R = e Tt . | 5 LT E T ST 1iei
i} H el FTa T+ 1354 bl B = [AIRET- " By o - fmdmRR Y
= fon S LT : T
S L] i 1 . Ehi] i i it HA i
| xS T Saien ik RE . L 1L]a
O S o L LT I f i =T LI R g
ot : & b & ¥ ' 1 il :"".' I .. !
- | [&1 ! TG -
! - .] | 1 . - AL i)
| 1 el |] ring, L TR
= - Y F 1 1 g .: :
i =l T [P = gt b ' 1 {4 AL R
a 5 =1 Kk r ST O e
M i) LR L % [
i

COMPUTER SCIENCE SERIES

SFCA TR

L.

=
=

L)

Tt TR T

s

il 4 AL
T A T TS A
T I e

e

o mrmm
FEL T
= T e

g

P oy s T

g
==

D i ey ST —

S =L
Thew Tamel e
. s

T T i e e e e e =)

-—"—:."E"_'_.T_

. o —
— e Tl
A’

el -

,..__..g.'—'_z"”—'

e a T ki ey

llh-d—

—
-

— SR T L
P RN e AN ek Lot

o T, s

= w T

T
TR

e L e L T e o i, e o G et s s
5 Rt Wt T R T

= el
[T e e oo e

e
e STl iagieet sl LS el TRT T T
e P e o S ey R ot A o e St L e et T e N
et R R S e e

LRI

T —— :\-: Pt

=l e

Tt o el o Lol B i
R

R

S ST E L

e

e

LA T T T

= -
o o e i e i rr
smaeTEE mal
S el Sl e

ey T
e

T T .-_-'.. S

g
o

=
Lo e e T,
ST

e e e

— o r - RS-
—_=|_;%£E

R e el T

e S
é'l:"‘.z-::——"‘ﬂ- = e PP
et o T e

i

P

T

i
[ey

Ers R e e

—_
Fo.mmar

e RS

T e e - S St

Lmnﬁi{%;::r& -

A TS B
2 e B

T — 3
e e ey e
e i i

—;,.m..-.q..uh—d
R T e

T]
a

H -'—_gh.:.-"_gi-:--—r:-*-%m EC L
R o Pl ooy g o g "o LA ol

Eme_mnimes

e iy == k R A e -
e i o —

=t T = me e e
e e 2 e

- e e T B e
ﬁ—"':_.. :._._-__‘...;%_“ —— '"E-. T e i
e S

e P e e
s

P el -

=y i LB
e T
=

. S o
sy e o R SR T
3 Tttty P ST e e

T e vl T
= e
T

a
o o ——y

%—m‘:ﬂ'{i__—_ﬁ__c

o Ao
S o L et

COMPUTER SCIENCE SERIES

Computer Architecture, Caxton C. Foster

Advanced Programming, Harry Katzan, Jr.

APL Programming and Computer Techniques, Harry Katzan, Jr.
APL User's Guide, Harry Katzan, Jr.

The Anatomy of a Compiler, John A. N. Lee

Numerical Analysis for Computers, John A. N. Lee

Computers: A Systems Approach, Ned Chapin

Computer Organization and the System/370, Harry Katzan, Jr.
The Psychology of Computer Programming, Gerald M. Weinberg

COMPUTER SCIENCE SERIES

PSYCHOLOGY
“COMPUTER

PROGRAMMING

Gercld M Wenberg

SCHOOL OF ADVANCED TECHNOLOGY
STATE UNIVERSITY OF NEW YORK
BINGHAMTON, NEW YORK

VAN NOSTRAND REINHOLD COMPANY

NEW YORK CINCINNATI TORONTO LONDON MELBOURNE

Van Nostrand Reinhold Company Regional Offices;
New York Cincinnati Chicago Millbrae Dallas

Van Nostrand Reinhold Company International Offices:
London Toronto Melbourne

Copyright (© 1971 by Litton Educational Publishing, Inc,

Library of Congress Catalog Card Number; 72-165613

All rights reserved. No part of this work covered by the copyright
hereon may be reproduced or used in any form or by any
means—graphis, elestronie, or meshanrical, including
photocopying, recording, taping, or information storage and
rétrieval stystems-—without written permission of the publisher,

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company
450 West 33rd Street, New York, N. Y. 10001

Fublished simultaneously in Canada by Van Nostrand Reinhold Ltd,

15 14 13 12 11 10 5 6 7 6 6§ 4 3 2 1

To my teachers, friends, students.

Preface

This book has only one major purpose—to trigger the beginning of
a new field of study: computer programming as a human actlvity, or,
in short, the psychology of computer programming. All other goals
are subservient to that one. For instance, | have tried to make the
book interesting and nontechnical, insofar as is possible, so as to en-
courage the greatest number of people to read it: not just programmers,
but programming managers and others connected with programming in
the many ways we are connected with programming these days. What
| am trying toe accomplish is to have the reader say, upon finishing the
book, “Yes, programming is not just a matter of hardware and software.
| shall have to look at things in a new way from now on.”

Because this is a new field—a new way of looking at familiar things—
it has not always been possible to support certain ideas with “sclentlfic”
evidence. Indeed, many of the views in the book are merely the author's
opinions—often strong opinions, but not based on anything better than
personal observation over many years. No doubt, many of these opinions
are just plain wrong, as are many of the ideas supported by more evl-
dence. But there is a world of difference between a wrong idea and a
sterile one. If any reader takes issue with something expressed here, my
fondest hope is that he will set up an experiment and prove me wrong.

As 1 hope the text demonstrates with numerous examples, our pro-
fession suffers under an enormous burden of myths and half-truths, many
of which my students and | have been able to challenge with extremely
simple experiments. But our resources are limited and the problem is
great. There are, by various estimates, hundreds of thousands of pro-
grammers working today. If our experiences are any indication, each
of them could be functioning more efficlently, with greater satisfaction,
if he and his manager would only learn to look upon the programmer as
a human being, rather than as another one of the machines,

| think that great strides are possible in the design of our hardware
and software too, if we can adopt the psychological viewpoint. | would
hope that this book would encourage our designers to add this new
dimension to their design philosophy. Not that the few ideas and
speculations in this book will give them all the information they need;
but hopefully the book will insplre them to go to new sources for In-

vil

wiil Preface

formation. At the moment, programming—sophisticated as it may be
from an engineering or mathematical point of view—is so crude pSy-
chologically that even the tiniest insights should help immeasurably.
My own experience, and the experience of my students, in teaching,
learning, and doing programming with psychological issues in mind,
bears out this assertion. | hope each of my readers will try It for himself.

As will be obvious from reading it, this book represents a composite
of ideas from many people, most of all my students at the IBM Systems
Research Institutes in New York and Geneva and The State University
of New York at Binghamton. Having had so many working programmers
as students over ten years, | have been able to extend vicariously my
own small experience into all sorts of programming sltuations which no
¢ne pérson could hope to experience in a lifetime. Needless to say,
some of these experiences have had to be fictionalized to protect the
Innocent, and sometimes the guilty.

Without the many long hours of discussion with my students, without
their many clever experiments, this book could never have been written.
There is no sense assuming a position of false modesty by saying that
all of the mistakes in the book are mine—no doubt some of the experi-
ences related to me were distorted in one way or another. What is my
résponsibility is the acceptance of these experlences as the basis for
certain ideas—just as it is the reader's responsibility to weigh each idea
herein in the light of his own experiences and needs. The last thing 1
should wish to happen is to have anything said in this book taken as
gospel—that is just the attitude we are trying to abolish. The material which
follows is food for thought, not a substitute for it.

I wish to thank all of my students who have contributed so much to me
personally as well as to this bhook, just as | wish to thank all my teachers
and my friends. Teachers, friends, students—really they are all one and
the same, and | hope they have found me to be so. To them the book
s dedicated, not just on the dedication page, but in every sentence and
paragraph. To my wife, who, in addition to her usual contribution to my
life, read every page of this book from an anthropologlst's point of view,
| owe more than can be expressed In a mere dedication.

Gerald M. Weinberg

Suggestions for Course Use

Oscar Wilde used to claim at parties that he could discourse on any sub-
ject for half an hour without advance preparation. When challenged by
a listener to speak about the Queen, he replied haughtily, “Sir, the Queen
I8 not a sublect.” Even for so great a raconteur as Wilde, it is difficult to
discourse on something that is not a subject, and many people are un-
convinced that the psychology of computer programming is a subject.
Certainly few unlversity curricula offer such a course, so that any pioneer
who wishes to inaugurate one is faced with an ardous path. A textbook,
such as this one, should prove of some help, but for the first attempt at
least, a number of suggestions for Its use may not be presumptuous.

This book was developed in conjunction with a course titled “The
Psychology of Computer Programming.” The course was for graduate
students in our Computer Systems program, all with some programming
experience and at least one year of graduate training. It does not seem
advisable to give such a course to people who are not able to write
programs themselves, or who are at lower than a graduate level or a
senior level with a strong major in Computer Systems or Computer
Science.

The course is given in seminar form, for | am not inclined to lecture at
people who know how to read. It was spread out over two semesters of
two credits’ each, in order to give as much time as possible for students
o pursue experiments of their own. Each student was required to plan
and complete one small experiment, and some of them made quite
significant contributions, many of which are reported in this hook. The
class met once a week for two hours or more, with readings in advance
from this text and from some of the references to prepare for specific
discussion topics.

One suggestlon is in order about the readings. Since many of the
works used are in obscure publications or in technical reports, we made
a practice of providing Xerox copies of such readings in advance to each
student. This practice seemed to encourage peaple to read the assign-
menis with great regularity.

We got rather quickly into the subject of how to study programming,
since few of the students had much background in behavioral sciences,
let alone in behavioral science experimentation. Once this topic was

ix

X Suggestions for Course Use

covered, students were able to make a start on their projects, and we
were able to proceed with the remainder of the material. Although it is
not necessary that such a course require each student to experiment,
when students do experiment it is important that every effort be made
to get them started early.

If experimentation is not required or desired, the course would fit
nicely into a one-semester pattern—either as a seminar-discussion or
lecture-discussion. In any case, it is strongly recommended that at least
one period per week be devoted to discussion, ana the questions at the
end of each chapter are intended as guides to the sort of topics that
can be prepared—in notes or as an actual written assignment.

Another way this material can be used is in a one- or two-week in-
tensive training session, as in a summer institute or in management train-
ing workshops. In such sltuations, experimentation is ruled out, although
it is useful to perform one simple experiment in which the students are
the subject so that they get the flavor of experimentation. Any one of a
number of experiments suggested in the text would be suitable, but the
most careful advance preparation is necessary If the time constraints
are to be met. Similarly, time constraints dictate in such a class that
every piece of reading material be avallable in one copy for each par-
ticipant. Finally, if only for the necessary break in intensity, frequent
discussions must be interspersed with whatever lecturing is done. Dis-
cussion will be particularly important when the class consists of ex-
perienced programmers or programming managers, for they will have as
much or more to contribute than the instructors or text. The topic is so
important to them, and so close to them, that with the slightest of

prompting and leadership by the instructor, the success of the course
IS assured.

Contents

Preface vii

Suggestions for Course Use ix

PROGRAMMING AS
HUMAN PERFORMANCE

1 Reading Programs 5

An example 6

Machine limitations 7
Language limltations 9
Programmer limitations 10
Historical traces 11
Specifications 12
Summary 13

Questlons 13
Bibliography 14

2 What Makes a Good Program? 15

Specifications 17
Schedule 19
Adaptability 20
Efficiency 22
Summary 25
Questions 25
Bibliography 26

uli

Contenis

3 How Can We Study
Programming? 27

introspection 28

Observation 30

Experiment 32

Psychological measurement 35
Using bebavioral science data 38
Summary 39

Questions 40

Bibliography 41

PROGRAMMING AS A
SOCIAL ACTIVITY

4 The Programming Group 47

Formal and informal organization 47

Physical environment and social
organization 50

Error and ego 52

Egoless programming 56

Creating and maintaining the programming
environment 60

Summary 64

Cluestions 64

Bibliography B5

9 The Programming Team 67

How a team forms 68

Establishing and accepting goals 72
Team leadership and team leaders 78
The team in crisis 85

Summary 91

Questions 92

Bibliography 83

Contents

6 The Programming Project 95

Stability through change 96

Measuring performance 100

Project structure 106

Common social problems of large projects 109
Summary 112

Questions 113

Bibliography 115

PROGRAMMING AS AN
INDIVIDUAL ACTIVITY

7 Variations in the Programming
Task 121

Professional versus amateur programming 122
What the programmer is trying to do 126
Stages of programming work 132

Summary 137

Questions 138

Bibliography 139

8 Personality Factors 141

Parsonality changes 143

Personality invariants 145

Critical personality traits 148
Parsconality testing 133

Personality testing of programmers 156
Summary 158

Questions 158

Biblicgraphy 159

O Intelligence, or Problem-Solving
Ability 161

Psychological set 162

Some dimensions of problem solving 164

xiv

IV.

Contents

Facets of prcgramming intelligence 166
Aptitude tests 170

Aptitude tests for programming 171
Summary 176

Questions 177

Bibliography 177

10 Motivation, Training, and
Experience 180

Motivation 181

Training, schooling, and education 184
Forces against learning 188

How to learn programming 193
Summary 198

Questions 198

Bibliography 199

PROGRAMMING TOOLS
11 Programming Languages 205

Procgramming language and natural language 206
Programming language design 211

Summary 214

Questions 214

Bibliography 215

12 Some Principles for
Programming Language Design 217

Uniformity 218

Compactness 224

Locality and linearity 229

Tradition and innovation 232

Special-purpose, multipurpose, and toy languages 237
Summary 241

Questions 242

Biblicgraphy 243

Contents

13 Other Programming Tools 246

Program testing tools 247
Operating systems 251

Time sharing versus batch 259
Documentation 262

Summary 270

Questions 270

Bibliography 272

EPILOGUE

Index 281

v

THE

PSYCHOLOGY
- COMPUTER
PROGRAMMING

TI' :
|

‘l

PRRT

DrOGRNTNG
25 HOMRN
EREORNMINCE

The important thing is not to stop questioning.
Curiosity has its own reason for existing. Cne can-
not help but be in awe when he contemplates the
mysteries of eternity, of life, of the marvelous struc-
ture of reality. It is enough H one tries to ecompre-
hend a little of this mystery every day. Never lose
a holy curioslity.

Albert Einstein®

omputer programming is a human activity. One could hardly dis-
pute this assertion, and yet, perhaps because of the emphasis
placed on the machine aspects of programming, many people
—many programmers—have never considered programming i
this light. Among programmers, there is a certain mystique—a certain
waving of the hands which takes place whenever one tries to probe the
manner in which programming is done. Programming is not done in a
certain way, they say, it is just done. Either you can program or you
cannot. Some have it; some don't,

One of the corollaries of this mystique is the high salaries that must
be paid to those programmers who “have it"—and even to some who

" From Death of & Genius, by Willlam Miller, LIFE Magszine, May 2, 1855 © 1955 Time Inc
3

i Programming as Human Performance

don’t, just on the chance that they might. Perhaps because of these
high salaries, or because they cannot tolerate being at the mercy of a
mystique they don’t understand, computer executives have always been
aware of the human element in programming. Their concern, however,
has usually been with eliminating, rather than understanding, the human
element,

Over the years, executives have backed their desite to eliminate pro-
grammers with staggering funds. Dozens of simplistic schemes have been
heaped with money and praise on the promise—as yet not kept—of
going directly from a sales proposal to a working data-processing system.
But we should not chide these executives for their naiveté in assessing
technical merits. We should applaud them for their sophistication iIn
sensing the source of so many of our problems. Their touching faith
in the magic of technology should serve as inspiration to those of us
who daily bend our backs to the programmer’s burden. Perhaps their
wishes—though they can surely never be fulfillad—should give us pause—
make us lift our noses from the coding pad or the terminal—and con-
sider this human activity of aqurs from a human point of view.

| READING
| PROGRAMS

ome years ago, when COBOL was the great white programming

hope, one heard much talk of the possibility of executives being

able to read programs. With the perspective of time, we can

see that this claim was merely intended to attract the funds of
executives who hoped to iree themselves frcm bondage to their pro-
grammers. Nobody can seriously have believed that executives could
read programs, Why should they? Even programmers do not read pro-
grams.

But isn’t it quite proper that only the machine should read programs?
Weren't the programs written for the machine? Yes and no. Even if we
were not concerned with program modification and with the interfaces
belween programs, reading programs might not be such a bad idea
from the point of view of learning about pregramming.

Programming is, among other things, a kind of writing. One way to

5

6 Programming as Human Performance

learn writing is to write, but in all other forms of writing, one also reads.
We read examples—both good and bad—to facilitate learning. But how
many programmers learn to write programs by reading programs? A
few, but not many. And with the advent of terminals, things are getting
worse, for the programmer may not even see his own program in a form
suitable for reading. In the old days—which in computing is not so long
ago—we had less easy access toc machines and couldn't afford to wait
for learning from actual machine runs. Turnaround was coften so bad that
programmers would while away the time by reading each others’ pro-
grams. Some even went so far as to read programs from the program
library—which in those days was still a library in the old sense of the
term.

But, alas, times change. Just as television has turned the heads of the
young from the old-fashioned joys of bock reading, so have terminals
and generally improved turnaround made the reading of programs the
mark of a hopelessly old-fashioned programmer. Late at night, when the
grizzled old-timer is curled up in bed with a sexy subroutine or a mystify-
ing macro, the young blade is busily engaged in a dialogue with his
terminal. No doubt it is much more thrilling to be face to face with
the giant computer than merely wrapped in quiet contemplation of the
work of others. But is it more edifying?

A young novelist of our time was recently asked who wera his favorite
authors. He responded simply that he never read novels, as his ideas
were so hew and supetrior to anyone else’s that reading would only be a
waste of his time. As you might expect, his work did not support his
thesis. Perhaps the same could be said for some of our radical young
programmers. Perhaps there is something to be gamed frem reading
other people’s programs—if only the amusement engendered by their bad
examples. Perhaps if we want to understand how programmers program
—10 It the veil of the programming mystiqgue—we could fruitfully begin
by seeing what is to be learned from the reading of programs.

AN EXAMPLE

In order to illustrate the joys and fruits of program reading, let us take
a tiny example gleaned from a professional lifetime of program reading—
cne small program from among thousands. Suppose then that we come
across the PL/l program shown in Figure 1-1. What are we to make of
7

We shall need a method of approach for reading programs, for, unlike
novels, the best way to read them is not always from beginning to end.
They are not even like mysteries, where we can turn to the penultimate

Reading Programs 7

XXX: PROCFDURE OPTIOMS(MAIN);
DECLARE B{1000) FIXEDR(7,2),
n FIXED{11,2),
(1, J4) FIXED BINARY;
cC = 0;
no t =1 7O 10;
CET LIST{(B{J)Y DO J = 1 TO 1000));
pOo 4 =1 TO 1000;
6 =¢ + B(J);
EMD;
END;
PUT LIST('SUM IS ', C):

END XXX;

Figure 1-1 A program to be read.

page for the best part—or like sexy books, which we can let fall open
to the most creased pages in order to find the warmest passages. No,
the good parts of a program are not found In any necessary places—
although we will later see how we can discover crucial sections for such
tasks as debugging and optimization. Instead, we might base our reading
ch a conceptual framework consisting of the origin of each part. In other

words, as we look at each piece of code, we ask ourselves the question,
“Why is this piece here?”

MACHINE LIMITATIONS

One of the reasons which account for pieces of code is that the ma-
chine on which the program is to be run is limited in some way relative
to the ideal machine for the problem. In our example, we see that a total
of 10,000 numbers are read into the computer and summed, but they
are read in batches of 1000. As the numbers are evidently punched in PL/I
LIST format, there is no reason why this division should be made, unless
perhaps the total storage was limited so that all 10,000 numbers could
not be stored at once. In other words, not having 40,000 bytes available,

i Programming as Human Performance

the programmer had to break up his summing into smaller sections, which
led to the inclusion of an extra loop. If he had been able to store all 10,000
numbers, he might have written the program as shown in Figure 1-2.

Of course, when the programmer includes something that is intended
to overcome some limitation of the machine, he rarely marks it explicitly
as such. Although this omission adds to the intrigue of reading programs,
it does penalize the program when, for example, it is transferred to an-
other machine. The programmer may nct even be aware that some of
his coding is intended to compensate for a limitation of the machine, in
which case he could hardly be expected to mark it. For instance, much
programming has to be done to overcome the limited precision of our
machines—or better still, the fact that they do not calculate with real
numbers but only with a limited set of the rationals. Yet programmers
tend to forget that these are limitations of the hardware and come to
think of them as facts of life. When we include such words as REAL in
bur programming languages, we compound the difficulty, and make it
less likely that machine designers will become aware of the difficulties
this difference causes programmers.

Another area in which machine limitations are rife is intermediate
storage. In the first place, we wouldn't have intermediate storage at all
if we knew how to build the right kind of primary storage devices cheaply
enough. But short of that Nirvana, we still have to contend with a plethora
of drums, disks, tapes, and the like—all of which lead to enormous

XXX: PROCEDURE OPTIONS(MAIN);
CECLARE A(10000) FIXEDN(7,2),
C FIXED(11,72),
J FIXED RINARY:
C = 0;
GET LIST((ACGS) DO J = 1 TO 10000));
DO 4 = 1 TO 10000:
C =10+ A(J);
END;
PUT LIST('SUM IS ', C):
END XXX

Figwre 1-2 Storage limitation removed.

Reading Programs 2

amounts of coding. Moreover, each device has peculiar timing character-
istics, modes of addressing, and storage capacity, and we find much
programming devoted to overcoming the less-than-optimum (from the
programmer's point of view) configuration we happen to have.

LANGUAGE LIMITATIONS

But machine limitations are not our primary concern here, for we are
seeking the human underpinnings of precgramming. A step closer to these
underpinnings I8 the programming language—assuming that nobody—
but nobody—programs In machine language anymore. One of the con-
sequences of moving up above machine language is that certain facilities
of the hardware may be lost to the user. An example of this type is the
end-of-file situation which exists in some FORTRAN systems. In these
systems, the machine is perfectly able to recegnize an end-of-file and
pass control to another section of the program, but the FORTRAN lan-
guage provides no such facility. Thus, the programmer has to resort to
devices such as the “end-of-file card"—an example in which both the
coding and the data have to be modified to overcome language limitations.

In our example, the language limitation is more subtle. PL/| provides
the programmer with a built-in function called SUM for taking the sum
of the elements of an array. In the original definition of the language,
however, at the time this program was written, SUM was a so-called
“mathematical” function, rather than an “arithmetic’ function. What this
meant was that it assumed floating point input—and coenverted its input
to floating peint it necessary. Aside from questions of efficiency, this
conversion could mean the loss of precision if the array—as in this ex-
ample—consisted of FIXED DECIMAL numbers with fractional paris.
Many programmers were distressed to discover that pennies were being
lost when they tried to balance accounts using SUM. The resulting protest
led to a redefinition of SUM as arithmetic generic, but, in the meantime,
It could not be used successfully on a problem such as our example.
Without this language limitation, the pregram could have been shortened
to read as in Figure 1-3.

In this figure, we have also eliminated the OPTIONS(MAIN) on the
PROCEDURE statement, illustrating another form of language limitation—
the limitation of a particular implementation. This clumsy attribute was
only required in certain systems because of the interface with the oper-
ating system, which required that MAIN programs be handled somewhat
differently than subroutines.

Of course, PL/1 is noted for its absence of silly little restrictions such as
abound in many other languages. To take just a few examples among

10 Programming as Human Perlformance

*XX: PROCEDURE;
DECLARE A{10000) FIXEN(7,2),
J FIXED BIMARY:
GET LIST({(A(JY DO J = 2 TO 1D000)):
PUT LTST("SUM 1S ', SUM(A));

END XXX;

Figure 1-3 Using arithmetic generic¢ sum.

many, consider all the extra coding that has been written in FORTRAN
because DO loops could not be counted backwards, because expressions
could not appear as incremenis or bounds of an iteration, or because

array subscripts had to start with cne, or because only a small number
of subscript expressions were possible. Still, we may not feel these
limitations until they have been lifted from us, just as we often do not
know we are sick until we suddenly feel better. Therefore, it is reasonable
to expect that future languages will make us feel those limitations of
PL/I that are not detectable today. Notice that this is a psychological
qgquesticn—one to which we shall have occasion to return.

PROGRAMMER LIMITATIONS

Mcre directly psychelogical is the question of how much coding is
done because the programmer did not have full mastery of his computer,
his language, or himself. For instance, in our example, the programmer
did not really understand array notation in PL/l—to the extent that he
was unaware of the possibility of putting an array name in a data list in
order fo obtain all the elements of the array. Had he been familiar with

this feature—which was, after all, even in FORTRAN—he might have
written the program shown in Figure 1-4.

XXX: PROCFDURE;
DECLARE A(10000) FIXED(7,2):
GET LI1ST(A); PUT LIST('SUM 1S ¥, SUM(A));
END XXX;

Figure 14 Increased programmer awareness

Reading Programs 11

There are, of course, programmer limitations other than merely not
knowing the full power of the language—vocabulary limitations, we might
say. For instance, the programmer may be unaware of certain algorithms,
or he may be unable tc grasp a sufficiently large portion of the problem
at one time to see that certain duplications may be avoided. We shall
have much to say about these and other limitations as we proceed, for
these are obviously in the province of the psychology of programming.

HISTORICAL TRACES

We often find material in pregrams that might be acceunted for under
ohe of the above categories but is really present because of the history
of the development of the program. For example, once the SUM function
I8 changed to an arithmetic generic function, there is no longer any
reason for the program in Figure 1-2 to appear. Nevertheless, things being
what they are in the programming business, it is unlikely that anyone
is going to delve into a working program and modify it just because the
definition of the SUM function has been changed. And s0, some years
later, a novice programmer whe is given the job of modifying this pro-
gram will congratulate himself for knowing more about PL/I than the
person who originally wrote this program. Since that person is probably
his supervisor, an unhealthy attitude may develop—which, incidentally, is
another psychological reality of programming life which we shall have to
face eventually.

The prehistoric origins of certain pieces of code are almost beyond
belief. In one Instance, two programmers digging into one of the basic
codes at the Social Security Administration discovered a curious artifact.
Whenever an input card with one of several origin codes was found to
have an “A” in a certain column, the “A"” was transformed into a *1.”
This was especially curicus in view of the fact that only numeric values
could appear in this column—and there was a preedit program to ensure
that this was so. Still, the programmers were properly reluctant to modify
some coding whose purpose they did not understand, so they started an
inquiry. Eventually, they turned up a solution.

Several years earlier—which means several programmer generations
in some shops (which is another question of psychology, isn't itY—one of
the keypunches at one of the contributing district offices had developed
a bug which caused it to punch a "1” as an “A” in just this column.
Since this was before the days of the preedit program, these mispunched
cards managed to penetrate the inner program and caused it to hang up.
By the time the problem was detected, there were an unknown number
of such cards in circulation, so the simplest course seemed to be to make

12 Programming as Human Performance

a "tempoerary” medification to the program. Once the patch was made, it
worked so well that everyone forgot about it—more psychology-—and
there it sat until unearthed many years later by two archeologist pro-
grammers.

Not all historic code can be so easily differentiated as these examples
might imply. In particular, the larger a program grows, the more diffuse
are the effects of particular historical choices made early in its life. Even
the very structure of the program may be determined by the size and
composition of the programming group that originally wrote it—since the
work had to be divided up among a certain number of people, each of
whom had certain strengths and weaknesses. Indeed, the social organi-
zation of programming groups will be an area of major interest to us.

SPECIFICATIONS

When we look at the difference between Figures 1-1 and 1-4, we might
begin to believe that very little of the coding that is done in the world
has much to do with the problems we are trying to solve. Everything
considered, this would be a pretty fair statement of the situation—al-
though there probably is, in almost every program, some code which
actually does the work that was specified. Yet even if we succeed in
extracting this kernel of the program, we must not be misled into the
illusion that we could have started with this kernel as a specification and
had some system take care of the other limitations. Aside from the obvi-
ous difficulties in determining a programmer’s intentions when he doesn’t
know very much or in proeducing efficient code from a specification that is
written without the slightest understanding of what computers can do,
there will always remain the fact that, in most cases, we do not know
what we want to do until we have taken a flying leap at programming it.

Specifications evolve together with programs and pregrammers. Writing
a program is a process of /earning—both for the programmer and the
person who commissions the program. Moreover, this leamning takes place
in the context of a particular machine, a particular programming lan-
guage, a particular programmer or programming team in a particular
working envircnment, and a particular set of historical events that deter-
mine not just the form of the code but alse what the code does!

In a way, the most important reason for studying the process by which
pregrams are written by pecple is not to make the programs more effi-
cient, more compact, cheaper, or more easily understood. Instead, the
most important gain is the prospect of getting from our programs what we

really want—rather than just whatever we can manage to produce in our
fumbling, bumbling way.

Reading Programs 13

SUMMARY

There are many reasons why programs are built the way they are, al-
though we may fail to recognize the multiplicity of reasons because we
usually lock at code from the outside rather than by reading it. When we
do read code, we find that some of it gets written because of machine
limitations, some because of language limitations, some because of pro-
grammer limitations, some because of historical accidents, and some
because of specifications—both essential and inessential. But for what-
ever reascon a parficular piece of code gets inserted into the final product,
there are psychological aspects to that reason—which leads us to believe
that studying programming as human behavior will bear numerous and
not always expected fruits.

QUESTIONS

For Managers

1. If you are a first-line manager, are you capable of reading the programs
written by your programmers? Or did your ability to read programs
lapse with the previous generation of machines or languages? If you

are capable, do you read them? If you don’t, why not try it and see
what you find?

2. If you are a higher-level manager, are your first-line managers capable
of reading programs written by their programmers? Are you sure? Ask
the procgrammers themselves, then answer this questicn again. Then
find out if the first-line managers actually do read programs, even if
they are capable. Qur surveys indicate that nine-tenths do not, for one
reason or another. Do you think it is possible for a first-line manager
to know how good his programmers are or how well they are doing
without occasionally reading their programs?

For Programmers

1. When was the last time you read somebody else’s program? Why has
it been so long? When was the last time somebody else read one of
your programs and discussed it with you? Was it your manager?

2. Borrow a program from the program library or from one of your friends.
Try to analyze 1t into pieces of code that are there for the various
reascns described in the text. What did you leam from this exercise?

3. Take one of your own programs written over a month ago, and analyze
it as in Question 2. What did you learn from this exercise?

14 Programming as Human Performance

BIBLIOGRAPHY

Bucholz, Werner, ed., Planning a Computer System: Project Streich, New York,
McGraw-Hill, 1962,

Computers too are made up of parts that get intc them for various reasons. For
an excellent view of how compuling machines coms to be the way they are, this
book has not been surpassed. In addition, the beok ¢ontains many insights into
the question of machine limitations on programming, since Stretch was intended
to be, among other things, & “programmer's machine” and thus eliminated many
of the things which we take for granted on other machine designs,

FL/! Language Log, IBM Corporation, Confldential File.

This may be hard to obtain, but now that IBM is no longer solely responsible for
maintaining the integrity of PL/I, it may be possible to see a2 copy. The Language
Log is & running record of the controversies and decisions that went into the
PL/1 language we know today, and as such contains a marvelous education in
how programming languages have been formulated. Hopefully, someocne will pub-
lish parts of this Log in a suitably organized book.

Program Library of any user group or computer manufactursr. Your program library
contains a wealth of Information.
Patronize it!

Weinberg, G. M., PL/I Programming: A Manual of Siyfe, New York, McGraw-Hill,
1970.

Read this book if you want a lot more detail on the author's ideas on how programs

come to look the way they do.

Gruenberger, Fred, ed., Fourth Generation Computers: User Requirements and
Transition, Englewood Cliffs, N.J., Prentice-Hzll, 1970.

Looking to the “fourth generation’” with all the wisdom gamered from the first
three, several authors in this collection seem at last to be facing the problem of
the psychological needs of the computer user. Murray Laver traces the ways In
which designers, salesmen, and manufacturers have had more influence in the
past than the people who were to use their products. Jacques Bouvard discusses
the need for more user orientation in the design of systems at the software level

WHAT
MAKES

= A GOOD
PROGRAM?

f we plan to study programming as a human activity, we are going to

have to develop some measures of programming performance. That

1S, we are going to have some idea of what we mean when we say that

one pregrammer 8 better than ancther, or one program is better than
another. Although we all have opinions on these guestions, we shall find
that the answers are not as simple as we might wish. For programming is
not just human behavior; it is complex human behavior.

Consider our programming example once again. By analyzing Figure
1-1 rather thoroughly, we discover that only a small portion of it—no
more than 20 percent—is directed at meeting the problem specifica-
tions. Of the other 80 percent, much, if not most, can be eliminated not
by physical change but by psychoelogical change. In fact, even the ques-
tion of a limited storage could have been dealt with by an appropriate
virtual machine, so that even machine limitations can be overcome by
proper psychological design.

15

16 Programming as Human Performance

The program in Figure 1-1, though small, is typical in the percentage of
ceding that is actually devoted to solving the given problem. Because
people do not read programs, few are aware of how common this situa-
tion is. But common it is, and it gives us much scope for improvement in
our programming. Still, there is more to the question of good program-
ming than measuring the percentage of extranecus—or at least peripheral
—code. Indeed, we cannot really measure a program by itself and say
whether it is good or bad.

Most pregrammers feel that there is such a thing as good programming.
Although this feeling may be valid, it does not follow that there is such a
thing as a good program. Not, at least, in the sense that we can study
the program out of the context in which it was developed and in which
it will be used and declare it to have a goodness of 83.72 percent.

Consider Figure 1-1. Is it a good program? It is a clumsy program,
perhaps, but that is only part of the mark. After all, we only knew it was
clumsy because we read it, and for the ordinary program, nobody is ever
going to read it, so grace is hardly an absolute measure of program
goodness. Is it an efficient program? We can hardly answer this question
without knowing the machine, the compiler, and the cost situation under
which it will be run. Was it done on time? What did it cost? Does it meet
specifications? We cannot know these things merely by locking at the
code.

In our studies of the psychology of programming, we shall be hampered
by our inability to measure the goodness of programs on an absolute
scale. But can we perhaps measure them on a relative scale—can we say
that program A is better or worse than program B? Unfortunately, we will
generally not even be able to do that, for several reasons. First of all,
when is there ever another program with which to compare? And when
there is, as in the case of, say, a FORTRAN compiler, how can we agree
on the relative importance of the different attributes of the program. Is a
compiler that quickly compiles slow code better than one that slowly
compiles quick code?

But still, aren’t there times when we can make a relative ranking?
Isn’t a compiler that quickly compiles quick code better than one that
slowly compiles slow code? We have to admit that sometimes such com-
parisons can be made—although we must not be too hasty in making
them. There are dimensions of compiler performance other than speed.
There are diagnostics, scope of language covered, reliability of object
code, and execution time monitoring, to mention a few. Only rarely will
we find two programs so sufficiently similar that they can be compared
point by point—and then find cne superior on all points.

Mcre often, then, we will be doing evaluation of programs not with
respect to one another but with respect to a situation—a total situation

What Makes a Good Program? 17

—in which they are developed. Looking honestly at the situation, we are
never looking for the best program, seldom locking for a geod one, but
always looking for one that meets the requirements.

SPECIFICATIONS

Of all the requirements that we might place on a pregram, first and
foremost is that it be correct. In other words, it should give the correct
outputs for each possible input. This is what we mean when we say that a
program “works,” and it is often and truly said that “any pregram that
works is better than any program that doesn't.”

An example may serve to drive home this point to those whose minds
are tangled in questions of efficiency and other secondary matters. A
programmer was once called to Detrott tc aid in the debugging of a new
program—one that was to determine the paris requirements to build a
certain set of automobiles. The input to the program was a deck of cards,
each card representing a purchase order for an automobile, with differ-
ent punches representing the difierent options selected by the customer.
The program embodied the specifications relating the various options to
the parts that would be needed. For instance, the choeice of upholstery
for the rear seat might be determined by such factors as body color,
body style, options for deluxe or leatherette upholstery, and whether or
not the car was air conditioned. The air-conditioning option is a good
example of the basic complexity of the problem, for though tc an un-
trained eye the choice of air conditicning might have no connection with
the choice of rear seat upholstery, it might very well require spaces for
extra ducts. In general, then, each option might have some effect on the
choice of parts made, so the determination of parts requirements was an
excellent job for the computer.

Unfortunately, when this programmer arrived on the scene, the basic
appreoach to the problem had long been settled—and settled badly. Each
option—as it affected each choice—was reflected as an individually
pregrammed test and branch in the program. In a way, the program was
an enormous tree, with more than 5000 branches, representing the de-
cisions leading to part selection. Cast in this form—and with 16 program-
mers working at the same time—it was impossible to debug, as each and
every case had to be tested separately. To test the program, a particular
card would be put in and the output would be observed. When our
programmer arrived, things were so bad that typical cards were calling
for the production of cars with eight tires, no engine, and three sets of
upholstery. In short, a disaster.

As Is usual with programming disasters, nobody recognized it as such.

18 Programming as Human Performance

Instead, the whole crew had gone on double shift to get out the bugs, and
new programmers, including our hero, were brought in from all over the
country. Naturally, this led to worse confusion than ever, and our pro-
grammer, after a few days, determined that it was hopeless business—
and in any case not reason enough to be away from his family and
working night and day. He was roundly condemned for his uncooperative
attitude but was allowed to leave.

While on the plane, he had his first opportunity in a week to reflect
calmly. He immediately saw the error in the approach and perceived that
a much better approach would be to divide the work into two phases.
The main operational program would simply leop through a set of spe-
cially constructed specifications tables, so that all decisions would be
made with a single test reapplied to different parts of the table. In that
way, the program was at least assured to produce the right number of
tires, engines, and so forth. The tables themselves would be compiled
from input written in essentially the form of the engineering specifications.
This would allow the engineering personnel, rather than the programmers,
to check the specifications, and also permit one part of the specification
to be changed without changing all parts further down a decision tree,

By the time he got off the plane, he had coded the two programs. It was
a day’s work to check them out, and another two days’ work with the
local assembly plant engineers to create the specifications in input form.
After a week's testing in the plant, he was about to return to notify De-
troit of the news when he got a telegram saying that the project had been
cancelled—since the program was impessible to write.

After a quick call and a plane trip, he was back in Detroit with his
version of the program. A demonstration to the executives convinced
them that the project could continue, and then he was asked to make a
presentation to the rest of the programmers. Naturally, they were a rather
cool audience—a phenomenon tc which we shall return in our discussions
—but they sat quietly enough through his explfanation of the method. Even
at the end, there was a lack of questioning—until the original creator of
the old system raised his hand.

“And how long does your program take?” he asked—emphasizing the
pOSSessive.

“That varies with the input,” was the reply, “but on the average, about
ten seconds per card.”

“Aha,” was the triumphant reply. “But my program takes only one
second per card.”

The members of the audience—who had, after all, all contributed to
the one-second version—seemed relieved. But our hero, who was rather
young and naive, was not put down by this remark. Instead, he calmly
observed, “But your program doesn’t work. If the program doesn’t have

What Makes a Good Program? 19

fo work, | can write one that takes cne millisecond per card—and that's
faster than our card reader.”

This observation—though it undoubtedly failed to win our hero any
friends—contains the fundamental truth upon which all programming
evaluation must be based. If a pregram decesn't work, measures cof effi-
ciency, of adaptability, or of cost of production have no meaning. Still, we
must be realistic and acknowledge that probably no perfect program was
ever written. Every really large and significant program has "just one
more bug.” Thus, there are degrees of meeting specifications—of “work-
Ing"—and evaluation of programs must take the type of imperfection into
account.

Any compiler, for example, is going to have at least “pathological” pro-
grams which it will not compile correctly. What is pathclogical, however,
depends to some extent on your point of view. If it happens in your pro-
gram, you hardly classify it as pathological, even though thousands of
other users have never encountered the bug. The producer of the com-
piler, however, must make some evaluation of the errors on the basis of
the number of users who encounter them and how much cost they incur.
This is not always dcne scientifically. Indeed, it often amounts to an
evaluation of who shouts the loudest, or whe writes to the highest execu-
tive. But whatever system is chosen, some bugs will remain, and some
people will be unhappy with the same compiler that satisfies thousands.

In effect, then, there is a difference between a program written for cne
user and a piece of “software.” When there are multiple users, there are
multiple specHications. When there are multiple specifications, there are
multiple definitions of when the program is working. In our discussions of
programming praclices, we are going to have to take into account the
difference between programs developed for one user and programs de-

veloped for many. They will be evaluated differently, and they should be
produced by different methods.

SCHEDULE

Even after questions of meeting specifications have been set aside, the
question of efficiency is still not uppermest. One of the recurring problems
in programming is meeting schedules, and a program that is late is often
worthless. At the very least, we have tc measure the costs of not having
the program against any potential savings that a more efficient program
would produce. In one noteworthy case, the customer of a software firm
estimated that the linear programming code being developed would save
more than one million dollars per month in the company’s oil refining
cperations. Even one month’s delay in schedule would result in a loss that

20 Programming as Human Performance

could not be recovered if the program were run free of charge for ten
years,

Losses from late delivery of programs are not always so severe, but
even were the costs negligible, there seems to be, in the United States,
at least, an incredible amount of annoyance when schedules are not met.
In fact, the average programming manager would prefer that a project
be estimated at twelve months and take twelve than that the same project
be estimated at six months and take nine. This is an area where some
psychological study could be rewarding, but there are indications from
cther situaticns that it is not the mean length of estimated time that
annoys people but, rather, the standard deviation in the actual time taken.
Thus, most people would prefer to wait a fixed ten minutes for the bus
each morning than to wait one minute on four days and twenty-six minutes
once a week. Even though the average wait is six minutes in the second
case, the derangement caused by one long and unexpected delay more
than compensates for this disadvantage.

If this observation holds true for programming, then any studies of the
effect of certain programming practices should measure the effect on
variability in production time—not just mean time as most studies cur-

rently do. We shall try to estimate this effect in all our subsequent dis-
Cussions.

ADAPTABILITY

Having disposed of the questicns of meeting specifications and sched-
ules, we might suppose that we had finally arrived at the questicn of
efficiency as a measure of the goodness of programs, Without begging the
questicn of relative importance of the two factors, however, it will prove
advantageous first to dispose of the factor of adaptability of a program.
No doubt there are pregrams that are used once and then thrown away.
No doubt there are even more programs that should be thrown away be-
fore ever being used. Nonetheless, the great majority of programs that are
written, especially by professional programmers, remain in existence for
a definite lite span. And during that span, most of them become medified.

Few programmers of any experience would contradict the assertion
that most programs are modified in their lifetime. Why, then, when we
are forced to modify programs do we find it such a Herculean task that
we often decide to throw them away and start over? Reading programs
gives us some insight, for we rarely find a program that contains any
evidence of having been written with an eye to subsequent modification.
But this is only a symptom, not a disease. Why, we should ask, do pro-
grammers, who know full well that programs will inevitably be modified,

What Makes a Good Program? 21

write programs with nc thought to such modifications? Why, indeed, do
their programs sometimes look as if they had been devilishly contrived to
resist modification—protected like the Pharoahs’ tomb against all in-
truders?

There are answers to these questions, and they lie in the direction of
our psychological investigations, But our job for the moment is not to
answer them, but merely to raise them and remind ourselves of their
importance in any discussion of what makes good programming. A
related question is, of course, doccumentation, for why do we document
a program if not to render it more easily modifiable? We would all
agree that the quality of documentation and the ease of making modifi-
cations, both planned and unplanned, should count heavily in any grad-
ing of a program, or of the programmer who writes that program. We
would all agree further, then, that any improvement here to be gained
from psychological investigations will be well worth the effort.

But, a word of caution before we proceed to the question of efficiency.
Adaptability is not free. Sometimes, to be sure, we get a program that
happens to be adaptable as well as satisfactory in all other ways, but we
generally pay for what we get—and often fail to get what we pay for. In
his mathematical studies of genetic systems, R. A. Fisher derived a law
that has often been called Fisher's Fundamental Theorem, a very signi-
ficant name in view of the importance of Fisher's many other theorems.
Fisher's Fundamental Theorem states—in terms appropriate to the present
context—that the better adapted a system is to a particular environment,
the less adaptable it is to new envirenments. By stretching our imagina-
ticn a bit, we can see how this might apply to computer programs as
well as to snails, fruit flies, and tortoises.

For a program to be efficient, it must take advantage of the peculiarities
of the problem and the machine on which it is to be run. Programs that
ignore the structure of the machine do so at the risk of incurring heavy
cost penalties, and programmers who can exploit special situations in a
problem are the ones who can speed things up and make them smaller.
One peculiar example, not entirely untypical, of this type of programming
was an assembly program that employed a special technique for locking
up operation codes to be translated. The programmer had cbserved—or
figured out—that there was one number which, when used to multiply the
operation code bit pattern interpreted as numeric, yielded an almost solid
and completely unduplicated list of addresses. Using this multiplier, he
was able to effect a compact and equally fast transformation from sym-
bolic codes to machine language.

The programmer was much congratulated for this ingenuity—the ex-
ample was displayed to several generations of programmers as a proto-
type of the kind of work they should be doing. Sadly, however, this

22 Programming as Human Performance

saction of code did not have a very long life, for, as sec frequently happens,
the operation code repertoire of the machine was expanded. When a
dozen or so codes had been added to the set, the old multiplier no fonger
had the same desirable properties of compactness and uniqueness. In
fact, no multiplier could be found that would work in this way for the
new codes.

The outcome of attempts to find a new multiplier was to abandon this
special technique for a more general hash table search—one that allowed
for the existence of duplicates. Unhappily, the old technique was not
abandoned before a great deal of effort had been expended on the
attempt to adapt it to the changed circumstances. This proved to be time
wasted. In retrospect, the savings in time of the specialized technique
never paid in its lifetime for the extra cost of fooling around when the
new codes were added. If a general hash table method had been used in
the first place, somewhat lower efficiency would have been the resuli;
but—and this is the “but” that makes the example—the modification
would have been entirely trivial. In fact, essentially no modification would
have been required except the addition of the new codes to the appro-
priate places in the table.

This example could be supplemented with hundreds of others, but the
peint would be the same. When we ask for efficiency, we are often asking
for “tight’ coding that will be difficult to medify. In terms of higher-level
languages, we often descend to the machine-language level to make a
program more efficient. This loses at least one of the benefits of having
the program in the higher-level language—that of transportability between
machines. In fact, it has the effect of freezing us to a machine or imple-
mentation that we have admitted by our very act is unsatisfactory.

However, the same managers who scream for efficiency are the ones
who tear their hair when tcld the cost of modifications. Conversely, the
managers who ask for generalized and easily modified programs are wont
to complain when they find out how slow and spacious these programs
turn out to be. We must be adult about such matters: neither psychology
nor magic is going to help us to achieve contradictory goals simultane-
ously. Asking for efficiency and adaptability in the same program Is like
asking for a beautiful and modest wife. Althcugh beauty and modesty
have been known to occur in the same woman, we'll probably have to
settle for one or the other. At least that's better than neither.

EFFICIENCY

Measuring the true efficiency of a program is not the simple task it
first seems. In the first place, efficiency is not always measured simply
in terms of time on the computer, for it is often possible to trade time on

What Makes a Good Program? 23

the computer for time before and after the computer run. For example, a
commonly used measure of the speed of a compiler is the number of
cards per minute it precesses. If we use this measure to compare an
assembly program with, say, a FORTRAN compiler, the assembly is likely
to appear more efficient, since each input card carries less information.
Sometimes compilers are compared on the basis of the number of ma-
chine instructions produced per minute, but this measure exposes us to
the danger of giving credit to a compiler simply because it is verbose
tn the production of cbject code.

A compiler, of course, is a special kind of beast anyway, since we
must measure the efficiency of the code produced as well as that of the
compilation process. Still, since compiler efficiency is a subject of much
discussion, it may be worthwhile to pursue this example to illustrate how
easily we can be misled on efficiency questions. Consider, for instance,
the comparison of two compilers for the same language in terms of the
“cards per minute” measure. The first pitfall here lies in the term “same
language.” Very few compilers handle exactly the same language, so if
there is any difference between the two, we will have to adjust the
efficiency obtained from cards per minute to account for the difference
in value of the two languages.

The effect of slight differences in source language on compiler effi-
ciency can be striking. Typically, if the compiler writer can choose 10
percent of the language which he will not implement, he can produce a
20 percent faster compiler. Unfortunately, which 10 percent is chosen
differs from one machine and one compiling technique to the other, so
that language designers cannot simply provide “more efficient” subsets
to be implemented.

Similar improvements in efficiency are possible from similar relaxation
of specifications in other areas. Indeed, if our primary concern in a par-
ticular application is efficiency, the first step should always be to look
for areas in which the specifications can be changed to suit computer
efficiency rather than user convenience. Of course, computer time is not
the only cost element in a typical project. People time also costs money.
Thus, we can leave certain crossfootings to be done by the recipient of
a report, but we may only be saving computer time at the expense of
executive time with paper and pencil. We may decide quite rationally to
make this choice, but more often the choice is made without the execu-
tive having anything to say about it.

Trimming the external specifications can even have the opposite of the
intended effect on computer time used. If, for example, a great deal of
manual handling of input has been left in the system to simplify the com-
puter run, we may find ourselves paying more in reruns than we saved
in single-run efficiency. This effect is rather common when comparing
two compilers which, even though they handle identical language, differ

24 Programming as Human Performance

in the diagnostics and execution monitoring they produce. If we save
20 percent in raw compile time by eliminating or trimming error checking,
we had better be sure that the user will not find himself making 40
percent more runs to get the same amount of information.

As hazardous as it is to make simple measures of efficiency in a single-
machine, simple-scheduler environment, it is child’s play compared with
the difficulties of obtaining meaningful efficiency estimates in a multi-
processing or multiprogramming environment. Is it better, for instance,
tc coccupy 40K bytes of main storage for one hour or 80K bytes for 30
minutes? The answer to this question depends on the situation in the
computer at the time the job is run—and may change each time the job
Is run. For example, one day it may be possible to add a 40K job to the
machine load- without affecting the performance of the other jobs by one
second; yet the next day the same 40K jcb may lock out ancther job for
the full hour.

Running on systems capable of dynamic load adjustment may alleviate
some of the instabilities in multiprogram performance that we often see
today. It may very well be that, as with schedules for programming, what
the user wants is not a small mean time to execute his program but a
small standard deviation, so he can plan his work reasonably. If this is
true, the entire schedule from origin to destination of the work must be
considered, not just the “time on the computer.”

We may be moving toward a computing environment in which the
best programs are those that retain the ability to be run in various sizes
of main memory, on various machine configurations. Such a program
may not be very efficient on any one of the configurations-——considering
Fisher's Fundamental Theorem applied in the inverse sense—but may
lead to more consistent turnaround performance because it will never
find itself waiting for just the correct slot in the day’s schedule. Machines
with virtual memories give us this kind of flexibility without special pro-
gramming, although there are indications that performance improvements
can be obtained even in this environment by taking special character-
Istics into account.

For instance, if we know the page size of our system, we can avoid
excessive paging by tailoring our program sections to fit into single
pages and not to cross page boundaries except at logical breaks in the
program. If we do this, however, the program becomes somewhat less
well adapted for running in a system with a different page size. Similarly,
we can choose an algorithm that will require no more and no less page
space than is commonly allowed by our system; but again, this kind of
program will fail to take advantage of extra page space and will give
the worst possible performance in a system with a smaller page space.

What all of this means is that efficiency is becoming a clouded issue

What Makes a Good Program? 25

in computing. Moreover, with cost per unit of computation decreasing
every year and cost per unit of programming increasing, we have long
since passed the point where the typical installation spends more money
on programming than it does on production work. This imbalance is
even more striking when all the work improperly classified as “pro-
duction” is put under the proper heading of ‘‘debugging.” But by any
measure, the imbalance exists. And grows. And so we expect that
with each passing year we will hear less and less about efficiency—and
more and more about effectiveness.

SUMMARY

The question of what makes a good program is not a simple one,
and may not even be a proper question. Each program has to be con-
sidered on its cwn merits and in relation to its own surroundings. Some
of the important factors are:

1. Does the program meet specifications? Or, rather, how well does it
meet specifications?

2. Is it produced on schedule, and what is the variabilily in the schedule
that we can expect from particular approaches?

3. Will it be possible to change the program when conditions change?
How much will it cost to make the change?

4. How efficient is the program, and what do we mean by efficiency?
Are we trading efficiency in one area for inefficiency in another?

In the future, and particularly in the discussion of this book, we should
refrain from using the concept “good program” or “good programmer”
as if it were something universally agreed upen, or something that even
can be universally agreed upon, or something that even should be uni-
versally agreed upon.

QUESTIONS

For Managers

1. On what bases do you reward programmers? Are certain of your
criteria mutually contradictory, as in asking for efficient but general
programs? How explicit are you with your programmers in indicating
what you are looking for in their programs? Or do you just tell them
that you want the programs to be fast, small, neat, easily modifiable,
errorless, and done in a week?

2. How do the programs in your installation stack up on adaptability? Is

26 Programming as Human Performance

modifying programs a major expense in your installation? W so, can
you see things in your programming practices—in the original goals
you set—that may lead to this kind of expense?

3. How important is making the schedule in your shop? Is “a miss as
good as a mile,” or do you reward for consistency rather than the
occasional lucky shot? Can you see how a programmer can choose
an unreliable practice because it gives him the only hope of making
the schedule, even though it may risk not finishing the program at all?

For Programmers

1. Do you have criteria explicitly in mind when you start on a project?
Are these criteria obtained from your own impression of what is im-
portant, or do you get them from your manager? Do your criteria

change as the project progresses, or do you have some device for
keeping them firmly in mind?

2. How many times have you ever thought, when writing a program, of
some person in the future who might medify it? How many times have
you ever cursed someone whose program you were modifying?

3. Have you ever tried for “efficiency” at the expense of getting the job
done? For “meeting the deadline” at the expense of doing i right?

BIBLIOGRAPHY

Fisher, Ronald A., The Genetlical Theory of Natural Sefection, New York, Dover
Publications, 1958.

See particularly Chapter Il for a discussion of the Fundamental Theorem of Na-

tural Selection.

Weinberg, G. M., PL/! Programming, A Manual of Slyle, New York, McGraw-Hill,
1970.

See especlally Chapter 4 on the question of the compromises among the various
criteria for “"good” programs.

HOW CAN
=2 WE STUDY
PROGRAMMING?

n the first two chapters we have tried to set the stage for a study of pro-

gramming as human behavior. We showed that although programming

is a form—a complex form—of human behavior, few people have

studied programming from this point of view. But perhaps there is a
reascn why programming has not been so viewed? Perhaps programming
s oo complex a behavior to be studied and must remain [argely a
mysterious process.

Human knowledge is by necessity incomplete. We cannot know in
advance what we might be able to know and what might be essentially
unknowable. But of one thing we can be sure: if we do not try to find
things out, we shall never succeed. To those readers who despair of
success in this venture, | can only suggest that they reread the Einstein
qucte at the beginning of this part of the book: “The important thing
Is not to stop questioning.”

27

28 Programming as Human Performance

How, then, shall we begin our questiching? Since programming is
human behavior, it would seem wise to look to the sciences of human
behavior for two kinds of information; results that we can apply directly
to programming, and methods that we can use to get information not
available directly. Of course, these methods may not be appropriate
for the study of programming, and in such cases we shall have tc invent
new metheds, something that all social scientists are doing at all times.

But let us begin by seeing what types of methods are generally available
to us.

INTROSPECTION

Although some modern students of human behavior tend to discredit
it as nonscientific, introspection has always been the first foundation
stone of their science. We may quote, for example, Sigmund Freud:™

Psychoanalysls is learnt first of all on oneself, through the study of cne's own
perscnality. This Is not exactly what is meant by introspection, but It may be so
described for want of a better werd. There is a whole series of very common and
well-known mental phenomena which can be taken as material for self-analysis
when one has acquired some knowledge of the method,

Or we may quote William James,"™ the founder of modern psychology:

It is in short cbvious that our knowledge of our mental states infinitely exceeds
cur knowledge of their concomitant cerebral conditions. Without introspective
analysis of the mental elements of speech, the doctrine of Aphasia, for instance,

which is the most brilliant jewel in Physiolegy, would have been utterly im-
possible.

Now admittedly these are quotes from the early days of psychoanalysis
and psychology, but that is precisely why their precedents are so im-
portant for us when we are embarking on the study of a new area of
human behavior. Not that we intend to stop at introspection—if Freud
and James had done that, their names would not be remembered today.
But at the beginning of a new field or subfield, there is a great deal of
Information to be gleaned from the heads of people without elaborate
precautions or experimental methods. What we need at the beginning
are ideas as to what general directions to take, not detailed logistic
plans for the journey.

What kinds of insights can introspection yield? Several examples are
given in the text, but one at this point should serve to show the uses
and abuses of the method. Some years ago a student of mine, in doing
a classroom problem in PL/), was having an inordinate amount of difficulty
* Sigmund Freud, A Generel Introduction to Psychoanalysis. By permission of Sigmund

Freud Copyrights, Ltd., London England.
** Henry James, Psychology, Holt, Rinehart & Winston, New York.

How Can We Study Programming? 29

with the statement shown In Figure 3-1. When he finally finished the
program, | asked him to sit down with me and recall the thought processes
—the difficulties—he had experienced with this statement.

This student came up with the following list of problems:

1. He had trouble getting the parentheses matched, because there
were so many of them.

2. The original ANGLES(l) was a structure, nct an array, so the coms-
piler complained of an illegal subscript list, but he had not been
able to find the problem because there were so many subscript lists.

3. When the program finally got Into execution, there were these
further difficulties:

a. IND was a matrix on another page of the listing, and he had
trouble finding it.

b. Even though the parentheses were now matched, one pair was
in the wrong place and was most difficult to find.

c. The last difficulty turned out to be a problem of precision caused
by capricious declaration of different data types, by the large ex-
pression, and by the division—which would not have been neces-
sary if the two-argument form of ATAND had been used.

Now, a single case such as this contains insights into many problems
In computing: the proper size of statements, the choice of data structures,
the arrangement of different parts of a program, the use of parentheses
rather than other techniques for decomposition, the design of compiler
and execution-time diagnostics, and techniques for learning and teaching
programming. None of these insights could be obtained without intro-
spection of this sort, yet thousands of programmers each day have
these same problems and simply grumble that they are having “bugs.”
Without the introspection, they will simply continue to have “bugs”
until, in the end, the bugs will have them.

However, even though we must start with the introspection, we can-
not stop there, for then we would be practicing magic or religion, not

science. Based on one example such as this, we can hardly conclude
such general laws as:

1. The mind cannot cope with more than five levels of parentheses.
2. Compiler diagnostics should be more explicit.
3. PL/I precision rules are too complicated to use.

ANGLES(1)=2+ATAND(SORTC(S=ACINDCI,1)))={S-ACIMNDCI,2))))/
(S+(S-ACINDU1,30))IN));

Flgure 3—1 A long PL/1 statement.

30 Programming as Human Performance

Although each of these statements might turn out to be a “law” in the
psychelogy of programming, writing it on the basis of a single intro-
spective example hardly qualifies it as a law. To be a “law,” a principle
must be explored so as to set limits to its application, because all laws
have limits. Indeed, the limits are usually more important to know than
the laws themselves, and it is only by investigating a multitude of cases
that limits can be set. Thus, without introspection, investigation would
be sterile, but without investigation, introspection will be of questionable
value in application.

OBSERVATION

One way to follow up introspection is by observation of what people
actually do, as opposed to what they think they do. i, for instance, we
want to study the question of levels of parentheses, we could observe
the number of levels that other people use, and the difficulties they
seem to have in using them. One of the problems with observation, how-
ever, is that it tells us what people do do, but not necessarily what they
can do. Thus, if we observed hundreds of programmers and never found
any using more than five levels of parentheses, we could not conclude
that pecple are unable to use six levels. Nevertheless, observations of
this kind can lay to rest certain conjectures about what people cannot
do, since if we find people successfully using six and more levels of
parentheses, we settle the issue.

Or at least we settle some issue. A second problem with observation
is deciding just what it is we are observing. A programmer doesn’t use
six levels of parentheses in just any context—there may be situations
in which he really cannot use six levels successfully. Once we have
observed the six levels, our work has only begun: next we have to de-
limit the circumstances under which such behavior can be found and
under which it cannot. How far we have to delimit depends upon the
use we intend to make of the observation. For example, if we are de-
signing a programming language and we would like—for reasons of
efficient compilation—to limit the depth of parentheses' nesting to five,
we would like to have estimates of how often somebody would be in-
convenienced by not using six. We would not necessarily have to know
why he was using six.

We must be extremely careful in making observations such as this,
however, because programming is extremely complex behavior. Many
languages, for instance, limit the number of dimensions that an array
may have to three—not on any psychological grounds, but only on the
casual observation that nobody seems to use more than three. Such
an observation may be faulty for a number of reasons other than hap-

How Can We Study Programming? 31

hazardness. In the first place, if the programmer is working in a language
that allows only three dimensions, we are not likely to observe more
than three. Secondly, other features of the language may prevent the
user from making effective use of more than three dimensions, even
though the language permits them. Perhaps the printing format for
higher arrays is not well chosen, or perhaps the specilication of sub-
scripts is so clumsy as to be confusing beyond three. The point, then,
is that we must be most careful in trylng to carry observations from one
context over into another, because the contexts will always differ in
several ways.

A third problem with observation is the problem of interference of the
observer with the subject being observed—a kind of uncertainty principle.
Here we have much to draw on from the social sciences, which have
long been concerned with this problem and have extracted such phe-
nomena as the “Hawthorne Effect.” This effect was named after the
Hawthorne Works of the General Electric Company, where between 1924
and 1927 certain experiments in industrial psychology failed. They failed
because no matter how conditions of work changed, productivity rose.
Eventually, the experimenters came to realize that the missing factor was
the pride the workers took in being subjects of all this attention. It was
the act of observation Itself which was producing the phenomencn
being observed.

The interference of the observed and observer occurs not only in in-
dustrial psycholegy, of course, but in all sciences that study human
behavlor. The anthropolgists are constantly plagued in their field studies
by the gnawing fear that the behavior belng observed is that behavior
appropriate for a visiting anthropologist. Through the method of “par-
ticipant observation,” the anthropologist tries to make himself “invisible"
to the people by becoming sc much a part of the culture that he is not
noticed, so that the culture can go on as if no outsider were there. The
method of participant observation is certainly one which can be used
in the study of programming; and our students, who are often working
programmers, have made good use of it in obtaining some of the data
reported in this book.

Another way of being "invisible’” is to observe in ways in which the
people observed actually have no possibility of knowing that they are
under observation. Many such methods exist, and they may all be
classified under the rubric of “unobtrusive measures.” There is no need
for us to go into detail about such measures here, as a number of books
and articles discuss not only the methods but the ethlcal and moral
problems in using them. But we should take time to discuss one type of
unobtrusive measure which is more or less unique to computer studies—
the direct recording of user behavior by the computer,

In a way, any computer system that does self-accounting Is doing un-

32 Programming as Human Performance

obtrusive observation of programming behavior. A number of explicit
studies have been made, however, particularly of time-sharing systems
o see how users behave at terminals. (See Sackman,” 1970, Chapter 2,
tor a summary of this work.) These studies have been in the main
statistical, but because the computer records data in such detail, there
iIs no reason why individual users cannot be studied, even over long
periods of time. In fact, it is the enormous amount of detail that has
forced most of these studies to be statistical, and one of the major
problems faced by the would-be observer is what to throw away. One
man sitting at a terminal for one hour generates considerably more data
than a psychologist can fruitfully analyze in one hour, and when fifty
users are sharing the system, the situation is certainly not improved.
However, we must not be lulled by this enormous quantity into believing
that such data, by its sheer bulk, must of needs contain the information
we want. Although it is convenient to use the normal accounting or
logging information generated by a system, it will usually be necessary
to provide some hardware or software to get what we are truly after in
a careful study. For example, the timing Information needed for account-
ing will usually not suffice for psychological purposes. In the first place,
the units timed may not be the units we wish to study, and few systems
log a time wlth every transaction. Secondly, the resolution level of
the timing for accounting purposes may be adequate to a second or

more, but for many psychological studies, we may want to get down
to milliseconds.

EXPERIMENT

One way to reduce the cost of the bulk of data produced by observation
is to design experiments. Through the use of experiments, fewer data
can produce more information about the aspects of behavior which in-
terest us. One of the first dangers of experiments, however, is precisely
that they may be so refined that they bypass the most interesting data.
The experimental situation might so constrain the subject’'s behavior that
we will never see what we saw when observing him in a natural setting.

The constraint influencing the subject’s behavior may be either planned
or unplanned. To take one example, Sackman cites studies comparing
on-line and batch systems where the batch system is simulated by
running the jobs on-line but holding the work for a fixed period before
delivery to the user. The purpose of this simulation was to ensure that
the two groups of programmers were working in the same language and
had the same system facilities available.

* See the blblicgraphy at the end of the chapter.

How Can We Study Programming? 33

A batch system simulated in this manner, however, may differ from
a true batch system. For instance, the language used is tailored to the
needs of terminal users. Some terminal-oriented system commands can-
not be used, but are not replaced by batch-oriented commands. Diag-
nostics are oriented to terminal use, and corrective measures that might
be provided in a batch system are probably not present, since it is easier
for a terminal user to make his own corrections. Finally, a more subtle
effect may be introduced by the very regularity of the turnaround. A
normal batch system does not give jobs back precisely two hours after
they are submitted, and the variance in the turnaround is a major in-
fluence on user behavior. By inadvertently eliminating the variance, the
experimenters may have biased the study in one direction or the other.
Only another study could tell which.

Another study! Aye, there’s the rub! Studies cost money, and In pro-
gramming they cost more than in other areas of human behavior. For
instance, in one small study, we used one-gquarter time of nihe ex-
perienced programmers for three months. Their average salary was
$14,000, which with modest overhead came to say, $20,000 apiece, or
$1250 apiece over the course of the study. Add to this the cost of the
experimenters’ salaries, the computer time, and wvarious supplies and
secretarial services, and the bill comes easily to $30,000—for nine sub-
jects,

in the classical psychological study, costs do not run so high. In the
tirst place, computers are not used—though the modern trend is in that
direction. More important, however, is that subjJects are usually free. As
one wag put it, “psychology is the psychology of 18-vear-cld college
freshmen.” What he meant was that the typical source of subjects is
the freshman psychology course in a university, where one of the re-
qulrements for credit is participation as a subject in one experiment,
Normally, such subjects are not paid at all, let alone $14,000 a year.

In selecting subjects, inadvertent constraint may slip in. Whereas
psychology may be the psychology of college freshmen, the psychology
of programming could easily become the psychology of programmer
trainees. And for the same reason—cost. Trainees are paid less, but, more
important, they are not doing anything very critical, as experienced
programmers seem to be. Thus, they are far more easily obtainable for
experimentation, regardless of their suitability as subjects for a particular
experiment. Later on, we shall discuss the question of professional versus
amateur programming, and show how thls confusion has always dom-
inated and befuddled the thinking about programming. If, in the psy-
chological study of programming, we insist on using trainees as a matter
of cost or convenience, we shall only compound these confusions and
give them the weight of “scientific evidence.”

34 Programming as Human Performance

Undoubtedly it will turn out that some experiments can be done
equally well on trainees, but the burden of proof is on the experimenter.
More often, the results obtained from trainees will be limited in their
application, so that they may be useful only for the design of training
programs. In one study, we fried to determine the difficulty of using
0S&/360 Job Control Language—then, as now, the source of many com-
plaints. In testing the class of OS5/360 beginners, we found that the dif-
ficulty did indeed exist, but more or less disappeared completely upon
completion of the course of study because of the use of carefully de-
signed exercises. If we had simply tested beginners and stopped at
that, we would have indeed concluded that OS/JCL was very difficult
to use, instead of the proper conclusion—that it is very difficult to learn.
Once the learning has taken place—whether through a course or through
bitter experience—JCL is no more difficult to use than any other rather
rigid programming language. Although the language perhaps should be
redesigned, more fruitful results would probably be obtained from im-
proved training methods. If we had just tested experienced programmers,
we might well have wondered what the fuss was all about. Only by
testing both groups, or—as we did—by following a group of trainees
until they became experienced, could we put the problem of JCL in
the proper perspective.

Whether we use experienced programmers or trainees, however, we
are always faced with another difficulty which these simple titles tend
lo conceal. In our study of JCL, some of the students were relative
novices at programming, and others were rather old hands. All, however,
were novices at JCL. Thus, if we had simply correlated our results with
“years of programming” as a measure of “programming experience,”
we should have had no results at all. When the group was tested at
the beginning of the course, experienced and inexperienced alike did
poorly; at the end of the course, the groups did equally well. Thus,
It was not “experience™ in general that mattered in this problem, but
the specific experience with JCL.

The difficulty with simple measures of experience or inexperience is
llustrated by an example taken from one of Sackman’s studies with
“experienced"” programmers. There, experience was measured, among
other ways, by years of programming, ranging from 2 to 11 years. On ohe
of the problems, the best and worst performance was obtained by the
two 11-year programmers in the study. Obviously, there are factors at
work other than sheer length of time in “programming.” It may be that
the experiences in programming are so diverse as to make length of
time a fruitless measure, or it may be that people don’t all learn the
same things from the same experiences.

Before we leave the subject of experience and experiments, we must

How Can We Study Programming? 35

deal with one other problem, which is important because of a seldom-
questioned view of programming—a view which this book will spend
a great deal of time In questioning. That view is.that programming is an
individual activity, not a social activity. To the extent that experimenters
have believed this, they have chosen the individual programmer—ex-
perienced or not—as the suitable object for study. But there is much
evidence, as we shall see presently, to argue that the proper study of
programming is done at the level of the programming social unit. Not
that the individual leve! is unimportant, but we might start by asking why,
if the average programmer spends two-thirds of his time working with
other pecple rather than working alone (yes, it's true!), that 89 percent
of the studies have been on individual programmers.

One answer, of course, is that if studying programmers is expensive,
studying groups of programmers is extravagantly so. Moreover, not just
any group of programmers will do—not, for example, a collection of
trainees put into a *team.” Putting a bunch of people to work on the
same problem doesn’t make them a team—as the sloppy performance In
all-star games should teach us. And furthermore, even studying teams as
they are constituted today may not be sufficient, for these are teams
which have grown up in an environment pervaded by the myth that
programming is the last basticn of individuality.

The neglect of social effects also casts doubt upon all individual
studies, since these studies force the individual to separate himself from
his normal working environment. In one of our studies, one of the
pregrammers came to me when he had finished coding and asked who
could check his work. In his home group, this was the standard practice
at this point in development, but it was not allowed during the study
—lest it should “invalidate™ the results. Looking back, it seems that
forcing programmers to work in isclation is like trying to study the
swimming behavior of frogs by cutting off their legs and putting those
legs in the water to watch them swim. After all, everyone knows that
the frog swims with its legs, so why complicate the experiments with
all the rest of the frog?

PSYCHOLOGICAL MEASUREMENT

The use of “years of programming” as a measure of “experience” is
but one example of the problems of measurement faced by programming
psychologists. In any observation or experiment involving human behavior,
there are literally thousands, if not millions of varlables, which might
be measured. We can reccrd age or agility, blink rate or birth order,
crantal capacity or church prefterence, deductive reasoning or degrees

36 Programming as Human Performance

awarded, electrocardlogram or elementary mathematics, frown rate or
father’s profession, gestures made or grade-point average, height or
hatreds, [deas or ideals, jitteriness or jargon, Kindliness or knowledge,
left-handedness or latent homosexuality, mother's tidiness or muscle
tension, native tongue or nervous tlc, opinions held or objects touched,
preferred foods or pupillary motion, questions asked or questions
answered, response time or requests for assistance, source of support
or slips of the tongue, time of day or tap of the foot, university degree
or unconventional behavior, vocabulary or voting record, weight or
wage, X-ray photographs or xenophobic index, yawns or yedars in college,
zygosity or zodiacal sign. Surely the psychologist is the snoopiest of all
the scientists.

However, that is just the problem. Of all the sciences, psychology seems
to have the most possible things to measure—more than any reasonable
man can comprehend. But is this surplus unique to psychology? Not
really, except that psychology—and the other behavloral sciences—is in
its infancy. Maxwell, the great physicist, once said, “To Measure is to
Know,” and his words are often taken as a motto by other sciences.
What Maxwell probably meant was “To know how to measure is to
know,” or even better, “To know what to measure is to know.” In
physics, the number of possible measurements seems smaller because
physicists have learned, through long experience, what is worth meas-
uring and what is not. Knowing what is worth measuring, the physicist
can narrow his experimental field to those matters. In a sense, physics
Is the science of those things that physicists can measure.

When we study human behavior, however, we are not blessed with
this simplification. We do not define our subject by what we can
measure, but by what we would like to know about—human behavior.
We then must search among many possible measurements in hopes that
one or a few will give us some insight which we can carry back to the
problem with which we began. No clue is too tiny to be ignored in this
search, no suggestion ridiculous a priori. Take the *zodiacal sign” we
menticned earlier. Did that stand out as the one Item on the list which
was not legitimate? But how do we know? Not that we are arguing for
astrology, but medical scientists, for instance, have found it prudent
to be a kit humble about folk medicines, and the same prudence should
be exercised in the study of human behavior.

In fact, several recent studies have purported to show correlation be-
tween birth month or season and certain psychological and physical
variables. Whether they prove durable observations or simply spurious
Is beside the point for the present argument. What Is important is to see
how sericus workers cannot rule out any variables in advance without

How Can We Study Programming? 37

risk of error. And since we are working so much in the dark, we most
certainly cannot afford to pass up the *folk wisdom™ or our subjects,
even if they ultimately prove groundiess, or even outright wrong.

Folk wisdom is but one source of insight. Another is the existence of
a tool presently used for some other purpose. Since the tool exisis and
something, at least, is known about it, we must allow it to influence the
type of study we make. Thus, for instance, since “intelligence™ tests exist,
one of the first things we do is try them out on programmers, hoping to
find some relationship between what they measure (“intelligence™) and
what we want to understand {“good programming”). If we are lucky, we
will find some relationship.

The most normal course is to go the other way-—from problem to
tool. Sackman’s work is cne example of this progression—he wanted
to know about the efficacy of time-sharing systems, so he constructed a
humber of studies and measured numerous variables. Another example
Is the ACM Speclal Interest Group on Personnel Research. This loose
federation is interested mainly in programming from the point of view
of management, and, more particularly, personnel management. Thus, their
studles tend to be in the area of selection and training, and the things
they measure reflect this interest. Much of our own interest has been
in the design of programming languages, and the kinds of measuremenis
we make are influenced as much by that interest as by anything else.

However, when you don't know very much about a subject, you don’t
know in advance what to measure. S0 your early experiments are not
what they might seem to be—they are not to measure things, but to
determine what can be measured and what is worth measuring. The
difference here is well exemplified by the difference between the method-
ologists of anthropology and of sociclogy. The soclologist is working in
his own culture, about which he assumes that he is sufficiently knowledge-
able to construct, say, a questionnaire as a measuring instrument. But
the anthropologist cannot use a questionnaire because he does not
know what questions will be meaningful in ancother culture. Roughly,
then, we might say that the sociologist is looking for answers and the
anthropelogist is looking for questions.

For the present, most of the work in the psychology of programming
is going to have to be “looking for questions.” Although we may use
standard psychological measuring instruments—surveys, tests, and the
like—we are really exploring the instruments rather than the subjects.
One of the consequences of this point is that it will restrain us from
publishing such specious measurements as *the correlation between
test score and experience was 0.72.” Although we may certainly define
“test score” to whatever number of decimal places we wish, we certainly

38 Programming as Human Performance

have no way of measuring “experience" to two decimal places, or even
an order of magnitude. Thus, the “2" in 0.72 is of the nature of noise—
and so, probably, is the “7".

We haven't the space here to survey the entire field of psychological
measurement or psychological statistics, but we have given several fine
references. Nobody, but nobody, should attempt to draw hard conclusions
from such data as are being obtained in this field without studying the
pittalls which the behavioral scientists have already experienced. We
shall have occasion to comment on specific instances as we proceed
with our presentation.

USING BEHAVIORAL SCIENCE DATA

Probably the main use of previous experience in behavioral science
for us is in the field of methodology, as we have discussed. Because of
the nature of programming, there is not much hope that actual results
can be transferred directly from other fields to ours. Our use of results
has to be for insights, not for answers.

Where are we most likely to find our insights, and how? The best plan
is to avoid getting fascinated with theories that are oo spectfic, for
they will ultimately turn out to be based on premises which programming
does not satisfy. For example, there has been a great deal of psychologi-
cal work on the subject of “problem solving™ but this work in its delails
is not applicable to programming because the “problems” which are
“solved™ are simply too simple. They have had to be simple because
almost all of the experimenting done in this area is based on the idea
that there is one right “solution” to a “problem”—and that the psycholo-
gist knows it!

In programming, however, there is no right “solution”—we can be
sure of that. But even if there were, we could be sure that we would not
know it any beiter than our subjects. Time after time, the student or
novice comes up with “solutions” which are superior in some regard
to the teacher’s or veteran’s. Therefore we cannot draw directly on the
problem-solving literature for results, but we can certainly look there
for insights.

The abundance of areas from which useful insights will be available
makes it mandatory to impose a certain amount of organization on our
presentation. Organization can help us to remember important ideas and
suggest, by detects in the structure, other areas where aid might be found.
We should try, however, not to take our organization too seriously, for
it is only a convenience—a tool—and not some set of truths passed down
on stone tablets from the mountain top.

How Can We Sludy Programming? 39

The social science that provides us v.::-'ith the most useful overall model
for computer programming is anthropology. With a little artistic license
and stretching of the imagination, we could imagine computer pro-
grammers as having a culture—a shared set of beliefs and aciivities
which shape their day-to-day activities. In our study of programming, we
shall first examine the “social structure” of that culture—the way pro-
grammers relate to one another and to other people who are not pro-
grammers. We shall find some surprising possibilities for improvement
in this area over present practices, more even than in the second area
of study—programming as an individual activity. Although stretching a
bit to make the analogy, this study is related to the personality and
culture studies of the anthropologist. We shall see how the indwvidual
lends his individuality to his program and how programming lends shape
lo the programmer himself. Whereas in the soctal structure discussion we
shall draw heavily on soctal psychology, here we shall draw upon the
results of individual psychology—especially the areas of problem solving
and personality.

Once these two sections have prepared the way, we should be in a
proper frame of mind to examine the programmer’s tools—his languages,
operating systems, and other devices—from a psychological point of
view. These tools are the “material culture” of programming—the artifacts
which the programming archeologist would find and study to understand
the dead civilization of programming. Also, as programmers are not born
into this culture, we shall study how they are—or should be—recruited,
and how they learn this complex way of life. Here the psychology of
learning—and especially language learning—shall play a large, though
not exclusive, role.

Finally, as we pass successfully through all this, we may find ourselves
tn a sufficiently objective frame of mind to examine some of the myths
of programming—the articles of programming faith. Faith, as Bertrand
Russell pointed out, is the belief in something for which there is no
evidence; and myths, as Ambrose Bierce once defined them, are the
sacred belieis of other people. Perhaps we shall simply carry away our
old beliefs unchanged, but if just one unfounded programming myth
should die as a result, this book will have been worth the effort.

SUMMARY

Because programming is such a rich and complex activity, we shall
need all the richness of methods and results we can borrow from all of
the behavioral sciences. But the borrowing process is not without
danger, and as we prepare ourselves to make studies in the psychology

20

of

Programming as Human Performance

programming, we should particularly prepare ourselves to avoid the

common pitfalls. Among the major problems are:

Using introspection without validation.

Using of observations on an overly narrow base.

Observing the wrong variables, or failing to observe the right ones.
Interfering with the observed phenomenon.

Generating too much data and not enough information.

Overly constraining experiments.

Lepending excessively on trainees as subjects.

Failing to study group effects and group behavior.

Measuring what is simple to measure.

LoeNDO AN S

10. Using unjustified precision.
11. Transterring borrowed results to inapplicable situations.

But in any fledgling field, perhaps the greatest mistake of all is over-
caution. Though we try to observe the proprieties, better to have experi-
mented and lost than never to have experimented at all.

QUESTIONS

For Managers

1.

What type of accounting system does your installation use? Do you
use data from this system to evaluate programmer performance? |Is
the data intended for this use, and what can be done to improve the
system so that it is more useful to you for this purpose?

Would you permit behavioral science experiments t0 be conducted
with your experienced programmers? With your trafnees? What would
you do if a person objected to participating in such an experiment?
What safeguards would you ask of the experimenters?

. Do you ever read articles on psychology in such magazines as Har-

vard Business Review, Reader’s Digest, Playboy, Think, or Psychology
Today? Have you ever tried to put some of the reported results to use
in your work? What kinds of experiences did you have in transferring
data reported from other circumstances to the management of pro-
grammers?

For Programmers

1.

When you have just found a bug, do you ever sit back and try to trace
out the paths you took in your mind? Try doing this on the next bug
you find, and write a brief report or outline of what you find.

Do you keep records on your performance? What kinds of things do
You record, and how accurately do you record them? What picture do

How Can We Study Programming? 41

you get from these observations which you could not get by simple
reflection on what you are doing? Does your installation accounting
routine ever give you insights into your behavior, or the behavior of
other programmers in your installation?

3. Would you have any objections to participating in psychological ex-
periments to study programming? What kinds of assurances would be
required to overcome your objections? If you have ever participated in
a psychological experiment, write a small report or outline of the most
significant things you remember about the experience. Do you see any
reasons why the resuits of the study might not be valid, or valid for
programming? Were you ever shown the results of the study, or did
you have the reason for the study explained to you?

BIBLIOGRAPHY

Freud, Sigmund, A General Introduction lo Psychoanalysis, Garden City, N.Y.,
Doubleday, 1953,

Cf great interest in and of Hself, this book is also useful as a historical document
on the way In which a new study of human behavior begins. Especially interesting
in the present context is the way Freud has to convince his audience that the
subject really exists. One of the ways he does this is through his discussion of
errors—"slips of the tongue” and the llke. This particular discussion is of special
Interest to programming pecple.

James, William, Psychology, Cleveland, The Living Library, 1948,

Certain parts of this classic by the man who was “first to extend the methods and
spirit of modern sclence to the human mind"” are outdated, but not many. As with
Freud, the study of James bears many fruits for the modern student of the psy-
chology of computer programming, and these two books might well be the proper
starting place for a study of this subject, in order that historical perspective not be
lost.

Brown, J. A. C, The Social Psychology of Industry, Baltimore, Penguin Books,
1954

A very readable account of the practice of studying working groups, which glves
a good historical vilew of such matters as the Hawthorne Effect. The book is recom-
mended as an effective study for those entering the fleld called Industrial Psy-
chology, which, although it may have limited relevance tc work on tasks as com-
plex as programming, must be studied by anyone serlously involved In this fleld.
At the very least, Brown’s review of the early days of the field will wam us agalnst
certain excesses to which we might otherwise be prone.

Junker, Buford H., Freld Work—An Infroduction Io the Social Sciences, Chicago,
University of Chicago Press, 1960.

The author claims—with probably truth—that one cannot properly appreclate field

work without expertencing it. Yet by acknowledging his limitatlons, he does as

good a job as he can at disproving that stalement, and the reader can obtain some

sense of the varlous field work methods of sociology and anthropology.

Golde, Peggy, ed., Women in the Field, Chicago, Aldine, 1970.
The “Women” in the title is a bit misleading, since cne of the things the book

A2 Programming as Human Performance

demonstrates Is how little difference the gender of a fieldworker actually makes.
The book can be read at several levels-—elther as tho roughly enjoyable anecdotal
material or as a comprehensive—if not organized—survey of anthropological field
method.

Hammond, Philllp E., Sociologists at Work, New York, Basic Books, 1964.

A collection of anecdotal material on method, like Women in the Field, but orl-
ented 1o the sociclogist rather than the anthropologist. Several of the chapters are
about studies, which are In themselves of Interest to the psychologist of program-
ming: The Dynamics of Bureaucracy, Men Who Manage, and Union Democracy.

Webb, Eugine J., ef al., Unobtrusive Measures: Nonreactive Research in the Soclaj
Sciences, Chicago, Rand McNally, 1966,
A survey of a speclallzed subset of psychologlcal research technigues.

Sackman, Harold, Man-Compiuter Problem Selving, Princeton: Auerbach Publishers,
1970.

Although sublitled—Experimental Evaluation of Time-Sharing and Batch Proc-

essing—the book is the first we have on methods of psychologlcal research In

programming. As such, it Is essential reading for the serious student.

Hyman, H. H., Survey Design and Analysis, New York, Free Press, 1955.
Possibly the best and most thorough text on the theory and practice of public
oplnion surveys,

Cronbach, L. J., Essentials of Psychological Testing, 3rd ed., New York, Harper and
Row, 1970.

An elementary, but therefore useful as an Introeduction, account of the construction

and application of psychological tests of various kinds.

Hammond, K. R., and J. E. Householder, Introduction lo the Statistical Method,
New York, Knopf, 1962,

One of the better of hundreds of books on psychological statistics, and as good as

any as an introduction. Mathematically oriented programmers may be turned off

by such books, which are written for the mathematically unwashed, but thls cne

is quite palatable. In any case, it is important to know how psychologlsts think

about quantitatlve data.

Morgenstern, Oskar, On the Accuracy of Economic Observations, Princeton, Prince-
ton Unlversity Fress, 1963.

Economics is another behavioral science, and although It does not have much
direct bearing on the psychology of programming, we can learn something from its
methodological problems. Morgenstern, co-inventor with John Von Neumann of
Game Theory, brings his steel-trap mind to the question of how good economic
numbers really are. But the first half of the book is in no way really specific to
economics, and should be required reading for all behavioral scientists.

Proceedings of the Nth Annual Computer Personne! Research Conference, Asso-
ciation for Computlng Machinery, New York.

As N has grown, so has the size and scope of these conferences. So also has
their availability grown, and they should be known by every researcher In this
field. Even though the early issues are difficult to obtaln, they are perhaps even
more valuable than the later enes in that they relate the earliest struggles to come
to grips with problems that are not yet nearly solved, but about which we have
become a bit more sophisticated.

Parsons, Henry M., The Scope of Human Factors in Computer-Based Data Process-
ing Systems, Human Faclors, 12, 2 (1970}, pp. 165-175.

How Can We Study Programming? 43

The appearance of this article in Human Factors probably signals the beglnning of
a new interest by human factors engineers in programming, although most of the
article is concerned with nonprogramming aspects of computers. Not that non-
programming aspects are unimportant—far from it—but only that they are beyond
the scope of this book, and would probably require three or four books o survey.
The article contains no new data, but gives a few references to work already done.

DrOGRMING
AN

OCRL

ACNIY

Having been brought up in a serf-owner's family,
I entered active life, like all young men of my time,
with a great deal of confidence in the necessity of
commanding, erdering, scolding, punighing, and the
lke. But when, at an early stage, | had to manage
serious enterprises and to deal with men, and when
each mistake would lead at once to heavy conse-
quences, | began to appreclate the difference be-
tween acting on the principle of command and dlscl-
pline and acting on the principle of common
understanding. The former works admirably in a
military parade, but it is worth nothing where real
life is concerned, and the aim can be achieved only
through the severe effort of many converging wills.

Peter Kropotkin®
-
-]

rogrammers do not ordinarily work in isolation. Although an in-
dividual programmer may find himself assigned the task of writing
a program, even then he has other programmers to whom he may
turn for help—and who, at the same time, may be turning to him.

* Reprinted from Memvoirs of a Revolutianist, by Peter Kropotkin, Copyright 1868, By per-
mission of the Publisher, Horizen Press, New York.

45

46 Programming as a Social Activily

Indeed, as we shall see, the programmer working alone is working under
a serious handicap. But when working with others, many types of relation-
ships can exist. For our purpose, we shall identify three sorts of pro-
grammer assemblage—the group, the team, and the project. Roughly
speaking, the group is a collectton of programmers, working in the same
place, probably sharing the same machine and system, but working on
separate programs, although there may be a relationship among some
of the programs. A typical programming group might be found in a
university computing center, an engineering firm, or wherever an “open
shop'" is run. '

A programming team, on the other hand, is a collection of programmers
who are trying to produce a single program by working together. A team
might consist of from two to twelve members, though with the larger
numbers the team begins to break down into two or more teams. The
team may exist within a programming group or perhaps be one team oOf
many making up a programming project. The project is a group of pro-
grammers plus their supporting activities which has probably beenh
brought together for the purpose of producing a single integrated system,
or at least a closely knit collection of programs. It will often have its
owh machine, plus special teams to provide systems work, standards,
documentation, and other functions. It will also ordinarily have a project
manager and a regular hureaucratic organization-—like the Austrian
army.

THE
PROGRAMMING
GROUP

he study of the programming group ts important for an understand-
ing of the other types of programming organization. Even when
there is a formal organization of the programmers into teams and
projects, informal connections arise much as they do in an “un-
structured™ group. Indeed, the first lesson we must learn from social
psychology is the difference beiween formal and informal groups.

FORMAL AND INFORMAL ORGANIZATION

The organization chart is a nice toy for a manager, but little program-
ming work would ever get done if interactions among programmers had
to follow its narrow, straight lines. Perhaps because organization charts
look much like flow diagrams, programming managers who have come

47

48 Programuming as a Social Aclivity

up through the ranks seem to place too much confidence in them, rather
than in the less formal mechanisms which they themselves used so sucC-
cessfully when they were in the pits. But human interactions are never
narrow, never straight, and hardly ever in the directions shown an organi-
zation charts. Many serious mistakes have been made in imagining that
formal structure was the only structure in an organization.

In projects, of course, much of the informal structure is determined by
the structure of the work, and thus may follow organization charts mare
or less closely, depending on how well the project is organized. Bul in
a computing center, even if it is completely at the service of individual
programmers, an informal structure always grows to correct and com-
plement the work of whatever formal structure exists. Sometimes, if the
powers-that-be are sufficiently wise, innovations in the informal structure
can be implemented formally, although not always as exact equivalents.

An example of this type took place in the computing center of a con-
sulting engineering firm. Jobs were run on a remote batch basis, and
most programmers were spread around the three buildings near to the
group with which they worked. Turnaround time was irregular, and there
was no reliable way to determine in advance when a job would come
out. The number of the last job processed was posted on a board outside
the return window, but programmers from remote offices could easily
waste half an hour coming to read the board and find out that their job
was not ready.

As it happened, one of the secretaries had an office whose placement
permitted her to see the board out the open door, without moving from
her desk. She was an attractive young thing, and one of the programmers
happened to call her for a date at a time when he was waiting for a job
to be returned. When they had talked for a while, she commented that he
must have work to return to, but he replied that he was waiting for a job
anyway. “Oh,” she said innocently, “what number is it? | can see the
board from here.” With that remark began a service whose existence
gradually became known to all the outlying programmers. [t was such a
good service, in fact, that the secretary soon had difficulty carrying out
her other duties. In this way, this informal mechanism finally came 1o the
attention of the administration.

Wisely acknowledging that the service could not just be cut off, the
administration decided to inaugurate a special inquiry number over which
one could hear a tape recording of the latest number posted. The man-
agement was even wise enough to use the secretary’s old extension—
although the telephone company gave some resistance before this was
accomplished. Thus, a rather smooth replacement of a rather inefficient,
but useful, informal service was made—with the concomitant gain in
secretarial time for more conventional duties.

It should be noted, however, that the new formal system never com-

The Programming Group 49

pletely replaced the old, informal one. The recordings were made more
or less at intervals of thirty minutes, so that it was possible for a number
to be posted on the board as much as half an hour before being noted on
the telephone. For ordinary circumstances, this proved sufficient—but in a
computing center, somebody always has extraordinary requirements.
Thus, when a programmer was really in a hurry for a job, he would revert
to the old system and call the secretary. Now, however, her workload
was sufficiently decreased so as not to affect her other work, and so the
system has remained unchanged, in all probability, to this day. Besides,
she enjoyed talking to all these bright young programmers—and they,
let us admit, enjoyed talking to her.

Not all conflicts between the formal and informal have such happy
endings. In this case, the administration of the computing center recog-
nized the function that the informal organization was serving: but in other
cases, they might not even be aware of the existence of the function. A
case in point occurred at a large university computing center. Because
80 many of the programmers were students who had no offices, a large
common space was provided near the return window, so that the students
and other users could work on their programming problems. In the ad-
joining room, the center provided a consulting service for difficult prob-
lems, staffed by two graduate assistants.

At one end of the common room was a collection of vending machines
—cofiee, coke, candy, and what-have-you. Although the room was quite
large, the noise from the revelers congregating at the machines often
became more than some of the workers could bear. Finally, a pair of
serious-minded students appointed themselves as a committee and went
to the computing center manager. He, of course, had never personally
gone into the common room, so when he went to investigate their com-
plaint, he was appalled at the goings-on at the far end. Without more
than fifteen seconds of observation and consideration, he went back to
his office and inaugurated action to have the machines removed to some
remote spot.

The week after the machines had been removed—and signs urging
quiet had been posted all around-——the manager received another delega-
tion. This one was much larger and much better organized. They had
come to complain about the lack of consulting service; and, indeed,
when he went to look for himself, he saw two long lines extending out of
the consulting room into the common room. He spoke to the consultants
to ask them why they were suddenly so slow in servicing their clients,
but they told him that they were working as fast as they had ever done—
if not faster. For some reason, they said, there were just a lot more
people needing advice than there used to be.

The manager spent two weeks checking for a possible source of the
increased load, but all courses and other users were carrying on normally.

50 Prograrnming as a Social Activily

Still, the load remained, and students were complaining that they were
not able to finish their assignments. Finally, he set a graduate student
in sociology to interviewing the students queued up in the consulting lines.
After some time, he discovered the source of the problem. It was the
vending machines!

When the vending machines had been in the common room, a large
crowd always hovered around them—but not particularly for fol-de-rol,
as the manager had so quickly assumed. True, they were drinking coffee
and chatting, but they were chatting about their programs. The typical
behavior of a student when he arrived at the computing center was 10
pick up his output and head for the coffee machine. There, while sipping
coffee, he could have a first look at the program and also show it to his
buddies who might be standing around. Since most of the student prob-
lems were similar, the chances were very high that he could find someone
who knew what was wrong with his program right there at the vending
machines. Through this informal organization, the formal consulting me-
chanism was shunted, and its load was reduced to a level it could
reasonably handle.

By moving out the vending machines, the manager had broken up the
focus of this informal structure and put the resulting load on his con-
sultants. Unhappily, he could not easily believe that this was the cause of
the overload, so instead of restoring the machines, he tried increasing the
number of consultants. The consultants, however, complained of the trivia
they were having to deal with; and eventually the consulting service was
abandoned altogether, for lack of people willing to do it. When last ob-
served, this computing center was furnishing consulting through informal
channels—with students scurrying around from office to office until they
could find one of the staff programmers to answer their trivial questions.
Where it will all end, it’s hard to say; but we can be sure that the students
will always get their questions answered—at whatever the cost.

The point of these stories is that informal mechanisms always exist and
it is dangerous to change things without understanding them, lest you
derange some smoothly operating system which you will not be able to
replace at similar cost. Many such derangements occur through a change
in the physical layout of things—a change which is so common around
computing centers that it will pay us to spend a few words on the relation-
ship between physical structure and social structure,

PHYSICAL ENVIRONMENT AND
SOCIAL ORGANIZATION

We all know that physical surroundings affect the quality and quantity
of our work. What we are alluding to here, however, is not the effects of

The Programming Group 51

noise, light, heat, and other factors, which have been much studied by
industrial psychologists. No doubt there are important benefits to be
gained from following the design criteria developed in putting together
programmers’ working quarters. (Someone should definitely study the de-
pressing effect that the all-too-common half partitions have on program-
mer productivity. They manage to cut off all useful communication while
permitting all disturbing sound and movement to penetrate.} What we
are concerned with is how the layout of work space affects the pattern
of social interaction which in turn influences the work that is done.

As a simple example, consider the establishment which replaced its
ancient elevators with spanking new automatic ones. This was most un-
fortunate for the programmers, for the old elevator operator had run an
informal pickup and delivery service for them between the programming
floor—the eighth—and the machine room—the basement. Of course,
nobody could justify hiring a messenger just for going from the eighth
floor to the basement, so the programmers lost a lot of productive time.
Another function this operator served was locator of missing pEersons.
With the machine room on one floor, keypunch room on another, and
programmers’ offices on a third, chances of finding a missing programmer
In the first place you looked were less than fifty-fifty. The elevator opera-
tor, however, could be relied upon to know immediately on which floor
a given person could be found. With these two losses—plus the loss of
other services such as rerouting of misdelivered mail and relaying of
important messages—the new automatic elevators proved to be a net loss,
even though the elevator service itself seemed a bit faster.

Although the switch to automatic elevators is perhaps more rare, the
moving of offices is an almost daily occurrence in some shops. As long
as the programmers all remain together, this often has the salutory
effect of making two people aware of each other's existence. In the
old days, this function was often accomplished in the anteroom of the
machine room, where we all queued up to take our fifteen minutes of
on-line debugging. A typical conversation—circa 1956—went like this:

“What's he doing in there so long? I've got some really important work
to do—but there's just one more bug.”

“He's debugging FORTRAN.”

“FOR-what?”

“FORTRAN. Stands for Formula Translation. They claim you'll be able
to write programs as mathematical formulas and this program will trans-
late them into machine code automatically.”

“Come on. You're kidding?”

“That's what they say. As for me, | suppose it can be done, but it can’t
be as efficient as hand coding. It won’t sell.”

“Well, it's sure usihg a lot of machine time. He looks like he’s playing

52 Programming as a Social Activily

the organ there, flipping those keys up and down. There ought to be a
better way.”

“There 18"

“Yeah? What's that?"”

“I'm working on it right now. We're doing it on the West Coast, but
the only machine is here, so we have to come here 1o debug. It’'s called
a Monitor System.™

*Monhitor System?”’

“Yes, it's sort of an automatic operator. Takes the programmer away
from the machine. For example, I've got thirty jobs here which I'm going
to run in my fifteen minute shot.”

“Thirty? You're pulling my leg!”

“No, | mean it. By eliminating the operator, we achieve a fantaslic
speedup—and eliminate set-up and tear-down time, too.”

‘“Well, good luck. But | don't see how I'm going to debug my programs
if 1 can’t be at the console. As it is I'm going crazy waiting for these—
what was that name?—FORTRAN guys. See you later. I'm up now.”

A surprising amount of useful information was transmitted in this way.
Operating systems eliminated this social structure in the same way as
automatic elevators eliminated the other. Still, if there is a common room
right next to the place where computer output is returned, useful mixing
can take place there. Personalized delivery services, however, tend to
isolate the programmer from this type of interaction, and terminal systems
for remote-job-entry and exit may make his isolation worse. This aspect
of terminal operations is probably going to be a curse, not a blessing.

ERROR AND EGO

Many programmers who have read this far will be surprised at the
emphasis placed on the social interaction among programmers. Pro-
gramming—perhaps more than any other profession—is an individual
activity, depending on the abilities of the programmer himself, and not
upon others. What difference can it make how many other programmers
you run into during the day? If asked, most programmers would probably
say they preferred to work alone in a place where they wouldn’t be
disturbed by other people.

The ideas expressed in the preceding paragraph are possibly the most
formidable barrier to improved programming that we shall encounter,
First of all, if this is indeed the image generally held of the programming
profession, then people will be attracted to, or repelled from, entering
the profession according to their preference for working alone or working
with others. Social psychologists tell us that there are different personality

The Prograrmmming Group o3

types—something we all knew, but which is nice to have stamped with
authority. Among the general personality traits is one which is measured
along three “dimensions’’—whether a person is “compliant,” *“aggres-
sive,”” or “detached.” The compliant type is characterized by the atlitude
of liking to “work with people and be helpful.”” The aggressive type wants
to “earn money and prestige,’”” and the detached type wanis to “be left
to myself to be creative.”

Now, every person contains a mixture of these attitudes, but most
people lean more heavily in one direction than the others. There is no
doubt that the majority of people in programming today lean in the
“detached” direction, both by personal choice and because hiring policies
for programmers are often directed toward finding such people. And,
to a great extent, this is a good choice, because a great deal of program-
ming work is “alone and creative.”

Like most good things, however, the “detachment” of programmers is
often overdeveloped. Although they are detached from people, they are
altached to their programs. Indeed, their programs often become exten-
sions of themselves—a fact which is verified in the abominable practice
of attaching one’s name to the program itself—as in Jules' Own Version
of Algol, better known as JOVIAL. But even when the program is not
ofiicially blessed with the name of its creator, programmers know whose
program it is.

Well, what is wrong with “owning” programs? Artists “own" paintings;
authors “own’” books; architecis “own"” buildings. Don't these attributions
lead to admiration and emulation of good workers by lesser ones? Isn’t it
useful to have an author's name on a book so we have a better idea of
what to expect when we read it? And wouldn’t the same apply to pro-
grams? Perhaps it would—if people read programs, but we know that
they do not. Thus, the admiration of individual programmers cannot lead
to an emulation of their work, but only to an affectation of their manner-
iIsms. This is the same phenomenon we see in “art colonies,” where every-
one knows how to look like an artist, but few, if any, know how to paint
like one.

The real difticulty with “property-oriented” programming arises from
another source. When we think a painting or a novel or a building is in-
ferior, that is a matter of taste. When we think a program is inferior—in
spite of the difficulties we know Jurk behind the question of “good
programming''—that is a matter at least potentially susceptible to objec-
tive proof or disproof. At the very least, we can put the program on the
machine and see what comes out. An artist can dismiss the opinions of
a critic if they do not please him, but can a programmer dismiss the
judgment of the computer?

On the surface, it would seem that the judgment of the computer is

54 Programming as a Social Activily

indisputable, and if this were truly so, the attachment of a programmer
to his programs would have serious consequences for his self-image.
When the computer revealed a bug in his program, the programmer
would have to reason something like this:

“This program is defective. This program is part of me, an extension

of myself, even carrying my name. { am defective.”

But the very harshness of this self-judgment means that it is seldom
carried out.

Starting with the work of the social psychologist Festinger, a number
of interesting experiments have been performed to establish the reality of
a psychological phenomenon called “cognitive dissonance.” A classical
experiment in cognitive dissonance goes something like this:

Two groups of subjects are asked to write an essay arguing in favor of some
point with which they feel strong disagreement. One group is paid one dollar
apiece to write this argument against their own opinions, the other is paid twenty
dollars apiece. At the end of the experiment, the subjects are retested on their
oplnions of the matier. Whereas “*common sense” would say that the twenty
dollar subjects—having been pald more to change their minds—would be more
likely to change their opinions, cognitive dissonance theory predicts that it will
be the other group which will change the most. Dozens of experiments have
confirmed the predictions of the theory.

The argument behind cognitive dissonance theory is quite simple. In
the experiment just outlined, both groups of subjects have had to per-
form an act—writing an essay against their own opinions—which they
would not under ordinary circumstances like to do. Arguing for what one
does not believe is classed as “insincerity” or “hypocrisy,” heither of
which is highly valued in our society. Therefore, a dissonance situation
is created. The subject’s self-image as a sincere person is challenged
by the objective fact of his having written the essay. Dissonance, accord-
ing to the theory, is an uncomfortable and unstable state for human be-
ings, and must therefore be quickly resolved in one way or another. To
resolve a dissonance, one factor or another contributing to it must be
made to yield. Which factor depends on the situation, but, generally
speaking, it will not be the person’s self-image. That manages to be
preserved through the most miraculous arguments.

Now, in the experiments cited, the twenty dollar subjects have an easy
resolution of their dissonance. “Of course,” they can say 1o themselves
or to anyone who might ask, “l didn’t really believe those arguments. 1
just did it for the money."” Although taking money to make such arguments
is not altogether the most admirable trait, it is much better than actually
holding the beliefs in question. But look at the quandry of the dollar
group. Even for poor college students—and subjects in psychological

The Programming Group 55

experiments are almost always poor college students—one dollar is not
a significant amount of money. Thus, the argument of the other group
does not carry the ring of conviction for them, and the dissonance must
be resolved elsewhere. For many, at least, the easiest resolution is to
come to admit that there is really something to the other side of the
argument after all, so that writing the essay was not hypocrisy, but simply
an exercise in developing a fair and honest mind, one which is capable
of seeing both sides of a question.

Another application of the theory of cognitive dissonance predicts
what will happen when people have made some large commitment, such
as the purchase of a car. If a man who has just purchased a Ferd is given
a bunch of auto advertisements to read, he spends the majority of his time
reading about Fords. If it was a Chevrolet he purchased, then the Chev-
rolet ads capture his attention. This is an example of anticipating the pos-
sibility of dissonance and avoiding information that might create it. For
if he has just purchased a Ford, he doesn’t want to find out that Chevrolet
Is the better car, and the best way to do that is to avoid reading the
Chevrolet ads. In the Ford ads, he is not likely to find anything that will
convince him that he is anything but the wisest of consumers.

Now, what cognitive dissonance has to do with our programming con-
flict should be vividly clear. A programmer who truly sees his program
as an extension of his own ego is not going to be tryihg to find all the
errors in that program. On the contrary, he is going to be trying to prove
that the program is correct-—even if this means the oversight of errors
which are monstrous to another eye. All programmers are tamiliar with
the symptoms of this dissonance resolution—in others, of course. The
programmer comes down the hall with his output listing and it is very
thin. If he is unable to conceal the failure of his run, he makes some re-
mark such as

“Those keypunch operators did it again.”
or

“The operator put my cards in out of sequence.”
or

“When are we going to get that punch fixed so it duplicates properly?”

There are thousands of variations to these plaints, but the one thing
we never seem to hear is a simple

“l goofed again.”

Of course, where the error is more subtle than a complete failure to get
output—which can hardly be ignored—the resolution of the dissonance
can be made even simpler by merely failing to see that there is an error.
And let there be no mistake about it: the human eye has an almost
infinite capacity for not seeing what it does not want to see. People
who have specialized in debugging other people’s programs can verify

56 Programming as a Social Aclivity

this assertion with literally thousands of cases. Programmers, if left to
their own devices, will ignore the most glaring errors in their output—
errors that anyone else can see in an instant. Thus, if we are going to
attack the problem of making good programs, and if we are going 1o start
at the fundamental level of meeting specifications, we are going to have
to do something about the perfectly normal human tendency to believe
that ones “own" program is correct in the face of hard physical evidence
to the contrary.

EGOLESS PROGRANMING

What is to be done about the problem of the ego in programming? A
typical text on management would say that the manager should exhort
all his programmers to redouble their efforts to find their errors. Per-
haps he would go around asking them to show him their errors each
day. This method, however, would fail by going precisely in the opposite
direction to what our knowledge of psychology would dictate, for the
average person is going to view such an investigation as a personal trial.
Besides, not all programmers have managers—or managers who would
know an error even if they saw one oullined in red.

No, the solution to this problem lies not in a direct attack—for attack
can only lead to defense, and defense is what we are trying to eliminate.
Instead, the problem of the ego must be overcome by a restructuring of
the social environment and, through this means, a restructuring of the
value system of the programmers in that environment. Before we discuss
how this might be done, let us look at some examples of what has hap-
pened when it has been done—how it affects the programmers and their
programs.

First of all, let no one imagine that such restructuring is the ivory tower
dream of social theorists. Programming groups who have conquered the
ego problem do exist and have existed from the earliest days of com-
puting. John von Neumann himself was perhaps the first programmer
to recoghize his inadequacies with respect to examination of his own
work. Those who knew him have said that he was constantly asserting
what a lousy programmer he was, and that he incessantly pushed his
programs on other people to read for errors and clumsiness. Yet the
common image today of von Neumann is of the unparalleled computing
genius—flawless in his every action. And indeed, there can be no doubtl
of von Neumann’s genius. His very ability to realize his human limitations
put him head and shoulders above the average programmer today.

Average people can be trained to accept their humanity—their inability
to function like 2 machine—and to value it and work with others so as to

The Programming Group 57

Keep it under the kind of control needed if programming is to be success-
ful. Consider the case of Bill G. who was working in one of the early
space tracking systems. His job was to write a simulator which would
simulate the entire network of tracking stations and other real-time inputs.
His system had to check out the rest of the system in real-time without
having to have the worldwide network on-line. The heart of the simulator
was 1o be a very small and very tight loop, consisting, in fact, of just
thirteen machine instructions. Bill had worked for some time on this loop
and when he finally reached the point of some confidence in it, he began
looking for a critic—the standard practice in this programmihg group.

Bill found Marilyn B. willing to peruse his code in exchange for his
returning the favor. This was nothing unusual in this group; indeed, no-
body would have thought of going on the machine without such scrutiny
by a second party. Whenever possible an exchange was made, so nobody
would feel in the position of being criticized by someone else. But for
Bill, who was well schooled in this method, the protection of an exchange
was not necessary. His value system, when it came to programming, dic-
tated that secretlve, possessive programming was bad and that open,
shared programming was good. Errors that might be found in code he
had written—not “his” code, for that terminology was not used here—
were simply facts to be exposed to investigation with an eye to future
improvement, not attacks on his person.

In this particular instance, Bill had been having one of his “bad pro-
gramming days.” As Marilyn worked and worked over the code—as she
found one error after another—he became more and more amused,
rather than more and more defensive as he might have done had he been
trained as so many of our programmers are. Finally, he emerged from
their conference announcing to the world the startling fact that Marilyn
had been able to find seventeen bugs in only thirteen statements. He
Insisted on showing everyone who would listen how this had been
possible. In fact, since the very exercise had proved to him that this was
not his day for coding, he simply spent the rest of the day telling and
retelling the episode in all its hilarious details.

Marilyn, at the same time, did not feel @ny false confidence in her own
work on the problem, for—she reasoned correctlly—where there had
been seventeen errors, there were probably a few more. In particular,
she knew that after a certain amount of time working on the code, she
had internalized it as much as had Bill, even though she had not written
it originally. So she in turn went looking for a critic; and while Bill was
giving everyone an enormous laugh at his expense, Marilyn and others
managed 1o find three more errors before the day was over.

As an epilogue to this incident, it should be noted that when this code
was flnally put on the computer, no further errors were found, in spite

58 Programming as a Social Aclivity

of the most diabolical testing possible. In fact, this simulator was put
into use in more than a dozen installations for real-time operations, and
over a period of at least nine years no other errors were ever found.
How different might have been the story had Bill felt that each error
found in that code was a wound in his pride—an advertisement of his
stupidity.

This incident is not an isolated case, and this group Is not unigue.
Why, then, are such groups not more conspicuous? Why is the practice
of “egoless programming” not more widespread? A number of factors
might be invoked to account for the impression that such groups are
rare. First of all, many of the successful software firms are based on this
type of interaction, and though they will admit to it under direct question-
ing, they often regard this knowledge as valuable proprietary information.
Secondly, groups working in this way tend to be remarkably satisfied and
stable, so that the programmers we find wandering from installation to
installation are not likely to have come from such a group. Moreover,
these gypsy programmers—to achieve a constantly escalating salary
range—must encourage the myth that the best programming is the prod-
uct of genius, and nothing else.

Another reason these methods are not better known is that nobody
has ever experimented on the difference in quality of work produced by
this method and the method of isolated individual programmers. Some
experimenis have been performed on factors affecting programmer pro-
ductivity, but these have suffered first of all from emphasis on the mechan-
ical aspects of programming, not the social. For example, a study will be
made comparing time sharing with batch processing or language A with
language B, because someone is trying to prove that he should be allowed
to develop a time-sharing system or a compiler for language B. The
people who run these experiments seem to take for granted the individual
nature of programming effort—for that is probably the way they have
always operated. Besides, things are complicated enough working with
individuals. When you compare system X and system Y and find out that
90 percent of the variance in your experiment comes from individual
programmer differences, who wants to add the complication and expense
of studying group performance?

An interesting anecdote—which we mentioned briefly in the chapter on
methods—can be told about one of our studies that tried to assess the
difference in programming results obtained when different programmers
were given slightly different impressions of what they were to achieve—
efficient coding or quick completion. As usual, individual subjects were
employed, but one of these subjects—they were all students on a special
three-month course—happened to come from a group that practiced
egoless programming. At a certain point, he came to me and said that he

The Programming Group 59

had reached the point in his work where he needed someone to look over
what he had done. As the object of the experiments was not to study
differences between group work and individual work, |1 was forced—
against my own beliefs—to request that the subject try to proceed with-
out outside assistance, which would only add to the variance of the
experiment.

As a sidelight to this incident, it should be noted that this programmer’s
work seemed to the evaluators to be better organized and better executed
than the other four programmers working on the same problem. In dis-
cussing this question with him, he raised the point that he had worked
throughout as he always did in his own group—always with an eye to
making the program clear and understandable to the person or people
who would ultimately have to read it. This insight indicates that all the
advantages of egoless programming are not confined to the detection of
errors, though that was perhaps the earliest and strongest motivation for
adopting the technique. In fact, it might be useful to examine our four
factors in good programming in the light of what effect this method would
have on them.

For meeting specifications, the value is quite clear. On the matter of
scheduling, the effect on the mean time to complete programs is not
immediately evident, but the effect on the variation should be clear from
our example of the bugged simulator. If it is true that programmers
have bad coding days—and this seems supported from a number of
sources—then a piece of code written on one of these days is going to
have an extra long debugging cycle. In the case of Bill G.'s program,
the twenty bugs might have taken several weeks to root out. Moreover,
it seems likely that at least one of them might have survived in the
system past the time when this piece was integrated with other pieces—
In which case the schedule of other parts would have been adversely,
or at least unpredictably, affected.

Not only is the variation in debugging time reduced, but since there
Is more than one person familiar with the program, it is easier to get
realistic estimates on the amount of real progress that has been made. It
Is not necessary to rely on a single judgment—and of the person least
likely to be unbiased, at that. The adaptability of programs is also im-
proved, for we are assured that at least two people are capable of under-
standing the program. Under certain programming circumstances, this
represents an infinite improvement. Also, the entire work is less sus-
ceptible to being disturbed If one of the involved programmers happens
to be sick, or pregnant, or otherwise missing, as programmers are wont to
be. This not only reduces variations in schedule, but also makes it more
likely that at some time in the future, when the code must be modified,
someone will be around who knows something about it.

B Programming as a Social Activily

On the question of efficiency, we can make no hard and fast statements.
There certainly seems to be no reason why programs developed in this
way should be fess efficient than other programs. By having a second
party look at the program, it would seem that we increase the possibility of
eliminating at least the most obviously inefficient areas, although overall
efficiency is usually going to be primarily influenced by the original
structure chosen.

One final advantage of this method lies in the effect it has on the person
reading the program of someone else, for, if we are correct in assessing
the value of reading programs, he cannot help but become a better
programmer for the exercise. We shall have more to say on this subject
under the heading of programmer training, but it does seem that the
general level of competence of such a group is likely to raise itself
even in the absence of specific measures for education.

CREATING AND MAINTAINING
THE PROGRAMMING ENVIRONMENT

The question of creating such a desirable environment as we have
described is different from the question of maintaining such an environ-
ment once it exists. Maintenance is by far the easier task, for converting
an existing group to this philosophy will usually run against the phenom-
enon of “locking” or “fixation” of social structures. Fixation occurs
whenever a situation creates an environment favorable for maintaining
that situation. For example, an FM tuner can be designed to center itself
on the strongest signal in the vicinity of the tuning knob. Once a station
is captured by this device, only a very strong change can get it off, be-
cause every small tendency to change is met by a compensating action
by the tuner. Such locking occurs in all sorts of systems—physiological,
electronic, biological, but especially for our immediate purposes, social.

One typical computing example of social fixation is the adoption of one
programming language by an installation. Once the language has been
adopted, a new language has more difficulty making an entry, because
with most of the people using the old language, advantages accrue to
following the beaten path. If one needs advice, it is more easily found.
If one needs subroutines, they are more likely to exist. Scheduling of
computer runs may favor the commonly used language, keypunchers
will make fewer errors punching familiar coding, and procedures for using
the old language will be smoother and better developed.

In the same way that an installation fixates on a programming lan-
guage, it can establish a general social environment which either en-
courages or discourages egoless programming. When a new programmer

The Programming Group &1

enters the mileu, his attitudes may be shaped by the reactions of the
others already there. If he goes to somebody ftor advice and he is
ridiculed for the stupidity of his errors, he is less likely to seek assistance
the next time. lf, however, someone comes to him and asks for help in
looking over a program, he is flattered by he implied compliment 1o his
ability and may not feel so threatened when he has to seek advice. To
a large extent, we behave the way we see people behaving around us,
s$0 a functioning programming group will tend to socialize new members
to its philosophy of programming.

Sometimes the group may have to maintain its philosophy in the face
of a larger threat than the introduction of a new member or two. Ad-
herents of the egoless programming philosophy are frequently subjected
to threatening moves on the part of managers from higher |levels in their
organization. Managers tend to select themselves from the “aggressive”
component of society and have difficulty appreciating the fact that other
people do not completely share their goals of money and prestige. They
are especially at a loss to understand the smooth functioning of a pro-
gramming group based on mutual respect for individual talent and co-
operation in the common cause. Instead, they tend to view people as
working for money or under threat—as they themselves do.

A particularly pertinent example of the clash between aggressive man-
agement and a compliant-detached programming group occurred in a
software section of one of the computer manufacturers. One group in the
section, acting as a team, had been particularly successful at producing
an entirely new system, which promised to have much market potential.
The achievement of this group was so evident that the management of
the company decided to give them a cash award. In typical management
fashion, they gave the award to the person who had been designated as
the group’s manager. Imagine their bewilderment when he told them that
he could not accept the award unless it was given to all.

His reaction, in view of the way the group shared its work, was per-
fectly correct, but was not understood by the management. Some man-
agers thought that he was maneuvering for more money; others thought
he was trying to set up a “prima donna’ group. In any case, it was
decided to force him to accept the award and also to break up the
group—which seemed to have unbhealthy ideas. He took the award and
promptly split it equally among all the group members, after which the
group left the company en masse and went to work for an independent
software firm.

In this case, the group protected itself against a great outside threat
by picking up and leaving. Had the management been more aware of
what this group had to offer, and had they been more flexible, they might
have worked out a solution that would have permitted this group to

62 Programiming as a Social Aclivity

influence the work of other groups in a favorable way. But this is not
easily done by managers, who tend to feel that when work gets done
it is the direct result of the actions of some leader of outstanding ability.
Even when the manager appreciates the work of the group, it is not
consistent with his own philosophy to see the productivity of the group
as a property of the group, not as a sum of the contributions of the
individual members.

In one interesting case, a group of ten programmers had come to work
in the programming section of a large airframe manutacturer. They had
worked together in another firm for about two years, but that firm had
decided to cenltralize its data-processing facilities on the other side of
the country. These programmers had been unwilling to move. After each
had received attractive offers from several firms, they decided to go
with the one that would hire them all. Mass movements of groups of this
type are not rare, and though management tends to see them as some
sort of conspiracy, they are usually motivated more by the desire to
continue receiving the fulfillment of working together than any idea of
enormous material gain—such is the powerful influence of a truly recep-
tive working environment.

Some months after this group had moved to the airframe manufac-
turer, their new manager happened to meet their former manager at a
computer conference and asked him if he had any more people like
those. Upon being told that he had the entire group, he inquired about
the secret that had been used in finding these people. Their old man-
ager could think of nothing special—one girl had been a new college
graduate majoring in ltalian, one man had taught mathematics in a
high school for seven years, one man was a professional engineer, one
girl had been a business school graduate who had worked for several
years as an execulive secretary and accountant. Why, he wanted to know,
had the other manager asked?

“l don't know what it is,” came the honestly puzzled reply, “but since
those people have come to our place, I've discovered that whenever
there is a job that really has to be done right and on time, 1 give it to
one of them. And | have 300 other programmers, but if | want it done
right, that's who | ask to do it. They must be some kind of geniuses.”
His perception was so obviously colored by what he expected to see that
he could not bring himself to understand that whenever he gave a job
to one member of the group, it was worked on by all of them in their usual
fashion. When they tried to explain their methods 1o him, he understood
them to be covering up the fact that a few of the members were doing all
the work and carrying the others. Fortunately, he was not so rigid that he
had to break up the only satisfactory operation he had merely because
he didn't understand how it functioned. Unfortunately, he was unable to

The Programming Group 63

see how their successful methods could be transmitted to others in his
group, so the group remained an isolated pocket until the time it moved
on—again as a group—to a more understanding environment.

Of course, groups that follow the individualistic school of programming
also have a way of preserving themselves—as did the remainder of
the programming section at this airframe manufacturer. A single new
member, or even a single new group within so large a group, really has
no chance of converting the social system, even if he is firmly convinced
of the correctness of his way of doing things. f he comes into an estab—
lished group, he will probably change his ways to theirs, Eventually,
though after experiencing more psychological hardship than one might
like. 1f the group is newly forming, however, as programming groups
often are, and if it is forming from disparate elements, he may struggle
to shape the group to his image and then leave if unsuccessful.

A case in point was Jim A, who was brought onto a newly forming
project in Chicago from a programming center in New York. The group
to which he was assighed was headed by two people who had been
firmly brought up in the egoless programming tradition and who were
determined to propagate that tradition in this project. The group con-
sisted of these two, Jim, and four trainees. On the first day the group
assembled, the group leaders began the indoctrination of the others
into their method of working. It was decided at the beginning that each
of the group members was to have the signature of one of the other
members on his run request before going on the computer with any
job. By this slightly formal method, they hoped to ensure that the group
members would get in the habit of doing what they would come to do
spontaneously later on.

During the meeting, Jim said nothing, but when the trainees had left,
he approached the group leaders. “That's an interesting idea you have,”
he began, “to help those trainees learn the ropes.”

“Well,” it was patiently explained to him, “it's not just for the trainees.
It's for all of us, s0 we don't start slipping into bad habits.”

“You can't be serious,” Jim laughed. “Why | have more than two
years of experience. [certainly don't need anyone looking over my
work. What could those trainees possibly teach me?”

Like most prophecies, this one had a way of fulfilling itself, and Jim
managed to evade the falling of other eyes upon his sacred programs
through one device or another. Before very long, his presence in the
group became clearly counterproductive. As he saw the trainees ad-
vancing to do difficult and challenging assignments while he struggled
on alone, he tried ridiculing them for their lack of independence and
ability to think for themselves. His own programs were not up to the
standard of quality which the rest of the group was producing. When

64 Programming as a Social Activily

the group leader finally felt forced to turn over one of his programs—
which Jim claimed was debugged, or *essentially debugged’—to one
of the trainees to clear up, Jim had more than he could take and re-
signed.

In this case, the social environment of the group had been strong
enough to shape the behavior of the trainees: but it was not strong enough
lo counteract Jim's “two years of experience.” As his personality was
not strong enough to carry the group in the direction he felt was correct,
the situation eventually became intolerable. Perhaps if the group leaders
had been more wise and experienced, they would have excused him
from the group from the beginning, but the temptation of “two years of
experience” proved their undoing—as it has to many others in a business
which so sorely lacks experience.

SUMMARY

The environment in which programmers work is a rich and complex
environment, full of human involvement, change, and misleading ap-
pearances. To understand that environment, one must understand the
difference between formal and informal structures and the many factors
that shape it, ranging from the physical surroundings to the individual
ego. In an ongoing programming shop, the richness of this environment
gives it a self-maintaining quality which resists changes imposed from
the outside—especially changes imposed without an understanding of
the difference between the formal and the informal. This self-maintenance
IS manifest on all social levels, and is neither inherently good nor in-
herently bad. It is merely a fact of programming life.

QUESTIONS

For Managers

1. Do you have an organization chart showing the organization below
you and around you? Try taking a copy of this chart and marking—with
wiggly lines—interactions that occur in your organization. Do the
wiggly lines match the straight lines? If so, get out from behind your
desk and find out what is really happening out there.

2. When was the last time you moved peoples' work locations? Can you
recall any changed behavior from that move which was not part of
the direct intention of the move? What would you have done differently
if you were planning the move now?

3. Looking back over your interactions with programmers, can you think

The Programming Group 65

of things you have said that might have forced them into dissonant
situations—situations in which their ego had to be defended? In those
situations, was the resolution of the dissonance always in the direction
you intended, or did you experience such reactions as covering up
errors or schedule delays, rather than correcting for themm? How could
you have approached those situations 50 as to lessen the dissonance,
or to direct the resoiution of the dissonance in directions more useful
to the overall goals of your organization?

. What would you have to do to introduce egoless programming into

your shop? What resistance would you expect to meet, and how
would you deal with W7 How long do you think it would take, and
what are the chances of success?

What is your honest opinion of people who are not trying to “move up"
in your organization, but who seem satisfied with the kind of work
they do and the amount of money they get? To what extent is your
view Influenced by your own feelings for yourseli?

For Programmers

1.

If a compuling center had perfectly consistent turnaround, there
would be no need for an informal organization to produce information
on when jobs are ready. In what other ways do the variations induced
by the complexity of programming lead to the growth of informal
social structures? Give some examples from your own experience.

If you use a terminal system regularly, how do you exchange informa-
tion with other users of the terminal system? Does your terminal
system have an operation which enables you to exchange messages
with other terminal users? If so, how valuable is this facility for real
communication, as opposed to the other methods you use?

Do you refer to your work as “my" program? Try passing one week
without using the personal possessive in reference to programs, and
take notes on the effects you observe.

Have you ever blamed other people for errors in “your” program?
Have you ever blamed inanimate objects, such as keypunches or
magnetic tapes? How many times were you right in blaming these
people or things?

Have you ever blamed “bad luck” for errors in “your” program? How
often? Are other programmers as unlucky as you? If not, why do you
thinks the fates have singled you out for such ill treatment? What sort
of rituals do you think you might follow to appease their anger with
you?

BIBLIOGRAPHY

Lynch, Kevin, The Image of the Cilty, Cambridge, M.l.T. Press, 1960.
In this small and insightful beok, Lynch explores the ways In which our image of

66 Programining as a Social Activily

our physical surrcundings influences our lives. Although cast on the level of cities,
the book contains a mine of information for anyone involved in changing or pre-
serving the physical environment in which psople work.

Wright, Frank Lloyd, An Organic Archifecture: The Archifeciure of Democracy,
London, Percy Lund, Humphries & Co., Ltd., 1939,

Wright, the greatest of all the American architects, expounded the theory that
“form follows function”-—that physical surroundings had to be planned to fit the
tasks performed in them, just as a suit has to be taifored to fit its wearer. Wright's
ideas may have become ossified into cliches by now, but in these times of ready-
to-wear clothing and ready-to-work buildings, the sensitive manager wiil refresh
his thinking about physical surroundings by reading a bit of Wright,

Goftman, Erving, The Presentfation of Self in Fveryday Life, Garden City, N.Y.,
Doubleday, 1858.

Just as workers are shaped by their physical surroundings, they are shaped by
the image of the social surroundings. But working groups also tend to shape
their image, which is one of the reasons why managers have such a hard time
perceiving their true structure. Goffman explores the ways in which individuals
and groups work at shaping the image they will present to oulsiders and new-
comers--something that managers and programmers alike should know.

Hall, Edwvard T., The Silent Language, Garden City, N.Y., Doubleday, 1959.

Hall takes another point of view on the image of organizations and describes how
we acquire our views of the formal and informal structure of the groups in which
wa live. Hall's approach yields many insights into the ways programmers are so-
cialized, and alse into the ways in which we acquire specific programming prac-
tices that are never taught in Courses or books.

Festinger, L. A., A Theory of Cognitive Dissonance, Evanston, lIl., Row, Peterson,
1957,

Festinger's work on cognitive dissonance grew out of an earller study of what
happens when a group which prophesied the end of the world saw the day arrive
and the world go on. {(When Prophecy Fails). Obviously, dissonance theory has a
lot to say to people who work in an environment where prophecy faile each and
every day—especially the prophecy that the program is suré to work this time,
now that the fast bug has been removed.

Haire, Mason, Psychology in Management, 2nd ed., New York, McGraw-Hill, 1964,
Haire's fine little book Is a good starting pface for managers who have a hard time
understanding how nonmanagers are motivated.

Fanop, R. M., and Corbato, F. J., Time-Sharing on Computers, Scientific American,
219 (1966), pp. 128-140.

In this popular article, the authors allow themselves the fuxury of dropping some

tantalizing hints about the society of users, which grows up with a particular com-

puter system. They probably felt, however, that this was not a fit toplc for a pro-

fessional audience, and they never seem to have followed it up.

=== 1HE
PROGRAMMING
TEAM

he lack of experience in programming becomes more evident as

the size of the system to be produced increases. Although we have

seen that the programmer does not, ideally, work in isolation, even

when the problem is small, there is a social difference between
small programs and large ones. As long as the work of the entire
group—from its purpose and general organization to the last coding
detail—can be held in the mind of one person, there is no need for
coordination of programming effort. The interaction of two program-
mers looking over a program that ejther one of them could have
worked out is entirely different from the interaction of two program-
mers working on separate parts of a whole, which is too great for
either one to produce. The difference lies in the way conflicting de-
mands are resolved. In the first case, resolution of conflict is the think-
ing process of one person—aided perhaps by other people, but always

67

68 Programming as a Social Activity

under his control, In the second case, conflicting technical demands are
translated into potential interpersonal conflicts, and a social mechanism
must be tormed to resolve them.

HOW A TEAM FORMS

A programming team, then, should be formed in response to a work
requirement that cannot be met by a single person. This need relates
not simply to the specifications of the work to be done, but also to the
abilities of the people available to do the work and the amount of time
allotted to doing it. Both factors—ability of the tearmn members and time
available—have the characteristic of requiring minima in order that the
work be feasible. For example, certain programming work cannot be
done by a team of trainees, no matter how large, so that doubling the
number of “warm bodies”—as they are so often called in the trade—
still will not get the work done. Schedule is similarly limiting—we need
only cite the apocryphal experiment which tried to make a baby in one
month by putting nine women to work on the job as a team.

Conceplually, there is a minimum expertise and a minimum time
necessary to produce a given system. Because these quantities cannot
be clearly defined—and because of the uncertainties involved in pro-
gram estimation—managers often form a team which any reasonable
judgment would indicate cannot perform the designated task in the
allotted time. Inevitably, the team is given an extension when the time
limit is reached and the reality must be faced. Had it been faced earlier,
the work could probably have been organized differently—in recognition
of the longer schedule—and thus produced, in the end, more quickly.

This far too common programming situation illustrates the com-
plementary relationship between ability and schedule. The minimum
schedule can only be achieved by putting the best team to work on the
project; and the minimum work team can only be used if we are willing
to let the project stretch out for a longer time. In othet words, almost
any program can be produced with less programming talent—if we are
willing to allow a stretching of the schedule, and if we have not dropped
below the minimum competence.

Such situations also illustrate an important relationship between sched-
ule and work structure. Although we must always be on our toes against
Parkinsonianism (work expands to fill the time allotted), too tight a
schedule will inevitably lead to the temptation to take shortcuts. These
shortcuts might succeed in getting the system working on time—but only
if everything goes right, which it rarely does. So many failures to meet
programming deadlines can be traced back to an initial schedule and
plan of attack which assumed the most optimistic conditions-—no days

The Programming Team 69

lost through iliness, no machine trouble, no compiler problems, no "im-
possible™ bugs. Because each of us has had the experience of, say, a
six-month period in which everyone on the team was in top health or
there was no machine trouble or there were no compiler problems or
there were no "impossible” bugs, we can easily slip into imagining—if
the price is right—that we can have a six-month period in which all of
these fortunate circurnstances happen at once.

It, on the other hand, we try to cover for the possibility of trouble,
we have to supplement our team with extra members. Also, if the total
work must be divided among more people, the amount of coordinating
effort is increased relative to the total work. As a rough rule, three
programmers organized into a teamn can do only twice the work of a
single programmer of the same ability—because of time spent on co-
ordination problems. Moreover, three groups of three programmers can
do only twice the work of a single group—or four times the work of a
single programmer—for the same reason. Thus, an eight-month project
for a single programmer might be done in four months it we are willing
to put three people to work on it or in two months if we are willing to
allocate nine.

Notice that two months would probably be the minimum time for this
program tc be produced with programmers of this ability, for it is
doubtful whether nine programmers can do anything useful in less than
about two months, considering the time it will take them to get organized.
Iif we have to have the program faster, we shall have to hire a better
man for the job.

In any case, the basic rule for size and composition of programming
teams would seem to be this—for the best programming at the least cost,
give the best possible programmers you can find sufficient time so you
need the smallest number of them. When you have to work taster, or
with less experienced people, costs and uncertainties will rise. In any
case, the worst way to do a programming project is to hire a horde of
trainees and put them to work under pressure and without supervision—
although this is the most common practice today.

When thrown into the breach as raw trainees, many people do not
learn as effectively as they could from their programming experiences.
Even the proper crganization of teams for the maximum current produc-
tion is not usually the best way to produce maximum long-range produc-
tion, for to accomplish that training must be taken into account. There-
fore, we may wish to place one or more relatively green pregrammers
on a team, even though we anticipate that they will contribute little to
the current effort. When the team has such members, the goal of the
team becomes multiple—both production and training—and the organiza-
tlon of the work is affected.

In programming, the way a team organizes for work is most strongly

70 Programming as a8 Sociel Activily

determined by two factors—the organization of the target system and
the composition of the team. Because there are frequently several ways
of approaching the structure of a system but rarely more than one group
of programmets available to do the work, the structure is often chosen
to accommodate the sirengths and weaknesses of the teamn members.
Ideally, of course, the cheoice would be made the other way around—the
ideal program structure would be planned and then a group would be
assembled who could handle this work in an optimal way. But, given the
present shortage of programming talent—or even "warm bodies”—such
planning is honored more in the breach than in the observance.

As an example of the relationship between system structure and team
organization, consider first Figure 5-1, which shows how a team com-
posed of one experienced programmer and four relative trainees might
organize a system. Part a shows how the program might be set up as
one fairly large main program which calls upon relatively small—perhaps
input-output-free—subroutines to provide some of its functions. Here,

a. PROGRAM STRUCTURE

O

b. TEAM ORGANIZATION

Figurea 31 Program structure vs. team organization.

The Programming Team 71

as shown in part b, the experienced programmer would act as a con-
ventional leader of the team, programming the main section himself and
allocating the subroutines to the trainees in a manner hopefully calculated
to give each the experience appropnate to his level of competence.
Now consider how the same work might be organized by a team of
three programmers of relatively equal experience, as shown in Figure 5-2.
In part a, we see that the program is now organized inte phases, one
following the other, rather than into subroutines. Of course, the main
program of Figure 51 might also have been organized into phases ac-
cording to the conception of programmer leading the group, but we
would probably find less interface coding in that version than in the
second. On the other hand, the second group could also use subroutines
within—and possibly even among—the phases, but in this situation we
would be likely to find less interface material in the finished product.
The structure of the programming team itself would be more a matter of
communication ameng equals, as indicated in part b of the figure, though
member [l would probably spend more of his time in '"teamwork™ than
either of the others because of the position of his section between the
other two. Member Il, in a situation like this, may actually have the
easiest programming job, especially if the first and third phases take

——F PHASE | ppem— PHASE il ———=>] PHASE W [——>

a. PROGRAM STRUCTURE

< mmm oo >

b. TEAM ORGANIZATION

Figure 52 Program structure vs. team organization.

72 Programming as a Social Activily

care of the input and the output for the systerm. In his position in the
structure, ability to work closely with the others is probably more im-
portant than programming ability, and he might actually be the least
talented programmer—as programmer—in the group.

These struciures, of course, are idealizations. They do not reflect, for
example, whatever inner structure comes about because of the general
programming philosophy of the larger group to which these team members
belong. The organization in Figure 51 might in practice be far less
hierarchical if the group practices egoless programming; while the team
In Figure 5-2 might be far less egalitarian if its members did not. Status
of members of a team evolves in a manner influenced by a number of
factors, and the factor of who criticizes the work of whom is one of the
strongest. Thus, if egoless programming is used, everyone in the group
will have the opportunity to examine the work of everyone else at some
time, thereby tending to prevent the establishment of strong hierarchy.

In programming, the status of a tearmn member is usually strongly
influenced by his abilities as perceived by the others. When programs are
passed around for shared criticism, the speed at which the “cream”
will come to the top is enhanced. On the other hand, if the team members
work secluded in cells like monks, the reputations previously established
are more likely to remain as determinants of prestige in the team—at
least until it is too late to do anything about a misappraisal.

Again, the particular piece of work assigned may lend status to a
team member—or take it away. Programming jobs seem to carry status
just as do carpets in offices, and in organizing a team one must tread
gingerly among the sensibilities of the members when passing out the
work. Writing auxiliary programs, for example, such as test data gen-
erators seems to carry low prestige in some circles, perhaps because the
work will not be physically present in the final system. Subroutines—
though they may present far greater difficulties—are often thought to
place the writer in a subservient position to the programmer who writes
the routine which calls them, perhaps by analogy, to the role of the
subroutine itself. These anthropomaorphisms do not have to represent
rational thinking in order to be important factors in determining team
satisfaction with work assignments, They can be quite real-—perhaps all
the more so for being irrational,

ESTABLISHING AND ACCEPTING GOALS

Suppressed feelings by a team member about the inferiority of his
assignment can be surprisingly damaging to a team efiort. Egoless
programming tends to moderate such feelings, since each programmer

The Programming Team 73

feels that he has a share in a larger part of the system. Still, if a team
sets to work too quickly—before establishing a real consensus about
the structure of the project and the division of work—trouble will mani-
fest itself in one way or another.

Social psychologists have verified in other contexts that failure of
one or more members to share the group goals affects the group per-
formance—not only through that member's share but through a reduced
performance on the part of the others, for they invariably perceive the
division within the group or the indifference of one of the members. A
rather fantastic example of the cost of achieving only a surface con-
sensus arose in a system that was organized as shown in Figure 5-3.
As we might guess from the system organization, the original team had
consisted of seven relatively equal programmers, one of whom was
designated to write the input/output package to provide a common inter-
face tor data which were passed from one phase to anocther.

This system had been in existence on the IBM 704 for about four
years when it was decided to convert the 704 to a 709. From a program-
ming point of view, the 709 was almost compatible with the 704—except
tor the input-output, which was entirely difterent. Since this system had
all input-output confined to one section, a simple conversion was antic-
ipated. The input-output routines were converted so as to use the 709
system while preserving the interface to the various phases. Once the
new routines had been tested, they were mated with the old phases and
all went well—until the system blew up in phase V.

The input-output routines were double-checked, and phase V was

Y) B }l} o] [l
i

COMMON INPUT/OUTPUT ROUTINES

Figure 5-3 Organization of a system.

74 Programming as 8 Social Activily

checked for any deviations from the standard interface. Absolutely noth-
ing was found. Then phase IV was checked to see if the data it had
passed on to phase V had somehow been distorted by the new system,
but the output of phase IV matched the previous output for the same
test bit for bit. Other theories were pursued, but several weeks went by
without a clue as to what had gone wrong. In the meantime, of course,
pressure was building up to remove the 704 and stop paying rental on
two systems.

None of the original programmers of the system were still around, so
one of them was brought in to see if he could provide a clue as to the
trouble. Afier a day of unrewarding speculation, he was having a beer
with one of the new programmers and reminiscing about the good old
days when the original crew had been together. At one point, he chanced
to recall that Joe R. had been very disturbed not to get the assignment
of writing the input-output routines, as he thought he was much more
capable than the one who got the job.

“Joe was really sore for about a week,”" the old-timer recalied, “but
then he seemed to get over his hurt pride. He wound up deing a darn
good job on his section, too."

“And which section was that?" the youngster asked, beginning to sense
a wisp of suspicion.

“Section I, if | remember correctly. But why do you ask?”

The young programmer said he just had a hunch, and then excused
himself to head back to the computing center. He got a listing of section
ll—which nobody had looked at, attention having been focused on sec-
tions IV, V, and the inputoutput routines—and started to go through it
step by step. He didn't have far to look. Right at the beginning, the
program fetched a word from the region of storage reserved for the
input-output routines, which were resident in core throughout the entire
run. Then phase Il replaced that word with a branch to part of its own
code, diverting the flow from input-cutput routines. At the end of its
processing, it returned the saved word, leaving everything as it had
been upon entry.

What had happened, of course, was that Joe—not accepting the team
decision at all but merely stopping his open opposition to it—had written
his own version of the input-output functions needed by his phase.
He said nothing to anybody about this, but merely short-circuited part
of the standard routines when his phase was in operation. When the
new input-output system was created, however, the part formerly oc-
cupied by the branch was now being used to hold some variable which
kept track of the position of an intermediate tape. Inasmuch as this vari-
able was changed in the course of executing phase I, but changed back
to its original value at the end, the input-output routines effectively lost

The Progremming Team 75

track of the tape’s position. Since the values on this tape were not used
again until phase V, it was only then that the blowup occurred. The cost
of this nonconsensus was slow in being exacted; but when its lime came,
it was paid, and paid handsomely.

We should stress here that the consensus we are talking about con-
cerns the goals of the group, not such matters of tact as could be
settled by other means. Consider, for example, the case of a team
producing an on-line system for a bank. While undergecing final acceptance
testing of this duplex system, they suddenly saw each on-line printer
print a line of absolute garbage, right in the middle of the normal output.
The twe lines were identical, even though the itwo systems operated
entirely free of influence from each other—in order to ensure that
trouble in one would not affect the proper functioning of the other. Of
course, the same program was used in the two systems, so all indications
were that some sort of program bug existed. Indeed, it would be hard to
attribute a probability to the occurrence of two machine errors in the two
independent machines—they even had separate power supplies—which
weuld lead to the same line printed at the same time on both.

One of the team members was given the job of tracing down the bug,
but after a week of studying the evidence, he was no closer to the
source of trouble than he had been at the start. Another team member
joined him for a second week, with no better results. The scheduled date
for putting the system into operation was only a week away and, since
the system seemed to be operating correctly in every other aspect, a
meeting was called to decide what to do about this intractable bug.
The discussion among the eleven members of the team was heated, and
no conclusion was reached, although one large contingent was pressing
for the group to agree to label the incident as a freak—a double machine
error! No amount of appeal to the statistics of the situation would sway
this group from their position—for although it was physically absurd,
it was psychologically satistying. They wanted the system to be ready
on time; and in a second meeting, they succeeded in persuading the
others to sign off on the system.

The system was cut over on schedule and functioned quite well for
about a week. Then, in the middle of a banking day, and just when
operations were beginning to rely on it, the system just stopped—both
machines at once. After about an hour, during which the bank was
completely paralyzed, the system was restarted. Nobody dared to estimate
how much business had been lost, but auditing the files for the effects of
the restart was a gargantuan labor which streiched out over several
months. In the meantime, the entire programming crew worked frantically
to locate the bug before another failure might occur.

Needless to say, when the bug—a certain timing coincidence which

76 Programming as a Social Activity

could be expected to ocecur about once every week or so—was finally
found, it turned out to be the same bug which had earlier caused the
two garbage lines. In that case, a fortunate—or unfortunate—coincidence
had permitied the system to go on essentially undamaged, but the next
time it happened, things turned out rather badly.

The lesson in this example is the lesson of false consensus—that is,
not an apparent consensus as in the other case, but a true consensus
on a talsehood. Things are bad enough in programming without adding
this type of problem, but it is a psychological problem which we shall
have to face. We shall have more to say on the subject under the topic
of “opinions and social pressure.” For the moment, the main lesson is
the difference between this kind of consensus—which stifles the healthy
disagreement essential to unbiased appraisal of programming work—
and consensus on the goals of the team—which smooths the way for
productive functioning.

To achieve true consensus on group goals, there is no better method
than having the group set the goals itself. For one thing, participating
in setting the goals ensures that the goals will be more clearly under-
stood. For another, it gives each group member a chance to commit
himself publicly to the group’s goal, and this type of public commitment—
perhaps because of cognitive dissonance-—has been shown to enhance
goal acceptance. But participation itself, quite independent of these
other factors, seems to be an important determinant in whether an
individual truly accepts the working goals of the team with the pursuant
increase in productivity.

To be sure, not every programming team can be permitted to set
whatever goals it happens to fancy at any moment. A team is usually
constituted to accomplish some task which has probably been set down
before the team was even assembled. But programming tasks are not
usually specified too precisely until much later than team formation, so
that unless the upper management is very overbearing, much meaningful
and interesting goal setting can be done by the team members in
concert. The greatest danger is the manager who has come up through
the programming ranks and wants to define every bit and byte before
the team even sees the problem. Nothing is more sure to darmpen the
team enthusiasm and make them feel that they are “mere coders.”

When a team does work from this sort of “bit-picking” specification,
other troubles arise simply because what the group is trying to ac-
complish is not clear. Precision and clarity are not the same. To be
clear—and goal clarity is one of the most critical factors in goal ac-
ceptance—the task outlined must be placed in a framework of the

meaning of what is being done. The programmer wants to know why,
not just what.

The Programming Team 77

Problems of unclear goals become more acute when the programming
team is working not to produce a specific system, but to provide some
service or support function to other programming groups. At [east
when there is a package to produce, you can have an image of what is
to be done, even if you don't understand why. But a support group must
be constantly reminded of their contribution, lest they drift into doing
things more concrete but less productive.

For example, many installations have a systems programming team.
The tasks of such a team are rather diverse, held together by the common
thread of service to the other users of the installation. We know how
frequently such a team drifts off into fascinating but useless little
projects simply for lack of a clear and persistent image of what they are
trying to do. This tendency is exaggerated by incompetence of other
users in systems matters, for they feel unable to evaluate the work
being done by the systems programmers. In one case—not atypical—the
three systems programmers in an installation were fascinated with the
problem of producing an improved loader—possibly useful in some con-
texts, but definitely not in their installation. Each request from the other
users for some service, such as creating a new catalecged procedure or
incorporating a new system in the library, was met with the statement
that it could not be done in their system. In fact, it was asserted, they
could be done, but only after this new loader was finished.

The statement itself was true enough, because as long as the entire
tearn was working on the loader, there was nobody with the competence
to do these other jobs. But the loader itself had nothing to do with them,
other than sucking off the labor which could have been more gainfully
employed. Users were too intimidated by their own lack of knowledge
of the system (most of them were not even sure what a loader was) to
complain. Eventually, the whole party was broken up when someone had
the nerve to call in an outside expert to do a small systems job for him.
The loader never worked anyway, but a change in the system gave the
team the excuse they needed; they saved face by claiming that their
loader could not work under the new system.

There is no remedy for such drifting away from group goals unless
there is competence in the installation to evaluate whether or not the
group is working according to their mandate. Perhaps even more dif-
ficult situations arise when a group has reasonably clear goals, but
has more than one at a time. In addition to the previously mentioned
potential conflict between production and education as goals, other con-
flicts arise, for example, when a team has two distinct programs 1o
produce. Somehow, the relative importance of the two projects must be
made clear initially and must be reclarified regularly, lest the quite nat-
ural drift in tavor of one or the other should occur.

78 Programming as a Social Activity

Of course, it is best if each team can have a single clearly defined
goal, but the world is seldom so simple. Even if the goal is a single
program or subroutine, there is the possibility of conflict between empha-
sis on speed, space, or schedule. When a team is not fully apprised of
the emphasis to be placed on each factor, the members of that team
may very well be working at cross purposes. One team member may be
spending most of his effort trying to save time, only to discover that this
time has been squandered by another team member who was trying to
compress the program into the smallest possible space. When such
conflicts come out in the open—especially after the involved parties have
a considerable investment in one approach or the other—serious con-
flicts are sure to result.

The resolution of conflicting ideas on team goals is, surprisingly, often
most critical when the differing views are almost indistinguishable. Gul-
liver's attempts to settle the wars over which end of the egg to break
are as nothing compared with the energies too often spent arguing over
whether tc use one subroutine with two entries or a single entry and an
extra parameter. The persistence of this kind of argument among team
members can reliably be taken as a sign of some deeper conflict—

perhaps for “leadership™ of the team—and should not be ignored simply
on account of its triviality.

TEAM LEADERSHIP AND
TEAM LEADERS

The word “leader,”” to many people, conjures up an image of Adolph
Hitler sending millions of goose-stepping soldiers to their death with a
tweak of his tiny moustache. And, indeed, Hitler was the “Fuhrer,” or
Leader, to millions of his people. But understanding such a phenomenon
as Hitler would be easier under the title of “followership” than “leader-
ship,” for there is a certain type of leading which is only a crystallization
of deep-seated desires shared by many onto the personality of one.

In programming, this is scarcely the type of leadership which is needed
—or which would usually be tolerated. Try to imagine the reaction of a
typical programming team to a supervisor standing over them with a
whip or issuing commands like a lieutenant leading his squad in a charge
on the enemy machine-gun emplacement. The reaction to even milder
forms of authoritarian “leadership” need not be imagined, for we have
numerous examples of unenlightened executives trying this approach on
programmers. One typical reaction is "working to rule.” One instance of
working to rule occurred in a project that had a change in manager
halfway through its life. The new manager was appalled at seeing some

The Programming Team 79

of the programmers come in to work at ten-thirty—so appalled that he
didn’t bother to find out that they had been working on the machine
urtdil two the previous night.

A directive was issued stating that working hours must be strictly
observed, and that time-clock punching was to be enforced according
to the official rules of the company. The programmers simply responded
by working exaclly the normal working hours—emptying the office pre-
cisely at five-fifteen every evening, and queueing up at the time-clock to
do it. Since the project had been operating essentially on a staggered
shift basis as an adaptation to limited machine time, productivity im-
mediately fell by half. Programmers were idle during the day waiting for
machine runs, and the machine closed down promptly after one shift
each day.

A similar case occurred when a manager discovered that the con-
sumption of supplies was running over budget. He immediately ordered
a lock put on the supply room, with only the supply clerk having a key.
The programmers responded by coming one at a time to the supply
clerk all through the day, so that he had no time to perform his other
duties. Finally, the manager issued a directive that supplies could only
be obtained between ten and ten-thirty or three and three-thirty. This
continued until he came upon one programmer staring at the wall and
asked what he was doing.

“My pen ran cul,” was the reply, “so | have to wait until tomorrow at
ten betore | can write any more code.”

The manager reddened noticeably. “Why don't you use a pencil?” he
demanded.

“Because | always use a pen. The keypunch operators won’t accept
work written with a pencil. It smudges.”

“then why don’t you borrow a pen?”

“But then we wouldn’t be keeping accurate track of supplies usage,
would we?”

Needl|ess to say, this was not a very preductive shop until the manager
was promoted on to some more elevated position in the hierarchy. Of
course, he might have fired the programmer for tnsubordination or some
other such militaristic charge, but he knew very well that bad managers
are easier to find than good programmers. Indeed, the chronic shortage
of programmers has led to an interesting situation in the entire field
with respect to programming leadership.

In studying the factors which go into the satisfaction of working groups,
scocial scientists have isolated four major areas:

1. The material rewards and opportunities.
2. The challenge and the interest of the work itself.

B0 Programming as a Social Aclivity

3. The general conditions in the larger organization, such as employee
benefits, working conditions, and organization status among similar
orgarizations.

4. The competence of supervisors and leaders.

In programming as it is today, the first three of these wants are satisfied
with such regularity that they ordinarily do not play a major role in de-
termining programmer satisfaction. To be sure, there are instances of
underpayment in this generally high-salaried profession, there are dull
jobs, and there are bad companies. But these are exceptions, whereas
bad supervision and leadership is more common than we would like to
imagine. Thus, the attitude of a programmer toward his “superiors” is
more likely to be the cause of his dissatisfaction—with consequent loss
of productivity-—than perhaps all the other three put together.

Leadership, in the sense that social scientists use it, means the ability
to influence people. Programmers, being pecple who tend to value crea-
tive work and professional competence, tend to put their stock in people
whom they perceive to be good at the things they do. Thus, it is easier
to exert leadership over—to influence—programmers by being a soft-
spoken programming wizard than by being the world's fastest-talking
salesman. When nonprogramming leaders are brought in to be in charge
of programming teams, trouble usually brews unless the appointed
leader explicitly and implicitly recognizes his incapacity on technical
matters. The very worst he can do—and this goes also for a former
pregrammer who has lost touch with the field—is to try to match program-
ming wits with the other members of the team. Although a team might
come to respect a leader who openly admitted his programming in-
experience, they could only come to ridicule one whose pretense at
knowledge was revealed to be a sham.

In one case, Arnold C. was appointed to replace a promoted leader
of a team within a larger project. Arnold's qualifications were mainly in
the area of data-processing sales, but he affected an air of programming
expertise. He even went so far as to suggest an algerithm to solve a
crucial problem facing the project, although it was evident to his two
most experienced leam members that he didn't know what he was
talking about. Instead of showing him the flaw in his scheme when he
presented it to them in private, they encouraged Arnold’s wish to as-
semble key programmers on the project to hear him present his idea.
At the meeting, they gave him about five minutes to get himself solidly
enmeshed in his own snare. Then they began to tear his algorithm apart
—in detail as well as in grand plan. Arncld finally left the blackboard
amidst the combined laughter of the assembled group, and within two
months he received a requested transfer to another post.

The Programming Team 81

Such problems frequently arise because the leader who is designated
as such by an outside force is not capable of exerling the influence
required inside the team. This “formal” or “official” leader, because
he represents the goals of the outside world, is always in a precarious
position, especially if he sees his job as merely “selling” or otherwise
imposing the “management view" on the team. Inasmuch as this view
assumes that no compromise is possible with the management, the only
possible reseclution of a conflict between management and the team is
that the team should “give in.”"

Even assuming that the team could be made to give in, nobody who
has ever seen the performance of a programming group which has so
knuckled under would desire this result. But forced labor—to the small
extent that it does work—ecan only be made to work with relatively im-
mature programmers who are not aware of other possibilities, or with
relatively unskilled programmers who are quite aware that other possi-
bilittes are not open to them. The typical programmer, on the other
hand, is aware of other possibilities and aware of his chances of getting
them. Carried to an extreme, this awareness leads to the programming
type whose career is anh unending succession of job changes and very
little accomplishment. Normally, however, it leads to programming teams
which are run more democratically than typical work teams in many
other fields.

In a demecratic group, leadership—or influence—is not confined to a
single person, but moves around the team from member to member as the
needs become compatible with his abilities or ideas. People, however, are
not all created the same—even though they may all be created equal.
Thus, leadership in a democratic team is never spread uniformly, but
falls more on some members than others. The important factor in demo-
cratic group functioning is not that every member exerts equal leadership,
but that the determinants of leadership are based on the inner realities
of team life, not imposed from outside. Thus, when the team is in need of
learning something, that team member who knows most about the sub-
ject may rise to a position of leader in the form of teacher of the others.
Or, when the team’s work enters the debugging stage, one of the members
may emerge as a frequent leader because he has a peculiar talent for
debugging.

A truly demeocratic team is marvelously adaptable to changing circum-
stances, and thus tends to be a more reliable production unit in the face
of unanticipated difficulties. Managers, however, tend not to believe that
a democratic team is superior in a crisis. For evidence, they point to the
speed and determination which a centrally organized group can muster
when massed behind a single leader, and they are correct—if the |eader
happens to be the right one for the situation. It is true that Hitler's forces,

82 Programming as & Social Aclivity

for example, won great successes under this type of command—but
then it is also true that his opponents were organized under the same
type of system. Perhaps Hitler was the right man at the right time—until
he lost. In a democratically organized group—given, of course, sufficient
talent and intelligence to draw wpon—the right man can be chosen for
each time. The Swiss, for example, efect a general 1o head thetr armies
when war threatens. When there is no war threat, there is no general—
but there are other leaders chosen according to what needs there are
for leadership. The Swiss, unlike certain other countries, are not bur-
dened by generals trying to govern the country in peacetime,

Unfortunately, no programming team can ever be completely democratic
in the sense of always being able to choose the right man to lead them
at each instant. For one thing, the right man may not exist in the team.
For another, personality factors may intervene to preclude the selection of
the correct man for the moment. Finally, the intrusion into the group of
a designated leader from the outside always biases the group away from
democracy.

The designated leader is a carrier of information between the team
and outside forces which would like to influence the geals which the
team pursues. ldeally, he would be a perfectly neutral carrier, but this
never happens. His contact with the outside group gives him access to
special sources of information which the others do not share, and he
may use these sources as leverage to elevate himself o a stronger posi-
tion of leadership. If, for example, he has been told by management that
they wish a particular program to be completed in ten weeks, he might
tell the group that the management has asked for eight weeks. Then,
giving the appearance of winning a compromise in favor of the group’s
feeling that the work will take twelve weeks, he agrees to change the
time to ten. The cothers have no way of finding out that he has used his
special position to appear to be aiding the group, and his esteem as a
leader may grow, even though he has been “management’s boy” all
along.

Of course, should the team members ever discover that he has been
distorting the transmission of information from management in order to
win favor for himself, he is finrished as an effective leader of that team.
But the temptation to be dishorest or manipulative with the team members
IS very great, because of the asymmetry of the designated leader's posi-
tion. His work is primarily with the team, but his rewards and punishments
come from the higher management. Usually, by the time a programmer
consents to accept an appointment as team leader, he has acquired
aspirations for a career in management. Advancement in that career is no
longer dependent on his programming abilities—which have probably
carried him this far—but on his ability to please management.

The Programming Team B3

The shortsighted or insecure team leader may feel that the best way to
please management is to promise them whatever they ask. But, ultimately,
what the management wants is kept promises, and these can only be ob-
tained if the team leader can win team acceptance of the promises as
their goals. What the team leader must learn is that

1. Managers—no matter how hard they press for promises—really
want results.

2. Results will be far more eastly obtained if they are obtained in the
pursuit of goals set with full team participation.

Keeping these facts in mind, the designated team leader may be able to
overcome the handicap of having been designated and become a leader
in his own right. He may replace the “headship™ with “leadership.”

We would not be completely honest, however, if we failed to admit
that managers are not always aware that they want results. We frequently
See a team leader removed from his post for refusing to promise achieve-
ments which his team believes are impossible. The process of replace-
ment then goes on untit management comes up with a candidate with
more desire to advance himself than brains to assess the true chances of
success. Unfortunately, if the project is a long one, this candidate may be
promoted for his cooperativeness before the project has reached the point
where management can see that his promises wi! not be kept. What
ensues is a game of musical chairs, the cbject of which is not to be
left in a position of responsibility at the moment the outside world be-
comes aware that the project has failed. This game, played over and
over, has put more than one pregramming manager in the position he has
today.

The designhated team leader, however, can do no better than to resist
attempts to coerce him into accepting goals his team cannot meet. Of
course, he should remain receptive to new information which might
thange the situation—as when the management promises him additional
people or a better machine schedule. He must assess for himself the
chances of these promises being kept, however, for once he promises
his managers, they are likely to forget the conditions he extracted from
them. But when the management arguments turn to other factors besides
the resources or the work specification, he must never let his judgment
be swayed. The most typical case involves promises of special rewards
If he succeeds, but he must not permit himself to confuse the value of
the reward with the probability of achieving it.

When the discussions reach the stage of reward offering, there is really
no strategy left to the leader but to resist. He must be willing to stake
his position as designated leader on the strength of his professional
judgment. If he is a good programmer himself, he is doubly strengthened

B4l Programming as a Social Activity

in this struggle, for he has more confidence in his judgment and he knows
that he will not be on the breadline if he loses this leadership post. If
he doubts his own proficiency, however, he will fall easy prey to various
sorts of threats veiled in a mist of wispy promises.

As an illustration of the major points of this section, consider the case
of Harold M., an outstanding programmer who found himself in the
position of designated leader in the squeeze. He had accepied the job of
leading a team to produce a compiler by a certain date, but now man-
agement wanted to expand the specifications while retaining the same
schedule. Harold discussed the matter with his team and the conclusion
was reached that they could not do the work unless they got an extension
of three months. When Harold carried this information back to his man-
ager, he found that it was not accepted. When he insisted, his manager
arranged a meeting among Harold, himself, and his own manager.

Harold knew from the composition of this meeting that it would be an
attempt to put him in the “hot box.” With this arrangement—conveniently
private—Harold was supposed to get the feeling of importance in an
atmosphere where threats and promises could be made but never ac-
knowledged. But Harold had already experienced this situation often
enough to anticipate each new move, and he was armed with the con-
fidence in his own and his team’s judgment, The meeting went on for
some time and, with each parried thrust, the atmosphere grew hotter.
Finally, it reached the stage of the ultimate threat.

“Harold,”” his manager began, for the manager's job was to do the dirty
work and the manager's manager's job was to play the role of the benev-
olent father figure softening the manager's harsh threats with sweet
promises. “Harold,” he began again, because he had paused to pull his
chair forward a significant three inches, “you’re not cooperating with us.
To be a manager, you have to learn to cooperate, 1o compromise. Per-
haps you don't have what it takes to be a manager.”

Harold caught the implication, and instead of letting it pass, dragged
it fully into the open. "1 think you may be right. Why deon't you get
someone else to do this job—someone who knows how to cooperate.”

The manager's manager saw that Harold had been pushed over his
limit and tried to swing back onto the positive tack. *“But Harold,” he
flattered, “there isn’t anyone else. You're the only one who knows how
to do this job. We're depending on you.”

“Then," said Harold, with a note of mock triumph in his voice, “if I'm
the only one who can do the Job, why don't you believe me when | tell
you it can't be done in that much time?”

“Because you don't really understand the problem,” his manager shot
back, but Harold was already out of his seat and at the door.

“Look,” he said, just before leaving the deadlocked meeting. *‘Make

The Programming Team 85

up your minds. If I'm the only one who understands, then I'm the only
one who reaily understands and you’'ll have to do it my way. If not, then
you won’'t have any trouble replacing me. It's your problem, not mine,
s0 if you’'ll excuse me, I'll get back to work."

Did Harold lose his job? He didn’t, in this case; but that wasn't really
important, for he knew he could get another at least as good. If it had
been important, he wouldn't have been able to do what he did. One of
the paradoxes of leadership is simply this: only the leader who is ready to
step down has a real chance of success,

THE TEAM IN CRISIS

The life cycle of a team starts with recruitment, moves through goal
setting and organizing to doing the work, and finally may end with a disso-
lution of the team when the work is finished or with the acceptance of
new goals. this path, however, is so studded with crises of one sort or
another that the life story of a typical programming team would make
the subject of a fairly interesting—if slightly unbelieveable—novel. In-
deed, it is useful to consider the work of the team in two categories—
work directed at accomplishing the team goals and work directed at
maintaining the effective functioning of the team in the face of the crises
it meets. To social psychologists, these activities are designated as “task-
oriented’” and “maintenance-criented” and have been the subject of much
research.

In certain types of groups, and often in programming teams, the group
tends to choose two complementary leaders—a task-specialist who selts,
allocates, and coordinates the work; and a maintenance-specialist, who
irons out conflictls among group members or between individual goals
and group goals. The designated leader, because of his role in carrying
exiernal goals into the group, is most often in the task-specialist posi-
tion, although, as we know, he may be replaced by the group if he
does not display the necessary competence. The maintenance-specialist
—who will more often be the best-liked person in the group—can come
from anywhere. He may not be a panticularly good programmer in his own
right, though he may well be. Very often, he will be a she.

In one cross-cultural study of nuclear families—father, mother, and
their children—this same division into task and maintenance activities was
usually found at least in the cultural ideal. In most cultures, including
ours, but not in all, the ideal father was the task-specialist and the ideal
mother the maintenance-specialist. Perhaps this role for a female pro-
grammer is quite a natural one in our culture. In any case, it seems quite
frequent that when there is a woman on a programming team, she as-

86 Programming as a8 Social Aclivily

sumes the role of “team-mother,” although no studies have been made
to verify sex as a significant factor in choosing the maintenance-spe-
cialist. There have been at least several teams where one of the women
was openly referred to as the “team-mother” or “den-mother,” and there
is the persistent joke in computing circles which defines “software” as
‘“a girl programmer.” Softness is one of the terms which has been used
to characterize the maintenance task, whereas hardness seems to char-
acterize the one who must direct the work.

Whether or not this male-female division of leadership is ultimately
shown to have social-psychological validity, there is sufficient anecdotal
evidence to make it a worthwhile experimenta) practice to place at least
one woman programmer on each team, though probably not in the role
of designated leader. Of course, there is no reason why a woman, as in
many families, cannot take the task-specialist role; but managers should
be wary of promoting a woman to be designated leader simply because
she seems to be second-in-command in a team. In fact, there is no need
o limit this caveat to women: if it is possible to identify the maintenance-
specialist in a team, one should consider carefully before making a pro-
motion which by its official nature may prejudice the leadership per-
formance in that role.

the replacement of a leader—or any team member—is probably the
most frequent and typical crisis in the life of a team. The effect of adding
or removing a8 member depends quite sensitively on the group structure,
and many a manager has been unpleasantly surprised at the change in
performance resulting from the removal or addition of an “insignificant”
group member. Of course, when higher management reaches into a team
to remove a member, it is often by reason of that member’s demonstrated
competence, so it should not be surprising if his loss affects team per-
formance. But not all lost performance can be attributed to the loss of
individual talent—just as all team performance cannot be attributed to
a simple sum of the team members' work.

The “democratically” organized team tends to be better able to with-
stand the shock of loss of a group member—whether by promotion,
resignation, illness, death, pregnancy, or a call to the cloth. Since the
work is shared among the members and since there is much communi-
cation among them, the hole left by the parting may hardly be noticed
as team members step in as needed and apply the knowledge they had
gained in working with the departed one. Conversely, it may prove more
difficult for the democratically organized team to accept a new member,
for there is no clearly delineated position in the structure for him to
occupy. Paradoxically as it may seem to some, the democratically or-
ganized team may present to outsiders a rather cold and unfriendly

The Programming Team 87

facade, whereas the members of an authoritarian team may be most warm
and friendly toward a newcomer.

In the authoritarian team, to the extent that all work is organized
through and guarded exclusively by the leader, holes are left when a
member leaves. Only the leader has the necessary information to make
the new division of labor among the remaining members. If the leader is
busy or away, the loss of a member can be a disaster.

Gaining a member, on the other hand, can be relatively simple, for the
new member merely has to go to the leader to be assigned to do “this and
this and that"—each of which tasks is presumably taken from some other
member. Replacement of a member is probably also easier, if the new
member's abilities closely match those of the old, for all that is required
Is a reassignment of specific tasks from one to the other. Nevertheless,
we seldom find such neat one-for-one replacements, if only because the
departing member knows a great deal about the project from his work on
it. In the typical mismatch, the democratic team will probably be better
equipped to reorganize the work to fit the realities of the situation.

Another sort of crisis appears when the team members begin to be
aware that one of their number is not able to carry his share of the load.
In the democratic team, the most probable outcome is a gradual shifting
of the work off of this member and onto the others. If the team is more
centrally organized with a strong single leader, removal of the member
Is more likely. This is not the whole picture, however, for by the time
the trouble is recognized, removal may not solve anything, since there
is not sufficient time to secure and train a replacement. In the democratic
group, however, incompetence is not likely to go long unnoticed, because
each member has many opportunities to review the work of each other
member. Thus, only if the incompetence is really glaring is the authori-
tarian approach likely to prove more effective. Even then, blunt removal
of an incompetent member is not likely to have the most warming effect
on the team morale, for even the most incompetent member may be well
liked by the others.

A member who is competent but who does not get along with the
others can be an even more serious problem for the democratic group
than an out-and-out incompetent. In an authoritarian group, such a mem-
ber would not have much contact with others on a working basis anyway,
so as |long as he gets along adequately with the leader, he presents no
particular problem. Indeed, some programmers prefer to work under a
strong, centralized leader in order that they do not have to socialize
with their fellow workers. But in a democratic team, an antisocial member
cuts lines of communications and is a constant impediment to consensus
in team meetings.

88 Programming as a Social Aclivily

There are many means by which a team can “socialize” one of its
members, just as there are many possible reasons for antisocial behavior.
One potential source of such behavior is a team member who is indeed
much more talented than the others, for he may be unable to surpress
his impatience. They, on the other hand, may be unable to appreciate or
implement the types of suggestions he makes. It is possible to be too
smart for pregramming—if the person is not smart enough to use his
intelligence to modify his social behavior and methods of communication.

George G. was a trainee who was brought into a diaghostic program-
ming group with all signs pointing to an outstanding programming career.
He had just reserved a Master's degree in Mathematics with honors, and
only two of the other seven team members had even gone tc a university.
The team was working on real-time diagnostics for a military computer,
and George was assigned to write the diagnostics for a high-speed drum,
which was a critical part of the system. Although this was his first real
program, he developed an ingenious scheme in which the program wrote
all ones on the drum and then, by analyzing the patterns of zeros read
back, could indicate the exact circuit that was failing.

George received high praise for this work, praise that he didn't need
because he was fully aware of how superior it was to the unimaginative
work of his fellows. Indeed, George lost no opportunity of telling them
about their shortcomings, as reflected in the clumsiness of their program
when compared with the grace of his. In a very short time, a serious
crisis was brewing in the team, and several members began to look
for a way to push George out—while several others, of a different bent,
began to seek new positions for themselves. Then fate intervened in the
form of a visit from some military brass tc inspect the new hardware.

Great preparatiocns were made for the inspection, but when the brass
arrived, the computer could not be made to function. The diagnostics had
all been run successfully, but the other software would not work at all.
The diagnostics were rerun, but again they worked and the regular pro-
grams did not. At this point, the military was getting rather petulant, and
management was growing furious. Then, somebody chanced to walk
behind the main frame and noticed a cable lying loose. When he casually
inquired what it was, the problem was sclved. The drum had not been
connected to the system!

The drum was hooked on, and the military was soothed with a fine
demonstration and a lunch well oiled with martinis. Long after they were
gone, however, the programmers on the team were still getting theirs
back at George. He had failed to take intc account the behavicr of the
drum interface when the drum was not on-line. The system was designed
to give an interrupt if an unattached device was selected, but George

The Programming Team a9

had masked that off. If the interrupt was masked, a write was simply ig-
nored and a read produced a string of all ones. Thus, George’s marvelous
program had simply indicated that all was well with the drum, even
though it was not even attached.

It was a blunder that any programmer could make, and it was easily
patched up. Not so George's ego, for the other programmers took every
possible opportunity to rib him. Perhaps if he hadn’t claimed such in-
fallibility, his fall from the heights might not have hurt so much; but as
it was, George couldn’t take it. After two weeks, he simply failed to
show up one Monday morning, and that was the last that anyone ever
heard of George G. It was harsh, but it was effective; and the group
soon returned to its former happy state—producing unimaginative, but
sound, diagnostics.

Crises in a team’s life need not be associated with any particular
persen, but may emerge at any stage in the team life as more or less
normal “growth stages’ or in response to changed external conditions.
For example, we can expect that the formation of the team will be a
critical point in its life, for it passes from a stage of no organization to
some crganization. Ordinarily, the team structure develops down from
the top and up from the bottom, like ice cubes in a tray. This is an empiri-
cal observation, but we can guess what might be the cause, since the
extremes of ability in the team will be more easily recognized and sorted
out from the rest. Nevertheless, there are times when, for instance, there
are two potentially powerful leaders in the same team and the formation
from the top goes unresclved for a long time. Ordinarily this situation
will be counterproductive, but it should be easy to aveid by selecting
teams properly. It may be necessary, if there are many potentially strong
leaders in a project, tc make more divisions into teams than when there
are few—to avoid such formation conflicts.

Who is a potentially strong leader? That depends, as we have seen, on
the work demands placed on the team. Since these demands change
throughout the life of the team, leaders may rise and fall. If there are
personality difficulties in accepting such changes in team structure, inter-
personal conflict will develop whenever a new stage of work is reached.
Thus, the problems of setting the team structure are not solved once and
for all soon after the formation of the team. Since we cannot predict
exactly who will be the natural leader at which times, the ideal team
would be chosen as much for interpersonal skills as programming skills,
but this is rarely dene. Thus, we usually find conflict manifested in numer-
ous ways—but all leading to temporary decrease in productivity,

The change from phase to phase of work may be rather gradual and
thus mollify the conflict arising from changing structure, especially if

a0 Programming as a Sacial Aclivity

there is rich interaction among team members giving many small oppor-
tunities for conflict resolution. Sometimes, however, changes come more
quickly—perhaps instigated by some outside agency or event. Typical
crisis-provoking events in the life of a programming team are machine
malperformance, machine overload, unyielding bugs in critical sections,
difficulties in system testing of two unittested programs, schedule
changes, arrival of new equipment, changes in higher-level management,
and changes in specifications. No wonder it seems that crisis is the
normal situation in the life of a programming team.

Two general social-psychological observations about group behavior
are especially relevant to the crisis-ridden programming team. First of all,
it has been observed that in a crisis, members of a group more readily
accept relatively strong leadership attempts. At the same time, however,
the group becomes less patient with would-be leaders if their direction
dees not produce effective solutions to group problems rather quickly.
Thus, in a programming team—which is possibly in a continual crisis—
leadership patterns may be in constant flux. Because of this reshuffling,
the more difficult the task is, the more the team comes to follow those
leaders who can actually steer the team most effectively.

We can see, then, why the democratic—or perhaps we should say
“technogratic’—organization is such a natural one for a programming
team. When selecting programmers for teams, we should try to cheoose
people who will fit well within such a self-shifting structure—neither tco
dominant nor too passive. In training our programmers, we should try to
teach them how to follow able leaders and how to grasp leadership
opportunities when they themselves are the most qualified in the group.
And during the life of a team, we should try—if we are on the cutside—
net to interfere in those democratic processes which, though seemingly
traumatic for the team and its members, will in the long run lead to most
effective team functioning.

Indeed, once the team is selected and operating, the wise manager
placed above it will adopt a "hands-off” policy with regard to its internal
structure and structure change. When, as so often happens, team mem-
bers come to him to lend an authoritative opinion on their side of some
argument, he would de well to follow the pattern of the old rabbi who was
sitting in his study one day when an obvicusly agitated man came to
see him. The man told him a long story about an argument just concluded
with his wife. When he finished his story, he insisted that the rabbi tell
him whether he or his wife had been right.

“You're right,” said the rabbi, and the man left the house beaming.
Soon, however, the man's wife appeared—even more distraught than the
man had been.

“What do you mean,” she insisted, “saying that my husband was right?

The Programming Team)1

You haven't heard my side of the story.” And she proceeded to relate her
side, finishing with a demand for a new judgment.

“¥You're right," said the rabbi, and the wife left satisfied. The rabbi’s
own wife, however, was noi satisfied, for she had overheard both stories
and both answers.

“How can you do that?” she demanded. “You told the husband that
he was right and the wife that she was right. They can't both be right.”

“¥You're right,” said the rabbi.

SUMMARY

In many programming situations, the primary working unit is a team,
not an individual. Although a vast amount of experimental data about
“small group behavior’” has been inherited from the social psychologists,
we at present have no real studies of programming teams other than
highly suggestive anecdotal material. When linked with results from
social psychology, this anecdotal material can give us strong impressions
of the factors affecting the life and performance of a team, fagtors such
as:

1. Variation in individual strengths and weakness.

2. The way in which goals are set.

3. The siructure of the program being produced.

4. The leadership structure imposed from the ocutside.

5. The gender of certain members, and the attitudes of other members
about that gender.

6. The communication link between the team and the rest of its ep-
vironment.

7. The technical competence or incompetence of the team leader.

In viewing the anecdotal material in contrast to the experimental situa-
tions, we find there is cone difference which should put us in a state of
extreme cauticn. In the programming situations, the span of time and the
complexity of the task performed are each orders of magnitude different
from anything ever attempted in an experiment by social psychologists.
Tasks in social psychological experiments take an hour or a day or a
week. People may be able 1o suppress strong feelings if they know the
time period will be short; on the other hand, they may not think it impor-
tant to suppress what they feel, since they will never again see the
people tn their group. From comparisons between teams composed of
strangers and teams composed of co-workers, we do know that short-term
group behavior is influenced both by past experience with team members
and the expectation of having to work with them in the future. Thus,

92 Programming as a Social Aclivily

meaningful experimentation on programming teams is going to be a
difficult job, at best.

However, even the observations of ongoing teams in other areas will be
of questionable application to programming unless they, too, involve
ongoing intellectual work of great complexity, often under stress of time
and strange working conditions. Here we have the advantage of several
sources in which recent work has been done—such teams as are found
in hospitals and research laboratories. But even here there is something
that we have that they do not—that all-wise machine sitting there like a
god in judgment of our work. When a patient recovers, it is the work
of the doctor; when a patient dies, it is an act of God. But when a com-

puter program doesn’t work, everyone knows—and everyone knows who
is to blame.

QUESTIONS

For Managers

1. Are your hiring practices such that you get more uniformity on teams
than you would like? When making up teams, do you try to see that a
good “mix” of people is on each one, or do you strive in the opposite
direction?

2. What are your feelings and practices about putting women on teams?
About making women designated team leaders? Can you back up your
feelings and practices with any empirical evidence?

3. In your organization, how much decision making is left to the working
team members? How much “bit-picking” is there by managers? By
yourself?

4. Do you ever do things to try to inflate the appearance of your technical
competence in front of the people who work for you? Describe some of
these incidents, and also some incidents in which it was discovered
that your technical competence was in at least one respect inferior to
one of the people who work for you. What were the consequences of
that discovery, and do they justify attempting to cover up?

5. In setting your own working goals, what part is set by what is passed
down from above, and what part is set by what comes up from below?

Are you satisfied with this arrangement, or would you like to alter it in
some ways?

6. Have you ever promoted the “second-in-command” of a team to be a
team leader? If so, explain your reascning in doing so, and describe
any effects you noticed afterward?

7. Have you ever been asked to serve as judge in internal team disputes?
If so, describe the incident—what you did and what happened.

The Programming Team a3

For Programmers

1. What part of programming work do vou do best? Are you permitted
to contribute that best part of your work to your team, and is it gener-
ally recognized that it is the best part of your work?

2. What part do you play in setting the goals of your team? What part
would you like to play? What part would you like others to play?

3. Has your manager ever done anything to make you doubt his honesty?
If so, describe the incident, what ultimately happened to your doubt,
and how your work was affected.

4. Does your team have a task speciglist and a maintenance specialist
that you can identify? Does your team have a “team-mother?” If you
are the “team-mother,” describe your experiences in that role.

5. Draw a diagram or diagrams representing the structure of your team,
both formally and informally. Can you relate this diagram to the struc-

ture of the program you are working on? Can you relate it to other
factors?

6. Give an account of an incident in which:

a. A team leader was changed.

b. A member was added to your team.

c. A member left your team.

d. Some crisis began to affect your team socially.
Describe the reactions of the team members when the change or crisis
first became known and as it happened through time. Describe any per-
manent changes in team behavior—either for better or worse—that came
about as a result of the change or crisis,

BIBLIOGRAPHY

The reader interested in further exploration for insights from sccial psychology
could consult any of the following books with profit:

Allpott, F. H., Social Psychology, Boston, Houghton Mifflin, 1924,
Asch, 5. E., Secial Psychology, Englewood Cliffs, N.J)., Prentice-Hall, 1952,

Lindzey, G., ed., Handbook of Saciai Psychology, Reading, Mass., Addison-Wesley,
1954,

Krech, B., R. S. Crutchfield, and E. L. Ballachey, Individual in Society, New York,
McGraw-Hill, 1962.

Jones, E. E, and H. B. Gerard, Foundations of Sacial Psychclogy, New York, Wiley,
1967,

Parkinson, C. Northcote, Parkinson's Law, Boston, Houghton Mifflin, 1957.
Parkinscon is often cited by those who fear that making a longer schedule will
simply lengthen the time it takes to do a project. Those who claim him for the

e} Programming as a Social Activity

benefit of their pet idea should take the time to read the enire book and see
what slse there is to leam from it.

Kohn, Hans, Natlonallsm and Liberly: The Swiss Example, London, George Allen
and Unwin Lid., 1956.

A litthe introduction for those who have become disillusioned with the possibilities

of demccracy, those who have forgotten them, or those who never knew them in

the first place. After reading the book, another step In re-aducation is te go there.

Mills, H. D., Chief Pragrammer Teams: Techniques and Procedures, IBM Internal
Report, January 1970.
Hopefully, Mills will publish his ideas on Chief Programmer Teams in the qgeneral
literature, sc they can be compared, say, with the concept of egoless program-
ming and also subject to experimental and cbservational tests. Briefly, the Chief
Programmer Team is patterned after a “‘surgical team,” with the master programmer
replacing the master surgeon and surrounded and supported by a Backup Pro-
grammer, a Pregramming Librarian, and possibly additional programmers, analysts,
technical writers, technicians, or other specialists. Mills claims that such an organi-
zation “permits the application of new management standards and new technical
standards to pragramming projects,” but cne wonders at the validity of the analcgy
to surgery, which {s acknowledged tc he one of the most backward specialties In
a backward (technclogically) field. Alsc, anyone who has known g few surgeons
personally may wonder about how great a social contribution such an organization

would be—it may be fine for those who fancy themselves Chlef Programmers, but
what about the rest of the workers?

Mendelsschn, Kurt, A Scientist Locks at the Pyramids, American Scientist, V. 59,
Ne. 2 (March-April 1971).

Social structure has evidentally always been influenced by project structure, and

vice versa. In this Intriguing article, Mendelssohn explores how 5000 yvears ago the

building of the pyramids led to the inventicn of the state as a social structure, and

how the invention cf the state led to building pyramids. All project managers
should take note of this message.

THE
PROGRAMMING
PROJECT

hen lwo teams must work together to accomplish some pro-
gramming end, a coordination function emerges just as it
did when two programmers had to work together. New types
of social relations emerge, just as they did when teams were
formed from individuals. For example, two programmers now interact
both as individuals and as members of different teams—so that now
their team goals may differ, even if their individual goals are very
similar. The success of a team member is not only measured relative to
other members of his team, but also as part of his team which is measured
relative to other teams. Coordination among teams now reguires a second
fevel—or higher—of leadership, and so emerges the phenomenon of
leaders whose followers are not engaged in the basic work of the project,
but are leaders themselves.

Many aspects of project management from a management peint of view

95

o6 Programming as a Social Activity

have been discussed in published books and articles, and we shall not
attempt to survey the entire field. What we shall discuss in the next few
seclions are a few selected aspects—aspects selected for their amenity
to psychological treatment and perhaps somewhat as a corrective to cer-
tain schools of programming project management thought.

STABILITY THROUGH CHANGE

One of the most intriguing characteristics of large organizations is their
ability to survive over periods of time which are longer than the time that
any one member remains. This characteristic is obvious in such organiza-
tions as the United States of America, for no rerscn is known to have
lived for 200 years. Thus, the United States of America cannot take its
continuing identity from some person, no matter how great. Neither
Washington, nor Lincoln, nor Jefferson, nor even Joe McCarthy make up
the entire story of the United States of America; yet, as obvious as this
Seems, many managers are unable to apply the same reasoning to their
proegramming project,

Even in a programming team, we sometimes see the survival of the
team when not a single original member remains. Indeed, the ability to
survive its members can be one of the strong points of a team organiza-
tion, for the work to be done is not set aside if one person happens to be
removed from the scene. This ability comes, of course, from the inter-
action among team members, because this interaction permits the goals
and accomplishments of the team to be transmitted to new members and
so remain when old members depart. In a sense, a programming project
or team is like a river which remains the same river even though its water
is undergoing constant change.

Many project managers are unable to grasp this view of a project. Their
view of the project's structure is, instead, much like that of a house—a
structure that might collapse should one of the beams be removed. Their
actions with respect lo the people in the project—especially so-called
“key" people—reflect this static view, often with disastrous consequences.

Two cases should illustrate some of the consequences of this view. In
one instance, Mark $. had designed the control program for an on-line
system to control an industrial process. He had then been asked to stay
on to implement the control program, inasmuch as he was the only person
who understood the way the system was to work. Mark was not terribly
happy about this assignment, for to him the design was tantamount to the
implementation. He had already implemented two systems like this and
did not see much challenge in implementing a third. There were sufficient
differences to keep him moderately interested for a while, but this small

The Programming Project 97

interest was further eroded by the necessity to work in a rather remote
spot—at the plant.

Mark was a city boy, yet the type of process control system he was
developing had twice before required him to work in a remote location for
long periods. He was, quite simply, bored. The symptoms of his boredom
became manifest when he began requesting that Bob A., a programmer
of rather extensive experience, be transferred from another section of
the project—where he was writing certain analytical routines—to his
team, which then consisted of only himself and two trainees. Bob had
expressed an interest in the control program, and this had given Mark
the idea to train Bob to take over his functions so that he might move
back to the city.

The project manager, however, had a different view of things. He was
having difficulty getting experienced people to come cut in the wilds and
work on the project, so he was not about to sacrifice one of his more
experienced programmers to satisfy Mark’s evident desire for company.
Insead of adding Bob A. to the control program team, he gave Mark
another trainee.

The trainee was probably the last thing Mark wanted, for he was
already doing most of the work himsed and carrying the other two
trainees as so much excess baggage. He wanted to get done in a hurry
or get replaced, and the new man seemed only to slow him down. He
renewed his request for Bob A., who was also unhappy about not getting
the chance he desired: but the manager was not going to give in. He
recognized that Mark was a "“key” man in his project and that he was un-
happy, but he didn't want to go tc the trouble of finding someone to
replace Bob A. In order to keep Mark happy, he called him in one day
and gave him a substantial raise. But before Mark had a chance to draw
a single week's pay at the new rate, he had quit and gone back to the
city.

Managers are quite frequently surprised to find that a programmer
quits a project very soon—sometimes immediately—after getting a solid
raise. It is surprising that they should be so surprised, for there are at
least two good psychological reasons for this behavior. Sometimes, the
programmer interprets the raise as putting extra responsibility on him,
and not everyone wants extra responsibility. The programmer reasons
that if he is getting more money, more work is going to be expected of
him. He is already pushing himself harder than he wants to, and the raise
symbolizes the straw that would break his back.

More frequently, however, the raise is interpreted as an attempt to
substitute money for something the programmer really wants. Perhaps
the programmer was expecting to be named team teader, but the raise
indicates to him that a money reward is being given in anticipation of the

98 Programming as a Social Activity

team leader spot being given to somecne else. In the case of Mark S.,
there was a correct interpretation that the raise was an attempt to avoid
giving him the qualified assistant he wanted, an attempt to bind him
more closely to the project. He already felt he was staying on as a favor
to the manager, and since the manager had once more refused his quite
reasonable request—not for immediate removal, but merely for the chance
to train a replacement—he gave up.

Notice how the manager in this case, by frying to bind Mark to the
project, only succeeded in pushing him out more quickly, and more
expensively, than would have been necessary. After Mark left, Bob A.
was in fact chosen to replace him; but as he had no training for the job,
and nobody with experience to teach him, the project foundered. Finally,
more than a year after the scheduled completion date, a patchwork sys-
tem was put into operation, but it proved too slow to control all the
vatiables which had been foreseen, due to inefficiencies in the control
program. As & result, the anticipated savings from the system were not
realized, and after about six months of operation, the entire system was
discontinued.

A similar case with a different outcome should be instructive as an
Hlustration of the concept of stability through constant change. Henry F.
played a similar role to Mark S. in a project connected with the space
efforl. He had designed the control program and had been made team
leader of a somewhat larger and better qualified team. As he began to
tire of the implementation work, he filled his time by training his two best
qualified team members, Mary M. and Sig B., so that they would know as
much about the system as he did. The training was made simpler by the
democratic organization of the team and their practice of egoless pro-
gramming, but it was not encouraged by higher management.

One of the duties that Henry had often to perform was making presenta-
tions to visiting dignitaries, for this was a highly visible, high-prestige
project. Henry's presentations were always well received, and the man-
agement had iwice refused him to allow Mary M. to take his place on
the rostrum. Finally, he told Mary to prepare a talk and then arranged
1o be “sick™ on the day of the visit. Management was in a panic, but they
had no chcice but to try Mary, and she made a superb performance.

Now the managers were willing to accept Mary as a substitute leader—
in fact, they began to request her services for making presentations—and
Henry decided it was time to ask for a transfer to other duties. In spite
of Mary's evident competence, however, Henry’s manager viewed the
prospect of his leaving with horror. She was good—he acknowledged
that—but Henry had been the original creator of the control program
concept. Besides, Mary was a woman, and though the manager had seen

The Programming Project 99

her make outstanding presentations, he could not believe that a woman
was capable of leading the group.

Henry had been more or less prepared for this reaction, so he now
brought up the name of Sid B. Unhappily, the very success of Mary M.
had made it hard for the manager to believe that Sid was also competent
to lead the group. Henry proposed that Sid be given a chance to make a
presentation, but now the manager insisted that nobody but Mary would
do. S50, Henry arranged for Mary to be “sick,” with the result that
management finally saw the light. Henry was ready to go, and both Mary
and Sid were ready—and willing—to step into his shoes. A final offer
was made to give Henry a higher management position within the
project, but he had his eye on something else, something which chal-
lenged his programming imagination, so he left. But, in spite of the
residual fears of the management, the project went on, and to a success-
ful conclusion.

The differences between these itwo cases are instructive. No single
factor can account for the success of the second as against the failure
of the first. Henry was more experienced in dealing with people than
Mark; he was fortunate in having a team consisting of other than
trainees so that a natural succession was possible without management
intervention; the managers in Henry's project were more enlightened,
less rigid, and perhaps under less pressure for success; and, finally,
Henry was more patient and understanding of the problem as it would
be seen by the management. For Mark's manager to have been successful,
he would not only have had to give Mark the assistant he wanted; but
he would have had to help Mark in giving that assistant the training he
needed—for Mark rather enjoyed the role of indispensable man.

The lessons to be drawn from these two cases and hundreds of others
like them are clear. As a project moves forward, people learn things
that make them less content with limited responsibilities or—let us call
& spade a spade—are simply bored with duties which they feel are
beneath their capabilities. Not every programmer wanis to advance to
more challenging work—some will leave if pushed too fast—but for the
most part, as programmers learn they become discontented unless they
can apply their knowledge. Thus, to achieve a stable project over a long
period of time, a manager must encourage the project to function as g
sort of programmer processing plant—with a fresh supply of trainees
coming in one end and a stream of experienced leaders coming out the
other, with people in the middle being bumped up one position at a time
by the flow.

One other lesson needs to be drawn explicitly. A project is not a house
of cards which collapses when a single “"key’' person is removed. At

100 Programming as a Social Activity

least, it should not be; but often, when management thinks it is, the
prophecy becomes self-fulfilling. That was one of the lessons in Mark's
case, for if a little less reliance had been placed upon Mark, his
manager might have populated his team with other than trainees. After
all, even if the “key” man is as contented as a cow with his work, people
are sometimes inconsiderate enough of their managers to get sick, to
get drafted, or to die. No, if a manager wants to run a stable project,
he would do well to follow this simple maxim:

if a programmer is indispensable, get rid of him as quickly as possible.

MEASURING PERFORMANCE

Qne consequence of the size of a large project is that performance
becomes more difficult to measure. Part of this difficulty stems from the
scale of things, which makes it impossible for a single mind to be
making the judgment of all the parts. Since progress on & program is
such a subjective matter, opinions would differ about the amount of
progress a particular program had made, even if it were not for other
effects. But we never get the opportunity to study the different views
on one program. Instead, we compare and combine different people's
views of different programs into some sort of picture of project progress.
In making this combination, there are numerous possibilities for psycho-
logical mischief.

The numerous stages can produce interesting effects, as a result of
filtering practices in a large project. An extreme example was found in
a military project that involved not only programming but creation of a
worldwide communication network. The programming project itself con-
sisted of about 75 first-level people organized into twelve teams, with
the twelve team leaders organized into three groups and the three group
leaders reporting to cne programming project manager. Within the com-
pany doing the programming, there were also projects to design and
build the central computers and special hardware, so these three project
Mmanagers were organized into a team under a single company project
manager. The company project manager participated in a management
team consisting of the project managers from the other compantes and
headed by an overall project manager.

Each month, by the requirements of the contract, a progress report
had to be submitted to the government. Naturally, since this was an
expensive project, the report had to be printed in an impressive full-
color format. This meant that the final copy for the report had to be in
the hands of the printer twelve days before the report deadline—the
tenth of the month following the month of the report. Thus, for example,

The Programming Project 101

the September report had to be in the hands of the printer by September
2Bth—and possibly earlier if this fell on a week-end.

In order for the overall project manager to have time to review and
amend the report, he had to have each company report five working days
before the printer's deadline. Allowing for mailing, this meant that the
September company report would have to be finished by, say, the 20th.
In this particular company, the company manager needed four working
days for review of his three project managers’ reports. Thus, the report
of the programming project had to be in by about the 15th.

Working backwards like this, we eventually reach the individual pro-
gramming team, whose report had to be made about four days before the
end of the month preceding the month of the report. Therefore, what the
individual team was reporting was not progress for the month, but a
prediction for the coming month. What came out the other end, however,
was labeled as progress reporting, and nobody seemed to worry about
the difference.

S0 far, none of this is particularly psychological, except for two minor
factors—the willingness of people to believe something that cannot
possibly be what it pretends to be and the interesting relationship
between the amount of time needed for reviewing reports, the level of
the reviewer, and the amount of work actually contributed. The “higher”
the reviewer, the longer he insisted he must have the reports and the
less he actually did with them. Not that nothing was done—dquite the
contrary. At each stage of the consolidation, a certain smoothing-out
was made, regardiess of the content of the report.

The reasoning at each stage went something like this. If a subgroup
reported an abnormally high amount of progress, the reviewer would
shave the amount a ftrifle under the assumption that it wouldn't hurt
to hold a little in reserve in case their luck changed next month. If,
on the other hand, little progress was reported, the reviewer would step
it up by a point or two—not wanting to call attention to any weakness
and resolving to look into the trouble if things persisted. Similarly, if the
list of specific problems was too long, he shortened it a bit, leaving out
the least important. If it was too short, he amplified some problem or other
into two separate problems.

The net result of six or seven stages of such filtering was a report
that monthly presented a consistent forward progress, a few areas
slightly behind or slightly ahead, & few problems solved from last month,
a few new problems, and a few problems still open. There was, in short,
no measurable relationship between what had been reported at the
bottom and what came out the top.

Of course, what went in the bottom was only a prediction of progress
anyway, so perhaps it didn't matter what was done to it on the way up.

102 Programming as a Social Activity

In fact, when one of the team leaders in the programming project hap-
pened io get hold of g final report, he saw what had happened to his
information and decided not to waste his time trying to be accurate.
From that point on, instead of bothering his programmers with requests
for progress predictions, he just made up a set of nice looking figures in
five minutes and passed it on up the line. Within a few months, the same
practice had spread to the other programming teams. And so, progress
reporting went on with a minimum disturbance, or relation, to actual
progress.

Where did this project go wrong in its progress reporting? We can
identify a number of areas. First, there is the emphasis on reporting,
rather than on measuring. Even if the entire movement up the hierarchy
had been speeded to five days, there still would have been no check
cn the meaningfulness of the initial information. And regardiess of what
some “management information systems™ promise, garbage in always
yields garbage out—though the converse is not necessarily true. Further-
more, the people who were supplying the intial information—the team
leaders—could see that there was no check on the meaning of the
information they gave. Indeed, the only time anyone ever was called to
question on his predictions was when he chose some very large or small
flgure. In order to minimize the number of such sessions, the leaders
learned to adjust their own figures to eliminate extremes.

It is a well-known psychological principle that in order to maximize
the rate of learning, the subject must be fed back information on how
well or poorly he is doing. What is perhaps not so well known is that
people who feel that their performance is being judged but who have
no adequate information on how well they are doing will tesf the system
by trying certain variations. In a reporting system like this, if the people
at the boltom are not fed back information based on their input, they
will start to vary the put in arbitrary ways to see the effect—to get
some feedback, even at the risk of it being a poor evaluation.

In this case, the team leaders were already well on the way to learning
that the only important factor in their reports was that they contain noth-
ing striking. Then, one of them Chanced to see a final report, which only
completed the picture that the entire reporting scheme was an exercise
in futility. One additional piece of news only confirmed an already held
suspicion—and at least had the advaniage of saving everyone a lot of
time.,

From an information-theoretic point of view, this reporting system can
be seen as a series of filters—each with a certain delay and each with
a cerfain loss of information, Information, in this seénse, is carried by a
report o the extent that it carries surprising news. If we read in the
paper that the sun came up yesterday, that conveys little information:

The Programming Project 103

but H we read that the sun did not come up, a lot of information is trans-
mitted to us because of the unexpectedness of the event. Similarly, in a
progress report, the most information is carried in those items which
indicate very much or very litile progress. But what happens to those
items?

In psychological testing, when subjects are asked to make judgments
along some linear scale, very few subjects will ever choose the end
points of the scale. In fact, if a discrimination of, say, five levels is
desired, a seven or nine point scale will usually be used and the end
points—if they are chosen at all—are lumped in with extremes closer
to the center. This effect is probably related to what we see in the
filtering of the report at each stage, with each editor softening the harsh
extremes left over by the last.

The extremes in this case, however, are relatlive to what has been [eft
in by the previous editor, so the report moves more and more toward
the center in each of its figures. In doing so, however, it is filtering out
precisely the information it is supposedly designed to reveal. Is there
not some way this filtering can be defeated?

To answer that question, we must identify the psychological source of
the tendency to move the extremes toward the middle. One possibility is
cognitive dissonance. To the extent that a manager believes that good
management creates a smoothly running operation, he is likely to find
fluctuations in performance inconsistent with this managerial image.
From there it is a small step to believing that the fluctuations are simply
misjudgments on the part of the people who are “too close to the situa-
tion to get the big picture®.

Another possibility—not excluding the cognitive dissonance idea—is
implied or inferred pressure from higher up. Pressure from higher up
is classically recognized by management manuals as both the way 1o
get work done and the way to destroy a reporting system. What a
manager must learn to do is to motivate people to modify the way they
work or the rale at which they work, not motivate them to conceal what
they are doing. Therefore, he has to reward an accurate reporting of
good work. Since the person doing the reporting is usually the one
responsible for the work being reported, it is difficult, if not impossible,
to reward him for accurate reporting at the same time he is being rep-
rimanded for poor performance. Inasmuch as the hierarchical system of
organization requires this confusion of goals for its managers, we
generally see that reporting systems in this type of organization move
further and turther away from meaningfulness as time goes on.

Even where the project is not organized hierarchically, pressure to
modily judgments of progress can come from other sources, particularly
from colleagues. In a classical series of experiments, Asch demon-

104 Progranming as a Social Activity

strated how people could be made to modify their judgment of the
relative lengths of two lines simply by the pressure of knowing the
opinions of others. In a typical experiment, six “subjecis” sit behind a
table and are asked to state which of two straight lines on a card is
the longer. The only true subject is seated perhaps in the second-to-last
position, and the others are told secretly what answers to give. After a
few rounds of correct answers, all the “subjects” preceding the true
subject say that the shorter line is the longer. This creates a pressure
on the subject, who can see that they are wrong but would have to
contradict them all if he is to assert the facis of the matter.

Some people, it is found, never yield to these pressures, but most do.
As we might expect, more yield when the lines are close in length—but
some even yield when the longer is three times as long as the shorter.
Moreover, when interviewed, they befieve in the judgments they made,
as we might expect from dissonance theory.

There are many variants to these social pressure experiments, and it
would pay the programming manager to study them. For our present
purposes, however, it is sufficient to notice how opinions on concrete
matters can be easily influenced by the announced opinions of others,
and how the influence becomes more effective as the judgment becomes
more difficult. Under the circumstances, it is easy to see how such a
difficult and subjective judgment as the progress on a programming
project could come under the influence of one's peers—either in g
meeting or through reading their reports.

One other relevant result of these experiments is the effect on judgment
when the pressure for the wrong selection is not unanimous. If, for
example, the second “subject” is instructed to make the correct choice
when all the others choose the wrong one, almost all influence of the
wrong group on the true subject disappears. In other words, the presence
of even a single “ally” gives many a man the courage to see things as
they really are.

A striking example of this effect occurred in one project where the
system testing of six subsystems together was to begin the following
week on & machine that was located across the country—so that a crew
of eight people would have to be supported on expenses while the testing
was going on. At the final meeting of the six team leaders with their
manager before system testing, a review was made of progress. Every-
one agreed that al! was on schedule and that the system testing crew
could be sent out and set up in their hotel. After discussing various tech-
nicalities and logistic problems, the manager prepared to wind up the
meeting.

“Just one more check,” he said, “before we adjourn. Does anyone
see any delay in having his part done by next week?"

The Programming Profect 105

There was a silence, which the manager allowed to prolong itself
tor a full sixty seconds. Finally, one of the team leaders made a slight
movemen! of his hand, almost as if he didn’t wish it to be noticed. But
the manager picked it up. “George. Do you have a problem?”

George squirmed. “Just a little one.”

“How little?"

“A slight delay.”

“How long?"’

“Umm. Maybe six weeks."

The room exploded. “Six weeks?” they all shouted at once. “How
can you sit there through the whole meeting and not say anything when
we're gelting ready for system test and you're six weeks behind sched-
ule?”

The manager calmed down the other team leaders and congratulated
George on having the courage to admit his difficulties before they had
gone to the expense of setting up their system test crew in a hotel. After
some discussion, he persuaded George to try and get his part ready
in four weeks and set a new system test schedule. Then, the manager
was about to adjourn once more, but once more he asked for any
further problems.

“Well," one of the other leaders put in reluctantly. “If George gets
four extra weeks, | think my group should tco.”

“You mean,” asked the manager, ‘“that you're not ready either.”

“Not exactly.”

“How much not exactiy?"

“l guess about six weeks. But we’ll try to do it in four.”

Eventually, with the floodgates thus opened, it turned out that every
one of the six parts was behind schedule. And yet, # George hadn'i
taken the first step to admitting what they all knew, the meeting might
have closed without a single hint of the trouble, and a fruitiess system
testing effort would have begun at enormous expense,

Recognizing that even a single ally can provide a safety valve to re-
lease the social pressure to produce conforming cpinions, some pro-
gramming projects have established a “‘devil's advocate™ system for their
mahagement meetings. In a typical situation, a technical staff assistant
o the project manager assumes this role. In every meeting, it is his
duty to raise all possible negative points to opinions which all the
others seem o share. By thus expressing disagreement with the group, he
provides an anchor point for anyone whose lurking doubts were being
restrained by the difficulty of being one against many.

Because the role of devil's advocate is institutiohalized, the pressure
on him is less than it is on any other member of the group who is first
to express a dissenting opinion. Nevertheless, the official devil’s advocate

106 Programming as a Social Activily

may find himself under increasing social pressure as time goes on, for
the others will have difficulty in remembering that he is acting officially
and is not necessarily against the others all the time. If this happens,
his ability to play the role effectively may diminish just at the time when
it should be increasing. Some projects attempt to avoid this personalizing
of the devil's advocate role by rotating the position among the various
leaders from one meeting or one report to the next. In this way, they
each have the opportunity to learn that taking the negative point of view
is not necessarily a negative activity.

PROJECT STRUCTURE

If a programming project is going to overcome the psychological pit-
falls inherent in progress evaluation, some sort of separation between
doing the work and evaluating it is essential. Probably the most serious
weakness of the hierarchical organization lies in its inability to achieve
this separation, because the lines of control for doing the work are
simply the lines of progress reporting run in reverse. Such a system, as
we have seen, generally leads to a deterioration in the quality of in-
formation communicated through it. In order to combat this deterioration,
deviations from a simple hierarchic structure begin to emerge.

Many projects have a standards group whose principal duty is not
production, but evaluation of the production of other groups. When the
testing stage is reached, the standards group—or part of itt—may become
responsible for system testing, or a system testing group may have
existed from the beginning. Special groups also arise for functions other
than the evaluation of progress—a library group, a hardware group, a
group of documentation specialists, or a systems programming group
responsible for all the service programs used by the project. One type of
group, which is particularly useful in projects of a high degree of visibility,
Is the public relations group, whose activities shield the other groups
from daily interference from inquisitive outsiders. Finally, various groups
may be set up for special projects of limited duration.

For instance, if there is a bug in the system which ordinary methods
do not find, a special task force may be set up to root it cut. To be able
to establish such temporary groups, the project manager must preserve
& certain amount of “slack” in the project, so that people can be extracted
and used to plug the leak. No project, no matter how carefully planned,
can anticipate all contingencies and set up groups in advance to meet
them. Thus, the typical project may expect to experience several reorgan-
izations throughout its lifetime.

When a reorganization is made, it sometimes reveals more worms than

The Programming Project 107

lifting & large flat rock. People refuse to move from one group to ancther,
to work with a certain person or on a certain job. Others insist that they
must continue working with a certain person, or on a certain job, or that
they must go to a different group. Essentially, all these problems stem
from a division of loyalties, much like the problems arising from an in-
dividual going to work on a team.

Each person working on a team within a project has come to accept
certain of the team goals as his own. But when the team is specialized,
its goals do not necessarily coincide with the overall goals of the
project, or with the goals of another team. These conflicts are invariably
manifest in some sort of social relations. For example, certain group
tasks are considered less prestigious, more menial, than others. A
documentation group, for example, is often looked down upon by mem-
bers of working programming teams—with the result that the documenters
become defensive and clannish, avoiding contacts with other team
members as much as possible. But, unfortunately, avoidance of others
is precisely what we do not want in a documentation team.

Managers are not guiltless in encouraging this type of division in a
project. In the first place, they may simply have their own prejudices and
permit them to become reified in the project structure. In one large
project, the manager was telling some visitors about the training pro-
gram they had, in order o demonstrate that he understood the concept
of stability through change. He showed the visitors a list of the new
trainees arranged by their final evaluation scores, and called their atten-
tion to the fine scores they “all” had achieved.

“But,” asked one of the visitors, “what about these three at the
bottom? Their scores seem to be way below the others."

“Oh, that,’ shrugged the manager. “That's nothing. They're going into
the documentation group, so it's nothing to worry about.”

Can we be surprised if the other groups hold a low opinion of the
documenters and do not want to cooperate with them?

Any testing group is alse put into a difficult relationship with cther
groups, because it is their job to criticize. One of our students who was
working in a program testing group did a study of social interactions
between members of her group and of the group whose programs they
were testing. Although their offices were intermingled, there was almost no
social interaction between them. Members of each group did not lunch
or take coffee with members of the other, nor did they do even such
simple things as borrow pencils or paper clips from one another. In con-
versations among members of a group, members of the other group were
typically characterized as unintelligent, unfriendly, and unfair.

To seme extent, this attitude of mutual dislike was encouraged by the
management, for when this student tried to arrange a party for the two

108 Programming as a Social Activity

groups, she met with strong management resistance on the grounds that
it was not “healthy” for these two groups to become very close. When
she explained that she wanted the party just to test this assumption
for her class in the psychology of computer programming, she was
reluctantly given permission. The party was held under the pretext of a
celebration of the successtul completion of testing ot a major piece of
the project. In the week before the project, social contacls increased
between the groups, and the party itsef was a great success. Afterward,
according to her observations, the two groups seemed to be able to carry
cut their mutual work with more personal contact and less traffic in
recriminating memoranda,

we have no way of measuring whether or not this improved social
climate led to better or worse work between these two aroups. However,
we do know through our experiences with egoless programming that
there is no particular reason why your friend cannot also be your sternest
critic. We could certainly use controlled experiments on this question.
In the meantime, it probably is a good idea for a project manager not
to foster conflict between groups whose work brings them into some
sort of natural conflict.

Another natural conflict which arises in projects cuts horizontally in-
stead of vertically—tending to separate the management from the working
programmers. This conflict arises over the setting of goals, for project
goals are not simply the sum of individual team goals. Typically, goals
are set from the top down, with major decisions having been made before
most of the teams have even been put together. Such a structure does
not encourage democratic goal-setting within the teams, and it may there-
fore be difficult to get the programmers to have loyalty to the project
as well as to their own group.

Many of these problems can be overcome if the management of the
project can see the operation as a machine for getting the project done,
rather than as a pyramid to be climbed for the satistaction of their
personal ambitions. In an engine, for example, the valves are not the
“boss"” of the cylinders, nor is the crankshaft the “boss” of the valves.
The hierarchical organization, which so many of our projects seem to
emulate, comes to us not from the observation of successful machines
or natural systems, but from the nineteenth century successes of the
Austrian Army. Yet it would be difficult to imagine two groups which
difier more than a bunch of privates and a bunch of programmers.

In the army—old-fashioned style—every footscldier was considered
interchangeable with every other. The hierarchical organization, then,
was conceived as the structure that could give the tastest and most direct
coordination between these interchangeable parts. But a programming
project is not a battle, regardless of appearances. There is no need for

The Programming Project 109

quite the speed of communication which is necessary under field condi-
tions, nor are the things to be communicated so simple that they can be
barked over a two-way radio with shells bursting in the background.
What is needed in a programming project is slow, careful communication
among teams of people doing very different, highly specialized tasks.
Moreover, the programmer is net drafted into his jeb, and he is not
subject to courts-martial if his program does not meet specifications. And
finally, there is no danger to the officers of being hit by enemy fire or
being shot in the back by their own men, so there is really no excuse for
not getting down in the trenches once in a while with the troops.

COMMON SOCIAL PROBLEMS
OF LARGE PROJECTS

The remoteness of the project leadership from the workers is the
source of many social problems in large projects. There are, within a
programming team, only two roles to fill—ihe proegrammer and the leader
of programmers. Within the project, however, there emerges a third role,
the leader of leaders, or nth-level manager. The differences between first-
level and nth-level managers are significant, for the first-level manager
maintains at least some contact with the actual work being done, and
the nth-level manager only sees the work indirectly, through other
managers.

Even though the nth-level manager may have originally been a pro-
grammer, which is rare enough, he has almost certainly lost any program-
ming ability by the time he reaches these heights, Given the rapid change
of programming techniques and hardware, the higher-level manager be-
comes obsolete even if he retains the skills he originally had and keeps
them sharply honed, for those languages and those machines are no
longer in use. In a small survey of working programmers, only 15 percent
of the first-line managers were thought to be as skillful as the pro-
grammers themselves, and none of the higher-level managers. Some of
the programmers commented that a higher-leve! manager sometimes came
around and looked at what they were doing, but that his attempts to
look knowing were perfectly transparent fo the programmers. Nobody,
of course, was going to risk challenging his manager's manager, but
after he left, all would have a good chuckle at his expense.

Whenever a supervisor is responsible for work he does not understand,
he begins to reward workers not for work, but for the appearance of
work. Programmers who arrive early in the morning are thought to be
hetter programmers than ones who are seen to arrive after official start-
ing time. Programmers who work late, however, may not be rewarded

110 Programming as a Social Activity

because the manager is not likely to see that they are working late.
Programmers who are observed talking to others are not considered to
be working, because the manager has an image that programming work
involves the solitary thinker scratching out secret messages to the
computer.

But what else can a manager do? Since the results of programming
work will not be available for many months, he cannot just wait to see
whose programs run and whose don't—even if he could tell the difference.
Probably the best thing the manager can do is to rely on his first-level
managers, and to insist that they actually observe the work—yes, even
geing so far as reading the programs. Lurking around and dropping in
on the programmers to give them the impression that he is watching
isn't going to fool anybody.

One programmer we interviewed told us that he had “earned’ a fat
raise by preparing a program that produced some output that the
project manager thought he understood. When the project manager
dropped info his office, the programmer took out this program to show
him, and asked his advice on how to handle a certain situation. The
manager gave him some advice—which would have been worthless even
it the program had been part of the system they were producing—and
left beaming. A few days later, the programmer made a point of thanking
the manager in the lunch room, in front ot his lower-level managers; anhd
a few days after that, he got his raise.

Being thanked for some technical advice must have elevated the status
of the project manager in the eyes of his fellows, for such direct per-
tormances are rare for managers. At the working level, status is largely
determined by the ability to perform technical tasks—such as legendary
feats of debugging. But for the manager, such avenues to earning status
are not normally open, though he may often bore everybody by recalling
the good old days when they were. As he climbs the management ladder,
't becomes less and less easy for him to establish his technical superiority,
so he comes to rely more and more on symbols of status to give him
his authority,

Status symbols are always amusing—to anyone oulside the system.
Within programming, some special status symbols not found in other
professions are worth mentioning even though the subject 1s well-treated
elsewhere. For instance, we have a card file in the office. At certain low
levels, the card file is a positive status symbol over ordinary programmers,
because it implies that its owner cannot leave his important programs
unguarded. At higher levels, of course, the card file must be removed,
lest the observer should think that one was too close to the actual pro-
gramming. In shops which run a closed machine room, anyone with per-
mission to enter the machine room is obviously more important than
anyone who does not—though usually it is safest to give such permission

The Programming Project 111

only to those high enough so that they really have no business being there.
Where access to the machine room is not the issue, priority of running
jobs may be, especially if each person's priority is listed—in descending
order-—in a conspicuous place. t must be tremendously satisfying to the
project manager to know that his job would be run ahead of everyone
else’s—if he ever had one.

Lately, the terminal has become the number one status symbol for
programming managers. No matter how short of terminals the poor
workers may be, the project manager must have his terminal by his side
for all his guests to see. What he uses it for is rarely known, or at least
is a well-guarded secret. What the casual visitor usually sees is a hoked-
up demonstration or a game of Nim or Spacewar, depending on the
type of terminal. One of the most beautiful of such demonstrations con-
sisted of displaying a PERT chart of some project function on the CRT.
When the manager pushed a button, the critical path in the chart was
Nluminated with greater brightness than the other paths. Then, by point-
ing the light pen at one of the nodes, a deletion was made and the
new chart was displayed. One more button push and the new critical
path was illuminated. This demonstration never failed to impress visitors
with the great control the manager had over his project. Of course, it was
a complete fake—all four patterns were prestored in the system, and
they were the only four patterns available.

One of the classic status symbols from which programming managers
are not exempt is the secretary or the administrative assistant. The differ-
ence between these two titles is thal secretaries are always female, and
administrative assistants may be of either gender. The prettiest secretary
may be a status symbol—though an ugly one may be taken as indicating
that one's status is so high that one rates a competent secretary.

This association of women with the menial tasks of an office and of
good looks with poor brains is the source of one of the more serious
soclal problems in large projects—the sex problem. One of the women
in our class undertook to study the attitudes about women programmers
of men in her project. The picture that emerged from this survey was of
men (especially the older ones} who plastered over their insecurities by
belittling the women who were involved in professional work. Women
working as secretaries did not come in tor this abuse—presumably, they
“knew their place.” But anything the women programmers did was in-
lerpreted in the worst possible light. _

For example, if a woman was seen talking to another woman, the
tendency was to call it “gossip.” If a woman talked to a man, it was
“flirting”. But when men talked to men, there was no special name—it
was just "business,’” even when the business was baseball, basketball,
or bowling. In one section of the project, there were only two women,
and they had been put Into the same team because the manager thought

112 Programming as a Social Activity

they would “like each other's company.” Whenever the manager saw the
team leader, he would ask how “they'" were doing. Everyone understood
who “they” were.

Most men, of course, will dismiss these observations as not being
serious. “Of course men talk about women in those ways, but a little
friendly joking never hurt anybody." Even the women who are not pro-
fessionally involved tend to support the system by taking every opportunity
to express disbelief that other women could “do such complicated things"
—meaning, “compete with men.” But to the women involved, the matter
is deadly serious—though they are not about to let any curious male
know about it. In many projects, women are systematically excluded from
management positions, or management positions above the first level.
Thus, a woman who has such aspirations knows that her future is
limited as long as she stays on this project—not a very healthy way to
inspire participation.

To be sure, male managers can offer all sorts of rationalizations for
such policies, but such rationalizations accompany any prejudice. In-
dividual cases can be called upon fo support each erroneous belief, but
that is true of any prejudice, too. Anybody who thinks Scolsmen are
cheap can point to an example of a Scot who saved litile pieces of
string; anyone who thinks Sicillans are gangsters can show you a
newspaper clipping to “prove” his case: and any manager who won't
promote a woman can point to a case where a woman was promoted and
then left to have a baby or to follow her husband to his new job. And,
of course, if a woman doesn't have babies or follow her husband, he
says, “What kind of a woman is she?"

Each prejudice has its price. In a programming project, the exclusion
of anyone from any position on any basis besides lack of competence
robs the project of the best possible performance. Moreover, once one
faction begins to feel that they are being judged differently from others,
they will begin to act differently. Although prejudices against other groups
can also be serious matters, the prejudice agazinst women is so common
in programming that it merits special attention. Possibly the greatest single
action to relieve the shortage of programming and programming manage-
ment talent would be to start treating women as true equals—if indeed
they are only that.

SUMMARY

At the end of 1869, the second NATO conference on Software Engineer-
ing was held, and the tone was already much changed from the one
held the previous year. People were beginning to come into the picture,

The Programming Project 113

and the reason is not hard to find in the proceedings. We may quote
this comment from Joel Aron as most clearly representing the problem:

We made a study of about a dozen projects, though not in a very formal
manner. However, our resulis were convincing enough 1o us o set up a course
on programming systems management.

The nature cf the study was “Why do our projecits succeed or fail?” We
took as “successful” a project that met its requirements on schedule within the
budgeted dollars and satisfied the customer. On this basis, out of 10 or 12 proj-
ects that we examined, we had one success and a whole lot of failures.

We analyzed the reasons for failure, as given to us by the project managers,
and by people who had performed previous evaluations of the projects. They
gave various reasons behind the failure of the projects, virtvally all of which
were essentially management feflures. We ran into problems because we didn’t
know how to manage what we had, not because we lacked the techniques
themselves. (Emphasis added.}

Over the years, | have had the opportunity to work with Joel Aron as
he has crusaded to get people to believe what he says about programming
projects. The sad part of it is that most of the computing fraternity re-
mains unconvinced. On the very next page ot the proceedings, C. A. R.
Hoare, a very brilliant man, says:

Basically all problems are technical. If you know what you want to do and you
have the necessary technical background, there is no point In making a great
management problem out of it. Obviously a certain amount of resource control
and personnel work have to go on but that's all.

Hoare is right, in a certain sense, but it doesn't work out that way.
People are trying to cope with problems they don’t understand, and
those they don't know they don't understand—in itself a failure of man-
agement. We have tried to show how a project can go down the drain
even when it does have the technical capability—for if people remain as
unconvinced as Mr. Hoare, there will be no fruitful study in this area.
The picture is only sketched in broad outline with a few anecdotal
details, but it must be filled in, or we must stop trying to do programming
projects until it is.

QUESTIONS

For Managers

1. How long have you been in charge of your present group? How many
of the original people remain? Mzke a list of the people who have
left and give the reasons for their departure. What sort of provisions
do you make for this kind of turnover?

114

10.

For
1.

2.

3.

2

Programming as a Social Activily

. Have you ever had someone quit soon after a promotion or a raise?

Was the promotion or raise a substitute for something you would not
or could not give that person? What reasons were given for quitting,
and what do you think the real reasons were?

Do you have an indispensable woman or man working for you? If so,
what would you do it she or he got killed or was sick for six months?

In what ways do you modify information as it passes you on its way
up through your organization? What does your manager do to reward
you or punish you for accurate information?

Which do you reward most, accurate information or pleasing in-
formation? Do your programmers know what the information you
require is used for? Do they see the final reports which are the
destination of their information? If not, why not?

At your next management meeting, try to play devil's advocate on
some peint on which there is otherwise common agreement. Record
the pressures you feel, and the reactions of those trying to bring you
into line by other than rational arguments.

Do you favor certain of your teams as being more important? Do
you see certain of the teams as more prestigious than others? Which
ot your teams have the greatest morale problems?

Do you encourage competition between groups with conflicting in-
terests in order to stimulate production? How can you measure
whether or not this strategy is working?

Ltook around your office and make a list of the status symbols you
find there. f you can't find any, go to some other manager's office

and make a list of his status symbols. Then go back to your office
and try to make another hst.

Are women in your organization treated any differently than men? In
what situations, and for what reasons? Are the women in your organ-
ization contributing less than the men, or don't yoUu know?

Programmers

Have you ever felt that you were being forced into staying in a posi-
tion that you wanted to leave? What methods were used to force you?
How did it affect your work in that position?

Have you ever been given money as a substitute for something else
you wanted, such as a ditferent job, more help, better access to the
machine, or different working hours? Did the money satisfy you so
that you no longer wanted the other thing?

Are you indispensible in your position? If so, what are you doing
about it, making yourselt more or less indispensable?

Do you know what happens to your progress reporis or time sheets?
Do you ever wonder? Do you ever ask?

The Programming Project 115

5. Have you ever yielded to group or manageriat pressure against your
best technical judgment? Describe the situafion and the conse-
quences.

6. From the point of view of prestige, how do you rate the following
types of assignments, and why?
a. Documentation
b. Program library work
. System testing
d. Progress reporting
e. Standards work
f. Diagneostic programming
g. Education

7. What status symbols do you have in your office? See Manager's
question ©.

8. What is the attitude toward women in your organization? If you are
a woman, what does that attitude do to you and your work?

BIBLIOGRAPHY

Naur, Peter, and Brian Randell, eds., Software Engineering, NATO Sclence Com-
mittee Report, January 1969,

Buxton, J. N., and Brian Randell, eds., Software Engineering Techniques, NATO
Science Commitee Report, April 1970,

These two confersnces brought together some of the leaders of the intemational
programming community to discuss precblems of controlling software projects. Al-
though the reports cannot be expected to capture the full vilality of the confer-
ences, the editors have done a fine job, and there |s much information on soltware
gngineering to be gleaned from them—although there is not nearly enough from
the point of vlew of the behavioral sciences.

Asch, S. E., Studies of Independence and Submission to Group Pressure:). A
Minority of One Against a Unanimous Majority, Psychological Monographs, T,
Series No. 416, 1956,

This is the classical and original work on opinions and social pressure, and it

should be mequired reading for all technical people.

Kantowitz, Leo, Women and the Law: The Unfinished Revolution, Albuguerque,
University of New Mexico Press, 1969.

A fine antidote for those who feel that women are treated equally with men in the

United States, as seen through the codification of laws over time.

Friedan, Betty, The Feminine Mystigue, New York, Norton, 1963,
Orne of the first of the new “women’s liberation” hooks, glving the way our world
looks to a woman who has her wites about her and her consciousness raised.

Gagne, Robert M., ed., Psychological Principles in Systern Development, New York,
Holt, Rinehart, and Winston, 1962.

This book is a good job documentation of the “Systems Development” movement

of the fifties, which was largely a baby of the milltary, through such agencies as

116 Programming as a Social Activily

RAND and SDC, with some paiticipation from the unlversities. It is not clear that
the “movement” was ever very successful at accomplishing anything but getting
large grants of money from the govemment, and certainly its influence on non-
military work has so far been rather small. The level of work in the collection is
uneven, ranging from superficial platitudes to detailed systern diagrams and
photographs, and there Is much overlap. The “psychological”® aspect is largely
concerned with how {0 view people as components In complex system—the human
engineering approach and the personnel approach. There is really nothing of
value on computer programming as such, and the main interest in this book Is
discovering why this approach does not succeed in programming.

Meyer, Marshall W., Automation and Bureaucratic Structure, American Journal of
Sociology T4, 3(1968), pp. 256-264.

This study, which is a survey of 254 departments of finance at state, county, and
city levels, shows the differences in structure between the data-processing sections
and the other parts of the organization. Among other things, first-line supervisors
supervise more people, and higher-level ones fewer people, giving a narrow or-
ganization with a wide bottom. This expanslon of the span of control at the lowest
level and extenslon of the number of levels to reach the top Is just what we don't
nged in computer programming, where first-line managers already don’t know
ehough about what their people are doing, and communication up the tree Is
already too slow and unreliable.

= D) }
<

B

DROGRITNG
S AN

NDIDURL

ACNIY

PART

I have in mind the only liberty worthy of that
name, fiberty consisting in the full development of
alf the material, intellectual, and moral powers latent
in every man; a liberty which does not recognize
any other restrictions but those which are traced
by the laws of our own nature, which, properly
speaking, is tantamount to saying that there is no
restriction at all. . . .

Mikhail Bakunin™

t the beginning of this book, we set out to account for some

of the variation in programming performance among different

programmers. We have seen that much of that variance can

be accounted for by social factors—much more than we might
have believed from casual considerations., Bul, no matter how much
variance is attributable to social factors, there will always remain
a residue. No matter how similar the structure of two programming groups
might be, they will produce different finished products. In this section,
we shall try to account for some of those differences by examining factors
centering in and around the individual.

“Reprinted with the permission of Macmilan Company. From The Political Philosophy of
Dakunin, by M. A. Bakunin. Copyright © 1953, 1964 by the Free Press.

119

120 Programming as an Individual Aclivily

How shall we proceed? Although little psychological research has been
done directly on programmers doing programming, we could imagine
that a psychological study had been done and think about how we would
analyze it to account for differences in performance by different subjects.

The first thing an experimental psychologist would ask is “Did all sub-
jects do the same task?” Even in a carefully controlled experiment, there
are many differences that might creep into what the subjects were doing,
or thought they were doing. Moreover, if we want o compare two different
experiments, we are obliged to look first for any difference in task before
we can draw meaningful conclusions. Certainly in programming, where
every task is different from every other in a multitude of ways, our first
invéstigations would have to be into task differences.

The next thing a psychologist would consider would depend on the
object of his experiment. If he were trying to measure individual differ-
ences, he would concentrate on Keeping all aspects of the environment
as constant as possible so that they could be excluded from considera-
tion. He would not, for example, give a test to some subjects in an air-
conditioned room and others in a room that was overheated, for the room
temperature could easily be a more dominant influence on performance
than the individual differences he was trying to measure.

But if the psychologist were trying to measure the effect of temperature
on performance, he would make exactly this kind of variation. Instead of
holding the environmental variables constant, he would try to hold in-
dividual differences down to a minimum. To do this, he might try giving
the same test many times to the same individuals—although he would
ther have to contend with learning effects, something we, too, must
consider.

In any case, we are interested in both the effacts of environment and the
differences among individuals, so the order in which we consider them is
not really important—as long as we give both their due.

In the following chapters, we have broken down the factors which, in
sum, constitute what psychologists call “individual variations.” That is, if
two people are given the identical task to perform in the idertical en-
vironment (which is, we all realize, an impossibility; vet it is a necessary
conceptual fiction), the differences in the way they behave can be attrib-
wted to one or more of these factors. The individual variations that inter-
est us may be further subdivided into the general categories of “person-
ality,” “intelligence,” and "training™ or “experience.”

VARIATIONS

IN THE
PROGRAMMING
TASK

’

II rogramming——like “loving'’-—is a single word that encom-

passes an inrfinitude of activities. A high school student fid-

dliing around with a BASIC terminal is programming, but so

is an engineer trying to produce the tightest possible mi-

croprogram for a special-purpose on-line computer. Is there anything
In common between these two activities besides their name?

The programming literature usually assumes that there is something
in common between the activities of the high-school student and the
engineer, and this assumption is probably correct, as far as it goes. But
pernaps much of the difficulty in trying to account for differences in
programming performance arises from a lack of refinement in our classi-
fication of the activities called programming. After all, we could create a
theory of economic activity by flying over the United States at 5000 meters,
but we couldrn’t say much more than that “everybody is driving around

121

122 Programming as an Individual Activily

irt all directions.” To account for more details of behavior, we would have
to get closer to the ground, and this is what we shall have to do if we
want to remove some of the mystery from programming.

PROFESSIONAL VERSUS AMATEUR
PROGRAMMING

The high school student and the engineer represent two ends of a
rich spectrum of programmers. These ends may or may not be different,
but nothing antagonizes the professional programmer more than to hear
an amateur—having just completed a six-statement program in BASIC to
find roots of a quadratic egaution—discourse on the theory and practice
of programming. We know well, of course, that this vehemence could
be a symptom of lack of any difference between the two activities, for such
a lack would put the professional in a much diminished stature. Although
some professional programmers may indeed be no more than hacks
camouflaged by esoteric obscurities and some amateurs might be able to
gain a deep appreciation of programming through the writing of a single
short program, there is a difference.

Perhaps the deepest differences emanate from differences in the ul-
timate user of the program. Almost invariably, the sole intended user of
an amateur’'s program is the amateur himself, whereas the protessional
is writing programs which other people will use. To be sure, the pro-
fessional oftentimes finds himself writing a program for his own use—
tc generate test data or to evaluate the performance of an untried al-
gorithm, to name but two instances. And, indeed, when doing this kind
of work, the professional commornly slips into amateurish practices. But
the main thrust of his work is directed toward use of the program by
other people, and this simple fact conditions his work in a number of
ways,

Because the amateur will be the user of his own program, he has the
choice of doing his thinking either before or after programming. Consider,
for example, a student who wants to write a program to find roots of
quadratic equations. ldeally, he is sitting at a terminal, for terminals are
wel suited to post-programming thought. He decides that he will probably
need some input. This requires that he choose some names for variables.
Here the small size of the program and its complete isolation from other
programs give him a big boost—without his awareness, of course—for
he may choose whatever names first come t0 mind, such as a, b, and
c. in simply following the notation of high school algebra, he does not
think at all about possible cornflicts with other symbois, standards which
must be observed, or even with declaration of attributes. No, he merely

Variations ip the Programming Task 1239

types something like

GET LIST (A, B, C);

After adding some other program parts in a similar way, he will be
ready to try his program. Upon initiation of processing, the terminal will
pause in request for data. Since it is his own program, he does not need
any prompting about what data are expected at this time, so he has
saved at least such coding as a preliminary

PUT LIST ('ENTER A, B, AND C');

He also knows the order in which things are required, and the simplified
input system of his language permits him to enter his data in such diverse
forms as

123

1,2,3

1,2, 3

1.0, 2.0, 3.0

1E0, 2.0E4-0, .3E+1
Moreover, if he should happen to slip and enter

1A, 2, 3
the system will reject the first value without his having had to program
an error-handling routine or document the reasons why such a data item
is rejected. He knows what is expected, for he wrote the program.

Even more subtle problems can be handled for him because he can
think after programming. When he enters such a case as 1, 2, 3, he will
probably find that some later statement coughs up the data because he
will be trying to take a square root of a negative number (b2 - 4ac). He gets
the diagnostic automatically—without any forethought or foreprogramming
—and probably realizes rather quickly what the problem is. He may then
simply decide that he doesn’t want complex roots anyway, in which case
the problem disappears by definition. Only when the programmer himseif
s defining the problem is this sort of simplification possible, for the
professional programmer would at least have had to leave the terminal
and find someone to authorize a change or clarification of specifications.

If the amateur does decide that he needs complex roots, his task is
stil much simpler than that of the professicnal in making the necessary
modifications. Even when he has finished the program, his job remains
simpler, for when he is finished, he merely has to forget about it. The
professional, on the other hand, has to put it into a neat package and
send it out into the cold world—from which it may return to him bearing
caustic comments, comments whose sense has to be considered for
subsequent modifications. A true professional, of course, would have con-
structed the program in such a way that modifications will not be overly
involved—but that was another thing he had to think about when writing.

Even if the program is not intended for other eyes at all, the profes-

124 Programming as an Individual Activity

sional carnot quite forget about it in the same way as the amateur. For
instance, if the program is just stored in the terminal system, the user
will eventually receive notification to clean up his storage. The pro-
fessional has to recall each of the programs in his library, for some will
stil be needed. The amateur, however, probably has only one program,
80 he instructs the system to erase il—or lets the erasure be done autc-
matically by default, But woebetide the professional who lats the system
erase his library! No, he must drop what he is doing and check his long
tibrary list before the deadline comes around, or all his work will be gone
with the wind.

Many years ago, when programming systems were rudimentary, the
difference between the professional and amateur was not nearly so pro-
nounced. Today, however, so many of the things that amateurs want 1o
do have beeh made implicit in our systems that the guif is a wide—and
widening—one. Paradoxically, however, as the gulf has widened, the
amateurs have become less and less aware of it, for they have become
less and less aware of what the system is doing for them. Just as a good
manager faces the problem that his employees are unaware of his man-
agement, so does the systems designer suffer because the better his sys-
tem does its job, the less its users know of its existence.

And speaking of managers, they can be the most amateur of amateurs
when it comes to programming. A few years ago, one firm decided to try to
give its executives a course that would make them appreciate the prob-
lems of their professional programmers. Inasmuch as these were execu-
tives, each was assigned a professional programmer as ‘“‘assistant” for
the duration of the course, the climax of which was a problem which each
executive had to program “for himself.”

To enhance the executives’ appreciation for the problems faced by
programmers, this work session was interrupted by frequert trivial phone
calls, meetings, and small changes in specifications. The executives got
the point—that executives could increase programmer productivity by
“sheltering” their staff rather than being the major source of disturbance.
But they also took away another—deeper rooted—idea. After all, in spite
of all these disturbances, they had managed to get their program working,
hadr't they? Sure, they had a little help from their “assistants,” but not
much, really. So, if they could get a program done on time, why couldn’t
their programmers? And what was so hard about programming, anyway,
if they could master it in a week?

This entire impression was based on a combination of ilusions of the
same sort that make any amateur unable to appreciate the abyss which
separates him from the professional. First, there was the semantic illusion
which equates the “program” they wrote—a trivial problem involving

Varlations in the Programmming Task 125

compound interest calculation which could have been better solved using
a log table or slide rule—with the “programs’ written by their staff—
operating systems, compilers, utilities, and the like. Second, there was the
iHusion that their assistants were “not helping them much”—an illusion
based on a lack of understanding of the complexities of programming—
the very complexities which the assistants were supposed to shield them
from lest they take away a bad feeling about programming engendered by
being unable to complete their little problem. And so, the very efforls
directed at giving the executives a better appreciation for the problems
of the programmer resulted in precisely the opposite effect.

Better appreciation of programming by managers is needed: a case in
point is the fact that a manager could even begin to believe that he could
fearn in a week what the professional has learned through years of ex-
perience. Indeed, it is a homily that the difference between the profes-
sional and the amateur programmer lies in the superior past experience
of the professional. But one could also contend that an equally important
difference lies not in the programs each has previously written, but in
those he will write in the fiture. The amateur, being committed to the
resuits of the particular program for his own purposes, is looking for a
way to get the job done. If he runs into difficulty, all he wants is to sur-
mount it—the manner of doing so is of little consequence. Not so, how-
ever, for the professional. He may well be aware of numerous ways of
circumnavigating the problem at hand. He may even employ one of them
for the immediate purpose of gefting the job done. But his work does not
stop there; it begins there. It begins because he must understand why he
did not understand, in order that he may prepare himself for the pro-
grams he may someday write which will require that understanding.

The amateur, then, is leaming about his problem, and any learning
about programming he does may be a nice frill or may be a nasty im-
pediment to him. The professional, conversely, is learning about his
profession—programming-—and the problem being programmed is only
one incidental step in his process of development.

The other side of this observation is that the professional never quite
takes any problem as seriously as does the amateur. He has had bugs
before, and he will have them again. This difference in attitude is a source
of constant friction between the two types: the professional is very tired
and a bit irritated by the unending stream of amateurs waving their print-
outs in his face and condemning the machine, the operator, the system,
the keypuncher, the language, or the government. The amateur, on the
other hand, can see that the professional does not even care that his
means and standard deviations are not going to be ready in time for
inclusion in the proceedings of the conference.

126 Programming as an Individual Activity

WHAT THE PROGRAMMER IS
TRYING TO DO

There is an asymmetry in the relationship between amateur and pro-
fessional programmers, because the one cannot appreciate the com-
plexities that the other faces. Nonetheless, the professional often commits
the error of deriding the work of the amateur for not being sufficiently
professional; and this error is much less excusable than that made by the
amateur in underestimating the distance between himself and the pro-
fessional. The professional, if he is truly professional, should know better,
whereas the amateur cannot. The amateur may fail to program an
elaborate error-handling routine because he doesn't know how or doesn't
even Know what an error-handling routine is. But then, why should he
know, if he doesn’t nreed one? Isnt it much worse for the professional
to insist on trealing a tiny one-time program for personal use as if it were
an operating system intended to be used by thousands of people for
five or ten years?

Programs, like any other man-made objects, arge designed—or should
be designed—with a definite lifespan and scope of application in mind.
Like the “Deacon’s Masterpiece,” which was “built in such a logical way
it ran a hundred years to the day,” a program should have neither over-
designed or underdesigned parts. Yetl it is an occupational disease of
programmers to spend more time on those program parts that present,
for some reason, the most intellectual challenge rather than on those
that require the most work.

A case in point is the semi-professional programmer who was com-
missioned by a physics professor to write a program to find the inverses
of some matrices. As there were too many matrices to keep in storage at
once, he needed a routine for reading them from tape one at a time for
processing. He had little experience with input-output programming, so
he decided that this would be a good chance to learn something, and he
set out 10 get some advice.

“How can | program the input from tape so as to buffer the input from
processing?” he asked a somewhat more professional colleague. Being
somewhat more professional, the colleague didn’t answer the guestion,
but put one of his own.

“Why do you want 1o buffer the input?”

“To save time, of coursa.”

“Have you estimated how much time you will save?”

“Not exactly, but it will be a lot, because there are a lot of matrices.”

“How many?”

“l dor't know exactly. A lot.”

Variations in the Programming Task 127

“Approximately how many?"”

“Maybe a hundred.”

“Good. And how Jarge are they?"

“Ten by ten.”

The colleague did a quick calculation on the blackboard which showed
that these matrices would ragquire about one minute to read.

“See,” said the semi-pro, in trivmph, “That's a ot of time.”

“Perhaps—or perbaps nol. How many times will you run this program?”’

“What do you mean?”

“I mean, if you write a buffering routine, you're going to have to test i,
and { doubt if you can do that with less than one minute ot machine
time. So if you only have one set of matrices, I'd advise you to forget it.
Just the computer time in testing will cost more than you could possibly
save—not to speak of your time.”

“But you don’t understand,” said the semi-pro, who was not willing to
see his chance of writing a new and interesting program slip away. “This
has got to be an efficient program!”

His colleague should bhave been discouraged by this response, but
could not stop himself from trying to rephrase the arguments. But, alas, it
was all in vain, and the next time he chanced to see his friend—which
was the next semester—he was still having problems getting bis buffering
routines working. The poor physics professor, still waiting for his matrices,
was completely unaware of what was going on—but was mildly flattered
that his programming problem had proved so complex.

The moral of this tale—and a hundred others like it—is that each
program has an appropriate level of care and sophistication dependent on
the uses to which it will be put. Working above that level is, a way, even
less professional than working below it. If we are to know whether an
individual programmer is doing a good job, we shall have to know
whether or not he is working on the proper level for his problem. The
same talents or personality that make a person an excellent amateur
programmer may make him singularly unsuited for being a professional
one; but the lack of ability to adjust his working behavior to the problem
at hand will always make him unsuited.

Usually, though, the programmer fails to adjust his actlivities to the
problem at hand because he doas not know what the problem at hand is.
That is, he assumes that certain things are wanted—perhaps on the basis
of what he knows how to do, or on the basis of what was wanted in the
last job he programmed—but he never finds out what was wanted until the
job is finished. Working for buffering is not a bad thing in itself, but only
in terms of what a particular program is going to be used for. If the
matrices were 100 by 100, and if there were going to be thousands of
them, the goat of our last tale could have been a hero,

128 Programiming as an Individual Activity

There have been very few studies of programming performance, but
what few there have been all seem to have suffered from a lack of appre-
ciation for the problem of ambiguous programming objectives. it is not
enough to give a carefully selected bunch of programmers the same
problem to work on and then measure their “performance.” Any psychol-
ogist knows that subjects must be given explicit instructions on what they
are 1o try to achieve, and that even that is not enough in most cases. For
instance, if we are given a list of words to match with their synonyms, are
we supposed to work for speed or for accuracy? And if the psychologist
tells us to be as fast as we can, do we really follow that instruction at the
risk of making tritly careless errors? Well, that depends on a number of
factors—because some people are inherently more meticulous than
others. Psychologists lose many nights of sleep over such questions, and
perhaps programmers and their managers should share a bit of that
concern.

In order 1o test for the influence of assumed goals on programming
preformance, we conducted a small experiment. Four programmers were
asked to work on the same problem—a nontrivial one which would take
perhaps one-fifth of their time for ten weeks. Although the problem speci-
fications were otherwise as identical as a Xerox machine could make
them, two ot the programmers were given a last page which differed
from the last page given to the other two. For one pair, the last page read
as follows:

Your objective on this project should be to get a fully debugged program which
is as efficient as possible, in the sense of using the least CPU time possible.
You may use as much core storage as needed, up to 128K. Although you are
not working for fast completion of the project, you should plan to reach the
finat test fevel by the end of the ninth week.

For the other pair, the last page read as follows:

Your objective on this project should be to get a fully debugged program in as
short a time as possible without considering the efficiency in speed or space
of the program insofar as those factors will siow down the completion of the
program. However, you should not spend any more time on the project than the
normal work load allofted (one-fifth time). You must, however, keep the pro-
gram size less than 128K,

By making the instructions explicit, we hoped to measure the type of
variation attributable to different understandings of the objectives of the

Variations in the Programming Task 129

project. None of the programmers knew that the others were working
toward different cbjectives. At the end of the project, however, the differ-
ence in performance between the pairs was striking. These who were
asked to complete the program as quickly as possible used, on the aver-
age, only two-fifths of the machine time and one-third of the individual
time used by the other group. Their finished programs, on the cther hand,
were, on the average, abcout ten times slower! (See Figure 7-1, “Index
Problem.™)

This experiment was repeated with ancther group of programmers and
a ditferent type of program, but one designed to be about equally com-
plex. Here the possibilities for spectacular savings were not so great, but
again the “'fast-completion” group averaged two-fifths the machine time
and one-third the individual time used by the other group. The “efficiency”
group, in this case, achieved about 50 percent more speed in their pro-
grams. (See Figure 7-1, “File Problem.”)

This pair of experimenis gives a nice contrasi, for it shows that the
gains to be had from striving for efficiency depend on the type of problem
as much as anything else. Thus, we could never make a general statement
about how much etfort toward efficiency is justified, even if we were
egually interested in efficiency on all problems. But the important result
from the experiments is that a large proporiion of the variance between

Flgure 7-1 Eftoct of environment on performance.

130 Programming as an individual Activity

pregrammers on any job can be attributed to a different conception of
what is tc be done.

When we investigated in more detail the source of added machine time
and programmer time for the “efficiency” groups, we found that much of
it could be accounted for in the way the programmers reacted to unan-
licipated difficulties. In the “fast-completion” group, when some method
was not working out, it was simply dropped and ancther one was sub-
stituted; but when the “efficiency'” programmers had trouble, they were
loath to change their approach because they would then have to sacrifice
some efficiency. Thus, though two programmers in different groups might
have started out with the same method in mind, the 'fast-completion’’
programmer wound up with something rather different—but he did
finish while the other was still struggling.

It is alsc important to notice that the source of the difficulty is more
or less irrelevant to this result. In one case, for inslance, a compiler bug
caused trouble with a feature that was critical to cne of the possible
approaches to a problem. Although both groups encountered the same
bug and neither could do anything about it, the “fast-completion” group
dropped the approach long before they ever found out that it was a com-
piler bug, and the others stuck with it until the bitter end, only to have
to drop it when the source of the difficulty was uncovered. Although this
turn of events may have been “unfair” to this group, it was nothing that
does not happen thousands of times a day in computing centers all over
the world. From a psychological point of view, the lesson is clear. The
same objective event (a compiler bug, a difficult algorithm, or what-have-
you) affects a project in different ways according tc the objectives—even
though they be unstated—of the project. Therefore, if we are to measure
programmer performance, or language performance, or operating system
performance, or anything else, we must be sure that everybody is truly
working on the same problem.

In real lite, of course, we do not usually have more than one group
working on “the same" program at a time. Thus, we may not be aware that
the group is working toward a different set of objectives than, say, their
manager thinks they have. Consequently, unless we take precautions to
see that all the objectives are communicated—and remain communicated
—we should nct be surprised when the program dces not meet schedules
or runs inefficiently, or uses toc much storage, or what-have-you.

But let's back off a moment, for “real life"” is never so simple. There
Is a certain danger In communicating cbjectives: objectives can change
estimates! In our experiment, after we had found the effect of instructions
an performance, we went back and checked the estimates given by each
programmer., The programmers had estimated number of batch runs and
number of elapsed days to complete each project, and the comparison of

Variations in the Programming Task 131

Figwe 7-2 Efiect of environment on estimating.

their actual and estimated runs and days is shown in Figure 7-2. It is
easy to see what happened. Those whc were instructed to finish as fast
as possible were motivated to be far more conservative in their estimates
of time to completion, and they actually performed much better than their
estimates and much better than the other group—even though the other
group had been much more optimistic in their estimating.

One interesting sidelight is that there was one person who absolutely
refused to make a time estimate, and he was in the group asked to do the
job as quickly as possible. He was also the only one who got appendicitis
in the middle of the project (though fortunately he was a fifth perscn in
that group). Programming managers should take a long, hard look at this
figure before they set down the goals for their next project. If a goal is set
explicitly, there are two effects:; programmers work toward that goal at the
possible expense of another goal, and programmers will be far more
conservative (or accurate) in estimating how well they will meet the goal.
Estimates on goals not emphasized will probably be completely unreliable,
both because they are not made carefully and because they are not im-
portant enough to resist belng sacrificed to other goals. Unfortunately,

132 Programming as an Individual Activity

this modification of estimates was not anticipated by the experimenters,
sc we neglected to ask the programmers to estimate the efficiency of their
programs, but it seems reasonable that the same type of result would
have obtained—but reversed for the two groups.

Should this result prove general, it would clarify somewhat the myster-
les of Parkinson’s Law and might thereby relieve the nightmares of nu-
mercus managers. When Parkinscon said that “work expands to fill the
time allotted,” he was making us aware that the very existence of sched-
ule goals can influence the rate of work. But now we see that the very ex-
istence of schedule as a goal can influence “the time allotted.” The
reason work can expand to fill the time allotted is the existence of other
goals whose importance relative to scheduling is not made clear. Perhaps
we might follow this line of reasoning and begin tc understand what
fallacies underly the generally accepted conclusion that programming
projects can never be done on time.

STAGES OF PROGRAMMING WORK

Another tallacy which we shall have to lay to rest is that “program-
ming” is some scrt of uniform effort requiring a set of uniform talents.
For the professional, at least, the job of getting from specifications to
delivered program demands various kinds of work, which, in turn, de-
mand various talents.

In a properly organized project, not every programmer need have all of
the talents required to produce complete programs, since work may be
allocated according to individual abilities. Indeed, it may be that suit-
ability for work in cne stage of programming makes one more or less
unsuited for work in another. The job of system design calls for an eye
which never loses sight of the forest, whereas the job of debugging may
require that every tree—even every branch or leaf—be seen with utmost
clarity. The job of coding often requires squeezing out every drop of
redundancy, and the job of documentation may require that simple sen-
tences be plumped up to paragraph size.

Just as a successful pregrammer may become a failure when moved
intc a management position, so may a successful designer become a
handicap when the time comes to debug a system. On the other hand,
the man who might have helped us most in debugging may have been
pushed out of the project during the design phase because his peculiar
talents were neither needed nor appreciated at that time. If we are to
ensure that the proper talents are available when needed, we shall have
to classify the work that programmers do into somewhat more refined
categories than the simple term “programming’ covers.

Programming is often described as a process moving from problem

Variations in the Programming Task 133

definition through analysis to flow diagramming, then coding, followed
by testing, and finishing with documentation. Although this rough view
contains some truth, it distorts the truth in several ways. First of all, the
actual sequence is not sc fixed, because, for example, documentation may
precede testing, coding, flow diagramming, and even analysis. Secondly,
not all steps need be present, as when we are recoding a program for a
new machine or language. Thirdly, it need not be a sequence at all—and,
in actual practice, rarely is. Who has not experienced a problem definition
that changes as discoveries are made in analysis, flow diagramming, cod-
ing, testing, and documentation? Or who has ever seen a flow diagram
that remains unmeodified throughout the coding—or code that remains
unmodified throughout testing?

If we are to study programming from a psychological point of view, we
must decompose these complex activities into simpler cnes—that we have
established. And yet, because of the cyclic, or iterative, nature of the
programming proccess, even such a decomposition as we have made
above is too refined. These divisions lack sharp boundaries, or perhaps
have no boundaries at all. To be sure, if we ask a programmer what he
is doing, he will say “coding” or “debugging” without any hesitation.
Moreover, the system of “progress reporting,” which is in effect in most
installations, tends to force people to put their work in sharper categories
than really exist. In this way, people are led to believe in the reality of the
categories they write on their time sheets each week.

To take a specific example, consider a project which has a set date
when each of the activities will be completed. As the date for problem
definition approaches, great haste is evident In the preparation of “prob-
lem definitions.” At the required date, all the definitions are in the hands
of the project manager—but that does not mean that the project is de-
fined. All it means is that the definitions are in the hands of the project
manager.

Now that definition iIs formally finished, analysis starts. if, perhaps be-
cause of the hasty definition process, some flaw is discovered in the
definition at this point, cne of two things will happen. First—and worst—
the flaw may be covered up, under the belief that the definition is now
fixed. Second, the definition may be changed—probably infermally in
most cases, but with the time and effort required being charged against
“analysis.” And so the project goes on, from category to category without
ever a backward step—or so it seems lo the project manager. His model
of how a programming project is done has been superimposed on the
project itself, and he never becomes aware that things are not sc simple.
It all makes for a very neat accounting system, but it will never dec for
an understanding cof the psychological processes underlying success or
failure of the project.

Even if it really were possible to force a programming project into

134 Programming as an individual Activity

sharply defined stages, it might not be a good idea to doc so. The pro-
grammers on a project constitute mixed talents, scme of which are better
suited for one type of work than ancther. If only one type of work is being
done at a time, certain talents are going to be underexploited at that
mement. Morecver, even for the individual programmer working alone,
it may be a good idea deliberately to break up the work so that different
parts are in different stages at any one time. Why? Because the progress
of the work is likely to be more uniform and less dependent on day-to-
day variations in the programming environment or in the programmer’s
own temperament.

Consider, for example, the idea that not every day is a goed one for
coding. If we are coding and become aware that we are muddling about—
taking four steps backward for each three forward—it would be a good
idea tc put aside the coding for some other activity requiring a different
set of skills and perhaps a different frame of mind, such as documenta-
tion. But if the only work being done at the moment is coding, there is
no escape from coding except by escape from the program altogether.
Since we can seldom afford to drop work altogether—or at least to be
seen dropping work altogether—we would then have to try coding anyway,
in spite of our best knowledge of ourselves.

The external envircnment also varies from day to day. If, for instance,
the computer is down for installation of some new equipment or for fixing
some hardware bug, machine testing must cease altogether. If all that is
going on at the moment is machine testing, then progress grinds to a
frustrating halt. If there are a number of phases in progress at once, we
merely turn to some other activity.

Another consequence of “lock-step” programming is that, at any given
moment, certain facilities are likely to be overloaded at the same time
that others are lying fallow. Program testing makes the biggest demands
on machine time, and if everyone is testing at the same time, the ma-
chine may be overloaded. Documentation puts a big load on the secre-
tarial staff: the same secretaries who were idly waiting for work while
the machine was overlcaded with testing runs now find themselves
swamped with typing and such as everyone starts to document at the
same time. And because certain people in the project are specialists in
certain phases of programming, they, too, are alternately idle and
swamped.

The ideal project design, then, would avcid having all its parts in the
same stage of programming at the same time. However, if cne were to
believe typical management texts, cne would get precisely the opposite
impression. What saves us, more often than not, is the lack of true
boundaries between these stages, so that a litle debugging is already
going on during problem definition and a litile problem definition is still

Variations in the Programming Task 135

going on during debugging. The same kind of “smearing’ is done by the
goocd pregrammer—whether consciously or unconsciously-—so that when
he runs intc an cbstacle in one area of activity he switches to ancther.
Indeed, cne mark of a pocor pregrammer is that he can be found sitting
around deing nothing whenever there is machine trouble and he cannot
get his programs run. If he can’t do the cne thing scheduled for today,
he is lost.

Of course, not everybody is equally good at all things, and we like to
work on the things we do best. The widespread inability to write plain
English, for instance, nc doubt explains why documentation is a universal
festering sore. Even when there is nothing else to de, deing documenta-
tion is never a voluntary alternative. We can try to arrange the work of
our project so that each person specializes in what he does best, but this
approach has at least two drawbacks. First of all, we probably will find
nobody toc do the documentation work; and, second, nocbody will learn
very much.

We can, on the other hand, maximize the rate of learning by assigning
each programmer to be a specialist in that part of the work he does feast
well. In this way, alsc, we can ensure that each one will jump at the op-
portunity to switch to some cother task when he runs into a snag.

The multiplicity of different types of work under the rubric of “pro-
gramming"” also accounts for a certain exaggeration in psychclogical
studies of programming. If we test for performance on a small program-
ming project, the resulis are likely to be dominated by performance on
one phase of the work. For instance, in a problem which emphasizes
painstaking attention to detail, certain programmers will show a marked
superiority to others. The situation might reverse itself if the prcblem
posed required the ability to sit back and take the broad view of things;
therefcre we could well have twe studies which showed thirty-to-cne
differences in perfcrmance.

When we put these same programmers on a somewhat larger problem,
however, we may see these extreme differences reduced, for each type of
programmer now finds scme parts that are suited to him and scme parts
that are not. With larger problems then—such as we reported in the
previcus secticn—we will more likely find differences of two-cr three-to-
one. Even these differences, moreover, are no |onger attributable to
differences among the programmers, but to certain external factors, in
many cases. Not that the programmers do not differ, but simply that these
differences average out over a project that requires all sorts of attitudes
and skills.

All the same, there is a certain truth in the thirty-tc-one ratio, if we
but knew how to expleit it. This ratic is probably representative cf the
differences in ability among programmers—in different stages of program-

136 Programming as an individual Activily

ming work. Thus, a project that can divide the effort not into programs
but into types of work might realize gains in productivity of this magnitude.
Notice that this is precisely what happens when egoless programming is
practiced; and as long as programmers “own’ programs rather than,
possibly, “owning” programming stages, we are not going to realize these
potential gains.

With this argumenl, then, we come the full circle, back to the attempt
to isolate the truly different kinds of activity that programmers do. Even
acknowledging the fuzzy boundaries between the classical divisions, we
will be able to do some fruitful subdividing as we go aleng. For example,
consider the testing stage. We can immediately isclate at least three
different activities (from a psychological point of view), which are lumped
under this single title:

1. Detecling the presence cof errors.

2. Locating errors which are known to exist.

3. Correcting errors that have been found.

In a very broad way, we can see that these three activities could require
different combinations of skills and personality traits. To detect errors,
the programmer must have a conniving mind, cne that delights in uncover-
ing flaws where beauty and perfection were cnce thought to lie. Perhaps
a touch of parancia helps—the kind of thinking that automatically con-
jures up the worst imaginable case.

For locating errors, however, we want a person who has the persistence
of a mother-in-law and the collecting instincis of a pack rat. In cne pro-
ject, for instance, a bug in the operating system was known tc exist for
six months before it was finally tracked down by one programmer who
had saved every dump taken in that pericd—three nine-foot stacks of
paper! Late at night he could be found poring over his dumps—searching,
groping, rummaging about for some slight clue that would have escaped
the eye of a Sherlock Holmes. Months went by, and then, in ocne dump, a
single bit which didn't seem gquite right. Back he went through all the
other dumps, until he had ferreted cut two more cases, then five, then a
dozen out of the hundreds. These twelve cases he arranged on a large
table, first in one pattern, then ancther, until some threads of connection
became visible.

By this time, his mind was so specialized to the cases at hand that it
was fruitiess for him to try to explain his hypothesis to anyone else. It
seemed to him that cne of the data channels—when certain conditions
were just right—was picking up a bit in one of the positicns of its address
register, thus causing a single character to be stored cut of its regular
sequence. Since this error usually occurred in the middle of a large data
block, the stray character was usually wiped out by subsequent characters
in the block, but in a few cases—the twelve—the character was found just

Variations in the Programming Task 137

past the end of the blcck. He tried tc convince the engineers, but they
would not listen., Programmers always say that there are machine errors.
So, finally, he constructed a program that would force the channel intc
just the right circumstances with an increased frequency. Then, when he
made the error occur with more regularity, he was able to define the
circumstances with enough precision to find on the schematic exactly
the circuit card that must be in error. The engineers were impressed with
his diligence, sc they finally granted him a test of the card—and found
that he was right!

Such programming sleuths are not rewarded for their discoveries with
the fame of a Pasteur or a Salk. Nonetheless, they are satisfied—beyond
the comprehension of ordinary men—with the work itself. And yet, such
a bug-finding genius may be rather inept at correcting a bug once it has
been found—indeed, the found bug has lost its interest for him. If forced
to make the correction, he will, more often than nct, introduce a much
cruder bug in its place, or else create a clumsy and inefficient patch. For
carrections that fit into a pregram with a certain elegance, another type
of programmer is needed.

Correcting errors in other pecples’ programs requires a sense of fithess
and proportion, plus an extensive repertcire of tricks for one machine
or language. The "paitcher,” in other words, must have a “synthetic”
mind, as opposed to the "“analytical’ mind of the “bug-finder.” To be
sure, the same person coufd excel at both of these tasks, but we are
more likely to find that a team can do a far better jeb than any of its
members—if they have the sense and humility to recognize their talents
and shortcomings.

SUMMARY

Pregramming is not an undifferentiated mass. Software designers often
forget that professionals need different types of tcols than do amateurs.
Managers often forget that programming work breaks up into stages,
and not very neatly or linearly at that. And programmers themselves often
forget that they are trying to do difterent things with different programs.

The variegated nature of programming leads to confusion and compli-
cation in the work of software designers, managers, and programmers.
But most important for us, it leads toc confusion and complication in the
psycholegical study of programming. Just as we could not say in absclute
terms what is a “good program,” we cannot say what is a “good pro-
grammer,” “a good programming manager,” or, for that matter, “a good
piece of software.” As a result, we shall be forced to elevate the discus-
sion of programming by lowering the level of discourse: we shall only be

138 Programming as an individual Activity

able tc make conclusicns of general validity if we get down to much
more detail than is usually found in discussions of “what makes a good
pregrammer.” And perhaps we shall find that what makes a good pro-
grammer is much like what makes a good friendship—a mutual recogni-
tion and encouragement of individuality.

QUESTIONS

For Managers

1. Have you ever had an “executive” programming course? Describe what
you did, and how it relates to the job of the prcfessional programmer.
Also describe any practices in the course which misled you as to the
nature of pregramming,

2. How do you estimate the complexity of a programming assignment? By
examining the specifications? By listening to what the assigned pro-
grammer tells you? By taking several informed opinions?

3. How explicit are your assignments in terms of the relative importance
of the following?

Schedule

Specifications

Speed

Space

e. Documentation

f. Other factors

ooop

4. Describe the sequence of work planned for your current project. Is the
actual work proceeding according tc the original scheme? Do you
expect it to continue in this manner?

2. How close is your progress reporting scheme to the reality of the pro-
gramming work that goes on? What checks do you have to find out if
it corresponds to reality? Does your scheme achieve correspondence
to reality by forcing programmers tc work in patterns that conform to
the scheme rather than to the needs of their current task?

6. What steps do you take as manager to level the load on critical fa-
cilities?

For Programmers

1. Are you a prolessional programmer? What is it that makes you a
professional programmer?

2. Make a list of things that your software does for you that fifteen years
ago you would have had to do for yourself. Or don’t you know anything
about what software was like fifteen years ago? Do you think a pro-
fessional should know something about the history of his profession?

Variations in the Programming Task 139

3. Is your programming a balanced effort, or do you tend to favor the
work you like best? What steps are you taking fc improve your per-
formance in those areas where you are weak or where you dislike the
work? Or, altematively, what steps are you taking to see that you
can work moest in those areas where you excel?

4. What are the objectives on your current project? Make a list of them,
in order of impertance, and ask your manager if he will make a similar
list without seeing yours. Then compare the lists, and report on the
differences.

5. What do you do when the machine is down for a day or more, so
that you cannot meke any debugging runs?

6. Which of the following do you de best?
a. Detect subtle errors in output.
b. Locate errors in the code, once they have been detectied.
c. Choose correcticns that are simple and efiective.

What de yeou do 1o cvercome your deficiencies in the other two areas?

BIBLIOGRAPHY

Rosen, S., ed., Programming Systems and Languages, New York, McGraw-Hill,
1967.

Rosen has collected and annotated most of the important original papers on com-

puter software, particularly languages and compilers. The collection can be used

by the beginning professional proegrammer to get a sense of what has brought

his profession to the point in which he finds it today.

Sammet, Jean E., Programming Languages: History and Fundamentals, Englewood
Cliffs, N..., Prentice-Hall, 1968.

Whereas Rosen goes back to the original papers, Sammet tries 1o give the sense
of history by bringing all work, major and minor, intc one coherent pattem. Her
apprcoach is valuakle for two reasons. Flrst, in attempting to Bring pattern t0 this
potpourri, she succeds In displaying how rich and complex the paitern of pro-
gramming work really is. The second value to this approach is related to the first,
for a collectlon such as Rosen's of only the best and most successful work tends
to give the impression that there was much less experimenting going on. Sammet
successfully captures the flavor of trial and error {(more error than trial} which
has dominated software development. Of course, even she fails to capture the
flavor of all the errors which were {happily} never published. | can think of one,
called MYSTIC, which was so bad that it should be resurrected for the educational
purposes that only a horrible example can serve.

Metzger, Phillip W., Programming Project Management Guide, IBM Federal Systems
Division, April 1970.

Lecht, Charles P., The Management of Computer Programming Frojects, American
Management Assoclation, Inc., 1967,

These two documents represent a fair sample of the management school of pro-

gramming project management. Metzger's book i a guide for an IBM [nternal

course on programming project management—a course originated by Al Pietra-

140 Programming as an Individual Activity

santa and Joel Aron, and one of the original guldes. The Lecht volume is the effort
of the American Management Association on the same subject. Both volumes con-
tain useful information, as well as management pep-talk. The vantage point they
take, however, is well characterized by this sentence taken from the last page of
the Metzger collectlon:

“You know, it's no crime to want to work in some field other than management.”
You almost expect the next sentence to read: "Why some of my best friends aren’t
managers.” Given this elitist undercurrent in the thought of managers—or, to be
more precise, of the staff people who prepare courses for managers—is It any
wonder that the typical project management view of programming is rather remote
from the individuality of the programmer and his task?

Williams, R. ., Biochemical individuality, New York, Wiley, 1956,

Williams' highly individual book on individuality at the physical level ahould be
required reading for all those who suffer from the illuslon that “all programmers
look alike.” Can we really comprehend that some people have three kidneys and
some have one and then still believe that each programmer should take the same
amount of time to do the same job?

Tyler, L. E., The Psychology of Human Difference, New York, Appleton-Century-
Crofis, 1956.

Tyler does for man at the psychological level what Williams does at the physical

level. Is it a coincidence that both of these books saw the light in 1956, the year

FORTRAN was bom?

PERSONALITY
FACTORS

n one sense, the concept of personalily encompasses ail the individ-

uai variations we find among people. Even to the most casual ob-

server of human behavior, it is evident that intelligence and education

afiect persenality. When we use the term “personality” in the sense
of the previous sentence, we mean the totality of personal character-
istics by which we ordinarily identify pecple—a kind of summary of the
person. In this sense, one’s personality is one's identity, a concept which
is neatly illustrated by a study done in one computing installation.

The Mad Bomber

In a remote batch environment, the operators in the machine room may
rarely, if ever, interact directly with the programmers whose jobs they
run. Under the circumstances, we might expect that operators will not

141

142 Prograrnming as an Individual Aclivily

know much about the personalities of their pregrammers, but this is not
the case, Perscnality, being the totality of factors centributing to our
individuality, is displayed in everything we do or say. In particular,
it is reflected in our programs, and, even more particularly, in how those
pregrams lock to the machine cperators.

The chief systems programmer, whe, by the nature of his duties, was
in face-to-face contact with beth programmers and operators, had ob-
served that the operators often had disparaging comments to make about
certain programmers. As he was attending cur seminar on “The Psy-
chology of Computer Programming,™ he decided to study these comments
with an eye lo correlating them with specific programming practices. His
most interesting findings, however, had to do with the personalities of
two of the programmers.

Of the seventy or so programmers using this machine, these two stood
out in the comments of all the cperators. Even operators who worked on
different shifts and therefore had no opportunity to discuss such matters
agreed that these two programmers were worse than any of the others.
Upcon further investigation, the chief systems programmer found that
these opinions had been formed largely on the basis of the abnormal
terminations—dumps and “bomb-cuts” of the entire system. Such ab-
normal terminations were extremely rare events—except for the work
of these two individuals—and they were also most annoying to the
opéerators. As there were no regular channels by which the operators
could communicate with these programmers, they could only curse
among themselves each time a “bomb-out” occurred.

The systems programmer began to save examples of these disaster
situations, and after he had gathered enough to form a definite pattern,
he interviewed each of the two programmers. The first one, he discovered,
was an engineer who had no pregramming training whatsoever. His en-
gineering group was highly dependent on the results from a single pro-
gram. This pregram had been left in charge of the engineer when the
criginal programmer had left. Not knowing anything about procgramming
—and being too shy to ask for help—he ran the program on a trial-and-
error basis, changing now one card, then another, until he got the re-
sults he wanted. In the process, he was giving the operators fits, though
he was, quite naturally, unaware of any disturbance.

The second programmer—the worst offender of the two, and affec-
ticnately known among the operators as “the mad bomber’—turned out
tc be a rather different case. Not conly did he have programming ex-
perience—he had fifteen years of it. In that decade and a half, he had
—acecording to him—programmed eleven different machines in fourteen
different languages. Moreover, he was—again according te him—an ex-
pert in all of them. Small wonder his programs bombed the system: they

Personalily Faclors 143

were far too abstruse to be understoced by mere operators or lo be
handled by some operating system which he himself had not written.

The number of times this expert’s programs bombed the system had
evidently been magnified by a factor of three or mere by the simple
expedient of resubmiiting the offending decks without change. According
to him, the probability was so small that his programs could be wrong
that it wasn’t worth his precious time to lock at them until they had been
rejected three times in a row. At that point he would stomp intc seme
other programmer’s office and demand to know why the system was not
working properly.

Even after his errors had been patiently pointed out to him, the bomb-
ing was not finished. In cne example, found by the systems pregrammer,
the bomber had made an error in job contrel in the first step of a three-
step job. After having been shown the error and how to correct it, he
resubmitted the job only to have it bomb the system once again. Back it
went for another bombing, and another, after which he had the same
errcr pointed out in the second step of the job! And even that was not
encugh. The whole cycle was repeated for the third step, which—as we
might have guessed—coentained precisely the same error.

Beth of these cases are archetypical examples of how personality
affects programming performance, although the personalities in the two
cases are as different as a mouse and a lion. The engineer's bombing
problems were scolved by sending him to a programming course—giving
him the aid he was too shy to request for himself. For the “expert,”
however, education was no scluticn. Inasmuch as he held an absolute
faith that he knew everything about programming—or at least everything
worth knowing—he could not be convinced te attend a course or even
to listen to the advice and counsel of anyone else. Eventually, his
preblem was “solved” by permitting him to take his services elsewhere,
and, for all we know, the “mad bember” still lives today.

PERSONALITY CHANGES

Although there exists nc universally accepted definition of personality,
we can take the following® as a good working model for our study of
perscnality as it affects—and is affected by—programming:

Personality is the integratlon of all of an individual’s characteristics into a
unique organization that determines, and is modified by, his attempts at adapta-
tions to his continvally changing environment,

* [r. Krech and R, S. Crutchfield, Efements of Psychology, New York, Knopf, 1969.

144 Programming as an Individual Activity

The first thing in this definition that may surprise some readers is the
clear statement that perscnality is not fixed. Nevertheless, there is a
certain enduring quality to personality, and therefore personality dees not
change when there is no reason for it to change, although it may some-
times seem that way. For instance, a relatively mild-mannered and amiable
programmer began to shun his fellow workers and toc react rather
testily to attempts to help him in his work. Such behavioral changes
often arise quite slowly, and censiderable time may elapse before we
recognize the change. Sometimes, in fact, the condition engendering
them is a transient one, and the behavior change reverses itself before
we have had time to identify it as a “change in personality.”” But when a
change persists, there is always a reason behind it, althcugh the reascn
may not be related in any direct way to the actual behavior.

In our example, the change in the mild-mannered programmer came
to the atiention of his manager through the complaints of other pro-
grammers. In an interview, the programmer acknowledged that he had
noticed a change in his behavior, but was at a loss to account for it.
The manager speculated on the cause, but had nc more success than
the man himself. After a few weeks, however, this programmer had to
leave work early with a racking toothache. Upon visiting a dentist—
semething he had failed to do for several years-—-he was informed that
four of his teeth were sc badly infected that they would have to come
out immediately. Within a week after the extractions, his former sweet
self had emerged, the source of his transformation having been the
debilitating effect of the infection upon his health.

Unfortunately, it is easier to identify the scurce of a personality change
after the fact than before. We cannot conclude that whenever a friendly
person turns unirtendly he should have a few teeth removed. The same
personality change could have come about from any number of causes—
physical, mental, or strictly external to the man himself. In one inslance,
a man allending programming school was doing very poorly, in spite of
the fine recommendations he had brought with him frem his home office.
The director of the school was about to fail him and send him home, but
first took the trouble to take the man to lunch to give him a chance to
acceunt for himself. Not untll dessert was served did the poor student
reveal the fact that his wife—1500 miles away—was dying of cancer.
Geing to the school had represented an important opportunity for his
advancement, and his wife had insisted that he go. But, though he tried
te fulfill her wishes, he was unable to concentrate on study. Not wishing
to earn special favors for himself, he had not teld anyone at the school
of the situaticn. Were it not for the director's patience, he would have

been sent home in disgrace for no mere of a crime than being distraught
over his wife's dying.

Personality Faclors 145

Situations such as our last twe examples present a grave meral dilemma
for a manager, at least in our society where one's “private life” is not
suppesed to enter into office affairs or be examined by one's manager.
However, since there is no way to determine from the symptoms whether
the cause lies In the office or cut, a manager has no choice but to try
to understand behavior that is disruptive to the work at hand. If the
scurce of trocuble does lie in the office, it may prove an easy matter o
rectify. Perhaps the procgrammer dees not get along with his office mate.
Unless he is unable to get along with any office mate, the “personality”
problem can be erased by a change of venue.

Even if the source of difficully cannot be so trivially removed, an ad-
justment may at least alleviate the problem. For example, if a pro-
grammer has beccme irascible in his dealings with the machine operators,
it may be a result of pressures put on him tc complete a troublesome
pregram whose bugs he cannot locate. If he tends to be an assertive per-
scon, he may be unwilling to admit that he is having trouble at all, much
less to seek assistance. Prohibiting him from entering the machine room
will only eliminaie the symptom, and his trouble will shortly manifest
itself somewhere else. If the true scource of difficulty can be detected,
he may be given assistance without his having to admit that he is in
trouble. He may be anncoyed at this impugning of his programming
ability, but once the bug is found, he will probably scon forget it. We all
feel, af times, that a strong medicine is worse than the disease, but at
least its effects are over sooner.

In all of these cases, no effective action can be taken to correct or
adjust for a personality preblem without uncovering s true source. Psy-
chological awareness can help in locating the source of such a problem,
but psychelogy has not developed to the peint—and never will—that it
can be used for diagnoses without the aid of the person himself. Nobody
can tell from watching a man work that his wife has cancer, or that his
teeth hurt, or that he fears he will not meet his deadline. NO manager
will be successful if he tries to make psychclogical judgments of people
on the basis of external symptcms. But, if he takes those symptoms as
indicaters to attain further information before taking action—infermation
which can only be cbtained, if at all, through the people themselves—his
acticns are quite likely tc be rewarded with success.

PERSONALITY INVARIANTS

If personality "'is modified by . . . attempts at adaptaticn,” we can use
perscnality changes as signals that a person’s environment has changed.
But changes in personality—although they may represent extremely

146 Programming as an Individual Activity

serious situations—are not that frequent. What may be of more concern
in the long run is the way in which a programmer’s meore or less in-
variant perscnality affects his work as a programmer.

One popular view of personality—popular both with psycholegists and
with the man in the street—is that personality may be characterized by
a collection of traiis. This perscn is said t0 be "conservative, stable, and
shrewd,” and ancther is described as ‘“shy bul imaginative.”” The in-
tuitive appeal of such descriptions is compelling, and we might be
tempted toc try describing the traits that make up the “ideal pregrammer
personality type.'" Because of the variety of situations that are subsumed
under the name of “programming,’” the best we can hope for is a relaticn
between certain traits and certain types of pregramming work.

We need not discuss the various “trait thecries,” for we are not seeking
such exactitude, even if it existed in the theories. Also, if the thecries
are controversial, or inexact, that need not mean that they are not
suggestive. For example, cne pair of traits often used is "trusting-
suspictous,” and we might ask ourselves at which end of the spectrum
it is best for a programmer tc be. Clearly, when cne is debugging, it is
best to be suspicious, almost to the point of parancia. On the other hand,
in any werk with other people, it is best to have a certain amount of
trust, for people who are not trusted are not trustworthy. In some situa-
tions, however, these two needs come into conflict. If a programmer
works in a “preduct test” group, he must be suspicious of other people’s
programs. If someone tells him, “Don’t bother to check that. | fixed it up
and checked it myself,”" his impulse as a trusting person is to believe,
and the requirements of his job are to be suspicicus.

The product test precgrammer, then, is in a quandary, but how sericus
this guandary is depends on his other personality traits. If he has a great
need to be liked, it will bother him to have to seem to show unfriendliness
by calling someone’s word into guestion. But, if he is of more independent
mien, or even a bit antagenistic to other people, suspecting others’
statements about their programs may not bother him a bit. Thus, all other
things being egual, certain people will find the job of product test pro-
grammer easier psycholegically.

As usual, all other things are never really equal. Such personality traits
as emotional stability or instability will affect how well a person can
tolerate being in any paradoxical position for an extended period. Because
the pericd of time is important, 8 manager can, by changing work as-
signments more frequently, relax the stringent personality reguirements
that might otherwise be necessary for the job of product test pregrammer.
This type of alternation of joebs is accomplished automatically through
egoless programming, for ne person is subjected to unrelenting assault
on his particular personality—the type of assault that forces people into
“attempts at adaptation.”

Personailly Factors 147

Through egcless programming, then, we sacrifice the possibility of
having each person always in the job for which his personality best
suits him, yielding, in this way, some potential efficiency for security
and stability. Morecover, the full potential for efficiency may not be lost,
since we are not likely te have had the perfect mix of persenalities in the
first place. Then, tco, *wearing the other man's moceasins™ has always
been a goed way to develop the perscnality trait of tolerance.

Aftempts to place each person in the job best suited to his personality
are subject te failure from ancther direction. Personality is not simply a
single surface layer, but runs through many layers. Identical surface
layers may conceal rather different—even quite opposite—interiors. A
“friendly” person may seem thal way because he is anxious to present
a goed impression of himself in a situation where he is insecure; or,
his friendliness may be a manifestation of his cemplete relaxation in the
situation. Evidently, we must be more than a little cautious in inferring
the inner layers of personality from simple observations of the outer.

Ancther factor that distorts our perception of someone’s personality
is that many pecple tend to show a different face to people in authority
than to their associates or to their employees. Also, many pecple behave
differently with pecple for other reascons, such as sex cor age. An amusing
instance illustrating this principle occurred late one night in the test cell
of a computer manufacturer where a programming team was testing a
new machine. At about twe in the moerning, a plant guard discovered the
team at werk, and he became guite upset and a little arrogant as he
explained to the group that women were nol permitted to work in the
plant after midnight. One of the three young men in the group rose to
the defense of his manager—the one female among the four of them.

“You mean there are no circumstances under which a woman can
work here after midnight?” he demanded.

“Nene,” was the reply, clothed in tones of authority. “You'll have to
get out of here immediately. I'll escert you to the exit.”

"But we have permission of the plant manager. We must work at night
because the machine is not available during the day.”

The mention of the plant manager introduced a faint note of uncer-
tainty in the guard’s answer: “The only time a woeman can work here
after midnight is when a manager is present.” Then, surveying the four
members of the team and reassuring himself that not cne was over thirty,
he regained his positive veice. “But there is no manager here, is there?”

At this peint, the female member of the team stepped forward and with
her most seductive smile and managerial manner of speaking said,
“But { am the manager of this group.”

The guard’s confusion was so great that he lost control of his jaw,
which simply hung cpen for a few moments while he considered the
implications of a woman, a young woman, an atiractive woman, being a

148 Programming as an Individual Activity

manager. When he regained his composure, his voice was soft and
subservient. “Oh, | see. | beg your pardon, ma’am. I'm sorry | disturbed
you. It you'd like, I'll come around here every hour or so and see i
things are all right.”

Sensing his discomfort, she, too, softened her tone to cne of managerial
largesse. “That won't be necessary, I'm sure. But thank you for offering.
We appreciate the job you're doing.” It was a clear dismissal, and he
understood it, turning around withcut another sound and walking off
into the dark recesses of the empty test cells. If he had had a tail, it would
have been between his legs.

Now, a plant guard is not a programmer and may not be as familiar
as programmers with the common programming situation of women,
young women, or even attractive ycung women in positions of authority.
Nonetheless, programmers as well as plant guards have personalities—
personalities that change their external appearance in response to the
perceived social roles of the people around them. We should not be
surprised, then, when a manager is unable to understand why a pro-
grammer whe, with him, seems the very model of friendly, quiet coopera-
tion is, with his co-workers, aggressive, noisy, and generally difficult to
get along with,

CRITICAL PERSONALITY TRAITS

Measuring perscnality is difficult, and matching personalities to job
descriptions is perhaps even impossible; but isn't there some way we
can select those pecple whose personalities suit them for pregramming?
After all, if personality is important for programming, we cannot just give
up without trying. Perhaps we can gain something from consideration of
extreme cases, even if we cannot do very much with the general case.

The nature of the way that persenality interacts with programming
success is subtle, but we probably can make some assertions about
how personality traits may lead to programming failure. Although the
average pregramming manager would say that intelligence is more
important than persenality in programming success, very few could cite
cases of people who turned out not to be intelligent encugh to program,
but everyone knows of cases of people who were not temperamentally
suited to the pregrammer's job. It is in this sense that we can assert
that perscnality is more important than intelligence in programming.

if we lock more deeply into the cbserved dominance of personality
factors in pregrammer failures, we can easily understand why we are
more likely to make a perscnality mistake in hiring a programmer than
an intelligence mistake. In the first place, there is an enormous amount

Personalily Factors 149

of preselection of people, which places limits on who is likely to be
making application for a programming job—even as a programming
trainee. Part of the preselection is imposed in explicit hiring policies,
such as requiring a college degree, or even a degree in specific fields.
Possibly even more important is the self-selection that takes place be-
cause the uninitiated believe that programming requires “a lot of math.”
Not too many years ago, the external perception of programming was
so distorted that young men were advised to “study electronics” if they
expressed an interest in working with computers. Young women, of
course, were automatically excluded by this criterion, for young women
did not study to be “engineers.”

Whatever the faults of this preselection in excluding people who
might have made great success as programmers, it does have the
effect of largely eliminating people of below-average intelligence. Such
people, if they had presented themselves for jobs as programmers in
great numbers, might have failed in great numbers, making us feel a
need to measure intelligence of programmer applicants. But is there
no comparable selection process on the basis of personality, as well?
No doubt there is, but personality has many more dimensions than in-
telligence—although intelligence is not by any means measurable by a
simple score on an IQ or programmer’s aptitude test. Thus, selection on
8 personality basis is not likely to produce such uniform results with
respect to the needs of programming. Moreover, even if the schools,
say, did make a personality selection as strong as an intelligence
selection (and, make no mistake, school success Involves a large element
of personality), personalily is more changeable than intelligence.

fn fact, one of the few really reliable things psychologists can say
about these two aspects of a person is that intelligence is much less
responsive to environment than is personality. Marriage, for example,
is not likely to have a measurable effect on a college graduate's intelli-
gence, but it will most assuredly provoke personalilty changes that can
be perceived even by the untrained eye. Thus, 8 man who was a frivolous
playboy in his fratemity days might well surprise us with the con-
scientious programming job he now does; but if he was unable to write a
simple declarative sentence in college, marriage and family will probably
net help one bit.

What traits, then, would give an Indication of potential failure in a
programmer? We can speak on this subject only from anecdotal material,
for there have as yet been no formal studies of this question. Nevertheless,
we can probably say with assurance that someone without the ability to
tolerate stressful situations tor a period of a week or more is not good
programmer malerial—given the realities of programming work today.
We are speaking of professional programming, of course—where the

150 Programming as an Individual Activity

work and schedules are imposed from the outside. Amateur programming
is not such a stressful pastime, possibly because one's entire career does
not seem dependent on finding a particular bug by next Thursday.

Because of the diversity of programming work, people who are not
in some measure adaptable to rapid change will probably have trouble
as professional programmers. It is unlikely that a programmer will go
through a month—not to speak of an enlire career—without having to
face the psychological shock of having his work pulled out from under
him, or at least changed sufficiently so that his previocus efforts become
garbage.

And speaking of garbage, one of the most easily identifiable personality
needs in programming is a modicum of neatness. We are not speaking
here of personal grooming, though in one case a programmer actually
smelled so bad that nobody could sit next to him leng encugh fo lock at
his listings. What we mean is a slight compulsion to keep one's papers
in order, without which the computer's paper-generating capacity in-
exorably leads to grief. One computing center selects ils programmer
trainees by giving a test and choosing the candidate who turns in the
neatest paper, not the one with the highest score.

Another essential personality factor in programming is at least a
small dose of humility. Without humility, a programmer is foredoomed
to the classic pattern of Greek drama: success leading to overconfidence
(hubris} leading to blind selt-destruction. Sophocles himself could not
trame a better plot (to reveal the inadequacy of our powers) than that of
the programmer learning a few simple techniques, feeling that he is an
expert, and then being crushed by the irresistible power of the computer
(the Deus ex Machina).

The other side of the coin of humility is assertiveness, or force of
character. A programmer’s job is to get things done, and getting things
done sometimes requires moving around cobstacles, jumping over them,
or simply knocking them down. The humble person is acutely aware of
the ways in which he may be wrong; his critical mind tends {0 dominate
his force of character. Now, although it is true that force of characler
without a critical mind is like a steam boiler without a safety valve, a
critical mind without force of character is like a safety valve without a
steam boiler. There is no danger of explosion, but then there is no
possibility of getting any work done, either.

We have some empirical evidence from an unexpected source on the
question of humility versus assertiveness in programming. In perusing the
data from our study designed to test the effect of instructions, we plotted
the lengths of time each programmer spent studying his runs from the
batch system. When length of study period was plotted against fre-
quency, we found we had two distinct types of graph, as shown in

Poersonality Factors 151

“"HUMBLE”

“ASSERTIVE"

Frequency of work periods plotted against log base 2 of
period length in minutes {e.g., 1 means 1 minute, 2 means
< minutes, 3 means 4 minutes, and 5 means 16 minutes)

Figure 81 Two programmer personalities.

152 Programming as an Individual Activity

Figure 8-1. The top graph shows only cne peak in the plot of frequency
versus logarithm of time period, and the second shows this peak with
another peak added at the low end. This second peak is a preponderance
of one-, two-, or three-minute work intervals, which we were able to
track down to corrections of careless coding or keypunching errors.

We took the trouble to look for such a pattern in other work, particularly
when we were studying errors in PL/l syntax. Previously, we had over-
locked this pattern because we only asked the programmers in the
syntax study to turn in runs with errors. When we started collecting
all runs, as we had in the “instruclions” study, we saw the same pattern
in a different way. Certain programmers, once they got out their coriginal
syniax errors, essentially never made another syntax error. As they made
their modifications, one or two at a time, they carefully and methodically
checked and punched them so that every run afler the first few was free
of syntax errors. The other programmers, however, and they formed
about one-third in this group, consistently fell into a pattern of hasty
changes so that two runs were almost invariably required to make a
single correction. After the first run, the programmer would make a
one- or two-minute work period to fix the syntax error he would not have
made in the first place had he been inclined {0 a more humble view of
his abilities.

In Figure 8-1, we have taken the liberty of labeling the one graph
“humble™ and the other “assertive.” Although the patterns are definitely
there, and although they are stable patterns (the same programmer does
the same thing on different programs), we really cannot yet say that
these patterns correspond to the traits “humble” and ‘‘assertive” as
measured by some standard psychological testing instrument. This is a
clear area for further research—research that will be important, for ex-
ample, not only in the selection and training of pregrammers, but in the
design and evaluation of on-line systems. We might conjecture here that
“humble” programmers perform much better in baich environments,
and “assertive” ones will be more likely to shine on-line, where their
assertiveness will not be severely penalized, and their willingness to push
ahead will blast them through problems that will leave the *humble”
programmer just gaping at the terminal,

Last among the essential personality traits for pregramming, we
might list sernse of humor. The computer “doth make fools of us all,”
s0 that any fool without the ability to share a laugh on himself will be
unable to tolerate programming for long. It has been said with great
perspicacity that the Programmers National Anthem is *aaaaahhhhh.”
When we finally see the light, we see how once again we have fallen
intc some foolish assumption, some oafish practice, or some witless

Personalily Factors 153

blunder., Only by singing the second stanza, “ha ha ha ha ha,” can we
long endure the role of the clown.

PERSONALITY TESTING

The impressionistic picture we have painted of the ideal programming
personality—ideal by virtue of exclusion of extreme traits that should
lead {o failure—is not the usual one of a “rigid” person. There seems
tc be some current folk wisdom which imagines that, because pro-
grammers work with rigorous machines, they must themselves be rigid.
fn effect, the opposite is true, for since the machine is so inflexible, the
prograrmmer must be flexible enough to supply the elasticity needed in
matching any system’s abilities to real world needs. Is it possible, then,
that we could introduce some system of personality testing to help us
overcome our folk prejudice in the selection of programmers or pro-
grammer trainees?

There exist today a number of “personality tests,” some of which
have been used on occasion to aid in the selection of pecople as po-
tential programmers. A number of these have been developed for,
and used primarily in, the detection of personality disorders—the famous
Rorschach Ink Blot Test, the Thematic Apperception Test (TAT), and
the Minnesota Multiphasic Personality Inventory (MMPI!). The MMPI, for
Instance, was developed on the basis of empirical information arising
In part from a study of institutionalized psychotics, since their personality
characteristics had supposedly been well determined by trained psycholo-
gists and psychiatrists. ““Normal” people were also used, but the main
thrust of the MMPI was to aid in diagnosis of mental iflness, not in dif-
terentiating among various “normal” personality types or traits.

Naturally, we feel that mentally ill pecple are not what we are looking
for when we hire programmers—although there is no empirical data to
support or contradict that view. The question of whether to use this type
of test for hiring programmers, however, is not one of effectiveness or
appropriateness, but simply one of the ethics of normal hiring practices.
Is it appropriate to give tests for mental illness to anyone applying for
any kind of job?

The answer to this last question is not limited to programming, so we
shafl sidestep the ethical issues involved. But what about personality
tests that have been devised as a way of selecting people for jobs or
even for careers? A typical examination of this type is the Strong Vo-
cational Interest Blank. (Strong is the name of a man, not an adjective
suggesting that the test measures strong interests.) In tests such as

154 Programming as an Individual Activity

this, interpretations are based on a comparison of “scores” with sets of
scores obtained from people already in various prefessions. Thus, if a
career counselor had given this test to a high school student, he would
compare the student’s score, or profile, with profiles considered “typical”
of various professions. The counselor tries to determine the professions
that most resemble the student in profile, and then, presumably, he
recommends that the student choose his career from among that set.

In hiring, of course, the employer is usually interested in one or, at
most, a few types of work. By comparing the applicant with each ap-
propriate profile, he may make a judgment as to whether or not that
applicant possesses a suitable personality for the job. Now, how suitable
is this procedure likely to be, given what we know about the relationship
of personality to programming?

The first weakness of this procedure is that there may be no profile
for the group called “programmers.” A number of firms have used the
Strong test for selecting programmers in the absence of programmer
profiles by making a judgment that a programmer is “like” a mathema-
tician, engineer, writer, cr what have you. Since the basis for these
judgments is pure speculation, such selection procedures could have
been equaled by throwing dice. Throwing dice, however, does not have
the right sound to it. A personne! manager can say, “We use the Strong
Vocational Interest Blank to help us select programmers.” This will cer-
tainly impress his manager more than saying, “We throw dice t0 help us
select programmers.”

Now, however, we have a profile for programmers (Perry and Cannon,
1966)—and it personnel managers actually use it as intended, something
better than dice-threwing might be accomplished, though there are many
reasons for doubting it. For instance, which type of programmer are we
talking about? Or will we have separate profiles for systems programmer,
applications programmer, product test programmer, mamntenance pro-
grammer, and so forth?

Even assuming that the profiles are available with sufficient resolution
of job descriptions, do they really reflect what we want? After all, these
profiles are obtained by testing people already in the profession, nhot
the people we would necessarily want to be in it if we knew what we
wanted. For old, established, and stable professions, it may be valid to
assume that people in the professicn are, by and large, the ones who
should be in it—even though they may have been steered there by the
Strong Vocational Interest Blank, compieting the cycle of a seli-fulfilling
prophecy. But surely we are not in that advanced state of knowledge
about programming as yet. There is, on the contrary, reason to believe
that employers, at least, are not at all satisfied with the average pro-

Personality Factors 155

grammer they employ. Why then should this group be used as a8 tem-
plate into which all programming applicants must fit?

One other peint deserves mention in this regard—the question of
“cheating.” Essentially all psychological tests—certainly including all the
personality tests—assume that the psychologists who made the tests
are smarter than the people who take them. Indeed, it we were to take
a personality inventory of people who are altracted to psychological test-
ing as a profession, we should probably find that these peaple generally
hold themselves to be smarter than other people. Perhaps it could not
be octherwise, for how would they get evidence to the contrary? But just
because they believe they are smarter does not mean that they are
smarter.

In a way, a personality test is an intelligence test—a matching of wits
with the person who made the test. Suppose, for example, an applicant
for a programming job takes a test where he is asked to agree or disagree
with the statement, “When | concentrate too hard on a problem, | often
get a headache, which keeps me from working.”" Anyone who would be
stupid enough to answer “agree” to that statement probably isn't smart
encugh to¢ be much of a programmer. As we know, applicants for pro-
gramming jobs are likely tc be a rather clever bunch, so we can assume
that a great deal of “cheating” will take place if they are given such
tests. But that should not worry us, for if they cheat successiully, they are
probably going to have a number of the critical personality traits we
desire—adaptability to sense the direction of the test, ability to tolerate
the stress of being examined by someone they don’t know under as-
sumptions they canncot challenge, assertiveness to do something about
it, and sense of humor enough to enjoy the challenge.

Psychological testers, of course, will deny the possibility of such
cheating, or at least pooh-pooh its importance or frequency. But cheating
is practiced among programmers. One large company had hired a psy-
chological consulting firm to derive a personality profile for them to use
in the hiring of programmers. As usual, the profile was to be based on
a group of people who already were programmers in this company—with
the added feature that only the acknowledged *best’ programmers in
the company were to be used (although it is not at all clear that we want
a programming stalf composed entirely of “best” programmers).

The programmers to be tested ftor creating the standard were chosen
by the criterion of having been selected to altend a company-wide pro-
grammers’ meeting. A few hours were set aside for the administration of
the tests, but when the psychologist arrived at the testing room, he
discovered that there were 60 people to be tested instead of the 30 he
had anticipated. He did not have enough test blanks, but since this

156 Programming as an Individual Aclivity

particular persomality inventory was in two parls, the problem was
solved by having half do part A first and halt do part B. At the conclusion
of the first half of the session, the papers were exchanged and the
psychologist addressed the group with the standard instructions, terminat-
ing with the perfunctory question, “Are there any questions?’ To his
utter astonishment—since the group had already completed one-half of
the test, one of the programmers raised his hand.

When the psychologist regained his composure enough to call on the
questicner, he got the perfectly straight-faced query, “Are we supposed
to use the same personality on this half as we used on the other?”

The psychologist, who did not seem to be as adaptable in the face of
stress as the average programmer, turned red in the face, then sputtered
for a while before he managed to say in his most kindergarten-con-
descending tone, “You're supposed to answer the questions honestly,
to the best of your ability.”

“What kind of fools do you take us for?” was the reply from another
of the pregrammers, at which point the whole room broke up in waves
of conspiratorial laughter.

PERSONALITY TESTING OF
PROGRAMMERS

With all of these cautions about personality tests in mind, we may
ook at some of the results of personality testing of programmers. David
B. Mayer (1968) has provided a useful survey of some of the results with
the Strong Vocational Interest Blank and other testing instruments, and
the reader with a stronger interest in the Strong Interest Blank than we
shall satisfy should look there for further illumination. Mayer first ap-
propriately cautions that the author of this instrument does nof cfaim that
it predicts performances on the job. What it does is to elicit information
regarding the person's interests. The relationship of a person’s interests
to the kind of job he deoes is left to the user to decide.

Mayer points out that the Strong Blank did show certain differences
between the programmers tested and the general population, and he
offered a few selected examples of the type likely to catch the public
interest. For instance, more programmers “like conservative pecple” and
fewer “like progressive people” than do people in the general population.
After arousing the reader’s interest with such titillating examples, Mayer
lowers the boom. He asks, “Can we look at individual items in the SVIB
to see if these indicate anything in regard to the general interest pat-
fern that should be the pattern of a successful programmer? The answer
to this is a decided NO.”

Personality Factors 157

Why is Mayer so emphatic in rejecting this kind of game with individual
strong ilems? Because, in the first place, the instrument was only in-
tended to be used with an analysis of the entire pattern of 400 responses.
To make such an analysis, one would have to use a scoring key worked
out on the basis of a large sample, such as that developed by Perry
(1966). Perry's scoring key for programmers is not available for all users
of the Strong Vocational Interest Blank, but as of 1968, at least, a survey
of organizations revealed that none of them were using Strong, the only
personality test of any kind for which a programmer scoring then existed.

Other tests in the personality and interest area which were in slight
use at the time Mayer made his survey were the Thurstone Temperament
schedule, the Activity Vector Analysis, and the Kuder Preference Test,
although only about 10 or 15 out of 282 organizations were using any
such tests. In view of our reservations on the use of these tesis in
programming, it seems that many companies have made a wise decision
in waiting for much further work before plunging into personality testing
of their programmer applicants.

Even given the existence of valid testing instruments for testing in-
terest and personality, the personnel manager would be faced with the
nontrivial problem of which tests to use for which purposes and in what
order—and what to do with the results once he had them. Since tests
cost money to administer and to have scored, the burden of proof of
usefulness rests on those who propose that a test be used in preference
to simpler, more intuitive methods. Mayer refers to an “X-factor which
can be extracted from simple interviews, and which he suspects is related
to aptitude. My own intefviewing experience tends to welight my *X-
factor” more to personality items, as we have discussed. To be worth
its cost, a psychological testing instrument is going to have to do better
than X-factors—demonstrably better.

Along this line, it may be appropriate to cite the classical, though
perhaps apocryphal, story of one of the largest efforts ever made to
select pecple on the basis of psychological tests. During World War II,
the United States Army was faced with the problem of fighting on
widely different fronts, and they scon discovered that some men per-
formed very poorly in tropical areas and others performed very poorly in
wintry climes. In an effort to preselect soldiers for one theater of opera-
tion or ancther, a large study was commissioned, and hundreds of
questions were tested for correlation with battlefield performance. At
the end of this effort—which coincided with the end of the war and
was thus too late to be effective—only one question turned out to have
significant correlation with climatic influence on fighting behavior. And
what was that question? Simply this: “Which do you like better, hot
weather or cold?’ Has anyone ever thought of asking applicants whether
or not they like programming?

158 Programming as an lndividual Activity

SUMMARY

Because of the complex nature of the programming task, the pro-
grammer's personality—his individuality and identity—are far more im-
pertant factors in his success than is usually recognized. Nevertheless,
personality tests have not been used successfully for selecting program-
mers who will become good programmers. Part of the failure may be
attributed to the inadequacies of the tests, part to the inadequacies of
our understanding of programming itself, and part to the inadequacy of
our knowledge of which personality factors play what role in which part
of the programming process.

All the same, there seems to be evidence that critical personality factors
can be isoclated and associated with particular programming tasks—at
least in the sense of their possession rendering one incapable of per-
forming that task well. Consequently, attention to the subject of person-
ality should make substantial contributions to increased programmer
performance—whether that attention is paid by a psychological re-
searcher, a manager, cor the programmer himself.

QUESTIONS

For Managers

1. Have you ever had an employee display a sudden change in person-
ality ? What did you do about it, and what would you do differently today
in the same situation?

2. What personality traits do you look for in selecting your programmers?
What personality traits do you regard as favorable when evaluating
your programmers? Are they the same traits, and if not, why not?

3. Does your organization use personalily tests in selecting programmers?
If s0, are the people (including yourself) who use these tests properly
trained in their interpretation? Are you aware of any validation of the
effectiveness ¢of these tests for selecting pregrammers? Have you at-
tempted any validation within your organization, or for your own in-
formation?

For Programmers

1. What single personality factor do you feel is most useful to you as a
programmer? Do you feel that this factor was important to your em-
ployer when he hired you for the job?

2. What single personality factor do you feel is most harmful to you in
performing your job as a programmer? Was this factor considerad

Personality Factors 158

when you were hired? What are you doing to diminish the effect this
factor has on your performance?

3. Ask some of your coworkers to answer Questions 1 and 2 for you. Do
they give the same answers as you gave for yourself, or did you leam
something about yourself as seen by your fellow workers? What do you
intend to do about it?

BIBLIOCGRAPHY

Mayar, David B., and A. W. Stalnaker, Use of Psychological Testa in the Selection
of Computer Personnel, SHARE/GUIDE Presentation, October, 1968,

This survey was adapted from a tutorial presentation given at the Flith Annual

Conference on Computer Personnel Research sponsored by the ACM special Inter-

est group In personnel research—SIG/CPR. The papér gives a good raview of the

work of that group since its founding In 1962, and has a good bibliography.

Perry, D. K., and W. M. Cannon, A Vocatlonal Interest Scale for Computer Pro-
grammers—Final Report, Proceedings of the Fourth Annual Computer Personnel
Research Conference, Association for Computing Machinery, New York, 1966,
pp. 61-82,

Cronbach, L. J., Essentials of Psychological Testing, 2nd ed., New York, Harper,
1960.
A serious review of testing.

Wernick, Robert, They've Gof Your Number, New York, Norten, 1956.
A nonserious, and therefore very serious, review of testing.

Cronbach, Lee J., and Goldine C. Gleser, Psychofogical Tests and Personnel De-
cisions, 2nd ed., Urbana, lllini Baoks, 1965.

Even given the correct application and analysis of a psychologlcal test, the man-
ager Is faced with making a persennel decision which is not uniguely determined
by the test outcome. Or, alternatively, he must decide which tests to give, and
whether to test at all. These are not easy decisions, and there are no magic
answers, but this book takes a hard, and often mathematical, look at some of the
problems,

Hall, C. 5., and G. Lindzey, Theories of Personailty, New York, Wiley, 1957,
There are rather many theories of personality, each of which, no doubt, contains
more than a grain of truth and more than a gram of insights for the programmer
and programming manager. Hall and Lindzey give fair descriptions and critical
analyses of twelve of the most prominent personality theories, and their book
seems a good place to start exploring this field for the nonpsychologist.

White, R. H., Lives in Progress: A study of the Natural Growth of Personality. 2nd
ed., New York, Holt, Rinehart and Winston, 1866.

Much of the work on the development of persconality has concentrated on the
growing child, which is not much use to us until the time comes when we siart
recruiting child programmers. White, however, Is interested in the development
of personality in adults, Since he plcks up his cases starting about at college grad-
uation—the time when many programmers are taking their first jobs-—this book
is of more than average interest to programming managers.

White, R. W., The Abnormal Personafity, 3rd ed., New York, Ronald, 1564.

160 Programming as an Individual Aclivity

To discourage programming managers from being so quick to label as "crazy"”
people whose personalities they do not understand, White has written this careful
textbook, giving a number of cases of people outside the “normal” range of per-
sonalities. Books such as these, as opposed to overpopularized accounts of man-
agement “psychology,” are needed to subdue the instant psychotherapy movement.

INTELLIGENCE, OR
PROBLEM-SOLVING
ABILITY

orking with programmers, as we have seen, is working with
people that are above average in intelligence. Although no
formal study has been reported on the subject, we could
make a fair guess that the average programmer’s IQ is well
above the average even of college graduates, and that the more successful
programmers, by and large, have an even higher average Q. Not, of course,
that inteltigence is all there is to the matter—we have long since disposed
of that fallacy. But since above-average intelligence is something most
programmers possess, we are sure to understand programming better if
we look at it in the context of how programming work is affected by in-
tefligence, whatever that may be.

161

162 Programming as an Individual Activity

PSYCHOLOGICAL SET

For certain types of error location activities, psychological set proves
a major impediment. Numerous experiments have confirmed that the eye
has a tendency to see what it expects to see. For instance, when looking
rapidly over lists of words, a subject may encounter a “word” which is
actually not a word at all, such as *dack.’” The first influence of set can
be seen in the fact that the subject sees this nonword as a word, for he
finds it among words and thus has a predisposition, or set, to see it as a
word. Secondly, if the subject has been told that the words in the list
have toc do with “animals or birds,” he is quite likely to read “dack” as
“*duck.” If, on the other hand, he has been teld the words have to do with
“means of transportation,” he will much more often read it as “deck” or
“dock.™

Anyone who has ever tried proofreading is aware of this type of set
phencmenon, and anyocne who has ever tried to locate a mispunched
word in a computer program is more than just aware—he is scarred. In
such tasks as proofreading, it is hard to measure the difficulty in over-
coming the effects of set, for lexts that are sufficiently perfect to serve as
standards and sufficiently difficult to simulate actual conditions are
difficult to obtain. Not so in computer programs, for the computer pro-
vides an automatic testing ground for the efficacy of proofreading.

The testing that a computer can provide for this type of error in its own
pregrams has quite a2 range of subtlety and power. On the simple end of
the range lie the tesis for unrecognizable syntax, misspelled keywords,
and ill-formed constants. The type of cross-checking provided by symbol
tables, cross-reference lists, and flow analyses go one step deeper, but
are still essentially static. Dynamic checking for uninitialized variables,
flow-iracing, and subroutine call-tracing contribute to cleaning up such
typographical errors as may have sifted through the other levels. Never-
theless, no automatic system can be guaranteed to locate all such errors,
and we may expect certain improvements by attention to psychological
facts when the programs are written or languages are designed.

Related to the concept of “set” is the concept of “distance.” Not all
misreadings are equally likely, regardless of the set of the reader. Thus,
“daxk” is less likely to be mistaken for “duck” than was “dack,” because
the reader will have to make two letter transformations instead of one. In
information theory, twe “messages”—which may be taken to be strings
of bits—have a “distance" that can be cbtained by counting the number
of bit positions in which they differ. The importance of this measure is
that it indicates the number of bits that would have to be changed to
transform the one message into the other—as might happen if noise were
present in the transmission.

Intelligence, or Problem-Solving Ability 163

For the symbols of a programming language, just as for the words in a
natural language, such a simple measure of “distance” can onty be taken
as a first approximation to the likelihoed that one symbol will not be
mistaken for another. For instance, psychological tests have shown a
tendency for initial and final letters to be more significant in making dis-
tinctions. Thus, “gucr” would be much less likely to be seen as “duck”
than would *“daxk,” even though they each differ in exactly two letters
from “duck.’” Morecover, each pair of symbols cannot be assumed to be
the same distance apart as each other pair. Atthough the exact relation-
ship must depend upon the typescript used, letter pairs such as “x’' and
“k” would seem to be more readily confounded than such pairs as “x"
and “o.”

One of the first lessons the novice programmer learns is to make
careful distinction between his handwritten “zero™ and *“oh,” if somecne
else is keying his program. Most programmers, unfortunately, never ad-
vance much beyond this point in developing habits that will facilitate the
conquest of set as a programming hazard. For example, nc matter how
carefully one writes the zero in the symbol “STOP,” it will be mistaken for
an “ch” all along the line. The psychological distance between “STOP”
and “STOP” |s so slight—because of the similarity of the zero and oh,
the middle position of the single differing letter, and the set within the
symbol which strongly biases us toward the English word—that the
pregrammer who habitually makes such choices is headed for certain
disaster.

No doubt, the rather extensive success of automatic methods of de-
tecting such errers has lulled many programmers into carelessness when
choosing symbols. Nonetheless, there will always be some situations in
which the compiler or interpreter cannot make a sensible conclusion that
there is an error. In one case, a programmer had used both the symbols
“SYSTSTS” and “SYSSTSTS” in the same code and only discovered thal
one had been substituted for the other after hundreds of hours of errone-
ous simulations had been run, a becok had been published containing
these results, and several systems had been misdesigned on the basis of
their errors. All this could have been avoided if he had adopted the prac-
tice of keeping a minimum distance of two (dissimilar) characters between
his symbols, and perhaps ensuring that at least one of these differences
was at the beginning or end.

Mnemonic symbols are particularly susceptible of inducing a torpor in
the program reader. Mnemonic symbols expose us to misreading for sev-
eral reasons:

1. They tend to make programs seem “sensible by their satisfaction

ot our general set toward sense over nonsense.

2. They play upon our tendency to believe in the name, rather than the

denotation of the name. Who would believe that the symbo! “FIVE"

164 Programming as an Individual Activily

dencted a value of 47 But it did, in one case where the programmer
had to modify his cede and didn’t have time to change all references
to “FIVE." He did, however, have time to rerun the program—after
having taken much time to locate the source of difficulty.

3. They tend to give something less than an optimal “distance™ pattern.
English words, for example, are not random collections of letters.
Some patterns such as consonant-vowel-consonant, or consonant-
vowel-vowel-consonant, tend to occur more frequently. Even worse,
there are homographs such as “LEAD” and “LEAD,” which might
pop up in the same program from two different origins.

4. Optimal distance is further reduced because of regularities in the
way we abbreviate, leading to such ambiguities as “PEND,” for a
record that is held in pending status, and “PEND,” short for “end of
part P.”

We cannot abandon the subject of set errors without a comment on
comments. The whole idea of a comment is to prepare the mind of the
reader for a proper interpretation of the instruction or statement to which
it is appended.)f the code to which the comment refers is correct, the
comment could be useful in this way; but if it happens to be incorrect, the
set which the comment lends will only make it less likely that the error will
be detected.

This effect of comments on interpretation of erroneous code can be
measured quite nicely in an experiment in which several versions of the
same code are produced, cne with correct comments, one with one or two
incorrect comments, and one with perhaps noc comments at all (Okimoto,
1870). For certain types of code, at least, correct interpretation of what
the program does can be obtained more reliably and faster without any
comments at all. Correct comments, if well constructed, reduce errers
when compared with cases in which incorrect or misleading comments
are used, Nevertheless, many experienced programmers make a habit of
covering all comments when scrutinizing a program listing for errors,
thus reducing set which, though helpful to understanding a correct pro-
gram, only complicates the already impossible job of debugging.

SOME DIMENSIONS OF
PROBLEM SOLVING

In psychology, “set" is usually considered part of the study of “per-
ception” rather than part of “intelligence.” Yet it should be clear from
the preceding section that set phenoemena can influence behavior which
we would surely label “problem solving.” Of course, even before the
question of problem solving comes the question of problem avoiding. As
we saw, numercus techniques exist whereby a programmer carn avoid

Imelligence, or Problem-Solving Ability 165

the problems of set altogether in certain situations. Considered in the
abstract, a programmer who avoids a problem altogether is more “intel-
ligent” than one who brings it upon himself, whether or not he ultimately
“solves’ jt.

However, abstract ideas about intelligence rarely fall into accord with
our beliefs about concrete situations. Lacking any cobjective measure, we
often judge how difficult a program is by how hard a programmer works
on i. Using this sort of measure, we can easily fall into belleving that the
worst programmers are the best—because they work so hard at it. A
case in point was a programmer who worked 14 hours a day, seven days
a week, for eight weeks to get a small program running in a new installa-
tion. For his efforts, his company gave him an award for exceptional
service. Shortly thereafter, another programmer (for the first had been
promoted to a management position as an additional reward) was given
the job of making some additions to this program. He found that the pro-
gram was such a confusing mess that it was easier to rewrite it than to
try and modify it.

The rewriting and debugging took exactly one week, working normal
hours. Even considering that writing a program for the second time is
far easier than writing it the first, the difference is significant. Moreover,
the new program ran eight times faster than the old, took half the sterage,
and was half as many lines of coding. Clearly, the first programmer had
been rewarded for making a mountain out of a molehill. The discovery of
this misapplication of management !argesse then led to a severe drop in
morale in this programming group.

Problem-avoiding behavior, then, is intelligent behavior at its highest,
although not very intelligent if one is trying to attract the eye of a poorly
trained manager. It will always be difficult to appreciate how much
trouble we are not having, just as it will always be difficult to appreciate
a really good job for problem solving. Once the problem solution has
been shown, it is easy to forget the puzzlement that existed before it was
solved. For one thing, one of the most common reasons for problem
difficully is the overlooking of some factor. Once we have discovered or
been told that this factor is significant, working out the solution is trivial.
If we present the problem to someone else, we will usually present him
with that factor, which immediately solves nine-tenths of the problem for
him. He cannot imagine why we had such trouble, and soon we begin to
wonder ourselves.

Qverlooking a factor in a problem is just one special case of assump-
tions leading us astray. We assume that a certain factor is not important—
probably without even thinking about it In any conscicus manner. We are
led similarly astray by assuming that a certain factor is important, when
it has no signiicance for the problem at hand. People who spend much
time debugging other people’s programs scon Jearn not to listen to ex-

166 Programming as an Individuel Activily

planations before tackling the problem, for these explanations tend to
put the listener on the same false track of assumptions that prevented
the speaker from finding the bug for himself.

Psychological set, of course, is another form of making assumptions.
Although the assumptions may be buried more deeply in this case, they
have the same effect on problem solving. Could we not say, then, that the
first rule of problem solving is “den't make assumptions™?

We could say that, but we would be precisely wrong. If we are to be
successful at solving problems, we must make assumptions. f we really
faced each problem as entirely new, it would be impossible to improve
our problem-solving performance. The set we have, for example, which
enables us to read a misprint as if it were correct, is a most valuable
asset—in most situations. Only when we are proofreading, semething few
of us spend much time doing, does this particular set cause trouble. In-
telligent behavior, then, does not consist in eschewing assumptions, but
in being sufficiently flexible to manipulate assumptions as the occasion
demands. In other words, being intelligent is not having some magic
formula which one can apply to every problem. It is, rather, having a
number of “formulas™ and not being so much in love with one that it can-
not be dropped for another.

Before we leave the topic of adaptability in problem solving for closer
examination of some of the “formulas” which are selectively applied by
the successful problem soclver, we must lay to rest one more fallacy
about intelligence. Inteltigence, however it is ultimately defined, is, at
best, a statistical concept. We cannoct ever hope to measure intelligence
by performance on one particular problem, for there are as many non-
intelligent reasons for getting the *right” scolution as there are intelligent
reasens for getting the “wrong” solution. Indeed, the explanations for
success given by some programmers bring to mind the story of the
village idiot who won the monthly lottery. When asked to explain how
he picked the winning number, he said, “Well, my lucky number is seven,
and this was the seventh lottery this year, so | multiplied seven times
seven and got the winning number—63.”

And, when someone tried to tell him that seven times seven was forty-
nine, he merely answered with disdain, “Oh, you're just jealous’—whlch,
of course, was true.

FACETS OF PROGRAMMING
INTELLIGENCE

Adaptability, then, is required for all soris of intelligent behavior. Be-
havior which, though mental, only requires carrying out a set of flxed
rules is not properly considered inteltigent. It might better be carried out

Inteltigence, or Problem-Solving Ability 167

by machines than by people. Not that carrying out a set of fixed rules
cannot be an important part of intelligent behavior. On the contrary, a
proegrammer who cannot add two numbers together without extraordinary
difficulty is heavily handicapped in the race for better problem solving,
unless, of course, he turns his handicap intc an asset by developing
shortcuts that bypass the arithmetic he cannot do.

To a great extent, problem-sclving technique is idiosyncratic, if only
because certain people can do certain things better than others. Each
person, if he is intelligent, tends to look for methods of solution that
depend on his best qualities and avoid his weakest. As a specific ex-
ample of such a quality, consider the facet of memory.

There is no doubt that memory |s one of the most important aspects of
intelligence for a programmer—if he can but harness it. Memory helps
& pregrammer in many ways, not the least of which is by enabling him
to “work” on problems when he does not have all his papers in front of
him. Consider this anecdote related by a programmer about how he
solved a problem while lying in bed:

The problem was given o me by a programmer | encountered yesterday
morning at the computing center. He said he had the problem since last April
{it is now January). The problem was not very serious, but It had puzzled him
on and off since then, and everything he tried failed to work. It was a PL/I
program, and the trouble was in the format of the outpul. He had established
an ON ENDPAGE unit, but it only worked at the end of the first page and
when it was raised by SIGNAL. After the first page, the listing just went on
from page to page without producing the headings he wanted.

| checked the PAGESIZE he was using, and hils job control cards—ic see
if he had some strange carriage control situation. | checked the position of
the ON-unit, but obviously it was executing once. Were there any switches in
it? Nothing. The only unusual thing | found was that he had used a PUT SKIP
to print the heading, not a PUT PAGE as | ordinarily do. ! pointed out to him
that this explained why the heading he had printed falled to go on the top
of the page. But, after testing a number of other hypotheses, | knew | wasn't
going to find the major trouble. | showed him how he could get the right output,
using a test of LINENQO to raise ENDPAGE. That satisfied him, but | knew |
couldn't put my mind at rest until | understood what was happening.

| put the procblem out of my mind, but when | went to bed last night, my
mind seemed clear, so | decided to work on it as | lay there. | reconstructed
the whole situation mentally—the coding and the output. When my eyes are
closed and | am In a quiet place, |1 can call up the picture of any program | am
currently worklng on—even one like this, which | had seen only once. |
scanned the output in my mind and tried to imagine what kind of program
would produce this oulput. After reviewing my hypotheses from the moming
and rejecting each on carefully considered grounds, | decided to look for
something new,

The strange element, | felt In scanning over the program, was the PUT
SKIP in the ON-unit. This stood out in my image the more frequently 1 scanned
it, for | never did that. Never? In that case, perhaps it was causing the dif-
ference. But why would starting a page in a different way cause the end of

168 Programming as an Individual Actlivity

the page to be missed? Well, how is the end of a page detected? By being
so many lines from the top. But how is the top determined? | realized 1 didn't
know that answer precisely, s0 | speculated on possible alternatives. By this
time, | knew |1 was on the right path, and | simply considered each altemative
in turn, imagining the action each would produce in this program.

Finally, when the worked through the action under the hypothesis that only
PAGE (or possibly LINE, which did not apply in this case)} could start a new
page, | reallzed the problem. PUT SKIP in the ON-unit did not start a new
page—the line number simply kept increasing and no new end of page was
ever reached because no new page had ever been started. Satisfied that | had
solved the problem, | went immediately to sleep. This moming, | made this test
case to demonstrate my conjecture, and you can see that it is precisely as |
say.

Witheout the aid of a fine memory, this programmer might never have
solved this problem—and learned something new—because he might
never have seen this program again. On the other hand, if he did not have
this kind of memory, he probably never would have attempted this ap-
proach to the problem. He might, for example, utilize his cleverness at
creating critical test cases by solving the problem using the computer.
For his inadequate memory, he would substitute an actual copy of the
problem deck—which is nothing to be ashamed of.

Indeed, by attacking the problem on the machine, this programmer
might have the solution to the problem before going home, leaving his
sleep untroubled by bugs. Which method is superior? We really cannct
give an answer in isolation. If, for example, machine access is poor, the
gsecond programmer will be at a disadvantage; but H, on the other hand,
everyone is working overtime and barely has time for sleep, let alone
quiet reflection, the first programmer will never get to show his brilliance.
Naturally, it would be best to have both abilities to an equal extent and to
apply each as is appropriate to the problem and the overall situation;
short of that, we must make the best of what we have.

Just as different working conditions favor the application of different
forms of intelligent behavior, so do different programming phases give
different programmers a chance to shine. For example, when we are
making the overall design of a program, what we most need is the ability
to create new programming ideas and to screen them on the basis of
broad principles. Examples of such screening ideas are symmetry of
structure and generality of function—one leads to simple coding of diffi-
cult problems and the other leads to the solution of difficult problems with
simple coding. Still, these critical abilities are useless if there is a paucity
of ideas to which to apply them. Nothing cannot be criticized. Thus, a
programmer lacking in either ability—creativity or selectivity—will be
handicapped in attempting to design programs.

When ceding, however, different abilities come to the fore. Instead of

intelligence, or Problem-Solving Ability 169

the breoad, sweeping mind, the mind which is clever at small things now
excels. Then, when testing, the programmer must switch to yet another
group of gifts—particularily the eye for wholeness, or gestalt. Consider the
following tale.

| was eating breakfast and reading an article by Stephen Spender calied
“The Making of a Poem.” On page 120, | reached the end of one section and
set the book down to put seme more sugar on my cereal. When | picked the

book up agaln to start reading a section called “Memory,” | immediately had
a feefing that there was something wrong in the first sentence which started:
“If the arl of concentrating in a particular way. . . ."

| felt, more or less simultanecusly, that the trouble was in the word “particular”
and that it involved a misprint. The misprint, however, was rather confusing
for | sensed that it was a lefter inversion but | alse sensed—a little bit more
weakly, though, | have a definite impression of thai—that there was a letter
missing. | examined the word “'particular’—whlich, by the way, | often mistype
as “‘particluar’—first for the inversion and, failing to find that, for the omitted
letter. | spent a rather long time fooking for the error—I1 could measure that
because | ate five or six spoonfuls of cereal in the process, the amount |
crdinarity eat between sips of water. But | could net find anything wrong, and
when | reached for the water glass, | was rather confused.

The water glfass was empty, s¢ | set down the book and went to the sink
to fill it. Upon returning, | drank some water, picked up the book, and started
te read. | finished the paragraph without further difficulty, but when | com-
menced reading the next, | immediately saw that the line;

“All poets have this highly devolped sensitive apparaius. . . .”
contained the misprint of the word “devolped,” which stooed in the same
positien in that sentence as “particular” had stood in the first sentence of the
preceding paragraph. | had the right impression, but | had “focussed™ wrongly.

Although this error was in printing, its discovery and location followed
very closely the precess by which many programming errors are found.
First, there is only the gestalt, a general feeling that scmething is cut
of place without any particular localization. Then follows the ability to
shake locose from an unyielding situation—the ability to change one’s point
of view, even by employing external devices such as going for a glass of
water. Then, however, one must go from the general to the particular—
“focussing,” as it was called here. Although one does nct find errors
efficiently by a detailed search of each line, or word, aor character, the
ability to get down to details is essential in the end. Thus, for debugging,
an almost complementary set of mental powers is needed. No wonder
good debuggers are so rarel

Even more of a rarity is the good documenter. Documentation difficul-
ties come from many sources. In the first place, if the program is not
well written, there is not much that documentaticn can do to resuscitate it
Since programmers usually document their own preductions, the good
documenter has tc be a good programmer te begin with—and then he

170 Programming as an Individual Activily

must add the capacity to express himself verbally and graphically. Finally,
he must have the patience to work cut those last few ambiguities in his
documentation—for the last 5 percent of the work makes the document
100 percent better.

APTITUDE TESTS

If intelligence is sc impeortant for programming success, what can be
done to select those pecple who have what it takes to do the job? The
possibility of administering tests tc select programmers had long be-
witched programming managers, but over the years ncbody has ever
been able to demenstrate that any of the varicus "programmer’s aptitude™
tests was worth the money it cost for printing. We should be remiss, how-
ever, if we did not attempt to explore the reasons for this universal failure.

In the first place, of course, pregramming is a diverse activity, and any
test that gives a single *grade” is hardly adequate to measure the
aptitudes required. Scme tests have been designed to give multiple
scores, but even if these had individually valid measures, they would be
difficult to apply sensibly, and the average perscnne! manager simply
would not bother. Moreover, just because of the multidimensicnality,
someone who is sorely deficient in one area may turn out to be outstand-
ing in ancther—provided that the opportunity tc use his strong points
exists. On the cther hand, socmetimes a perscn who scores high on every
possible scale performs poorly because he is missing some "minor”
ability, such as the ability to get along with the people he has tc work
with.

These are theoretical conjectures, however, because nobody has put
together a test with any measurable validity. The closest thing we have
to a validation of a programmer's aptitude test are studies which show
that people who scored high on the test were better students in the
ensuing programmers’ training. When it got down to the nitty-gritty of
actual programming, however, there was no correlation—or even a slight
negative correlaticn—between test scores and rated performance.

This sorry picture is not unigue to programming. Intelligence tests gen-
erally—such as the famous IQ tests—are able to predict success in
school-type situations—and in nothing else. In fact, as one wit put it
intelligence tesis measure the ability tc take tests. We have reason to
believe that this appraisal is not far frem the truth. For example, in 1Q
tests, speed is very much a factor, as it is in school situations generally.
But, in the office, the difference between one hour and one hour and ten
minutes is only ten minutes—not the difference belween an A and a C.
Slow and steady may not win the race, but programming is not a race.

intelligence, or Problem-Solving Ability 171

Another typical distortion of intelligence tests is in the emphasis they
place on short-term—rather than long-term—memory. They could hardly
be expected to do otherwise, given the constraints under which they must
be administered. In an 1Q test, cne is asked to memorize nonsense words
or arbitrary lists. But in “real life,” it is selective memory which pays—
the ability tc forget the unimportant and retain the important over long
pericds. Net s¢ in school, however, and so we have the IQ test and the
school grades going hand in hand—off in a different direction from any-
thing we are interested in.

Finally, and this leads right intc ocur next topic, IQ scores, and pro-
grammers aptitude scores, are demonstrably correlated with certain
forms of training. In big cities, an eager parent can take his child tc a
special tutor who guarantees to raise his 1Q by so many points for so
many dollars. The same techniques are used -by certain programming
schools to help their graduates get jobs with those companies that rely
heavily on aptitude testing. So, no matter how much we would like to
have a magic wand which would point cut the best programmer prospects,
we are just going to have tc learn to do without.

APTITUDE TESTS FOR PROGRAMMING

All of this leads up to specific tests that have been used in a grand
attempl to measure aptitude for programming. Preobably the foremost
among these is the so-called PAT, or Programmer’'s Aptitude Test. Actu-
ally, this is not a single test, but an unknown number of variants ocn an
criginal test made up cne afternoon by a group of programmers in IBM’s
New York Scientific Computing Center sometime before 1956, and ad-
ministered there to all job applicants and interested visitors. One of the
reascens for the profusion of variants is that the test has been so widely
used and so unprotected that ncbody knows how many people have taken
it, or, in particular, which people have taken it.

Not that the variations give much protection, since there is consider-
able transfer of learning from one variant toc ancther. Over a series of
classes involving IBM and other programmers, | asked pecple to report
the number of times they had taken a variant of the PAT and what their
scores had been. Since this was a “safe" situation—with nobody’s job
at stake—there is reascn to believe that the replies are not too inaccurate.
Out of 27 pecple who had taken the PAT more than once, 23 received A's
the last time they tcck the test—they were all employed programmers
working for companies which regarded A’s as an important hiring crite-
ricn. Of these, 12 had A's the first time they took it, 7 had B’s, and 4 had
C’s. Nobody had done worse the last time than the first.

172 Programming as an individual Activily

A typical case was a girl working for IBM as a pregrammer whoe had
graduated from college with a Math majeor and applied to RCA for a
programming job. They had given her the PAT, and she had scored a
“low”™ B. She didn't get the job, sc she interviewed with iBM, who ad-
ministered a slightly different version of the test, on which she scored
a clear A. She was asked whether she had ever taken the PAT before,
and she said “no,’" whereupon she was hired.

This previous experience with the PAT may be one reason researchers
have been unable to correlate PAT perormance with job perfermance. A
few correlations have been reported {see Reinstedt, 1964), but we must be
careful as to what we regard as “significant” in these cases. For example,
the best correlation found in these studies was 0.7 between the PAT
and supervisor's ranking. What does 0.7 correlation mean?

For a single study, a 0.7 correlation between two variables means that
(0.7)2 — 0.49, or 49 percent of the variation in one variable can be ac-
counted for by the cther—although it doesn’t say which is which. This
still leaves more than half of the variation tc be explained, even if the
correlation coefficient were an “explanation.” One of the reasons for the
popularity of the correlation coefficient is the way it seems tc cverstate
the case, since the number used is always larger than its square.

The second problem with such correlations is that the score—which is
definite enough—is correlated with the supervisor's ranking, which is an
uncertain measure cof programmer performance, to say the least. There
really is no instrument today for measuring programmer performance—
or reducing it toc a single number, in any case. Consequently, there is
nothing really reliable with which to correlate the PAT. It may even be that
the PAT is a marvelous predictor of programmer perfermance, but the
supervisors are not themselves sufficiently trained to know it.

We must alsc be wary of one other thing in using such correlaticns.
Nobody knows how many times people have tried to correlate the PAT
with job performance. Those who did try and did not ebtain “significant™
results more cften than not would not publish their trial. We knpw of
similar trials because correlations have been found between test scores
and school grades {(Biamonte, 1964, Gotterer, 1964). But, you see, if given
sufficient chances to correlate, we will eventually get some correlation
coefficient above any level we desire, if the data are randem. Thus, we
could say that a correlation of 0.56 will arise, by chance, nc more than
cne time in a hundred, but if we do not know how many trials have been
made and not reported, we have noc way of evaluating the significance of
such a statement. We do know, however, that the PAT is used in hundreds
of places.

Furthermcre, even if the trials have cnly been made a few times, a
correlation of 0.56 cccurring cne time in a hundred by chance assumes

Inteltigence, or Problem-Solving Ability 173

that the true correlation is zerc. If there is a small positive correlation, say
of 0.1, then a spuricus measure of 0.56 will cccur more frequently than
one time in a hundred. But a correlation of 0.1 means that 1 percent of
the variaticn is accounted for by the correlation, and this is hardly the
type of infermation we can use to make personnel decisions.

Assuming that the correlations were reliable, we have, on the basis of
the recorded literature, no instrument any better than the PAT. Admittedly,
it does predict scores in pregramming classes fairly well, but that is not
what we are buying when we hire a programmer. As Mayer {1968) puts
it so well,

Very probably if you woufd use all of the tests to select an individual, you
can [sic] obtain a person who has a high probability of successfully com-
pleting your tralning program. Whether this Indlvidual Is going to like pro-
gramming or will possess the motivation that will allow him to take the
successful training onto the job site Is a question that is not yet answered.

Even this condemnation implies that the tests may be all right as far as
they go, but that other facters may be more important on the job than pure
“aptitude.” Althcugh we can not quarrel with the conciusion, we think a
possibility may have been overlooked-—namely, that the tests are just not
good cnes for programmer aptitude. Given the history of the PAT, one
wonders why sc many hundreds of firms use it slavishly, year after year.
A little examination intc the structure of the test itself might give us some
hints as to what is wrong with it, now that we know that much is wrong
with it

The criginal PAT had three sections: relationship rules for geometric
figures {much like standard IQ series), arithmetic reasoning, and number
series. The first two have been retained in almaost all of the variants of
the PAT, although the number series has often been replaced by letter
series. Just to get an idea of what might be wrong, consider the letter
cr number series problems, a typical one of which might be

147...
where the examinee is asked to supply the next number in the series. It
is certainly plausible that a modicum of intelligence is required toc answer
10", but is this really the ability we most need in a programmer?

Let me give an example of what a good programmer did with such a
series. A FORTRAN program had been written with the statement

DO 15 | = 10000, 30000, 10000
The program went intc a strange lcop which finally ended but produced
cutput that nebedy could decipher. When it was brought to this program-
mer, he thought for a while and then asked himself under what circum-
stances this particular DO would not produce the series

10000 20000 30000 . . .

174 Programming as an Individual Activity

Suddenly he realized that if the numbers were being kept in a 15-bit
register, the next number in the series would be 7232, and the series
would look something like this:

10000 20000 30000 7232 17232 27232 . ..
which explained precisely what was wrong with the program.

in other words, the PAT tests for the ability to see the conventional pat-
tern in a series of numbers or letters, but the programmer, especially
when debugging, has to lock precisely for the unconventional pattern—
the deviaticns. Possibly a much better type of questicn for programmer
aptitude would be scmething like this:

“Given the series

147 ...

tell what might normally be expected as the next number, and then de-
scribe at least three other choices which might be correct, giving
reascns for each choice.”

Another section of the PAT is arithmetic reascning, but | have never
had anyone who has been able to explain to me why procgrammers have
tc be good al arithmetic. Perhaps before 1956 arithmetic was more im-
portant, when most programming was done much cleser tc machine
language than it is today. If you are working in a relatively crude language,
it is useful to be able to add two or three hexadecimal numbers so that
you can find an address in a dump, but how many programmers do that
today? Den't we have computers just sc we don't have to de arithmetic?
| myself have never been able to add 7 and 5 rapidly, but | don't think
that is the thing that is holding me back as a pregrammer. In fact, knewing
that 1 am not very good at arithmetic, 1 am more suspicicus of my pro-
grams, and of my check calculations—which forces me te do more testing
of them. It would be rather easy to make an argument that poer arithmetic
ability is an asset toc a pregrammer.

The third part of the PAT leaves me entirely befuddled. Even in 1956,
gecmetric relationships never seemed to have much to de with program-
ming aptitude, but perhaps | missed the point. The cne thing that pro-
gramming doesn’t seem to be in today's world is gecmetric. I've never
met a programmer who was asked to tell whether two programs were the
same if cne was rcolated 90 degrees. {There was once an article about
palindromic programs, which read the same forward and backward, but
its contribution to the profession was minor.}

Perhaps it is time that scme new thinking geo into these aptitude tests,
if people are going to persist in using them. And persist they will, since
even if the promise of success is not great, the rewards are. So let me
suggest a few things that might make more sense for identifying poten-
tially successful pregrammers:

1. Give the examinee thirty or forty papers with randem printing on

intelligence, or Problem-Solving Ability 175

them and ask him to place them in ten boxes. One week later, ask
him toc find the paper with the word “COMMODITY” on it. Time his
retrieval perfoermance—giving high scores for fast work.

2. Give the series-exception type questicn suggested above.

3. Tell him you are thinking of a problem which he must solve. Don't
give him any more information unless he specifically asks for it, but
answer all his gquestions literally. Score him on how well he figures
cut what the problem is. | don't really have much hope for such
tests—either that they will work or that they will be applied if they
do work—but they certainly seem more promising than what we have
been using sc far.

Yet all is not quite so bleak. When we are selecting among experi-
enced programmers, the situation is potentially different, althcugh few
authors or employees seem to realize it. For example, cut of 282 organiza-
tions using the PAT in one survey, 138 of them still use it for selecting
experienced programmers. Why? Because they feel they have nothing
else. Lacking anything better, they try what is available in a vain search
for the elusive magic test. Such companies are sitting ducks for anyone
who comes along with a fancy package of promises—and with lots of
sitting ducks, can the hunters be far behind?

Nct very far—even closer than | thought. After writing the above
package, | ran across the following ad in a trade magazine:

“TEST THE SKILLS OF YOUR PROGRAMMERS
A Program calfed consists of procedures, software, instructions
and problems designed to evaluate programmer skifls. measlres
the ability to write correct, compact, and efficient programs, and can be used
o test experiencd programmers ar to evaluate the programming aptitude of
non-programmers. The tests used are language independent, and are welghted
in accordance with the difficulty of the problems and the time used to solve

them. The precgram wlH run on a ***** System. It is priced at
$5.,000. ,.."

An evaluation of this ad is left as an exercise for the reader, but aside
from its claim to test experienced or inexperienced programmers alike, it
does offer one clue as to the proper direction for testing when it speaks
of the “ability to write correct, compact, and efficient programs.” What
does this phrase suggest?

As cne author comments, if we were hiring an oboe player for an or-
chestra, we would be able to give an audition, which would determine in
a matter of a few minutes what his qualifications were, at least insofar as
rejecting an obvicus misfit. After a longer performance, we would have a
moderately good measure of the oboist’s abilities. He then goes on to
lament, *“There is no equivalent of an audition” for pregramming. But

176 Programming as an Individual Activily

why isn't there? Certainly there is not for a person without experience,
but neither is there much for a child who is applying for a traineeship
in oboe playing.

For a programmer who claims to have experience, why not just have
him sit down and write a small program or read and interpret a set of
specifications, sketching out his approach to implementing them? Why
not, indeed? Perhaps it is because we so rarely read programs that this
action never occurs te us, or perhaps it is because when we intend to hire
an “experienced” programmer, we deem ourselves lucky if even a
single applicant shows up. Testing a single applicant is like testing your
wife—if she fails, what are you geing to do about it?

SUMMARY

Everybody involved in hiring programmers has an opinicn about what
quaiities are essential to a good programmer—even though we know
that programming is no cne single activily. Mayer, as cited previously,
believes that his “X-factor” is related to aptitude.” He speaks wisely,
with the caution of ene heavily invelved in psycholegical testing. People
more involved in programming are mecre confident of their impressionistic
view. Not all of them, however, are as explicit about their X-factors as
. W. Dijkstra, who said:

| am engaged in teaching, at graduate level, in producing one variety of
“mathematical engineer.” The most powerful test that | know of for an ap-
plicant to be one of my students is that he have an absolute mastery of his
native tongue: you just need to hsten to him.

Since Dijkstra is ""engaged in teaching,’” we cannot be too swayed by
his remarks, for he may indeed have isolated a factor in academic suc-
cess, as have several other workers. *Verbal ability” is as goocd a measure
as we have of academic success in programming, sc Dijkstra’s intuition is
probably a good one. But for actual pregramming perfcrmance, on
commercial programs rather than ‘toy” programs, we lack any aptitude
measure at all, except perhaps for general intelligence. For myself, | be-
lieve that intelligence has less to do with the matter than personality,
work habkits, and training. These things, unlike intelligence, can be
changed by experience later in life, which turns the problem from cne of
selecting pregrammers tc creaifing them. In other words, goed program-
mers are made, not born; therefore we should turn cur attention to the
manufacturing, or training process.

intelligence, or Problem-Solving Ability 177

QUESTIONS

For Managers

1. Do you use any aptitude tests now in choosing programmers, or does
your personnel department use them? If so, what do you know about
their validity? Do you make any effort to validate them by evaluating
pregrammers after a period of time on the job? What metheds do you
use for this evaluation? How convinced are you of their effectiveness?

2. What single important aptitude do you find most often lacking in your
programmers? What kind of test do you think would discover that such
an aptitude was missing?

3. Would you spend $5000 for the package in the ad? Or $100 per test?
If not, why not? if so, have you been reading this book?

For Programmers

1. Were you tested for aptitude when you applied for your present job?
It so, did you find the test relevant? Do you know if your organization
still uses these tests? If they do, and if you feel they are not relevant,
what are you deing about it?

2. Do you feel it is possible to test for at least certain crucial aspects of
programming aptitude? Make a list of what you consider to be crucial
aspects of programming aptitude, and a list of suggestions as to how
they could be tested.

3. Has this chapter indicated to you any areas of problem-solving ability
or habit in which you may be deficient? If sc, what plan do you have
for doing something about it?

BIBLIOGRAPHY

Mayer, David B., and A. W. Stalnaker, Use of Psychoelogical Tests in the Selectlon
of Computer Personnel, SHARE/GUIDE Presentation, Qctober, 1568,

Reinstedt, R. N,, et al, Computer Personnel Research Group Programmer Per-
formance Prediction Study, The RAND Corporation (RM-4033-PR), Santa Monica,
California, March 1564.

Biamonte, A. J., Predicting Success in Prograrmmer Training, Procsedings of the
Second Annhual Computer Personne! Resegrch Conference, Assoclation for
Computing Machinery, New York, 1964.

Gotterer, M., and A. W. Stalhaker, Predicting Procgrammer Performance Among
Non-preselected Trainee Groups, Proceedings of the Second Annual Computer
Personne! Research Conference, Association for Computing Machinery, New
York, 1564.

178 Programming as an Individual Activily

Okimote, G. H., The Effectiveness of Comments: A Pilot Study, 18M SDD Technical
Report TR 01.1347, Jduly 27, 1970,

Luria, A. R., The Mind of a Mnemonist, New York, Avon Books, 1968.
A fascinating exampfe of how an individual can use his pecutllar abilities or
disabilities to achieve fantastic performance—In this case on tasks involving

memory.

Hunt, J. M., Intelligence and Experience, New York, Ropald, 1961.

Hunt reviews the process by which the intelfect develops, with an end to seeing
what can be done to influence intelligence. Unfertunately, it seems that by the
time one is old enough to become a programmer, most of the opportunity for
modification has been flost. Perhaps we should start younger. Now that more
and more pregramming fathers and mothers are taking terminals home with
them, can it be long before we produce a pregramming Mozart?

Werthelmer, M., Productive Thinking, revised ed. New York, Harper, 1945,
Wenrtheimer is the main founder of the Gestalt school of psychology, and in this
book gave his prescription—based upon his experiences and experiments with
young children—for teaching pecple how to think more productively. It seems
untikely that many of the ideas can be applied directly to teaching programmers
to program better, but the book certainly Is rich in suggestions as to which
things to try and which to avoid.

Polya, Gecrge, How ¢ Scive ft, Princeton, Princeton Unlversity Press, 1946,
Polya, one of the great mathematicians of our time, gives a popular version of
his work on technigues of solving mathematical problems and puzzles. Again,
the work is highly suggestive for programming, but nobody has put it to a direct
test, though many programmers have read it.

Ghiselin, Brewster, The Creative Process, Berkeley, California, University of
Califomia Press, 1952,

Feople have been studying the '“creative prccess™ for a long time—since Plato
and Aristotle, at least—and we are a long way from understanding it. We don't
know, even, if programming really requires creativity, or creativity on the level of a
Mozart or an Einstein, or even if there are different levels of cerativity, or just differ-
ent levels of creations. But for these who suspect that there may be some efement
of creativity in programming, this ccllection of criginal works and excerpts wilkl
certainfy add fuel to their flame. Even for those who den’t believe in creativity
in programming, whe could miss a chance to read what Elnsteln, Mozart,
van Gogh, Wordsworth, Coleridge, Yeats, MNietzsche, Jung, and Spencer—to
name but a sample—have to say about the subject. Besides, this is the scurce of
the Stephen Spender misprint {in the paper edition).

Sackman, Harold, Man-Computer Problem Sciving, Princeton, Auerbach, 1570,

Sackman’s studies are net concemed sclely with programming, but with the
more general category of preoblem-solving behavior. His book contains many
usefuf insights into the effects and lack of effects that working with a computer
has on problem-solving behavior, but in a certain way he misses the peint on
programming as problem sclving. Sackman himself is not a programmer, but a
psychologist, and the one thing he never seems 10 have done in his studies was
to read the programs produced. Like most psychelegists, he apparently assumes,
that all completed sofutions to the same problem are equivalent, and that only
failures to complete a program and get the correct results need be considered
carefully, But all programs that give the same output are not alike, as we

intelligence, or Problem-Solving Ability 179

know, and until psychologists recognize this, most of programming/problem-
solving behavior will remain a fog.

Weinberg, G. M., Experiments in Problem Solving (Doctoral Thesis), Ann Arbor,
University Microfilms, 1965.

Recommended for the psychologist whe does not understand the commentary
in the previous citation. This study shows how sufficient resolution in the ob-
servation of the problem-sclving task and the ability to characterize the task
in terms of the individual subject's strong and weak characteristics lead to
striking insights intc problem solving. Such insights wifl never be available if
the level of resolution remains too high, or if individuals are averaged together to
get “statistically significant results.”

MOTIVATION,
TRAINING,
AND
EXPERIENCE

1€

sychologists know that human performance on a given task Is

a function of the task itself and as undersiood by the subject

They alsc know that performance will be influenced by indi-

vidual differences in such areas as personality and intelligence.
But even though personality can be changed, and intelligence can be
raised somewhat, real improvement in performance has to come from
training and experience.

However, psychology is not an exact science, nor can it ever be. Once
the psychologist takes into account the fask and the subject's under-
standing of the task, once he has taken into account all measurable in-
dividual differences, and once he has taken into account all the training
and experience, he is still left with a residue of unexplained performance.
For example, the same individual doing essentially the same task a day
later may do a worse job than he had done previously. Since his intelli-

180

Motivation, Training, and Experience 181

gence and personality are presumed not to have changed in one day, and
since his understanding of and experience with the task should only have
improved, how can such a decrease be explained?

This residue, after all the other factors are taken into account, is called
“motivation.” Volumes have been written on the subject, even though
there is still doubt in psychologists' minds whether or not such a thing
really exists. We have already spoken about some aspecis of motivation
as they are seen through variations in group or team performance, and
in a certain sense we would be better off not opening this Pandora’s box
again, since we can hardly give it adequate treatment here. But we must
say something about motivation before we can say anything useful about
education and training, for two reasons. In the first place, if there is a
residue of performance attributable to motivation, then this residue is
inaccessible to training and education and sets limits on how much we
can hope to accomplish by these means. Secondly, the residue might be
all there is to education and training. It could very well be that if some-
one is not motivated, there is no easy way to make him learn, and if some-
one is motivated, there may be no way to stop him from learning.

MOTIVATION

Probably the best illustration of what motivation is came to me when |
was reading the following passage from the beginning of the section on
Motivation from a standard psychology text:

Even the most cursory examination of the behavicr of man leads one to the
assertion that man Is not 2 passive victim of clrcumstances. Instead, we all
easily assert that man seems to decide which stimuli to react to, which to Ignore,
and which information to learn, which to negfect. These observations form the
basis for ascribing to man some sort of an inner “directing drive” or “inner
spring.” This inner directing force is what most of us mean by ‘“‘motivation.”
{(Krech, Krutchfield, and Livson, 1969)

Now the interesting lesson in this passage arose from the fact that
this was not a new book, but had been bought used from the college
bookstore. The previous owner of the book had, in this passage, meticu-
lously circled in orange pencil certain [elters in various words. Evidently,
it was a form of doodling, either when he was supposed to be studying
or when he was supposed to be listening to the lecture. When the
letters were read off in sequence, they spelled

S-A--L-Y-5-A-L-L-Y
What better illustration could we give of the “inner directing force” which
"most of us mean by motivation.”

182 Programming as an Individual Activity

It is certainly unnecessary to point out that programmers, tco, may be,
at times, wondering what became of Sally when their managers would
rather they were wondering what was wrong with some tally. One error
that managers make, however, is o assume that a lack of performance
means a lack of motivation. Conseguently, they may attempt to supple-
ment the lack of “inner driving force” with a little “outer driving force,”
just when the programmer is suffering from too much, rather than from
too little.

One of the best known and accepted results of motivation research
is that increasing “driving force” will first increase performance to a
maximum, beyond which addition of further driving forces will quickly
drive performance to zero. The rapid fall-off in performance is especially
ocbservable in complex tasks, which is why it is so important for pro-
gramming. Trying too hard, say, to find a bug, is as bad, or worse, than
not trying at all, and many bugs have been exterminated only after the
programmer had given up and stopped pressing. Pressing a programmer
for rapid elimination of a bug may turn cut to be the worst possible
strategy—but it is by far the most common.

From the point of view of a programming manager, or of the pro-
grammer himself, the first important question about motivation, then, is
how motivated is the programmer already. The answer to this question
telis whether to look for ways to increase or to decrease the driving
force. Qverall, it has been my experience that programmers as a group
are overmotivated, which is a major reason why so many programming
projects fall apart as the pressure grows.

But once we have established whether force has to be added or sub-
tracted, what can we do about it? The problem facing an individual is
probably insoluble, for how can he change his inner driving force unless
he is motivated to do so? Actually, though, he has available the same
kinds of strategies that a manager has—he must change something in
his external environment in order to have a chance of changing something
inside.

Of course, a particular external change will not produce the same
internal change in each group of people. Parading a naked lady by the
door will certainly affect men difterently from women. And individual men
or women will be differentially affected-—as the Candid Camera movie,
“What Do You Say to a Naked Lady?” showed so vividly. But perhaps
programmers as a group have some commonalities in their reactions to
external stimuli, just as men, no matter how different, generally share
some reaction to a naked lady—the reaction of interest, at least

We have made some preliminary studies to try for some insight into
what external factors motivate programmers. We did not run experiments,
in which we would have had to subject programmers to different stimuli

Mothvation, Training, and Experience 183

and then observed their work patterns. Instead, we surveyed programmers
and their managers about what they thought motivated programmers. We
emphasize the word “thought™ because there is no necessary relationship
between what a person says he does or will or would do and what he
actually does. With that reservation, we can report some of the more
interesting findings.

Among software programmers at one large shop, we found that “a
salary increase and/or bonus” would “make a large effect on the results
my manager would see in getting me to work at a sustained fast pace
or keeping me diligently at work.” A very close second, as we already
expected from social psychology, was *“personal involvement in planning
of our task.” Then, tied for third place were the two items—*a promotion™
and “more time to give my work a personal touch of quality.”

These four topped the list of nineteen choices. At the very bottom of
the list was “lessening the scope of my work,” which is reasonable in
that it seems to jibe with the favoring of more involvement in overall
planning. Just above this choice were four other low-favored choices.
The first was “assistance in documentation, copying, etc.” which seems to
contradict the folk-wisdom about the universal distaste for documentation
work. But such a conclusion may be premature—it could be that these
people had already reached a state where they were not doing docu-
mentation anyway and that factor wasn't important. Next of the four was
“placement in a prestige position,” which seems to contradict “promo-
tion.” Further investigation revealed that “promotion” was essentially
associated with “more money,” rather than the acquisition of a new
title—which goes to show the difficulty of taking opinion surveys.

The last two of the four seemed to be contradictory: “relaxation of
target dates” and “tightening of target dates.” The contradiction is re-
solved if we observe that it is consistent with the view that target dates
are not very important to this group at this time. At this time—an im-
portant qualifier. At the time of the survey, the project deadline was
not within six months, We would have liked to check again in several
months and see if “target dates™ were still at the bottom of the list,

Which brings us to another major difficulty with motivation studies.
Even it these responses truly reflect differential strengths of outside
forces, they represent those strengths in a particular circumstance at a
particular time. Toward the end of a project, people are motivated differ-
ently than at the beginning when the goal-setting is at hand and the
target date is tar off the horizon. Early in a career, one is motivated
differently than later on—money, for example, may grow less important
as savings grow, salary grows, and debts to oneself are progressively
paid off, Or, in certain circumstances that we have seen, additional
money can actually drive a man off the job.

184 Programming as an Individual Activily

It would be tempting at this point to say that the money motivation is
not as real as the concem with participation in goal setting and quality
of the work, but there is no real justification for believing that pro-
grammers as a group are any less concerned with money than any other
group at a comparable pay scale. Of course, programmers tend to be
on a rather high scale compared with the general populace, so we
might expect that money would be less motivating for them. And it may
be, but we haven't proved it by our studies. Then again, money is an
ambiguous motivator. Some people it motivates as a means of obtaining
what they want or need, some it motivates as a symbol of the value that
IS5 placed on their work., But what difference does that make; money is
money, isn’'t it? Not precisely, for if the money is valued more as a symbol,
then programmers could be motivated with other rewards than money—
such as extra time to give work a personal touch, or a piece of the
planning responsibility. Not just to save the company money, mind you,
but to motivate them more effectively, for an increase in salary only
motivates for a short time—it is the raise, not the salary level which is a
symbol of current value. A continuing series of raises is probably out
of the question over any long interval, but continuing participation and
continuing time for quality work are not out of the question at all.

Anyone who has ever seen a programmer at work—any wife or husband
of a programmer who has ever tried to interrupt a terminal session or a
conference over a bug—knows that programming itself, if the programmer
is given a chance to do it his way, is the biggest motivation in program-
ming. There is an old saying about chess that goes like this: “Chess, like
women and music, has the power to make men happy.” | think we
could safely say that “programming, like chess, women, and music, has
the power to make men happy.” Someday, 1 suppose, | will pick up a
used copy of this book and find that somebody has circled various letters
to form

F-O-R-T-R-A-N-F-0O-R-T-R-A-N.

TRAINING, SCHOOLING, AND
EDUCATION

Certain people claim that they can take any person who walks in the
door and frain him to be a competerd programmer. Although this is a
slightly biased view—because not just anyone walks in the door of a
computing center lcoking for a job—there is at least a grain of truth in
it. Once, on a visit to a highly successful software firm, we had the op-
pertunity to spend the afternoon with their systems programming team.

Motivation, Training, and Experience 185

The five members of the team had the following backgrounds to qualify
them for their positions of high responsibility:

1. A man of 33 who had been thrown out of an Ivy League school in
his sophomore year because all he wanted to do was play bridge.

2. A woman of 28 who had majored in Spanish literature at a private
girls’ college in the South, then went on a binge from which she
emerged three years later in a narcotics recovery program where
she learned programming.

3. A former computer maintenance engineer, also 28, whose only
formal education past grade school was at a Navy electronics school.

4. A b5-year-old mother of flve grown children who had taken a
Teachers’ College degree thirty-three years ago, but had gotten mar-
ried and never taught—and who decided to take up programming
tc occupy her time when her children had gone away.

5. A 30-year-old man had gone straight through college {with honors)
to the M.A. in mathematics, whereupon he entered the programming
business. He was considered the odd-ball of the group.

Although the heterogeneity of this group might seem fo argue against
training for computer programming, it is actually only an argument against
the “normal” educational process as a training ground. What the members
of this group had in common was four years of working together under
one man—one of the founders of the software firm—who devoted that
time to shaping them in his own image.

Such a situation is not as unusual as it may sound. Most people who
have been around the programming scene for a while can describe
similar groups they have encountered. The striking factor is always the
same—several years of working together on real projects under a
formidable leader. But those years represent training and experience—
not, perhaps, the common or conventional kind, but all the same holding
promise of what we might achieve could we but extract the essence of the
process.

OCne of the confusions standing in the way of educational progress is
the confusion between schooling and education. Another is the con-
fusion between education and training. To iliustrate these confusions and
how they impede progress, | would like to present some results con-
cerning the effectiveness of my own teaching. In the course of several
years of trying to teach operating concepts, |1 found that without machine
experience with operating systems, the concepts seemed to have no
force. That is, | would visit my students on the job a year or so after they
left school and find that they were not applying what they had ‘learned”
In My classroom.

Since | attributed this loss of learning to lack of practical experience,

186 Programming as an Individual Activity

| decided to change the course into a workshop in OS/360. But in the
workshop mode, | discovered that the students were having a terrible
time seeing the concepts for the details. In particular, the details of
the Job Control Language seemed to be standing in their way—an
observation that corresponded well with reports coming in from the
field. In more particular, the handling of ‘‘nonsignificant” blanks and
continuation cards seemed to be the source of enormous trouble—if the
amount of griping was any measure.

| therefore decided o emphasize these petty syntactic details in the
lectures and to keep records of the student performance through some
class problems. The problems involved creating, punching, and testing
a series of job conirol cards through successively more difficult exer-
cises. The results were rather discouraging, as shown under “Class #1"
in Figure 10-1. Eighty-three percent of all JCL errors were “blanks”
errors—that is, the types of errors | had specifically emphasized in class.

I then decided to compare this behavior with another class using the
same exercises—butl without spending any class time on the subject
of “blanks” errors except o answer specific questions. The behavior of
that class is shown as “Class #2” in Figure 10-1. It appears from this
chart that the net effect of my arduous attempt to teach JCL syntax by
lecturing was a reduction of relative error rate from 87 to 83 percent.
This is assuredly not a statistically significant result. It is a significant
result, however, for the psychology of programmer education, for it
shows that schooling—or lecturing, in this case—need have little or
nothing to do with education. It may be, of course, that some other

PROBLENM PROBLEM PROBLEM TOTAL FOR

1 't-l‘ 3 3 PROBLEMS
i | |
/ A4 NS N/ Y

CLASS Y SIZE

JCL
ERARORS
TOTAL
BLANKS
JCL
BLANKS

Yo

|

S

)
o

1

241

!
&

a7

Figure 10-1

Errers by JCL beginners.

Motivation, Training, and Experience 187

instructor could have had an influence on this behavior—I don't claim
to be the world's finest lecturer. But then, | can say in all modesty that
| am not the world’s worst, either, so a good many other lecturers would
have had this problem getting across their “material.”

Now, why is it so important to get across such trivial material, any-
way? Unfortunately, although the intellectual content of the material is
not great, failure to learn it absolutely impedes further progress in
learning to use the operating system. Which brings us to our second
distinction—education versus training. Roughly speaking, by “education”
we mean acquisition of general principles and skills, and by “training”
we mean acquisition of specific skills. Thus, we speak of “driver training,”
“military training,” “adult education,” and “liberal education.” Not that
the words necessarily tell what is going on in the school. Mtilitary training
certainly teaches general principles that affect one’s point of view for a
lifetime, and adult education is more often than not merely training in
some specific skill.

But more important, education may be impossible without certain
tramning as a prerequisite. In our case, experience on the computer was
necessary to impart operating systems concepts in a lasting way, and
ability to manipulate JCL syntax was necessary to get operating system
experience. Thus, faifure to train in JCL syntax led to faifure to educate
tn operating systems principles.

Perhaps we should say “failure to schoo/ in JCL syntax” led to failure
to educate, because eventually Class #2 did become trained in JCL
syntax, as shown in Figure 10-2. By the end of ten exercises, 13 of the
17 students had mastered the skill of creating JCL cards without “blanks”
errors (although two of them regressed slightly on problem #11, which
was a bit larger than the others). The other four students did not show
any marked increase in this skill, however, and this failure was still
standing in the way of their progress in operating systems concepts.
No doubt they would have learned the skill eventually, but the class
terminated at that point and they were sent back to their home locations.
Quite likely, they remained aloof from the operating system, whereas the
other 13 could now approach it with confidence for further learning.

In summary, then, the difficulty of acquiring skill—training—in JOL
syntax creates a barrier that blocks further progress in operating system
education (and incidentally creates an elite group of JCL “experts”
upon whom other programmers remain slavishly dependent). This barrier
cannot be removed by lecturing about it, but it can be removed by
putting the learner in a situation where the machine keeps giving him
the experience he needs. No doubi a system could be created which
would do this job more efficiently and effectively than 0S/360 itself—an
on-line terminal with JCL syntax-checking facilities, for example. But bad

188 Programming as an Individual Activity

CLASS #2 N-17

PROELEM | JCL CARDS Ehﬁgé%& IESF? EEED EL#A::ETEHHEEHS
1 85 42 0.50 0
2 136 78 0.58 0 R
3 170 as 0.52 1 h
4 136 83 0.46 2
5 136 58 0.43 2
5 102 30 0.29 !
7 152 49 0.31 9
8 170 A7 0.28 g
9 a5 17 0.20 13
10 119 19 0,16 13
11 187 39 0.21 ol

Figure 10-2 Errors by JCL beginners with training.

as OS5/360 is, it is a kind of teaching machine if we ecan but get the
students to use it. This is the service the “school” c¢an provide in this
situation—encouraging the student to keep trying in face of OS5/360, or as
one student termed it, “Obstacle System/360.”

FORCES AGAINST LEARNING

To a surprising degree, the only time we fail to learn is when there
are negative forces set up against it. We say “surprising” because s0
much emphasis in teaching is placed on motivating people to learn by
using all sorts of clever devices or tricks. If we could observe children
learning, however, we would see that any child really left to his own
devices will learn vast numbers of things—not necessarily the things
we want him to learn, but vast numbers all the same. In order to try to
shape his learning into the form of the things we want him to learn, we
build certain walls and open certain doors. When he learns, we con-

Motivation, Training, and Experience 189

gratulate ourselves, but he would have learned—possibly betier—without
us and our artificial barriers.

With adults, however, the barriers to learning have usually become
internalized, and the average adult learns very little if left to his own
devices. First and foremost, in order to learn we have to acknowledge
that there is something we don’t know that might be worth knowing. For
a professional programmer, this acknowledgment represents a lowering
of status—unless he is perceptive enough to see that a true professional,
a person with true strength, loses nothing by admitting to weakness.

Some people, however, are only too willing to admit weakness. They,
however, will not try to learn because they are convinced in advance
that they will fail. Such fear of failure may be engendered by a general
lack of confidence, or may spring from the experience of earlier failures
in the same kind of endeavor, Most often, however, the fear is not so
much of failure itself, but of having other people witness the failure.

For certain types of material, being in a group inhibits new learning but
facilitates performance in using material already learned. To learn, we
must be willing to make mistakes, and this is difficult to do when there
Is an audience present. Indesd, it is probably the presence of the others
that gives the incentive not to make mistakes when the material being
used is well known. To the extent that this observation applies to the
learning of programming skills, we might expect that initial learning of,
say, a new programming language would best be done when cloistered
with a terminal—and when no record is kept of mistakes.

Our observations have tended to confirm this prediction in several ways.
In one study, which was attempting to determine the most commonly
made errors in using PL/]1 and to examine how well the compiler detected
and corrected them, we attempted to collect alf runs made by a group
of fifty beginners. The difficulties in making this collection were astound-
ing. Every sort of evasion was used in an attempt to cover up the very
existence of errors. Although we had explicitly told the group that we
were not studying them as individuals and that the purpose of the study
was to measure all errors, we continually received the reply: “. . . but
you're not interested in this run; 1 left off that silly semicolon. Wait for
the next run; then I'll have something good to show you.”

Another observation pointing In this direction is the enthusiasm that
beginners often generate for termlnal systems—enthusiasm that often
dampens after they reach the point where trivial syntactic errors have all
but disappeared through learning. More experienced programmers seem
less enthusiastic about the terminal as other than a data entry device
—perhaps with mild syntax-checking features to help eradicate keying
errors. For beginners, or amateurs, the difficulties with syntax, keying,

190 Programming as an Individual Activity

and such auxiliary operations as job control usually far outweigh any
deeper difficulties that might arise from subtle semantic points or from
the problem itself. Since most psychological tests involving comparisons
between terminal systems and batch systems have involved beginners
and/or fairly trivial problems, they have failed to give us definitive data
on the different strengths of these two approaches. Careful observation
of terminal use by programmers in different stages of development and
working on different types of problems will be necessary if we are to
design systems that are best for initial learning and best for later use.

Precious littte of the controversy over diverse programming languages
and systems ever touches on the distinction between ease of learning
and ease of use. There is no particular reason why a feature that is
easiest to learn will be easiest to use in the long run. The important con-
cept here is that of extensibility of a technique—Iis it applicable to situa-
tions other than the one for which it was first learned? When we learn
a general technique, we do not simply add to our repertoire of facts,
we multiply our power of performance.

At the opposite extreme of general, extensible techniques are what we
might term “dead-end” techniques. We may, for example, learn Cramer's
rule for solving simultaneous linear equations by means of determinants
in order that we can solve systems of three or four equations. Indeed,
this is the normal course of teaching high school algebra. But Cramer's
rule—though in theory perfectly general—is essentially impossible to
apply to large systems of equations, for the computation of determinants
grows too rapidly in complexity. Although no definite end point can be
drawn beyond which it is impractical to employ Cramer’s rule, it is
without a doubt a dead-end technigue.

In programming, we often encounter a programmer who has had
much success working on problems of a certain size but has never been
able to go beyond them. In fact, we sometimes encounter the converse
situation—the programmer who was not notably successful until he began
to work on bigger systems. In the first case, the technigues that worked
so well on small programs just cannot be applied effectively to large ones;
in the second, application of powerful and general techniques to simple
problems may have resulted In excessive overhead.

Consider, for instance, the difference between a binary search and a
sequential search. |f we are writing a program which has to search
through a table of ten items, it will probably slow down the programming
and even the execution if we try to apply a binary search. The programmer
who does not know of the binary search concept may, on this problem,
outshine the programmer who does know it but doesn't quite have the
sense to detect its limitations. All the same, the binary search will
probably not be more than half the speed and twice the work—which

Motivation, Training, and Experience 191

cannot be said for the linear search when applied, say, to a list of 1000
items.

For the programmer who has mastered certain dead-end techniques
(or dead-end programming languages), new learning requires that he give
up, at least temporarily, some current satlsfaction. His early success
with the new techniques will probably not be great; and he is, in a sense,
putting himself back on a par with the novices. This fear of loss can
be especially great when faced with the learning of a new programming
language. Anyone who has ever lived in a foreign country knows the
teeling of helplessness the first time he really tries to get along with
his meager knowledge of the language: and it is hardly different when
one learns to program again. Just as the traveler is embarrassed by the
way little children speak better French than he, the experienced FOR-
TRAN programmer feels his power slipping away when he has to ask
one of the trainees about some simple syntactic point in PL/L.

The fear of new things, the expectation of failure, and the reluctance
to admit weakness all have a direct retarding effect on learning, whether
in a formal classroom situation or on the job. Other problems arise in-
directly, most often from an inadequate perception of what has to be
learned or how to go about learning it. In one introductory programming
course, the instructor noticed that most of the students were having
trouble with their laboratory assignments, although they were of a simple
nature. Each student was supposed to solve two or three simple prob-
lems using a terminal connected to an APL system, but after the fifth
week, only about five out of fifty had turned in results.

The instructor decided to visit the laboratory, and what he found there
were two different problems leading to the same end result—no sig-
nificant learning. The first problem involved the students he found in
the terminal room. Typically, they had signed onto the terminal the moment
they knew how and started typing away. With more confidence than
thought, they blundered about for hours and hours of terminal time and
got nowhere. The second problem, however, involved the students he
didn’t tind in the terminal room. In their case, because they were accus-
tomed to working problems by hand, they were afraid to come to the
terminal before having every last detail worked out. And, of course, they
were unable to work out every last detail without the aid of the terminal
itself.

When faced with a problem arising out of some unfamiliar situation,
there are two general errors we can make—either we think the problem
is harder than it really is or we think it is easier than it really is. A poor
teacher is not usually poor for lack of mastery of the subject matter—
subject matter is commonly in books or other sources, which the students
can peruse for themselves. The poor teacher may give his students the

192 Programming as an Individual Activity

impression that things are too easy, perhaps by being too smoothly pre-
pared so that they do not see the difficulties underlying his examples. Or,
he may choose intentionally simple examples to highlight certain points
and, in s¢ dolng, give the impression that in real problems things always
seem to fall into place.

In our APL class, the instructor had, to take one example, given a
program which found the position of one character string in another—
essentially the INDEX function of PL/l. The example presented in class
took exactly one line, and was quite elegant. Unfortunately, this solution
was inadequate in several ways. If either of the strings had only one char-
acter, or none, it failed entirely. If the sought-for string happened to be
“wrapped around” the sought-in string, the routine incorrectly said that it
was found—as in the case of "XA' being found in “ABCX."” Many other
details had been left out of the problem; but when the students were
given a similar problem to do on the terminal, they had to deal with such
details even though they didn’t expect them.

On the other hand, the same instructor had been guilty of making
things seem too hard for other students. At the end of one lecture, finding
himself with an extra ten minutes, he attempted to show them a problem
e had been working on in his own research. The solution was com-
pletely beyond some of the students because they did not have the
mathematical grounding even to understand the problem. These students
were discouraged from even trying the homework.

When there is a teacher, we expect that he will be able to perceive
such situations and intervene as necessary to get the students back on
the track to learning. But much of programming learning takes place
without a teacher, or at least without someone formally designated as
one. Moreover, much of programming learning takes place without cer-
tain other essential elements—textbooks, reference material, software or
hardware on which to run the software, released time to study new
topics, authorization to try a new technique on a production problem, or
other programmers who have some experience. Each such missing in-
gredient compounds the problem of learning and makes it more likely
that the learner will give up at the first discouraging sign.

The school is a place where these essential elements are supposed to
be supplied. We have no way of knowing how much of the success of a
school depends on these factors rather than on its teachers, who form
only the most conspicuous part of the teaching system. And yet, although
nobody would argue that it is improper for a school to furnish these
elements, the very existence of schools may tend to mean that they are
not furnished elsewhere. A manager's reasoning may go something like
this: “He’s asking me for a job number to use in running some practice
problems. What does he need that for? We just sent him to school for
four weeks—what did they teach him there?"”

Motivation, Training, and Experience 193

This attitude—"school is where you learn: office is where you work”—
i3 not, of course, confined to the programming business. Nevertheless,
the programming business relies more than any other on unending learn-
ing, so we need not apologize for any attention we pay to factors that
stand in its way.

HOW TO LEARN PROGRAMMING

The programmer who wants to advance himself cannot afford to rely
on formal training and the grace of his manager 1o get the education he
needs. Neither can he depend on pure “experience,’”” for experience
doesn't necessarily teach anything. If a programmer is going to make
something of his experience, he must learn how to learn.

The first step in learning how to learn anything is to learn your own
assets and liabilities—“know thyself.” The person who is his own teacher
has one major advantage over the classroom student—he can tailor the
lessons precisely to the needs of his one and only student. In the pre-
vious section, we gave an example of a teacher whose students were
failing to learn APL for two different reasons. Not only were the reasons
different, they were complementary; for if the teacher tried making
things seem harder to help one group, he would lose the group that
already was having difficulty in following his examples. Moving in the
other direction would be no better, so the teacher was caught in an
essential paradox. The only way out of this dilemma would have been
between its horns: he would have to deal with each student's situation
individually.

Thils individual attention is precisely what the self-taught student gets
automatically, if he but has the self-sensitivity to use it. For instance,
every modern theory of education recognizes the existence of favored
modes of perception. For example, some people retain (learn) infor-
mation better when they hear it spokean, as in a lecture: others retain best
when they see the information written. People of the first type may have
more success in a class when the lecturer is a fine speaker, whereas
pecple of a more visual bent will be at an advantage when the lecturer
has well-prepared visual aids, Most people have an awareness of whether
they favor auditory or visual presentations for learning, but few use this
information in charting their own educational plans.

The person who favors auditory learning should try to find lectures,
either live or taped, from which he can learn. If he can find taped lectures,
he may have the additional advantage of being able to listen to the same
lecture several times—something he cannot do very easily with live lec-
tures. In fact, the tape recording—or even television tape recording—
promises to give the auditory learner equal parity with the visual learner,

194 Programming as an Individual Activity

who always had the advantage of being able to read a book or survey a
diagram as many times as he thought necessary.

The individuality of the learner is not only reflected in his passive ac-
ceptance of information from a book or lecture, but also in the activity
he performs while using these media. For instance, some people cannot
learn effectively from a lecture unless they take notes, even if they never
refer to the notes again. The very act of writing while listening enhances
retention for some. For others, however, taking notes during a lecture Is
merely a distraction, and they retain best by concentrating on the lecture
as it is given. Such learners are handicapped by being forced to take
notes in a course, as when the instructor requires that each student turn
in his notebook at the end of the term. When learning individually, how-
ever, no such outside pressure is present, yet many people continue to
take notes because they were forced to, or taught to, when they were In
a formal school situation.

Another important dichotomy is between people who learn best by
doing—by working problems, writing programs, and so forth—and those
who learn best by discussing problems with other people. Of course, the
dichotomy is ot a genetic one, and we can learn to profit from one form
of interaction even if we favor the other. In fact, it may be that we learn
different kinds of material best in different modes—we may learn a new
programming language best by writing programs in it, but we may come to
understand a problem best by discussing it thoroughly before plunging in.

One final area in which idiosyncratic learning methods should be
studied is that of work habits. Some people learn best first thing in the
morning, and some "night people” pass their early morning hours in an
impenetrable fog. Some people learn best when seated in a hard straight-
backed chair at a desk, whereas some hedonists in such a situation can-
not take their mind off their discomfort long enough to learn that one
plus one is two. Some people like to write with a hard pencil, some with
a soft one. Others must have a fountain pen, a ball-point, or a felt-tip;
still others must have a typewriter—and a particular model, to boot. Some
people prefer unlined paper, some prefer wide-lined, some prefer narrow.
Stilt others like to use graph-ruled paper, at least for some types of work.
One programmer must code on a preprinted coding sheet, another must
use plain paper, and yet a third might prefer composing his programs on
a typewriter, or a terminal. Even in the case of terminals, some prefer a
graphic terminal, and others must have a hard copy produced before
their eyes. One of the reasons for preferring a graphic terminal Is that
some people cannot work well in a noisy environment, and yet we know
that others actually need a substantial amount of noise in order 1o learn
at all—even to the extent of having to play a radio while they study.

The debate over tho optimum conditions for learning is probably end-

Motivation, Training, and Experience 195

less, for it is essentially a debate over an unresolvable problem. When we
are establishing a school, it may be necessary to accept one mode of
operation as best compromise for the “typical” student, but why should
an individual working alone have to make any compromise whatsoever
with the conditions that will be optimal for him? Indeed, even in schools
the quest for efficiency is often carrled beyond any reasonable need.
Why, for instance, must all students be forced to work on the same type
of terminal, the same type of coding pad, or with the same type of pen
or pencil? Making several reasonable alternatives available in the school
situation should encourage students to think about their own learning
habits—so that when they leave the school they will be better prepared
to continue learning, rather than feeling that if they never study another
thing it will be too soon.

No matter how well we establish the best physical environment for
learning, they have little influence on our success if we do not use all the
information available to help us learn. Just as we lose efficiency by
ignoring our idiosyncratic needs, we lose when we ignore sources of in-
formation—or pieces of information lying available in sources we are
already using. Probably the greatest cause of this type of loss is the
concept that something that is not “right”” is “wrong.” This binary distinc-
tion—this Aristotelian fallacy which pervades our culture today—results in
countless amounts of lost irnformation, which, if recovered, could lead to
a major increasa in educational efficiency.

As a simple example of such loss of information, consider the case of
two students trying to do the arithmetic problem, 25 - 16, on a test. If one
student gets the answer 19" while the other gets ""41,” both are graded
as being “wrong,”’ yet the first is obviously suffering from a difierent
problem than the second. In a large class, these two students are merely
lumped together as “pupils who cannot subtract.” If either were for-
tunate enough to have a tutor, the additional information in their answers
would be turned to good teaching advantage.

When we undertake to tutor ourselves, we must learn to pay attention to
all such information. When we write a program, for instance, and when
that program does not run “correctly,” there is usually a plethora of
information lylng about in the output. Rarely, if ever, do we just get back
a program which says “incorrect,” although many programmers operate
as if this were all they had to work with, and all they care about. If, on the
other hand, the output seems to be “correct,” they lay it aside without
a further thought.

Learning is an active pursuit. When learning to program, there are two
times when one should actively pursue learning—when the program runs
and when it doesn’t run. When it runs is the time to step back three paces
and take a broad look at what has been accomplished. Why was this pro-

196 Programming as an Individual Activity

gram successful when we have had more trouble with seemingly simitar
programs? Why did we have as much trouble as we did? If we were start-
ing from scratch, what would we do differently to make the programming
job easier, or to make the program more efficient, or to make the docu-
mentation better? Can we do any of these things now? All too often the
program that “works" is mistaken for the program that is finished, fre-
quently because of management pressure to “produce.” But the pro-
grammer who wants to learn must resist such pressures and take the
time to review his success. It might be a good practice for management
to give the programmer a day off when his project is "finished,” not so
much as a reward but as a chance to get a little perspective.

When our program does not run correctly, we have the opportunity to
learn more specific lessons. Quite often, under the pressure of produc-
tion, the programmer is tempted to bypass a trouble spot with a “fix’ that
he knows will work, since it does not use some new technique which he
was trying to master. Suppose, for example, that he has just been study-
Ing array expressions in PL/I, but that he has some trouble with an array
expression in his production program. If he decides that array expressions
are too “"complicated” and substitutes a DO loop such as he has been
using since his FORTRAN days, he will have missed a golden opportunity
for learning. No time will be more propitious for learning than that time
at which the need for learning is felt most strongly—the very moment
when we detect an error.

But be realistic: production work comes before learning in most en-
vironments, and managers will not tolerate substantial current delays
even when promised ultimate rewards in the great beyond when the new
technigue is mastered. What is the programmer to do when faced with
this conflict between his job and his learning? Actually, the resolution is
simple. If, after a reasonable amount of time trying to understand the
failure of the new technique, he has had no success, he should proceed
with his “fix,” if he has one. At the same time, he should construct a
test case that will enable him to discover why his original approach
failed.

In our example of PL/1 array assignments, the programmer could write
out the DO loop in the production program and initiate a job in which
the array assignment is tested in isolation. By pursuing this test example
to the point where he understands the problem, he will not only learn
the one thing he did not know, but perhaps will learn others as well, for
test programs such as this are often belter learning instruments than
are production programs.

As a matter of good practice, the test program should be constructed
before the *“fix” is made to the production program. In the first place,
there will be an all too human tendency to forget about the problem once

Motivation, Training, and Experience 197

the production program is working correctly, so we must impose a littte
discipline on ourselves. Possibly more important, however, is the chance
that by the mere act of constructing the test case we shall discover the
problem. In one case we observed, the programmer had been having
trouble with the PL/| array assignment statement

A — A/SUM(A);

He did not know where the trouble lay, so he created a test case in
which the SUM function was applied separately, in order that he might
see the sum printed. As he did this, however, he suddenly realized that
SUM{A) would not be computed separately in the problem statement—
that it would, indeed, be computed after each assignment of an element
of A. He was able to check this idea against the erroneous output {using
more of the information than he had originally when he just perceived the
result as “wrong”) and confirm his hypothesis. The production program
was then corrected to read

E':.SUM(A]; A:AIE:

He had not only learned something, but his production program reflected
his new insight. Moreover, he had overcome a substantial proportion of
his fear of array statements, having met the beast in mortal combat and
amerged victorious.

In the construction of “learning cases,” the programmer has to develop
a feeling for the “critical case”—that is, the case that is just like the case
at hand except for one critical difference. Through the contrast between
these two cases, he learns precisely how much discrimination he must
make—neither more nor less. For instance, if he is having some trouble
with the expression

INDEX(X||'ABC’, ‘ABC");
and is unsure of the INDEX built-in function, he can construct several
minimally contrasting cases in his test program, each differing from the
original in one aspect. Thus, for instance, one case could use a variable
instead of an expression as the first argument, a second could use a
string of different length, a third could use a variable second argument.
Each case gives him information somewhat different from the others, and
by running several cases at once, he increases his chances of obtaining
the information he wants in a single run.

To implement such an active program of learning, the programmer
must already know quite a bit. If, for example, he does not have sufficient
proficiency with his programming language to make the construction of
a critical case a relatively simple and foolproot afiair, he will quickly
become embedded in a morass of detail, which he cannot possibly handle
on his own. It should, therefore, be the goal of formal educational pro-
grams to train the programmer to the point where he can use his tools
as tools to further his learning. Instead, we all too often find that the

198 Programming as an Individual Activily

formal education has merely served !0 inculcate in the programmer a
hatred for his tools. How many college graduates take their diplomas
with the secret thought that now, at last, they are freed from such things
as books and lectures? It is a poor workman who hates his tools—all
the more because it is the tools themselves which can teach us to become
good workmen.

SUMMARY

The two major influences we can exert on a programmer's performance
are on the desire he feels for working and on what he knows that is
needed to do the job. The first is called motivation and the second is
called training, or, if it is sufficiently general, education. But little is known
about why programmers program harder, or even whether they are already
programming too hard for their own good. Possibly even less is known
about educating programmers, even though vast sums have been spent on
training schemes. Indeed, more articles and books have been written on
programming education than on all other aspects of programming psy-
chology put together, yet few of them have any lasting importance.

Perhaps we expect too much from formal training—from schools. The
education business is still essentially medieval in its practices, so why
should schools for programmers be different? Typically, where there is a
carefully worked-out educational program, it is to train future professionals
with amateur habits, so perhaps it is better that they don't do much of
a job. At least there's less to unlearn once you get into a real program-
ming environment.

The one factor that saves us in the computing education business is
the computer itself—ever silent, ever patient, ever teaching the program-
mer who has but the skill to learn. Perhaps we should set as a goal
for our schools merely to leave the students alone, so that they do not
turn off to learning before they get on the other end of that log with
the real teacher of us all. It may be expensive, it may be inelegant, it may
be old-fashioned, but for programmers, computer assisted instruction
(but not CAlY) is still the best.

QUESTIONS

For Managers

1. What is your impression of what motivates your programmers? Is it the
same thing for all of them—for men and women, for old and young?
Do you assume that they are motivated by the same things that mo-
tivate you?

Motivation, Training, and Experience 199

2. Do you take steps to keep your programmers from overworking, from
getting too involved in their job? Do you ever envy their involvement,
their dedication to their work?

3. What are your attitudes toward providing resources for programmer
education {hot necessarily programmer schools)? What do you do o
encourage your programmers to educate themselves as they work? Do
you do this just as an excuse not to spend money on schools?

4. Do you encourage programmers to work in their own preferred modes?

Do you, for instance, permit programmers to have diiferent sorts of
equipment in their offices, to take work home, or tc shift their working
hours frem the normal working hours of the shop?

For Programmers

1. What things could your manager do for you to make your work faster
or better? Have you ever discussed these things with your manager?
If not, do you think he unhderstands which things they are?

2. Write a personhal history of your training in computer programming.
Make notes of which experiences taught you which things, and which
were most beneficial to you. On the basis of this list, what are you
going to do about your future education? Or do you already know
everything there is to know about programming?

3. What are your favored modes of perception? What do you do to try
to take advantage of them in your educational effort?

4. Do you have any “peculiar” work habits which you think enhance your
performance? Dces your manager permit or prevent you from working
In these ways? Does your manager know of your preferences?

BIBLIOGRAPHY

Sackman, Harold, Man-Computer Problem Solving: Experimental Evaluation of

Time-Sharing and Batch Processing, Princeton, N.)., Auerbach, 1970.

Again, Sackman has a number of important things to say about programmer
training, and his largest and most recent studies were carried out on tralnees at
the Air Force Academy. One of his observations, which bears out the point of
view of this chapter, is that by far the most desired improvement to help cadets
in selving programming problems was “improved instruction.” Part of the prob-
lem, I suspect, ts the restriction to individual work, which ts particularly em-
phasized at the Academy. Thus, group cooperation [n learning, which is essential
in any real programming effont, is set aside by the school as *“cheating.”

See also the last chapter, which Sackman relates some of his findings to the
general psychological literature. He seems to feel that in the end, for program-
ming, experience and training come to dominate all other variables in programming
SUCCESS,

Cofer, C. H.,, and M. H. Appley, Motivation: Theory and Research, New York,
Wiley, 1964.

200 Programming as an Individual Activity

Covers the multifaceted motivation thecries in 2 professional way. A good place
to start into the classical work in the fleld of motivation, as seen by psychologists.

Hilgard, E. A., and G. Bower, Theories of Learning, 3rd ed. New York, Appleton-
Century-Crofts, 1966.

This book does for psychological leaming theories what Cofer and Appley do for

motivation. Again, & good place to start on an endless topic.

Proceedings of the Computer Personne! Research Conferences, Assocclation for
Computer Machinery, New York, published annually.

Articles on training schemes and systems for programmers are scattered through-

cut the computing literature like plums in 2 pudding. The articles on training in

these procedings should give the reader encugh of a sample o make up his

own mind.

Hzll, Douglas T., and Edward E. Lawler Ill, Job Pressures and Hesearch Per-

formance, American Scientist, Vol. 89 {Jan.—Feb. 1971).
Although we still do neot have a study of the effect of job pressures cn program-
ming performance, the programming manrager might profit from reading this
article, just so long as he keeps a slight reservation in the back of his head that
programming 1s not, so far as we know, the same activity as “research.” At least
this article shows that for complex intellectual activities, the relationship between
various job pressures and productivity is not a simple one, and Is oversimplified
only at a manager’s peril,

/
y
N/
N
7 [

y =
PROGRHP’IP’I\I\IG
Toom

. & word of advice to such of my hearers as
may happen to be professors. | am allowed to use
plain English beczuse everybody knows that |
could use mathematical logic if | chose, Take the
statement: "Some pecple marry thelr deceased
wives’ sisters.” | can express this in language
which only becomes intelligible after years of
study, and this gives me freedom. | suggest to
young professors that their first work should be
written in a jargon only to be understocod by the
erudite few. With that behind them, they can ever
after say what they have to say in 2 language
“understanded by the people.” In these days, when
our very lives are at the mercy of professors, |
cannot but think that they would deserve our grati-
tude it they adopted my advice.

Bertrand Russell*
e T
e —

f the poor workman hates his tools, the good workman hates poor
tools. The work of the workingman is, in a sense, defined by his
tocls—witness the way in which the tool is so often taken fo sym-
bolize the worker: the tri-square for the carpenter, the trowel for
the mascn, the transit for the surveyor, the camera for the photog-

* Taken from Portraits from Memory, Copyright 1851, 1852, 1953 and 1956, by Bertrand
Russell. Reprinted by permission of Simon and Schuster and George Allen and Unwin, Lid.

203

204 Programming Tools

rapher, the hammer for the laborer, and the sickle for the farmer.
Working with defective or pocorly designed tools, even the finest crafisman
is reduced to producing inferior work, and thereby reduced to being an
inferior craftsman. No craftsman, if he aspires to the highest work in his
profession, will accept such tools; and no employer, if he appreciates the
quality of work, will ask a craftsman to accept them.

Is the situation any different in programming? At first glance it may
seem to be, but this misunderstanding can be traced to the relative im-
maturity of programming as compared to other crafts. The tools of any
trade evolve, but the tools of programming have had but a decade or two
to arrive at their present forms. Thus, there is no common standard for
programming tools, and nho common experience in the use of the best
tools that do exist.

The pregrammer who is working in machine language—and many more
of these still exist than is commoenly supposed-—may hot even be aware
of the advantages that the crudest assembly language can provide. In
our course on the psychology of computer programming, one of the
students undertook an analysis of more than 2000 programming errors
encountered in his shop—where all programmers were coding in machine
language for a small special-purpose machine. Of these errors, 65 per-
cent were attributable to such housekeeping matters as inserting the
wrong humber of no-ops for delay cycles, incorrect operation codes, er-
rors in placing a bit for such features as indirect addressing, using the
wrong absolute address, or incorrectly calculating a displacement. By
using an assembly language of the most primitive design, these program-
mers could have eliminated two-thirds of their coding errors—but they
did not even know that such a thing was possible.

As we move up the levels of possible programming aids, we find the
situation repeating itself, for althcugh the assembly-language programmer
may scoff at the machine-language programmer, he may be in turn the
object of amusement for the user of a language with macro facilities.
Nct all of this titillation, however, is attributable to the superiority of che
system over ancther. Much of il, indeed, is a way of concealing an
insecure feeling that one's own programming system might not be, after
all, the pinnacle of man's technelogical achievements.

In this section of the book, we shall attempt to examine the major tools
used by the programmer from the perspective of psychology, in order to
see if we cannct put questions of system design and selection out of
the reach of ignorant squabbling and squalling. No doubt we shall be
unable to achieve this high aim, but we hope to make at least a start in
a direction which promises more than some heretofore explored.

1“" 1“# PROGRAMMING
LANGUAGES

ountless papers have been devoted to the subject of program-
ming languages, but the topic of psychology is not easily found
in any of them. The most typical attitude about programming
languages was expressed by one author who pleaded for an
effort “to reaily attempt to understand what programming and program-
ming languages are all about” Although we all could agree with this
laudable sentiment, we might not agree with his explication of what he
thought they were *“all about,” namely, “how they related te our mathe-
matical foundations on the one hand and to current as well as imagined
computing equipment on the other.” In that analysis, there is no mention
of people, the poor critters who have to use programming languages,
except perhaps for the type of people who spend their time imagining
computing equipment-—hardly the typical language user!
In this chapter, we also shall attempt to understand what programming
languages are all about, but our point of view will consider people first

205

206 Programming Tools

and machines and mathematics second—and then only as they impinge
on the psychological discussion. As we have already, in this book, spent
considerable time discussing what “programming” is, it will be appro-
priate to begin our study of programming languages by considering what
a “language” is, and to what extent programming languages are lan-
guages in other senses of the term. With that understanding as a basis,
we will attempt to throw some small light on the subject of programming
language design. Since most programmers do not have much to say
about the design of a language, we shall attempt to satisfy a more uni-
versal need by providing principles for sefection of a programming lan-
guage from among those already designed for us.

PROGRAMMING LANGUAGE AND
NATURAL LANGUAGES

It there is one area in which every man is an expert, it is language. We
all speak a language, and some of us can even read and write the lan-
guage we speak. If a foreigner says I would like of dinner,” any of us can
correct his erroneous use ¢f the preposition—even those of us who do not
Know a preposition from a proposition or a prepossession. The typical
person’s understanding of the language he uses, however, is not so pro-
found as to prevent him from labeling something as a language that might
resemble one only superficially. Thus, it is not surprising that the sysiems
of notation which we use to communicate with our computers came to
be known as “programming languages.” In fact, the very first pregrammer,
Lady Lovelace, seems to have had the idea of a programming language
as a |language as early as 1846. Although she was the niece of Lord
Byron, it was not her knowledge of poetry but, rather, of mathematics
which led her to think of a symbolic system as a language—for the idea
of mathematics as a language seems to go back into the misty ages of
the past. Thus, the idea of “programming language” was really born
with the idea of programming itself.

In view of the venerable past of the programming language concept, it
would be pedantic to attempt to demonstrate that programming languages
are not “real” languages. Languages are what they say they are, and we
are perfectly entitled to include systems of communications between man
and computer under the same rubric as systems of communication be-
tween man and man or beast and beast. What might be possible, however,
is to inquire about possible difierences between computer lahguages and
the other kinds.

One possible point of departure for comparing the two types of lan-
guage is the list of “design features” which Hockett has given for the

Programming Languages 207

natural language of human beings (speech). The first of thirteen features
which he lists is the use of a “vocal-auditory channel”—that is, | speak
and you listen, The use of this channel has several advantages, particu-
larly the freeing of the hands and other organs for separate activities.
Programming is generally a manual operation—we laugh when someone
asks us to '‘say something in FORTRAN." It is a written language, and in
spite of its resemblance to other written languages, it differs from them
in not having a speech system behind it. Not that written languages are
simple transcriptions of speech, nat at all: but a written language such as
English is strongly influenced by its relationship to a spoken language.
This influence is not so strong in other written languages, such as those
using the Chinese writing system, but the influence—the mutual influence
—always exists.

One eftect of not having a spoken form of a programming language is
a possible slowing down of language innovations, for the spoken form
of the natural language is most often the source of new language forms.
Another effect is the difficulty with which we can talk about a program-
ming language without a blackboard or pencil and paper. Every program-
ming office should have a blackboard, chalk, and many erasers.

The second of Hockett's features is “rapid fading.” We need many
erasers because what we “say” about a program on the blackboard does
hot erase itself the way an utterance does. Sometimes it is a convenience
to have rapid fading in a programming language. Once, when installing
a computer in Bermuda, we fell into the habit of sketching our rough
programming ideas in that portion of the coral sand between the apogee
and perigee of the wash of waves. The ocean saw to it that each idea
lasted only about as long as it was worth; but in ordinary programming
work, we usually have to make explicit provision for getting rid of our
obsolete listings, unless we have a graphic terminal.

The third feature is “broadcast transmission and directional reception,”
which means that we speak more or less in all directions at cnce, but we
can detect, when listening, from what direction the speech is coming.
Programming, of course, is quite the opposite. Programming shares with
prayer the feature of directional transmission and broadcast reception.
Heaven receives prayers, and the computer receives programs, from all
over at once. We might imagine, then, that what variation is permitted in
prcgramming languages would be on the way out of the computer, but
just the opposite is true. In spite of the diversity of its listeners, the
“system” simply broadcasts identical messages to all of them. Certain
possibilities for change lie here.

Probably the really important difierence between programming lan-
guages (of today) and natural languages lies in Hockett's fourth design
teature—interchangeability. Although we often listen to people whom we

208 Programming Tools

cannot understand, or often speak to people who cannot understand us,
the normal image of human speech communication is that each partici-
pant can reproduce any linguistic communication he can understand. In
short, we “talk the same language.” When we talk to our computers,
unhappily, we are usually speaking in different tongues. Here, at least,
for all their other faults, the machine languages have the upper hand,
for at least a dump looks a little like the stuff we put into the blasted
machine. Not so—not nearly so—when what we put in was FORTRAN or
COBOL. How truly sad it is that just at the very moment when the com-
puter has something important to tell us, it starts speaking gibberish.

There is, fortunately, a trend today to try to introduce interchangeability
into the dialegue belween man and machine through a programming
language, and this step is bound to have important psychological effects
on programming effectiveness, even though it may decrease machine
“efficiency.” But there is another kind of noninterchangeability which is
perhaps even more severe and yet less subject to mechanical remedies.
Programs are used not only for man-machine communication, but for man-
man cemmunication as well. Yet communication in programming lan-
guages does not seem to have the interchangeability we take for granted
in natural language communication, even between the same two pecple.
At the extreme of this problem is the case of the man who can read
COBOL programs but cannot write them. Probably, he cannct discuss
them, either, which makes for most difficult communication problems if
he is, say, a programming manager.

In Hockett’s remaining design features, programming languages do
seem to measure up to natural languages—actually going beyond them
in the exhibition of such features as productivity, the ability to express
something that has never been expressed before. In a way, the design of
programming languages reflects different patterns of use than are com-
monly found in natural language. To be sure, it is important that a natural
language be productive, in the above sense, but for a programming lan-
guage, productivity is the sine qua non.

When we consider function of a language, rather than the design fea-
tures which realize function, the deepest differences between program-
ming languages and natural languages emerge. Bruner gives six general
functions of natural language—emotive, connotative, referential, meta-
lingual, pcetic, and phatic. Although we can identify each of these in
programming languages, their relative importance and frequency of use
is auite different.

Emotive language consists of utterances such as “How do you do?' and
“Fiddlesticksl,” which are ritualized expressions of the emctional state
of the speaker. Generally speaking, the computer is not interested in the
emotional state of the programmer, although evidences of it may creep

Programming Languages 209

into his program. Phatic language consists of utterances such as “Uh
hu...but...and..." which serve the function of keeping the channel
of cemmunication open or testing its state of operation. An exact counter-
part of the phatic “and” is found in some terminal systems where the
user can keep his program from being pushed down in the priority stack
by fiddling with the shift key while he is thinking. Without the shifting, the
computer would fail to get a communication for a long period and assume
that the user’s program could sately be put in a more passive state. Of
course, jiggling the shift key defeats the purpose of the scheduling algo-
rithm, but more important than that is the interference it probably causes
with the programmer's thought processes. Hopefully, such phatic com-
munication can be removed from the already cluttered field of program-
ming language phenomena.

At first blush, poetic language would seem to have no place in pro-
gramming, yet it plays a role which should be increasingly recognized.
In poetic language, the patteming of the language itself—for esthetic
reasons——is uppermost. But what, in programming, is there to correspond
to Keats' lines such as these?

O Attic shape! Fair attitudel with brede
Of marble men and maidens cverwrought,
With forest branches and the trodden weed;
Thou, silent form, dost tease us out of thought . . .

If we mean to read aloud, the answer is nothing, for we have already
seen that programming language is not speech, let alone song. But is
there not, indeed, something in form for form’s sake which “dost tease us
out of thought' ?

A programmer would not really be a programmer who did not at seme
time consider his program as an esthetic object. This part is not quite
symmetrical; that part is clumsy and doesn't flow in an appropriate man-
ner; the whole thing does not look proper on the page. To be sure, it is
fashionable among programmers to be rough and tough and pragmatic,
but deep down each programmer knows that it is nct encugh for a pro-
gram just to work—it has to be “right” in other ways. Later, when we
discuss language design and program testing, we shall see that the cor-
relation between the esthetic and the pragmatic value of a program is
not accidental—the more pleasing to the eye and mind, the more likely
to be correct. Or, put more poetically, “Beauty is truth, truth beauty.”

The prose of programming consists largely of referential and conncta-
tive parts. Referential statements are statements or questions of fact—
“That is Heidi,” “This is a fixed-point binary number with 13 bits and a
sign.” Connotative statements give instructions—"Step pulling my leg,”

210 Programming Tools

“Find the inverse of this matrix.” Of these types, we shall say more later.
But here we should note that, although both are common in natural and
programming languages, the universe of discourse is much, much smaller
in programming. Thus, even though there Is essentially no limit to the
number of assignment statements or declarations in PL/I, the number of
possible utterances in English is enormously greater. We are aware of
the importance of the size of the universe of discourse in programming
languages, but it is probably most important for their psychology, as we
hope to show.

Metalingual utterances—talking about language—are of primary Im-
portance in programming, especially in the learning process, when pro-
gramming such things as compilers, and when designing and defining
programming languages. Until recently, programming languages differed
from natural languages in that they relied exclusively on natural language
as a metalanguage—with the possible use of a little mathematics. This
chapter, for example, is cne long metalingual statement about program-
ming languages, completely couched in English. Now, however, increas-
ing attention is being turned to special formal or informal languages de-
signed to facllitate metalingual expression and reascning. Moreover, cer-
tain programming languages are beginning to incorperate metalingual
features of great power—agiving us the ability not only to manipulate
pragramming languages but to manipulate assertions about programming
languages. Although the future of these efforls Is not clear, and empirical
evidence is almost entirely lacking, we hope to be able to give some
hints of the role which metalingual features can play in the psychology of
programming languages.

PROGRAMMING LANGUAGE DESIGN

It Is impossible to begin a discussion of psycholegical principles of
programming language design without recalling the story of “Levine the
Genius Tailor.” It seems that 2 man had gone to Levine to have a suit
made cheaply, but when the suit was finished and he went to try it on, it
didn’t fit him at all. “Look,” he said, “the jacket is much too big in back.”

“No problem,” replied Levine, showing him how to hunch over his
back to take up the slack in the jacket.

“But then what about the right arm? it's three inches too long.”

“No problem,” Levine repeated, demonstrating how, by leaning to one
side and stretching out his right arm, the slesve could be made to fit.

“And what about these panis? The left leg is too short.”

“No problem,” said Levine for the third time, and proceeded to teach

Programming Languages 211

him how to pull up his leg at the hip so that, though he limped badly, the
suit appeared to fit.

Having no more complaints, the man set off hobbling down the street,
feeling slightly duped by Levine. Before he went two blocks, he was
stopped by a stranger who said, “| beg your pardon, but is that 2 new
suit you're wearing?™"

The man was a little pleased that someone had noticed his suit, so
he took no offense. ““Yes it is,” he replied. “Why do you ask?"

“Well, I'm in the market for a new suit myself. Who's your tailor?"

“It's Levine—right down the street.”

“Well, thanks very much,” said the stranger, hurrying off. *! do believe
I'll go to Levine for my suit. Why, he must be a genius to fit a cripple like
youl”

Would it be inappropriate to concoct a version of this story called
“Levine the Genius Language Designer”? The first problem in discussing
language design is that we do not know the answer to that question. We
do not know whether the language designers are geniuses, or we or-
dinary programmers are cripples. Generally speaking, we only know how
bad our present programming language is when we finally overcome the
psychological barriers and learn 2 new one. Qur standards, in other
words, are shifting ones—a fact that has to be taken into full consideration
in programming language design.

Why are our standards so flexible in this matter when they are all too
often rigid in others? The problem lies in the rigidity of our machines
and, through them, in the rigidity of our programming languages. When-
ever a man is confronted with a new machine, he is forced to choose be-
tween making some adjustments himself or adjusting the machine to
narrow the gap between what is desired and what exists. Although ma-
chines, and especially computers, are adjustable, the time scale for
them to be changed is generally much longer than for a person. Pro-
gramming languages are attempts to adjust the raw computer to behter
fit human propensities and limitations, but they too suffer from a long
update cycle. Thus, the user is faced with the choice of waiting for
months or years while he develops his own programming language—a
primrose path which many a2 man has trod—or gritting his teeth and
learning to live with what he has.

Humanists often contend that machines tend to dehumanize people
by forcing them to have rigid personalities, but really, the contrary is
true. Because the machines are rigid, the people who use them must—
if they are to be successful—supply more than their share of flexibility.
Perhaps this is the effect that the humanists are describing as *dehuman-
ization,” for in ordinary human intercourse, each party gives and takes

212 Programming Tools

his share. Relationships in which one party does all the giving or zll the
taking are not fully human, and tend to produce personality distortions
in one or the other.

In making our adjustments to our particular programming languags,
we can easily become attached to it simply because we now have s0
much invested in it. We often listen to a man complaining about his
nagging, slovenly, and prodigal wife, only to find that when asked why he
doesn't leave her, he replies that he cannot live without her. Most people
would prefer almost any amount of pain to giving up the familiarity of
some constant companion for an unknown quantity. We see this efiect
when we try to teach a programmer his second language. Teaching the
first is no great problem, for he has no investment in any other. By the
time he has learned two or more, he is aware that more things exist in
this world than he has dreamed of. But letting go of the first is, to him,
just a promise of pain with no promise of compensating pleasure,

Perhiaps this situation could be improved if we could enunciate and
teach certain principles that are not tied to particular languages, So
that even the beginner would have some less relative measure to hold up
against the language he is learning. But teaching practice teday in our
universities and programming schools seems to be pointing in exactly
the opposite direction. Instead of trying to teach principles, or at least
trying to teach two contrasting programming languages simultaneously,
or at the very least trying to teach one programming language which
rather broadly represents the major possibilities, the schools seem de-
voted to teaching how to program in a single simple and artificial lan-
guage. The objective seems to be to get the student writing some kind
of program as soon as possible—a not unworthy aim—>but at the expénse
of limiting the future growth of the programmer.

To be fair, we should recall our distinction between the professional
and amateur. The schools, it seems, are devoting themselves primarily to
turning out vast quantities of amateurs—perhaps under the assumption
that the professionals can and should take care of themselves. But when
the language designers begin to believe that the principles underlying
the design of an amateur's language are the same as those upon which
a professional’s are based, then we have trouble.

In order to get at the principles underlying the design of programming
languages to fit psychological realities, we shall have to get down to
fundamental empirical data. Reading programs will be a help, but reading
is not enough. When we read a program, we can seldom tell with cer-
tainty why a particular piece of coding is present. To understand the
psychology of programming languages, we shall have to do more than
read programs—we shall have to observe programs being made. Even

Programming Languages 213

this process—even interviewing programmers—will not tell us all we
want to know, and we shall have to resort to many sources and devices
to get even a slightly better picture than we have by intuition. One reason
for these complexities is that the programmer himself seldom knows
why he does what he does—which is a general problem in the study of
agny human behavior.

Consider, for example, the following situation. A programmer writing
in FORTRAN wants to use a subscript expression such as (J-21). He knows
that there are rules—perfectly explicit and unambiguous—about which
subscript expressions are permitted and which are not. But he is not
quite sure of the rule as it applies to this case, so what does he do?
Well, he might look up the rule in his manual, but if he is a clever fellow,
he will probably just make a preliminary calculation by such a statement
as

K=J-21
He is sure that K is an acceptable subscript, and this is much faster
than looking up the rule. It may—to be sure—he slower in the program,
but that is not the question uppermost in his mind at this moment.

Now, why did the programmer do this? Because of a limitation in the
FORTRAN language? But, you might argue, J-21 is not prohibited by
FORTRAN, so it must be a limitation of the programmer—of his under-
standing of FORTRAN. Although this argument places the blame, it mis-
leads us in designing or evaluating a programming language, for would
it not be also correct to say that in PL/), the programmer would have
been much less likely to make this error? Why? Because he would be
more likely to know that there were no restrictions on subscripts in
PL/l, so it would not even occur to him to worry about whether a par-
ticular expression was permitted or not.

When we assess a programming language, or a machine, from a psy-
chological point of view, we cannot grant ourselves the luxury of putting
all the burden of poor programming on the poor programmer. If the same
programmers get consistently better results using language A than
using language B, what good are arguments that they would have done
better in language B, if only they had been smart enough to master it
Of course, there is a time dimension to this argument, for one must
fearn to use a programming language or a machine. Thus, the evaluation
of these things depends on the entire system comprising the courses,
teaching materials, language, compiler hints, programming assistance
and anything else, which may lead to one language being better used
than another. Perhaps the messages coming from the lerminal when an
error is made are more motivating in one system than another. Perhaps
the programmer feels he is more important if he is chosen to program

214 Programming Yools

in machine language instead of FORTRAN. If we are to be effective in
improving the quality of languages, we shall not be able to dismiss any
such factor out of hand.

In a way, the reason it is so hard to attribute the source of program-
ming inefficiency to either programmer or programming language is
that if we had ideal programmers, programming languages would not be
necessary. it is a psychological difficulty which prevents us from writing
our problem specifications directly in machine language. Let’'s face up
to it: people don't think the same way that computers do-—that's why
we use computers. Programming is at best a communication between
two alien species, and programming languages with all their systems
paraphernalia are an attempt to make the communication simpler for one
of those species. Which one? Not the computer, certainly, for nobody
ever heard a complaint from a computer that it couldn’t do the work.

SUMMARY

The use of the term “language” in the phrase “programming language"
is in many ways damaging to progress in communication between man
and machine. Just calling it 2 language doesn't make it one, and may
instead lead to false analogies which, in turn, lead to misguided research
efforts. To make progress in programming languages, we must first give
up the holy grail of trying to program in a “real” language, for program-
ming languages can never be the same as human speech. We may then
transfer our quest to making programming languages more “natural,” not
in the sense of being identical to English or some other culture’'s con-
tribution to the Tower of Babel, but in the sense of a consonance be-
tween the mode of expression and the mind of the expressor. But in the
end, to get a good “fit,”” perhaps the customer will have to scrunch over
a litle—perhaps we are ultimately going to have to change our ways of

thinking to fit our computers. Why not? Hasn't every other human in-
vention changed man?

QUESTIONS

For Managers

1. Are chalkboards standard equipment in your programming offices?
Have you ever turned down a request for a chalkboard?

2. How were the programming languages used in your shop chosen?

3. Relate any experiences you have had with a change in programming
languages in your shop.

Programming Languages 215

For Programmers

1. Is the person who designed your language a genlus? Give some ex-
amples of his genius, from your own experience.

2. Relate your experiences in learning your first and second and third
programming languages, trying to point out psychological differences
in the experiences based not so much on the languages themselves
but on the order you learned them.

3. If you are an experienced FORTRAN programmer, can you glve the
precise rules for subscript expressions? Are you sure? How does it
influence your programming when you are not sure of a rule? Do you
ook it up?

4. Has being a programmer changed the way you think when you are
not programming? If so, give some examples.

BIBLIOGRAPHY

Morrison, Philllp, and Emlly, eds., Charles Babbage and His Calculating Engines,
New York, Dover Publications, 1961.

Along with Babbage's writings on his machines, we find Lady Lovelace's com-
ments, which show a clear understanding of many of the fundamental principles
of programming languages. Those who believe that the progress of knowledge is
monotonic and increasing should read this book carefully. What happened, they
should ask, to thils understanding betwean the years 1860 and 19407 Perhaps
because Babbage was unable to separate clearly the principles of his machine
from their mechanlcal embodiment, his works lay scattered and forgotten in li-
braries ali over the world, only to be rediscovared after hils Inventlons had been
reinvented in an electric and slectronic embodiment. is thare a lesson here, too,
about programming languages?

Zemanek, H., Semiotics and Programming Languages, Communications of the
ACM, 9, No. 3 {(March 1966), pp. 139—43.

Zemanak was the head of the IBM Vienna Laboratory while It was developing the

Universal Language Document for PL/i, probably the most ambitious metapro-

gramming document ever attempted——and probably the most successful. This

article gives some of the structure of his thought, which clearly Influenced the

coursa of the ULD development.

Greenberg, Joseph H., Universals of Language, 2nd ed., Cambridge, Mass,, M.LT.
Prass, 1966.

Based on, but not a verbatim account of, a 1961 conference, this book gives a
good introduction to the search for universal features of languages. In addition to
Hockett's paper, it contains at least six other papers that should be of interest to
programming language designars, although, of course, programming languages
are not considered languages by these linguists,

Bruner, Jarome, Toward a Theory of Instruction, Cambridge, Mass., Belknap Press
of Harvard Univarsity, 1966.
Bruner gives his slx general functions of language, along with many other thoughts.

216 Programming Tools

Bruner is one of the most important modern thinkers and researchers in the areas
of language, learning, and thought, and thls bock Is a good Introductlon to hls
ideas.

Miller, George A., Language and Communication, revised ed., New York, McGraw-
Hill, 1963.

No programming language designer should be permitled to design another lan-

guage until he has read this book. As Mlller says in his Introduction: “A sclentiflc

study of language, as opposed to a speculative discussion, begins with direct

observations of communicating individuals and searches for the relation of thasea

observations to the existing body of scientific knowledge.™

Vygotsky, Lev Semenovich, Thought and Language, Cambrldge, Mass., M.|.T. Press,
1962.

The translation of tha work by the graat but short-llved Russian psychologist re-

mains today probably the most stimulating and readable work on the relationship

batween thought and language. No programmer could fail to profit from reading

this book.

Steel, T. B., Jr., ed., Formal Language Description Languages for Computer Pro-
gramming, Amsterdam, North-Holland Publishing Co., 1966,

These papers are the proceedings of an iFIP working conference on formai ian-

guage description languages—that is, on formai metalanguages for programming

languages. Although uneven, it is a rich mine of conceptual nuggets for those In-

terested in the language of language, or the language of language of language,

or

Symposium on Extendible Languages, Sigpfan Nolices, 4, No. B, Association for
Computing Machinery, New York, 1969.

Extendible, or extensible, programming languages are languages in which the

language Iself can be manipulated by the programmer, This symposium [airly

well represents the state-of-the-art at the timea it was published.

Sammett, J. E., Tha Usa of English as a Programming Language, Commurnicalfons
of the ACM, 8, 3 (March 1366}, pp. 226-30.

Higman, Bryan, A Comparalive Study of Programming Languages, Section 15.3:
Subsets of English, New York, American Elsevier, 1987.

Two essays to discourage those who think that the answear to ali our problems

is to program in a “real” language.

SOME

PRINCIPLES FOR

¢) PROGRAMMING

== | ANGUAGE
DESIGN

aving said that the elucidation of programming language de-
sign principles is an empirical matter, we shall now proceed
to give a largely speculative survey of some ideas that have
been put forth as general principles of good design. The pres-
entation must be largely speculative simply because most of the em-
perical data do not exist. Yet such data are not necessarily difficult to
obtain—most of the studies which we can cite were done by students
working with limited time and low budgets. The real problem is that
psychological factors are not recognized as part of the programming
language design problem—aor, if they are recognized, they are thought
to be solvable by introspection cn the part of the language designer and
his pals.

217

218 Programming Tools

UNIFORMITY

In some cases, we can draw experimental data from the mainstream
of psychelogy, at least for suggestions as to areas of potential program-
ming difficulty. One such case is the principle of uniformity. The dif-
ficulty of remembering a set of items has been shown In numerous
experiments to be related to the “information content” of the set. The
“information content,” however, is difficult to measure, for it depends
not only upon what is in the set, but on what is not in it—what is in the

rememberer's mind. If, for instance, we ask a subject to memorize the
set

000 001 010 011 100 101 110 111
he will have little difficulty if he knows the binary number system.

But suppose the subject knows the binary number system and is
asked to memorize the set:

000 001 010 100 101 111
Now, although there are only six cases to remember, the job is more
difficult. Why should that be? Because the complexity of remembering
—for the person who knows the “system’”—is not related to the number
of cases, but to the number of exceplions from the system. Once one
knows the binary number system, it is just as easy to “memorize” the
first 1024 numbers as it is to memarize the first eight. In our first example,
the subject only had to remember *the first eight binary numbers,” but
in the second example, he might have remembered in the form, “the
first eight binary numbers—excluding 011 and 110.” We do not have to
be expert psychologists to see that the second case is at least no
easier than the first, and should be somewhat harder.

Now, the preceding argument would be invalid if the subject was
naive with respect to the binary number system, for then the two lists
might appear more or less “random™ to him. In that case, six items
should be somewhat less difficult to memorize than eight—exactly the
opposite result obtained by the more sophisticated subject.

In programming languages, precisely the same situation prevails. In
the last chapter, we mentioned the case of FORTRAN subscripts. If
programmers were perfectly naive on the subject of arithmetic expres-
sions, we could argue that the FORTRAN subscript rules were easier
to remember than, say, the PL/l or APL subscript rules, for the set of
possible subscripts is obviously smaller in FORTRAN. But programmers
are not perfectly naive, and they can learn most possible PL/l or APL
subscripts by remembering only one simple rule: “any scalar expression

can be a subscript.” In FORTRAN, however, they must learn the following
set of seven forms:

Some Principles for Programming Language Design 219

a

v

v + a

v — a

a‘v

a'v+ b

a‘*v — b
where v represents an unsigned, nonsubscripted, integer variable, and a
and b represent unsigned integer numbers which must be greater than
ZEro.

In order to test the difficulty of remembering these rules, a survey
was taken of 117 experienced FORTRAN programmers. First we asked
them to say whether the expression

21 — K
was a valid FORTRAN subscript, an invalid FORTRAN subscript, or they
didn’t know for sure. 31 said it was valid, 9 said it was not valid, and
77 said they were not sure. (As a control, we asked 53 experienced
FL/1 programmers the same question about PL/1, and all but 4 said it was
2 valid subscript; these 4 were former FORTRAN programmers.)

Following this test, we asked the 9 correct FORTRAN programmers to
write down the exact rules for permissible FORTRAN subscripts. None
of the 9 were able to give the rules exactly. Of the 49 correct PL/I
proagrammers, all were able to give the answer roughly equivalent to
“anything.” Although this is not an exact rule—it encompasses, for ex-
ample, array expressions, which are not valid—it is a rule which at
least does not prevent the programmer from trying something that is
valid, such as K-21 in FORTRAN. If the PL/! programmer does, indeed,
happen to write an array expression as a subscript, he will be caught
in the act by the compiler: but a FORTRAN compiler is not likely to tell
the K-21 programmer that he is not using the full power of the language.

What we mean, then, by uniformity should be reasonably clear from
this example, although no precise statement of the principle can be
given, since it is a psychological principle rather than a mathematical
one. Roughly speaking, the principle of uvniformity in programming
language design might be stated thusly: “The same things should be
done in the same way wherever they occur.” To the extent that the
language contains deviations from this rule, it violates the principle of
uniformity and will thus be more difficult to learn, more difficult to use
without error, and more difficult to use for producing “new" technigues.

We explored the question further by comparing two languages, one of
which was a “subset” of the other, used on the same problem. The two
languages were the 0S/360 and the DOS/380 versions of PL/L. The
DOS version is not a perfect subset of the 0OS version, but to a large

220 Programming Tools

extent it can be characterized as such—as the OS version with certain
restrictions and omissions (which are a special case of restrictions).
With 14 relatively new PL/I programmers working in each language on
the same problem, we found that the OS group had detectably less
difficulty in getting working versions and that the code was shorter. In
analyzing the different programs produced, we found that the DOS
programmers often failed o use a feature that was, in fact, in their
subset. When asked about this, they invariably replied, “l wasn't sure |
could write that." {See Figure 12-1.)

What seems to happen, then, is that the more “covert categories”
—things that you cannot do or say—there are, the more one expects
other such covert categories in the language. Even If the restrictions
are in another part of the language, they may affect the actual usage of
a part without such restrictions. Another way of putting the rule of
uniformity, then might be this: “If a programmer asks, ‘Can | write . . . ?'
the answer should be ‘yes.'" Just like the child who is told “rio’ too
often, the programmer woarking in a nonuniform language wil! tend to be
discouraged from trying new things.

Another Tmportant aspect of uniformity is that the same syntactic
construction should not mean different things in different contexts. For
example, we are told in PL/] that “redundant parentheses are never
required, but may always be used if desired.” This is a good rule, but
one which, unfortunately, has a few fairly critical exceptions. For in-
stance, the two statements

CALL X{A);

CALL X{(A));

INDEX PROBLEM

MEAN RUN
TIME

MEAN # OF
STATEMENTS

MEAN #
OF HUNS

FULL-LANGUAGE

SUBSET-LANGUAGE 1.2 319

Figure 12-1 Compariscn of a programming language with Its subset.

Some Principles for Programming Language Design 221

do not ustally mean the same thing at all, for the second always causes
a dummy argument to be passed to X (roughly, a call-by-value instead
of a possible call-by-reference). On the other side of this coin, the two
statements

GET LIST{A{l} DO | = 1 TO N);

GET LIST({{A{l) DO 1 = 1 TO N));
do not mean the same thing because the first is syntactically incorrect—
“redundant” parentheses being needed for the data list and for the
iteration specification.

Such syntactic nonuniformity definitely discourages semantic explora-
tion, for it renders the programmer uncertain about his power with the
language. For instance, having encountered these two exceptions to the
parentheses rules, the programmer may be reluctant to put parentheses
in a complex expression to clarify its meaning, or he may feel impelled
to put in extra parentheses because he has to “make sure.”” In general,
he is going to be confused, and programmers should nat be confused
about their programming language.

As an interesting sidelight on the uniformity question, we might note
that this trouble over parentheses in PL/! stems from the overuse of
parentheses required because of the limited character set. This effect
of limiting the character set is quite general, because any time the same
character is used in two different contexts, you have nonuniformity. APL
probably goes the furthest of any current language in the exploitation of
a large character set, even to the extent of using a different symbol for
the operator “minus” and the “minus sign™ of a number, and supporters
of APL claim that it is a most powerful language because of this uni-
formity.

Such statements, of course, should be subjectable to experimental test.
As an example of how such a test ¢an be made, recall the long paren-
thesized statement of Figure 3-1, which In PL/] had six levels of par-
entheses. This statement can be recoded in APL, as shown in Figure 12-2,
To the casual eye, this statement does not appear as complex as the
one in Figure 3—-1, partly because of the two types of brackets, and
partly because two pairs of parentheses can be eliminated because of
APL's function form and right-to-left rule. Is this casual observation
verifiable? We studied the guestion by making several varlations of the
two statements which were ill-formed and testing the abifity of pro-

ANGLESE T+ 2% ATAND SORT (S-ALTNDLT;111)x(5-A[IRDLT;211)5S=x(5-ALINDLT;31])

Figure 12-2 An APL version of Figure 3-1.

222 Programming Tools

grammers experienced in PL/I and APL to identify the ill-formed versions.
There was a definite edge in both speed and accuracy to the APL state-
ment, which seems to indicate that APL’s claim to uniformity is at least
partially well founded.

The limitation of the character set is but one case of machine limita-
tions leading to fallure of uniformity. The restriction of FORTRAN sub-
scripts to another example, or at least an example of failure of nerve
on the part of the implementers, who thought they could not give efficient
code if subscripts were unlimited. Another source of nonuniformity is the
quest for certain other design principles, not all of them well founded. The
deepest of these principles go unchallenged, particularly the assumption
of unambiguity. Even so sophisticated a writer as Bryan Higman says:
“Because every language must have a character set and an unambiguols,
decidable grammar . . . ,” but he leaves the assumption of unambiguity
unchallenged. Any assumption that deep should be challenged once in a
while, just to keep it healthy.

A nice example of the obsesslon with unambiguity is the syntax of the
WHILE clause in PL/I. Following the keyward, WHILE, is a logical condi-
tion, as is found following the keyword IF in an IF-statement. However,
in the case of the WHILE but not in the case of the IF, a parentheses
must surround the condition—a nonuniformity which leads to a nuriber
of errors in syntax. The reason for the seemingly extra parentheses is
that a syntactic ambiguity can arise if the programmer has declared an
array named WHILE and writes a statement such as

DO WHILE(l) = 1;

For this one case, every programmer using a WHILE must use an extra
pair of parentheses.

Actually, even with the morbid dread that programming language de-
signers have of ambigiuity, it creeps into all fanguages. But the am-
biguity that creeps in is, in most cases, psychological ambiguity-—which
seems to be beneath their consideration. A ¢lassic case is intermixed
multiplication and division, as in

A = B/C'D
Although the language designer and the compiler do not regard such a
statement as ambiguous, programmers certainly do—as evidenced by
the number of bugs we find related to this type of situation.

What needs to be done about ambiguity is to recognize that there are
two types—physical and psychological. Compilers, of course, are never
ambiguous—one may interpret the above statement as

A — B/{C*D)
while another may interpret it as

= {B/C)'D
but each will be consistent in its interpretation. Because of possible

Some Principles for Programming Language Design 223

different interpretations by compiler writers {which is really psychological
amblguity in the end), it is important to eliminate this kind of ambiguity
from a language so that all implementations will be no farther apart
than necessary. But eliminating physical ambiguity does not solve the
psychological problem.

Ken Iverson, the inventor—the developer—of APL, once told me that
APL’s “right-to-left” rule for resolving amblguity was “more natural” than
the rules used, say, in PL/Il. Certainly the strict right-to-left rule is simpler to
state than the PL/I rules (which in a formal sense often leave the order
of execution undefined anyway), but its “naturalness™ is an open psy-
chological question certainly worth exploring as a way of resolving
ambiguity. From an introspective point of view, | can say that | have
never entirely come over to a right-to-eft way of thinking, after writing
perhaps 400 APL programs. Certainly my students have not come over
after writing a few dozen, and the psychological ambiguity remaining
from theilr early habils with left-to-right and other rules remains one of
the greatest, if not the greatest, single sources of APL errors I see. For
myself, | have come to the adaptive reaction of overparenthesizing {even
in PL/1} to avoid possible psychological ambiguity.

There is some ray of hope on the horizon that programming language
inventors realize the difference between these two kinds of ambiguity.
Klerer and May have taken the interesting approach of permitting the
user to write in a way which is natural to him, and then o give him a
message which says:

THIS 1S THE WAY WE INTERFPRET YOUR STATEMENTS.

IF ANY ARE INCORRECT PLEASE RETYPE THE STATEMENT

CORRECTLY.
Such an approach becomes particularly appealing in a terminal situation,
where we at last get something approaching the dialogue of a natural
language. It requires that we revise our static notion of what is a
“language.”

This approach would be especially useful for such rare ambiguities
as the PL/] WHILE. It complete unambiguity is desired, why not simply
make a secret rufe in the language that is applied only when the pro-
grammer uses an array named WHILE. In that circumstance, the com-
piler can tell him to change such a WHILE-clause should it appear, and
the rest of us need not bother. In practice, of course, compilers recognize
this situation and warn us that they have inserted the parentheses for us.
Why not dispense with the warning, and only punish the programmer who
is stupid enough to use keywords as variable names?

Which leads us to our final point about uniformity. Not all of the
blame lies with the language designers—individual programmers can
be far more guilty of this sin. For example, choosing keywords as variable

224 Programming Tools

names means that the name is used in a nonuniform way in the program,
which certainly confuses the task for anyone trying to read the program.
(I have been particularly guitty of this in some of my examples in earlier
books.) Other sources of nonuniformity are declaration of variables with
different sizes for no particular reason, use of abbreviations sometimes
and full names at other times, arbitrary indenting and spacing of the
source program, and commenting densely in some places and not at all
in others that seem more difficult

But the major source of pragrammer nonuniformity remains the chaice
of mnemonic names. Abraham Lincoln used to ask this riddle: “If we
call tail a leg, how many legs does a dog have?" When the respondent
cauld answer “five,” Lincoln would admonish, “No, four. Caliing it a
leg doesn’t make it a leg.” How many times—how many thousands of
times—have we seen a program In which OLDX has not been assigned
the old value of X, SUMAB has not been assigned the sum of A and B,
or BIGGEST has not actually been given the biggest value? Calling it
OLDX doesn’t make it the old X; but no matter how often we deliver this
admonition, the fallacy seems 1o perpetuate itse!f. Just as with non-
uniformity in the language itself. this practice hurts us just because it
leads us to believe something that is not true.

From a debugging standpoint, a slight amount of nonuniformity is
really worse than a great deal, for the general uniformity fulls us to
sleep. If most of the time, OLDX /s the old value of X, we are more
likely to miss the one time that it isn't: and if most of the time {A) means
the same as A, we may never find the bug in our program.

COMPACTNESS

We have already mentioned the principle that the human mind has
certain inherent limitations in capacity. Although these limitations vary
from person to person and from one sort of material to another, we
can safely say that for a given person, a short program will have a
tendency to be mare easily comprehended than a long one. Qur studies
of comments seemed to indicate, for instance, that even the addition
of nonexcutable text tended to increase the difficulty in reading a pro-
gram—even when that text was added explicitly to make the program
more readable.

The compactness of a program, however, is not measured merely
by counting the number of characters needed to express it. Although
the number of characters /s important when we are trying to account
for such factors as keying errars, the critical unit may generally be
somewhat larger than one character. For instance, the expression, A + B,

Some Principles for Programming Language Design 225

is not one-third as difficult to understand as the expression, BIG + SMALL.
The reason it is not is that we rarely use single letters as our funda-
mental units of thought processes: we are In the habit of using “words.”
Many experiments have shown that a word such as BIG can be handled
just as readily as the word A.

In psychology, this information processing ability of human beings that
combines several small units into one large unit, which is just as easy to
handle as its individual parts, is called chunking. Chunking is a recoding
process, one which we usually do without conscious effort. Nevertheless,
even though the process of chunking is something we do quite naturally,
each individual chunk has o be learned by experience. When we first
begin to encounter such binary strings as 110010111100, we have to
remember them as twelve separate characters. After a while, however,
we begin to learn octal or hexadecimal, both of which are more or less
formal systems of chunking. Soon, we begin to “see’ this string im-
mediately as 6274 or CBC, so that the length of any program containing
it becomes “sharter.”

Some program chunking is a natural ourgrowth of chunking !earned
elsewhere, as in the recognition of such “words" as DO, READ, and AL-
LOCATE. Other chunking we begin to learn the moment we first set
pencil to a coding pad, so that at different stages in a programmer's
experience with a language the same program will have different lengths.
To an experienced PL/] programmer, the statement

DO I =1 TO N;
can probably be taken in at a single glance. The novice, however, might
have to break it into six or seven smaller chunks.

Although chunking tends to make commonly used character sequences
seem shorter, the programming language designers are limited to taking
advantage of the chunking which they can assume the programmer
brings to the language, or to that which he just happens to learn as he
uses the language. By providing the user with alternative ways of expres-
sing the same thing, however, the language designer gives the program-
mer a chance to do another kind of compression. The simplest example
of this type is the provision of abbreviations for keywords, such as PROC
for PROCEDURE in PL/I. In natural languages, there is an empirical ob-
servation known as Zipf's law, which says that the most frequently
used words tend to be the shortest words-—words such as “is,” “the,”
“a,” “," “he,” and “it" in English. We also see the operation of Zipf's
law in the creation of contractions, such as “don’t” or “there’s,” but the
most common operation is probably concealed in the long dead past.

In programming, however, we can often see the tendency to this type
of compression in action, as when a programmer begins to write PROC
all the time instead of PROCEDURE. He may never learn the abbreviation

226 Programming Tools

for seldom used words such as STRINGRANGE, even though it may be
much longer than some word he does abbreviate. Other abbreviation
occurs through the substitution of more powerful functions for less
powerful ones, as when the programmer learns o write SUM(X) instead
of a DO-group, or a DO-group for a list of cases written out se-
quentially. lteration, of course, is the most basic of the compression
sleps possible in programming—it was known 1o Lady Lovelace, and
without it modern computers wou!d essentially not be possible. Functions
—slch as SUM—were also a concept known to our first programmer and,
although they are not conceptually as important as iteration, they are
probably more important from a psychological and practical point of view.

The language designer, of colrse, can provide either built-in functions
such as SUM and SQRT or facilities for the programmer to make his
own functions. Probably no modern programming language lacks both
of these general features, but there exist great differences in the details
of what is actually provided. One particular limitation on the use of
programmer-defined functions is that the programmer is seldom given
the facilities to duplicate what the language designers can build into
their functions. For instance, PL/] has many powerful subroutine-defining
teatures, but the programmer cannot yet pravide such things as full
generic capability for his routines, even though that ability exists in
the built-in functions.

Another source of compactness—newer in use, but perhaps ultimately
More powerful than iteration or subroutine definition-—is data structuring.
In APL, for instance, most operations apply in uniform ways to arrays of
all sorts as well as scalars. In PL/I, many array operations are possible,
and there are also structure operations. As an illustration of the power
of these operations to permit many actions to be specified as one, con-
sider the OLDX problem we raised earlier. If, instead of declaring an
OLDX, OLDY, and so forth, we had declared a structure such as

10D, 2(X, Y,2Z,...)
we would have been able to execute a single statement

OLD = NEW:
which assured that aif the old values were replaced by all the new ones.

Many special-purpose programming languages draw their power from
the higher-level data structures they provide, structures not yet found in
multipurpose languages. Where these structures are in consonance with
the user's needs, the resulting compression can be manifold. Where they
are not—as when we try to do simple arithmetic operations in LISP
or SNOBOL—the data structures have just the opposite effect. The most
promising escape from this dilemma is through embedding special data
structures in a multipurpase language such as PL/). PL/! does provide a
number of features which assist the programmer in creating data-structure-

Some Principles for Programming Language Design 227

processing systems not built into the language, although the inability to
replicate the general abilities of the language itself is once again an
impediment.

Another way in which appropriate data structures lead to compression
is by causing lower-level operations to have higher-level results. For
instance, if we are processing a sorted file in sequence, the assumption
that the records are in order permits us to make inferences about missing
records which would otherwise require elaborate programming. Over-
laying of one structure on another Is a further case of promotion of
operations—as when we set all bits in a string by setting the whole
string, rather than processing them one at a time. The difference between
this sort of operation and the operation of implied repetition through
array and structure expressions is really in the relationship between
what the language specifies and what the computer on which the
language is implemented can do. Given the appropriate machine, array
processing can be done directly, too, just as we now do the assignment
of strings.

Before leaving the subject of compression, we must scrutinize the
other side of the coin for a moment. Perhaps the ultimate form of com-
pression is the elision of certain cases entirely—usually the most frequent
ones. In PL/I, we write SKIP instead of SKIP{1), since that is by far the
most frequent case. When declaring a variable, we get many attributes
by default, so that when we write

DECLARE X;
we get the equivalent of something like

DECLARE X FLOAT DECIMAL(6) REAL AUTOMATIC INTERNAL;
Indeed, in many cases the declaration can be left out altogether, causing
X to be declared implicitly or contextually. The difference between
these extremes is much like the difference between Chinese and English
grammar. English has many redundancies, as when we say

He went two time(s).

The plural ending is redundant, in that plurality is clearly specified by
the “two,” and in Chinese, there would be nothing to correspond to this
extra letter. Such redundancies are quite useful in normal speech trans-
mission, for they help in catching the precise meaning of the utterance
even though there have been distortions in parts of it. In writing, however,
they seem more of a burden than they are worth, so it seems worth-
while io have a sensible default system in any programming language.

The ability to use such a default system, however, depends on the
existence of a limited universe of discourse, or a least a universe of
discourse which is statistically limited. That is, the default case does not
help us much if it is used only a small fraction of the time. As there are
more and more possible cases, the burden of remembering which is the

228 Programming Tools

default can become greater than simply writing the complete specifica-
tion. If the cases occur with more or less equal frequency, the default
system then loses its value because it cannot be used often enough to
make it worthwhile. On the other hand, if, the defaults are used often,
we may not remember the nondefault cases when we have to use them.
Although we have not studied this situation empirically, we might con-
jecture that defaults are most useful when they are used fairly frequently,
but not too frequently.

Of course, the above principle applies to the psychology of a particular
programmer using the language. Defaults may be very useful when sev-
eral different types of programmers use the language. For instance, the
default of REAL is needed only in contrast to COMPLEX, a feature which
perhaps nine-tenths of PL/] programmers wiil not even know about, let
alone use. Defaults such as these serve to produce different languages
from a single language, for, in effect, the nine-tenths who do not know
about COMPLEX are programming in a language that cannot handle com-
plex arithmetic.

This type of automatic subsetting through defauls, however, will not
work unless many details are accounted for. For instance, in PL/), the
built-in functions are generic, in that they adjust their operation according to
the type of data passed to them. If we periorm SQART(X), the operation is
different for X REAL than for X COMPLEX. For REAL X, X=—1 will
cause an error condition to be raised; and for COMPLEX X, the resuft will
be 11. But why not yield 11 when X is REAL? Consider what would happen
to the unsuspecting programmer who writes

A = SQRT{X);
without knowing about COMPLEX at all. If 11 were the result on the right-
hand side, A would be given the value zero, far 11 =0 + 11, so that only
the real part would be assigned. Such a trouble would be most dificult for
the programmer to find if be had no knowledge of complex arithmetic, so
he must be protected if the default is to help him work in a true subset.

By eliminating redundancy in an appropriate way, then, we can reduce
tedium and error. In the limit—in a programming language from which
alt possible redundancy were eliminated—it would not be possible to have
any syntax checking of the program, for every possible string would be
a syntactically correct program. An example of such a language is the
machine code for certain systems, where all op codes are permitted and
all address specifications are legal. We know that machine language pro-
gramming can be extremely difficult—is it possible that this difficulty is
due to lack of redundancy being carried too far?

To answer such a question, we must make a clear distinction between
psychologically useful and psychologically useless redundancy. As a case
in point, consider the FORTRAN expression, A{1 + I). If our FORTRAN

Some Principles for Programming Language Design 229

prohibits this string, the compiler will signal an error. Not all strings are
permitted, so error checking can be done by detecting illegal strings.
But what is the compiler really checking here? The rule prohibiting
A(1 + 1) was not set down for the psychological comfort of the program-
mer, but, rather, o make it easier to compile “optimum” code. Although
it is true that this expression is in error, the error has nothing to do with
our problem, but only with FORTRAN’s restrictions. In a sense, it is not
the programmer, but the language, which is in error.

LOCALITY AND LINEARITY

In an earlier discussion, we gave an example of how memory helps a
programmer by enabling him to keep the retevant information in his head
even when he does not have the program in front of him. A properly
designed programming language can help the programmer in the same
way that a good memory can—by keeping the relevant information close
at hand.

Two types of human memory that interest us in this regard are the
so-called “synesthetic” and “sequential” memories. Synesthetic memaory
is the faculty that enables us to recognize a face, a neighborhood, or the
layout of a page in a book—without recourse to specific details. The
word itself is derived from the Greek—‘“syn” meaning “together,” and
“esthetic” meaning “feeling” or “sensing.” Our synesthetic memory, then,
is that part of our memory that enables us to remember things as a whole,
all taken In one glance.

Sequential memory may be mare related to auditory things, as when we
can whistle the tenth bar of a tune after hearing the first nine bars, but
not if it is asked for alone. The sequential memories we have seem to be
constructed like unidirectionai chains—like speech, if you like—chains in
which each link's appearance triggers the memory of the next. We exhibit
sequential memory when we recite a poem, remember the route to a cer-
tain place as we traverse it, and sometimes when we memorize a list.

In a program, the concept of “locality’” corresponds to synesthetic
memory, and the concept of “linearity” corresponds to sequential
memory. By locality, we mean that property that obtains when all
relevant parts of a program are found in the same place—on the same
page, perhaps. Without good locality, a programmer working with the
listing of a program has to be turning pages constantfy—unless his syn-
esthetic memory is sufficiently good to remember the material on the other
pages that is relevant to the current page. One way that a programming
language encourages locality is through compression, that is, if the entire
program fits onto one page, all relevant parts are obviously on that page.

230 Programming Tools

Locality is also encouraged or discouraged in other ways. The ability to
use literals is a big help, because all that we need to know about a
literal is contained within its name. The use of well-chosen mnemonic
names can have the same effect, if it helps the reader to remember what
he needs to know about the variable without referring to the place it is
declared. Of course, if a variable is only used locally, it is helpful if the
language permits us to declare it right at that location. In some languages,
however, usually to enable the compiler to make one less pass, all declar-
ations must come before all other paris of the program. In such cases,
reading a long program involves constant flipping back and forth to
the first page.

Yet even when the language requires all declarations to be given in one
place, a certain locality is obtained, for we can always tear off the first
page and keep it alongside whichever page we are currently using.
Indeed, some people complain about languages such as PL/|, which give
great freedom in the choice of where declarations are made. This free-
dom, like any other, is often abused by programmers who do not under-
stand why it is given. Ideally, a program written in PL/I should have all
global variables declared together on one page—at the beginning or end
—and all local variables declared within the section of coding that uses
them.

As an example of the type of trouble that nonlocality causes, consider
the typical situation arising from such a loop as

DOI1=1TO 10;

PUT LIST(l,F{N)): END;
where F is a programmer-defined subroutine, such as

F: PROCEDURE(J) RETURNS(FLOAT):
S=0
DO1=1TO J:
S=8+1I;
END:
RETURN(S);
END F:

Because the variable 1 is not made local to the subroutine, we will find
that the main loop only puts out five pairs of output values:
1 1 3 6 5 15 7 28 9 45

instead of the ten the programmer probably expected. He expected ten
values because he thought that | was local to his DO-loop--that nothing
he could not see right in front of him would afiect |. But, as it happens, |
is used inside of F and not declared inside of F. so | changes each time
F is entered. {Recall that when the DOC-loop

Some Principles for Programming Language Deslgn 23

DOl =1TO J;
i8 finlshed normally, | has the value J + 1.)

Typically, this sort of bug causes great difficulty, for when we are not
able to find a bug, it is usually because we are looking in the wrong
place. In this case, we are looking in the wrong place because we assume
—as is quite natural to do—that only what we see at the morment in front
of our nose is what affects the value of 1. In whichever programming lan-
guage we use, we must learn, when debugging, in what ways nonlocal
effects can manifest themselves. For example, in PL/l, subroutine calls
(through global variables or through arguments passed “by address"),
ON-units {(which are similar to parameterless subroutine calls but can be
invoked without any local mention of the ON-unit at all), and defining of
one variable on another can lead to effects that are not to be found by
looking at the place In the program where they seem to be arising.

Features of a language that can lead to nonlocality are not usually there
just because of poor language design; otherwise they could be eliminated
and nobody would mourn their passing. Defining one variable on an-
other, for example, is provided so that compression can be achieved—
which in itself can help locality. Therefore, there is 2 limit to how far the
language can go in preventing nonlocality from arising from poor pro-
gramming practices or mistakes. In the example given above, however, it
might have been a better decision on the part of the PL/! language de-
signers to have variables, such as | or 8§ within F, be automatically local
to F unless the programmer made explicit declaration to the contrary. Of
course, if he makes any kind of explicit declaration of | or 8, as in

DECLARE | FIXED BINARY, S FLOAT;
the declaration will restrict their scope to F, as long as it i3 within F.
Thus, the programmer can overcome this difficulty by always declaring
all variables, even if he only writes

DECLARE |, S;

The ON-unit of PL/I represents a particularly interesting case of non-
locality, because the basic function of ON-units is to permit us to obtain
linearity. In fact, in the sense that the ON-unit is ordinarily used to handle
an exceptional case—one that may never arise in some programs—it
can be thought of as a way of achieving additional locality. In the first
place, by not forcing us to mention the condition by name, PL/1 permits
us to achieve greater compression in the main body of code. Secondly,
a statistical compression occurs because the exceptional case is taken
out of our sight when we are considering ordinary cases. Thus, the ON-
unit permits us to forget about exceptional cases, which simplifies coding
—but which exacts a price when we need to remember the ON-unit.

But the ON-unit helps us to achieve linearity, which aids our sequential
memory. Experiments with problem solving in programming-like situations

232 Programming Tools

indicate that a series of decisions arranged in a strictly linear sequence
Is typically easier to handle than a branching or looping sequence. Ex-
perience with programming languages seems to bear this out, for pro-
grams with numerous GO TO statements or other branches are notori-
ously difficult to understand or debug. Part of this difficulty comes
because of simple nonlocality, for the branch address may be on a differ-
ent page—and in a 50-page program, this type of branching can cause
a lot of page turning.

Confusion can arise, however, even when the branch address is on the
same page as the branch. For one thing, it may be that some unnoticed
branch also leads to the same point, so we cannot easily figure out how
we got where we got in execution. For another, each branch breaks our
normal sequential mode of scanning the program or thinking about it.
Even though we don't turn a page, our natural progression has been
interrupted, making error more likely.

Many higher-level language features can help us mask the nonlinearity
of the typical stored-program machine. The IF statement, which allows
the statement fo be executed to be attached to the IF; the DO or BEGIN,
which allows us to group several statements as one under the THEN or
ELSE clause; the logical connectives, which enable us to group decisions
under one IF statement; the iterative DO, which permits us to eliminate
explicit branching; the array operations, which enable us to eliminate
explicit iterative DO loops; the ON-unit, which permits us to handle the
exception condition without even mentioning it, or even thinking about
it—all these and other features help to banish the nonlinearity from a
program. Indeed, in PL/1 and other languages, many programmers regard
the presence of a statement label for branching to be a mark of poorly
constructed code. Although we might not want to go that far, it does seem
true that the GO TO is the one “major” statement that could be eliminated
from PL/] with the least loss to the programmer.

TRADITION AND INNOVATION

One of the most important ways that a programming language can
achieve ease of expression with a minimum of error is by being “natural.”
One way of achieving naturalness, as we saw, was through uniformity,
but uniformity only applies to those programmers who have some ex-
perience with the language. When we begin to use a language, we are
not able to notice the uniformities—instead we notice those things in the
language that do not seem to correspond to our preexisting sense of
“rightness.” Where do we get this sense? Probably, it comes from two
sources—the natural languages—English, French, Chinese—and the pro-

Some Principles for Programming Language Design 233

gramming languages—FORTRAN, ALGOL, COBOL—which we know be-
fore we start to learn the new language. By making a programming
language in some sense consonant with the other languages the user Is
likely to know, we may simplify his entry into its strange new world.

As an example of the natural language concepts we bring to a pro-
gramming language, consider the case of the significant blank. In the
orthographic forms of the European families of languages, at least, the
concept of the significant blank is quite natural. In FORTRAN, however,
there is no such thing as a significant blank—except within a literal
string.

Moreover, the concept of “multiple blanks equal one blank” is natural,
up to a point, as is the concept of a delimiter or & blank. The word *“orate”
is not the same as the two words, “or ate.” Elision of the blank, however,
would usually be correctible, since some grammatical or semantic vio-
lation would occur, due to redundancy, but not necessarily, as in,

“He gave it to you, or ate it.”

“He gave it to you, orate it.”

When the elided blank changes the sentence to a meaningless one, the
reader will usually be able to correct it, but almost always with the con-
scious insertion of a blank:

“He lost it or ate it."”

“He lost it orate it."”

The blank next to a delimiter, however, can be left out without usually
being noticed, as in

“Leave it alone,will youl™

When the programming language is not in consonance with these
natural language rules for blanks, it may be more difficult to learn, or at
least more difficult fo debug. In FORTRAN, for instance, there is the
classical type of bug which is typified by the statement

BO331=1.20
Here, the comma has been changed to a period—perhaps by keypunching
—with the result that the entire statement is interpreted as

DO331=1.20
The blanks here fool us into thinking that DO,33, and | are three separate
entities, but they actually form only a single variable, DO33], under
FORTRAN rules for blanks.

A much more costly mishandling of blanks arises in the syntax of the
job control language for OS/360. Here, the operand field—as in assembly
language—is terminated by the first blank. This strange convention was
used to permit comments to follow the operand field, as is done in the
oystern/ 360 assembly language. But simply carrying this idea over from
the assembly language—though consonant as far as the 0S/360 designers
were concerned—proved to be a poor choice for other users. First of

234 Programming Tools

all, FORTRAN, COBOL, and PL/] users were not familiar with the con-
vention. Secondly, nobody really wanted to use comments on fob control
the way they did in assembly language. Finally, the frequency of con-
tinuation cards in job control usage was much greater than in assembly
language, where continuation only arises frequently in the use of macros.

A typical mistake caused by this unthinking design carry-over might
be the following:
11XX DD DSNAME=ABC, DISP=(NEW,KEEP), C
The programmer, in punching, unconsciously leaves a blank after the
comma following ‘ABC." He does not realize this blank because in English,
or FORTRAN, it has no significance. The computer notices it, however,
and thus takes it to be the beginning of the comment field. Consequently,
the DISP parameter is ignored entirely, and the programmer finds that
his data set is not saved, since DISP=(NEW,DELETE) is assurned. Much
worse cases can be constructed, and it is difficult to estimate how many
millions of dollars of machine time and programmer time have been
wasted because of this design error. In effect, of course, it is not a design
error, for the job control language was not really designed, in the sense
that PL/), FORTRAN, or COBOL were designed. Being part of the operat-
ing system, it was not thought of as a “programming” language at all, so
somebody just carried over a technigue which was fairly satisfactory from
the nearest available source—with disastrous results. (See also Figures
10-1 and 10-2)

Another area in which programming languages could be more con-
sonant with natural languages is spelling. When we read natural language
text, we often pass over misspellings without notice, even when they make
nonsense words. In speaking, even greater flexibility is allowed, for we
can understand the Atlantan when he says “pie,” the Ormahan when
he says “milk,” and the Bostonian when he says “yard.” Programming
languages, however, are often pedantic to the extreme when it comes to
spelling, even in cases where what was meant could have been periectly
clear. Abbreviations, of course, are alternate spellings; but the concept
could be carried much further—even to the point of making guesses—as
many commercial systems now do—as to a correct spelling.

Spelling, of course, is only one example of a more general concept of
“locseness™ found in natural language. We can say either

“Bring it here, will you?"
or “Will you bring it here?”
and nobody will notice the difference. Frogramming languages, however,
rarely are as flexible as natural languages, although we do have some
leeway. Noise words in COBOL are one example of flexibility which per-
mits the programmer to achieve some additional feeling of consonance
with English. In PL/I, there are a number of places where reordering of

Some Principles for Programming Language Design 235

part of a statement is permitted, as in

DO 1 =1TON BY K; DO 1 =1BY K TO N,;
or DECLARE A FIXED BINARY; DECLARE A BINARY FIXED;
or PUT SKIP LIST{A); PUT LIST(A) SKIP;

By permitting two possibilities where only one might have existed, the
language should be easier to learn, for each user can choose the form
easiest or most natural for Aim. He may not, however, be conscious that
he has made a choice. He might never have had the alternative form
presented to him, possibly because his teacher prefers the other one. Or,
he may get the impression that there is some semantic difference between
the forms, and so be afraid to use one once he feels he knows the other.

And, indeed, there might be semantic differences, although these might
be as slight as to be unnoticed in the ordinary programmers lifetime.
The two statements

DO 1 =1TO N BY K; DO I =1BY KTO N;
are not quite precisely the sarme in PL/I, nor are the expressions
(A—=2)&(B—=3) (B=3)&(A=2)

Aside from the psychological differences—from one person to another,
or between reading and writing—there are possible performance difier-
ences which, by always lurking in the background, may discourage the
programmer from taking advantage of the looseness available to him.

In the same way that some differences within a language are significant
and some are not, so too are some differences between languages in-
significant—or at least of so little significance as to not be worth the
bother of trying to preserve. For instance, it may make sorme difierence
inifially whether our language requires

DO 1 =1TO N BY 3;

or FOR I: = 1 STEP 3 UNTIL N;

but any capable programmer should be able to move from one to the
other with an absolute minimum of difficulty. Indeed, the difference be-
tween them is so insignificant that both could easily be permitted to exist
in the same programming language. In arguments about the relative merits
of programming languages, however, we often find the most heat about
those points where there is the least significant difference, for it is only
at those points that the two languages can be directly compared. Perhaps
someone will someday perform an experiment to see whether DO or FOR
is the “best” keyword for this situation—but there is little chance that
mere facts would disturb such an argument.

When we design a new programming language to be similar to another
commonly used one, we can definitely speed up early learning by re-
maining within the earlier tradition wherever possible. We pay for this
early leaming in an interesting way, however, for no two programming
languages are exactly alike—otherwise they would be the same language.

236 Programming Tools

It the languages are sfightly different, then the psychological phenomenon
of inhibition will occur. Inhibition comes in two forms—retroactive and
proactive. Proactive inhibition occurs when the similarity of earlier
learned material interferes with the learning of later material. Thus, for
instance, FORTRAN prograrmmers have an inordinate amount of difficulty
learning to use format items such as F or E in PL/1, because, although
they are similar, PL/] uses a comma where FORTRAN uses a period.
When we look at the PL/! programs of a FORTRAN programmer, we
often find such format items as F(10.2)—the results of which never fail to
confound the FORTRAN programmer.

It is the similarity between the languages which causes the inhibition,
8s can be seen by examining the use of picture formats by the FORTRAN
programmer. Such PL/] beginners have little or no difficulty learning to
write P'SS5SSSSSV.99°, because there is no comparable structure in
FORTRAN. (But, of course, COBOL programmers do have trouble.) The
retroactive inhibition also depends on the similarity, but it works on
the previously learmed language. Thus, typically, the FORTRAN program-
mer who has learned PL/] finds it difficult to go back to writing FORTRAN
programs—and not just because some time has elapsed.

Inhibition, therefore, is the price we pay for making two languages
similar but not identical in some feature. It might be better, when identity
is not possible, to make the two more clearly dissimilar, so that inhibition
will have less force. But the cost of inhibition is not the only price we
pay for trying to make one programming language match an eatlier one.
The old structures simply may not fit in with the new things we are trying
to do, in which case the overall unity of the language will suffer. In this
case, early learning slows down later learning—Ilearning of new and
powerful techniques. Alternatively, we may not be able to fit the new
techniques to the old language, so that trying to achieve consonance
may wind up achieving only sterility.

Because individual programmers are so different from one another,
there is a definite limit to how far we can rmake our language consonant
with the ideas and structures the programmer already knows. To be sure,
we can pretly well count on all programmers recognizing such forms as
numeric literals and simple arithmetic expressions, but we soon run
into areas where different people prefer ditferent ways of doing things.
Looseness is one way a programming language allows for individual
differences—by permitting a selection among two or more buili-in things.
Thus, in a sense, a loose language can adapt to preferences of individual
programmers,

But there are other ways a language can be adaptable. These ways are
characterized by the creation of new things, some for a single program
and some to be used across a whole class of programs. One familiar ex-

Some Principles for Programming Language Design 237

ample of such adaptability is the ability to define functions and other
subroutines. Another is the ability to define new data types—structures
and lists, for example. Some languages permit the definition or redefini-
tion of operators, but these are, after all, just ancther type of function.
Finally, there are languages with more elaborate metalanguages—com-
pile-time facilities, for instance, or dynamlc generation of cede at ex-
ecution—which can permit changing the entire face of the language.

When we use these facilities for adaptation, we may be able to gain a
degree of consonance with our idiosyncracies which cannot be ap-
proached by the language designer directly. But in gefting closer to our
own specific modes of thought and expression, we may easily get further
and further from the modes of other people. Programming is not just
communication between one man and a machine. Cther people will prob-
ably have to read and understand the program; but if the use of adapfive
devices is too extensive, the program may be as closed to them as is the
private language of a schizophrenic.

Within an installation, a certain amount of adapfation may be advan-
tageous to adjust the language to the precise needs of the local type of
work. Of course, at some point this type of redefinition becomes the
design of a new language—a job not to be undertaken lightly by amateurs.
If the language being used is really so far from the needs of the installa-
tion, it might be better to search for a language that is closer to the
needs before modifications are made. There certainly are enough lan-
guages to choose from.

SPECIAL-PURPOSE, MULTIPURPOSE,
AND TOY LANGUAGES

To some extent, our discussion of languages has been biased toward
the languages of the professional programmer, with comments on the
needs of the amateur. But the principles involved are deep ones, and
they apply to amateur languages as well, although with modified empha-
sis. If we design a special language for & particular application area,
we start immediately reaping psychological rewards by limiting the uni-
verse of discourse. Thus, a siatistics language does not have to have
facilities for complex arithmetic, a string processing language does not
have tc have much arithmetic at all, and a machine-tool conirol language
might have more of a geomelry than an arithmetic. Sometimes, however,
these limitations are imposed simply by limiting the capacity, under the
assumption that problems in that field never get any larger than a certain
size. Thus, a simulation language might have no facilities for using

238 Programming Tools

auxiliary storage, which means that many language features can be
dropped entirely—but it also means that cerlain problems cannot be
sfmulated.

Limitation of the universe of discourse is so important for the design of
special-purpose languages that it should be the first and most carefully
considered step. Much of the success of APL, for example, had to do
with the careful limitation of the universe with which it could deal, al-
though most APL programmers think of it as a “multipurpose” language.
But simply by limiting the language to terminal situations, to relatively
small workspaces, and to no auxiliary files, the designers were able to
provide a problem-solving tool par excellence—for problems within its
scope. The success of the language can be attributed to the existence of
large numbers of people whose problems fall within that limited scope—
or at least fall within it while they are learning APL. Programmers who
progress to, say, data-processing problems, in which large quantities of
data are processed, soon find they have "outgrown™ APL. Much of the
enthusiasm for the system, however, doesn't take cognizance of the
limitations that are built into it and account for a good deal of its success.

One reason why the limitations are not as obvious to users as they
are to nonusers is that the programming language does indeed shape
thought processes. We are not speaking here of simple inhibition effects,
but of larger effects on the organization of programs and data. | became
aware of this effect most clearly when teaching a beginning PL/] class
composed of COBOL, FORTRAN, and Basic Assembler Language pro-
grammers, and people with no programming language at all. As | was
reading the programs handed in for the first assignment, it struck me
that | could conjecture the background of the programmer, and | re-
corded my guess for each one. | did not have any background sheets on
the programmers, so there was no external way in which | could know
their experience. The next day | checked my guesses with the class and
obtained the results shown in Figure 12-3.

To be sure, a number of guesses were made simple by specific feature
clues, such as the use of a decimal point instead of a comma in an F-
format item. But these specific clues also led me to make several wrong
guesses: | guessed “FORTRAN" for a BAL programmer because he
used such decimal points, and “COBOL" for an Inexperienced program-
mer because of the way he used symbols such as PART_COST, with the
undergscore standing for the COBOL hyphen. (It turned out that he had
seen one of the COBOL programmers doing this and copied the style.)

As a consequence of the influence of language on thought, the problem
that one will attempt to solve is limited by the programming language one
knows and how much of it he knows. Therefore, there tends to be a self-
fulfilling satisfaction with a special-purpose programming language, as

Some Principles for Programming Language Design 239

Figure 12-3 Guessing programming background.

well as with one’s current level of knowledge. To the extent that specizal-
purpose languages act as limits to thought in this manner, they are harm-
ful to the user who potentially has larger problems to solve. The situation
with COBOL is particularly instructive.

People have lost sight of the original intention of COBOL’s designers.
To quote one of them, Jean Sammet:

The users for whom COBOL was designed were actually two subclasses of
those people concerned with business data processing problems, One Is the
relatively Inexperienced programmer for whom the naturalness of COBOL would
be an asset, while the other type of user would be essentially anybody who
had not written the program Initially. In other words, the readability of COBOL

programs wolld provide documentation to all who might wish to examine the
programs, including the supervisory or management personnel. Little attempt
was made to cater to professional programmers. ., . .

The COBOL designers went to considerable trouble to see that these
objectives were actually met. One result of their efforts for instance, is
that programming managers in COBOL shops do seem to read programs
somewhat more than do managers in other types of groups. Qutside of the
programming managers, however, it is doubtful whether many managers
do read COBOL programs, or read them with any good effect.

240 Programming Tools

However, the fact that COBOL was successful in getting nonprofes-
sionals to writing programs in the sixties is proving to be an impediment
to progress for the seventies. A crew of COBOL programmers is not, in
general, an asset upon which an installation can build, say, on-line, fast
response systems. Even the transition to effective use of random access
files has been impeded by the sorting mentality that COBOL imposes.
Seventy-five percent of the COBOL installations with which 1 have con-
sulted on operating systems problems were essentially using their random
access files as sequential devices, at best to get faster sorts, and at worst
to get slower sequential processing than with tapes. Whether COBOL
and COBOL users can grow with the expanding facilities available to
them is an open question at the moment.

There seems to be no way out of this paradox—the better job a pro-
gramming language does for the special purpose for which it was de-
signed, the more limiting it is on the minds of those who use it, if they
are faced with potentially new areas of application. In fact, this is another
example of Fisher's Fundamental Theorem of Natural Selection. The
professional programmer cannot afford io get into the trap of being so
adapted that he is not adaptable, but we don't necessarily know in
advance who is destined to become a professional. Only by studying the
ways In which special-purpose languages adapt to their special circum-
stances ¢o we have any hope of understanding what will be involved in
reshaping thought processes if it is necessary o create a professional
from an amateur or semiprofessional.

Special-purpose languages are also successful in exploiting special
data structures which correspond to the user's needs in his special area,
simultaneously achieving compactness and correspondence with previous
learning. We would expect, for example, that a language to be used in
social science research would provide for arrays of data such as ques-
tionnaire results, or that a language for doing algebraic manipulations
would have standard data forms for polynomials or other symbolic ex-
pressions. And, indeed, they do, which accounts for a large part of their
success—or failure, if they fail to be the right structures.

Along with special data structures, we find special routines for doing
familiar processes on those structures. Thus, our social science research
language would undoubtedly have various tabulation and data reduction
primitives, and the algebraic language would have such primitives as
analytical multiplication, difierentiation, and simplification of expressions.
Of course, the names of these functions and structures will be chosen to
give the user the feeling that he is working in familiar territory, so as to
take advantage of pre-existing learning.

In a special-purpose language where the main users will be non-
programmers, the use of pre-existing learning is a major design objective,

Some Principles for Programming Language Design 241

lest the user turn away from the system before he really has a chance
to use it. Unfortunalely, many of the special-purpose languages that
have been invented—I| cannot really bring myself to say ‘‘developed”—
have onfy a correspondence with pre-existing learning to offer. A person
is able to use them quickly enough, but soon finds that he cannot solve
his real problems, but only “toy” problems resembling his real problems.
Even when the language is theoretically able to describe his problem,
the system may be so out of correspondence with the internal realities
of computing that the capacity to do the real problem does not exist—
either in time or in space. Cnce he reaches this situation, the casual user is
likely to become an involved critic. And with good reason.

The casual way in which special-purpose programming languages are
often thrown into the world—perhaps to get another publication on one's
list, a publication which the specialists will not be able to read and the
programmers will not want toc—is a disgrace to the programming language
design business. Not that the business is such a sparkling example in its
own backyard—multipurpose languages—but when we move outside of
the inner circle of computer professionals, we have an additional social
responsibility toward those who cannot be expected to know how to
protect themselves against a bad programming language. And here
comes the pitch yet one more time: let's stop chuming these languages
out of our foreheads like full-blown goddesses and develop them in an
environment where sound behavioral principles can be used in their
design and testing. Let's become professional designers as well as pro-
fessional programmers.

SUMMARY

On the cover of Jean Sammetl’s book, Programming Languages: History
and Fundamentals, there is a piciure reminiscent of Brueghel's Tower of
Babel. The original painting is in Vienna, in the Kunsthistoriches Museum,
but a wall-sized reproduction graces the conference room, across the
ring, of the IBM Vienna Laboratory, where the PL/] Universal Language
Document was born. All around the world, where programmers gather,
one is likely to see some literary or pictorial reference to the Tower of
Babel. Looking at the cover of Sammet's book, the reason is not hard to
find—decorating the tower are the names of 117 programming languages.
Actually, there are 118, for, although it is not listed in the index of this
comprehensive book, there was once a programming language named
BABEL—the name which tops the tower.

Indeed, to my knowledge, there are a number of languages (not even
including "assembler” languages, which Sammet doesn't even attempt to

242 Programming Tools

cover in her list) that are not listed—and mercifully so. The 117 repre-
sented languages cover a period of about fifteen years, from 1952 (Short
Code) to 1967, the latest language reference given. This average of eight
new languages a year (worth mentioning) is misleading, since for the
tirst ten years of the period the average was no more than two or three a
year. The average for the last five years of the period is closer to twenty
languages per year, and increasing toward the end. It seems likely that
Sammet's 785 page tome will be the last work of its kind—at least the
last to fit in one volume. If my extrapolations are correct, in 1972 pro-
gramming languages will be invented at the rate of one a week—or more,
it we consider the ones which never even make the literatu re, and enor-
mously more it we consider dialects.

Is this bloom of languages bad, like the bloom of algae in a swimming
hole? Or is it a healthy outpouring of a much needed original effort?
We have passed the time when a language can simply be “invented”
and then cast upon the literature, or upon the broad backs of all the pro-
grammers in a particular installation or working with a particular machine.
We must now raise our sights and ask more of the would-be language
inventor-—we must ask him to show some indication of psychological
usefulness of his language. But the inventors are not the only ones to
bear the blame—the programming language theoreticians have too long
ignored the psychological side of their trade. Programming is not a branch
of mathematics, it is a unique form of communication in which human
beings take an active role and machines often a passive one. Perhaps our
troubles with programming languages stem from the uhidirectionality of
the communication. Only when the theoreticians turn to the “dialogue”
aspects of programming “language” will they finally be forced to recog-

hize that they are not students of symbol manipulation, but of human
behavior.

QUESTIONS

For Managers

1. What programming languages are used in your shop? How frequently
do you have occasion to look at a program? Do you see the program-
ming language as an aid to your managerial task, or do you see it as 3

secret Janguage in which programmers can communicate behind your
back?

2. What psychological factors do you consider when deciding to introduce

a new programming language into your shop? What kinds of experi-
ments do you do?

Some Principles for Programming Language Design 243

For Programmers

o

Using your best-known programming language, give and discuss sev-
eral uses of:

a. uniformity

b. nonuniformity

c. covert calegories

Of all the languages you know, which is the most compact? What
makes it compact? Does its compaciness depend upon the limited
range of problems for which you use it?

List all the ways in which your best-known programming language can
yield nonlocal effects. What influence do these effect have on debug-
ging? Give examples of bugs due to nonlocality, and how you even-
tually found them.

Take some programs written by others and classify them by the ease
with which they can be understood, for a given length of program.
Count the statement labels and the branch instructions or statements,
and see if there is any correlation between clarity and lack of branch-
ing. Also, compuie the average length of a branch, and see what
correlation that has with clarity.

Give some examples of the way in which the programming languages
you previously knew affect the way in which you now program in your
most recent language. Give some examples of ways in which the
programming languages you know affect your thought processes in
areas other than programming.

It you know a special-purpose programming language, describe the
ways in which it takes advantage of:

a. limitation of the universe of discourse

b. consonant data structures

c. consonant processing functions

d. consonant terminology

BIBLIOGRAPHY

Rubey, Raymand J., ef al., Guide to PL/I, Vol. 1: Comparative evaluation Detroit:

American Data Processing, 1969

Brooks, F. P,, el. al. Guide to PL/I. Vo!l. 2: Experiences with PL/I Detroit: Ameri-

can Data Processing, 1969

These two documents represent two approaches to assessing the value of a new
programming language, in this case PL/l. The second is a rather conventional
seminar-discussion approach, in which participants state their oplnions of the value
of PL/| In its variopus parls and as a whole. The first, however, is one of the few
attempts to study a program language behaviorally. The method was to ellminate
Individual variation by having the same programmer program the same problem in

244 Programming Tools

two different languages—COBOL-PL/|, FORTRAN-PL/I, or JOVIAL-PL/I. The
authors of the study are evidently programmers, not behavioral scientists, but
they are not withoul sophistication. Would-be experimenters would do well to com-

pare this study with Sackman’s work, perhaps leading them to something in
between,

Sammet, Jean E., Programming Languages: Hislory and Fundamentals, Englewood
Cliffs, N.J., Prentice-Hall, 1989,

Along wilth its other qualities, this book is a gold mine of information on special-

burpose languages, and, by Induction, thelr design.

Wirth, N., PL 360, A Programming Language for the 360 Computers, Communica-
tions of the ACM, 15, No. 1 (Jan. 1968}, pp. 37-74,
Some people feel quite strongly that the only truly general-purpose language can
be some sort of assembly language. But the difficulty of assembly language—
particularly the lack of linearity—makes thls a most discouraging prognostication.
One bright ray of hope, however, Is the apprcach taken by Wirth, to Impose the
advantages of block structure on an assembly language while stlll keeping, at
least conceptually, full control of the code generated at the machine level. Cer-

tainly this is one of the most Important papers for the future of systems program-
ming to come out In the last decade.

Weinberg, G. M., PL/! Programming: A Manual of Siyfe, New York, McGraw-Hill,
1970.

For detailed discusslons of principles of language design in the context of PL/I,
see especially Chapter 2,

Klerer, M., and J. May, A User-Oriented Pregramming Language, Computer Journal,
8, No. 2 {July 1965}, pp. 103-109.

From a language design point of view, the most Intriguing feature of the Klerer and

May systern is the acceptance—Indeed, the welcoming—of ambiguity. The

second most intriguing feature is the lack of a name for the language—elther the

helght of modesty or of egoism. For more complete references, see Sammet.

Shaw, C. J., Decision Tables—An Annotated Bibliography, Santa Monica, System
Development Corp. (April 1965), TM-2288/000/000 (14 pp.).

Cixon, Paul, Decision Tabkles and Their Applicatlon, Computers and Automation,
13, {(Apnl 1964), pp. 14-19.
The Decision Table Movement flourished In the early sixties, then seemed to go
underground, and now is reviving. Unfortunately, the revival seems to bhe concen-
trated on formal problems on the one hand, and ill-conceived textbooks on the
other. We have yet to see any empirical data on the value of declslon tables in
any psyChological sense, which is particularly unfortunate in view of the claim that
they represent a more natural way of programming than procedure-oriented lan-
guages. For thoSe researchers who would like to throw some light an this murky
field, we offer the bibliography and review article above, which should bring things
up to date circa 1965. At the time of this wrlting, there really seems nothing better.

Welnberg, G. M., Experiments in Problem Solving (Doctoral Thesis), Ann Arbor,
University Microfilms, 1965,

A study into the mental forms that subjects choose when given the freedom to

choose, with implications for the types of structures most desirable in program-

ming languages.

Whorf, Benjamin Lee, Language, Thought, and Reality, Cambridge, Mass., M.I.T.
Press, 1956.

Some Principles for Programming Language Design 245

Whorf was an anthropologlst or anthropologlcal linguist who, through his study of
non-"Standard-Ameérican-European” languages, galned great Inslghts into the In-
fluence of language on thought—such insights as the slgniflcance of covert cate-
gories. Some of these selected writings are highly technlcal accounts of Amerlcan
Indlan languages, and the others are accesslble to the non-linguist. They are not
always easy to read because of the unfamliliarity of the modes of thought described.
And who knows, maybe even the technical articles would be useful. Can we
possibly be so ethnocentric as to believe that only European languages contaln
useful models for computer programming? Perhaps we can, but not after reading
Wharf.

Zipf, G. K., Human Behavior and the Principle of Least Effort, Cambrldge, Mass,,
Addison-Wesley, 1949,

Zipf, like Wharf, was oulside the intellectual fads of hils time, and was a long time

in gaining recognitlon. His work on the principles of language change should be

read by anyone who has any interest, for example, in “dlalects” of programming

language, and particularly in "nonredundant” programming.

Shannon, C. E., Prediction and Entropy in Printed English, Belf Systern Technical
Journal, Vol. 30 (1851}, pp. 50-864.
See next reference for discussion.

Burton, N. G., and J. C. R. Licklider, Long-Range Constraints in the Statistical
Structure of Printed English, American Journal! of Psychology, Vol. 68 (1955},
pp. 650-653.

These two articles attempt to measure the redundancy in English printed text,

and they suggest an approach to measuring the redundancy of a program or a

programming language. There are many difficulties in conducting such an experl-

ment, such as selection of appropriate programs and texts, but our early results
indicate that consistent differences exist among programming languages.

Miller, George A., The Magical Number Seven, Plus-or~-minus Two: Some Limits on
QOur Capacity for Processing Information, Psychological Review, 63, No. 2
(March 18956}, pp. 81-97.

In this appealing little article, Miller describes how the human mind is limlted in

its informatlon capaclty, more or less, and what kinds of strategies it uses 1o over-

come these lImitations, such as chunking. These strategies seem to follow the
kinds of strategies programmers use.

Smith, B., Memory, London, Allen and Unwin, Lid., 1966.
Yates, F. A., The Art of Memory, Chlcago, The University of Chicago Press, 1966.

Minsky, M., Semantic Information Processing, Cambridge, Mass., M.L.T. Press,
1968.

Three very different views of memory and the sorts of mental processes toward
which programming languages are designed, or should be designed. One problem,
of course, with designing programming languages according to psychologlcal
principles, is that there is so much controversy over mental processes, especlally
the “higher’ processes such as memoty, which are so important {or are they?) to
programming.

TOOLS

Ithough programming languages get the lion's share of the at-
tention in print, the working programmer has other tools of the
trade. He spends much of his time reading and writing docu-
ments, wrestling with the operating system, and wringing the
bugs out of his programs. In these tasks, too, he could use whatever
crumbs the social sciences might throw him. Yet these tasks are even
more neglected from the psychological point of view than are program-
ming languages. In the following sections we shall try to suggest how cer-
tain insights could be used to better the design of tools for debugging,
for management of operations above the program level, and for documen-
tation. There are very few programming sources to call upon, but perhaps

this effort will open up the subject to an era of new design efforis. We
certainly could use them!

246

Other Programimning Tools 247

PROGRAM TESTING TOOLS

In September of 1962, a news item was released stating that an $18
mitlion rocket had been destroyed in early flight because “a single hyphen
was left out of an instruction tape.” The article did not say how large the
“instruction tape"” was, but we can imagine that it might have contained
100,000 or so instructions. In any other business, one error In 100,000
would be considered a phenomenal reliability record, but in programming,
it cost $18 million. The cost may be exceptional, but the story is repeated
daily. Indeed, the job of programming can be fruitfully looked at from the
point of view of testing alone—considering that the only real problem in
programming is getting the program to work correctly and proving it.

It has been said that “the expert is a person who avoids the small
errors as he sweeps on to the grand fallacy.” In programming, however,
avoiding even the small errors is no mean task. In reality, there are no
“small”” errors, since even a “single hyphen” can result in disaster. The
nature of programming being what it is, there is no relationship between
the “size” of the error and the problems it causes. Thus, it is difficult
to formulate any objective for program testing, short of “‘the elimination of
all errors’’—an impossible job.

Obviously, we need all the help we can get in testing programs, but
the problem of program testing has received less than its share of atten-
tion from designers of programming tools. Moreover, when testing tools
are designed, the question of the psychology of testing is rarely evident.
Yet testing is first and foremost a psychological problem. Consider, for
instance, the question of confidence. The ideal testing tool should give
us confidence in our program exactly proportional to the confidence it
deserves, so that we neither pass on a program containing errors nor
continue probing a program which is error-free. What program testing
system today gives us even the minimum information in this regard?

For example, to have confidence in the testing of a program, we should
want to know to what extent our tests actually covered the coding. By
this we mean, as a start, that the testing system should keep and present
to us a record of those areas of coding that have and have not been
execuled in the course of running tests. It is in the nature of people in
our society to believe that things are as they want them to be, so a pro-
gram testing tool must struggle to show us things as they are. Certainly,
we could expect that the testing tools we use would continue to pester us
until all pieces of code had been executed at least once.

Since people tend to be optimistic about the state of their code, a good
testing tool might be designed on the principle of destroying confidence—
a confidence that can be restored when necessary. In the case of one

248 Programming Tocols

program—which calculated the prices of more than 30,000 manufactured
objects—the customer for the program accidentally came across four
cases in which the prices were wrong. His confidence in the program was
destroyed, and even when the programmer was able to show him that the
error occurred only when a certain dimension exceeded a certain size,
he remained skeptical. As it happened, there was only one additional
case in which this error existed, but having found four by himself rather
quickly, the customer was not about to believe the programmer.

Overconfidence by the programmer could be attacked by a system
that introduced random errors into the program under test. The location
and nature of these errors would be recorded inside the system but
concealed from the programmer. The rate at which he found and re-
moved these known errors could be used to estimate—in some sense—
the rate at which he is getting out unknown errors. A similar technique
IS used routinely by surveillance systems in which an operator is ex-
pected to spend eight hours at a stretch looking at a radar screen for
very rare events—such as the passing of an unidentified aircraft. Tests
of performance showed that it was necessary to introduce some nonzero
raie of occurrence of artificial events in order to keep the operator in a
satistactory state of arousal. Moreover, since these evenis were under
control of the system, it was able to estimate the current and overall
performance of each operator.

Although we cannot introduce program bugs which simulate real bugs
as well as we can simulate real aircraft on a radar screen, such a
technigue could certainly be employed both to train and evaluate program-
mers in program testing. Even if the errors had to be introduced manually
by someone else in the project, it would seem worthwhile trying out
such a “bebugging” system. It would give the programmer greatly
increased motivation, because he now would know that there were
errors in his program, that he did not put them there, and that if he
didn’t find them, other people would know aboul it. We have only to
contrast this state of affairs with the currently prevalent one: he is not
really convinced that there are errors there; he knows that if there are,
they are “his"; and, if he doesn't find them, he is pretty sure that nobody
will know about it,

The amount of confidence we ultimately have in the testing of a particu-
lar program, however, does not depend on the testing procedure alone.
The a priori probability of a program being correct has a great influence
on the amount of testing that has to be done to reach a given level of
confidence. To take the simplest possible case, consider the two code
fragments:

IFN=1THEN A = A 4 1.5;

Other Programming Tools 249

= 2 THEN A
IF N=3THEN A =

=
=

]

I
b
+
M
©

|
o
+
o

IFN = 20 THEN A = A — 3.2;
and

A=A + B{N)

Clearly, the second case is less subject to errors although we cerfainly
cannot rule out errors in constructing the array, B. For example, suppose
one card in the first case were mispunched, so that in the middle of the
sequence somewhere we found

IFN =11 THEN A = A + 4.7;

IFN =11 THEN A = A + 2.6;
The cases for N = 11 and N = 12 would both be completely wrong, but
these cases might not arise in the testing. In the second method, how-
ever, each case is independent, that is, if we get that element of B
correct, nothing else in B can influence it. Moreover, the second program
handles the case of N less than zero or greater than 20 by raising the
SUBSCRIPTRANGE condition, whereas the first program simply ignhores
those cases, which could be a disaster.

The psychological point of these examples is that we will have far
more confidence in the second program than in the first, after an equal
amount of testing. Why? Because the second program displays a uni-
formity that the first does not. A single test on this program does the
work of many tests on the other. Whether we get this uniformity from our
programming language or from our pariicular conception of the pro-
gram structure, the effect is the same: For a given amount of testing,
we receive a greater amount of confidence in the program. Thus, the
best possible testing tool must be based both on a language and a
program structure with a high degree of uniformity.

In a similar way, we can argue that lack of locality and lack of com-
pactness make a program more difficult to test. But is there some way
a testing system could measure the uniformity, locality, and compactness
of a program? If there were, a scraggly, scatiered, prodigal program
could be sent back to the programmer or his supervisor for inspection
after compilation and before testing is allowed to begin.

We have no experimental evidence that such a testing aid could be
built, but we can make several suggestions about directions for research
on the problem. For one thing, locality could be measured by counting
the number of labels, GO TO statements, and references ito variables
declared on a different page. More sophisticated measures of locality
could be obtained by calculating some sort of “mean distance of refer-
ence,” either for the whole program or for sections of it. Potential

250 Programming Tools

trouble spots, such as partially open subroutines or ON-units which
change variables, could be counted and warned about, in addition to
the usual compiler warnings we get today.

Uniformity and compactness might be a little more difficult to measure,
but an aid in judging compactness would be some idea before we started
coding how long a program would be reasonable for a particular job.
One measure of uniformity and compactness could be the number of
references per variable. A small number of references to a variable
could indicate that it has been introduced unnecessarily and could be
eliminated; and a large number of such references could mean that
scattered operations could be consclidated through a different program
Structure. We could supply a tally of the number of times each array
was referenced without using array expressions as a passable indicator
of lack of uniformity, for an array is, in a sense, a collection of homo-
geneous data items, and therefore a candidate for homogeneous treat-
ment.

Another approach to detecting lack of uniformity and compactness
would be for the compiler to detect certain patterns in the code. As a
simple example, consider the use of similar names such as N1, N2, N3,
N4, and NS in the same program. In the first place, as we know, such a
collection of names is an invitation to error, for one name may be
easily written or read for the other. But, if the use of such names really
represents some uniformity of meaning, perhaps the variables they
represent could be collected into an array and treated in a more uniform
manner. A more subtle example of pattern detection would be the re-
peated use of similar code sequences. Such repetition might indicate
that more compression could be achieved by making a loop, a subroutine,
or a macro definition, or it might indicate nothing at all. In any case,
the field is wide open for the investigator with a few ideas and a
knowledge of programming psychology.

Another well-known psychological bias in observation is the overde-
pendence on “early” data returns. In program testing, the programmer
who gets early “success" with his program is likely to stop testing too
soon. One way to guard against this mistake is to prepare the tests in
advance of testing and, if possible in advance of coding. We refer here
lo tests concerned with detecting the presence of errors—not to all tests.
Qbviously, we cannot construct tests in advance for focaling the source
of an error; nor can we construct the procedures for correcting the error
once it has been found. But all testing begins with detection, so advance
work on test cases is never wasted—unless we yield to the temptation to
bypass the remaining tests in view of the “excellent” results we have
so far.

The debugging system could help us to resist this temptation by

Other Programming Tools <21

forcing us to specify in advance the amount of testing we plan to do.
Failure to complete this number of tests could result in a management
report, or some other form of prodding to the programmer. In general,
of course, anything in the testing system that simplifies the preparation
and execution of test cases will help the programmer to overcome the
temptation to quit too soon. One such system in use today is particularly
designed to counteract the temptation to skip retesting when a *“small”
change has been made to the program. If the test cases are stored In
the system and can be rerun automatically on demand, the programmer
is less likely to skip the retest. The typical system of this sort, however,
produces vast amounts of output. It is hardly useful to rerun test cases
if nobody looks at the results of the rerun. A great improvement could
be wrought in these systems by providing automatic comparison between
old results and new ones, thus calling the programmer’s attention only
to those cases that differ from one run to the next,

One final observation must be made about the possibilities for im-
provement of the psychological behavior involved In program testing.
Typically, as we discussed under the concept of “locality,” when a
programmer has a difficult time finding a bug, it is because he is looking
in the wrong place. As simple as this sounds, that is how difficult it is
to get the programmer to look in a different place, once he has “locked
in” on the wrong one. In general, the best advice for human debugging
consultants is to make the client look somewhere else, or at least do
something different with the same place. Possibly an automated debugging
system could force the programmer's attention to new areas of coding
after he had been looking at the same area for a certain length of time.
All sorts of algorithms could be devised for choosing the place 1o
show him next, but the most important thing is just to get him unstuck.
In fact, a good system is simply to turn off his terminal for a while,
giving him a chance to look at some trees or grass or mini-skirts—
anything but that wrong section of code.

OPERATING SYSTEMS

One of the persistent controversies in programming language design
is this: What is the proper place for debugging tools—in the language
or in the operating system? By raising the guestion in this section, we
may seem to be taking sides in the argument, but no such conclusion
should be drawn. Both sides have much going for them. On the one
hand, the programmer should not be required to learn an entirely new
language just to debug his programs—the horror of dumps makes that
point clear. On the other hand, the language level conceals from the

252 Programming Tools

programmer many of the practical realities of an actual operating en-
vironment, and it is just these realities which may lead to the greatest
problems in program testing.

The proper compromise—at least on psychological grounds—seems
tc be a certain amount of extension to the basic programming language
which faces up to the realities of the operating environment. This ex-
tension, however, should not be added willy-nilly, as most operating
system features seem to be, but should have a high degree of uniformity
with the rest of the language. The requirement for uniformity, however,
places a great burden on the operating system implementation, because
the typical operating System supports not just one, but several, program-
ming languages. Thus, it seems easier for the operating system pecople
o supply a single, separate language of their own, a language which
programmers in each of the supported languages must then master.

In the case of OS/360, for example, this language was based on the
assembly language for System/360—with some sequences we have al-
ready noted. To the operating system designers and implementers, this
choice must have seemed entirely natural, for didn't everyone know as-
sembly language? But even for those people who did know assembly
language, its format was probably not the most suitable for a job
control l[anguage—at least as chosen by the designers. For example,
the O5/360 job control language relies heavily on the use of so-called
“positional parameters” and much less heavily on the “keyword para-
meters.” But positional parameters would seem to be most helpful when
the user was very familiar with coding in the language and wanted the
greatest possible compression. In the typical use of job control, however,
the user never gains much experience with the different options and is
more likely to create his job control with the open manual at his side.
In that case, the sale and sure identification of keyword parameters—no
order to remember, no commas to indicate omitted items, mnemonic
names with each keyword—would seem to have favored their use.

Two of our students tested these intuitive feelings about the superiority
of keyword parameters for coding in relatively unfamiliar situations. They
used groups of experienced and inexperienced programmers, coding
some nonprogramming material first in one form and then in the other,
They found that positional coding was somewhat faster, even for new
matertal and inexperienced people. But the rate of making errors was
from two to four times as high. Considering the situation in job control
—where little time is spent in the actual coding of the parameters and
little assistance is given to help find bugs in them—three times as many
errors seems 0o high a price to pay for a 30 percent increase in coding
speed.

Such matters were probably never considered in the choice of a

Other Programming Tools 253

job control format, for that seems such a small part of the problem of
implementing an operating system. Another problem, which probably
seems quite small to operating system designers, is the matter of ac-
counting, or, in a generalized sense, perfermance evaluation. For many
programmers, debugging is not the end of the line. The program may
run, but it may cost too much to run. Operating system designers seem
to be reluctant to ask for information on how leng a program will run,
how much core it occupied, how many records were processed on which
files, how much CPU time was used, and so forth. Some cynics have
even suggested that manufacturers do not want their customers to have
such information, lest they see how [ittle actual production is being done
by the “giant brain.”

Regardless of how the manufacturers feel, performance evaluation in-
formation is an essential part of the operating system’s task. For one
thing, performance figures often give independent clues to program bugs.
A program that runs too fast may be bypassing certain segments of code;
and one that runs too slow may be looping in a place where no looping
was expected. But more than this side benefit for debugging, there is
the direct need of such performance information if programmers are
ever going to learn to turn out programs that perform well. Without
the simple and automatic feedback of such information, those pro-
grammers who need it most will never see it. Moreover, good accounting
information, sorted by programmer, aids the installation management in
determining which programmers are in need of help and which pro-
grammers are prepared to give it. It seems astonishing that we can
have progressed as far as we have in computing without every com-
puter user demanding that the manufacturer furnish him with some sort
of minimal accounting scheme.

Computer manufacturers sometimes argue that the customers have
unique needs and would be offended if the manufacturer tried to tell them
the kind of accounting information required. A more blatant rationaliza-
tion would be hard to imagine, and it makes one think that the cynics
might be right, after all. We could certainly identify a common set of
requirements to serve as a starter for most installations and provide them
in a standard accounting routine for the operating system, Any customer
who was dissalisfied with this routine could replace it with his own—
certainly no more confusing than what he has now. In fact, with one
manufacturer at least, since there was never any standard accounting
routine supplied with the system, the interface for the “user-supplied”
accounting routine had a way of changing with each new release of the
system. After five or six releases, most customers had learned their
lesson and had stopped trying t0 keep up with the changes. Of all the
people in the business, the manufacturers seem to have the most prag-

254 Programming Tools

matic grasp of psychological principles—at least when the principles can
be used to avoid doing something they don’t wish to do.

If we were to make a list of the information desired from an accounting
routine, a measure of typical turnaround time in batch systems would be
near the top. Of course, the operating system is not in a position to
record the complete turnaround unless there is remote entry and exit
of information under its Supervision, but lacking the complete picture,
the time between machine entry and exit would answer many questions.
Yet, even if we had a complete grasp of the factors affecting turnaround,
we would still have to face the problem—largely psychological—of what
Cconstitutes ideal turnaround.

One of our students undertook to Investigate the question of ideal
turnaround. He polled both pregrammers and their managers, using a
technique in which individual identities were concealed but group
membership could be known. His first important finding was that different
groups tended to have different perceived needs for turnaround, but that
within a group the opinion was relatively stable. Presumably, different
kinds of work require different kinds of service, A second finding was
that in several groups, the manager and the group members had dia-
metrically opposed ideas about the group’s needs. In one group a
manager was pushing for remote access equipment “to improve turn-
around” when the group members felt that what they needed—because
they were debugging the input-output section of an operating system—
was more opportunity to be in the machine room when their runs were
made.

Sometimes, managers are inclined to think that the programmers
want “zero turnaround’”—instant acceptance and return of their jobs.
This survey and other observations give evidence to contradict this im-
pression, for the programmers’ demands seem quite modest. In another
study-—one designed to compare the efficacy of two difierent program-
ming languages—severa) of the participants complained that the turn-
around was too good! They had been given special priority in order to
facilitate the study, with the result that the measured average turnaround
was 31 minutes from the time the job was passed through the window
until the time the output was placed on the cutput table. The complaint
was that if turnaround had been a little poorer, they would have spent
a bit more time in making corrections and in perusing their output for
additional errors.

In a way, then, if the programmer has invested very little waiting time
in a run, he may tend to value that run less—an observation which seems
te hold for certain terminal systems as well. At the other extreme, very
poor turnaround puts the programmer in an almost neurotic state when
he submits a run. The cost of making the smallest error is so great—

Other Programming Tools 255

he might lose a week while waiting—that he may find himself making
errors out of sheer nervousness. Moreover, he will try to put everything
he can think of into the run, thus increasing his chance of making an
error and also increasing the run time, It is common for a shop to drift
into a poor turnarcund situation with everyone making extra-long runs
out of self-defense, and with these very extra-long runs causing the turn-
arpund situation to deteriorate.

Because the type of work differs from run to run, it is really impossible
to state a single optimal figure for turnaround time. Usually, more than
four, or possibly five, runs per day of the same job cannot be utilized
fully, and fewer than two begins to induce anxiety and unsound practices.
For initial work, however, when the programmer is just getting syntax
and keying errors out of his code, terminal access would seem to be
desirable. However, people in shops where four runs per day are
assurred are apparently not as troubled about these “trivial” errors as
are programmers in less well-run shops.

As we have noted before in other contexis, the mean time is not the
only important psychological factor. If the turnaround is very uncertain
—six runs one day and none the next—the programmer is not able to
plan his work effectively. In a short time, programmers will react to
uncertainty by setting up their test runs to defend themselves against the
worst situation, with resultant waste and bad feeling.

Another source of bad feeling with respect to turnaround is the
doling out of priority. Programmers in one of our studies complained
that certain (other) people seemingly got favored machine access for no
apparent reason. No particular rancor was evident when priorty wasg
given out in a uniform way with respect to some particular job char-
acteristic, such as expected running time: but when no reason was
given, or when the reason was inconsistent, enmity seemed to be di-
rected against both the grantor (the manager) and the grantee (the pro-
grammer). Inasmuch as neither form of enmity would appear to be
terribly healthy for a programming group, it might be best to dispense
with such special favors altogether.

When a priority system is established to favor certain types of jobs
over others, there may be some initial resistance, or at least anxiety,
but this usually diminishes as the effects of the new system become
evident. The existence and publication of good operating statistics ap-
parently help in gaining acceptance, for then each programmer can
judge for himself the consequences of certain actions and adjust his
runs accordingly. A typical situation is one in which [ower priority is
given to longer jobs, jobs that take more than a certain amount of core
storage, or jobs that require special setups. At first, everyone seems
to feel that his jobs should be made an exception to these rules; but if the

256 Prograrmmming Tools

effect is actually better turnaround for those who fall within the limits,
the nature of the jobs being submitted soon begins to change. Estimates
of running time and core storage become better, ang special setups that
were once fervently defended as “essential” now seem to disappear.

Such a situation is just one more example of the “law of effect” as
applied to the Ccperating environment Whatever the operating environ-
ment-—be it good or bad—the Programmers will eventually adapt to it in
ways 1o do the best they can for themselves. Thus, if a programmer is
rewarded for behavior that is detrimental to the operation as a whole—
Or even if he is simply not penalized for it—all proegrammers will eventy-
ally be adopting that behavior it it suits them. For example, some in-
stallations require that the programmers make time estimates of their
jobs so that the operaiors can schedule the work better. If, to take one
actual case, all jobs of fifteen minutes or less estimated time are treated
in the same way, all Programmers will eventually discover that it is best
—for them—igo put down an estimate of fifteen minutes even if they
think they will need only one minute.

In fact, there is no sense bothering to ask the programmer to make
finer judgments than the operating system is prepared to act upon. The
installation might simply ask the programmer to classify his job as
“under two minutes,” “two to fifteen minutes,” or "over fifteen minutes,"
Possibly indicating at the same time the priority consequences of each
Choice. Similarly, if the system is multiprogramming and there are only
two sizes of job partitions, the programmer should be asked to select
one or the other-—not give a Space estimate down to the nearest byte.
Setting rules that are not enforced, or setting limits that are not used,
Can only result in contempt for the system by those who must work
under those rules and limits.

The action of the law of effect can be blatantly obvious or surpassingly
subtle. Moreover, it is not just the usual “system” that js involved.
Programmers adapt to any aspect of the environment that affects the
performance of their Iobs, regardiess of whether or not the system
manager considers it part of their sysiem. Sackman, for instance, ob-
served in one of his studies that waiting time for jobs or terminals dropped
substantially for subjects with more than four problems, which he inter-
prets in the following way: “It seems as if the cadets became more
efficient in their timing tactics for rfequesting computer service as they
gained more experience.”

Although Sackman calls this result “unexpected,” his surprise can
probably be attributed to his being a psychologist and not a programmer,
Any professional programmer has observed himself and others making
such adaptations to the peculiarities of the system whose operation de-
termines in large measure his slccess or failure. G. H. Stange, in a

Other Programming Tools 257

study for our psychology of programming class, studied the introduction
of two remote entry systems which were intended to replace a dis-
patcher system. He observed many adaptations to the dispatcher's
schedule and pecullarities, but the most unusual of these was the ob-
servation that the turnaround time of a job depended on the way the
cards were packaged! A deck wrapped with a rubberband was the best
(50 percent of the jobs were back in less than three hours), a cardboard
card box was next (32 percent were back), and a metal card box was
worst (only 12 percent back in the same interval). Stange checked on a
possible correlation between container and time or core requirements
and found none. Evidentally, the smaller looking jobs got preferential
treatment by the operators—and some of the programmers had begun
to be aware of the difference. To compensate, they made every effort to
make their decks look as small as possible; placing a small deck in a
metal box would be a disaster.

When a remote job entry system was introduced into this shop, such
preferential treatment of decks was theoretically removed, but Stange
goes on to show how other factors led to differential treatment to which
the programmers could adapt. The first factor was knowledge of the new
system, which led to a certain incentive to learn how to use it and to
keep others from knowing. But then it began to be c¢lear that untrained
people using the system led to card jams and other malfunctions that
only interfered with other people's work. At this point the more knowl-
edgeable people began to hang around and act as operators, so as to be
sure that their own jobs would not be delayed. Because of this pro-
tective waiting, much of the apparent savings of the system was lost,
because the programmers did nothing while waiting except make sure
that nobody messed up the system.

Ultimately the congregation of programmers around the terminal led
to other effects—in particular, to exposure of programs to other people.
The printer was extremely slow, so the assembled throng could watch
programs coming off and make comments. Also, people conversed about
the RJE system itself and about other aspects of programming. What
this increased soctal contact would have done eventually is not known,
because it was cut short by the emergence of one individual as un-
official “operator.” He took the job to protect his own interests when the
system would break down often—he reentered all jobs, but always man-
aged to get his in first. This improved service for his jobs was apparently
his only reward for operating the system, but others accepted this price
in return for not having to wait in the entry room. And so, after a short
perturbation, the system settled back to a pattern that looked very much
like the old expediter pattern, with ancther human being interposed be-
tween the programmers and the “system.” The job of getting one’s work

258 Programming Tools

done became once again the job of manipulating a human being rather
than the operating system itself. Moreover, the old expediter system was
not removed, since the expediter served other programmers in the area
as well. His service was used as a backup when the RJE system was
behaving badly, as a way of running jobs with many cards or large
printout without tying up RJE, and as a way of getting overnight service
on jobs without the attention needed for RJE. The second RJE system
was used by some programmers. It had a CRT device, and was found
to be useful in initial preparation of decks, but particularly for monitoring
the progress of jobs submitted by the other two methods.

Overall, the installation of these two systems eventually had the de-
sired effect—an increase in the number of jobs per programmer per day
and a reduction in turnaround time. This improvement was not achieved
simply by overpowering the problem with equipment, but by providing
an enriched environment—an increased set of choices to which the
programmers could adapt their strategy of submitting jobs. We do not
know, of course, whether the increased flexibility available to this group
was at the expense of some other users. Eventually, some rules and
limits have to be established to maintain a balance among the various
competing users.

If sensible rules and limits are to be established, however, the operat-
ing system must have sufficient flexibility to accept them and act upon
them. Flexibility in the operating system is also desirable when setting up
the procedures by which it is to be used. The best way to ensure that
the system is used efficiently and effectively is to make the efficient
and effective ways the easiest to use. In a well-designed operating sys-
tem, the entire face of the system can be changed by making “cata-
logued procedures™ of job control language that is, or should be,
frequently used. In this way, the programmer can be guided into better
ways of using the machine by the reward of making the job easier.

In view of the arguments about the specialized needs for accounting
routines in each installation, it is interesting to observe how certain
manufacturers tend—by deed if not always by word—tio encourage
customers to use their “standard” job control procedures, rather than
custom building their own. The standard procedures, of course, must be
sufficiently general to fit any configuration and any mix of words, so they
are not usually optimal for any particular work or installation. Perhaps
what we have here is an example of the law of effect operating on a
grander scale. After all, computer manufacturers get paid more if more
machine time is used. It is only natural, therefore that they should dis-
courage the use of things (such as accounting routines), which might
lead to greater efficiency, and encourage the use of things (overgeneral-

ized job control procedures), which might lead to lessened efficiency.
Caveat emptor!

Other Programming Tools 259

TIME SHARING VERSUS BATCH

Suspicion of computer manufacturers is nowhere greater than in the
reaction to the introduction of time~sharing systems. Old-timers are often
heard muttering that time sharing is merely another scheme to introduce
even more inefficiency into computing, s¢ as to further line the pockets
of the capitalists. Certainly time sharing, like cther computer innovations,
was undertaken on a large scale with no psychological investigation
whatsoever. People thought it would work, or wanted to think it would
work, so it was pushed onto the market and the battle began.

By and large, the fight between the time sharers and the batchards
has been conducted on the level of name-calling. Then, suddenly, we
had a breath of experimental fresh air rushing through the argument,
as Sackman published his book, Man-Computer Problem Solving: Ex-
perimental Evaluation of Time-Sharing and Balch Processing. Those
readers who still doubt the ability of psychological methods to clear up
computing problems should read Sackman's book from cover to cover,
as should all advocates of either side in the time sharing versus batch
controversy.

We cannot hope here to survey the problem in the depth that Sack-
man has obtained, but we cannot leave without some comments on the
kinds of lessons which the time sharing versus batch controversy has
given us, since this is the one area in which we have the most empirical
information.

One good starting place is the types of assumptions which creep into a
field and may be taken for granted by even the most thorough investigator.
In Sackman’s case, the jdea of the individual as the proper unit of study
is never questioned at all, which is hardly unexpected since that assump-
tion is built into the very hardware and software of all time-sharing
systems! We do not, for example, have terminals that are suitable for two
or more people working together at them and, lacking the terminals, we
completely lack the software or even software ideas to support them.
Moreover, Sackman’s assumption is reinforced by the school environment
in which most of his tests were conducted. Certainly at the Air Force
Academy any cooperative work on a program would be regarded as
cheating—heaven forbid!

Another lesson from Sackman's work is that even the most thorough
investigator can occasionally make a wrong interpretation of his results.
in one of his studies, Sackman plots mean number of syntax errors
versus session number in the batch mode and finds “the classic error-
extinction curve.” Although it is true that errors are “extinguished,” this
is not at all the extinction which psychologists observe, for instance as a
subject reduces the number of errors made on successive attempts to

260 Programming Tools

memorize a list. If our studies have any relevance to Sackman’s group,
the typical programmer working in batch goes through two phases. First
he works toward his first error-free compilation, which might take 0-5
runs. Once he has that, he proceeds to change a single statement at a
time, in the usual case, as he converges toward a semantically correct
program. He may make an error in this single statement—especially if
he is the ‘assertive” lype we postulated earlier—but the bulk of his
statements are never touched and thus remain error-free through no
effort of the programmer himself. It is the punched card which *“ex-
tinguishes” errors, not the programmer's memeory.

Well, so what does it matter who does the extinguishing, as long as
the errors do get extinguished? To the systems designer, it should
matter a great deal. Let me give an example. A few years ago, | walked
into a programming shop at the time they were firming up specifications
for a syntax checker for a remote entry environment. The checker for
PL/| interested me, and | took a look at the specifications. Whoever
had written them had asked that the checker be able to detect “any
error that the batch compiler could detect” within the context of a single
statement. The image here was of a programmer attempting to get a
perfect compilation on his first try, which would be unlikely anyway
because of global errors not detectable by a line-at-a-time syntax
checker. To determine how valuable such a checker could be, one has
to have an accurate model of the error patterns to be fed on it.

Our model gives the following picture for PL/l programmers. Before
the first successful compilation, the major cause of multiple compilations
to eradicate syntax errors is the failure to close comments or strings,
which causes large segments of code to escape syntax checking at all.
But these are precisely the two errors not detectable by the batch com-
piler, and they were going to be left out of the syntax checker! By
simply checking those two things and nothing else, the average number
of compilations to reach an error-free state could probably be reduced
by one, and the variance reduced even more.

Once the first successful compilation has been made, syntax errors
are largely the most crude errors, such as those are caused by hasty
punching. These errors are often global, in the sense that a name is
mispunched, and are otherwise rather trivial, such as unmatched paren-
theses and misspelled keywords. The most useful checker here would be
one that finds crude errors and then makes a check for compatability
against the symbols saved from a previous compilation. If, of course,
each new session results in major changes in the program, saving the
symbol table will not be worthwhile, and only an explicit model of
programmer behavior tells us how to design our system. If we believe,
with Sackman, that each new batch run is essentially a fresh start in

Other Programming Tools 261

which syntax errors have been "extinguished” by learning by the program-
mer, we will choose to make a syntax check that makes no reference
to the previous compilation. But, if we believe that the programmer’s
knowledge of syntax remains largely unchanged (although obviously not
completely so) over the course of one problem, and that he “extinguishes™
errors simply by eliminating them one statement at a time, then we will
choose a rather different system design—one that will give greater pro-
grammer satisfaction and even more efficient system performance.

The question of system performance pervades Sackman’'s work, and
although he tries, as every good scientist should, to isolate the com-
ponent that can account for a behavior, he consistently runs up against
interaction effects, which make such separation impossible. For example,
“language” is confused with “system" by the programmers, and dif-
ferences in performance might be attributable to the use of ALGOL in
the batch system and BASIC on-line. But even if the “same” language
is used in both systems, they are not the same, since each system has
its special control statements, which must differ from batch to on-line,
as well as certain features that are essential in one environment and
useless in the other,

Another problem in making batch and on-line systems “comparable™
Is the question of terminal availability versus turnaround time. ls a
six-hour turnaround with a variance of plus or minus three hours com-
parable to an on-line system in which terminal users are limited to
fifteen-minute shots on terminals that are available 90 percent of the
time? Sackman is constantly running up against unsolvable questions
such as this, and eventually he concludes that a bad terminal system is
worse than a good batch system, whereas a good terminal system is
better than a bad batch. Some may think this to be a trivial conclusion,
but it represents a major step in the direction away from such vacuous
stalements as “on-line is better than batch,” or “batch is better than
on-line.” Now we must continue Sackman’s work to identify those
factors that make a batch system good, and those that make a terminal
system good. Unfortunately, we probably won’t be able to separate
“factors” as neatly as we would like, since our systems really are
systems.

Finally, it may not be worth the effort anyway, in view of the in-
dividual variations found at every turn. Perhaps we should let Sackman
summarize the entire case in his own words, and show us where the
batch-versus-on-line controversy should now turn:

Perhaps the central result from these studies Is that no really substantive case
Can be made for the overwhelming general-purpose advantage of one mode
over the other. As in all studies, without exception, individua! differences in

262 Programming Tools

performance overshadow computer system differences. The key to major break-
through In improved man-computer effectivenass seems to lie in the nature and
structure of Indlvidua! differences and in human problem-solving styles. Whether
the object of an institution Is to teach computer science effectively or to pro-
duce cost-effective computer programs, the path to effective achievement of
systern and institutional goals is fundamenta! knowledge of human problem-
solving in man-computer communlication. {p. 223)

DOCUMENTATION

Documentation is the castor oil of programming—managers think it is
good for programmers, and programmers hate itl In fact, the managers
know it must be good because programmers hate it so much, just the
way we used to know that iodine was good for that abrasion on our
knee because we could feel the sting. Well, folk medicine dies hard, in
programming as at home, so it is going to be difficult to sell the idea
that documentation, as such, has no intrinsic value. The value of docu-
mentation is only to be realized if the documentation is well done. If it is
poorly done, it will be worse than no documentation at all.

As far as can be determined, there is no way to force programmers to
produce good documentation. Some programmers can be forced f{o
produce documentation, just as some children can be forced to take
castor oil; but there are so many ways to sabotage the usefulness of
documentation that forcing only results in documents that are not worth
the paper used to print them on. The only hope, then, for producing good
documentation is to convince the programmer that it will benefit him
to do so. If the act of producing the document has no value to the
programmer, the job will always be done in the minimum possible way,;
but if producing the document has demonstrable good effects, there
will be no way of preventing reasonably good documentation.

what do we mean by reasonably good documentation? Our emphasis
is really on the word “reasonably,” for we usually err in expecting just
too much from documentation. In the first place, different people have
different needs when they look at the documentation for a program, SO
that no system of documentation is going to satisty them all equally
well. We should set a goal that is reasonable and try to achieve good
documentation which meets that goal. If it happens to meet some other
goal reasonably well, that is a bonus; but if not, then we shall have to
produce some different documents for the different goal, or do without.
Secondly, there are certain things that no documentation will ever do.
Primary among these things is making it possible for an untrained person
to understand all there is to know about a program in twenty-five words
or less.

Other Programining Tools 263

Using the documentation for a program will always require some work
and some minimum prerequisite knowledge. If the reader does not
understand English, he is not going to understand a program document
written in English, and nobody would blame the documenter for that.
But it is equally unreasonable to expect that someone who does not
understand FORTRAN can understand fully a program written in FOR-
TRAN. He may be expected to understand how to use a program, if it is
designed to be used by people, rather than to fit as one small cog in a
larger system—if he understands the use for which the program was
intended. We must not, however, expect that the use of a program for
solving differential equations can be made understandable to a person
who has not passed high-school algebra. What we can expect, as a
minimum, is that if the reader has a high school education, he should
be able to see from the first page of the documentation that he will not
be able to understand it if he should get in any deeper.

“Depth” is one of the most important documentiation concepts, es-
pecially for large systems. If a system is of any size at all, different
users of the documentation will need different levels of detail in the
information they extract. The highest level should be just sufficiently
detailed to tell the user whether or not he will be able to read the
documents. At each level—because we can never be sure which document
will fall into the user's hands—the first and most conspicuous thing
in the document should be a reference to the documenis above and
below it in depth, along with an indication of the depth to which this
document goes and the knowledge the reader must have to use it.

Without this minimum of self-describing structure, no system of docu-
mentation can be expected to succeed, but the user must also take the
time to understand this structural information and to use it. We cannot
expect that any random document we pick up will be the proper entry
point to the path of understanding a system, any more than we can
expect to understand the role of Aloysha if we start reading The Brothers
Karamazov on page 353. In novels, of course, there is a standard struc-
ture which the reader is assumed to know, and it simplifies the author's
task no end to know that most serious readers are going to start at the
beginning and read toward the end. In documenting a large system,
however, the writers—in addition to suffering the deficiency of not being
a Dostoevski or a James—have to contend with readers who don’t know
where to begin. Thus, each physical document must contain some guiding
information.,

Of course, it is a bit shortsighted of us to confine our thinking to phy-
sical documentation such as books. Most likely, the problems of pro-
gramming documentation will not really be solved until we start using our
data-processing machines to document their own program in a creative

264 Programming Tools

way. To be sure, we have started in this direction now—as we usually
start toward automation—by mechanizing the same functions we used to
do before mechanization. Thus, typesetting and composition are done
with “administrative terminal systems,” with all the benefits of automatic
assistance of updating—that oh-so-frequent problem in programming.
But, we are still by and large limited in what we can communicate to the
user of the document because we are still working through the medium
of books.

Now, it would not be smart for an author to decry too violently the con-
tinued use of books, but there are limits to the proper functioning of this
medium. In the first place, books are not the most flexible medium for
accepting and disseminating updated material. From the time these words
are impressed on the typing paper until they are seen in print by the first
reader’s eyes, sufficient time will have elapsed in which to make a baby,
starting with the basic ingredients. In some cases, at somewhat increased
cost in money or accuracy or both, the time span can be reduced a bit,
but the medium is not inherently fast enough for material which changes
as fast as program documentation for a large system.

In the second place, no matter how nice it is to cuddle up before the
fire with a cozy book in your hand, few people use programming docu-
mentation in that environment. For a general overview document—for
teaching and learning general concepts of a system—a book might be the
suitable medium. But for answers to specific technical questions, some-
thing else is needed. We cannot trust the user to find his way about in the
maze of documentation which must of necessity exist for a complex
system, so we must provide a system that guides him in an active manner.
What could be better at this kind of active guidance than a computer,
viewed through the window of a suitable terminal?

Well, of course, there is the cost of it all. Who shall pay? Psychologi-
cally, the question of cost of documentation always strikes a hard blow,
for we are always unprepared. Why? Because we have not accustomed
ourselves to thinking of the cost of documentation as a part of the pro-
gramming cost. At bottom, then, when you talk in terms of what managers
talk in terms of—money—you find that they, too, think of documentation
as a separate, or separable, part of programming. It's a wonderful thing
to have good documentation, but not if it has to be paid for.

From time to time, schemes are brought forth for some form of “‘auto-
matic documentiation” of programs—schemes which are supposed to be
painless or costless or both. One example of this type is the many flow
charting programs which exist. If you feed one of these programs your
program input, it spews out a flow diagram as output. Certainly the proc-
€ss is—or can be—painless, and, in fact, turns out not to be very expen-

Other Programming Tools 265

sive. But is it documentation? Probably not. What it may be—and this is
nothing to sneeze at—is one more weapon for the debugging arsenal.

The programmer, if he has been working without flow diagrams of his
own, may find it difficult to follow just what his program is doing, par-
ticularly if its locality is not very good. A flow diagram, properly con-
structed, can help to gather many nonlocal points of flow into a two-
dimensional form so that they may be seen on one page. This new view
of the program may be extremely helptul to the programmer, not only
revealing such solid errors as endless loops or unconnected branches,
but showing whether or not his code has realized his intentions.

If the programmer has been working with a flow diagram all along, the
machine-drawn chart can be used for comparison, which will certainly
reveal any errors in transcription from the diagram to the code. In more
linear languages, such as PL/Il, the two-dimensional advantages of the
flow diagram lose their strength. When a PL/I program without any labels
was put into one of these flow charting programs, what came out was the
original program, in the original order, with nice little boxes drawn around
different pieces of code. What the flow diagrammers cannot do is add any-
thing new inside the boxes, although seeing the code with boxes around
it may help the programmer see certain things he had failed to notice.

However, if the contents of the boxes are obscure to all but the original
programmer, the flow diagram drawn automatically from them—in any
language—is not going to be much help to the person who needs docu-
mentation. If the comments were misleading, they will still be misleading
—unless they mislead about the destination of a branch. If symbols were
poorly chosen, they will remain the same symbols on the flow diagram.
We have made a few pilot studies to test the documentation value of such
automatically drawn flow diagrams, and we find no evidence that the
original coding plus flow diagram is any easier to understand than the
original coding itself—except by the original coder. Perhaps some of the
companies that sell such flow charting programs would sponsor more
carefully controlled studies into this problem.

A flow diagram, of course, is but one alternative way of representing
the information that is in the actual code. Even if its total value turns out
to be quite small, there are several reasons not to give up on it as a docu-
mentation technique. First of all, since it is an automatic procedure
carried out by computer, we can expect that the cost of doing it will
decrease, rather than increase, as computers get more powerful. Sec-
ondly, it has the absolutely outstanding advantage of being drawn directly
from the code itself, so that maintaining the documentation is precisely
the same act as maintaining the code. Therefore, there is no possibility
of slippage—the death rattle of all documentations systems.

266 Programming Tools

One extreme example of the view that the documentation should spring
from the code itself is expressed by Klerer and May about their system.
Mot only can the written documentation for their system be placed on two
sides of a sheet of paper, but they expressly state that they do not expect
the programmer to learn how to use their system from the documenta-
tion but, rather, from experimenis with the system itself. Instead of load-
ing up the documentation with thousands of words to explain an obscure
point that nine-tenths of the programmers will never use, Klerer and May
leave the weork of clearing up obscurities to the machine itself. This is,
after all, only a return to the normal practice which we have been using
for years. The machine is, and always will be, the court of last resort on
documentation disputes.

In the past, however, the machine has been a rather uncommunicative
documenter. In order to rely more on the machine itself, we must use
more imagination in getting the machine to tell its story in as many
alternative ways as possible. Each particular way, such as flow diagram-
ming, may give but a small addition to the clarity of a program, but many
small changes in viewpoint may add up to a sum much greater than its
parts. If, as we believe, the main impediment to program debugging and
program understanding is psychological set, any technique for getting
the mind unstuck should be explored as a possible tool of debugging
and documentation.

We have been conducting a series of studies on the usefulness of
various alternative ways of looking at a program. We have tried to draw
on any source of inspiration in coming up with alternative views. For
Instance, think of the painter, who finds that familiarity with objects may
cause him to distort his perception of their actual color. To overcome
his set, he bends over and views the scene upside down through his legs.
In a similar manner, we are experimenting with printing programs back-
wards-—either by character or by symbol—just to see what will happen.

Some of the other methods we are trying are more familiar, bul a list
of them may help inspire the reader to think of others:

1. Set off keywords in boldface or underline.

2. Set off nonkeywords in boldface or underline.

3. Set off keywords or nonkeywords in lower case.

4. Change multi-use symbols, such as the ambiguous equals sign, and
parentheses at different levels of nesting.

5. Mark potential trouble spots—such as dummies created where refer-
ences might be desired or references used where dummies might
be wantexl.

6. Strip comments from a listing and present the “naked” listing on one
page and the comments on another.

f. Stnp literals in a similar way.

Other Programming Tools 267

o

Rename all variables.

9. Expand all abbreviations, or abbreviate all expansions.
10. Permute options to a standard order, or simply to a different order

than the programmer used.

11. List symbols in alphabetical order, together with reterences to where
used, set, or passed as references.

12. List symbols in groups according to specific attributes, such as all
EXTERNAL variables or all FLOAT variables together, with multiple
listing according to multiple attributes.

13. List the scope of symbols.

14. List potential ambiguities.

15. Extract and print separately groups at successive levels of nesting
of DOs, BEGINs, and PROCEDURES.

16. Decompose conditional statements into some canonical form, per-
haps including decision tables,

17. Strip out expressions and list them with their values calculated under
several sets of values of their contained variables.

18. Execute sample flow paths,

None of these viewpoints are intended to change the physical meaning
of a program, but all are intended to change its psychological meaning.
What we are hoping to do is present the programmer’s eyes (and perhaps
other sense organs) and mind with a richness of views on which he can
apply his native talents as an adaptive system. In other words, we are
not trying to make the machine solve the debugging problem and the
documentation problem; we are trying to make the machine help people
take advantage of the immense psychological resources they have in
overcoming their immense psychological shortcomings.

It would be nice, of course, if these programs did solve, or partially
solve, the documentation problem. Another worthy effort in this direction
involves a bit more work by the programmer, but also promises to be
useful. In this system, when the programmer has finished the program,
he sits down at a terminal and is interrogated by the computer about the
function of each of the various program and data elements in the coding.
The replies he makes are stored away and presumably shipped to any-
body who requests a copy of the program. The users, in turn, can go to a
terminal and ask questions about the program and data elements that
interest them—the computer keeping from them the job of sorting
through the mass of documentation material. There is no chance of their
going to the wrong place for the information, for they always go to the
same place—the terminal.

This type of system really seems to get at the problem of the user who
does not understand the structure of the documentation, but it still leaves
the problem of entering the documentation data originally. The inter-

268 Programming Tools

course with the computer will certainly be a motivating factor for some
programmers; but even the most motivated programmer, if he cannot
write an English sentence, will not be transformed into an able com-
municator by this system. One possible modification would be to use the
computer merely as a referee in a dialogue between the programmer and
a number of “typical” users. The users would ask questions through
their terminals, and the programmer would attempt to answer them
through his. The computer might even help the users by prompting them
to ask certain questions, but would not record the programmer's answers
until they had been accepted by the users as giving them the information
they desire. The entire set of answers could then be classified and
shipped with the program for other users to interrogate.

Even better, of course, though conceptually further in the future, would
be a single central pool of answers to such questions. Any user, or
potential user, of the system could interrogate the central pool. If he
obtained the information he needed under the computer's guidance, that
would be that—although statistics could be kept on frequent requests so
that they might be answered more directly in the future. When, however,
the user could not satisfy his information needs from the answers already
in the pool, the computer would issue a request to someone at the
programming facility to get on the line with the user. In the ensuing
dialogue, the question would eventually be answered, but it might
take a few days in the worst cases. Once the answer had been obtained,
however, it would be added to the records and thus made available for
future users.

What such a system does—with suitable provision for updating as
changes are introduced—is to take us back closer to the time when the
documentation was the programmer himself. In a small shop, on a small
program, little attention was paid to explicit documentation, for it was
always easier to go to the originator to get the answer. After all, you
probably had to ask him in order to find the documentation. In fact, in
such a situation today, this is probably the best method. Any programmer
knows a lot more about his program than he will ever be able to put in
his documentation, or than anyone would be able to find as needed even
if it had been put in. The major problem with this method is when a
programmer leaves the shop, but if egoless programming is practiced—
and if the management is not so bad that all the programmers leave at
once—this problem is minimized.

There are, of course, limits to this personalized method. One par-
ticularly strange situation occurred in 1961 concerning a network analysis
program | had written in 1956 while working in San Francisco. The pro-
gram had been distributed informally and used widely during those years,
but | had in the meantime wandered from place to place, finally resting

Other Programming Tools 269

for the moment in New York. Then, one day, | got a long-distance call
from Stockholm. At the other end of the line was a desperate programmer
who had been tracking me down for three days. He explained that he was
trying to modify the program to handle a certain case which was not in
the original conception of the problem, and then asked, “If | change the
sign of location 1003 to minus, will that do the job?”

Over five years, and across the continent, 1 had hardly retained the
memory of having written the program, let alone a memory of what was
in location 1003. Quickly calculating the cost of a transtlantic telephone
call and comparing it with the cost of computer time, | told the caller,
“Yes, that should do it. Why don't you put it on the machine and try it
out. If it doesn’'t work, call me back.” Fortunately, | never heard from
Sweden again.

Even when programmers remain fixed, their memories fade. Very few
programmers can recall what was in any location—symbolic or absolute
—of any program they wrote five years ago and have not looked at since.
But then, very few programs of one-man type can be expected to remain
in use over such a long time span. It reaches a point, even with the best
documentation, that it pays to throw a program away and start over.

What we must consider, then, when deciding how to document a pro-
gram, is who will use it, how it will be used, where the users will be, and
for how long it will stay in use. If it will only be used locally, for the type
of work it was designed to handle, by people who know the programmers,
and for a year or two or three, then perhaps the money that might have
been spent on elaborate documentation could be put to better use on
some other project. If many people in remote locations are going to use
it, the cost of elaborate documentation must be reckoned with from the
first, and the programmer will have to be involved from the beginning in
making documentation a possibility.

Notice that we did not say “in making documentation” but, rather, *‘in
making documentation a possibility.” When a program is going to be
used as a marketable commodity—whether or not it is actually sold—
the users have a right to expect that the documentation be done as pro-
fessionally as the programming. And, considering the matter cooly, there
is no reason to believe that a professional programmer will be qualitied
as a professional documenter. Thus, if professional documentation is to be
done, it should be done with the assistance of the programmer, but not
by the programmer. If documentation is elevated to a professional status
all its own, so that the documenter can work side by side with the pro-
grammer without being made to feel inferior, we have the right to hope
that documentation will improve.

We have come through a strange cycle in programming, starting with
the creation of programming itself as a human activity. Executives with

270 Programming Tools

the tiniest smattering of knowledge assume that anyone can write a pro-
gram, and only now are programmers beginning to win their battle for
recognition as true professionals. Not just anyone, with any background,
or any fraining, can do a fine job of programming. Programmers know
this, but then why is it that they think that anyone picked off the street
can do decumentation? One has only {0 spend an hour looking at papers
written by graduate students to realize the extent to which the ability to
communicate is not universally held. And so, when we speak about com-
pulter program documentation, we are not speaking about the psychology
of computer programming at all—except insofar as programmers have
the Hlusion that anyone can do a good job of decumentation, provided
he is not smart enough to be a programmer.

SUMMARY

The main lesson of this chapter is simple: Systems are complex. A
computer system is not just hardware, not just software, not even just
people plus hardware plus software. The procedures, formal and in-
formal, that have evolved with the system are part of the system; so is
the current load on various components, and so is the attitude and ex-
perience of the users. Even among the commonly accepted ‘‘parts” of
a system, clear lines of separation do not exist. Hardware merges with
operating system, operaling system merges with programming language,
programming language merges with debugging lools, debugging tools
merge with documentation, and documentation merges with training, and
all of them mingle with the social climate in which the system is used.

This complexity means, on the one hand, that experimental evidence
iIs doubly essential, but, on the other hand, that it is doubly difficult to
obtain and intepret. The time has come 1o sweep the myths out of our
closet and replace them, if possible, with hard experimental evidence.
Not that any of these problems will ever be “solved”—the complexity is
too great for that. But what worthwhile problems are ever solved? I's not
so much the solutions we need, anyway, but the experience in trying to
get them.

QUESTIONS

For Managers

1. Have you ever been offered a “debugging compiler'” or other debugg-
ing aid? How did you decide whether or not to purchase it?

2. Do you ask your programmers to estimate their leve! of confidence in

Other Programming Tools 271

their "debugged” programs? Do you try to make your own estimate of
confidence? What factors do you use in making this judgment?

. Describe the systems of performance evaluation in use in your shop.

How do you use them in being a manager? What additional informa-
tion would you like to have them supply? What information do they
now supply that is useless ¢ you?

What do you consider to be ideal turnaround in your batch system?
What do you consider to be ideal access 10 terminals in your on-line
system? What do your programmers think about these issues?

Do you give certain programmers priority in using the batch system?
The on-line system? Have you ever observed adverse effects of your
favoritism? What do you think you could do in the future to give
priorities without creating bad feeling? It is possible that the bad
feelings created do more harm than the priorities are supposed to
do good?

Which is betier for programming, on-line or batch?

How are the documenters chosen in your shop? Are your documenia-
tion rules sufticiently flexible to permit different kinds of documenta-
tion for different types of programs? Is there resentment against docu-
mentation work? If so, what do you think is the source, and what can
be done about it?

For Programmers

1.

7.

Recall from your experience a "tiny” error that had a big ultimate
cost. What debugging tools or techniques could have prevented that
error? Would their cost have been greater than the cost of that one
error?

Give examples of when you have been biased in your program testing
by “early returns,” both good and bad. Give examples of other factors
that have biased your debugging strategy, such as desire to please
your manager, knowledge of program structure, or interaction with
cther programs or programmers,

. What do you consider to be ideal turnaround in your batch system?

What do you consider to be ideal access to terminals in your on-line
system? What does your manager think about these Issues?

Give an example of behavioral adaptation to system features, using
yourself as the subject.

Which is better for programming, on-line or batch?

What other views of a program would you like to have supplied by
your operating system and compiler? Explain how these views could
help you, giving specific examples for each.

What do you think of documentation work? What do you think of

212 Programming Tools

people who do a good job of documentation? What would have to be
changed 10 make you do a geood job of documentation?

BIBLIOGRAPHY

Rosenthal, Robert, On the Social Psychology of the Psychological Experiment,
American Sclentist, June 1963,

Rosenthal has pioneered in studying the observational blases that creep info ex-

perimentation, especially because of expectations on the part of the experimenter.

The parallels with debugging are obvlous, so that programmers should be able

10 translate the results in this article directly into their own work practices.

Farzen, Emanuel, Modern Probability Theory and Its Applications, New York, Wiley,
1960.

On the matter of the influence of a priori probability on the confidence in the

results of a particular test, see, for example, pp. 119-120. In general, programmaers

would benefit from thinking of debugging as a probabilistic process, and Parzen's

book would be a good starting place.

Weinberg, G. M., PL/I Programming—A Manual ol Siyls, New York, McGraw-Hill,
1970.

For a discussion of the advantages of proper language and proper program struc-

ture in program testing, see Chapter 4.

Berkeley, Edmund C., The Personality of the Interactive Programmed Computer,
Computers and Autornation, Dec. 1965, pp. 42-46.

This article Is a bit superficial, but raises the Interesting question of the “person-
ality” which a system presents to the user. As Sackman has shown, the attitude
a user has toward a system influences hls performance in uskng that system, and
also that the user's respect for the system grows with Increased famitiarity. No
doubt the personality of the system plays a part in this acceplance, and users
could be tested for their perception of the personality of different systems, in order
to try t0 determine which personalities programmers like to work with.

Sackman, Harold, Man-Computer Problam Solving: Experimental Evaluation of

Tirme-Sharing and Batch Processing, Princeton, N.J., Auerbach Publishers, 1970.
As the subtitle suggests, and as we have previously indicated, this book sum-
marizes the work to date in this field, and is essential prerequislte reading for
anyone about to compare operating systems.

Stange, G. H., The initial Effects of the installation of Two Remote Computer
Access Systems,
Unpublished class report.

Salsbury, R. G., Ideal Turnaround—An Opinion Survey.
Uinpublished class report,

Heiss, William J., and Frederick Schwartz, Positional versus Keywood Coding.
These unpublished class reports provided learning experiences for all Involved.
and demonstrate that useful work In this field can be done without going off the
deep end.

Rosin, Robent F., Supervisory and Monitor Systems, Compufing Surveys, 1, No. 1
{March 1969).

in little more than a dozen pages, Rosin manages to make clear the general out-

Other Programming Tools 273

lines and Important issues in operating systems. By taking an historical view, he |s
able to show how each successive generation of operating system design was
more or less intended to patch up the problems left over from the previous genera-
tion. One is led to speculate on the way operating systems of the future will ook
as they begin to patch up the psychological holes left by present systems,

London, Raiph L., Bikliography on Proving the Correctness of Computer Programs,

Machine Intelligence, 5, New York, American Elsevier, 1970.
The dreamn of all debuggers is to someday be able to have the machine prove
whether or not a program is correct. A great deal of work is being done on this
problem, although it is certainly unsolvable in general. None of the work done to
date has any real practical application to debugging, but reading some of these
papers will definitely have an effect on the debugger. No definitive summary of
work has been written, or can yet be written, so this bibliography will have 1o
suffice.

Weinberg, G. M., and G. L. Gresset, An Experiment in Automatic Verification
of Programs, Communications of the ACM, 6, 10 {Cctober 1963), pp. 610-613.
In this early study, the authors tried to show how error detection properties of a
compiler depend upon the error environment in which they are used, and they
made a number of suggestions for improvement of error-detection performance
in an actual environment. Few of these suggestions have been carried out in any

major compiler.,

irons, E. T., An Error Correcting Parse Algorithm, Communications of the ACM, 8,
11 {(November 1963), pp. 669-673.

LaFrance, Jacques, Optimization of Error Recovery in Syntax-Directed Parsing

Algorithms, ACM SIGPLAN Notices, 8, No. 12 {December 1970), pp. 2-17.
Iron's paper represents the earliest, and LaFrance's one of the most recent, on the
subject of automatic correction of syntax errors by compilers. Underiylng any
“correction” scheme must bée a concept of “closeness™ which dictates that con-
struction is to be tried if an error is detected, Workers in this field would like to
have a concept of “closeness” which is independent of the psychology of the
user, but this seems to be a vain hope. At the very begirning, at least, the major
progress will be made by classHying the most frequently made errors taken from
actual studies of working programmers using that language and system and then
providing special routines to unscramble these errors. For instance, in the PL/C
compiler developed at Cornell University, a major step In correcting and success~
fully compiling PL/! programs is made simply by lWmiting the user to comments
and strings that do not run from one card to the next. This limits the scope of
propagation of an error and greatly increases the chances of a proper correction
or at least a more meaningful compliation so that everything can be corrected In
one more run. Only after the major psychological causes of error have been
gliminated by these ad hoc methods should we be forced to resort to more elegant
methods as suggested in these papers.

Teitelman, W., PILOT: A Step Toward Man-Computer Symbiosis {(Doctoral Disserta-
tion, M.L.T.), Cambridge, Mass., June 1966.

The PILOT system is a tool written in LISP for assisting LISP programmers with

the job of modifying programs. It contalns many interesting features, but it Is not

clear just how helpfui this system Is to programmers who habltually use it—or

how useful it is compared with simple error detection. Studles along this line would
be useful

274 Progranming Tools

Stockham, Thomas G., Jr., Some Methods of Graphical Debugglng, Proceedings of
the IBM Scientific Computing Symposium on Man-Machine Cormmunication,
1966.

Stockham reviews the use of CRT devices for dynamic debugging, tracing its his-
tory back to 1958, at least. He bemoans the fact that these early experiments did
not evolve into common practice, a failure which he attributes to a “variety of
technical and economic reasons.” But it could be that lacking any real behavioral
data on the value of these systems, there was no motivation to overcome the
technlcal and economic reasons. Certalnly there iIs sufficient economic potentlal
in the cost of poor debugging to justify a big technical push, if we can but
demonstrate the rewards.

Mills, Harlan D., Syntax-Directed Documentation for PL360, Communications of
the ACM, 13, 4 (April 1970).

Mills presents a rather ambitious scheme for extracting the material for docu-
mentation as a part of the Interaction process with the computer when the pro-
gram is being written, then making the documentation available through computer
processing at a later time. This approach seems to get to the heart of the matter
In two ways—it does nol seem to require highly motivated people to produce the
documentation, nor does it seem to require masses of printed documentation
through which one must wade unassisted. in one sense, though, it Is the typical
computer user's approach to the problem—*let's see If we can make the machine
do it." This is an Idea that deserves testing, first 1o see if It really produces docu-
mentation that can be used, and then to see if that is what we really want.

Klerer, M., and J. May, Reference Manual, Revised ed., Dobbs Ferry, N.Y., Colum-
bia University Hudson Labs., July 1965,

This is the two-page document with which the user starts his exploration of the

Klerer-May system. The entire document together with the one-page appendix, is

reprinted in Sammet's "“Programming Languages” (See Bibliography at the end of
the previous chapter).

Leeds, H. D., and G. M. Weinberg, Computer Programming Fundamentals/Based
on the IBM System/ 360, New York, McGraw-Hil, 1970.

In this book, you will find a more extensive discussion of documentation of pro-

grams than is habitual in programming texts. Cne chapter deals with flow dla-

gramming, another with writeups, and other aspects of documentation are dis-

cussed throughout in connection with related topics. Still, it is far from the com-

plete or last word on the subject.

y =

S\
\ e,) /f

5
N

EMOGUE

eaders who reach the end of a book are entitled to some praise
from the author, since they have paid him the greatest compli-
ment an author can receive. Yet those readers who do reach the
end are probably in less need of rewards than the dropout, for it
would seem impossible to go all the way through any book without receiv-
ing the reward of learning. Perhaps it is possible to go through this book
without being touched, although as one reviewer commented, “One
comes away with the feeling of having spent a pleasant but somewhat
‘wasted’ afternoon of reading, and as the old joke goes, ‘it ain't till you
try to turn your head that you realize how sharp the razor was.'™ Al-
though | would have been happier with a less violent metaphor, the re-
mark captures what the book has tried to do. My students have had the
same reactlion. A typical remark made a year after attending a seminar
is: “It was pleasant encugh talking about those things, but then | began
to see what was going on at the office. Wow!”

The most important thing that this student learned was not any par-
ticular behavioral science result or the name of so-and-so's law to parrot
back on a test, What he learned was that he had been carrying around
with him all his life a well-equipped machine for observing behavior—

but that it had never been used very much. As an anonymous sign at the
coemputing center put it;

The human mind ordinarily operates at only ten percent of its capacity—the
rest Is overhead for the operating syslem.

So rather than be concerned so much about that computer operating

217

278 Epilogue

system, the reader who has really been touched by this book will start 1o
work on the operating system he carries around in his own central proc-
essing unit—nhis head. That will be his reward.

But if we make our own operating systems more efficient, if we observe
ourselves and our surroundings more carefully, and if this efficiency and
observation lead us to be more productive programmers, of what use is
it1? The stories of the three wishes send us a message from many cul-
tures, and from the ancient past: “!f you get your fondest wish, what
then?” If, by psychological, sociological, and anthropological investiga-
tion or by simple heightened awareness we become betier programmers,
to what work shall we turn our talents? For if something is not worth
doing, It is cerlainly not worth doing right.

Is what we are doing with computers worth doing? Is what you are
doing with computers worth doing? Because computers are such fascinat-
ing beasts, because programming is such a game, such a joy, we who
program computers are in danger of becoming the unwilting pawns of
those who would use our toys for not-so-playful ends. Can there be any
doubt that if Hitler had computers at his command, one of the first
application would have been keeping closer track on Jews and Gypsies
so that all who should have gone to the ovens did go to the ovens? Can
there by any doubt that if Pilate had computers, they would have been
used to keep the information from informers, the better to crucify those
that were crying out for crucifixion by their heretical zeal? Can there be
any doubt that somewhere in our country today some human beings are
using computers as just another, finer weapon in their arsenal of ways
to subjugate other human beings to their wishes—to their conception of
the proper life of man? |

And having said all that, can there be any doubt that such people—
now as in 1939 or at the dawn of the Christian era—find many willing
hands and brains to carry out their work in return for fun and profit? Or
that some of those willing hands will have held this bocok, to the profit
of their employers?

Many years ago, just a few years after | wrote my first book with Herb
Leeds, | read an article describing experimenis in which monkeys were
subjected to various doses of poison gases, evidentally to see how long
it took them 1o die. The work was done in a laboratory for chemica! war-
fare research, with the intent, no doubt, of extrapolating it to human
beings. Thirty-six innocent menkeys, as | recall, met their deaths in this
gruesome way so that someday, perhaps, thirty-six million people could
meet their deaths even more efficiently. The article remained in my mind
for months afterward, and indeed it has remajned there to this day. By
pure coincidence, | suppose, | was accosted at a meeting by a nice
young man who had gone out of his way o tell me how much he had

Epilogue 279

learned from our book, how much it had helped him to become a better
programmer. | asked him what sort of work he did, and he replied that
he worked at a laboratory for chemical warfare research.

Afterward, | tried to rationalize my way out of my depression by
imagining that it was a different laboratory, which it might have been, or
that he never worked on the monkey experiment, which might also have
been true. But | knew that somewhere, someone who had learned from
me was participating in such expetiments and worse. | knew that | shared
the responsibility—that writing a book is not merely teaching means to
unknown and unimagined ends. For a long time | could not write, perhaps
for that reason, or perhaps for others. Bui, eventually, my ego got the
better of me and | began again, determined to try making my books
unusable to any but the pure at heart.

To a certain extent, this book may have achieved that goal, for the
idea of the programmer as a human being is not going to appeal to cer-
tain types of people, and they will neither finish the book nor profit from
it. But it is naive, | now realize, t0 expect that bad systems cannct be
built by people with good hearis. Otherwise, why would | encounter sc
many bad sysiems when almost all of the people | meet are wonderful ?
No, something else is needed, something not within the power of an
author to give {o a reader. As Malraux once said, "It is the work of a
lifetime te make a man.” A book can be but a liny part of that work—
the rest is up to you, and the work will never be finished.

Having said all that, | do not shrink from personal responsibility for
what | have done in writing this book. We stand at the brink of a new age,
an age made possible by the revolution that is embodied in the computer.
Standing on the brink, we could totter either way—to a golden age of
liberty or a dark age of tyranny, either of which would surpass anything
the world has ever known. Perhaps no individual’s efforts will make any
difference in the result, but we must never cease trying, for then the
result is sure {o be tyranny. This book is my effort against the tyranny,
the enslavement of men by other men and by their own ignorance. Would
that it not be adopted by the forces of tyranny themselves, as no doubt
it will be. Lacking that hope, | can only hope that its use to the other
forces will, in the balance, be greater.

INDEX

abbreviations, arbitrary use of 224
as compression, 225226
and documentation, 267
ability, differences in, 135-136
acceptance testing, 75-76
access to machine room, 110-111
accounting, 253—-254
a5 observation tool, 31-32
ACM Special Interest Group on Personal Re-
search, a7
Activity Vector Analysis, 157
adaptability, 20-22, 150
in debugging, 166
of a democratic group, 81-B3
and egoless programming, 59
and language, 240
of a language, 236-237
te operating environment, 256-25B
administratlve assistant, as status symbol, 111
administrative terminal system, 264
admission of weakness, 189
aggressiveness, 53
Allport, F. H.,, 93
aily, in pressure situations, 104106
amateur programming, 122-125
language for, 212
amblgulty, psychoiogical versus physlcal, 222-
223
analytical mind, 137
anteroom, information exchange in, 51
anthropology, 39
contraslt with sociclogy, 37
particlpant cbsarvation, 31
antisoclal behavior, B7-88
APL, success of, 23B
appearance of work, reward for, 108-110
Appley, M.H., 199
appointed leader, 80-82
archeclogy on programs, 12, 39
arithmetlc reasoning, and programming apti-
tude, 173174
Aron, Joel, 113, 140
arousal, 248
array operations, and |inearlty, 232
Asch, & E,, 93, 103104, 115
assembly language, block structure In, 244
influence on JCL, 233234
assertivensess, 150
assumptions, role in debugging, 165-166
in a psychological study, 259
attachment to a programming lanquage, 212
attitude, aboul women, 111-112
professional versus. amateur, 125-126
attributes, shown in documentaltion, 267
audition for programming, 175-176
auditory learning, 193-184
authoritarian, 78-79, 8688
authority, reactions to, 147
avopiding problems, 164-166
avwards, see reward

background, for programming, 9, 164-185
bad programming days, 57
Bakunin, Mikhail, 119
Baliachey, E. L., 93
batch, and beglnners, 190
simuiated onp-line, 32-33
social structures associated with, 48—49
versus timesharing, 259-262
bebtugging, 248
benefits, and employee satisfaction, 60
Berkeley, Edmund C,, 272
Biamonte, A. J., 177
Bierce, Ambrose, 38
bit-plcking, 76
blackboard, importance of, 207
blanks, 186-188, 233234
bloek structure, with assembly language, 244
and linearity, 232
shown in documentation, 267
bonus, Importance of, 183-184
boredom, 96
Bouvard, Jacques, 14
Bower, G., 200
branching, 232
broacdcast transmission, 207
Brown, J. A. G, 41
Bruner, Jerome, 208, 215
Bucholz, werner, 14
Burton, N, G, 245
Buxton, J. N., 115

call, reference versus value, 221
Cannon, W. M., 154, 159
capaclty, mentai, 224-229, 277
system, 237-238, 277
categories, covert, 220, 245
chaiienge, and motivation, 99
and program design, 126128
and satisfaction, 79-80
change in personality, 143-145
character set, effects of, 221
cheating, on personality tests, 155
in school programming, 199
chlef programmer teams, 94
chunking, 225
clarity of goals, 76-78
closed shop and status, 110
COBOCL, goals of, 239240
coding, 76
requirements for, 132
Cofer, C. H., 199
coqnitlve dissonance, 54-56
and avoidance of extremes in reporting, 103
and goal acceptance, 76
commands, bateh versus on-line, 33
comments, arbitrary placement of, 224
failure to close, 260
in JCL, 233234
strippad from listing, 266
study of, 164

281

282 Index

commitment to goals, 76
common room, communication functions of, 49
communication, asymmetry of, 208
versus adaptability, 237
of objectives, 130131
pperators and programmers, 141-143
compatability, and efficiency, 23
machine to machine, 8, 22
competence of supervisors, B0
compiler, diagnostics, 29
performance measures, 16, 23
compile-time facilities and adaptability, 237
complementary leaders, 85
complex tasks, motivation In, 182184
compllance, 53
composition of programming teams, 69, 184-
185
compression, 224-229
versus |ocality and [nearity, 231
through positional parameters, 252
and testing, 249-250
compromise, false, 82-84
Computer Personnel Research Conference, 42,
200
computing center, informal structure of, 48-49
confidence, effect on testing, 247-248
conflict, between goals, 7778
and social climate, 108
connotative function of language, 208-210
consensus, false, 76
conservatives, liking for, 156
constraints on subject behavior, 32
consufting service, 49-50
contextual declaration, 227
continuatiopn cards, 186-186
conversion problems, 7376
coordination, among teams, 95
amount required, 69
Corbato, F. J., 66
correcting errors, 136
correlation coefficient, 172173
cost, decrease per unit of cemputation, 25
pf documentation, 264
of not having program on time, 19-20
of psychological studies, 33-35
coverl categories, 220, 245
creativity in design, 166
crisis, group reaction tp, 81-83
the team in, 8591
critical case, for learning, 1897
Cronbach, L. J., 42, 159
cross-cultural study, B5-86
CAT in debugging, 274
Crutchfield, A. 5., 63
culture, 39

data, versus information, 32
data structure, choice of, 29
and compression, 226
In speciai purpose languages, 240
dead-end technigues, 190191
debugging
and accounting information, 253
aptitude for, 169, 174-175
documentation for, 264-267

proper placement of alds, 251-253
role of =et In, 162-164
technique for consulting, 165-166
declsion tables, 244
in documentatlon, 267
declaration of data types, arbitrary, 29, 224
implicit and contextual, 227
placement of, 230-231
default, compressien by, 227-228
dehumanization, 211-212
delimiter, blank as, 233
dellvery service and social structure, 52
democratic, leadership of group, 81-85
leam, 8688
demonstrations, 111
depth of documentation, 263
design features, of natural language, 206-208
of programming language, 30-31, 210-214,
218-245
designated leader, B0-B2
detachment, 53
detecting errors, 136
devil's advocate, 105106
diagnostics, 16
more explicit, 29
value of, 23-24
diaiects, 245
dialpgue, man-machine, 208
terminal possibillties, 223
difficulty of a program, 185
Dijkstra, E, W_, 176
dimensions, number of, 30-31
directional reception, 207
dishonesty, in 8 manager, 82
disspnance, see cognitive disspnance
distance, 182163
of reference, 249-250
distortion of information, 82
Dixon, Paul, 244
dpocumentation, 262-266
abilitles required for, 132, 169-170
distaste for, 183
for modification, 21
prastige of, 107-108
drive, 181
dummy arguments, 221
duplex system, errors in, 75-75

eariy returns, effect on testing, 250251
education, 184-188
eftectiveness, opposed o eftficlency, 25
elliciency, false, 127
and eqoless programming, 60
measures of, 22-25
and subscript limitations, 222
egalitarian teams, 72
ego and programming, 52-60
egoless programming, and documentation, 268
and efficiency, 60
and personality requirements, 146147
and team structure, 72
Einstein, Albert, 3
elevators and informal structure, 51
elision of cases, 227
emotive function of language, 208-209

enforcement of rules, 256
enthusiasm for terminal systems, 1889180
environment, enrichment of, 258
for learning, 193-1895
of a program, 21-22
error, automatic correction of, 273
and ego, 52-£0
extinction curve, 259-260
Intentional introduction of, 248
location of, 162164
and turnaround, 254-255
esthetics of a program, 209
estimating, Influenced by objectives, 130-131
of efficiency, 24
and egoless programming, 59
and operating system priority, 256
and team struciure, GB6-89
variance In, 20
ethical problems, 31-32
of using personality tests, 153
evaluation of programmers, through accounting,
253
through jintroduced bugs, 248
exceptions, effect on memory, 218-224
effect on locality, 232
pxecutive appreciation courses, 124-125
experience, as factor in subject selection, 33—
35
and team structure, 68, 7072
as training, 185
experienced programmers, selection of, 175
176
temptation to hire, 64
experiments, 32-35
extensibllity, in languages, 216
of techniques, 190191
exiremes, avoidance of, 103

fading of uiterances, 207
failure, fear of, 189
reasons for, 113
false consensus, 76
familiarity with first programming languags, 212
Fano, R. M., 66
father figure, played by manager, B4
as task specialist, 8506
favored modes of perception, 193-195
feedback in reporting systems, 102
Festinger, L. A., 54, 66
files, benefits of eliminating, 238
filtering of progress reporis, 100104
first-level manager, 109
Fisher, Ronald A., 21, 28, 240
fixation on a programming language, 104
flexability in debugging, 166
flow diagrams, 264-265
folk wisdom, 36-37, 183, 262
followership, 7B
forgetting, importance of, 171
formal languages, 210
formal leader, B1-862
formal organization, 47-50
formation, of a8 group, 63-64
of a team, 68-72, 89
former programmer, as manager, 76, 80

Index 283

Freud, Sigmund, 28, 41

Friedan, Betty, 115

functions, for compaciness, 226

Fundamental Theorem of Natural Selection, 21,
240

Gagne, Robert, 115

General Electric Co., 31

generality of program function, 168

generic functions, eftect on coding, 9
lack of capability, 228
need In subsetting, 228

genius, language designers, 211
programmers, 58, 62-63

geometric figures, on aplilude tfests, 173

Gerard, H. B., 83

gestalt, 165

Ghiselin, Brewster, 178

Gleser, Goldine C,, 159

global variables, piacement of, 230

GO TO, elimination of, 232

goals, of education, 197188
effect on estimates, 130131
gstablishment of, 72-78
imposition by management, 8182
multiple, 69-70

Goffman, Erving, 66

Golde, Peggy, 41

good programming days, 134

Gotterer, M., 177

graphic skills, 170

Greenberg, Joseph H., 215

Gresset, G L., 273

group, effect on learning, 189
cost of studying, 35

growth stages in team life, 88-90

Gruenberger, Fred, 14

gypsy programmers, 58, 81

habits, for better programming, 183-164
working, 164

Haire, Mason, 66

Hall, €. 5., 158

Hall, Douglas T., 200

Hall, Edward T., 66

Hammond, K. R, 42

Hammond, Fhillip, E., 42

hands-pff management, 90-891

hardness, 85

hardware, see machine

hardware group, 108

hash table, 22

Hawthprne Effect, 31

headship, 83

heterogeneity, of programming group, 184-185

hexadecimal, as chunking, 225

hierarchical organlzation, 106105
in teams, 72

Higman, Brian, 216, 222

Hilgard, E. A., 200

hiring, ethics of, 153
policies, 53

historical traces in code, 11-12

Hoare, C. P. H., 113

Hockett, Charles, 206, 215

284 Index

homographs, as mnemonics, 164
hot-box technigue, 84-85
Householder, J. E., 42

human factors, 42

humillty, 150

Hurt, J. M., 178

Hyman, H. H., 42

IBM, and Programmer's Aptitude Test, 171
Vienna Laboratory, 241
ideal programmer personality, 146
idiosyncracies, language provision for, 237
IF-statement and linearity, 232
image, of a programming group, 66
of the programming profession, 52-53
implementation, effect on coding, 9
implicit declaration, 227
incompetence, detection of, 87
eftects of, 77
indispensible man, 99-140
individual, differences, 261-262
learning, 194-195
in programming, 35
psychology of, 39
as unit for study, 259
Individualtstic school of programming, 63-64
indoctrination, 63-64
Industrial psychology, 31
influence, 80
Informal organization, 47-50
information content, 218
information, versus data, 32
making full use of, 195197
processing capacity of human beings, 225
inhibition, retrpactive and proactive, 236
innovation in a programming language, 207,
232-237
insecurity, as source of contempt, 204
insubprdination, 79
mtelligence, stability of, 149
mteraction effects, 261
interchangeability, language, 207208
of pepple, 108
interest, measurement of, 156158
and satisfaction, 79-80
interfaces and team structure, 71-72
intermediate storage, effects on coding, 8
interviewing, 157
intimidation by systems programmers, 77
introspection, 30
invariants of personality, 145-148
involvement in planning, 183
1Q tests, 170171
Irons, E, T., 273
isplation, of a program, 122
of programmers, 52
iteration for compaciness, 225
Iverson, Ken, 223

James, William, 28, 41

job contrpl language, learning, 34,
syniax problems, 233-234

Jones, E. E.,, 893

Junker, Buford H., 41

1B6—188

Kantowltz, Lee, 115

Keats, John, 209

key people, 96-100

keying errors, 224

keyword, parameaters, 252
setting off, 266
as variable names, 223-224

Klerer, M., 223, 244, 286, 274

knuckling under, 81

Kohn, Hans, 54

Krech, D., 93, 18t

Kropotkin, Peter, 45

Kuder Preference Test, 157

La France, Jacques, 273

labels, as mark of poor programming, 232

language, confused with operating system, 261
dimensions of, 206—210

late dellvery, cost of, 19-20

Laver, Murray, 14

law of effect, 256258

Lawler, Edward E., 200

leadership, 76-85

learning, professional versus amateur, 125
learning, rate of, 102
through wvaried assignments, 135
transfer of, 235-236

Lecht, Charles P., 139

lecturing, effectiveness of, 186187

Leeds, H. D., 274

left-to-right rule, 223

length of program, physical versus psycho-

logical, 225
letter =eries, on programmer aptitude tests,
174

levels of parentheses, 29-31
library, group, 106
private, 124
Licklider, . C. A, 245
lifespan of a program, 2021, 126
Iimitgt;nns. language versus programmer, 213—
4
pf mental capacity, 224-229
Lindzey, G., 83, 158
linearity, 299-232
lines of control versus lines of information, 106
linguistics, 215, 244-245
literals, and Ipcality, 230
stripped from listing, 266
Ipad adjustment, to lessen variation, 24
Ipcal variables, placement of, 230
locality, 229-232
and testing, 249-250
localization, 169
locating errors, 136
lock-in, in social structures, 81-842
in testing, 251
Iock-step programming, 134
Iogging of data, 32
London, Ralph L., 273
long-term group behavior, 91-92
long-term memory, 171
looping and linearity, 232
looseness in a language, 234-235
Lovelace, Lady, 206, 226

low-level operations with high-level results,
227

loyalty, to project and team, 107-10E8

Luria, A. A, 178

Lynch, Kevin, 85

machine, effect on coding, 7-8
importance of experience on, 185186
reaction to trouble, 135
machine language, prestige of, 215214
versus assembly |language, 204
preblems with, 22
machine time, adaptation to limits, 79
demands on, 134
variatipn in use, 129
maintenance-oriented activity, 85
man-machine communication, asymmetry of,
208
management information systems, 102
manager, appreclation of programming, 124-
125
awareness pf, 124
change of, 78-79
competence of, ab
former programmer, 786, BO
goals pf, B3-85
image of egoless programming, 61-64
remoteness opf, 109-111
rewards of, 82-85
second-level, 95
status symbols of, 110-111
woman as, 111-112
manipulative management, 82
manuals, non-use pf, 213
materlal culture, 39
material rewards, and satisfaction, 79-80
Maxwell, J. C., 36
May, J., 223, 244, 266, 274
Mayer, David B., 156158, 159, 173, 176 177
measurements, cholce of, 35-38
of programming performance, 100-106
memory, 167-170
and information content, 218, 225
short-term wversus long-term, 171
synesthetic versus sequential, 229
Mendelssohn, Kurt, 94
messages, motivational qualities of, 213-214
from operating system, 207-208
metalanguage, 208-210
and adaptability, 237
Metzger, Phillip W., 139
Meyer, Marshall W., 115
Miller, George A., 218, 245
Mills, Harlan D., 94, 274
Minnesota Multiphasic Personality
153
Minsky, M., 245
MMPI, 183
mnemonic symbols, 163-184, 224
and locality, 230
modifications, 133
of amateur programs, 123-124
design for, 20-22
to documentation 264
temporary, 11-12

Inventory,

index 285

money, as a substitute, 97-98
as a symbol, 184
maonitoring of execution, 186, 2324
moral problems, 31-32, 145
Morgenstern, Oskar, 42
Morrison, Phillip, 215
mather figure as maintenance specialist, B5-26
motivatipn, 181-184
fo conceal information, 103
for documentation, 267-268
by messages, 213-214
multi-use symbols, 266
multiprogramming, efficiency estimates in, 24
multipurpose language, 237-241
myths, in programming, 39

names, automatic changing of, 267
choice, of, 223-224
detection of pattern In, 250
natural language and sense of rightness, 232-
233
naturalness of right-to-left rule, 223
Maur, Peter, 115
neatness, 150
night people, 1594
noise and performance, 194
note-taking and learning, 194
nucfear family, 85-G6
number series pn programmer aptitude tests,
173-174

cbjectives, ambiguous, 128-131
observation, 30-32
obsolescence, of a manager, 109-110
octal as chunking, 225
official leader, 81-82
Okimoto, G. H., 164, 178
on-line systems, used tp simulate batch, 32—
33
and beginners, 180
design of, 152
ON-unit, non-iocal action of, 231
operating statistics, publicatipn of, 255
operating system, 251-258
confused with language, 261
and social structure, 52
operators, redeflnition of, 237
opinipn survey, problems pf, 183
opinions and spcial pressure, 76, 103-106
optimlsm in testing, 247-248
organization, formal versus Informal, 47-50
system and team, 73-76
OB5/360, training for, 186—188
outgrowing a language, 238-240
output, full use of, 195196
overdesiqgn, 126-128
overlay, for compression, 227
non-focal action of, 231
overmotivation, 182
overparenthesizing, 223

paging, avoiding excess, 24
palindromic programs, 174

paradox of leadership, B5

parentheses, differentiating jevels, 266

286 Index

matching of, 29-30
redundant, 220-221
Parkinson, C. Northcote, 88, 93, 132
Parsons, Henry M., 42
participant observation, 31
participation and understanding, 78
Parzen, Emanuel, 272
PAT, 171
pathological programs, 19
patience in documentation, 170
pattern, detection of in code, 250
perception, 184
favored mpdes of, 193-195
petformance, affected by equivalent language
forms, 235
and arousal, 248
etfect of group on, 1B9
failure of tests to predict, 156, 172-173
measurement of, 100106
and motivation, 182184
and sharing of goals, 73-75
Perry, D. K., 154157, 1589
persistence In debugging, 136137
personality, distortions in, 212
tralts, 53
phases of program, and team structure, 71-72
phases of work, effect on success, 168170
and team structure, 89-30
phatic function of language, 208209
physical environment, 50-52
Fietragante, Al, 138
PL/C Compiler, 273
PL/| Language log, 14
poetic function of language, 208208
point of view, ability fo change, 169
tools for changing, 266-267
Polya, Geprge, 178
positional parameters, 252
precision, in arithmetic, B-9
in goals, 76-78
in psycholpgical studies, 3738
rules for, 29
prerequisites for using documentation, 263
pre-selection of programmers, 148-149
pressure and learning, 196
prestige, importance of, 183
of a language, 213-214
of programming tasks, 107
in a team, 72
prima donnas, 61-82
principles, acquisition of, 187188, 212
priority, granting of, 255
as status symbol, 111
private life, 145
proactive inhibition, 236
probability, and testing, 248249
problem avoiding, 164-168
problem solving, 164-166
application of research in, 38
Proceedings of PL/l Seminars, 243
production, and learning, 196-187
reliability and group structure, B1-—83
productivity, and egoless programming, 136
language feature, 208
reduced by conflict, 8990

versus tralning, 69-70

and working conditions, 31
professional programming, 122-125

fanguage for, 212
profile, personality, 154-158
Programmer's Aptitude Test, 171-176
Programmer's Nattonal Anthem, 152
programming language, 205-216

dead-end, 191-182

design, 210214, 216-245

effect on coding, 9-10

fixation on, 60

learning versus use, 150-192
progress reporting, 1001086

and project structure, 133
progressives, liking for, 156
project design, staggered, 134-135
promotion, importance of, 183

leading to dissatisfaction, 97-98

of maintenance specialist, 85
prompting of amateur programmers, 123
proofreading, 162
property-oriented programming, 53-56
psychological studies, exaggeration in, 135-136
psychological testing, scaling effects, 103
public relations group, 106

quality, importance of, 183

raise, importance of, 183184

leading to dis=atisfaction, 37-98
Randell, Brian, 115
reading programs, 514

and egoless programming, 80
recoding of information units, 225
redundancy, measure of, 245

and syntax checking, 228-229
reference table In documentation, 267
referantial function of language, 208-210
Reinstedt, B. N., 172, 177
relationship rules on aptitude tests, 173
reliability of complled code, 16
remaote job entry, introduction of, 257-258

and =pcial structure, 52
remoteness of leadership, 109-111
rearganization and team loyaltles, 106107
replacement, of non-cooperating managers, B3-

a5

of a team member, 8687
renuns, cost of, 23-24
resolution of conflict, 78
rezolution level of timing information, 32
responsibility, unwanted, 97598
restrictions in a language, effects of, 213-214
retroactive inhibitlon, 236
reward, for accurate reporting, 103

for appearance of work, 109110

of 8 manager, B2-A5

misapplied, 165
right-to-left rule, 223
rigid personality, 153
rigidty of programming language, 211
Horschach Ink Blot Test, 153
Rosen, S., 139
Rosenthal, Robert, 272

Rosin, Robert F., 272
Rubey, Raymond J., 243
Russell, Bertrand, 39, 203

Sackman, Harcld, 32, 34, 37, 42, 178, 199, 256,
259, 261, 272
salary, importance of, 183-184
and programming mystique, 3-4
Salsbury, A. G., 272
Sammet, Jean E., 139, 216, 235, 241, 244
satisfaction with a special-purpose janguage,
238239
saving face, 77
schedule, 18-20
and egoless programming, 59
and team structure, 86889
schooling, 184-188
scope, of application of a program, 126128
shown In documentation, 267
of work, 183
scoring, of Strong test, 157
second language, learning of, 212-213
second-level manager, 95, 109
secretary, as status symbol, 111
selectlon of programmers, with experience,
175176
as experimental subjects, 33-35
mistakes in, 148149
by self-selection, 52-53
for varlous tasks, 107
celective memory, 171
selectivity, In design, 168
self-describing documentation, 263265
self-fulfilling prophecy, 100, 154-155
self-image, damage to, 54
self-selection, 52-53, 149
selling of goals, B1
semantics, exploration, 221
and syntactic looseness, 235
sense of humor, 152
sequential memory, 229
service group, goal problems, 77
set, 162164
tools for overcoming, 266267
sex, and status, 111-112
Shannon, C. E., 245
sharing of group goals, 73
Shaw, C. [, 244
sheltering programmers, 124
short-term group behavior, 91-82
short-term memory, 171
shortage of programmers, effect of, 7980
shortcuts, temptation of, 68-69
similarity of language and mnhibitipn effects,
236
simplification, in amateur programming, 122-
124
simulation of batch by on-line, 32-33
size, ol program, 122
of programming teams, 69
of statements, 29
skills, acqisition of, 187-188
slack, 106
slippage in documentation, 265
small group behavipr, 91

Index 287

Smith, B., 245

smooth operatlion, and smooth reporting, 103

social activity in programming, 35

social contact and operating systems, 257-258

soclal environment, restructuring of, 5660

social organization, and physical environment,

S0-52

social pressure, effects on reporting, 103-106
and opinions, 76

spcial psychology, 39
experiments m, 9183

socCial role, reaction to, 148

social structure, 39

sociallzation of new team members, 61—64, 86—

a9

socClology, contrast with anthropology, 37

spftness, 85

software forms, sbcial organization of, 58

corting mentality, 240

speclal-purpose language, 237-241
compression in, 226

specifications, 12, 17-19
and egoless programming, 59
relaxation of, 23

speed as a factor In test scores, 170

spelling errors, 234

stability through change, 96-100

stages of programming, 132-137

staggered shift, 79

Stainaker, A, W., 1568, 177

standards, and amateur programs, 122
group, 106
in procedures, 258
in programming language design, 211-214

Stange, G. H., 256, 272

statistics, role in studies, 32-33

status of team members, T2

Steel, T. B. Jr, 218

Stockham, Thomas G. Jr., 274

storage capacity and coding, 8

stress, tolerance of, 149-150

strings, failure to close, 260

strong leadership, 8950

Strong Vocational Interest Blank, 153—156

structure, of a data-processing section, 116
of a project, 106-109

subjects, sources of, 33-35

subroutines, non-local effects of 231
and team structure, 1072

subscript rules, 2182189

subset language, and efficiency, 23
psychological eftecizs of, 219-220
thrcugh defaulls, 228

success, effect on testing, 250-251

supplies, control of, 79

support group, goal problems, 77

suspicion, and problem test, 146

symbpl table, in documentation, 267

symbols, choice of, 183184
of status, 110111

symmetry of program structure, 168

Symposium on Extendible Languages, 216

synesthetic memory, 229

syntax, checking and redundancy, 228229
directing documentation, 274

