0 1 4 value = gtk_spin_button_get_value_as_int (GTK_S PIN_BUTTON (hspinner)) ;
0 1 5 adj = gtk_scro l l ed_window_get_hadj ustment (GTK_SCROLLED_WINDOW (sw)) ;

016 gtk_adj us tment_set_value (adj , (f l oat) value * (int) dat:a) ;

0 1 7
0 1 8
0 1 9 stat ic void
0 2 0 VerticalSpinChanged (GtkWidget *widget , gpointer data)

0 2 1 {
0 2 2 GtkAdj us tment * adj ;
0 2 3 gint value ;

0 2 4
0 2 5 value = gtk_spin_button_get_value_as_int (GTK_SPIN_BUTTON (vspinne r)) ;

572 Chapter 11 • More Container Classes

0 2 6 adj = gtk_sc ro l l ed_window_get_vadj us tment (GTK_SCROLLED_WINDOW (sw)) ;

0 2 7 gtk_adj ustment_set_value (adj , (f loat) value * (int) data) ;

0 2 8

0 2 9

0 3 0 vo id
031 CreateScro l l edWindow ()
0 3 2 {
0 3 3 GtkWidget *but ton , *vbox , *hbox , *dlog , * tabl e ;

0 3 4 GtkAdj us tment * adj 1 , * adj 2 ;

0 3 5 guint width , he ight ;

0 3 6 int i , j ;
0 3 7 char buf [3 2] ;
0 3 8
0 3 9 dlog = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 4 0 gtk_window-posit ion (GTK_WINDOW (dl og) , GTK_WIN_POS MOUSE) ;

0 4 1 gtk_widget_set_us i z e (GTK_WIDGET (dlog) , 2 0 0 , 2 0 0) ;

0 4 2

0 4 3 gtk_s igna l_connect (GTK_OBJECT (dlog) , " destroy " ,

0 4 4 GTK_S IGNAL_FUNC (gtk_widget_de stroyed) , &dlog) ;

0 4 5
0 4 6 gtk_window_set_t i t l e (GTK_WINDOW (dl og) ,

0 4 7 " GtkScro l l edWindow Demo ") ;

0 4 8 gtk_container_border_width (GTK_CONTAINER (dlog) , 0) ;

0 4 9
0 5 0 vbox = gtk_vbox_new (FALSE , 0) ;

0 5 1 gtk_container_add (GTK_CONTAINER (dlog) , vbox) ;

0 5 2
0 5 3 s w = gtk_scro l l ed_window_new (NULL , NULL) ;

0 5 4
0 5 5 gtk_box-pack_s tart (GTK_BOX (vbox) , sw , TRUE , TRUE , 0) ;

0 5 6

0 5 7 table = gtk_tabl e_new (ROWS , COLS , TRUE) ;

0 5 8

0 5 9 gtk_s c ro l led_window_add_with_viewport (GTK_SCROLLED_WINDOW (s w) ,

0 6 0 table) ;

0 6 1

0 6 2 f o r (i = 0 ; i < ROWS ; i + +)

0 6 3 f o r (j = 0 ; j < COLS ; j + +) {
0 6 4 sprint f (buf , " %d , %d" , i , j) ;

0 6 5 but ton = gtk_button_new_with_l abe l (buf) ;

0 6 6 gtk_tabl e_attach_de faul t s (GTK_TABLE (table) ,

0 6 7
0 6 8
0 6 9

but ton , j , j + 1 , i , i + 1) ;

0 7 0 gtk_widget_show_a l l (dlog) ;
0 7 1
0 7 2 width = but ton - a l locat ion. width ;
0 7 3 he ight = but ton - a l locat ion . he ight ;
0 74
0 7 5 hbox = gtk_hbox_new (FALSE , 0) ;
0 7 6 gtk_box-pack_end (GTK_BOX (vbox) , hbox , FALSE , FALSE , 0) ;

GtkScrolledWindow

0 7 7
0 7 B adj 1 = (GtkAdj ustment *) gtk_adj ustment_new (0 . 0 , 0 . 0 ,

0 7 9 (gf loat) COLS - 1 , 1 . 0 , 1 . 0 , 0 . 0) ;

O BO hspinner = gtk_spin_button_new (adj 1 , 0 , 0) ;

O B1 gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (hspinner) , TRUE) ;

O B2 gtk_box-pack_s tart (GTK_BOX (hbox) , hspinner , TRUE , TRUE , 0) ;

O B3 gtk_s igna l_connec t (GTK_OBJECT (adj 1) , " value_changed " ,

O B4 GTK_S IGNAL_FUNC (HorizontalSpinChanged) , (gpointer) width) ;

O B5
O B6 adj 2 = (GtkAdj us tment *) gtk_adj us tment_new (0 . 0 , 0 . 0 ,

O B7 (g f l oat) ROWS - 1 , 1 . 0 , 1 . 0 , 0 . 0) ;

O BB vspinner = gtk_spin_but ton_new (adj 2 , 0 , 0) ;

O B9 gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (vspinner) , TRJE) ;

0 9 0 gtk_box-pack_start (GTK_BOX (hbox) , vspinne r , TRUE , TRUE , 0) ;

0 9 1 gtk_s ignal_connect (GTK_OBJECT (adj 2) , " value_changed" ,

0 9 2 GTK_S IGNAL_FUNC (Vert icalSp inChanged) , (gpointer) he ight) ;

0 9 3
0 9 4 gtk_widget_show_a l l (hbox) ;

0 9 5

0 9 6
0 9 7 ma in (int argc , char *argv []

0 9 B {
0 9 9 gtk_init (&argc , &argv) ;

1 0 0
1 0 1 CreateScro l l edWindow () ;

1 0 2

1 0 3 gtk main () ;

1 0 5

573

The first thing to notice is that we no longer share adjustments with the scrolled window

and spin buttons. Each pair of widgets has its own pair of adjustments. A value_changed

signal function is enabled for each of the spin button adjustment objects on lines 83 (for the

horizontal spinner) and 91 (for the vertical spinner). The horizontal spinner signal function

is passed the width of buttons managed by the table widget (the table children are homoge

neous and thus each button has the same width and height), and the vertical spinner's

value_changed signal function is passed the height of buttons managed by the table widget.

The width and height are used to compute how far the scrollbars should be moved when the
spin button values change. The vertical spin button value_changed function is on lines 019

through 028. The spin button value is queried on line 025 . Next, the vertical scrollbar
adjustment object is retrieved. Finally, on line 027, the vertical scrollbar adjustment object's
value is changed by making a call to gtk_adjustmencseC valueO. The new adjustment
value is computed by multiplying the height of a button (passed as the data parameter of the
signal function) and the value of the vertical spin button. The operation of the horizontal
spin button value3hanged callback is similar.

Setting the ScroUing Policy
As I mentioned earlier, your application can specify scrolling policies for the vertical and
horizontal scrollbars of a scrolled window widget. For most applications, the default,
GTK_POLICY _AUTOMATIC, will usually be the right policy choice. To set the scrolling

574 Chapter 11 • More Container Classes

policies for either the horizontal or the vertical scrollbars of a scrolled window widget, call

gtlcscrolled_ window _secpolicyO :

void
gtk_s crol led_window_set-pol i cy (GtkScro l l edWindow * scro l l ed_window ,

GtkPo l i cyType hscrol lbar-po l i cy ,

GtkPo l i cyType vscrol lbar-pol icy) ;

The first argument is the scrolled window widget instance. The arguments hscrollbar_policy

and vscrollbar_policy accept one of the values listed in Table 1 1 .1 5.

Table 11.15 Scrolling Policies

Value

GTK_POLICY _ALWAYS

GTK_POLICY _AUTOMATIC

Meaning

Scrollbar will always show.

Scrollbar will only show when the child is bigger
than the viewport (default) .

Scrollbar will never show.

One bug in the API is that there is no way to retrieve the scrollbar policy. This is a problem

if you want to use the preceding function to change the policy of only one of the scrollbars;
somehow you must determine the policy of the other and pass it in so that it will not be
changed. A minor issue, to be sure, but it would be nice if either there were separate functions

for setting the vertical and horizontal scrollbar policies or either function were to accept a value
such as -1 to indicate that the argument should be ignored and the current scrollbar policy be

left as is.

Controlling Scrollbar Placement

The final GtkScrolledWindow function I discuss here allows you to control the placement of

the scrollbars relative to the window. By default, the vertical scrollbar will be adjacent the right
edge of the window, and the horizontal scrollbar will be directly below the bottom edge of the

window. Your application can change this by calling gtk_scrolled_window_secplacementO:

vo id

gtk_s c ro l l ed_window_set-placement (GtkScro l l edWindow * scro l l ed_window ,

GtkCornerType window-placement) ;

There are four possible values for the window_placement. Table 11.16 specifies the

resulting window placement for each value.

Table 11.16 Scrolling Policies

Value

GTK_CORNER30P _LEFf

GTK_CORNER_BOTTOM_LEFf

Vertical Horizontal

Right edge Bottom edge

Right edge Top edge

GtkLayout

Table 11.16 Scrolling Policies (Continued)

Value

GTK_CORNER_TOP _RIGHT

GTK_CORNER_BOTTOM_RIGHT

Vertical

Left edge

Left edge

575

Horizontal

Bottom edge

Top edge

The default is GTK_CORNER_TOP _LEFT. If the preceding table is confusing, remember

that the window placement is always directly opposite of the comer where the vertical and hori
zontal scrollbars meet. For example, if the window placement is GTK_CORNER_TOP _RIGHT,

the two scrollbars must meet at the bottom-left comer. Another way to think about it is as follows:

Wmdow placement defines the comer of the scrolled window where no scrollbars are located.

GtkLayout

Class Name

GtkLayout

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK_TYPE_LAYOUT

Object to widget cast macro! CWX_LAYOUT (obj)

Widget type check macro: GTK_IS_LAYOUT 1_)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE�Y0UT at runtime:
GtkType
gtk_layout_get_type(void);

Create a new instance of GtkLayout:
GtkWidget *
gtk_layout_new(GtkAdjustment *hadjustment,

GtkAdjustment *vadjustmen�l,

576 Chapter 11 • More Container Classes

Application-Level API Synopsis (Continued)

Add a child widget to an instance of GtkLayout at specified x, y location:
void
gtk_layout-put(GtkLayout * layout, GtkWidget * widget, gint x, gint y) ;

Move a child widget of an instance of GtkLayout to the specified x, y location:
void
gtk_layout_move(GtkLayout * layout , GtkWidget * widget , gint x,

gint y) ;

Set the size of an instance of GtkLayout:
void
gtk_layout_set_size(GtkLayout * layout, guint width, guint height) ;

Retrieve the horizontal adjustment of an instance of GtkLayout:
GtkAdjustment *
gtk_layout_get_hadjustment(GtkLayout * layout);

Retrieve the vertical adjustment of an instance of GtkLayout:
GtkAdjustment *

gtk_layout_get_vadjustment(GtkLayout * layout);

Set the horizontal adjustment of an instance of GtkLayout:
void
gtk_layout_set_hadjustment(GtkLayout * layout,

GtkAdjustment * adjustment) ;

Set the vertical adjustment of an instance of GtkLayout:
void
gtk_layout_set_vadjustment(GtkLayout * layout,

GtkAdjustment * adjustment) ;

Class Description

GtkLayout is very similar to GtkFixed, which was described in Chapter 10. Both of these

container classes implement an extremely simple layout policy that requires the application

to position child widgets within the container on its own. The application positions a child
by providing GtkLayout with the x, y coordinate of the child's upper-left comer. The appli

cation can move a child widget to a new location in the container as well.
There are two major differences that exist between GtkLayout and GtkFixed. The primary

difference is that GtkLayout allows applications to create a container widget that appears to

exceed the window size limitations imposed by the XII protocol-width and height values

in the CreateWindow protocol request are limited to 16-bit unsigned values. How GtkLayout
achieves this illusion is not terribly important. Most applications will not require such large

window sizes, but some applications (those that display maps or scientific data) may find a
use for GtkLayout.

GtkLayout 577

The second major difference that exists between GtkFixed and GtkLayout is that
GtkLayout provides support for specifying adjustments, at widget creation time or after

widget creation, via a function provided by the GtkLayout API. We will see in the section
titled "Adjustments," how adjustment objects are used by GtkLayout.

Creating a Layout Widget

To create a new instance of GtkLayout, call gtk_IayoucnewO:

GtkWidget *
gtk_l ayout_new (GtkAdj ustment * hadj ustment ,

GtkAdj ustment *vadj ustment) ;

The function gtk_IayouCnewO accepts two arguments : hadjustment and vadjustment. In

most cases, you will want to set both of these arguments to NULL and let GtkLayout create

adjustment objects for you.
Most applications will find it convenient to parent GtkLayout with a widget that provides

scroUbars. Most likely, that widget will be GtkScrolledWindow. However, you might decide to
create a separate control that allows users to navigate the content of the GtkLayout widget. I will

illustrate both options later in this section. First let's take a look at the rest of the GtkLayout API.

Adding a Child Widget
You add a child widget to an instance of GtkLayout in exactly the same way that you add

a child to an instance of GtkFixed (but using a function provided by GtkLayout, of course).

To add a child to a layout widget, call gtk_IayouCputO:

void
gtk_layout-put (GtkLayout * l ayout , GtkWidget *widget , gint x, gint y) ;

The argument layout is an instance of GtkLayout, widget is some arbitrary Gtk + widget,

and x and y specify the location of the upper-left corner of the widget. The x and y values

are signed int values and may exceed the unsigned 1 6-bit int limitation on window sizes

imposed by the XII Core Protocol.

Repositioning a Child Widget

You can move a child previously added to an instance of GtkLayout by calling gtk_layouCmoveO:

void
gtk_layout_move (GtkLayout * l ayout , GtkWidget *widget , gint x , gint y) ;

The arguments to gtk_IayouCmoveO are the same as to gtk_IayoucputO.

Setting the Size of the Layout Virtual Area

You can set the size of the virtual area managed by an instance of GtkLayout by calling
gtk_IayoucseCsizeO:

void
gtk_l ayout_set_s i z e (GtkLayout * l ayout , guint width , guint he ight) ;

578 Chapter 11 • More Container Classes

The width and height arguments are unsigned int (notice that gtk_IayouCmoveO and

gtk_IayouCputO accept signed int x and y parameters). This is probably a bug; there is little

point in creating a layout widget that is size-limited by an unsigned int but that limits the x

and y coordinates of its children to signed int values. Still, even a signed int is a pretty big
number on most modem, 32-bit systems, far exceeding what most applications will ever

find themselves needing to specify.

Adjustments

In this section, I will illustrate how adjustments are used with layout widgets by presenting two
code examples. In the first example, I will create a layout widget and parent it with an instance

of GtkScrolledWindow. In this example, the layout widget will make use of the scrollbars Gtk

ScrolledWindow provides to control the content viewed by the user. Most applications will use

GtkScrolledWindow in this way to provide scrollbars for its layout widgets.

In the second example, I will show you how to parent an instance of GtkLayout in a container

that does not provide its own scrollbars. The example will provide its own controls that can be

used to navigate the content managed by the layout widget. We will also take a look at the adjust
ment functions provided by GtkLayout.

The first example is similar to the one implemented by the testgtk program supplied with

Gtk+ distributions:

Listing 11.10 Parenting a Layout Widget in a Scrollbarless Container

0 0 1 # include <gtk/gtk.h>

0 0 2

0 0 3 voi d

0 0 4 GtkLayoutDi a l og ()

0 0 5 (
0 0 6 GtkWidget * l ayout , * scrol l ed_window , * l abe l , *dialog_window ;

0 0 7 i n t i , j ;

0 08 char buf [1 2 8] ;

0 0 9

0 1 0 dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

0 1 1 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

0 1 2 gtk_widget_set_us i ze (GTK_WIDGET (dialog_window) , 2 0 0 , 2 0 0) ;

0 1 3

0 1 4 gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " destroy " ,

0 1 5 GTK_S IGNAL_FUNC (gtk_widget_dest royed) , &dia log_window) ;

0 1 6

0 1 7 gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " GtkLayout Demo ") ;

0 18 gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;

0 1 9
020 scro l led_window = gtk_scrol led_window_new (NULL, NULL };

0 2 1 gtk_container_add (GTK_CONTAINER (dial og_window) , scrol l ed_window) ;

0 2 2 l ayout = gtk_l ayout_new (NULL , NULL } ;

0 2 3

0 2 4 gtk_l ayout_set_s i z e (GTK_LAYOUT (l ayout) , 8 0 0 , 1 28 0 0 0) ;

0 2 5

0 2 6

0 2 7

0 2 8

0 2 9

0 3 0

0 3 1

for (i = 0 ; i < 8 0 0 ; i+=2 0 0)

for (j = 0 ; j < 1 28 0 0 0 ; j+= 2 0 0) {
sprint f (buf , " %d % l d " , i , j) ;

l abel = gtk_but ton_new_with_labe l (buf) ;

gtk_layout-put (GTK_LAYOUT (l ayout) , l abe l , i ,) ;

GtkLayout 579

0 3 2

0 3 3 gtk_container_add (GTK_CONTAlNER (scrol l ed_window) , l ayout) ;

0 3 4

0 3 5 gtk_widget_show_al l (di a log_window) ;

0 3 6

0 3 7

0 3 8 main (argc , argv

0 3 9 int argc ;

0 4 0 char *argv [] ;

0 4 1 (
0 4 2 gtk_ini t (&argc , &argv) ;

0 4 3

0 4 4 GtkLayoutDialog () ;

0 4 5

0 4 6 gtk_main () ;

0 4 7

The mainO routine calls GtkLayoutDialogO to create a 200 X 200 dialog (lines 0 1 0

through 018). O n line 020, an instance of GtkScrolledWindow (discussed earlier i n this

chapter) is created. Notice that both the horizontal and vertical adjustments are set to NULL;

this tells the scrolled window to create its own adjustments. On line 022, an instance of

GtkLayout is created. As was the case with the scrolled window, I pass a NULL for both the
horizontal and vertical adjustment arguments, which tells the layout widget to create adjust

ments as well. When the layout widget is added to the scrolled window on line 033, the lay

out widget adjustments will be associated with the horizontal and vertical scrollbars

managed by the scrolled window widget. On line 024, a call is made to gtlclayoucsecsizeO
to set the virtual dimensions of the layout widget. Because the scrolled window is smaller

than these dimensions, both horizontal and vertical scrollbars will always be displayed by

the scrolled window widget.
Finally, on lines 026 through 031 , we create a number of button widgets and add them as

children of the layout widget by making calls to gtk_IayouCaddO. There are four buttons on

each row and a total of 640 rows. Each button is separated both vertically and horizontally by

200 pixels.
This is all you need to do to manage a set of widgets as children of a layout widget.

GtkLayout will respond to scrollbar changes based on where the scrollbar location is and

will command the correct child widgets to draw themselves.

Handling Expose Events

You can, if need be, draw content of your own into the layout area in response to an expose
event, as illustrated by the next example:

Listing 11.11 Handling Expose Events

0 0 1 # include <gtk/gtk . h>

0 0 2

0 0 3 gint

0 0 4 HandleExposeEvent (GtkWidget *widget , GdkEventExpose * event)

0 0 5 {
0 0 6 GtkLayout * l ayout ;

0 0 7
0 08 gint i , j ;

0 0 9 gint imi n , imax , jmin , jrnax ;

580 Chapter 11 • More Container Classes

0 1 0

0 1 1 l ayout = GTK_LAYOUT (widget) ;

0 1 2

imin (l ayout - >xof f set + event - >area.x) I 1 0 ; 0 1 3

0 1 4

0 1 5

0 1 6

0 1 7

0 18

imax (l ayout - >xof fset + event - >area.x + event - >area.width + 9) I 1 0 ;

jmin (l ayout - >yof fset + event - >area.y) I 1 0 ;

jmax (l ayout - >yoffset + event - >area.y + event - >area.he ight + 9) I

0 1 9 gdk_window_c l ear_area (widge t - >window , event - >area.x , event - >area.y ,

0 2 0 event - >area.widt h , event - >area.he ight) ;

0 2 1

0 2 2 f o r (i=imi n ; i < imax ; i + +)

0 2 3 f o r (j=jmin ; j<jrnax ; j+ +)

0 2 4 i f ((i + j) % 2)

1 0 ;

0 2 5 gdk_draw_rectang1e (l ayout - >bin_window , widget - >styl e - >black_gc ,

0 2 6 TRUE , 1 0 * i - l ayout - >xof fset , 1 0 *j - layout - yof fset ,

0 2 7 1 + i % 1 0 , 1+j% 1 0) ;

028 return TRUE ;

0 2 9

0 3 0

0 3 1 voi d

0 3 2 GtkLayoutDi alog ()

0 3 3 {

0 5 9 gtk_wi dget_s et_event s (layout , GDK_EXPOSURE_MASK) ;

0 6 0 gtk_s ignal_connect (GTK_OBJECT (l ayout) , " expose_event " ,

0 6 1 GTK_S IGNAL_FUNC (HandleExposeEvent) , NULL) ;

0 6 2

0 6 3 gtk_l ayout_set_s i ze (GTK_LAYOUT (l ayout) , 1 6 0 0 , 1 28 0 0 0) ;

0 6 4

0 6 5 gtk_wi dget_show_a l l (dialog_window) ;

0 6 6

0 6 7

0 6 8 main (argc , argv

0 6 9 int argc ;

0 7 0 char * argv [] ;

0 7 1 {
0 7 2 gtk_ini t (&argc , &argv) ;

0 7 3

0 7 4 GtkLayoutDialog () ;

0 7 5 gtk_main () ;

0 7 6

The steps followed by mainO and GtkLayoutDialogO are exactly the same a s i n the pre
vious example, with the exception that expose events are solicited on the layout widget on

lines 059 through 06 1 of this last listing. It is within the expose_event signal function, Han
dleExposeEventO, that drawing by the application will take place. As you can see, the event
argument passed to the callback is coerced to a GdkEventExpose pointer; the area.x, area.y,
area. width, and area. height fields tell you what portion of the window (e.g., the 200 X 200

window in our case) is in need of redrawing. If the user is scrolling the area up by 1 0 pixels,
you might see the following values: area. x = 0, area.y = 1 90 (I'm conveniently ignoring the

area consumed by the horizontal scrollbar), area. width = 200 (ignoring the vertical scroll-

GtkLayout 581

bar) and area.height = 10. If the user is scrolling down by 10 pixels, the area fields will be
the same except area.y will be set to O. Your application can choose to redraw the entire win

dow content and ignore the event data just described, but it is usually more efficient to

redraw only what is in need of redrawing as opposed to redrawing the entire window con

tents, whenever possible.

Figure 11.38 Handling Expose Events

Other data important to the expose event includes the bin_window, xoffset, and yoffset

fields of the layout widget (passed as the first argument to the expose signal function, which

I have cast to an instance of GtkLayout to get at these fields). The bin_window field is the win

dow into which the content should be drawn by your expose event function. The xoffset and

yoffset fields specify the current viewport into the virtual area managed by the layout widget

(in this example, the area is 16000 X 1 28000). To draw your content correctly, you must map

the virtual area to the area that was exposed by the user. In the following program, alternating
rows of lOX 10 rectangles and arcs are drawn in response to an expose event. Within each row,

only every other graphic is drawn (see Figure 1 1 .38). The user can position a scrollbar at an

arbitrary location; it is up to the application to draw only those arcs and rectangles that fall in

the area that was exposed. Here's the program listing that implements this:

Listing 11.12 Handling Expose Events

0 01 #inc1ude <gtk/gtk.h>
0 0 2

0 0 3 gint
004 HandleExposeEvent (GtkWidget *widget , GdkEventExpose * event)

0 0 5 {
0 0 6 GtkLayout * l ayout ;

0 0 7

0 08 gint i , j ;

0 0 9 char buf[128] ;

0 1 0 gint imin , imax , jmin , jmax ;

0 1 1
0 1 2 l ayout = GTK_LAYOUT (widget) ;

0 1 3

0 1 4 I I compute loop ranges

0 1 5

0 1 6 imin = (layout - >xo f f s e t + event - >area . x) I 1 0 ;

582 Chapter 11 • More Container Classes

0 1 7

0 18

imax (l ayout - >xo f f set + event - >area.x + event - >area.width + 9) I 1 0 ;

(l ayout - >yoffset + event - >area.y) I 1 0 ; 0 1 9

0 2 0

0 2 1

jmin

jmax (l ayout - >yof f set + event - >area.y + event - >area.height + 9) I 1 0 ;

0 2 2 I I c l ear t h e area that was exposed

0 2 3

0 2 4 gdk_window_c l ear_area (widge t - >window, event - >area.x, event - >area.y,

0 2 5 event - >area.width, event - >area.he ight) ;

0 2 6

0 2 7 f o r (i=imin ; i < imax ; i + +)

028 for (j=jmin ; j<jmax ; j++)

0 2 9 i f ((i + j) % 2 == 0) I I draw every other arc / rectangl e o n a l ine

0 3 0 i f (j % 2 == 0) I I even l ines rectangles, others get arcs

0 3 1 gdk_draw_rectangle (l ayout - >bin_window,

0 3 2 widget - > s tyle - >black_gc, TRUE,

0 3 3 1 0 * i - 1 ayout - >xoffset,

0 3 4 1 0 *j - l ayout - >yoffset, 1 0 , 1 0) ;

0 3 5

0 3 6

0 3 7

0 3 8

0 3 9

e l s e

gdk_draw_arc (l ayout - >bin_window,

widget - > s tyle - >black_gc, TRUE,

1 0 * i - l ayout - >xof f set,

1 0 *j - l ayout - >yo f f set, 1 0 , 1 0 ,

0 4 0 0 , 3 6 0 * 6 4) ;

0 4 1 return TRUE ;

0 4 2

0 4 3

0 4 4 void

045 GtkLayoutDi a l og ()

0 4 6 {
0 4 7

048

0 4 9

0 5 0

0 5 1

0 5 2

0 5 3

0 5 4

0 5 5

0 5 6

0 5 7

058

0 5 9

0 6 0

0 6 1

0 6 2
063

0 6 4

0 6 5

0 6 6

0 6 7

0 6 8

0 6 9

0 7 0

0 7 1

0 7 2

0 7 3

GtkWidget *dialog_window, * scro l l edwindow, * l ayout ;

dialog_window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

gtk_window- pos i t i on (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

gtk_wi dget_set_us i ze (dialog_window, 2 0 0 , 2 0 0) ;

gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " destroy " ,

GTK_S IGNAL_FUNC (gtk_widget_destroyed) , &dialog_window) ;

gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " GtkLayout Demo ") ;

gtk_container_border_width (GTK_CONTAINER (dialog_window) , 0) ;

s c ro l ledwindow = gtk_scro l led_window_new (NULL, NULL) ;

gtk_container_add (GTK_CONTAINER (dialog_window) , scrol l edwindow) ;

l ayout = gtk_l ayout_new (NULL, NULL) ;

gtk_container_add (GTK_CONTAINER (s crol l edwindow) , l ayout) ;

I I set the scrol lbar step s i zes to 1 0 pixe l s

GTK LAYOUT (l ayout) - >hadjustment - step_inc rement

GTK LAYOUT (l ayout) - >vadjus tment - step_inc rement

II sol i c i t expose events on the l ayout widget

1 0 . 0 ;

1 0 . 0 ;

GtkLayout 583

0 7 4 gtk_s ignal_connect (GTK_OBJECT (layout) , " expose_event " ,

0 7 5 GTK_S IGNAL_FUNC (HandleExposeEvent) , NULL) ;

0 7 6

0 7 7 gtk_l ayout_set_s i z e (GTK_LAYOUT (layout) , 1 6 0 0 , 12BOOO) ;

0 7 B

0 7 9 gtk_widget_show_al l (dialog_window) ;

OBO

OB1

OB2 main (argc , argv

OB3 int argc ;

OB4 char *argv[] ;

OB5

OB6 gtk_ini t (&argc , &argv) ;

OB7

OBB GtkLayoutDialog () ;

OB9 gtk_main () ;

0 9 0

Setting and Getting the Layout Adjustment Objects

All of the preceding examples used the horizontal and vertical adjustment objects created by
GtkLayout. This was done because we passed NULL as arguments to gtlclayoucnewO. We

can retrieve the horizontal and vertical adjustment objects that were created by the layout wid
get by calling gtk_Iayout...,geChadjustmentO and gtk_Iayout...,gec vadjustmentO, respectively:

GtkAdj ustment *

gtk_l ayout_get_hadj ustment (GtkLayout * layout) ;

GtkAdj ustment *
gtk_layout_get_vadj us tment (GtkLayout * layout) ;

Both functions take an instance of GtkLayout as their only argument and return the

adjustment object being requested. You can use gtk_IayouCseChadjustmentO to set or

change the horizontal adjustment of a layout widget:

void
gtk_layout_set_hadj ustment (GtkLayout * l ayout ,

GtkAdj us tment * adj us tment) ;

To set the vertical adjustment, call gtk_IayouCseC vadjustmentO:

void
gtk_l ayout_set_vadj ustment (GtkLayout * l ayout ,

GtkAdj ustment * adj ustment) ;

Both functions accept a layout widget and an adjustment object as arguments.

Layout Widgets: A Final Example
I will conclude this section by presenting the source for an example that shows how the adjust

ment objects of a widget can be used to control the viewport of a layout widget. In the earlier
examples, the viewport into the area managed by a layout widget was controlled by a scrolled
window widget to which the layout widget was added as a child. In this example, I will use a
pair of spin button widgets to control what area managed by the layout widget is visible. A spin

584 Chapter 1 1 • More Container Classes

button widget creates an adjustment object that can be used as either the horizontal or vertical

adjustment of a layout widget.

Figure 11.39 Controlling Scroll Position with Spin Buttons

Figure 1 1 .39 illustrates the client. Together, the spin buttons specify the x and y coordinates
of the origin of a view into the area being managed by the layout widget. As the value of either
spin button changes, the layout widget will receive a value3hanged signal from the corre

sponding adjustment object. The layout widget will handle this signal. The end result is that the

layout widget children corresponding to the area selected by the user will draw themselves and

become visible to the user.

Listing 11.13 Using Spin Buttons to Control Layout Widget Scrolling

0 0 1 #include <gtk/gtk . h>

0 0 2

0 0 3 voi d

0 0 4 GtkLayoutDi a l og (}

0 0 5 {
0 0 6 GtkWidget * l ayout , * spinne r , * scrol l ed_window , *button , *vbox ,

0 0 7 * hbox , *dialog_window ;

OOB GtkAdjus tment * adj1 , * adj2 ;

0 0 9 char buf [3 2] ;

0 1 0 i n t i , j ;

0 1 1
012 d i a log_window = gtk_window_new (GTK_WINDOW_TOPLEVEL } ;

0 1 3 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

0 1 4 gtk_wi dget_set_u s i z e (GTK_WIDGET (dialog_window } , 2 0 0 , 2 0 0 } ;

0 1 5

0 1 6 gtk_s ignal_connect (GTK_OBJECT (dialog_window) , " destroy " ,

0 1 7 GTK_S IGNAL_FUNC (gtk_widget_de st royed) , &dial og_window } ;
0 1 B

0 1 9 gtk_window_set_t i t l e (GTK_WINDOW (dialog_window) , " GtkLayout Demo ") ;

0 2 0 gtk_conta iner_border_width (GTK_CONTAINER (dialog_window) , OJ;
0 2 1

0 2 2 vbox = gtk_vbox_new (FALSE , 0 } ;

GtkLayout 585

0 2 3 gtk_container_add (GTK_CONTAINER (dialog_window) , vbox) ,

0 2 4

0 2 5 layout = gtk_layout_new (NULL , NULL) ,

0 2 6

0 2 7 gtk_l ayout_set_s i z e (GTK_LAYOUT (layout) , 8 0 0 , 128 0 0 0) ,

0 2 8

0 2 9

0 3 0

0 3 1

0 3 2

0 3 3

0 3 4

0 3 5

for (i = 0 ; i < 8 0 0 ; i+=2 0 0)

for (j = 0 ; j < 1 28 0 0 0 ; j+= 2 0 0) {
sprint f (buf , " %d % l d " , i , j) ;

but t on = gtk_button_new_with_l abe l (buf) ;

gtk_l ayout-put (GTK_LAYOUT (l ayout) , button , i ,

0 3 6 gtk_box-pack_s tart (GTK_BOX (vbox) , l ayout , TRUE , TRUE , 0) ;

0 3 7

0 3 8 hbox = gtk_hbox_new (FALSE , 0) ;

0 3 9 gtk_box-pack_end (GTK_BOX (vbox) , hbox , FALSE , FALSE , 0) ;

0 4 0

) ;

0 4 1 adj1 = (GtkAdjus tment *) gtk_adjustment_new (4 0 0 , 1.0 , 8 0 0 , 10.0 ,

0 4 2 1 0 0.0 , 0.0) ;

0 4 3 spinner = gtk_spin_button_new (adj1 , 0 , 0) ;

0 4 4 gtk_spin_button_set_wrap (GTK_S PIN_BUTTON (sp inner) , TRUE) ;

0 4 5 gtk_box-pack_start (GTK_BOX (hbox) , spinne r , TRUE , TRUE , 0) ;

0 4 6

0 4 7 adj2 = (GtkAdjus tment *) gtk_adjustment_new (6 4 0 0 0 , 1.0 , 128COO ,

0 4 8 1 0.0 , 1 0 0.0 , 0.0) ;

0 4 9 spinner = gtk_spin_button_new (adj2 , 0 , 0) ;

0 5 0 gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner) , TRUE) ;

0 5 1 gtk_box-pack_s tart (GTK_BOX (hbox) , spinne r , TRUE , TRUE , 0) ;

0 5 2

0 5 3 gtk_l ayout_set_hadjustment (GTK_LAYOUT (l ayout) , adj1) ;

0 5 4 gtk_l ayout_set_vadjustment (GTK_LAYOUT (l ayout) , adj2) ;

0 5 5

0 5 6 gtk_widget_show_al l (dialog_window) ;

0 5 7

0 5 8

0 5 9 main (argc , argv

0 6 0 int argc ;

0 6 1 char *argvl] ;

0 6 2

0 6 3 gtk init (&argc , &argv) ;

0 6 4
0 6 5 GtkLayoutDia1og () ;

0 6 6
0 6 7 gtk_main () ;

0 6 8

In this example, the layout widget is being managed by a vertical box widget. No widgets

in its containment hierarchy provide scrollbars, in contrast to the situation we saw in earlier
examples in which the layout widget was being parented by a scrolled window. On lines 04 1
through 045, we create the adjustment object and spin button widget for the x component, and

on lines 047 through 05 1 the same steps are performed, this time for the y component. On lines
053 and 054, the horizontal and vertical adjustments of the layout widget are set to the adjust
ments controlled by the spin button widgets. The net effect is that when the user changes the
spin button values, the adjustment objects will fire a value_changed signal, which the layout

widget will handle, causing the view of the layout widget to change as required.

586 Chapter 1 1 • More Container Classes

Summary

In this chapter, we continued the look at container widgets that was started in Chapter 10. A

paned widget (GtkPaned, GtkVPaned, and GtkHPaned) can be used to segment a dialog or

window into two user-resizable areas separated vertically (GtkVPaned) or horizontally

(GtkHPaned). A packer widget (GtkPacker) is a seldom-used widget that implements a layout

policy very similar to the TcVfk packer widget. Developers porting applications from TcVfk
to C/C++ and Gtk+ may find GtkPacker valuable. Developers who are not familiar with

TcVfk should probably stick with GtkBox, which was described in Chapter 1 0.

A frame widget (GtkFrame) places a labeled frame around its only child. Frames are an
effective way to group related dialog content and to visually separate that content from

other content in the dialog. A frame can be given a descriptive label that describes its con

tent. Adding a label to a frame will make your dialogs easier for users to learn and use. A

related widget also discussed in this chapter, GtkAspectFrame, enforces a fixed aspect ratio

on the size of the frame. A table widget (GtkTable) arranges its children in a grid consisting

of NxM cells.
We also examined toolbar widgets. A toolbar widget (GtkToolbar) manages a set of buttons

that a user can click on to activate application tasks or to bring up application dialogs. For many

users, toolbars provide an easier and more intuitive way to access the features of an application
than the alternatives, such as selecting an item from a menu. Toolbars support icons, labels, and

tooltips, all of which can be controlled by the application developer. A handle-box widget
(GtkHandleBox) is often used to parent a toolbar widget. A handle-box widget provides a grip

or handle that can be used by the application to detach the handle box from its attachment point
in its container or parent and drag the handle box to the desktop.

An event box (GtkEventBox) provides an X window for widgets that do not create an X

window of their own. Event boxes allow widgets without their own X window to receive

and process events they would normally not receive. A layout widget (GtkLayout) is similar

to GtkFixed, which was described in Chapter 10. The main difference between a layout

widget and a fixed widget is that a layout widget can have an infinite size.

An important widget described in this chapter was GtkScrolledWindow. A scrolled window

widget provides a viewport into a child widget that users can navigate using scrollbars. Using

a scrolled window is rather simple; create the scrolled window widget, create the child it is to

manage, and add the child to the scrolled window widget. GtkScrolledWindow automatically
draws scrollbars based on an application-specified scrolling policy and reacts to scrollbar

movement by causing the child widget to redraw its content in an appropriate manner.

(H A P T E R

T R E E S
In this chapter, I introduce three widget classes: GtkTree, GtkTreeltem, and GtkCTree. The first
two classes, GtkTree and GtkTreeltem, are introduced together in the first section. The reason

for combining the discussion of GtkTree and GtkTreeltem is that you really can't use either of
these classes without knowing something about the other. Following the general discussion of

GtkTree and GtkTreeltem, I will present the API of each of these classes separately. The chapter

then closes with a look at GtkCTree.

Why Use Trees?

A tree widget is similar to a list (GtkList and GtkCList)-both can be used to display a set of
items that can be selected from by a user. Trees are more powerful than lists because they give
the programmer the ability to organize data in ways that lists simply do not allow, and they

give the end user more control over how much data is displayed at any given time. This isn't
to say that you should always use trees instead of lists in your application. If you are displaying

a short list of items, then trees are probably overkill. If, however, you are displaying data that

can be represented as a hierarchy (e.g., a company phone book or the contents of a filesystem),

or you are displaying data that can be organized as categories, or you are displaying aggregate

data, then a tree will often be the best choice. The following example illustrates a situation for

which the use of a tree is, I believe, preferred over the use of a list.
Say we must display the names of animals that live in the ocean, and the data we are working

with contains mammals, invertebrates, and fish. An example of using a list to display such data

is shown in Figure 12. 1 . Some of the animals listed are familiar; most readers will recognize that

a Great White Shark is a fish, for example. But what is a Thomback? Is it a fish, or a mammal,
or an invertebrate? It would be impractical for the application displaying this list to ask the user
to select a fish because the user interface does not provide sufficient information for the user to
make such a selection.

To solve this problem, we can organize our list as a tree, as shown in Figure 1 2.2. Here
I have placed each animal into one of three categories: Mammals, Fish, and Invertebrates.
When displayed as a tree, it is obvious to the user that a Thomback is a type of fish. By
organizing items into categories, I have effectively reduced the number of items that the

user must view to make a selection. A user can selectively show or hide categories, reducing
the amount of content displayed by the control and making it easier for the user to locate a
particular entry and make a selection.

587

588

Grun ion

Sto n efi s h

L e o p ard S h ark

Tho rnback

O ch re Star
Sea Pen
P ac ifi c Octopus
S e a Wasp
Sea Urc h i n
Gray Whal e

Sea Otter
B ottl e n o s e D o l ph in

Ki l le r Whale

Figure 12.1 Displaying Items in a List

Fis h

Great White Shark
Blue Banded Goby

Gru n i o n
Stonefis h
L e opard Sh ark

ornback
I n v e rte b rates

Oc hre Star

Sea Pen

Pacific Octopus
Sea Wasp
Sea Urch in

Mam m al s

Gray Whale
S e a Otter

Bottlenose D o l p h i n

Ki l l er W h ale

Figure 12.2 Organizing Items in a Tree

Chapter 1 2 • Trees

Some of you may be thinking that a multicolurnn list (GtkCList) can be used to display
each type of animal (see Chapter 6, "Lists"). This is correct, of course, but for the user to

easily select a fish from the list, the application would need to sort the data by type (fish) or
provide some way for the user to display only the fish data in the list. GtkCList is capable

of sorting data by a specified columD.. It does not provide a way for rows to be shown or
hidden by the user based on their content, although you can devise a way to do this on your
own in your application, if you like.

Why Use Trees? 589

To further illustrate how aggregate data can be displayed in a tree, consider the following
code, which is used by our application to store data about ocean-dwelling animals . First

some constants are defined to represent the various types of animal:

#de f ine F I SH TYPE 0
#de f ine INVERTEBRATE TYPE 1

#def ine MAMMAL TYPE 2

We then define a data type that can be used to hold information about each animal stored:

typede f struct _animal {
unsigned char type ; II e . g . , F I SH_TYPE

char name [MAXNAME] ; II e . g . , " Great Whi te Shark "
unsigned char dangerous ; II I f 1 , conside red dangerous
uns igned char edible ; II If 1 , probably tastes good

OceanAnimal ;

Finally, we use the preceding to define an array that contains data about the sea life we

are interested in:

stat i c OceanAnimal myAnimaIData [] = {

} ;

F I SH_TYPE , " Great White Shark " , 1 , 0 } ,
FI SH_TYPE , " B lue Banded Goby " , 0 , 0 } ,
FI SH_TYPE , " Grunion " , 0 , 1 } ,
FI SH_TYPE , " Stone f i sh " , 1 , 0 } ,
FI SH_TYPE , " Leopard Shark " , 0 , 0 } ,
F I SH_TYPE , " Thornback " , 0 , 0 } ,
INVERTEBRATE_TYPE , " Ochre Star " , 0 , 0 } ,
INVERTEBRATE_TYPE , " Sea Pen " , 0 , 0 } ,
INVERTEBRATE_TYPE , " Pac i f i c Octopus " , 0 , 1 } ,
INVERTEBRATE_TYPE , " Sea Wasp " , 1 , 0 } ,
INVERTEBRATE_TYPE , " Sea Urchin " , 0 , 1 } ,
MAMMAL_TYPE , " Gray Whal e " , 0 , 0 } ,
MAMMAL_TYPE , " Sea Otter " , 0 , 0 } ,
MAMMAL_TYPE , " Bottlenose Dolphin " , 0 , 0 } ,
MAMMAL_TYPE , " Ki l ler Whale " , 1 , 0 } ,

The preceding data structure stores a range of information about each animal (we could
obviously store more data, but the preceding is sufficient for our purposes). The list displayed

in Figure 12.2 does not provide enough information for a user to respond to an application
request to "select a dangerous fish." The tree shown in Figure 1 2.3, however, facilitates such

a query by organizing each fish, invertebrate, and mammal into a subcategory that conveys

the needed information to the user.

590

Non- d an g e rous
B l u e B anded Goby
Grunion
Leopard S h arK

aCK
I n v e rtebrates
M am m al s

Figure 12.3 Dangerous and Non-dangerous Animals

Using GtkTree and GtkTreeltem

Chapter 12 • Trees

Now that we know why trees are useful, we can take a closer look at how to construct them.

A tree is a recursive structure that consists of nodes. The root of a tree consists of a single

node. A node displays data (for example, a label or pixmap) and may act as the root node

of a subtree. Figure 1 2.4 illustrates a tree consisting of four subtrees that are rooted at nodes
1 , 4, 5 , and 9. Nodes that do not act as the root of a subtree are known as leaf nodes. Nodes

2, 3 , 6, 7 , 8, 10, and 1 1 are all leaf nodes.

Figure 12.4 Structure

In a GtkTree instance, root nodes might be used to represent categories (e.g. , Fish, Inver
tebrate, Mammal, Dangerous and Non-dangerous are categories). Leaf nodes, in this case,

store data (Great White Shark, Thomback, and Ochre Star are all represented by leaf nodes in
a tree). Figure 1 2.3 illustrates. Root nodes might also represent objects, with each node below

Why Use Trees? 591

these root nodes containing detailed infonnation that describes the node immediately above

it. In some cases, this infonnation might be stored as a combination of root and leaf nodes.

For each node in a tree (except the topmost root node), your application must create an

instance of GtkTreeltem. Thus, there are n - 1 tree items in every tree, where n is the total

number of nodes in the tree.
For each subtree of a tree (including the topmost root node), your application must create

an instance of GtkTree. For example, to create the tree in Figure 1 2.4, your application must

instantiate four instances of GtkTree.
To add a subtree to a tree, you allocate an instance of GtkTree and attach it to a leaf node

(an instance of GtkTreeltem) in the parent subtree. In Figure 1 2.4, for example, the subtree

rooted at node 9 was attached to the tree by attaching it to leaf node 9 in the subtree rooted

at node 5, and the subtree at node 5 was attached to the tree by attaching it to leaf node 5 in

the subtree rooted at node 1 .

An Example

If the previous five paragraphs did not make much sense to you, the following example

should help clarify things. You might want to reread the preceding paragraphs, however,

after studying the example, to ensure that the concepts introduced here are understood fully.

The following pseudocode shows how to create the tree shown in Figure 1 2.3 . The notation

used resembles (but is not) the C programming language. The functions prefixed with "gtk_"

will be explained when I present the GtkTree and GtkTreeltem APls later in this chapter. All

variables are of type GtkWidget *. Because the example is lengthy, I will only show how to

create the subtrees rooted at the Fish node in the root tree. The construction of the Invertebrate

and Mammal subtrees follows along similar lines and is left as an exercise to the reader.

GtkWidget *

CreateTree ()

{
I I Create the root node

I I Add three chi ld node s , one for f i s h , one for invertebrates , and
II one for mammals . At this point , these node s are leaf nodes . Add
II each of these node s as chi ldren of the " root " node .

node_f i sh = gtk_tree_i tem_new_with_labe l (" Fi s h ") ;
gtk_tree_append (GTK_TREE (root) , node_f i sh) ;

node_inv = gtk_t ree_item_new_wi th_labe l (" Invert ebrates ") ;
gtk_tree_append (GTK_TREE (root) , node_inv) ;

node_mammal = gtk_tree_item_new_with_labe l (" Mamma l s ") ;
gtk_tree_append (GTK_TREE (root) , node_mammal) ;

I I Next , create the subtrees below Fish , Invertebrates , and Mamma l s ,
I I and attach them to the root tree .

592 Chapter 12 • Trees

I I Create the f i sh subt ree

subtree = CreateFi shTree () ;

I I Attach the f i sh subtree

II Create the invertebrate subtree

subtree = CreatelnvertebrateTree () ;

I I At tach the subtree

II Create the mammal subtree

subt ree = CreateMammalTree () ;

I I At tach the subtree

II Return the tree

return (root) ;

GtkWidget *

CreateFi shTree ()

{
I I Create a subt ree , to be attached by the caller to the " Fi s h "
I I node in the root tree

II Create chi ldren of the subtree. One chi ld is labe led " Dangerous " ,

I I the other i s labe led " Non - dangerous "

node_dangerous = gtk_t ree_i tem_new_with_labe l (" Dangerous ") ;
gtk_tree_append (GTK_TREE (f i shtree) , node_dangerous) ;

node_nondangerous = gtk_t ree_i tem_new_wi th_labe l (" Non - dangerous ") ;
gtk_t ree_append (GTK_TREE (f i shtree) , node_nondangerous) ;

I I Now , create the subtrees below Dangerous and Non - dangerous , and
I I attach them to the Fish t ree at the appropriate node s .

I I Create the subtree

Why Use Trees?

subtree = CreateDangerousFi shTree () ;

I I At tach the subtree

II Create the subtree

subtree = CreateNonDangerousFi shTree () ;

I I Attach the subtree

return (f i shtree) ;

GtkWidget *
CreateDangerousFi shTree ()

{

593

I I Create a subt ree , to be attached by the cal l e r to the " Dangerous "

I I node in the " Fi s h " subt ree

dangerous t ree = gtk_tree_new () ;

I I Create a couple of dangerous f i sh and add
II them to the dangerous t ree

node = gtk_t ree_i tem_new_with_labe l (" Great White Shark ") ;
gtk_t ree_append (GTK_TREE (dangeroustree) , node) ;

node = gtk_t ree_i tem_new_with_labe l (" S tone f i sh ") ;

gtk_tree_append (GTK_TREE (dangeroustree) , node) ;

return (dangeroustree) ;

GtkWidget *
CreateNonDangerousFi shTree ()

{
I I Create a subtree , to be attached by the caller to the
II " Non- dangerous " node in the " Fi s h " subtree

nondangeroustree = gtk_t ree_new () ;

I I Create some non - dangerous f i sh and add
I I them to the non - dangerous t ree

node = gtk_t ree_i tem_new_with_labe l (" B lue Banded Goby ") ;
gtk_tree_append (GTK_TREE (nondangeroustree) , node) ;

594

node = gtk_tree_item_new_with_label (" Grunion ") ;
gtk_tree_append (GTK_TREE (nondangeroustree) , node) ;

node = gtk_tree_item_new_with_labe l (II Leopard Shark ") ;
gtk_tree_append (GTK_TREE (nondangeroustree) , node) ;

node = gtk_tree_item_new_with_label (" Thornback ") ;
gtk_tree_append (GTK_TREE (nondangeroustree) , node) ;

return (nondangeroustree) ;

Chapter 12 • Trees

The following source code fully implements the tree shown in Figure 12.3. Note that the

source code is less modular than the pseudocode just shown. However, the concepts are the same,

and if you understand the preceding code, you should have little trouble with the following code.

Listing 12. 1 Example Using GtkTree

0 0 1 # include <gtk/gtk . h>
0 0 2
0 0 3 stat ic GtkWidget *
0 04 make_tree (GtkWidget *window)
0 0 5 {
0 0 6 GtkWidget * root , * subtree , *node , *node 1 , *node2 , *node3 ,
0 0 7 *node_f ish , *node_inv , *node_mammal ;
0 0 8
0 0 9 I I create the root node o f the tree .
0 1 0
0 1 1 root = gtk_tree_new () ;
0 1 2 gtk_widget_show (root) ;
0 1 3
0 1 4 I I create Fish , Invertebrates , and Mammals chi ldren of the root
0 1 5 I I node
0 1 6
0 1 7 node_f i sh = node = gtk_tree_item_new_with_label (" Fish") ;
0 1 8 gtk_tree_append (GTK_TREE (root) , node_fish) ;
0 1 9 gtk_widget_show (node_f i sh) ;
0 2 0
0 2 1 node_inv = node = gtk_tree_item_new_with_label (" Invertebrates ") ;
0 2 2 gtk_tree_append (GTK_TREE (root) , node_inv) ;
0 2 3 gtk_widget_show (node_inv) ;
0 2 4
0 2 5 node_mammal = node = gtk_tree_item_new_with_labe l (" Mammals ") ;
0 2 6 gtk_tree_append (GTK_TREE (root) , node_mammal) ;
0 2 7 gtk_widget_show (node_mammal) ;
0 2 8
0 2 9 I I create the dangerous and non- dangerous subtrees o f the Fish
0 3 0 I I node
0 3 1
0 3 2 subtree gtk tree new () ; - -

Why Use Trees?

0 3 3 gtk_widget_show (subtree) ;
0 3 4
0 3 5 gtk_tree_item_set_subtree (GTK_TREE_ITEM (node_f i sh) , subtree) ;
0 3 6
0 3 7 node 1 = node = gtk_tree_i tem_new_with_labe l (II Dangerous II) ;
0 3 8 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 3 9 gtk_widget_show (node) ;
0 4 0
0 4 1 node2 = node = gtk_tree_item_new_with_label (" Non- dangerous ") ;
0 4 2 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 4 3 gtk_widget_show (node) ;
0 4 4
0 4 5 I I create the dangerous subtree of the F i s h tree
0 4 6
0 4 7 subtree = gtk_tree_new () ;
0 4 8 gtk_widget_show (subtree) ;
0 4 9
0 5 0 gtk_tree_i tem_set_subtree (GTK_TREE_ITEM (node 1) , subtree) ;
0 5 1
0 5 2 I I Create the leaf nodes of the dangerous subtree o f the Fish
0 5 3 I I tree
0 5 4
0 5 5 node = gtk_tree_item_new_with_label (" Great White Shark ") ;
0 5 6 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 5 7 gtk_widget_show (node) ;
0 5 8
0 5 9 node = gtk_tree_i tem_new_with_label (II Stonefish ll) ;
0 6 0 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 6 1 gtk_widget_show (node) ;
0 6 2
0 6 3 I I create the non - dangerous subtree o f the Fish tree
0 6 4
0 6 5 subtree = gtk_tree_new () ;
0 6 6 gtk_widget_show (subtree) ;
0 6 7
0 6 8 gtk_tree_i tem_set_subtree (GTK_TREE_ITEM (node2) , subtree) ;
0 6 9
0 7 0 I I Create the leaf nodes o f the non - dangerous subtree o f the F i sh

0 7 1 I I tree
0 7 2
0 7 3 node = gtk_tree_i tem_new_with_labe l (II Blue Banded GOby ll) ;
0 7 4 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 7 5 gtk_widget_show (node) ;
0 7 6
0 7 7 node = gtk_tree_item_new_with_label (II Grunion ll) ;
0 7 8 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 7 9 gtk_widget_show (node) ;
0 8 0
0 8 1 node = gtk_tree_item_new_with_label (II Leopard Shark ") ;
0 8 2 gtk_tree_append (GTK_TREE (subtree) , node) ;
0 8 3 gtk_widget_show (node) ;

595

596 Chapter 1 2 • Trees

O B 4
O B 5 node = gtk_tree_item_new_with_label (" Thornback") ;
O B 6 gtk_tree_append (GTK_TREE (subtree) , node) ;
O B 7 gtk_widget_show (node) ;
O B B
O B 9 I I create the dangerous and non- dangerous subtrees o f the
0 9 0 I I Invertebrates node
0 9 1
0 9 2 subtree = gtk_tree_new () ;
0 9 3 gtk_widget_show (subtree) ;
0 94
0 9 5 gtk_tree_i tem_set_subtree (GTK_TREE_ITEM (node_inv) , subtree) ;
0 9 6
0 9 7 node 1 = node = gtk_tree_item_new_with_label (II Dangerous ll) ;
0 9 B gtk_tree_append (GTK_TREE (subtree) , node) ;
0 9 9 gtk_widget_show (node) ;
1 0 0
1 0 1 node2 = node = gtk_tree_item_new_with_label (IINon- dangerous ll) ;
1 0 2 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 0 3 gtk_widget_show (node) ;
1 0 4
1 0 5 I I create the dangerous subtree of the Invertebrates tree
1 0 6
1 0 7 subtree = gtk_tree_new () ;
l O B gtk_widget_show (subtree) ;
1 0 9
1 1 0 gtk_t ree_item_set_subtree (GTK_TREE_ITEM (node1) , subtree) ;
1 1 1
1 1 2 I I create the leaf nodes of the dangerous Invertebrates tree
1 1 3
1 1 4 node = gtk_tree_item_new_with_label (II Sea Wasp ll) ;
1 1 5 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 1 6 gtk_widget_show (node) ;
1 1 7
1 1 B I I create the non- dangerous subtree o f the Invertebrates tree
1 1 9
1 2 0 subtree = gtk_tree_new () ;
1 2 1 gtk_widget_show (subtree) ;
1 2 2
1 2 3 gtk_tree_item_set_subtree (GTK_TREE_ITEM (node2) , subtree) ;
1 24
1 2 5 I I create the l e a f node s of the non - dangerous I nve r t ebra t e s t ree

1 2 6
1 2 7 node = gtk_tree_i tem_new_with_label (II Ochre Star") ;
1 2 B gtk_tree_append (GTK_TREE (subtree) , node) ;
1 2 9 gtk_widget_show (node) ;
1 3 0
1 3 1 node = gtk_tree_i tem_new_with_labe l (II Sea Pen ") ;
1 3 2 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 3 3 gtk_widget_show (node) ;
1 3 4

Why Use Trees?

1 3 5 node = gtk_tree_item_new_with_labe l (II Pac i f i c Octopus ll) ;
1 3 6 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 3 7 gtk_widget_show (node) ;
1 3 8
1 3 9 node = gtk_tree_item_new_with_label (II Sea Urchin ") ;
14 0 gtk_tree_append (GTK_TREE (subtre e) , node) ;
1 4 1 gtk_widget_show (node) ;
1 4 2
1 4 3 I I create the dangerous and non- dangerous subtrees of the
1 4 4 I I Mammal s node
1 4 5
1 4 6 subtree = gtk_tree_new () ;
1 4 7 gtk_widget_show (subtree) ;
1 4 8
14 9 gtk_tree_i tem_set_subtree (GTK_TREE_ITEM (node_mammal) , subtree) ;
1 5 0
1 5 1 node 1 = node = gtk_tree_item_new_with_labe l (II Dangerous lI) ;
1 5 2 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 5 3 gtk_widget_show (node) ;
1 5 4
1 5 5 node2 = node = gtk_tree_item_new_with_label (I Non- dangerous ") ;
1 5 6 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 5 7 gtk_widget_show (node) ;
1 5 8
1 5 9 I I create the dangerous subtree o f the Mammal s tree
1 6 0
1 6 1 subtree = gtk_tree_new () ;
1 6 2 gtk_widget_show (subtree) ;
1 6 3
1 6 4 gtk_tree_item_set_subtree (GTK_TREE_ITEM (node 1) , subtree) ;
1 6 5
1 6 6 I I create the leaf nodes of the dangerous Mammal s tree
1 6 7
1 6 8 node = gtk_tree_item_new_with_label (II Ki l ler Whale ll) ;
1 6 9 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 7 0 gtk_widget_show (node) ;
1 7 1
1 7 2 I I create the non- dangerous subtree of the Mammal s t ree
1 7 3
1 7 4 subtree = gtk_tree_new () ;
1 7 5 gtk_widget_show (subtree) ;
1 7 6
1 7 7 gtk_tree_item_set_subtree (GTK_TREE_ITEM (node2) , subtree) ;
1 7 8
1 7 9 I I create the leaf nodes o f the non- dangerous Mammal s tree
1 8 0
1 8 1 node = gtk_tree_item_new_with_labe l (II Gray Whale ll) ;
1 8 2 gtk_tree_append (GTK_TREE (subtree) , node) ;
1 8 3 gtk_widget_show (node) ;
1 8 4
1 8 5 node = gtk_tree_i tem_new_with_label (II Sea Otter ") ;

597

598 Chapter 12 • Trees

1 8 6 gtk_tree_append (GTK_TREE (subtree) , node) ;

1 8 7 gtk_widget_show (node) ;
1 8 8

1 8 9 node = gtk_t ree_item_new_with_labe l (" Bottlenose Dolphin ") ;

1 9 0 gtk_t ree_append (GTK_TREE (subtree) , node) ;

1 9 1 gtk_widge t_show (node) ;

1 9 2

1 9 3 return root ;

1 9 4
1 9 5

1 9 6 main (argc , argv
1 9 7 int argc ;

1 9 8 char * a rgv [] ;

1 9 9 {
2 0 0 GtkWidget *window , * t ree , *vbox ;

2 0 1

2 0 2 gtk init (&argc , &argv) ;

2 0 3

2 0 4 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

2 0 5 gtk_widget_show (window) ;

2 0 6 gtk_window-pos i t ion (GTK_WINDOW (window) , GTK_WIN_POS_CENTER) ;

2 0 7

2 0 8 gtk_s ignal_connect (GTK_OBJECT (window) , " destroy " ,

2 0 9 GTK_S IGNAL_FUNC (gtk_widget_destroy) , &window) ;

2 1 0

2 1 1 gtk_window_set_t i t l e (GTK_WINDOW (window) , " GtkTree Sample ") ;

2 1 2 gtk_container_border_width (GTK_CONTAINER (window) , 0) ;

2 1 3
2 1 4
2 1 5

t ree make_t ree (window) ;

2 1 6 vbox gtk_vbox_new (FALSE , 0) ;

2 1 7 gtk_container_add (GTK_CONTAINER (window) , vbox) ;

2 1 8

2 1 9 gtk_box-pack_start (GTK_BOX (vbox) , tree , FALSE , FALSE , 0) ;

2 2 0 gtk_widget_show_a l l (vbox) ;

2 2 1

2 2 2 gtk main () ;

2 2 3

Now that I have explained the basics of constructing trees out of GtkTree and GtkTree

Item instances, let's take a look at the GtkTree and GtkTreeltem classes in greater detail.

GtkTree

GtkTree

Class Name

GtkTree

Parent Class Name

GtkContainer

Macros

Widget type macro: GTK _TYPE_TREE

Object to widget cast macro: GTK_TREE (obj)

Widget type check macro: GTK_IS_TREE (obj)

Miscellaneous Macros:

599

GTICIS_ROar _ TREE(obj)-Returns I if obj is the root node of the tree to which it belongs.

GTK_TREE_ROar _TREE(obj)-Returns the root of the tree to which obj belongs, or obj if there
is no root.

GTK_TREE_SELECTION(obj)-Returns the list of currently selected items in the tree rooted at obj.

Supported Signals

Table 12.1 Signals

Signal Name

selecCchild

unselecCchild

Conditioll Causing Signal 1b Trigger

The selection of some tree item has been
changed.

A specific (sub)tree child has been selected.

A specific (sub)tree child has been unselected.

600 Chapter 12 • Trees

Signal Function Prototypes

void
selection_changed (GtkTree * t � , gpointer user_data) ;

void
select_child (GtkTree * t ree , GtkWidget *widget , gpointer user_data) ;

void
unselect_chi ld (GtkTree * t ree , GtkWidget *widget , gpointer user_data) ;

Application-Level API Synopsis

Return the constant GTK_TYPE_TREE at runtime:
GtkType
gtk_tree_get_type (void) ;

Create a new instance of GtkTree:
GtkWidget *
gtk_tree_new (void) ;

Append an instance of GtkTreeltem to a subtree:
void
gtk_tree_append (GtkTree * t ree , GtkWidget * t ree_item) ;

Prepend an instance of GtkTreeltem to a subtree:
void
gtk_tree-prepend (GtkTree *tree , GtkWidget * tree_item) ;

Insert an instance of GtkTreeltem into a subtree:
void
gtk_tree_insert (GtkTree * tree , GtkWidget * tree_it em , gint pos it ion) ;

Remove items from a tree:
void
gtk_tree_remove_items (GtkTree * t ree , GList * i tems) ;

Remove a range of items from a subtree:
void
gtk_tree_clear_items (GtkTree * tree , gint start , gint end) ;

Select an item in a subtree:
void
gtk_tree_select_item (GtkTree * tree , gint i tem) ;

Unselect an item in a subtree:
void
gtk_tree_unselect_item (GtkTree * t ree , gint item) ;

GtkTree

Application-Level API Synopsis (Continued)

Select the item corresponding to the specified tree widget item:
void
gtk_tree_select_chi ld (GtkTree *tree , GtkWidget *tree_it em) ;

Unselect the item corresponding to the specified .tree widget item:
void
gtk_tree_unselect_chi ld (GtkTree * t ree , GtkWidget *tree_item) ;

Determine the position of a child in a subtree:
gint
gtk_tree_chi ld-pos i tion (GtkTree * t ree , GtkWidget * child) ;

Specify the tree selection mode:
void
gtk_tree_set_select ion_mode (GtkTree *tree , GtkSelectionMode mode) ;

Specify the tree view mode:
void
gtk_tree_set_view_mode (GtkTree * tree , GtkTreeViewMode mode) ;

Specify whether tree lines are viewable or not:
void

Class Description

601

In the following sections I will describe how to create an instance of GtkTree, as well as

how to add and remove items from a tree. Issues related to the selections of items in a tree
will be explored. I will also describe the various view modes supported by GtkTree, and the

GtkTree API functions that support them.

Creating an Instance of GtkTree

An instance of GtkTree is created by making a call to gtk_tree_newO:

GtkWidget *
gtk_t ree_new (void) ;

The returned tree can be used by your application as the root node of a tree, or it can

added to an existing tree as a subtree by attaching it to any tree item in the tree. An overview
of trees and their construction was provided at the start of this chapter; tree items are

described in the section on GtkTreeltem, which immediately follows this section.

602 Chapter 1 2 • Trees

Adding Items

Once you have created an instance of GtkTree, tree items can be created and added to the tree.

The section on GtkTreeItem discusses how to create tree items. Once it has been created, a

tree item can be added to a tree by calling one of the following functions: gtk_tree_appendO,

gtk_tree_prependO, or gtk_tree_insertO.

A tree acts as a container of tree items. Each tree item that is managed by a tree has an

index that determines its placement relative to other tree items in the tree. The index of tree

items must be in the range [0, n - 1] , where n is the number of tree items managed by the

containing tree. The tree item at index n - 1 will appear higher in the tree (closer to the top)

than the tree item at index n; the tree item at index 0 will be displayed at the top of the tree,

while the tree item at index n - 1 will be displayed at the bottom of the tree.

To append a tree item to a tree, call gtk_tree_appendO:

vo id

gtk_t ree_append (GtkTree * tree , GtkWidget * t ree_item) i

The argument tree is the instance of GtkTree to which tree_item is being added. The

index of the tree item after being added is n, which is the number of tree items that were in

the tree prior to the append operation.

To prepend (add to the top of a tree) an instance of GtkTreeItem, you can call gtk_tree_

prependO:

voi d

gtk_t ree-prepend (GtkTree * t ree , GtkWidget * t ree_i tem) i

The arguments passed to gtk_tree_prependO are the same as those passed to gtk_tree_

appendO. A tree item added by gtk_tree_prependO will become the topmost child of the

tree to which it was added (i.e., its index is 0). The index of each of the remaining tree items

in the tree will be increased by 1 as a result of making this call.

Finally, you can insert an instance of GtkTreeltem into a subtree at a specific location

with a call to gtk_tree_insertO:

void

gtk_tree_insert (GtkTree * t ree , GtkWidget * t ree_i tem , gint pos i t ion) i

The first two arguments are the same as those passed to gtk_tree_appendO and gtk_tree_

prependO. The final argument, position, unambiguously specifies the location of the tree

item, relative to other tree items contained by the tree, after gtk_tree_insertO returns. Set
ting position to 0 emulates a call to gtk_tree_prependO, while setting position to - 1 results
in gtk_tree_insertO behaving as though gtk_tree_appendO were being called instead. Pass

ing a position argument of m, in the range [0, n - 1] causes tree items previously located at
positions [m, n - 1] to increase their position in the tree by one. For example, the item that
was previously located at position m will be located at position m + 1 in the tree once

gtk_tree_prependO returns.

GtkTree 603

Removing Items from a Tree
Removing items from a tree can be accomplished in one of two ways, depending on the

needs of the application. In situations in which your application provides a menu item or

button that the user can select or click to remove items that the user has selected from the

tree (by "selected," I mean the user has clicked on one or more of the tree items using the

mouse, causing them to become selected), the easiest way to remove these items is to call

the function gtk_tree_removejtemsO from the menu item or button callback function:

void
gtk_t ree_remove_items (GtkTree * t ree , GLi s t * i tems) ;

The first argument is the instance of GtkTree from which the items are to be removed.

The second argument is the list of items to remove. Where does this l ist of items come

from? Fortunately, GtkTree provides a macro, GTK_TREE_SELECTION, which can be

used to obtain a list of the selected items in a tree that can be used by gtk_tree_

remove_itemsO. The following code illustrates:

GtkWidget * t ree , *button ;

I I create a t ree , add i t s chi ldren , etc . .

tree = make_t ree () ;

I I create a " Remove " button

I I set the c l i cked s i gnal funct i on of the but ton . Pass the GtkTree

II instance as an argument so we can pass it to GTK_TREE_SELECTI ON

gtk_s ignal_connect (GTK_OBJECT (button) , " c l i cked " ,

GTK_S IGNAL_FUNC (remove_cb) , tree) ;

The preceding code creates a tree and a button labeled Remove. The "clicked" signal func

tion of the Remove button is set to remove3bO. The function remove3b is rather simple:

0 0 1 void
002 remove_cb (GtkWidget * w, GtkTree* t ree)
0 0 3 {
0 0 4 GLi s t * selected_l i s t ;

0 0 5
0 0 6 sel ected l i s t = GTK TREE_SELECTION (tree) ;
0 0 7 gtk_t ree_remove_i tems (t ree , selected_l i s t) ;

0 0 8

As you can see, deleting the selected items in a tree i s as simple as calling GTK_TREE_
SELECTION to obtain the list of selected tree children, as shown on line 006, and then
passing this list directly to gtk_tree_remove_itemsO, as illustrated on line 007.

604 Chapter 12 • Trees

You might also want to maintain a list of tree items yourself, bypassing the need to call

GTK_TREE_SELECTION. This might be useful if the user, instead of being provided a

Remove button as in the preceding example, is presented with a control that represents a more

abstract operation such as "Remove all animals that are considered dangerous to man." To
implement such a feature, your application will need to map GtkTreeItem widget instances

with the application data that these tree items represent. To give a simple example:

I I data s t ructure that holds the animal name , an indi cation of i t s

I I danger toman , and the instance of GtkTreeltem repre sent ing the

II animal in the tree

typede f s t ruct animal
gchar name [MAXNAME] ;

gbool ean isDangerous ;

GtkWidget * t ree ltem ;

Anima l ;

I I e . g . , Great Whi t e Shark

II in thi s case , TRUE

II holds the related t ree item

I I dec l are a table of animals

Anima l myAnima l s [] = {
{ " Great White Shark " , TRUE , 0 } ,
{ " Gruni on " , FALSE , 0 } ,

} ;
I I create tree items for each animal , storing the result ing
I I widget in the treel tem f i e l d

for (i 0 ; i < s i zeof (myAnimals) I s i zeof (Animal) ; i + +

myAnimals [i] . t ree l t em =

gtk_t ree_item_new_wi th_l abe l

(myAnimals [i] . name) ;

The following routine can be used to iterate through the Animals data structure, creating a GList

vector of animals, based on their danger to man, that can be passed to gtk_tree_remove_itemsO for

removal from the tree:

GLi s t *
GetAnimal sOfType (gboolean isDangerous)

{
GLi s t * l i s t = NULL ;
int i ;

for (i = 0 ; i < s i zeof (myAnimals) I s i zeof (Animal) ; i + +)

i f (myAnimals [i] . i sDangerous = = i sDangerous)
l i s t = g_l i s t-prepend (l i s t , myAnima l s [i] . t ree l t em) ;

GtkTree

return (l i s t) ;

A code snippet from the caller of this function might look like the fol lowing:

GList * l i s t ;

GtkWidget * t ree ;

I I here we attempt to de lete a l l the dangerous anima l s

l i s t = GetAnimal sOfType (TRUE) ;
i f (l i s t ! = NULL)

gtk_t ree_remove_items (GTK_TREE (tree) , l i s t) ;

605

Be careful not to attempt to remove widgets that have already been removed from the

tree; doing so will likely lead to a core dump or undefined behavior.

Removing Items Based on Position

You can also remove items from a (sub)tree based on their position. The function gtk_tree_

clear_itemsO makes this possible:

void
gtk_t ree_c l ear_items (GtkTree * t ree , gint start , gint end) ;

tree is an instance of GtkTree, start is the position of the first element to be removed, and

end is the position of the last element to be removed. start must be less than or equal to end,

and both must be within the range of [0, n - 1] , where n is the number of tree items in the

(sub)tree prior to making the call. To delete only one item, set start and end to the position

of the element you want to delete. For example, to delete the third item in a subtree, you

can execute the following code:

GtkWidget * tree ;

Selecting Items
The user can select tree items from a tree by positioning the pointer over the item to be
selected and clicking mouse button 1 . Users can select either leaf tree items (such as Great

White Shark) or tree items that represent the root of a subtree (e.g., Mammals). By default,
only one item can be in the selected state at a time. Applications can, and often do, change

this behavior by making a call to gtk_tree_secselection_modeO:

void
gtk_tree_set_se l e c t ion_mode (GtkTree * t ree , GtkSelectionMode mode) ;

606 Chapter 12 • Trees

tree is the instance of GtkTree that will be affected by the call, and mode is the selection

mode that will be in effect when gtlctree_secselection_modeO returns. Possible mode values

are listed in Table 1 2.2.

Table 12.2 GtkTree Selection Modes

Value

GTK_SELECTION_SINGLE

GTK_SELECTION_BROWSE

GTK_SELECTION_MULTIPLE

GTK_SELECTION_EXTENDED

Meaning

One item selectable at a time (default mode)

More than one noncontinuous selection at a time

Continuous selections over multiple rows
possible

For more information on these modes, see gtk_liscsecselection_modeO, which is

described in detail in Chapter 6.

An application can select an item in a subtree without user interaction. When might this be

useful? Consider the implementation of a Select All menu item in the Edit menu. Selecting

this menu item should cause all items in the tree to be selected. Or, perhaps, it might cause all
items in a selected subtree to also become selected, depending on the semantics you desire.

Regardless of the exact semantics adopted, clearly an operation like Select All, which is not

supported by GtkTree directly, must be implemented by the application. By making a call to

gtk_tree_selecCitemO for each item in a (sub)tree, you can implement the semantics of a

Select All operation. Here is the function prototype for gtk_tree_selecUtemO:

voi d

gtk_t ree_sel ect_i tem (GtkTree * tree , gint item) ;

The argument tree is an instance of GtkTree and can be either a root tree or a subtree.

The argument item is the position of the tree item to be selected, in the range [0, n - 1] .

There i s n o clear way to determine the number of tree items i n a subtree; at least, there is

no GtkTree function for doing this. To obtain the upper bound of a loop that implements a
Select All operation, you might need to call the following code, which obtains the number

of tree items managed by a tree by looking at the size of the list used to hold the tree items:

GtkWidget * t ree ;
gint nch i ldren ; I I number of tree items in the t ree

nchildren = g_l i s t_Iength (GTK_TREE (t ree) - >chi ldren) ;

I I now we can select a l l of the chi ldren in the subtree

for (i = 0 ; i < nchi ldren ; i + +
gtk_tree_select_item (GTK_TREE (t ree) , i) ;

GtkTree 607

Perhaps GtkTree will provide a better solution in a future release, one that better hides

the implementation of GtkTree.
If you have an instance of GtkTreeltem handy, you can easily determine its position in

a (sub)tree by calling gtk_tree3hild_positionO:

gint

gtk_tree_chi ld-pos i t i on (GtkTree * t ree , GtkWidget * child) ;

One additional point I should mention regarding gtk_tree_seleccitemOis that it enforces

the semantics defined by the selection mode of the subtree. In other words, if the user can

only select one item in the list at a time using the mouse, then your application can only

select one item as well.
Unselecting an item in a subtree is largely analogous to selecting an item and can be per

formed by calling gtk_tree_unselecUtemO:

void

gtk tree unselect i tem (GtkTree * t ree , gint i t em) ; - - -

You can select or unselect any tree item in a tree by naming the GtkTreeltem instance that

implements the tree item to be (un)selected. Recall the gtk_tree_remove_itemsO example,

previously shown, which implemented the operation "Delete all dangerous animals from the

tree." We can make use of the function that we wrote, GetAnimalsOITypeO, to retrieve a list

of tree item widgets based on their danger to humans, as we did before. The resulting list can

then be traversed to implement the operation "Select all dangerous animals in the tree," as

shown in the following listing:

GLi s t * l i s t ;

GtkWidget * t ree ;

I I here we attempt to de lete a l l the dangerous anima l s

l i s t = GetAnimal sOfType (TRUE) ;

whi le (l i s t ! = NULL) {
gtk_t ree_select_chi ld (GTK_TREE (t ree) ,

GTK_WIDGET (l i s t - >data» ;

l i s t = l i s t - >next ;

The function gtk_tree_seleccchildO, which I will describe now, was used in the preced
ing code to perform the actual selection of tree children:

void
gtk_t ree_select_chi ld (GtkTree * t ree , GtkWidget * t ree_i tem) ;

Unselecting a tree item is analogous and can be performed by making a call to gtk_tree_

unseleccchildO:

void
gtk_t ree_unselect_chi ld (GtkTree * tree , GtkWidget * t ree_i tem) ;

608 Chapter 12 • Trees

The arguments to gtlctree_selecCchildO and gtk_tree_unseleccchildO are the same:

tree is the (sub)tree that contains the tree item to (un)select, and tree item is the instance of

GtkTreeItem that was created and added to the tree at some prior point in time.

View Modes

The view mode of a tree dictates how tree items in the tree display themselves. There are

two possible modes, both of which are listed in Table 12 .3 .

Table 12.3 GtkTree View Modes

View Mode Meaning

Horizontal and vertical lines are drawn to make

tree item relationships easier to see (default) .

Just the tree items are drawn.

You can specify the tree view mode by passing one of the values in the preceding table

to gtk_tree_sec view _modeO:

void

gtk_t ree_set_view_mode (GtkTree * t ree , GtkTreeVi ewMode mode) ;

tree is the (sub)tree to which the mode will be applied. It appears that this function is a

no-op in Gtk 1 .2.

GtkTree supports one additional function that appears to be unnecessary when compared

to gtk_tree_seC view _modeO, which was just described, if it were not for the fact that

gtk_tree_sec view _modeO appears to be a no-op. You can call gtk_tree_sec view _linesO to

control the display of lines:

voi d

gtk_t ree_set_view_l ines (GtkTree * t ree , guint flag) ;

The default for view lines is TRUE, so there is really no need to call it if, as in most appli
cations, you find the display of lines acceptable. Figures 1 2.5 and 12.6 illustrate the differences.

GtkTreeltem

I n vertebrates
Dan g erous
Non - d an g e rous

Mammals
Dangerous
Non - d an g e rous

Gray Whale
Sea Otter
Bottlenose hin

Figure 12.5 Viewing Lines

GtkTreeltem

Class Name

GtkTreeltem

Parent Class Name

Gtkltem

Macros

Widget type macro: GTK_TYPE_TREE_ITEM

I±l Dangerous
I±l Non- d an g e rous

Mam m als
I±l Dangerous
8 Non- dang e rous

Gray Whale
Sea Otter
B ottlenose D

Figure 12.6 Hiding Lines

Object to widget cast macro: GTK _TREE_ITEM (obj)

Supported Signals

Table 12.4 Signals

Signal Name

expand

collapse

Condition Causing Signal to Trigger

A tree item has been expanded.

A tree item has been collapsed.

609

610

Signal Function Prototypes

void
expand (GtkTreeltem * treeitem, gpointer user_data) ;

void
col lapse (GtkTreeltem * treeitem, gpointer user_data) ;

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_TREE.:JTEM at runtime:
GtkType
gtk_tree_item_get_type (void) ;

Create a new tree item:
GtkWidget *
gtk_tree_item_new (void) ;

Create a new tree item with a label:
GtkWidget *
gtk_tree_item_new_with_label (gchar * label) ;

Associate a subtree (an instance of GtkTree) with a tree item in its parent:
void

Chapter 12 • Trees

gtk_tree_item_set_subtree (GtkTreeltem *tree_i tem, GtkWidget * subt ree) ;

Detach the subtree that has been previously attached to the specified tree item:
void
gtk_tree_item_remove_subtree (GtkTreeltem *tree_item) ;

Select a tree item:
void
gtk_tree_item_select (GtkTreeltem *tree_item) ;

Unselect a tree item:
void
gtk_tree_item_deselect (GtkTreeltem *tree_item) ;

Expand a tree item, showing the first level of the subtree that exists below it:
void
gtk_t ree_item_expand (GtkTreeI tem *tree_item) i

Collapse a tree item, hiding the entire subtree that exists below it:
void
gtk_tree_item_collapse (GtkTreeltem * t ree_item) i

I!im __ IIIl _____ IIIl ___ �mm_iffim.��&� _____ IIIl!IIIl! __ IIIlWW __ llIIlrrrw_

GtkTreeItem 61 1

Class Description

GtkTreeltem, as I discussed at the start of this chapter, is tightly coupled to the GtkTree class.

This is because GtkTree is a container class that was specifically designed to manage Gtk

Treeltem instances. If you attempt to add a child to a tree that is not an instance of GtkTree

Item (using the gtk_tree_appendO function, for example), GtkTree will display an error, and

the operation will not be performed.
Like trees, tree items are also containers. Unlike trees, however, tree items are flexible in

terms of the types of children they will manage. All of the examples presented so far in this

chapter have created tree items that manage instances of GtkLabel. However, you can (within

reason) create tree items that manage a variety of widget types, including other layout widgets

such as GtkBox, GtkPixmap, and so forth. In this section, I will show how you can add Gtk

Pixmap and GtkBox children to a tree.

Creating a Tree Item Widget

Tree items are as easily created as instances of any other Gtk+ widget class. To create a new
tree item with a label (probably the most common type of tree item is one that simply displays

text), you can call gtk_tree_item_new_with_IabeIO:

GtkWidget *

gtk_tree_item_new_with_l abe l (gchar * l abe l) ;

The argument label is a C-Ianguage, NULL-terminated ASCII string. The following

code creates a tree item that displays the text "Echinodermata":

GtkWidget *widget ;

widget = gtk_t ree_item_new (" Echinodermata ") ;

Tree items can be created without text labels by calling gtk_tree_item_newO:

GtkWidget *
gtk tree item new (void) ; - - -

A tree item created without a label is essentially a container in need of a child widget.
Knowing that most applications will want to instantiate GtkLabel widgets for this purpose,

GtkTreeltem provides gtk_tree_item_new _ with_IabelO as a convenience routine. For some
applications, labels are not enough. This is particularly true when items in the tree have a

visual and textual representation.
Displaying colors from a fixed palette in a subtree provides a good example of this. Suppose

your tree is designed to display all the red colors present in the XII rgb.txt file. Figure 12.7
illustrates how this data might be displayed in a tree that uses standard label-based tree items.

612

inclianrecl.xpm
orangerecl.xp m
re cl .xp m
p al e V i o letrecl.xpm
mecliumvio letre cl .xp
v io letrecl.xp m
Incl lan recll .xp m
inclian reclZ.xpm
o rangere d l .xp m
o ran g e re d Z .xp m
re d l .xpm
re d Z .xpm
p al e v i o letre d l .xpm
p al e v i o l etred Z .xpm
v io letrecll .xpm
v i o letrecl2.xpm

Figure 12.7 Displaying Color Names in a Tree

Chapter 12 • Trees

It should be obvious that these names do not sufficiently convey to the user the visual

distinction that exists between OrangeRed and OrangeRed2. We might solve this problem

by providing a button below the tree, labeled Display Color, that opens up a color selection

dialog and displays the color currently selected in the tree by the user based on its RGB

value. However, this solution is a tedious one for the user; a better solution would involve

displaying the color as a part of the tree item itself.

Our first attempt will illustrate the basics of how a tree item can be made to manage a widget

other than an instance of GtkLabel. In this example, instead of displaying a text label, we

choose to display a 16 X 16 image as a child of the tree item, to better convey the color than a

name might. To do this, we create a tree item with a call to gtk_tree_item_newO, create a pix

map widget that contains the image we want to display, and then make the pixmap widget a

child of the tree item. The following code illustrates:

Listing 12.2 First Attempt at Display Colors in a Tree

0 0 1 # inc lude <gtk/gtk . h>

0 0 2

0 0 3 I I data s t ructure to hold information about our colors

0 0 4

0 0 5 typede f s t ruct _colorent

0 0 6 uns i gned char red ;

0 0 7 uns igned char green ;

0 08 uns igned char blue ;

0 0 9 char * l abe l ;

0 1 0 char * f i l ename ;

0 1 1 colorent ;

0 1 2

I I red component of rgb value

II green component of rgb value
II blue component of rgb value

II l abel to di splay for t ree i tem

II f i l ename that stores the image

0 1 3 I I table describing the colors w e wi l l b e displaying

GtkTreeltem

0 1 4

0 1 5 colorent colortable[] = {
0 1 6 { 2 0 5 , 92 , 92 , " indian red " , " indianred . xpm" } .

0 1 7 { 2 5 5 , 6 9 , 0 , " orange red " , " orangered . xpm " } .

0 18 { 2 5 5 , 0 , 0 , " red " , " red . xpm " } ,

0 1 9 { 2 1 9 , 1 1 2 , 14 7 , "pale violet red " , "palevioletred . xpm " } .

0 2 0 { 1 9 9 , 2 1 , 1 3 3 , " medium violet red " , " mediumvioletred . xpm" } .

0 2 1 { 2 08 , 3 2 , 1 4 4 , "violet red " , "violetred . xpm " } ,

0 2 2 { 2 5 5 , 1 0 6 , 1 0 6 , " IndianRed1 " , " indianred1 . xpm " } .

0 2 3 { 2 38 , 9 9 , 9 9 , " IndianRed2 " , " indianred2 . xpm " } .

0 2 4 { 2 5 5 , 6 9 , 0 , " OrangeRed1 " , " orangered1 . xpm " } .

0 2 5 { 2 3 8 , 6 4 , 0 , " OrangeRed2 " , " orangered2 . xpm " } .

0 2 6 { 2 5 5 , 0 , 0 , " red1 " , " red1 . xpm " } .

0 2 7 { 2 3 8 , 0 , 0 , " red2 " , " red2 . xpm " } .

0 2 8 { 2 5 5 , 1 3 0 , 1 7 1 , " PaleViol etRed1 " , "palevioletred1 . xpm " } .

0 2 9 { 2 3 8 , 1 2 1 , 1 5 9 , " PaleViol etRed2 " , " palevioletred2 . xpm " } .

0 3 0 { 2 5 5 , 6 2 , 1 5 0 , " Viol etRed1 " , "violetred1 . xpm " } .

0 3 1 { 2 3 8 , 58 , 1 4 0 , " VioletRed2 " , "violetred2 . xpm " } .

0 3 2 { 1 3 9 , 0 , 0 , " dark red " , " darkred . xpm " } .

0 3 3 } ;
0 3 4

0 3 5 s t a t i c GtkWidget *
0 3 6 new-pixmap (char * f i l ename , GdkWindow *window , GdkColor *background)

0 3 7 {
0 3 8 GtkWidget *wpixmap ;

0 3 9 GdkPixmap *pixmap ;

0 4 0 GdkBitmap *mask ;

0 4 1

0 4 2 pixmap = gdk-pixmap_create_f rom_xpm (window , &mask , background ,

0 4 3 f i l ename) ;

0 4 4 wpixmap = gtk-pixmap_new (pixmap , mas k) ;

0 4 5

0 4 6 return wpixmap ;

0 4 7

0 4 8

0 4 9 s t a t i c GtkWidget *

0 5 0 make_t ree (GtkWidget *window)

0 5 1 {
0 5 2 GtkWidget * root , * image , * subt ree , *node , * node_colors ;

0 5 3 int i ;

0 5 4

0 5 5 I I create the root node o f the t ree .
0 5 6

0 5 7 root = gtk_tree_new () ;

0 5 8 gtk_widget_show (root) ;

0 5 9

0 6 0 node_colors = node = gtk_tree_item_new_wi t h_labe l (" Colors ") ;

0 6 1 gtk_t ree_append (GTK_TREE (root) , node_colors) ;

0 6 2 gtk_widget_show (node_colors) ;

0 6 3

0 6 4 subt ree = gtk_tree_new () ;

0 6 5 gtk_widget_show (subtree) ;

0 6 6

0 6 7

0 6 8

0 6 9

0 7 0

gtk tree item s e t subtree (GTK TREE I TEM (node colors) , subtree) ; - - - - - - -

for (i = 0 ; i < s i zeof (colortable) I s i zeof (colorent) ; i + +)

node gtk_tree_item_new () ;

613

614

0 7 1

0 7 2

0 7 3

0 7 4

0 7 5

0 7 6

0 7 7

Chapter 1 2 • Trees

image = new- pixmap (colortable[i] . f i l ename ,

window- >window , &window- > s tyle - >bg[GTK_STATE_NORMAL]) ;

gtk_container_add (GTK_CONTAINER (node) , image) ;

gtk_tree_append (GTK_TREE (subtre e) , node) ;

gtk_wi dget_show_a l l (node) ;

0 7 8 return root ;

0 7 9

On lines 005 through 0 1 1 , I define a type that can be used to hold information about the

items stored in the tree. Of importance for this example is the filename field. This field is

passed as an argument to new_pixmapO, defined on lines 035 through 047, which creates

an instance of GtkPixmap based on its contents. The tree items are created and added to the
tree on lines 069 through 076. For each entry in the color table defined on lines 0 1 5 through

033 , we create a new tree item (line 070), create a new pixmap widget (line 07 1), and add

the pixmap widget to the tree item as its child with a call to gtk_containecaddO (line 073).

The result is displayed in Figure 12.8 .

Figure 12.8 Displaying Colors in a Tree

One thing that is rather unappealing about the tree in Figure 12.8 is that the pixmap image
is not well aligned with the tree structure. It would be nice if the image were closer to the tree

structure and made the tree easier for users to interact with. To control the placement of the tree

item child, we might choose to instantiate a container widget, add the pixmap as a child of the

GtkTreeltem 615

container widget, and then add the container widget as a child of the tree item. A horizontal box

(GtkHBox) widget is able to solve our problem. The loop on lines 069 through 076 can be

recoded as follows:

for (i = 0 ; i < s i zeof (colortable) / s i zeof (colorent) ; i++) {
node = gtk_tree_i tem_new () ;

image = new-pixmap (colortable [i) . f i l ename ,

window- >window , &window- > style - >bg [GTK_STATE_NORMAL) ;

0 0 1 hbox = gtk_hbox_new (FALSE , 0) ;

0 0 2 gtk_container_add (GTK_CONTAINER (node) , hbox) ;

0 0 3 gtk_box- pack_start (GTK_BOX (hbox) , image , FALSE , FALSE , 0) ;

gtk_tree_append (GTK_TREE (subtre e) , node) ;

gtk_widget_show_a l l (node) ;

On line 00 1 , we create an instance of GtkHBox. On line 002, the horizontal box is made
the child of the tree item, not the pixmap. On line 003, the pixmap is made a child of the

hbox, which aligns it to the far left edge of the area managed by the box. The result is in

Figure 12.9.

Figure 12.9 Displaying Colors in a Tree Using a GtkHBox Widget

One final change and we will be finished with our example. After looking at Figure 1 2.9,

you might agree with me in thinking that the best solution of all would be to show both a

label and a pixmap for each color displayed in the tree. It turns out that it is easy to modify
the code we have developed so far in order to do this. Since the child of the tree item is a

616 Chapter 12 • Trees

horizontal box, it is trivial to add additional children to the horizontal box instance. Here,

we decide to add an instance of GtkLabel:

for (i = 0 ; i < s i zeof (colortable) / s i zeof (colorent) ; i + +) {
node = gtk_t ree_i tem_new () ;

image = new-pixmap (colortabl e [i l . f i l ename ,

window- >window , &window- >styl e - >bg [GTK_STATE_NORMAL 1) ;
0 0 1 l abel = gtk_labe l_new (col ortable [i l . labe l) ;

hbox = gtk_hbox_new (FALSE , a) ;

0 0 2 gtk_box_s et_spac ing (GTK_BOX (hbox) , 1 0) ;
gtk_container_add (GTK_CONTAINER (node) , hbox) ;

gtk_box-pack_s tart (GTK_BOX (hbox) , image , FALSE , FALSE , a) ;

0 0 3 gtk_box-pack_s tart (GTK_BOX (hbox) , labe l , FALSE , FALSE , a) ;

gtk_tree_append (GTK_TREE (subtree) , node) ;

gtk_widget_show_a l l (node) ;

I will just discuss those lines that were added. On line 001, an instance of GtkLabel was cre

ated. The label text is supplied by the label field of the colortable data structure. On line 002, I set
the box spacing to 10 pixels so that the pixmap and label are given sufficient horizontal separation.
On line 003, I simply added the label widget as a child of the horizontal box, immediately follow

ing the pixmap. The result is shown in Figure 12. 10.

orange red

re d

pale violet re d

m e d i u m v i o let

v i o l et red

IndianRed1

Ind ianRedZ

orangeRed1

Orange R e d 2

PaieVio ietRed1

PaieVio ietRed2

V io ietR ed 1

Viole1R ed2

Figure 12. 10 Displaying Colors and Color Names in a Tree

GtkTreeltem 617

Subtrees

Tree items can do two things. First, they are capable of displaying content, typically a label.

This has been illustrated several times in this chapter. Second, they can act as anchor points

for subtrees. A tree item that just displays a label or other widget can be selected by the user.
A tree item that anchors a subtree can be selected as well, or it can be opened to reveal the

first level of content in the subtree that it anchors. Generally speaking, the name you give

the tree item to which a subtree is attached should provide the user with a good indication

of the content that will be found in the subtree once the subtree is opened.
Subtrees are trees. You create them by calling gtk_tree_newO and populate them by creating

tree items that you attach to the tree by calling one of the GtkTree functions: gtk_tree_

appendO, gtk_tree_prependO, or gtk_tree_insertO. You attach a subtree onto a parent tree by

calling gtk_tree_item_secsubtreeO:

void
gtk_t ree_i tem_set_subtree (GtkTree ltem * t ree_i tem , GtkWidget * subt ree) ;

The argument subtree is an instance of GtkTree, the contents of which are arbitrary. (It can
contain subtrees, for example; the structure of the tree is not relevant.) The argument tree_item

is the tree item in the parent tree that will act as the anchor for the subtree being added.

A tree item can only act as an anchor for one subtree. It is an error to call gtk_tree_

item_secsubtreeO, passing a tree_item that anchors a subtree prior to the call.
You can detach a subtree from a tree item with gtk_tree_item_remove_subtreeO. This

makes the subtree eligible for being attached to some other tree item as well as making the

tree item eligible for anchoring some other subtree. The function prototype for gtk_tree_

item_remove_subtreeO is as follows:

void
gtk_tree_i tem_remove_subtree (GtkTreel tem * t ree_item) ;

The argument tree_item is the tree item that anchors the subtree to be removed. If the

tree item does not currently anchor a subtree, the call is a no-op.

Tree Operations
The remaining functions in the GtkTreeItem API allow an application to perform the fol

lowing tasks:

• Select and deselect tree items

• Expand and collapse a subtree anchored by a specific tree item

Selecting and Deselecting Tree Items. To select a tree item, call gtk_tree_item_selectO:

vo id
gtk_t ree_i tem_select (GtkTree l tem * t ree_i tem) ;

The argument tree_item is the tree item to be selected. To deselect (or unselect) a tree
item, call gtk_tree_item_deselectO:

618 Chapter 12 • Trees

vo id
gtk_t ree_i tem_deselect { GtkTree ltem * t ree_i tem) ;

In this case, the argument tree_item is the tree item that will be unselected once the call

returns. The advantage to using gtk_tree_item_selectO or gtk_tree_item_deselectO is that
using either of these does not require you to know the tree within which the tree item is

located or its position relative to other tree items managed by its parent tree. This is in con

trast to gtk_tree_selecUtemO, gtk_tree_unselecUtemO, gtk_tree_selecCchildO, and gtk_

tree_unselecCchildO, which require more information to perform the same task. (Yes, I
agree with you that the use of "deselect" by GtkTreeItem and "unselect" by GtkTree is con

fusing.)

Expanding and Collapsing Tree Items. Your application can also expand and collapse
a subtree (if any) anchored by a tree item by calling gtk_tree_item_expandO and gtk_tree_

item30llapseO, respectively:

void

gtk_t ree_i tem_expand { GtkTreeltem * t ree_i tem) ;

vo id

gtk_t ree_i tem_collapse { GtkTree ltem * t ree_i tem) ;

Only the first level below the tree item is exposed by gtk_tree_item_expandO. Collapsing
a tree item will cause all subtrees that descend from the tree anchored by tree_item to collapse

as well.

The following code shows how to write a recursive function that expands all of the subtrees

that descend from a given tree.

0 0 1 void

002 ShowAl l { GtkTree * t ree)

0 0 3 {
0 0 4 GLi s t * l i s t ;
0 0 5 GtkTree * subtree ;

0 0 6
0 0 7 l i s t = t ree - >chi ldren ;

0 0 8 whi l e (l i s t) {
0 0 9 subtree = (GtkTree *) GTK_TREE_ITEM { l i s t - >data) - > subtree ;

0 1 0 i f (subtree) {
0 1 1
0 1 2
0 1 3
0 1 4
0 1 5
0 1 6
0 1 7

l i s t

gtk_t ree_item_expand {

GTK_TREE_I TEM { subtree - >tree owner)) ;
ShowAl l { subt ree) ;

l i s t - >next ;

Essentially, this function grabs the list of children (tree items) managed by the tree (line
007) and, for each child, checks to see if it anchors a subtree (line 0 1 0). If so, the tree item

that anchors that subtree is expanded (line 01 1), and then ShowAllO is called recursively to

GtkCTree 619

expand the contents of the subtree that was just expanded. You can pass a subtree at any

level to start the ball rolling; to expand the entire tree, pass the tree root.

A function like Show All() is rather dangerous to write because it presumes that the internal
structure of GtkTree and GtkTreeltem remains the same in releases that follow the one for

which the code was developed. Should you find yourself developing general-purpose code

such as the preceding, which might be useful to other developers, it might be a good time to
contact the Gtk+ owners (or, more specifically, the author of the widget for which the code

you are developing pertains) and explore with him or her the possibility of contributing your

code to the Gtk+ effort. This will allow others to benefit from your changes and will help
ensure that implementation-specific changes are being dealt with by Gtk+ as future versions

are developed.

GtkCTree

Class Name

GtkCTree

Parent Class Name

GtkCList

Macros

Widget type macro: GTK _TYPE _ CTREE

Object to widget cast macro: GTK _ CTREE (obj)

Widget type check macro: GTK _ IS _ CTREE (obj)

Supported Signals

Table 12.5 Signals

Signal Name

tree_expand

tree_collapse

Conditio" Causing Signal to Trigger

The row was selected by the user.

The row was unselected by the user.

The subtree was expanded to show children.

The subtree was collapsed to hide children.

620

Table 12.5 Signals (Continued)

Signa/ Name

Signal Function Prototypes

void

Chapter 1 2 • Trees

Condition Causing Signal to Trigger

The subtree was moved to some other location.

Keyboard expansion/collapse of the selected tree
has occurred (see text).

t ree_select_row (GtkCTree * ctree , GList *node , gint column ,
gpointer user_data) ;

void
t ree_unselect row (GtkCTree *ctree , GList *node , gint column ,

gpointer user_data) ;

void
t ree_expand (GtkCTree *ctree , GList *node , gpointer user_data) ;

void
t ree_collapse (GtkCTree * ctree , GList * node , gpointer user_data) ;

void
tree_move (GtkCTree *ctree , GLi s t *node , GList *new-parent ,

GLi s t *new_s ibling , gpointer user_data) ;

void
change_focus_row_expans ion (GtkCTree * ctree ,

GtkCTreeExpansionType expansion , gpointer user_data) ;

Supported Arguments

Prefix: GtkCTree : :

Table 12.6 GtkCTree Arguments

Name Permissions

GTK..,.ARG_READWRITE I
GTK..,.ARG_CONSTRUCT_
ONLY

GTK_ARG-.READWRITE I
GTK_ARG_CONSTRUCT_
ONLY

GtkCTree

Table 12.6 GtkCTree Arguments (Continued)

Name Type

indent GTK..TYPE_UINT

spacing GTK3YPE...,:UINT

show_stub GTK3YPE�BOOL

line_style GTK3YPE_CTREE_LINE_STYLE

expandecstyle GTK3YPJLCTREE_EXPANDER_STYLE

Application-Level API Synopsis

Return the constant GTK_TYPE_CTREE at runtime:
GtkType
gtk_ctree_get_type (void) ;

621

Permissions

GTK_ARG_READ�

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

Create an instance of GtkCI'ree with the specified number of columns and titles:
GtkWidget *
gtk_ctree_new_with_ti t le s (gint columns , gint tree_column ,

gchar * t itles []) ;

Create an instance of GtkCTree with the specified number of columns. This is equivalent to calling
gtk_ctree_new_witlLtitiesO with a NULL titles argument:
GtkWidget *
gtk_ctree_new (gint columns , gint t ree_column) ;

Create a new node and add it to the tree:
GtkCTreeNode *
gtk_ctree_insert_node (GtkCTree *ctree , GtkCTreeNode *parent ,

GtkCTreeNode * s ibling , gchar *text [] , guint B spacing ,
GdkPixmap *pixmap_closed, GdkBitmap *mask_closed ,
GdkPixmap *pixmap_opened, GdkBitmap *mask_opened ,
gbool ean i s_leaf , gboolean expanded) ;

Remove a node from the tree:
void
gtk_ctree_remove_node (GtkCTree * c t ree , GtkCTreeNode *node) ;

Walk the tree, calling func(ctree, node, data) for each node in the tree. The traversal order is post-order:
void
gtk_ctree-post_recursive (GtkCTree * ctree , GtkCTreeNode * node ,

GtkCTreeFunc func , gpo inter data) ;

622 Chapter 12 • Trees

Application-Level API Synopsis (Continued)

Walk the tree, calling func(ctree, node, data) for each node in the tree. The traversal order is post-order,
and only includes nodes to the specified depth:

void
gtk_ct ree-post_recurs ive_to_depth (GtkCTree *ctree ,

GtkCTreeNode *node , gint depth, GtkCTreeFunc func ,
gpointer data) ;

Walk the tree, calling func(ctree, node, data) for each node in the tree. The traversal order is pre-order:
void
gtk_ctree-pre_recurs ive (GtkCTree * ctree , GtkCTreeNode *node ,

GtkCTreeFunc func , gpointer data) ;

Walk the tree, calling func(ctree, node, data) for each node in the tree. The traversal order is pre
order and only includes nodes to the specified depth:
void
gtk_ctree-pre_recurs ive_to_depth (GtkCTree * ctree ,

GtkCTreeNode *node , gint depth , GtkCTreeFunc func ,
gpointer data) ;

Return TRUE if the node is viewable:
gboolean
gtk_ctree_i s_viewable (GtkCTree *ctree , GtkCTreeNode *node) ;

Return TRUE if the specified child is a sibling or child of the specified node in the tree:
gboolean
gtk_ctree_f ind (GtkCTree * ctree , GtkCTreeNode *node ,

GtkCTreeNode * chi ld) ;

Return TRUE if the specified node is a parent of the specified child:
gboolean
gtk_ctree_i s_ancestor (GtkCTree * ctree , GtkCTreeNode *node ,

GtkCTreeNode * child) ;

Find the first child or sibling of the specified node by row data:
GtkCTreeNode *
gtk_ctree_f ind_by_row_data (GtkCTree *ctree , GtkCTreeNode *node ,

gpointer data) ;

Find all children or siblings of the specified node by row data:
GLi st *
gtk_ctree_f ind_al l_by_row_data (GtkCTree *ctree , GtkCTreeNode *node ,

gpointer data) ;

Find the first child or sibling of the specified node by row data, using a custom comparison function:
GtkCTreeNode *
gtk_ctree_f ind_by_row_data_custom (GtkCTree * ctree ,

GtkCTreeNode *node , gpointer data , GCompareFunc func) ;

GtkCTree 623

Application-Level API Synopsis (Continued)

Find all children or siblings of the specified node by row data, using a custom compare function:
GList *
gtk_ctree_find_al l_by_row_data_custom { GtkCTree * ctree ,

GtkCTreeNode *node , gpo inter dat a , GCompareFunc func) ;

Return TRUE if the specified x, y coordinate corresponds to an expander box in the tree:
gboolean
gtk_ctree_i s_hot_spot (GtkCTree * ctree , gint x , gint y) ;

Reposition the specified node in the tree so that it has the specified parent and sibling:
void
gtk_ctree_move (GtkCTree * ctree , GtkCTreeNode *node ,

GtkCTreeNode *new-parent , GtkCTreeNode * new_s ibling) ;

Expand the specified node, displaying its immediate children:
void
gtk_ctree_expand (GtkCTree * ctree , GtkCTreeNode *node) ;

Recursively expand the specified node, displaying all nodes that descend from it:
void
gtk_ctree_expand_recurs ive (GtkCTree * ctree , GtkCTreeNode *node) ;

Recursively expand the specified node to the specified depth:
void
gtk_ctree_expand_to_depth (GtkCTree * ctree , GtkCTreeNode *node ,

gint depth) ;

Collapse the specified node, hiding its immediate children:
void
gtk_ctree_col lapse (GtkCTree * ctree , GtkCTreeNode *node) ;

Recursively collapse the specified node and all nodes that descend from it:
void
gtk_ctree_collapse_recursive (GtkCTree * ctree , GtkCTreeNode *node) ;

Recursively collapse the specified node to the specified depth:
void
gtk_ctree_col lapse_to_depth (GtkCTree * ctree , GtkCTreeNode *node ,

gint depth) ;

If the node is expanded, collapse it; otherwise, expand it:
void
gtk_ctree_toggle_expansion (GtkCTree * ctree , GtkCTreeNode *node) ;

Recursively expand or collapse the node, depending on its previous state:
void
gtk_ctree_toggle_expansion_recursive (GtkCTree * ctree ,

GtkCTreeNode *node) ;

624

Application-Level API Synopsis (Continued)

Select the row corresponding to the specified node:
void
gtk_ct ree_select (GtkCTree * ctree , GtkCTreeNode *node) ;

Chapter 12 • Trees

Recursively select the row corresponding to the specified node and all of its children:
void
gtk_ct ree_select_recursive (GtkCTree * ctree , GtkCTreeNode *node) ;

Unselect the row corresponding to the specified node:
void
gtk_ct ree_unselect (GtkCTree * ctree , GtkCTreeNode *node) ;

Recursively unselect the row corresponding to the specified node and all of its children:
void
gtk_ctree_unselect_recursive (GtkCTree *ctree , GtkCTreeNode *node) ;

Set the text for the specified node and column:
void
gtk_ct ree_node_set_text (GtkCTree * ctree , GtkCTreeNode *node ,

gint column , const gchar * text) ;

Set the pixmap for the specified node and column:
void
gtk_ctree_node_set-pixmap (GtkCTree *ctree , GtkCTreeNode *node ,

gint column , GdkPixmap *pixmap , GdkBitmap *mask) ;

Set the text and pixmap for the specified node and column:
void
gtk_ctree_node_set-p ixtext (GtkCTree * ctree , GtkCTreeNode *node ,

gint column , const gchar *text , guint 8 spacing ,
GdkPixmap *pixmap , GdkBitmap *mask) ;

Change the attributes of the specified node:
void
gtk_ctree_set_node_info (GtkCTree *ctree , GtkCTreeNode * node ,

const gchar *text , guint 8 spacing , GdkPixmap *pixmap_closed ,
GdkBitmap *mask_closed , GdkPixmap *pixmap_opened,
GdkBitmap *mask_opened , gboolean i s_leaf , gboolean expanded) ;

Offset the display of data corresponding to the specified column in the specified node by the
specified number of pixels:
void
gtk_ctree_node_set_shift (GtkCTree *ctree , GtkCTreeNode * node ,

gint column , gint vert i cal , gint hori zontal) ;

Make the specified node in the tree selectable or not:
void
gtk_ctree_node_set_selectable (GtkCTree * ctree , GtkCTreeNode *node ,

gboolean selectable) ;

GtkCTree

Application-Level API Synopsis (Continued)

Determine whether the specified node can be selected or not:
gboolean
gtk_ctree_node_get_selectable (GtkCTree *ctree , GtkCTreeNode *node) ;

Determine the type of data stored by a node in the specified column:
GtkCellType
gtk_ctree_node_get_cel l_type (GtkCTree *ctree , GtkCTreeNode *node ,

gint column) ;

Retrieve the text from the specified node, if any:
gint
gtk_ctree_node_get_text (GtkCTree *ctree , GtkCTreeNode *node ,

gint column , gchar * *t ext) ;

Retrieve the pixmap from the specified node, if any:
gint
gtk_ctree_node_get-pixmap {GtkCTree * c t ree , GtkCTreeNode *node ,

gint column , GdkPixmap * *pixmap , GdkBitmap * *mask) ;

Retrieve the pixmap and the text from the specified node, if any:
gint
gtk_ctree_node_get-pixtext {GtkCTree * c t ree , GtkCTreeNode *node ,

gint column , gchar * *text , guint S * spacing ,
GdkPixmap * *pixmap , GdkBitmap * *mask) ;

Retrieve attributes and data from the specified node:
gint
gtk_ctree_get_node_info {GtkCTree *ctree , GtkCTreeNode *node ,

gchar * * text , guint S * spacing , GdkPixmap * *pixmap_closed ,
GdkBitmap * *mask_closed , GdkPixmap * *pixmap_opened ,
GdkBitmap * *mask_opened , gboolean * i s_leaf ,
gboolean * expanded) ;

Set style data for the specified node:
void
gtk_ct ree_node_set_row_style {GtkCTree * c t ree , GtkCTreeNode *node ,

GtkStyle * s tyle) ;

Retrieve style data from the specified node:
GtkStyle *
gtk_ctree_node_get_row_style (GtkCTree * ctree , GtkCTreeNode *node) ;

Set style data for the specified column:
void
gtk_ctree_node_set_cel l_style { GtkCTree *ctree , GtkCTreeNode *node ,

gint column , GtkStyle * s tyle) ;

625

626 Chapter 12 • Trees

Application-Level API Synopsis (Continued)

Get style data for the specified column:
GtkStyle *
gtk_ctree_node_get_cel l_style (GtkCTree * ctree , GtkCTreeNode *node ,

gint column) ;

Set the foreground color of the specified node:
void
gtk_ctree_node_set_foreground (GtkCTree *ctree , GtkCTreeNode *node ,

GdkColor *color) ;

Set the background color of the specified node:
void
gtk_ctree_node_set_background (GtkCTree * ctree , GtkCTreeNode *node ,

GdkColor *color) ;

Set the data attribute of the specified row:
void
gtk_ctree_node_set_row_data (GtkCTree * ctree , GtkCTreeNode * node ,

gpointer data) ;

Set the data attribute and destroy function of the specified row:
voi d
gtk_ctree_node_set_row_data_ful l (GtkCTree * ctree ,

GtkCTreeNode * node , gpointer data , GtkDestroyNot i fy destroy) ;

Get the data attribute of the specified row:
gpo inter
gtk_ctree_node_get_row_data (GtkCTree *ctree , GtkCTreeNode *node) ;

Scroll the tree so that the specified node and column are visible:
void
gtk_ct ree_node_moveto (GtkCTree *ctree , GtkCTreeNode * node ,

gint column , gf loat row_align , gfloat col_align) ;

Return the visibility of the specified node. Options are GTK_ VISIBILITY_NONE,
GTK_ VISIBILITY _PARTIAL, or GTK_ VISIBILITY_FULL:
GtkVi s ibi l i ty
gtk_ctree_node_is_vis ible (GtkCTree * ctree , GtkCTreeNode *node) ;

Specify the indentation of tree lines, in pixels (default is 20 pixels):
void
gtk_ctree_set_indent (GtkCTree * ctree , gint indent) ;

Specify the spacing of nodes in the tree, in pixels:
void
gtk_ctree_set_spacing (GtkCTree *ctree , gint spac ing) ;

Turn on or off the display of the tree line stub (see text):
void
gtk_ctree_set_show_stub (GtkCTree *ctree , gboolean show_stub) ;

GtkCTree

Application-Level API Synopsis (Continued)

Set the tree line style (see text):
void
gtk_ctree_set_l ine_style (GtkCTree * ct ree , GtkCTreeLineStyle
l ine_style) ;

Specify the expander style. Options are GTK_CTREE_EXPANDER_NONE,
GTK_CTREEJ3XPANDER_SQUARE, G�CTREE_EXPANDER_TRIANGLE, or
GTK_CTREE_EXPANDER..ClRCULAR:
void
gtk_ctree_set_expander_style (GtkCTree * ctree ,

GtkCTreeExpanderStyle expander_style) ;

Specify a compare procedure for drag and drop (see text):
void
gtk_ctree_set_drag_compare_func (GtkCTree * ctree ,

GtkCTreeCompareDragFunc cmp_func) ;

Sort the tree starting at the specified node (or the focus row if node is set to NULL):
void
gtk_ctree_sort_node (GtkCTree *ctree , GtkCTreeNode *node) ;

Sort all nodes recursively from the specified node (or the entire tree if node is set to NULL):
void
gtk_ctree_sort_recursive (GtkCTree * ctree , GtkCTreeNode *node) ;

Class Description

627

GtkCTree is similar to GtkTree, previously described, in very much the same way that Gtk
CList is similar to GtkList. GtkList, as you may recall, displays single-column lists of arbi

trary widget data, while GtkCList displays multicolumn lists of text and provides support

for sorting. Such is the case with GtkTree and GtkCTree. GtkTree allows your application
to display single-column trees that contain arbitrary widget data, while GtkCTree supports
the display of multicolumn trees of text data and, like GtkCList, supports sorting.

The similarity of GtkCTree and GtkCList is no accident; GtkCList is the parent class of
GtkCTree. Because of this, you can make use of the GtkCList API when working with an

instance of GtkCTree. GtkCList functions that take an instance of GtkCList can be used by
coercing the GtkCTree instance into an instance of GtkCList with the GTK_CLIST macro.

For example:

GtkWidget * c t ree ;
gint s i z e , column ;

628 Chapter 12 • Trees

column = 0 ;
s i z e = gtk_c l i s t_opt imal_column_width (GTK_CLIST (ctree) , column) ;

The preceding code returns the size needed to display the data in column 0 of a GtkCTree
instance without that data being clipped.

In some cases, GtkCTree provides functions that are similar to ones provided by GtkCList.

I recommend, in such cases, that you use the versions provided by GtkCTree. I will discuss

how some of the GtkCList functions can be used with instances of GtkCTree. Refer to the dis

cussion of GtkCList in Chapter 6 for additional details on the GtkCList API.

GtkCTree, like GtkCList, defines a large number of functions, which can make GtkCTree

rather overwhelming for first-time users. To soften the blow, I will approach GtkCTree ini

tially by way of example, developing three small applications that illustrate the bulk of what

you will need to know to make use of GtkCTree in your own applications. A fourth applica

tion will show how to add sorting capabilities to sample application three. Once I finish pre
senting the sample applications, I will describe the remainder of the GtkCTree API for those

of you who are interested. However, for most of you, the sample applications presented here

will provide most of what you need to know to work with GtkCTree.

A First Example

Sample application one illustrates a technique that can be used to create the same tree that
I developed earlier in this chapter with GtkTree (see Figure 1 2.3 and the accompanying

source-code listing). As it turns out, I believe it is actually easier to create this tree with
GtkCTree than to create it with GtkTree. The code for sample application one is as follows:

Listing 12.3 First GtkCTree Example (See Figure 1 2.3)

0 0 1 # inc lude <gtk/gtk . h>
0 0 2

0 0 3 stat i c GtkWidget *

0 0 4 make_t ree (void

005 {
0 0 6 GtkWidget * root ;

0 0 7 GtkCTreeNode *parent , *node ;

0 0 8 gchar * t ext [l] ;

0 0 9
0 1 0 I I create the root node of the tree .
0 1 1

0 1 2 root = gtk_c tree_new (1 , 0) ;
0 1 3
0 1 4 I I Fish
0 1 5

0 1 6 text [0] = " Fi s h " ;
0 1 7 parent = gtk_c tree_insert_node (GTK_CTREE (root) ,
0 1 8 NULL , NULL , text , S , NULL , NULL , NULL , NULL ,
0 1 9 FALSE , TRUE) ;
0 2 0

0 2 1 text [0] = " Dangerous " ;

0 2 2 node = gtk_c tree_insert_node (GTK_CTREE (root) ,
0 2 3 parent , NULL , text ,

GtkCTree

0 2 4
0 2 5

5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 2 6 text [0] = " Great White Shark " ;
0 2 7 gtk_ctree_insert_node (GTK_CTREE (root) ,
0 2 8 node , NULL , text ,
0 2 9 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
0 3 0
0 3 1 text [0] = " Stone f i sh " ;
0 3 2 gtk_ctree_insert_node (GTK_CTREE (root) ,
0 3 3 node , NULL , text ,
0 3 4 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
0 3 5
0 3 6 text [0] = " Non-Dangerous " ;
0 3 7 node = gtk_ctree_insert_node (GTK_CTREE (root) ,
0 3 8 parent , NULL , text ,
0 3 9 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;
0 4 0
0 4 1 text [0] = " B lue Banded Goby " ;
0 4 2 gtk_ctree_insert_node (GTK_CTREE (root) ,
0 4 3 node , NULL , text ,
0 4 4 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
0 4 5
0 4 6 text [0] = " Grunion " ;
0 4 7 gtk_ctree_insert_node (GTK_CTREE (root) ,
0 4 8 node , NULL , text ,
0 4 9 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
0 5 0
0 5 1 text [0] = " Leopard Shark " ;
0 5 2 gtk_ctree_insert_node (GTK_CTREE (root) ,
0 5 3 node , NULL , text ,
0 5 4 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
0 5 5
0 5 6 text [0] = " Thornback " ;
0 5 7 gtk_ctree_insert_node (GTK_CTREE (root) ,
0 5 8 node , NULL , text ,
0 5 9 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
0 6 0
0 6 1 I I Invertebrates
0 6 2
0 6 3 text [0] = " Invertebrates " ;
0 6 4 parent = gtk_ctree_insert_node (GTK_CTREE (root) ,
0 6 5 NULL , NULL , text ,
0 6 6 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;
0 6 7
0 6 8 text [0] = " Dangerous " ;
0 6 9 node = gtk_ctree_insert_node (GTK_CTREE (root) ,
0 7 0 parent , NULL , text ,
0 7 1 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;
0 7 2
0 73 text [0] = " Sea Wasp " ;
0 7 4 gtk_ctree_insert_node (GTK_CTREE (root) ,

629

630 Chapter 12 • Trees

0 7 5 node , NULL , text ,

0 7 6 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

0 7 7
0 7 8 text [0] = " Non- Dangerous " ;
0 7 9 node = gtk_ct ree_insert_node (GTK_CTREE (root) ,

0 8 0 parent , NULL , text ,
0 8 1 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 8 2
0 8 3 text [0] = " Ochre Star " ;
0 8 4 gtk_ct ree_insert_node (GTK_CTREE (root) ,
0 8 5 node , NULL , text ,
0 8 6 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

0 8 7
0 8 8 text [0] = " Sea Pen " ;
0 8 9 gtk_c tree_insert_node (GTK_CTREE (root) ,

0 9 0 node , NULL , text ,

0 9 1 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

0 9 2
0 9 3 text [0] = " Pac i f i c Octopus " ;
0 9 4 gtk_ct ree_insert_node (GTK_CTREE (root) ,

0 9 5 node , NULL , text ,

0 9 6 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

0 9 7
0 9 8 t ext [0] = " Sea Urchin " ;
0 9 9 gtk_ct ree_insert_node (GTK_CTREE (root) ,

1 0 0 node , NULL , text ,
1 0 1 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

1 0 2

1 0 3 I I Mamma l s

1 0 4
1 0 5 t ext [0] = " Mammal s " ;

1 0 6 parent = gtk_ctree_insert_node (GTK_CTREE (root) ,

1 0 7 NULL , NULL , text ,
1 0 8 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

1 0 9

1 1 0 text [0] = " Dangerous " ;
1 1 1 node = gtk_ct ree_insert_node (GTK_CTREE (root) ,

1 1 2 parent , NULL , text ,
1 1 3 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

1 1 4
1 1 5 text [0] = " Ki l l er Whal e " ;
1 1 6 gtk_ct ree_insert_node (GTK_CTREE (root) ,
1 1 7 node , NULL , text ,
1 1 8 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;
1 1 9
1 2 0 text [0] = " Non - Dangerous " ;
1 2 1 node = gtk_ct ree_insert_node (GTK_CTREE (root) ,
1 2 2 parent , NULL , text ,
1 2 3 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;
1 2 4
1 2 5 text [0] = " Gray Whale " ;

GtkCTree 631

1 2 6 gtk_ct ree_insert_node (GTK_CTREE (root) ,

1 2 7 node , NULL , text ,

1 2 8 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

1 2 9
1 3 0 text [0] = " Sea Otter " ;
1 3 1 gtk_ctree_insert_node (GTK_CTREE (root) ,

1 3 2 node , NULL , text ,

1 3 3 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

1 3 4
1 3 5 text [0] = " Bott l enose Dolphin " ;

1 3 6 gtk_ctree_insert_node (GTK_CTREE (root) ,

1 3 7 node , NULL , text ,

1 3 8 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

1 3 9
1 4 0 return root ;

1 4 1

1 4 2
1 4 3 main (argc , argv

1 4 4 int argc ;

1 4 5 char *argv [] ;

1 4 6 {
1 4 7 GtkWidget *window , * t ree ;

1 4 8
1 4 9 gtk_ini t (&argc , &argv) ;

1 5 0

1 5 1 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

1 5 2 gtk_widget_set_us i z e (window , 2 0 0 , - 1) ;

1 5 3
1 5 4 gtk_s ignal_connect (GTK_OBJECT (window) , " de s t roy " ,

1 5 5 GTK_S IGNAL_FUNC (gtk_widget_destroy) , &window) ;

1 5 6
1 5 7 gtk_window_set_t i t l e (GTK_WINDOW (window) , " GtkTree Sample ") ;

1 5 8 gtk_container_border_width (GTK_CONTAINER (window) , 0) ;

1 5 9
1 6 0 tree = make_t ree () ;

1 6 1
1 6 2 gtk_container_add (GTK_CONTAINER (window) , tree) ;

1 6 3 gtk_window-pos i t ion (GTK_WINDOW (window) , GTK_WIN_POS CENTER) ;
1 6 4
1 6 5 gtk_widget_show_a l l (window) ;

1 6 6

1 6 7 gtk_main () ;

1 6 8

Creating a GtkCTree Instance

Only two GtkCTree functions are needed in the preceding listing to implement the tree. The
first of these functions, predictably, is the one used by applications to create an instance of
GtkCTree: gtk_ctree_newO. The prototype for gtk_ctree_newO is:

GtkWidget *
gtk_ctree_new (gint columns , gint t ree_column) ;

632 Chapter 12 • Trees

The first argument, columns, specifies how many columns are to be defined for each row in

the tree. The second argument, tree30lumn, specifies which column the tree controls will be

displayed in. tree30lumn can be any integer in the range [0, columns- I] , but in most cases,
you will want to set tree30lumn to O. On line 012 in the preceding listing, I create a single

column tree by setting columns to 1 and tree_column to O.

Inserting Nodes
Once the tree has been created, all that remains to do is add the nodes that contain the data to be

displayed. To add nodes to the tree, the preceding code makes calls to gtlctree_insercnodeO:

GtkCTreeNode *
gtk_c t ree_insert_node (GtkCTree * ctree , GtkCTreeNode *parent ,

GtkCTreeNode * s ibl ing , gchar *text [] , guint S spacing ,
GdkPixmap *pixmap_c losed , GdkB itmap *mask_c losed ,
GdkPixmap *pixmap_opened , GdkB itmap *mask_opened ,

gbool ean i s_leaf , gbool ean expanded) ;

The first argument, ctree, is the instance of GtkCTree to which the node will be added,

and it is created by calling gtk_ctree_newO or one of the other GtkCTree instance creation
functions that I will describe later. parent is the parent node of the node being added. The

nodes labeled Fish, Invertebrates, Mammals, Dangerous, and Non-dangerous are all parent

nodes to other nodes in the tree. For example, Fish is the parent node of the two nodes

labeled Dangerous and Non-dangerous that descend from it. Likewise, Dangerous is the
parent node of the node labeled Great White Shark, and Non-dangerous is the parent node

of the node labeled Blue Banded Goby. Nodes at the top of the hierarchy (Fish, Inverte
brates, and Mammals) do not have parent nodes, so when they are created, the parent argu

ment to gtk_ctree_insert_nodeO is set to NULL. All other nodes will have a non-NULL
parent node, which is the return value of the gtk_ctree_insert_nodeO call that was used to

add that parent node to the tree.

The third argument, sibling, relates the node being added to some node in the tree sharing

the same parent. This argument can usually be set to NULL. If it is set to NULL, then nodes

will be displayed in the order in which they were added to the tree. If sibling is non-NULL, the

node being added will be placed immediately above the node specified by the sibling argument.

GtkCTree supports drag and drop (when enabled by a call to gtk_clisCseCreorderable()), but
drag and drop will not function if you do not specify sibling values for nodes added to the tree.

The argument text defines the content of the row being added to the tree. As I mentioned

earlier, GtkCTree is only capable of displaying text data; if you need to display other types
of data (e.g., images) in a tree and your data can be displayed in a single column, then you
should use GtkTree instead.

The argument text is an array of pointers to char, so each element in the text array is set

to the address of a character string defined on the stack, on the heap, or as a string literal.
GtkCTree will make a copy of each string passed to it in the text vector. In this example, I
use string literals:

O O S gchar * t ext [l] ;

GtkCTree

0 1 6
0 1 7
0 1 8
0 1 9

text [0] = " Fi sh " ;
parent = gtk_ctree_insert_node (GTK_CTREE (root) ,

NULL , NULL , text , S , NULL , NULL , NULL , NULL ,
FALSE , TRUE) ;

633

The number of elements in text is the same as the columns argument passed to gtk_

ctree_newO. In this case, I only have one column in each row of the tree, so I use the dec

laration shown on line 008 to declare the array. Line 0 1 6 assigned the first element of the
array, corresponding to column 1 in the row, to point to the string Fish, which is the data

being added.
The next argument, spacing, specifies the number of pixels that will be placed between

the pixmap data I am about to describe and the beginning of the column data contained in

the text argument I previously described.
The next four arguments define image data that will be displayed to the left of the text row

data, separated by the number of pixels specified by the spacing argument. The first two argu

ments, pixmap310sed and mask_closed, define an image displayed by the node when it is
unexpanded or closed, while the second two, pixmap_opened and mask_opened, define an

image shown when the node is expanded or opened. If the node has no children (Le., it is a leaf

node), then pixmap_opened and mask_opened are ignored. See the discussion of pixmaps and

bitmap masks in Chapter 6 for information on how to create GdkPixmap and GdkBitmap data

that is compatible with GtkCTree.
The argument is_leaf should be set to TRUE if the node is not the parent node of some

other node in the tree (e.g., if the node is a leaf node). If set to FALSE, the node is expected

to have children and will be drawn with a control that allows users to expand or close the

subtree it parents. The final argument, expanded, is ignored if the node is a leaf node (Le. ,

if is_leaf is set to TRUE). If is_leaf is FALSE, then setting expanded to TRUE will cause

the node to initially draw expanded, showing its immediate children. Setting expanded to

FALSE will hide the immediate children of the node (and any nodes below the children,

regardless of their expanded state).

Analyzing the Sample Code
Now that we have discussed gtk_ctree_insert_nodeO, let's return to the sample code and

look at how it is used in detail, focusing on adding the Fish node and its children.

0 0 1 #inc lude <gtk/gtk . h>
0 0 2
0 0 3 static GtkWidget *
0 0 4 make_tree (void
0 0 5 {
0 0 6 GtkWidget * root ;
0 0 7 GtkCTreeNode *parent , *node ;
0 0 8 gchar *text [l] ;
0 0 9
0 1 0 I I create the root node o f the tree .
0 1 1
0 1 2 root = gtk_ctree_new (1 , 0) ;

634

On line 0 1 2, a new single-column instance of GtkCTree is created.

0 1 3
0 1 4 I I F i sh

0 1 5
0 1 6 text [0] = " Fish" ;
0 1 7 parent = gtk_ctree_insert_node (GTK_CTREE (root) ,

Chapter 12 • Trees

0 1 8 NULL , NULL , text , S , NULL , NULL , NULL , NULL ,

0 1 9 FALSE , TRUE) ;

On lines 0 1 6 through 0 1 9, a root node containing the data "Fish" is created. It is a root

node of the tree because it has no parent (parent is set to NULL). It will be the parent of
some other node, so is_leaf is set to FALSE. I save the node in the variable parent so that it

can be referred to below:

0 2 0
0 2 1 text [0] = " Dangerous " ;
0 2 2 node = gtk_ct ree_insert_node (GTK_CTREE (root) ,

0 2 3 parent , NULL , text ,

0 2 4 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

On lines 02 1 through 024, a child of the Fish node containing the data "Dangerous" is
added to the tree. Its parent node is the Fish node; this association is made by passing parent

as the parent argument to gtk3tree_insercnodeO. Like the Fish node, this node will act as
the parent of other nodes in the tree, so is_leaf is also set to FALSE.

Next we add the children of the Dangerous node. On lines 026 through 029, I add a node

labeled Great White Shark as a child of the Dangerous node created earlier:

0 2 5
0 2 6
0 2 7
0 2 8
0 2 9

text [0] = " Great White Shark " ;

gtk ctree insert node (GTK CTREE (root) , - - - -

node , NULL , text ,

5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

The variable "node" contains a reference to the Dangerous node and is passed as the parent

argument to gtk_ctree_insercnodeO. Is_leaf is set to TRUE this time because Great White
Shark is a leaf node. Similar code is executed on lines 03 1 through 034 to add Stonefish as a

child of the Dangerous node.

0 3 0
0 3 1 text [0] = " S tone f i sh " ;
0 3 2 gtk_ct ree_insert_node (GTK_CTREE (root) ,
0 3 3 node , NULL , text ,
0 3 4 5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

The next step, on lines 036 through 039, adds Non-Dangerous as a child of the Fish

node. The code is the same as that executed to add the Dangerous node, except for the data
passed in, which is set to Non-Dangerous on line 036.

0 3 5

GtkCTree

0 3 6
0 3 7
0 3 8
0 3 9

text [0] = " Non- Dangerous " ;
node = gtk_ctree_insert_node (GTK_CTREE (root) ,

parent , NULL , text ,
5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

635

The rest of the code should be fairly obvious at this point. You might try, as an exercise,

to compile the preceding code and then add Barracuda as a child of the Dangerous node and
Sea Bass as a child of the Non-Dangerous node to make sure you understand the preceding.

A Second Example

Let's continue with a look at the second sample client. This client is a variation on the preceding

client, but it adds a second column of data to each row that describes the habitat of the animal.

In addition, titles are added to each column, just like the column titles supported by the GtkCList

class. The source code changes needed to support these new features are minimal. First, the size

of the text array increases to 2 to hold column 2's data, and a second array, titles, is declared to

hold the title data that will be passed to GtkCTree:

0 0 8 gchar * t ext [2] ;
0 0 9 gchar * t i t l e s [2] ;

To create the tree, the call to gtk_ctree_newO is replaced with a call to a new function,

gtk3tree_new _ with_titlesO:

GtkWidget *
gtk_ctree_new_with_t i t l e s (gint columns , gint tree_column ,

gchar * t i t l e s []) ;

The first two arguments are the same as those passed to gtk3tree_newO. The third argument,

titles, holds pointers to strings that are used by GtkCTree to label the columns as illustrated in

Figure 12. 1 1 . These strings are copied by GtkCTree, so you are free to release any memory you
may have allocated to hold them after the call to gtk3tree_new _ with_titlesO returns. Here is the

code used to create a tree with two columns labeled Animal and Habitat:

0 1 2 I I create the root node of the tree .
0 1 3
0 1 4 t i t les [0] = "Animal " ;
0 1 5 t itles [1] = " Habi tat " ;
0 1 6 root = gtk_ctree_new_with_t i t l e s (2 , 0 , t i t l e s) ;

The only remaining change needed to create our tree is to specify the data to be displayed
in column 2 for each node in the tree. This is simply a matter of assigning the string to the
second element of the text vector, for example:

0 2 6 text [0] = " Dangerous " ;
0 2 7 text [1] = " " ;
0 2 8 node = gtk_ctree_insert_node (GTK_CTREE (root) ,
0 2 9 parent , NULL , text ,
0 3 0 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;
0 3 1

636

0 3 2
0 3 3
0 3 4
0 3 5
0 3 6

text [0] = " Great White Shark " ;

text [1] = " Open ocean " ;

gtk_ct ree_insert_node (GTK_CTREE (root) ,

node , NULL , text ,
5 , NULL , NULL , NULL , NULL , TRUE , TRUE) ;

Chapter 12 • Trees

On line 027, I set the second text element to " " because there is no data to be displayed in
the Habitat column for categories such as Fish or Dangerous. On line 033, I set the Habitat

data to "Open ocean." See Figure 1 2. 1 1 for the results.

F i s h

I [O p e n (
I ntertid

- t

I n v e

Coasta
Open (
B ays a

C oasta

I [Sandy
- t

M an

Piers, 1
S andy
Tid e p o

C oasta

I [O p e n (
- t

Open (
Tid al

en (

Figure 12. 1 1 Multicolumn Tree

As you can tell by looking at Figure 1 2. 1 1 , there is a problem; as you can see, all of the
columns are sized based on the width of the text in the column headings, not on the width
of the data being displayed. In most cases, you will want at least one of the columns (usually
column 0) to display with a width that makes all of its data viewable; trees sized like the
one shown in Figure 1 2. 1 1 are, at best, a nuisance to users.

To control the size of the columns, we must tum to the GtkCList API, which provides

the functions we need. Several functions supplied by GtkCList can be used to modify the
appearance of GtkCTree column headings or to make them sensitive (or insensitive) to but
ton presses by users. The function I will use here to control the width of columns is

GtkCTree 637

gtlccliscseccolumn_auto_resizeO, which tells the tree to size each column automatically

based on its content. Here are the code changes needed:

t i t l es [O] = "Animal " ;

t i t l es [1] = " Habitat " ;

root = gtk_ctree_new_with_t i t l e s (2 , 0 , t i t l e s) ;

for (i = 0 ; i < 2 ; i + +)

gtk_c l i s t_set_column_auto_re s i z e (GTK_CLIST (root) , i , TRUE) ;

This has the side effect of making the columns nonresizable; see Chapter 6 for more

details. The result is shown in Figure 1 2. 1 2.

F i s h

t Great W h ite Shark Open o c e an
! Dangerous

stonefish Intertidal
- Non- Dang erou s f Blue Band e d Goby Coastal waters

Grunion Open ocean
L e o p ard S h ark 8 ay s and e stu arie s

Thornback Coastal waters, sand
I nvertebrates ! Dangero u s

L Sea Wasp
- Non- Dangero u s f Ochre Star

Sea Pen
Pacific O ctopus
S e a Urc h i n

Mammals ! Dangero u s
L Ki l ier Whale - Non- D angerous
r Gray W h al e
t Sea Otte r

Bottlen o se Do l

S andy b ottom s , c oastal

P i e rs , tide poo ls
S andy b ottoms, c oastal
Tid e p o o l s , tidal waters
Co astal waters, ke lp beds

O p e n o c e an s , bays

Open oceans
Tidal waters, kelp beds

ocean , shallows

Figure 12.12 Multicolumn Tree, Columns Correctly Sized

Displaying the Contents of a Directory

As a final example of GtkCTree, I will create an application that displays the contents of a
user-selected directory. Each row displays five pieces of data: the name of the item, its type

(file, directory, fifo, and so on), the user and group IDs of its owner, and its size in bytes.
Each directory in the tree is represented by a parent node; children of a directory node rep
resent contents of that directory (if a directory cannot be read by the application because of
permissions issues, the directory node will have no children).

638 Chapter 12 • Trees

The routine that does the bulk of the work is recursive; the recursion comes into play

when a directory is read and processed within the inner loop of the routine. The source code

for the routine PopulateTreeRecursiveO is as follows:

Listing 12.4 Displaying the Contents of a Directory

0 0 1 # inc lude <gtk/gtk . h>

0 0 2 # include < sys / stat . h>

0 0 3 # inc lude < sys / types . h>

0 0 4 # inc lude < sys /param . h>

0 0 5 # inc lude <di rent . h>

0 0 6 # i nc lude <uni std . h>

0 0 7 # inc lude < s tdio . h>

0 0 8

0 0 9 s t a t i c GtkWidget *

0 1 0 populat eTreeRecurs ive (char *pat h , GtkCTree * t ree , GtkCTreeNode *parent)

0 1 1 {
0 1 2 GtkCTreeNode * newparent = NULL ;

0 1 3 s t ruct s t a t buf ;

0 1 4 D I R * dp ;

0 1 5 i n t i ;

0 1 6 gchar * t i t l e s [5] ;

s t ruct di rent *dir j

gbool e an i s leaf ;

0 1 7

0 1 8

0 1 9

0 2 0

0 2 1

0 2 2

0 2 3

0 2 4

0 2 5

char pathbuf [MAXPATHLEN

char buf 1 [MAXPATHLEN] ;

char buf 2 [3 2] ;

char buf 3 [3 2] ;

char buf4 [3 2] ;

char buf 5 [3 2] ;

] ; I I ful l path

I I f i l e /dir name

I I f i l e type

I I user

I I group

I I s i z e i n bytes

026 gchar * t ext [5] = { buf 1 , buf2 , buf 3 , buf 4 , buf 5 } ;
0 2 7

0 2 8

0 2 9

0 3 0

0 3 1

0 3 2

0 3 3

0 3 4

0 3 5

0 3 6

0 3 7

0 3 8

0 3 9
0 4 0

i f (t ree = = NULL

t i t l e s [0]

t i t l e s [2]

t i t l es [4]

" Name " ; t i t l e s [l]

" User " ; t i t l e s [3]
II S i z e ll j

tree = (GtkCTree *)

" Type " ;

" Group " ;

gtk_c tree_new_with_t i t l e s (5 , 0 , t i t l e s) ;

for (i = 0 ; i < 5 ; i + +)

gtk_c l i s t_set_column_auto_re s i z e (

GTK_CLIST (tree) , i , TRUE) ;

dp
i f

opendir (path) ;
dp = = (D I R *) NULL

0 4 1 re turn ;

0 4 2 whi l e ((d i r = readdi r (dp)) ! = (s truct di rent *) NULL) (
0 4 3

0 4 4

0 4 5

0 4 6

0 4 7

0 4 8

0 4 9

0 5 0

st rcpy (buf l , dir - >d_name) ;

snprint f (pathbuf , MAXPATHLEN - 1 , " % s / % s " ,

path , dir - >d_name) ;

i f (l stat (pathbuf , &buf) < 0)

cont inue ;

GtkCTree 639

0 5 1

0 5 2

0 5 3

0 5 4

0 5 5

0 5 6

0 5 7

0 5 8

0 5 9

0 6 0

0 6 1

0 6 2

0 6 3

0 6 4

0 6 5

0 6 6

0 6 7

0 6 8

0 6 9

0 7 0

0 7 1

0 7 2

0 7 3

0 7 4

0 7 5

0 7 6

0 7 7

0 7 8

0 7 9

0 8 0

0 8 1

0 8 2

0 8 3

0 8 4

i s leaf = TRUE ;

if (S_ISLNK (buf . st_mode »

sprint f (buf2 , " Syml ink ") ;

e l s e i f (S_ISREG (buf . s t_mode »

sprint f (buf2 , " Regular") ;

e l s e i f (S_ISDIR (buf . s t_mode » (
i s leaf = FALSE ;

sprint f (buf2 , " D i rectory ") ;

e l s e i f (S_ISCHR (buf . s t_mode »

sprint f (buf2 , " Char Device ") ;

e l s e i f (S_I SBLK (buf . st_mode »

sprintf (buf 2 , " Block Device ") ;

e l s e i f (S_ISFIFO (buf . s t_mode »

sprint f (buf 2 , " Fi f o ") ;

e l s e i f (S_I SSOCK (buf . s t_mode »

sprint f (buf2 , " Socket ") ;

sprint f (buf 3 , " %d " , buf . s t_uid) ;

sprint f (buf 4 , " %d " , buf . s t_gid) ;

sprint f (buf 5 , " % l u " , buf . st_s i z e) ;

newparent = gtk_ct ree_insert_node (GTK_CTREE (tree) , parent ,

NULL , text , S , NULL , NULL , NULL , NULL , i s 1eaf ,

TRUE) ;

i f (l s tat (pathbuf , &buf) >= 0 && S I SD I R (buf . st mode) &&

I S_ISLNK (buf . s t_mode » {
i f (l st rcmp (d i r - >d_name , " . ") I I

I s t rcmp (d i r - >d_name , " . . " »

cont inue ;

snprint f (pathbuf , MAXPATHLEN - 1 , " % s / % s " ,

path , dir - >d_name) ;

Popu l at eTreeRecurs ive (pathbuf , tree , newparent) ;

0 8 5 c losedi r (dp) ;

0 8 6 return (GTK_WIDGET (t ree)) ;

0 8 7

The first call to PopulateTreeRecursiveO might look like the following:

GtkWidget * t ree ;

t ree = PopulateTreeRecurs ive (" /home / syd/ s rc " , NULL , NULL) ;
gtk_widget_show (t ree) ;

The preceding call creates an instance of GtkCTree that recursively displays the contents
of the directory /home/syd/src.

The first time PopulateTreeRecursiveO is called, the arguments tree and parent are both
set to NULL, and the argument path is set to the absolute (full) path of the directory that the
user wishes to recursively display. Because tree is NULL, code on lines 029 through 036 is
executed to create and initialize an instance of GtkCTree. This code will only be executed
once; all other calls to PopulateTreeRecursiveO are made with the tree argument set to the

tree created on these lines during the first call to PopulateTreeRecursiveO.

640 Chapter 12 • Trees

The next task of PopulateTreeRecursiveO is to open for reading the directory that was

passed in as the path argument (lines 039 through 04 1) and to iterate through its contents.

If the directory cannot be opened due to permissions issues, we simply return. The bulk of

the work happens on lines 042 through 084 inside a while loop that iterates the contents of

the directory. Five character arrays (bufl , buf2, . . . , buf5) are used to hold the data that

makes up the row that will be added to the tree for each item in the directory. On line 048,
a call to Istat(2) gives information about the directory item read during an iteration of the

while loop. I use Istat(2) because it does not follow symlinks, avoiding the possibility of our
code entering an infinite loop. The code on lines 05 1 through 070 places the information

read by Istat(2) into the appropriate buffers and, on line 072, calls gtk3tree_inserCnodeO
to add the node to the tree. Notice how is_leaf is set to FALSE if the item read is a directory;

this is because we will add children to that node when PopulateTreeRecursiveO is recur

sively called to add its contents to the tree.

As each node is added to the tree, a check is made to see if the item added is a directory

(and not a symlink). If it is a directory, then we recursively call PopulateTreeRecursiveO,

passing as arguments the full path of the directory to be processed (path), the tree created

on lines 032 and 033 by the first call to PopulateTreeRecursiveO (tree), and the node that

was added to the tree that represents the directory item that will be processed (parent). A
tree that is added by a recursive call to PopulateTreeRecursiveO will display the contents
of the directory specified by the path argument and will be placed in the tree below the node

specified by the parent argument.

As an exercise, try adding pixmap data to each node, choosing an image that is appropriate

for the type of item the node represents. For example, use a folder icon to represent a directory,

a file icon to represent a file, and so forth.

Removing Nodes from a Tree

Nodes can be removed from a tree by calling gtk3tree_remove_nodeO:

void

gtk_c t ree_remove_node (GtkCTree * c t ree , GtkCTreeNode *node) ;

The argument ctree is the instance of GtkCTree to which the node belongs, and node is
the node to be removed from the tree. If the node is a parent to other nodes in the tree, the

children of the node will also be removed.

Setting the Indentation

In this section and the ones that follow, I will discuss some of the functions specific to
GtkCTree that you might find useful. The first of these functions, gtk_ctree_seUndentO,
controls how many pixels to the right of the parent's data a child's data is drawn. The
default is to indent children 20 pixels. The function prototype for gtk_ctree_seCindentO
is as follows:

GtkCTree 641

void

gtk_ctree_set_indent (GtkCTree * c t ree , gint indent) ;

The argument indent is an integer value that should be greater than or equal to O. A value

less than 0 will result in a runtime assertion and will cause the indent value to revert to its

default of 20 pixels.

Setting the Spacing

The amount of spacing separating lines in the ctree control from the data displayed for the

node can be controlled with gtlcctree_secspacingO:

void
gtk_ct ree_set_spacing (GtkCTree * c t ree , gint spacing) ;

Spacing is an integer value 0 or greater (negative values result in an assert).

Setting the Line Style of a CTree

The line style of the ctree can be set by calling gtk3tree_seUine_styleO:

void
gtk_ct ree_set_l ine_s tyle (GtkCTree * c t ree ,

GtkCTreeLineStyle l ine_s tyl e) ;

The line_style argument can be one of the values provided in Table 12.7.

Table 12.7 GtkCTreeLineStyle

Line Style

GTK_CTREE_LINES_NONE

GTK_CTREE_LINES_SOLID

GTK_CTREE_LINES_DOTTED

GTK_CTREE_LINES_TABBED

Result

No tree lines are drawn.

Tree lines are solid (default).

Tree lines are drawn using a series of dots .

See Figure 12.13 .

642 Chapter 12 • Trees

Setting the Expander Style

An expander is a graphic to the left of a parent node that can be clicked on by the user to expand
or collapse the node, showing or hiding, respectively, the children of that node. An expander

also provides visual feedback that lets users know the state of the node, either expanded or col

lapsed. You can change the expander style by calling gtk_ctree_seCexpandecstyleO:

vo id
gtk_ct ree_set_expander_style (GtkCTree * ctree ,

GtkCTreeExpanderStyle expander_s tyl e) ;

The argument expandecstyie can be one of the following graphics listed in Table 12.8 .

Table 12.8 GtkCTreeExpanderStyle

Expander Style

GTK_CTREE_EXP�ER_NONE

GTK_CTREE_EXP�ER_SQUARE

Result

No expander is drawn.

The default expander (see preceding figures).

GtkCTree 643

Table 12.8 GtkCTreeExpanderStyle (Continued)

Expander Style

GTK_CTREE_EXPANDER_T�GLE

GTK_CTREE_EXPANDER_CIRCULAR

FiSh

t Great White Shark open ocean I Dangerous

Stonellsh Intertidal
Non- Dangerous � Blue Banded GOby Coaslat waters

Grunion Open ocean
Leopard Shark B ays and estuaries
Thomback CDasiat waters, sand

Invertebrates t D angerous
L Sea Wasp

Non- Dangerous � Ochre star
Sea Pen
Pacific Octopus
Sea Urchin

Mammals
t D angerous

L Killer Whale
Non- Dangerous I- Gray Whale t Sea otter

BottIenDse

Sandy bottoms, coastal

P iers, IIde pools
s andy boltoms, coaslel
Tidepools , tidal waters
Coastal waters, kelp beds

open oceans, bays

Open oceans
Tidal waters, kelp beds

Figure 12. 14 GTK_CTREE_EXPANDER_
TRIANGLE

Result

See Figure 12.14.

See Figure 12.15 .

D angerous
t Great While Shark open ocean

5tonellsh Imerlldal
Non- Dangerous � Blue Banded Goby Coastal waters

Grunion Open ocean
Leopard Shark Bays and estuartss
Thornbacl:. Coastal waters , sand

D angerous
L Sea Wasp

Non- Dangerous � ochre Star
Sea Pen
Pacific Octopus
Sea Urchin

! Dangerous
L Killer Whale

Non- Dangerous t Gray Whale
Sea otter
Botilenose

Sandy Mltoms, coaslat

Piers, tide pools
Sandy bolloms, coastal
Tidepools, tidal waters
Coastal waters, kelp beds open oceans, bays Open oceans
Tidal waters. kelp beds

shallows

Figure 12.15 GTK_CTREE_EXPANDER_
CIRCULAR

Note that users can still expand or collapse nodes if GTK_CTREE_EXPANDER_NONE

is specified. This can be done by double-clicking on the node to be expanded or collapsed.

Sorting Functions
The following functions pertain to tree sorting. The first function discussed here lets you

specify a comparison function that will be used in place of the default comparison function
invoked during a drag-and-drop operation (should drag and drop be enabled; refer to the
discussion of the sibling argument to gtk_clisCinsert_nodeO. presented earlier). The func
tion gtk_ctree_seCdra�compare_funcO takes two arguments: an instance of GtkCTree
and a pointer to a function.

vo id
gtk_ctree_set_drag_compare_func (GtkCTree * ct ree ,

GtkCTreeCompareDragFunc cmp_func) ;

644 Chapter 12 • Trees

The function prototype of comp_func is defined by GtkCTreeCompareDragFunc:

typedef gboolean (*GtkCTreeCompareDragFunc) (GtkCTree * ctree ,

GtkCTreeNode * source_node , GtkCTreeNode *new-parent ,
GtkCTreeNode *new_s ibling) ;

Your drag compare function should use the passed arguments to determine whether the
drag-and-drop operation should be allowed or denied. The argument source_node will
specify the node being moved, new_parent specifies the new parent node of source_node

should the operation be allowed, and new_sibling specifies the new sibling of source_node

should the drag-and-drop operation be allowed. If you want to deny the operation, your
drag compare function should return FALSE. Returning TRUE will cause the drag-and

drop operation to be performed.
You can cause an instance of GtkCTree to automatically sort all data by setting the Gtk

CList autosort attribute of the ctree. This is done by calling gtk_cliscseCauto_sortO. Addi

tional GtkCList sorting functions applicable to instances of GtkCTree are detailed in

Chapter 6.

If you chose to disable GtkCList-style autosorting, you can still provide sort capabilities

for your users by calling two functions defined by GtkCTree. The first function, gtk_ctree_

sort_nodeO, sorts the immediate children of a specific node in the tree . Its function prototype

is as follows:

vo id
gtk_c t ree_sort_node (GtkCTree * c t ree , GtkCTreeNode *node) ;

The sort order is defined by the last call made to gtk3liscsecsort_typeO, or GTK_
SORT_ASCENDING if no such call was made. The compare function that was set by the

last call to gtk3liscseCcompare_funcO will be used in lieu of the default compare func
tion (default30mpareO, defined in gtkclist.c).

To extend the sort recursively to all children below a given node, you may call gtk_

ctree_sort_recursiveO:

void

gtk_c tree_sort_recurs ive (GtkCTree *ctree , GtkCTreeNode *node) ;

The preceding remarks that were made for gtk3tree_sort_nodeO apply equally to gtk_

ctree_sort_recursiveO.

Recursive Functions
In this section, I describe GtkCTree functions that are recursive in nature. These functions
allow you to invoke callback functions in your application for each node in the tree, find

nodes based on data that your application has attached to a node or to a set of nodes, as well
as query the ctree widget for certain attributes of the nodes that it manages.

The first four functions described allow you to walk the tree, starting at a node you specify.
For each node in the tree, GtkCTree will invoke a callback function that you provide. The call
back function you provide must conform to the following function prototype:

GtkCTree 645

typede f void (* GtkCTreeFunc) (GtkCTree * c t ree , GtkCTreeNode *node ,

gpointer data) ;

In the preceding function prototype, node specifies the node being visited, and data is

client data that your application optionally arranges to have passed to the callback function.

The first function, gtk_ctree_posCrecursiveO, performs a post-order traversal of the tree

starting at the specified node:

vo id

gtk_ctree-pos t_recurs ive (GtkCTree * c t ree , GtkCTreeNode *node ,

GtkCTree Func func , gpointer data) ;

The argument ctree is the instance of GtkCTree to be traversed, node is the starting node
for the traversal, func is the function that will be called for each node traversed, and data is

the client data that will be passed to func via its data argument.

The function gtk_ctree_poscrecursive_to_depthO is identical to gtk3tree_posC recur

siveO, except for the depth argument that restricts the traversal to the specified depth:

vo id

gtk_ctree-post_recurs ive_to_depth (GtkCTree * c t ree , GtkCTreeNode * node ,

gint depth , GtkCTreeFunc func , gpointer data) ;

If depth is - 1 , the entire tree is traversed. If depth is 0, only the first (root) node is visited.
Specifying a depth value of 1 will visit the root node and its immediate children, and so forth.

The final two recursive traversal functions, gtk_ctree_pre_recursiveO:

void
gtk_ctree-pre_recurs ive (GtkCTree * c t ree , GtkCTreeNode *node ,

GtkCTreeFunc func , gpointer data) ;

void
gtk_ctree-pre_recur s ive_to_depth (GtkCTree * c t ree , GtkCTreeNode * node ,

gint depth , GtkCTreeFunc func , gpointer data) ;

mirror gtk3tree_poscrecursiveO and gtk_ctree_poscrecursive_to_depthO in terms of
functionality. The only difference is that the later two functions traverse the tree in pre
order, not post-order (see a book on data structures for more information on post- and pre

order traversal of trees).

Passing Client Data to a Traversal Function. I should probably give you a hint as to
why it might be useful to pass client data to a recursive traversal function. There are no fixed
rules that dictate when or when not to pass data to a traversal function. It is completely up
to you as the developer to make use of the traversal functions in whatever way makes sense
to your application. As an example to get you thinking about how you might use this feature

in your application, I developed sample code that traverses a tree of address book data and
that changes each phone number with a 1 23 area code to one with an 456 area code. I use
the traversal callback function to inspect each node in the tree and to convert only those that

646 Chapter 12 • Trees

match. To make the example simple, the area code is stored in a column of its own, apart

from the rest of the phone number.

The partial source code for the example is presented in the following listing:

Listing 12.5 Searching for Data in a CTree

0 0 1 # inc lude < gtk/gtk . h>

0 0 2
0 0 3
0 0 4

0 0 5

typede f s t ruct
char * in ;

char * out ;

0 0 6 Area ;

0 0 7
0 0 8 vo id

area

II old area code

II new area code

0 0 9 Cal lbackFunc (GtkCTree *ctree , GtkCTreeNode *node , gpointer dat a)
0 1 0 {
0 1 1 Area * area = (Area *) data ;
0 1 2 char * t ext ;
0 1 3

0 1 4 gtk_ct ree_node_get_text (ctree , node , 1 , &text) ;
0 1 5 i f (! s t rcmp (text , area - > in))

0 1 6 gtk_c tree_node_set_text (ctree , node , 1 , area- >out) ;
0 1 7

0 1 8

0 1 9 void

020 ChangeAreaCode (GtkWidget *widget , gpointer dat a)

0 2 1 {
0 2 2 GtkCTree * t ree = (GtkCTree *) data ;
0 2 3
0 2 4 Area area ;
0 2 5

0 2 6 area . in = " 1 2 3 " ; area . out = " 4 5 6 " ;
0 2 7

0 2 8 gtk_c l i s t_free z e (GTK_CLIST (t ree)) ;

0 2 9 gtk_c t ree-pos t_recurs ive (tree , NULL , Cal lbackFunc , &area) ;
0 3 0 gtk_c l i s t_thaw (GTK_CLIST (t ree)) ;
0 3 1

0 3 2

0 3 3 stat i c GtkWidget *

0 3 4 MakeAddre s sBookTree (void)
0 3 5 {
0 3 6 GtkWidget * root ;
0 3 7 GtkCTreeNode *parent , *node ;
0 3 8 gchar * t ext [3] , * t i t l es [3] ;
0 3 9 int i ;
0 4 0

0 4 1 II create the root node of the t ree .
0 4 2
0 4 3
0 4 4
0 4 5

t i t l e s [0] = " Name " ; t i t l es [l] = "Area " ; t i t l e s [2]
root = gtk_ct ree_new_with_t i t l e s (3 , 0 , t i t l e s) ;

" Phone " ;

GtkCTree

0 4 6 for (i = 0 ; i < 3 ; i + +)

0 4 7 gtk_c l i st_set_column_auto_re s i z e (GTK_CLIST (root) , i , TRUE) ;

0 4 8
0 4 9 I I Friends
0 5 0

0 5 1 text [0] = " Friends " ; text [I] = " " ; text [2] = " " ;

0 5 2 parent = gtk_ct ree_insert_node (GTK_CTREE (root) ,

0 5 3 NULL , NULL , text , 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 5 4

0 5 5 text [0] = " Sammy " ; text [1] = " 1 2 3 " ; text [2] = " 4 5 6 - 7 8 9 0 " ;

0 5 6 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , NULL , text ,

0 5 7 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 5 8

0 5 9 text [0] = " Jamie " ; text [1] = " 0 9 8 " ; text [2] = " 7 6 5 - 4 3 2 1 " ;

0 6 0 node = gtk_c t ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 6 1 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 6 2
0 6 3 text [0] = " Bob " ; text [1] = " 0 1 9 " ; text [2] = " 2 8 3 - 74 6 5 " ;

0 6 4 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 6 5 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 6 6
0 6 7 I I Fami ly
0 6 8

0 6 9 text [0] = " Fami ly " ; text [1] = " " ; text [2] = " " ;

0 7 0 parent = gtk_ct ree_insert_node (GTK_CTREE (root) , NULL , NULL , text ,

0 7 1 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 7 2

0 7 3 text [0] = " Fred " ; text [1] = " 1 1 1 " ; text [2] = " 2 2 2 - 3 3 3 3 " ;

0 7 4 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , NULL , text ,

0 7 5 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 7 6
0 7 7 text [0] = " Joe " ; text [1] = " 4 4 4 " ; text [2] = " 5 5 5 - 6 6 6 6 " ;

0 7 8 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 7 9 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 8 0
0 8 1 text [0] = " Paul " ; text [1] = " 7 7 7 " ; text [2] = " 8 8 8 - 9 9 9 9 " ;

0 8 2 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 8 3 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 8 4
0 8 5 return root ;
0 8 6

647

The main application creates a window and a vertical box widget and then calls Make
AddressBookTreeO to create an instance of GtkCTree. Each node in the tree that holds data
consists of three fields : name, area code, and phone number. The following code illustrates
how a record is added to the tree.

0 5 5 text [0] = " Sammy " ; text [1] = " 1 2 3 " ; t ext [2] = " 4 5 6 - 7 8 9 0 " ;
0 5 6 node = gtk_ctree_insert_node (GTK_CTREE (root) , parent , NULL , text ,

0 5 7 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

648 Chapter 12 • Trees

The tree created by MakeAddressBookTreeO is added to the vertical box widget by the

main program, as is the "Replace 1 23 with 456" button. A clicked signal function,

ChangeAreaCodeO, is registered with the button widget.
On line 026, a variable of type Area is initialized to hold the area code to be searched for

during the traversal (in) as well as the replacement area code (out). On line 029,

gtk3tree_poscrecursiveO is called to traverse the tree. The call to gtk_ctree_posc recur

siveO is surrounded by calls to gtk_clistjreezeO and gtk_cliscthawO to force GtkCList to

defer redrawing of the tree until the traversal is complete.

The traversal callback function, CallbackFuncO, is passed a reference to the tree being tra

versed (tree), the node being visited (node), and the Area data structure that holds the search

parameters (data). A GtkCTree function, gtk3tree_node�eCtextO, is called to extract the
data stored in column 2 (i.e., the area code). On line 015 , I compare the value read from the

node to the search area code passed to the callback function. If a match is found, I replace the

value read with the new area code with a call to gtk_ctree_node_seUextO (line 0 1 6).

0 1 5 i f (! s t rcmp (text , area - > in))

0 1 6 gtk_ctree_node_set_text (ct ree , node , 1 , area - >out) ;

I will describe gtk3tree_node�euextO and gtk_ctree_node_sectextO in more detail
later in this section.

Querying Tree and Node Attributes

The next few functions can be used to query certain attributes of a GtkCTree instance and the

nodes that it contains. The first function, gtk3tree_is_ viewableO, can be used to determine

whether a node in the tree is viewable:

gbool ean

gtk c t ree is vi ewabl e (GtkCTree * c t ree , GtkCTreeNode * node) ; - - -

The argument ctree is an instance of GtkCTree. The argument node is an instance of

GtkCTreeN ode and specifies the node of interest. If each ancestor of the node is expanded,

then TRUE is returned; otherwise, FALSE is returned.

The following function will return TRUE if the specified child is a sibling or child of the

the specified node in the tree:

gbool ean

gtk_ctree_f ind (GtkCTree * c t ree , GtkCTreeNode *node ,

GtkCTreeNode * child) ;

Likewise, gtk_ctree_is_ancestorO will return TRUE if the specified node is an ancestor
of the specified child:

gbool ean
gtk_ctree_i s_ancestor (GtkCTree * c t ree , GtkCTreeNode * node ,

GtkCTreeNode * child) ;

GtkCTree 649

Attaching and Retrieving Client Data

Before we take a look at the next set of search functions, I need to describe how you can

attach client data to a node in the tree. To do so, you can call one of two functions,

gtk_ctree_node_secrow _dataO:

void
gtk_ctree_node_set_row_data (GtkCTree * c t ree , GtkCTreeNode *node ,

gpointer data) ;

void
gtk_ctree_node_set_row_data_ful l (GtkCTree * c t ree , GtkCTreeNode *node ,

gpointer data , GtkDestroyNot i fy de stroy) ;

Both of these functions share the first three arguments. The argument ctree is an instance

of GtkCTree, node is an instance of GtkCTreeNode representing a node in ctree, and data is

arbitrary data that your client wishes to attach to the node. An additional argument, destroy,

is accepted by gtk_ctree_node_secrow _data_fullO. Calling gtk_ctree_node_secrow _dataO
is equivalent to calling gtk3tree_node_secrow _data_fullO and setting destroy to NULL.

Destroy, if non-NULL, must be a pointer to a function that adheres to the following function

prototype:

typede f void (*GtkDe st royNot i fy) (gpointer data) ;

GtkCTree will call the function you register via the destroy function when the row or node

to which the data is attached is destroyed. The data you register with either of the preceding

two functions will be passed the destroy function as its only argument.

A typical use of client data is to attach, directly to a node, a pointer to a data structure or

memory location that holds the data being displayed by the node. This makes the data

accessible to you whenever you need it, for example, from within the context of one of the

recursive traversal functions described earlier. To retrieve client data from a specific node,

you can call gtk3tree_node�ecrow_dataO:

gpointer
gtk_ct ree_node_get_row_data (GtkCTree * c t ree , GtkCTreeNode * node) ;

The return value is the gpointer added by gtk3tree_node_secrow _datajullO or gtk_
ctree_node_secrow _dataO.

Searching for Nodes Based on Client Data

GtkCTree will return to you a list of all nodes in the tree (starting at a node you specify)
that have a data attribute that matches a certain value. To obtain this list, call gtk_ctree_

find_alI_by _row _dataO:

GLi s t *
gtk_ctree_f ind_al l_by_row_data (GtkCTree * c t ree , GtkCTreeNode *node ,

gpointer data) ;

650 Chapter 12 • Trees

The argument ctree is the tree to search, node is the starting node (NULL causes the

entire tree to be searched), and the argument data is the data to search for.

The following code is a modification of the sample program previously presented:

Listing 12.6 Searching Based on Client Data

0 0 1 # inc lude <gtk/gtk . h>
0 0 2
0 0 3 void
0 0 4 ChangeAreaCode (GtkWidget *widget , gpointer data)

0 0 5 {
0 0 6 GLi s t * l i s t ;
0 0 7 GtkCTree * t ree = (GtkCTree *) data ;

0 0 8 GtkCTreeNode * node ;

0 0 9
0 1 0 l i s t = gtk_ct ree_f ind_al l_by_row_data (tree , NULL , (gpoint e r) 1 2 3) ;

0 1 1
gtk_c l i s t_free z e (GTK_CLIST (tree » ;

whi l e (l i st) {
0 1 2
0 1 3

0 1 4

0 1 5

0 1 6
0 1 7
0 1 8

node = (GtkCTreeNode *) l i s t - >data ;

gtk_c tree_node_set_text (tree , node , 1 , " 4 5 6 ") ;
gtk_c tree_node_set_row_data (tree , node , (gpoint e r) 4 5 6) ;

l i s t = l i s t - >next ;

0 1 9 gtk_c l i s t_thaw (GTK_CLIST (t ree » ;

0 2 0
0 2 1

0 2 2 stat i c GtkWidget *

0 2 3 MakeAddre s sBookTree (void)

0 2 4

0 2 5 GtkWidget * root ;

0 2 6 GtkCTreeNode *parent , *node ;
0 2 7 gchar * t ext [3] , * t i t l e s [3] ;
0 2 8 int i ;
0 2 9
0 3 0 I I create the root node o f the t ree .

0 3 1

0 3 2
0 3 3
0 3 4

t i t l e s [0] = " Name " ; t i t les [1] = "Area " ; t i t l e s [2]
root = gtk_ctree_new_with_t i t l e s (3 , 0 , t i t l e s) ;

0 3 5 f o r (i = 0 ; i < 3 ; i + +)

" Phone " ;

0 3 6 gtk_c 1 i st_set_co1umn_auto_re s i z e (GTK_CLIST (root) , i , TRUE) ;
0 3 7
0 3 8 I I Fri ends
0 3 9
0 4 0 text [0] = " Friends " ; text [1] = " " ; text [2] = " " ;
0 4 1 parent = gtk_ctree_insert_node (GTK_CTREE (root) ,
0 4 2 NULL , NULL , text , S , NULL , NULL , NULL , NULL , FALSE , TRUE) ;
0 4 3

0 4 4 t ext [0] = " Sammy " ; text [1] = " 1 2 3 " ; text [2] = " 4 5 6 - 7 8 9 0 " ;
0 4 5 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , NULL , text ,

GtkCTree

0 4 6 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 4 7 gtk_ctree_node_set_row_data (GTK_CTREE (root) , node , (gpointer) 1 2 3) ;

0 4 8

0 4 9 text [0] = " Jamie " ; text [1] = " 0 9 8 " ; text [2] = " 7 6 5 - 4 3 2 1 " ;

0 5 0 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 5 1 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 5 2 gtk_ctree_node_set_row_data (GTK_CTREE (root) , node , (gpointer) 0 9 8) ;

0 5 3

0 5 4 text [0] = " Bob " ; text [1] = " 0 1 9 " ; text [2] = " 2 8 3 - 7 4 6 5 " ;

0 5 5 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 5 6 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 5 7 gtk_ctree_node_se t_row_data (GTK_CTREE (root) , node , (gpointer) 0 1 9) ;

0 5 8
0 5 9 I I Fami ly
0 6 0

0 6 1 text [0] = " Fami ly " ; text [1] = " " ; text [2] = " " ;

0 6 2 parent = gtk_ct ree_insert_node (GTK_CTREE (root) , NULL , NULL , text ,

0 6 3 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 6 4

0 6 5 text [0] = " Fred " ; text [1] = " 1 1 1 " ; text [2] = " 2 2 2 - 3 3 3 3 " ;

0 6 6 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , NULL , text ,

0 6 7 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 6 8 gtk_ctree_node_s et_row_data (GTK_CTREE (root) , node , (gpointer) 1 1 1) ;

0 6 9
0 7 0 text [0] = " Joe " ; text [1] = " 4 4 4 " ; text [2] = " 5 5 5 - 6 6 6 6 " ;

0 7 1 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 7 2 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 7 3 gtk_c tree_node_set_row_data (GTK_CTREE (root) , node , (gpointer) 4 4 4) ;

0 7 4
0 7 5 text [0] = " Paul " ; text [1] = " 7 7 7 " ; text [2] = " 8 8 8 - 9 9 9 9 " ;

0 7 6 node = gtk_ct ree_insert_node (GTK_CTREE (root) , parent , node , text ,

0 7 7 5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

0 7 8 gtk_c tree_node_set_row_data (GTK_CTREE (root) , node , (gpointer) 7 7 7) ;

0 7 9
0 8 0 return root ;

0 8 1

651

For each node I add to the tree, except the Friends and Family nodes, I attach, as client
data, an integer representation of the area code displayed by that node. An example of this
is on line 047, where I set the client data to 1 23 , corresponding to the " 1 23" text displayed
by column 2 of the row. In the clicked signal function, I call gtk3tree_find_

all_by _row _dataO to obtain a list of each node in the tree that has a data attribute matching
the area code (1 23) I am trying to locate. Searching by integer value on the data attribute of
nodes is much quicker than extracting the column 2 text from each node in the tree and
doing a string comparison. If a match is found, I change the text of column 2 to "456" and

change the data attribute of the node to 456 so that the next time a search for 1 23 is made,
the node that is modified will not be returned as a match. The search-and-replace function

ality is implemented in the clicked signal function ChangeAreaCodeO (lines 003 through
020 in the preceding listing).

652 Chapter 12 • Trees

Performing Custom Searches

If equality is not your thing, you can perform searches on the data attribute using a compar

ison function of your own design. This can be done by creating a function with the follow

ing prototype:

typede f gint (*GCompareFunc) (gconstpointer a , gcons tpointer b) ;

Then you can pass it to gtk3tree_find_all_row_data3ustomO:

GLi s t *
gtk_ct ree_f ind_al l_by_row_data_cus tom (GtkCTree * c t ree ,

GtkCTreeNode *node , gpointer data , GCompareFunc func) ;

The first three arguments are the same as the first three arguments passed to

gtk3tree_find_all_by _row _dataO. The final argument is a pointer to the comparison function

previously defined. The comparison function will be called for each node in the tree below

(and including) the specified node. If the comparison function returns TRUE, the matching

node will be added to the GList returned by gtk3tree_find_all_by _row _data_customO when

all nodes in the tree have been processed.

GtkCTree implements two slight variations of gtk_ctree_find_alCby _row _dataO and

gtk_ctree_find_alCby _row _data3ustomO. These variations return the first node in the tree

that matches the search criteria, instead of a list of all nodes that match. The first of these

functions, gtk3tree_find_by _row _dataO:

GtkCTreeNode *
gtk_ct ree_f ind_by_row_data (GtkCTree * c t ree , GtkCTreeNode * node ,

gpointer dat a) ;

is equivalent to gtk_ctree_find_alCby _rowO data, but all searching is halted once the first

node is found. The return value is the first node found, or NULL if no such node exists. If
you want to use your own comparison function to perform the search, you must use

gtk3tree_find_by _row _data_customO:

GtkCTreeNode *
gtk_ct ree_f ind_by_row_data_custom (GtkCTree * c t ree , GtkCTreeNode * node ,

gpointer data , GCompareFunc func) ;

The arguments to gtk_ctree_find_by_row_data3ustomO are the same as those passed

to gtk3tree_find_alCby _row _data3ustomO. The first matching node will be returned, or

NULL if no such node exists.

Moving, Expanding, Collapsing, and Selecting Rows
The following set of functions supports the moving, expanding, collapsing, and selecting
of nodes (or rows) in an instance of GtkCTree.

Moving a Node. A node can be moved to a new location in the tree programmatically by
calling gtk3tree_moveO:

void

gtk_c tree_move (GtkCTree * c t ree , GtkCTreeNode *node ,
GtkCTreeNode *new-parent , GtkCTreeNode *new_s ibl ing) ;

GtkCTree 653

The argument node is the node to be moved, and new _parent and new _sibling identify

the new location of the node in ctree. All children of the node prior to the move will remain

children of the node after the move has been completed.

Expanding a Node. Several GtkCTree functions allow you to collapse and expand nodes

in the tree. To expand a node and display its immediate children, call gtk_ctree_expandO:

vo id
gtk_ctree_expand (GtkCTree * c t ree , GtkCTreeNode * node) ;

To recursively expand the specified node and display all nodes that descend from it, call

gtk3tree_expand_recursiveO:

void
gtk_ctree_expand_recurs ive (GtkCTree * c t ree , GtkCTreeNode *node) ;

Finally, to recursively expand a node to a specific depth, you can call gtk3tree_expand_

to_depthO:

vo id
gtk_ctree_expand_to_depth (GtkCTree * c t ree , GtkCTreeNode *node ,

gint depth) ;

The argument depth is an integer in the range [1 , n], where n is the depth of the tree. By

the way, there is no easy way to determine the depth of a tree; GtkCTree does not provide

a function or macro that can be used to query this information. If you specify a depth of 0,
the entire tree starting at the specified node will be expanded.

Collapsing a Node. What can be expanded can also be collapsed (the GtkCTree version

of the well-known saying "What goes up, must come down"). To collapse a node, hiding

its immediate children, call gtk3tree_collapseO:

void
gtk_ctree_col l apse (GtkCTree * c t ree , GtkCTreeNode * node) ;

As usual, ctree is the tree containing the node to be collapsed. Collapsing a node does
not affect the collapsed or expanded state of the children nodes or any of the nodes below

these children. If you were to expand the node just collapsed, the tree would appear as it

did before the node was collapsed. If you would like to recursively collapse all children of

a node, you must call gtk_ctree_collapse_recursiveO:

void
gtk_ctree_collapse_recurs ive (GtkCTree * c t ree , GtkCTreeNode *node) ;

Calling this function will collapse the node, all of its children, and so on. If you were to

expand a node after it was recursively collapsed, it would not appear the same as it did before
collapsing (except if the children of the node were already recursively collapsed or if all of

the children of the node are leaf nodes and have no children of their own). All child nodes of
a tree that was recursively collapsed need to be expanded by the user or the program in order
to be viewed once again.

654 Chapter 12 • Trees

Of course, you can recursively collapse a node to the specified depth, just as you can recur

sively expand a node to a specified depth. To do so, call gtk_ctree_collapse_to_depthO:

void
gtk_ct ree_coll apse_to_depth (GtkCTree * c t ree , GtkCTreeNode * node ,

gint depth) ;

The argument depth is an integer in the range [1 , n], where n is the depth of the tree. If

depth is set to 0, the entire tree, starting at the specified node, will be collapsed. Setting node
to NULL causes gtk_ctree30llapse_to_depthO to work from the root node of the tree.

Retrieving the State of a Node. The expanded/collapsed state of a node in a tree can be

inverted by calling gtk3tree_toggle3xpansionO:

void
gtk_ct ree_toggl e_expansion (GtkCTree * c t ree , GtkCTreeNode * node) ;

The argument ctree is the tree containing the node to toggle; node is the node to toggle.

If node is set to NULL, the root node is toggled.

Recursively Expanding and Collapsing Nodes. To recursively expand or collapse a

node, depending on its previous state, call gtk_ctree_toggle3xpansion_recursiveO:

void
gtk_c t ree_toggl e_expans ion_recurs ive (GtkCTree * c t ree ,

GtkCTreeNode *node) ;

The arguments to gtk_ctree_toggle_expansion3ecursiveO are the same as those passed
to gtk3tree_toggle_expansionO.

Using the Keyboard to Collapse and Expand a Tree. GtkCTree allows users to collapse

and expand a selected row via the keyboard. The supported keyboard bindings are shown in

Table 1 2.9.

Table 12.9 Supported Keyboard Bindings

Binding

'+' , GDK_SHIFCMASK

GDK_KP _Add,
GDK_CONTROL_MASK

Action

GTK_CTREE_EXPANSION_
EXPAND

GTK_CTREE_EXPANSION_
EXPAND

GTK_CTREE_EXPANSION_
EXPAND_RECURSIVE

GTK_CTREE_EXPANSION_
COLLAPSE

Description

If collapsed, row is expanded

If collapsed, row is expanded

If collapsed, row is recursively
expanded

If expanded, row is collapsed

GtkCTree

Table 12.9 Supported Keyboard Bindings (Continued)

Binding Action

GDK_KP _Subtract GTK_CTREE_EXPANSION_
COLLAPSE

655

Description

If expanded, row is collapsed

GDK_KP _Subtract, GTK_CTREE_EXPANSION_ If expanded, row is recursively
GDK_CONTROL_MASK COLLAPSE_RECURSIVE collapsed

' = ' GTK_CTREE_EXPANSION_ Collapsed, expanded state is
TOGGLE toggled

GDK_KP _Multiply GTK_CTREE_EXPANSION_ Collapsed, expanded state is
TOGGLE toggled

GDK_KP _Multiply, GTK_CTREE_EXPANSION_ Collapsed, expanded state is
GDK_CONTROL_MASK TOGGLE_RECURSIVE recursively toggled

In the preceding table, GDK_SHIFCMASK means that one of the Shift keys is held

down while the other key in the binding is being depressed, and GDK_CONTROL_MASK,

similarly, means that the Control key is being held down while the other key is depressed.

A key that is prefixed with GDK_KP _ denotes a keypad key. For example, GDK_KP _Add

is the + key on the keyboard keypad, not the - key located in the top row of the keyboard

adjacent to the = and 0 keys.
Your application need do nothing for these bindings to take effect. The values in the

Action column of Table 1 2.9 list constants passed via the expansion argument to the
change_focus_row _expansion signal function that your application can optionally register

with the ctree widget. This signal is dispatched whenever the user collapses or expands a

row using the keyboard bindings listed in Table 1 2.9. See Table 1 2.5 for a description of
this signal and the section immediately following Table 1 2.5, "Signal Function Prototypes,"

for the function prototype of the corresponding signal function.

Selecting and Unselecting Nodes

Finally, let's look at how to programmatically select nodes in a tree. The functions are sim
ilar to those described for expanding and collapsing nodes in a tree; both recursive and non
recursive functions are provided. To nonrecursively select a row or node in the tree, call

gtk3tree_selectO:

void
gtk_ctree_select (GtkCTree * c t ree , GtkCTreeNode *node) ;

As you may have guessed, ctree is the GtkCTree containing the node to select, and node

is the node that will be selected once gtk3tree_selectO returns. node must be non-NULL;
otherwise, gtk3tree_selectO will fail.

To recursively select a node, call gtk_ctree_seleccrecursiveO :

void
gtk_ctree_select_recurs ive (GtkCTree * c t ree , GtkCTreeNode *node) ;

656

The arguments are the same as those passed to gtlcctree_selectO.

You can unselect a node by calling gtk3tree_unselectO:

voi d
gtk_ct ree_unselect (GtkCTree * c t ree , GtkCTreeNode *node) ;

Chapter 12 • Trees

You can recursively unselect a node, and all of its children, by making a call to

gtk_ctree_unseleccrecursiveO:

vo id
gtk_c t ree_unselect_recurs ive (GtkCTree *ctree , GtkCTreeNode * node) ;

Miscellaneous Functions

The final set of GtkCTree functions that I will describe represents a grab bag of functionality.

The majority of these functions come in pairs; one function in the pair is used to retrieve a

particular piece of information about a node or about the tree, while the other function is used
to set that same piece of information.

Checking Whether a Coordinate Is in the Expander Box. The first function, gtk_

ctree_is_hocspotO, will return TRUE if the x and y coordinates it is passed define a loca
tion within any expander box that is currently visible in the tree. The function prototype is

as follows:

gbool ean

gtk_ct ree_i s_hot_spot (GtkCTree * ctree , gint x, gint y) ;

Both x and y are window-relative coordinate values (such as the values that would be
reported by a motion notify event).

Setting and Getting the Text Displayed in a Column. A pair of functions allow you to
retrieve and set the text value displayed by a column in a tree row. To retrieve the text value
of a specific column, call gtk_ctree_node�ectextO:

gint
gtk_ct ree_node_get_text (GtkCTree *ctree , GtkCTreeNode * node ,

gint column , gchar * * text) ;

The arguments ctree, node, and column define the data to be retrieved. The argument

column must be in the range 1 to n, where n is the number of columns in a row. Both ctree
and node must be non-NULL. The argument text is a pointer to a variable of type gchar * .

The following code retrieves the text from column 3 of a node and prints i t to stdout:

gint retval ;
gchar * text ;
GtkCTree * t ree ;
GtkCTreeNode *node ;

GtkCTree

retval = gtk_ct ree_node_get_text (t ree , node , 3 , &text) ;

i f (retval = = 1)
print f (" Retrieved text i s % s \n " , text) ;

657

The function gtl,-ctree_node�eCtextO returns 1 on success and 0 on failure. A pointer

to the column text data is returned, not a copy. Therefore, you should take care not to free

or modify the text string returned by this function.

To set the column text of a node, you can call gtk_ctree_node_sectextO:

void
gtk_ctree_node_set_text (GtkCTree * c t ree , GtkCTreeNode *node ,

gint column , cons t gchar * text) ;

The first three arguments are used identically to the first three arguments passed to

gtk3tree_node�eCtextO. The final argument, text, is a char * that contains the text to be

displayed by the node in the specified column. GtkCTree makes a copy of the text string

you pass, so you are free to delete or modify the text string you passed without affecting the

data displayed in the tree.

Setting and Getting Pixmap Data. A similar pair of functions exists for getting and set

ting whatever pixmap data might be associated with a node in a ctree. To get the pixmap

from a specified node, if the pixmap exists, call gtk3tree_node�ecpixmapO:

gint
gtk_ctree_node_get-pixmap (GtkCTree * ctree , GtkCTreeNode *node ,

gint column , GdkPixmap * *pixmap , GdkBi tmap * *mask) ;

The arguments ctree, node, and column are as previously described for gtk3tree_

node�eCtextO. The argument pixmap is a pointer to a GdkPixmap *, and mask is a pointer

to a GdkBitmap *. Note that the actual pixmap and mask data used by the tree is returned, not

a copy. Therefore, do not free the memory pointed to be either of these values and be careful

when modifying the image data because modifications will affect the ctree from which the

data was retrieved.
To set the pixmap and mask data for the specified node and column, you can call gtk_

ctree_node_secpixmapO:

void
gtk_ctree_node_set-pixmap (GtkCTree * c t ree , GtkCTreeNode * node ,

gint column , GdkPixmap *pixmap , GdkB i tmap *mask) ;

Keep in mind that GtkCTree will not make a copy of either the pixmap or the mask, but it

will reference count both, and GDK will hold on to the pixmap and the bitmap until the refer
ence count goes to O. Also, realize that the pixmap and mask data set here is temporary in the

sense that GtkCTree continues to maintain the open and closed pixmap and mask data specified
when the node was added to the tree. Once the user (or your application) changes the expand
or collapse state of the node, the pixmap and mask data displayed in response to the call to
gtk3tree_node_secpixmapO will be discarded, and the pixmap and mask displayed will

658 Chapter 12 • Trees

revert to those set when the node was created (or by a call to gtlcctree_seCnode_infoO, which

I will describe in the next section).

The next two functions combine the functionality of the preceding text and pixmap get
ter and setter functions. To retrieve both the pixmap and text data from a node in a tree, call

gtk_ctree_node�ecpixtextO:

gint
gtk_ctree_node_get-pixtext (GtkCTree * ctree , GtkCTreeNode * node ,

gint column , gchar * * text , guint 8 * spac ing , GdkPixmap * *pixmap ,

GdkBi tmap * *mask) ;

The arguments to gtlcctree_node�ecpixtextO are provided in Table 1 2. 1 0.

Table 12.10 gticctree_node�ecpixtextO Arguments

Argument Type Value

ctree GtkCTree * On input, the ctree containing the node to query

node GtkCTreeNode * On input, the node containing the data

column gint On input, the column from which data is to be
retrieved

text gchar * * On return, points to the text displayed by the
node in the specified column

spacing guint8 * On return, the number of pixels that separate the
image and text data

pixmap GdkPixmap * * On return, a pointer to the pixmap data displayed
by the node

mask GdkBitmap * * On return, a pointer to the bitmap mask
associated with pixmap

To set the text and pixmap for the specified node and column, you can call the related

function gtk_ctree_mode_secpixtextO:

void
gtk_ct ree_node_set-pixt ext (GtkCTree *ctree , GtkCTreeNode *node ,

gint column , const gchar * text , guint 8 spac ing ,
GdkPixmap *pixmap , GdkBi tmap *mask) ;

The arguments to gtlcctree_node_secpixtextO are provided in Table 1 2. 1 1 .

Table 12. 1 1 gtk_ctree_node_secpixtextO Arguments

Argument Type Value

ctree GtkCTree * On input, the ctree containing the node to change

GtkCTree

Table 12.11 gtk_ctree_node_secpixtextO Arguments (Continued)

Argument Type Value

node GtkCTreeNode * On input, the node to modify

column gint On input, the column in the node that will be
modified

659

text gchar * On input, points to the text that will be displayed
in the specified column

spacing guint8 On input, the number of pixels that separate the
image and text data

pixmap GdkPixmap * On input, a pointer to the pixmap data that will
displayed by the node

mask GdkBitmap * On input, a pointer to the bitmap mask
associated with pixmap

Retrieving and Modifying Node Attributes. The next two functions allow you to retrieve
and modify most of the attributes you specified when adding a node to the tree. The first func

tion, gtk_ctree_seCnode_infoO, can be called to modify the attributes of a node:

void

gtk ctree set node info (GtkCTree * c t ree , GtkCTreeNode *node , - - - -

const gchar * t ext , guint 8 spac ing , GdkPixmap *pixmap_c losed ,
GdkBi tmap *mask_c losed , GdkPixmap *pixmap_opened,

GdkBi tmap *mask_opened , gboolean i s_leaf , gboolean expanded) ;

The arguments ctree and node identify the node to be queried. The remainder of the

arguments should be familiar to you by now (if not, refer to the description of

gtk3tree_insercnodeO earlier in this section). The changes made here override those

made at the time the node was created or by previous calls to gtk3tree_secnode_infoO.

To retrieve attributes from a node, you can call gtk_ctree�ecnode_infoO:

gint
gtk_ctree_get_node_info (GtkCTree * c t ree , GtkCTreeNode *node ,

gchar * * text , guint 8 * spac ing , GdkPixmap * *pixmap_c losed ,
GdkB i tmap * *mask_c losed , GdkPixmap * *pixmap_opened ,

GdkB itmap * *mask_opened, gboolean * i s_leaf ,
gbool ean * expanded) ;

As is the case with gtk3tree_secnode_infoO, ctree and node identify a node in the tree

that, in this case, will be queried for attributes. The remaining arguments are the addresses
of variables of their respective types and will contain the desired attribute values once

gtk3tree�ecnode_infoO returns.

660 Chapter 1 2 • Trees

Setting a Column Offset. To offset the display of the data corresponding to the specified

column in the specified node by the specified number of pixels, call gtk_ctree_node_secshiftO:

void
gtk_c t ree_node_set_shi f t (GtkCTree *ctree , GtkCTreeNode * node ,

gint column , gint vert i cal , gint hor i z ontal) ;

The default value for both vertical and horizontal is o. There is no function that can be

used to query the shift value of a node/column in the tree.

Getting and Setting the Selectable Attribute of a Node. Your application can control

the selectability of rows in the tree by calling gtk3tree_node_secselectableO:

vo id
gtk_c t ree_node_set_selectable (GtkCTree * c t ree , GtkCTreeNode * node ,

gboolean selectable) ;

The selectability of a node can be queried by gtk3tree_node�eCselectableO:

gbool ean
gtk_ctree_node_get_se l ectable (GtkCTree * ctree , GtkCTreeNode * node) ;

If the node can be selected by the user or programmatically by the application, TRUE

will be returned.

Determining the Type of a Cell. Applications can determine the type of data stored by

a column of a specific node in the tree by calling gtk3tree_node�eccelUypeO:

GtkCe l lType
gtk_c t ree_node_get_cel l_type (GtkCTree * c t ree , GtkCTreeNode * node ,

gint column) ;

The arguments ctree, node, and column specify the column to query. Return values are

provided in Table 12 . 1 2.

Table 12.12 GtkCellType

Value

GTK_CELL_EMPTY

GTK_CELL_TEXT

GTK_CELL_PIXMAP

GTK_CELL_PIXTEXT

Meaning

The column does not hold any data.

The column contains text.

The column contains a pixmap and mask.

The column is both GTK_CELL_TEXT and
GTK_CELL_PIXMAP.

The column contains a widget (unimplemented in
Gtk+ 1 .2).

GtkCTree 661

Setting and Getting Style Objects. The next few functions allow you to query or change the

Gtk+ style objects of nodes in a tree or specific columns within a row. There are two pairs

of setter and getter functions. One pair is used to set and get the style object of a row or

node in a tree, while the other pair is used to set and get the style object of a specific column
in a specific row. Let's first take a look at the row-oriented functions. To get a row (or node)

style object, you can call gtk_ctree_node�ecrow_styleO:

GtkStyle *
gtk_ctree_node_get_row_s tyle (GtkCTree * c t ree , GtkCTreeNode *node) ;

The arguments ctree and node identify the tree and row, respectively. The return value is

a Gtk+ style object or NULL if none has been set.

The function gtk_ctree_node_seCrow _styleO:

void
gtk_ctree_node_set_row_styl e (GtkCTree * c t ree , GtkCTreeNode *node ,

GtkStyle * s tyl e) ;

can be used to replace the style object associated with a row (if there is one) with a style object

of your choosing. The arguments ctree and node, once again, identify the tree and the node to

which to attach the style. The argument style is the style object that will be attached to the

specified node.
The following code snippet reads a style object from a node in the tree, makes a copy of it

if it exists (or creates a new one if it does not), and then changes the font to one similar to the
default Gtk+ font, except bold and italicized. It then calls gtk_ctree_node_secrow_styleO to

attach the new style object to the row from which the original style object was obtained.

GtkStyle * s tyl e , * new_styl e ;

GdkFont * font ;

I I add a node to the t ree

text [0] = " Ralph " ; text [1] = " 8 8 8 " ; text [2] = " 6 6 6 - 4 4 4 " ;

node = gtk_ctree_insert_node (GTK_CTREE (root) , parent , NULL , text ,
5 , NULL , NULL , NULL , NULL , FALSE , TRUE) ;

I I read the style obj ect - - this wi l l be NULL here , but the following
I I code i l lustrates how to deal with NULL and non -NULL return values

style = gtk_ctree_node_get_row_styl e (GTK_CTREE (root) , node) ;
i f (style)

I I copy the one read

e l s e

I I create a new one

I I l oad the Gtk+ de fault font , but bold and ital i c i zed

662 Chapter 12 • Trees

" - adobe - he lvet ica-bold - o - normal - - * - 1 2 0 - * - * - * - * - i so8 8 5 9 - 1 ") ;

I I change the font i f the above load was successful

if (font)
gdk_font_unre f (new_styl e - >font) ;
new_s tyle - > font = font ;

gdk_font_re f (new_s tyl e - >font) ;

I I attach the style obj ect to the node created above

Whatever can be done for an entire row can also be done for individual columns in a row. To

retrieve the style object attached to a cell (if any), you can call gtlcctree_node...,geccell_styleO:

GtkStyl e *
gtk_ct ree_node_get_cel l_style (GtkCTree *ctree , GtkCTreeNode * node ,

gint column) ;

As is usual, ctree and node identify the tree and the row. The argument column, in the

range of [1 , n] , with n equal to the number of columns in the tree, identifies the column from

which the style object is to be read.

Setting the style object of a column is almost as easy as reading it and can be done by
calling gtk_ctree_node_seCcell_styleO:

vo id
gtk_c t ree_node_set_cel l_s tyl e (GtkCTree *ctree , GtkCTreeNode * node ,

gint column , GtkStyle * styl e) ;

Setting Foreground and Background Colors. Two style-related functions can be used

to set the foreground and background colors used to render the contents of columns in a

row. To set the foreground color, call gtk_ctree_node_setjoregroundO:

voi d
gtk_ct ree_node_set_foreground (GtkCTree * c t ree , GtkCTreeNode * node ,

GdkColor * color) ;

To set the background color, call gtk3tree_node_secbackgroundO:

vo id
gtk_ctree_node_set_background (GtkCTree * c t ree , GtkCTreeNode * node ,

GdkColor * color) ;

Both of these functions accept a ctree and a node argument, which identify the node to
be modified. Both functions also take as a third argument a pointer to a GdkColor object,

which your application has obtained and initialized. If you pass NULL as the color argu
ment, the effect of the previous call to gtk3tree_node_secforegroundO (or gtk3tree_

Summary 663

node_secbackgroundO, as the case may be) will be negated because GtkCTree will revert

to its default foreground (or background) color from that point on.

Determining Whether a Node Is Visible. You can call gtk_ctree_node_is_visibleO to
detennine whether a node is visible or not:

GtkVi s ibi l i ty
gtk_ctree_node_i s_visible (GtkCTree * c tree , GtkCTreeNode *node) ;

Potential return values include GTK_ VISIBILITY_NONE (the row is not visible),

GTK_ VISIBILITY_PARTIAL (part of the row is visible), or GTK_ VISIBILITY_FULL

(all of the row is visible).

Scrolling a CTree to Make a Specific Node Visible. The final function described in this

chapter will, when called, cause a ctree instance to scroll so that the specified column in the

specified node is visible. The function gtk3tree_node_movetoO takes five arguments:

vo id
gtk_ctree_node_moveto (GtkCTree * c tree , GtkCTreeNode *node ,

gint column , gfloat row_a l ign , gfloat col_al ign) ;

The argument ctree identifies the GtkCTree instance, and node specifies the node or row.

The argument column, in the range [1 , n] , where n is the number of columns in the tree, spec

ifies the column to scroll into view. The arguments row_align and coCalign, both of type gfioat,

described how to place the data being put into view (see the description of gtk_cliscmovetoO

in Chapter 6).

Summary

A tree widget is similar to a list (GtkList and GtkCList) in that both can be used to display a

set of items that can be selected from by a user. Trees are more powerful than lists because

they give the programmer the ability to organize data in ways that lists simply do not allow,
and they give the end user more control over how much data is displayed at any given time.

In this chapter, we discussed the following tree-related widgets: GtkTree, GtkTreeltem, and
GtkCTree. GtkTree and GtkTreeItem are used together to display trees that contain a (theo
retically) infinite number of subtrees, with each node in the tree displaying a label or, if the

application prefers, managing a widget of arbitrary type. (Typically, this widget will be a box
widget that, in tum, manages arbitrary content such as a pixmap and label widget; see Figure
12 . 10.) GtkCTree is a much more involved widget (as suggested by its rather large API) that
allows for the display of tree nodes consisting of multiple columns. A ctree widget displays
resizable column headings for each column in the tree and supports keyboard bindings that
allow the user to collapse and expand rows via keyboard input. However, unlike a tree item
being displayed in a GtkTree widget, a ctree node can only display text-based data. Therefore,

if your application must display image or other arbitrary data in a tree, using GtkTree and Gtk
TreeItem is currently the only option available.

(HAPTER

RANGE WIDGETS AND
ADJVSTME NT OBJ E(TS

In this chapter, I will describe the Gtk+ range widgets listed in Table 13.1.

Table 13.1 Widgets Described in This Chapter

Class Name

GtkRange

GtkScale

GtkHScale

GtkVScale

GtkScrollbar

GtkHScrollbar

GtkVScrollbar

GtkAdjustment

Description

Parent class of the range widget classes discussed

in this chapter

Scale widget parent class

Horizontal scale widget

Vertical scale widget

Scrollbar widget parent class

H orizontal scrollbar widget

Vertical scrollbar widget

Adjustment objects

As an application developer, you will only ever instantiate widgets belonging to the following

widget classes: GtkHScale, GtkVScale, GtkHScrollbar, or GtkVScrollbar. The other widget

classes (GtkRange, GtkScale, and GtkScrollbar) are base classes that contain functionality you
might find useful when working with GtkHSca1e, GtkVScale, GtkHScrollbar, or GtkVScrollbar,

but you will never actually create instances of these classes in your applications.

This chapter includes a discussion of Gtk+ adjustment objects (GtkAdjustment). Adjustment
objects are the basis upon which the widget classes we look at in this chapter implement their

functionality. Several Gtk+ widget classes, including GtkScrolledWmdow, GtkCList, GtkLay

out, and GtkProgress, create instances of range widgets (scales and scrollbars) or adjustment

objects, and some of these classes allow you to specify an adjustment object at widget-creation

time to override the adjustment object that the widget would normally create for itself.

665

666 Chapter 13 • Range Widgets and Adjustment Objects

Scale Widgets

Scale widgets give users a convenient way to select a value that falls within a predefined

range. Figure 13.1 illustrates the two types of scale widget that Gtk+ supports: horizontal

and vertical. The horizontal or vertical area of a scale widget represents the full range of

values that can be selected by the user. Within this area, a movable "thumb" indicates the

current value of the scale widget and can be positioned, using the keyboard or the mouse,

to change the scale widget'S value. Applications can arrange to be notified whenever the

scale widget has changed its value. This strategy works especially well if the application

needs to respond in real-time to values as they are selected by the user. An application can

also query the value of a scale widget at a time that is most convenient to the application,

for example, when the user has hit the OK button in the dialog displaying the scale widget

to indicate that the value he or she has selected should be read and saved.

Figure 13.1 Horizontal and Vertical Scale Widgets

Scale widgets display a label, adjacent to the scale control, that indicates the current

value of the scale widget. The default behavior of a scale widget is to show this label, but

GtkScale allows you to hide the label if desired. You can also specify the location of the

label relative to the scale control.

My presentation of GtkScale is organized as follows. First I will describe the two classes

derived from GtkScale: GtkHScale and GtkVScale. These classes are the ones your applica

tion will instantiate directly, and they are both rather simple to describe. Once I have described

both of these classes, I will then describe their parent class, GtkScale, in detail. I will then tie

it all together with a sample application that illustrates how to respond to changes in a scale's

value as they are made by a user and how to extract the value of a scale widget at a discrete

point in time (e.g., when the user has dismissed a dialog containing a scale widget control).

GtkHScale

GtkHScale

Class Name

GtkHScale

Parent Class Name

GtkScale

Macros

Object to widget cast macro: GTK _ HSCALE (obj)

Widget type check macro: GTK_I S_HSCALE (obj)

Supported Arguments

Prefix: GtkHScale: :

Table 13.2 GtkHScale Arguments

Name

adjustment

Application-Level API Synopsis

Return the constant GTK_TYPE_HSCALE at runtime:
GtkType
gtk_hscale_get_type(void)

Create a new instance of GtkHScale:
GtkWidget *
gtk_hscale_new(GtkAdjustment *adjustment)

667

Permissions

GTK_ARG_READvnuTEl
GTK_ARG_CONSTRUCT

668 Chapter 13 • Range Widgets and Adjustment Objects

Class Description

GtkHScale is a very simple class. For most applications, the only function of interest is the

one used to create an instance of GtkHScale, gtk_hscale_newO:

GtkWidget *

gtk_hscal e_new (GtkAdj us tment * adj us tment)

The argument adjustment specifies an application-defined adjustment object. You must

create an adjustment object of your own, or supply one created by some other widget, in

order for the horizontal scale widget to work properly. I describe adjustment objects later

in this chapter (see GtkAdjustment).

The following code snippet creates a horizontal scrollbar that allows the user to select

values in the range of 0.0 to 99.0:

GtkAdj us tment * adj us tment ;

GtkWidget * scale ;

adj us tment = gtk_adj us tment_new (O . O , 0 . 0 , 100 . 0 , 0 . 1 , 1 . 0 , 1 . 0) ;

scale = gtk_hscal e_new (GTK_ADJUSTMENT (adj ustment)) ;

GtkVScale

Class Name

GtkVScale

Parent Class Name

GtkScale

Macros

Widget type macro: GTK_ TYPE_ VSCALE

Object to widget cast macro: GTK_ VSCALE (obj)

Widget type check macro: GTK _ IS _ VSCALE (obj)

GtkScale

Supported Arguments

Prefix: GtkVScale: :

Table 13.3 GtkVScale Arguments

Name

adjustment

Application-Level API Synopsis

Return the constant GTK_TYPE_ VSCALE at runtime:
GtkType

gtk_vscale_get_type(void)

Create a new instance of GtkVScale:
GtkWidget *

gtk_vscale_new(GtkAdjustment *adjustment)

Class Description

669

Permissions

GTK_ARG_READWRlTE I
GTK_ARG_CONSTRUCT

GtkVScale is nearly identical to GtkHScale, previously described, except that the widget

created by GtkVScale is drawn vertically as opposed to horizontally, which is the case with

GtkHScale. To create a new instance of GtkVScale, you can call gtk_hscale_newO:

GtkWidget *

gtk_hscal e_new (GtkAdj us tment * adj us tment)

As was the case with GtkHScale, adjustment is an application-defined adjustment
object. For details and example code, see the preceding description of GtkHScale.

GtkScale

Class Name

GtkScale

670 Chapter 13 • Range Widgets and Adjustment Objects

Parent Class Name

GtkRange

Macros

Widget type macro: GTK _TYPE_SCALE

Object to widget cast macro: GTK _SCALE (obj)

Widget type check macro: GTK_I S_SCALE (obj)

Supported Arguments

Prefix: GtkSca l e : :

Table 13.4 GtkScale Arguments

Name

digits

draw_value

Type

GTK_TYPE_INT

GTK_TYPE_BOOL

GTK_TYPE_POSITION3YPE

Application-Level API Synopsis

Return the constant GTK_TYPE_SCALE at runtime:
GtkType

gtk_scale_get_type (void)

Set the number of significant digits displayed by a scale widget:
voi d

Permissions

GTK_ARG_READvnuTE

GTK_ARG_READWRITE

GTK_ARG_READvnuTE

gtk_scal e_set_digi t s (GtkScale * scale , gint digi t s)

Show or hide the scale value:
void
gtk_scale_set_draw_value (GtkScal e * scale , gboolean draw_value)

Set the scale position type. controlling the location of the scale value:
void

gtk_scale_set_value-pos (GtkScale * scale , GtkPos i t ionType pas)

GtkScale

Application-Level API Synopsis (Continued)

Get the width, in pixels, of the scale value text:
gint

gtk_scale_get_value_width(GtkScale *scale)

Cause the scale value to be (re)drawn:
void

gtk_scale_draw_value(GtkScale *scale)

Class Description

671

GtkScale is the parent class of GtkHScale and GtkVScale. As such, it provides interfaces

that may be of interest to programmers who instantiate instances of either GtkHScale or

GtkVScale.

Setting the Number of Significant Digits

The first function described here is gtk_scale_secdigitsO:

void

gtk_scale_set_digi t s (GtkScale * s cale , gint digits)

This function allows the application to control the number of significant digits displayed by

the scale widget label (when visible). Normally, the number of significant digits displayed is I
(scale widget values are stored as floating point, as is the case for all widgets based on adjust

ment objects). Setting digits to 0 will cause the value to display as an integer.

Showing and Hiding the Scale Value

By default, a scale widget will display its value as a label. You can show or hide this label

by calling gtk_scale_seCdraw _ valueO:

void
gtk_scale_set_draw_value (GtkScale * scale , gboolean draw_value)

The argument scale is an instance of GtkScale (GtkHScale or GtkVScale), and the argument

draw_value is a boolean that controls the display of the scale widget label. If draw_value is set

to TRUE, the label will be drawn; if set to FALSE, the label will be hidden from users.

Setting the Value Label Position

By default, both horizontal and vertical scale widgets will display their label above the scale

widget control. You can change the default position by calling gtk_scale_seCvalue_posO:

672 Chapter 13 • Range Widgets and Adjustment Objects

void

gtk_scal e_set_va lue-pos{GtkScale * scale , GtkPos i t i onType pOS)

The argument pos can be one of the following values listed in Table13.5.

Table 13.5 GtkPositionType Values

Value

GTK_POS_LEFr

GTK_POS_RIGHT

GTK_POS_TOP

Miscellaneous Scale Widget Functions

Meaning

The value is displayed to the left of the control.

The value is displayed to the right of the control.

The value is displayed above the control

(default).

The value is displayed below the control.

Two perhaps-seldom-used functions allow you to get the width of the scale value text (gtk_scale_

geCvalue_width()) and cause the scale to redraw its value (gtk_scale_draw_value()). The func

tion prototypes for these two functions are as follows:

gint
gtk_s cal e_get_value_width{GtkScale * s cal e)

vo id

gtk_s cal e_draw_va lue{GtkScale * s ca l e)

Each o f these functions accepts an instance of GtkScale as its only argument. The function
gtk_scale�eC value_ widthO returns the width, in pixels, of the text being (or that would be)

displayed by the scale widget.

An Example

Now it is time for a sample program. The sample program creates an instance of GtkHScale,

placing the scale value to the left of the slider. An instance of GtkVScale is also created and is

displayed next to the horizontal scale. Its label is drawn in the default location. Both of the

scales can be set, by the user and independently of each other, to a value in the range of [0, 100].

The number of significant digits displayed by the horizontal scale widget label is set to O. The

vertical scale widget displays the default value of 1 significant digit.
Each scale widget displays its current value whenever a change to the scale's thumb

position is made by the user. This is done by printing the value of the scale widget to stderr

from within a value3hanged signal function that is registered by the application for each

adjustment object created. This illustrates how an application can monitor changes made to
a scale's value as they are made. An OK button (GtkButton) is also displayed below the

scale widgets. Pressing this button causes a clicked signal function to be invoked; the

clicked signal function queries each of the adjustment objects for its current value and dis-

GtkScale 673

plays the values retrieved to stderr as well. This illustrates how an application can retrieve

the value of a scale at a discrete point in time. I will describe the use of adjustment objects

in more detail later in this chapter (feel free to skip ahead and read about adjustment objects

before looking at the source code I am about to present). The example presented here is sim

ple, but it does illustrate most of what you will need to know to make use of scale widgets

in your applications.

Listing 13.1 Widget Example

001 #inc lude <gtk/gtk . h>

002 #inc lude <stdio . h>

003

004 II a data type that makes it pos s ible to pas s both adj ustment obj e c t s as

005 II c l ient data to the Handl eOkButton () s i gnal funct ion

006

007 typedef struct _adj ustment s

008 GtkAdj us tment * adj 1 ;

009 GtkAdj us tment * adj 2 ;

010 Adj ustment s ;

0 1 1

0 1 2 II called when t h e u s e r pre s s e s t h e O k button

0 1 3
0 1 4 s t a t i c void

015 HandleOkButton (GtkWidget *w, gpointer dat a)

0 1 6 {
0 1 7 Adj us tment s * adj s = (Adj ustment s *) data ;

0 1 8

0 1 9 fprint f (stderr , " Hscale value i s % d vscale value i s % . If\n'' ,

020 (int) adj s - >adj 1 ->value , adj s - >adj 2 ->value) ;

02 1

02 2

02 3 II cal led when the user changes the value of the f i rs t scale widget

02 4
02 5 stat i c void
026 Adj us tment 1 Changed (GtkAdj ustment *w , gpointer dat a)

02 7 {
02 8 fprint f (stderr , " Adj ustment 1 is %d\n " , (int) w->value) ;
029
030

03 1 II c a l l ed when the user change s the value of the second scale widge t

0 3 2
03 3 stat i c vo id

03 4 Adj us tment2 Changed (GtkAdj us tment *w , gpointer dat a)

03 5 {
036 fprint f (stderr , " Adj us tment 2 i s % . If\n'' , w->value) ;
03 7

03 8

03 9 ma in (argc , argv)

040 int argc ;

674 Chapter 13 • Range Widgets and Adjustment Objects

04 1 char *argv [] ;

04 2 {
04 3 GtkWidget *hscale , *vscale , *vbox , * hbox , *window , *but ton ;

044 GtkObj ect * adj 1 , * adj 2 ;

04 5 Adj us tments adj us tment s ;

046

04 7 gtk_in i t (&argc , &argv) ;

04 8

04 9 window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;

050 gtk_window-pos i t ion (GTK_WINDOW (window) , GTK_WIN_POS_MOUSE) ;

0 5 1

0 5 2 gtk_s ignal_connect (GTK_OBJECT (window) , " de s t roy " ,

0 5 3 GTK_S IGNAL_FUNC (gtk_widget_de st royed) , &window) ;

054

055 gtk_window_set_t i t l e (GTK_WINDOW (window) , " GtkScale Demo ") ;

056

0 5 7 vbox = gtk_vbox_new (FALSE , 0) ;

0 5 8 gtk_container_add (GTK_CONTAINER (window) , vbox) ;

0 5 9

060 hbox = gtk_hbox_new (FALSE , 0) ;

06 1 gtk_box-pack_s tart (GTK_BOX (vbox) , hbox , TRUE , TRUE , 0) ;

06 2

06 3 II create an adj us tment obj ect for the f i rst scale widget

06 4

06 5 adj 1 = gtk_adj us tment_new (O . O , 0 . 0 , 100 . 0 , 1 . 0 , 5 . 0 , 0 . 0) ;

066 gtk_s ignal_connect (GTK_OBJECT (adj 1) , " value_changed" ,

06 7 GTK_S IGNAL_FUNC (Adj ustment 1 Changed) , NULL) ;

06 8

06 9 II create a hori zontal scale widget . Di splay the value to the

070 II l e f t of the scal e , and display scale value as an integer

0 7 1

072 hscale = gtk_hscale_new (GTK_ADJUSTMENT (adj 1)) ;

073 gtk_s cale_set_va1ue-pos (GTK_SCALE (hscal e) , GTK_POS_LEFT) ;

074 gtk_s cale_set_digi t s (GTK_SCALE (hscale) , 0) ;

075

076 gtk_box-pack_start (GTK_BOX (hbox) , hscal e , TRUE , TRUE , 0) ;

077

07 8 II create an adj ustment obj ect for the second scale widget

07 9

080 adj 2 = gtk_adj ustment_new (O . o , 0 . 0 , 100 . 0 , 1 . 0 , 5 . 0 , 0 . 0) ;

0 8 1 gtk_s ignal_connect (GTK_OBJECT (adj 2) , " value_change d " ,

0 8 2 GTK_S IGNAL_FUNC (Adj us tment 2 Changed) , NULL) ;
0 8 3

0 8 4 II c reate a vert ical scale widget using widget - supp l i ed defaul t s
0 8 5

086 vscale = gtk_vscal e_new (GTK_ADJUSTMENT (adj 2)) ;

08 7

0 8 8 gtk_box-pack_start (GTK_BOX (hbox) , vscale , TRUE , TRUE , 0) ;
08 9

GtkScale

090

0 9 1

0 9 2

adj us tment s.adj 1

adj ustment s . adj 2

GTK_ADJUSTMENT{adj 1) ;

GTK_ADJUSTMENT{adj 2) ;

675

0 9 3 but ton = gtk_but ton_new_wi th_labe l{ " Ok ") ;

0 9 4 gtk_s ignal_connect{GTK_OBJECT{but ton) , " c l i cked " ,

0 9 5 (GtkS igna l Func) Handl eOkButton , &adj us tment s) ;

096

0 9 7 gtk_box-pack_end{ GTK_BOX{ vbox) , but ton , FALSE , FALSE , 0) ;

0 9 8

0 9 9 gtk_widget_show_al l{ GTK_WIDGET{ window)) ;

100

101 gtk_main{) ;

102

Perhaps the most important thing to notice about the preceding code is the use of adjustment

objects. It should be clear that it is the adjustment object that is used to specify the range that

the scale widget represents; this should be clear from lines 065 and 080, which create the

adjustment objects and set their ranges, and by lines 072 and 086, which associate the adjust

ment objects with the scaled widgets that make use of them. It should also be clear that it is the

adjustment object that maintains the value of the scale widget as this value is changed by the

user. This is demonstrated by the value_changed signal function, which reads the adjustment

object for its current value to detennine the value currently being displayed by the scale widget,

and by the OK button's clicked signal function, which essentially does the same thing. As an

exercise, change line 086 to read as follows:

086 vscale = gtk_vscale_new{ GTK_ADJUSTMENT{adj 1)) ;

That is, change the "adj2" to "adj 1" and then re-execute the program. What are the results

of this change? Be sure to read the section on adjustment objects, presented later in this chapter,

for details on how adjustment objects can be shared in this manner among multiple widgets.

The relationship of scale widgets to adjustment objects is the same for all of the widgets

derived from GtkRange. (Currently, the only other widget class that is derived from GtkRange

is GtkScrollbar.)

Scrollbars

The Gtk+ classes (GtkHScrollbar, GtkVScrollbar, and GtkScrollbar) that I will discuss in
this section make up the set of Gtk+ scrollbar classes derived from GtkRange. Scrollbars

are used by widget writers for the most part and not by application writers. Application

writers should usually get by using a widget such as GtkScrolledWindow to parent content
that needs to be scrolled. This may also be true if you are designing a widget that supports

scrolling. GtkText makes use of GtkScrolledWindow, not its own scrollbars, to implement

its scrolling capability. As it turns out, the only Gtk+ classes that instantiate their own

scrollbars (as of Gtk 1.2.7) are GtkMain and GtkScrolledWindow.

676 Chapter 13 • Range Widgets and Adjustment Objects

In several ways, scrollbars as similar to scale widgets (which are described in the preced

ing section). Both can be used to control the value of a GtkAdjustment object, and both can

be manipulated by a user to select a value within a range. However, you should always use

GtkHScale or GtkVScale to create a control of this type; if there are scrollbars present in your

user interface, they should be ones created by a GtkScrolledWindow or by some other widget

class, not directly by your application. The reason for this is that users expect that scale wid

gets will be used to select a value in a range, whereas scrollbars are expected to control a view

into a larger virtual set of data being managed by the application (a document or an image),

and this sort of job is best handled by a container widget such as the scrolled window widget.

The next few pages document the GtkScrollbar classes in detail.

GtkHScrolibar

Class Name

GtkHScrol lbar

Parent Class Name

GtkScrol lbar

Macros

Widget type macro: GTK _TYPE _ HSCROLLBAR

Object to widget cast macro: GTK _ HSCROLLBAR (obj)

Widget type check macro: GTK_I S_HSCROLLBAR (obj)

Application-Level API Synopsis

Return the constant GTK_TYPE_HSCROLLBAR at runtime:
GtkType
gtk_hscrol lbar_ge t_type (void)

Create a new instance of Gtk HScrollbar with an optional adjustment object:
GtkWidget *
gtk_hscro l lbar_new (GtkAdj ustment * adj ustment)

GtkVScrollbar 677

Class Description

GtkHScrollbar is a simple class providing one function, gtk_hscrollbar_newO, that can be

used to create a horizontal scrollbar:

GtkWidget *

gtk_hs crol lbar_new (GtkAdj us tment * adj ustment)

The only argument to gtk_hscrollbar_newO is a GtkAdjustment object. This can be any

adjustment object, either one created specifically for this instance of GtkHScrollbar or

some other adjustment object that is in use by some other widget instance. Although you

can pass NULL as a parameter, this will render the scrollbar useless; an adjustment object

will be created for you, but the adjustment object's attributes will not be ones needed by

your application. You can retrieve the adjustment object created on your behalf with a call

to gtk_range�ecadjustmentO (described later in this chapter) and set adjustment values

using the GtkAdjustment API (also described later in this chapter). You also can call

gtk_range_secadjustmentO to set the scrollbar adjustment object, but in the end, it is easier

to simply pass a non-NULL adjustment object to gtk_hscrollbar_newO than to use any

other possible method.

GtkVScrolibar

Class Name

GtkVScrol lbar

Parent Class Name

GtkScrol lbar

Macros

Widget type macro: GTK _TYPE_ VSCROLLSAR

Object to widget cast macro; GTK_ VSCROLLBAR (obj l

Widget type check macro: GTK_IS_VSCROLliiBAR (obj)

678 Chapter 13 • Range Widgets and Adjustment Objects

Application-Level API Synopsis

Return the constant GTK_TYPE_ VSCROLLBAR at runtime:
GtkType

gtk_vscrollbar_get_type (void)

Create a new instance of GtkVScrollbar with an optional adjustment object:
GtkWidget *

gtk_vscrol lbar_new (GtkAdj ustment * adj u stment)

Class Description

GtkVScrollbar is similar to GtkHScrollbar, except it is used to create vertical scrollbars, not

horizontal scrollbars. Like GtkHScrollbar, there is only one function of interest used to create

an instance of GtkVScrollbar:

GtkWidget *

gtk_vscrol lbar_new (GtkAdj us tment * adj us tment)

Like gtlchscrollbar_new(), gtk_ vscrollbar_new() accepts only a single argument, which

is an adjustment object provided by your application. Refer to the preceding text that

described gtk_hscrollbar_new() for more details regarding the adjustment argument to gtk_ v

scrollbar_new().

GtkScrolibar

Class Name

GtkScrol lbar

Parent Class Name

GtkRange

GtkScrollbar

Macros

Widget type macro: GTK _TYPE _SCROLLBAR

Object to widget cast macro: GTK _ SCROLLBAR (obj)

Widget type check macro: GTK_IS_SCROLLBAR (obj)

Application-Level API Synopsis

Return the constant GTK._TYPE_SCROLLBAR at runtime:
GtkType

gtk_scrol lbar_get_type (void)

Class Description

679

GtkScrollbar is simply the parent class of GtkHScrollbar and GtkVScrollbar. As such, it pro

vides little implementation. The only function that is exposed is gtk_scrollbar....geuypeO,
which simply returns the constant GTK_TYPE_SCROLLBAR at runtime.

Adjustment Objects
Adjustment objects are perhaps one of the more innovative features of Gtk+. In a nutshell,

an adjustment object is used to separate the widget that displays values in a range (e.g.,

scrollbars and scales) from the object that defines the range and maintains its current value.

Therefore, instead of storing the minimum, maximum, and current values of a range within

a scrollbar or scale widget instance, the data is stored in an adjustment object. The widget

(e.g., the scale or scrollbar) then holds a reference to the adjustment object. If the user

moves the scale widget thumb or clicks on a scrollbar arrow, the scale or scrollbar widget,

as the case may be, changes the current value stored in the adjustment object to reflect the

change made in the UI by the user. Likewise, if the application changes the current value of
the adjustment object programmatically (see gtk_adjustmencchange_valueO later in this

chapter), the scale widget or scrollbar widget responds by redrawing itself to reflect the

newly set value of the adjustment object. Changes made to attributes of an adjustment

object, other than the current value, can have similar effects on the user interface.

There are some advantages to this architecture. First, a widget does not have to invent a

way to represent and manage ranges of values. It can rely on the adjustment object to imple

ment the details; it simply needs to know how to talk to the adjustment object using the API

680 Chapter 13 • Range Widgets and Adjustment Objects

that is provided. Second, the application writer needs only to learn about adjustment objects

as opposed to learning about an API that is specific to an individual widget class. The callback

used to retrieve the value from a horizontal scale widget (refer to HandleOkButton()) will

work, without any modification, with any widget that uses adjustment objects. That is, the

sarne code can be used to retrieve the value from a horizontal or vertical scale widget or from

a horizontal or vertical scrollbar.

Finally, adjustment objects can be shared among widgets. For example, you might share

an adjustment object among an instance of a horizontal scale widget and a vertical scrollbar

widget instance. As the user changes the scale widget, the vertical scrollbar will also

change, and vice-versa. Sharing an adjustment object among 2 or more widget instances is

simple. All you need to do is create (or obtain) an adjustment object, and pass it to the wid

get creation routines of the widgets that you want to share it.

Implementation of Adjustment Objects. Let's now look at the internal structure of

adjustment objects. The following is the implementation from Gtk+ 1.2.7:

typede f s t ruct _GtkAdj us tment GtkAdj us tment ;

s t ruct _GtkAdj ustment

} ;

GtkData data ;

g f l oat lower ;

g f l oat upper ;

g f l oat value ;

g f l oat s tep_increment ;

g f l oat page_increment ;

gf l oat page_s i z e ;

The most important fields are summarized in Table 13.6.

Table 13.6 Important GtkAdjustment Object Fields

Field

lower

upper

Value

The minimum possible value represented by the

adjustment

The maximum possible value represented by the

adjustment. with page size affecting the user
settable upper bound

GtkScrollbar 681

Table 13.6 Important GtkAdjustment Object Fields (Continued)

Field

value

step_increment

page_increment

Value

The current value represented by the adjustment,

in the range [lower, upper - page_size]

The smallest amount of change that can be

applied to "value" by a user interface control

The largest amount of change that can be applied

to "value" by a user interface control

Interpreted in a widget-specific manner.

You use lower and upper when creating the adjustment object to define the range of allowable

values to which the adjustment object can be set, and you use value to set an initial value for the

control, to change its value at runtime, or to obtain its value. The fields step_increment and

page_increment are basically used in the same way by both scrollbars and scale widgets. In scale

widgets, step_increment specifies the smallest incremental change (negative or positive) that can

be made to the value of the scale widget by the user. Such a change can be made by moving the

scale widget thumb by positioning the pointer over the thumb, clicking and holding down mouse

button 1, and dragging the thumb to the new position. For scrollbars, step_increment corre

sponds to the change in value, again either positive or negative, that occurs whenever the user

clicks mouse button 1 on one of the arrows found at either end of the scrollbar. The field

page_increment is used by scale widgets to position the thumb after the user clicks mouse button

1 within the trough. This is also the way that scrollbars make use of page_increment (both scale

and scrollbar widgets rely on the parent class, GtkRange, for this functionality).

The field page_size is ignored by GtkScale and its derived widgets, so setting it to zero is

a good idea. For scrollbars, page_size is used to size the thumb in such a way that it conveys

to the user the amount of data currently being displayed by the widget controlled by the scroll

bar, relative to the total size of the data that can be viewed by the user (by manipulating the

position of the scrollbar thumb). The relative amount of space occupied in the trough by the

scrollbar thumb can be computed by the following equation:

1 / ((upper - lowe r) / page_s i z e)

For example, with the following values:

upper : 1 0 0

lower : a
page_s i z e : 1

the amount of space occupied by the thumb will be 11100 (Le., one percent of the trough

size, with the scrollable area displaying one percent of the total content available for view

ing). If we were to set the page size to 50, we would cause the thumb size to be much larger,

682 Chapter 13 • Range Widgets and Adjustment Objects

covering 50 percent of the trough. In this case, the user would expect that positioning the

adjustment at 0 (moving the scrollbar to the top) would expose the top 50 percent of the

viewable content, while positioning the adjustment at 50 (i.e., moving the scrollbar to the

bottom) would expose the bottom 50 percent of the content. page_size affects the range of

values that the adjustment object can take on; in the preceding example (page size is equal

to 1), the maximum value that can be set by the user is 99, while in the case of a page size

that is equal to 50, the maximum value that can be set by the user is 50.

So far, I haven't mentioned the unit size of page_size, step_increment, or any of the other

fields of an adjustment object. Some of you have assumed that we are working with pixels (e.g.,

the value of an adjustment can be set to 50 pixels). In some cases this is true, but the reality is

that adjustment objects are unit-size neutral. It is up to the application to determine the unit size
that the adjustment object is working with, and as far as adjustment objects are concerned, the

unit size is completely arbitrary. For example, suppose we are writing a fitness program that

prompts the user for his or her weight with a scale widget. In this case, the unit size of the

adjustment used by the scale widget is going to be either pounds or kilograms, not pixels.

GtkAdjustment

Class Name

GtkAdj us tment

Parent Class Name

GtkData

Macros

Widget type macro: GTK _TYPE_ADJUSTMENT

Object to widget cast macro: GTK _ADJUSTMENT (obj)

Widget type check macro: GTK _ IS_ADJUSTMENT (obj)

GtkAdjustment

Supported Signals

Table 13.7 Signals

Signal Name

changed

Signal Function Prototypes

void

Condition Causing Signal to Trigger

An internal attribute of the adjustment object

(e.g., page_size) has been changed.

The user (or the application) has changed the

value of the adjustment object.

changed(GtkAdjustment *adjustment, gpointer user_data) ;

void
value_changed(GtkAdjustment *adjustment, gpointer user_data) ;

Application-Level API Synopsis

Return the constant GTK_TYPE_ADJUSTMENT at runtime:
GtkType

gtk_adjustment_get_type(void)

Create a new instance of GtkAdjustment:
GtkObject *
gtk_adjustment_new(gfloat valUe, gfloat lower, gfloat upper,

gfloat step_increment, gfloat page_increment,

gfloat page_size)

Notify an adjustment that one of its attributes has been changed, generating a changed signal:
void
gtk_adjustment_changed(GtkAdjustment * adjustment)

Notify an adjustment that its value has changed, generating a value_changed signal:
void
gtk_adjustment_value_changed(GtkAdjustment *adjustment)

Set the value of an adjustment:
void
gtk_adjustment_set_value(GtkAdjustment * adjustment, gfloat value)

683

684 Chapter 13 • Range Widgets and Adjustment Objects

Class Description

Adjustment objects were introduced earlier in this chapter. If you haven't done so already,

read the preceding section entitled ''Adjustment Objects." Here I will briefly describe the

GtkAdjustment object API, and then I will present two sample applications that should

illustrate the issues involved with the setting and use of GtkAdjustment object attributes

such as page_size, value, and so on.

Creating an Adjustment Object

To create an instance of GtkAdjustment, call gtlCadjustmencnewO:

GtkObj e c t *

gtk_adj us tment_new (g f loat value , gfloat lower , gf loat uppe r ,

gf loat step_increment , gfloat page_increment ,

g f l oat page_s i z e)

The return value i s a GtkObject (adjustments are objects, not widgets). You can use the

GTK_ADJUSTMENT macro to coerce an object to an adjustment when needed, as I will

illustrate in the following sample code. Each of the arguments to gtk_adjustmencnewO

corresponds to fields defined by the GtkAdjustment types documented in Table 13.6.

Changing Adjustment Object Attributes

You can set any of these fields after object creation by coercing the GtkObject returned by

gtk_adjustmencnewO and accessing the fields of the GtkAdjustment type directly. For example:

GtkObj ect * adj ;

GTK_ADJUSTMENT (adj) - > l ower = 10 . 0 ;

GTK_ADJUSTMENT (adj) - >upper = 30 . 0 ;

GTK_ADJUSTMENT (adj) - > step_increment 1 . 0 ;

GTK_ADJUSTMENT (adj) - >page_increment 5 . 0 ;

GTK_ADJUSTMENT (adj) - >page_s i z e = 1 . 0 ;

GTK_ADJUSTMENT (adj) - >va lue = 2 5 . 0 ;

If you change the value of the value field in this manner, you must make a call to gtk_

value_adjustmencchangedO to ensure that the change to the value field will be reflected in the

user interface (i.e., so that all widgets using the adjustment object will be given an opportunity to

redraw themselves). The function prototype for gtk_ value_adjustmenCchangedO is as follows:

vo id
gtk_adj ustment_value_changed (GtkAdj us tment * adj us tment)

The argument adjustment is the adjustment object that has had its value changed. You

can get around the need for calling gtk_adjustmenc value_changedO by calling gtk_

adjustmencsec valueO, which sets the value of the adjustment and, if the value has

GtkAdjustment 685

changed, calls gtlCadjustmenc value_changedO for you automatically. The function proto

type for gtk_adjustmencsec valueO is, quite predictably:

void
gtk_adj us tment_set_value (GtkAdj us tment * adj ustment , gf loat value)

Changing any of the other fields (lower, upper, step_increment, page_increment, and

page_size) requires you to notify the adjustment so that it can, in tum, make sure that all widgets

using the adjustment object are given an opportunity to handle the change as necessary (e.g., to

redraw themselves). To do this, call gtk_adjustmenCchangedO:

void
gtk_adj ustment_changed (GtkAdj us tment * adj ustment)

The function gtk_adjustmenCchangedO takes an adjustment object as an argument.

Working with Adjustment Objects

As I discussed earlier in this section, the unit size of an adjustment object is arbitrary. For

example, an adjustment object can just as easily represent pounds or kilograms as it can rep

resent pixels; the interpretation of units is up to the application. The following two sample

applications illustrate how applications that manage their own scrollbars might deal with

this issue.
In the first example, I illustrate how to display image data in a window that has a size

smaller than the image. Vertical and horizontal scrollbars are used to navigate the image

data. In this case, the unit of scrolling is 1 pixel, as reflected by the page_size attribute of

the adjustment objects that is set to 1 by the program.

The program creates a window that is lOOX75 pixels in size. This window is made non

resizeable. A vertical box widget is packed with a horizontal box and a horizontal scrollbar.

The horizontal box is packed (from left to right) with a drawing-area widget, which will be

used to display the image data, as well as a vertical scrollbar.

An instance of GdkPixmap is created to hold the image data by making a call to

gdk_pixmap3reatejrom_xpmO. Because a pixmap is an X drawable resource, it has a

size just like an X window does, and this size can be queried for by the application with a

call to gdk_window�et�eometryO. Once we know this size, the application can give the

sizes of the other user-interface components (the width of the vertical scrollbar, the height
of the horizontal scrollbar, and the size of the window) and set correct values for both the

horizontal and the vertical scrollbar adjustment objects. For the vertical scrollbar adjust

ment object, the following values are set with the following code:

GTK_ADJUSTMENT (adj 1) - > l ower = 0 . 0 ;

GTK_ADJUSTMENT (adj 1) - >upper = (f loat) he ight - 1 . 0 ;
GTK_ADJUSTMENT (adj 1) - > s tep_increment = 1 . 0 ;

GTK_ADJUSTMENT (adj 1) - >page_increment = 2 5 . 0 ;

GTK_ADJUSTMENT (adj 1) - >page_s i ze = 1 . 0 ;

GTK_ADJUSTMENT (adj 1) - >value = 0 . 0 ;

686 Chapter 13 • Range Widgets and Adjustment Objects

Here, the page_size is set to I pixel, and we are allowing the user to scroll to any position

in the range of [0, height - 1], where height is the height of the image minus the height of

the window (less the height of the horizontal scrollbar). If the user clicks on the vertical
scrollbar arrows, the image will be scrolled 1 pixel (step_increment is set to I). Clicking

within the trough will result in a vertical scroll of 25 pixels (page_increment = 25). Setting
the fields of the horizontal scrollbar adjustment object follows along similar lines. See the

function SetAdjustmentsO in the following listing.
Movement of either the vertical or horizontal scrollbar results in a call to the value3hanged

signal function AdjustmentChangedO. In this callback, a call to gdk_draw _pixmapO is made.
gdk_draw _pixmapO performs an XCopy Area of the appropriate region in the source pixmap

to the window that was created for the GtkDrawingArea widget. The function prototype for
gtk_draw _pixmapO is as follows:

vo id

gdk_draw-pixmap (

GdkDrawable * drawable , II target drawabl e
GdkGC *gc , II X graphics context

GdkDrawabl e * src , II src drawable (the pixmap)

gint xsrc , II x origin of data in source pixmap

gint ysrc , II y origin of data in source pixmap

gint xdest , II x dest inat ion of data in target drawabl e

gint ydest , II y dest inat ion of data in target drawabl e

gint width , II width of area to b e copied

gint he ight) ; II he ight of area to be copied

The signal function, AdjustmentChangedO:

stat i c vo id

Adj ustment Changed (GtkAdj us tment *w , gpointer data)

{
GtkWidget * drawing = (GtkWidget *) data ;

int x GTK_ADJUSTMENT (adj 2) - >value ;

int y = GTK_ADJUSTMENT (adj 1) - >value ;

gdk_draw-pixmap (drawing - >window , gc , pmap , x , y , 0 , 0 ,

1 0 0 , 7 5) ;

retrieves the value attributes of both the vertical and horizontal scrollbar adjustment objects

and uses these values to define the origin of the area to be copied from the off-screen pix
map to the destination window. As you can see, xsrc and ysrc are set to x (the horizontal
scrollbar adjustment object value) and y (the vertical scrollbar adjustment object value),
respectively. The destination origin is always set to 0, 0 because we want the region being
viewed to be completely viewable in the drawing-area window. width and height are set to
1 00 and 75, respectively. In reality, we need to copy less than this because 100X75 is the
size of the window, and it does not account for the width and height of the vertical and hor-

GtkAdjustment 687

izontal scrollbars, each of which takes some of the viewable size of the window away, leav
ing that much less for the drawing area widget, which is the target of the copy. If we needed
to be more precise, we would query the size of the drawing-area widget window and use
the result to determine the size of the area to be copied. However, we can let clipping deal
with the overrun; lOOX75 is close enough and does not add significantly to the amount of

time it takes to copy the pixmap data.
Here is the complete source code for the sample I just described:

Listing 13.2 GtkAdjustment Example I

001 #inc lude <gt k/gt k . h >

002 #inc lude < stdlib . h>

003

004 static GdkPixmap *pmap ;

005 static GdkGC *gc ;

006 Gt kObj ect *adj 1 , *adj 2 ;

007

008 void

009 SetAdj us tment s { Gt kObj ect *adj 1 , G t kObj ect *adj 2 , int widt h , int he ight)

01 0 {
01 1

01 2

01 3

01 4

01 5

01 6

01 7

01 8

01 9

02 0

02 1

02 2

02 3

02 4

02 5

GTK_ADJUSTMENT{

GTK_ADJUSTMENT{

GTK_ADJUSTMENT {

GTK_ADJUSTMENT {

GTK_ADJUSTMENT {

GTK_ADJUSTMENT {

GTK_ADJUSTMENT {

GTK_ADJUSTMENT {

GTK_ADJUSTMENT {

GTK_ADJUSTMENT{

GTK_ADJUSTMENT{

GTK_ADJUSTMENT{

02 6 s t a t i c void

adj 1

adj 1

adj 1

adj 1

adj 1

adj 1

adj 2

adj 2

adj 2

adj 2

adj 2

adj 2

) - > lowe r = 0. 0;

) - >uppe r = (float) he ight

) - > st ep_increment = 1 . 0;

) - >page_increment = 2 5 . 0;

) - >page_s i ze = 1 . 0;

) - >va lue 0. 0;

) - > lowe r 0. 0;

) - >upper (float) width

) - > s tep_increment = 1 . 0;

) - >page_increment = 2 5 . 0;

) - >page_s i ze = 1 . 0;

) - >va lue = 0. 0;

02 7 Adj ustmentChanged{Gt kAdj ustment *w , gp ointer dat a)

02 8 {
02 9 Gt kWidget *drawing = (Gt kWidget *) data ;

03 0 int x GTK_ADJUSTMENT{adj 2) - >va lue ;

031 int y = GTK_ADJUSTMENT(adj1)->va1ue;

03 2

- 1 . 0;

- 1 . 0;

03 3 gdk_draw-pixmap {drawing - >wind ow , gc , pmap , x , y , 0, 0, 1 00, 7 5) ;

03 4

03 5

03 6 main { argc , argv

03 7 int argc ;

03 8 char *argv [] ;

03 9 {
04 0 Gt kWidget *window , *hsb , *vsb , *vb ox , *hbox , *drawing ;

04 1 int width , height , x , y , depth ;

04 2 int hsbwidt h , hsbhe ight , vsbwidth , vsbhe ight ;

04 3 GdkBitmap *mas k ;

688

0 4 4

0 4 5 g tk_in it (&argc , &argv);

046

Chapter 13 • Range Widgets and Adjustment Objects

0 4 7 window = g tk_window_new (GTK_WINDOW_TOPLE VEL);

0 4 8 g tk_window-posi tion (GTK_WINDOW (window) , GTK_WIN_POS_MOUSE);

0 4 9 g tk_widge t_se t_usi ze (w indow , 10 0 , 7 5);

0 5 0 g tk_window_set-po licy (GTK_WINDOW (window), FALSE , FALSE , TRUE);

0 5 1 g tk_widge t_show (window);

0 5 2

0 5 3 g tk_s ignal_connect (GTK_OBJECT (window), " de s troy " ,

0 5 4 GTK_S I GNAL_FUNC (g tk_widge t_de s troyed), &window);

0 5 5

0 5 6 g tk_window_s e t_title (GTK_WINDOW (window), " G tkAdj u s tment Demo ");

0 5 7

0 5 8 vbox = g tk_vbox_new (FALSE , 0);

0 5 9 g tk_conta iner_add (GTK_CONTAINER (window), vbox);

0 6 0

0 6 1 hbox = g tk_hbox_new (FALSE , 0);

0 6 2 g tk_box-pack_s tart (GTK_BOX (vbox) , hbox , TRUE , TRUE , 0);

0 6 3

0 6 4 drawing = g tk_drawing_area_new ();

0 6 5

0 6 6 adj 1 = g tk_adj u s tment_new (O. O, 0 . 0 , 0 . 0 , 1 . 0 , 5 . 0 , 0 . 0);

0 6 7 g tk_s ignal_connec t (GTK_OBJECT (adj1) , " va lue_changed" ,

0 6 8 GTK_S IGNAL_FUNC (Adj u s tmentChanged), drawing);

0 6 9

0 7 0

0 7 1

vsb

0 7 2 g tk_box-pack_end (GTK_BOX (hbox) , vsb , FALSE , TRUE , 0);

0 7 3

0 7 4 adj 2 = g tk_adj u s tment_new (O . O, 0 . 0 , 0 . 0 , 1 . 0 , 5 . 0 , 0 . 0);

0 7 5 g tk_s ignal_connec t (GTK_OBJECT (adj 2), " va lue_change d " ,

0 7 6 GTK_S IGNAL_FUNC (Adj u s tmentChanged), drawing);

0 7 7

0 7 8 hsb

0 7 9

0 8 0 g tk_box-pack_end (GTK_BOX (vbox) , hsb , FALSE , TRUE , 0);

0 8 1

0 8 2 g tk_box-pack_s tart (GTK_BOX (hbox) , drawing , TRUE , TRUE , 0);

0 8 3

0 8 4 g tk_widge t_show_a ll (GTK_WIDGET (window));

0 8 5

0 8 6 pmap = gdk-p ixmap_create_from_xpm (drawing - >window , &mask ,

0 8 7 (GdkColor *) NULL , " s tang . xpm ");

0 8 8

0 8 9 g c = gdk_gc_new (drawing - >window);

0 9 0

0 9 1 gdk_window_get_geome try ((GdkWindow *) hsb->window , &x , &y , &hsbwidth ,

0 9 2 &hsbhe ight, &dep th);

0 9 3

0 9 4 gdk_window_ge t_geome try ((GdkWindow *) vsb - >window , &x , &y , &vsbwidth ,

0 9 5 &vsbhe ight, &depth);

0 9 6

0 9 7 gdk_window_get_geome try ((GdkWindow *) pmap , &X, &y , &width , &he ight,

0 9 8 &dep th) ;

GtkAdjustment

0 9 9

1 0 0 S e tAdj ustments (adj 1 , adj 2 , (width - 1 0 0) + vsbwidth ,

1 0 1 (he ight - 7 5) + hsbhe ight);

1 0 2
1 0 3 g tk_main ();

1 0 4

689

The next sample is very similar to the preceding. Instead of loading an image, the second
sample program creates an off-screen pixmap that is 5 1 2X5 1 2 pixels in size. The program
tiles this pixmap with 32 rows of 16x 16 rectangles (a total of 32 rectangles are drawn for

each row). The color of each rectangle is randomly computed at the time the rectangle is
drawn. The page_size attribute is set to 16, lower is set to 0 (as before), upper is set to the
width of the window less page_size, step_increment is 16 pixels , and page_increment is set
to 32 pixels. The end result is that the user will see each click of the scrollbar buttons mov

ing the display by one row or column (depending on which scrollbar is being clicked),
while clicks in the trough result in moving the display by two rows or columns. In this case,
we have set our adjustment so that the user can only scroll rows or columns. Other types of
data (text, cells in a spreadsheet, and so forth) should usually be scrolled at no less than the

size of the data being displayed. If you are managing a table that contains cells of a certain
height, the unit of scrolling should be based on the height of the cell (or the width in the
case of a horizontal scrollbar). If you are displaying a body of text, the vertical scrollbar
should be oriented toward a scroll unit based on the average height of a character, in pixels,
in the font being used to display the text (or, perhaps, the height of the tallest character in
the font). Similarly, you would initialize a horizontal scrollbar adjustment object in this sce
nario so that the unit of scrolling is based on the average width of characters in the font

being used to display the text.
Here, I just show the function used to create the pixmap (for those of you who are inter

ested in the details) and the changes made to the function SetAdjustmentsO:

Listing 13.3 GtkAdjustment Example 2

0 0 1 #de f ine RAND (x) ((int) (((f loat) random () / (RAND_MAX - 1)) * x))

0 0 2

0 0 3 void

0 0 4 Bui ldPixmap (GdkWindow * window)

0 0 5 (
0 0 6 int i , j ;
0 0 7 GdkCo1or c o lor ;

0 0 8
0 0 9 pmap = gdk-pixmap_new (window , 5 1 2 , 5 1 2 , - 1);

0 1 0 for (i = 0 ; i < 3 2 ; i ++)

0 1 1 for (j = 0 ; j < 3 2 ; j ++)

0 1 2 co1or . red = RAND (6 5 5 3 5);

0 1 3 c o 1or . green = RAND (6 5 5 3 5);

0 1 4 c o lor . b lue = RAND (6 5 5 3 5) ;

0 1 5 gdk_co 1or_a 11oc (gdk_co 1ormap_get_sys tem (), &color);

0 1 6 gdk_gc_s e t_foreground (gc , &color);

017 gdk_draw_rec tangle ((GdkDrawab1e *) pmap , gc ,

0 1 8 TRUE , i * 1 6 , j * 16 , 1 6 , 1 6);

0 1 9

690

0 2 0

0 2 1

Chapter 13 • Range Widgets and Adjustment Objects

0 2 2 vo id

0 2 3 S etAdj us tment s (GtkObj ect * adj 1 , GtkObj ect *adj 2 , int width , int he ight)

0 2 4 {
0 2 5 GTK_ADJUSTMENT (adj 1)- > lower = 0 . 0 ;

0 2 6 GTK_ADJUSTMENT (adj 1)- >upper = (f loat) he ight - 1 6 . 0 ;

0 2 7 GTK_ADJUSTMENT (adj 1)- > s tep_increment = 1 6 . 0 ;

0 2 8 GTK_ADJUSTMENT (adj 1)- >page_inc rement = 3 2 . 0 ;

0 2 9 GTK_ADJUSTMENT (adj 1)- >page_s ize = 1 6 . 0 ;

0 3 0 GTK_ADJUSTMENT (adj 1)- >va lue 0 . 0 ;

0 3 1

0 3 2 GTK_ADJUSTMENT (adj 2)- > lower 0 . 0 ;

0 3 3 GTK_ADJUSTMENT (adj 2)- >upper (f loat) width - 1 6 . 0 ;

0 3 4 GTK_ADJUSTMENT (adj 2)- >st ep_inc rement = 1 6 . 0 ;

0 3 5 GTK_ADJUSTMENT (adj 2)- >page_inc rement = 3 2 . 0 ;

0 3 6 GTK_ADJUSTMENT (adj 2)- >page_s ize = 1 6 . 0 ;

0 3 7 GTK_ADJUSTMENT (adj 2)->va lue = 0 . 0 ;

0 3 8

The only other changes that must be made to the first example are to the window width
and height arguments that are passed to the various routines that require them (1 00 and 75
are both changed to 5 1 2 to reflect the new window dimensions).

GtkRange

Class Name

GtkRange

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK _ TYPE _RANGE

Object to widget cast macro: GTK_RANGE (obj)

Widget type check macro: GTK_IS_RANGE (obj)

GtkRange

Supported Arguments

Prefix: GtkRange: :

Table 13.8 GtkRange Argument

Name Type

GTICTYPE_UPDATE_TYPE

Application-Level API Synopsis

Return the constant GTK._TYPE-.RANGE at runtime:
GtkType
gtk_range_get_type(void)

Retrieve the adjustment object associated with a range widget:
GtkAdjustment *
gtk_range_get_adjustment(GtkRange *range)

Set the range widget update policy:
void

Permission

gtk_range_set_update-policy(GtkRange * range , GtkUpdateType pol i cy)

Set the range adjustment object:
void

gtk_range_set_adjustment(GtkRange * range ,

GtkAdjustment *adjustment) i

Class Description

691

GtkRange, as I stated at the start of this chapter, is the parent class of both GtkScrollbar and
GtkScale. The first function provided by GtkRange can be used to retrieve the adjustment
object of a GtkRange-derived widget. The prototype for gtk_range�ecadjustmentO is:

GtkAdj us tment *

gtk_range_get_adj ustment (GtkRange * range)

The argument range is the range widget from which to retrieve the GtkAdjustment object.
To coerce a GtkRange-derived widget to an instance of GtkRange, use the GTK_RANGE

macro. For example:

692

GtkWi dget * s crol lbar ;

GtkAdj us tment * adj ;

scrol lbar

Chapter 13 • Range Widgets and Adjustment Objects

Setting the Update Policy of a Range Widget

Scrollbars, scale widgets, and other GtkRange objects abide by an update policy that can
be set by your application using gtlcrange_secupdate_policyO:

vo id

gtk_range_set_update-pol i cy (GtkRange * range , GtkUpdateType po l i cy)

The argument range is an instance of GtkRange (more precisely, an instance of a child
class, e .g. , GtkHScrollbar). The argument policy can be one of the following values listed
in Table 1 3 .9.

Table 13.9 GtkUpdateType Values

Value Meaning

The value3hanged signal is emitted

continuously as the user moves the slider or

scrollbar.

The value_changed signal is emitted only once,

when the slider has stopped moving and the

mouse button has been released.

The value_changed signal is emitted after a short

delay if the user has stopped moving the slider

but still has the mouse button depressed.

The default update policy is GTK_UPDATE_CONTINUOUS.

Setting the Range Widget Adjustment Object
Finally, you can set the adjustment object of a range widget with a call to gtk_range_
secadjustmentO:

void

gtk_range_s et_adj us tment (GtkRange * range , GtkAdj us tment * adj ustment) ;

The argument range is an instance of a GtkRange-derived class in practice. The adjustment
argument is an application-created adjustment object or an adjustment object retrieved from
another range widget using gtk_range�ecadjustmentO.

Summary 693

Sum mary

This chapter described the Gtk+ range widgets (GtkRange, GtkScale, GtkVScale, GtkHScale,
GtkScrollbar, GtkVScrollbar, and GtkHScrollbar) as well as adjustment objects (GtkAdjust
ment). A scale widget (GtkScale, GtkHScale, and GtkVScale) is a control that allows users to
view and select floating-point and integer values falling within a fixed range. Scrollbar widgets
(GtkScrollbar, GtkVScrollbar, and GtkHScrollbar) are generally not instantiated by applica

tions and are primarily used by widget writers. If your application displays content that is
greater in size than the container within which it is placed, you should parent it with a Gtk
ScrolledWindow widget and allow GtkScrolledWmdow to provide scrollbars when needed
(see Chapter 1 1 , "More Container Classes," for a description of GtkScrolledWindow). A range
widget (GtkRange) is a parent class that abstracts the behavior of scrollbars and scale widgets.

GtkRange provides functions that allow you to retrieve and set the adjustment object of a range

widget, as well as specify an update policy that controls how the range widget will respond to
changes made to the range control by the user (e.g., movement of a scrollbar thumb).

An adjustment object stores the current state of a range widget (i.e., the range of values that
it supports) and its current value. A single adjustment object can be shared among several
range widgets. If this is done, a change made to the value of one widget will immediately be
reflected by the others. Most widgets classes that support scrollbars allow the application to
specify an adjustment object at the time the widget is created. You can either specify an adjust
ment object from another widget so that the two (or more) widgets share the same adjustment
object, or you can specify NULL to cause the widget to create its own adjustment object. See
the sections "Creating a Scrolled Window" and "Overriding the Default Adjustment Objects :
An Example" in Chapter 1 1 for an example.

(HA r TER

TEXT AN D S P I N B VTTO N
WI DGETS

In this chapter, I will describe the two widgets listed in Table 14.1.

Table 14.1 Widgets Described in This Chapter

Class Name

GtkText

GtkSpinButton

Description

Text edit/display widget

Spin button entry widget

A text widget is used to display multiline text. You can control attributes such as word
wrap and the ability of users to edit the text that is displayed. A spin button widget is an
editable control that supports the input of numeric data. A user can edit the value of a spin
control by typing in an edit field or by clicking on a pair of arrow widgets displayed next to

the edit field. These arrows can be used to increment or decrement the value with a specific

range defined by the spin button control. At the end of this chapter, I will use a spin button

widget to develop a simple image viewer/slide show application.

GtkText

Class Name

GtkText

Parent Class Name

GtkEditable

695

696

Macros

Object to widget cast macro: GTK _TEXT (obj)

Widget type check macro: GTK _ IS_TEXT (obj)

Supported Arguments

Prefix: GtkText : :

Table 14.2 GtkText Arguments

Name

hadjustment

vadjustment

GTK_TYPE�OOL

GTK_TYPE_BOOL

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_TEXT at runtime:
GtkType

gtk_text_get_type (void) ;

Chapter 14 • Text and SpinButton Widgets

Permissions

GTK_ARG_READWRITE I
GTK_ARG_CONSTRUCT

GTK_ARG_READWRITE I
GTK_ARG_CONSTRUCT

GTICARG_READWRITE

GTK_ARG_READWRITE

Create a new instance of GtkText, optionally specifying the vertical and/or horizontal adjustment
objects:
GtkWidget *
gtk_text_new (GtkAdj ustment * hadj , GtkAdj ustment *vadj) ;

Toggle the editable attribute of a text widget:
void
gtk_text_se t_editab l e (GtkText * t ext , gboolean editabl e) ;

Toggle the word-wrap attribute of a text widget:
void

gtk_text_set_word_wrap (GtkText * t ext , gint word_wrap) ;

Toggle the line-wrap attribute of a text widget:
void

gtk_text_se t_l ine_wrap (GtkText * t ext , gint l ine_wrap) ;

GtkText

Application-Level API Synopsis (Continued)

Set the horizontal and/or vertical adjustment objects of a text widget:
void

gtk_text_set_adjustments(GtkText * t ext, GtkAdjustment *hadj,

GtkAdjustment * vadj) ;

Set the text insertion/deletion point:
void
gtk_text_set-point(GtkText * t ext , guint index) ;

Query the text insertion/deletion point:
guint

gtk_text_get-point(GtkText * t ext) ;

Get the length of the text currently being managed by the text widget:
guint
gtk_text_get_length(GtkText * text) ;

Freeze the text widget (called prior to modifying text):
void

gtk_text_freeze(GtkText * text) ;

Thaw the text widget (undo a previous call to gtk_texCfreeze()):
void

gtk_text_thaw(GtkText * text) ;

Insert text relative to the insertion/deletion point:
void

gtk_text_insert(GtkText * text, GdkFont *font , GdkColor *fore,
GdkColor *back , const char * chars , gint length) ;

Delete n characters ahead of the insertion/deletion point:
gint
gtk_text_backward_delete(GtkText * text, guint nchars) ;

Delete n characters beyond the insertion/deletion point:
gint

gtk_text_forward_delete(GtkText * text, guint nchars) i

Class Description

697

Like GtkLabel (see Chapter 5, "Labels and Buttons"), GtkText is primarily designed to display
text. There are, however, significant differences between the GtkLabel and GtkText widget
classes. Specifically, you use instances of GtkLabel to display small amounts of text in a dialog
or in warning, error, and message dialogs. GtkText, in contrast, is designed to display signifi
cantly larger bodies of text (such as the contents of a file or the text output from a compiler).

698 Chapter 14 • Text and SpinButton Widgets

GtkText allows applications to control the following aspects of the text it manages :

• Its style (e.g . , font, background color, and so on)

• Whether or not the text can be edited by the user

• Whether or not line or word wrapping (or both) is enabled

The last two items are global, meaning they apply to the entire text widget and to all of

the text it manages. The text style can be applied to portions of the text managed by the text
widget, however, at the time the text is added.

Scrolling Text

In some cases, the amount of text being managed by a GtkText widget is small enough to be
completely visible in the window created by the GtkText widget. More often than not, how
ever, an instance of GtkText will be asked to manage a body of text that is larger than can be
displayed within the GtkText widget's window. When the text is larger than the window that
must display it, some mechanism by which users can scroll to text that is not visible must be
provided. There are two solutions to this problem, and which method you choose is largely a
matter of preference. The first solution is provided by GtkText intrinsically: GtkText is
designed to interpret the up, down, left, and right arrow keys as well as the Page Up and Page

Down keys of your keyboard. The up and down arrow keys scroll the display, respectively, up

and down one line. The left and right arrow keys, as you might expect, cause a line of text to
scroll left and right by one character, respectively. Finally, the Page Up and Page Down keys
cause vertical scrolling of text by a predefined number of lines. The Home and End keys cause

the cursor (not the insertion/deletion point) to be moved to the beginning and end of a line of
text, respectively. These keys do not cause the text widget to display the first and last lines of
the text being managed, as some users might otherwise expect.

The other way to deal with a GtkText widget contained by a window too small to display
all of the text that the widget is managing is to make the GtkText widget the child of a
scrolled window widget (GtkScrolledWindow). This is probably the better solution of the

two; GtkText will modify the adjustment objects created by the scrolled window so that the
text will scroll correctly based on font size. Also, scrollbars are more intuitive to users as a

way to navigate the content than are keys on the keyboard.

Creating a Text Widget

To create an instance of GtkText, call gtk_texcnewO:

GtkWidget *

gtk_t ext_new (GtkAdj us tment *hadj , GtkAdj us tment *vadj) ;

The function gtk_texcnewO takes two arguments: hadj is an optional horizontal adjustment
object, and vadj is an optional vertical object. If you provide your own scrollbars or other control
based on adjustment objects to control the display of the text managed by the text widget, then
you would pass the associated adjustment object(s) to gtk_texcnewO. If you want to use Gtk
Text intrinsic scrolling (e.g., the arrow keys previously described) or you are placing the text
widget inside of a scrolled window, then you should specify NULL for both hadj and vadj .

GtkText 699

Changing the Adjustment Objects

Generally, you specify the adjustment objects at the time the text widget is created. You can

also set them after the text widget has been created with a call to gtk_texCsecadjustmentsO:

void
gtk_text_set_adj us tment s (GtkText * text , GtkAdj us tment *hadj ,

GtkAdj us tment *vadj) ;

The guidelines for setting hadj and vadj are the same as those previously described for
gtk_texcnewO. Typically, applications will never need to call gtk_texcsecadjustmentsO .

Making a Text Widget Editable or Read.Only

Once you have created the text widget, you can (optionally) change some of its default
attributes and behavior. For example, to toggle the editable attribute of a text widget, you

can call gtlctexCseCeditableO:

void
gtk_text_set_edi tabl e (GtkText * text , gboolean editable) ;

The argument text is the text widget on which you want to set the editable attribute, and
editable is a boolean used to control the ability of users to change the text being displayed.

If editable is set to FALSE, the user cannot set the insert/delete point, nor can the user type
anything into the text widget window. The application is, however, free to call functions in
the GtkText API to set the insertion/deletion point, insert text, and delete text as needed. By
default, a text widget is not editable, so if you want the user to be able to edit content dis

played in a text widget, you must make a call to gtk_text_seceditableO with the editable

argument set to TRUE.

Word Wrap
You can also toggle the word-wrap and line-wrap attributes of a text widget. By default, word
wrapping is disabled, and line wrapping is enabled. If line wrapping is enabled, the text widget
will automatically wrap lines of text on character boundaries, without regard to the content of

the line. Thus, a line-wrapped document may contain words that are broken onto separate lines.
If this is a problem, you can enable word wrapping. With word wrapping enabled, lines that are
in need of wrapping will be wrapped on whitespace boundaries only. This is a somewhat sim
ple word-wrapping algorithm; there is always the potential for GtkText to implement more
sophisticated word-wrapping algorithms (such as breaking words on hyphen or syllable
boundaries) in a future release. In Gtk 1 .2, however, whitespace is the delimiter used to distin
guish words from one another.

To toggle the word-wrap attribute of a text widget (default is FALSE), you can call
gtk_texcsec word_ wrapO:

vo id
gtk_text_set_word_wrap (GtkText * t ext , gint word_wrap) ;

The argument text is an instance of GtkText, and word_wrap is an integer. To enable
word wrapping, set word_wrap to TRUE; otherwise, set it to FALSE.

700 Chapter 14 • Text and SpinButton Widgets

Similarly, to enable or disable the line-wrap attribute (default is TRUE), you can call

gtk_texCseCline_ wrapO:

vo id

gtk_t ext_set_l ine_wrap (GtkText * text , gint l ine_wrap) ;

The argument text is an instance of GtkText, as usual, and line_wrap, an integer, should
be set to TRUE to enable line wrapping or FALSE to disable it.

Text Widget Buffer Manipulation

GtkText provides several functions that allow applications to add to or delete from the text being

managed by a text widget. This text is nothing more than a string of characters, structured much
like a C-Ianguage string (e.g., a variable of type char *) . The first character in the string is located
at offset 0, and the last character is located at offset n - 1 , where the number of characters in the

string is equal to n. In the remainder of this section, I will refer to this text as the "buffer."

The Insertion Point. Before adding characters to or deleting characters from the buffer,
you must first identify where in the buffer the insertion or deletion will be performed. This
location is called the "point" and is an index in the range of [0, n], where n is the current

number of characters in the buffer. When a text widget is first created, its point is set to O.
As text is added to the buffer, the point is incremented by the number of characters added.
Because of this, you can get away with not setting the point before each insertion, as long

as you are only appending text to the buffer. The same holds true for deleting text from the
buffer in the backward direction: As text is removed from the end of the buffer, the point is
decremented by the number of characters removed so that it points at the current end of the
buffer. I will discuss inserting and deleting text from the buffer in more detail in the section

titled "Inserting and Deleting Text."

Setting and Getting the Insertion Point. If you want to insert or delete text from some
point other than the end of the buffer, or if you want to reset the point to the end of the buffer,

you must call the function geuexcsecpointO to specify the point before performing the
insertion or deletion. The function prototype for gtk_texCseCpointO is as follows:

vo id

gtk_text_se t-point (GtkText * text , guint index) ;

The argument text is an instance of GtkText, and index specifies the point in the range
of [0, n] , where n in the number of characters currently in the buffer.

Getting the Length of the Text Buffer. Getting the length of the buffer is done by calling
gtk_text.geUengthO:

guint

gtk_t ext_get_l ength (GtkText * text) ;

Therefore, you can set the point to the end of the buffer with code similar to the following:

GtkText

GtkWidget * txt ;

gtk_text_set-point (GTK_TEXT (txt) ,

gtk_text_get_l ength (GTK_TEXT (txt))) ;

701

If you want to set the point to the head of the buffer, set the index to 0, as in the following

example:

gtk_text_set-point (GTK_TEXT (txt) , 0) ;

The current point can be read from a text widget with gtl'-text�eCpointO :

guint

gtk_text_get-point (GtkText * t ext) ;

The return value will be in the range [0, n] , where n is the length of the text widget buffer.

Inserting and Deleting Text. GtkText provides several functions that allow applications
to insert or delete text from a text widget buffer. Text can be inserted and deleted by the
application regardless of the editable attribute of the text widget; editable only allows or
restricts users from making changes to the text via the keyboard.

To insert text into a (possibly empty) buffer, call gtk_texUnsertO :

void
gtk text insert (GtkText * text , GdkFont * font , GdkColor * fore ,

GdkColor *back , const char * chars , gint l ength) ;

The argument text is an instance of GtkText; chars is the C-Ianguage, NULL-terminated
string that contains the characters to be inserted; and length is the size of the string to be
inserted. The text will be inserted at the current point; see the preceding discussion for
details. The arguments font, fore, and back are all optional style information that can be
assigned to the text being inserted. The easiest way to insert text is to specify text, chars,
and length and set fore, back, and font to NULL, which tells the text widget to use default

values for these attributes.
The following example creates a text widget and sets its buffer to the string
Today was a very hot day in Texas", illustrating perhaps the simplest case of using an

instance of GtkText:

GtkText * text ;

s t a t i c char * str = " Today was a very hot day in Texas " ;

t ext = gtk_text_new (NULL , NULL) ;

gtk_text_ins ert (GTK_TEXT (t ext) , NULL , NULL , NULL , s t r , st rlen (s t r)) ;

The following code example illustrates how one might insert the same text into the
buffer that was inserted in the preceding example, but it uses a font and colors for both the
foreground and background that are specified by the application:

702

GtkText * t ext ;

GdkFont * font ;

GdkColor col l , co12 ;

Chapter 14 • Text and SpinButton Widgets

s t at i c char * s t r = " Today was a very hot day in Texas " ;

t ext = gtk_text_new (NULL , NULL) ;

col l . red 0 ;

col l . green 5 6 0 0 0 ;

col l . blue 0 ;

gdk_color_al loc (gtk_widget_get_colormap (text) , &co l l) ;

co12 . red 3 2 0 0 0 ;

c o 1 2 . green 0 ;

c o 1 2 . blue 5 6 0 0 0 ;

gdk_color_a l l oc (gtk_widget_get_colormap (text) , &co1 2) ;

f ont = gdk_font_l oad (
" - * - helve t i ca - bold - r - normal - * - 2 0 - * - * - * - * - * - * - * ") ;

gtk t ext insert (GTK TEXT (text) , font , col l , co12 , s t r , s t r l en (s t r)) ; - - -

You are not required to set all three attributes (font, background color, and foreground color).

For example, you are free to set only the foreground color and use defaults for the font and the
background color. This can easily be done by setting both font and back arguments to NULL.

Deleting Text. Text can also be deleted from the buffer relative to the current point. Unless
you know that the point is set to the end of the buffer and you are deleting characters from the
end of the buffer, you will likely need to set the point prior to deleting any characters by calling

gtk_texCseCpointO.
GtkText provides two functions that can be used to delete text from the buffer. The first

function, gtk_texcbackward_deleteO, deletes a specified number of characters preceding the
current insertion point. The function prototype for gtk_texCbackward_deleteO is as follows:

gint
gtk_text_backward_de lete (GtkText * text , guint nchars) ;

The argument text is an instance of GtkText, and nchars is the number of characters to
be deleted. To delete the last 10 characters in the buffer, set the point to the end of the buffer
and call gtk_texCbackward_deleteO, as follows:

GtkWidget * txt ;

gtk_t ext_s et-point (GTK_TEXT (txt) ,

gtk_t ext_get_l ength (GTK_TEXT (txt))) ;

gtk_text_backward_de lete (GTK_TEXT (txt) , 1 0) ;

GtkText 703

If less than nchars characters are in the buffer ahead of the point, the call will fail, the buffer
will remain unchanged, and FALSE will be returned to the caller. Otherwise, the specified
number of characters will be deleted, and TRUE will be returned to indicate success. After
successful deletion, the point will be moved back nchars characters after the call, except when

the new point location would be greater than the size of the buffer, in which case the point will

be positioned at the end of the buffer.

You can also delete characters that occur after the insertion point by calling gtk_texC
forward_deleteO:

gint
gtk_text_forward_de lete (GtkText * t ext , guint nchars) ;

The arguments passed to gtk_texCforward_deleteO are the same as those passed to
gtk_texCbackward_deleteO. gtk_textjorward_deleteO deletes nchars characters after the
insertion point. If there are less than nchars characters in the buffer after the insertion point, the
operation will fail and FALSE will be returned. Otherwise, nchars characters will be deleted,
and TRUE will be returned to indicate success. The location of the point is unchanged by a call

to this function.

Freezing and Thawing the Text Widget. By inserting or deleting large amounts of text
or by making a relatively large number of successive insertions or deletions, you increase the
chances that the user will be subjected to flicker or other visual artifacts that are possible as
GtkText changes the content in the buffer. To avoid this, I recommend always surrounding
calls to gtk_texUnsertO, gtk_texCforward_deleteO and gtk_texCbackward_deleteO with

calls to gtk_texCfreezeO and gtk_texcthawO. The function gtk_texCfreezeO:

void

gtk_text_f ree z e (GtkText * t ext) ;

will block any visual updates to the text widget UI until the following call to gtk_texcthawO
is made. The function gtk_texcthawO, therefore, negates the effects of the previous call to

gtk_texcfreezeO. Its prototype is as follows:

void

gtk_text_thaw (GtkText * text) ;

GtkText will automatically freeze and thaw calls that cause greater than 1 ,024 characters to
be inserted or deleted from the buffer. The following code shows how to use gtk_texcfreezeO
and gtk_texCthawO:

GtkText * t ext ;

char * s tr ;

gtk_text_f ree ze (GTK_TEXT (text)) ;

gtk_text_insert (GTK_TEXT (text) , NULL , NULL , NULL , s t r , strlen (s t r)) ;

gtk_text_thaw (GTK_TEXT (text)) ;

704 Chapter 14 • Text and SpinButton Widgets

Retrieving Text

GtkText (like GtkEntry) inherits from GtkEditable, which is not discussed in this book. However,

you must use a function in GtkEditable to obtain the content of the text widget after it has been
edited by the user. To retrieve the text, you must call gtk3ditable�eccharsO:

gchar *

gtk_edi tabl e_get_chars (GtkEdi table * editabl e , gint start-pos ,

gint end-pos) ;

The argument editable is an instance of GtkEditable or a derived class, such as GtkText. (The
other class that derives from GtkEditable is GtkEntry, but it provides a function that allows an
application to retrieve the contents of the entry field.) The characters that will be retrieved are

defined by the arguments starcpos and end_pos. Valid ranges for start--POs and end_pos are [0,
texcsize - 1] , where texuize is the value returned by a call to gtk_text�eUengthO, as described
earlier in this section. You should ensure that start--POs is less than end_pos in value. The return
value is a pointer to a null-terminated gchar buffer. Your application is free to manipulate the con
tents of this buffer as it sees fit; it is a copy of the text, not the actual text as managed by GtkText.

To release the memory pointed to by the returned buffer once it is no longer needed, your applica
tion can simply pass it to �freeO.

The following code illustrates how to retrieve the contents of a text widget. In this example,
I am retrieving the content from a GtkButton "clicked" signal function (assume, for this
example, that this button is labeled "Check Spelling" and that the task of the clicked signal

function is to retrieve the content from the text widget and pass it to a spelling checker).

stat i c vo id

Spe l l CheckCB (GtkWidget *widget , GtkWidget * text)

{
char *buf ;

II grab the ent i re buf fer : start-pos i s 0 , and end-pos i s the
II number of characters in the buf fer , minus 1 .

buf = gtk_edi tabl e_get_chars (GTK_EDITABLE (text) , 0 ,

gtk_text_ge t_l ength (GTK_TEXT (text)) - 1)) ;

check_spe l l ing (buf) ;

main (int argc , char *argv [))

{
GtkWidge t *but ton , * text ;

text gtk_t ext_new (NULL , NULL) ;

GtkSpinButton

gtk_s ignal_connect (GTK_OBJECT (button) , " c l i cked " ,

GTK_S IGNAL_FUNC (Spe l l CheckCB) , t ext) ;

GtkSpinButton

Class Name

GtkSpinButton

Parent Class Name

GtkEntry

Macros

Widget type macro: GTK_TYPE_SPIN_BUTTON

Object to widget cast macro: GTK_SP IN_BUTTON (obj)

Supported Arguments

Prefix: GtkSpinButton : :

Table 14.3 GtkSpinButton Arguments

Name

adjustment

digits

numeric

Type

GTK_TYPE.-AOJUSTMENT

GTK_TYPE_FLOAT

GTK..TYPE_UINT

GTK..TYPE_BOOL

GTK_TYPE-.BOOL

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READWRITE

705

706 Chapter 14 • Text and SpinButton Widgets

Table 14.3 GtkSpinButton Arguments (Continued)

Name Type

wrap G�TYPE_BOOL

update_policy GTK_TYPE_SPIN_BUITON_UPDA

TE_POLICY

shadow_type GTK_TYPE_SHADOW_TYPE

value GTK_TYPE_FLOAT

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_SPIN_BUITON at runtime:
GtkType

gtk_spin_but ton_get_type (void) ;

Create a new instance of GtkSpinButton:
GtkWidget *

Permissions

GTK_ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_READ�TE

GTK_ARG_READWRITE

gtk_spin_but ton_new (GtkAdj ustment * adj ustment , gfloat c l imb_rate ,

guint digit s) ;

Set the adjustment object and other attributes of a spin button:
voi d

gtk_spin_button_conf igure (GtkSpinBut ton * spin_but ton ,

GtkAdj ustment * adj ustment , gfloat c l imb_rate , guint digi t s) ;

Set the adjustment object of a spin button:
void

gtk_spin_button_set_adj us tment (GtkSpinButton * spin_but ton ,

GtkAdj ustment * adj ustment) ;

Retrieve the adjustment object of a spin button:
GtkAd j u stment *

gtk_spin_button_get_adj us tment (GtkSpinBut ton * spin_button) ;

Set the number of significant digits displayed by the spin button:
voi d

gtk_spin_button_set_digi t s (GtkSpinButton * spin_but ton ,

guint digi t s) ;

Get the current value of the spin button as a float:
g f l oat

gtk_spin_but ton_get_value_as_f loat (GtkSpinButton * spin_button) ;

Get the current value of the spin button as an integer:
gint

gtk_spin_button_get_value_as_int (GtkSpinBut ton * spin_but ton) ;

GtkSpinButton

Application-Level API Synopsis (Continued)

Set the current value of the spin button:
void

707

gtk_spin_button_set_value (GtkSpinButton * spin_button , gfloat value) ;

Set the update policy of the spin button (GTK_UPDATE_ALWAYS or

GTK_UPDATE_IF _VALID; see text):
void
gtk_spin_button_set_update-pol icy (GtkSpinBut ton * spin_button ,

GtkSpinBut tonUpdatePol i cy pol icy) ;

Set or clear the numeric mode of a spin button widget (the default is FALSE):
void

gtk_spin_button_set_numeric (GtkSpinButt on * spin_button ,

gboolean numeric) ;

Spin the spin button by the specified increment and direction (see the text for a definition of

GtkSpin'JYpe):
void

gtk_spin_button_spin (GtkSpinBut ton * spin_button ,

GtkSpinType direct ion , gfloat increment) ;

Set the wrap attribute of a spin button:
void

gtk_spin_button_set_wrap (GtkSpinButt on * spin_button , gbool ean wrap) ;

Set the shadow type (GTK_SHADOW _NONE, GTK_SHADOW _IN, GTK_SHADOW _OUT,
GTK_SHADOW _ETCHED_IN, or GTK_SHADOW _ETCHED_OUT) of the spin button:

void
gtk_spin_button_se t_shadow_type (GtkSpinBut ton * spin_but ton ,

GtkShadowType shadow_type) ;

Set the snap-to-ticks attribute of a spin button:
void

gtk_spin_button_set_snap_to_t i cks (GtkSpinBut ton * spin_button ,

gboolean snap_to_t i cks) ;

Update the display of a spin button:
void

gtk_spin_button_update (GtkSpinButton * spin_but ton) ;

Class Description

A spin button is an entry widget specifically designed to support the entry of numeric values
falling within a predefined integer or floating-point range. A spin button accepts both positive
and negative integer and floating-point values of arbitrary precision. Figure 14. 1 illustrates a

708 Chapter 14 • Text and SpinButton Widgets

dialog with several spin button widgets (see the fields labeled Hours, Minutes, Seconds, and

Distance). As can be seen in Figure 14. 1 , a spin button consists of two areas. The first area is

similar to an instance of GtkEntry and provides an area used by the widget to display the cur

rent value of the spin button, as well as a location for the user to type a new value into the
control directly. The second area, located immediately to the right of the entry field, consists
of a pair of arrow buttons. Clicking the top arrow button increments the value in the entry

field, while clicking the bottom arrow button decrements the value.

Figure 14.1 Spin Button Widgets in a Dialog

The range of values accepted by an instance of GtkSpinButton is specified by the application
using a Gtk + adjustment object (see Chapter 1 3, "Range Widgets and Adjustment Objects"). An

adjustment object with lower set to 1 , upper set to 12, and step_increment set to 1 would be
appropriate for specifying the range of a spin button that accepts the month portion of a date

from a user, for example.

Keyboard and Mouse Events
Spin buttons are sensitive to mouse button and key press events; GtkSpinButton specifically
listens for the keypress events listed in Table 14.4.

GtkSpinButton

Table 14.4 GtkSpinButton Key press Events

Key

Up

Down

Page Up

Page Down

Action

The value is incremented by timecstep

(minimum is step_increment).

The value is decremented by timer_step

(minimum is step_increment).

The value is incremented by page_increment.

The value is decremented by page_increment.

709

The timecstep attribute of a spin button widget will be described later in this chapter when
I describe the climb_rate argument to gtk_spin_button_newO. Table 14.5 describes how
mouse button press and release events affect the value of a spin button widget:

Table 14.5 GtkSpinButton Mouse Button Events

Button Event

Button I press

Button 2 press

Button 3 release, up arrow

Button 3 release, down arrow

Action

Same as Up and Down key

Same as Page Up and Page Down keys

Adjustment value is assigned the adjustment

upper field

Adjustment value is assigned the adjustment

lower field

For example, if the lower field of the spin button adjustment object is set to 30 and the
user releases button 3 over the down arrow, then the value of the spin button (and of the
adjustment object) will be set to 30 (the value of the adjustment object lower field) .

Creating a Spin Button Widget

To create an instance of GtkSpinButton, call gtk_spin_button_newO:

GtkWidget *
gtk_spin_button_new (GtkAdj ustment * adj ustment , g f l oat c l imb_rat e ,

guint digi t s) ;

The function gtk_spin_button_new 0 accepts three arguments. The first argument,
adjustment, is a GtkAdjustment object. This can be an adjustment object that you create, an
adjustment object retrieved from some other widget (e.g. , from a scale or scrollbar widget),
or it can be NULL. If set to NULL, an adjustment object will be created for you, and in this
case, all of the adjustment object fields will be initialized to 0.0.

710 Chapter 14 • Text and SpinButton Widgets

The second argument, climb_rate, is used to control the rate of change of the spin button

value as the user causes one of the events listed in Tables 14.4 and 14.5 (except for mouse

button 3 release events) to occur.

Understanding the Climb Rate

To understand how climb_rate is used, I will describe what happens when a user depresses
and holds mouse button l over one of the spin button arrows. First, the spin button value is

moved in the appropriate direction; the amount of movement is defined by the adjustment
object step_increment value, and the direction (positive or negative) is determined by which
arrow (up or down) was pressed. Next, the spin button widget registers a timeout that will
fire after approximately 200 ms. The spin button widget saves the value of step_increment
in an internal field named timecstep; this field (timecstep) will be used by the timeout
function to determine how much to change the spin button value, as I will describe next.

The timeout function, when it is first invoked, resets the timer to fire every 20 ms thereafter,
thus increasing the rate at which the spin button value is updated. Next, the spin button value
is incremented (or decremented) by the value saved in timecstep. The timecstep value is left
unchanged the first five times the timer function is called (approximately 300 ms after the user
first depressed the mouse button over the arrow). Each invocation thereafter, however, the
timer_step value will be incremented by the climb_rate value. The effect is an increase over
time to the amount of change made to the spin button value as the user continues to press
mouse button 1 ; the longer the mouse button is depressed, the larger the change made to the
spin button value each time the timer function is invoked.

The third argument to gtk_spin_button_newO, digits, defines how many digits to the

right of the decimal point are displayed by the spin button value. Accepted values for this
argument are in the range [0, 5] .

Configuring the Spin Button Widget

When you create a new spin button with gtk_spin_button_newO, it will make a call to gtk_spin_

button30nfigureO to configure the spin button widget with the adjustment, climb_rate, and digits
arguments it was passed. Your application can also call gtk_spin_button30nfigureO to change

the attributes of a spin button. The function prototype is as follows:

vo id

gtk_sp in_but ton_configure (GtkSpinBut ton * spin_but ton ,

GtkAdj us tment * adj us tment , gf loat c l imb_rate , guint digit s) ;

The first argument, spin_button, is the instance of GtkSpinButton to be configured. The
adjustment, climb_rate, and digits arguments are as were previously described for gtk_

spin_button_newO.

Setting and Getting the Adjustment Object

The next two functions allow applications to set or get the adjustment object of a spin button
widget individually. To set the adjustment object, call gtk_spin_button_seCadjustmentO:

vo id

gtk_spin_button_set_adj us tment (GtkSpinBut ton * spin_but ton ,

GtkAdj us tment * adj us tment) ;

GtkSpinButton 7 1 1

The argument spin_button is the spin button widget, and adjustment is an adjustment

object. To retrieve the adjustment object, call gtk_spin_button�eCadjustmentO :

GtkAdj us tment *

gtk_sp in_but ton_get_adj ustment (GtkSpinBut ton * spin_button) ;

The return value is a GtkAdjustment object. You will find it necessary to get the adjustment
object if, when you created the spin button, you specified NULL for the adjustment argument

to gtk_spin_button_newO, and you want to set the attributes of the adjustment object created
on your behalf to their correct values, using the API provided by GtkAdjustment (as described

in Chapter 13) .

Setting the Number of Significant Digits Displayed by a Spin Button

You can also set (but not get) the number of significant digits displayed by the spin button

by calling gtk_spin_button_seCdigitsO :

void
gtk_sp in_button_s et_dig i t s (GtkSpinBut ton * spin_button , guint dig i t s) ;

The argument digits must be in the range of [0, 5] . GtkSpinButton provides no API for

retrieving the digits attribute of a spin button, nor does it provide function that can be used to
set or get the climb_rate attribute (climb_rate can be set with gtk_spin_button30nfigureO, as

previously described).

Setting and Getting the Value of a Spin Button
Getter and setter functions for the spin button value are provided by GtkSpinButton. You can
retrieve the current spin button value as either a float or an integer. Internally, a spin button value

is always stored as a float, so only a floating-point setter is provided. To retrieve the current value

of a spin button widget as a float, call gtk_spin_button�ec value_as_floatO:

gfloat
gtk_spin_button_get_value_as_f loat (GtkSpinBut ton * spin_button) ;

Or, to retrieve it as an integer, call gtk_spin_button�ec value_as_intO :

gint
gtk_spin_button_get_va lue_as_int (GtkSp inButton * spin_button) ;

The implementation of gtk_spin_button�ec value_as_intO rounds the current value down
or up using the following code:

val = spin_but ton - >adj ustment - >va lue ;

i f (val - f l oor (val) < c e i l (val) - val)
return f l oor (val) ;

e l s e

return c e i l (val) ;

Thus, if the current value is 3 .7, gtk_spin_button�ec value_as_intO would return 4.0,
whereas a current value of 3 .4 would result in a return value of 3 .0.

712 Chapter 14 • Text and SpinButton Widgets

To set the current value of the spin button, call gtlcspin_button_sec valueO :

vo id

gtk_sp in_but ton_set_value (GtkSpinBut ton * spin_but ton , gfloat value) i

The argument spin_button is, of course, an instance of GtkSpinButton. Value is a floating
point number in the range allowable by the spin button adjustment object.

Changing the Spin Button Update Policy

Each spin button widget instance has an update policy as described Table 14.6.

Table 14.6 Spin Button Update Policy

Update Policy

GTK_UPDATE_ALWAYS

GTK_UPDATE_IF _VALID

Meaning

Values out of range will be clipped (default).

Values out of range will be ignored.

For example, assume an adjustment object implementing a range of [0, 5] , the current value
of the spin button is 3, and the update policy is set to GTK_UPDATE_ALWAYS. Setting the
spin button value (perhaps with a call to gtk_spin_button_seC value()) to 7 would result in a
spin button value of 5. Setting it to -2 would result in it being clipped to its lower bound of O.

If the update policy were GTK_UPDATE_IF _VALID, the result of both changes would be 3

(e.g., the changes would be discarded since they are out of range).
To change the update policy, call gtk_spin_button_secupdate_policyO:

void
gtk_sp in_button_set_update-pol i cy (GtkSpinBut ton * spin_but ton ,

GtkSpinBut tonUpdatePo l i cy pol i cy) i

As always, spin_button is the instance of GtkSpinButton of interest. policy is one of the
values listed in Table 14.6.

Using Numeric Mode

GtkSpinButton supports a numeric mode that, when enabled, causes the entry field of the spin
button to reject input that is not numeric. This includes all characters except the digits 0

through 9, the sign characters + and -, and the decimal point character (the actual characters
involved may be different based on locale). By default, numeric mode is disabled, but it can
be enabled (or disabled again) by calling gtk_spin_button_secnumericO:

void

gtk_spin_button_set_numeric (GtkSpinBut ton * spin_button ,
gboolean numeri c) i

The argument numeric, if set to FALSE, disables numeric mode (again, this is the
default) . Setting numeric to TRUE enables numeric mode.

GtkSpinButton 713

Setting the Value of a Spin Button

Applications can programmatically emulate the manipulation of the spin button control by
a user (e.g., emulate the pressing of the up arrow to change the spin button's value). Some
applications may want to initialize the value of a spin button control with gtk_spin_
button_sec valueO when the spin button is first displayed, but changes to the spin button

value at runtime (other than setting initial values) should normally be made by the user, not
by the application. Changes to a spin button can be made indirectly by sharing the adjust

ment object of a spin button with the adjustment object of some other widget in such a way
that changing the value of the widget will automatically result in a corresponding change

to the spin button value.
So, when does it make sense for a program to emulate the increment or decrement of a

spin button by the user? One illustrative example comes to mind. Consider an image viewer
application that allows the user to select an image for viewing by its number. A spin button
might be used to increment through the images one at a time or to select a specific image
for viewing. One feature of such an application might be a "slide show" mode that automat

ically increments the current image by one at some predefined interval, allowing the user
to view all of the images in sequence without the need to click the up (or down) arrow of
the spin button control. To implement this feature, the application might register a Gtk+
timer to fire at the desired interval and then increment (or decrement) the spin button value

from within the timer callback function. I will present such an application at the end of this
section. In the meantime, let's take a look at how to increment or decrement the spin button

value from an application.
The function you must call to increment or decrement a spin button is called gtk_

spin_button_spinO:

void
gtk_spin_but ton_spin (GtkSpinBut ton * spin_button ,

GtkSpinType direction , gfloat increment) ;

The argument spin_button is an instance of GtkSpinButton. The remaining arguments,
direction and increment, are defined in Table 14.7.

Table 14.7 GtkSpinType Values

Value

GTK_SPIN_STEP _FORWARD

GTK_SPIN_STEP _BACKWARD

GTK_SPIN_PAGE_FORWARD

GTK_SPIN_PAGE_BACKWARD

GTK_SPIN_HOME

GTK_SPIN_END

GTK_SPIN_USER_DEFINED

Emulation

Button I press over up arrow

Button I press over down arrow

Button 2 press over up arrow

Button 2 press over down arrow

Button 3 release over up arrow

Button 3 release over down arrow

Change current value by increment

714 Chapter 14 • Text and SpinButton Widgets

As I described earlier, button 1 presses cause the value of the spin button to change by

the adjustment object step_increment, button 2 presses cause the value to change by the

adjustment object page_increment, and button 3 releases over the up or down arrow cause
the spin button value to be set to the adjustment object upper and lower values, respectively.

As you can see, the increment argument is ignored unless the direction argument is set to
GTK_SPIN_USER_DEFINED. A nonzero increment in this case will cause the spin button

value to be incremented or decremented by the specified value. An increment occurs if the
value is greater than zero, and a decrement occurs if the value is less than zero.

Controlling the Wrapping of Values
What happens to a spin button that is being incremented beyond the upper value of its adjust

ment object or that is being decremented beyond the lower value of the adjustment object? By
default, a spin button will clip its value to the upper and lower values of the adjustment object,
thereby rendering an increment of a spin button already set to upper, or the decrement of a
spin button already set to lower, useless. This default can be changed so that the value of the
adjustment object (and, thus, the value of the spin button) will wrap in these cases. That is,

incrementing a spin button above the upper value will result in the value being set to lower,
and decrementing a spin button below the lower value will cause the value to be set to upper.

To enable this functionality, you must call gtlcspin_button_secwrapO:

vo id
gtk_sp in_button_s et_wrap (GtkSpinBut ton * spin_button , gbool ean wrap) ;

Setting wrap to TRUE enables the wrapping behavior previously described; setting it to

FALSE returns the spin button to the default action of clipping values to the upper and
lower values of the spin button adjustment object.

Setting the Shadow Type

Applications can change the shadow type of a spin button, which affects how the arrows adjacent
to the entry field are rendered. To set the shadow type call gtk_spin_button_secshadow _typeO:

vo id

gtk_spin_button_set_shadow_type (GtkSpinBut ton * spin_button ,

GtkShadowType shadow_type) ;

The argument spin_button, as usual, is an instance of GtkSpinButton, and shadow type
is one of the following constants: GTK_SHADOW _NONE, GTK_SHADOW _IN, GTK_
SHADOW_OUT, GTK_SHADOW _ETCHED_IN, or GTK_SHADOW _ETCHED_OUT.

The Snap-to-Ticks Attribute

The final spin button attribute discussed here is snap-to-ticks. Setting this attribute to TRUE
(the default is FALSE) causes the spin button to snap any values entered into the entry field
of the spin button to a value that is consistent to the step_increment of the adjustment object
associated with the spin button widget. For example, if snap-to-ticks is enabled and the
step_increment of the adjustment object is set to 0.5, then any values entered into the spin
button entry field will be modified to be divisible by 0.5 .

GtkSpinButton 715

What the spin button widget does when snap-to-ticks is enabled and the user enters a value
is as follows: The value is extracted from the entry field, and if the value is closer to the next
largest value evenly divisible by the step_increment than it is to the next smallest value also

evenly divisible by the step_increment, it is set to that next largest value. Otherwise, it is set

to the next lowest value evenly divisible by the step_increment.
An example might be useful. Say the step_increment is 0.5, and the user enters the value

43 .3 . In this case, the next highest candidate value is 43 .5 , and the next lowest candidate
value is 43.0. Since 43 .3 is closer to 43.5 than it is to 43.0, the spin button value will be

changed to 43 .5 .
To enable or disable the snap-to-ticks attribute of a spin button, you can call gtk_spin_

button_snap_to_ticksO:

void

gtk_sp in_button_set_snap_to_t icks (GtkSpinButton * spin_but ton ,

gboolean snap_to_t i cks) ;

If snap_to_ticks is set to TRUE, values entered into the entry field will snap to the adjustment
object step_increment value. If set to FALSE, values entered by the user will be accepted as

entered.

Causing the Spin Button to Redraw

The final function exposed by the GtkSpinButton API is gtk_spin_button_updateO :

void
gtk_spin_but ton_update (GtkSpinBut ton * spin_button) ;

This function, when called, will cause the spin button widget to redraw itself. Applications

normally need not call this function.

An ExampJe

Now it is time for the sample code I promised earlier. The sample program is in the form of a
simple image viewer. There is a lot to learn from the application due to the way I have
designed it. The application is designed to display a fixed set of XPM images (in this case, the
number of images is fixed to 3 ; an obvious enhancement would be to modify the program to

show all of the images in a user-specified directory). Next and Previous buttons are provided
that allow the user to navigate among the images as one would expect. A spin button is pro
vided that allows the user to do a similar form of navigation using the up and down arrows
that the spin button provides. The user, of course, can type an image number into the spin but
ton entry field and hit the Enter key to cause the specified image to be displayed. Finally, a
button labeled Slide Show is provided that, when pressed, causes the program to cycle
through the images in forward order, changing from one image to another every 5 seconds.
The Slide Show button label is changed to Cancel Slide Show, and the Next and Previous but
tons are disabled as soon as the user begins the slide show. Clicking the Cancel Slide Show
button re-enables the Next and Previous buttons, causes the slide show to stop, and reverts the
slide show button to its original label. Figure 14.2 illustrates the application at runtime.

716 Chapter 14 • Text and SpinButton Widgets

Figure 14.2 Spin Button Widgets in a Dialog

As it turns out, the spin button, together with its adjustment object, forms the basis of
the controls and logic that I just described. To illustrate how, let's take a look at the program
source code (a discussion of the source will immediately follow):

Listing 14.1 Button Slide Show Example

0 0 1 #inc lude <gtk/gtk . h>

0 0 2

0 0 3

0 0 4

0 0 5
0 0 6

0 0 7

stat i c int whi ch = 1 , t imeout = 0 ;

s t at i c GtkWidget * spinne r ,

s t at i c GtkWidget *but ton1 ,

s t a t i c GtkAd j u stment * adj ;

0 0 8 s t at i c void

*vi s i b le ,

*but ton2 ,

*pixmap 1 ,

*button3 ,

0 0 9 Next Ca llback (GtkWidget *widget , gpointer dummy)

0 1 0 {
0 1 1 whi c h ++;

0 1 2 i f (which = = 4)

0 1 3 which = 1 ;

*pixmap2 ,

* labe l;

0 1 4 gtk_adj us tment_set_value (adj , (f loat) which);

0 1 5

*pixmap3 ;

GtkSpinButton

0 1 6
0 1 7 static void
018 PrevCal lback (GtkWidget *widget , gpointer dummy)
0 1 9 {
0 2 0 which- - ;
0 2 1 i f (which = = 0)
0 2 2 whi ch = 3 ;
0 2 3 gtk_adj ustment_set_value (adj , (f loat) which) ;
0 2 4
0 2 5
0 2 6 static void
027 SpinnerCal lback (GtkAdj ustment * adj , gpointer dummy)
0 2 8 {
0 2 9 GdkPixmap *gdkPixmap ;
0 3 0 GdkBitmap *gdkBitmap ;
0 3 1 GtkWidget * current ;
0 3 2
0 3 3 which = (int) adj - >value ;

0 3 4 i f (which = = 1)
0 3 5 current = pixmap 1 ;
0 3 6 else i f (which = = 2)
0 3 7
0 3 8
0 3 9
0 4 0

e l s e
current pixmap2 ;

current pixmap3 ;

0 4 1 gtk-pixmap_get (GTK_P IXMAP (current) , &gdkPixmap , &gdkBi tmap) ;

0 4 2 gtk-pixmap_set (GTK_PIXMAP (visible) , gdkPixmap , gdkB i tmap) ;

0 4 3
0 4 4
0 4 5 int
0 4 6 S l i desTimerCal lback (gpointer dummy)
0 4 7 (
0 4 8 gtk_spin_button_spin (GTK_SPIN_BUTTON (spinner) ,
0 4 9 GTK_S PIN_STEP_FORWARD , 0) ;
0 5 0 return 1 ;
0 5 1
0 5 2
0 5 3 static void
054 S l i desCal lback (GtkWidget *widget , gpointer dummy)
0 5 5 (
0 5 6 static void CancelCal lback (GtkWidget *widget , gpointer dummy) ;

0 5 7
0 5 8 i f (GTK_WIDGET_SENS ITIVE (buttonl) = = FALSE) (

0 5 9 CancelCal lback (widget , dummy) ;
0 6 0 return ;
0 6 1
0 6 2
0 6 3 gtk_spin_button_set_value (GTK_SPIN_BUTTON (spinne r) , 1 . 0) ;
0 6 4 timeout = gtk_t imeout_add (5 0 0 0 , S l i desTimerCal lback , NULL) ;
0 6 5 gtk_widget_set_sens i t ive (button1 , FALSE) ;
0 6 6 gtk_widget_set_sens i t ive (button2 , FALSE) ;
0 6 7 gtk_label_set_text (GTK_LABEL (label) , " Cance l S l i de Show ") ;
0 6 8
0 6 9
0 7 0 static void
0 7 1 CancelCal lback (GtkWidget *widget , gpo inter dummy)
0 7 2 {

717

718 Chapter 14 • Text and SpinButton Widgets

0 7 3 i f (t imeout) {
0 7 4 gtk_t imeout_remove (t imeout) ;

0 7 5 t imeout = 0 ;
0 7 6
0 7 7 gtk_widget_set_sensit ive (but tonl , TRUE) ;
0 7 8 gtk_widget_set_sensit ive (button2 , TRUE) ;
0 7 9 gtk_label_set_text (GTK_LABEL (label) , " S l ide Show ") ;
0 8 0
0 8 1
0 8 2 stat i c GtkWidget *
0 8 3 new-pixmap (char * f i l e , GdkWindow *window , GdkColor *background)
0 8 4 {
0 8 5 GdkPixmap *pmap ;
0 8 6 GdkB itmap *mask ;
0 8 7 GtkWidget *wpmap ;
0 8 8
0 8 9 pmap = gdk-pixmap_create_from_xpm (window , &mask , background , f i l e) ;
0 9 0 wpmap = gtk-pixmap_new (pmap , mas k) ;
0 9 1 return (wpmap) ;
0 9 2
0 9 3
0 9 4 main (int argc , char *argv [])
0 9 5 {
0 9 6 GtkWidget *dialog_window ;
0 9 7
0 9 8 gtk_ini t (&argc , &argv) ;
0 9 9
1 0 0 dial og_window = gtk_dialog_new () ;
1 0 1 gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;

1 0 2
1 0 3 gtk_widget_show (dialog_window) ;
1 0 4
1 0 5 v i s i b l e = new-pixmap (" pic1 . xpm " , dialog_window - >window ,
1 0 6 &di alog_window - >styl e - >bg [GTK_STATE_NORMAL]) ;
1 0 7 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
1 0 8 vi s ible , TRUE , TRUE , 0) ;
1 0 9
1 1 0 pixmap l = new-pixmap (" pic1 . xpm " , dialog_window- >window ,
1 1 1 &di alog_window - >style - >bg [GTK_STATE_NORMAL]) ;
1 1 2 pixmap2 = new-pixmap (" pic2 . xpm" , dial og_window- >window ,
1 1 3 &dialog_window- >style - >bg [GTK_STATE_NORMAL]) ;
1 1 4 pixmap3 = new-pixmap (" pic3 . xpm " , dialog_window - >window ,
1 1 5 &dial og_window- >style - >bg [GTK_STATE_NORMAL]) ;
1 1 6
1 1 7 but ton1 = gtk_button_new_wi th_labe l (" Next ") ;
1 1 8 gtk_box-pack_s tart (GTK_BOX (GTK_DIALOG (dial og_window) - >action_area) ,
1 1 9 but ton1 , TRUE , TRUE , 0) ;
1 2 0 gtk_s ignal_connect (GTK_OBJECT (button1) , " c l i cked " ,
1 2 1 GTK_S IGNAL_FUNC (NextCal lback) , dialog_window) ;
1 2 2
1 2 3 but ton2 = gtk_button_new_wi th_label (" Prev ") ;
1 2 4 gtk_box-pack_s tart (GTK_BOX (GTK_DIALOG (dialog_window) - >ac t i on_area) ,
1 2 5 but ton2 , TRUE , TRUE , 0) ;
1 2 6 gtk_s ignal_connect (GTK_OBJECT (button2) , " c l icked " ,
1 2 7 GTK_S IGNAL_FUNC (PrevCal lback) , dialog_window) ;
1 2 8
1 2 9 adj gtk_adjus tment_new (1 . 0 , 1 . 0 , 3 . 0 , 1 . 0 , 1 . 0 , 1 . 0) ;

GtkSpinButton

1 3 0 gtk_signal_connect (GTK_OBJECT (adj) , " value_changed" ,

1 3 1 GTK_S IGNAL_FUNC (SpinnerCal lback) , NULL) ;

1 3 2
1 3 3 spinner = gtk_spin_but ton_new (GTK_ADJUSTMENT (adj) , 0 . 0 , 0 . 0) ;

1 3 4 gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinne r) , TRUE) ;

1 3 5 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,

1 3 6 spinner , TRUE , TRUE , 0) ;
1 3 7
1 3 8 but ton3 = gtk_button_new () ;
1 3 9 label = gtk_l abe l_new (" S l ide Show ") ;
1 4 0 gtk_container_add (GTK_CONTAlNER (button3) , l abel) ;
1 4 1

1 4 2 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,

1 4 3 but ton3 , TRUE , TRUE , 0) ;
1 4 4 gtk_s ignal_connect (GTK_OBJECT (button3) , " c l i cked " ,

1 4 5 GTK_S IGNAL_FUNC (S l idesCal lback) , NULL) ;

1 4 6
1 4 7 gtk_widget_show_al l (dialog_window) ;
1 4 8 gtk_main () ;
1 4 9

Analysis

719

The main program, as is typically the case, creates the application main window (in this case

an instance of GtkDialog), completes the VI, and then registers callbacks on the user-interface
controls before calling into gtk_mainO.

Our UI consists of an instance of GtkPixmap (see Chapter 8, "Separators, Arrows,
Images, Pixmaps, and Entry Widgets"), which is managed by the vertical box of the dialog

widget, and a series of controls placed inside of a horizontal box. The horizontal box is

made an instance child of the dialog widget's control area (see Chapter 7, "Windows and

Dialogs," for information on GtkDialog).

Handling Images. Let's take a quick look at how the images are dealt with before we con

tinue our discussion of the spin button control. For this example, I chose to hard-code the

images displayed and support only XPM image data (after all, this is an example for GtkSpin

Button, not images). On lines 105 through 1 15 , I create four instances of GtkIrnage. The first

instance, created on line 105, is the most important of the four because it is the only instance

I create that is used as a part of the user interface. The remaining images, created on lines 1 10
through 1 15, are used to hold image data that will be displayed as the user traverses the set of

image data using the Next and Previous buttons or the spin button control.

1 0 5 vi sible = new""pixmap ("pic1 . xpm" , dialog_window- >window ,
1 0 6 &dialog_window- >style - >bg [GTK_STATE_NORMAL]) ;
1 0 7 gtk_box""pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
1 0 8 visible , TRUE , TRUE , 0) ;
1 0 9
1 1 0 pixmapl = new""pixmap ("pic1 . xpm" , dialog_window- >window ,
1 1 1 &dialog_window- > style - >bg [GTK_STATE_NORMAL]) ;
1 1 2 pixmap2 = new""pixmap ("pic2 . xpm" , dialog_window- >window ,
1 1 3 &dialog_window- > style - >bg [GTK_STATE_NORMAL]) ;

720 Chapter 14 • Text and SpinButton Widgets

1 1 4 pixmap3 new -pixmap ("pic3 . xpm" , dialog_ window- >window ,
1 1 5 &dialog_window- >style - >bg [GTK_STATE_NORMAL]) ;

Creating the Spin Button Controls. The spin button control and the adjustment object
are created on lines 129 through 1 36:

1 2 9 adj = gtk_adj ustment_new (1 . 0 , 1 . 0 , 3 . 0 , 1 . 0 , 1 . 0 , 1 . 0) ;
1 3 0 gtk_s ignal_connect (GTK_OBJECT (adj) , "value_changed" ,
1 3 1 GTK_S IGNAL_FUNC (SpinnerCal lback) , NULL) ;
1 3 2
1 3 3 spinner = gtk_spin_button_new (GTK_ADJUSTMENT (adj) , 0 . 0 , 0 . 0) ;
1 3 4 gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner) , TRUE) ;
1 3 5 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,
1 3 6 spinner , TRUE , TRUE , 0) ;

The value of the adjustment object is initialized to 1 (this is consistent with the initial image

displayed by the "visible" pixmap, namely pic l .xpm). The range of values to which the spin

button can be set is set to [1 , 3] . The spin button widget (spinner) is created on line 133. On line

134, I set the wrap attribute of the spin button to TRUE; this allows the spin button to operate
correctly in slide show mode and simplifies the use of the Next and Previous buttons. For exam

ple, hitting the Next button while displaying image 3 will cause image 1 to be displayed, and

hitting the Previous button when displaying image 1 causes image 3 to be displayed.

Implementing the value_changed Signal Function. The value3hanged signal function
SpinnerCallbackO, assigned on line 130, is the means by which changes made by the user are

communicated to the application. This includes, as we shall see, not only changes to the spin
button widget but also to the Next and Previous buttons. The slide show feature is also based

in part on this signal. Let's look at the spin button first. If the value of the spin button is
changed by the user, the spin button widget will change the adjustment value and then fire the

value3hanged signal, leading to a call to the SpinnerCallbackO function:

0 2 6 stat i c void
027 SpinnerCal lback (GtkAdj ustment *adj , gpointer dummy)
0 2 8 {
0 2 9 GdkPixmap *gdkPixmap ;
0 3 0 GdkBitmap *gdkBitmap ;
0 3 1 GtkWidget * current ;
0 3 2
0 3 3 which = (int) adj - >value ;
0 3 4 i f (which = = 1)
0 3 5 current = pixmap l ;

0 3 6 else i f (which = = 2)
0 3 7
0 3 8
0 3 9
04 0

else
current pixmap2 ;

current pixmap3 ;

0 4 1 gtk-pixmap_get (GTK_PIXMAP (current) , &gdkPixmap , &gdkBitmap) ;
0 4 2 gtk-pixmap_set (GTK_PIXMAP (vis ible) , gdkPixmap , gdkBitmap) ;
0 4 3

GtkSpinButton 721

In the callback, on line 033, the adjustment value is retrieved; it will be a value in the
range [1 , 3] and logically reflects the image that the user has selected for viewing. On lines
034 through 039, the value is used to select an instance of GtkPixmap from which image

data will be retrieved. For example, if the adjustment value is 1 , then pixmap I has been

selected. On line 04 1 , the image data is read from the selected image. Then, on line 042,

the visible image data is modified to display that image.

Implementing the Next and Previous Buttons. All that remains is a description of how
the Previous and Next buttons and the slide show feature work. The Previous and Next but

tons are wired to PrevCallbackO and NextCallbackO clicked signal functions, respectively :

0 0 8 static void
0 0 9 NextCal lback {GtkWidget *widget , gpointer dummy)
0 1 0 {
0 1 1 which++ ;
0 1 2 i f (which = = 4)
0 1 3 which = 1 ;
0 14 gtk_adj ustment_set_value { adj , (f loat) which) ;
0 1 5
0 1 6
0 1 7 stat ic void
0 1 8 PrevCal lback { GtkWidget *widget , gpointer dummy)
0 1 9 {
0 2 0 which- - ;
0 2 1 i f (which = = 0)
0 2 2 which = 3 ;
0 2 3 gtk_adj ustment_set_value { adj , (f loat) which) ;
0 2 4

These functions simply compute a new value for the currently displayed image (as
stored in the global "which" variable) and then change the adjustment value by calling

gtk_adjustmencsec valueO. Changing the adjustment value results in SpinnerCallbackO
being invoked, which handles the chore of updating the image that is displayed.

Implementing the Slide Show. The slide show feature is actually pretty simple to imple

ment and relies again on adjustment objects. The slide show button is instantiated on line 138 .
Instead of letting GtkButton create its own label, I create my own and add i t to the button as
a child on lines 139 and 140. This allows me to change the label, when the user clicks the Slide

Show button, to Cancel Slide Show, and then back again when the user clicks the button to
cancel. On line 144, I set the "clicked" signal function to SlidesCallbackO.

1 3 8 button3 = gtk_button_new {) ;
1 3 9 label = gtk_label_new { " Sl ide Show") ;
14 0 gtk_container_add { GTK_CONTAINER { button3) , label) ;
1 4 1
1 4 2 gtk_box-pack_start { GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,
1 4 3 button3 , TRUE , TRUE , 0) ;
144 gtk_s ignal_connect (GTK_OBJECT (button3) , " c l icked " ,
1 4 5 GTK_S IGNAL_FUNC { S l i desCal lback) , NULL) ;

722 Chapter 14 • Text and SpinButton Widgets

Here is the source code for SlidesCallbackO:

0 5 3 stat ic void
054 S l idesCal lback (GtkWidget *widget , gpointer dummy)
0 5 5 {
0 5 6 stat ic void CancelCal lback (GtkWidget *widget , gpointer dummy) ;
0 5 7
0 5 8 i f (GTK_WIDGET_SENS ITIVE (button1) = = FALSE) {
0 5 9 CancelCal lback (widget , dummy) ;
0 6 0 return ;
0 6 1
0 6 2
0 6 3 gtk_spin_button_set_value (GTK_SPIN_BUTTON (spinner) , 1 . 0) ;
0 6 4 t imeout = gtk_t imeout_add (5 0 0 0 , SlidesTimerCal lback , NULL) ;
0 6 5 gtk_widget_set_sens it ive (button1 , FALSE) ;
0 6 6 gtk_widget_set_sens it ive (button2 , FALSE) ;
0 6 7 gtk_label_set_text (GTK_LABEL (label) , " Cancel Sl ide Show ") ;
0 6 8

Let's begin our look at SlidesCallbackO with the code on line 063. Here the spin button
value is set to l ; this causes the first image in the set to be displayed immediately. Next, on line

065, a Gtk+ timeout function is added. The timeout will fire every 5 seconds (5000 ms), invok

ing the function SlidesTimerCallbackO, which is responsible for displaying the next image in
the slide show. On lines 065 through 067, the user interface is adjusted; the Previous and Next
buttons are disabled, and the Slide Show button label is changed to Cancel Slide Show. Let's

now go back and look at lines 058 through 061 . When the user presses the Cancel Slide Show

button, the same callback function that was registered for the Slide Show button, SlidesCall
backO, will be invoked (this makes sense because they are the same button, just the label was
changed). This time, buttonl (the Previous button) will be insensitive, so we make a call to
CancelCallbackO and return. CancelCallbackO simply stops the timeout function, re-enables
the Next and Previous buttons, and changes the label of button3 back to Slide Show.

0 7 0 stat i c void
071 CancelCal lback (GtkWidget *widget , gpointer dummy)
0 7 2 {
0 7 3 i f (t imeout) {
074 gtk_t imeout_remove (timeout) ;
0 7 5 t imeout = 0 ;
0 7 6
0 7 7 gtk_widget_set_sens it ive (button1 , TRUE) ;
0 7 8 gtk_widget_s e t_sens i t ive (but t on2 , TRUE) ;

0 7 9 gtk_label_set_text (GTK_LABEL (label) , " S l ide Show") ;
0 8 0

The last function, SlidesTimerCallbackO, is called when the timeout expires (again,
every 5 seconds in this example):

0 4 5 int
0 4 6 S l i desTimerCal lback (gpointer dummy)
0 4 7 {

Summary 723

0 4 8 gtk_spin_button_spin (GTK_SPIN_BUTTON (spinner) ,

0 4 9 GTK_SPIN_STEP_FORWARD , 0) ;
0 5 0 return 1 ;
0 5 1

SlidesTimerCallbackO simply calls gtk_spin_button_spinO to advance the spin button

value by 1 . The function gtk_spin_button_spinO will advance the value of the adjustment

object by 1 , which will result in SpinnerCallbackO being called as if the Next button had
been pressed by the user. Note that we could have called gtk_spin_button_spinO from both

NextCallbackO and PrevCallbackO to change the spin button adjustment object as follows:

static voi d
NextCa1 1back (GtkWidge t *widget , gpointer dummy)

{
gtk_spin_but ton_spin (GTK_SPIN_BUTTON (spinner) ,

GTK_SPIN_STEP_FORWARD , 0) ;

static void

PrevCallback (GtkWidget *widge t , gpo inter dummy)

{
gtk_spin_but ton_spin (GTK_SPIN_BUTTON (spinner) ,

GTK_SPIN_STEP_BACKWARD , 0) ;

Either technique is fine. Although deciding which to use is largely a matter of programmer
preference, calling gtk_spin_button_spinO does result in code that is more readable.

Sum mary

A text widget (GtkText) is used to display multiline text. Functions in the GtkText API
allow the application to set the text displayed, retrieve it after editing by the user, insert and
delete text, control word wrap, and allow or disallow edits to the data being displayed. If
your application needs to display single-line text edit fields, you should use GtkEntry

instead (see Chapter 8) . If your application needs to display text data in a message dialog,
you should use GtkLabel (Chapter 5), not GtkText for this purpose (see Figure 7- 1 in Chap
ter 7). A spin button widget is an editable control that supports the input of numeric data. A
user can edit the value of a spin control by typing in an edit field or can use arrows displayed
by the spin button control to increment or decrement the value within a specific range. If
your application requires the user to enter numeric data, a spin button widget is your best
choice. A scale widget (GtkScale) provides a second alternative but may be more difficult
for users to interact with.

(HAPTER

MIS(ELLANEOVS WIDGETS

This chapter completes my coverage of the Gtk+ widget classes. In this chapter, the set of

widget classes described includes those that are less commonly used in Gtk+ applications or

that do not fit easily into one of the other chapters of this book and are too simple to deserve
a chapter of their own. The widgets I will document in this chapter are listed in Table 1 5 . 1 .

Table 15.1 Widgets Described in This Chapter

ClIlssName

GtkRuler

GtkHRuler

GtkVRuler

GtkPreview

GtkProgress

GtkProgressBar

GtkTooltips

GtkTipsQuery

GtkCombo

GtkStatusbar

GtkAccelLabel

GtkDrawingArea

GtkCalendar

Description

Base ruler class

Horizontal ruler (derived from GtkRuler)

Vertical ruler (derived from GtkRuler)

Displays RGB and grayscale data

Base class for widgets that display progress

Progress bar widget (derived from GtkProgress)

Tooltips collection widget

Displays additional tooltips data in a window

Combo box widget

Stack-based status bar widget

Label that supports display of accelerator text

Widget that supports drawing of graphics and

images

Calendar display widget

725

726

GtkRu ler

Class Name

GtkRuler

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK _ TYPE _RULER

Object to widget cast macro: GTK _RULER (obj)

Widget type check macro: GTK _ IS_RULER (obj)

Supported Arguments

Prefix: GtkRuler : :

Table 15.2 GtkRuler Arguments

Name Type

lower GTK_TYPE_FLOAT

upper GTK_TYPE_FLOAT

position GTK_TYPE_FLOAT

max_size GTK_TYPE_FLOAT

Application-Level API Synopsis

Return the constant GTK_TYPE_RULER at runtime:
GtkType
gtk_ruler_get_type (void) ;

Chapter 1 5 • Miscellaneous Widgets

Permissions

GTI<-ARG_READWRITE

GTK_ARG_READWRITE

GTK_ARG_�ABLE

GTK_ARG_�ABLE

Set the "metric type" attribute of a rule to either GTK_PIXELS, GTK_INCHES or
GTK_CENTIMETERS:
void
gtk_ruler_set_metric (GtkRuler * ruler , GtkMetricType metric) ;

GtkRuler

Appl ication-Level API Synopsis (Continued)

Set the range of values represented by the ruler (see text):
void
gtk_ruler_ set_ range(GtkRuler * ruler , gfloat lower , gfloat upper ,

gfloat position, gfloat max_size);

Class Description

727

GtkRuler is a parent class for the GtkHRuler and GtkVRuler classes, both of which I will

describe in this chapter. Like many parent classes of this type, you do not create instances of
GtkRuler directly in your applications. Instead, you create instances of GtkHRuler and/or

GtkVRuler, depending on your needs. Instances of GtkHRuler and GtkVRuler can be passed
to GtkRuler functions by casting them to GtkRuler using the GTK_RULER macro, as follows:

GtkWidget *hruler ;

gtk_ruler_set_metric (GTK_RULER (hruler) , GTK PIXELS) ;

Setting the Ruler Metric

Two functions provided by GtkRuler are useful to applications. The first lets you specify

the "metric type" attribute of the horizontal or vertical ruler. The function prototype for

gtk_rulecseCmetricO is as follows:

void
gtk_ruler_set_metric (GtkRuler * ruler , GtkMetricType metric) ;

The argument metric can be one of the values listed in Table 15 .3 .

Table 15.3 GtkMetricType Values

Metric

GTK_PIXELS

GTK_INCHES

GTK_CENTIMETERS

Pixels Per Unit

72 pixels per inch

28.35 pixels per centimeter

The choice of metric affects how many ticks are displayed by the ruler widget and how
the ticks are labeled. For example, when metric is set to GTK_INCHES, each inch will be
displayed with major ticks and a numerical label, while a minor tick and no label will be
used to identify 114-, 112-, and 314-inch values that fall in between.

728 Chapter 1 5 • Miscellaneous Widgets

The metric attribute is influenced by the size of the ruler, the range of values associated

with the ruler, the physical resolution of the screen, and the data being displayed inside the

area that the ruler measures. To illustrate this, let's start with the simple case of displaying a
300X 300 image in a 300X300 window on a screen that has a 72X72-dots-per-inch resolu
tion. Here, if we were to display a horizontal ruler with the default metric of GTK_PlXELS,

its ticks would naturally range from 0 to 300 in value, would consume a total of 300 pixels on
screen, and would be spaced at 72 dots per inch, meaning that pixel 7 1 of the image would be

shown exactly 1 inch from the edge of the window if we were to measure it with a measuring

tape (ignoring any spacing or bordering applied to the widget managing the ruler and the con
tent area). If the metric were changed to GTK_INCHES, the same relationship would hold,
and if you were to place a measuring tape or ruler, scaled in inches, against the screen, the
scale of the measuring tape and that of the ruler widget would correspond to each other

exactly. The same one-to-one correspondence between screen and physical realities will hold

if you were to change the metric argument of the ruler to GTK_CENTIMETERS.
On a lOO-dpi screen, GtkRuler correctly labels our 300X 300 image data when the met

ric attribute is set to GTK_PIXELS. However, by setting the metric attribute to
GTK_INCHES or GTK_CENTIMETERS, the labels of the ruler now (incorrectly) give us

information for a 72-dpi device, which is inconsistent with the display and, therefore, does

not correspond to the real-world physical measurement.
To summarize:

• Real-world devices are not always 72 dpi (or 28.35 pixels per centimeter).

• Only the ruler metric GTK_PIXELS will accurately reflect reality regardless of the

screen resolution.

For these reasons, your only safe bet is to use the default GTK_PIXELS as the metric

attribute for a ruler. It is not easy for many workstations to report accurately the true screen
resolution of the display; this is especially true for Linux-based systems that may run with

arbitrary displays of varying sizes. Even if the system could report its screen resolution accu

rately, GtkRuler does not allow the 72 dpi value to be changed, so there is no hope that an

application can tell a ruler widget how to accurately convert pixels to inches or centimeters.

Setting the Range of a Ruler

The following function, gtk_rulecseCrangeO, must be called for each ruler widget to define
the full extent of values represented by the ruler:

void
gtk_ruler_set_range(GtkRuler *ruler , gfloat lower , gfloat upper ,

gfloat posit ion , gfloat max_s i z e) ;

The argument ruler is an instance of GtkHRuler or GtkVRuler, lower is the lowest value

represented by the ruler, upper is the highest value, and position is the initial location of the
ruler thumb. The argument max_size controls how the ruler labels and tick marks are drawn
by the vertical and horizontal ruler widgets. The use of this argument is not entirely clear

to me; hopefully, the following will make some sense. The file gtkruler.c defines the follow
ing array used internally by GtkRuler:

GtkRuler

static const GtkRulerMetric ruler_metrics []

} ;

{ " Pixe l s " , " Pi " , 1 . 0 ,
{ 1 , 2 , 5 , 1 0 , 2 5 , 5 0 , 1 0 0 , 2 5 0 , 5 0 0 , 1 0 0 0 },
{ 1 , 5 , 1 0 , 5 0 , 1 0 0 }}.
{ " Inches " , " In " , 7 2 . 0 ,
{ 1 , 2 , 4 , 8 , 1 6 , 3 2 , 64 , 12 8 , 2 5 6 , 5 1 2 },
{ 1 , 2 , 4 , 8 , 1 6 }}.
{ " Centimeters " , " Cn " , 2 8 . 3 5 ,
{ 1 , 2 , 5 , 1 0 , 2 5 , 5 0 , 1 0 0 , 2 5 0 , 5 0 0 , 1 0 0 0 },
{ 1 , 5 , 1 0 , 5 0 , 1 0 0 }}.

729

Let's focus on the first entry, which is used whenever the metric attribute is set to
GTK_PIXELS, because it is what most applications use, and it is the easiest to understand.

The fourth field of the "Pixels" entry is an array of integers:

{ 1 , 2 , 5 , 1 0 , 2 5 , 5 0 , 1 0 0 , 2 5 0 , 5 0 0 , 1 0 0 0 }

Each of these values represents a label increment. Let's assume that the range of the ruler is

[0, 300] . The entry 5 would mean labels are drawn by the ruler in increments of 5. That is, the
0, 5, 10, . . . , 300 ticks would all be labeled by the ruler widget for the range [0, 300] . If the label
only ranges in value from [0, 10], the only increments that make sense are 1 , 2, and 5. The width

or height of the ruler, and the width or height of the font used to draw the labels, affect what
increments can be drawn by the ruler: The wider or taller the font and the less wide (tall) the
ruler translates into fewer ticks that can be labeled, thus favoring the label increments that are

larger.
So exactly what part does the max_size argument play in all of this? The best way to

understand the effect it has is to look at the source code. (Both of the ruler widgets,
GtkHRuler and GtkVRuler, implement similar code in their methods that draw the ruler

ticks, e.g., gtk_hruler_draw_ticksO.) First, the width of the ruler widget is obtained on line
001 . Following this, two variables, lower and upper, are computed (lines 002 and 003) :

0 0 1 width widget - >a l loca t ion . height ;
0 0 2 upper = ruler- >upper / ruler- >metric - >pixel s-per_unit ;
0 0 3 lower = ruler- >lower / ruler- >metric - >pixel s-per_unit ;

For this example, the variable width is 282, ruler->upper = 300, ruler->lower = 0, and

ruler->metric->pixels_pecunit is 1 (since the metric is GTK_PIXELS). As a result, upper

is assigned 300, and lower is assigned o. With these values, the variable increment is given

the value 4.06320275e-34 on line 004:

0 0 4 increment = (gfloa t) width / (upper - lower) ;

For the following code, let ruler->max_size = 1 and font->ascent = 1 1 .

0 0 5 sca le = ceil (ruler- >max_s ize / ruler- >metric - >pixe l s-per_un i t) ;
0 0 6 sprint f (unit_str , " %d " , sca le) ;
007 digit_height = font - >a scent ; / * a ssume descent == 0 ? * /

730 Chapter 15 • Miscellaneous Widgets

Then we have scale = 1 and digiCheight = 1 1 . On line 008, texCheight is assigned the value 12:

0 0 8 text_height = strlen (un i t_str) * digit_height + 1 ;

Then we go into a loop, looking at values in the metric rulecscale field until it, times

the increment, is greater than twice the texcheight (24 in this case) :

0 0 9 for (sca le = 0 ; scale < MAXIMUM_SCALES ; sca l e++)
0 1 0 i f (ruler- >metric - >ruler_sca l e [sca l e] * fabs (in cremen t) >

:2 * text_he ight)
all break ;

The loop terminates with scale = 5, meaning the label increment is 50. Let's try again
with a max_size of 128. In this case, increment is 2.01 992702, and the loop on lines 009

through 0 1 1 terminates with scale set to 6, which indexes the value 100 in the metric_ruler

scale field. Accordingly, only ticks 0, 100, and 200 are drawn this time.
Let's increase the size of the ruler by widening the window and see how that affects the

drawing of labels. Here the ruler size is 706 pixels, and with a ruler->max_size set to 1 , the

loop stops with scale = 4, meaning the label increment is 25. Thus, labels are drawn at the
following locations: 0, 25, 50, 75, . . . , 300. If we change the max_size attribute to 128, ticks

are labeled at intervals of 50.
My advice is to either set max_size to 0 or experiment with various values to see how

they affect the labeling of rulers in your application, and then use the value that gives you

the most pleasing results.

Tracking Mouse Movement

You (and users of your application) will notice that when the pointer is placed within the
ruler widget, it will respond to mouse movement by tracking the pointer. As the pointer is

tracked, the ruler widget will redraw the thumb so that it corresponds to the current pointer

position. By default, rulers do not respond to any movement that occurs outside of the ruler

widget. However, such behavior is often desirable. For an example of this behavior, display
an image in The GIMP and move the mouse around inside the window displaying the

image. The rulers will track the mouse movement within the image window to indicate

approximately over which pixel the mouse is located as it is moved. To achieve this effect,
use code similar to the following:

GtkWidget * ruler , *window ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
ruler = gtk_hruler_new () ;

gtk_s igna l_conn ect_obj ect (GTK_OBJECT (window) ,
"mot ion_not i f y_even t " ,
GTK_S IGNAL_FUNC (GTK_WIDGET_CLASS (
GTK_OBJECT (ruler) - >klass) - >motion_not i fy_event) ,
GTK_OBJE CT (ruler)) ;

GtkRuler 731

In the preceding code, window is the top-level window containing the ruler widget. Here

we ensured that motion_notify 3vent signals that are generated as movement within the

containing window occurs are also dispatched to the ruler widget for processing. The ruler
widget will handle the event as though it had occurred within its own window and will
update the ruler thumb to indicate the pointer position as it is tracked.

Sample Code

The following is the typical sample code presented for GtkRuler. In this case, a 300X 300
window is created. An instance of GtkTable containing two rows and two columns is added

to the window. A horizontal scrollbar is instantiated and inserted in the top row of the table.
A vertical scrollbar is instantiated and inserted in the leftmost column of the table. The

remaining cells of the table are intended to hold the content that the rulers represent; this
might be either a pixmap or an image widget, for example.

Listing 15.1 GtkRuler Example

0 0 1 #include <gtk/gtk . h>
0 0 2
0 0 3 main (int argc , char *argv []
0 04 {
0 0 5 GtkWidget *dialog_window , *table ;
0 0 6 GtkWidget *vruler , *hruler ;
0 0 7
0 0 8 gtk_init (&argc , &argv) ;
0 0 9
0 1 0 dialog_window = gtk_window_new (GTK WINDOW TOPLEVEL) ;
0 1 1 gtk_window-posi tion (GTK_WINDOW (dialog_window) , GTK WIN_POS_MOUSE) ;
0 1 2
0 1 3 gtk_widget_set_us i z e (dialog_window , 3 0 0 , 3 0 0) ;
0 1 4
0 1 5 table = gtk_table_new (2 , 2 , FALSE) ;
0 1 6 gtk_container_add (GTK_CONTAINER (dialog_window) , table) ;
0 1 7
0 1 8 hruler = gtk_hruler_new () ;
0 1 9 gtk_ruler_set_range (GTK_RULER (hruler) , 0 , 3 0 0 , 0 , 1) ;
0 2 0 gtk_table_attach (GTK_TABLE (table) , hruler , 1 , 2 , 0 , 1 ,
021 GTK_EXPAND I GTK_FILL, GTK_FILL, 0, 0);

0 2 2
0 2 3 vruler = gtk_vruler_new () ;
0 2 4 gtk_ruler_set_range (GTK_RULER (vruler) , 0 , 3 0 0 , 0 , 1) ;
0 2 5 gtk_table_attach (GTK_TABLE (table) , vruler , 0 , 1 , 1 , 2 ,
0 2 6 GTK_FILL , GTK_EXPAND I GTK_FILL , 0 , 0) ;
0 2 7
0 2 8 gtk_widget_show_all (dialog_window) ;
0 2 9 gtk_main () ;
0 3 0

732

GtkHRu ler

Class Name

GtkHRuler

Parent Class Name

GtkRuler

Macros

Widget type macro: GTK _TYPE_RULER

Object to widget cast macro: GTK _ HRULER (obj)

Widget type check macro: GTK _IS _ HRULER (obj)

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_RULER at runtime:
guint
gtk_hruler_get_type(void) ;

Create an instance of GtkHRuler:
GtkWidget *
gtk_hruler_new (void) ;

Class Description

Chapter 15 • Miscellaneous Widgets

GtkHRuler is a derived class of GtkRuler, which was previously described. GtkHRuler is used

to create a horizontal ruler. (GtkVRuler, the other class derived from GtkRuler, creates a verti
cal instance of GtkRuler.) The only function of interest in this class is gtlchrulecnewO:

GtkWidget *
gtk_hruler_new (void) ;

See the preceding discussion of GtkRuler for a sample program that makes use of
GtkHRuler and calls gtk_hrulecnewO.

GtkPreview

GtkPreview

Class Name

GtkPreview

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK_TYPE_PREV IEW

Object to widget cast macro: GTK _ PREV IEW (obj)

Widget type check macro: GTK_ IS_ PREV IEW (obj)

Supported Arguments

Prefix:GtkPreview::

Table 15.4 GtkPreview Arguments

Name

expand

Application-Level API Synopsis

Return the constant GTK_TYPE_PREVIEW at runtime:
GtkType
gtk-preview_get_type(void) ;

Create a new instance of GtkPreview, of the specified type:
GtkWidget *
gtk-preview_new(GtkPreviewType type);

Set the width and height of an instance of GtkPreview:
void

Permission

gtk-preview_si z e(GtkP review *prev iew , gint width , gint height) ;

733

734 Chapter 1 5 • Miscellaneous Widgets

Application-Level API Synopsis (Continued)

Copy data from a preview widget to the specified window:
void
gtk-preview-put(GtkPreview *preview, GdkWindow *window , GdkGC *ge ,

gint srex , gint srey , gint destx , gint desty , gint width ,
gint height) ;

Place a row of data in the preview widget:
void
gtk-preview_draw_row(GtkPreview *preview, guehar *data , gint x ,

gint y , gint w) ;

Specify whether a preview widget should expand to fit its allocation:
void
gtk-preview_set_expand(GtkPreview *preview , gboolean expand) ;

Set gamma correction on the preview widget:
void
gtk-preview_set_gamma(double gamma) ;

Set the dither mode of the preview widget:
void
gtk-preview_set_dither(GtkPreview *preview , GdkRgbDither dither) ;

Retrieve global information about preview widgets:
GtkPreviewlnfo *
gtk-preview_get_info(void) ;

Class Description

GtkPreview is perhaps the quickest method for displaying arbitrary image data, either RGB

or grayscale, without the need to concern yourself with the conversion of the image data
into a format that is compatible with the window in which it is being displayed (e.g. , its col
ormap, depth, visual class). It is not in the scope of this book to discuss the problem of dis

playing image data in an X window; see my book on the X Image Extension (XIE)

(Developing Imaging Applications With XIElib, Prentice Hall, 1998) or any good book on
Xlib to learn the issues involved. To briefly introduce the problem here, X requires that the

image data you display in a window be compatible with that window. The depth of the
image must be the same as that of the window in which it is being displayed (dithering is
one technique that can be used to reduce the pixel size of an image to correspond to that of
the window for which it is targeted). Also, RGB or grayscale data must be converted by the
application into pixel values that index a colormap maintained by the server and associated
with the target window.

GtkPreview 735

GtkPreview basically converts an RGB or grayscale image into pixel values. The pixels

in the result preserve the image content and are acceptable for display by the X server in a

given window.
The following example illustrates the basics involved with using a GtkPreview widget

to display a TIFF color image in a window. Mter I provide an overview of the program and

its structure, I will explain in detail the GtkPreview API that it uses.

Listing 15.2 Using GtkPreview to Display a TIFF Color Image

0 0 1 #include <t i f f io.h>
0 0 2 #include <stdl ib . h>
0 0 3
0 0 4 #include <gtk/gtk . h>
0 0 5 #include <X1 1/Xl ib . h>
006
0 0 7 static uint32 * raster ;
0 0 8 static int width , height ;
0 0 9 static GtkWidget *preview ;
0 1 0
0 1 1 void
0 1 2 Si zeAl locat ion (GtkWidget *widget , GtkAl locat ion *al locat ion)
0 1 3 {
0 1 4 guint i , j , k , RGB ;
0 1 5 guchar *buf ;
0 1 6
0 1 7 buf = (guchar *) malloc (width * 3) ;
0 1 8 i f (!buf)
0 1 9 return ;
0 2 0
0 2 1 for (i = 0 ; i < height ; i++) {
0 2 2 for = 0 , k = 0 ; j < width ; j++) {

0 2 3 RGB = raster[«he ight - 1) - i) * width + j] ;
0 2 4 buf[k+ O] TI FFGetR (RGB) ;

0 2 5 buf[k+ 1] TI FFGetG (RGB) ;

0 2 6
0 2 7
0 2 8

buf[k+2]
k + = 3 ;

TI FFGetB (RGB) ;

0 2 9
0 3 0

gtk-preview_draw_row (GTK_PREVIEW (preview) , buf , 0 , i , width) ;

0 3 1 i f (buf
0 3 2 free (buf) ;
0 3 3
0 3 4
0 3 5 int main (int argc , char *argv[])
0 3 6
037 uint3 2 RGB , pixel ;
0 3 8 uint 16 bit spersample , samplesperpixel ;
0 3 9 GtkWidget *window , *vbox ;
0 4 0 TIFF *tif ;
0 4 1
0 4 2 gtk_init (&argc , &argv) ;
0 4 3

0 4 5
0 4 6 t i f = TI FFOpen (argv[l] , " r ") ;

736

047

048 if (1 tif) {

Chapter 15 • Miscellaneous Widgets

049 printf ("Unable to open tiff file %s\n", argv [1]) ;

050 exit (1 };

051

052

053 TIFFGetField(tif, TIFFTAG_lMAGEWIDTH, &width};

054 TIFFGetField(tif, TIFFTAG_lMAGELENGTH, &height};

055 TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &bitspersample};

056 TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel};

057

058 if (samplesperpixel 1 = 3) {
059 printf ("Error: image is not RGB. \n") ;

060 exit (1 };

061

062

063 raster = (uint32*}malloc(width * height * sizeof (uint32}) ;

064

065 if (1 raster) {
066 perror("malloc" };

067

068

069

exit (1) ;

070 if (ITIFFReadRGBAlmage(tif, width, height, raster, a) } {
071 printf ("TIFFReadRGBAlmage () failed\n" };

072 exit (1 };

073

074

075 gtk_widget_set_usize(window, width, height };

076 vbox = gtk_vbox_new(FALSE, a};

077 gtk_container_add (GTK_CONTAINER (window) , vbox};

078

079 preview = gtk-preview_new(GTK_PREVIEW_COLOR};

080 gtk-preview_size(GTK_PREVIEW (preview) , width, height};

081 gtk-preview_set_expand(GTK_PREVIEW (preview) , TRUE};

082

083 gtk_signal_connect(GTK_OBJECT (preview) , "size_allocate",

084 GTK_SIGNAL_FUNC (SizeAllocation) , NULL};

085

086 gtk_box-pack_start(GTK_BOX(vbox}, preview, TRUE, TRUE, a};

087

088 gtk_widget_show_all(window };

089

090 gtk_main(};

091

The sample program is split into two functions, the obligatory mainO and a routine called
SizeAllocationO. The purpose of mainO in this example is to create a window into which the

image will be displayed, to read and parse the TIFF image data from the user-specified file,

and to create an instance of GtkPreview into which the image data will be displayed.

Lines 046 through 073 are dedicated to reading the TIFF image data into a buffer that can

be used by GtkPreview. This body of code (which would be better expressed as a function)

can be replaced with code that can handle other image types such as GIF, lPG, and so forth.

GtkPreview 737

The point of this code (or any image code you would execute in its place) is to get the image

data and its width and height.

0 4 6 t i f = TI FFOpen (argv [1] , " r ") ;
0 4 7
0 4 8 i f (! t i f) {
0 4 9 print f ("Unable to open t i f f f i l e % s \ n " , argv [l]) ;
0 5 0 exit (1) ;
0 5 1
0 5 2
0 5 3 TIFFGetField (t i f , TIFFTAG_lMAGEWIDTH , &width) ;
0 5 4 TIFFGetField (t i f , TIFFTAG_lMAGELENGTH , &he ight) ;
0 5 5 TIFFGetField (t i f , TIFFTAG_BITSPERSAMPLE , &bitspersamp l e) ;
0 5 6 TI FFGetField (t i f , TIFFTAG_SAMPLESPERPIXEL , &samplesperpixe l) ;
0 5 7
0 5 8 i f (samplesperpixel ! = 3) {
0 5 9 print f (" Error : image i s not RGB . \n ") ;
0 6 0 exit (1) ;
0 6 1
0 6 2
0 6 3 raster = (uint 3 2 *) mal l oe (width * height * si zeof (uint 3 2)) ;
0 6 4
0 6 5 i f (!raster) {
0 6 6 perror (" malloe ") ;
0 6 7 exit (1) ;
0 6 8
0 6 9
0 7 0 i f (!TIFFReadRGBAlmage (t i f , width , height , raster , 0)) {
0 7 1 print f (" TI FFReadRGBAlmage () failed\n ") ;
0 7 2 exit (1) ;
0 7 3

Here, the width and height of the image are stored i n global variables of the same names,

and the image data is stored in a uint32 * variable named raster. Notice on line 058 that I check

to see if libtiff reported a samples-per-pixel attribute of 3. If so, this is sufficient to indicate

that the data I am dealing with is RGB. If the image isn't RGB, then I exit the program
because I only support RGB data in this example. The other possible value is 1 ; this would
indicate that the data is grayscale. For simplicity sake, I have chosen to ignore grayscale
image data as well for this example. For more information on libtiff, the library used to read
and parse the TIFF file, you can execute the following command:

$ man l ibt i f f

Creating a Preview Widget

The code that is tasked with creating and configuring the preview widget is on lines 079
through 084. On line 079, gtk_preview_newO is called to create an instance of GtkPreview:

0 7 9 preview = gtk-preview_new (GTK_PREVIEW_COLOR) ;

738 Chapter 15 • Miscellaneous Widgets

The function prototype for gtlcpreview _newO is as follows:

GtkWidget *
gtk-preview_new (GtkPreviewType type) ;

The argument type can be one of the following values : GTK_PREVIEW _COLOR, used

when the image is triple-band RGB color, or GTK_PREVIEW _GRAYSCALE, used when
the image data is single-band grayscale. Here, I use GTK_PREVIEW _COLOR because I

am only supporting RGB color data in this example.

Setting the Image Size

On the following line, I tell the preview widget the size of the image it is going to be displaying:

0 8 0 gtk-preview_s ize (GTK_PREVIEW (preview) , width , height) ;

The function prototype for gtlcpreview _sizeO is as follows:

void
gtk-preview_s ize (GtkPreview *preview , gint width , gint he ight) ;

The first argument is an instance of GtkPreview. The remaining two arguments are the
width and height that the preview widget would like to be allocated in response to a size

request from a containing widget.

Setting the Expand Attribute

The next two functions, gtk_review _seCexpandO and the corresponding call to gtk_signal_

connectO, need some explanation:

0 8 1 gtk-preview_set_expand (GTK_PREVIEW (preview) , TRUE) ;
0 8 2
0 8 3 gtk_s ignal_connect (GTK_OBJECT (preview) , " s i ze_al locate " ,
0 8 4 GTK_SIGNAL_FUNC (S i zeAl locat ion) , NULL) ;

The function gtk_preview _secexpandO takes a boolean argument, expand:

void
gtk-preview_set_expand (GtkPreview *preview , gboolean expand) ;

The intent of the default value of FALSE is to tell the preview widget to make sure its

size is never made larger than the size specified by gtk_preview _seCsizeO or, if

gtk_preview _secsizeO has not been called, no larger than the initial size requisition of the
preview widget. In practice, the preview widget will accept whatever allocation it has been
given. In its internal size_allocation function, if expand has been set to TRUE, the upper
left comer of the preview widget's window will be aligned with the x and y coordinates of
its allocation, and its width and height will correspond to the width and height of its allo
cation. If expand is set to FALSE, the width and height of the preview widget will be the
smaller of the allocation width and height, or the preview widget'S requisition width and
height. (Again, the requisition width and height is either the original width and height of
the preview widget or the width and height of the preview widget assigned by a call to

GtkPreview 739

gtk_preview_sizeO.) Also, if expand is FALSE and the allocation width and/or height is

greater than the size given, the preview widget window will be centered within the area

described by the allocation.
I am not particularly fond of this aspect of GtkPreview (the centering of the preview widget

window in its allocation). For this reason, I advocate setting the expand attribute to TRUE, as
I do on line 08 l. The size_allocation signal function that I registered on line 083 is invoked

by Gtk+ when the widget is initially created and anytime the widget is resized. The code for

SizeAllocationO is duplicated in the following:

0 1 1 void
0 1 2 SizeAl locat ion (GtkWidget *widget , GtkAl locat ion *al location)
0 1 3 {
0 1 4 guint i , j , k , RGB ;
0 1 5 guchar *buf ;
0 1 6
0 1 7 buf = (guchar *) mal loc (width * 3) ;
0 1 8 i f (!buf)
0 1 9 return ;
0 2 0
0 2 1 for (i = 0 ; i < height ; i++) {
0 2 2 f o r (j = 0 , k = 0 ; j < width ; j ++
0 2 3 RGB = raster [((he ight - 1) - i) * width + j] ;
0 2 4 buf [k+ O] TIFFGetR (RGB) ;
0 2 5 buf [k+ 1] TIFFGetG (RGB) ;
0 2 6 buf [k+ 2] TIFFGetB (RGB) ;
0 2 7
0 2 8
0 2 9
0 3 0

k += 3 ;

gtk-preview_draw_row (GTK_PREVIEW (preview) , buf , 0 , i , width) ;

0 3 1 i f buf)
0 3 2
0 3 3

free (buf) ;

On line 017 , I allocate a buffer big enough to hold a row of image data. For each row in

the image (line 021) and for each pixel in a row (line 022), I extract the RGB components

of the pixel and pack them into the row buffer (lines 023 through 027).

Setting the Image Data

Continuing with the example, once a row has been constructed, I then call, on line 029,

gtk_preview_draw_rowO to add the row data to the preview widget so that it can be drawn
to the window. The function prototype for gtk_preview _draw _rowO is as follows:

void
gtk-preview_draw_row (GtkPreview *preview , guchar *data , gint x,

gint y, gint w) ;

The argument preview is an instance of GtkPreview, and data is the row of data (because I
am dealing with RGB data, each pixel is 3 bytes wide; when dealing with grayscale image data,
each pixel is 1 byte in width). The argument x indicates an offset within the row, in the range

740 Chapter 15 • Miscellaneous Widgets

[0, width - 1], while y indicates the row number and is in the range [0, height - 1]. The argu

ment w is the width of the data in pixels (not bytes) and must be in the range of [0, width - x].
(Practically speaking, w is never set to 0, however, because it makes no sense to write a zero

length row of data to a preview widget.)

As you can see, I am writing complete rows of data by setting x to 0, Y to the row number,
and w to the width in pixels of the image I am rendering. Also, I am ignoring the allocation

entirely, and I am always drawing the image at its original width and height (e.g. , the requisi

tion of the preview widget).

If I wanted to scale the image data to fit the allocation, I would do the following: First, I

would make a call to gtlcpreview _sizeO to change the size of the preview widget to match
the allocation. Next, I would scale the image data by whatever means are available to the new

preview widget size and then draw the image data using gtk_preview_draw_rowO as before.

Adding the following code to the top of SizeAllocationO illustrates the basic technique I have

just described:

uint 3 2 * newraster ;

i f (a l l ocat ion- >width ! = widget - >requisition . width I I
allocat ion- >height ! = widget - >requis i t ion . he ight &&
preview- >expand = = TRUE)

} e l se

width = al locat ion- >width ;
height = allocat ion- >height ;

gtk-preview_size (preview , width , height) ;
newraster scale (raster , width , height) ;

newraster raster ;

RGB = newraster [((height - 1) - i) * width + j] ;

Here, raster holds the original, unsealed data, and sealeO is a function (not discussed in detail
here) that scales the image in the raster from its original dimensions of oldwidth, oldheight to

the new dimensions specified by the allocation object.

Drawing the Image Data

Calling gtk_preview _draw _rowO is not sufficient for the actual rendering to the preview
widget window to take place. An expose event is needed to cause this to happen. This can
be done by calling gtk_ widgecqueue_drawO, passing the preview widget as an argument.

The function gtk_preview _putO transfers the image data you have previously placed in
the preview image with a call to gtk_preview _draw _rowO; it is called by the GtkPreview
widget expose signal function. You can call this function at any time to render the image
data to an arbitrary window. The function prototype for gtk_preview _putO is as follows:

GtkPreview 741

void
gtk-preview-put (GtkPreview *preview , GdkWindow *window , GdkGC *gc ,

gint srcx , gint srcy , gint destx , gint desty , gint width ,
gint height) ;

The argument preview is an instance of GtkPreview that has data to be displayed, and
window is the GdkWindow that will receive that data. The argument gc is a GdkGC that is

compatible with window. The arguments srcx and srcy identify the location of the pixel cor
responding to the upper-left comer of the image data that is to be displayed, while destx and
desty define the upper-left comer of the area within the target window to which the data will
be rendered. Finally, the arguments width and height define the size of the image data, in

pixels, that will be copied to the window. Let's look at how the GtkPreview expose signal

function calls gtk_preview_putO:

stat ic gint
gtk-preview_expose (GtkWidget *widget , GdkEventExpose * event)
{

GtkPreview *preview ;
gint width , height ;

preview = GTK_PREVIEW (widget) ;

gdk_window_get_si z e (widget - >window , &width , &height) ;

gtk-preview-put (GTK_PREVIEW (widget) ,
widget - >window , widget - >style - >black_gc ,
event- >area . x - (width - preview- >buf fer_width) /2 ,
event - >area . y - (height - preview- >buffer_height) /2 ,
event - >area . x , event - >area . y ,
event - >area . width , event - >area . height) ;

return FALSE ;

Here, the expose function is copying only those pixels from the image data that corre
spond to the area exposed. The source x and y coordinates and the destination x and y
coordinates are a function of the expose event origin (event->area.x, event->area.y), and
the size of the image copied is defined by the size of the area exposed (event->area.width,
event->area.height) .

Miscellaneous GtkPreview Functions. The next two functions allow you to control the
gamma correction of the image data and to choose a dithering technique to be applied to
the image data if dithering is required prior to display.

Setting the Dither Preference. The function gtk_preview _seCditherO:

void
gtk-preview_set_dither (GtkPreview *preview , GdkRgbDither dither) ;

742 Chapter 15 • Miscellaneous Widgets

allows an application to tell GDK when to dither (or not dither) images of a higher fidelity

than the display supports. The argument dither can be one of the values specified in Table

15 .5 .
Table 1 5 . 5 GdkRgbDither Values

Dither Mode

GDK_RGB_DITHER_NONE

GDK_RGB_DITHER_NORMAL

GDK_RGB_DITHER_MAX

Meaning

The image will not be dithered.

Perform dithering in 8-bit or lesser visuals.

Perform dithering in 16-bit or lesser visuals.

Note that if GDK_RGB_DITHER_NONE is selected, the image data will be levels

adjusted so that it is compatible with the visual class and depth of the window to which it

is rendered. This may introduce a posterization effect if the levels reduction is dramatic

(i.e., 24-bit RGB data displayed in an 8-bit PseudoColor window).
My recommendation is to always call this function and pass GDK_RGB_DITHER_MAX

as the argument. This will ensure that the image data you display will show at its best, regard

less of the display or X server to which your application is connected.

Setting the Gamma. You can set the gamma used by all GtkPreview widgets by calling

the function gtk_preview _set�amma():

void
gtk-preview_set_gamma (double gamma) ;

The argument gamma can be any value in the range [0.0, 1 .0]. Often, 0.8 is a good choice
because many monitors are adjusted for a gamma of 0.8, but the default value of 1 .0 yields
acceptable results as well. A gamma of 0.0 renders the image black by driving the brightness

of the image to an absolute minimum. At the other end of the range, 1 .0 sets the brightness of
the image to the highest possible value.

Retrieving Global Information About Preview Widgets. The final GtkPreview func
tion, gtk_preview �eUnfo() :

GtkPreviewlnfo *
gtk-preview_get_info (void) ;

retrieves global information about preview widgets. The function takes no arguments and
returns a pointer to a GtkPreviewInfo structure, which is defined as follows:

struct GtkPreviewlnfo
{

} ;

GdkVi sual *visual ;
GdkColormap *cmap ;
guchar * l ookup ;
gdouble gamma ;

GtkProgress 743

The field visual is obtained by GtkPreview by calling gdk_rgb�ecvisualO, and cmap

is obtained via a call to gdk_rgb�eccmapO. These functions return the visual and color
map, respectively, chosen by GDK when it was initialized at startup. The field lookup is a

256-element lookup table created by GtkPreview that is used internally by GtkPreview

when applying gamma values (other than 1 .0) to the image data as it is drawn. The field
gamma holds the preview widget gamma value, either 1 .0 (the default) or the value set by

a call to gtk_preview _set�ammaO.

GtkProgress

Class Name

GtkProgress

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK_TYPE_PROGRESS

Object to widget cast macro : GTK_PROGRESS (obj)

Widget type check macro: GTK_I S_PROGRESS (obj)

Supported Arguments

Prefix: GtkProgres s: :

Table 15.6 Arguments

Name

texcxalign

texcyaIign

Type

GTK_TYPE_BOOL

GTK_TYPE_BOOL

GTICTYPE_FLOAT

GTICTYPE.-FLOAT

Permissions

GTK�RG_READ�

GTK_ARG_READWRITE

GTICARG_READWRITE

GTK�G_READ�

744

Application-Level API Synopsis

Retrieve the constant O'TK.-TYPE.,LPR.()GRESS at runt:ime:
GtkType
gtk-p rogress_get_type (voidt i

Enable or disable the display of the progress widget text:
void

Chapter 1 5 • Miscellaneous Widgets

gtk-progres s_set_show_text (GtkProgress *progress , gint show_text) ;

Set the horizontal and vertical alignment of the progress widget text:
void
gtk-progress_set_text_al ignment (GtkProgress *progre s s ,

gfloat x_al ign , gfloat y_al ign) ;

Set the progress widget fonnat string (see text):
void
gtk-progress_set_format_string (GtkProgres s *progress ,

const gchar * format) ;

Set the progress widget adjustment object (see text):
void
gtk-progress_set_adj ustment { GtkProgress *progress ,

GtkAdj ustment * adj ustment) ;

Initialize the range and value attributes of the progress widget:
void
gtk-progres s_conf igure { GtkProgres s *progress , gfloat value ,

gfloat min , gfloat max) ;

Set the progress widget percentage:
void
gtk-progress_set-percentage (GtkProgress *progress ,

gfloat percentage) ;

Set the progress widget value:
void
gtk-progress_set_value {GtkProgres s *progress , gfloat value) ;

Retrieve the progress widget value:
gf loat
gtk-progress_get_value (GtkProgres s *progres s) ;

Set the progress widget activity mode (TRUE or FALSE. see text):
void
gtk-progress_set_act ivity_mode (GtkProgress *progress ,

guint act ivity_mode) ;

Retrieve the current text associated with the progress widget:
gchar *
gtk-progress_get_current_text (GtkProgress *progress) ;

GtkProgress

Application-Level API Synopsis (Continued)

Get the text that would be displayed by the progress widget, given a value:

gchar *
gtk-progres s_get_te�t_from_va�ue(Gtkp rogres s *progress ,

gfloat valuel;

Get the current percentage displa!ed t!! the progress widget:
gfloat
gtk-progres s_get_curreRt�ceRtage(GtkProgres s *progress) ;

Given a value, determine wllat: percentage it represenlS:
gfloat
gtk-prog re ss�et-perceRtage_from_value(GtkProgres s *progress ,

g f loat value);

i - - -

Class Description

745

GtkProgress is a base or parent class that is not directly instantiated by an application. In Gtk:

1 .2, GtkProgress acts as the parent class of GtkProgressBar (GtkProgressBar is described in
the next section). Mainly, GtkProgress allows an application to control the aspects of widgets

(in Table 15 .7) that derive from it.

Table 15.7 GtkProgress Attributes

Attribute

initial state

text

value and percentage

activity mode

Explanation

Controls the range and adjustment attributes of a
progress widget.

Toggles the display of text, fonnats its display,
and retrieves its current value.

Gets or sets the current value or percentage of the
progress widget.

Controls how the progress widget displays its
current state (either discretely or continuously).

The next several sections describe each of these attributes and the functions that control
them in detail . The discussion is biased towards GtkProgressBar usage; how these attributes

are interpreted by other classes that derive from GtkProgress will vary to some degree.

746 Chapter 15 • Miscellaneous Widgets

Initialization

Because GtkProgress is a base class, no widget creation functions are provided. And because

the only class inheriting from GtkProgress in Gtk 1 .2 is GtkProgressBar, you create an instance
of GtkProgressBar indirectly by calling gtk_progress_bar_newO, which is described later in

this chapter. Regardless of the widget inheriting from GtkProgress, once you have created an

instance of a widget that inherits from GtkProgress, you may call any of the functions I

describe in this section and in the following sections.

When you instantiate a derived class of GtkProgress, you either provide it an adjustment
object (see gtk_progress_bar_new_with_adjustment()) or allow it to create its own adjust
ment (as is the case with gtk_progress_bar_new()). Regardless of how the original adjust

ment object is created, you can replace the adjustment object with a new one by calling
gtk_progress_secadjustmentO:

void
gtk-progress_set_adj ustment (GtkProgress *progress ,

GtkAdj ustment *adj ustment) ;

The argument progress is an instance of a GtkProgress-derived class that has been coerced

to an instance of GtkProgress. The argument adjustment is an adjustment object (see Chapter

13 , "Range Widgets and Adjustment Objects," for details on creating and using adjustment
objects). In general, let the adjustment object be created for you if the adjustment object is not

to be shared with one or more additional Gtk+ widgets that make use of adjustment objects, or

if the GtkProgress-derived widget is the first widget of a set of widgets that will share a com

mon adjustment object. The remaining widgets in the set, in this case, should not be creating
their own adjustment objects; instead, they should be provided, at the time of their creation, the

adjustment object that was created by the progress-derived widget.

The following code sections:

GtkWidget * w ;
GtkAdj ustment * adj ;

w = gtk-progress_bar_new () ;
adj = gtk_adj ustment_new (o , 1 , 3 0 0 , 0 , 0 , 0) ;
gtk-progress_set_adj ustment ((GTK_PROGRESS (w) , adj) ;

and

GtkWidget * w ;
GtkAdj ustment *adj ;

adj = gtk_adj ustment_new (O , 1 , 3 0 0 , 0 , 0 , 0) ;
w = gtk-progress_bar_new_with_adj ustment (adj) ;

generate the same result.
The second and final function in this category, gtk_progress_configureO:

void
gtk-progress_configure (GtkProgress *progress , gfloat value ,

gfloat min , gfloat max) ;

Gtk Progress 747

is used to set the lower, upper, and value attributes of a GtkProgress-derived widget. The
argument progress is an instance of a GtkProgress-derived widget, and value, min, and max
correspond to that widget's value, lower, and upper adjustment object attributes, respec

tively, which will become effective once the function returns.

Text
GtkProgress widgets maintain a text string that can be used by the derived widget class to

display a label that conveys the following information to the user: percentage complete,
current value, minimum (lower) value, and maximum (upper) value.

The application can determine not only whether the string should be displayed (if sup
ported by the GtkProgress-derived class), but the format of the text that is displayed. The
format of the text is defined by a format string that is similar to the format string used in the
printf(3) family of functions. Let's discuss the format string in detail first. A format string
consists of any arbitrary text you care to include, as well as directives that are parsed for

and replaced by GtkProgress when it is asked by the subclass instance to construct a string

for display. A directive is a substring of the format string that matches the following regular
expression: % {0-2}[%pPvVlLuU]. That is, a % character, followed by an optional 0, 1 , or

2, followed by one of the following characters : p, P, v, V, 1, L, u, or U. Table 15 .8 lists the

meanings assigned to this last set of characters.

Table 15.8 Format String Directives

Character

%

p or P

v or V

l or L

u orU

Meaning

Literal %

Current percentage

Current value

Low value in the range

Upper value in the range

The optional 0, 1 , or 2 indicates the number of significant digits to display after a value.
Some examples will help make this clear. The format string "Hello World" will result in a

text value of "Hello World" because no directives are included in the format string. The format
string ''The value is %v in the range [%1, %u]", given a lower bound of 0, an upper bound of
100, and a current value of 75, results in the text value "The value is 75 in the range [0, 100]".
Given the same state, the format string ''The current value is %2v" results in the text ''The cur

rent value is 75 .00".
The default format string is "%P %%", which (again, given the preceding state) will

result in the text "75 %" (here, the %P is replaced with the percentage, and the %% results
in a literal % in the generated text).

Now that we know what format strings are and how to create them, how does one replace
the default string? To do so, call gtk_progress_seCformaCstringO :

748 Chapter 1 5 • Miscellaneous Widgets

void
gtk-progress_set_format_string (GtkProgress *progress ,

const gchar * format) ;

The argument progress is an instance of the GtkProgress-derived class. The argument
format is a NULL-terminated ASCII C string, as previously described.

You can generate a copy of the text that would be created for a given value by calling
gtlcprogress�eCtextjrom_ valueO:

gchar *
gtk-progress_get_text_from_value (GtkProgress *progress , gfloat value) ;

The second argument, value, should be a value in the range supported by the progress
widget's adjustment object. Given the default format string and an adjustment object with
a range of [0, 1000], passing a value of 100 should return the string " 10 %". When you are
done with the string that is returned, you can release it by calling g_freeO. Note that calling

gtk_progress�eCtexCfrom_ valueO does not change the value of the progress widget

adjustment object.
You can get a copy of the text string that corresponds to current state of the progress widget

adjustment object by calling gtk_progress�eCcurrenCtextO:

gchar *
gtk-progress_get_current_text (GtkProgress *progres s) ;

The returned string can be disposed of by passing it to �freeO when it is no longer needed.

If you want the GtkProgress-derived widget to display text, you must enable it by calling

gtk_progress_seCshow _textO:

void
gtk-progres s_set_show_text (GtkProgress *progress , gint show_text) ;

Pass FALSE as the show_text argument to disable the showing of text, or pass TRUE to

enable it.

The final function provided by GtkProgress, related to text, is gtk_progress_seC

texcalignmentO:

void
gtk-progress_set_text_alignment (GtkProgress *progress , gfloat x_align ,

gfloat y_align) ;

Default values for x_align and y_align are 0.5. Acceptable values fall in the range [0.0,
1 .0]. With defaults, the text will be centered inside the progress widget. Values other than
the default will shift the origin of the text left to right or top to bottom, depending on the

values specified by the application. Most applications will use the default values and never
call this function.

GtkProgress 749

Value and Percentage

A progress widget is most commonly used to represent the state of some application task

that occurs over time. Consider an application that is downloading a file from a server on

behalf of the user. In this case, a progress widget might be used to convey to the user the

amount of data that has been received so far, as a percentage of the total size of the file. It

is up to your application to update a progress widget so that it correctly represents the state
of the operation being performed. Several functions provided by GtkProgress allow you to

set and get the value of the progress widget, either as an explicit value, or as a percentage

of the total range of values that the progress bar is capable of representing. To set the current

value of the progress widget as a percentage, call gtk_progress_secpercentageO:

void
gtk-progress_set-percentage (GtkProgress *progress , gfloat percentage) ;

The argument percentage is in the range of [0.0, 100.0] . To get the current percentage of

the progress widget, call gtk_progress�eccurrencpercentageO :

gfloat
gtk-progress_get_current-percentage (GtkProgress *progress) ;

The return value is a gfioat, also in the range [0.0, 100.0] . To set and get the current value

of the progress widget explicitly, use gtk_progress_sec valueO and gtk_progress�ec valueO,

respectively:

void
gtk-progress_set_value (GtkProgress *progress , gfloat value) ;

gf loat
gtk-progress_get_value (GtkProgress *progress) ;

Finally, you can determine what percentage is represented by a given value by calling

gtk_progress�ecpercentagejrom_ valueO:

gfloat
gtk-progress_get-percentage_from_value (GtkProgress *progress ,

gfloat value) ;

The argument value is any value in the range accepted by the progress widget. The function
return value is in the range of [0.0, 100.0] .

Activity Mode

All progress-derived widgets can support an activity mode. In the context of GtkProgress
Bar, this activity mode affects how the progress bar renders itself. To set the activity mode,
call gtk_progress_secactivity _modeO:

void
gtk-progress_set_act ivity_mode (GtkProgress *progress ,

guint act ivity_mode) ;

750 Chapter 15 • Miscellaneous Widgets

The argument progress is an instance of a GtkProgress-derived widget. The argument

activity_mode can be set to either FALSE or TRUE. In the case of GtkProgressBar, passing

the default value of FALSE causes the progress bar to display percentage information to the
user. If set to TRUE, activity mode will be enabled, and percentage information will not be

conveyed. Instead, a bar within the activity area of the widget will be continually moved

from left to right and back to indicate that activity is occurring.
You would enable activity mode when you need to show progress but are unable to provide

accurate percentage or value information about the activity that is occurring. An example of

such an activity would be a mail client attempting to connect to a mail server. The amount of

time needed to connect to the server cannot be known, so you cannot accurately report the com
pletion percentage of the task. In this case, you would want to set activity_mode to TRUE. An

example of a task that is measurable would be the compilation of a project that consists of, say,

24 files. In this case, you would set the range of the progress widget adjustment object so that
lower is 0, upper is 24, and the initial value is O. As each file in the project is processed by the
compiler, the value attribute of the progress widget would be incremented by 1. The progress
widget, as a result, would display the correct percentage as the compilation of the files in the
project progresses. In the next section, I discuss the GtkProgressBar widget. In that section, I

will present a sample program that exercises some of the functions provided by GtkProgress.

GtkProgressBar

Class Name

GtkProgressBar

Parent Class Name

GtkProgress

Macros

Widget type macro: GTK _ TYPE_PROGRESS_BAR

Object to widget cast macro: GTK_PROGRESS _BAR (obj)

Widget type check macro: GTK_IS_PROGRESS_BAR (obj)

Supported Arguments

Prefix:GtkProgessBar::

GtkProgressBar 751

Table 15.9 GtkProgressBar Arguments

Name Type Permissions

adjustment GTIcrYPE-.A1)JUSTMENT GTK_ARG_READ� I

orientation GTK_TYPE..;PROGRESS_BAR_
ORIENTATION

bar_style GTK_TYPEJ'R,OGRESS_BAR_STYLE

activity_step GTK_TYPE....UINT

activity_blocks GTK_TYPE_UINT

discrete_blocks GTK...TYPE_UINT

Appl ication-Level API Synopsis

Retrieve the constant GTK-TYPEJ'R,OORESS_BAR at runtime:
GtkType
gtk-progress_bar_get_type (void) ;

Create a new instance of GtkProgressBar:
GtkWidget *

gtk-progress_bar_new (void) i

GTK�G_CONSTRUCT

GTK_ARG_READWRlTE

GTK_ARG_READWRITE

GTK�G_READ�

GTK_ARG_READ�

GTK_ARG_READ�

Create a new instance of GtkProgressBar with a specified adjustment object:
GtkWidget *
gtk-progress_bar_new_with_adjustment (GtkAdj ustment *adjustment) ;

Set the progress bar style (GTK-PROGRESS_CONTINUOUS or GTKYROGRESS_DISCRETE):
void
gtk-progress_b ar_set_bar_style (GtkProgres sBar *pbar,

GtkProgressBarStyle style) ;

Set the number of discrete blocks displayed by the progress bar:
void
gtk-progress_bar_set_di screte_b locks (GtkProgressBar *pbar ,

guint blocks) ;

Set the progress bar activity step (see text):
void
gtk-progress_bar_set_act ivity_step (GtkProgressBar *pbar,

guint step) ;

Set the number of activity blocks displayed by the progress bar:
void
gtk-progress_bar_set_activi ty_blocks (GtkProgressBar *pbar ,

guint blocks) ;

752 Chapter 15 • Miscellaneous Widgets

Application-Level API Synopsis (Continued)

Set the progress bar orientation to GTK_PROGRESSJ.EFCTO_RIGHT,
GTK_PROGRESS_RIGHT_TOJ.EFf, GTK_PROGRESS_BOITOM_TO_TOP, or
GTK_PROGRESS_TOP _TO_BOITOM:
void
gtk-progress_bar_set_orientation(GtkP rogressBar *pbar ,

GtkProgressBarOrientation orientation) ;

Class Description

GtkProgressBar is a child class that inherits functionality from GtkProgress. To use Gtk

ProgressBar, you must be familiar with several of the functions that the GtkProgress API

provides. For this reason, I suggest that you read the preceding section on GtkProgress
before reading this section. I will, at the end of this section, present a small application that

will illustrate how both of these classes are typically used together.
GtkProgressBar implements progress bars that are similar to the ones illustrated in Figures

1 5 . 1 and 15 .2. These figures illustrate the two types of progress bars supported by GtkPro
gressBar. The first type (see Figure 15 . 1) is used to indicate what I refer to as start-to-finish

progress, as well as the occurrence of an activity. You use a progress bar of this type whenever

you know the extent of an activity and can measure its progress as it is being performed. For

example, you might be writing a program designed to connect to a server and download a file.

If you know the size of the file being downloaded, you can use a start-to-finish progress bar
to show activity as the download is performed, as well as to report during that time how much
of the file has actually been downloaded.

Figure 15.1 Start-To-Finish Progress Bar Figure 15.2 Activity Progress Bar

The second type of progress bar (see Figure 15 .2) is used when you need to indicate activity
but are unable to determine the extent of the activity and/or how far along the activity has pro
gressed from start to finish during the time the activity is occurring. An example of an activity
that is well suited to this type of progress bar is connecting to a server such as the one I

described in the previous paragraph. Usually, an application will be unable to determine
exactly how long it will take for it to connect to a server. In a case such as this, an application
might use an activity progress bar. Because an activity progress bar updates itself continuously,

GtkProgressBar 753

the user will know that work is being performed by the application and, perhaps more impor

tantly, that the program has not crashed or become hung while doing it.

Creating Progress Bar Widgets
Now that we know what progress bars are, let's take a look at the functions exposed by the

progress bar API. To create a new instance of GtkProgressBar, call gtk_progress_bar_newO:

GtkWidget *
gtk-progress_bar_new (void) ;

The return value is an instance of GtkWidget. For functions in GtkProgressBar that require

an instance of GtkProgressBar, use the GTK_PROGRESS_BAR macro. For example:

GtkWidget *w ;

w = gtk-progress_bar_new () ;
gtk-progress_bar_set_act ivity_step (GTK_PROGRESS_BAR (w) , 1 0) ;

Similarly, if you need to call a GtkProgress function, use the GTK_PROGRESS macro

to cast a GtkWidget instance to an instance of GtkProgress.

By calling gtk_progress_bar_newO, an adjustment object will automatically be created for
use by the progress bar widget. If you want to provide an adjustment object of your own, you

can do so by calling gtk_progress_bar_new_with_adjustmentO and passing the adjustment

object as an argument:

GtkWidget *
gtk-progress_bar_new_with_adj ustment (GtkAdj ustment *adj ustment) ;

Setting the Progress Bar Style

A progress bar can have one of two styles. To change the style, you can call gtk_progress_

bar_seCbar_styleO:

void
gtk-progress_bar_set_bar_style (GtkProgressBar *pbar ,

GtkProgressBarStyle style) ;

GtkProgressBar supports two distinct update styles. The first of these styles, GTK_
PROGRESS_CONTINUOUS, is the default style. This style tells the progress bar to update
immediately as changes are made to the progress widget value or percentage. The progress
bar will render as illustrated in Figure 15 . 1 as a single, continuous bar. The other style,

GTK_PROGRESS_DISCRETE, tells the progress bar to update itself at discrete points in
time, such as at 10%, 20%, and so forth. The progress bar is rendered to reflect the update

interval chosen by the application (the default interval is 10), as shown in Figure 15 .3 . The bar
style is only valid when the progress bar is operating in start-to-finish mode, and it is ignored

in activity mode.

754

Figure 15.3 Start-To-Finish Progress Bar, Discrete Blocks

Chapter 15 • Miscellaneous Widgets

You can change the update interval of a GTK_PROGRESS_DISCRETE-style progress

bar widget by calling gtk_progress_bar_seCdiscrete_blocks():

void
gtk-progres s_bar_set_discrete_blocks (GtkProgressBar *pbar ,

guint blocks) ;

The default number of blocks, as previously mentioned, is 1 0. To determine at which

point blocks will be added to the progress bar with a range of [n, m] and p blocks, use the

following equation: (m - n) / p. For example, if the progress bar range is [0, 1 00] and the

number of blocks is set to 20, then 3 blocks will be displayed when the value of the progress
bar is set to a value in the range [1 5 , 1 9].

Controlling the Speed of an Activity Progress Bar

An activity mode progress bar can have a couple of its attributes modified as well. The first of

these attributes, the step attribute, determines how rapidly the progress bar moves from left to

right and back and can be set by calling gtk_progress_bar_secactivity_step():

void
gtk-progress_bar_set_act ivity_step (GtkProgressBar *pbar , guint step) ;

The argument step is an unsigned integer. However, the widget interprets it internally as

a signed value, so make sure you pass a non-negative value (values less than zero appear to

cause undefined behavior). Setting the activity step to zero causes the progress bar to stop

movement or pause. Values above zero result in increased movement from either end of the

progress bar widget. My experience shows that there is little benefit to setting the progress

bar step to values greater than about 20 or 30. The default value of 3 is suitable for most

applications.

Setting the Bar Size of an Activity Progress Bar

The other attribute you can change is the number of activity blocks displayed by an activity
mode progress bar. In reality, what is being set here is the size of the bar that moves back and

forth. Meaningful values are in the range of [2, 20] and must be greater than 1 ; otherwise,
Gtk+ will clip the value to 2. To change the number of activity blocks displayed by the
progress bar, you can call gtk_progress_bar_secactivity _blocks():

GtkProgressBar

void
gtk-progress_bar_set_act ivity_blocks (GtkProgressBar *pbar ,

guint blocks) ;

Setting the Progress Bar Orientation

755

The final function supported by GtkProgressBar is used to set the orientation of the
progress bar to one of four values : GTK_PROGRESS_LEFCTO_RIGHT, GTK_

PROGRESS_RIGHT_TO_LEFf, GTK_PROGRESS_BOTTOM_TO_TOP, or GTK_

PROGRESS_TOP _TO_BOTTOM. The function gtlcprogress_bacsecorientationO

accepts a progress bar instance and one of the preceding values:

void
gtk-progress_bar_set_orientat ion (GtkProgressBar *pbar ,

GtkProgressBarOrientat ion orientat ion) ;

Most applications will use the default, which is GTK_PROGRESS_LEFf_TO_RIGHT.

For the most part, GTK_PROGRESS_LEFf_TO_RIGHT and GTK]ROGRESS_

RIGHT_TO_LEFf are identical if the progress bar is executed in activity mode and are
used to denote a horizontal progress bar. Similarly, GTK]ROGRESS_

BOTTOM_TO_TOP and GTK_PROGRESS_TOP _TO_BOTTOM are identical in activity

mode. In start-to-finish mode, GTK_PROGRESS_LEFf_TO_RIGHT indicates a horizon
tal progress bar that adds blocks from left to right. The other orientations in start-to-finish

mode are similarly self-explanatory.

Sample Program
The following is the source code for a sample program that simulates connecting to an ftp

server and downloading a set of files (see Figures 1 5 . 1 and 1 5 .2):

Listing 15.3 GtkProgressBar Example

0 0 1 # include <gtk/gtk . h>
0 0 2 #include <stdlib . h>
0 0 3
0 0 4 I I make l i f e eas ier and make these external
0 0 5
0 0 6 static int t imer1 , t imer2 ;
0 0 7 static GtkWidget *dloadwin ;
0 0 8
0 0 9 #def ine NUMFILES 2 5
0 1 0
0 1 1 I I generate a random connect ion t ime
0 1 2
0 1 3 #def ine RAND (lowe r , upper) (int) ((((f loat) random () I RAND_MAX) * \
0 1 4 (upper - lower)) + lower)
0 1 5
0 1 6 I I user canceled the download operation
0 1 7
0 1 8 stat ic void
0 1 9 CancelDownload (GtkWidget *widget , GtkWidget *window)

756

0 2 0
0 2 1 gtk_t imeout_remove (t imer1) ;
0 2 2 gtk_widget_destroy (window) ;
0 2 3
0 2 4

Chapter 1 5 • Miscellaneous Widgets

0 2 5 I I s imulate the completion of a single f i l e download
0 2 6
0 2 7 stat ic gint
0 2 8 DownloadTimeout (gpointer data)
0 2 9 {
0 3 0 gf loat new val ;
0 3 1 GtkAdj ustment * adj ;
0 3 2
0 3 3 adj = GTK_PROGRESS (data) - >adj ustment ;
0 3 4
0 3 5 new_val = adj - >value + 1 ;
0 3 6 i f (new_val > adj - >upper)
0 3 7 CancelDownload ((GtkWidget *) NULL , dloadwin) ;
0 3 8 return (FALSE) ;
0 3 9
0 4 0
0 4 1 gtk-progress_set_value (GTK_PROGRESS (data) , new_val) ;
0 42
0 4 3 return TRUE ;
044
0 4 5
0 4 6 I I s imulate the download of a s e t of f i les
0 4 7
0 4 8 stati c void
049 DownloadFile ()
0 5 0 {
0 5 1 GtkWidget *dialog_window , * label , *progress , *button ;
0 5 2
0 5 3 dialog_window = dloadwin = gtk_dialog_new () ;
054 gtk_window_set_modal (GTK_WINDOW (dialog_window) , TRUE) ;
0 5 5
0 5 6 gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;
0 5 7
0 5 8 l abel = gtk_label_new (" Downloading f i les . . . ") ;
0 5 9
0 6 0 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
0 6 1 label , TRUE , TRUE , 0) ;
0 6 2
0 6 3 progress = gtk-progress_bar_new () ;
0 6 4
0 6 5 gtk-progress_conf igure (GTK_PROGRESS (progre s s) , 1 . 0 , 1 . 0 ,
0 6 6 (f loat) NUMFILES) ;
0 6 7
0 6 8 gtk-progress_set_show_text (GTK_PROGRESS (progres s) , TRUE) ;
0 6 9
0 7 0 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,

GtkProgressBar

0 7 1
0 7 2

progress , TRUE , TRUE , 0) ;

0 7 3 button = gtk_button_new_with_label (" Cancel ") ;
0 7 4
0 7 5 gtk_signal_connect (GTK_OBJECT (button) , " c l icked " ,
0 7 6 GTK_SIGNAL_FUNC (CancelDownload) , dialog_window) ;
0 7 7

757

0 7 B gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,
0 7 9 button , TRUE , TRUE , 0) ;
O B O
O B 1 t imer1 = gtk_t imeout_add (2 0 0 , DownloadTimeout , progres s) ;
O B 2
O B 3 gtk_widget_show_al l (dialog_window) ;
O B 4
O B 5
O B 6 I I user h i t the " Cancel " button while connecting
O B 7
O B B stat ic void
O B 9 CancelConnect (GtkWidget *widget , GtkWidget *window)
0 9 0 {
0 9 1 gtk_t imeout_remove (t imer1) ;
0 9 2 gtk_timeout_remove (t imer2) ;
0 9 3 gtk_widget_destroy (window) ;
0 94
0 9 5
0 9 6 I I simulate the connect ion f inishing
0 9 7
0 9 B stat ic gint
0 9 9 Act ivityProgressDone (gpointer data)
1 0 0 {
1 0 1 GtkWidget *window = (GtkWidget *) data ;
1 0 2
1 0 3 gtk_t imeout_remove (t imer1) ;
1 04 gtk_widget_destroy (window) ;
1 0 5
1 0 6 DownloadFi le () ;
1 0 7 return FALSE ;
1 0 8
1 0 9
1 1 0 I I process an act ivity mode t imeout (s imulate the pass ing o f t ime
1 1 1 I I while connect ing
1 1 2
1 1 3 static gint
1 14 Act ivityProgressTimeout (gpointer data)
1 1 5 {
1 1 6 gfloat new_val ;
1 1 7 GtkAdj ustment *adj ;
1 1 B
1 1 9 adj = GTK_PROGRESS (data) - >adj ustment ;
1 2 0
1 2 1 new_val = adj - >value + 1 ;

758 Chapter 15 • Miscellaneous Widgets

1 2 2 i f (new_val > adj - >upper)
1 2 3 new val = adj - >lower ;
1 24
1 2 5 gtk-progress_set_value (GTK_PROGRESS (data) , new_val) ;

1 2 6
1 2 7 return TRUE ;
1 2 8
1 2 9
1 3 0 I I user h i t the " Connect " button i n the main dialog
1 3 1
1 3 2 stat ic void
133 Connect (GtkWidget *widget , GtkEntry *entry)
134 {
1 3 5 GtkWidget *dialog_window , * label , *progress , *button ;
1 3 6 char buf [1 2 8 1 ;
1 3 7 int connect t ime ;
1 3 8
1 3 9 char * server = gtk_entry_get_text (entry) ;

1 4 0
1 4 1 snprint f (buf , s i zeof (buf) - 1 , " Connecting to ' % s ' . . . " , server) ;

142
1 4 3 dialog_window = gtk_dialog_new () ;
144 gtk_window_set_modal (GTK_WINDOW (dialog_window) , TRUE) ;

1 4 5
1 4 6 gtk_window-posit ion (GTK_WINDOW (dialog_window) , GTK WIN_POS_MOUSE) ;

1 4 7
1 4 8 label = gtk_Iabel_new (buf) ;
1 4 9
1 5 0 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
1 5 1 label , TRUE , TRUE , 0) ;
1 52
1 5 3 progress = gtk-progress_bar_new () ;

1 54
1 5 5 gtk-progress_set_act ivity_mode (GTK_PROGRESS (progress) , TRUE) ;

1 5 6
1 5 7 gtk-progress_configure (GTK_PROGRESS (progress) , 1 . 0 , 1 . 0 , 1 0 . 0) ;

1 5 8
1 5 9 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dia1og_window) - >vbox) ,
1 6 0 progress , TRUE , TRUE , 0) ;

1 6 1
1 6 2 button = gtk_button_new_with_label (" Cancel ") ;

1 6 3
1 6 4 gtk_s ignal_connect (GTK_OBJECT (button) , " cl icked" ,

1 6 5 GTK_S IGNAL_FUNC (CanceIConnect) , dialog_window) ;

1 6 6
1 6 7 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_area) ,

1 6 8 button , TRUE , TRUE , 0) ;
1 6 9
1 7 0 t imer1 = gtk_t imeout_add (1 0 0 , Act ivityProgressTimeout , progres s) ;

1 7 1 connectt ime = RAND (1 0 0 0 , 8 0 0 0) ;
1 7 2 t imer2 = gtk_t imeout_add (connectt ime , Act ivityProgressDone ,

GtkProgressBar

1 7 3
1 7 4

(gpointer) dialog_window) ;

1 7 5 gtk_widget_show_al l (dialog_window) ;
1 7 6
1 7 7
1 7 8 main (int argc , char *argv [])
1 7 9 {
1 8 0 GtkWidget *dialog_window , *hbox , *button , * l abel , * entry ;
1 8 1
1 8 2 gtk_init (&argc , &argv) ;
1 8 3
1 8 4 dialog_window = gtk_dialog_new () ;
1 8 5 gtk_window-pos i t ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;
1 8 6
1 8 7 hbox = gtk_hbox_new (FALSE , 5) ;
1 8 8 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
1 8 9 hbox , TRUE , TRUE , 0) ;
1 9 0
1 9 1 label = gtk_label_new (" Server : ") ;
1 9 2 entry = gtk_entry_new () ;
1 9 3 gtk_entry_set_text (GTK_ENTRY (entry) , " ftp . gtk . org ") ;
1 9 4
1 9 5 gtk_box-pack_start (GTK_BOX (hbox) , label , TRUE , TRUE , 0) ;
1 9 6 gtk_box-pack_start (GTK_BOX (hbox) , entry , TRUE , TRUE , 0) ;
1 9 7
1 9 8 button = gtk_button_new_with_label (" Connect ") ;
1 9 9
2 0 0 gtk_s ignal_connect (GTK_OBJECT (button) , " cl i cked " ,
2 0 1 GTK_S IGNAL_FUNC (Connect) , entry) ;
2 0 2

759

2 0 3 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >action_are a) ,
2 0 4 button , TRUE , TRUE , 0) ;
2 0 5
2 0 6 gtk_widget_show_al l (dialog_window) ;
2 0 7 gtk main () ;
2 0 8

Figure 15.4 Sample Application Dialog

The program is organized as follows. The mainO function creates a dialog, as shown in
Figure 1 5.4. When the user clicks the Connect button, the function ConnectO is called.
ConnectO creates a dialog that contains a progress bar and a Cancel button (Figure 1 5. 1).
The progress bar is created as follows:

760 Chapter 15 • Miscellaneous Widgets

1 5 3 progress = gtk-progress_bar_new () ;
1 5 4
1 5 5 gtk-progress_set_act ivity_mode (GTK_PROGRESS (progress) , TRUE) ;
1 5 6
1 5 7 gtk-progress_conf igure (GTK_PROGRESS (progress) , 1 . 0 , 1 . 0 , 1 0 . 0) ;

On line 1 53, gtk_progress_bacnewO is called to create the progress bar widget. Then,

on line 1 55 , I call gtk_progress_seCactivity_modeO to put the progress widget into activity

mode. I do this because the progress bar, in this case, is used only to show the passing of

time. We are unable to use a start-to-finish progress bar because we have no idea how long

the connect operation takes.

On lines 170 through 173, I create two timers. The second of the two timers, timer2, will

fire at some random time between 1 and 8 seconds. The timer function called when timer2
expires, ActivityProgressDoneO, initiates the simulated ftp download. The first timer, timer! ,

is fired 1 0 times a second. The timer function invoked by this timer, ActivityProgressTime

outO, is responsible for updating the progress bar widget to indicate the passage of time as we

wait for a connection to the ftp server to be made.

1 7 0 t imer1 = gtk_t imeout_add (1 0 0 , Act ivityProgressTimeout , progress) ;
1 7 1 connectt ime = RAND (1 0 0 0 , 8 0 0 0) ;
1 7 2 t imer2 = gtk_t imeout_add (connectt ime , Act ivityProgressDone ,
1 7 3 (gpointer) dialog_window) ;

Take a look at ActivityProgressTimeoutO:

1 1 3 static gint
1 1 4 Act ivityProgressTimeout (gpointer data)
1 1 5 {
1 1 6 gfloat new_val ;
1 1 7 GtkAdj ustment *adj ;
1 1 8
1 1 9 adj = GTK_PROGRESS (data) - >adj ustment ;
1 2 0
1 2 1 new_val = adj - >value + 1 ;
1 2 2 i f (new_val > adj - >upper)
1 2 3 new_val = adj - >lower ;
1 2 4
1 2 5 gtk-progress_set_value (GTK_PROGRESS (data) , new_val) ;
1 2 6
1 2 7 return TRUE ;
1 2 8

Here we simply increment the progress bar adjustment object by 1 , unless the value goes
beyond the range of the adjustment object, in which case it is set to the adjustment object's

lower attribute. The value of the progress bar is then changed by making a call to
gtk_progress_sec valueO.

GtkTooltips 761

Now that we see how an activity mode progress bar is used by this example, we tum to
the topic of creating and using a start-to-finish mode progress bar to indicate progress as

files are downloaded from the ftp site.
As I mentioned earlier, timer2 will fire when the simulated connection to the ftp server

completes. The timer callback function, after tearing down the connection dialog, calls

DownloadFileO, which has a structure much like that of ConnectO, previously described.

DownloadFileO creates a dialog (refer to Figure 15.2) that contains, among other things, a

start-to-finish mode progress bar. The code that creates the progress bar is as follows:

0 6 3 progress = gtk-progress_bar_new () ;
0 6 4
0 6 5 gtk-progress_configure (GTK_PROGRESS (progres s) , 1 . 0 , 1 . 0 ,
0 6 6 (f loat) NUMFILES) ;
0 6 7
0 6 8 gtk-progress_set_show_text (GTK_PROGRESS (progress) , TRUE) ;

On line 065 , the range of the progress bar is set to [1 , NUMFILES] because we are sim

ulating the download of NUMFILES files. On line 068, I enable display of text in the

progress bar widget so that the percentage complete is displayed for the user, as can be seen

in Figure 15.2. Finally, on line 08 1 :

081 t imer1 = gtk_t imeout_add (2 0 0 , DownloadTimeout , progres s) ;

I register a Gtk+ timeout to be fired 5 times a second. The timeout function, Download

TimeoutO, increments the adjustment object value by 1 to simulate the downloading of a

single file. If we reach NUMFILES, the timer is killed, and the dialog is destroyed by call

ing CancelDownloadO (see line 037). This is the same function that would be invoked if

the user were to hit the Cancel button in the download dialog.

GtkTooltips

Class Name

GtkToo l t ips

Parent Class Name

GtkData

762

Macros

Widget type macro: GTK_TYPE_TOOLTIPS

Object to widget cast macro: GTK_TOOLTIPS (obj)

Widget type check macro: GTK _ IS _ TOOLTI PS (obj)

Appl ication-Level API Synopsis

Return the constant GTK_TYPE_TOOLTIPS at runtime:
GtkType
gtk_toolt ips_get_type (void) ;

Create a new instance of GtkTooltips:
GtkToolt ips *
gtk_toolt ips_new (void) ;

Enable tooltip display:
voi d

Chapter 15 • Miscellaneous Widgets

gtk_toolt ips_enable (GtkTooltips * tooltips) ;

Disable tooltip display:
voi d
gtk_tooltips_disable (GtkTooltips * tool t ips) ;

Set the delay between mouse-over and tooltip display:
voi d
gtk_toolt ips_set_delay (GtkTooltips * toolt ips , guint delay) ;

Add/change a tooltip for the specified widget:
void
gtk_toolt ips_set_t ip (GtkTooltips * toolt ips , GtkWidget *widget ,

const gchar *t ip_text , const gchar * tip-private) ;

Set the tooltip's foreground and background colors:
void
gtk_toolt ips_set_colors (GtkTooltips * tooltips , GdkColor *background ,

GdkColor * foreground) ;

Class Descri ption

Tooltips are small windows designed to display text (see Figure 1 5 .5) . A tooltip window is
created with the underlying X window override redirect attribute set to true, which means

the window is created without any window manager decorations (close boxes, title bars,
menus). A tooltip widget is made visible whenever the user positions the mouse pointer

Gtk Tooltips 763

over the widget associated with that tooltip, and the pointer remains inactive (or motionless)

for a predefined amount of time (the default time in Gtk+ 1 .2 is 500ms) .

Figure 15.5 The "Fill with a color gradient" Tooltips Window from The GIMP

Using Tooltips

Tooltip windows have two primary uses. The first, and perhaps most common use, is to provide

context -sensitive help for application users. (I will refer to this type of tooltip as a "help tooltip"

in the remainder of this section.) A help tooltip displays one or two sentences of text telling the

user what task will be performed should the widget described by the tooltip become activated

(see Figure 15 .5). Help tooltips are more effective for application users if they are consistently

worded throughout the application and are provided for all widgets of a specific type (e.g., if

you provide a help tooltip for one menu item, then help tooltips should be provided for all menu

items throughout the application).

Displaying Context-Sensitive Help. Several years ago, Apple Computer devised a help
system for the MacOS known as "balloon help." Apple Computer published guidelines for the

design of text displayed within balloon help windows. 1 believe that these guidelines, in the

absence of guidelines that may or may not be developed in the future for GNOME or Gtk+,

provide a good basis for designing text for the Gtk+ help tooltip windows in your application.
The following are some examples of the MacOS guidelines for designing balloon help text:

• The balloon help text for a button must be of the form "To [perform action] , click this

button" (e.g. , the text for an OK button in a dialog might be "To close this dialog and
accept your changes, click this button") .

• The balloon help text for a menu item must start with a verb and must describe what

will happen when the menu item is selected. For example, the Quit menu item in a
File menu might display the following help tooItip text: "Quits the application. If
there are any unsaved changes in documents that are open when this menu item is
selected, you will be given the chance to save them."

764 Chapter 1 5 • Miscellaneous Widgets

When implementing help tooltip windows, it is a good idea to provide the user with a way

to enable and disable their display; first-time users of a program will often appreciate help

tooltips, but those with experience will often find them to be annoying. GtkTooltips provides

functions (described later) that allow an application to enable and disable tooltip windows.

For more information on Apple's Balloon Help Human Interface Guidelines, go to

http://developer.apple.com and search on "Wording for Specific Balloon Types."

Display Application Data. The second use of tooltip windows is less common but, when

used, is often very effective. An application might use a tooltip window to display small
amounts of data corresponding to some item displayed in a list or some other container wid

get. For example, consider a tree widget being used to display the table of contents of an
online book. Each entry in the tree widget could have a tooltip that displays a one- or two-line

summary of the chapter that the mouse is currently positioned over in the tree. As another

example, a list widget might display a set of stock symbols. As the user mouses over a stock

symbol in the list, its tooltip window would display the full name of the company associated

with the symbol, as well as the current value of the stock and its high and low trading values

for the day. In the following text, I refer to this type of tooltip as an application data tooltip.

Tooltips Widgets

A tooltips widget is nothing more than a collection of widget-to-tooltip text mappings. An
application can choose to have a single tooltips widget for all of the tooltips that the application

supports, or several tooltips widgets to partition the application tooltips into a set of meaningful

groups. How these groupings are organized, if at all, is up to you to decide. You might, for
example, choose to have one tooltips widget for each dialog, or one tooltips widget for all of

the menu items and another tooltips widget for all of the button widgets in the application.

The more your tooltips widgets are organized as groups, the more flexible your application
can be in terms of letting the user enable or disable the display of certain types of tooltips used

throughout the application. For example, if an application supports both help tooltips and

application data tooltips, placing the help tooltips in one tooltips widget and the application

data tooltips in another tooltips widget allows your application to give the user the ability to

disable the help tooltips without disabling the display of the application data tooltips.

Creating a Tooltips Widget

To create a tooltips widget, call gtk_tooltips_newO:

GtkTool t ips *
gtk_toolt ips_new (void) ;

The return value is an instance of GtkTooltips.

Setting the Widget-to-Tooltip Mapping

Now that you have a tooltips widget, you can create a new widget-to-tooltip text mapping

and add it to the tooltips collection by calling gtk_tooltips_sectipO:

GtkTooltips

void
gtk_toolt ips_set_t ip (GtkToolt ips * tooltips , GtkWidget *widget ,

const gchar * t ip_text , const gchar * t ip-private) ;

765

The argument tooltips is the tooltips widget created by gtk_tooltips_newO, widget is the

widget component of the widget-to-tooltip text mapping, tip_text is the text component of

the mapping, and tip_private is optional private data that will be stored along with the map

ping in the tooltips widget collection and can be used with GtkTipsQuery as I will describe

later in this chapter. If you do not use GtkTipsQuery in your application, or if you do not

want to support it for this widget, you can set tip_private to NULL.
As previously described, you can add as many tooltip text-to-widget mappings as you

desire; simply call gtk_tooltips_seUipO once for each tooltip you want to add to the tool

tips collection. If you want to change the text associated with a specific widget already in

the tooltips collection, you can call gtk_tooltips_sectipO once again with different text; the

previous text associated with the widget will be freed by GtkTooltips.

Enabling and Disabling Tooltips

The remaining functions described here apply to all tooltips managed by a tooltips group.

To enable the display of tooltips in a tooltip group or collection, call gtk_tooltips3nableO:

void
gtk_tooltips_enable (GtkTooltips * tool t ips) ;

The argument tooltips is the tooltips group being enabled. Similarly, calling gtk_

tooltips_disableO:

void
gtk_toolt ips_disable (GtkTooltips * tool t ips) ;

will disable the display of tooltip text for all tooltips in a tooltips group. As I mentioned
earlier, it is a good idea to provide users with a preference setting or menu item that allows

them to show or hide tooltips, especially if the application makes use of a large number of

help tooltips.

Setting the Tooltips Delay

To change the amount of time the mouse must be inactive before a tooltip window is displayed,

call gtk_tooltips_secdelayO:

void
gtk_toolt ips_set_delay (GtkTooltips * toolt ips , guint delay) ;

The argument delay is the value in milliseconds that the mouse must remain motionless

before the tooltip window is displayed. The default value for delay is 500 ms, or one-half
second (1 second is equal to 1 ,000 ms).

766 Chapter 15 • Miscellaneous Widgets

Changing the Foreground and Background Colors

To set the foreground and background colors used by the tooltips in a tooltips grouping, call

gtk_tooltips_seccolorsO:

void
gtk_toolt ips_set_colors (GtkToolt ips * tooltips , GdkColor *background ,

GdkColor * foreground) ;

The argument colors can be obtained from the style system or from another widget, or

they can be allocated by making calls to gdk_colocallocO.

GtkTi psQuery

Class Name

GtkTipsQuery

Parent Class Name

GtkLabel

Macros

Widget type macro: GTK_TYPE_TIPS_QUERY

Object to widget cast macro: GTK_TI PS_QUERY (obj)

Widget type check macro: GTK_IS_TIPS_QUERY (obj)

Supported Arguments

Prefix: GtkTipsQuery : :

GtkTipsQuery

Table 15.10 GtkTipsQuery Arguments

Name

emiCalways

caller

labeUnactive

Ty�

G'rK.-TYPE_BOOL

GTK_TYPE_ WIDGET

G'rK.-TYPE_STR.ING

GTK_TYPE_STRING

Application-Level API Synopsis

Retrieve the constant GTICTYPE_TIPS_QUERY at runtime:
GtkType
gtk_tips_query_get_type (void) i

Create a new instance of GtkTipsQuery:
GtkWidget *
gtk_tips_query_new (void) ;

Enter tooltips query mode:
void

Permissions

GTK_ARG_READWRlTE

GTK_ARG_READWRITE

GTK_ARG_ WRITABLE

GTK_ARG_ WRITABLE

gtk_tips_query_start�query (GtkTipsQuery * t ips_query) i

Leave tooltips query mode:
void
gtk_tips_query_stop_query (GtkTipsQuery *tips_query) i

Specify the widget that can be used to trigger leaving tooltips query mode:
void
gtk_tips_query_set_cal ler (GtkTipsQuery * tips_query ,

GtkWidget * caller) i

767

Set text to be displayed by widgets that do not have tooltips and by the tips query widget when
query mode is not active:
void
gtk_tips_query_set_labels (GtkTipsQuery * t ips�query,

const gchar * label_inactive , const gchar * label_no_tip) ;

__ im ________ WliIffWWtfl ___ I1WM_OO_M_m __________ n __________ �ne;we'iill!miU8G

Class Description

GtkTipsQuery is a relatively simple-to-use widget that can augment a tooltips widget to
create a more robust help system for your application. A tips query widget lets the user

place an application into a query mode by clicking a button or selecting a menu item (for

768 Chapter 15 • Miscellaneous Widgets

example) that has been bound to the tips query widget. Once the application is in query

mode, the cursor is changed to indicate to the user that the application is in query mode.

The user can then click on any widget in the user interface to leave query mode and obtain

whatever form of help the application decides to support for the widget that was selected.

Creating an Instance of GtkTipsQuery

The number of functions in the GtkTipsQuery API is small, so we might as well take a look
at it now. As you read, you will gain an understanding of when and how to use a tips query

widget in your application.

To create an instance of GtkTipsQuery, call gtk_tips_query _newO:

GtkWidget *
gtk_t ips_query_new (void) ;

A widget is returned; use the GTK_TIPS_QVERY macro to coerce this widget to an
instance of GtkTipsQuery when calling the functions described in the following sections. The

tips query widget must be realized (but not necessarily mapped) for it to function correctly.

Being a child of GtkLabel, it will utilize screen real estate if it is added to, say, a box widget
and mapped. The idea behind having a visible presence in the user interface is that it gives the

application a location to display the tip (private) text (or some other message) as the user

mouses over widgets while in query mode. You may or may not want to make use of this

aspect of a tips query widget. If you do not want to display the tips query widget, that's okay,

but you must ensure that the tips query widget has a parent and that you also realize (but not

map) the tips query widget. A widget can be realized by calling gtk_widgecrealizeO. For

example:

GtkWidget * w ;

The widgeCselected Signal

1\vo signals can be emitted by GtkTipsQuery. The most important of these is the
widgeCselected signal. It is called when the user clicks on a widget while operating in query

mode. The function prototype for the signal function invoked for this signal is as follows:

gint (GtkWidget * t ips_query , GtkWidget *widget ,
const gchar *t ip_text , const gchar * t ip-private ,
GdkEventButton *event , gpointer func_data) ;

An impressive number of arguments are passed to this function. Of these, the most
important perhaps is tip_private because this can be used as a clue to how the application
should handle the signal. As you recall, you can register a texcprivate string when adding
a widget to a tooltip with gtk_tooltips_seCtipO, as explained earlier in this chapter. This

string can be anything you want it to be, including text to be displayed in a dialog that you
pop up or even the URL to a Web page (either local or remote) containing extensive help

facilities. The point is, once you find yourself in the signal function, it is up to you to decide

what level of help is provided. You can return TRUE from the widgecselected signal func-

Gtk TipsQuery 769

tion to indicate that you have handled the signal and that the application can leave query

mode. If you return FALSE, the application will remain in query mode until a nontooltips

widget, or the widget that put the application into query mode, is clicked on with the mouse.

If you choose to return FALSE when handling this signal, be prepared to receive the signal

once for the button press and once for the release. To avoid displaying help twice, you

should code the signal function to look at the event data passed in and return if the event

was a button release. You can do this by adding the code that follows to the top of the

widgecselected signal function:

if (event - >type = = GDK_BUTTON_RELEASE
return FALSE ;

Handling the widgeCentered Signal

The other signal, widgecentered, is, like widgecselected, only fired when the application
is in query mode. The function prototype for this signal function is similar to the one used

for the widgeCselected signal:

void t ips_query_widget_entered (GtkTipsQuery * t ips_query ,
GtkWidget *widget , const gchar * t ip_text ,
const gchar * t ip-private , gpointer * func_data) ;

The only difference is that the widgeCselected function passes button event information,

whereas the widgecentered function does not.
Generally, a mouse entering the widget is not the best time to be displaying any significant

amount of help data. While in query mode, the user may mouse over any number of widgets

en route to the widget for which the user has specific help needs. It would not be useful for the
application to pop up a dialog for each widget moused over during this process; it would, in

fact, be rather distracting. On the other hand, an application might decide to inform the user

that help is available for widgets as they are being moused over. One place to do this notifica

tion is in the tips query widget if it was realized and mapped by your application. The following

widgecentered signal function does just that:

static void

tips_query_widget_entered { GtkTipsQuery *tips_query , GtkWi dget *widget ,

const gchar *tip_text , const gchar *tip-private , gpointer *func_data l

gtk_label_set_text { GTK_LABEL { t ips_query l , { t ip-private ?

"Help is available for t his item" :

"Help is not available for t his item" l l ;

/* don ' t let GtkTipsQuery reset it ' s label */

Here I simply reset the text displayed by the tips_query widget to indicate whether the
item being moused over has help system support or not. In this example, we presume that
the application has registered tooltips for those widgets that support the display of help, and
that the tip_private argument passed to gtk_tooltips_sectipO is used by the help system to
determine what help to display and is therefore non-NULL. Widgets displaying tooltips but

770 Chapter 15 • Miscellaneous Widgets

having no help system support were added with NULL passed as the tip_private argument

to gtk_tooltips_seuipO.

Placing a Widget into Query Mode

All that really remains to be discussed is placing the widget into query mode. Query mode

will almost always be initiated by the user by selecting a menu item or clicking on a button.
Assume that the user clicks on a button labeled Help. To put the application into query

mode, we can call gtk_tips_query _start_queryO from the button clicked signal function:

void
gtk_t ips_query_start_query {GtkTipsQuery * t ips_query) ;

Or, we can arrange for Gtk+ to call the preceding function directly (e.g. , make it the
clicked signal function of the button) . This last method is the easiest, and most practical,

and is done as shown by the following code:

GtkTool t ips * t ips ;

gtk_s ignal_connect_obj ect {GTK_OBJECT {button) , " c l icked" ,
GTK_S IGNAL_FUNC { gtk_t ips_query_start_query) ,

GTK_OBJECT { t ipsq)) ;

An Example Using GtkTipsQuery

For the most part, the preceding is all you need to know to use a tips query widget. The follow

ing sample program puts all of the pieces together, with the exception of how to implement a

help system above the tips query facility described here (this is, of course, left to the reader to

implement):

0 0 1 # include <gtk/gtk . h>
0 0 2
0 0 3 stat ic gint
0 04 t ips_query_widget_selected { GtkWidget * t ips_query , GtkWidget *widget ,
0 0 5 const gchar * t ip_text , const gchar *t ip-private ,
0 0 6 GdkEventButton * event , gpointer func_data)
0 0 7
0 0 8 i f { t ip-private ! = (char *) NULL)
0 0 9 DoHelpSystem { t ip-private) ;
0 1 0 return TRUE ;
0 1 1

The function tips_query _ widgecselectedO, in the preceding listing, i s called whenever the
user clicks on a widget (in this example, a button) in query mode. If tip_private is non-NULL,
a help system function (not shown here) is called to display help text.

The rest of the program consists of mainO, which sets up a dialog containing two button
widgets. The first widget, labeled "Button that needs help", is the widget for which tooltip
text is registered by the application.

GtkTipsQuery

0 1 3 main (int argc , char *argv [])
0 1 4 {
0 1 5 GtkWidget *dialog_window , *button , * t ipsq ;
0 1 6 GtkTooltips * t ips ;
0 1 7
0 1 8 gtk_init (&argc , &argv) ;
0 1 9
0 2 0 dialog_window = gtk_dialog_new () ;
0 2 1 gtk_window-pos it ion (GTK_WINDOW (dialog_window) , GTK_WIN_POS_MOUSE) ;
0 2 2
0 2 3 button = gtk_button_new_with_label (" Button that needs help ") ;
0 2 4 gtk_widget_show (button) ;
0 2 5
0 2 6 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
0 2 7 button , TRUE , TRUE , 0) ;
0 2 8
0 2 9 t ips = gtk_tooltips_new () ;
0 3 0
0 3 1 gtk_toolt ips_set_t ip (GTK_TOOLTIPS (t ips) , button ,
0 3 2 " Cl ick on thi s button t o do something " , " help : button1 ") ;

771

Lines 023 through 032 illustrate the creation of the button and show how the tooltips

widget (not the tips query widget) is associated with the button. Notice that I set, on line

032, the tip_private text to "help:button l ". In this example, I assume that the string passed

is meaningful to the help system, which parses it and uses the result to determine what help

should be displayed.

0 3 3

On line 034, I create the tips query widget. Then, on lines 036 through 038, I connect the

widgecselected signal to the function tips_query _ widgeCselectedO that was previously

defined. On line 040, I add the widget to the dialog's vbox, and then on line 042, I realize it
by passing it to gtlC widgecrealizeO. It is important that the tips query widget have a parent

before it is realized; Gtk:+ will issue errors and behave badly if this is not done. Here is the

code I just described:

0 3 4 t ipsq = gtk_t ips_query_new () ;
0 3 5
03 6 gtk_s i gnal_connect_obj e c t (GTK_OBJECT (t i p s q) , " wi dget_se l e c t ed " ,

0 3 7 GTK_S IGNAL_FUNC (tips_query_widget_selected) ,
0 3 8 GTK_OBJECT (t ipsq» ;
0 3 9
0 4 0 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
0 4 1 t ipsq , TRUE , TRUE , 0) ;
0 4 2 gtk_widget_real ize (t ipsq) ;
0 4 3

The rest of mainO i s straightforward. O n lines 044 through 047, a button widget i s instan
tiated and added to the dialog action area. This button, when clicked, places the application

into query mode:

772 Chapter 1 5 • Miscellaneous Widgets

0 4 4 button = gtk_button_new_with_label (" Cl ick to en ter query mode ! ") ;
0 4 5 gtk_widget_show (button) ;
0 4 6 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dia log_window) - >a ction_a rea) ,
0 4 7 button , TRUE , TRUE , 0) ;
0 4 8

O n line 049, I register the clicked signal function, arranging it to call the GtkTipsQuery

function gtk_tips_query _starCqueryO that was discussed earlier:

04 9 gtk_s igna l_connect_obj ect (GTK_OBJE CT (button) , " c l icked " ,
0 5 0 GTK_S IGNAL_FUNC (gtk_t ips_query_sta rt_query) ,
0 5 1 GTK_OBJE CT (t ipsq)) ;
0 5 2
0 5 3 gtk_widget_show (dia log_window) ;
0 5 4 gtk_ma in () ;
0 5 5

Leaving Query Mode

As I mentioned at the start of this section, Gtk+ will automatically leave the query mode

once the user has clicked on any widget, regardless of whether that widget has a tooltip

associated with it or not. You can, if you need to, take the application out of query mode by

calling gtk_tips_query _stop_queryO and passing it the tips query widget involved:

void
gtk_t ips_query_stop_query (GtkTipsQuery * t ips_query) ;

As we have seen, the button, menu item, or other control that causes the widget to enter

query mode will, when clicked, cause the widget to leave query mode and return to normal

operation. You can, if you choose, change the widget that will, when clicked, bring the

application out of query mode. This can be done by passing the widget to gtk_tips_

query _seccallerO anytime prior to entering query mode:

void
gtk_t ips_query_set_ca l ler (GtkTipsQuery * t ips_query ,

GtkWidget *ca l l er) ;

Setting the Text Displayed by Widgets Without Tooltips

The final function I describe sets the text displayed by the tips query widget user interface

whenever the user mouses over, in query mode, a widget that does not have a tooltip regis

tered, as well as what is displayed by the tips query widget when the application is not in

query mode. This function has no effect if the tips query widget is not made visible in the VI

(Le., it is realized, not mapped). To change these strings, call gtk_tips_query _seUabelsO:

void
gtk_t ips_query_set_label s (GtkTipsQuery * t ips_query ,

con s t gchar * label_inact ive , con s t gchar * label_no_t i p) ;

GtkCombo 773

The argument label_inactive is the text string that will be displayed by the tips query widget

when not in query mode, if visible in the VI. The default is " ", meaning no text will be dis

played. The argument label_no_tip is the text displayed for all items that do not have tooltip
text when moused over in query mode. The default value of this string is "---No Tip---". You

must set both of these arguments to non-NULL values; otherwise, the call will fail.

GtkCombo

Class Name

GtkCombo

Parent Class Name

GtkHBox

Macros

Widget type macro: GTK_TYPE_COMBO

Object to widget cast macro: GTK_COMBO (obj)

Widget type check macro: GTK_IS _COMBO (obj)

Application-Level API Synopsis

Retrieve the constant GTK....TYPE_COMBO at runtime:
guint
gtk_combo_get_type (void) ;

Create a new instance of GtkCombo:
GtkWidget *
gtk_combo_new (void) ;

Force the value in the entry field to match a pop-up list item:
void
gtk_combo_set_va lue_in_l i s t (GtkCombo * combo , gint val ,

gint ok_ i f_empty) ;

Enable/disable the use of arrow keys to navigate the pop-up list:
void
gtk_combo_set_use_arrows (GtkCombo * combo , gint val) ;

774 Chapter 15 • Miscellaneous Widgets

Application-Level API Synopsis (Continued)

Control wrapping of arrow keys when used to navigate the pop-up list:
void
gtk_combo_set_use_arrows_always (GtkCombo * combo , gint val) ;

Set case sensitivity of pop-up list searches:
void
gtk_combo_set_case_sensitive (GtkCombo * combo, gint val) ;

Set the entry field text of a nonlabel widget pop-up list item:
void
gtk_combo_set_item_string (GtkCombo * combo, Gtkl tem * item,

const gchar * item_value) ;

Set the pop-up list items:
void
gtk_combo_set-popdown_strings (GtkCombo * combo, GList * strings) ;

Disable the firing of an activate signal by the entry field:
void
gtk_combo_disable_activate (GtkCombo * combo) ;

Class Description

GtkCombo implements the familiar combo widget illustrated in Figures 15.6 and 15.7. A

combo widget is a combination of a pop-up list widget and an entry widget. The goal of a

combo widget is to obtain a text string from the entry field. The value of the entry field is

either text entered into the entry field by the user or a string selected by the user from the

pop-up list. An application can force the user to select an item from the list, but the default

configuration allows the user to enter arbitrary text into the entry field.

Figure 15.6 Combo Widget

GtkCombo

Figure 15.7 Combo Widget Pop-up Menu

775

For most applications, creating and using a combo widget is a straightforward affair that

consists of executing the following steps:

1 . Create a combo widget with gtk30mbo_newO.

2. Add strings to the combo pop-up list with gtk30mbo_secpopdown_stringsO.
3 . Set the default value of the combo widget entry field by calling

gtk3ntry _seUextO.

4. When editing has been completed, retrieve the value of the entry field.

Creating a Combo Box Widget

Let's take a look at the two GtkCombo functions previously mentioned and a sample appli

cation that makes use of the preceding steps to create a simple combo box in a window and

retrieve its value when the user presses an OK button. The code also illustrates how to add

strings to the pop-up list based on user input.

To create a combo box widget, call gtk30mbo_newO:

GtkWidget *
gtk_combo_new (void) ;

Like all gtk_ * _newO functions, an instance of GtkWidget is returned. For those Gtk

Combo functions that require an instance of GtkCombo, simply cast the return value to a

combo widget instance using the GTK_COMBO macro.

Setting the Combo Box Content

To add strings to the combo pop-up list, call gtk30mbo_seCpopdown_stringsO:

void
gtk_combo_set-popdown_strings (GtkCombo * combo , GList * strings) ;

The first argument, combo, is an instance of GtkCombo, and the second, strings, is the list
of strings that will be displayed in the combo box pop-up list. To create the list of strings, use

the Glib �list functions (see glib. h). Perhaps the easiest of these to use is �liscappendO; see
the following code for an example. You can call gtk30mbo_secpopdown_stringsO at any
time to change the list of strings displayed by the combo widget pop-up list.

776 Chapter 15 • Miscellaneous Widgets

An Example

This sample program (see the following listing and Figures 15.6 and 15.7) illustrates the

following:

• How to create an instance of a GtkCombo widget

• How to set the list of strings displayed by the combo widget pop-up list

• How to retrieve the value that was selected or entered by the user

• How to change (add to) the list of strings displayed by the combo pop-up list.

Listing 15.4 GtkCombo Example

0 0 1 #include < gtk/gtk . h>

0 0 2

0 0 3 typedef struct cdata

0 0 4 GtkWidget *combo ;

0 0 5 GList *cbitems ;

0 0 6 CDat a ;

0 0 7

0 0 8 static void

0 0 9 GetComboEntry (GtkWidget *widget , CData *data)

0 1 0 {
0 1 1 char *val = (char *) NULL ;

0 1 2

0 1 3 val = gtk_entry_get_text (GTK_ENTRY (GTK_COMBO (data- >combo) - >entry)) ;

0 1 4 i f (val)

0 1 5 printf ("Value entered/selected i s %s\n" , val) ;

0 1 6

0 1 7

0 1 8 static void

0 1 9 AddComboEntry (GtkWidget *widget , CData *data)

0 2 0 {
0 2 1 char *buf , *val = (char *) NULL ;

0 2 2

0 2 3 val = gtk_entry_get_text (GTK_ENTRY (GTK_COMBO (data- >combo) - >entry)) ;

0 2 4 i f (val ! = (char *) NULL) {
0 2 5 buf = (char *) malloc (strlen (val) + 1) ;

0 2 6 i f (buf ! = (char *) NULL) {
0 2 7 strcpy (buf , val) ;

0 2 8 data- >cbitems = g_list_append (data- >cbitems , buf) ;

0 2 9 gtk_combo_set-popdown_strings (GTK_COMBO (dat a - > combo) ,

0 30 data- >cbitems) ;

0 31

0 32

033
0 3 4
0 35 main (int argc , char *argv [])

0 36 {
0 37 GtkWidget *dialog_window , *but ton ;

0 38 CData dat a ;

0 39

040 dat a . cbitems = NULL ;

041 gtk_init (&argc , &argv) ;

0 42

0 43 dialog_window = gtk_dialog_new () ;

0 44 gtk_window-position (GTK_WI NDOW (dialog_window) , GTK_WI N_POS_MOUSE) ;

GtkCombo

0 4 5
0 4 6 data.combo = gtk_combo_new () ;
0 4 7 data.cbitems g_l i st_append (data. cbitems , " Joe ' s P i z za Shack ") ;
0 4 8 data.cbitems g_l i st_append (data.cbitems , "Burgers And Stuf f ") ;
0 4 9 data.cbitems g_l i st_append (data. cbitems , "Vegetarian Del ight s ") ;
0 5 0 data.cbitems g_l i st_append (data. cbitems , " El Taco Shop ") ;

0 5 1
0 5 2 gtk_combo_set-popdown_strings (GTK_COMBO (data. combo) , data.cbitems) ;

0 5 3
0 5 4 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >vbox) ,
0 5 5 data. combo , TRUE , TRUE , 0) ;
0 5 6
0 5 7 button = gtk_button_new_with_label (" Ok ") ;
0 5 8 gtk_s ignal_connect (GTK_OBJECT (button) , "cl icked " ,
0 5 9 GTK_S IGNAL_FUNC (GetComboEntry) , &data) ;
0 6 0
0 6 1 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >act ion_area) ,
0 6 2 button , TRUE , TRUE , 0) ;
0 6 3
0 6 4 button = gtk_button_new_with_label ("Add") ;
0 6 5 gtk_s ignal_connect (GTK_OBJECT (button) , "cl icked " ,
0 6 6 GTK_S IGNAL_FUNC (AddComboEntry) , &data) ;
0 6 7
0 6 8 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog_window) - >act ion_area) ,
0 6 9 button , TRUE , TRUE , 0) ;
0 7 0
0 7 1 gtk_widget_show_al l (dialog_window) ;
0 7 2 gtk main () ;
0 7 3

777

Let's start our analysis of this code by taking a look at mainO. On lines 003 through 006:

0 0 3 typedef struct cdata {
0 0 4 GtkWidget * combo ;
0 0 5 GList * cbitems ;
0 0 6 CData ;

I define a new type, CData, that holds a copy of the combo widget and the list of strings

that will be displayed by the combo widget pop-up list. On line 040:

0 4 0 data . cbitems = NULL ;

I set the string list to NULL because g_lisCappendO requires the initial list passed in to
be NULL. On lines 046 through 052, I instantiate a new combo widget and use

�liscappendO to add the names of four fictitious restaurants to the combo pop-up list.
When the combo box is displayed, the first item in the list (Joe's Pizza Shack) will be placed

in the combo text entry field.

0 4 6 data . combo = gtk_combo_new () ;
0 4 7 data . cbitems g_l i st_append (data . cbitems , " Joe ' s P i z za Shack ") ;
0 4 8 data . cbitems g_l i st_append (data . cbitems , " Burgers And Stuf f ") ;
0 4 9 data . cbi tems g_l ist_append (data . cbitems , " Vegetarian Del ight s ") ;
0 5 0 data . cbitems g_l i st_append (data . cbitems , " E l Taco Shop ") ;
0 5 1
0 5 2 gtk_combo_set-popdown_strings (GTK_COMBO (data . combo) , data . cbitems) ;

778 Chapter 1 5 • Miscellaneous Widgets

Two buttons, one labeled OK, and the other labeled Add, are created. The clicked signal

functions for these two buttons are shown on lines 008 through 033. Both of these functions

are passed a pointer to the CData structure that was defined by main and that holds references

to the strings list and the combo widget. GetComboEntry():

0 0 8 stat i c void
009 GetComboEntry (GtkWidget *widget , CData *data)
0 1 0 {
0 1 1 char *val = (char *) NULL ;
0 1 2
0 1 3 val = gtk_entry_get_text (GTK_ENTRY (GTK_COMBO (data - >combo) - >entry)) ;
0 1 4 i f (val)
0 1 5 printf ("Value entered/ selected i s %s\n " , val) ;
0 1 6

calls gtk3ntry �eCtext() to get the current value of the combo widget entry field and dis

plays it to stdout by calling printf(). AddComboEntry():

0 1 8 stat ic void
0 1 9 AddComboEntry (GtkWidget *widget , CData *data)
020 {
0 2 1 char *buf , *val = (char *) NULL ;
0 2 2
0 2 3 val = gtk_entry_get_text (GTK_ENTRY (GTK_COMBO (data - >combo) - >entry)) ;
0 2 4 i f (val ! = (char *) NULL) {
0 2 5 buf = (char *) mal loc (strlen (val) + 1) ;
0 2 6 i f (buf ! = (char *) NULL) {
0 2 7 strcpy (buf , val) ;
0 2 8 data - >cbitems = g_l i st_append (data - >cbi tems , buf) ;
0 2 9 gtk_combo_set-popdown_strings (GTK_COMBO (data - >combo) ,
0 3 0 data - >cbitems) ;
0 3 1
0 3 2
0 3 3

uses geCentry �eCtext() to retrieve the current value of the entry field as well. It then
appends the text retrieved to the GList stored in the CData structure passed as an argument

to the signal function and resets the combo widget pop-up list strings by calling to gtk_

combo_secpopdown_strings().

An alternate way of modifying the list would be to add the entry to the end (or start) of
the list widget used by GtkCombo to implement the pop-up list. The problem with this

method is that it relies on internal knowledge of how the combo box is implemented. On
the other hand, GtkCombo does not give an implementation-independent way to extract the

value of the entry field; as you saw, we had to use a GtkEntry API function and pass to it an

internal combo widget field (entry) to extract the value. With that in mind, we might as well
take a look at how to add directly to the list. The following code is a version of the preceding
routine, AddComboEntry():

GtkCombo

0 1 8 static void
0 1 9 AddComboEntry (GtkWidget *widget , CData * data)
0 2 0 {
0 2 1 char *buf , *val = (char *) NULL ;
0 2 2 GtkWidget * i tem , * l abel , *hbox ;
0 2 3
0 2 4 val = gtk_entry_get_text (GTK_ENTRY (GTK_COMBO (data - >combo) - >entry)) ;
0 2 5 i f (val ! = (char *) NULL) {
0 2 6 hbox = gtk_hbox_new (FALSE , 0) ;
0 2 7 gtk_widget_show (hbox) ;
0 2 8 item = gtk_l i st_item_new () ;
0 2 9 gtk_container_add (GTK_CONTAINER (item) , hbox) ;
0 3 0 buf = (char *) mal loc (strlen (val) + 1) ;
0 3 1 i f (buf ! = (char *) NULL) {
0 3 2 strcpy (buf , val) ;
0 3 3 label = gtk_label_new (buf) ;
0 3 4 gtk_box-pack_start (GTK_BOX (hbox) , label , FALSE ,
0 3 5 FALSE , 0) ;
0 3 6 gtk_combo_set_item_string (GTK_COMBO (data - >combo) ,
0 3 7 GTK_ITEM (item) , buf) ;
0 3 8 gtk_container_add (

779

0 3 9 GTK_CONTAINER (GTK_COMBO (data- >combo) - > l i st) ,
0 4 0 item) ;
0 4 1 gtk_widget_show (item) ;
0 4 2
0 4 3
0 4 4

Here, a list item widget i s created (line 028), and to that, a horizontal box is added (line 029).

The box will hold an instance of GtkLabel (lines 033 through 035) that, in the list, represents

the string being added. Before I continue, let me mention a few things. First, I am adding a box
to the list item. The reason I do this is to force the label, later added to the hbox, to align itself

with the left edge of the hbox and, therefore, the list item. If I were to simply add the label to

the item, it would be centered (which would be, in this case, inconsistent with the layout of the

items added when I created the combo box back in mainO). The other thing to mention, and
you may have figured this out already, is that I can add any type of widget to the list using this
method. Here, I used an hbox and a label child, but I could have easily added a pixmap or some
other widget to the hbox.

Because of this generality, an issue remains. What happens if the user selects this item in
the list? The combo widget is not aware of what the list item is composed of and is ill equipped

to convert it to a string that can be placed inside the entry widget. Because of this, GtkCombo

requires you to associate a text string with the item by calling gtk30mbo_seUtem_stringO,

as I have done on line 036. The function gtk_combo_seCitem_stringO:

void
gtk_combo_set_item_string (GtkCombo * combo , Gtkl tem * i tem ,

const gchar * item_value) ;

780 Chapter 15 • Miscellaneous Widgets

accepts a combo widget instance, a list item, and a NULL-terminated C string that will be

placed by GtkCombo in the entry widget whenever the user selects the list item from the
pop-up list displayed by the combo widget.

Enabling and Disabling Use of Arrow Keys

Now that you know the important stuff, let's finish by taking a look at the remaining func

tions in the GtkCombo API. The first two functions control if and how the keyboard arrow

keys are used to navigate the pop-up list. By default, the up and down arrows can be used
to traverse the pop-up list items. Wrapping is not enabled, meaning that if the top item in

the list is selected, the up arrow does nothing, and if the bottom item in the list is selected,

the down arrow does nothing. You can disable (or re-enable) the use of arrow keys by call

ing gtk30mbo_secuse_arrowsO:

void
gtk_combo_set_use_arrows {GtkCombo * combo , gint val) ;

The argument combo, of course, is an instance of GtkCombo. The argument val should

be set to TRUE to enable arrow keys or FALSE to disable them. If you want to enable or

disable arrow keys and, when enabling them, toggle the wrapping of arrow keys (e.g., when

the top item is selected, pressing the up arrow will cause the last item in the list to become

selected), you can make a call to gtk30mbo_seCuse_arrows_alwaysO:

void
gtk_combo_set_use_arrows_always { GtkCombo * combo , gint val) ;

The arguments are the same as those passed to gtk_combo_secuse_arrowsO; the only
difference is the effect this call has on the wrapping of arrow keys. If val is set to TRUE,

arrow keys are enabled as well as wrapping. If FALSE, both are disabled. Once you have

enabled (or disabled) the wrapping with this call, it persists during subsequent calls to

gtk_combo_use_arrowsO. This means you can now use gtk30mbo_secuse_arrowsO to

enable or disable the arrow keys without affecting the wrapping attribute.

Forcing Users to Match the Pop-up List Contents During Data Entry

GtkCombo can be placed into a mode such that only text entered by the user in the entry
field that equals one of the strings in the pop-up list will be accepted by the combo box. The

way this is done is by causing the entry field to grab focus and retain it should the user

attempt to move the focus to some other widget, when the entry field contains a text string

that is not found by a search of the list of pop-up list strings. To put the combo box in this
mode, call gtk_combo_seCvalue_in_listO:

void
gtk_combo_set_value_in_l ist { GtkCombo * combo , gint val ,

gint ok_i f_empty) ;

The argument val can be either TRUE or FALSE, depending on what behavior you want

to enforce. If val is TRUE and ok_iCempty is also set to TRUE, then an empty string in the

entry field will always be considered a match, and a focus change will not be inhibited. If

GtkStatusbar 781

you want to change the case sensitivity of the search performed by the combo widget during

this process, you can make a call to gtk_combo_seccase_sensitiveO:

void
gtk_combo_set_case_sensi t ive (GtkCombo * combo , gint val) ;

val can be either TRUE or FALSE. The default value for a newly create GtkCombo widget

is FALSE.

Disabling the Combo Widget Activate Function

The final GtkCombo function, gtk_combo_disable_activateO, can be called to disable the

activate function registered by the combo widget entry field:

void
gtk combo di sable act ivate (GtkCombo *combo) ; - - -

By default, hitting Enter in the entry field will cause the combo box list to pop up (the

entry field will grab focus, if it does not already have it, and a pointer grab will be performed

on the pop-up window). If you do not want this behavior to occur, simply call gtk_

combo_disable_activeO to deactivate it.

GtkStatusbar

Class Name

GtkStatusbar

Parent Class Name

GtkHBox

Macros

Widget type macro: GTK_TYPE_STATUSBAR

Object to widget cast macro: GTK_STATUSBAR (obj)

Widget type check macro: GTK_IS_STATUSBAR (obj)

782

Supported Signals

Table 15. 1 1 Signals

Signal Name

texcpushed

texcpopped

Signal Function Prototypes

void

Chapter 1 5 • Miscellaneous Widgets

Condition Causing Signal to Trigger

Invoked when text is pushed on the stack

Invoked when text is popped from the stack

text-pushed (GtkStatusbar *statusbar, guint context_id,
gchar *text, gpointer user_data) j

void
text-popped (GtkStatusbar *statusbar, guint context_id,

gchar *text, gpointer user_data) j

Application-Level API Synopsis

Retrieve the constant GTK_TYPE_STATUSBAR at runtime:
guint
gtk_statusbar_get_type (void) ;

Create a new instance of GtkStatusbar:
GtkWidget *
gtk_statusbar_new (void} j

Obtain (or create if one doesn't exist) a context ID for the given description text:
guint
gtk_statusbar_get_context_id (GtkStatusbar * statusbar , const gchar

* context_descript ion) r

Push text onto the statusbar stack specified by the context ID:
guint
gtk_statusbar-push (GtkStatusbar * statusbar , guint context_id,

const gchar * text) j

Remove the top item from the statusbar stack specified by the context ID:
void
gtk_statusbar-pop (GtkStatusbar *statusbar , guint context_id) j

GtkStatusbar

Appl ication-Level API Synopsis (Continued)

Remove an item from the statusbar stack specified by the context ID:
void
gtk_statusbar_remove (GtkStatusbar * statusbar, guint context_id,

guint message_id) ;

Class Description

783

A statusbar widget visually resembles an instance of GtkEntry. It is, in fact, nothing more

than a frame widget (GtkFrame) that contains a label widget (GtkLabel). The statusbar does

not respond to user input, nor can it obtain the input focus. Its job, as far as the user interface

is concerned, is to display text in much the same way a label does (using a slightly fancier

user interface).
The non-UI portion of a statusbar widget consists of a stack. Each statusbar widget

maintains a single stack. Pushing a text string onto the stack causes the text string to be on

top of the stack and increases the size of the stack by 1. Popping a text string from the stack

removes the topmost item from the stack and reduces the size of the stack by 1. The item

immediately below the item popped then becomes the top of the stack.

The only other thing you must know is that the top item of the stack is what is displayed
by the statusbar widget UI. Pushing an item on the stack causes that item to be displayed.

Popping an item from the stack causes the new top of the stack contents to be displayed.

Probably the more difficult part of GtkStatusbar is deciding when to make use of it.

Because a statusbar is, as far as the UI goes, just a frame with a label in it, you can use,

instead of a statusbar widget, a frame and a label child and obtain the same visual results .

What's more, changing the text of the label widget is easier in this case; you simply call

gtk_IabeCseCtextO to change what the label widget is displaying. If, instead, you use an

instance of GtkStatusbar, you must do one of the following:

• Pop the current top of the statusbar stack and push a new text string on the stack

• Push a new text string on the stack

In the first case, the size of the stack remains 1 because we pop the stack just before we

push a new string. In the second case, the stack grows by 1 each time the status text is pushed.
When compared to creating a frame and label on your own, the choices you are provided
require either more steps to execute (popping and pushing an entry on a stack plus the work
done by the widget to change the label text) or more steps to execute plus a less efficient use
of memory (although the inefficiency in terms of memory usage is probably insignificant in
most cases).

Because we are dealing with a stack, you can only push and pop items. This is not the
most flexible of arrangements, as the following example illustrates. Assume the status bar
is being used by an application to display a set of four messages, in order, changing the mes-

784 Chapter 1 5 • Miscellaneous Widgets

sage displayed once every 10 seconds. You might choose a status bar widget to implement

this feature and execute the following steps:

1 push " Message 1 "
2 wait 10 seconds
3 push "Message 2 "
4 wait 10 seconds

8 push "Message 4 "

Our stack, after the above steps have been completed, looks like this :

top - > " Message 4 "
"Message 3 "
"Message 2 "
"Message 1 "

Let's now see what must be done to cycle back to Message 1 and repeat the process. Two

basic strategies come to mind. The simplest of these would be to start the algorithm over

again (i .e. , push Message 1 , wait 1 0 seconds, push Message 2, and so on) . If we adopt this
strategy, clearly no advantage would be had by having the messages on the stack; in fact,

there would be a penalty in that the size of the stack would grow unbounded, and the

amount of code executed to display a status message would be greater than is necessary.

The other strategy would require us to pop items off of the stack. First we would wait 10

seconds. Then we would pop the top three items on the stack and re-enter the algorithm at

step 2. Having the items on the stack in this case is a burden because we are required to pop

the stack of most of its contents in order to return to the beginning of the list.

Perhaps we want to display the items in reverse order after being pushed onto the stack

(i .e. , display the messages in the order Message 1 , Message 2, Message 3, Message 4, Mes
sage 3, Message 2, Message 1 , Message 2, and so on). In this case, popping the stack would

be the natural way to display the message sequence Message 3, Message 2, Message I , but

if we were to repeat the cycle, we would start again with only one item on the stack, and we
would need to push all of the messages, once again, onto the stack.

Regardless of which of the described scenarios you choose, I would argue that it is easier,

and more efficient, to store the message text in an array and simply set the value of a label

widget that you create yourself whenever you want to change the value it is displaying.

Creating a Statusbar Widget

Let's continue by looking at the GtkStatusbar API. To create a new instance of GtkStatusbar,
call gtk_statusbar_newO:

GtkWidget *
gtk_statusbar_new (void) ;

The returned widget can be added to a box or any other container as needed by the appli
cation. Because the statusbar is only displaying text, you should be careful to pack it into

the container in such a way that it will be vertically sized by changes in the geometry of its
parent container.

GtkStatusbar 785

Pushing a Status Message onto the Stack
Now that you have a status bar, you can push a text message onto the stack to cause it to be

displayed. This is done by calling gtk_statusbar_pushO:

guint
gtk_statusbar-push (GtkStatusbar * statusbar , guint context_id ,

const gchar * text) ;

The first argument, statusbar, is an instance of GtkStatusbar that was created by a call to

gtk_statusbar_newO. The argument text is the text string that will be pushed onto the stack

and displayed by the statusbar widget upon return. The argument contexUd requires a bit

of explanation. The stack can be partitioned into multiple contexts. For our example, and in

most cases, we really need only a single context. When using a single context, the push

operations in our example might have been performed in a manner similar to the following:

GtkWidget *W i

gtk_statusbar-push (GTK_STATUSBAR (w) , 1 , " Message 1 ") ;
gtk_statusbar-push (GTK_STATUSBAR (w) , 1 , " Message 2 ") ;
gtk_statusbar-push (GTK_STATUSBAR (w) , 1 , "Message 3 ") ;
gtk_statusbar-push (GTK_STATUSBAR (w) , 1 , " Message 4 ") ;

You can, however, change the context number, making it unique for each item on the stack

if you so desire. There are no rules except that each context ID must be greater than 0 in value.

For example, we could have pushed our messages onto the stack with the following code:

GtkWidget *w ;

gtk_statusbar-push (GTK_STATUSBAR (w) , 1 , " Message 1 ") ;
gtk_statusbar-push (GTK_STATUSBAR (w) , 2 , "Message 2 ") ;
gtk_statusbar-push (GTK_STATUSBAR (w) , 3 , "Message 3 ") ;
gtk_statusbar-push (GTK_STATUSBAR (w) , 1 , " Message 4 ") ;

In this case, we have three contexts on the stack with the context ids 1 , 2, and 3, respectively.

The context must be specified when you pop items from the stack using gtk_statusbar_popO,
as I will discuss later.

The value returned by gtk_status_bar_pushO is an unsigned integer. This value is a
unique ID (unique for all items on the stack, regardless of the number of contexts it stores),
assigned to the item that was pushed. You must specify the ID when removing the item from

the stack with gtk_statusbar_removeO (see the following discussion) .

Handling the texCpushed Signal

Every time an item is pushed onto the stack, GtkStatusbar emits a texcpushed signal. If

you have registered one or more signal functions with the statusbar widget to handle this
signal, they will be invoked by Gtk+. The function prototype for the texcpushed signal
function is as follows:

void TextPushedFunction (GtkWidget *w, guint context_id ,
gchar *text) ;

786 Chapter 15 • Miscellaneous Widgets

Getting a Context ID

The function gtk_statusbar...,geccontexCidO allows you to generate a context ID value,

given a text string, or to look up the context ID of a string for which a context ID was pre

viously generated.

guint
gtk_statusbar_get_context_id (GtkStatusbar * statusbar , const gchar

* context_description) i

The argument contexCdescription is a NULL-terminated C string. This function returns a

context ID that can be passed to any of the GtkStatusbar functions that require a context ID.

You might use this function to map text strings to context IDs if strings are more meaningful

to your application than numbers. I don't suspect that this function is used often.

Popping an Item from the Stack

To pop an item from the stack, you call gtk_statusbar_popO:

void
gtk_statusbar-pop (GtkStatusbar * statusbar , guint context_id) i

The argument statusbar is, of course, the status bar widget from which the item is being

popped. contexCid is used to determine which item is popped from the stack.

Substacks

Each set of items in the stack that shares the same context ID constitutes a substack. For

example, if the stack is as follows (the integer value to the left of the text is the context ID) :

top - > 1 " Message 4 "
3 " Message 3 "
2 " Message 2 "
1 " Message 1 "

then the following calls:

gtk_statusbar-pop (statusbar , 1) i
gtk_statusbar-pop (statusbar , 1) i

will pop Message 4 and Message 1 from the stack, leaving the stack as :

top - > 3 "Message 3 "
2 "Message 2 "

If we execute the following:

gtk_statusbar-pop (statusbar , 2) i

we are left with the following stack:

top - > 3 " Message 3 "

GtkAccelLabel 787

In general, the top of the stack, as far as popping items goes, is defined to be the item
closest to the "true" top of the stack that has a matching context ID. To avoid any confusion,

you should always set the context ID to a single value (for example, 1), unless the use of

different context IDs somehow makes sense for your application (and please e-mail me if

you find a reasonable use for this feature, as I am curious to hear about it) .

Handling the texCpopped Signal

Like pushing an item on the stack, popping an item results in the firing of a signal. In this

case, the signal is a texCpopped signal. If your application has registered a signal function

for this signal, it will be invoked. The signal function prototype is as follows:

void TextPoppedFunction (GtkWidget *w, guint context_id ,
gchar *text) ;

The arguments contexcid and text identify the item that was popped.

Removing an Arbitrary Item from the Stack

The final function described here allows you to remove an arbitrary item from the stack.

The function prototype is as follows:

void
gtk_statusbar_remove (GtkStatusbar * statusbar , guint context_id ,

guint message_id) ;

Removing an item from the stack with this function does not cause a texCpopped signal

to be emitted. The argument contexCid identifies the substack from which the item will be

removed. The argument message_id is the value identifying the item to be removed, as

returned by gtk_statusbar_pushO when the item was pushed onto the stack.

Final Thoughts

To summarize, I believe that if you need to display status text in a window, it is probably

more efficient (as well as straightforward) for you to create your own statusbar VI. This can

be done by creating a GtkLabel widget and adding it to an instance of GtkFrame. You can

easily change the message displayed by the label widget with a call to gtk_Iabel_sectextO.

However, if, for whatever reason, it makes sense for your application to store the status
messages on a stack, then by all means make use of GtkStatusbar.

GtkAccel Label

Class Name

GtkAccelLabel

788 Chapter 15 • Miscellaneous Widgets

Parent Class Name

GtkLabel

Macros

Widget type macro: GTK _TYPE _ ACCEL _LABEL

Object to widget cast macro: GTK_ACCEL_LABEL (obj)

Widget type check macro: GTK_IS_ACCEL_LABEL (ob j)

Supported Arguments

Prefix:GtkAccelLabel::

Table 1 5 . 12 GtkAccelLabel Arguments

Name

Application-Level API Synopsis

Retrieve the constant GTK_TYPE�CCEL_LABEL at runtime:
GtkType
gtk_accel_label_get_type (void) ;

Create a new instance of GtkAccelLabel:
GtkWidget *
gtk_accel_label_new (const gchar *st ring) ;

Retrieve the width of the accel label widget in pixels:
guint

Permission

gtk_accel_label_get_accel_width (GtkAccelLabel *accel_label) ;

Set the widget that will have its accelerators shown by this label:
void
gtk_accel_label_set_accel_widget (GtkAccelLabel *accel_label ,

GtkWidget *accel_widget) ;

Recompute the accelerator string and its length:
gboolean
gtk_accel_label_refetch (GtkAccelLabel *accel_label) ;

_____ ru ___ mmrumlllllmmmlllmrum_w __ m_II ____ _

GtkAccelLabel 789

Class Descri ption

GtkAccelLabel is a class used by the Gtk+ menu item classes GtkMenuItem, GtkRadioMenu

Item, and GtkCheckMenuItem. An accel label is similar to an instance of GtkLabel, except that
an accel label displays accelerator information for the widget to the right of the label text. Pri
marily designed to be used by widget writers, applications will rarely if ever need to instantiate

widgets from this class. Regardless, a short description of the API that the class implements is

provided for curious readers (or for widget writers who need the reference material).

Creating an Accel Label Widget

To create an accel label widget, call gtk_acceUabeCnewO:

GtkWidget *
gtk accel label new (const gchar * string) ; - - -

The argument string defines the text that will be displayed by the label, not the accelerator

text itself. The accelerator text is always added by the widget, which calls gtk_ widgec
add_accelerator() to do so. When the accelerator for the widget is changed, the accel label

widget will be invoked to recompute the string it displays to the right of the menu item label

and its size. The function gtk_acceClabeLrefetchO is the function that performs these func
tions:

gboolean
gtk accel label refetch (GtkAccelLabel *accel label) ; - - - -

It looks up the widget assigned to the accel label, determines what accelerators are sup

ported, and computes the new accelerator label string and its length.

Retrieving the Width of an Accel Label Widget

You can retrieve the width of the accel label widget (and of the padding that exists to its

left) in pixels by calling gtk_acceUabeLgecaccel_ widthO:

guint
gtk_accel_label_get_accel_width (GtkAccelLabel * accel_label) ;

Mapping an Accel Label Widget to the Widget It Supports

An important step in the process is telling the accel label widget which widget (e.g. , menu

item) it supports. This is be done by making a call to gtk_acceUabeCsecacceLwidgetO:

void
gtk_accel_label_set_accel_widget (GtkAccelLabel *accel_label ,

GtkWidget * accel_widget) ;

Here, acceClabel is the accel label widget instance, and acceC widget is the widget that
will display the label and that may (or may not) have one or more accelerators associated
with it (it is not required for a widget to have an accelerator to be labeled by an instance of
GtkAcceILabel).

790 Chapter 1 5 • Mjscellaneous Widgets

Readers who are interested in seeing sample code should grep(1) for the string gtlC

acceUabel in the Gtk + source code and look at how these functions are used. Files of particular

interest are those that implement the various menu item classes (e.g., gtkmenuitem.c).

GtkDrawi ngArea
___ ii __ liII_iIIlilillillllffiffiillWWlffi __ Wlillillmm_1II __ l1li __ _

Class Name

GtkDrawingArea

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK _TYPE_DRAWING _ AREA

Object to widget cast macro: GTK _DRAWING_AREA (obj)

Widget type check macro: GTK_ I S _DRAWING_AREA (obj)

Appl ication-Level API Synopsis

Return the constant GTK_TYPE_DRAWING_AREA at runtime:
GtkType
gtk_drawing_area_get_type (void) ;

Create a new instance of GtkDrawingArea:
GtkWidget *
gtk_drawing_area_new (void) ;

Set the requisition size of the drawing area and force a resize:
void
gtk_drawing_area_si z e (GtkDrawingArea *darea , gint width ,

gint height) ;

__ IIII_miffiffiffiffiirurullllillMi_fuillffi __ WlillillillMlillilllillilllillilliIIM_illM_UillMillMiIillillIillillUmUIl IiIIiIIIiIIiIIIiIIiII

GtkDrawingArea 791

Class Description

GtkDrawingArea is a simple widget that provides nothing more than a window into which

an application can draw graphics or plot image data, using functions provided by GDK.
One of the main features supporting the drawing of graphics is the solicitation of expose
events on the drawing area widget window. This is done on behalf of the application by the

drawing area widget when the widget is realized.

Creating a Drawing Area Widget

There are really only two functions that make up the drawing area API. The first of these is

no surprise; to create a new drawing area widget, you can call gtlcdrawing_area_newO:

GtkWidget *
gtk_drawing_area_new (void) ;

The widget returned can be added to a container, such as a window or box, by the

application.

Setting the Drawing Area Widget Size

Depending on the containment hierarchy of the application, you may find it necessary to set
the size of the drawing area widget (as I will do in the following sample program). To set

the size of the drawing area widget, call gtlcdrawin�area_sizeO:

void
gtk_drawing_area_s ize (GtkDrawingArea *darea , gint width , gint height) ;

The first argument is the drawing area widget of interest. The second and third arguments,
width and height, specify the requisition size of the drawing area. Once set, the drawing area

widget will initiate a resize request that may or may not be honored, depending on the contain

ment hierarchy of the widget. You can determine the actual size of the drawing area widget,
something you need to do if you are scaling image data or graphics to fit the drawing area size.

You can determine the size of the drawing area by calling gdk_ window �et..geometryO, as in

the following example:

int width , height ;
GtkWidget *w ;

gdk_window_get_geometry (w- >window , NULL , NULL , &width , &height , NULL) ;

The x, y, and depth arguments to gdk_ window �et�eometryO can be set to NULL

because they are not needed.

792 Chapter 1 5 • Miscellaneous Widgets

Using the Drawing Area Widget

A drawing area widget, as I previously mentioned, is really nothing more than a window to

which graphics can be rendered by an application. For example, an application might draw

text using gdk_draw _textO, draw lines or arcs using functions such as gdk_draw _lineO and

gdk_draw _arcO, respectively, or draw pixmaps or images using a function such as
gdk_draw_pixmapO. Although I do not completely address in this book how to use GDK

to draw text, graphics, or image data (you can refer to http://developer.gnome.org/

doclAPIIgdklindex.html for such reference material), I do present the following sample pro

gram that illustrates the important issues you need to know to make effective use of a draw
ing area widget in your applications.

The sample application is rather straightforward. The application provides a drawing

area into which the user can render rectangles (see Figure 15 .8) . A toolbar at the top of the
dialog contains three buttons, each labeled with a pixmap of a different color (red, green,

or blue). By clicking on one of the buttons, the user can change the color of rectangles that
will be rendered (any previously drawn rectangles retain the color they were given at the

time they were drawn). To draw a rectangle, the user positions the mouse over the drawing

area widget and presses mouse button 1 . A button labeled Clear is placed in the action area

of the dialog; clicking on this button will cause all rectangles in the drawing area to be

cleared.

Figure 15.8 GtkDrawingArea Example Screen Shot

A requirement of the application is that it be able to handle expose events. An expose
event occurs when an X window is first mapped to the display, as well as any time a region
of a mapped window previously obscured by some other window, or offscreen, is brought
into view. (Windows that have backing store enabled, when they are run on a server that has
backing store enabled, send a minimal amount of expose events.) An expose event is the

GtkDrawingArea 793

way in which an application is told by the X server that some, or all, of a window is in need

of redrawing.
The code that implements this example is somewhat complex; it is probably the largest

sample application presented in this book. However, careful reading of the analysis that fol

lows should greatly increase your understanding of how to use a drawing area widget in an

application. I suggest you build and execute the sample code in a debugger such as gdb(1) ,
paying particular attention to how expose events are handled by setting a breakpoint on the

expose signal function HandleExposeO and stepping through it a few times.

Listing 15.5 GtkDrawingArea Example (See Figure 1 5 .8)

0 0 1 # include <gtk/gtk . h>
0 0 2
0 0 3 #def ine RED 1
0 0 4 #def ine GREEN 2
0 0 5 #def ine BLUE 4
0 0 6
0 0 7 typedef struct piece
0 0 8
0 0 9
0 1 0
0 1 1

int x ;
int y ;
guint3 2 t ime ;
unsigned char color ;

0 1 2 Piece ;
0 1 3
0 14 typedef struct cleardata
0 1 5 GtkWidget * w ;
0 1 6 GList * * l ist ;
0 1 7 ClearData ;
0 1 8

I I posi t ion of the piece

II t ime the piece was added
I I its color

0 1 9 static GtkWidget *gRedPmap , *gGreenPmap , *gBluePmap ;
0 2 0 static uns igned char gColor = RED ;
0 2 1
0 2 2 static GtkWidget *
0 2 3 NewPixmap (char * f i l ename , GdkWindow *window , GdkColor *background)
0 2 4 {
0 2 5 GtkWidget *wpixmap ;
0 2 6 GdkPixmap *pixmap ;
0 2 7 GdkBitmap *mask ;
0 2 8
0 2 9 pixmap = gdk-Fixmap_create_from_xpm (window , &mask , background ,
0 3 0 f i lename) ;
0 3 1 wpixmap = gtk-Fixmap_new (pixmap , mask) ;
0 3 2
0 3 3 return wpixmap ;
0 3 4
0 3 5
0 3 6 stat ic void
0 3 7 SetColor (GtkWidget *widget , gpointer arg)
0 3 8 {
0 3 9 gColor = (unsigned char) arg ;

794

0 4 0
0 4 1
042 stati c void

Chapter 1 5 • Miscellaneous Widgets

043 C1earDrawing (GtkWidget *widget , gpointer arg)
044 {
0 4 5 ClearData *p = (ClearData *) arg ;
0 4 6 GLi s t * * l i st = p - >list ;
0 4 7 GLi s t * tmp_I ist ;
0 4 8
0 4 9
0 5 0
0 5 1

f o r (tmp_I ist = * l i st ; tmp_I ist ; tmp_I ist
g_free (tmp_I ist - >data) ;

0 5 2 g_l i s t_free (* l i st) ;
0 5 3 * l i s t = (GList *) NULL ;
0 5 4
0 5 5 gdk_window_clear (p - >w- >window) ;
0 5 6
0 5 7
0 5 8
0 5 9 stat ic int
0 6 0 CompFunc (gconstpointer a, gconstpointer b)
0 6 1 {
0 6 2 Piece *piece1 , *piece2 ;
0 6 3
0 6 4
0 6 5
0 6 6

piece1
piece2

(Piece *) a ;
(Piece *) b ;

0 6 7 i f (piece1 - >t ime < piece2 - >t ime
0 6 8 return FALSE ;
0 6 9 return TRUE ;
0 7 0
0 7 1
0 7 2 stat ic gint
073 ButtonPress (GtkWidget *widget , GdkEventButton *event , gpointer arg)
0 74 {
0 7 5 ClearData * p = (C learData *) arg ;
0 7 6 GList * * items = (GLi st * *) p - > l i s t ;
0 7 7 GtkPixmap *pixmap ;
0 7 8 Piece *piece ;
0 7 9
0 8 0 piece = (Piece *) mal loc (si zeof (Piece)) ;
0 8 1 piece - >color = gColor ;
0 8 2 piece - >x = (gint) event - >x ;
0 8 3 piece - >y = (gint) event - >y ;
0 8 4 piece - >t ime = gdk_event_get_t ime ((GdkEvent *) event) ;
0 8 5 * items g_l ist_insert_sorted (* items , piece , CompFunc) ;
0 8 6
0 8 7 switch piece - >color) {
0 8 8 case RED :
0 8 9
0 9 0

pixmap
break ;

GTK_PIXMAP (gRedPmap) ;

GtkDrawingArea

0 9 1
0 9 2
0 9 3
0 94
0 9 5
0 9 6
0 9 7
0 9 8

case

case

GREEN :
pixmap
break ;
BLUE :
pixmap
break ;

GTK_PIXMAP (gGreenPmap) ;

GTK_PIXMAP (gBluePmap) ;

0 9 9 gdk_draw-pixmap (widge t - >window , widget - >styl e - >black_gc ,
1 0 0 pixmap- >pixmap , 0 , 0 , piece - >x , piece - >y , - 1 , - 1) ;
1 0 1
1 0 2
1 0 3 static gint
1 0 4 HandleExpose (GtkWidget *widget , GdkEventExpose * event , gpointer arg)
1 0 5 {
1 0 6 GList * *p = (GList * *) arg , * l ist = (GList *) *p ;
1 0 7 GdkRectangle rect , dest ;
1 0 8 GtkPixmap *pixmap ;
1 0 9 Piece *piece ;
1 1 0 int i ;
1 1 1
1 1 2 for (i = 0 ; * p ! = (GList *) NULL ; i + + , * p = g_l ist_next (* p)) {
1 1 3 piece = g_l ist_nth_data ((GList *) l i st , i) ;
1 1 4 rect . x = piece - >x ;
1 1 5 rect . y = piece - >y ;
1 1 6 rect . width = rect . height = 2 0 ;
1 1 7 i f (gdk_rectangle_intersect (

&rect , &event - >area , &dest
switch (piece - >color) {
case RED :

TRUE) { 1 1 8
1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 0

pixmap GTK_PIXMAP (gRedPmap) ;

1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9
1 4 0

*p list ;

break ;
case GREEN :

pixmap GTK_PI XMAP (gGreenPmap
break ;

case BLUE :
pixmap GTK_PIXMAP (gBluePmap
break ;

default :
cont inue ;

gdk_draw-pixmap (widge t - >window ,
widget - >styl e - >black_gc ,
pixmap - >pixmap , 0 , 0 ,
piece - >x , piece - >y , - 1 , - 1) ;

1 4 1 main (int argc , char *argv [])

) ;

) ;

795

796 Chapter 1 5 • Miscellaneous Widgets

1 4 2
1 4 3 GtkWidget *dialog , *button , *drawing , * toolbar ;
1 4 4 GLi s t * items = (GList *) NULL ;
1 4 5 ClearData cd ;
1 4 6
1 4 7 gtk_init (&argc , &argv) ;
1 4 8
1 4 9 dialog = gtk_dialog_new () ;
1 5 0 gtk_window-posit ion (GTK_WINDOW (dialog) , GTK_WIN_POS_MOUSE) ;
1 5 1 gtk_widget_show (dialog) ;
1 5 2
1 5 3 toolbar = gtk_toolbar_new (GTK ORIENTATION HORIZONTAL ,
1 5 4 GTK_TOOLBAR_BOTH) ;
1 5 5
1 5 6 gRedPmap = NewPixmap (" red . xpm" , dialog- >window ,
1 5 7 &dialog- >style - >bg [GTK_STATE_NORMAL]) ,
1 5 8 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Red " ,
1 5 9
1 6 0

" Draw red square " , NULL , gRedPmap ,
(GtkSignaIFunc) SetColor , (gpointer) RED) ;

1 6 1 gGreenPmap = NewPixmap (" green . xpm" , dialog- >window ,
1 6 2 &dialog- >style - >bg [GTK_STATE_NORMAL]) ,
1 6 3 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Green " ,
1 6 4
1 6 5

" Draw green square " , NULL , gGreenPmap ,
(GtkSignaIFunc) SetColor , (gpointer) GREEN) ;

1 6 6 gBluePmap = NewPixmap ("blue . xpm" , dialog- >window ,
1 6 7 &dialog- >style - >bg [GTK_STATE_NORMAL]) ,
1 6 8 gtk_toolbar_append_item (GTK_TOOLBAR (toolbar) , " Blue " ,
1 6 9 " Draw blue square " , NULL , gBluePmap ,
1 7 0 (GtkSignaI Func) SetColor , (gpointer) BLUE) ;
1 7 1
1 7 2 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog) - >vbox) , toolbar ,
1 7 3 FALSE , TRUE , 0) ;
1 74
1 7 5 drawing = gtk_drawing_area_new () ;
1 7 6 gtk_drawing_area_s ize (GTK_DRAWING_AREA (drawing) , 3 2 0 , 2 0 0) ;
1 7 7 gtk_s ignal_connect (GTK_OBJECT (drawing) , " expose_event " ,
1 7 8 GTK_SIGNAL_FUNC (HandleExpose) , &items) ;
1 7 9 gtk_widget_set_events (drawing ,
1 8 0 GDK_EXPOSURE_MASK I GDK_BUTTON_PRESS_MASK) ;
1 8 1 cd . w = drawing ;
1 8 2 cd . l i s t = &items ;
1 8 3 gtk_s igna 1_c onne c t (GTK_OBJECT (drawing) , " bu t t on-pre s s _event " ,

1 8 4 GTK S IGNAL_FUNC (ButtonPress) , &cd) ;
1 8 5
1 8 6 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog) - >vbox) , drawing ,
1 8 7 TRUE , TRUE , 0) ;
1 8 8
1 8 9 button = gtk_button_new_with_label (" Clear ") ;
1 9 0 gtk_box-pack_start (GTK_BOX (GTK_DIALOG (dialog) - >act ion_area) ,
1 9 1 button , TRUE , FALSE , 0) ;
1 9 2 gtk_s ignal_connect (GTK_OBJECT (button) , " cl icked " ,

GtkDrawingArea

1 9 3
1 9 4

GTK_S IGNAL_FUNC (ClearDrawing) , &cd) ;

1 9 5 gtk_widget_show_a l l (dialog) ;
1 9 6 gtk_main () ;
1 9 7

Analysis

797

Let's start by taking a look at mainO. The job of mainO is to create the application user
interface, which consists of a GtkDialog widget. Into the vbox member of the dialog widget
a toolbar is packed. This toolbar contains the color-selection buttons. On lines 1 56, 1 6 1 , and
166, I call a function named NewPixmapO (see the full listing) that creates an instance of
GtkPixmap. These pixmaps not only are used in creating the toolbar buttons, they are also

stored in global variables (e.g. , gRedPmap) so they can be easily accessed when it is time
to draw colored rectangles into the drawing area widget in response to a mouse click event.

On line 175, I create the drawing area widget:

1 7 5 drawing = gtk_drawing_area_new () ;

On the very next line (line 1 80) I set its size to 320X 200. The dialog widget will size

itself to accommodate this request. Note that I pack the drawing area and toolbar widgets
into the drawing area vbox so that resizes of the window cause the toolbar to stay anchored

at the top of the dialog vbox and the drawing area widget to expand to fill the entire area

left over.

1 7 7 gtk_signal_connect (GTK_OBJECT (drawing) , " expose_event " ,
1 7 8 GTK_S IGNAL_FUNC (HandleExpose) , &items) ;
1 7 9 gtk_widget_set_events (drawing ,
1 8 0 GDK_EXPOSURE_MASK I GDK_BUTTON_PRESS_MASK) ;

On line 177, I set the signal function for the drawing area expose event to HandleExposeO.
On line 179, I change the event solicitation for the drawing area widget so that both expose

and button press events are sent for the drawing area widget window. The solicitation of

expose events is redundant because an expose event is automatically solicited by all drawing

area widgets.
On line 1 8 1 through 1 84, I arrange for mouse event signals to be handled by the function

ButtonPressO. As client data, I pass a pointer to a structure that contains the drawing area
widget and a pointer to a list (I will explain the purpose of this list later in this section):

1 8 1 cd . w = drawing ;
1 8 2 cd . l i s t = &items ;
1 8 3 gtk_s ignal_connect (GTK_OBJECT (drawing) , " button-2ress_event " ,
1 8 4 GTK_S IGNAL_FUNC (ButtonPress) , &cd) ;

Finally, on lines 1 89 through 193, I create a button labeled Clear that, when pressed,
clears the display of all rectangles drawn by the user:

�S9 button = gtk_button_new_with_labe l (" Clear ") ;
1 9 0 gtk_box-2ack_start (GTK_BOX (GTK_DIALOG (dialog) - >action_area) ,
1 9 1 button , TRUE , FALSE , 0) ;

798 Chapter 15 • Miscellaneous Widgets

1 9 2 gtk_s ignal_connect (GTK_OBJECT (button) , " clicked" ,
1 9 3 GTK_S IGNAL_FUNC (ClearDrawing) , &cd) ;

As you can see on line 193, the "clicked" signal function, ClearDrawingO, is passed a
pointer to the same structure that is passed to the ButtonPressO signal function previously
mentioned.

Before things get confusing (hopefully you are following this so far), let's take a look at
the signal functions in some detail. The first one I will describe is the button_press_event

signal function, ButtonPressO:

0 7 2 stat i c gint
0 7 3 ButtonPre s s (GtkWidget *widget , GdkEventButton * event , gpointer arg)
0 7 4 {
0 7 5 ClearData * p = (ClearData *) arg ;
0 7 6 GLi s t * * items = (GList * *) p - > l i s t ;
0 7 7 GtkPixmap *pixmap ;
0 7 8 Piece *piece ;
0 7 9
0 8 0 piece = (Piece *) mal loc (s i zeof (Piece)) ;
0 8 1 piece - >color = gColor ;
0 8 2 piece - >x = (gint) event - >x ;
0 8 3 piece - >y = (gint) event - >y ;
0 8 4 piece - >t ime = gdk_event_get_t ime ((GdkEvent *) event) ;
0 8 5 * items g_l ist_insert_sorted (* items , piece , CompFunc) ;
0 8 6
0 8 7 switch piece - >color) {
0 8 8 case RED :
0 8 9 pixmap = GTK_PIXMAP (gRedPmap) ;
0 9 0 break ;
0 9 1 case GREEN :
0 9 2 pixmap = GTK_PIXMAP (gGreenPmap) ;
0 9 3 break ;
0 9 4 c a s e BLUE :
0 9 5
0 9 6
0 9 7
0 9 8

pixmap
break ;

GTK_PIXMAP (gBluePmap) ;

0 9 9 gdk_draw-pixmap (widget - >window , widget - >style - >black_gc ,
1 0 0 pixmap - >pixmap , 0 , 0 , piece - >x , piece - >y , - 1 , - 1) ;
1 0 1

0 0 7
0 0 8
0 0 9
0 1 0

The purpose of ButtonPressO is to plot a rectangle, of the appropriate color, in the drawing
area window at the location the user pressed the mouse button. It also adds an entry, sorted by
time of button press, to a list that will be traversed if the application receives an expose event
for the drawing area widget window. This list contains entries of the following type:

typedef struct piece {
int X ; I I pos it ion of the piece
int y ;
guint3 2 t ime ; I I t ime the piece was added

GtkDrawingArea

0 1 1 unsigned char color ; I I i t s color
0 1 2 Piece ;

799

The fields x and y record the location of the button press that leads to the drawing of the
rectangle corresponding to the list entry. The time of the button press is recorded in the time

field, and the color of the rectangle is stored in the field named color. Lines 080 through 085

illustrate how an item is added to the list. The color field comes from a global variable that

is set in the clicked callback function of the corresponding toolbar button. Drawing of the
rectangle occurs on lines 087 through 100. On line 087, a switch statement is entered; it is

within this switch statement that the pixmap data is retrieved from the GtkPixmap instance

used to create the toolbar button corresponding to the currently selected color. On line 099,

the pixmap is drawn into the drawing area window using gdk_draw _pixmapO.
So, now that we know how to draw a rectangle and we know how to build a list that remem

bers the rectangles that were drawn (position, color, and time), we can look at what happens

when an expose event is received. An expose event is described by the following struct:

typedef struct _GdkEventExpose GdkEventExpose ;

struct _GdkEventExpose
{

GdkEventType type ;
GdkWindow *window ;
gint 8 send_event ;
GdkRectangle area ;
gint count ; 1 * I f non- zero , how many more events follow . * 1

} ;

For an expose event, GdkEventType is always set to GDK_EXPOSE. Window is the

window that has been exposed, and area defines the area within the window that was

exposed. The area struct has fields named x, y, width, and height. The x and y fields are both

window relative (Le., x = 1 2, Y = 42 refers to the point [1 2, 42] offset from the origin of the

window, not the origin of the screen). Finally, width and height define the size of the area
that was exposed. In the sample application, HandleExposeO is the signal function invoked

when the an expose event is received for the drawing area widget window:

1 03 s t a t i c gint

1 0 4 HandleExpose (GtkWidget *widget , GdkEventExpose * event , gpointer arg)
1 0 5 {
1 0 6 GList * *p = (GList * *) arg , * l ist = (GList *) *p ;
1 0 7 GdkRectangle rect , dest ;
1 0 8 GtkPixmap *pixmap ;
1 0 9 Piece *piece ;
1 1 0 int i ;
1 1 1
1 1 2 for (i = 0 ; *p ! = (GList *) NULL ; i++ , *p = g_l i st_next (* p)) {
1 1 3 piece = g_l i st_nth_data ((GList *) l i st , i) ;
1 1 4 rect . x = piece - >x ;
1 1 5 rect . y = piece - >y ;
1 1 6 rect . width = rect . height 2 0 ;

800

1 1 7
1 1 8
1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
1 2 8
1 2 9
1 3 0
1 3 1
1 3 2
1 3 3
1 3 4
1 3 5
1 3 6
1 3 7
1 3 8
1 3 9

*p

Chapter 1 5 • Miscellaneous Widgets

i f (gdk_rectangle_intersect (

l i st ;

&rect , &event - >area , &dest
switch (piece - >color) {
case RED :

TRUE) {

pixmap GTK_PIXMAP (gRedPmap) ;
break ;

case GREEN :
pixmap GTK_PIXMAP (gGreenPmap) ;
break ;

case BLUE :
pixmap GTK_PI XMAP (gBluePmap) ;
break ;

default :
cont inue ;

gdk_draw-pixmap (widget - >window ,
widget - >style - >black_gc ,
pixmap- >pixmap , 0 , 0 ,
piece - >x , piece - >y , - 1 , - 1) ;

Your application only needs to redraw the area described by the area struct of the expose
event, not the entire window. One could ignore the area field of the expose event completely

and redraw the entire window. However, this is seldom done because drawing the entire

window almost always increases the amount of time required to process the expose event.
Clip regions can be used to minimize the amount of time a complete redraw takes. A clip

region tells the X server to draw only pixels falling within the rectangular area(s) described
by the clip region and to discard any pixels that fall outside of it. This can reduce the time

needed to process an expose event if the cost of drawing each pixel is greater than the time
it takes to communicate the clip regions to the X server, combined with the time it takes for

the clip regions to be applied.
The solution that the example program takes is to walk the list of rectangles drawn by the

user and completely redraw those that intersect the exposed region. I could have combined this
strategy with the use of clip regions, and this would be optimal in the case of some clients that
render complex graphics. However, I adopted a simpler solution that I expect achieves satisfac

tory, if not more efficient, results for the type of data being rendered. You should consider the
use of clip regions when evaluating an expose event handler strategy (see any good book on
Xlib programming for more details). Although not covered in this book, the GDK functions
gdk�c_secclip_originO, gdk�c_seCclip_maskO, and gdk�c_secclip_rectangleO corre
spond to the Xlib functions XSetClipOriginO, XSetClipMaskO, and XSetClipRectanglesO.

Let's take a look at the expose event handler previously listed. On line 1 1 2, I enter a loop
that walks the pieces that are on the list. As you recall, each item in this list corresponds to

a rectangle drawn into the drawing area widget window by the user. The data field of the
list entry is a pointer to a variable of type piece that contains, once again, the location of the
rectangle and its color.

GtkDrawingArea 801

1 1 2 for
1 1 3

i = 0 ; *p ! = (GList *) NULL ; i++ , *p = g_l ist_next (*p)) {
piece = g_l ist_nth_data ((GList *) l i st , i) ;

On lines 1 13 through 1 16, I set the x, y, width, and height fields of a GdkRectangle struct
to describe the location and size of the user-drawn rectangle being processed. On line 1 1 7,

I call gdk_rectangle_intersectO to determine whether the user-drawn rectangle intersects

the area that was exposed:

1 1 3 piece = g_l i st_nth_data ((GList *) l i s t , i) ;
1 14 rect . x = piece - >x ;
1 1 5 rect . y = piece - >y ;
1 1 6 rect . width = rect . height = 2 0 ;
1 1 7 i f (gdk_rectangle_intersect (
1 1 8 &rect , &event - >area , &dest) == TRUE) {

If the areas do intersect, I draw the user-drawn rectangle using the same algorithm that
was used by the mouse button press handler to draw the original rectangle:

switch (piece - >color) {
case RED :

1 1 9
1 2 0
1 2 1
1 2 2
1 2 3
1 2 4
1 2 5
1 2 6
1 2 7
12 8
12 9
1 3 0
1 3 1
1 3 2
l 3 3
1 3 4
1 3 5

pixmap GTK_PIXMAP (gRedPmap) ;
break ;

case GREEN :
pixmap GTK_PIXMAP (gGreenPmap
break ;

case BLUE :
pixmap GTK_PIXMAP (gBluePmap
break ;

defaul t :
cont inue ;

gdk_draw-pixmap (widget - >window ,
widget - >style - >black_gc ,
pixmap- >pixmap , 0 , 0 ,
piece - >x , piece - >y , - 1 , - 1) ;

) ;

) ;

If I were to adopt clip region support in this example, I would have added it just before line
1 32. The strategy would be to set the clip rectangle to the region described by the area field

of the expose event. After the gdk_draw _pixmapO function has returned, the clip rectangle

would need to be reset to NULL. For example:

gdk_gc_set_cl ip_rectangle (widget - >style - >black_gc , &event - >area) ;
gdk_draw-pixmap (widget - >window , . . .) ;
gdk_gc_set_cl ip_rectangle (widget - >style - >black_gc , NULL) ;

Once again, I feel that the extra work to specify clip rectangles is not needed by the sam
ple application due to the extra overhead involved and the simplicity of the graphics being
drawn. But you should definitely test to see if your application would benefit from the use
of clip rectangles.

802 Chapter 1 5 • Miscellaneous Widgets

GtkCalendar

Class Name

G tkCa lendar

Parent Class Name

GtkWidget

Macros

Widget type macro: GTK_ TYPE_CALENDAR

Object to widget cast macro: GTK_ CALENDAR (obj)

Widget type check macro: GTK _ IS _CALENDAR (obj)

Supported Signals

Table 15 .13 Signals

Signa/ Name

month_changed

day_selected

day _selected_double3lick

nexcmonth

prev...,year

next...,year

Signal Function Prototypes

void

Condition Causing Signal to Trigger

Month view has changed.

The user clicked on a day.

The user double-clicked on a day.

Month view has changed to the previous month.

Month view has changed to the next month.

Year view has changed to the previous year.

Year view has changed to the next year.

month_changed (GtkCalendar * calendar , gpointer user_data) ;

void
day_ selected (GtkCalendar * calenda r , gpointer user_data) ;

GtkCalendar

Signal Function Prototypes (Continued)

void

day_selected_double_click(GtkCalendar *calendar, gpointer

user_data) ;

void

prev month(GtkCalendar *calendar, gpointer user_data);

void

next_month(GtkCalendar *calendar, gpointer user data);

void

prev_year(GtkCalendar *calendar, gpoihter user_data);

void

next-year(GtkCalendar *calendar, gpo inter user_data);

Application-Level API Synopsis

Retrieve the constant GTICTYPE....CALENDAR at runtime:

GtkType

gtk_calendar_get_type(void);

Create a new instance of GtkCalendar:
GtkWidget *

gtk_calendar_new(void);

Set the month and year displayed by the calendar:
gint
gtk_calendar_select_month(GtkCalendar *calendar, guint month, guint year);

Set the day displayed by the calendar:
void

gtk_calendar_select_day(GtkCalendar *calendar, guint day);

Mark a day number:
gint
gtk_calendar_mark_day(GtkCalendar *calendar, guint day);

Unmark a day number:
gint

gtk_calendar_unmark_day(GtkCalendar *calendar, guint day);

Unmark all day number marks:
void

gtk_calendar_clear_marks(GtkCalendar *calendar);

803

804 Chapter 1 5 • Miscellaneous Widgets

Appl ication-Level API Synopsis (Continued)

Set calendar widget display opU(ms:
voi d
gtk_calendar_display_opt ions (GtkCalendar * calendar ,

GtkCalendarDisplayQptions f lags) ;

Retrieve the selected date from the calendar:
voi d
gtk_calendar_get_date (GtkCalendar * calendar ,

guint *year , guint *month , guint * day) ;

Freeze (batch) UI updates to the calendar:

voi d
gtk_calendar_freeze (GtkCalendar * calendar) ;

Unfreeze UI updates to the calendar:
voi d
gtk_calendar_thaw (GtkCalendar * calendar) ;

______________ 000000_1II _________ '_@1II_11_1 _! ______ 1II ____ _

Class Description

GtkCalendar is a widget that can be used to display a simple calendar within a window or

other container. The minimum content displayed by a calendar widget is a month view (see

Figure 1 5 .9). The application can set attributes that will cause the widget to render day names,
week numbers, or controls that can be used to navigate the calendar on a month-to-month or
year-to-year basis in either a forward or a backward direction (see Figure 1 5 . 1 0).

Figure 15.9 Minimal Calendar Display

GtkCalendar

Figure 15.10 Full Calendar Display

805

An application can arrange to be notified via signals supported by GtkCalendar when the

user has changed events such as the month or year or the user has selected a date by positioning
the mouse over a date and then clicking or double-clicking mouse button 1 . An application can

also "mark" and ''unmark'' days within the currently visible month, as I will describe later. A

marked date is drawn in a way that highlights it to the user; no further support for marked dates

is provided by the calendar widget.

Creating a Calendar Widget

To create an instance of GtkCalendar, call gtk3alendacnewO:

GtkWidget *
gtk_calendar_new (void) ;

As is done by nearly every Gtk+ widget creation function, gtk3alendar_newO returns
an instance of GtkWidget. The date of the calendar is initialized to the current month and

year. The day of the month is always set to 1 .

Setting and Retrieving the Date Displayed by the Calendar

Obviously, most applications will need to set the date displayed by the calendar widget, either

when the calendar is created and first displayed (if the current month and year is not desired)
or in response to some application-defined need (the user requests to view a specific date). To
set the month and year displayed by the calendar, call gtk3alendar_seleccmonthO:

gint
gtk_calendar_select_month (GtkCalendar * calendar , guint month ,

guint year) ;

The argument calendar is an instance of GtkCalendar. The month argument is an
unsigned integer value that must be in the range [0, 1 1] . The year argument, also unsigned,
must be greater than or equal to zero in value but can be set to an otherwise arbitrary value.

To set the day displayed by the calendar, call gtk3alendar_seleccdayO:

806 Chapter 15 • Miscellaneous Widgets

void
gtk_calendar_select_day (GtkCalendar *calendar , guint day) ;

The day argument is a value in the range [1 , 3 1] . If you select a day that is greater than
the number of days in the month, this causes the day to be set, but it will not be rendered

by the user interface to indicate its selection.
You can retrieve the currently selected date with gtl,-calendar�ecdateO :

void
gtk_calendar_get_date (GtkCalendar * calendar ,

guint *year , guint *month , guint *day) ;

The return values specify the year (greater than or equal to zero), the month (1 through 12),

and the day (1 through 3 1) that were selected by the user.

Marking Days

GtkCalendar allows you to mark an arbitrary number of days within a month, up to and

including 3 1 , the maximum number of days that a month can have. A marked day is drawn

in bold to indicate to the user that it is marked. Marked dates are global in the sense that
they persist as the user changes the month and/or year displayed. In some cases, this is

good: A user might mark a date (e.g. , New Year's Day) and then traverse ahead a few years

to see which day of the week it falls on. In other cases, this is bad: An appointment book
application might mark all of the days in a given month that contain meetings. Traversing

from one month to another requires the application to clear the marks that are not valid for
the month and year combination selected by the user.

Other than drawing the days you specify in bold and persisting marked dates as the user

traverses the calendar, no support is provided by GtkCalendar except for the functions

described in this section. The following sample program illustrates how to use marking in

a simple appointment program.

To mark a day number, call gtk_calendar_mark_dayO:

gint
gtk_calendar_mark_day (GtkCalendar *calendar , guint day) ;

If the argument day is not in the range [1 , 3 1] , the function returns silently. Otherwise,
the specified day will be marked, and the calendar widget will redraw itself so that the

marked day is highlighted for the user. To unmark a day, call gtk_calendar_unmark_dayO:

g i n t

gtk_calendar_unmark_day (GtkCalendar *calendar , guint day) ;

This function takes the same arguments as gtk_calendar_mark_dayO. The day specified
is unmarked and the calendar is redrawn.

You can unmark all marked dates by passing the calendar widget as an argument to
gtk3alendar_clear_marksO:

void
gtk_calendar_clear_marks (GtkCalendar *calendar) ;

GtkCalendar 807

Setting Display Options

Before I present the sample program, let's discuss the remaining functions in the GtkCalendar

API.

The first of these functions, gtk:3alendar_display _optionsO:

void
gtk_calendar_display_options (GtkCalendar *calendar ,

GtkCalendarDisplayOpt ions flags) ;

allows you to pass a set of flags that control what controls and features of the GtkCalendar

widget are displayed. The possible flags are shown in Table 15 . 14:

Table 15.14 GtkCalendarDisplayOptions Flags

Flag Meaning

GTK_CALENDAR_SHOW _HEADING Display month and year and controls to
change them.

GTK_CALENDAR_SHOW _DAY_NAMES Show day names.

GTK_CALENDAR_NO_MONTH_CHANGE If displaying heading, hide controls for
changing month and year.

GTK_CALENDAR_SHOW _WEEK_NUMBERS Show week numbers (1 through 52).

GTK_CALENDAR_ WEEK_START_MONDAY Display week as MTWThFSaSu (default is
SuMTWThFSa).

The argument flags are a bitwise OR' ing of the preceding flags. For example, to show

the month and year, hide the date traversal controls, and display weeks starting with Mon

day, you might execute the following code:

GtkWidget * cal ;

gtk_calendar_display_opt ions (GTK CALENDAR (cal) ,
GTK_CALENDAR_SHOW_HEADING I GTK_CALENDAR_NO_MONTH_CHANGE
GTK_CALENDAR_WEEK_START_MONDAY) ;

GtkCalendar does not supply a function that can be used to retrieve the current flags, but
you can get at them via the following code:

GtkWidget * cal ;
GtkCalendarDisplayOptions f l ags ;

flags = GTK_CALENDAR (cal) - >display_f lags ;

Given the preceding, you can clear the GTK_CALENDAR_NO_MONTH_CHANGE
flag with the following code:

flags &= -GTK _CALENDAR_NO _MONTH_CHANGE ;
gtk_calendar_display_options (GTK_CALENDAR (cal) , flags) ;

808 Chapter 1 5 • Miscellaneous Widgets

Freezing and Thawing the Calendar Display

The two remaining miscellaneous calendar functions. gtlccalendar_freezeO and gtk_

calendar_thawO. are used together in an attempt to reduce visual noise that might occur when

a large set of changes is made to the calendar by the application. In my opinion. the only time
you would want to wrap calls to the GtkCalendar API with freeze and thaw calls is when set

ting a number of marks on the currently displaying month. Both of these functions:

void
gtk_calendar_freeze (GtkCalendar * calendar l ;

void
gtk_calendar_thaw (GtkCalendar * calendar l ;

accept an instance of GtkCalendar as an argument. You must ensure that you call

gtk3alendar_thawO after calling gtk_calendar_freezeO; this is the only way to restore proper

updates to a frozen calendar widget user interface.

Example Program

The following example is a simple appointment -book application that illustrates the important
topics I just described.

Figure 15. 1 1 GtkCalendar Example Screenshot

Listing 15.6 GtkCalendar Example (See Figure 15 . 1 1)

001 #include < gtk/gtk . h>

002

003 I I an appointment book entry

004

005 typedef st ruct _calentry {
006 int day; I I day of the month

007 char *timestr; II time of t he appointment

008 char *title; II appointment title

009 char *location; II appointment location

GtkCalendar

010 } CalEntry;

011

012 II Appointment book (only 1 month of data here, all hard-coded, for

013 II simplicity sake

014

015 static CalEntry entries[) = {
016 (3, "11:30 AM", "Lunch with Bob", "Joe's Grill" } '

017 (6, "5:00 PM", "pick up Sally at airport", "Airport" } ,

018 (7, "3:40 PM", "Dentist", "Dr. Jones" } '

019 { 14, "6: 15 PM", "Dinner with team", "TBD" } ,

020 { 17, "9:00 AM", "Golf", "Torrey Pines, North Course" } ,

021 { 18, "1:00 PM", "Sally's flight home", "Airport" } ,

022 { 19, "11:30 AM", "Phone roofer", "N/A" } '

023 (22, "7: 30 PM", "Take cousin to movies", "City Theatre"

024 } ;
025

026 II format and display a message in a modal dialog

027

028 void

029 DisplayMessage(char *title, char *location, char *timestr)

030 (
031 char buf[1024);

032 GtkWidget *dialog, *label, *button;

033

034 sprintf(buf, "%s\n Time: %s Location: %s", title, timestr,

035 location);

036

037 dialog = gtk_dialog_new();

038 gtk_window-position(GTK_WINDOW (dialog), GTK_WIN_POS_MOUSE);

039 gtk_window_set_modal(GTK_WINDOW (dialog), TRUE);

040

041 label = gtk_label_new(buf);

042 gtk_box-pack_start(GTK_BOX (GTK_DIALOG (dialog)->vbox),

043 label, TRUE, TRUE, 0);

044

045 button = gtk_button_new_with_label ("Ok");

046 gtk_signal_connect_object(GTK_OBJECT (button), "clicked",

047 GTK_SIGNAL_FUNC(gtk_widget_destroy), GTK_OBJECT(dialog»;

048 gtk_box-pack_start(GTK_BOX (GTK_DIALOG (dialog)->action_area),

049 button, FALSE, FALSE, 0);

050 gtk_widget_show_all(dialog);

051

052

053 II GtkCalendar day_selected signal function. See if the selected day is in

054 II the appointment book and, if so, display it in a dialog

055

056 void

057 SelectDay (GtkWidget *widget, gpointer data)

058 (
059 guint year, month, day;

060 int i;

061

062 II retrieve the selected date

063

064 gtk_ca1endar_get_date(GTK_CALENDAR(widget) , &year, &month, &day);

065

066 II see if it exists in the appointment book, and if it does

809

810 Chapter 15 • Miscellaneous Widgets

067 II display the entry

06B

069 for (i = 0; i < sizeof(entries) I sizeof(CalEntry); i++

070 if (entries [i] . day == day)

071

072

DisplayMessage(entries[i] . title,

073

074

075 main (int argc, char *argv[])

076

entries[i] . location, entries[i] . timestr);

077 GtkWidget *button, *calendar, *dialog;

07B GtkCalendarDisplayOptions flags;

079 int i;

OBO

OB1 gtk_init(&argc, &argv);

OB2

OB3 dialog = gtk_dialog_new();

OB4 gtk_window-position(GTK_WINDOW (dialog), GTK_WIN_POS_MOUSE);

OB5

OB6 II create the calendar widget

OB7

OBB calendar = gtk_calendar_new();

OB9

090 II retrieve the default flags
091

092 flags = GTK_CALENDAR(calendar)->display_flags;

093

094 II turn off the ability to change the date

095

096 gtk_calendar_display_options(GTK_CALENDAR(calendar),

097 flags I GTK_CALENDAR_NO_MONTH_CHANGE);

09B

099 II handle a mouse button 1 press over a day in the calendar

100

101 gtk_signal_connect (GTK_OBJECT (calendar), "day_selected",

102 GTK_SIGNAL_FUNC (SelectDay), NULL);

103

104 II mark all days that have an entry in the appointment book

105

106 for (i = 0; i < sizeof(entries) I sizeof(CalEntry); i++

107 gtk_calendar_mark_day(GTK_CALENDAR(calendar) ,

lOB entries[i] . day);

109

110 gtk_box-pack_start(GTK_BOX (GTK_DIALOG (dialog)->vbox),

111 calendar, TRUE, TRUE, 0);

112
113 button = gtk_button_new_with_1abel ("Quit");
114 gtk_signal_connect_object(GTK_OBJECT (button), "clicked",

115 GTK_SIGNAL_FUNC(gtk_widget_destroy), GTK_OBJECT(dialog»;

116 gtk_box-pack_start(GTK_BOX (GTK_DIALOG (dialog)->action_area),

117 button, FALSE, FALSE, 0);

11B

119 gtk_widget_show_all(dialog);

120 gtk_main();

121

Summary 811

The appointment data in this sample application is hard-coded into an array and is only
available for the current month. The program creates a calendar widget and places it in a
dialog. Because only data for the current month is provided, I disable the capability for the

user to change the month or the year. For each entry in the appointment book array, I mark
the day in the month that corresponds to the date of the appointment (for simplicity, only

one event per day is stored). A day_selected signal function, SelectDayO, is registered with

the calendar widget and is invoked when the user positions the pointer over a day and clicks
mouse button 1 . The callback retrieves the selected day from the calendar using gtk_
calendar�eCdateO and then searches the appointment book to see if there is an entry for
that day. If so, SelectDayO calls a function that formats the appointment book data and dis

plays it in a dialog.

S u mmary

In this chapter, we finished coverage of the Gtk + widget classes by taking a look at some mis
cellaneous widget classes. A ruler widget (GtkRuler, GtkVRuler, and GtkHRuler) displays a
vertical (GtkVRuler) or horizontal (GtkHRuler) ruler in its container. A preview widget (Gtk

Preview) is capable of displaying color or grayscale image data. A sample program presented

in this chapter illustrated how GtkPreview, in conjunction with libtiff, can be used to display
TIFF image data.

Progress widgets (GtkProgress and GtkProgressBar) can add significantly to the usability
of an application by providing users with visual feedback during tasks that take time to com
plete. A progress bar widget supports two modes. The first, what I call start-to-finish mode, can

be used to convey a percentage-completed status for tasks that take a known amount of time or

effort, such as the downloading of a file of a known, fixed size. The second mode, activity

mode, can be used to indicate activity of an unknown duration, such as logging in to a server.

A tooltip widget (GtkTooltips) supports the display of context-sensitive help in a small
window that is popped up by Gtk+ whenever the user hovers the mouse over a widget for

which a tooltip has been registered. A tips query widget (GtkTipsQuery) is a less-often-used

widget that provides an alternate way to display context-sensitive help text in an application.

A combo widget (GtkCombo) is a control that allows users to enter data into a text entry

field or to select data from a pop-up menu attached to the control. A statusbar (GtkStatusbar)
widget is essentially a frame widget that displays a text status message provided by the appli
cation. Status messages are stored on a stack; the top of the stack defines the message displayed
by the statusbar widget. An accelerator label widget is primarily of interest to widget writers
and supports the display of accelerator text in several widgets such as menu items.

Graphics applications can use a drawing-area widget (GtkDrawingArea) as a container for
drawings and images. In this chapter, I presented a sample program that illustrated one possible
technique for efficiently handling expose events received by a drawing area widget. The final

widget discussed in this chapter, GtkCalendar, is useful for applications that need to display a
calendar or solicit dates from users. I presented a short sample program that illustrates how an
application can mark specific dates in a calendar widget, as well as respond to button presses
made by the user upon specific dates that are displayed by the calendar widget.

A P P E N D I X

CT K+ 1 . 2 WI DC ET

H I E RA R(H Y

The following depicts the Gtk + 1 .2 widget hierarchy. The number to the right of a class name
specifies the chapter in this book that describes the corresponding widget class. Widget

classes not covered in this book are in italics.

GtkObject 3

+

+

I

I

I

I

I

I

+

GtkWidget 4

+

I

I

+

+
,

+

GtkMisc

GtkLabel 5

+ GtkAccelLabel
,

GtkTipsQuery

GtkArrow 8

GtkImage 8

GtkPixmap 8

GtkContainer 10

GtkBin

+ GtkAlignment

+ GtkFrame 1 1

1 5

1 5

I ' GtkAspectFrame 1 1
+ GtkButton 5

I + GtkToggleButton 5
I I ' GtkCheckButton 5
I I ' GtkRadioButton 5

I ' GtkOptionMenu 9

+ GtkItem

I + GtkMenuItem 9

I I + GtkCheckMenuItem 9

I I I ' GtkRadioMenultem 9

I I ' GtkTearoffMenultem 9

I + GtkListItem

I ' GtkTreeltem 12
+ GtkWindow 7

8 1 3

814

I I + GtkColorSelectionDialog 7

I I + GtkDialog 7

I I I ' GtkInputDialog

I I + GtkDrawWindow

I I + GtkFileSelection 7

I I + GtkFontSelectionDialog 7

I I ' GtkPlug

I + GtkEventBox 1 1

I + GtkHandleBox 1 1

I + GtkScrolledWindow 1 1

I ' GtkViewport

+ GtkBox 10

I + GtkButtonBox 10

I I + GtkHButtonBox 10

I I ' GtkVButtonBox 10

I + GtkVBox 10

I I + GtkColorSelection 7
I I ' GtkGammaCurve

I ' GtkHBox 10

I + GtkCombo 15

I ' GtkStatusbar 15

+ GtkCList 6

I ' GtkCTree 12

+ GtkFixed 10

+ GtkNotebook 10

I ' GtkFontSelection 7
+ GtkPaned 1 1

I + GtkHPaned 1 1

I ' GtkVPaned 1 1

+ GtkLayout 1 1

+ GtkList 6

+ GtkMenuSheli

I + GtkMenuBar 9
I ' GtkMenu 9
+ GtkPacker 1 1

+ GtkSocket

+ GtkTable 1 1
+ GtkToolbar 1 1

GtkTree 12

+ GtkCalendar 15

+ GtkDrawingArea 15

I
,

GtkCurve

+ GtkEditable

I + GtkEntry 8
I I

,
GtkSpinButton 14

Appendix • Gtk+ 1 .2 Widget Hierarchy

815

I
,

GtkText 14

+ GtkRuler 15

I + GtkHRuler 15

I
,

GtkVRuler 15

+ GtkRange 1 3

I + GtkScale 1 3
I I + GtkHScale 13

I I
,

GtkVScale 1 3

I
,

GtkScrollbar 1 3

I + GtkHScrollbar 1 3

I
,

GtkVScrollbar 1 3

+ GtkSeparator 8

I + GtkHSeparator 8

I
,

GtkVSeparator 8

+ GtkPreview 15

GtkProgress 15

GtkProgressBar 1 5

+ GtkData

I + GtkAdjustment 1 3

I
,

GtkTooltips 1 5

GtkItemFactory 9

Symbols

<Branch>
and GtkItemFactory, 362

<LastBranch>
and GtkItemFactory, 362

A

accelerator
defined, 138

accelerator group
and menus, 408
defined, 139
example using, 140

accessor macros, 91
action area

of a dialog, defined, 320
activate signal, 275

firing, 144
activity mode

and GtkProgress, defined, 749
and GtkProgressBar, illustrated, 752

adjustment objects
and GtkLayout, 578
and GtkProgressBar, 753
and GtkSpinButton, 710
defined, 679
implementation, 680
working with, 685

alarm
as a substitute for Gtk+ timeouts, 38

alpha channel, 317
Apple Computer, 763
application termination, 32
argc and argv, 17, 27
arguments, 89

command line, 27
widget, 130

atexit,32
attributes

of objects, 89

B

balloon help, 763
bitmap, 222, 223

defined, 222

INDEX

817

border width
of a container, 421

box widgets
and nesting, 432
packing, explained, 432

box widgets, See GtkBox
button actions, 228
button boxes

vertical, 454
button_press_event, 63
button_release_event, 63

c
calendar, See GtkCalendar
CDE, See Common Desktop Environment
check buttons

contrasted to toggle buttons, 188
usage defined, 174

check menu items, 389
and GtkItemFactory, 363
state of, 393
using, 392

--class classname, 28
class functions

and signals, 71
class name

of program, 28
client data

defined, 97
example, 49
example using, 99
removing, 98

cliencevent, 70
climb rate

clists
and GtkSpinButton, 710

and adjustment objects, 259
and client data, example, 241
and drag icons, 247
and scrollbars, 254
and sorting, 248
and styles, 237
autosizing columns, 235
cell types of, 236
changing the column text, 232
changing the position of rows in, 247
column justification styles of, 234
column titles in, 230

818

controlling row selectability in, 240
controlling selections in, 246
freezing and thawing, 230
selections and, 245
sorting numeric data in, 248, 251
sorting rows by date, 252

color selection widget
update policy of, 315

colormap, 224
default, 161
defined, 149, 338
getting system default, 160

colormap and visual stacks, 159
color-selection dialog, 310

example, 310
combo widget, See GtkCombo
Common Desktop Environment, 8
compiling and linking

example, 22
configure_event, 66
console applications, 14
container widget, 20
container widgets

defined,417
containers

defined, 165
control area

of a dialog, defined, 320
controls

defined, 165
CreateWindow,3
crossing events, 65
ctrees

displaying pixmaps in, 222

D

debugger, 23
debugging, 23

command line arguments for, 29
compile-time flags for, 29
runtime messages, 30

default widget, 275
setting, example, 276

delete3vent, 71
desktop environment

defined,7
destroy_event, 71
dialog

example, 281
organization of, 280
sizing, 282

DirectColor, 151
--display h

s.d,28
DISPLAY variable, 149

using, 3
dlopen,28
drawing area, See GtkDrawingArea
DrawLine,3
dtwm, 8

E

echo, 13
enter_notify _event, 64
entry widgets, 20
error messages

controlling at runtime, 31

errors
defined,3

event callbacks
defined,52

event types, 57
events, 52, 142
events, 47

checking for pending, 34
defined, 3, 51
nonmaskable, 54
soliciting, 54

events and signals
difference, 51

exit functions
and modules, 32
registering, 32

expand
and box widgets, 439

Index

expose events, 52, 55, 59,143,523,741,792,797,799,
800

and GtkEventBox, 561
and GtkLayout, 579

expose_event, 59

F

file-selection
widget, examples, 286

file-selection widget

fill

focus

adding content to, 292
hiding content in, 289
responding to user input in, 290

and box widgets, 439

grabbing, 145
of windows, 274
widget, 275

focus_in_event, 66
focus_oucevent, 66
font

charset and font selection widget, 299
foundry and font selection widget, 299

font-selection widget
modifying, 298
user interface of, 295

FreeBSD,2
functions

naming convention, 19
fvwm, 18
fvwm2,268

Index

G

lLatexit, 32
G_DISABLE_ASSERT, 30
G_DISABLE_CHECKS, 30
G_ENABLE_DEBUG, 29
g_liscappend, 775, 777
lLlisccoPy, 205
G_LOG_LEVEL_CRITICAL,31
G_LOG_LEVEL_DEBUG, 32
G_LOG_LEVEL_ERROR,31
G_LOG_LEVEL_lNFO,31
G_LOG_LEVEL_MESSAGE,31
G_LOG_LEVEL_ W ARNlNG, 31
G_MODULE_EXPORT, 28
G_PRIORlTY_DEFAULT,4O
G_PRlORlTY_DEFAULT_IDLE,4O
G_PRlORITY_HlGH,40
G_PRlORlTY _HlGH_IDLE,4O
G_PRlORlTY_LOW,4O
GAIM,488
gamma correction

and GtkPreview, 741
gcc, 11, 12, 13, 14, 19,22,23,89
gdb, 11,793

using, 23
GDK event masks, 55
GDK events

listing of, 52
gdk_bitmap3reate_from_data, 223, 344
gdk3010rmap....gecsystem,l 60
gdk_draw_arc, 792
gdk_draw_line, 792
gdk_draw_pixmap, 792, 799, 801
gdk_draw_text, 792
gdk_exit, 32
GDK_EXPOSE, 799
gdk_fonUoad, 239

example using, 296
gdkjonuef, 296
gdkjoncunref, 239, 296
gdk....gc_secclip_mask, 800
gdk....gc_secclip_origin, 800
gdk....gc_secclip_rectangle, 800
gdk_image_destroy,344
gdk_image....get, 344
gdk_image....gecpixel, 343
gdk_image_new, 341
gdk_image-pucpixel, 341
gdk_pixmap3010rmap3reate_from_xpm, 224, 225, 333
gdk-pixmap3010rmap3reate_from_xpm_d, 225
gdk_pixmap_createjrom_data, 224
gdk_pixmap3reate_from_xpm, 225
gdk_pixmap_create_from_xpm_d, 226
gdk_rectangle_intersect

example using, 801
gdk_rgb....geccmap, 743
gdk_rgb....gecvisual,743
GDK_SELECTION_PRlMARY, 68
gdk_seUocale, 17
gdk_visual....geCbest, 152
gdk_visual....gecbesCwith_both,152
gdk_visual....geCbesCwith_depth,152
gdk_visual....gecbesCwith_type, 152

gdk_visual....geCsystem, 152, 160
gdk_visual_lookup, 152
gdk_ window....get....geometry, 791
gdk_ window....gecpointer, 148
GdkBitmap, 226, 333
--gdk-debug flags, 27
GdkEvent

defined,58
GdkEventAny,71
GdkEventButton,62
GdkEventClient, 70
GdkEventConfigure, 66
GdkEventCrossing, 64
GdkEventExpose, 59,799
GdkEventFocus,65
GdkEventKey,63

defined,42
GdkEventMotion,60
GdkEventNoExpose, 59
GdkEventProperty,66
GdkEventSelection, 67
GdkEventType, 799
GdkEventVisibility, 60
--gdk-no-debug flags, 27
�ap,222,223,224,226,333
GdkRectangle, 801
GdkVisual

example using, 342
gdkx_visual....get, 152
geometry

hints, explained, 271
geometry hints

setting, 270
--g-fatal-warnings, 27, 32
gmake, 11, 23
GNOME, 2, 8, 9, 763

defined,8
GNUlLinux, 2
gtk

initialization, 12
sample application, 16

Gtk+,l
compared to Xt Intrinsics, 12
origins of, xiii
skeleton application, 11

gtk+
initialization, 26

gtk/gtk.h, 16
gtk_accel....group_attach, 139

example using, 387
gtk_accel....group_new,139

example using, 387
gtk_acceUabel....gecacceC width, 789
gtk_acceClabel_new, 789
gtk_acceUabeCrefetch, 789
gtk_acceUabeCsecaccel_ widget, 789
gtk_adjustment_changed, 685
�adjustmenCnew, 684
gtk_adjustmenCseCvalue, 685, 721
GTK_ANCHOR_CENTER, 502

GtkPacker and, 510
GTK_ARGJffiADABLE, 90
GTK_ARG_READWRlTE, 90
GTK_ARG_ WRITABLE, 90

819

820

gtk_arrow_new.330
gtk_arrow_set.330
gtk_aspecCframe_new.522
gtk_aspecCframe_set. 522
gtk_box_pack_end. 440. 444.445
gtk_box_pack3nd_defaults. 440
gtk_box_pack_sUUrt. 439. 444. 445

example of. 21
gtk_box_pack_sUUrt_defaults. 440
gtk_box_query 3hild_packing. 442
gtk_box_reorder_child. 441
gtk_box_secchild_packing. 442
gtk_box_sechomogeneous. 441
gtk_box_secspacing.441
gtk_button_box....gecchild_ipadding. 452
gtk_button_box....gecchild_ipaddinl!-default. 451
gtk_button_box....gecchild_size. 451
gtk_button_box....geCchild_size_default. 450
gtk_button_box....geCspacing. 452
gtk_button_box....geCstyle. 449
gtk_button_box_secchild_ipadding. 452
gtk_button_box_secchild_ipaddinl!-default. 452
gtk_button_box_secchild_size. 451
gtk_button_box_secchild_size_default. 450
gtk_button_box_seUayout. 449
gtk_button_box_secspacing. 452
gtk_button_clicked. 179
gtk_button_enter. 179
gtk_button....geuelief.180
gtk_button_leave. 179
gtk_button_new. 178
gtk_button_new_with_label. 21. 178
gtk_button_pressed. 179
gtk_button_released. 179
gtk_button_seuelief.180
GTK_BUlTONBOX_DEFAULT_STYLE.449
GTK_BUlTONBOX_EDGE. 449
GTK_BUlTONBOX_END.449
GTK_BUlTONBOX_SPREAD. 449
GTK_BUlTONBOX_START.449
gtk_calendaccleacmarks. 806
gtk3alendar_display _options. 807
gtk3alendar3reeze. 808
gtk_calendar....geCdate. 806
gtk3alendar_mark_day. 806
gtk3alendar_new.805
gtk3alendar_seleccday. 805
gtk3alendar_seleccmonth. 805
gtk3alendar_thaw.808
gtk3alendar_unmark_day. 806
gtk3heck_button_new. 188
gtk3heck_button_new _with_label. 188
gtk3heck_menu_item_new. 392
gtk_check_menu_item_new _with_label. 392
gtk3heck_menu_item_secshow _toggle. 394
gtk3heck_ version. 27
gtk_cliscappend.221
gtk_cliscclear.241
gtk3lisccolumn_title_active. 231
gtk3lisCcolumn_title_passive. 231
gtk_clisccolumn_titles_active. 231
gtk_clisccolumn_titles_hide. 231
gtk_clisccolumn_titles_passive. 231
gtk3lisccolumn_titles_show. 231
gtk3lisccolumns_autosize. 235
gtk3liscfind_row _from_data. 245
gtk_clist3reeze. 230

gtk_clist....geCcell_style. 239
gtk_clist....geCceIUype. 237
gtk_clist....geccolumn_title. 232
gtk_clist....geccolumn_ widget. 233
gtk_clist....geChadjustment. 260
gtk_clist....gecpixmap. 226
gtk_clist....gecpixtext. 227
gtk3list....gecrow_data.244
gtk3list....geCrow _style. 240
gtk_clist....geCselectable. 240
gtk_clist....geCselection_info. 246
gtk_clist....gec vadjustment. 260
gtk_clisUnsert.221
gtk_cliscmoveto. 259
gtk_cliscnew.219
gtk_cliscnew _with_titles. 219
gtk3liscoptimal30lumn_ width. 235
gtk3liscprepend. 220
gtk3liscremove. 241
gtk3lisCrow _is_visible. 258
gtk_clisCrow_move.247
gtk3liscseleccall. 245
gtk3liscseleccrow. 245
gtk3liscsecauto_sort. 248. 644
gtk3lisueCbackground. 237
gtk3lisCseCbutton_actions. 229
gtk_clisUecceICstyle. 237. 239
gtk_clisCseccolumn_auto_resize. 235

Index

used to control column widths in GtkCTree. 637
gtk3lisueccolumn..,justify. 234
gtk3liscseccolumn_max_ width. 236
gtk3lisueCcolumn_min_ width. 236
gtk3liscseCcolumn_resizeable. 235
gtk3lisUeCcolumn_title. 232
gtk3lisCseCcolumn_ visibility. 234
gtk_clisueccolumn_ widget. 233
gtk3liscseccolumn_ width. 235
gtk3lisCseccompare3unc. 248
gtk_cliscset30reground. 237
gtk_cliscseChadjustment, 259
gtk3lisCset-pixmap. 226
gtk3lisCsecpixtext. 226
gtk_cliscsecreorderable. 229
gtk3liscsecrow_data.244
gtk3liscseuow _data3ull. 245
gtk_clisCseCrow _height. 236
gtk_clisCseCrow _style. 240
gtk3lisuecselectable. 240
gtk_cliscsecselection_mode. 228
gtk3lisCseCshadow _type. 227
gtk3lisCseCshift. 240
gtk3liscsecsort30lumn. 253
gtk3liscsecsort_type. 254
gtk_cliscseuext. 221
gtk_cliscsecuse_dral!-icons. 247
gtk_cliscsort. 253
gtk3liscthaw.230
gtk3liscundo_selection. 246
gtk3liscunseleccall. 246
gtk3liscunselecCrow.246
gtk3010r_selection....geccolor. 317
gtk_colocselection_new. 310. 315
gtk3010cselection_seccolor. 317
gtk3010cselection_secopacity. 316
gtk3010cselection_secupdate_policy. 315
gtk30mbo_disable_activate. 781
gtk30mbo_new.775

Index

gtk_combo_seccase_sensitive, 781
gtk_combo_seUtem_string, 779
gtk30mbo_secpopdown_strings, 775, 778
gtk30mbo_seCuse_arrows_always,780
gtk_combo_seC value_in_list, 780
GTK_CONTAINER, 20, 421
gtk_container_add,421

table of class equivalents, 422
gtk30ntainecborder_ width, 19
gtk30ntainecchildren, 424
gtk30ntainer_focus, 425
gtk30ntainecforeach, 423
gtk30ntainecremove, 422

table of class equivalents, 422
gtk_containecseCborder_width,421
GTK_CORNER_BOTTOM_LEFf, 574
GTK_CORNER_BOTTOM_RIGHT,575
GTK_CORNER_TOP _LEFf, 574
GTK_CORNER_TOP _RIGHT, 575
gtk_ctree_collapse, 653
gtk3tree_collapse_recursive, 653
gtk3tree_collapse_to_depth, 654
gtk_ctree_expand,653
gtk3tree_expand_recursive, 653
gtk_ctree_expand_to_depth,653
gtk_ctree_find,648
gtk_ctree_find_all_by _row_data, 649
gtk_ctree_find_all_row _data_custom, 652
gtk_ctree_find_by _row_data, 652
gtk_ctree_find_by _row _data_custom, 652
gtk3tree....gecnode_info, 659
gtk3tree_is_ancestor, 648
gtk3tree_is_hoCspot, 656
gtk3tree_is3iewable, 648
gtk3tree_mode_secpixtext, 658
gtk_ctree_move,652
gtk_ctree_new,631
gtk_ctree_new _with_titles, 635
gtk3tree_node....geCcell_style, 662
gtk3tree_node....geCpixmap, 657
gtk3tree_node....geCrow _style, 661
gtk_ctree_node....geCselectable, 660
gtk_ctree_node....geuext, 656
gtk_ctree_node_is3isible, 663
gtk3tree_node_moveto, 663
gtk3tree_node_secbackground, 662
gtk3tree_node_secceICstyle, 662
gtk3tree_node_seCpixmap, 657
gtk_ctree_node_secrow _data, 649
gtk3tree_node_secrow _data_full, 649
gtk3tree_node_secrow_style,661

example using, 661
gtk3tree_node_secshift, 660
gtk3tree_node_sectext, 657
gtk3tree_poscrecursive, 645
gtk3tree_poscrecursive_to_depth, 645
gtk_ctree_pre_recursive, 645
gtk3tree_pre_recursive_to_depth, 645
gtk_ctree_remove_node,640
gtk3tree_select, 655
gtk3tree_selecCrecursive, 655
gtk3tree_seCdrag...compare_func, 643
gtk3tree_seCexpandecstyle, 642
gtk_ctree_seUndent, 640
gtk3tree_secnode_info, 659
gtk3tree_secspacing,641
gtk_ctree_sort_node,644

gtk3tree_sort_recursive, 644
gtk3tree_toggle_expansion, 654
gtk3tree_toggle_expansion_recursive, 654
gtk3tree_unselect, 656
gtk_ctree_unseleccrecursive, 656
gtk_dialog...new,281
GTK_DIR_DOWN,425
GTK_DIR_LEFf,425
GTK_DIR_RIGHT, 425
GTK_DIR_TAB_BACKW ARO, 425
GTK_DIR_T AB_FORW ARO, 425
GTK_DIR_UP,425
gtk_disconnecCby_data,81
gtk_drawing...area_new,791
gtk_drawing...area_size, 791
gtk_editable....gecchars, 704
gtk_entry _append_text, 351
gtk_entry....geUext, 351, 778
gtk_entry_new,350
gtk_entry _new _ with_max_Iength, 350
gtk_entry _prepend_text, 351
gtk_entry _seleccregion, 353
gtk_entry _seCeditable, 352
gtk_entry _seCmax_Iength, 351
gtk_entry _secposition, 352
gtk_entry_seCtext,350
gtk_entry _seC visibility, 351
gtk_evenCboxJlew,564
gtk_events_pending, 34

example, 34
gtk_exit, 32
gtk_file_selection30mplete, 288
gtk_file_selection....geCfilename, 289
gtk_file_selection_hide_fileop_buttons, 289
gtk_file_selection_new, 287
gtk_file_selection_seCfilename, 288
gtk_file_selection_show _fileop_buttons, 289
gtk_fixed_move, 427
gtk_fixed_new,426
gtk_fixed--put, 427
GTK_FONT_SELECTION, 298
gtk_foncselection_dialog...new, 308
gtkjoncselection_filter, 298
gtk_foncselection....getjont, 304
gtk_foncselection....gecfoncname, 304
gtk_foncselection....gecpreview, 303
gtk_fonCselection_new,298
gtk_foncselection_setjonCname, 304
gtk_foncselection_set--preview _text, 303
gtkjrame_new,517
gtk_frame_seUabel,519
gtkjrame_seUabeCalign, 519
gtk_frame_seCshadow _type, 520
GTK_FUNDAMENTAL_TYPE, 92
gtk_handle_box_new,557
gtk_handle_box_secshadow _type, 558
gtk_handle_box_secsnap_edge, 558
gtk_hbox_new,445
gtk_hbutton_box....geUayouCdefault, 456
�hbutton_box....gecspacing...default, 456
gtk_hbutton_box_new,456
gtk_hbutton_box_seUayouCdefault, 456
gtk_hbutton_box_seCspacing...default, 456
gtk_hpaned_new, 489, 494
gtk_hrulecnew,732
�hscale_new, 668, 669
gtk_hscrollbar_new, 677

821

822

gtk_hseparatocnew.322
gtiUdle_add. 39
gtk_idle_add_priority.4O
gtk_idle_remove.41
gtk_idle_remove_by _data. 41
gtk_image....get. 347
gtk_image_new.344
gtk_image_set. 347
gtk_init. 17. 27
gtk_inicadd. 35
GTK_IS_WIDGET.109
gtk_item_factory _create_item. 366
gtk_item_factory _delete_entries. 369
gtk_item_factory_delete_entry.368
gtk_itemjactory _from_widget. 367
gtk_item_factory....geCwidget. 366. 367
gtk_item_factorygec widgecby _action. 368
gtk_itemjactory_new.365

example using. 376
gtk_item_factory _path_from_ widget. 367
gtk_item_factory _popup. 369
gtk_itemjactory _popup_data. 371
gtk_item_factory _popup_data_from_ widget. 372
gtk_itemjactory _popup_ with_data, 371
gtk_key _snooper_install. 41
gtk_key _snooper_remove. 41
gtk_label....get. 168
gtk_label_new. 168
gtk_labeLparse_uline. 172

example using. 388
gtk_labeLsetjustification. 169
gtk_labeUetjustify. 283
gtk_labeLseUine_wrap.283
gtk_labeLsecpattem. 172

explanation of. 172
gtk_label_seuext. 168.783
gtk_layout....gechadjustment. 583
gtk_layoucmove. 577
gtk_layoucnew.577
gtk_layoucput. 577
gtk_layoucsecsize. 577
gtk_layoucsec vadjustment. 583
GTK_LEFCRIGHT.384
gtk_liscappend_items. 202
gtk_lisCchild_position. 206
gtk_liscclear_items. 205
gtk_lisUnserUtems. 202
gtk_liscnew. 201
gtk_liscprepend_items. 202
gtk_liscremove_items. 205
gtk_liscremove_items_no_unref. 205
gtk_lisCselecCail. 207
gtk_liscselecCchiid. 206
gtk_liscselecUtem. 206
gtk_liscsecselection_mode. 201
gtk_lisuoggle_row.207
gtk_liscunseleccall. 207
gtk_liscunseleccchiid. 207
gtk_liscunselecUtem. 206
gtk_main.12

defined. 33
described. 12
example. 22
nesting. 33

gtk_main_iteration. 33
gtk_main_level. 33
gtk_main_quit. 33

gtk_menu_append.402
gtk_menu_bar_append.379
gtk_menu_bar_insert. 379. 380
gtk_menu_bar_new.379

example using. 387
gtk_menu_bar_prepend. 379
gtk_menu_bar_secshadow _type. 380
gtk_menu....geCactive. 407
gtk_menu_insert. 402
gtk_menu_item_activate. 385
gtk_menu_item_deselect. 384
gtk_menu_item_new. 383

example using. 388
gtk_menu_item_new _with_label. 383
gtk_menu_item_remove_submenu. 384
gtk_menu_item_rightjustify. 384
gtk_menu_item_select. 384
gtk_menu_item_seCactive. 393
gtk_menu_item_secplacement. 384
gtk_menu_item_secsubmenu. 383
gtk_menu_new. 402
gtk_menu_popdown. 407
gtk_menu-popup.403
gtk_menu_prepend. 402
gtk_menu_secaccel....group. 408
gtk_menu_secactive. 408
gtk_module_init, 28
GTK_MODULES. 29
GTK_NO_CHECK_CASTS. 30
gtk_notebook_append_page.464
gtk_notebook_append_page_menu.467
gtk_notebook....geccurrent-Page.472
gtk_notebook....gecmenu_label. 481
gtk_notebook....geCnth_page. 472
gtk_notebook....geCtab_label. 480
gtk_notebook_insert_page. 465
gtk_notebook_insert_page_menu. 467
gtk_notebook_new. 464
gtk_notebook_nexcpage. 472
gtk_notebook_page_num.472
gtk_notebook_popup_disable. 468
gtk_notebook_popup_enable. 467
gtk_notebook-prepend_page.465
gtk_notebook_prepend_page_menu. 467
gtk_notebook_prev -page. 472
gtk_notebook_query _tab_label_packing. 482
gtk_notebook_remove-page.471
gtk_notebook_reordeCchild. 471
gtk_notebook_seChomogeneous_tabs. 479
gtk_notebook_secmenu_label. 467. 482
gtk_notebook_secmenu_labeUext. 482
gtk_notebook_seCpage.472

example using. 478
gtk_notebook_secscrollable. 479
gtk_notebook_seCshow_border.473
gtk_notebook_secshow _tabs. 473
gtk_notebook_seCtab_border.480
gtk_notebook_seCtab_hborder.480
gtk_notebook_seCtab_label. 481
gtk_notebook_seCtab_labeLpacking. 483
gtk_notebook_sectab_labeUext. 481
gtk_notebook_seCtab_ vborder. 480
GTK_OBJECT. 19

example using. 87
gtk_objeccaruet. 94
gtk_objeccdebug. 32
gtk_objeccdestroy.86

Index

Index

gtk_objeccgecdata, 98
gtlcobjeccgeCusecdata, 98
gtlcobject...getv, 95
gtk_objeccquery_args,89

flags supported by, 90
gtk_objeccremove_data, 98
gtk_objeccremove_no_notify, 98
gtk_objecuet, 96, 179
gtk_objeccsecdata, 97
gtk_objeccsecdata_full,98
gtk_objeccseCusecdata, 98
gtk_objeccsetv,96
gtk_option_menu�ecmenu, 411
gtk_option_menu_remove_menu, 411
gtk_option_menu_seChistory, 414
gtk_option_menu_secmenu, 410

example using, 412
GTK_PACK_END, 442, 483
GTK_PACK_EXPAND

GtkPacker and, 509
GTK_PACK_START, 442, 483
gtk_packer_add, 499
gtk_packecadd_defaults, 499
gtk_packer_new, 498
gtk_packecreorder3hild, 513
gtk_packer_secchild_packing, 513
gtk_packecsecdefauicborder_ width, 511
gtk_packecsecdefaulUpad, 513
gtk_packecsecdefaulcpad, 513
gtk_paned_addl ,490
gtk_paned_add2, 490
gtk_paned_packl , 490
gtk_paned_pack2, 491
gtk_paned_set�uttecsize, 492
gtk_paned_seChandle_size, 492
gtk_paned_secposition, 491
gtk_pixmap�et, 333
gtk_pixmap_new, 333
gtk_pixmap_set, 333
gtk_pixmap_seCbuild_insensitive, 335
GTK_POS_BOTTOM,479
GTK_POS_LEFT,479
GTK_POS_RlGHT,479
GTK_POS_TOP, 479
gtk_preview_draw_row, 739
gtk_preview�eUnfo, 742
gtk_preview_new, 737
gtk_preview_put, 740
gtk_preview_secdither, 741
gtk_preview _secexpand, 738
gtk_preview_set�arnma, 742
gtk_preview_size, 738
GTK_PRlORITY_DEFAULT,40
GTK_PRlORITY _HIGH,40
GTK_PRlORlTY _INTERNAL,40
GTK_PRlORITY _LOW, 40
GTK_PRlORITY _REDRAW, 40
GTK_PRlORITY _RESIZE,40
gtk_progress_bar_new, 746, 753, 760
gtk_progress_bar_new_with_adjustment, 746, 753
gtk_progress_bar_secactivity _blocks, 754
gtk_progress_bar_secactivity _step, 754
gtk_progress_bar_seCbar_style, 753
gtk_progress_bar_seUliscrete_blocks, 754
gtk_progress_bar_secorientation, 755
GTK_PROGRESS_BOTTOM_TO_TOP, 755
gtk_progress_configure, 746

GTK_PROGRESS_CONTINUOUS, 753
GTK_PROGRESS_DISCRETE, 753
gtk_progress�eccurrencpercentage, 749
gtk_progress�eccurrenCtext, 748
gtk_progress�ecpercentagejrom_ value, 749
gtk-progress�euextjrom_ value, 748
gtk_progress�eCvalue, 749
GTK_PROGRESS_LEFT_TO_RlGHT,755
GTK_PROGRESS_RIGHT_TO_LEFT,755
gtk_progress_secactivity_mode, 749, 760
gtk_progress_seCadjustment, 746
gtk_progress_setjormacstring, 747
gtk_progress_secpercentage, 749
gtk_progress_secshow_text, 748
gtk_progress_seCtexCalignment, 748
gtk_progress_secvalue, 749, 760
GTK_PROGRESS_TOP _TO_BOTTOM, 755
gtk_quicadd, 35
gtk_quicadd_destroy,36
gtk_quiCremove, 35
gtk_quicremove_by _data, 36
gtk_radio_button�roup, 191
gtk_radio_button_new, 190

823

gtk_radio_button_new _from_widget, 191
gtk_radio_button_new _with_label, 190
gtk_radio_button_new _ with_labeLfrom_ widget, 191
gtk_radio_button_set�oup, 192
gtk_radio_menu_item�oup, 396
gtk_radio_menu_item_set�roup, 398
gtk_range�ecadjustment, 677, 691
gtk_range_seCadjustment, 677, 692
gtk_range_seCupdate_policy, 315,692
gtk_rc_parse, 157
gtkJuler_secmetric, 727
gtkJuler_secrange, 728
gtk_scale_draw _value, 672
gtk_scale�ec value_width, 672
gtk_scale_seCdigits, 671
gtk_scale_seCdraw _value, 671
gtk_scale_seC value_pos, 671
gtk_scrolled_ window _add_ with_viewport, 568
gtk_scrolled_ window �eChadjustment, 571
gtk_scrolled_ window �ec vadjustment, 571
gtk_scrolled_ window_new, 567
gtk_scrolled_ window _sechadjustment, 568
gtk_scrolled_ window _secplacement, 574
gtk_scrolled_window_secpolicy, 574
gtk_scrolled_ window_sec vadjustment, 568
gtk_seUocale, 17,26
GTK_SIDE_BOTTOM, 502
GTK_SIDE_LEFT, 502
GTK_SIDE_RIGHT, 502
GTK_SIDE_TOP, 502
gtk_signal30nnect, 48
gtk_signal_connecCafter, 79
gtk_signal_conneccobject, 79

example using, 80
gtk_signal_conneccobjeccafter, 80
gtk_signal_disconnect,81
gtk_signal_emit, 74
gtk_signal_emicby _name, 74
gtk_signaLemiCstop, 78
gtk_signal_emicstop_by _name, 78
GTK_SIGNAL_FUNCTION,19
gtk_signal_handlecblock, 81
gtk_signal_handlecblock_by _data, 82
gtk_signal_handlecunblock_by _data, 82

824

gtluignaChandlers_destroy, 82
gtk_signaUookup, 72
gtk_signal_name, 73
gtk_spin_button_configure, 710
gtk_spin_button�ecadjustment, 711
gtk_spin_button�eC value_as_float, 711
gtk_spin_button�ec value_as_int, 711
gtk_spin_button_new, 709
gtk_spin_button_secadjustment, 710
gtk_spin_button_seCdigits, 711
gtk_spin_button_secnumeric, 712
gtk_spin_button_seCshadow_type, 714
gtk_spin_button_secupdate_policy, 712
gtk_spin_button_secvalue, 712
gtk_spin_button_sec wrap, 714
gtk_spin_button_snap_to_ticks, 715
gtk_spin_button_spin, 713, 723
gtk_spin_button_update, 715
gtk_statusbar�eccontexUd, 786
gtk_statusbar_new, 784
gtk_statusbar_pop, 786
gtk_statusbar_push, 785
gtk_statusbar_remove, 787
gtk_style30py, 238
gtk_style_new, 161
gtk_table_attach, 532
gtk_table_attach_defaults, 532
gtk_table_new, 531
gtk_table_resize, 531
gtk_table_seccol_spacing, 533
gtk_table_seccoCspacings, 533
gtk_table_seChomogeneous, 531
gtk_table_secrow _spacing, 533
gtk_table_secrow _spacings, 533
gtk_tearofCmenu_item_new, 400
gtk_texcbackward_delete, 702
gtk_texCforward_delete, 703
gtk_texcfreeze, 703
gtk_text�eUength, 700
gtk_text�ecpoint, 701
gtk_texUnsert, 701
gtk_texcnew, 698
gtk_texcsecadjustments, 699
gtk_texcseceditable, 699
gtk_texcseUine_wrap,7oo
gtk_texcsecpoint, 700, 702
gtk_texcsec word_wrap, 699
gtk_texCthaw, 703
gtk_timeoucadd, 37, 761
gtk_timeoucremove, 37
gtk_tips_query_new, 768
gtk_tips_query _seccaller, 772
gtk_tips_query _seUabels, 772
gtk_tips_query_start_query, 770, 772
gtk_tips_query _stop_query, 772
gtk_toggle_button�ecactive, 185
gtk_toggle_button_new, 184
gtk_toggle_button_new _with_label, 184
gtk_toggle_button_secactive, 184
gtk_toggle_button_secmode, 186
gtk_toggle_button_toggled, 186
gtk_toolbar_append, 543
gtk_toolbar_append_element, 551
gtk_toolbar_append_space, 547
gtk_toolbar_append_ widget, 552
GTK_TOOLBAR_BOTH,543
GTK_TOOLBAR_CHILD_BUTTON,549

Index

GTK_TOOLBAR_CHILD_RADIOBUTTON,549
GTK_TOOLBAR_CHILD_SPACE,549
GTK_TOOLBAR_CHILD_TOGGLEBUTTON,549
gtk_toolbar�eCbutton_relief, 554
GTK_TOOLBAR_ICONS, 543
gtk_toolbar_insert_element, 552
gtk_toolbar_insert_item, 547
gtk_toolbacinsert_space, 547
gtk_toolbacinsert_ widget, 552
gtk_toolbar_new, 543
gtk_toolbar_prepend_element, 551
gtk_toolbar_prepend_item, 546
gtk_toolbar_prepend_space, 547
gtk_toolbar_prepend_ widget, 552
gtk_toolbar_secbutton_relief, 554
gtk_toolbar_secorientation, 553
gtk_toolbar_secspace_size, 547
gtk_toolbar_seCspace_style, 548
gtk_toolbar_secstyle, 553
gtk_toolbar_seUooltips, 553
GTK_TOOLBAR_SPACE_EMPTY,548
GTK_TOOLBAR_SPACE_LINE, 548
GTK_TOOLBAR_TEXT, 543
gtk_tooltips_disable, 765
gtk_tooltips_enable, 765
gtk_tooltips_new,764
gtk_tooltips_seccolors, 766
gtk_tooitips_secdelay, 765
gtk_tooltips_seuip, 764, 768, 769
GTK_TOP _BOTTOM, 384
gtk_tree_append,602
gtk_tree3hild-position, 607
gtk_tree3Iear_items, 605
gtk_tree_insert,602
gtk_tree_insert_node, 632
gtk_tree_item3011apse, 618
gtk_tree_item_deselect, 617
gtk_tree_item_expand,618
gtk_tree_item_new, 611
gtk_tree_item_new_with_label,611
gtk_tree_item_remove_subtree, 617
gtk_tree_item_select, 617
gtk_tree_item_secsubtree, 617
gtk_tree_new, 601
gtk_tree_prepend,602
gtk_tree_remove_items, 603
gtk_tree_seleccchild, 607
gtk_tree_selecUtem, 606
GTK_TREE_SELECTION, 603

example using, 603
gtk_tree_sec view_lines, 608
gtk_tree_sec view_mode, 608
gtk_tree_unselecCchild, 607
gtk_tree_unselecUtem, 607
gtk_ value_adjustmencchanged, 684
gtk_vbox_new, 20, 444
gtk_ vbutton_box�ecspacin�default, 454
gtk_vbutton_box_new,454
gtk_ vbutton_box_seUayouCdefault, 454
gtk_vlist�euext, 221
gtk_vpaned_new,489,493
gtk_vscrollbar_new, 678
gtk_vseparatocnew, 326
GTK_WIDGET,I09

example using, 87
gtk_ widgecacceleratocsignal, 141
gtk_widgeCactivate, 144,275

Index

gtlc widgecadd_accelerator, 139
example using, 388

gtlc widgecadd_events, 143
gtk_widgecdestroy, 80, 128
gtk_widgeCdestroyed,129
gtk_ widgecensure_style, 159
gtk_widgecevent, 142
gtk_ widget...get, 130
gtk_ widget...gecancestor, 148
gtk_ widgecgeccolormap, 149
gtk_widget...gecdefauICcolormap, 163
gtk_widget...geCdefaulcstyle, 163
gtk_widget...geCdefaulcvisual,163
gtk_widget...gecevents, 143
gtk_ widget...gecname, 159
gtk_ widget...gecpointer, 148
gtk_widget...gecstyle, 158
gtk_ widget...geUoplevel, 147
gtk_ widget...gec visual, 151

example using, 341
gtk_widget...getv, 130
gtk_widget...grab_default, 145
gtk_ widget...grab_focus, 145
gtk_ widgechide, 136
gtk_widgeChide_all,137
gtk_ widgechide_on_delete, 137
gtk_widgeUntersect, 145
gtk_ widgeUs_ancestor, 148
gtk_ widgeUock_accelerators, 141
gtk_widgecmap, 137
gtk_widgecnew, 126

versus widget-specific creation functions, 127
gtk_widgecnewv, 127
gtk_ widgecpop3010rmap, 160
gtk_widgecpop_style, 159
gtk_widgecpop_visual, l 60
gtk_widgecpopup, 145
gtk_widgecpush3010rmap, 159
gtk_widgecpush_style, 159
gtk_ widgecpush_ visual, 160
gtk_widgecrealize, 137,768
gtk_widgeuef,128
gtk_widgecremove_accelerator, 141
gtk_ widgecremove_accelerators, 141
gtk_ widgecreparent, 144
gtk_widgecresecrc_styles, 159
gtk_ widgeuestore_defaulcstyle, 159
gtk_ widgecset, 131
gtk_widget...seCcolormap, 151
gtk_widget...set...defaulcstyle, 162
gtk_widget...set...events,54,143
gtk_widget...seCname, 155, 158
gtk_ widgecsecrc_style, 158
gtk_widgecsecsensitive, l 46
gtk_widgeuecstyle, 158
gtk_widgecsecuposition, 147
gtk_widgeuecusize, 147,268,282
gtk_ widget...set... visual, 151
gtk_ widgecsetv, 131
gtk_widgecshow, 22,135,269
gtk_widgeuhow_all, 21,136,269
GTK_WIDGET_STATE,153
gtk_widgecunlock_accelerators, 142
gtk_widget...unmap,137
gtk_widgeCunrealize, 137
gtk_widgecunref,128
gtk_ window _activate_focus, 275

and associated signals, 275
gtk_ window _active_default, 279
gtk_ window_new, 264
gtk_ window _seCdefault, 276
gtk_ window _setjocus, 275
gtk_ window _set...geometry, 270
gtk_window_secmodal,274
gtk_ window _seCpolicy, 268, 282
gtk_ window _seCposition, 267
gtk_window_seuitle,7, 19,266
gtk_window_seCtransienCfor, 147,269
gtk_ window_sec wmclass, 268
GtkAccelLabel, 789
GtkAdjustment, 684

changing attributes of, 684
example using, 685, 689

GtkArrow, 329
types, 330

GtkAspectlFrame, 521
example using, 523

GtkBox
attributes of, 438
described, 431
example of complicated layout using, 437
packing children into, 439

GtkButton, 721
changing the label text, 179
synthetic events and, 179

GtkButtonBox
and interchild spacing, 452
default child size, 450
GtkBox API and, 447
internal padding of, 451
layout styles, 448
use of,448

GtkCalendar,804
display options and, 807
example using, 808
marking days in, 806

GtkCheckMenuItem
discussed, 389
relationship to GtkRadioItem, 391

GtkCList
compared to GtkList, 218

GtkCombo,774
adding content to, 775
and arrow keys, 780
example using, 776
restricting input from, 780

gtk -config, 22
GtkContainer, 421
GtkCTree, 627

and client data, 645
and keyboard bindings, 654
and pixmaps, 657
compared to GtkTree, 627
custom searches of, 652
displaying file system contents with, 637
relationship to GtkCList, 627
searching based on client data, 649
selecting and unselecting nodes in a, 655
sorting entries in a, 643
traversing entries in, 644

GtkCTreeCompareDragFunc, 644
GtkCTreeExpanderStyle, 642
GtkCTreeLineStyle, 641
--gtk-debug flags, 27

825

826

GtkDialog, 797
GtkDrawingArea, 791

example using, 792
GtkEntry,350

compared to GtkLabel, 168
editable attribute of, 352
maximum length, 351
selecting text in, 354

GtkEventBox, 560
example using, 564

GtkFixed, 426
comparison to GtkLayout, 576
example using, 427

GtkFrame, 517
example using, 517

GtkHandleBox, 556
GtkHBox, 445
GtkHButtonBox, 456
GtkHPaned, 494

described, 487
GtkHRuler, 732
GtkHScale, 668

example using, 672
GtkHScrollbar, 677
GtkHSeparator, 322
GtkImage, 331, 338

creating, 344
example displaying a 24-bit TIFF image, 345
modifying the image data of, 347
retrieving image data from, 347

GtkItemFactory, 359
and menus, 357

GtkLabel
compared to GtkText, 697

GtkLayout, 576
and adjustment objects, 578
and expose events, 579
comparison to GtkFixed, 576

GtkListItem
chidren of, widgets to avoid, 204

GtkMenuBar, 402
GtkMenuItem, 382
GtkMenuPositionFunc, 403
GtkMenuShell, 355, 357
--gtk-module, 29
--gtk-module module, 27
--gtk-no-debug flags, 27
GtkNotebook,462

and tab label packing attributes, 482
and tab label widgets, 480
controlling page transversal of, 472
displaying scrollbars in, 479
example, 465
implementing a wizard with, 473
popup menus and, 467

GtkOptionMenu, 410
defmed,357

GtkPacker, 498
and padding, 512
GTK_FILL_X, GTK_FILL_ Y packing options of,

507
rational for using, 498

GtkPaned
adding children, 490
defined,487
shrink and resize attributes of, 490

GtkPixmap, 203, 331, 333, 797

example using, 333, 719
making instance of insensitive, 335

GtkPositionType, 672
GtkPreview, 734

example using, 735
GtkPreviewInfo

defined, 742
GtkProgress, 745
GtkProgressBar, 752

and adjustment objects, 753
example using, 755

GtkRadioMenuItem, 396
discussed, 389
example using, 396

GtkRange, 691
and update policy, 692

GtkRuler,727
sample using, 731
tracking mouse movement in, 730

GtkScale, 671
defined,666

GtkScrollbar, 679
GtkScrolledWindow, 567

adding children to, 568
and adjustment objects, 568
and scrollbar placement, 574
and scrollbar policy, 567

Index

overriding adjustment objects, example of, 568
GtkSeparator, 321
GtkSpinButton, 708

and climb rate, 710
and numeric mode, 712
example using, 715
keyboard and mouse events, 708
update policy of, 712
wrapping of values in a, 714

GtkSpinType,713
GtkStatusbar

and substacks, 786
and texCPOPped signal, 787
and texcpushed signal, 785
stacks and, 783

GtkTable, 528
cell attributes and, 529
cell coordinates of, 529
tic-tac-toe example, 533

GtkTearoffMenuItem, 399
GtkText, 697

and GtkScrolledWindow, 698
and line wrap, 700
and scrolling, 698
and word wrap, 699
buffer management, 700
compared to GtkLabel, 697
insertion point, defined, 700

GtkTipsQuery, 767
example using, 770
signals and, 768

GtkToolbar, 542
adding arbitrary child widgets to, 548
adding children to, 543
and tooltips, 553
button spacings and, 547
convenience functions, 552
example using, 544
using, 542
visual presentation of, 553

Index

GtkToolbarChildType, 549
GtkTooltips, 762

setting delay of, 765
widget, display help text in a, 763
widget, displaying content in a, 764

GtkTree, 601
adding items to, 602
and selection modes, 605
compared to GtkCTree, 627
described, 587
example using, 591
finding selected items in, See

GTK_TREE_SELECTION
structure of, 590
view modes and, 608

GtkTreeItem, 611
and non-label children, 611
and subtrees, 617
described, 587
locating an instance in a tree widget, 607
relationship to GtkTree, 611

GtkUpdateType, 692
GtkVBox,444
GtkVButtonBox, 454
GtkVPaned,493

described, 487
GtkVScale, 669

example using, 672
GtkVScrollbar, 678
GtkVSeparator, 325
GtkWidget, 108
GtkWidget macros, 109
GUI applications, 14

H

handle-box,
See GtkHandleBox

homogeneous
and box widgets, 439

HSV, 309, 315

ICCCM,68
idle function

prototype, 39
idle functions

adding, 39
default priority, 40
defined,39
destroying, 41
priority of, 40

image
defined,338

images, 331
indexed data, See client data
init functions, 34
instance hierarchy, 17
is08859-1, 299
item factory, 359

adding items to a, 366
creating, 365
deleting items from, 368
retrieving a widget from, 366
retrieving an element as a widget, 367

J

JPEG,338

K

K Desktop Environment, 9
KDE,9
key_press_event,63
key_release_event, 63
keyboard bindings

and GtkCTree, 654
keyboard shortcuts, 138
keypresses

snooping, 41
KeySym,360
kwm,9

L

label widget attributes, 169
labels

adding underscore characters 172
layout widget, See GtkLayout

'

leave_notify_event, 64
LessTif,5
libjpeg, 339
libpbm, 339
libpgm, 339
Jibpng,339
libppm, 339
libtiff, 735, 737

lists

described, 339
example using, 340

adding items, example, 201
displaying arbitrary widgets in, 203
mouse buttons and, 199
removing items, 205

827

selecting and unselecting items in a large list 207
selection of items in a, 199

'

single-column, 198
localization, 26

M

MacOS, 417, 763
MacOS Toolbox, 11
main loop

terminating, 33
make, 23
makefile, 23
map_event, 71
MappingNotify,54
menu bars

defined, 379
menu items

selecting from application code, 384
menus

and GtkItemFactory, 357
creating with GtkItemFactory, 362
defined, 355

message dialog, 177
Midnight Commander, 9

828

MIT X Consortium, 1
mnemonics, 138

defined, 138
modifiers

and menu item accelerators, 360
module

example, 29
Motif, 417
motion event states

listed,61
motion_notify3vent,61
mouse

position, 148
MS Windows, 417
MWM,I8

N

--name progname, 28
NetBSD,2
no_expose_event, 59,71
notebook widgets

creating and adding pages to a, 464
described,461

--no-xshm, 28

o

object
attributes, getting and setting, 94

objects
defined,83
destroying on exit, 36

opacity, 315
computing, 316
defined, 316

Open Group, 2
option menus

and GtkItemFactory, 375
creating, 410
defined, 375, 410
initializing the current selection, 414

override_redirect, 266

p

pack end
and boxes, 433

pack start
and boxes, 433

Packer
TcllTk widget, 498

padding
and box widgets, 439

paned widget
defined, 487

password entry fields
implementing with key snoopers, 43

pixmaps, 157,226,232,331,333,344
and GtkCTree, 222, 657
defined, 222
in GDK,222

PMaxSize, 268
PMinSize, 268
PNG,338

pop-up menus
and GtkItemFactory, 369

pop-up window, 264, 266
property_notify_event, 67
PseudoColor, 149

Q
Qt,3

defined,9
quit function, 35

R

radio buttons
retrieving the group of, 191
usage defined, 174
when to use, 190

radio groups
creating and using, 190

radio menu items, 389
and GtkItemFactory, 364

rc files, 154
Red Hat 6.2, 8
relief styles, 180
request buffering, 28
res_class, 268
res_name, 268
resources, 154
RGB, 309, 315, 338
rgb. txt, 611
RGBA,317
Robert Schiefler, 1

s
save_under, 266
sawfish,18
scale widget

described, 666
displaying value as an integer, 671

scrollbars, 675
scrolled window, See GtkScrolledWindow
selection modes

in GtkCList, 228
selection protocol, 68
selection_clear_event, 68
selection_notify_event, 68
selection_requesCevent, 68
sensitivity

defined, 146
separator

defined, 319
horizontal, 322
uses, 319
vertical, 326

Separator widgets
example using, 21

separators
adding to menus using GtkItemFactory, 364

shadow type
and menu bars, 380

shared library, 28
signal and event APIs, 71
signal emission

defined,78

Index

Index

signal function
disconnecting, 81
registering, 21

signal functions
blocking, 81
ordering, 79
unblocking, 82

signal handler, 19
prototype of, 49

signal handlers, 48
registering, 48

signal handling
described, 47

signals
and superclasses, 48
and widgets, 48
controlling, 78
defined, 47
emitting, 74
example, 19
example of emitting, 75
example using, 47

signals and events
tracing, 31

snooper function
prototype, 41

sorting
trees and GtkCTree, 643

spacing
and box widgets, 439

spin button
defined, 695

spin button, See GtkSpinButton
static text, 168
StaticGray, 149
status bar, See GtkStatusbar
stdio.h, 16
stdout, 13
style

default, 161
defined, 153
mapping a widget to a, 155

style guide
defined, 5

styles
and fonts, 157
and inheritance, 156
creating new, 162
setting default, 162
stacking, 159
user, 158

submenu, 383
subtrees

and GtkTreeItem, 617
and GtkTreeItem, expanding, 618

--sync, 28

T

Tc1/Tk, 498
tearoff menu

defined, 356
tearoff menus

specifying with GtkItemFactory, 365

text widget
defined, 695

texUength
field of a GtkEntry widget, 354

The GIMP, 546
The X Window System, 1
TIFF, 338, 735, 736

timeout
adding, 37
removing, 37

timeout function, 37
timeouts

defmed, 36
example, 36, 38
latency, 38
precision of, 38

title bar, 7
toggle buttons

checking state, 185
contrasted to check buttons, 188
state, 184
usage defined, 174

toggle-button widgets
X-Chat and, 183

toggled signal functions
and checked menu items, 392

toolbars, See GtkToolbar
toolkit

benefits of, 4
defined, 4

tooltip, See GtkTooltips
tooltips

in GtkToolbar, 553
top-level window, 17, 264
transient window, 266, 269

and iconfication, 266

transient windows
defined, 147

translation
of menu paths in GtkItemFactory, 377

translation function
prototype, GtkMenuItem, 377

transparency, See opacity
tree sorting

and GtkCTree, 643
tree widget, See GtkTree
Trolltech, 9
TrueColor, 149
twm, 18
types

Glib equivalents, 10 1

u

unmap_event, 71

v

visibility
of text in a GtkEntry field, 351

visibility event states
listed, 60

visibility_notify 3vent, 60

829

830

visual, 224
default, 161
defined, 149
getting system default, 160

visual classes

w

in XII, listed, 339
list of, 150

widget, 16
default, 145, 275
default, activating, 279
defined, 5
sensitivity, 146

widget destruction, 129
widget hierarchy, 86
widgets

creating, 125
creating, example, 126
defined, 105
destroying, 128
drawing, 131
mapping, 131
realizing, 131
reference counting, 127
reparenting, 144
setting position, 147
setting size, 147
showing, 131
top-level, 147

wildcards
as used by the style system, 155

Win32, 11
window

and focus, 274
aspect ratio of, 271
modality of, 273
setting default size of, 273

window manager
defined, 6

window title
setting, 266

window types, 265
windows

shrinking and growing, 268

word wrapping
in label widgets, 169

x

X Protocol, 2, 3, 4, 5
defined, 2

X server
defined, 3

X Shared Memory Extension, 28
X terminal, 1
X, See The X Window System
X.org, 2
XII, See The X Window System
X l l R6, 2
XA_ WM_CLASS, 268
XDrawLine, 4
XFree86, 2
XLFr>, 295, 300, 308
Xlib

defined, 4
XMODIFIERS

environment variable, 26
xpaint, 222, 546
JePM, 222, 333, 719
XRectangle

defined, 373
XSelectlnput, 54
XSetClipMask, 800
XSetClipOrigin, 800
XSetClipRectangles, 800
XSetLocaleModifiers, 26
XSetTransientForHint, 266
XSetWMNormalHints, 268
XStringToKeysym, 360
XSupportsLocale, 26
XSynchronize, 28
Xt Intrinsics

compared to Gtk+, 12
defined, 5

XtlXaw, 3
XtVaCreateManagedWidget, 6
XView, 3

Index

www.informit.com

� Free, in-depth articles and

supplements

Master the skills you need, when

you need them

Choose from industry leading

books, ebooks, and training

products

Get answers when you need

them - from live experts or

InformlT's comprehensive library

Achieve industry certification

and advance your career

�
Visit l!!f9!mlT today

and get great content
from PH

Prentice Hall and InformlT are trademarks of Pearson pic I
Copyright © 2000 Pearson

PTR

Keep Up-ta-Date with

PH PIR Online!
We strive to stay on the cutting edge of what's happening in
professional computer science and engineering. Here's a bit of what
you'll find when you stop by www.phptr.com:

Special interest areas offering our latest books, book series, software,
features of the month, related links and other useful information to
help you get the job done.

e Deals, deals, deals! Come to our promotions section for the latest
bargains offered to you exclusively from our retailers.

need to find a bookstore? Chances are, there's a bookseller near you
that carries a broad selection of PTR titles. Locate a Magnet bookstore
near you at www.phptr.com.

What's nem at PH PIR? We don't just publish books for the professional
community, we're a part of it. Check out our convention schedule, join
an author chat, get the latest reviews and press releases on topics of
interest to you.

e Subscribe toda1J! Join PH PTR's monthly email newsletter!

Want to be kept up-to-date on your area of interest? Choose a targeted
category on our website, and we'll keep you informed of the latest PH PTR
products, author events, reviews and conferences in your interest area.

Visit our mailroom to subscribe today! http://www.phptr.com/maiUists

Linux

Programming In C

SYD LOGAN

The ultimate guide to building

graphical linux®/uNIX®

applications with Gtk+ 1.2

The more popular Linux becomes, the more developers want to
build graphical applications that run in LinuX/UNIX environments
and Gtk+ 1.2 offers a powerful toolset for doing so. In this start-to
finish tutorial and reference, respected LinuX/UNIX developer Syd
Logan covers everything programmers need to begin immediately
building powerful graphical applications with Gtk+ 1.2. Gtk+
Programming in C covers all this and more:

-The fundamentals of linuxlUNIX programming in C

-A quick Gtk+ startup section for novices: constructing simple applications, step
by step

-Understanding Gtk+'s flexible C-based, object-oriented architecture

-Working with signals, events, objects, and types

-Comprehensive widgets coverage: base, menu, layout, range, scroll bar, scale,
container, text, and more

-Creating and using dialogs

-Container and Bin classes

-Expert introductions to the GLIB and GDK libraries

If you're ready to write easy-to-use applications for the world's
fastest growing, most robust OS platforms, you've come to the right
book: Gtk+ Programming in C by Syd Logan.

ABOUT THE AUTHOR

SYD LOGAN has been a software de�eloper for 15 years, working
almost exclusively in UNIX and C environments. He is currently a
UNIX software engineer for Netscape Communications. Logan has
covered the X Image Extension for Unix Review, Unix Developer, the
X Journal, and the Linux Journal. Logan is also author of Developing

Imaging Applications with XIELib (Prentice Hall PTR).

$44.99 U.S. I $68.00 Canada
Prentice Hall
Upper Saddle River, NJ 07458
www.phptr.com

ISBN 0-13-014264-6

I I I
90000

978013 2641 III

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	p286.pdf
	0001

	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	toc2.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	toc.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	toc.pdf
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042

	809.pdf
	0002
	0003

	803.pdf
	0001

	cover.pdf
	cover

	cover2.pdf
	cover2

	cover2.pdf
	cover2

