
THE
HANDBOOK
OF

ARTIFICIAL
-•_•-•_••_•_'

W^
mm
VOLUME IV

AVRON BARR
PAUL R. COHEN

EDWARD A. FEIGENBAUM

> SGT.TS FPT USA

The Handbook of Artificial Intelligence Volume IV

is the much-anticipated fourth volume in this classic AI

reference series. Like the previous volumes, Volume IV is

a collection of outstanding original articles by renowned

AI experts that investigate new theories and technologies

and that point to future directions for Artificial Intelli-

gence. Written in a literate and accessible style, these

articles can be read by students and other newcomers

to the field, as well as by AI professionals.

The Handbook of Artificial Intelligence Vol-

ume IV begins with a chapter on the blackboard model

of problem solving. The next chapter, "Cooperative Dis-

tributed Problem Solving" offers interesting reading

on the study of how a loosely-coupled network of prob-

lem solvers can work together to solve problems that

are beyond their individual capabilities. Subsequent

chapters explore the areas of: Expert Systems, Natural

Language Understanding, Knowledge-based Software

Engineering, Qualitative Physics, and Knowledge-based

Simulation. The final chapter, "Computer Vision Update;'

looks at the fascinating science and technology of

obtaining models, meanings, and control information

from visual data.

The Handbook of Artificial Intelligence Series

consists of over 200 articles on Artificial Intelligence

research-the design of computer programs that exhibit

near-human levels of intelligence. Each article details a

specific area of interest in this rapidly changing field and

presents a key concept, an important programming tech-

nique, or one of the outstanding examples ofAI programs.

The Handbook of Artificial Intelligence

Volume IV

The Handbook of Artificial Intelligence

Volume IV

edited by

Avron Barr

Paul R. Cohen

and

Edward A. Feigenbaum

ADDISON-WESLEY PUBLISHING COMPANY, INC.

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn

Sydney Singapore Tokyo Madrid San Juan

Many of the designations used by manufacturers and sellers to

distinguish their products are claimed as trademarks. Where those

designations appear in this book and Addison-Wesley was aware
of a trademark claim, the designations have been printed in initial

capital letters.

Library of Congress Cataloging-in-Publication Data
(Revised for volume 4)

The Handbook of artificial intelligence.

Includes bibliographies and indexes.

Vol. 4 edited by Avron Barr, Paul R. Cohen, and
Edward A. Feigenbaum.
Vol. has imprint: Reading, Mass.: Addison-Wesley Pub. Co.

I. Artificial intelligence. I. Barr, Avron, 1949-
II. Feigenbaum, Edward A. III. Cohen, Paul R.

Q335.H36 006.3 80-28621

ISBN 0-201-51819-8 (hrd.)

ISBN 0-201-51731-0 (pbk.)

Copyright © 1989 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or other-

wise, without the prior written permission of the publisher. Printed

in the United States of America. Published simultaneously in

Canada.

Cover design by Copenhaver Cumpston
Text design by Dianne Kanerva
Set in 10-point Century Schoolbook by DEKR Corporation

ABCDEFGHIJ-DO-89
First printing, December, 1989

To the memory of our good friend

Dianne Kanerva

(Technical Editor, The Handbook of Artificial Intelligence

Volumes I-III)

Editors

Avron Barr

Paul R. Cohen
Edward A. Feigenbaum

Contributors

H. Penny Nii

Edmund H. Durfee

Victor R. Lesser

Daniel D. Corkill

Bruce G. Buchanan
Reid G. Smith

James Allen

Michael R. Lowry
Raul Duran

Yumi Iwasaki

Alfred Round

Robert M. Haralick

Alan K. Mackworth
Steven L. Tanimoto

CONTENTS OF VOLUME IV

Preface / xiii

XVI: Blackboard Systems / 1

H. Penny Nii

A. Overview / 3

B. Blackboard Model of Problem Solving / 4

1. The Blackboard Model / 4

2. The Blackboard Framework / 11

3. Perspectives / 16

4. Summary / 16

C. Evolution of Blackboard Architectures / 18

1. Prehistory / 18

2. The HEARSAY Project / 20

3. The HASP Project / 24

D. Blackboard Application Systems / 27

1. HEARSAY-II / 27

2. HASP/SIAP / 36

3. TRICERO / 50

4. PROTEAN / 56

5. Summary / 65

E. Summary: Elements of Blackboard Architecture / 67

1. Blackboard Systems and Task Characteristics / 68

2. "Problem Solving" Revisited: Search vs. Recognition / 70

3. Component Design / 74

XVII: Cooperative Distributed Problem Solving / 83

Edmund H. Durfee, Victor R. Lesser, Daniel D. Corkill

A. Overview / 85

B. An Example of CDPS / 95

C. Important CDPS Approaches and Empirical Investigations / 106

1. Negotiation / 107

2. Functionally Accurate Cooperation / 116

3. Organizational Structuring / 122

4. Multiagent Planning / 134

vn

viii Contents

5. Sophisticated Local Control / 137

6. Formal Frameworks / 143

D. Conclusion / 146

XVIII: Fundamentals of Expert Systems / 149

Bruce G. Buchanan, Reid G. Smith

A. Overview / 151

B. Fundamental Principles / 160

1. Representation of Knowledge / 161

2. Reasoning Methods / 167

3. Knowledge Base Development / 173

4. Explanation / 174

5. System-building Tools/Shells / 175

6. Validation / 177

7. Reasons for Using the Methods of Expert Systems / 178

C. State of the Art / 181

1. Size of System / 181

2. Type of System / 183

3. Some Observed Limitations / 184

D. Design Principles and Summary / 189

1. Design Principles / 189

2. Summary / 191

XIX: Natural Language Understanding / 193

James Allen

A. Overview / 195

B. Unification Grammars / 198

C. Semantic Interpretation / 206

D. Semantic Interpretation Strategies / 213

E. Modeling Context / 223

F. Discourse Structure / 233

G. Conclusion / 238

XX: Knowledge-based Software Engineering / 241

Michael Lowry, Raul Duran

A. Overview / 243

B. Specification Acquisition / 253

1. Knowledge-based Specification Acquisition / 253

2. Specification Languages / 255

3. Specification Acquisition Methodologies / 258

4. Specification Validation / 261

5. Specification Maintenance / 263

6. Recovering Specifications from Code / 265

Contents ix

C. Program Synthesis / 268

1. Historical Perspective / 269

2. Transformational Approach / 272

3. Deductive Approach / 274

4. Basic Rules / 275

5. Large-grained Rules / 281

6. Reusing Derivations / 282

7. Basic Search Techniques / 284

8. Knowledge-intensive Search Techniques / 286

D. Systems for Specification Acquisition / 292

1. IDeA / 292

2. Explainable Expert Systems / 294

3. DRACO / 295

4. The Requirements Apprentice / 296

5. KATE / 298

6. Ozym / 299

7. Watson / 301

E. Program Synthesis Systems / 303

1. CIP / 303

2. Designer / 304

3. KIDS / 307

4. MEDUSA / 310

5. KBEmacs / 311

6. REFINE / 313

7. SETL / 315

8. STRATA / 316

9. ELF / 318

10. PHiNix / 320

F. Further Readings / 322

XXI: Qualitative Physics / 323

Yumi Iwasaki

A. Overview / 325

B. Qualitative Calculus / 339

C. Reasoning About Behavior Using Qualitative Calculus / 350

1. Qualitative Behavior and Qualitative States / 350

2. State Transitions / 351

3. Difficulties in Qualitative Prediction / 357

D. ENVISION / 362

1. Device Model / 362

2. Predicting Behavior / 366

3. Conclusion / 368

E. Qualitative Process Theory / 371

1. Representation of Objects / 372

x Contents

2. Process Representation / 373

3. Predicting Behavior / 376

4. Conclusion / 380

F. QSIM / 382

G. Causal Ordering / 392

H. Causal Action/Event-based Approaches / 403

1. Commonsense Algorithm / 403

2. Functional Representation of Devices / 406

3. Consolidation / 409

4. Conclusion / 411

XXII: Knowledge-based Simulation / 415

Alfred Round

A. Overview / 417

B. The Evolution of Knowledge-based Simulation / 419

1. An Overview of Simulation / 419

2. The Limitations of Numerical Simulation / 424

3. Object-oriented Language for Simulation / 425

C. Applications of Knowledge-based Simulation / 437

1. The Design of Flexible Manufacturing Systems / 437

2. Planning Therapies for Cancer Treatment / 441

3. Evaluating Business Proposals / 444

4. Solving Problems in Molecular Genetics / 448

D. The Design of Knowledge-based Simulation Systems / 452

1. Sequential Integrated Systems / 452

2. Parallel Integrated Systems / 455

3. Intelligent Front Ends for Building Numerical Simulation / 459

4. Rule-driven Simulation / 462

E. Qualitative Aspects of Knowledge-based Simulation / 464

1. Simplification of Processes / 464

2. Aggregation of Processes / 467

3. Multiple Levels of Abstraction / 470

4. Multiple Levels of Precision / 476

F. Real-World Applications of Knowledge-based Simulation / 483

1. COMAX: Knowledge-based Simulation for Cotton Crop

Management / 483

2. SimKit: An Integrated, Knowledge-based Environment for

Simulation / 487

3. ABLE: Knowledge-based Control for Particle Accelerators / 493

4. Forecast Pro: Intelligent Prediction of Business Trends / 500

G. Issues in the Development and Use of Knowledge-based

Simulation / 504

1. Simulation, Inferencing, and Time / 504

2. The Development of Knowledge-based Simulation

Applications / 510

Contents xi

3. The Validation of Knowledge-based Simulation

Applications / 513

H. Conclusion / 518

XXIII: Computer Vision Update / 519

Robert M. Haralick, Alan K. Mackworth, Steven L. Tanimoto

A. Overview / 521

B. Low-level Vision / 523

1. Segmentation Techniques / 523

2. Edges / 534

3. Stereo / 536

4. Mathematical Morphology for Image Analysis / 539

C. Computational Vision Advances / 547

1. Shape Representation and Analysis / 547

2. Criteria for Shape Representation / 547

3. Object Recognition / 558

4. Constraint Satisfaction / 560

D. Vision Architecture / 565

Bibliography / 583

Name Index / 623

Subject Index / 643

Acknowledgments

The editors and authors thank the following individuals.

Michael B. Albers

Mohamed Bachiri

David Barstow

Ross Beveridge

Inderpal Bhandari
Harold Brown
Jim Daniell

Clive Dym
Bob Engelmore
Larry Eshelman
Allen Goldberg

Cordell Green
David Hammock
Mehdi Harandi
Neil Iscoe

Yoshiteru Ishida

Peter Jackson

Philip Johnson
Laura Jones

Richard Jullig

Herve Lambert
G. E. Light

Virginia G. Lowry
Mitchell Lubars

Roy Maxion
Ian Miller

Steven Painter

Derek Partridge

Liam Peyton

Thomas Pressburger

Eric Schoen

Jos Schreinemakers

Linda Shapiro

Jay Showalter

Douglas Smith
David Steier

Marilyn Stelzner

Eswaran Subramanian
Bob Woodham
Robert Young

PREFACE

The Handbook of Artificial Intelligence began as a seminar directed by

Edward Feigenbaum at Stanford University in the Spring of 1975. The
idea was that if each student wrote eight or ten short articles, this would

be sufficient to cover much of the field. Like many early AI projects, the

Handbook had big goals but was somewhat naive about what it would

take to achieve them. Ultimately it took more than one hundred graduate

students and researchers, roughly 1500 pages, and seven years to rep-

resent most of AI at a level of detail that was accessible but not super-

ficial. And we almost missed the boat: The early 1980s were certainly

the last opportunity to survey the whole field with a successful balance

of breadth, accessibility, and depth. By then, AI was already growing

rapidly, like our ubiquitous search trees, getting wider and deeper as

scientists extended the field and specialized areas within it. On the

commercial front, AI was making front page news.

If we have any illusions that the Handbook project was finished in

1982, they were quickly dispelled. First, the books were remarkably

successful, which convinced us that they filled a niche. Second, Addison-

Wesley took over the Handbook and encouraged us to continue the proj-

ect. Finally, the books had a surprisingly long life given the rapid prog-

ress of AI research. It became clear that by the mid-1980s, people were
reading the Handbook to get a snapshot of the state of AI circa 1980.

This convinced us that future volumes of the Handbook should not

attempt to revise earlier volumes, but should instead summarize the

field as we now understand it, circa 1990.

For this reason, we stress that although several chapters in this

volume cover topics discussed in previous volumes, they are not revisions

of the previous chapters. Computer vision, for example, was covered at

length in Volume III by Takeo Kanade and his colleagues. But vision is

a huge area of research and the chapter in this volume, by Robert

Haralick, Alan Mackworth and Steven Tanimoto, offers a different per-

spective. Similarly, new distinctions and perspectives underlie the chap-

ter by Michael Lowry and Raul Duran; in Volume II, the topic was called

Automatic Programming, here it is Knowledge-based Software Engi-

neering.

Two other chapters synthesize recent work in new frameworks. In

his chapter on Natural Language Understanding, James Allen inte-

grates work on unification grammars, semantic processing, contextual

Xlll

xiv Preface

knowledge, and discourse analysis. Some of the most dramatic changes

since the original volumes have happened in the area of Expert Systems.

The original volumes organized the discussions of expert systems not in

terms of architectures, or knowledge representations, or any other under-

lying principles, but in terms of three applications areas: science, medi-

cine, and education. The new chapter, by Bruce Buchanan and Reid

Smith, offers a framework of fundamental principles and issues, within

which specific expert systems serve as illustrations.

This volume also includes four chapters on topics that were nascent

or nonexistent when we published the previous volumes. Yumi Iwasaki

has written a broad, analytical survey of work in Qualitative Physics,

an area that is becoming increasingly important as AI systems begin to

interact with physical devices in real environments. Alfred Round's chap-

ter on Simulation has similar concerns but a different orientation. It

describes efforts to integrate numerical simulation and AI techniques.

This work is representative of many research ventures that are forging

new technologies at the intersections of AI and other fields.

Edmund Durfee, Victor Lesser, and Daniel Corkill discuss the prob-

lem of Cooperative, Distributed AI systems. Researchers in this chal-

lenging new area are trying to develop coordinated collections of spatially

and functionally distributed agents that work simultaneously on prob-

lems that are too large for individual systems to solve efficiently.

H. Penny Nii's chapter on Blackboard Systems should perhaps be on

everyone's list of basic readings, so pervasive are blackboard architec-

tures in AI today (e.g., most of the systems described in Durfee, Lesser,

and Corkill's chapter are based on blackboards).

In the early days of the Handbook project, individual articles were

contributed by graduate students and assembled into chapters by the

editors. Often the editors rewrote the articles, making us de facto

authors. By the time the third volume was being compiled, however, we
had stopped soliciting individual articles. Nearly all the chapters in

Volume III were produced by one or two experts. This gave us longer,

more integrated chapters, although the basic form continued to be one

or more overview articles followed by discussions of individual systems.

In Volume IV, we went one step further and commissioned signed

chapters by some of the best people in the field. We asked them to describe

the state of the art, the significant developments and the open questions

in their areas. We bid authors to strive for breadth (albeit within one

area of AI) and depth, although we secretly believed they would have to

sacrifice breadth for depth. Remarkably, this didn't happen. Instead,

many sacrificed the "Handbook format" of the first three volumes. To see

why this is significant, recall the structure of previous Handbook chap-

ters: an introductory section was often followed by an "issue" section,

and then by several sections—the bulk of every chapter—describing

Preface xv

systems. In this volume, in contrast, the bulk of every chapter is devoted

to issues, principles, and theory. Although systems still figure promi-

nently, much more text is given to their analysis. It reflects a significant

maturation of AI that this volume of the Handbook is less concerned

with the systems we build than with what we have learned and have
still to learn by building them.

Avron Barr

Paul Cohen
Ed Feigenbaum

Chapter XVI

Blackboard Systems

H. Penny Nii—Stanford University

CHAPTER XVI: BLACKBOARD SYSTEMS

A. Overview I 3

B. Blackboard Model ofProblem Solving I 4

1. The Blackboard Model I 4

2. The Blackboard Framework I 11

3. Perspectives I 16

4. Summary I 16

C. Evolution ofBlackboard Architectures I 18

1. Prehistory I 18

2. The HEARSAY Project I 20
3. The HASP Project I 24

D. Blackboard Application Systems I 27
1. HEARSAY-II I 27
2. HASPISIAP I 36
3. TRICERO I 50
4. PROTEAN I 56
5. Summary I 65

E. Summary: Elements ofBlackboard Architecture I 67
1. Blackboard Systems and Task Characteristics I 68

2. "Problem Solving" Revisited: Search vs. Recognition I 70

3. Component Design I 74

A. OVERVIEW

Historically the blackboard model arose from abstracting features of

the HEARSAY-II (Erman et al., 1980) speech-understanding system devel-

oped between 1971 and 1976. HEARSAY-II was able to respond to spoken

commands and queries about computer science abstracts stored in a

database. From an informal summary description of the HEARSAY-II
program, the HASP system was designed and implemented between 1973

and 1975. The domain of HASP was ocean surveillance, and its task was
the interpretation of continuous passive sonar data. (Domain refers to a

particular area of discourse, for example, chemistry. Task refers to a

goal-oriented activity within the domain, for example, to analyze the

molecular composition of a compound.) HASP, as the second example of

a blackboard system, not only added credibility to the claim that a

blackboard approach to problem solving was general, but it also dem-
onstrated that it could be abstracted into a robust model of problem

solving. Subsequently many application programs have been imple-

mented whose solutions were formulated using the blackboard model.

Because the characteristics of the application problems differed and the

interpretation of the blackboard model varied, the design of these pro-

grams differed considerably. However, the blackboard model of problem

solving has not undergone any substantial changes in the last fifteen

years.

B. BLACKBOARD MODEL OF PROBLEM
SOLVING

A problem -solving model is a scheme for organizing reasoning steps and

domain knowledge to construct a solution to a problem. Reasoning refers

to a computational process whereby needed information is inferred from

what is already known.

For example, in a backward-reasoning model, problem solving begins

by reasoning backward from a goal to be achieved toward an initial state

(data). More specifically, in a rule-based backward-reasoning model,

knowledge is organized as if-then rules and modus ponens inference steps

are applied to the rules from a goal rule back to an "initial-state rule"

(a rule whose premise clause matches input data; see Article III.C4, in

Vol. I). An excellent example of this approach to problem solving is the

MYCIN program (Shortliffe, 1976; see Article VIII.B1, in Vol. II). In a

forward-reasoning model, however, the inference steps are applied from

an initial state toward a goal. The OPS system exemplifies such a rea-

soning model (Forgy and McDermott, 1977). In an opportunistic reason-

ing model, pieces of knowledge are applied either backward or forward

at the most "opportune" time (see Article XI.C, Vol. III).

Put another way, the central issue of problem solving is the question:

"What pieces of knowledge should be applied when and how?" A problem-

solving model provides a conceptual framework for organizing knowledge
and a strategy for applying that knowledge.

Bl. The Blackboard Model

The blackboard model of problem solving is a highly structured, special

case of opportunistic problem solving. In addition to opportunistic rea-

soning as a knowledge-application strategy, the blackboard model pre-

scribes the organization of the domain knowledge and all the input and
intermediate and partial solutions needed to solve the problem. We refer

to all possible partial and full solutions to a problem as its solution space

(see Article II.A, Vol. I).

In the blackboard model, the solution space is organized into one or

B Blackboard Model of Problem Solving

more application-dependent hierarchies. (The hierarchy may be an
abstraction hierarchy, a part-of hierarchy, or any other type of hierarchy

appropriate for solving the problem.) Information at each level in the

hierarchy represents partial solutions and is represented by a unique

vocabulary that describes the information. The domain knowledge is

partitioned into independent modules of knowledge that transform infor-

mation on one level of the hierarchy, possibly using information at other

levels, into information on the same or other levels. The knowledge

modules perform the transformation using algorithmic procedures or

heuristic rules that generate actual or hypothetical transformations.

Opportunistic reasoning is applied within this overall organization of

the solution-space and task-specific knowledge; that is, which module of

knowledge to apply is determined dynamically, one step at a time, result-

ing in the incremental generation of partial solutions. The choice of a

knowledge module is based on the solution state (particularly the latest

additions and modifications to the data structure containing pieces of the

solution) and on the existence of knowledge modules capable of improv-

ing the current state of the solution.

At each step of knowledge application, either forward- or backward-
reasoning methods may be applied. There are various other ways of

categorizing reasoning methods, for example, event driven, goal driven,

model driven, expectation driven, and so forth. Without getting into the

subtle differences between these methods, it is safe to say that any one

of these reasoning methods can be applied at each step in the problem-

solving process.

The blackboard model is usually described as consisting of three

major components, as shown in Figure B-l:

Knowledge
Source

Blackboard

-***"

Knowledge
Source

^.^

Knowledge
Source

(
— Data flow)

Figure B-l. The blackboard model.

6 Blackboard Systems XVI

1. The knowledge sources—The knowledge needed to solve the problem

is partitioned into knowledge sources, which are kept separate and

independent.

2. The blackboard data structure—The problem-solving state data are

kept in a global data store, the blackboard. Knowledge sources pro-

duce changes to the blackboard, which lead incrementally to a solu-

tion to the problem. Communication and interaction among the

knowledge sources take place solely through the blackboard.

3. Control—The knowledge sources respond opportunistically to changes

in the blackboard.

Although the structure of the control is left open, the scheduler, as

will be described shortly, implements the control strategy. The actual

locus of control can be in the knowledge sources, on the blackboard, in

a separate module, or in some combination of the three.

The difficulty with this description of the blackboard model is that

it only outlines the organizational principles. For those interested in

building a blackboard system, the model does not specify how it is to be

realized as a computational entity—the blackboard model is a conceptual

entity, not a computational specification. Given a problem to be solved,

the blackboard model provides enough guidelines for sketching a solu-

tion, but a sketch is a long way from a working system. To design and
build a system, a detailed model is needed. Before moving on to add

details to the blackboard model, we explore the implied behavior of this

abstract model.

Let us consider a hypothetical problem of a group of people trying to

put together a jigsaw puzzle (Figure B-2). Imagine a room with a large

blackboard and around it a group of people each holding oversized jigsaw

pieces. We start with volunteers who put on the blackboard (assume it's

sticky) their most "promising" pieces. Each member of the group looks

at his or her pieces and sees if any of them fit into the pieces already on

the blackboard. Those with the appropriate pieces go up to the blackboard

and update the evolving solution. The new updates cause other pieces to

fall into place, and other people go to the blackboard to add their pieces.

It does not matter whether one person holds more pieces than another.

The whole puzzle can be solved in complete silence; that is, there need
be no direct communication among the group. Each person is self-acti-

vating, knowing when his or her pieces will contribute to the solution.

No a priori established order exists for people to go up to the blackboard.

The apparent cooperative behavior is mediated by the state of the solu-

tion on the blackboard. If one watches the task being performed, the

solution is built incrementally (one piece at a time) and opportunistically

(as an opportunity for adding a piece arises), as opposed to starting, say,

systematically from the left top corner and trying each piece.

B Blackboard Model of Problem Solving

Figure B-2. Solving jigsaw puzzles.

This analogy illustrates quite well the blackboard problem-solving

behavior implied in the model. Now, let's change the layout of the room
in such a way that there is only one center aisle wide enough for one

person to get through to the blackboard. Now, no more than one person

can go up to the blackboard at one time, and a monitor is needed, someone
who can see the group and can choose the order in which a person is to

go up to the blackboard. The monitor can ask all people who have pieces

to add to raise their hands. The monitor can then choose one person from

those with their hands raised. To select one person, criteria for making
the choice are needed; for example, the person who raises a hand first,

the person with a piece that bridges two solution islands (that is, two

clusters of completed pieces), and so forth. The monitor needs a strategy

or a set of strategies for solving the puzzle. The monitor can establish a

strategy before the puzzle solving begins or can develop strategies as the

solution begins to unfold. In any case, note that the monitor has broad

executive power. The monitor has so much power that it could, for exam-
ple, force the puzzle to be solved systematically from left to right; that

is, the monitor has the power to violate one essential characteristic of

the original blackboard model, that of opportunistic problem solving.

This analogy, though slightly removed from the original one, in

which multiple people could work at the blackboard simultaneously, is

useful for computer programmers interested in building blackboard sys-

tems. Given the serial nature of most current computers, the conceptual

distance between the original analogy and a running blackboard system

is a bit far, and the mapping from the analogy to a system is prone to

misinterpretation. By adding the constraint that solution building phys-

8 Blackboard Systems XVI

ically occurs one step at a time, in some order determined by the monitor

(when multiple steps are possible and desirable), the blackboard model

is brought closer to the realities inherent in serial computing environ-

ments.

Although the analogy to jigsaw puzzle solving gives us additional

clues to the nature of the behavior of blackboard systems, it is not a very

good example for illustrating the organization of the blackboard or the

partitioning of appropriate knowledge into knowledge sources. To illus-

trate these aspects of the model, we need another example. This time let

us consider another hypothetical problem, that of finding koalas in a

eucalyptus forest (Figure B-3).

Imagine yourself in Australia. One of the musts if you are a tourist

is to go and look for koalas in their natural habitat. So, you go to a koala

preserve and start looking for them among the branches ofthe eucalyptus

trees. You find none. You know that they are rather small, grayish

creatures that look like bears. (More details at this descriptive level

would be considered factual knowledge and can be used as a part of a

prototypical model of koalas.) The forest is dense, however, and the

combination of rustling leaves and the sunlight reflecting on the leaves

adds to the difficulty of finding these creatures, whose coloring is similar

to their environment. (The signal-to-noise ratio is low.)

You finally give up and ask a ranger how you can find them. He
gives you the following story about koalas: "Koalas usually live in groups

Figure B-3. Finding koalas (photo by Ron Garrison,

Zoological Society of San Diego).

B Blackboard Model of Problem Solving 9

and seasonally migrate to different parts of the forest, but they should

be around the northwest area of the preserve now. They usually sit on

the crook of branches and move up and down the tree during the day to

get just the right amount of sun. (This is knowledge about the prototyp-

ical behavior patterns of koalas. The ranger suggests a highly model-

driven approach to finding koalas.) If you are not sure whether you have

spotted one, watch it for a while; it will move around, though slowly.

(This is a method of detection as well as confirmation.)" Armed with the

new knowledge, you go back to the forest with a visual image of exactly

where and what to look for. You focus your eyes at about 30 feet with

no luck, but you try again, and this time focus your eyes at 50 feet, and

suddenly you do find one. Not only one, but a whole colony of them.

Let's consider one way of formulating this problem along the lines

of the blackboard model. Many kinds of knowledge can be brought to

bear on the problem: the color and shape of koalas, the general color and
texture of the environment (the noise characteristics), the behavior of

the koalas, effects of season and time of the day, and so on. Some of the

knowledge can be found in hypothetical books, such as a Handbook of

Koala Sizes and Color or Geography of the Forest. Some knowledge is

informal—the most likely places to find koalas at any given time or their

favorite resting places. How can these diverse sources of knowledge be

used effectively? First, we need to decide what constitutes a solution to

the problem. Then, we can consider what kinds of information are in the

data, what can be inferred from them, and what knowledge might be

brought to bear to achieve the goal of finding the koalas.

Think of the solution to this problem as a set of markings on a series

of snapshots of the forest. The markings might say, "This is certainly a

koala because it has a head, body, and limbs and because it has changed
its position since the last snapshot;" or "This might be a koala, because

it has a blob that looks like a head;" or "These might be koalas because

they are close to the one we know is a koala and the blobs could be

heads, legs, or torsos." The important characteristics of the solution are

that the solution consists of bits and pieces of information and that it is

a reasoned solution with supporting evidence and supporting lines of

reasoning.

Having decided that the solution would consist of partial and hypo-

thetical identifications, as well as complete identifications constructed

from partial ones, we need a solution-space organization that can hold

descriptions of bits and pieces of the koalas. One such descriptive frame-

work is a part-of hierarchy. For each koala, the highest level of descrip-

tion is the koala itself, which is described on the next level by head and
body; the head is described on the next level by ears, nose, and eyes; the

body is described by torso, legs, and arms; and so on. Each level has

descriptors appropriate for that level; size, gender, and height on the

10 Blackboard Systems XVI

koala level, for example. Each primitive body part might be described

on the lower levels in terms of geometric features, such as shapes and

line segments. Each shape has color and texture associated with it as

well as its geometric descriptions (see Figure B-4). To identify a part of

the snapshot as a koala, we need to mark the picture with line segments

and regions. The regions and pieces of lines must eventually be combined,

or synthesized, in such a way that the description of the constructed

object can be construed as parts of a koala or a koala itself. For example,

a small, black circular blob could be an eye, but it must be surrounded

by a bigger, lighter head blob. The more pieces of information we can

find that fit the koala description, the more confident we can be. In

addition to the body parts that support the existence of a koala, if the

hypothesized koala is at about 30 to 50 feet above ground, we would be

more confident than if we found the same object at 5 feet.

The knowledge needed to fill in the koala descriptions falls into place

with the decision to organize the solution space as a part-of abstraction

hierarchy. We would need a color specialist, a shape specialist, a body-

part specialist, a habitat specialist, and so forth. No one source of knowl-

edge can solve the problem; the solution to the problem depends on the

combined contributions ofmany specialists. The knowledge held by these

specialists is logically independent. Thus a color specialist can determine

the color of a region without knowing how the shape specialist deter-

mined the shape of the region. However, the solution of the problem

depends on both of them. The torso specialist does not have to know
whether the arm specialist checked if an arm had paws or not (the torso

Blackboard Knowledge Sources

Koalas • #

Head/ / 1 \
Torso 4

J|

<

i A
Limbs i I 1 < A
Regions /jH I
Lines /

\ k A

JS
Behavior KS

•

Body KS

^K

S
Leg KS

r
"*A

Color KS

Figure B-4. Koalas: Blackboard structure and knowledge sources.

B Blackboard Model of Problem Solving 11

specialist probably doesn't even know about paws), but each specialist

must rely on the others to supply the information each needs. Coopera-

tion is achieved by assuming that whatever information is needed is

supplied by someone else.

The jigsaw puzzle and the koala problems illustrate the organization

of information on the blackboard data structure, the partitioning of

domain knowledge into specialized sources of knowledge, and some of

the characteristic problem-solving behavior associated with the black-

board model. Neither of these, however, answers the questions of how
the knowledge is to be represented, or what the mechanisms are for

determining and activating appropriate pieces of knowledge. As men-
tioned earlier, problem-solving models are conceptual frameworks for

formulating solutions to problems. The models do not address the details

of designing and building operational systems. How a piece of knowledge

is represented, as rules, objects, or procedures, is an engineering decision.

It involves such pragmatic considerations as "naturalness," availability

of a knowledge representation language, and the skill of the implemen-

ters, among others. What control mechanisms are needed depends on the

complexity and the nature of the application task. We can, however,

attempt to narrow the gap between the model and operational systems

by adding more details to the three primary components in terms of their

structures, functions, and behaviors.

B2. The Blackboard Framework

Applications are implemented with different combinations of knowl-

edge representations, reasoning schemes, and control mechanisms. The
variability in the design of blackboard systems is due to many factors,

the most influential being the nature of the application problem itself.

It can be seen, however, that blackboard architectures underlying the

application programs have many similar features and constructs. (Some
of the better known applications are discussed in Section D, and archi-

tectural alternatives are described in Section E.)

The blackboard framework is created by abstracting these constructs.

(An implicit assumption is made that systems can be described at various

levels of abstraction. Thus the description of the framework is more
detailed than the model and less detailed than a specification, a descrip-

tion from which a system can be constructed. Here, they are called the

model, framework, and specification levels.) The blackboard framework,

therefore, contains descriptions of the blackboard system components
that are grounded in actual computational constructs.

The purpose of the framework is to provide design guidelines appro-

12 Blackboard Systems XVI

priate for blackboard systems in serial computing environments. We can

view the blackboard framework as prescriptive; that is, it prescribes

what must be in a blackboard system specification. However, note that

application problems often demand extensions to the framework, as can

be seen in the sample systems in Section D. Figure B-5 shows some
modifications to Figure A-l to reflect the addition of system-oriented

details.

The knowledge sources. The domain knowledge needed to solve

a problem is partitioned into knowledge sources that are kept separate

and independent. The objective of each knowledge source is to contribute

information that will lead to a solution to the problem. A knowledge

source takes a subset of current information on the blackboard and
updates it as encoded in its specialized knowledge.

Each knowledge source is responsible for knowing the conditions under

which it can contribute to a solution. Each knowledge source has pre-

conditions that indicate the condition that must exist on the blackboard

before the body of the knowledge source is activated.

The knowledge sources are represented as procedures, sets of rules, or

logic assertions. To date most of the knowledge sources have been rep-

resented as either procedures or as sets of rules. Systems that deal with

signal processing either make liberal use of procedures in their rules or

use procedurally encoded knowledge sources.

Control

Data
<-> Control

(— Control flow; --- Data flow)

Figure B-5. The blackboard framework.

B Blackboard Model of Problem Solving 13

The knowledge sources modify only the blackboard or control data struc-

tures (which will be described shortly), and only the knowledge sources

modify the blackboard. All modifications to the solution states are

explicit and visible.

We can view a knowledge source as a large rule. The major difference

between a rule and a knowledge source is the granularity of the knowl-

edge each holds. The condition part of this large rule is often called the

knowledge source precondition, and the action part is called the knowl-

edge source body.

The blackboard data structure. The problem-solving state data

are kept in a global data store, the blackboard. Knowledge sources pro-

duce changes to the blackboard that lead incrementally to a solution, or

a set of acceptable solutions, to the problem. Interaction among the

knowledge sources takes place solely through changes on the blackboard.

The blackboard consists of objects from the solution space. These objects

can be input data, partial solutions, alternatives, and final solutions

(and, possibly, control data). The design of the blackboard structure

reflects the basic plan for how the problem is to be solved. The objects

on the blackboard are hierarchically organized into levels of analysis.

Information associated with objects (that is, their properties) on one

level serves as input to a set of knowledge sources, which, in turn, place

new information on the same or other levels.

The objects and their properties define the vocabulary of the solution

space. The properties are represented as attribute-value pairs. Each
level uses a distinct subset of the vocabulary. (Many times, the names
of the attributes on different levels are the same, for example, "type."

Often these are shorthand notations for "type-of-x-object" or "type-of-y-

object." Sometimes they are duplications of the same attribute for con-

venience.)

The relationships between the objects are denoted by named links. The
relationship can be between objects on different levels, such as "part-

of" or "in-support-of," or between objects on the same level, such as

"next-to" or "follows."

The blackboard can have multiple blackboard panels; that is, a solution

space can be partitioned into multiple hierarchies.

Control. The knowledge sources respond opportunistically to

changes on the blackboard.

A set of control modules monitors the changes on the blackboard, and a

scheduler decides what actions to take next.

Various kinds of information are made globally available to the control

modules. The information can be on the blackboard or kept separately.

14 Blackboard Systems XVI

The control information is used by the control modules to determine the

focus of attention.

The focus of attention indicates the next thing to be processed. It can

be either the knowledge sources (that is, which knowledge sources to

activate next) or the blackboard objects (which solution islands to pursue

next), or a combination of both (which knowledge sources to apply to

which intermediate solutions).

The solution is built one step at a time. Any type of reasoning step (data

driven, goal driven, expectation driven, and so on) can be applied at

each stage of solution formation. As a result, the sequence of knowledge

source invocations is dynamic and opportunistic rather than fixed and
preprogrammed.

Pieces of problem-solving activities occur in the following iterative

sequence:

1. A knowledge source makes change(s) to blackboard object(s). As these

changes are made, a record is kept in a global data structure that

holds the control information.

2. Each knowledge source indicates the contribution it can make to the

new solution state. (This can be denned a priori for an application,

or dynamically determined.)

3. Using the information from points 1 and 2, a scheduler selects a focus

of attention.

4. Depending on the information contained in the focus of attention, an

appropriate control module prepares it for execution as follows:

a. If the focus of attention is a knowledge source, a blackboard object

(or sometimes, a set of blackboard objects) is chosen to serve as

its context (knowledge-centered scheduling).

b. If the focus of attention is a blackboard object, a knowledge source

to process that object is chosen and instantiated with the object

as its context (event-centered scheduling).

c. If the focus of attention is a knowledge source and an object, an
instance of that knowledge source is made ready for execution

with the object as its context.

Termination criteria. Criteria are provided to determine when to

terminate the problem-solving process. Usually, one of the knowledge
sources indicates when the problem-solving process is terminated, either

because an acceptable solution has been found or because the system

cannot continue further for lack of knowledge or data.

Problem-Solving Behavior and Knowledge Application

The problem-solving behavior of a system is determined by the

knowledge-application strategy encoded in the control modules. The

B Blackboard Model of Problem Solving 15

choice of the most appropriate knowledge-application strategy depends

on the characteristics of the application task and on the quality and
quantity of domain knowledge available to the task.

It might be said that this is a hedge, that there should be a knowl-

edge-application strategy or a set of strategies built into the framework

to reflect different problem-solving behaviors. It is precisely this lack of

doctrine that makes the blackboard framework powerful and useful. If

an application task calls for two forward-reasoning steps followed by

three backward-reasoning steps at some particular point, the framework
allows for this. This is not to say that a system with built-in strategies

cannot be designed and built. If there is a knowledge-application strategy

"generic" to a class of applications, it might be worthwhile to build a

skeletal system with that particular strategy. See Section D4 for an
example.

Basically the acts of choosing a particular blackboard region and
choosing a particular knowledge source to operate on that region deter-

mine the problem-solving behavior. Generally a knowledge source uses

information on one level as its input and produces output information

on another level. Thus, if the input level of a particular knowledge source

is on the level lower (closer to data) than its output level, the application

of this knowledge source results in bottom-up forward reasoning.

Conversely, a commitment to a particular type of reasoning step is

a commitment to a particular knowledge-application method. For exam-
ple, if we are interested in applying a data-directed, forward-reasoning

step, we would select a knowledge source whose input level is lower than

its output level. If we are interested in goal-directed reasoning, we would
select a knowledge source that put the information needed to satisfy a

goal on a lower level. Using the constructs in the control component, we
can make any type of reasoning step happen at each step of knowledge
application.

How a piece of knowledge is stated often presupposes how it is to be

used. Given a piece of knowledge about a relationship between infor-

mation on two levels, that knowledge can be expressed in top-down or

bottom-up application forms. These can further be refined. The top-down

form can be written as a goal, an expectation, or as an abstract model of

the lower level information. For example, a piece of knowledge can be

expressed as a conjunction of information on a lower level needed to

generate a hypothesis at a higher level (a goal), or it can be expressed

as information on a lower level needed to confirm a hypothesis at a

higher level (an expectation), and so on. The framework does not pre-

suppose nor does it prescribe the knowledge-application, or reasoning,

methods. It merely provides constructs within which any reasoning

methods can be implemented. The control component of the framework
is extensible in many directions. In the PROTEAN system described in

Section D4, the control problem is viewed as a planning problem. Knowl-

16 Blackboard Systems XVI

edge sources are applied according to a problem-solving plan in affect.

The creation of a problem-solving plan is treated as another problem to

be solved using the blackboard approach.

B3. Perspectives

The organizational underpinnings of blackboard systems have been

our primary focus. The blackboard framework is a system-oriented inter-

pretation of the blackboard model. It is a mechanistic formulation

intended to serve as a foundation for system specifications. In describing

problem-solving programs, we are usually interested in their perfor-

mance and problem-solving behavior, not their organization. We have

found, however, that some classes of complex problems become manage-
able when they are formulated and organized along the lines of the

blackboard model. Also, interesting problem-solving behavior can be

programmed using the blackboard organization as a foundation.

Even though the blackboard framework still falls short of being a

computational specification, given an application task and the necessary

task domain knowledge, it provides enough information so that a suitable

blackboard system can be designed, specified, and built. Some examples

of complex problems with interesting problem-solving behavior are dis-

cussed in Section D. The examples show that new constructs can be

added to the blackboard framework as the application problems demand,
without violating its guidelines.

There are other perspectives on the blackboard model. It is sometimes

viewed as a model of general problem solving (Hayes-Roth, 1983). It has

been used to structure cognitive models (McClelland, 1981, and Rumel-
hart and McClelland, 1982). The OPM system (Hayes-Roth et al., 1979)

simulates the human planning process (see Article XI.C, Vol. III). Some-
times the blackboard model is used as an organizing principle for large,

complex systems built by many programmers. The ALVan project (Stentz

and Shafer, 1985) takes this approach.

B4. Summary

The basic approach to problem solving in the blackboard framework is

to divide the problem into loosely coupled subtasks. These subtasks

roughly correspond to areas of specialization within the task. For a

particular application, the designer organizes the solution space and
knowledge needed to find the solution. The solution space is divided into

B Blackboard Model of Problem Solving 17

analysis levels of intermediate solutions, and the knowledge is parti-

tioned into knowledge sources that perform the subtasks of finding the

intermediate solutions. The intermediate solutions are globally accessi-

ble on the blackboard, making it a medium of interaction between the

knowledge sources. Generally a knowledge source uses information on

one level of analysis as its input and produces output information on

another level. The decision to employ a particular knowledge source is

made dynamically using the latest information on the blackboard. This

particular approach to problem decomposition and knowledge application

is very flexible and works well in diverse application domains. One
caveat, however: How the problem is partitioned into subtasks makes a

great deal of difference to the clarity of the approach, the speed with

which solutions are found, the resources required, and even the ability

to solve the problem at all.

EVOLUTION OF BLACKBOARD
ARCHITECTURES

Metaphorically we can think of a set of workers, all looking at the same
blackboard: each is able to read everything that is on it, and to judge

when he has something worthwhile to add to it. This conception is just

that of Selfridge's Pandemonium (Selfridge, 1959): a set of demons, each

independently looking at the total situation and shrieking in proportion

to what they see that fits their natures. (Allen Newell, 1962)

CI. Prehistory

The preceding quotation is the first reference to the term blackboard

in the AI literature. Newell was concerned with the organizational prob-

lems of programs that existed at the time (for example, checker-playing

programs, chess-playing programs, and theorem-proving programs),

most of which were organized along a generate-and-test search model.

(Newell, 1969) (See Article II, Volume I of the Handbook.) The major
difficulty in these programs was rigidity. Newell notes:

... a program can operate only in terms of what it knows. This knowl-

edge can come from only two sources. It can come from assumptions [or]

it can come from executing processes . . . either by direct modification

of the data structure or by testing . . . but executing processes take time

and space [whereas] assumed information does not have to be stored or

generated. Therefore the temptation in creating efficient programs is

always to minimize the amount of generated information, and hence to

maximize the amount of stipulated information. It is the latter that

underlies most of the rigidities.

In one example, Newell discusses an organization to synthesize com-

plex processes by means of sequential flow of control and hierarchically

organized, closed subroutines. Even though this organization had many
advantages (isolation of tasks, space saving by coding nearly identical

tasks once, and so on), it also had difficulties. First, conventions required

for communication among the subroutines often forced the subroutines

to work with impoverished information. Second, the ordered subroutine

18

C Evolution of Blackboard Architectures 19

calls fostered the need for doing things sequentially. Third, and most

importantly, it encouraged programmers to think of the total program
in terms of only one thing going on at a time. In problem solving,

however, many things often can be processed at any given time (for

example, exploring various branches of a search tree), and relatively

weak and scattered information is necessary to guide the exploration for

a solution (for example, observations noticed while going down one

branch of a search tree could be used when going down another branch).

The primary difficulties with this organization, then, were inflexible

control and restricted data accessibility. It is within this context that

Newell notes that the difficulties "might be alleviated by maintaining

the isolation of routines, but allowing all the subroutines to make use of

a common data structure." He uses the blackboard metaphor to describe

such a system.

The blackboard solution proposed by Newell eventually became the

production system (Newell and Simon, 1972), which in turn led to the

development of the OPS system (Forgy and McDermott, 1977). In OPS,

the "subroutines" are represented as condition -action rules, and the data

are globally available in the working memory. (See Davis and King,

1977; and Article III.C4, Vol. I, for an overview of production systems.)

One of the many "shrieking demons" (those rules whose "condition sides"

are satisfied) is selected through a conflict-resolution process. This emu-
lates the selection of one of the loudest demons, for example, one that

addresses the most specific situation. Although not a blackboard system,

OPS does reflect the blackboard concept as stated by Newell and provides

for flexibility of control and global accessibility to data. The blackboard

systems as we know them today took a slightly more circuitous route

before coming into being.

In a paper first published in 1966 (later published in Simon, (1977)),

Simon mentions the term blackboard in a slightly different context from

Newell. The discussion is within the framework of an information pro-

cessing theory about discovery and incubation of ideas:

In the typical organization of a problem-solving program, the solution

efforts are guided and controlled by a hierarchy or tree of goals and

subgoals. Thus the subject starts out with the goal of solving the original

problem. In trying to reach this goal, he generates a subgoal. If the

subgoal is achieved, he may then turn to the now-modified original goal.

If difficulties arise in achieving the subgoal, sub-subgoals may be created

to deal with them . . . we would specify that the goal tree be held in

some kind of temporary memory, since it is a dynamic structure, whose
function is to guide search, and it is not needed when the problem

solution has been found. ... In addition, the problem solver is noticing

various features of the problem environment and is storing some of

20 Blackboard Systems XVI

these in memory. . . . What use is made of [a feature] at the time it is

noted depends on what subgoal is directing attention at that moment
. . . over the longer run, this information influences the growth of the

subgoal tree. ... I will call the information about the task environment

that is noticed in the course ofproblem solution and fixated in permanent

(or relatively long-term) memory the 'blackboard.'

Although Newell's and Simon's concerns appear within different con-

texts, the problem-solving method they were using was the goal-directed,

generate-and-test search method. They encountered two common diffi-

culties: the need for previously generated information during problem

solving and flexible control. It was Simon who proposed the blackboard

ideas to Raj Reddy and Lee Erman for the HEARSAY project. 1

Although the blackboard metaphor was suggested by Simon to the

HEARSAY designers, the final design of the system, as might be expected,

evolved out of the needs of the speech-understanding task. Such system

characteristics as hierarchically organized analysis levels on the black-

board and opportunistic reasoning, which we now accept as integral parts

of blackboard systems, were derived from needs and constraints that

were different from Newell's and Simon's. Analysis levels were especially

important because they permitted the use and integration of different

"vocabularies" in problem solving. In most problem-solving programs of

the time such as game-playing and theorem-proving programs, the prob-

lem space had a homogeneous vocabulary. In the speech-understanding

problem, there was a need to integrate concepts and vocabularies used

in describing grammars, words, phones, and so on.

Two interesting observations are to be made from early history. First,

the early allusions to a blackboard are closely tied to search methodol-

ogies, and, not surprisingly, the use of generate-and-test search is evident

in HEARSAY-II. Second, although the HEARSAY-II blackboard system

was designed independently from the OPS system, there are, as we might
expect, some conceptual similarities. For example, the scheduler in

HEARSAY-II is philosophically and functionally very similar to the con-

flict-resolution module in OPS, which, in turn, is a way of selecting one

of the shrieking demons.

C2. The HEARSAY Project

The first article on the HEARSAY system appeared in the IEEE Trans-

actions on Audio and Electroacoustics in 1973 (Reddy et al., 1973a). 2

1 These historical notes are communications from Herbert Simon.
2 The manuscript was delivered to IEEE on April 30, 1972.

C Evolution of Blackboard Architectures 21

There, the authors described the limitations of extant speech-recognition

systems and proposed a model that would overcome them. The article

stated that although the importance of context, syntax, semantics, and

phonological rules in the recognition of speech was accepted, no system

had been built that incorporated these ill-defined sources of knowledge.

At the same time, the authors' previous work indicated:

1. The limitation of syntax-directed methods of parsing from left to right

had to be overcome.

2. Parsing should proceed both forward and backward from anchor

points.

3. Because of the lack of feedback in a simple part-of hierarchical struc-

ture, the magnitude of errors on the lower level propagated multi-

plicatively up the hierarchy; that is, minor errors in the signal level,

for example, became major errors on a sentence level.

The system architecture described in the Reddy article, later to be

known as the HEARSAY-I architecture, was based on a model that

addressed the following requirements:

1. The contribution of each source of knowledge (syntax, semantics,

context, and so on) to the recognition of speech had to be measurable.

2. The absence of one or more knowledge sources should not have a

crippling effect on the overall performance.

3. More knowledge sources should improve the performance.

4. The system must permit graceful error recovery.

5. Changes in performance requirements such as increased vocabulary

size or modifications to the syntax or semantics should not require

major modifications to the model.

The functional diagram of the HEARSAY-I architecture is shown in

Figure C-l, and the system behavior is summarized as follows:

The EAR module accepts speech input, extracts parameters, and per-

forms some preliminary segmentation, feature extraction, and labeling,

generating a 'partial symbolic utterance description.' The recognition

overlord (ROVER) controls the recognition process and coordinates the

hypothesis generation and verification phases of various cooperating

parallel processes. The TASK provides the interface between the task

being performed and the speech recognition and generation (SPEAK-

EASY) parts of the system. The system overlord (SOL) provides the

overall control for the system.

From Figure C-2 illustrating the recognition process, we can glean

the beginnings of an organization of a blackboard system. Note how the

recognition overlord (ROVER) controlled the invocation of processes, just

22 Blackboard Systems XVI

SYSTEM
OVERLORD

(SOL)

TASK
INTERFACE

SPEECH
OUTPUTTER

(SPEAK-EASY)

CHESS
PROGRAM

SEMANTICS

SYNTAX
TICS

Figure C-l. Overview of the HEARSAY-I system (from

Reddy, 1973a).

r LEXICON

LANGUAGE
DESCRIPTION

SYNTAX
DESCRIPTION

TASK
DESCRIPTION

t * *

/ INCOMINGX
^UTTERANCE/

ACOUSTIC
RECOGNIZER

SYNTACTIC
RECOGNIZER

SEMANTIC
RECOGNIZER

ACOUSTIC
RULES

SYNTACTIC
* RULES

SEMANTIC
* RULESPREPROCESSOR CURRENTLY

ACCEPTED
PARTIALLY
RECOGNIZED
UTTERANCE

1 1

SEGMENTER t * V V I V

HYPOTHESIZER HYPOTHESIZER HYPOTHESIZERFEATURE
EXTRACTER

•

1*

PARTIAL
SYMBOLIC
UTTERANCE
DESCRIPTION

HYPOTHESIS

i _]_ 1

VERIFIER VERIFIER VERIFIER

1 J

nAwcn

Figure C-2. Details of the recognition process (from Reddy, 1973a).

as later in HEARSAY-II, the scheduler controlled the invocation of the

knowledge sources.

Since the different recognizers are independent, the recognition overlord

needs to synchronize the hypothesis generation and verification phases

of various processes. . . . Several strategies are available for deciding

which subset ofthe processes generates the hypotheses and which verifies.

At present this is done by polling the processes to decide which process

C Evolution of Blackboard Architectures 23

is most confident about generating the correct hypothesis. In voice chess,

[The task domain for HEARSAY-I was chess moves.] where the semantic

source of knowledge is dominant, that module usually generates the

hypotheses. These are then verified by the syntactic and acoustic rec-

ognizers. However, when robust acoustic cues are present in the incom-

ing utterance, the roles are reversed with the acoustic recognizer

generating the hypotheses.

Knowledge sources are activated in a lock-step sequence consisting

of three phases: poll, hypothesize, and test. During the polling phase, the

recognition overlord queries the knowledge sources to determine which
ones have something to contribute to that region of the sentence hypoth-

esis that is "in focus" and with what level of "confidence." In the hypoth-

esizing phase, the most promising knowledge source is activated to make
its contribution. Finally, in the testing phase, knowledge sources eval-

uate the new hypotheses.

Some of the difficulties encountered in HEARSAY-I can be attributed

to the way in which the solution to the application task was formulated,

and other difficulties arose from the design of the system. The problem

was formulated to use the hypothesize-and-test paradigm only on the

word level, that is, the blackboard only contained a description at the

word level. This meant that all communication among the knowledge
sources was limited to sharing information at the word level. This for-

mulation caused two major difficulties. First, it becomes difficult to add
nonword knowledge sources and to evaluate their contributions. Second,

the inability to share information contributed by nonword knowledge
sources caused the information to be recomputed by each knowledge
source that needed it. The difficulty lay in trying to force the use of a

single vocabulary (that is, from the word level) when multiple vocabu-

laries (for example, on the acoustic level) were needed.

The architectural weaknesses of HEARSAY-I, as stated by its design-

ers, lay in the lock-step control sequence that limited parallelism,3 the

lack of provision to express relationships among alternative sentence

hypotheses, and the built-in problem-solving strategy that made modi-

fications awkward and comparisons of different strategies impossible

(Lesser et al., 1974). To overcome these difficulties, information (in the

multiple vocabularies needed to understand utterances) used by all the

knowledge sources was uniformly represented and made globally acces-

sible on the blackboard in HEARSAY-II. In addition, a scheduler dynam-
ically selected and activated the appropriate knowledge sources. The
design of the HEARSAY-II system is described in detail in Section Dl.

3 The term "parallelism" was used quite early in the project even though at that time the system

ran on uniprocessors. Later (ca. 1976), experiments with parallel executions were conducted on the

C.mmp system (Fennell and Lesser, 1977).

24 Blackboard Systems XVI

During the time that HEARSAY-II was being developed, the staff of

the HASP project was looking for an approach to solve its application

problem. The search for a new methodology came about because the

plan-generate-and-test problem-solving method that was successful for

interpreting mass-spectrometry data in the DENDRAL program (Lindsay

et al., 1980; see Article VII.C, Vol. II) was found to be inappropriate for

the problem of interpreting passive sonar signals. In the history of black-

board systems, HASP represents a branching point in the philosophy

underlying the design of blackboard systems. Generally later systems

can be thought of as modifications of, or extensions, to either the HEAR-
SAY-like or HASP-like designs.

C3. The HASP Project

The task of HASP was to interpret continuous sonar signals passively

collected by hydrophone arrays monitoring an area of the ocean. Signals

are received from multiple arrays, each consisting of multiple hydro-

phones. Each array has some directional resolution. Imagine a large

room full of plotters, each recording digitized signals from the hydro-

phones. Now, imagine an analyst going from one plotter to the next

trying to discern what each one is hearing, and then integrating the

information from all the plots in order to discern the current activity in

the region under surveillance. This interpretation and analysis activity

goes on continuously day in and day out. The primary objective of this

activity is to detect enemy submarines.

The objective of the HASP project was to write a program that "emu-

lated" the human analysts, that is, to incorporate, in a computer pro-

gram, the expertise of the analysts, especially their ability to detect

submarines. (This was in 1973 before the term "expert system" was
coined. The HASP problem was chosen because it appeared to be similar

to the DENDRAL problem, a signal interpretation problem for which

there were experts who could do the job (see Article VII.C, Vol. II). The
system designers were confident that the problem-solving approach

taken in DENDRAL would work for HASP. What was DENDRAL's task,

and what was its approach? To quote from Feigenbaum (1977), the task

was:

to enumerate plausible structures (atom-bond graphs) for organic mol-

ecules, given two kinds of information: analytic instrument data from a

mass spectrometer and a nuclear magnetic resonance spectrometer; and

C Evolution of Blackboard Architectures 25

user-supplied constraints on the answers, derived from any other sources

of knowledge (instrumental or contextual) available to the user.

DENDRAL's inference procedure is a heuristic search that takes place in

three stages, without feedback: plan-generate-and-test.

Plan produces direct (i.e., not chained) inference about likely substruc-

tures in the molecule from patterns in the data that are indicative of

the presence of the substructure. In other words, Plan worked with

combinatorially reduced abstracted sets to guide the search in a gener-

ally fruitful direction.

Generate is a generation process for plausible structures. Its foundation

is a combinatorial algorithm that can produce all the topologically legal

candidate structures. Constraints supplied by the user or by the Plan

process prune and steer the generation to produce the plausible set and

not the enormous legal set.

Test refines the evaluation of plausibility, discarding less worthy can-

didates and rank-ordering the remainder for examination by the

user. ... It evaluates the worth of each candidate by comparing its

predicted data with the actual input data. . . . Thus, test selects the

"best" explanation of the data.

If some of the words in this description were replaced, the plan-

generate-and-test approach seemed appropriate for the HASP tasks:

Plan by selecting types of ships that could be in the region of interest.

The Plan phase would use intelligence reports, shipping logs, and so on.

Generate plausible ship candidates and their signal characteristics.

Test by comparing the predicted signals with the real signals.

The system designers had already talked with the analysts and had
read their training manuals. They knew that the necessary knowledge
could be represented as rules. Difficulties were encountered immediately;

some of these were:

1. The input data arrived in a continuous stream, as opposed to being

batched like in DENDRAL. The problem of a continuous data stream

was solved by processing data in time-framed batches.

2. The analysis of the activities in the ocean had to be tracked and

updated over time. Most importantly, past activities played an impor-

tant role in the analysis of current activities.

3. Numerous types of information seemed relevant but remote from the

interpretation process, for example, the average speeds of ships.

To address the second problem, it was immediately clear that a data

structure was needed that was equivalent to a "situation board" used by

26 Blackboard Systems XVI

the analysts; the data structure was called the current best hypothesis

(CBH). CBH reflected the most recent hypothesis about the situation at

any given point in time. This could serve as the basis for generating a

"plan;" that is, the CBH could be used as a basis for predicting the

situation to be encountered in the next time frame. The prediction pro-

cess could also use and integrate the variety of information mentioned

in item 3. The predicted CBH would then be used to verify that the

interpretation from the previous time frame was correct, to reduce the

number of alternatives generated during past time frames, and to reduce

the number of new signals not accounted for in the predicted CBH that

needed to be analyzed in full. CBH was thought of as a cognitive "fly-

wheel" that maintained the continuous activities in a region of ocean

between time frames.

Then there came the bad news: There was no plausible generator of

the solution space, nor any simulator to generate the signals of hypoth-

esized platforms. The bad news had a common root; given a platform,

there was a continuum of possible headings, speeds, and aspects relative

to an array. Each parameter, in addition to variations in the water

temperature, depth, and so on, uniquely affected the signals "heard" at

an array. Consequently there was a continuum of possibilities in the

solution space, and for the simulator to simulate. The designers tried to

limit the number of possibilities, for example, by measuring the headings

by unit degrees, but this still left an enormous search space. Moreover,

there was insufficient pruning knowledge to make the generate-and-test

method practical. The DENDRAL approach was abandoned. Then the

designers learned of the HEARSAY-II approach. HEARSAY-II in fact had
solution space generators and used them. It was the idea of fusing uncer-

tain and partial solutions to construct solutions, combined with "island

driving," that intrigued HASP'S designers (see Article V.C1, Vol. I, for a

description of "island driving"). The design of the HASP system is

described in detail in Section D2.

D. BLACKBOARD APPLICATION SYSTEMS

The application systems described here are presented in chronological

order. The designs of many of the systems are similar because of simi-

larities in the application tasks, propagation of ideas, or involvement of

the same designers. Figure D-l shows a general chronology and intel-

lectual lineage of the various application and skeletal systems. The figure

includes some of the better known and better documented systems. Only
a few of the many application systems are described here. They are

research programs and were selected because they illustrate different

designs and because they contributed new ideas and features to the

repertoire of blackboard system architectures. For each application, the

task and domain characteristics are described. The task description is

followed by a summary of the system design in four parts: the blackboard

structure, the knowledge source organization, the control component,

and the knowledge application strategy employed. Unique features in

the system are pointed out and discussed within the context of either

the application task or its history.

Dl. HEARSAY-II

Most of the background information on HEARSAY-II was covered in

Section C2 and is not repeated here. One additional item of historical

context is worth noting, however. Various continuous speech-understand-

ing projects were brought under one umbrella in the Defense Advanced
Research Projects Agency (DARPA) Speech Understanding Project, a five-

year project that began in 1971. The goals of the Speech Understanding

Project were to design and implement systems that "accept continuous

speech from many cooperative speakers of the general American dialect

in a quiet room over a good quality microphone, allowing a slight tuning

of the system per speaker, by requiring only natural adaptation by the

user, permitting a slightly selected vocabulary of 1000 words, with a

highly artificial syntax ... in a few times real time ..." (Newell et al.,

1973). Hearsay-II was developed at Carnegie-Mellon University for the

Speech Understanding Project and successfully met most of these goals.

27

28

HEARSAY - I

Blackboard Systems XVI

Production System DENDRAL Rule-based System (MYCIN)

"2 application systems

C^) skeletal systems

* commercial product (Fujitsu)

Figure D-l. Influences among blackboard systems. References: HEAR-
SAY-I (Reddy et al., 1973b); Production system (Newell

and Simon, 1972, and David and King, 1977); DENDRAL
(Lindsay et al., 1980); MYCIN (Shortliffe, 1976); HEAR-
SAY-II (Erman et al., 1980); Scene understanding (Nagao
and Matsuyama, 1980) Vision language (Shafer et al.,

1986); MXA (Lakin and Miles, 1984); SUS (Lakin and
Miles, 1984); HEARSAY-III (Erman et al., 1981); HASP
(Nii et al., 1982); ADS (Advanced Decision Systems Inc.)

applications (Spain, 1983, and McCune and Drazovich,

1983); AGE-1 (Nii and Aiello, 1979); CRYSALIS (Terry,

1983); OPM (Hayes-Roth et al., 1979); BB1 (Hayes-Roth,

1985); TRICERO (Williams et al., 1984); HANNIBAL
(Brown et al., 1982); PROTEAN (Hayes-Roth et al., 1987);

ESHELL (Fujitsu Labs, 1987).

D Blackboard Application Systems 29

The Task

The goal of the HEARSAY-II system was to understand speech utter-

ances. To prove that it understood a sentence, it performed the spoken

commands. In the earlier HEARSAY-I period, the domain of discourse

was chess (for example, "Bishop moves to king knight five"). In the

HEARSAY-II era, the task was to answer queries about, and to retrieve

documents from, a collection of computer science abstracts in the area of

artificial intelligence. For example, the system understood the following

types of command:

Which abstracts refer to the theory of computation?

List those articles.

What has McCarthy written since nineteen seventy-four?

The HEARSAY-II system was not restricted to any particular task

domain. "Given the syntax and the vocabulary of a language and the

semantics of the task, it attempts recognition of the utterance in that

language" (Reddy et al., 1973b). The vocabulary for the document retrieval

task consisted of 1,011 words in which each extended form of a root (for

example, the plural of a noun) was counted separately. The grammar
defining a legal sentence was context-free, and it included recursion,

embedded semantics, and pragmatic constraints. For example, in the

place of noun in conventional grammars, this grammar included such

non-terminals as topic, author, year, and publisher. The grammar allowed

each word to be followed, on the average, by seventeen other words in

the vocabulary.

The problem of speech understanding is characterized by error and

variability in both the input and the knowledge. "The first source of error

is due to deviation between ideal and spoken messages due to inexact

production [input], and the second source of error is due to imprecise

rules of comprehension [knowledge]" (Erman et al., 1980). Because of

these uncertainties, a direct mapping between the speech signals and a

sequence of words making up the uttered sentence is not possible. The
HEARSAY designers structured the understanding problem as a search

in a space consisting of complete and partial interpretations. These inter-

pretations were organized within an abstraction hierarchy contain-

ing signal parameters, segments, phones, phonemes, syllables, words,

phrases, and sentence levels. This approach required the use of a diverse

set of knowledge that produced large numbers of partial solutions on the

many levels. Furthermore, the uncertainties in the knowledge generated

many competing, alternative hypothetical interpretations.

To avoid a combinatorial explosion, the knowledge sources had to

construct partial interpretations by applying constraints at each level of

30 Blackboard Systems XVI

abstraction. For example, one kind of constraint is imposed when an
adjacent word is predicted, and the prediction is used to limit subsequent

search. The constraints also had to be added in such a way that their

accrual reduced the uncertainty inherent in the data and the knowledge

sources.

To control the combinatorial explosion and to meet the requirement

for near "real-time" understanding, the interpretation process had to be

selective in exploiting the most promising hypotheses, both in terms of

combining them (for example, combining syllables into words) and in

terms of predicting neighboring hypotheses around them (for example,

a possible adjective to precede a noun). Thus the need for incremental

problem solving and flexible, opportunistic control were inherent in

HEARSAY'S task.

The Blackboard Structure

The blackboard was partitioned into six to eight (depending on the

configuration) levels of analysis corresponding to the intermediate levels

of the decoding process. (See Lesser and Erman (1977) for a comprehen-

sive discussion on the results of experiments conducted with two different

blackboard configurations.) These levels formed a hierarchy in which the

solution-space elements on each level could be described loosely as form-

ing an abstraction of information on its adjacent lower level. One such

hierarchy was composed of, from the lowest to the highest level: para-

metric, segmental, phonetic, phonemic, syllabic, word, word sequence,

phrasal, and conceptual levels (see Figures D-2 and D-3). Each black-

board element represented a hypothesis. An element at the lexical level,

for example, represented a hypothesized word whose validity was sup-

ported by a group of syllables on the syllable class level. The blackboard

could be viewed as a three-dimensional problem space with time (utter-

ance sequence) on the x-axis, information levels containing a hypothe-

sized solution on the y-axis, and alternative solutions on the 2-axis

(Lesser et al., 1974).

Each hypothesis, no matter which level it belonged to, was con-

structed using a uniform structure of attribute-value pairs. Some attri-

butes, such as its level name, were required for all levels. The attributes

included a validity rating and an estimate of the "truth" of the hypothe-

sis represented as some integer value. The relationships among the

hypotheses on different levels were represented by links, forming an
AND/OR tree over the entire hierarchy. Alternative solutions were formed

by expanding along the OR paths. Because of the uncertainty of the

knowledge sources that generated the hypotheses, the blackboard had a

potential for containing a large number of alternative hypotheses.

D Blackboard Application Systems 31

Levels

Phrase

Knowledge Sources

Word predictor

Concatenator

Parser

Word sequence generator

Verifier

Word candidate generator

Syllable class generator

Segment generator

Figure D-2. HEARSAY-II blackboard and knowledge sources.

The Knowledge Source Structure

Each knowledge source had two major components: a condition part

(often referred to as & precondition) and an action part. Both the condition

and the action parts were written as arbitrary SAIL procedures (see

Article VI.C2-5, Vol. II). "The, condition component prescribed the situ-

ations in which the knowledge sources may contribute to the problem-

solving activity, and the action component specified what that contri-

bution was and how to integrate it into the current situation" (Erman
et al., 1980). When executed, the condition part searched the blackboard

for hypotheses that were of interest to its corresponding action part. In

addition, the condition part produced a simple description of the kinds

of hypotheses the action part would generate if it were to be activated.

That is, the condition part served as a look-ahead in a search process.

Upon activation, the action part performed the generation for all the

contexts (the hypotheses) passed to it. For example, the condition part

of the Word-Sequence-Generator might produce a description consisting

of the lengths of word sequences that the action part would generate.

The action part of this knowledge source, if activated, generated the

actual sequences of words. The tasks of the knowledge sources ranged

from classification (classifying acoustic segments into phonetic classes),

32 Blackboard Systems XVI

50 100

ARE ANY BY FEIGENBAUM

1

ABOUT FEIGENBAUM

Phrase ARE REDDY

•

•

• cz SHAW AND MARVIN

• • •

| ARE EIGHT
| THOUGHT

[| HOLD |Words WERE ANY

|

REDDY
t

•

•
ABOUT AND

|

| PAF 77
|

I

|

• • •
|
MM79

| [~

T IN 7

NIP 80
| j

PAP 78
|

j MIM 79
|

PAM 79

P^7T|

| IM79 | |
AM 79

| IP 76 |Syllable

Class T\
I

NI75 |

| PM 75
|

PA 74 | |
PA 75 | I

PA 75 |

Segment

UW
AA
WER
AW

ER AY
AE

IH

EY

EY

IH

NX
EY

M
DX
IM

IY

Y

B AW
AY

AA

IH

IY

EY

AY

F

T

TH

D

AW
AY

AO

IY

EY

Y

NX
EY

G
HH

EY

IH

AY

AE

N

NX

EM

B

• • •

Utterance ARE ANY BY FEIGENBAUM

Figure D-3. A Blackboard state in HEARSAY-II. (From Erman et al.,

1980. Copyright, Association for Computer Machinery,

Inc. Reprinted by permission.)

to recognition (recognizing words), to generation and evaluation of pre-

dictions.

Control

The control component consisted of a blackboard monitor and a sched-

uler (see Figure D-4). The monitor kept an account of each change made
to the blackboard, its primitive change type, and any new hypotheses.

Based on the change types and declarative information provided about

the condition part of the knowledge sources, the monitor placed pointers

to those condition parts, which potentially could be executed, on a sched-

uling queue. 4 In addition to the condition parts ready for execution, the

scheduling queue held a list of pointers to any action parts ready for

4 In Figure D-4, the "focus-of-control database" contained a table of primitive change types and

the condition parts that could process each change type. The primitive change types possible within the

system were predefined and consisted of such items as "new syllable" and "new word created bottom

up." This paragraph is based on discussions with Lee Erman.

D Blackboard Application Systems

Blackboards Knowledge Sources

33

level n - condition «*

level 3

level 2

level 1

blackboard

monitor

i

action

condition

action

condition part condition

action

focus of

control

database

i

i

i

i

i

,
stimulus response frame

1
i

condition

scheduling
queue

scheduler

Figure D-4. Schematic of HEARSAY-II architecture.

execution. These actions parts were called the invoked knowledge sources.

A knowledge source became invoked when its condition part was suc-

cessful. The condition parts and the invoked knowledge sources on the

scheduling queue were called activities. The scheduler calculated a prior-

ity for each activity at the start of each system cycle and executed the

activity with the highest rating.

To select the most productive activity (the most important and prom-
ising with the least amount of processing and memory requirements),

the scheduler used experimentally derived heuristics to calculate prior-

ities for each activity. These heuristics were represented as embedded
procedures within the scheduler. As described earlier, the look-ahead

information needed by the scheduler was provided in part by the condi-

tion part of each knowledge source. The condition part produced a stim-

ulus frame, a set of hypotheses that satisfied the condition; and a response

frame, a stylized description of the blackboard changes the knowledge
source action part might produce upon execution. For example, the stim-

ulus frame might indicate a specific set of syllables, and the response

frame would indicate an action that would produce a word. The scheduler

used the stimulus-response frames and other information on the black-

board to select the next thing, either the execution of an invoked knowl-

34 Blackboard Systems XVI

edge source or the evaluation of a condition part of a knowledge source,

to do.

The control component iteratively executed the following basic steps:

1. From the scheduling queue, the scheduler selected an activity to be

executed.

2. If a condition part were selected and executed and if it were satisfied,

a set of stimulus-response frames was put on the scheduling queue

together with a pointer to the invoked knowledge source.

3. If an action part were selected and executed, the blackboard was
modified. On the scheduling queue, the blackboard monitor posted

pointers to the condition parts of other knowledge sources that could

follow up the change.

The problem of focus of attention was denned in the context of this

architecture as one of developing a method to minimize the total number
of knowledge source executions (that is, hypotheses generated) and to

achieve a relatively low error rate. The focus-of-attention problem was
viewed as a knowledge-scheduling problem as well as a resource-allo-

cation problem. 5 To control the problem-solving behavior of the system,

the scheduler needed to know the goals of the task and knowledge appli-

cation strategies to be able to evaluate the next best move. Although

various general solutions have been suggested (Hayes-Roth and Lesser,

1976), it appears that ultimately we need a knowledge-based scheduler

to effectively control the combinatoric search and for the effective use of

the knowledge sources.

Knowledge-Application Strategy

Within the system framework described earlier, HEARSAY-II
employed two problem-solving strategies. The first was a bottom-up strat-

egy whereby interpretations were synthesized directly from the data,

working up the abstraction hierarchy. For example, a word hypothesis

was synthesized from a sequence of phones. The second was a top-down

strategy in which alternative sentences were produced from a sentential

concept, alternative sequences of words from each sentence, alternative

sequences of phones from each word, and so on. The goal of this recursive

generation process was to produce a sequence on the parametric level

that was consistent with the input data (that is, to generate a hypothet-

ical solution and to test it against the data). Both approaches have the

5 If we compare the HEARSAY-II control constructs with those of the blackboard framework

discussed in Section B2, they are basically the same. Some aspects of the control in HEARSAY are

emphasized more (for example, scheduling) than others.

D Blackboard Application Systems 35

potential for generating a vast number of alternative hypotheses and

with it a combinatorially explosive number of knowledge source activa-

tions. Problem-solving activity was, therefore, constrained by selecting

only a limited subset of invoked knowledge sources for execution. The
scheduling module thus played a crucial role within the HEARSAY-II
system.

Orthogonal to the top-down and bottom-up approaches, HEARSAY-II
employed a general hypothesize-and-test search strategy. A knowledge

source would generate hypotheses, and their validity would be evaluated

by some other knowledge source. A hypothesis could be generated by a

top-down analytic or a bottom-up synthetic approach. Often a knowledge

source generated or tested hypotheses by matching its input data against

a "matching prototype" in its knowledge base. For example, a sequence

of hypothesized phones on the phone level was matched against a table

containing prototypical patterns of phones for each word in the vocabu-

lary. A word whose phones satisfied a matching criterion became a word
hypothesis for the phones. The validation process involved assigning

credibility to the hypothesis based on the consistency of interpretation

with the hypotheses on an adjacent level. See Figure D-3 for what a

solution state looked like in HEARSAY-II.

At each problem-solving step, any one of the many problem-solving

strategies could be initiated—bottom-up synthesis, top-down goal gen-

eration, island driving, hypothesis generation, and so on. The decision

about whether a knowledge source could contribute to a solution was
local to the knowledge source (the condition part). The decision about

which knowledge source should be executed in which one of many con-

texts was global to the solution state (the blackboard), and the decision

was made by a global scheduler. The scheduler was opportunistic in

choosing the next step, and the solution was created one step at a time.

Additional Notes

The condition parts of the knowledge sources were complex, CPU-
intensive procedures that needed to search large areas of the blackboard.

Each knowledge source needed to determine what changes had been

made since the last time it viewed the blackboard. To keep from firing

the condition parts continually, each condition part declared a priori the

kinds of blackboard changes in which it was interested. The condition

part, when executed, looked only at the relevant changes since the last

cycle. All the changes that could be processed by the action part were
passed to it to avoid repetitive executions of the action part. Thus the

focus was not on a particular hypothesis on the blackboard, but on the

type of hypotheses.

36 Blackboard Systems XVI

The HEARSAY-II system maintained alternative hypotheses. How-
ever, the maintenance and the processing of alternatives are always

complex and expensive, especially when the system does not provide

general support for this. In HEARSAY-II, the problem was aggravated by
an inadequate network structure that did not allow the shared network
to be viewed from different perspectives. In the current jargon, it did not

have good mechanisms for processing multiple worlds. Currently there

are better techniques for processing and maintaining alternative worlds.

The evidence to support a hypothesis at a given level can be found

on lower levels or on higher levels. For example, given a word hypothesis,

its validity could be supported by a sequence of syllables or by gram-

matical constraints. The evidential support is represented by directional

links from the evidence to the hypothesis it supports. The link that goes

from a higher level to a lower level hypothesis represents a "support

from above" (that is, the justification for the hypothesis can be found at

a higher level). A link that goes in the opposite direction represents

support from below (that is, the reason for the hypothesis can be found

at a lower level). Although the names of the support mechanisms were
first coined in HASP (Nii and Feigenbaum, 1978), the bidirectional rea-

soning mechanisms were first used in the HEARSAY-II system.

In HEARSAY-II the confidence in a hypothesis generated by a knowl-

edge source was represented by an integer between 1 and 100. The
overall confidence in the hypothesis was accumulated by simple addi-

tion of the confidence attached to the evidence (that is, supporting

hypotheses). When the confidence in a hypothesis was changed, the

change was propagated up (if the support was from below) and down (if

the support was from above) the entire structure.

D2. HASP/SIAP

The HASP project began in 1972 under the sponsorship of the DARPA.
It was terminated in 1975 but was reinstated in 1976 under the name
SIAP. At the time, the computational resources needed to maintain a

major ocean surveillance system of sensors with conventional methods
of statistical signal processing seemed economically unfeasible. It was
also a time when artificial intelligence techniques were first being

applied to the problem of signal interpretation. The DENDRAL program
(Lindsay et al., 1980) was achieving significant success, and the Speech

Understanding Project, of which the HEARSAY Project was a part, was
under way. The major objectives of the HASP project were to demonstrate

that artificial intelligence techniques could contribute significantly in

addressing the surveillance problem and, further, that the task could be

D Blackboard Application Systems 37

accomplished with reasonable computing resources. HASP was successful

in meeting both these objectives.

The Task

The task of the HASP/SIAP system was to develop and maintain a

situation board that reflected the activities of platforms (surface ships

and submarines) in a region under surveillance. The situation board was
developed by interpreting multiple, continuous streams of acoustic sig-

nals produced by objects in the region and by integrating intelligence

reports with the interpretation.

The acoustic input to the system comes in the form of digitized data

from multiple hydrophone arrays, each monitoring a part of the region.

Each array has multiple hydrophones with some directional resolution.

The major sources of acoustic radiation are rotating shafts and propellers

and reciprocating machinery on board a platform. The signature, or

sound spectrum, of a platform under steady operation contains persistent

fundamental narrow-band frequencies and some of their harmonics. The
front-end signal-processing hardware and software detect energy peaks

appearing at various spectral frequencies and follow these peaks over

time. On an analyst's sonograms, the peaks appeared as a collection of

dark vertical stripes (see Figure D-5). Under ideal conditions, a hydro-

phone picks up sound energy near its axis. In practice, the terrain of the

ocean floor, water temperature, and other platforms interfere, producing

y\> ." t'vv.

li still
[•* '• '•••

'•'• '
; /'

,;

'J s '-'' "•••'•
.

•'/ ; ,*•
,

; »

H X '

'

ill •llllfII

fill

Figure D-5. HASP/SIAP task,

38 Blackboard Systems XVI

signals with very low signal-to-noise ratios. That is, the stripes in the

sonogram appear against a very fuzzy background.

During the first phase of the project, the acoustic input consisted of

segments that described signal events. For example, a piece of input

might have contained a frequency and indicated it as a beginning of a

frequency shift (called a knee). Later, five-minute segments produced by

a signal-processing front-end system were used as the input data.

In addition to the acoustic data, intelligence reports were available

to HASP. The reports contained information about movements of friendly

and hostile platforms with varying degrees of confidence. Routine infor-

mation on commercial shipping activities was also included in these

reports.

As in the speech understanding problem, the sonar signal-under-

standing problem is characterized by a large solution space, a low signal-

to-noise ratio, and uncertain knowledge. Unlike the speech problem, the

semantics and the syntax are ill denned in the sonar problem. That is,

the targets of highest priority, the enemy submarines, are not likely to

be well known and, at the same time, are trying their best to go unde-

tected. The implications are these:

1. There is no "legal move generator" for the solution space except at

the highest level of abstraction. (It is assumed that different types of

platform, including enemy submarines and their general character-

istics, are known.)

2. We must rely heavily on the analysts' methods and heuristics in

detecting and classifying enemy submarines.

3. To find the targets, the analysts accounted for all known entities

(primarily surface platforms) and looked for the targets of interest

within the unaccounted-for data. (This does not guarantee that the

targets will be found. For one thing, the targets might be very quiet,

and their sound might not be picked up by the hydrophones, or their

sound might be overshadowed by noisier platforms. The HASP system

conjectured about their existence and their whereabouts from other

information.)

The problem is somewhat akin to the following tasks: When two

people are talking at the same time, one in English and another in a

relatively unfamiliar language, try to pick up what the non-English

speaker is saying. Another task is the cocktail conversation problem in

which many people are talking as they move around; the task is to keep

track of each person using data from microphones scattered around the

room.

Despite these difficulties, aspects of the problem made it tractable.

The situation unfolded over a relatively long time period because the

D Blackboard Application Systems 39

platforms moved rather slowly, but the data collection was relatively

frequent and from many different locations. This meant that the system

was given many chances to interpret the situation with data sets con-

taining slightly different information. For example, two hydrophones

might pick up incomplete harmonic sets attributable to the same plat-

form, but they might be fractured in different ways. When combined,

they provided more information than from each one separately. There

were also many different kinds of knowledge that could be used, bits and

pieces, such as in the koala problem discussed in Section Bl. The general

strategy employed was to accumulate both positive and negative evi-

dence for hypothesis elements.

The Blackboard Structure

The data structure on the blackboard represented the best under-

standing of the situation at any given point in time. It was a dynamic
entity that evolved over time. Referred to as the current best hypothesis

(CBH), it was partitioned into an abstraction hierarchy consisting of

input segments, lines, harmonic sets, acoustic sources, platforms, and
fleet levels (see Figures D-6 and D-7). The signal data arrived on the

segments level, and the report data arrived on either the fleets level or

the platforms level, depending on the content of the report.

Unlike the HEARSAY-II system in which the "answer" to the problem

was the hypothesized sentence on the highest level, HASP'S "answer"

Levels

FLEET

PLATFORMS

SOURCES

HARMONIC SETS »

LINES

SEGMENTS

Knowledge Sources

Track Predictor

Speed and Track Predictor

Platform Former

Source Classifier

Cross Array Correlator

Line Finder

Special Target Former

Harmonic Set Former

Line Former

Figure D-6. HASP/SIAP blackboard and knowledge sources.

40 Blackboard Systems XVI

The Current Best Hypothesis at Time 20455

Vessel-1

Class (OR (Cherry 8.4) (Iris 6.9) (Tulip 6.2) (Poppy 4.8)

20455 . . .)

Location ((Lat 37.3) (Long 123.1) (Error 37))

Speed 15.7

Course 135.9

Sources (AND Source-1 Source-5)

Source-1

Type (OR (Cherry Propeller 5.5) Poppy Shaft 2.5)

(Poppy Propeller 2.0) (Cherry Shaft 2.5)

20455 . . .)

Dependency Unknown
Regain (20230)

Harmonics (Harmonic-1)

Harmonic-1

Fundamental (224.5 20520)

Evolution (fade-in 20230 fade-out 20210 . . .)

Lines (AND Line-1 Line-2 Line-6 Line-12)

Source-5

Type

Dependency
Harmonics

(OR (Cherry Shaft 6.0) (Poppy Shaft 4.0) (Iris

Propeller 5.0) (Tulip Propeller 2.0) 20455)

6

(Harmonics-5)

Harmonic-5

Fundamental (1 62.4 20455)

Lines (AND Line-25)

Evolution (fade-in 20455)

ASSIMILATION (RATIO Source-1 Source-5 .5) 20455)

Problems List

(EXPECT Vessel-1 (SUPPORT Cherry) (Dependency Propeller 5))

(EXPECT Vessel-1 (PRED.LOC (Lat 37.2) (Long 123.) (Error 41.3))

(REPORT REPORT-GEN Rose (Signature (Engine 30 166.7)))

Figure D-7. A blackboard state in HASP.

D Blackboard Application Systems 41

was the network of partial solutions that spanned the entire blackboard.

In other words, partial solutions were considered acceptable, if not desir-

able. For example, a partial solution of the form "There's something out

there producing these lines" was acceptable, even though a preferable

solution was, "There is a platform of type x, whose engine is accounted

for by the following harmonics and whose propeller seems to be producing

the following lines, and no shaft data are currently being received."

The nodes on the blackboard were called hypothesis elements rather

than "hypotheses" as they were in HEARSAY-II. The hypothesis elements

formed a network, each element representing a meaningful aggregation

of lower level hypothesis elements. No attempt was made to maintain

uniformity of attributes across the levels (see Figure D-7). Each knowl-

edge source knew the relevant vocabulary {attributes) associated with

those levels in which it was interested. The lines level and the harmonic-

sets level used a descriptive vocabulary that dealt primarily with signal

characteristics, and the sources level used vocabulary dealing primarily

with machinery. The signal-to-symbol transformation can be said to have

occurred between the harmonic-sets level and the sources level. Signal

information in a hypothesis element on the harmonic-sets level was
translated into machinery information in a hypothesis element on the

sources level; that is, there was an element-for-element transformation

between the two levels.

In contrast to HEARSAY-II, each hypothesis element could have alter-

native values for its attributes but no alternative links. The hierarchy

was organized as an AND tree, with a possibility for local alternatives.

Although this approach reduced the possibilities of combinatoric explo-

sion, and consequently computational time and space, it was awkward
for the system to "change its mind" about the solution. In a HEARSAY -

like blackboard structure, a change of mind only involves focusing on an
alternative substructure. In HASP, either the affected hypothesis ele-

ments had to be reanalyzed (which could result in reorganizing the whole

CBH), or the past analyses dealing with the elements in question had to

be forgotten and the analysis restarted from the point of departure. The
latter approach was used in HASP because the human analysts tended

to behave in a similar manner. (In the human system, there are analysts

whose task is to do offline postanalyses. What they learn from the post-

analyses is often added to the pool of knowledge about the task. HASP
had no counterpart to this activity.)

In addition to the blackboard, HASP had other globally accessible

information generated directly or indirectly by the knowledge sources

(refer to Figure D-8). This global information was used primarily by the

control modules:

Event list. All changes made to the blackboard, together with the

types of these changes, were posted on the event list. Each event had a

42 Blackboard Systems XVI

Blackboards

Solution

Knowledge Sources

level n

r^-Z^|
level 3

level 2

level 1

KS

KS

control data

L-^

clock event

expectation list

event list

problem list

I
i

event
manager

clock event
manager

strategy KS

expectation
manager

problems
manager

Figure D-8. HASP/SIAP system organization.

generic "change type" associated with it. It also had associated with it a

blackboard node (hypothesis element). An event in the event list was
selected by a control module to become a focus of attention. The focus of

attention then had two components: a change type and a blackboard node

that served as context for subsequent knowledge sources. (This will be

discussed in more detail later in the section on Control.)

Expectation list. The expectation list contained events expected

to occur in the future. For example, acoustic signature of platforms

reported by an intelligence report to be in a particular region was posted

on the expectation list. The canonical acoustic signatures of all the

known platforms were stored in a static knowledge base. 6 Periodically

the expectation list was searched to see if expected data had arrived.

6 In the entire discussion of blackboard systems, the role and the form of the static, or passive,

D Blackboard Application Systems 43

Problem list. This list contained descriptions of the various prob-

lems the knowledge sources encountered. For example, when no rule

fired during the execution of a knowledge source, it might have meant,

"I should know, but don't." Such information was useful to the program-

mers. The most important use of this list, however, was for posting

missing or desired information. A knowledge source could post pieces of

information that, if available, would increase the confidence in its

hypothesis. For example, a knowledge source might indicate that if the

dependency relationship was known for a given set of lines, it might be

able to identify the platform (see Figure D-7). In such a case, an operator

might provide the information if it were known, or a goal might be set

up by a control module to find the information.

Clock-event list. A clock event consisted of a time and associated

rules. The rules were to be executed at the designated time. Because

behaviors at various levels were known for some types of platforms,

knowledge sources tracked the expected and actual behavior by this

mechanism. The types of behavior known to the system ranged from the

temporal characteristics of the sonograms to the physical movement of

the platforms.

History list. All the processed events and their context (for exam-

ple, a modified blackboard node, its values, and the bindings in a rule

that made the change) were kept on this list. The history list was used

to recount the knowledge-application steps and their contexts that led

to the generation of the CBH. (Because the program processed events in

a breadth-first order and humans had difficulties in following this pro-

cessing order, the history list was used to construct a text that made it

appear as though the processing had been in depth-first order.) This list

was also used by the programmers to ensure that solutions were arrived

at by an expected line of reasoning. Of special interest was the occurrence

of right answers for wrong reasons.

The Knowledge Source Structure

Each knowledge source consisted of a condition part (called & precon-

dition) and an action part. In contrast to the HEARSAY-II knowledge
source organization, the precondition part and the action part were con-

tained in one module. The precondition part consisted of a list of pairs

of tokens; the pair consisted of a name of an event type and its modifier

(new, old, or modified). The modifier indicated the status ofthe hypothesis

element; for example, modified hypothesis element. When an event

knowledge base have been omitted. It is assumed that taxonomies, facts, and definitions are represented

in some form. This type of knowledge is awkward to represent as rules and is usually represented as

tables, records, property lists, or frames. (See Article XVII in this Volume.)

44 Blackboard Systems XVI

became "focused" (that is, selected by a control module), knowledge

sources whose precondition contained the event type of the focused event

were executed. An event type was one of several predefined categories

of changes that could be made in the system. The action part of a

knowledge source consisted of a set of rules. In this organization, the

precondition can be viewed as a simple context-independent trigger for

a set of rules. The detailed test for applicability of knowledge were in

the condition parts of the rules. The knowledge source could create

bindings local to it that remained valid for the duration of its execution.

The bindings served to "freeze" the context until all the rules in a

knowledge source were evaluated.

Control

The control modules in HASP were in the same form as the domain
knowledge sources, that is, sets of rules. The knowledge sources formed

a simple control hierarchy consisting of strategy knowledge source and
event managers (see Figure D-8). Although the control knowledge

sources were logically independent, they were executed in a predefined

order. The strategy knowledge source decided which categories of state

change, or events, (clock-event, problem, expectation, or blackboard

events) to process next, based on priorities as encoded in its knowledge

base. An appropriate event-management knowledge source was executed

based on this decision.

Once activated, an event manager, in turn, decided which specific

event to focus on. The basis of this decision varied with the event man-
ager. For example, the clock-event manager selected events that needed

to be processed at a given time, and within those events the priority

rested with events dealing with enemy platforms. The knowledge sources

associated with the focused event were then executed in some predefined

order. The node associated with the focused event served as the context

for the knowledge source's execution.

Section C3 mentioned that the scheduling module and the focus-of-

attention mechanisms were simpler in HASP than in HEARSAY-II. This

is because it was known what blackboard changes were significant for

making progress toward a solution, so the HASP programmer decided

what blackboard changes were to be called events. That is, only certain

changes to the blackboard were called events. For each such change, it

was also known what knowledge sources were available for following up
on the new information. By making the precondition of a knowledge
source the occurrence of specific types of blackboard changes, the selec-

tion of knowledge sources for a given event became a very simple matter.

For example, a table of change types and applicable knowledge sources

D Blackboard Application Systems 45

could be used. (In HASP, a set of rules was used. The condition side

contained event types and a few other simple conditions, and the action

side contained a sequence of knowledge sources to be executed.)

In this scheme, however, the process of selecting the most promising

event (a blackboard change and the node on which the change was made)

became a major issue. The selection of an event is really the selection of

a node, which, in turn, is really a selection of a solution island. The
focus-of-attention problem in HASP was primarily a problem of deter-

mining which solution island to work on next, rather than a problem of

which part of which knowledge source to apply next (that is, generate

new alternatives or pursue existing ones), as in HEARSAY-II. In HASP
the hierarchical control knowledge sources were all biased toward the

selection of a solution island that would have the highest payoff in

subsequent processing cycles.

The basic actions of the control component were iterations of the

following:

1. The strategy knowledge source decided which event category to focus

on, that is, clock events, expectations, problems, or blackboard events.

2. The manager of the chosen event category selected a specific event

from that category to process next. The event information contained

the name of a node to which a change was made and a specific change

type (for example, "new-platform-found") associated with that

change. The node name and the change type constituted the focus of

attention.

3. Based on the change type of the focus-of-attention node, knowledge

sources associated with the change type were executed in some pre-

defined order. Information in the node associated with the focus of

attention served as the context for the activated knowledge sources.

4. The executing knowledge sources produced changes to the black-

board, and the changes were recorded in the appropriate event cat-

egory.

To summarize, in HASP there were four categories of events: expec-

tation, clock, problems, and blackboard. Each category of events con-

tained a predetermined set of event types (that is, a set of expectation

event types, a set of blackboard-change event types, and so on). For each

event type, the knowledge sources that could process an instance of the

event type were also predetermined. The system was open-ended in that

new event types and new knowledge sources could be added without

perturbing the existing ones. The major task for the control mechanism
was to select the next solution island to be processed.

46 Blackboard Systems XVI

Knowledge-Application Strategy

As in HEARSAY-II, HASP used a mixed reasoning strategy. Instead

of using a legal move generator as in HEARSAY-II where the space of

legal solutions was known from the grammar and vocabulary, HASP used

a plausible hypotheses generator based on the heuristics used by the

analysts. The construction of higher level partial solutions from lower

level partial solutions, the determination of their properties, the gener-

ation of expectations, and so on were driven by empirical association

rules obtained from an analyst.

Most of the fifty knowledge sources in HASP were engaged in bottom-

up processing. Several pieces of data from a lower level were combined

to form or update information on a higher level (for example, lines into

harmonic sets). Similarly, information on one level was translated into

a different vocabulary on another level (for example, harmonic sets into

mechanical parts). The data were processed breadth first. That is, all the

harmonic sets were formed from lines, and all sources were assigned to

harmonic sets, and so on, in a pipeline fashion up the hierarchy.

The most powerful reasoning strategy used in HASP was the top-

down, model-driven strategy. The assumption underlying model-driven

reasoning is that when interpreting the data, the amount of processing

can be reduced by carefully matching selected pieces of data with dis-

criminating or important features of a model (a frame or a script). A
successful match tends to confirm the model as an explanatory hypothesis

for the data. In a continuous-data interpretation task, the model, com-

bined with periodic confirmatory matches, serves as the "cognitive fly-

wheel" that maintains the ongoing "understanding." In driving a car, for

example, our model of the road situation (prototypical highway charac-

teristics, shapes of cars, their range of speed, their normal behavior, and
so forth) saves us from continually having to process every bit of data

within our visual range. We don't "notice" the color of the upholstery of

the car in front of us even though that piece of information is often

available because it is not relevant to the task of driving. The danger

with this approach is that data can often match a wrong model for a long

time, especially when the discriminating features are not carefully

chosen. 7

With this caveat, a model-driven approach is a very powerful device

7 How often have you listened to a person and thought that person was talking about a particular

topic before suddenly realizing it was a different topic all the time? (See Aiello (1983) for a simple

experiment relevant to this topic.) The same pieces of knowledge from the PUFF Kunz et al., 1978

program were used in data-driven, goal-driven, and model-driven approaches. Although the model-

driven approach ran the fastest, extra knowledge had to be added to keep it from making the wrong
diagnoses.

D Blackboard Application Systems 47

in interpreting noisy data. In HASP a model-driven approach was used

quite extensively and successfully. For example, it was used in deter-

mining which lines formed a harmonic set. In fact, the CBH served as a

situation model from one time frame to the next. There was an implicit

assumption that the current state of affairs was not significantly differ-

ent from the state a few minutes earlier. To make this assumption work,

HASP focused on finding counterevidence for a hypothesis as much as on

finding supporting evidence.

Within an abstraction hierarchy, model-driven reasoning is usually

a top-down process. For example, if a platform type is "known" with

support from above (for example, intelligence reports) or with support

from below (for example, data), the facts about the platform type can

serve as a model. From this model, we can hypothesize the platform's

range of speed, its sound-producing machinery, the machinery's acoustic

signature, the platform's travel patterns, and so on. Pieces of data that

can support the model-based hypothesis are sought in the signal data.

As more supporting evidence is found, confidence in pursuing the model

is increased.

Comparison Between HEARSAY-II and HASP

Problem solving by search and by recognition. The generate-

and-test approach to problem solving produces combinatorial search. To

reduce the amount of search, generation is carefully evaluated and con-

trolled, often using domain-specific knowledge, within the context of a

given state. HEARSAY-II used look-ahead, generator, and evaluator mod-
ules to implement the generate-and-test search. The first two modules

were part of the knowledge source structure—the knowledge source pre-

condition doing the look-ahead and local evaluation, the knowledge

source body doing the generation; and the scheduler functioned as the

overall-solution evaluator. The results of the look-aheads were carefully

evaluated (by the scheduler) before an actual generation step was taken.

In recognition systems a knowledge module, often encoded as a set

of if-then rules, knows what to do under what circumstances. That is, a

piece of knowledge recognizes the situation under which it should be

applied. The knowledge source in HASP consisted of a situation recog-

nizer in the precondition and a body of action parts. The scheduler in

HASP performed a simpler function than in HEARSAY; it merely decided

what situation (state) to pay attention to, after which the knowledge
sources that recognized the situation were executed.

The two different approaches to problem solving used by HEARSAY-
II and HASP resulted in some basic differences in the design of the two

systems:

48 Blackboard Systems XVI

A knowledge source was written as procedures in HEARSAY and as a

set of rules in HASP.

In selecting a focus of attention, HEARSAY was concerned with selecting

the next knowledge source to execute, which amounted to electing to

generate more alternatives or process existing ones, whereas HASP was
concerned with selecting the next solution island to pursue.

In HEARSAY a subset of knowledge sources was chosen for execution

from a list of all applicable (invoked) knowledge sources. HASP executed

all knowledge sources applicable to a focused event. However, not all the

changes to the blackboard became focused events.

Temporal events. In HEARSAY-II, "time" meant the sequence in

which words appeared in a spoken sentence. Based on the sequence of

words, we could predict or verify the appearance of another set of words

later or earlier in the sequence.

In HASP, time had different connotations. HASP'S continuous input

is somewhat equivalent to asking a speaker to repeat his utterance over

and over again. After each utterance, the CBH would reflect the best that

the system could do up to that point. There was information redundancy

as well as new and different information (no two utterances sound exactly

the same) as time went on. Redundancy meant that the system was not

pressed to account for every piece of data at each time frame. It could

wait to see if a clearer signal appeared later, for example.

In addition, time meant that the situation at any time frame was a

"natural" consequence of earlier situations, and such information as

trends and temporal patterns (both signal and symbolic) that occur over

time could be used. One of the most powerful uses of time in this sense

was the generation and use of expectations of future events.

Events. The concept of events is inherent in the HASP problem.

For example, a certain type of frequency shift in the signal would be an
event that implied the ship was changing its speed. An appearance or

disappearance of a signal would be an event that implied a new ship was
on the scene or a known ship was getting out of the range of the sensors,

or it implied an expected behavior of certain types of ships. This inherent

task characteristic made it natural for the HASP system to be an event-

based system; that is, an occurrence of a particular event implied that

new information was available for some a priori determined knowledge

source to pursue. The goals of the task dictated what events were sig-

nificant and what were not. This, in turn, meant that the programmer
could a priori decide what changes in the blackboard, that is, events,

were significant for solving the problem (as opposed to the system notic-

ing every change). Furthermore, the only time a knowledge source

needed to be activated was when some events occurred that it knew

D Blackboard Application Systems 49

about. These task characteristics, together with the use of knowledge-

based recognition approach, helped redefine and simplify the scheduler's

task since each piece of knowledge was more or less self-selecting for

any given change in the solution state.

Multiple input streams. Aside from the digitized data from many
hydrophones, HASP had another kind of input—reports. Reports con-

tained information gathered from intelligence or normal shipping

sources. These reports tended to use descriptions similar to those used

on the ship level on the blackboard (CBH). Whereas the ordinary data

came in at the bottom level for both HEARSAY and HASP, HASP had
another input "port" at the highest level. Given the input at this level,

the system generated the kinds of acoustic sources and acoustic signa-

tures it expected in the future based on information in its taxonomic

knowledge base. This type of model-based expectation was one of the

methods used to "fuse" report data with signal data.

Explanation. The purpose of explanation is to understand what is

going on in the system from the perspective of the user and the program-

mer. Because the needs of the end users are different from those of the

programmers, explanation can take many forms. Explanation for the

user was especially important in HASP because there was no way to test

the correctness of the answer. The only way to test the system's perfor-

mance was to get human analysts to agree that the system's situation

hypotheses and reasoning were plausible. CBH, with its network of evi-

dential support, served to justify the hypothesis elements and their hypo-

thetical properties. It served to "explain" the relationships between the

signal data and its various levels of interpretation. The explanation of

the reasoning, that is, "explaining" which pieces of knowledge had been

applied under what circumstances, was made possible by "playing back"

the executed rules.

In MYCIN and other similar rule-based programs, explanation con-

sists of a playback of rule firings. In HASP the ordinary method of

playback turned out to be useful only to programmers for debugging

purposes. For the user, the rules were either too detailed or were applied

in a sequence (breadth first) that was hard for the user to understand.

In HASP the explanation of the line of reasoning was generated from an
execution history with the help of "explanation templates" that selected

the appropriate rule activities in some easy-to-understand order.

These differences between HEARSAY-II and HASP arose from differ-

ent task characteristics and requirements mentioned earlier. Section E
summarizes the architectural differences attributable to differences in

search and recognition problem solving and to some task character-

istics.

50 Blackboard Systems XVI

Additional Notes

The hierarchical control in HASP was an attempt to separate the

domain-specific knowledge from knowledge about the application of that

knowledge. It was the first attempt at such an organization and was
rather simplistic.

In HASP the control-related information was made globally accessi-

ble. It was also decided to represent control functions in rule form. The
grouping of control related rules into control knowledge sources was an
obvious next step. However, by not integrating the control information

into the blackboard structure, the control rules had to be expressed and
processed differently from the domain knowledge sources. The basic

architecture of HASP was generalized and implemented in the skeletal

system AGE (Nii and Aiello, 1979, and Aiello et al., 1981), which then

evolved into a commercial product ESHELL (Fujitsu Labs, 1987).

D3. TRICERO

The tricero system represents an extension of the blackboard system

into the area of distributed computing. 8 There are many possible ways
to design a blackboard system to use multiple, communicating comput-

ers. To design a multiprocessor blackboard system, either the blackboard

model or the blackboard framework can be used as a design foundation.

This choice will have a significant effect on the nature of the concurrency

in the resulting system.

One way to use multiple processors is to partition the solution space

on the blackboard into loosely coupled regions (for example, subregions

of the ocean, parts of a sentence, pieces of the protein structure, and so

on). For each of these partitions, create a copy of a blackboard system.

For example, in HASP we might have a complete blackboard system for

each sensor array. Because the arrays have overlapping coverage, the

systems would have to coordinate their problem-solving activities. A
system will notify an "adjacent" system if a platform is moving into that

system's area, for example. In other words, the application problem can

be partitioned into loosely coupled subproblems that need coordination.

Research on this type of system is being conducted at the University of

8 The TRICERO system was designed by Harold Brown of the Knowledge Systems Laboratory at

Stanford University. It was built by programmers at Knowledge Systems Laboratory and Teknowledge.

The TRICERO system was written using the AGE skeletal system (Nii and Aiello, 1979, and Aiello et

al., 1981). The distributed-system aspects of TRICERO were simulated.

Blackboard Application Systems 51

BLUE

BIG EAR

RED

GOTCHA

•*

' 34^36 LOWLIFE

Figure D-9. The TRICERO task.

Massachusetts under the direction of Victor Lesser (Lesser and Corkill,

1983; see also, Article XVIII in this Volume).

A second approach is to use the blackboard data in a shared memory
and to distribute the knowledge sources on different processors (see

Aiello (1986) and Ensor and Gabbe (1985) for examples). This distribu-

tion theoretically executes the knowledge sources in parallel. If the

knowledge sources are represented as rules, their condition parts can be

evaluated in parallel. The action parts can also be executed concurrently.

The evaluation of the condition part and the action part can form a

pipeline. The PSM project at Carnegie-Mellon University is targeted as

a parallel rule execution system (Forgy et al., 1984).

Third, a more direct use of multiple processors can be accomplished

by partitioning the problem into independent subproblems, where each

subproblem is solved on a separate processor. For example, in the inter-

pretation and fusion of multiple types of data, each type of data might
be interpreted on different systems. Each system will have a different

set of knowledge sources and a different blackboard organization. The
results from the data analysis systems will be fused by another black-

board system. The TRICERO system is an example of this type of system. 9

9 The problems of designing and building blackboard systems capable of concurrent problem

solving, distributed problem solving, and parallel computations are distinct from those of serial black-

board systems and are not discussed in this chapter. (See Nii et al., (1989) for discussions of some of

the issues.) The TRICERO system is discussed here, because it does not fall into any of these categories.

It is a variant of a distributed computing system that can be considered a direct extension of the serial

systems. See Durfee et al., (this Volume) for distinctions between distributed-processing and distributed

problem-solving systems.

52 Blackboard Systems XVI

The Task

The objective of the TRICERO system is to monitor a region of air-

space for aircraft activities. The system consists of three subsystems

organized in an hierarchy (two levels at this point), much like the human
management organization for which the system was built (see Figure D-
10). On the lower level are the ELINT and COMINT subsystems that

interpret passive radar and voice communication data, respectively. The
correlation subsystem that integrates the reports from ELINT and
COMINT and other data resides at a higher level. This hierarchical

organization of blackboard systems emulates the various activities

involved in signal understanding. These activities are signal detection,

parameter estimation, collection analysis, correlation, and overall inter-

pretation. As we progress from one activity to another, information in

the data is abstracted and reduced. TRICERO analyzes two types of col-

lection data and correlates the analyzed data. Each data type is analyzed

independently using different blackboard data organizations and differ-

ent knowledge sources (see Figure D-ll).

The Blackboard Structure

The ELINT blackboard consisted of three levels: observation, emitter,

and cluster. The input data arrived at the observation level. These data

COMINT
collection *>.

report COMINT

tasking .«

Situation

board

ELINT
collection

report

tasking

"Blue-
activities

CORRELATION

Situation

board

Threat

Warning

Static data

(geography
units

bases, etc.)

(— data/messages)

Figure D-10. A distributed blackboard system. Control in TRICERO.

D Blackboard Application Systems 53

Red platform/c luster fusion, Refine platform track, split cluster

BlueRed Red
Clusters

COMINT
report

platform V . ,K
\ Analyze

ELINT

ELINT 1
reP° rt

report

\ Analyze
COMINT

J report

platform > Ana|yze
\ BLUE

Blue]

rep° rt

report

Generate & Post
Report to Correlation

ELINT

Cluster

Emitter

Observation1
Analyze
Cluster

Analyze
Emitter

Analyze
Observation

COMINT

C2

Generate & Post
Report to Correlation

Platform Fusion

Track
Platform V Analyze Platform *t

) C2 Message)

j\
C2 / Track
Message \^ Message

Analyze
Track

/ Message

Classify C2 Message

Figure D-ll. TRICERO blackboards and knowledge sources.

were tagged with the collection time and the site at which they were
collected. Each node on the emitter level kept a history of detections

from a site having the same identification tag. The history represented

radar emissions believed to be emanating from one source. The identi-

fication tag could be in error; that is, different sources could have the

same identification tag or one source could have multiple tags. The radar

emissions detected at different sites were merged into an hypothetical

platform (or a number of platforms "seen" as one platform) on the cluster

level. Each level used descriptive vocabulary appropriate to that level:

the platform types and speed history on the cluster level and the collec-

tion site and signal quality on the observation level, for example. The
blackboard data structure in the COMINT and correlation subsystems

were structured in similar fashions using abstraction levels appropriate

to interpreting their data.

The Knowledge Source Structure

The knowledge sources were structured according to the require-

ments in the AGE (Nii and Aiello, 1979) skeletal system. Each knowledge
source had a condition part and an action part. The condition part was
a list of tokens, each representing a type of change that could be made
on the blackboard. The action part consisted of a set of rules. The rules

in each knowledge source could be processed as a multiple hit in which
all rules whose condition sides were satisfied were executed, or as a

54 Blackboard Systems XVI

single hit in which only the first rule whose condition side was satisfied

was executed. There was no conflict-resolution process of the type found

in OPS-based systems.

Control

Each of the independent subsystems in TRICERO used a subset of

control components available in AGE. A globally accessible event list

recorded the changes to the blackboard. At each control cycle, one event

on an event list was chosen as a focus of attention. The choice of the

event on which to focus was based on a predetermined priority of event

types. Once an event (an event type and a node) was selected for focus,

it was matched against the event-type tokens in the precondition, which

served as a context-independent trigger of the knowledge source. The
triggered knowledge sources were executed according to a predetermined

priority assigned to the knowledge sources.

The TRICERO system augmented the AGE control component to han-

dle the communication among the three subsystems. Each subsystem

could send messages to designated subsystems. The receipt of a message
by a subsystem was treated as an event, allowing the focus of attention

to occur on a special node on the blackboard where the messages were

stored. This construct allowed the subsystems to treat communication

from other subsystems just like any other event.

The basic actions of the control component can be described in two
parts:

1. Between subsystems

a. The simulation of the distributed computation consisted of round-

robin execution of the three subsystems—ELINT, COMINT, and
correlation.

b. Each subsystem sent report messages to designated subsystems.

The receipt of a message was treated as an event with appropriate

modification of the recipient's blackboard and event list.

2. Within a subsystem

a. A control module selected a focus event using a list of event

priorities. An event contained sufficient information to serve as a

context for subsequent knowledge source execution, namely, the

node on which the change was made, the knowledge source and
the specific rule that made the change, and the actual change.

b. Based on the focused event, knowledge sources whose precondition

list contained the event (that is, knowledge sources triggered by

the event) were chosen for execution.

c. The rules in the activated knowledge sources were evaluated and
executed according to the rule-processing method associated with

D Blackboard Application Systems 55

the knowledge source. Modifications to the blackboards and other

associated information were put on the the appropriate event lists.

Knowledge-Application Strategy

Most of the knowledge sources engaged in bottom-up processing.

They combined information on one level to generate a hypothesis on a

higher level. The reports from ELINT and COMINT were treated as input

to the higher level correlation subsystem. The reports from the correla-

tion subsystem to ELINT and COMINT dealt primarily with information

on the higher level (for example, platform identification) that improved

or overrode the analysis done by the lower level subsystem. In such

cases, the processing in these subsystems became top down and model

driven.

Additional Notes

The partitioning of the overall task into subsystems in TRICERO was
accomplished by assigning the analysis of abstract information to the

correlation subsystem and the analysis of information closer to signal

data to ELINT and COMINT. As mentioned in Section B, the knowledge

sources that span the various levels of the blackboard hierarchy are

logically independent. Thus the need for coordination among the subsys-

tems is substantially reduced when the problem is partitioned into sub-

systems along carefully chosen levels of analysis.

As with the other systems described, the TRICERO data were noisy

and the knowledge sources uncertain. The radar data, for example, con-

tained "ghosts," detections of nonexisting objects. The ELINT subsystem

handled the existence of this type of error by delaying the analysis until

several contiguous detections had occurred. By doing so, it avoided the

creation of hypothesis nodes that later needed to be deleted.

The issues relating to the deletions of nodes on the blackboard are

quite complex. Suppose in TRICERO that a node on the cluster level (an

object that represents a platform or a group of platforms) is to be deleted.

What does it mean? Has the platform disappeared? Unless it somehow
disintegrated, a platform cannot disappear into thin air. Was there an
error in interpreting the radar data to begin with? Often, there are "ghost

tracks," a characteristic of which is that the tracks disappear after a

short duration. However, suppose the platform disappearance was not

due to ghost tracks but to an error in reasoning. Unraveling the reason-

ing steps that led to the hypothesis and retrying often does not help. The
system does not know any more than it did when the erroneous hypoth-

esis was generated. Suppose the platform node is just deleted. What do

we do about the network of evidence that supports the existence of the

56 Blackboard Systems XVI

platform? Unfortunately there is no systematic way of handling node

deletions. In HASP the nodes were never deleted. The nodes in error, the

ones with negative confidence, were ignored and analysis continued

ignoring the past errors. In TRICERO node creation was delayed until

there was strong supporting evidence for the existence of an object rep-

resented by the node. When an error occurred, the hypothesis network

was restructured using domain heuristics.

In TRICERO the confidence assigned to the hypothesis elements was
expressed in a symbolic form. The vocabulary expressing the confidence

consisted of "possible," "probable," "positive," and "was positive." The
confidence level was changed according to heuristic criteria.

TRICERO was one of the first blackboard systems implemented on a

computer system with a bit-map display (see Figure D-9 for an output

display). The situation board, symbolically represented on the blackboard

of the correlation subsystem, was displayed in terms of objects in an
airspace and the objects' past behavior. The graphic-display routines

were written as procedural knowledge sources and were executed when
certain events occurred that warranted display updates. There might be

some argument about the conceptual consistency of this approach

because interfacing is usually not considered a part of problem solving.

However, this engineering solution that integrated the display routines

with the problem-solving components worked very well. An effective

display interface requires knowledge about what is appropriate to display

when. A knowledge-based control of displays and display updates is

easily implemented using the knowledge source organization.

D4. PROTEAN

The protean application written in the BB1 skeletal system (Hayes-

Roth, 1985) introduces an architecture that treats control as a task

separate from the primary application task. Fundamental to this sepa-

ration is the notion that control involves a dynamic creation of a plan

consisting of sequences of domain actions. Put another way, as a solution

to a problem evolves, problem-solving strategy and tactics can be revised

dynamically. This notion can be traced back to the OPM system (Hayes-

Roth et al., 1979; see also, Article XI.C, Vol. III). PROTEAN currently

address the problem of determining the placement of groups of amino
acids in three space formulated as a constraint satisfaction problem
(Brinkley et al., 1987, and Hayes-Roth et al., 1987). Within this context,

the control is intended to minimize the calls to an expensive constraint

D Blackboard Application Systems 57

satisfaction routine written in C, focusing the control heuristics on the

problem of resource allocation.

The Task

The task of PROTEAN is to determine the possible three-dimensional

structures for a given protein molecule. In the CRYSALIS system the

protein structure was inferred from the amino-acid sequence and a com-

plete electron density map derived from crystallized protein (see Terry,

1983, or Volume II of the Handbook). PROTEAN must build the three-

dimensional structure from nuclear magnetic resonance (NMR) data

obtained from protein in solution. Because protein in solution has inter-

nal motion, the data are low in resolution and many not yield a unique

solution, but a set of possible solutions. (In actuality, the program deter-

mines the regions within which a piece of protein may be located.) Three

kinds of information are available to PROTEAN:

1. The primary structure, which is the amino acid sequence.

2. Secondary structures, which are pieces of the amino acid sequence

that arrange themselves in recognizable structural patterns, such as

alpha helices (see Figure D-12).

3. Proximity information for pairs of atoms obtained from high-resolu-

tion NMR.

Consider the following example of the input to PROTEAN (from Hayes-

Roth et al., 1987).

Primary Structure: metl, lys2, pro3, val4, . . .

[The sequence is methionine, lysine, proline, valine, etc.]

Secondary Structures: (Coil metl thr5) (Helix leu6 glyl4) . . .

[A "random coil" formed by the first five amino acids, followed by a

helix consisting of the 6th through the 14th amino acids, etc.]

Distance Constraints: (val4 3 tryl7 5) (val4 3 leu45 4) (val4 3 tyr47 5)

[The distance measure, called the nuclear Overhouser effects (NOEs),

range from 2 to 5 angstroms. The constraints are read as: There is an
NOE between the atom 3 of the valine in the 4th position and atom
5 of the tryptophan in the 17th position, etc.]

The overall problem is divided into two main subproblems, that of

determining the shape and the volume of secondary structures from the

constraints (local constraint satisfaction) and that of placing these "sol-

ids" in space. What is implemented in PROTEAN is the second problem
with the human user determining the volume of the secondary struc-

tures. The remainder of the discussion is confined to the second problem.

The problem is formulated as a geometric constraint satisfaction

58 Blackboard Systems XVI

N- Helix
C- Helix

Figure D-12. Protein as a composite of secondary structures

(from Hayes-Roth, et al., 1987).

problem with the following iterative refinement. (Figure D-13 illustrates

this process.)

1. Choose a solid (for example, a helix represented as a cylinder) as an
anchor around which other solids will be placed.

2. Determine a region of space to be occupied by another solid, an
anchoree, by applying all the constraints between the anchor and the

anchoree. The resulting region in space around the anchoree is called

an accessible volume of the secondary structure.

3. Reduce the accessible volumes by applying pair-wise constraints

between the anchorees, a process called yoking.

4. Reduce and refine the accessible volume by iterative yoking with

different sets of anchoree pairs.

The constraint satisfaction algorithms for a pair of secondary struc-

tures are written in C and run on an Iris workstation. A part of

PROTEAN that determines when to call the constraint satisfaction algo-

rithm with which pair of secondary structures is written in BB1, which
runs on a LISP workstation. Once activated, the constraint satisfier can

D Blackboard Application Systems 59

HELIX 1

FIXED ANCHOR

Figure D-13. Anchoring and yoking.

run for hours for a pair of secondary objects. The choice of an object to

serve as an anchor, the order in which the anchorees are chosen, and the

order in which yokings are performed affect the cost of computing on the

Iris workstation. The primary problem tackled in the blackboard portion

of PROTEAN is that of dynamically creating a plan that minimizes the

time spent in the constraint satisfaction algorithm. (The tradeoff is

between a planned utilization of a resource, where the planning itself

requires computational resource, and the unplanned use of the resource.)

The dimensions of the tradeoff and some timing analysis can be found

in Brinkley et al. (1987).

60 Blackboard Systems XVI

Blackboard Structure

PROTEAN uses two prespecified blackboard panels (the prespeciflca-

tion occurs within BB1), control-data and control-plan panels. There is,

in addition, a solution panel, very much like those used in blackboard

systems described thus far, that holds the solution states (see Figure D-
14).

The control-data panel. This blackboard panel has three levels

as prespecified by BB1: the event, the knowledge source activation record

(KSAR), and the agenda levels. Each object on the event level corresponds

to a blackboard change and contains the name of the new or modified

node, the new values of attributes, and an indication as to whether the

node is new or a modified. When an event is created, each knowledge
source is "polled" to see if it can operate on the event. For each knowledge
source that can process the event, a KSAR object is created on the KSAR
level. Each KSAR contains the name of the knowledge source with which
it is associated, a pointer to the event node that triggered the knowledge
source, a set of variables, a rating, and other information that serves as

Control Plan Panel

Strategy: Sequentially position all objects

Focus: Pick an anchor

Anchor all objects to the anchor

Yoke all objects

Heuristic: Prefer-long-anchor

Prefer-strong-constraints

Schedule: -

Control Data Panel

Events:

KSAR
Agenda: Executable:

98 (orient PA1 about helix 1)

94 (orient PA1 about helix 2)

86 (orient PA1 about helix 3)

Solution Panel

Partial Arrangements PA1

Secondary Structure Helixl Helix 2

length

constraints

weight- %
location table

Helix 3

Figure D-14. The PROTEAN blackboard panels.

D Blackboard Application Systems 61

a context for the knowledge source. We might view the combination of

the knowledge source and a KSAR as a closure ("closure" is used loosely

here) that represents an instance of the knowledge source. The agenda

level has four nodes, each representing different states that an instan-

tiated knowledge source can be in. These states are triggered, executable,

obviated, and executed. What these states represent and how they are

used are described in the following sections.

The control-plan panel. This blackboard panel contains four lev-

els as specified in BB1: the strategy, focus, heuristic, and schedule levels.

Information on the strategy level specifies the general strategy to be

applied at any given point. The information structure can be arbitrarily

complex, but in PROTEAN it usually contains one node. In Figure D-14,

the strategy indicates that the secondary objects are to be positioned in

the order described on the focus level. The focus level makes the strategy

operational; that is, it contains a sequence of steps that, when executed,

result in the realization of the strategy. Each focus step is generated

dynamically by a knowledge source when the previous step is completed.

(All the focus steps to be generated are shown in Figure D-14.) Continu-

ing with the preceding example, a manifestation of the strategy is to

first pick a secondary structure for an anchor, then place all other sec-

ondary structures to the anchor, and finally yoke all the anchorees. The
strategy states that these three steps should be taken in the order spec-

ified.

When a focus step is selected, pieces of associated knowledge called

heuristics are generated on the heuristic level. A heuristic is a procedure

that evaluates an event based on some heuristic criteria. When executed,

a heuristic returns an integer reflecting a rating of the event passed to

it. In the example in Figure D-14, assume that "Pick an anchor" is the

step to be taken. There are three possible candidates for an anchor,

Helixl, Helix2, and Helix3. (The statement "Orient PA1 about Helixl"

on the agenda level translates to "Orient Partial-Arrangement- 1 around

Helixl," which translates to "Pick Helixl for an anchor for Partial-

Arrangement- 1.") A heuristic, for example, "Prefer-long-anchor," is

applied to Helixl to see if it would make a good anchor. If Helixl is in

fact a "long" secondary object, it will be rated high. The objects on the

agenda level show the three helices with the ratings.

The solution panel. As of this writing, the solution panel contains

two levels, the secondary structure and partial arrangements levels. The
secondary structures are restricted to helices and "random coil." A partial

arrangement is a clustering of the secondary structures, and theoreti-

cally, more than one possible arrangment can be created. The partial

arrangements themselves could be configured further to form a complete

protein structure.

62 Blackboard Systems XVI

The Knowledge Source Structure

As in HEARSAY-II and HASP, a knowledge source consists of a con-

dition part and an action part. In PROTEAN, the condition part serves

as a multistaged filter for applying the action part. The condition part

is divided into three parts—the trigger, the precondition, and the obviate

condition—representing different stages of knowledge source invocation.

The condition parts are all LISP S-expressions. The action part of the

knowledge source is a set of conditional rules as in HASP and TRICERO.
As mentioned earlier, when an event is posted, all the knowledge

sources are polled for applicability. This is accomplished by evaluating

all the knowledge source triggers. (In the actual implementation, some
form of hashing is used to evaluate the knowledge source triggers. Note

the similarity of this approach to the HEARSAY-II focus-of-control data-

base.) If the trigger condition is satisfied, a knowledge source activation

record, a KSAR, is created instantiating the knowledge source with the

event as its context.

At this point two things happen:

1. The knowledge source is put in a "triggered" state, and the state is

recorded on triggered-status-node on the agenda level (see the earlier

description of the control data blackboard panel).

2. The remainder of the knowledge source (the precondition and the

action part) becomes a schedulable activity.

When scheduled for execution, the precondition part of the knowledge

source is checked, and if satisfied, the knowledge source is changed to

"executable" state. All knowledge sources in the executable states are

evaluated, and one is selected for execution. At any point, if the obviate

condition is satisfied, the knowledge source is changed to the "obviate"

state making it unavailable for execution. (See the Notes section for why
the obviate condition is necessary.)

There is no difference between the domain and the control knowledge
source structures. The distinction has only to do with whether a knowl-

edge source operates on the control or the solution blackboard panels.

Control

In PROTEAN we can view the control panels and the knowledge
sources that operate on them as parts of the control component or we
can view them as a subsystem component whose task is dynamic plan-

ning. If we take the first view, the PROTEAN control component is very

complex and indirect; that is, the execution of the constraint satisfier is

preceded by a lot of control decision steps. If we take the second view,

two tasks are being performed concurrently, neither of which is very

D Blackboard Application Systems 63

complex. But the interleaving of the two tasks makes for complexity,

especially since there is no clear way to know in advance how the task

switching is to occur.

However we view the control component, it consists of three core

modules and a core control loop. The core modules are the scheduler, the

agenda maintainer, and the rating manager (see Figure D-15). These

modules are used within the control loop as follows:

1. An action part of the knowledge source is executed, causing changes

on the solution or control data panel. This causes the creation of one

or more events on the event level.

2. Each of these events are checked against all knowledge source trig-

gers by the agenda maintainer. For each knowledge source whose

trigger is satisfied, a knowledge source activation record is created;

that is, a knowledge source "closure" is formed with the event as its

context. The knowledge source is recorded on the agenda as being in

a triggered state.

3. The preconditions of the triggered knowledge source are then eval-

uated by the agenda maintainer. Each knowledge source whose pre-

condition is satisfied is recorded as being in the executable state. At
the same time, obviate conditions of all knowledge sources in exec-

agenda
maintainer

Panels

Solution

level n

level 2 ^r-f

level 1

Control Data

KSAR

agenda

~f

'
Control Plan

rating

manager strategy

1 focus

heuristic

schedule

Knowledge Sources

Domain KS

:H condition

, -
I action

condition

-v scheduler

Control KS

^J condition

condition

Figure D-15. A schematic of PROTEAN control structure.

64 Blackboard Systems XVI

utable state are evaluated to determine if the knowledge state should

be changed to the obviate state.

4. All the knowledge sources in the executable state are rated by appro-

priate "heuristic" procedures in the heuristic level. Note that there

may be knowledge sources in the executable state from previous

cycles. This process is managed by the rating manager.

5. The scheduler selects the highest rated executable knowledge source

instance (as recorded on the agenda) for execution.

Knowledge-Application Strategy

From the perspective of knowledge-based systems, the PROTEAN
problem is knowledge poor and the problem is underconstrained. Gen-

erally the method of choice for a knowledge-poor task is a generate-and-

test search. The overall strategy in PROTEAN is to control the combi-

natorial explosion by searching at various abstraction levels of the pro-

tein structure, much in the way HEARSAY-II did in the speech domain.

For example, by first satisfying the spatial constraints between second-

ary structures treated as an enclosed volume before placing the amino
acids locally within the solid, the total search is reduced. This approach

entails a top-down application of constraints.

Within the currently implemented portion of the problem, that of

placing the solids relative to each other, the strategy is to place the solids

around one selected anchor and iteratively reduce the accessible volume
(a space within which the actual secondary structure could be placed

without violating the constraints) of the anchorees. Which solid is chosen

as the anchor, in what order the anchorees are chosen, and what pairs

of anchorees are chosen for yoking have no affect on the quality of the

solution. However, they do make a difference in the efficiency with which
the solution is found (Brinkley et al., 1987).

Additional Notes

The evaluators on the heuristic level check the appropriateness of

candidate objects along the dimensions expressed in the heuristics, for

example, "Prefer-long-anchor." These heuristics are selected and posted

by a knowledge source associated with various steps designated on the

focus level. In HEARSAY-II, the condition part of the knowledge source

served as a look-ahead in the process of solution candidate generation.

The scheduler had to evaluate the look-ahead information, together with

other pending activities, to decide what to do next. Functionally the look-

ahead of HEARSAY-II is replaced by heuristics evaluators that rate

D Blackboard Application Systems 65

objects on the solution panel. Since the evaluators return ratings, the

task for the scheduler in PROTEAN is much simpler than in HEARSAY -

II—it merely selects the highest rated knowledge source instance for

execution. In essence, the many different functions performed within the

scheduler of HEARSAY-II have been partitioned and made explicit in

PROTEAN.
When the execution of the action part of a knowledge source does

not immediately follow the condition part, as in HEARSAY-II and

PROTEAN, a data (state) consistency problem arises. There is no guar-

antee, when an action part is finally selected for execution, that the

condition part of the knowledge source still holds. To avoid the execution

of now inappropriate, irrelevant, or undesirable action, the obviate con-

dition is evaluated before the action part is executed.

When we look at the information used in the control panels and

control knowledge sources, we wonder what is meant by "control." Close

scrutiny of PROTEAN reveals that control knowledge consists of abstract

representation of domain actions. Whether a knowledge source is called

a domain knowledge or a control knowledge often seems arbitrary.

Since problem solving proceeds according to a plan, the notion of

"opportunism" is defined as an action deemed appropriate that lies out-

side the plan in force. This definition is more intuitive and clearer than

the loose use of the term in other systems. However, note that there is

a need for knowledge sources, or rules within knowledge sources, that

are looking for such opportunities.

There is no explicit mechanism for switching between the control

task and the domain task to process next. Whether the focus of attention

is to be on the domain task or the control task is controlled entirely by
some rating function. This has the potential for rather arbitrary switch-

ing from one task to another.

Traditionally the blackboard held solution state data. In PROTEAN,
some control nodes (for example, on the heuristic level) contain knowl-

edge in the form of procedures. Although knowledge can be treated as

data (as when looked at by metaknowledge), the particular organization

in PROTEAN deviates from the simple, yet powerful, construct in which
all active knowledge was represented by the knowledge sources.

D5. Summary

Although a problem-solving model can help in the general organiza-

tion of domain knowledge and reasoning strategy, the blueprint of the

66 Blackboard Systems XVI

architecture must account for the characteristics of the specific task at

hand. Details of the task determine the specific choice of knowledge
representation and reasoning methods. Therefore, there could be as many
blackboard architectures as there are applications. Since HEARSAY-II
and HASP, there have been many other programs whose system designs

are rooted in the blackboard model. These programs include applications

in the area of structure determination of proteins from electron density

maps (Terry, 1983) and from NMR data (Brinkley et al., 1987), planning

(Hayes-Roth et al., 1979), computer vision (Nagao and Matsuyama, 1980;

and Raulefs and Thorndyke, 1987; and Draper et al., 1988), and signal

understanding and situation assessment (Spain, 1983 and Williams,

1985).

Other applications are currently being built in the areas of process

control, very large-scale integration (VLSI) design, crisis management,
image understanding, and signal interpretation. Many applications in

the Defense Advanced Research Project Agency's (DARPA) Strategic

Computing Program in the areas of military battle management, a pilot's

associate, and autonomous vehicles use the blackboard model. To date,

there is no commonly agreed upon architecture or standards for black-

board systems. Rather, there are more or less strict interpretations of

the model. Nonetheless there are many similarities in the design of

blackboard systems. In Section E we attempt a rationalization of some
of the differences in the designs and review the more common constructs

used to date.

E. SUMMARY: ELEMENTS OF BLACKBOARD
ARCHITECTURE

In section b we introduced the blackboard model of problem solving as

a conceptual framework for organizing reasoning steps, solution and

control state data, and domain knowledge useful for constructing solu-

tions to problems. Various interpretations and implementations of the

model for different application tasks were described in Section D. These

applications are representative of architectural themes and variations

to be found in current blackboard systems. Of the applications, HASP
has the simplest architectural constructs and PROTEAN has the most

complex. ("Architecture" here refers to design of structures. Within the

context of our discussion, it means specific choices of constructs for the

blackboard, knowledge sources, and control.) Yet, in terms of the com-

plexity of tasks, as measured by the number of different objects to be

manipulated, HASP is the most complex. The complexity of program
behavior does not necessarily correlate with architectural complexity.

Like the ant-on-the-beach metaphor used by Simon (Simon, 1969), simple

mechanisms can give rise to complex behavior given a complex environ-

ment in which they must operate.

What then dictates the essential mechanisms needed to tackle dif-

ferent application tasks? What are the characteristics of tasks for which
the blackboard approach has been applied? Within the blackboard frame-

work what are the elements of the architectural space that system

designers manipulate? There are no simple answers to these questions.

Much depends on the specific requirements of the applications problems

at hand. Some general things can be said about the nature of applications

that have benefited from the use of a blackboard-system approach—we
attempt such a description in Section El. Aside from the task character-

istics, the use of different problem-solving methods has a great influence

on the design of blackboard systems. We discuss two problem-solving

approaches that affect blackboard system architecture in Section E2. In

Section E3 we summarize alternative designs for the major components
gleaned from the different blackboard system applications discussed in

Section D.

67

68 Blackboard Systems XVI

El. Blackboard Systems and Task Characteristics

The applications for which the blackboard approach has been useful

—

signal understanding, vision, situation assessment, and so on—share

common characteristics. First, they are all attempts at solving complex

and ill-structured problems. Second, the solutions involve the use of

many diverse sources of knowledge whose applicability is situation

dependent. We explore the nature of complexity and ill-structuredness

and show how the blackboard approach is an aid for dealing with this

type of problem.

Complex Problems

Simon (Simon, 1969) defines a complex system as "one made up of a

large number of parts that interact in a non-simple way. In such systems,

the whole is more than the sum of the parts, [in the sense that] given

the properties of parts and the laws of their interaction, it is not a trivial

matter to infer the properties of the whole." To understand complexity,

we describe complex systems in terms of less complex subsystems and
relationships among them. Often this description takes the form of a

hierarchy.

Software engineering techniques and methodologies tend to foster

hierarchical problem decomposition, and most complex programs are

organized according to some form of hierarchy. Usually the hierarchy is

organized along functional decompositions of the task to be performed,

forming a tree-like representation of the function-call relationships

among the modules. One advantage of this type of organization is that

it allows common modules to be shared. In blackboard systems, task

decomposition, often driven by the hierarchical decomposition of the

solution space, focuses on the functional independence of the modules in

order to limit the number of interactions among them. Loosely coupled

subsystems provide maximum flexibility in the software development

phase as well as during problem solving. In addition, due to the sepa-

ration of task functions and the procedure for calling these functions,

these modules (knowledge sources) do not contain calling-sequence (con-

trol) information. Control is treated as a separate task, which may also

be decomposed as a hierarchy of subtasks, as in the case of PROTEAN.
The solution space represented as abstraction or part-of hierarchy on

the blackboard has pragmatic advantages. First, the hierarchical struc-

ture allows for the integration of diverse concepts and associated vocab-

ularies. For example, in HASP the concept of a "platform" was defined

with properties such as type, speed, and location; whereas the concept of

"signal" was defined with properties such as frequency, intensity, and

E Summary: Elements of Blackboard Architecture 69

bandwidth. Second, abstraction reduces the computational need in two

ways:

1. Abstracted entities involve fewer components to manipulate than

their detailed counterparts.

2. Abstractions can store information that would otherwise need to be

recomputed from the detailed counterparts.

The hierarchical structure of the blackboard provides a favorable tradeoff

between storage space and computational time. In HASP, for example,

reasoning about platform movements is easier and faster at the platform

level than reasoning at the level of its constituent propeller and engine

parts, even though extra storage is needed to represent both levels of

description.

Ill-Structured Problems

Ill-structured problems (Newell, 1969) are characterized by poorly

denned goals and an absence of a predetermined decision path from the

initial state to a goal. Often there is a lack of well-defined criteria for

determining whether a solution is acceptable. (In many expert systems,

the acceptability of a solution is determined by a panel of human experts

who might disagree among themselves.) Often a problem is ill-structured

because it is ill-defined or poorly understood, for example, assessing the

merits of one's financial investments in light of proposed tax reforms.

Although Newell's discussions about ill-structured problems occur within

the context of weak problem-solving methods, he notes that a human's
ability to solve an ill-structured problem may be due to the problem

solver's ability to "recognize the essential connection or form of the

solution" or due to the fact that "the problem solver always [has] avail-

able some distinctions that apply to every situation" (Newell, 1969). In

short, many ill-structured problems might be solved by applying knowl-

edge, especially knowledge in the form of empirical associations, or

expertise. The condition part of a knowledge source serves as the rec-

ognizer of the situation under which the knowledge source can contribute

to solving a problem.

Many non-blackboard expert systems deal quite well with ill-struc-

tured problems. What further aid can the blackboard approach provide?

First, the blackboard approach requires no a priori determined reasoning

path; the selection of what to do next is made while the problem is being

solved. Second, from a knowledge engineering viewpoint, vague infor-

mation and knowledge, which characterize ill-structured problems, must
be made concrete in the process of building a solution to the problem.

This can only be accomplished incrementally, by building a system and

70 Blackboard Systems XVI

modifying the architecture and clarifying the knowledge, as the real

nature of the problem reveals itself. The blackboard model is an excellent

tool for exploratory programming, a conscious intertwining of system

design and implementation, which is found to be effective for the devel-

opment of the type of systems that are of concern here (Sheil, 1983).

Although useful for many problems, blackboard systems are gener-

ally expensive to run, primarily because the situation-specific control

decisions are made dynamically, requiring space and time. It would be

foolish to apply the blackboard approach when lower cost methods will

suffice. For example, classification problems (Clancey, 1985) can in prin-

ciple be solved using the blackboard method, but there are lower cost

approaches to the problem. Determining the appropriate problem-solving

methodology for an application problem is itself a difficult problem, and
the reader is referred to Kline and Dolins (1985), Hayes-Roth et al.

(1983), and Weiss and Kulikowski (1984) for some guidance. Generally,

the occurrence of some combination of the following characteristics in a

problem makes it an appropriate candidate for the blackboard approach:

• A large solution space.

• Noisy and unreliable data.

• A variety of input data and a need to integrate diverse information.

• The need for many independent or semi-independent pieces of knowledge

to cooperate in forming a solution.

• The need to use multiple reasoning methods (for example, backward and
forward reasoning).

• The need for an incremental and evolutionary construction of the solution.

E2. "Problem Solving" Revisited: Search vs. Recognition

The term "problem solving" is used in two ways in the literature. First,

it refers to a variety of cognitive activities that achieve well-defined

goals, activities that we view as exhibiting "intelligent behavior." Sec-

ond, it refers to a specific approach or a method designed to achieve

intelligent behavior in programs. Our focus is on the latter use of the

term. Carbonell (1983) categorizes the basic problem-solving approaches

used to date: search (means-end analysis and heuristic search), plan

instantiation, and analogy. The first two approaches have been used

extensively, and the third approach, problem solving by analogy, is still

a topic of current research.

Another way to differentiate problem-solving approaches is by the

amount of task-specific knowledge needed or used to arrive at a solution.

E Summary: Elements of Blackboard Architecture 71

From this perspective, knowledge-poor systems must rely on search tech-

niques for problem solving, and virtually all systems using search tech-

niques are knowledge poor. Knowledge-rich systems use recognition

techniques for problem solving. Recognition is a term coined by

McDermott and Newell (1983)
—

"the complete recognition system does

not reason, it knows. Reasoning shows up in the occurrence of combi-

natorial search." At any particular computational state, instead of gen-

erating and evaluating the possible next states, a recognition system

simply knows what the next state should be. Carbonell considers problem

solving by recognition as a special case of the plan instantiation method.

Plan instantiation suggests the existence of some structure, but in most
recognition systems the plan is only implicit.

In the search paradigm, each problem-solving step requires an eval-

uator to select from a pre-enumerated or enumerable next state. Each
problem-solving step consists of a generation of operators or state, fol-

lowed by an evaluation, followed by a selection and an application of the

state transforming operator. Often, evaluation precedes generation so

that generation can occur selectively. The generator can be algorithmic

or heuristic; it can be a legal-move generator or a plausible-move gen-

erator. The evaluator can be knowledge poor (general and weak), or it

can be knowledge rich (task specific). To date most programs that use

search use weak knowledge—the search paradigm is called a weak
method.

Among the blackboard systems discussed, HEARSAY-II and PROTEAN
use the search paradigm. In HEARSAY-II, all the possible states were
enumerable by its knowledge sources. For example, given a grammar, a

table of all legal adjacent words for each word could be generated; in

PROTEAN, all the candidate secondary structures from which the anchor

was selected were enumerable. In both HEARSAY-II and PROTEAN, the

evaluator (the scheduler in HEARSAY-II and a combination of "heuristics"

and rating function in PROTEAN) used weak criteria. In HEARSAY-II,

criteria for selecting from a number of possible word sequences might be

the number of words in the sequence. In PROTEAN, the criteria might
be the number of satisfiable constraints. The knowledge is weak because

it either does not rely heavily on task specific criteria or the task-specific

criteria are very simple. Hypothetical, knowledge-rich criteria might be:

"select a word sequence beginning with a preposition following a noun
clause" or "select a secondary structure containing at least one trypto-

phan."

In the recognition paradigm, the knowledge base must be scanned
for a piece of knowledge that can be applied to the current situation.

This is called the match step. (Sometimes this is referred to as "search,"

in a general sense, but this causes confusion.) Each problem-solving step

consists of a match step followed by the application of a state-transform-

72 Blackboard Systems XVI

ing operator. If a piece of knowledge is encoded as conditional if-then

rules, it not only contains what the next state would be, but also the

situation under which the state transformation can occur. Most current

expert systems are recognition systems. 10

In HASP the search paradigm was tried and failed because there was
no generator of the solution space (see Section C3). HASP was one of the

first complete recognition systems. It consisted of fifty knowledge sources,

each with an average often rules. The active knowledge sources consisted

of domain- and situation-specific pieces of knowledge that "knew" what
to infer or what action to take for each intermediate state. In addition,

it had a plan for the application of the knowledge in the form of control

knowledge sources.

We now elaborate on the basic differences in blackboard architectures

attributable to,the differences between the search and recognition meth-

ods of problem solving.

Search

As stated earlier, search requires at least a generator of the solution

space and an evaluator. The evaluation can be of two types: a local look-

ahead that evaluates possible future states and a global evaluator that

selects the best operator based on the information provided by the look-

aheads and the overall state of the solution. In the HEARSAY-II archi-

tecture, the action part of the knowledge source was used as a generator.

(See Figure E-l.) Upon its execution, it placed new hypotheses on the

blackboard. The condition part served as a look-ahead for the action part.

Scheduling queue

T~T

Scheduler

Select an activity

blackboard

changes

Execute KS action

(Generator)

Execute KS precondition

(Look-ahead evaluator)

Generatable blackboard changes

Figure E-l. Control construct used for search.

10 If-then rules are not necessary for a recognition system, and conversely the mere use of if-then

rules does not imply a recognition system. The problem-solving approach is independent of the knowl-

edge representation. (See Article XVIII in this Volume.)

E Summary: Elements of Blackboard Architecture 73

When executed, it determined the state changes that would be produced

if the action part were to be executed. The scheduler decided on the next

activity (either to look ahead or to generate changes); that is, it deter-

mined the solution path by evaluating the current state of the solution

and a set of possible future states.

In this scheme, the global evaluation criteria were hidden inside the

scheduling module. The PROTEAN control structure is an attempt to

make explicit the different activities involved in controlling search.

These control activities are hierarchical in nature, consisting of the

generation and evaluation of abstract strategies, tactics, and specific

action within the context of a given solution state.

Within the search paradigm the quality of the solution may depend

on the amount of search conducted, which is also a function of the quality

of knowledge available for evaluation. The premise in HEARSAY-II and,

especially in PROTEAN, is that a favorable tradeoff can be made between

the amount of control knowledge and knowledge source activations

—

that is, spending time on evaluation pays off in reducing search and in

improving the quality of the solution. Whether this tradeoff is generally

true and whether the PROTEAN approach is the best way to achieve this

still remain to be seen.

Recognition

The recognition problem-solving paradigm is conceptually simpler

than the search paradigm (see Figure E-2). Here the knowledge base is

scanned for a piece of knowledge that can be applied to a state. Of course,

many pieces of knowledge may be applicable for a given state, and a

Scheduling queue Select an event

Select KS

blackboard changes Execute KS
(situation recognizer

and action)

Figure E-2. Control construct used for recognition.

74 Blackboard Systems XVI

decision must be made whether to apply all the pieces of knowledge or

a subset of them. This control decision is also knowledge based. Thus
there is a certain amount of uniformity between the way decisions are

made about which knowledge to apply and about the manipulations of

the solution-space objects. In recognition-oriented blackboard systems,

the condition part of the knowledge source specifies the situations under

which it can contribute to the solution state. The action part of the

knowledge source changes the solution state. Since the applicable knowl-

edge source for any given situation is predetermined, in the sense that

knowledge sources are always associated with situations, the control

module focuses on the selection of the best region of the solution space

(the specific situation) to process next.

In this approach no distinction is made between control and domain-

specific knowledge. However, since a domain knowledge source looks at

blackboard data and a control knowledge source looks at a description

of changes to the blackboard, in addition to the specifics of the changes,

they are in fact different—we might say that the control knowledge

source has a wider scope. Because control knowledge is different from

other knowledge sources, systems can be designed to exploit the differ-

ence. Informal plans, can be either built into the control structure or

dynamically generated. For example, in HASP, the control "plan" was
the cyclic selection and execution of knowledge sources at different levels

of control. In PROTEAN, control plans for the execution of the domain
knowledge sources were dynamically created.

E3. Component Design

Some of the architectural differences between HEARSAY-like and
HASP-like systems can be attributed to the different computational meth-

ods inherent in the use of search and recognition paradigms. Many
differences have their basis in different domain and task characteristics.

Some of these were described with each application in Section D. To

summarize, we now describe different designs that have been used for

the major components of the blackboard systems.

Blackboard Structure

In addition to serving as a medium of communication, and thus of

cooperation, between the knowledge sources, the blackboard represents

a design of the solution. Since it is a data structure, we could not quite

call it a problem-solving plan, yet in the process of problem formulation

E Summary: Elements of Blackboard Architecture 75

the structure of the blackboard serves as the backbone of the system

design. It is where the design process begins. The blackboard partitions

the solution space, and these partitions dictate what sources of knowl-

edge will be needed to solve the problem. What constitutes a solution,

what intermediate solutions are needed or available, and what relation-

ships exist among hypotheses must all be expressed within the black-

board structure. Designing the blackboard is the first step in the divide-

and-conquer process.

From the standpoint of structure, the blackboard has very little

variability. It is organized into levels corresponding to the partitions of

the solution space. These form either abstraction or compositional hier-

archies. The objects on a given level share the same properties, or vocab-

ulary.

Some of the components and considerations that go into the design

of the blackboard data are listed here.

Levels. No limit is imposed on the number of levels in a hierarchy.

In all the systems to date, the levels and templates for the nodes on the

level (the attributes that the objects on the level will have) are created

before run-time. This means that levels are not created dynamically. For

discovery and learning tasks, the dynamic creation of levels as new
concepts and constructs will be needed.

As a data structure, the level object holds information about the

nodes on its level. For example, it must keep the names of the attributes

of the nodes and maintain housekeeping information such as the number
of nodes on the level at any given time. For these reasons, it is often

convenient to view the level object as a class, and the nodes on the level

as the instances of the class. This has the further advantage that nodes

can inherit default property values at node creation time. Also, operators

(methods) associated with creation and destruction of nodes can be stored

with the level object.

Nodes. Nodes are objects on a level; for example, a particular word
in a sentence is a node on the word level in HEARSAY-II. Nodes are

created dynamically as they are needed. The vocabulary relevant to the

level of analysis are represented as attributes and values; each node on
the level share the same attributes (see Figure E-3). In an object-oriented

programming language slots and slot-values can be used, and there is

nothing to preclude the use of record structures available in other lan-

guages.

Attribute/value. The value of an attribute can have multiple fields;

for example, credibility value and/or time stamps, as shown above. In

HASP, both a weight and a time stamp were needed for some values (see

Figure D-7). Often it is useful to maintain value history. This is espe-

cially true in continuous-input signal understanding programs in which

temporal trends are important.

76 Blackboard Systems XVI

Aircraft-Node-2
Type: fighter
Position:((X 10) (Y 23) (Z 1 5000)(Weight .7) (Time 20:34))
Speed: ((Knots 550) (Weight .8))

Heading: ((Magnetic 120))
Supported-by : Emitter-Node-1 5

Figure E-3. A node example.

Knowledge
Source

Knowledge
Source

Figure E-4. Blackboard panels.

Panels. There may be more than one hierarchy in the blackboard.

Called blackboard panels, they are useful when more than one hierarchy

is need to represent the solution-state data (see Figure E-4). They were

first used in CRYSALIS (Terry, 1983; see also, Article VII.C3, Vol. II),

which had an electron-density data hierarchy and a protein structure

hierarchy. Multiple hierarchies were also used to represent plans and
plan creation states in the OPM system (Hayes-Roth et al., 1979).

In PROTEAN, two of the three blackboard panels, the control plan

and the solution panels, represented information needed by two closely

coupled tasks, that of planning the application of constraints and that of

applying constraints. The third panel held control data.

TRICERO had three self-contained blackboard systems. One note of

interest in TRICERO is that messages were passed between each of the

E Summary: Elements of Blackboard Architecture 77

subsystems using nodes on the message level of each blackboard as mail

boxes. This allowed for the uniform processing of externally and inter-

nally generated hypotheses.

Knowledge Source Structures

A knowledge source represents knowledge needed to solve a sub-

problem. All knowledge sources are event-triggered agents—the activa-

tion of knowledge sources are solution-state dependent, rather than being

process dependent. This means that the most important thing about the

design of knowledge source is that it must be able to evaluate the current

state. In all blackboard systems, knowledge sources are designed with a

condition part and an action part. When portions of the current state

satisfy the condition part, that knowledge source becomes triggered. The
condition part may be multistaged as in PROTEAN—a triggered knowl-

edge source must pass other conditions before the action part can be

executed. Upon its execution the action part produces a new state.

In HEARSAY-like search-oriented systems, the action and the con-

dition parts are separately schedulable entities. The condition part serves

as a look-ahead and the action part serves as a generator. In HASP-like

recognition systems, the condition part serves as a situation filter for the

action part and both parts are in one module.

Condition part. The condition part can make a context-indepen-

dent or context-dependent evaluation of an event (a change to the black-

board). In HASP, possible changes to the blackboard are categorized into

different event types. The name of the event type was used to record a

blackboard change. It was also used as a triggering condition in the

condition part of the knowledge sources. For example, if a blackboard

modification was of a type "new-source-found," all the knowledge sources

whose condition part contained the token "new-source-found" were exe-

cuted. In this type of construct, the condition part is context independent

because regardless of what the new-source might be, the knowledge
sources would be executed. In PROTEAN, since both trigger and precon-

dition parts are arbitrary predicates, the condition parts of the knowledge
source could do a more elaborate state evaluation. For example, a knowl-

edge source trigger part may stipulate that a new source be found, and
the precondition part may stipulate that the new source be a diesel

submarine whose speed is greater than 10 knots.

If the action part of the knowledge source is a collection of rules, the

condition part of the knowledge source can be viewed as a high-level

filter for the rule set. Rules have their own condition parts that serve as

more detailed filters for the actions. Think of a condition part design as

78 Blackboard Systems XVI

consisting of multistaged filters; for example, a context-independent filter

followed by a number of context-dependent niters. (See Figure E-5).

Action part. The action part of a knowledge source modifies the

current blackboard state. With the exception of HEARSAY-II, which used

procedures, all the example systems used rule sets for the body of the

knowledge sources. Each knowledge source can make one or more
changes to the blackboard. In a rule-based knowledge source, multiple

changes can come from multiple firing of rules or from multiple actions

on the right-hand side of rules.

The changes to the blackboard are new hypotheses (and new data)

or modifications to existing hypotheses. Changes can also be made to the

control information, as in the case of PROTEAN. In addition to changes

to intermediate solutions on the blackboard, state changes can occur

from the posting of goals and subgoals to be achieved or posting of model-

based expectations of changes to occur in the future, as in HASP.

Static knowledge. The discussion of knowledge in blackboard sys-

tems has been confined to knowledge sources, which are active knowl-

edge. Active knowledge consists of algorithms and heuristic rules that

directly transform one state of the world into another state, that is,

change the blackboard. Other types of domain knowledge are awkward
to represent in algorithms or rules, such as definitions and taxonomies.

Such "static" knowledge is best represented as objects, frames, or tables.

In HASP, the knowledge about ships was represented in an object hier-

archy; in HEARSAY-II, the legal word sequences were represented in a

network. The AGE [Nii and Aiello, 1979) and ESHELL (Fujitsu Labs,

1987) skeletal systems integrate object-oriented knowledge representa-

tion and rules by making objects accessible from rules.

Knowledge Source

Condition part Action part

trigger change bb

precondition 1 change bb

precondition 2 change bb

Figure E-5. Knowledge source form.

Summary: Elements of Blackboard Architecture 79

Control

Control is the most complex component of blackboard systems and
has the most variability in design. The basic function of the control

component is to select and apply knowledge sources (or condition and
action components of knowledge sources) within appropriate contexts.

Major design differences occur in the following areas:

1. Schedulable entities—whether parts of the knowledge sources are

separate schedulable entities or not.

2. Scheduling—whether the focus of attention is based on events or on

knowledge sources.

3. Noticing—who notices the change in the blackboard.

4. Control data—where and in what form the control data are stored.

Schedulable entities. In search-oriented systems, the condition

part and the action part of the knowledge sources are scheduled sepa-

rately. That is, the scheduler decides whether it wants to generate new
hypotheses or do more look-aheads. In recognition systems, each knowl-

edge source is scheduled as a single entity. If the condition part is

satisfied, the action part is immediately executed. Scheduling structures

arising from the two basic types are shown in Figure E-6.

As in HEARSAY-II, scheduling in PROTEAN was multistaged. When
a knowledge source trigger was satisfied, the knowledge source was
instantiated and the precondition part evaluated. If it was satisfied, the

action part of the knowledge source became executable and was put on

an agenda of pending activities. A knowledge source was selected for

J-jL
Control

data

1

KS action

1

KS
condition

KS action

F

Scheduler
Control

data

KS r
condition

action

KS

condition

action

1r

». Scheduler

Recognition

Figure E-6. Basic scheduling approaches.

80 Blackboard Systems XVI

execution from those in executable states. HEARSAY-II can be viewed as

a special case of a PROTEAN-like, multistaged scheduler design.

Note that if a state change is possible between the time a condition

part and its action part is executed, the condition part must be reeval-

uated. Both HEARSAY-II and PROTEAN have this characteristic because

both the condition and action parts are schedulable entities.

Scheduling. There are two approaches to select the next thing

to do:

1. A knowledge source, or knowledge sources, can be selected on the

basis of the current state of the solution, or more specifically, on the

latest changes to the solution state. Called event-oriented scheduling,

the focus is on selecting the best solution island on which to base

further computation. Most recognition systems (for example, HASP
and TRICERO) take this approach. This is because in recognition

systems, once a blackboard change is selected, the knowledge source

that can process it is predetermined. (See Figure E-2.)

2. A knowledge source can be selected on the basis of what the knowl-

edge source can contribute to the current state. This approach, called

knowledge-oriented scheduling, is taken most often in search systems

(for example, HEARSAY-II). The schedulable components of knowl-

edge sources are the look-ahead evaluators and the generators of the

solution space. The basic function of the scheduler in the control

component is to evaluate the global situation and decide what to do

next. (See Figure E-l.)

In reality, many problems can gain from a mixed strategy of search

and recognition and BB1, for example, allows for both event-oriented and
knowledge-oriented scheduling.

Posting and noticing blackboard changes. What changes are

posted and who notices these changes differ from system to system. In

one approach (for example, in HEARSAY-II and PROTEAN), every change

to the blackboard must be considered by the control module. Of course,

if every change to the blackboard is a candidate for a solution, evaluating

each one is essential. On the other hand, recognition systems such as

HASP and TRICERO only process those blackboard changes for which
there are associated knowledge sources. This type of event discrimination

is taken one step further in TRICERO—the events are explicitly specified

by the programmer for posting, and some changes never become events.

For example, if a new piece of evidence is found to support a hypothesis,

but the only consequence is that the credibility rating is increased, this

change may not become an event. What blackboard changes are to be

considered as events are application dependent.

Control data. Control information needed to drive the system

always resides outside the blackboard containing the solution state. In

HASP and TRICERO, different types of changes to the blackboard (mod-

E Summary: Elements of Blackboard Architecture 81

ification to nodes, goal posting, and so on) were stored in separate data

structures. Each event was a recording of the type of change, the node

that was modified, the new values, and the rule that made the modifi-

cation. In HEARSAY-II, the control data was stored on a global list, the

scheduling queue. The items on the queue were of two types—the stim-

ulus-response frame generated by the condition part that pointed to its

action part and all the places on the blackboard it could be applied to,

and the names of the condition parts of knowledge sources. Because

HASP-like systems focus on event scheduling, the control data are pri-

marily about events; in HEARSAY-like systems, which focus on knowl-

edge source scheduling, the control data are primarily about knowledge

sources.

In PROTEAN, control was viewed as a problem separate from the

primary task of satisfying constraints among pieces of protein. The con-

trol problem was to determine what domain knowledge source to apply

and to what area of the blackboard. The control problem was formulated

as a planning subproblem, and its solution state appeared on another

blackboard, called the control panel. All data dealing with control were

posted on the control-data panel and were shared by both the control-

planning and the domain knowledge sources.

Domain-specific knowledge, meta-knowledge, and control

knowledge. The distinction between domain-specific knowledge and
meta-knowledge is not always clear cut. Meta-knowledge, knowledge

about knowledge, is often thought to be weak, general, and domain
independent. But, in both search and recognition systems, meta-knowl-

edge is often treated as control knowledge about what to do next, and
this type of knowledge is often very domain specific. For example, in

PROTEAN the meta-knowledge "prefer long coils over short coils" is

domain specific—it makes no sense outside the particular application. In

general, making distinctions between domain-specific knowledge and
meta-knowledge does not contribute much to the design of the system;

rather, it tends to distract. Instead it is preferable to organize knowledge
sources hierarchically according to some control hierarchy. In most sys-

tems, the control hierarchy partitions the knowledge sources into those

that deal directly with the emerging solution states and those that deal

with the process history or problem-solving states, called control states.

The knowledge sources that operate on control states are called control

knowledge sources. Some systems such as HASP, CRYSALIS, and OPM
had more refined levels in the control hierarchy.

Summary

For a given application, a blackboard system can be designed by
selecting from different constructs for the blackboard, knowledge sources,

and control modules just described. An application could also be built on

82 Blackboard Systems XVI

one of the skeletal blackboard systems. We mentioned three in passing

—

AGE, ESHELL, and BB1. AGE was used to build TRICERO and BB1 was
used to build PROTEAN. The description of several skeletal blackboard

systems, AGE, BB1, HEARSAY-III, GBB, MXA, and BLOBS, can be found

in Engelmore and Morgan (1988). A skeletal system is a programming
environment with predetermined architecture for blackboard systems.

The architecture is generally parameterized allowing the user some flex-

ibility in the final details of the application system design.

One of the key contributors to design differences in blackboard sys-

tems is the problem-solving paradigm. Whether the problem is formu-

lated as a recognition or search problem, whether there is enough task

knowledge to solve a problem, and whether weak methods and knowledge

must be used affect the basic structure and the behavior of blackboard

systems. Search-oriented formulation of applications tends to favor

HEARSAY-II-like designs, whereas recognition-oriented formulation

tends toward HASP-like designs. Other design choices—whether a knowl-

edge source is a set of rules or a procedure, whether there are multiple

data hierarchies in the blackboard, and whether attributes values

include certainty weights—depend on the requirements inherent in the

application problem.

Chapter XVII

Cooperative Distributed Problem Solving

Edmund H. Durfee—University of Michigan
Victor R. Lesser—University of Massachusetts

Daniel D. Corkill—University of Massachusetts

CHAPTER XVII: COOPERATIVE DISTRIBUTED
PROBLEM SOLVING

A. Overview I 85
B. An Example of CDPS I 95
C. Important CDPS Approaches and Empirical Investigations I 106

1. Negotiation I 107

2. Functionally Accurate Cooperation I 116

3. Organizational Structuring I 122

4. Multiagent Planning I 134

5. Sophisticated Local Control I 137
6. Formal Frameworks I 143

D. Conclusion I 146

A. OVERVIEW

Cooperative distributed problem solving (CDPS) studies how a loosely

coupled network of problem solvers can work together to solve problems

that are beyond their individual capabilities. Each problem-solving node

in the network is capable of sophisticated problem solving and can work
independently, but the problems faced by the nodes cannot be completed

without cooperation. Cooperation is necessary because no single node

has sufficient expertise, resources, and information to solve a problem.

Different nodes might have expertise for solving different parts of an

overall problem. For example, if the problem is to design a house, one

node might have expertise on the strength of structural materials,

another on the space requirements for different types of rooms, another

on plumbing, another on electrical wiring, and so on. Different nodes

might have different resources. For example, some might be very fast at

computation, others might have connections that speed communication,

and still others might have more memory. Finally, different nodes might

have different information or viewpoints on a problem. For example,

geographically separated nodes that are monitoring aircraft movements
will have different perceptions because their sensors will pick up differ-

ent signals. Only by combining information about their views will they

be able to form an overall picture of aircraft movements.

CDPS nodes cooperatively solve a problem by using their local exper-

tise, resources, and information to individually solve subproblems, and
then integrating subproblem solutions into an overall solution. As they

work together, the nodes face two very important constraints. First,

because their subproblem solutions must eventually be integrated, nodes

are constrained to form individual solutions that will fit into an overall

solution. Even in situations where this overall solution is not represented

at any one node, the distributed components of the solution must still be

integrated by their mutual consistency. Thus the nodes must coordinate

their asynchronous and parallel problem solving to build compatible

solutions to their interdependent subproblems.

The second constraint is that nodes are limited in how much they

can communicate. Limited internode communication stems from either

inherent bandwidth limitations of the communication medium or

because of the high computational costs of packaging and assimilating

information to be sent and received among nodes. Limited communica-
tion between nodes that are working on interdependent subproblems

85

86 Cooperative Distributed Problem Solving XVII

means that nodes must rely on sophisticated local reasoning to decide

on appropriate actions and interactions. Each node must be capable of

modifying its behavior as circumstances change and planning its own
communication and cooperation strategies with other nodes.

Why CDPS?

From this description of CDPS, we might ask: If coordination among
problem solvers is difficult, why not build a single, more powerful prob-

lem solver to perform the functions of a CDPS network? In short, why
CDPS?

One answer to these questions has a technological basis. Advances
in hardware technology for processor construction and interprocessor

communication make it possible to connect large numbers of sophisti-

cated, yet inexpensive, processing units that execute asynchronously.

Interconnected processors can be a cost-effective way to provide the com-

putational cycles required by AI applications. A range of connection

structures is possible, from a very tight coupling of processors through

shared or distributed memory, to a looser coupling of processors through

a local area communication network, to a very loose coupling of geo-

graphically distributed processors through a communication network.

Regardless of how tightly they are coupled, the processors must use their

communication medium selectively; otherwise, they might overwhelm
each other with more information than they can process. Whether
because of limited communication bandwidth or limited processing

power, the processors cannot share all of their information but must be

able to work effectively together anyway.

A second answer is that many AI applications are inherently dis-

tributed. Some are spatially distributed; for example, interpreting and
integrating data from spatially distributed sensors or controlling a set

of robots that work together on a factory floor. Other applications are

functionally distributed, for example, bringing together a number of

specialized medical-diagnosis systems on a particularly difficult case or

developing a sophisticated architectural expert system composed of indi-

vidual experts in specialties such as structural engineering, electrical

wiring, and room layout. Finally, some applications are temporally dis-

tributed (pipelined), as in a factory where production lines consist of

several work areas, each having an expert system responsible for sched-

uling orders (Figure A-l).

A CDPS network that manages the distribution of data, expertise,

processing power, and other resources has significant advantages over a

single, monolithic, centralized problem solver. These advantages include:

faster problem solving by exploiting parallelism; decreased communica-
tion by transmitting only high-level partial solutions to nearby nodes

Overview 87

• Spatial decomposition (of information)

in a distributed sensor network:

1 « :::::::: ;(

• Functional decomposition (of

knowledge) in a group of experts:

C^brain surgeoTi

^^cardiologist psychologisT^}

A Distributed scheduler for multilayer,

printed board line:

ORDERS

X
MATERIALS

X
A

REQUEST FOR
MATERIALS

scheduler^ /scheduler^ /schedulers /schedulers /schedulers /scheduler^ /scheduler
machining/ V. plating J V. brushingy V. printing J K coating J ^inspection/ \packaging

= MACHINES

Figure A-l. Examples of spatial, functional, and temporal

distribution.

88 Cooperative Distributed Problem Solving XVII

rather than raw data to a central site; more flexibility by having problem

solvers with different abilities dynamically team up to solve current

problems; and increased reliability by allowing problem solvers to take

on the responsibilities of problem solvers that fail.

A third answer stems from the principles of modular design and
implementation. The ability to structure a complex problem into rela-

tively self-contained processing modules leads to systems that are easier

to build, debug, and maintain and that are more resilient to software

and hardware errors than a single, monolithic module. For example, the

general field of medical diagnosis is complicated and extensive. To man-
age the field, medical experts divide it (and themselves) into many spe-

cialties. If we wanted to build a general medical-diagnosis system, we
could exploit the modularity of the field, building knowledge-based sys-

tems for each specialty in parallel and with a minimum of interaction

between systems. Because they are more focused, debugging and main-

taining these smaller systems would be much simpler than for a single,

colossal system. Clearly this would be a route to implementing such

comprehensive systems, provided that the underlying CDPS technology

was in place so that the separate systems could work together as human
specialists can.

A fourth answer has an epistemological basis. Cooperation, and more
generally coordination, are complex and little understood phenomena.
One approach to validating theories about such phenomena is to develop

and test computer models that embody those theories. Just as AI systems

are used to validate theories of problem solving and intelligence in

linguistics, psychology, and philosophy, CDPS systems can help validate

theories in sociology, management, and organizational theory. Moreover,

the technology developed in these studies could lead to more effective

use of computers as tools to improve coordination among people.

Finally, a fifth answer has a societal foundation. One of the goals of

AI is to develop systems that become part of our everyday world. These

systems would perform many of the mundane and boring tasks that

require human intelligence, thereby freeing up human intelligence so

that it can be reserved for more exciting meditations. To be accepted,

these AI systems must interact with people on even terms—if people

must become "AI literate" to use them, the systems will not be accepted

into human society. Therefore, AI systems must be able to flexibly and
intelligently cooperate and coordinate with each other and with people.

Although this long-term goal remains distant, CDPS represents first steps

toward it.

An Overview of CDPS Goals and Applications

CDPS, like other areas of AI, realizes theoretical advances in appli-

cations. In this section, we describe the general goals of CDPS, some tasks

A Overview 89

in which achieving these goals is important, and some specific technical

problems that must be solved for CDPS to succeed. Four general goals

for CDPS are presented in Figure A-2 (Durfee et al., 1987). Depending

on the kind of application, some of these goals might be more important

than others. The differences are highlighted by considering several of

the application domains of CDPS research.

Distributed interpretation. Distributed interpretation applica-

tions require the integration and analysis of distributed data to generate

a (potentially distributed) semantic model of the data. Application

domains include distributed sensor networks (Lesser and Erman, 1980;

Lesser and Corkill, 1983; Mason et al., 1988; and Wesson et al., 1981)

and communication network fault diagnosis (Conry et al., 1988). In these

applications, a central problem solver is inappropriate because it would

be less reliable than a network, it would not exploit the potential par-

allelism in processing data from different regions, and it would require

a substantial communication bandwidth to collect the large amounts of

raw sensory data. A CDPS network is more reliable (performance

degrades gracefully if individual nodes fail), would work on different

parts of interpretations in parallel, and would communicate a relatively

small number of high-level interpretations. However, to realize these

benefits, the individual problem solvers in the network must each form

partial solutions that are globally relevant. The nodes must selectively

exchange enough information to allow each to decide what data to inter-

pret in order to form such partial solutions. They also must coordinate

the selective exchange of partial interpretations so that they can help

each other resolve ambiguities and can integrate local results into com-

plete interpretations.

Distributed planning and control. Distributed planning and con-

trol applications involve developing and coordinating the actions of dis-

tributed effector nodes to perform desired tasks. Application domains
include distributed air-traffic control (Findler and Lo, 1986; and Thorn-

dyke et al., 1981), cooperating robots, remotely piloted vehicles (Steeb,

1986), distributed process control in manufacturing (Smith and Hyny-

1. Increase the task completion rate through parallelism.

2. Increase the set or scope of achievable tasks by sharing resources

(information, expertise, physical devices, and so on).

3. Increase the likelihood of completing tasks (reliability) by undertaking

duplicate tasks, possibly using different methods to perform those

tasks.

4. Decrease the interference between tasks by avoiding harmful

interactions.

Figure A-2. Generic goals of cooperation.

90 Cooperative Distributed Problem Solving XVII

nen, 1987; Parunak et al., 1985; and Parunak, 1987), and resource allo-

cation/control in a long-haul communication network (Conry et al., 1985;

and Goyal and Worrest, 1988). Distributed planning and control appli-

cations often involve distributed interpretation to determine the appro-

priate node actions. As in the distributed interpretation domains, data

are inherently distributed among nodes, in this case because each has its

own local planning database, capabilities, and view of the world state.

Moreover, the combinatorics of planning potential activities for a large

number of nodes working in parallel can be overwhelming. Even if it

were possible, reliance on a central controller would generally lead to a

slow system (because of communication delays between controller and

controllees), and it would not be robust. A CDPS approach reduces these

problems, but once again, because no single node has an overall view of

the network, nodes must work together to coordinate their actions and
interactions.

Cooperating expert systems. One means of scaling expert-system

technology to more complex and encompassing problem domains is to

develop cooperative interaction mechanisms that allow multiple experts

systems to work together to solve a common problem. Illustrative situ-

ations include controlling an autonomous vehicle that uses separate

expert systems for system status, mission planning, navigation, situation

assessment, and piloting (Arkin et al., 1987; and Smith and Broadwell,

1987); or negotiation among expert systems of two corporations to decide

price and/or delivery time on a major purchase. The heterogeneous char-

acter of cooperating experts means that individual agents might have
different goals, different approaches to problem solving, different eval-

uation criteria for solutions, and different internal representations of

problems and solutions. Getting them to cooperate is not simply a matter

of giving them a common communication language. For them to reconcile

different solutions to the same problem, they need detailed models of

each other—their capabilities, goals, plans, and preferences—to form a

compromise solution, or to reevaluate their solution criteria to coopera-

tively generate a completely new solution (Lander and Lesser, 1988).

Computer-supported human cooperation. Computer technology

promises to provide people with more and better information for making
decisions. However, unless computers also assist people by filtering the

information and focusing attention on relevant information, the amount
of information can become overwhelming (Chang, 1987; Huhns, 1987;

and Malone, 1988). By building Al systems with coordination knowledge,

we can remove some of the burden from people. Domains where this is

important include intelligent command and control systems and multi-

user project coordination (Croft and Lefkowitz, 1988; Mazer, 1987; Niren-

burg and Lesser, 1988; and Sathi et al., 1986). By building networks of

CDPS computer assistants for the people in an organization, we can

A Overview 91

improve coordination by allowing these assistants to solve (initially rou-

tine) coordination problems such as scheduling meetings or routing mes-

sages to suitable people. The advantages of this CDPS approach, besides

releasing humans from many coordination tasks, are that the assistants

can work in parallel, can dynamically team up to coordinate the people

they assist, and can work behind the scenes (in the background and at

night) to share relevant information for making more coordinated deci-

sions.

Cognitive models of cooperation. Although the designers of

CDPS approaches have consistently used insights about human cooper-

ation to build similar capabilities into their systems, little research to

date has worked in the opposite direction. However, AI methods have in

the past served to implement and validate theoretical models of human
intelligence, and CDPS provides a similar methodological framework for

testing theories about human cooperation and coordination. For example,

an important and common aspect of coordination among humans is nego-

tiating through compromise (Sycara, 1988). Developing mechanisms that

emulate human methods for coordinating their interactions can improve

our understanding of humans, and in particular about how humans
iteratively converge on decisions about how to share resources and avoid

detrimental interactions.

These application areas provide the context for refining the general

goals of cooperation (Figure A—2) into specific goals. We can list several

specific goals (where the numbers in parentheses refer to the correspond-

ing generic goals), and indicate one of possibly many application domains
where they arise:

• Increase the solution creation rate by forming subsolutions in parallel (1).

For example, distributed interpretation and distributed planning involve

building partial interpretations or partial plans in parallel.

• Minimize the time that nodes must wait for results from each other by

coordinating activity (1 and 4). For example, in distributed interpretation,

the nodes should coordinate how, when, and where to exchange local inter-

pretations to quickly construct an overall interpretation.

• Improve the overall problem solving by permitting nodes to exchange

predictive information (2). For example, an expert system for room layout

might quickly generate and share a rough view of a kitchen, so that the

expert systems for wiring and plumbing can better predict where in the

room they should concentrate.

• Increase the probability that a solution will be found despite node failures

by assigning important tasks to multiple nodes (3). For example, in dis-

tributed planning, the nodes might be organized into small groups, each

with a leader to coordinate the group. But the leader's information and
expertise should also be available in one or more of the group members,
just in case the leader becomes disabled.

92 Cooperative Distributed Problem Solving XVII

• Improve the use of physical resources by allowing nodes to exchange tasks

(2). For example, in computer-supported human cooperation, some assis-

tants might be better suited for mail routing (have better network con-

nections), whereas others might be better at scheduling meetings (have

more computing capability for exploring possible schedules). Assistants

should be able to exchange tasks to take advantage of each other's

strengths.

• Improve the use of individual node expertise by allowing nodes to exchange

goals, constraints, partial solutions, and knowledge (programs) (2). For

example, cooperating expert systems should exchange information about

constraints to focus how each applies its expertise to the current problem.

• Reduce the amount of unnecessary duplication of effort by letting nodes

recognize and avoid useless redundant activities (4). For example, in dis-

tributed interpretation, nodes with overlapping sensors and identical

expertise should not interpret data about the same phenomena if their

interpretations are likely to be redundant.

• Increase the confidence of a (sub)solution by having nodes verify each

other's results through rederivation using their individual expertise and

information (2 and 3). For example, in distributed interpretation, nodes

with overlapping sensors but different expertise might each interpret their

shared data to make sure they get consistent results.

• Increase the variety of solutions by allowing nodes to form local solutions

without being overly influenced by other nodes (1 and 4). For example, in

distributed interpretation, each node should not necessarily ignore impor-

tant local information just because it is incompatible with preferred net-

work interpretations—the network might be wrong!

• Reduce the communication resource usage by being more selective about

what messages are exchanged (4). For example, in modeling human nego-

tiation through compromise, the nodes should not exchange all the details

about how they came up with a proposal, but instead they should exchange

just enough information to converge on an agreeable compromise.

These specific goals suggest that maximizing one specific dimension

of effective cooperation, such as speed of solution, makes it impossible to

achieve effective cooperation along other dimensions, such as limiting

internode communication, or high reliability in case of hardware failure.

Thus effective CDPS network control involves balancing the efficient use

of communication and processing resources, high reliability, responsive-

ness to unanticipated situations, and solution quality based on applica-

tion-specific criteria. The emphasis is shifted from optimizing the

individual activities in the network to achieving an acceptable perfor-

mance level of the network as a whole. This approach is similar to the

concept of "satisficing" developed by March and Simon (1958) to describe

human organizational problem solving.

Network coordination is difficult in CDPS networks because limited

A Overview 93

internode communication restricts each node's view of the network prob-

lem-solving activity. Network control must be able to tolerate the lack

of up-to-date, incomplete, or incorrect control information due to delays

in the receipt of information, the high cost of acquisition and processing

of the information, and errors in communication and processing hard-

ware. Furthermore, it is important that network coordination policies do

not consume more processing and communication resources than are

saved by the increased problem-solving coherence. Thus the cooperative

problem solving necessary for effective network control may itselfrequire

a satisficing approach. Corkill and Lesser (1983) suggest that even in

networks composed of a modest number of nodes, a complete analysis to

determine the detailed activities at each node is impractical; the com-

putation and communication costs of determining the optimal set and

allocation of activities far outweigh the improvement in problem-solving

performance. Instead, they suggest that coordination in CDPS networks

must sacrifice some potential improvement for a less complex coordina-

tion problem. Problem solving and coordination must be balanced so that

the combined cost of both is acceptable.

What CDPS Is Not

Networks of cooperating nodes, both conceptual and actual, are not

new to AI. However, the relative autonomy and adaptability of the prob-

lem-solving nodes—a direct consequence of limited communication—sets

CDPS networks apart from approaches such as the Actor framework
(Hewett, 1977), HEARSAY-II (Erman et al., 1980), the ETHER language

(Kornfeld, 1979), the BEINGS system (Lenat, 1975), CAOS (Schoen,

1986), Poligon (Rice, 1986), and Connectionism (McClelland et al., 1987).

In all of these systems, knowledge is compartmentalized so that each

actor or "expert" is a specialist in one particular aspect of the overall

problem-solving task. The cooperative behavior exhibited by these sys-

tems stems from either a centralized scheduling mechanism or from

predefined interactions between tightly coupled, simple processing ele-

ments. Each "expert" has little or no knowledge of the problem-solving

task as a whole or of general strategies for communication and cooper-

ation. As a result, an expert cannot function outside the context of the

other experts in the system nor outside specific communication and coop-

eration protocols specified in advance by the system designer. Metaphor-
ically speaking, an element in these networks is like a small piece of the

brain: it is not intelligent alone, but intelligence emerges from a well-

structured and tightly connected collection of such elements.

In contrast, each node in a CDPS network possesses sufficient overall

problem-solving knowledge that its particular expertise (resulting from
a unique perspective of the problem-solving situation) can be applied

94 Cooperative Distributed Problem Solving XVII

and communicated without assistance from other nodes in the network.

This does not imply that a node functions as well alone as when coop-

erating with other nodes—internode cooperation is often the only way of

developing an acceptable overall solution—but every node can at least

formulate a partial solution using only its own knowledge. Each node

also possesses significant expertise in communication and control strat-

egies. This knowledge frees the network from the bounds of designed

protocols and allows nodes the flexibility to develop their own commu-
nication and cooperation strategies dynamically. Appealing to a different

metaphor, an element in a CDPS network is like a person who is part of

a team. Each person can perform well with minimal intervention from

teammates, but the team as a whole performs well only when the people

coordinate their individual actions.

CDPS also differs significantly from distributed processing. A dis-

tributed processing network typically has multiple, disparate tasks ex-

ecuting concurrently in the network. Shared access to physical or

other intelligent systems with their own goals? When deciding on an
action to take, an intelligent system should use whatever knowledge it

has to consider the potential actions of other intelligent systems and the

effects of those actions. Reasoning about other systems is important

whether the systems are cooperating, coexisting, or competing with each

other. CDPS, as its name implies, concentrates only on forms of cooper-

ation between AI systems. Note, however, that cooperation does not

assume benevolence between nodes (Rosenschein and Genesereth, 1985),

but instead that despite different viewpoints and goals, nodes must work
together to meet the demands of their environment.

CDPS also differs significantly from distributed processing. A distrib-

uted processing network typically has multiple, disparate tasks execut-

ing concurrently in the network. Shared access to physical or

informational resources is the main reason for interaction among tasks.

The goal is to preserve the illusion that each task is executing alone on

a dedicated system by having the network operating system hide the

resource-sharing interactions and conflicts among tasks in the network.

In contrast, the problem-solving procedures in CDPS networks work
together to solve a single problem. These procedures are explicitly aware
of the distribution of the network components and can make informed

interaction decisions based on that information. Unlike CDPS networks,

where cooperation among nodes is crucial to developing a solution, the

nodes in traditional distributed processing applications rarely need the

assistance of another node in carrying out their problem-solving function.

However, more recent research into distributed scheduling for a network
operating system has begun to take more of a CDPS perspective (Stan-

kovic et al., 1985).

B. AN EXAMPLE OF CDPS

To highlight the general issues and challenges in organizing an AI

computation for CDPS, we take a step back from examining specific

application domains. Consider instead a more general AI problem where

a knowledge-based system receives as input some data corresponding to

some current situation and applies its knowledge to that data to form a

response to the situation. This problem can be viewed as classification

(using the data to classify the situation), interpretation (using the data

to interpret the situation), diagnosis (diagnosing the situation based on

the data), and planning (if the data includes both current state and

desired goals, the system analyzes the data to respond with a plan for

achieving the goals). In short, most AI systems take data of some form

as input and apply knowledge to return some analysis of the data (e.g.,

an internal representation of the visual scene, medical situation, speech

signals, actions to achieve a result, or concepts contained in a natural

language dialog).

A Problem Solver

A single problem solver, nodei, receives a set of data A = {dj, df,

. . . , dT). The data reside in the node's working memory. The node's

knowledge base contains a set of operators for manipulating the data O t

= {Oj, Of, ... , O?}. Each operator contains knowledge about how pieces

of data fit together to form some intermediate conclusion. The interme-

diate conclusion is essentially a new piece of data that can be used by
other operators, and it is placed in the working memory. Thus data dj

and df can be used by operator oj to generate data dT
+1

. Because the

input to operators might be data given to the problem solver data gen-

erated by the problem solver, or (in a CDPS) data received from another

problem solver, we will not distinguish between data based on their

source. Finally, the node has an inference engine that decides, at any
given time, which of the operators that could be applied to the current

working memory should be invoked.

To give our problem solver flexibility, let us assume that the inference

engine can work in either a data-driven or in a goal-directed manner.
By data-driven, we mean that the node can choose to invoke an operator

simply because the data that it uses is in working memory. By goal-

directed, we mean that the node can identify a desired result and can

96 Cooperative Distributed Problem Solving XVII

give preference to operators that will eventually lead to that result. For

example, all but one piece of data needed by operator oJi might be in

working memory. The node can back-chain through the operators to

determine whether any of the operators that could currently be applied

to the working memory might create a new piece of data that might
eventually lead to the desired data for operator o'i. If so, the node can

use the goal of applying operator oJi to direct which operators it invokes,

rather than just choosing among the currently applicable operators based

on only their immediate results. Goal-directed reasoning is important in

CDPS because a problem solver often receives a partial result from

another node and must build a compatible partial result. After identi-

fying a desirable partial result, it uses goal-directed reasoning to find a

sequence of operators that will lead to that result.

The node searches through the possible consequences of the original

data until it generates an "acceptable" solution d\. In different applica-

tions, "acceptable" can mean different things, for example, achieving a

particular confidence rating, being validated by some (often human)
oracle, or covering the initial data most completely (Durfee, 1988). For

our example, we will assume that a problem solver decides when a

solution is acceptable based on how it covers the initial data, and we
will not be concerned with the details.

A Network ofProblem Solvers

This search process could be distributed among multiple nodes in

many ways. The working memory could be distributed, meaning that

the initial data might be divided among the nodes, and when the node

applies an operator, the resulting data appears only in that node's work-

ing memory. The combined contents of each node's working memory is

the world state (WS). Similarly each node maintains information about

how it is controlling and focusing the search (application of operators to

data). The combined information of the nodes concerning this focus of

control is called the focus-of-control-database (FCD). In a CDPS situation,

the WS and FCD would typically be distributed, sometimes with dupli-

cation of the same data at different nodes, or with inconsistent data at

the nodes. In addition, the changes a node makes locally to the WS and/

or FCD may or may not be propagated to other nodes.

Similarly, the knowledge base—the set of operators—could be dis-

tributed. The distribution affects the control decisions a node makes such

as whether it has the appropriate operators to locally process certain

data, or whether it must request some other node that has the operators

to process the data for it. Similarly the control decisions could be made
by some centralized scheduler that controls all the nodes to ensure that

they are pursuing compatible solutions, or different schedulers could

B An Example of CDPS 97

control subsets of nodes, or each node could control its own decisionmak-

ing. The potentially distributed operators and schedulers need access to

the WS and FCD for their processing, and the problem solving in the

CDPS depends on whether the operator/scheduler can access only local

information or can access information from other nodes as well.

Table B-l, adapted from Lesser and Erman (1980), summarizes a

taxonomy of information, processing, and control distributions. For sim-

plicity, this taxonomy ignores many other CDPS concerns such as incon-

sistencies in the databases, protocols for transmission of information,

strategies for distributed task allocation, organizational relationships

among nodes, and techniques for terminating problem solving. The selec-

tion of options in this taxonomy depends on factors such as the speed of

communication among nodes, the memory and the processing capabilities

of individual nodes, the size and distribution of the WS and FCD, the

needs of individual nodes for different parts of the solution state, the

desired reliability of the network in the face of hardware errors, and so

on.

The options listed in each area of the taxonomy were ordered from

least to most difficult to deal with. That is, a CDPS network that could

address the most difficult options could handle any other choice of

options. However, difficult issues arise even with less difficult choices of

options. Nor are the options in different areas independent. For example,

if each node contains all the operators and data, each node could poten-

tially solve the problem alone, and the nodes can thus solve the problem

without ever sending each other requests for processing.

An Example CDPS Scenario

Consider a loosely coupled network of powerful processors such as a

network of super-computers residing at mutually distant installations

around the country. The nodes in the network work in parallel on parts

of a large problem to solve the problem more quickly. The network solves

problems for which the data are available in advance, such as charac-

terizing last year's climatic conditions based on the copious amounts of

daily weather data. Therefore, we have the opportunity to initialize the

network so that each node has every operator (since each is a powerful

processor) and each has all of the data. However, the decision (for now,

imposed by a human) about what data each should process in parallel

will affect which operators they apply.

As they progress in their problem solving, their initially identical

world-state information will begin to diverge, as will their focus-of-con-

trol database information. Because of the distance between them, com-

munication must be limited and slow, so mutually updating this

information to keep consistent views of the WS and FCD is impractical.

98 Cooperative Distributed Problem Solving XVII

Table B-l

A Taxonomy of CDPS

INFORMATION

Distribution of World State/Focus-of-Control Database (WS/FCD)
1. WS/FCD is distributed across the nodes with no duplication of

information.

2. WS/FCD is distributed with possible duplication of information.

3. WS/FCD is distributed with possible duplications and inconsistencies.

Transmission of World State

1. Local changes to WS/FCD are not transmitted to other nodes.

2. Local changes to WS/FCD are transmitted to all nodes.

3. Local changes to WS/FCD are transmitted directly to fixed subset of

other nodes.

4. Local changes to WS/FCD are transmitted to a dynamically determined

set of relevant nodes.

CONTROL
Distribution of Operator Activity

1. Local data can be processed by operators within the node.

2. Local data can be processed by an operator within the node or by sending

requests to all nodes in the network.

3. Local data can be processed by operator within the node or by sending

requests to a fixed subset of nodes.

4. Local data can be processed by an operator within the node or by sending

a request to a dynamically determined set of relevant nodes.

Distribution of Scheduling

1. A single, centralized scheduler is used to make scheduling decisions.

2. The nodes are statically partitioned into groups when there is one

scheduler for each group.

3. The nodes are dynamically partitioned into groups where there is one

scheduler for each group.

4. Each node does its own scheduling (possibly through interaction with

schedules at other nodes).

PROCESSING
Distribution of Operators

1. Each node has only one operator.

2. Each node has all the operators.

3. Each node has a (not necessarily proper) subset of operators.

Access to World State/Focus-of-Control Database (WS/FCD)
1. An operator/scheduler can access the part of the WS/FCD that is

contained in any node.

2. An operator/scheduler can access the part of the WS/FCD that is in a

subset of nodes.

3. An operator/scheduler can access only the part of the WS/FCD that is in

its local node.

B An Example of CDPS 99

Instead, nodes must work with incomplete views of each other. Because

each node has all the data and operators, each could potentially solve

the problem independently. However, to generate an overall solution

faster, they should process different pieces of data in parallel and inte-

grate the results of their local processing into a complete solution.

Integration of results assumes that their local processing produced

compatible partial results, so nodes must exchange locally generated

partial results with nodes that could be working toward related results.

Given this network configuration and problem situation, we can

characterize the CDPS situation using our taxonomy as:

• WS/FCD is distributed across the nodes with duplication of information.

• Local changes to WS/FCD are transmitted to a dynamically determined set

of relevant nodes.

• Local data can be processed by an operator within the node (since each

has all operators).

• Each node does its own scheduling (but might coordinate schedules with

other nodes).

• Each node has all of the operators.

• An operator/scheduler can access only that part of the WS/FCD that is in

its local node.

This scenario highlights several important CDPS issues, including:

how to resolve interactions between subproblems, how to control activity

to effectively exploit parallelism, and how to integrate partial local

results into a complete global result. The first issue, how to resolve

subproblem interactions, can be viewed as dealing with subgoal inter-

actions. As it works toward its goal of solving a subproblem, a node must
reason about how achieving that goal (solving the subproblem) will affect

the achievement of other goals (solutions of other subproblems). Subgoal

interaction is a common and important problem in classical planning

research and is even more difficult in CDPS. Whereas a classical planner

contains all the information about the problem, and so can detect any
subgoal interactions, the relevant information is often distributed among
nodes in a CDPS network, so they must explicitly exchange information

to detect subgoal interactions.

For example, in our scenario, all nodes have identical initial data,

so nodei and node2 both have data d1 - dm . Let us say that nodei applies

various operators to data d l - dJ
,
generating and applying operators to

new data, and eventually produces a partial result di
rl

. Simultaneously

node2 applies its operators to data dJ+1 - dm to eventually produce a

partial result d2
rl

. The nodes then send each other copies of their partial

results. Unfortunately neither node has an operator that can generate an

integrated result from the two partial results—they are incompatible.

100 Cooperative Distributed Problem Solving XVII

We can illustrate this using the domain of characterizing climate based

on weather data, nodei might have characterized how moist the first half

of the year was by computing the average relative humidity, whereas

node^ computed the average precipitation for the second half of the year.

Each node has an operator to combine humidities and also an operator

to combine precipitation, but they might not have an operator to combine

humidity and precipitation.

Perhaps, when operators were developed for a centralized problem

solver, its behavior might have been sufficiently predictable for the

designer to determine that it would never need to combine humidity and

precipitation data. For example, an operator for computing moisture in

terms ofhumidity might include the precondition that the problem solver

not have computed moisture in terms of precipitation. In our CDPS net-

work, a problem solver will not know what has been computed by other

nodes (unless it redundantly duplicates their computation, which would
nullify parallelism), and this lack of knowledge might allow it to pursue

a path that a centralized problem solver would have avoided. The partial

results formed are incompatible because they cannot be combined. How-
ever, nodei's operators could have computed a compatible partial result,

as could node^s, if only it had (1) recognized that its partial result should

be compatible with the results formed by some other node(s) and (2)

communicated enough information with the other node(s) to decide what
would constitute a compatible result.

CDPS research has developed techniques for helping nodes resolve

subproblem interactions. One approach is to decompose the problem

initially in such a way that each node knows how its partial result(s)

should fit into complete solutions (for example, see Section CI). This

approach cannot work when problems are inherently distributed so that

no node has a view of the overall problem. In this case, a second approach

is to insist that nodes must communicate everything about the problem

solving to a coordinating node that builds the global view (such as in

Section C4). Because this node might be a bottleneck and a reliability

hazard, a third approach is for each node to exchange all its information

with every other node; but in general nodes cannot afford the commu-
nication or the computation to share all their data (Section C2). A fourth

approach is to allow nodes to selectively exchange a small subset of the

data they form, where a node sends a piece of data if it believes that

data is indicative of the node's eventual partial result. By exchanging

relevant preliminary information, nodes can use goal-directed reasoning

to redirect their efforts toward forming compatible results without incur-

ring excessive communication overhead (for example, see Section C5).

Finally, a fifth approach is to give a node the ability to predict or plan

the sequence of operators it will apply in order to anticipate what results

it might form and need. By abstracting and exchanging their plans, the

B An Example of CDPS 101

nodes can coordinate their individual actions to more effectively form

compatible results (Section C5).

The second CDPS issue highlighted by our scenario is how to control

activity to exploit parallelism. This is essentially a distributed schedul-

ing problem, where each node's scheduler has only a local view and

communication between schedulers is limited. To work efficiently in

parallel, the nodes must consider the potential for parallelism, the set of

subproblems each node could currently pursue, and the interdependen-

ces between subproblems. In our scenario, nodei and node2 have the

same initial data. Let us assume that we can break the data into subsets

Di - D3 , where each subset of data can be processed to generate a partial

result. Now, suppose nodei begins by processing data set D\. The partial

result generated by nodei will strongly affect what operators the nodes

should use on D2 . If nodei begins processing D2 while nodei processes

Di, it is possible that node2 will form incompatible results. Alternatively,

node2 might begin by processing D3. If the nodes have only one way to

process D3 , decisions about which operators to apply are unaffected by

the partial results of D\ or D2 . By initially focusing on D3 , node2 uses

knowledge about subproblem interactions to avoid potentially useless

computation and to more efficiently use its resources in parallel with

nodei. Another form of useless computation is redundantly processing

the same data with the same operators. Unless required by performance

criteria, the nodes' schedulers should avoid redundant computation such

as both nodes processing data D3.

CDPS research has made preliminary steps toward the scheduling

problem. A simple approach is to have a centralized scheduler control

all nodes. A more flexible but challenging approach is to provide each

node with a scheduler and to have these schedulers coordinate their

decisions (for example, see Sections C3 and C5). Assuming that nodes

have techniques for recognizing subproblem interactions (discussed pre-

viously), the nodes can plan how they will pursue different subproblems

so as to minimize the potential for unnecessary work while still promot-

ing parallelism. In addition, having the potential for redundancy has

several advantages, for example, reliability (if one node fails, another

could solve the subproblem), flexibility of load balancing (nodes have
more options about how to schedule their processing), and disjunctive

parallelism (nodes could simultaneously solve the same subproblem
using different operators).

Finally, the third CDPS issue that our scenario highlights is how to

integrate partial results into a complete result. If the nodes have already

identified the interacting subproblems they are pursuing, they at least

know what partial results should be integrated. However, important

problems remain about where and when to do the integration. In our

example scenario, each node has every operator, so any node could poten-

102 Cooperative Distributed Problem Solving XVII

tially do the integration. However, reasons for preferring one node over

another could still exist. For example, the network communication topol-

ogy might make some nodes more suitable than others for collecting

partial results, or scheduling decisions might have made some nodes

shoulder more of a burden for processing the initial data, so others should

take on the responsibility for integration. The question of where to

integrate results is tied up with the question of when. When the network

is trying to generate an overall solution as quickly as possible, intelligent

decisions about where to integrate results require predictions about when
and where different partial results will be formed, and about communi-
cation delays between nodes, and competing processing tasks at candi-

date nodes.

CDPS research has developed several approaches to integrating par-

tial results. One relies on some node(s) to decompose the overall problem

and distribute subproblems that explicitly indicate where the subprob-

lem solutions should be sent (as in Section CI). A second approach allows

nodes to transmit partial results to every potential integrator (see Sec-

tions C2 and C3). Although it could potentially lead to redundancy, this

approach ensures that the network will generate an overall solution as

rapidly as possible, typically at the cost of some unnecessary communi-
cation (of partial results) and computation (as several nodes compute the

integrated result in parallel). A third approach is to once again give

nodes the ability to plan their activities and exchange abstract views of

these plans (Section C5). From these views, the nodes can recognize when
and where relevant partial results will be formed and can plan how to

integrate them appropriately.

A More Difficult CDPS Scenario

Consider what happens if we revise our CDPS scenario so that dif-

ferent nodes have different subsets of the operators, where each node

does not necessarily know what operators another possesses. We also

assume that each node receives data from a separate source, and we do

not guarantee that the different data sources will necessarily generate

consistent data. The result is a CDPS situation that corresponds to the

most difficult options in our taxonomy:

• WS/FCD is distributed across the nodes with possible duplication and
inconsistency.

• Local changes to WS/FCD are transmitted to a dynamically determined set

of relevant nodes.

• Local data can be processed by an operator within the node or by sending

a request to a dynamically determined set of relevant nodes.

B An Example of CDPS 103

• Each node does its own scheduling (but might coordinate schedules with

other nodes).

• Each node has a subset of the operators.

• An operator/scheduler can access only that part of the WS/FCD that is in

its local node.

Besides the issues that arise in the previous CDPS scenario, this new
scenario highlights two additional issues: how to promote corroboration

of results; and how to transfer subproblems and/or operators to improve

network performance. The first problem, how to promote corroboration

of results, is an aspect of the common AI problem of handling incorrect

information. In most real-world situations, a knowledge-based system

will at times acquire incorrect information that leads the system to

develop solutions that cannot all be valid. When it recognizes that it has

formed mutually exclusive views, it must reason about its information

and knowledge to decide which information was incorrect.

In a CDPS network, the problem of identifying incorrect information

is exacerbated because the information is distributed among the nodes.

To identify incorrect data, nodes should redundantly attempt to solve

the same subproblem using their different data and then compare their

results to make sure they agree. When they do not, the nodes must
exchange enough of their information to track down the source of the

disagreement. Finally, they must decide (possibly by calling in additional

nodes) on which information should be considered incorrect. CDPS
research has so far done little to address the problem of corroborating

results. One approach has been to allow inconsistencies in the data, and
under the assumption that the correct data will lead to "better" solutions,

the nodes will ignore poor data (Section C2). More sophisticated reason-

ing about inconsistencies—their causes, identification, and eradication

—

remains an open problem in CDPS.
The issue of transferring subproblems and/or operators has received

considerably more attention. In general, it would be very restricting to

expect that all nodes have the same operators and the same initial data.

If the nodes' sets of operators could be different (but potentially inter-

secting), some nodes would be better suited to processing some data than

others. The challenge, known as the connection problem (Davis and
Smith, 1983), is to match tasks (subproblem data) with nodes that can

perform those tasks (have operators and computing resources for pro-

cessing the data). In our example scenario, nodei might not have oper-

ators to process some of its data, and it must locate some other node(s)

to do the processing. Meanwhile, node2 might have no data at all and is

sitting idle, and nodes has a large amount of data that it could process

locally. To work as an effective group, the nodes must reassign tasks

(data) in order to process all the data as quickly as possible. A possible

104 Cooperative Distributed Problem Solving XVII

reassignment is for nodei to send its problem data to one of the other

nodes—preferably nodei if it has suitable operators, but to nodes other-

wise. Depending on where the task was assigned and the amount of

processing each node expects to do, nodes should decompose its data into

separate subtasks and transfer particular subtasks to other suitable

nodes to better balance the processing load. In fact, nodei and nodes

might swap tasks that each could do locally but could be done better by

the other (because the other might have better operators for the partic-

ular tasks).

CDPS research has developed several approaches for allowing nodes

to transfer tasks. A simple one is to have a central node that acts as a

clearing-house for tasks. A second approach, which is distributed and
much more flexible, is to have nodes locally decompose their tasks and
announce subtasks to the network (Section CI). Other nodes will bid on

tasks that they can perform, and the original node awards the task to

the best bidder. This contracting approach has been used a great deal in

applications where large tasks are originally localized in some node and
must be decomposed and distributed for the network to perform accept-

ably. A third approach, which takes a planning perspective, is to view a

proposed task transfer as a potential plan (Section C5). That is, a node

with too many local tasks could develop a plan that specifies what tasks

should be done by other nodes and how the results should be integrated.

The other nodes would evaluate this plan, and they would accept, reject,

or modify it until all nodes agree on the plan. At this point, they adopt

the plan and transfer tasks based on the plan.

Conclusions

Our example has illustrated many of the issues that CDPS must
address. In fact, the example corresponds in many ways to the task of

having several geographically separated processors cooperatively track

vehicles that move among them. This application domain is among the

most completely studied in CDPS research and will be revisited later

(Sections CI and C3). The example illustrates how CDPS networks must
address the cooperative goals shown in Figure A-2: Networks must
transfer tasks and coordinate activity to exploit parallelism; they share

resources and expertise so that each subproblem is adequately solved;

they use redundant knowledge and information to corroborate results

and ensure that all subproblems are solved even if some node fails; and
they must detect and deal with interactions between subproblems to

work as a more coordinated team.

The underlying problem encountered in CDPS networks is that nodes

must make decisions about their actions (search, communication, prob-

lem solving, and so on) based on local views that might be incomplete,

B An Example of CDPS 105

inconsistent, or out of date. They must use their communication and
computation resources to not only perform in the application domain
(domain problem solving), but also to control their actions and interac-

tions. Solving this control problem entails dealing with interactions

among subproblems (in the application domain), promoting parallelism,

integrating local results into complete solutions, resolving inconsisten-

cies, and transferring relevant information.

IMPORTANT CDPS APPROACHES AND
EMPIRICAL INVESTIGATIONS

Almost every CDPS approach developed to date has been motivated and

evaluated in the context of an application domain, often by building a

simulator for the domain. Here we discuss major CDPS approaches in the

context of these applications. This makes the CDPS issues discussed in

the previous section more concrete and provides empirical evidence (from

simulations) to help us evaluate the capabilities and the costs of the

approaches. In the following discussion, it is important to remember that

the implementations are prototypes and simulations; to date, no CDPS
networks have actually been used in real-world applications.

Important CDPS approaches can be categorized in terms of:

Negotiation: Using dialog among nodes to resolve inconsistent views and
to reach agreement on how they should work together to cooperate

effectively.

Functionally Accurate Cooperation: Overcoming inconsistency by ex-

changing tentative results to resolve errors and converge on problem

solutions.

Organizational Structuring: Using common knowledge about general

problem-solving roles and communication patterns to reduce nodes'

uncertainty about how they should cooperate.

Multiagent Planning: Sharing information to build a plan for how agents

should work together, and then distributing and following this plan

throughout problem solving.

Sophisticated Local Control: Integrating reasoning about other agents'

actions and beliefs with reasoning about local problem solving, so that

coordination decisions are part of local decisions rather than a separate

layer above local problem solving.

Theoretical Frameworks: Using mathematical and logical models of

agents, their beliefs, and their reasoning to understand the theoretical

capabilities of CDPS networks.

With a few exceptions, we will not discuss centralized approaches

—

where the network has a single coordinating node—because centralized

control is contrary to CDPS. That is, CDPS focuses on networks and
problem applications where centralization is not a viable option, for

reasons such as limited computation (the problem of coordinating many

106

C Important CDPS Approaches and Empirical Investigations 107

nodes is computationally intractable for a single coordinator), limited

communication (a single coordinator could be a communication bottle-

neck and could be overwhelmed with information from the network), and
reliability (the network performance should not rely on one node).

CI. Negotiation

Negotiation is a fundamental part of human cooperation, allowing peo-

ple to resolve conflicts that could interfere with cooperative behavior. A
perennial goal of CDPS researchers has been to capitalize on insights

about human negotiation, to build mechanisms that enable AI systems

to negotiate.

Unfortunately negotiation, like other terms that describe human
behavior (e.g., "intelligence"), is difficult to define in mechanistic terms.

For example, Sycara (1988) states that "the negotiation process involves

identifying potential interactions either through communication or by

reasoning about the current states and intentions of other agents in the

system and modifying the intentions of these agents to avoid harmful

interactions or create cooperative situations." We define negotiation as

the process of improving agreement (reducing inconsistency and uncer-

tainty) on common viewpoints or plans through the structured exchange

of relevant information. Although these descriptions of negotiation cap-

ture many of our intuitions about human negotiation, they are too vague

to provide blueprints for how to get AI systems to negotiate. The follow-

ing subsections discuss more specific characterizations of negotiation.

The Contract-Net Protocol

One of the earliest and most influential research projects in CDPS is

the Contract-Net framework developed by Smith and Davis (Smith, 1979,

1980; Smith and Davis, 1983, 1988; and Smith, 1978). The nodes use the

Contract-Net protocol to form contracts concerning how they should allo-

cate tasks in the network. Contracting involves an exchange of infor-

mation between interested parties, an evaluation of the information by
each member from its own perspective, and a final agreement by mutual
selection. It differs from voting in that dissident members are free to exit

the process rather than being bound by the decision of the majority.

In the Contract-Net protocol, nodes coordinate their activities

through contracts to accomplish specific goals. Contracts are elaborated

in a top-down manner. At each stage, a manager node decomposes its

contracts into subcontracts to be accomplished by other contractor nodes.

This process involves a bidding protocol based on a two-way transfer of

108 Cooperative Distributed Problem Solving XVII

information to establish the nature of the subcontracts and to determine

which node will perform a particular subcontract. The elaboration pro-

cedure continues until a node can complete a contract without assistance.

The result of the contract elaboration process is a network of control

relationships, in the form of manager/contractor relationships, distrib-

uted throughout the network.

Nodes allocate tasks in the following stages:

1. A manager forms a task to be allocated.

2. The manager announces the existence of the task.

3. Available nodes evaluate task announcement.

4. Suitable nodes submit bids for task.

5. The manager evaluates bids.

6. The manager awards contracts to the most appropriate node(s).

7. The manager and contractor communicate privately during contract

execution.

Before contracting can begin, a manager must recognize that it has

a task to be allocated. Where this task comes from depends on the

application and the manager's reasoning methods. Typically the man-
ager receives a large task and decomposes it into smaller tasks in a

predefined way. It announces a task to the network, and nodes that are

currently idle receive and evaluate the announcement. Nodes with the

appropriate resources, expertise, and information reply to the manager
with bids that indicate their suitability to perform the task. After suffi-

cient time has elapsed, the manager evaluates the bids it has received

and awards the task to the most suitable node, or to several suitable

nodes if redundancy is needed to ensure reliability. Finally, manager
and contractor focus message exchanges between themselves. The man-
ager supplies task information and the contractor reports progress and
the eventual result of the task.

Smith and Davis investigated the performance of the Contract-Net

protocol in several application domains. For example, they investigated

a distributed interpretation application, where the network should track

vehicles over a large geographical area. Their spatially distributed net-

work was composed of two types of nodes: sensor nodes that can extract

signal features from the data they sense, and manager nodes that can

process the signal features from several sensor nodes to construct a map
of vehicle movements. A manager node wants to form contracts with

sensor nodes that are adequately distributed around an area and that

have a complement of sensory capabilities. On the other hand, a sensor

node wants to interact with a nearby manager to minimize communi-

Important CDPS Approaches and Empirical Investigations 109

cation. The Contract-Net protocol allows manager and sensor nodes to

each have input into the contracts that are formed.

This application illustrates the use of message structures in the

Contract-Net protocol, depicted in Figure C-l. Every message includes

information about its source, destination, type, and contract identifier.

A task announcement message includes abstract information about the

task, expected capabilities of potential contractors, the information that

Task Announcement

N25 N42

Bid

N25 *- N42

To: 25

From: 42

Type: BID

Contract: 22-3-1

Node Abstraction:

POSITION LAT 62/V LONG 9W
SENSOR NAME S 1 TYPE S

SENSOR NAME S 2 TYPE S

SENSOR NAME T 1 TYPE T

Signal task bid

To: * indicates a broadcast message.

From: 25

Type: TASK ANNOUNCEMENT

Contract: 22-3-1

Task Abstraction:

TASK TYPE SIGNAL

POSITION LAT 47/V LONG 17E

Eligibility Specification:

MUST-HAVE SENSOR

MUST-HAVE POSITION AREA A

Bid Specification:

POSITION LAT LONG

EVERY SENSOR NAME TYPE

Expiration Time: 28 1730Z FEB 1979

Signal task announcement

Award

N25^N42

To: 42

From: 25

Type: AWARD
Contract: 22-3-1

Task Specification:

SENSOR NAME S 1

SENSOR NAME S 2

Signal task award

Figure C-l. Contract net messages. Examples of task announcement,
bid, and award messages are shown for the distributed

sensor net application.

110 Cooperative Distributed Problem Solving XVII

a bid should contain, and a deadline for when bids should be received.

In the vehicle monitoring application, the task abstraction specifies the

task type and the manager's location; the expected capabilities indicate

that a contractor must have certain sensory abilities and be in a partic-

ular area; and the information a bid should contain includes the sensor's

location and sensory abilities. Furthermore, in the case of a task

announcement, the message destination could indicate that the

announcement should be broadcast to every node, or, if a manager node

has information about which nodes are appropriate for the task, it can

use focused addressing to send the message only to them.

Upon receipt of a task announcement, a node may send a task bid to

the manager that announced the task. Besides the source, destination,

type, and contract identifier, a task bid message includes the information

requested in the task announcement's bid specification. In the vehicle

monitoring application, the bid indicates the position and sensory capa-

bilities of the sensor node.

Finally, following the expiration of the task announcement, the man-
ager evaluates the bids and builds a task award message for each node

that is awarded the task. In the vehicle monitoring application, the task

award message indicates which of a sensor node's sensory capabilities

are requested by the manager.

In addition to the basic message types, the Contract-Net protocol also

allows nodes to announce their availability; this provides dynamic infor-

mation to managers about loading in the network so that a manager can

use focused addressing to reduce network communication. Other features

of the protocol include special cases in which a contractor can avoid

bidding and award a contract directly.

The Contract-Net protocol provides common message formats and a

shared communication structure (i.e., nodes know about the order of

message exchange to generate contracts). However, to use this protocol

effectively, a manager must use some knowledge about the particular

application to answer some key questions, including:

• What tasks should I contract out?

• How should I abstract the task to announce it?

• Who should receive the announcement?

• What information do I need to select the best candidate(s)?

• How many of the bidding nodes should receive the task?

In turn, the questions for the contractors include:

• What is the task about?

• Can I perform the task?

• Even if I can perform the task, is it desirable? Should I bid on it?

C Important CDPS Approaches and Empirical Investigations 111

As a general framework for exchanging messages, the Contract-Net

protocol does not include the application-dependent knowledge that

nodes need to make these decisions. Hence it does not prescribe how
nodes should cooperate. But it does provide a language for nodes to use

when exchanging information that can lead to these decisions. In

addressing the issue of how to structure communication to allow con-

tracting, the Contract-Net protocol answered some questions but raised

many others that CDPS researchers are still trying to answer, such as

what knowledge nodes need to make cooperative decisions.

The Contract-Net framework concentrates on a subset of CDPS goals

and issues. In terms of goals (Figure A-2), the Contract-Net concentrates

on allocating tasks to increase parallelism and to make effective use of

network resources. It assumes that the allocated tasks are independent,

that is, that managers will decompose tasks to minimize subproblem

interactions; and it assumes that the manager will implicitly know how
to integrate the results of its contractors. In short, the Contract-Net

framework is geared toward top-down decomposition of large tasks and
allocation of the subtasks. It is thus best suited for CDPS applications

with well-defined task hierarchies, with tasks that are initially presented

to a few nodes in the network (in contrast to tasks that are distributed

over all the nodes in a network) and that can be decomposed into essen-

tially independent subtasks. Partial global planning (discussed in Sec-

tion C5) subsumes contracting in an approach that allows nodes to

suitably decompose and distribute tasks and to cooperatively solve inher-

ently distributed problems by communicating in a more expressive

framework.

Multistage Negotiation

Another use of a limited form of negotiation in task allocation has

been developed by Conry and her colleagues (1988). They consider a class

of task allocation problems called distributed constraint satisfaction prob-

lems, in which a coordinated set of actions is required to achieve the

goals of the network, but each node has only limited resources available

for completing all its assigned actions. The combination of local resource

constraints and the need for coordination of actions among nodes gives

rise to a complex set of global, interdependent constraints.

Conry and her colleagues have investigated task allocation in the

long-haul, transmission "back-bones" of larger, more complex commu-
nications networks. These systems consist of networks of sites, each

containing a variety of communications equipment, interconnected by
links. Sites are partitioned into geographic subregions, with a single site

in each subregion designated as a control facility. A control facility is

responsible for monitoring and controlling its subregion. At any given

112 Cooperative Distributed Problem Solving XVII

time, the network may be supporting communication between several

different sets of users. Each set of users is allocated a dedicated set of

resources to create an end-to-end connection called a circuit. Normally
the circuit lasts for the entire duration of the communication. However,

equipment failures or outages can break a circuit. The control facilities

of each subregion are monitored for interruptions, and when they occur,

the control facilities interact as a CDPS network to assess the situation

and to cooperatively develop alternative dedicated circuits to restore the

end-to-end communication.

Conry and her colleagues have developed a multistage negotiation

process for solving this class of task allocation problems. It extends the

basic Contract-Net protocol to allow iterative negotiation during the

bidding and awarding of tasks. Nodes tentatively choose local actions to

allocate and link communication resources, and they iteratively

exchange this information. At each iteration, each node assesses how its

local choices and the current tentative choices of other nodes affect which

circuits could be restored. Specifically each node detects whether a choice

it has made violates the expectations of another node concerning the use

of resources to restore a circuit. For example, nodei might tentatively

choose to allocate a communication channel to complete a circuit with

nodei, and then nodei receives a message from nodes indicating that

nodes expects to complete a different circuit with the same resource.

When conflicts are detected, a node can:

• Try to find different resources that will satisfy the other node's expecta-

tions (such as finding another communication channel to satisfy node^s

needs).

• Retract its tentative choices and make new choices to satisfy the other

node's expectations, hoping that alternatives to its retracted choices exist

(such as choosing to allocate the channel for node^s request, and hoping

that nodei can route its circuit some other way).

• Recognize that the problem is overconstrained (the resources are not suf-

ficient to restore every circuit) and transmit the observation to other nodes.

Nodes transmit information about their revised choices and repeat

this process, iterating until they find a set of tentative choices that do

not lead to violations, or until they recognize that the problem is over-

constrained.

Multistage negotiation provides nodes with sufficient information

about the impact of their local decisions on nonlocal state so that they

may make local decisions that are globally acceptable. That is, nodes

exchange only enough information to find a configuration that satisfies

their constraints, rather than insisting that each node have a global view

of all nodes' choices and their resource utilization requirements.

C Important CDPS Approaches and Empirical Investigations 113

Negotiation in Air-Traffic Control

Negotiation is an important part of the cooperation strategies devel-

oped by Cammarata, McArthur, and Steeb (1983) for resolving conflicts

among plans of a group of nodes. They have worked in the air-traffic

control domain, where the goal is to develop CDPS techniques that will

permit each node (aircraft) to construct a flight plan that will maintain

an appropriate separation from other airplanes and will satisfy other

constraints such as getting to the desired destination with minimum fuel

consumption.

Their most well-developed approach to this problem is a policy they

call task centralization. In this policy, airplanes involved in potential

conflict situations (which occur when airplanes could become too close,

based on their current headings) choose one of the agents involved in

the conflict to resolve it. This airplane acts as a centralized planner to

develop a multiagent plan that specifies the concurrent actions of all the

airplanes (for more on multiagent planning, see Section C4). Although

this technique is not itself distributed, the airplanes do use negotiation

to decide which of them should do the planning. The chosen airplane is

sent the detailed plans of the other agents involved in the potential

conflict, and it attempts to modify only its own flight plan to resolve the

conflict. The replanning airplane then transmits its revised flight plan

to all agents that have received its earlier flight plan.

This replanning cycle iterates if one or more airplanes perceive a

conflict based on the updated plan. This could occur if the replanning

airplane could not completely resolve the conflict by modifying only its

local plan or if the replanning airplane did not know that the new plan

conflicts with the plans of airplanes not included in the original conflict

set. The advantage of this centralized approach is that it avoids the

possibility of agents generating inconsistent plans. In the decentralized

case, agents can simultaneously change their plans (thus generating

inconsistent views) so their plans might not avoid conflicts. The disad-

vantage of the centralized approach is that it may require many planning

cycles to reach an acceptable solution. If too many iterations are needed,

there may be insufficient time to carry out the plan. The centralized

planning approach also requires that all the flight plans have to be

communicated to a single replanning airplane, making that airplane a

communication bottleneck and a reliability risk.

Three strategies for selecting the replanning airplane were explored:

shared convention, least spatially constrained, and selection of the most
knowledgeable, least-committed. The shared convention strategy avoids

communication and serves as a baseline for evaluating the other two
strategies. In it, agents use a preestablished protocol based on direct

sensory information (current position, heading, and speed of other air-

114 Cooperative Distributed Problem Solving XVII

planes in the conflict set) to determine the replanning airplane. This

approach assumes that each airplane has identical sensory information

and uses identical decision procedures. If two airplanes are equally good

candidates for selection, tiebreaking is based on arbitrary features such

as an airplane's altitude or direction. In the air-traffic control domain,

the shared convention strategy results in a poor selection because it does

not consider the constraints on the chosen agent in modifying its plan,

the knowledge it has of the plans of other airplanes, nor how modification

of its plans will affect airplanes outside the conflict.

The other two strategies base negotiation on the exchange of infor-

mation to improve the selection process. The least spatially constrained

strategy selects the airplane with the most freedom in modifying its plan

to resolve the conflict. Each aircraft in the conflict transmits a measure
of its flexibility to the other airplanes in the conflict (Figure C-2). This

measure is an aggregation of factors such as the number of other nearby

aircraft, fuel reserves, and distance from destination. The airplane with

the most freedom is selected to perform the replanning. This policy led

to much better performance than the shared convention policy. It did

particularly well in complex situations where a complete analysis of all

possible intentions and actions of the airplanes is infeasible, so quickly

finding a airplane with mobility is the best choice.

In the most knowledgeable, least committed strategy, each airplane

in the conflict indicates its knowledge of the detailed flight plans of

neighboring airplanes and how many airplanes are aware of its plans.

Send < unrelated Conflict Plan Retransmit Execute
Constraint activities> - -Detection Fixing Plan Plan-
Factor

Send Send
Constraint Plan < unrelated activities >
Factor

Figure C-2. Task centralization: A typical sequence of communica-

tion, planning, and actions in the least spatially con-

strained strategy, where A is chosen as the planning

node. Dashed lines are time lines for tasks executed by

A and B, and solid lines indicate communications.

C Important CDPS Approaches and Empirical Investigations 115

Specifically the plane that replans should preferably know about the

plans of other planes, while its own plans should not be known to other

planes. This way, it can make informed decisions based on its knowledge

about the other planes and can freely change its own plans accordingly

without the threat of violating other planes' expectations. This strategy

worked better than the least spatially constrained strategy in situations

involving few aircraft but where determining the best plan changes is

difficult. However, in more complex situations involving many airplanes,

this policy could lead to catastrophic results because the airplane chosen

could not acquire and process information about other airplanes fast

enough to avoid collisions.

Finally, although it was never evaluated in testbed experiments, a

two-step negotiation called task sharing was also proposed. The task

sharing strategy allowed the replanner to generate a modified plan for

the least constrained airplane in the conflict set. The first step in this

strategy requires choosing the least spatially constrained airplane's

flight plan for modification. The second step chooses the most knowl-

edgeable airplane to perform the replanning.

Cognitive Modeling ofNegotiation

Although it has not been directly applied to CDPS, the work of Sycara,

and of Sathi and his colleagues is relevant to CDPS applications. Sycara

is developing a computational model for multistage negotiation leading

to compromise between multiple agents dealing with multiple issues in

both single and repeated encounters (Sycara, 1987, 1988; and Sycara-

Cyranski, 1985). Her model is based on messages that contain:

• The proposed compromise

• Persuasive arguments

• Agreement or disagreement with the compromise or argument

• Requests for additional information

• Reasons for disagreement

• Agents' utility measures for the issues they disagree on

Sycara uses case-based reasoning techniques to drive the negotiation

process, storing a history of past negotiations. When this approach fails,

she relies on multiattribute preference analysis to decide on the most
likely compromise that will be acceptable to the other agents. Thus, as

they develop a compromise, the agents dynamically revise their goals.

Her techniques for forming compromises, and for maintaining a history

of previous negotiations and compromises, could be useful in CDPS net-

works.

In the negotiation framework developed by Sathi and his colleagues,

116 Cooperative Distributed Problem Solving XVII

agents iteratively relax their constraints until a compromise is reached

(Sathi et al., 1986). Sathi defines a set of negotiation operators that an
agent may use to propose a compromise:

• Log-rolling, where each agent slightly relaxes its interacting constraint

• Reducing the cost of a relaxation by agreeing to relax the solution criteria

• Substitution of a less preferred resource in place of the preferred resource

• Bridging, which involves the development of a completely new solution

that satisfies only the most important constraints

• Unlinking, which involves overlooking weak interactions among con-

straints

• Mediation and arbitration, where third parties that possess additional

knowledge and/or authority are drawn into the negotiation process

These operators would similarly be useful in a CDPS network for resolv-

ing conflicts and inconsistencies when problem solving nodes have dif-

ferent but related subproblems to solve.

Summary

Negotiation is a complex and variable phenomenon, and to date CDPS
researchers have only been able to study some of its specific forms. It is

important to CDPS research because it is a natural way for systems to

coordinate decisions to achieve several cooperative goals, including

assigning tasks to increase parallelism and to effectively use network

resources (Figure A-2). Recalling the more specific goals of cooperation

(Section A), negotiation allows nodes to improve the use of computing

resources and expertise through exchanging tasks, to increase the solu-

tion creation rate through parallelism, and to increase the certainty of

results or the likelihood of generating those results by assigning the

same task to several nodes that may have different expertise.

C2. Functionally Accurate Cooperation

A recurrent problem in CDPS research is how to get nodes with incon-

sistent views and information to cooperate effectively. Inconsistencies

arise because nodes might have incomplete or out-of-date views of the

states of other nodes, contradictory raw information about related sub-

problems (e.g., different but error-prone reports of the same events),

conflicting long-term problem-solving knowledge, different views of the

network's goals, and errors in hardware or software. Yet, despite these

inconsistencies, the nodes should cooperate if at all possible.

C Important CDPS Approaches and Empirical Investigations 117

One approach to dealing with inconsistency is to not allow it in the

first place, or at least to not consider it. For example, the Contract-Net

protocol (Section CI) decomposed and distributed tasks in such a way
that there was always a manager node to coordinate its contractors, who
would in turn always pursue the task as expected. A second approach is

to resolve inconsistency through explicit negotiation. For example, mech-

anisms for negotiation (Section CI) allow nodes to recognize inconsisten-

cies in the form of constraint violations, and to modify their plans

accordingly.

A third approach is to build CDPS networks that continue to perform

despite inconsistency. A purely practical argument for this approach is

that, in many applications, it is too expensive to implement the necessary

communication, synchronization, and hardware reliability to guarantee

that each node has a complete, consistent, and up-to-date view of the

information it needs to solve its subproblems in a way that does not lead

to inconsistency. A second argument is more theoretical. As CDPS net-

works become very large and complex, operate in the real world, and
evolve over time, it is impossible to guarantee that knowledge among
the nodes will remain consistent. In fact, some have argued that some
degree of inconsistency among nodes is beneficial to network problem

solving (Corkill, 1983; and Reed and Lesser, 1980).

If the network permits inconsistencies, it must be able to resolve

them. To do so, it should allow nodes to exchange inconsistent partial

solutions, so that one or more of them has enough information to resolve

the inconsistency. Exchanging partial solutions also helps prevent nodes

from forming inconsistent partial solutions because a partial solution

can represent predictive information that a recipient of this partial solu-

tion can use as context to predict the characteristics of partial solutions

to build that will be consistent and compatible with it. The timely

exchange of predictive partial solutions can thus reduce the search for

compatible solutions and therefore make network problem solving faster

(see also Section C5).

The Functionally Accurate, Cooperative Approach

Lesser, Corkill, and Erman were among the first researchers to

explore the possibility of building CDPS networks that worked effectively

despite inconsistencies (Lesser and Corkill, 1981; and Lesser and Erman,
1980). In their functionally accurate, cooperative (FAIC) approach, net-

work problem solving is structured so that nodes cooperatively exchange
and integrate partial, tentative, high-level results to construct a consis-

tent and complete solution. A node's problem solving is structured so

that its local knowledge bases need not be complete, consistent, and up
to date in order to make progress in its problem-solving tasks. Nodes do

118 Cooperative Distributed Problem Solving XVII

the best they can with their current information, but their solutions to

their local subproblems may be only partial, tentative, and incorrect.

Error resolution becomes an integral part of network problem solving

as nodes try to combine (and assess the implications of) partial and
tentative results received from other nodes. Thus the advantages of the

FA/C approach are accrued at the cost of making local problem solving

more complex. If we are willing to pay this cost, the FA/C approach can

reduce the synchronization and communication among nodes that would

be required to guarantee network consistency. Moreover, because FA/C

networks can tolerate inconsistency, they can be more resilient and
robust in face of processor, sensor, and communication failures.

Lesser and Erman (1980) developed a three-node FA/C network of

modified HEARSAY-II speech understanding systems, in which each sys-

tem sampled one time-continuous segment of the speech signal. The
systems exchanged only high-level intermediate results consisting of

phrase hypotheses, and yet they could still converge on complete inter-

pretations despite the loss of some messages. For example, in Figure C-
3 the phrases exchanged to build the complete interpretation "Have any

new papers by Newell appeared" are shown. In (a), no messages are lost.

Node 1 builds the phrase "Have any," which it sends to node 2, which

combines the received phrase with "new papers by" and sends the result

to node 3, which completes the phrase. In (b), 35% of the messages are

lost, but the nodes converge on the solution anyway. Node 2 manages to

send the phrase "new papers by" to node 1, which combines this with

"Have any" and sends the result to node 3, which appends "Newell" and
sends the result to node 1, which determines that the phrase beginning

is complete and sends the result to node 3, which completes the end of

the phrase.

Based on this work, Lesser and Corkill identified several character-

istics of systems that tolerate inconsistent and incorrect information, and
their implications for FA/C problem solving:

Asynchronous Nature of Information Gathering!Reduced Need for Syn-

chronization: Problem solving is viewed as an incremental, opportunis-

tic, and asynchronous process. A node does not have a predefined order

for processing information and can exploit incomplete local information.

Thus node processing and internode communication do not need to be

synchronized.

Use of Abstract Information!Reduced Internode Communication Band-
width Requirements: Nodes cooperate by exchanging abstract informa-

tion in the form of high-level intermediate results. This reduces the

amount of internode communication because nodes develop high-level

views of network activity without exchanging low-level data.

Resolution of Uncertainty Through Incremental Aggregation!Automatic

Error Resolution: Uncertainty is implicitly resolved when partial results

Important CDPS Approaches and Empirical Investigations 119

Q[HAVE ANY^ (5C #1) J

/Th

\ Qhaveany^ (6R #3)

jfi -'NEW PAPERS BY^ (2C #2)

'NEWELO (OC #3)

a. with no messages discarded

p(0C #1) 'HAVE^(0C #1) 'ANY^OC #1) ^NEWELO (OC #3)

b. with 35% of the messages discarded

(OC #3)

Figure C-3. Distributed HEARSAY-II message exchanges.

are aggregated and compared with alternative partial solutions. This

incremental method of problem solving allows a distributed network to

detect and reduce the impact of incorrect decisions caused by incomplete

and inconsistent local information and by hardware malfunction.

Problem Solving as a Search ProcessIInternode Parallelism: Because

many alternative partial solutions need to be examined, parallel search

by different nodes is possible and desirable. Furthermore, the additional

uncertainty caused by incomplete and inconsistent local information can

be traded off against more search. To the degree that this extra search

120 Cooperative Distributed Problem Solving XVII

can be performed in parallel, without proportionally more internode

interaction, the communication bandwidth can be lowered without sig-

nificant degradation of network processing time.

Multiple Paths to Solution!Self-correcting Behavior: Because a solution

can be reached by many paths, errors that would be considered fatal in

a conventional distributed network can be safely ignored and left uncor-

rected. In addition, network reliability is improved (at the cost of addi-

tional processing and internode communication) without modifying the

basic problem-solving structure because nodes can focus activity on

additional and/or redundant paths to a solution.

Following the work on speech understanding, the FA/C approach was
studied in the context of a distributed interpretation task for vehicle

monitoring (see Section C3), where the local data received by nodes from

their sensors has limited scope and is potentially errorful. As this

research progressed, it became clear that the unrestrained exchange of

tentative partial results—a naive implementation of FA/C—quickly bogs

down in the presence of large amounts of information. As described in

Section C3, this led to techniques built on top of FA/C to control it.

Open Systems

Building on the FA/C approach and his previous work on the Scientific

Community Metaphor, Hewitt (1986) has elaborated on the concept of

open systems. The open systems approach, which Hewitt has recently

referred to as Organizational Knowledge Processing, emphasizes the

need for agents to cope with conflicting, inconsistent, and partial infor-

mation as an integral part of their operation; and to be highly reliable

so that the operation of the system is continuous. An open system consists

of a network of microtheories in which an agent or a small set of agents

can reason logically and maintain consistent knowledge within a

microtheory. However, the network of microtheories taken as a whole

can be inconsistent. Debate and negotiation are used to resolve these

inconsistencies. Hewitt further assumes that the "internal operation,

organization and state of one computational agent may be unknown and
unavailable to another agent. .

." (Hewitt, 1986). This assumption

requires cooperative strategies that are similar to those needed to deal

with heterogeneous expert systems, where individual systems may use

different problem-solving strategies and knowledge representations and
may have different criteria for judging acceptability of solutions.

Hewitt defines due process as the process of developing the appro-

priate cooperative framework for interactions among agents. Hewitt

states that due process "is an inherently self-reflective process in that

the process by which information is gathered, organized, compared, and

C Important CDPS Approaches and Empirical Investigations 121

presented is subject to evaluation, debate, and evolution within the orga-

nization." The open systems approach is currently a concept with no

implementation, but it seems to represent an important conceptual

framework for structuring large and complex CDPS networks made out

of heterogeneous agents that can both passively tolerate and actively

address inconsistencies.

Inconsistent Control Information

A node should also have the ability to tolerate inconsistency in its

control information. In many applications, the information necessary to

make informed local control decisions—decisions that are consistent with

control decisions at other nodes—may not be located at the node making
the decision. The costs to obtain consistent, complete, and up-to-date

information might be prohibitively large in terms of delays due to syn-

chronization and message transmission. Additionally, in a highly

dynamic environment, the cost of recomputing network control for each

minor change in the state of network may also be expensive (Durfee and
Lesser, 1988). Thus it might be more cost effective to tolerate some level

of inconsistency in control information than to try to resolve the incon-

sistency.

Inconsistencies in control information can be tolerated if the appli-

cation domain allows a problem solver to recover from incorrect control

decisions. In such domains, the most serious consequences of an incorrect

control decision are that an incorrect partial result is generated and that

the time and resources spent generating it are wasted. Because this

partial result and any later partial results formed from it can be ignored,

incorrect control decisions are easily tolerated—they delay but do not

prohibit the successful formation of a correct overall solution. Durfee

and Lesser have explored this issue in the context of a distributed vehicle

monitoring task (see Section C5), where they have developed a mecha-
nism to balance the benefits of reducing uncertainty about control infor-

mation to improve coordination against the costs of acquiring and
reasoning about this information.

Summary

Functionally accurate cooperation suggests that the exchange of ten-

tative, partial results will allow nodes to eventually converge on correct

and consistent larger results. More communication will generally reduce

the inconsistency because nodes will have more common information.

Less communication will result in more inconsistency, which will in turn

force the nodes to perform extra computation because they generate a

larger number of inconsistent results and must spend computing

122 Cooperative Distributed Problem Solving XVII

resources on resolving inconsistencies. Thus, functionally accurate coop-

eration highlights a basic tradeoff in CDPS networks between commu-
nication and computation. Nodes that are free to generate potentially

incorrect and inconsistent tentative results can more completely explore

the space of possible solutions. Functionally accurate cooperation can,

therefore, increase the set or scope of achievable tasks by sharing infor-

mation (Figure A-2), and in doing so it achieves the more specific coop-

erative goal of increasing the variety of solutions by allowing nodes to

form local solutions without being overly influenced by other nodes (Sec-

tion A2).

C3. Organizational Structuring

One important difference between negotiation (Section CI) and func-

tionally accurate cooperation (Section C2) is that negotiation takes a

top-down view of problem solving, whereas functionally accurate coop-

eration takes a bottom-up view. Functionally accurate cooperation allows

nodes that are solving inherently distributed problems to work semi-

autonomously, and through communication to build up overall solutions

despite the fact that each is ignorant of how the others are contributing

to overall solutions. The difficulty is that this ignorance can lead to

excessive communication, duplication of effort among nodes, and gener-

ally ineffective use of network resources. In contrast, forms of negotiation

such as contracting allow nodes to decompose and allocate their problem-

solving responsibilities, to structure their actions and interactions to

more effectively work as a team for a particular problem.

The trouble with this approach is that, in applications where prob-

lems are inherently distributed, the nodes might not initially know how
their local subproblems fit together into the larger network problems.

That is, they might not know what particular problem they are all trying

to solve. In addition, their perception of the problem can change in the

course of problem solving, dictating a need to dynamically alter the

cooperative relationships between nodes.

Organizational structuring attempts to find a compromise between
the strongly top-down view of contracting and the bottom-up view of

functionally accurate cooperation. An organizational structure of a CDPS
network is the pattern of information and control relationships that exist

between the nodes and the distribution of problem-solving capabilities

among the nodes. Whereas a contracting approach dynamically defines

the relationships between nodes to solve a specific problem, an organi-

zational structure gives more general, long-term information about the

relationships between nodes. That is, contracts represent temporary alii-

C Important CDPS Approaches and Empirical Investigations 123

ances (as in a construction project, where the relationship ends when the

structure is built), whereas an organization is more permanent (as in a

corporation, where the roles of the president and vice president are stable

for long periods of time). The organizational structure can augment a

functionally accurate, cooperative system to give each node a high-level

view of how the network solves problems and the role that the node

plays within this structure. With this general, high-level view, the nodes

can ensure that they meet conditions that are essential to successful

problem solving, including (Corkill, 1983):

1. Coverage—Any necessary portion of the overall problem must be

within the problem-solving capabilities of at least one node.

2. Connectivity—Nodes must interact in a manner that permits the

covered activities to be developed and integrated into an overall

solution.

3. Capability—Coverage and connectivity must be achievable within

the communication and computation resource limitations and reli-

ability specifications of the network.

The organizational structure must specify roles and relationships to

meet these conditions. For example, to ensure coverage, the organiza-

tional structure could assign problem-solving roles to the nodes that

make each node a specialist at a different type of subproblem. The
organizational structure must then also indicate connectivity informa-

tion to the nodes so that they can route subproblems to be solved to

nodes that are able to solve them. On the other hand, the organizational

structure might make the network more robust by assigning overlapping

subsets of specialties to the nodes, so that no node is irreplaceable. The
connectivity information should still allow nodes to redistribute sub-

problems, but it must also allow nodes with overlapping specialties to

avoid redundantly solving the same subproblem. Because the network
might be able to solve problems in several different ways, it must have
nodes that have the authority to decide on and enforce a particular

approach.

Table C-l shows a range of control authority relationships among
nodes, along the spectrum of self-directed (favoring problem-solving

actions based on locally generated partial results) to externally directed

(favoring actions based on partial results received from other nodes). An
organizational structure can specify connectivity information about the

flow of information and control between nodes in terms of topologies such

as hierarchical, heterarchical, flat (lateral) structures, matrix organiza-

tions, groups or teams, and market or price systems (Figure C-4). Several

possible organizations are shown in Figure C-4. For each the horizontal

axis corresponds to locations and the vertical axis corresponds to infor-

124 Cooperative Distributed Problem Solving XVII

Table C-l

Control Authority

A number of different authority relationships are shown, corresponding to

different combinations along two dimensions. The horizontal dimension

indicates whether a node generates goals from its own data and forms its own
tasks to achieve them, whether it receives goals and forms its own tasks, or

whether it receives tasks. The vertical dimension indicates whether a node

gives preference to received information (externally directed), whether it gives

preference to local information (self-directed), or whether it determines relative

preferences dynamically through negotiation. The steps a node takes to choose

the next task to perform is shown for each of the nine combinations.

Data-directed Goal-directed Task-directed

• receive evaluated data • receive prioritized • receive

• generate goals from the goals prioritized

Externally-

directed

data

• prioritize the goals

• determine tasks to

achieve the goals

tasks

• determine tasks to • prioritize the

achieve the goals tasks

• prioritize the tasks

• receive data • receive goals • receive tasks

• negotiate an evaluation • negotiate a • negotiate a

of the data priority for the priority for

• generate goals from the goals the tasks

Negotiated data • determine tasks to

• prioritize the goals achieve the goals

• determine tasks to • prioritize the

achieve the goals tasks

• prioritize the tasks

• receive data • receive the goals • receive tasks

• evaluate the data • prioritize the • prioritize

• generate goals from the goals tasks

Self-directed
data

• prioritize the goals

• determine tasks to

achieve the goals

• determine tasks to • prioritize the

achieve the goals tasks

• prioritize the tasks

Important CDPS Approaches and Empirical Investigations 125

Information
Level

Location

a) Schematic of a "flat" configuration

Information
Level

T 7 1
•— 1~

' ^ ^
\ „

N -~

I

!

I

/ i\ V-

—

*i
——r— ! ' ^

—

j—r

Location

b) Schematic of an overlapping hierarchical configuration

Information

Level

-

p
"I

,***
\V ^ L_ ^ ' ' '

V.^ ,<.-''y/
V.W/' ..' .'

. i 1 ^ s

\ *? ,'
. /

'

w

1 1 1 1 1 1 1 1 1

Location

c) Schematic of a matrix configuration

-node

-area-of-interest of node

-inter-node communications path

Figure C-4. Control topologies.

126 Cooperative Distributed Problem Solving XVII

mation level (higher levels contain more completely processed informa-

tion). In (a), the nodes are organized laterally (flat), so that each processes

all its data and they exchange results among themselves. In (b), the

nodes are arranged in a hierarchy, where some nodes form partial results

that are sent to middle managers that integrate them and pass their

results on to higher level managers. In (c), the nodes are organized in a

matrix orgranization, where separate nodes are responsible for different

processing levels, and their results are integrated by other nodes. These

examples illustrate the variety of information that an organizational

structure can contain.

Ties to Organizational Theory

Theories about human organizations can provide insights to CDPS,
and the work of Galbraith, March and Simon, Williamson, and Dewey
is particularly relevant (Corkill, 1983; Fox, 1981; Gasser, 1986; Hewitt,

1986; and Kornfeld and Hewitt, 1981). For example, Galbraith (1973,

1977) has developed a set of paradigms for redesigning an organizational

structure to cope with the increased communication caused by uncer-

tainty (such as unexpected events and errorful information). Galbraith

draws upon March and Simon's work, which recognized the limited infor-

mation processing capabilities of humans (March and Simon, 1958; and
Simon, 1957, 1969). Called bounded rationality, this limitation applies

both to the amount of environmental (sensory) information that can be

effectively used to make decisions and to the amount of control that can

be effectively exercised. Bounded rationality has serious implications on

the quality of decision making under uncertainty, for "the greater the

task uncertainty, the greater the amount of information that must be

processed ... to achieve a given level of performance" (Galbraith, 1977).

A motivation for variations in organizational structures (in terms of the

type, frequency, and connectivity pattern on information flow) is to pro-

vide additional information processing capacity (to handle greater uncer-

tainty) within the bounded rationality of the organization's individual

members.
In CDPS, our problem-solving nodes also have limited information

processing capabilities. Unlike human organizations, which are difficult

if not impossible to fully characterize, CDPS systems are more easily

characterized because each node in a system is (currently) much less

complex than a human. Therefore, when applying organizational prin-

ciples to a CDPS network, we are more likely to be able to measure those

limitations of the nodes that will affect the choice of an appropriate

organization (Lesser and Erman, 1980):

Control Bounds: What is the range of possible actions about which a

node can make a decision? What is the amount of detail (level of abstrac-

C Important CDPS Approaches and Empirical Investigations 127

tion) of this decision? What is its accuracy? Is the decision made
explicitly or implicitly through the modification of other decisions?

Interpretation (Sensory) Bounds: What is the range of information that

a node can access when making decisions? What is the detail of this

environmental information? What is its accuracy? Is the information

explicitly or implicitly available?

Bounds of the Nature ofDecision Making: How much information about

the history and future goals of the decision making process is available

to a node? Is there only a single decision under consideration at a time

or are alternatives considered simultaneously? What is the detail and

accuracy of this information?

Fox concentrates on the effects of complexity and uncertainty on

choosing suitable CDPS organizations (Fox, 1979, 1981). For example, he

says, "Complexity and uncertainty are two opposing forces; complexity

forcing a distribution of tasks ultimately resulting in heterarchical struc-

ture; uncertainty pushing in the opposite direction, vertically integrating

tasks into a more hierarchical structure." Malone and Smith (1984) have

also tried to develop theories about how distributed networks should be

organized. They have used queuing theory models to analyze generic

organizational classes to determine their performance strengths and
weaknesses with respect to processing, communication, and reliability.

Their analysis has shown that different organizational classes are appro-

priate given different problem situations and performance requirements,

and that these characterizations change with the size of the organization.

However, the implications of their work for CDPS are unclear because

they assume that the individual tasks are independent and because they

do not model uncertainty in terms of the accuracy of control and problem-

solving decisions.

Gasser (1986) is pursuing a view of organization for CDPS that is

less structural in perspective and more related to current organization

theory. He views an organization as a "particular set of settled and
unsettled problems about belief and action through which agents view

other agents. Organizational change means opening and/or settling some
different set of questions in a different way, giving individual agents

new problems to solve and ... a different base of assumptions about the

beliefs and actions of other agents" (Gasser and Rouquette, 1988). The
settling of questions about the belief and action of other agents comes
from the need for agents "to conserve resources, to act under time con-

straints and to be predictable." From this perspective, Gasser believes,

we can understand the underlying knowledge and problem solving that

result in the external structure of an organization.

Gasser asserts that agents need to be able to recognize, diagnose,

and repair violated expectations when other agents fail to meet default

assumptions in previously settled questions. When expectations are vio-

128 Cooperative Distributed Problem Solving XVII

lated, agents generate new questions that must be settled. Agents also

require the ability to perform meta-level reasoning, change their goals

and settle the associated set of questions that now need to be solved in

order to effectively carry out their new goals. This latter capability leads

to organizational change, whereas the former is more associated with

local refinements of the organization.

Gasser is currently using the MACE testbed (Gasser et al., 1987) to

simulate a game-like application domain where agents of one type

attempt to surround and capture agents of another type (Benda et al.,

1985). He is using this simulated application to empirically evaluate his

coordination mechanisms (Gasser and Rouquette, 1988). His view of

organization also has much in common with the recent work of Hewitt

on open systems described in Section C2. For example, Hewitt's due

process can be thought of as the meta-level reasoning that occurs when
the organization's existing strategies for cooperation are no longer effec-

tive.

Coordination Using Organizational Structuring

Corkill and Lesser have applied organizational structures to CDPS
to efficiently implement network coordination strategies. They use an
organizational structure to limit the range of control decisions made by

nodes (decreasing the demands on a node's information processing capa-

bilities) and to ensure that information necessary for making informed

decisions is routed to the appropriate nodes. The organizational structure

provides a control framework that increases the likelihood that the nodes

will work as a coherent team by providing a general and global strategy

for network problem solving.

They have implemented and evaluated their ideas in one of the most
flexible CDPS simulation testbeds developed to date: the Distributed

Vehicle Monitoring Testbed (DVMT) (Corkill, 1983; and Lesser and Cork-

ill, 1983). The DVMT simulates a network of nodes that perform distrib-

uted interpretation to track vehicles moving among them. The spatially

distributed nodes detect the sounds of vehicles, and each applies knowl-

edge of vehicle sounds and movements to track vehicles through its

spatial area. Nodes then exchange information about vehicles they have

tracked to build a map of vehicle movements through the entire area.

This task requires functionally accurate cooperation because nodes work
with potentially errorful data, leading them to generate potentially

inconsistent and incorrect partial results. The nodes can converge on

acceptable overall solutions if they exchange enough of their partial

results. However, without an organizational structure to guide their

processing and communication decisions, the nodes could quickly over-

whelm each other with tentative partial results.

C Important CDPS Approaches and Empirical Investigations 129

Corkill and Lesser recognized that, in designing a CDPS network to

exploit organizational structures, they must have nodes with substantial

sophistication. They suggest that it is unrealistic to expect to develop

network-wide control policies that are sufficiently flexible and efficient

and that require limited communication, while simultaneously making
all the control decisions for each node in the network. Instead, each node

needs to decide on its own activities based on its current local view of

the problems being solved, but to use organizational knowledge about

its problem-solving role in the network and the roles of other nodes to

guide its decisions, so that it is a more effective participant in the

network. This approach divides the problem of network coordination into

two concurrent activities (Corkill and Lesser, 1983): the construction and

maintenance of a network-wide organizational structure and the contin-

uous local elaboration of this structure into precise activities using the

local knowledge and control capabilities of each node. Thus, within the

general bounds specified by the organizational structure, the nodes have

substantial latitude as to what decisions they make.

In the DVMT, an organization is specified as a set of "interest areas"

associated with each node that define what, when, and to whom infor-

mation (partial results and goals to build partial results) should be

transmitted, authority relationships indicating how much priority nodes

should give to processing externally received goals versus internally

generated goals, and goal priorities that indicate how to evaluate the

importance of processing different types of goals. Interest areas allow

the control relationships among nodes indicated in Table C-2.

Each node in the DVMT is a blackboard-based problem solver, with

levels of abstraction and knowledge sources appropriate for vehicle mon-
itoring. The DVMT problem-solving architecture is depicted in Figure C-
5. It indicates how organizational roles are considered when goals are

processed, affecting the ratings of KSIs (possible knowledge source exec-

utions). The planner decides which KSIs to invoke, triggering the knowl-

edge source, which generates new hypotheses on the data blackboard.

Finally, the goal processor builds goals to improve on these hypotheses

and uses the organizational structure to influence the ratings of these

goals.

A DVMT node's scheduler, which decides what knowledge source will

be applied to the partial results on the blackboard, has been modified to

use interest area specifications to prioritize the goals for generating

different partial results. Goals (and their subgoals) to generate results

in areas of high interest for the node have their priority raised. For

example, to increase the range of tasks that a node could perform, the

organization might allow it to interpret data from two different sensed

areas, A and B. A neighboring node might also receive data for sensed

area B. Thus, to avoid duplication of effort, the interest areas would

130 Cooperative Distributed Problem Solving XVII

Table C-2

Possible Control Relationships

Several different types of organizations and their corresponding communication

and control relationships are shown. These can all be modeled in the DVMT.

Organization Communication/Control

results

results

Voluntary/Self-directed;

- a node transmits results at its

pleasure

- a node makes its own activity

decisions.

Requested/Externally-directed:

- a node transmits results only

when information is requested
by another node;

- a node performs those
activities that have been
specified by another node.

results

Mixed-initiative/Combined:

- a node volunteers only its

most important results and
awaits requests before
transmitting other results;

- a node balances high-priority

activities specified by
another node with activities

that are locally important.

specify that the node should prefer to achieve goals that generate partial

solutions in area A. But if it has no such goals, it can pursue goals in

area B to cooperate with its neighbor to process the data in parallel.

Similarly the ratings of goals to transmit and receive information are

influenced by the interest areas of both the sending and receiving nodes.

Without interest areas, a node would simply pursue its highest rated

Important CDPS Approaches and Empirical Investigations 131

Organizational

Structure

Goal -Subgoal
Table

Goal-^KS
Table

Hyp- Goal

Table

KSI *j
Queue A

If

i i
i

KSIs
|

Planner

Current

KSI

goals
Goal Processor

goals and
subgoals

Goal

Blackboard

hyps

Data

Blackboard

(Knowledge Y^_^
Sources J*

-

Communi-
cation

Hardware

Data

Control <+

Figure C-5. The DVMT problem solving architecture.

goal. This rating would be based on such factors as the confidence in the

partial results that triggered the goal. The interest areas are themselves

rated, and so when a node incorporates interest area information, it

rerates a goal based on its initial rating combined with its interest area's

rating. Thus the organizational structure only biases the node's deci-

sions. Because goal ratings also involve other factors, a node could pursue

a goal that is highly rated from a local perspective even if it falls in a

poorly rated interest area. The organizational structure thus provides

guidance without dictating local decisions and can be used to control the

amount of overlap and problem-solving redundancy among agents, the

problem-solving roles of the nodes (such as the "integrator," "specialist,"

and "middle manager"), the authority relations between nodes, and the

potential problem-solving paths in the network.

Durfee, Lesser, and Corkill (1987) expanded these ideas and showed

132 Cooperative Distributed Problem Solving XVII

that a static organization structure cannot always guarantee coherent

network behavior. An organization that is specialized for one short-term

situation may be inappropriate for another. Because network reorgani-

zation is assumed to be costly and time consuming, and since specific

problem characteristics cannot be predicted beforehand, an organiza-

tional structure should be chosen that achieves acceptable and consistent

performance in the long term, rather than very good performance in only

a few situations. An acceptable organizational structure will provide

nodes with enough flexibility for them to react suitably to changing

situations.

An organizational structure that appropriately balances the amount
of interest that nodes have in various problem-solving activities and the

degree to which they may be externally biased (based on the relative

completeness of their views) can result in consistently acceptable net-

work problem-solving behavior over the long term.

The trouble with flexible organizations is that they also give nodes

the latitude to make decisions that might lead to incoherent network

behavior. Given the range of roles they could play in an organization,

nodes need to solve the problem of what roles they should play in the

current situation. In essence, this is another CDPS problem that nodes

should solve together if they are to work effectively as a team. Durfee

and Lesser (1987) expanded on the organizational structuring approach

to develop a meta-level organization for specifying how nodes in a CDPS
network should cooperatively decide how to solve a problem together.

That is, the meta-level organization organizes the coordination activities

of the nodes, whereas the separate domain-level organization organizes

their domain-level problem-solving activities. The meta-level organiza-

tion specifies the type of control decision making that each node will

perform, how its control decisions will be affected by decisions from other

nodes, and what type of meta-information should be transmitted and to

whom.
For example, a CDPS network in the DVMT might be composed of

several nodes with equivalent problem-solving expertise, each of which

might be connected to a different sensor. The domain-level organization

might organize the nodes laterally. That is, nodes pass partial results to

their neighbors until some node eventually forms a complete result. The
meta-level organization for this network, however, could be centralized.

One node is given the role of network coordinator, and the other nodes

then know they should send information about their partial results to

the coordinating node. That node, in turn, decides which partial results

each node should form and where they should be exchanged to solve the

problem as an effective team. Alternatively the meta-level organization

could also be lateral, where nodes exchange information to their neigh-

bors and each builds a view of how they should work together.

C Important CDPS Approaches and Empirical Investigations 133

An unanswered question for this research is where organizational

structure comes from in the first place. To date, they have all been

developed by the human user and initialized with the network. A long-

term goal of the research has been to automate the organizing process

so that a network can reorganize when necessary. Reorganization is a

costly process, both in communication and computation, and should only

be undertaken infrequently, and only when problems arise with the

current organization. Detecting problems with the current organization

is difficult, because performance measures are distributed among the

nodes. Perhaps no node has enough information to recognize when the

organization is no longer effective. The work by Durfee and Lesser on

meta-level organizations and on treating coordination as CDPS might

provide tools for addressing the recognition problem. That is, if the

coordination problem becomes overly difficult, it might indicate that the

underlying domain-level organization is at fault. Once the nodes deter-

mine that they should reorganize, negotiation techniques could provide

the basis for converging and agreeing on a new organization. Of course,

the problem of detecting poor meta-level organizations remains.

Other CDPS Organizations

The contracting approach of Davis and Smith (Section CI) allows

nodes to organize themselves to solve particular problems. When the

network receives a large problem, the nodes recursively decompose the

problem until nondecomposable tasks remain, assign subproblems to

nodes through the Contract-Net protocol, solve the subproblems in par-

allel, and synthesize one or more answers from the subproblem solutions.

Synthesizing the answer might require the nodes to locate and collect

the best solution to each subproblem because several nodes might solve

the same subproblem in different ways. Contracting allows the nodes to

form simple organizations in terms of manager-contractor relationships.

As the nodes solve one problem and move onto another, they reorganize

themselves. Thus contracting provides an example of automated network

organization, but the overhead of having to reorganize for each problem

could be substantial. This is sufficient for many applications but would
need to be extended to represent more complex organizations that com-

bine hierarchical and lateral relationships between nodes.

From a different perspective, Kornfeld and Hewitt (1981) have pro-

posed that CDPS can be organized in a manner analogous to the structure

of scientific research. In their scientific community metaphor for CDPS,
nodes posit either "questions" (goals) or "answers" (results) into a

mutually accessible archive. The presence of this information allows a

node to draw on work already performed by other nodes. They also

propose using the economics offunding as the basis for controlling activ-

134 Cooperative Distributed Problem Solving XVII

ity in the network. In essence, every goal in the network must have a

sponsor, and every sponsor has limited resources. Thus goals that cannot

command a sponsor are not pursued. Kornfeld and Hewitt implemented

a parallel processing version of this system, called Ether, that embodies

many of their ideas. However, although the metaphor is an interesting

way of viewing CDPS networks, significant research on aspects of the

implementation in a distributed environment remains to be done.

Summary

Imposing a general, high-level organization on a CDPS network gives

nodes knowledge that improves how they coordinate, while still allowing

them to pursue alternative solution paths that are not dictated by the

network. The organization helps nodes focus their processing and com-

munication resources on activities that are usually more likely to lead

to effective network performance, although in any given problem-solving

situation a more rigid, situation-specific organization could lead to even

better performance. If the characteristics of the problem-solving situation

are known beforehand, techniques such as contracting, which allow

nodes to generate a situation-specific organization, are suitable. How-
ever, because CDPS networks often work in dynamic domains where
the problem-solving situation can frequently change, organizational

approaches have also focused on general-purpose organizations.

Organizational structures help nodes to cooperate and thus help to

achieve the goals of cooperation (Figure A-2). Organizations allow nodes

to work in parallel. Appropriate organizations assign network problem-

solving roles to nodes with suitable resources so that network resources

are used effectively. If specified in the organization, nodes can have

overlapping roles to increase network reliability. Finally, the organiza-

tion gives each node a global picture of the problem-solving roles of the

other nodes so that each node can determine for itself whether or not

any of its local activities might interact with those of another node. But
note that some organizations such as those based on simple contracting

relationships might not notice potential interactions between nodes

because a manager only knows about its contractors, and not about all

of their subcontractors.

C4. Multiagent Planning

In a multiagent planning approach to cooperation, nodes (agents)

form a multiagent plan that specifies all their future actions and inter-

actions. Coordinating nodes through multiagent plans is different from

C Important CDPS Approaches and Empirical Investigations 135

other approaches in that one or more nodes possess a plan that indicates

exactly what actions and interactions each node will take for the duration

of the network activity. This differs from approaches such as contracting,

in which nodes typically make pairwise agreements about how they will

coordinate, and nowhere is any complete view of network coordination

represented.

Contracting can lead to incoherent behavior that multiagent plan-

ning avoids. For example, in contracting, two different nodes might

independently form and contract out the same subproblem to two other

nodes so that these nodes are duplicating each other's effort because they

are unaware of contracts in which they do not participate. In multiagent

planning, one or more nodes would have information about each node's

activities and could recognize and prevent the duplication of effort.

Because it insists on detecting and avoiding inconsistencies before they

can occur, multiagent planning is not like functionally accurate cooper-

ation. Finally, unlike the general guidelines imposed by an organiza-

tional structure, a multiagent plan dictates exactly what actions each

node should take and when.
A multiagent plan is built to avoid inconsistent or conflicting actions

and is typically used in CDPS networks to identify and plan around

resource conflicts. For example, in scheduling the use of airspace (Cam-

marata et al., 1983) or machining tools (Georgeff, 1983), an unexpected

conflict for a resource can be costly in time, money, or human life. Rather

than risking incoherent and inconsistent decisions that nodes might
make using other approaches, multiagent planning insists that nodes

plan out beforehand exactly how each will act and interact. Because

multiagent planning requires that nodes share and process substantial

amounts of information, it can also require more computation and com-

munication resources than other approaches.

Centralized Multiagent Planning

Georgeff (1983) develops a multiagent planning approach where the

plans of individual nodes are first formed, and then some central plan-

ning node collects them and analyzes them to identify potential inter-

actions such as conflicts between the nodes over limited resources. The
central node then performs a safety analysis to determine which poten-

tial interactions could lead to conflicts; for example, when a node modifies

the world in such a way that another cannot continue with its plan. The
central planning node next groups together sequences of unsafe situa-

tions to create critical regions. Finally, it inserts communication com-
mands into the plans so that nodes synchronize appropriately. For

example, if one node should wait until another has finished with a lathe

before it begins operating the lathe, its plan contains an instruction to

136 Cooperative Distributed Problem Solving XVII

wait for a message from the other node before beginning to use the lathe.

Georgeff and Lansky have pursued this centralized multiagent planning

approach further, using alternative representations for events in multi-

agent domains (Georgeff, 1984, 1986; Lansky and Fogelsong, 1987).

Cammarata, Steeb, and McArthur (1983) have also developed a sys-

tem for centralized multiagent planning. Their system, described more
completely in Section CI, works in an air-traffic control application.

Through a process of negotiation, the nodes (aircraft) choose a coordi-

nator. Each node then sends this coordinator relevant information, and
the coordinator builds a multiagent plan that specifies all the nodes'

planned actions, including the actions that it, or some other node, should

take to avoid collisions.

Distributed Multiagent Planning

When multiagent planning is done in a distributed manner, there

may be no single node with a global view of network activities, so

detecting and resolving interactions between nodes is much more diffi-

cult. The general approach is to provide each node with a model of other

nodes' plans (Corkill, 1979; Georgeff, 1984; Konolige, 1983). For example,

Corkill has developed a distributed hierarchical planner based on NOAH
(Sacerdoti, 1977) where nodes represent each other using MODEL nodes

(Corkill, 1979) and synchronize the plan execution with explicit syn-

chronization actions. The nodes plan together level by level. They each

build local plans at one level of detail and build suitable models of each

other by communicating about shared resources needed for their goals.

The nodes resolve resource conflicts using a protocol that Corkill has

developed for a distributed version of NOAH's critics. When conflicts in

their plans at this level have been resolved, the nodes then proceed to

the next level of detail and repeat this process.

Using a logic-based approach, Rosenschein and Genesereth (1987)

studied how agents with a common goal but different local information

can exchange propositions to converge on identical plans. In their for-

mulation, goals are propositions to prove, local information is repre-

sented in axioms, and plans are proofs of the goal propositions. They
developed strategies for convergence based on assumptions about the

correctness and completeness of agents' information, about what each

agent knows about other agents' knowledge, about what each agent

knows about itself, and about whether additional information can cause

a previously acceptable plan to be unacceptable. In cases where agents

might have incorrect information or incorrect views of the information

of other nodes, Rosenschein and Genesereth show that convergence on a

plan cannot be guaranteed, whatever strategy is used. Their results

indicate that expecting sometimes unpredictable agents working in

C Important CDPS Approaches and Empirical Investigations 137

dynamic domains to always coordinate optimally is infeasible; perhaps

the best we can hope for is that they will coordinate acceptably well and
will tolerate any uncoordinated activity.

Durfee and Lesser (1987) have developed a CDPS approach called

partial global planning (Section C5), in which nodes build local plans

and share these plans to identify potential improvements to coordination.

Unlike multiagent planning, which assumes that a plan is formed before

nodes begin to act, partial global planning allows nodes to interleave

planning and action. In partial global planning, nodes coordinate as best

they can given their current view, rather than waiting for a complete

view of the network. This ability is essential in dynamic domains where

complete, up-to-date information might not be available to any node.

Unlike conventional multiagent planning, partial global planning also

gives nodes flexibility in deciding what node or nodes will build larger

plans (represented in the meta-level organization discussed in Section

C3).

Summary

Multiagent planning takes the view that interactions between the

separate activities of the nodes must be identified, and any conflicts

should be identified and fixed before the plans are executed. This view

is critical in applications such as air-traffic control, where aircraft should

wait until all their situations are taken into account in a plan before

they begin executing the plan by changing course. Thus typical multi-

agent planning approaches concentrate mostly on the particular coop-

erative goal of avoiding harmful interactions (Figure A-2). On the other

hand, multiagent planning systems are poorly suited to dynamically

changing domains, where nodes cannot wait for complete information

about potential plan interactions before they begin acting. In most
dynamic domains, nodes can make mistakes—take actions that are not

well coordinated—without catastrophic results and can later take actions

to rectify any problems resulting from earlier actions. For these domains,

partial global planning can be a better approach (Section C5).

C5. Sophisticated Local Control

Experience has taught us that a node in a CDPS network must be

more sophisticated than a node that works alone because it must reason

about its own problem solving, how this fits in with problem solving by
other nodes in the network, and what it can do to improve network
problem solving. It is a mistake to assume that effective coordination

138 Cooperative Distributed Problem Solving XVII

will result if we take nodes that are individually good problem solvers

and then simply give these nodes a communication interface so that they

can exchange messages. Coordination is not achieved just through

exchanging information; nodes must reason about what that information

represents and how exchanging information will affect their individual

and group behavior.

Sophisticated local control allows a node to understand the implica-

tions of its planned problem-solving and communication actions on other

nodes' goals, beliefs, and plans. This understanding forms the basis for

deciding how to coordinate with others, for example, whether to contract

out tasks, negotiate over how to achieve goals, exchange information to

resolve inconsistent views, take on different organizational responsibil-

ities, or plan specific actions and interactions to build complete solutions.

Sophisticated local control concentrates on how to build nodes that can

decide for themselves how and when to coordinate, rather than having

a specific coordination approach imposed on them.

Communication Policies

Because nodes are influenced by the information they receive, they

need policies to guide their decisions about what information to

exchange, with whom, and when. Durfee, Lesser, and Corkill (1987)

describe three major characteristics of the information communicated
among nodes that affects global coherence—how well the nodes work as

a team. These are relevance, timeliness, and completeness.

The relevance of a message measures the amount of information that

is consistent with the solution derived by the network. Irrelevant mes-

sages may redirect the receiving node into wasting its processing

resources on attempts to integrate inconsistent information, so higher

relevance of communicated information can result in more global coher-

ence because it stimulates work along the solution path.

The timeliness of a transmitted message measures how much it will

influence the current activity of the receiving node. Since timeliness

depends not only on the content of the message but also on the state of

the nodes, a message's timeliness can vary as node activity progresses.

If the transmitted information will have no effect on the node's current

activity, there is no point in sending it. However, if the transmitted

information will distract the receiving node to work in a more promising

area, or if the node needs the information to continue developing a

promising partial solution, then it is important that the information be

sent promptly.

The completeness of a message measures the fraction of a complete

solution that the message represents. Completeness affects coherence by

reducing the number of partially or fully redundant messages commu-

C Important CDPS Approaches and Empirical Investigations 139

nicated between nodes—messages that negatively distract nodes into

performing redundant activity. Furthermore, as the completeness of

received messages increases, the number of ways that the messages can

be combined with local partial results decreases due to their larger

context. Achieving completeness is important to minimize communica-
tion requirements in our loosely coupled distributed network.

These characteristics of communicated information are not indepen-

dent. For example, higher completeness leads to higher relevance but,

potentially, to a decrease in timeliness. Communication policies that

guide decisions about what information should be sent, to what nodes,

and when often involve tradeoffs among the three characteristics. With
increased self-awareness, a node can be more informed about the rel-

evance and completeness of its local hypotheses and can make more
intelligent predictions both about how a hypothesis will affect its local

decisions and about whether the timely transmission of the hypothesis

is therefore likely to cause other nodes to alter their activities.

A node's communication decision is based on its communication pol-

icy. Durfee, Lesser, and Corkill (1987) have developed three communi-
cation policies for the DVMT (Section C3): the send-all, locally complete,

and first-and-last policies. The send-all policy allows a node to transmit

a partial solution to another node if the partial solution falls within the

other node's interest areas, as specified in the organizational structure.

The second policy, called locally complete, allows a node to transmit

a partial solution to another node if it falls within the other node's

interest areas and if the original node cannot itself improve on the partial

solution. This policy permits nodes to share only locally complete partial

results and avoids the situation where a node sends a series of partial

solutions where one is simply an extension of its predecessor. Sending

all of the partial solutions can incur substantial communication overhead

and computation overhead (the recipient must integrate each received

partial solution into its local processing).

The third policy, called first-and-last, allows a node to transmit the

first partial solution it forms in an area, and later the last (locally

complete) one it forms. The purpose of transmitting the first is to provide

the recipient with predictive information. That is, the first partial solu-

tion will indicate characteristics of the eventual locally complete solu-

tion, so the recipient can sooner predict what partial solution it should

form that will be compatible with the locally complete partial solution

it will eventually receive.

In evaluating these policies in the DVMT, Durfee, Lesser, and Corkill

found that a policy's effectiveness depends on characteristics of the prob-

lem situation, for example, how much the nodes' subproblems overlap

and how much data each node has. In all cases, the locally complete

policy reduced network communication the most, and the send-all policy

140 Cooperative Distributed Problem Solving XVII

the least. In terms of the speed of network problem solving, the locally

complete policy was generally superior because the other policies caused

nodes to be distracted by the smaller partial solutions. The distraction

often led to duplication of effort as the recipient node would extend the

partial solution in the same way that the sending node was already

extending it. Withholding incomplete partial solutions reduced distrac-

tion. However, first-and-last was superior to locally complete in situa-

tions where a recipient node had substantial uncertainty about which

partial solution to pursue. The timely arrival of the incomplete, predic-

tive partial solution would guide the recipient node into forming a suit-

able partial solution earlier. Overall, the experiments showed that

making nodes aware of which of their partial solutions are locally com-

plete and giving them knowledge about the potential impact of sharing

their partial solutions allows the nodes to communicate less and still

coordinate better.

Partial Global Planning

Durfee and Lesser have emphasized the need for sophisticated local

control to make reasoning about coordination an integral part of a node's

local decision making. Instead of having separate mechanisms for differ-

ent forms of coordination, they have developed a unified, flexible frame-

work in which nodes can form contracts, plan their actions and
interactions, negotiate over their plans, use organizational information

to guide their planning and problem-solving decisions, tolerate inconsis-

tent views, and converge on acceptable network performance in dynam-
ically changing situations despite incomplete, inconsistent, and out-of-

date information. Their partial global planning approach (Durfee, 1988;

Durfee and Lesser, 1987) thus addresses the different goals of cooperation

(Figure A-2).

In the partial global planning approach, each node can represent and
reason about the actions and interactions for groups of nodes and how
they affect local activities. These representations are called partial global

plans (PGPs) because they specify how different parts of the network plan

to achieve more global goals. Each node maintains its own set of PGPs
that it may use independently and asynchronously to coordinate its

activities.

A PGP is a frame-like structure that nodes use as a common repre-

sentation for exchanging information about their objectives and plans.

The PGP's objective contains information about why the PGP exists,

including its eventual goal (the larger solution being formed) and its

importance (a priority rating or reasons for pursuing it). Its plan -activity-

map represents what the nodes are doing, including the major plan steps

being taken concurrently, their costs and expected results, and why they

C Important CDPS Approaches and Empirical Investigations 141

are being taken in a particular order. Its solution-construction-graph

contains information about how the nodes should interact, including

specifications about what partial results to exchange and when to

exchange them. Finally, a PGP's status contains bookkeeping informa-

tion, including pointers to relevant information received from other

nodes and when it was received. A PGP is thus a general structure for

representing coordinated activity in terms of goals, actions, interac-

tions, and relationships.

Besides their common PGP representation, nodes also need at least

some common knowledge about network problem-solving responsibilities

and about how and when they should use PGPs to coordinate their activ-

ities. This common knowledge is represented in the domain-level and

meta-level organizations (Section C3). Nodes use the domain-level organ-

ization to influence what goals they pursue and their plans to pursue

them, and they use the meta-level organization to decide how, when, and

where to form and exchange PGPs based on their local plans. Guided by

the meta-level organization, nodes use transmitted PGPs to build models

of each other. A node uses its models of itself and others to identify when
nodes have PGPs whose objectives could be part of some larger network

objective, called & partial global goal, and combines the related PGPs into

a single, larger PGP to achieve it.

Given the more complete view of group activity represented in the

larger PGP, the node can revise the PGP (and afterwards, its local plans)

to represent a more coordinated set of group actions and interactions and
a more efficient use of network resources. For example, a PGP could

indicate that a certain partial solution to be formed by one node could

provide useful predictive information to another node. This expectation,

and the transmission of the partial solution, are explicitly represented

in the PGP, and they indicate a plan to use information resources more
effectively.

As a second example, nodes that are working on the same network
goal might have different PGPs, reflecting their different local perspec-

tives. These nodes could exchange PGP information so as to negotiate

over a compromised, agreed upon PGP. As a third example, a node could

survey its current view of network PGPs and identify nodes whose com-

puting resources or expertise are being underutilized. At the same time,

other nodes could be overwhelmed with subproblems. By modifying its

PGPs, the node could propose how the nodes could transfer appropriate

subproblems to work as a better team. It sends these PGPs to potential

subproblem recipients, who in turn can accept or reject the PGP, or modify

it and send it back as a counterproposal.

Thus, unlike a simple contracting protocol, partial global planning

allows nodes to barter using proposals and counterproposals, where each

proposal contains information about not only the subproblem to be trans-

142 Cooperative Distributed Problem Solving XVII

ferred but also how that subproblem fits into network problem solving.

This information helps a potential recipient make more informed deci-

sions about how to respond to the proposal.

In complex CDPS networks, different subsets of nodes could need to

coordinate in each of these ways at the same time. Partial global plan-

ning provides a unified framework that supports these different forms of

coordination. This framework has been implemented and evaluated in

the DVMT (Section C3) (Durfee, 1988). In this implementation, a node's

local planner develops a plan at multiple levels of detail, including a

representation of major plan steps. In the DVMT, a major plan step

corresponds to extending a partial track into a new time frame (such as

extending the track formed from di to dj into dj+\, where dk is data sensed

at time k). This step might take several processing actions to analyze

the new data, filter out noise, and integrate the correct data into the

track. For each major plan step, the local planner roughly estimates

what partial results will be formed and when. By representing and
coordinating their major plan steps, nodes cooperate effectively without

reasoning about details that are frequently revised and quickly outdated.

Each node has a partial global planner (PGPlanner) as an integral

part of its control activities. The PGPlanner builds a node-plan from each

local plan, where a node-plan's objective indicates the possible track(s)

being developed and its plan-activity-map is a sequence of plan-activities.

Each plan-activity represents a major plan step and has an expected

begin time, end time, and partial result, derived from the local planner's

estimates. Guided by the meta-level organization, nodes exchange PGPs
and node-plans so that one or more of them develops more encompassing

PGPs. When combining PGPs into a single, larger PGP, a node merges
the smaller PGP's plan-activity-maps to represent the concurrent activ-

ities of all participating nodes and can reorder the plan-activities to

improve coordination. It also builds a solution-construction-graph to indi-

cate which partial tracks formed by the plan-activities should be

exchanged to share useful information and construct the complete solu-

tion. The PGPlanner then revises local plans based on the PGP and can

propose transfers of subproblems to initiate negotiation that will lead to

better use of network resources.

An important idea exemplified by the partial global planning

approach is the distinction between "satisficing" network control and
optimal network control. In environments that are highly dynamic and
uncertain, and where an updated and consistent global view of the state

of the network problem solving is very difficult to obtain, attempting

optimal control at every moment is infeasible from both a computational

and communicative perspective. Rather, partial global planning employs

heuristic algorithms for reordering and revising PGP activities that

achieve a reasonable balance between the interdependent requirements

C Important CDPS Approaches and Empirical Investigations 143

of global coherence, limited use of computational resources in controlling

coordination, and responsiveness to dynamically changing conditions.

Two other ideas in the partial global planning framework contribute

to our understanding of network coordination. The first is that increasing

a node's understanding of its own activities is an important ingredient

in designing effective coordination strategies. Durfee and Lesser show
that providing a local node with the ability to develop high-level problem-

solving goals and plans, to make reasonably accurate predictions of the

time required to achieve its planned steps, and to make predictions about

likely future goals all lead to more sophisticated network coordination.

The second contribution is the concept of network coordination as a

distributed problem-solving task in its own right, distinct from domain-

level CDPS going on among nodes. Partial global planning introduces

the concept of a meta-level organization to describe the organizational

relationship among nodes required to solve the network coordination

problem and permits the coordination tasks to go on asynchronously and
in parallel with domain problem solving.

Summary

A node that by itself is a good problem solver will not necessarily be

a valuable participant in a CDPS network. Coordination requires that a

node have more sophisticated local control so that it can more fully

reason about goals and plans, both its own and those of other nodes. This

view allows a node to cooperate and communicate more effectively, allow-

ing it to influence other nodes and be influenced by them so that they

work as an effective team. Sophisticated local control thus opens nodes

up to a wide range of capabilities, including being able to negotiate, form

contracts, develop plans, conform (or rebel against) organizations, and
share results. In essence, sophisticated local control is the foundation on

which more complex forms of coordination activity must be built, and it

allows the network to address all the goals of cooperation (Figure A-2),

as exemplified in partial global planning.

C6. Formal Frameworks

Although an orientation toward techniques for particular application

domains has dominated CDPS research, a number of researchers have

instead concentrated on formal models of CDPS, using logic-based or

game-theoretical nodes. Some of this work focuses on how nodes can form

multiagent plans, including the work of Georgeff and of Rosenschein and
Genesereth (see Section C4).

144 Cooperative Distributed Problem Solving XVII

CDPS requires that the formalisms developed for logic-based agents

that work alone must be extended in two ways. The first extension is

that these systems must be able to model and reason about the concur-

rent activities of multiple agents, as discussed in Section C4. The second

extension is that the agents must perform in situations where they have

incomplete knowledge or limited computational resources. Both cases

lead to the possibility of generating incorrect inferences, which in turn

may result in agents having inconsistent beliefs about the world. As a

result, agents might never converge on shared, coordinated plans (Rosen-

schein and Genesereth, 1987). Hewitt, in his studies of open systems

(Section C2), addresses this problem and argues that formal logic is

inadequate (Hewitt, 1986).

Researchers are following a number of different approaches to

extending logical formalisms for CDPS applications. Konolige (1982,

1983) has developed the Deductive Belief model in which an agent's

beliefs are described as a set of sentences in formal language together

with a deductive process for deriving the consequences of those beliefs.

This approach can account for the effect of resource limitations on the

derivation of the consequences of beliefs. Appelt (1982) has used a pos-

sible world formalism to represent and reason about belief. Cohen and
Levesque (1987) have developed a formal theory for reasoning about an
agent's intentions as a combination of what it has chosen and how it is

committed to its choice. Rosenschein (1983) has developed a more general

theory of multiagent planning that allows for the existence of other

agents and their mental states as part of the environment within which

plans can be constructed. Halpern and Moses (1984) have investigated

the issue of common knowledge between agents, discovering limitations

in what agents can know about each other.

Research on dialog comprehension in natural language understand-

ing is also relevant to CDPS research because both research areas must
reason about multiple agents with distinct and possibly contradictory

mental states (Allen, 1979; and Cohen, 1978). Mental states include not

only facts or knowledge but also beliefs and goals. (See Chapter XIX in

this Volume.) An agent must interpret messages from other agents,

including what the messages imply about the agents' mental states, and
must generate messages to alter the mental states of other agents, taking

into account the potential actions of other agents that might affect how
it can achieve its goals. Through an appropriate dialog, the agents can

converge on shared plans for how they should coordinate their activities

(Grosz and Sidner, 1985, 1988).

Another research approach toward developing a formal theory for

understanding the nature of cooperation among multiple agents is that

of Rosenschein and Genesereth (Rosenschein, 1982, 1983; and Rosen-

schein and Genesereth, 1985). They have based their model on game

C Important CDPS Approaches and Empirical Investigations 145

theory techniques and have shown the utility of communication to

resolve conflicts among agents having disparate goals. Using a game-
theoretic model, each agent attempts to choose an option to maximize
its payoff, and since no combination of agents' options might lead to

maximal payoffs for them all, they must somehow choose options that

lead to acceptable payoffs given the circumstances. Rosenschein and
Genesereth study how different assumptions about the rationality of the

agents can lead to more or less effective choices. Certain assumptions

about rationality allow agents to make reasonable choices without com-

munication (since they each have complete information about the choices

and payoffs for every agent), whereas the ability to communicate allows

them to make deals about mutually beneficial activity in situations

where complete information about the payoff matrix is not enough.

In summary, formal CDPS approaches attempt to use rigorous models

of agent reasoning and interactions to develop insights into coordination

that are independent of any domain. Many of these insights are useful

to researchers attempting to build CDPS systems, illuminating crucial

issues and limitations in what can be expected from CDPS networks. To
remain tractable, however, the formal approaches often use simplified

views of agents and their knowledge, such as assuming that all the

choices and payoffs of agents are known in advance. Because of the

complexity gap between the systems being modeled formally and the

applications that are being studied, CDPS research has yet to adequately

define rigorous approaches that work in real-world applications.

D. CONCLUSION

The promises and pitfalls of CDPS can be summed up by combining two

proverbs: Many hands make light work, but too many cooks spoil the

broth. CDPS networks where nodes work together effectively have many
potential benefits in applications where information, resources, or exper-

tise are naturally distributed, or where we can intentionally distribute

them to improve the speed, modularity, or reliability of the system. We
will not realize these benefits, however, if our CDPS networks are uncoor-

dinated.

We have outlined many approaches for coordinating nodes in a CDPS
network, including contracting, negotiation, organizational structuring,

multiagent planning, and sophisticated local control. From these very

different approaches, we can infer that effective coordination requires

three things. First, it requires structure because without structure the

CDPS nodes cannot interact in predictable ways. Structure is embodied
in shared information such as organizations and communication proto-

cols. Second, effective coordination requires flexibility because CDPS
nodes typically exist in dynamically changing environments where each

node might have incomplete, inaccurate, or obsolete information. Flexi-

bility allows a contracting node to decide how to bid in its current situ-

ation, it allows a node in an organization to locally decide what partial

solution to form given its current data, and it allows a node in a planning

system to change its plan in response to changing circumstances.

The third requirement for effective coordination is the knowledge
and reasoning capabilities to intelligently use the structure and flexibil-

ity. Nodes must form and reason about what they are doing—their goals,

plans, and beliefs—and how this fits into what they know about others.

They must rely on structure to guide this reasoning but must allow

themselves the flexibility to adapt their activities to changing circum-

stances. In short, nodes need enough local sophistication to steer an
appropriate course between regimentation and anarchy.

None of the approaches detailed earlier represents a general answer

to the needs of intelligent coordination in CDPS networks, but our dis-

cussion has illustrated the richness of the ideas and approaches to date.

Future CDPS research will build on this past work in many directions.

One will be to improve our theories about organizing CDPS networks.

These theories should provide guidelines for how domain and control

problem-solving tasks should be distributed among agents based on the

current network characteristics and problem-solving situation.

146

D Conclusion 147

CDPS research will also extend its paradigms for how to get disparate

agents to cooperate on a problem. These paradigms must address issues

of how to resolve inconsistencies due to agents' different problem-solving

approaches or knowledge; how to promote understanding between dis-

parate agents of their beliefs, goals, and plans; and how to get agents to

make intelligent communication decisions that influence each other to

their advantage.

To incorporate CDPS into AI practice, we will need guidelines or

frameworks for building AI systems that can become part of a CDPS
network. If reasoning about coordination is an integral part of an agent,

the agent must have knowledge representations, inference techniques,

and control components that are adequate for this type of reasoning.

Practical CDPS networks will also require advanced software infrastruc-

tures, languages and operating systems (Bisiani, 1986; and Hayes-Roth

et al., 1988).

CDPS has opened a new door in the study of intelligence. CDPS
research continues to reveal the complexity of coordination in all its

forms, and the extensive though sometimes subtle connections between
intelligent coordination and other aspects of intelligence. CDPS research

brings to the fore issues in areas such as introspection, planning, lan-

guage, and reasoning about belief. As Nilsson (1980) predicted in his

early involvement in CDPS, research into CDPS forces us to address many
of the basic problems of AI.

These insights have led some CDPS researchers to view reasoning

about coordination—about how to interact with other intelligent

agents—as a fundamental aspect of intelligent behavior. In fact, it could

be argued that we judge the intelligence of an entity by how it interacts

with us: whether we can understand its goals, plans, and beliefs as

embodied in its actions, whether we can communicate with it, and
whether it appears to be understanding us. CDPS research continues to

study the knowledge and reasoning capabilities that must go into AI
systems, if those systems are ever to meet these criteria for intelligence.

Further Reading

For further information on CDPS, the collection Readings in Distrib-

uted Artificial Intelligence edited by Bond and Gasser contains the sem-

inal papers in the field (Bond and Gasser, 1988). In addition, the book

Distributed Artificial Intelligence, edited by Huhns, provides papers on

current research directions (Huhns, 1987). A second such book is due out

late in 1989.

Acknowledgments

We would like to thank Clive Dym for helping us in our early drafts.

Chapter XVIII

Fundamentals of Expert Systems

Bruce G. Buchanan—University of Pittsburgh
Reid G. Smith—Schlumberger Laboratory for

Computer Science, Austin

CHAPTER XVIII: FUNDAMENTALS OF EXPERT
SYSTEMS

A. Overview I 151

B. Fundamental Principles I 160

1. Representation ofKnowledge I 161

2. Reasoning Methods I 167

3. Knowledge Base Development I 1 73

4. Explanation I 174

5. System-Building Tools/Shells I 175

6. Validation I 177
7. Reasons for Using the Methods ofExpert Systems I 178

C. State of the Art I 181

1. Size of System I 181

2. Type of System I 183

3. Some Observed Limitations I 184

D. Design Principles and Summary I 189

1. Design Principles I 189

2. Summary I 191

A. OVERVIEW

Expert systems are among the most exciting computer applications to

emerge in the last decade. They allow a computer program to use exper-

tise to assist in a variety of problems such as diagnosing failures in

complex systems and designing new equipment. Using artificial intelli-

gence (AI) work on problem solving, they have become a commercially

successful demonstration of the power of AI techniques. Correspondingly,

by testing current AI methods in applied contexts, expert systems provide

important feedback about the strengths and limitations of those methods.

In this review we present the fundamental considerations in designing

and constructing expert systems, assess the state of the art, and indicate

directions for future research. Our discussion focuses on the computer

science issues, as opposed to issues of management or applications.

Characterization and Desiderata

Expert systems are distinguished from conventional programs in

several important respects. Although none of the characteristics in the

following list are missing entirely from other well-designed software, all

of them together describe a distinct class of programs. Note that few

expert systems exhibit all of the following five desiderata to the same
degree. An expert system is a computer program that:

a. Reasons with domain-specific knowledge that is symbolic as well as

numerical (this is what we mean by calling an expert system a

knowledge-based system).

b. Uses domain -specific methods that are heuristic (plausible) as well as

following procedures that are algorithmic (certain).

c. Performs well in its problem area.

d. Explains or makes understandable both what it knows and the rea-

sons for its answers.

e. Retains flexibility.

One expert system that meets these conditions is the Dipmeter Advi-

sor System (Smith and Young, 1984; and Smith, 1984). Its task is to help

petroleum engineers determine the "map" of geological strata through

151

152 Fundamentals of Expert Systems XVIII

which an oil well is being drilled, e.g., the depth and the dip, or "tilt" of

individual layers of sandstone, shale, and other rocks. It meets our desid-

erata in the following respects:

1. The knowledge used is partly mathematical (e.g., trigonometry) but

largely nonnumeric geological knowledge (e.g., how sand is deposited

around river beds).

2. Its reasoning is based on heuristics that well-logging experts use to

interpret data from boreholes.

3. It aids specialists, providing interpretations better than those of nov-

ices.

4. It uses a variety of graphical and textual displays to make its knowl-

edge understandable and to justify its interpretations.

5. It is flexible enough to be modified and extended frequently, without

rewriting the programs that interpret the knowledge.

Figure A-l shows an example ofwhat the Dipmeter Advisor System's

computer screen looks like, as an illustration of what the user of an

expert system might see. This figure shows the input data and a partial

explanation for a conclusion drawn by the system. The left-hand column

shows natural gamma radiation against depth (which increases from the

top of the screen to the bottom). To its right is shown dip against depth.

Individual dip estimates (called "tadpoles") show the magnitude of the

dip as horizontal position, depth as vertical position, and azimuth as a

small direction line. Dip patterns, detected by the system, are explained

in the text to the right.

Desiderata (a) and (b)—symbolic reasoning and heuristic methods

—

define expert systems as artificial intelligence programs. Desideratum

(c) separates high-performance programs from others. By specifying

human specialists as a standard of comparison, this condition also sug-

gests using the knowledge of specialists to achieve high performance.

Predefining the scope of problem solving to a narrow "slice" through a

domain (still smaller than the slice mastered by most human specialists)

has become a pragmatic principle of design. As covered in the following

discussion, bounding the scope of the problem in advance avoids many
of the challenges of building a generally intelligent robot that would
behave appropriately in a wide range of situations.

Desiderata (d) and (e)—understandability and flexibility—are less

frequently cited and less frequently achieved than (a) through (c). They
may be seen as a means of achieving high performance, but they are

included here to highlight their importance in designing and imple-

Overview 153

Gamma Ray

50 100

Dip Angle

10 20 30 40 50°

oo

oo

oo

oo

•k
•k

"

•k

•k]
•k

ft.

•
1J

m
.

•
-*

•
>

•
P
s

I
1

4

1

•
•k

/
£
•k
ft-

•-

t
'"

•-

•- J

Uniform structural

dip in shale.

Downward dip

increase due to

drape.

Random dips in

reef core
limestone

Downward
decreasing dips
in forereef talus.

Uniform structural

dip in pre-reef

shale.

Figure A-l. Screen from Dipmeter Advisor System.

154 Fundamentals of Expert Systems XVIII

meriting any expert system. Understandability and flexibility are impor-

tant both while expert systems are being designed and when they are

used. During design and implementation, not all the requisite knowledge
is in hand because not even specialists can say precisely what a program
needs to know. As a result, expert systems are constructed incrementally.

Important to understandability is the use of the same terminology that

specialists and practitioners use. Understanding the static knowledge

base allows us to decide what knowledge needs to be added to improve

performance. Understanding the dynamics of the reasoning is also impor-

tant in deciding what to change. Flexibility is thus needed to allow the

changes to be made easily. Explanations help designers, as well as end

users, understand the reasons for a program's conclusions. This capabil-

ity is especially important when end users accept legal, moral, or finan-

cial responsibility for actions taken on a program's recommendations.

Examples

Many expert systems are in routine use (see AAAI, 1989; Rauch-

Hindin, 1986; Buchanan, 1986; Walker and Miller, 1986; Harmon and
King, 1985, for lists of examples). Some of the best known, such as XCON
and the Dipmeter Advisor System (produced by Digital Equipment Cor-

poration and Schlumberger, respectively) have been used commercially

for many years. The programs shown in Table A-l were chosen because

they illustrate a variety of problem types and contexts of use. Roughly

two classes of problems are addressed in these several systems:

1. Problems of interpreting data to analyze a situation.

2. Problems of constructing a solution within specified constraints.

Within each category are listed several different examples under general

task names that are descriptive but not necessarily distinct.

We should note several points about these two lists of problems. First,

there is no clear, unambiguous taxonomy of problem types that is inde-

pendent of the methods used to solve problems. Perhaps the best char-

acterization of the types of problems is with respect to the methods used

to solve them. For example, heuristic classification problems (Clancey,

1985, and Chandrasekaran, 1986) are those that are solved by a method
of the same name. This method assumes a predefined, enumerated list

of possible solutions—such as MYCIN'S list of antimicrobial drugs (Bu-

chanan and Shortliffe, 1984)—and a set of heuristics for selecting among
them efficiently—such as MYCIN'S rules.

Second, for some problems we can specify a narrow enough scope so

that the list of possible solutions is short enough for programs to deal

with (dozens or hundreds, but not millions). For other problems we must

A Overview 155

Table A-l

Several Examples of Expert Systems Working in Various Problem Areas.

CLASS I: PROBLEMS OF INTERPRETATION

Data Interpretation

Schlumberger (Dipmeter Advisor)—interpret down-hole data from oil well

boreholes to assist in prospecting (Smith and Young, 1984).

St. Vincents Hospital (Sydney)—aid in interpreting diagnostic tests on

thyroid function (Horn et al., 1985).

NL Baroid (MUDMAN)—determine causes of problems in drilling oil wells

and recommend additives to the drilling fluid that will correct them (Kahn

and McDermott, 1986).

Equipment Diagnosis

General Motors (VIBRATION)—determine causes of vibration noises and

recommend repairs (Teknowledge, 1987).

Kodak (BLOW MOLDING INJECTION ADVISOR)—diagnose faults and suggest

repairs for plastic injection molding machines (Teknowledge, 1987).

AT&T (ACE)—provide troubleshooting and diagnostic reports on telephone

cable problems (Miller et al., 1985).

General Electric (CATS)—diagnose problems in diesel-electric locomotives

(Sweet, 1985).

Troubleshooting Process

Hewlett-Packard—diagnose causes of problems in photolithography steps of

wafer fabrication (Cline et al., 1985).

Elf Aquitaine Oil Company (DRILLING ADVISOR)—demonstrate reasoning

used to find the cause of drill bit sticking in oil wells and to correct the

problems (used for training) (Rauch-Hindin, 1986).

Monitoring

IBM (YES/MVS)—monitor and adjust operation of MVS operating system

(Rauch-Hindin, 1986).

National Aeronautics and Space Administration (LOX)—monitor data during

liquid oxygen tanking process (Kolcum, 1986).

Preventive Maintenance

NCR (ESPm)—monitor computers in the field, analyze error logs, and suggest

preventive maintenance procedures before a computer fails (Teknowledge,

1987).

(continued

156 Fundamentals of Expert Systems XVIII

Table A-l Continued

Screening

U.S. Environmental Protection Agency (EDDAS)—determine which requests

for information fall under the exceptions to the Freedom of Information

Act (Feinstein and Siems, 1985).

Credit Authorization

American Express (AA)—assist in authorizing charges from card members or

in determining that a request is suspect or fraudulent (Klahr et al., 1987).

Financial Auditing

Arthur Young (ASQ)—assist auditors with planning and developing

approaches to field audits (Hernandez, 1987).

Software Consulting

AT&T (REX)—advise persons on which subroutines in large statistical

package to use for their problems and how to use them (Rauch-Hindin,

1986).

Equipment Tuning

Lawrence Livermore National Laboratory (TQMSTUNE)—specify parameter

settings to bring a sensitive instrument into alignment (Rauch-Hindin,

1986).

Inventory Control

Federal Express (INVENTORY SETUP ADVISOR)—help decide whether or not

to stock spares in inventory of 40,000 parts (Teknowledge, 1987).

CLASS II: PROBLEMS OF CONSTRUCTION

Configuration

Digital Equipment Corporation (XCON)—translate customers' orders for

computer systems into shipping orders (Rauch-Hindin, 1986).

Design

Xerox (PRIDE)—design paper-handling systems inside copiers and

duplicators (Mittal et al., 1985).

GM Delco Products (MOTOR EXPERT)—generate information necessary to

make production drawings for low-voltage DC motor brushes by

interacting with designers (Rauch-Hindin, 1986).

Loading

U.S. Army (AALPS)—design loading plan of cargo and equipment into

aircraft of different types (AALPS, 1985).

{continued)

Overview 157

Table A-l Continued

Planning

Hazeltine (OPGEN)—plan and prepare "operations sheets" of assembly

instructions for printed circuit boards (Rauch-Hindin, 1986).

Hughes Aircraft (HI-CLASS)—set up sequence of hand-assembly steps for

printed circuit boards (Hi-Class, 1985).

Scheduling

Westinghouse (ISIS)—plan manufacturing steps in Turbine Component Plant

to avoid bottlenecks and delays (Fox and Smith, 1984).

Babcock & Wilcox—automate generation of weld schedule information (e.g.,

weld procedure, pre-heat, post-heat, and nondestructive examination

requirements) (Rauch-Hindin, 1986).

Therapy Management

Stanford Medical Center (ONCOCIN)—assist in managing multistep

chemotherapy for cancer patients (Hickam et al., 1985).

define a generator of alternatives, which can only be exercised with

strong guidance.

Third, some problems reason with a "snapshot" of a situation and
provide a static assessment; others require monitoring a data stream.

Fourth, some problems are solved routinely by people who have little

specialized training; others are problems that highly skilled persons

solve with considerable effort.

Fifth, the scope of competence of most of these programs is narrow
and well defined. To the extent that a problem is open-ended (or "open-

textured," i.e., requires reasoning about unbounded lists, such as the

intended meanings of a sentence), it is not a good candidate for an expert

system.

Sixth, criteria of the success of most of these programs are well

defined; e.g., either a suggested repair fixes a problem or it does not.

Historical Note

Expert systems emerged as an identifiable part of AI in the late

1960s and early 1970s with the realization that application of AI to

science, engineering, and medicine could both assist those disciplines

and challenge AI. The DENDRAL (Lindsay et al., 1980) and MACSYMA
(Moses, 1971) programs suggested that high performance in a subject

area such as organic chemistry or algebraic simplification was more

158 Fundamentals of Expert Systems XVIII

readily achieved by giving a program substantial subject-specific knowl-

edge than by giving it the general axioms of the subject area plus a

powerful, but general, deductive apparatus. The DENDRAL program rep-

resented many specific facts about organic chemistry in a variety of ways
and used those facts in rather simple inferences (see Article VII.C2, Vol.

II). For example, it represented the masses and valences of atoms as

values of attributes; it represented classes of unstable chemical com-

pounds as partial graph structures in a table; and it represented certain

major patterns of molecular fragmentation in a mass spectrometer as

predictive rules. From this work emerged the first principle of expert

system building, as enunciated by Feigenbaum (Feigenbaum et al.,

1971): "In the knowledge lies the power." The concept of a knowledge

base has consequently become central in expert system.

In contrast, most other AI work of the day concerned reasoning by

such general methods as theorem proving. Researchers sought to give

programs power by means of general planning heuristics, exhibited, for

example, in problem areas where knowledge about the objects of the

domain was almost irrelevant. A favorite problem area was the so-called

"Blocks World" of children's blocks on a table. General knowledge about

stability and support, plus general knowledge about planning and con-

straint satisfaction, allowed programs to reason, say, about the sequence

of operations needed to stack blocks in a specified order (see Section

XV.A, Vol. III).

From the beginning (1950s-1960s), work in AI focused on two main
themes: psychological modeling and search techniques (see Chapters II

and XI). Expert systems build on much of that work, but they shift the

focus to representing and using knowledge of specific task areas. Early

work used game playing and reasoning about children's blocks as simple

task domains in which to test methods of reasoning. Work on expert

systems emphasizes problems of commercial or scientific importance, as

defined by persons outside of AI. Newell calls MYCIN "the original expert

system" (Foreword to Buchanan and Shortliffe, 1984) because it crystal-

lized the design considerations and emphasized the application (see Arti-

cle VIII.B1, Vol. II). In the 1970s, work on expert systems developed the

use of production systems (see Article III.C4, Vol. I), based on the early

work in psychological modeling. In the 1980s, fundamental work on

knowledge representation evolved into useful object-oriented substrates

(Stefik and Bobrow, 1986). Expert systems continue to build on—and
contribute to—AI research by testing the strengths of existing methods
and helping define their limitations (Buchanan, 1988).

Hardware developments in the last decade have made a significant

difference in the commercialization of expert systems and in the rate of

their development. Standalone workstations provide special hardware

for AI programming languages, high-resolution interactive graphics, and

A Overview 159

large address spaces in small boxes at affordable prices (Wah, 1987).

These have simplified development since it is no longer necessary to

depend on large, time-shared central mainframes for development and
debugging. They also provide an acceptable answer to questions of port-

ability for field personnel. Development of expert systems—and the lan-

guages and environments (called "shells") for building them—in

standard languages such as CommonLISP and C have essentially elimi-

nated the last barriers to portability.

B. FUNDAMENTAL PRINCIPLES

All ai programs, including expert systems, represent and use knowl-

edge. The conceptual paradigm of problem solving that underlies all of

AI is search (i.e., a program, or person, can solve a problem by searching

among alternative solutions). Although immediately clear and simple,

this formulation does not tell us how to search a solution space efficiently

and accurately. The number of possible solutions may be astronomical,

so exhaustive consideration of alternatives is out of the question. There-

fore, most expert systems use heuristics to avoid exhaustive search, much
as experts do. For example, the Dipmeter Advisor System is expected to

delineate significant strata through which an oil well borehole pene-

trates. There are many hundreds of these in a one- or two-mile borehole.

Then it is expected to classify the strata in any of several dozen geological

categories. These interpretations are not totally independent: the end-

points of significant intervals are partly determined by the types of rock

formations, and the identification of a type is partly determined by the

identity of formations immediately above or below. Considerable knowl-

edge of geology keeps the program from exhaustively searching this

large, combinatorial space.

For problem areas in which experts are acknowledged to be more
efficient and accurate than nonspecialists, it is reasonable to assume that

what the experts know can be codified for use by a program. This is one

of the fundamental assumptions of knowledge engineering, the art of

building expert systems by eliciting knowledge from experts (Hayes-

Roth, et al., 1983).

The term "expert system" suggests a computer program that per-

forms at the pinnacle of human expertise, or one that models a human
expert's thought processes. However, designers of expert systems sub-

scribe to neither of these implications. Although high performance is a

goal, a system need not equal the best performance of the best individuals

to be useful: well-timed advice from a "good" system can help novices

avoid trouble. On the other hand, programs can sometimes outperform

the specialists by being more systematic in their reasoning. A commit-
ment to achieving high performance, though, is not a commitment to

achieving consistently unexcelled performance.

Similarly, designers of expert systems build into their programs
much of the knowledge that human specialists have about problem solv-

ing. But they do not commit to building psychological models of how the

160

B Fundamental Principles 161

expert thinks. The expert may describe how he or she would like others

to solve problems of a type, as well as how he or she actually solves those

problems. The expert system is a model of something, but it is more a

model of the expert's model of the domain than of the expert.

One of the fundamental principles in the design of expert systems is

the separation of knowledge about the domain (say, geology or medicine)

from the programs that reason with that knowledge. This is sometimes

briefly stated as separation of the knowledge base and the inference

engine (Davis, 1982). The architecture of an expert system is a commit-

ment to both the representation of knowledge and the form of reasoning.

In this section we attempt to elucidate principles that underlie archi-

tectural choices made to facilitate the design, implementation, fielding,

and evolution of expert systems. We focus on the following important

aspects: representation of knowledge, reasoning methods, knowledge

base development, explanation (of both the contents of the knowledge

base and of the reasoning process), tools used to facilitate system con-

struction, and validation of performance. In the discussion, we relate

each of the classes of choices to desiderata (a)-(e) for expert systems as

enumerated in Section A. Finally, we conclude with a brief summary of

factors that indicate when an expert systems approach is appropriate.

Bl. Representation of Knowledge

A hallmark of an expert system is the use of specific knowledge of its

domain of application (say, geology or medicine), applied by a relatively

simple reasoning program. In this simple characterization, the term
"knowledge base" is taken to mean the collection of knowledge of the

domain, and the term "inference engine" refers to the programs that

reason with that knowledge.

The phrase "knowledge programming" has been used to emphasize

this aspect of building an expert system. The single most important

representational principle is that of declarative knowledge enunciated

by McCarthy in the formative years of AI (McCarthy, 1958). (See also

Winograd's discussion of this principle in Winograd, 1975.) Simply put,

this principle states that knowledge about facts and relations in the

world must be encoded in an intelligent program explicitly, in a manner
that allows other programs to reason about it, as opposed to relying on

programs and subroutines to compute new facts. Arbitrary FORTRAN or

LISP procedures, for example, cannot be explained or edited by other

programs (although they can be compiled and executed), whereas stylized

attribute-value pairs, record structures, or other, more complex data

structures can be.

162 Fundamentals of Expert Systems XVIII

To a certain extent, a knowledge base is a database. The essential

differences between knowledge bases and databases are flexibility and
complexity of the relations. Current research on AI and databases, which
are sometimes called expert database systems (Kerschberg, 1986) is

reducing these differences. A knowledge base requires an organizational

paradigm plus data structures for implementation. Together these two
parts constitute the representation of knowledge in an AI program. Ele-

ments of a knowledge base may also be interpreted directly as pieces of

the program, which is partly what we mean by the complexity of the

relations expressed.

The contents of a knowledge base include domain-specific facts and
relations. But many expert systems explicitly state generic facts and
relations as well. For example, types and properties of various mathe-

matical relations, or general knowledge of English grammar, may be

included in a knowledge base. Also, many knowledge bases include de-

clarative descriptions of the problem-solving strategy in meta-level state-

ments (about how to use the domain-specific knowledge).

Elements of knowledge needed for problem solving may be organized

globally around either the primary objects (or concepts) of a problem

area or around the actions (including inferential relations) among those

objects. For example, in medicine we may think primarily about the

evidential links among manifestations and diseases, and the links among
diseases and therapeutic actions, and secondarily about the concepts so

linked. In this paradigm, we concentrate on the knowledge that allows

inferences to be drawn and actions to be taken—the "how to" knowledge.

Alternatively, we might organize medical knowledge primarily around

the taxonomy of diseases and the taxonomy of their manifestations and
secondarily around the inference rules that relate manifestations to dis-

eases and problems to treatments. In this second paradigm, we concen-

trate on what might be called the "what is" knowledge. These two
conceptual views are known as action-centered or object-centered para-

digms for representing knowledge. They have counterparts at the imple-

mentation level in program organization.

For each type of representation, we may identify the primitive unit

and the primitive action. The primitive unit, in the case of action-cen-

tered representations, is the fact (e.g., the freezing temperature of water

is degrees C). Primitive facts are linked in conditional sentences by
rules ("If . . . then ..." statements). Note that these links may reflect

causal associations based on theory, or empirical associations based on

experience. An example from the Dipmeter Advisor System, which is an
abbreviated causal description as found in geology texts, is shown in

Figure B— 1. It is one of a set used to perform sedimentary environment

analysis. This rule is attempted only after the system has determined

that the overall sedimentary environment is a deltaic plain.

B Fundamental Principles 163

K&

///i

n

Red Pattern

A//7
/^/'

J~<7
7ZZ? _\

/

/\ e

-X.
/^ —\

/ T ^s^/

IF

there exists a normal fault pattern (p), and
there exists a red pattern (p1),

such that the length of p1<50 ft., and
such that p1 is above the fault plane pattern of p,

THEN

specialize p to be a late fault pattern

Figure B-l. Dipmeter Advisor System rule.

Conversely, the primitive unit of an object-centered representation

is the object with a number of attributes (called slots) and values (e.g.,

a spur gear with number-of-teeth = 24, material = cast-steel, and diam-

eter = 5 cm). Objects typically also encapsulate procedures (called meth-

ods). In addition, they may contain defaults, uncertainty, relations to

other objects (e.g., generalizations and parts), and a variety of other

information. An object can be viewed as a structured collection of facts.

Minsky (Minsky, 1975) popularized the use of objects (then called frames)

for AI (see Article III.C7, Vol. I). An example of an object definition from
the Dipmeter Advisor System is shown in Figure B-2. This model encap-

sulates information about normal or tensional geological faults. Individ-

164 Fundamentals of Expert Systems XVIII

DE: PIRIE.NormalFault

Object: Normal Fault

Synonyms:
Groups:
Type: CLASS
Edited: 13-Sep-84 13:08:06

Picture:
By: REID

s
HangingWallBlock {DownthrownBlock}:
UpperDistortionRegion:
BrecciaRegion {CrushedZone}:
FaultPlane:

LowerDistortionRegion:
FootWallBlock {UpthrownBlock}:
Strike: [Azimuth]
FaultAngle [Hade]
DirectionToDownthrownBlock:
Slip:

Throw:
TimeOfFaulting:
Draw: [DrawFault]
Instantiate: InstantiateFault

Detect: (RuleNFRI RuleNFR3 RuleNFR4 RuleNFR5 RuleNFR7)
Specialize: (RuleNFR6 RuleNFR9 RuleNFRIO RuleNFR11 RuleNFR12)

Figure B-2. Dipmeter Advisor System object.

ual attribute (slot) names are shown in boldface (e.g., Hanging-Wall-
Block). Where used, synonyms for attribute names are enclosed in braces

(e.g., {Downthrown-Block}). The "type" of each attribute value is shown
in square brackets (e.g., the value of the Strike slot is expected to be a

datum of type [Azimuth]).

Smalltalk (Goldberg and Robson, 1983) was one of the early lan-

guages that showed both the power of objects as programming constructs

and the power of an integrated graphical programming environment.

Many commercial expert-system shells now contain an object-oriented

component (Stefik and Bobrow, 1986).

The primitive action in action-centered representations is often

referred to as firing a rule: If the premise conditions of a conditional rule

are true in a situation, take the actions specified in the consequent part

of the rule. For example, in a medical system, conclude that an organism

may be streptococcus if its gram stain is positive. This style of program-

ming began as production systems, made popular by Newell's work in

the 1960s (see Chapter 2 of Buchanan and Shortliffe, 1984).

Given that rule-oriented programming often involves making deduc-

tions, it has been argued that various forms of logic are well suited for

use in expert systems. Simple systems have used propositional logic;

more complex systems have used first-order predicate logic; and there is

ongoing research in the use of higher order logics to express relations

among beliefs, temporal relations, necessity, and uncertain information

B Fundamental Principles 165

(both the uncertainty with which data must be regarded in many real

systems and the uncertainty about the strength of heuristic rules, which

reflects a lack of detailed understanding of a domain) (Allen, 1984; Allen

and Koomen, 1983; Szolovitz and Pauker, 1978; Pearl, 1986; Pearl, 1989;

Shafer et al., 1989).

In object-centered representations, the primitive action is called

sending a message: If an action needs to be taken (e.g., a value of an

attribute is needed), send a request to the object that can take the action

(e.g., compute, or conclude, the value). For example, in a geology system,

send the Analyze-Sedimentary-Environment message to an instance of

the Borehole-Interval object. The effect is to perform an arbitrary action,

which could include drawing inferences. In our example, the action per-

formed is to draw conclusions about the geological "story" of sedimen-

tation at a specific depth interval penetrated by the oil rig's drill. This

style of object-oriented programming was denned by Hewitt (1977).

In terms of data structures, objects are much like record structures.

Each object has a number of fixed fields. Unlike record structures, how-

ever, new fields can be added to objects during a computation. Objects

are typically divided into two types: instances and classes. Instances

represent individuals in a domain (e.g., a specific depth interval from

1200 to 1225 feet in a specific borehole). Classes represent sets of indi-

viduals (e.g., any depth interval). They define the common characteristics

of the individuals that are their instances. Classes are usually organized

into hierarchies according to different relations. The most common rela-

tions are the specialization, subclass, or "is-a" relation (e.g., a reverse

geological fault is a kind of geological fault) and the "part-of " relations

(e.g., a fault plane is part of a geological fault). Object-oriented systems

allow arbitrary relations to be encoded, but they often provide efficient

support for one or two specific relations.

To support the characteristics of expert systems listed in Section A,

representation mechanisms must have sufficient expressive power to

state, clearly and succinctly, both "what is" knowledge and "how to"

knowledge. (This distinction and an important early discussion of rep-

resenting facts about the world—the "what is" knowledge—are in

McCarthy and Hayes (1969). Expressive power has both design-time and
run-time implications. One of the key problems for designers of expert

systems is the management of complexity. Impoverished representation

mechanisms force designers to encode information in obscure ways,

which eventually leads to difficulty in extending and explaining the

behavior of expert systems. Representation mechanisms that permit effi-

cient compilation and structuring of knowledge reduce run-time require-

ments of both time and memory.
As an example, an object-oriented language allows some information

to be stated once, in an abstract class, and accessed (by inheritance) in

166 Fundamentals of Expert Systems XVIII

a large number of subclasses. A representational mechanism that does

not allow this forces designers to confront the complexity of stating

essentially the same information many times. This may lead to incon-

sistency and difficulty in updating the information. It also has an obvious

memory cost. At run time, each of the separate encodings of the infor-

mation may have to be considered individually, resulting in an obvious

performance penalty. An example of a taxonomic hierarchy is shown in

Figure B-3.

To facilitate the incremental dev lopment of expert systems, repre-

sentation schemes must also be extendible. Since there is rarely a com-

plete specification of either the problem or the knowledge required to

solve it, incremental development is required. When new concepts, attri-

butes, and relations are added incrementally, a designer must not be

forced to recode substantial portions of the knowledge already encoded.

Experience has shown that declarative, modular representations are

useful for expert systems. Some information is more difficult to encode

)f PROGENY fo GEOLOGY

Sedimentary Rock

Lithology

Metamorphic Rock

Igneous Rock

Sylvite

Siliciclastic Rock

Salt

Mixed Lithology

Miscellaneous Rock

Halite

Gypsum

Evaporite

Carbonate Rock

Anhydrite

Intrusive Rock

Extrusive Rock

Figure B-3. Dipmeter Advisor System tectonic feature

hierarchy.

B Fundamental Principles 167

in the action-centered paradigm, whereas other information is more dif-

ficult in the object-centered paradigm. For example, sequencing of actions

is difficult to encode in an action-centered paradigm. The same is true

of information that is essentially static such as causal or structural

descriptions. On the other hand, object-centered representations have no

built-in inference mechanism beyond inheritance (although they support

them, and many commercial shells have an integrated rule-oriented

component). In addition, in some domains, subclasses are "soft," and it

may be inappropriate to wire in hard distinctions between classes. For

example, in geology, classification of rocks according to lithology (sand-

stone, shale, and carbonate) is not firm because the end members are

mixed to varying degrees. Consequently, there is no single answer to the

question, "Which representation method is best?" Action-centered and
object-centered paradigms are in fact two ends of a spectrum of rep-

resentational possibilities. The two emphasize different aspects of

modeling. Contemporary expert systems often use heterogeneous repre-

sentational paradigms, but they attempt to integrate them into a uniform

framework. As systems become more complex, it will be more and more
difficult to maintain a uniform view.

The problem of representation spans from deciding globally what to

represent through deciding locally how to use the data structures of a

specific programming language. At the global level, designers (some-

times called knowledge engineers) must determine an overall organiza-

tional paradigm within which an expert system can reason effectively.

Since the knowledge engineer and the expert are discussing at this point

the objects and relations that are important enough to name, this phase

is sometimes called determining the ontology. As an organizing principle,

it is important that the ontology of the expert system closely reflect the

ontology of the experts. Otherwise, the experts will not be able to under-

stand and debug the system's reasoning.

B2. Reasoning Methods

Inference methods are required to make appropriate and efficient use

of the items in a knowledge base to achieve some purpose such as diag-

nosing a disease. Logically speaking, the two rules of inference most used

in problem solving are modus ponens ("If A implies B and you know A,

then infer B") and modus tollens ("If A implies B and you know not-B,

then infer not-A") (see Section XII.B, Vol. III). Linking several applica-

tions of modus ponens together is sometimes called the "chain rule"

because inferences are chained together in a sequence:

168 Fundamentals of Expert Systems XVIII

A

A -> B

B -> C

C -> D

Therefore, D

In addition to these two simple rules, rules of quantification are

sometimes used. For example, "If all As are Bs and x is an A, then x is

a B." With a few simple rules of inference such as these driving the

problem solving, a knowledge base full of many special facts and rela-

tions about the problem area can provide the expertise on which high

performance is based.

Some expert systems (e.g., those written in PROLOG) use a theorem

prover to determine the truth or falsity of propositions and to bind

variables so as to make propositions true. Others use their own inter-

preters in order to incorporate more than a theorem prover provides

—

most importantly, capabilities for controlling the order of inferences,

strategic reasoning, and reasoning under uncertainty. Most fielded rule-

based expert systems have used specialized rule interpreters that are not

based directly on logic. To some extent this reflects timing—efficient

PROLOG interpreters and compilers that can be integrated with other

systems have only recently become available. However, it also reflects a

need for more flexible styles of inference (in addition to a theorem prov-

er's depth-first backtracking) and control over the strategies guiding the

order of inferences.

Controlling the Order of Inferences and Questions

From a logical point of view, the order in which new facts are derived

is irrelevant, if all logical consequences of the initial facts are to be

considered. However, for pragmatic reasons, expert systems often need

to be selective about which facts to consider and which consequences to

pursue. Space and time are often limited, for example, and it may also

be important to develop a line of reasoning, and an order in the infer-

ences, that a user can follow.

Matching the premise clauses of all rules—or the templates of all

objects—in a knowledge base against each new situation can be prohib-

itively expensive where there are many rules or objects, and many new
situations created in the course of problem solving. Rules and object

definitions often contain variables that can be bound in many different

ways, thus creating additional ways that they can match a situation.

Rule interpreters commonly provide mechanisms for compilation of rules

and rule-matching procedures (Brownston et al., 1985). In addition, all

but the simplest rule-based systems organize and index rules in groups

B Fundamental Principles 169

in order to control the expense of matching and invocation. Rule groups

(called rule sets, tasks, or control blocks) are also used to control the

expert system's focus of attention in order to make interactions with

users more comprehensible.

Rule-based expert systems are often organized around one (or a com-

bination) of three different reasoning paradigms: forward, backward, and
opportunistic reasoning.

Forward reasoning from data to conclusions is used when the cost or

inconvenience of gathering and filtering low-level processing data is low

and there are relatively few hypotheses to explore. A forward-chaining

system starts with a collection of facts and draws allowable conclusions,

adding those to the collection and cycling through the rules. The stopping

conditions vary from stopping with the first plausible hypothesis to stop-

ping only when no more new conclusions can be drawn. The XCON
computer configuration system is a classic example of a forward-chaining

system.

Backward reasoning is goal-directed and does not require all relevant

data to be available at the time the inferences are begun. It is also more
appropriate when a user supplies many of the data, and when the user

cares about the order in which data are requested. MYCIN is a classic

example (see Article VIII.B1, Vol. II). A backward-chaining system starts

with a hypothesis (goal) to establish and asks, in effect, "What facts

(premise clauses of rules) would need to be true in order to know that

the hypothesis is true?" Some of these facts may be known because they

were given as initial data, others may be known after asking the user

about them, and still others may be known only after starting with them
as new subgoals and then chaining backward. The stopping conditions

vary from stopping with the first hypothesis found true (or "true enough")

to stopping only after all possibly relevant hypotheses have been

explored.

Opportunistic reasoning combines some elements of both data-

directed (forward) and goal-directed (backward) reasoning. It is useful

when the number of possible inferences is very large, no single line of

reasoning is likely to succeed, and the reasoning system must be respon-

sive to new data becoming known. As new data are observed, or become
known, new inferences can be drawn; and as new conclusions are drawn,

new questions about specific data become relevant. An opportunistic

reasoning system can thus set up expectations that help discriminate a

few data elements from among an otherwise confusing mass.

The key element of such a system is an agenda of actions with an
associated scheduler that enables explicit decisions to be made about

which actions are to be taken (e.g., which rules to apply, whether to

apply them in a forward- or backward-chaining manner, and which object

is to be the focus of attention). Such decisions, by contrast, are hard-

170 Fundamentals of Expert Systems XVIII

wired into forward- and backward-chaining systems. Two successful pro-

totypes based on this paradigm are the HEARSAY-II and HASP systems.

In both cases, acoustic data are received and need to be interpreted (as

a spoken English sentence in HEARSAY-II or as a description of types

and locations of ships in the ocean in HASP). Opportunistic processing,

blackboard architecture, and specific systems, including HEARSAY-II and
HASP, are described in Chapter XVI of this volume. As data are received

over time, hypotheses are revised. With each revision, new ambiguities

arise, which can be resolved by reprocessing old data or looking for new
signals.

Object-centered expert systems generally make inferences with rules,

and thus include one or more of the rule-based reasoning paradigms.

They also include built-in mechanisms for inheritance of features of one

object from another. For example, individual persons will inherit defining

characteristics of the classes they belong to so that the default charac-

teristic diet of Joe Jones is inferred to be omnivorous, provided that the

object representing Joe has been defined to be an instance of the class

object of omnivores.

Using Explicit Strategies

Any simple reasoning paradigm may need refinement and coordi-

nation in order to reflect a complex decision strategy such as medical

diagnosis. There are many high-level strategies for solving problems that

have been discussed in the AI literature such as means-ends analysis,

stepwise refinement, or plan-generate-and-test.

Many environments—or shells—for building expert systems provide

a built-in problem-solving paradigm at a conceptual level. EMYCIN
and its commercial derivatives, for example, work under the strategy

of evidence gathering, in which data are collected for and against

hypotheses (individually or in classes). Then the data, and the facts

inferred from them, are weighed (using a built-in weighting function) in

order to decide which hypothesis is best supported by the data. This is a

description at the conceptual level; at the implementation level this is

all accomplished using backward and forward chaining. (This paradigm
is sometimes called heuristic classification (Clancey, 1985) because data

and heuristics are used to classify a situation into one of a fixed number
of categories.)

Representing strategic knowledge explicitly is an important trend in

expert systems. It is especially important whenever there is no clear

choice as to the best strategy and some experimentation with prototype

systems may be required—under different strategies—to determine good

B Fundamental Principles 171

and bad choices. It is also important because users may be puzzled about

the line of reasoning of an expert system when the expert's strategy for

attacking a problem (and thus the expert system's approach) differs from

that of the user. With an explicit representation of the strategic rules or

procedures, an expert system can explain those just as it explains its

domain-level knowledge.

MYCIN'S metarules, a solution to this problem in the late 1970s,

represent knowledge of reasoning strategy as rules (Buchanan and Short-

liffe, 1984). They differ from the other "domain knowledge" rules in the

system in that they refer to those rules in some of their premise or

conclusion clauses:

IF <medical context> AND there are rules that mention fact A and

rules that mention fact B,

THEN reason with the rules mentioning A before the others.

Strategies can also be represented as an organization of steps to

perform, in a stylized definition of a procedure (Clancey, 1986; Hickam
et al., 1985; Laird et al., 1987; Newell and Simon, 1976; Gruber, 1987;

Marcus, 1987; Hayes-Roth, 1985).

Reasoning Under Uncertainty

Reasoning under uncertainty is essential in problem areas outside

of logic and mathematics, in which information is incomplete or erro-

neous. In every empirical discipline from physics to biology and engi-

neering to medicine there is rarely complete certainty about having all

the data or about the accuracy of the data. Data are never complete

enough; tests that would confirm or disconfirm a hypothesis are often

too expensive or too risky to perform. Measurement errors are known to

occur. Thus expert systems must address these problems if they are to

be useful in the real world.

Several methods are used in expert systems to deal with uncertainty

arising from either uncertain and incomplete data, or uncertain associ-

ations between data and conclusions. The major methods for addressing

these issues are listed below.

1. Abstraction—Assume that the uncertainty is small and can safely

be ignored, thus treating all knowledge as categorically true (Szolo-

vits and Pauker, 1978). The method is extremely simple and efficient

to use. It often works. However, many problems require more preci-

sion in estimating uncertainty.

2. Bayes's Theorem—Use prior and posterior probabilities to represent

less than certain data and associations; then compute new probabil-

172 Fundamentals of Expert Systems XVIII

ities with some variation of Bayes's Theorem (Gorry, 1970). This

method is based on a solid formalism, but it requires either frequency

data or subjective estimates for many combinations of events.

3. Fuzzy Logic—Represent the uncertainty of propositions such as "John
is tall" with a distribution of values; then reason about combinations

of distributions (Zadeh, 1979). This is intuitively appealing because

it is based on ordinary linguistic concepts. It is computationally more
complex than other mechanisms, however, because it propagates

uncertainty through distributions of values.

4. Criterion Tables—Assign categories or weights to clauses in rules

based on their relative importance in drawing conclusions (e.g., major
and minor findings associated with a disease); then allow a conclusion

to be drawn if sufficient numbers of clauses in each category are true

(Kulikowski and Weiss, 1982). This simple mechanism is computa-

tionally very fast. It fails to capture gradations between categories,

however, and thus lacks the expressive power to reason in some
complex problem areas.

5. Certainty Factors (CFs)—Assign single numbers to propositions, and

to associations among propositions, representing increases in belief

—

either probabilities or a combination of probabilities and utilities;

then use MYCIN'S formulas to determine the CFs for inferred beliefs

(Buchanan and Shortliffe, 1984). This calculus has been frequently

used and has been shown to have a formal interpretation in proba-

bility theory (Heckerman, 1986).

A general problem with methods 2 through 5 is arriving at a coherent

set of numbers. Typically these are obtained from experts over several

iterations, with empirical testing, because valid, objective numbers are

not available. Another problem is that one person's subjective estimates

are not always applicable in novel situations, nor are they always easy

for others to change.

Summary

There is no single answer to the question, "Which inference method
is best?" Each expert system, or system-building shell, provides a nearly

unique set of choices for controlling inferences, using strategies, and

reasoning under uncertainty. Some also contain methods for backtrack-

ing (recovering from local failures), critiquing (making no recommen-
dations unless the user needs them), reasoning about shapes or positions,

and reasoning about temporal dependencies. Most present-day systems

allow no modification of the inference methods they use. This is a short-

coming that has not received widespread attention, but that sometimes

causes system builders to make inappropriate or unhappy choices

B Fundamental Principles 173

because they must work with an inference procedure within a shell in

which someone else made those choices.

B3. Knowledge Base Development

For the last decade, everyone involved has referred to the process of

putting knowledge into a knowledge base as a "bottleneck" in building

expert systems (Hayes-Roth et al., 1983). Usually this process involves

two persons (or teams): an expert whose knowledge is to be partially

mirrored in the knowledge base, and a knowledge engineer who inter-

views the expert to map his or her knowledge into the program's data

structures holding the knowledge base. The process is time consuming

and difficult, yet the performance of the resulting expert system depends

on its being done well. This is exacerbated by the fact that knowledge

base design often involves integrating the knowledge of several experts

because relying on a single expert may cause implicit assumptions to be

overlooked. A survey conducted by SRI International indicates that the

average cost of developing an application (knowledge engineering plus

end-user interface alone) is about $260,000. For small systems, these

costs are about $5,000; for large systems, more than $1.5 million (Fried,

1987). Note that these estimates do not include the cost of constructing

an expert system shell.

Much of the process of knowledge engineering is engineering. Yet

there are several difficult issues of a fundamental nature wrapped up in

the steps of the process.

1. During the first step, problem assessment, the knowledge engineer

must match the characteristics of the proposed problem against the

characteristics of known solution methods. Unfortunately there are

no expert systems that match a description of a problem to a best

method for solving it.

2. The second major step is exploratory programming, in which a few

experimental prototypes are constructed quickly—first as a proof-of-

concept, and then with successively larger fractions of an expert's

knowledge—showing that a part of the problem can be (partially)

solved with that knowledge encoded in a specific environment. Two
substantial issues here are

a. Formulating an accurate conceptual framework, including ter-

minology, to allow knowledge to be added incrementally.

b. Iteracting with—not just passively listening to—the expert effi-

ciently to elicit what he or she knows about the problem that is

relevant for the expert system.

174 Fundamentals of Expert Systems XVIII

3. Developing the knowledge base to increase both the breadth and
depth of the system's competence is the third major step. This step

takes the most time (several person-years), but it is relatively

straightforward if steps 1 and 2 have been done well. One difficult

issue here is anticipating characteristics of end users and their con-

text of use. Another is deciding which new facts and relations are

and which are not relevant for the system's performance and under-

standability in context. The competing paradigms for making this

decision—and for knowledge engineering generally—may be called

model-directed and case-directed knowledge base development. In the

former, the knowledge base is largely developed along the lines of a

model, or theory, of the problem area. In the latter, it is largely

developed in response to errors exhibited in solving test cases. Nei-

ther is entirely adequate by itself; knowledge engineers must use

both. Whatever combination of development paradigms is used, there

is no clear stopping criterion for development. This presents problems

in providing for continual additions and modifications to a knowledge

base—the extensibility mentioned earlier.

4. The last step of the process is software engineering, that is, ensuring

that the system fits into the end users' environment, is responsive to

their needs, and so on. The difficult issues at this step are not unique

to expert systems. It is included as a reminder that a successful

application requires more than developing a knowledge base.

B4. Explanation

One of the defining criteria of expert systems is their ability to "explain"

their operation. Early forms of explanation focused on showing the line

of reasoning, typically a sequence of rule firings, that led to a particular

conclusion. This was normally done in stylized natural language (Part

Six of Buchanan and Shortliffe, 1984). The user could ask the system

questions of the form, "How did you conclude . . .
?" In a sense it is an

extension to the kind of dialog that was originally shown in the SHRDLU
system (Winograd, 1972; Article IV.F1, Vol. I). That system answered

questions by actually looking in its environment and on its own goal

stack (i.e., agenda of goals and subgoals).

Although natural language interfaces were used almost exclusively

in early expert systems, powerful, low-cost graphics workstations have

fueled a trend toward graphic interfaces, for example, the STEAMER
system, used to train naval personnel to operate steam power plants

onboard ships (Hollan et al., 1984). Contemporary systems often provide

mixed natural language and graphical interfaces, for example, the Drill-

ing Advisor (Rauch-Hindin, 1986).

B Fundamental Principles 175

Lines of reasoning, for example, the Guidon-Watch System (Richer

et al., 1985) may be shown as graphs that permit user interaction to

explore alternative possible lines of reasoning. Perhaps this makes clear

the fact that current explanation facilities are much like sophisticated

program debugging facilities and are often used as such. Like all good

debugging systems, they permit the programmer/user to examine system

operation in high-level terms, rather than in terms of the low-level

machine instructions actually executed. There is a trend today toward

recording justifications that underlie the items in the knowledge base

(Smith et al., 1985). These can be used to augment explanations.

Research is ongoing to enable expert systems themselves to use this

information.

The term "explanation" can also be used to cover examination of the

static knowledge base. Object-oriented representations and sophisticated

graphics facilities enhance the ability of a domain specialist to under-

stand what has been encoded (Smith et al., 1987). As found in the

GUIDON system (Clancey, 1986) (see Article IX.C6, Vol. II), however,

such facilities do not in and of themselves constitute a tutoring system.

We could argue that the user of a conventional FORTRAN program
can also examine the "knowledge base" of the program. Depending on

how the program is written, this is true to a certain -extent. It would
typically be done with a text editor. One thing that sets expert systems

apart, however, is their ability to be queried in the run-time context.

Whereas a conventional program can be examined only statically, an
expert system can be examined dynamically. It is true that a programmer
can examine the stack of a conventional program with a debugger, but

such programs do not maintain an explicit goal stack or line of reasoning.

This is not a statement about implementation language but rather about

system design style.

B5. System-Building Tools/Shells

When the first commercial expert systems were being developed, the

developers faced two major problems:

1. Eliciting and encoding the domain knowledge to solve the problem

at hand.

2. Building programming systems with which to encode/apply the

knowledge.

There were almost no generally applicable rule interpreters or object-

oriented programming languages. Most of the early "shells" had been

176 Fundamentals of Expert Systems XVIII

constructed in universities as parts of specific applications. They typi-

cally made too many assumptions about either the domain of application

or the problem-solving methods to be used. Furthermore, they typically

could only be used by highly trained specialists. Finally, their run-time,

space, and implementation language requirements precluded their use

in a wide variety of environments. Nevertheless, these shells represented

generalizations, in code, of principles learned from experience with prior

expert systems.

One of the most practical effects of the recent commercial application

of expert systems has been the development of many dozens of robust

shells and tool sets (Bundy, 1986; Gevarter, 1987; Harmon, 1987; and
Richer, 1986). These shells range in capability from those that can sup-

port little more than experimentation with rule-based techniques to

those that can support efficient development and operation of substantial

systems. A few of the more powerful shells are used to support current

research in expert systems. The shells are implemented in a number of

programming languages (e.g., LISP, C, and PROLOG) and run on a variety

of hardware, including inexpensive PCs, workstations, and mainframe
computers.

Today, users can expect a high-end shell to offer support for a number
of programming paradigms. The two most common are rule-oriented

programming and object-oriented programming. Both forward and back-

ward chaining are standard, as is support for structuring rules into

collections (or rule sets) according to task. Typically rules are efficiently

compiled into code in the underlying implementation language. Not all

rule languages are extensible. The OPS5 rule language, for example,

allows new action functions to be defined but does not allow new match-

ing predicates (Brownston et al., 1985).

When support for object-oriented programming is provided, it

includes multiple inheritance, message-passing, and active values. A
common way to combine rules and objects is to construct a method that

responds to a message by applying a set of rules, with either forward or

backward chaining. Such a method may also be invoked in response to

a change in an active value. The REACTORS system, for example, uses

active values to respond to changes in the operating conditions of a

nuclear power plant to invoke rules that suggest new responses (Rauch-

Hindin, 1986).

Some shells provide support for uncertainty in rules and in facts.

The certainty factor calculus originally developed for the MYCIN system

is widely used. Complete integration of inexact reasoning and objects

has not yet been achieved. It is currently limited to support of uncer-

tainty for slot values. Support for uncertainty in interobject relations is

less common.
In the early years of commercial systems, expert systems were

B Fundamental Principles 177

designed as standalone tools. As a result, they were not well integrated

with database management systems, large numerical packages, or other

existing software and systems. Today's commercial systems are consid-

erably better integrated with other uses of computers. It is now common
to see support for mixed language environments (e.g., with some code in

LISP and some in C).

Over the past few years increasing attention has been focused on

tools to support interaction between humans and expert systems. There

are two major reasons for this:

1. In many fielded systems, the end-user interface accounts for a sub-

stantial portion of the overall system and success depends heavily on

the quality of user interaction (Smith, 1984).

2. The knowledge acquisition process is simplified and enhanced when
the expert can readily examine the evolving knowledge base and

directly interact with the system to refine its understanding of the

domain (Davis and Lenat, 1982).

It has also been found that the tools used to represent domain knowledge

and strategy knowledge (e.g., objects and rules) can be applied to struc-

turing user interfaces. Extensible systems and tools have been developed

to support interaction requirements for knowledge engineers, experts,

and end users (Smith et al., 1987).

B6. Validation

There are many dimensions along with which we might wish to judge

an expert system. The three most important of these are computational,

psychological "look and feel," and performance. Computational issues

include speed, memory required, extensibility, portability, and ease of

integration with other systems. Psychological issues include ease of use,

understandability and "naturalness," and online help and explanation.

Performance issues—the sine qua non—include the scope of competence,

percentage of false positive and negative solutions (false alarms and
misses), and time or money saved. Some involve evaluations of the static

knowledge base (e.g., its scope), whereas others involve looking at the

program in use (e.g., its ease of use or statistics on correctness). (See

Cohen and Howe, 1989 and 1988 for specific recommendations.)

Formal validations of expert systems are rarely published, if done at

all. The formal validation of MYCIN'S performance (Part 10 of Buchanan
and Shortliffe, 1984) stands out as an exception. In that study, outside

evaluators reviewed the therapy recommendations for several randomly
selected patients as made by MYCIN and nine persons whose expertise

178 Fundamentals of Expert Systems XVIII

ranged from acknowledged specialist to medical student. The evaluators

(in a blinded study) judged MYCIN'S recommendations to be indistin-

guishable from those of the specialists. In practice, expert systems are

validated in the same way as conventional software. Developers mostly

demonstrate that a new system solves a variety of difficult problems

before it is turned over to end users (O'Keefe et al., 1987). A few of the

end users then try the new system in context on a large number of cases,

often in parallel with the old method for solving these problems. Any
errors that are detected are fixed. When the end users and their man-
agers are convinced of the program's effectiveness, the program is put

into routine use, often at a single site first.

With small conventional programs, we often test each branch of each

subroutine with boundary values of variables to assure ourselves that

the program's parts behave as specified. With large systems, complete

testing is not possible, and software engineering practices prescribe test-

ing boundary conditions, exercising new code under as many variations

as possible, and empirical testing with a variety of cases—with no guar-

antees of complete testing. As a consequence, programmers (as well as

managers) hesitate to make any changes at all in code that has worked
in the past for fear that unforeseen errors will be introduced.

In an expert system, each element of the knowledge base can be

examined in the same fashion as a single, small subroutine. As with

subroutines, the places where unforeseen errors occur are in the inter-

actions among the elements. These have to be uncovered by empirical

tests—running the program on a large random sample of problems

(within the specified scope) and determining which cases are solved

correctly and which are not. In the absence of a complete logical analysis

that proves the correctness of both the knowledge base and the inference

engine, we must analyze performance empirically. The criteria for

"acceptable" levels of errors of any type, however, must be determined

by weighing costs of errors of each type against the benefits of correct

solutions.

B7. Reasons for Using the Methods of Expert Systems

In general, the main issues in building expert systems can be classed

as issues of complexity, interpretability, and explicit, modular forms of

knowledge. In this section we summarize some of the factors that suggest

using expert systems instead of conventional software. Note that many
of the points are true of the programming technology that underlies AI

programs in general—not simply expert systems.

B Fundamental Principles 179

Complexity: Problems, Project Management, Systems

Often when we begin designing an expert system, neither the prob-

lem nor the knowledge required to solve it is precisely specified. Initial

descriptions of the problem are oversimplified, so the complexity becomes

known only as early versions of the system solve simple versions of the

problem. Expert systems are said to approach competence incrementally.

A declarative, modular representation of knowledge, applied in a uniform

manner, is the key to managing this kind of complexity. Time after time,

commercial developers of expert systems report that one major benefit

of building a system has been that they, and others in the organization,

better understand the problem and the information requirements for a

solution.

The traditional life-cycle model of software construction and main-

tenance presumes that problems are well specified. An alternative model,

used in constructing expert systems, is exploratory programming, in

which problem definition and problem solution are mutually reinforcing.

A key element in exploratory programming is a powerful, integrated

development environment (Sheil, 1984).

Conventional software can in principle be written by good program-

mers to solve any problem that an expert system solves. Frequently a

system that is initially constructed in a shell system is rewritten in

FORTRAN, PL/I, C, or some other well-known language. Constructing the

system in the first place, however, requires considerably more ability

than most, or unless the shell system (itself in C or some other language)

provides an interpreter for elements in its knowledge base.

Interpretation

One of the facilities commonly used to advantage in expert systems

is evaluation

—

EVAL to the LISP programmer. This facility allows the

user (or the system itself) to specify a query or arbitrary computation to

the running system and evaluate it in the run-time context. It lays open

to examination the entire state of the system and its environment,

including the knowledge base, the line of reasoning, agenda, and so on.

This is the sense in which programs written in interpretive languages

like LISP are said to themselves constitute data. It is one of the most
important facilities on which an expert system depends. It allows a

system to reason not only about incoming data but also about past

inferences and even about how it makes inferences. To a certain extent,

operating systems also perform this kind of introspection. However, these

systems can usually only be tuned in a number of predefined ways,

according to a fixed set of parameters; operating systems typically cannot

look at their own procedures. By contrast, expert systems in principle

180 Fundamentals of Expert Systems XVIII

can do this kind of detailed introspection, examining their procedures as

well as their data.

In order for this capability to be used effectively, it is important that

the knowledge be represented explicitly (declaratively) and uniformly,

and that it be applied in a relatively uniform manner. Although it may
be possible in principle to reason about pure LISP code, in practice it is

extremely difficult—for humans as well as programs. Thus a simpler

syntax, like objects or rules, is usually denned as the fundamental rep-

resentation, and an interpreter is written for that syntax.

Knowledge

Specialized knowledge of a problem area is the key to high perfor-

mance. And the key insight from AI has been that representing a pro-

gram's knowledge declaratively provides considerable advantages over

hard-wiring what a program knows in coded subroutines. There is a

continuum, of course, from parameterized procedures to completely styl-

ized, understandable, high-level procedure descriptions. For different

purposes, designers of expert systems use different ways of representing

knowledge explicitly, but they all focus on the knowledge—representing

it, reasoning with it, acquiring it, and explaining it. Today's expert

systems demonstrate the adequacy of current AI methods in these four

areas, for some well-chosen problems. Shells, or system-building envi-

ronments, codify many of the present methods.

C. STATE OF THE ART

Several recent books and publications provide extensive overviews and

details about the state of the art. See, for example, Feigenbaum et al.

(1989), Waterman (1986), Rauch-Hindin (1986), Mishkoff (1985), and
Scown (1985), plus numerous current journals and newsletters such as

Expert Systems, IEEE Expert, Al Magazine, Expert System Strategies,

and The Applied Artificial Intelligence Reporter. In this section we encap-

sulate our own understanding of what can be done easily with standard

tools, and distinguish that from work that requires ingenuity or new
research because present methods are inadequate.

CI. Size of System

The numbers of expert systems and persons working on them have

grown to the point where building expert systems has become routine.

This is especially true for small, rule-based systems, and many compa-

nies are choosing to develop many small systems instead of concentrating

on one or two "big wins" (Feigenbaum et al., 1989). A few expert system

shells have small upper limits on the size of the knowledge bases that

can be accommodated, mostly for reasons of memory size of the under-

lying personal computer. Even systems that today are counted as mod-
estly large or complex mention only a few thousand objects (or classes of

objects) or a few thousand rules. These limits may be due more to experts'

and knowledge engineers' limitations in keeping track of larger numbers
of items (and their interactions)—and to managers' unwillingness to

spend more than 12-24 months in developing a system—than to hard-

ware or software limits. New technology will be required for managing
knowledge efficiently, however, when we try to build knowledge bases

that contain millions of items. (See Lenat et al., 1986, for work in prog-

ress on methods for defining and managing truly encyclopedic knowledge
bases.)

Although it is difficult to characterize the size of a system, either

numerically or symbolically, there are some rather crude ways of describ-

ing how large present systems are. For example, MYCIN contained about

1,000 rules and 20 class names, and XCON contains about 6,000 rules

and 100 class names. The INTERNIST system (see Article VIII.B3, Vol.

181

182 Fundamentals of Expert Systems XVIII

II) contains about 2,600 rules, with another 50,000 links among roughly

600 diseases (objects), and 80 manifestations (slots) per disease (chosen

from approximately 4,500 manifestations in all). Numbers like these are

difficult to compare for many reasons: there may be substantial differ-

ences in the level of conceptual detail covered in a rule in different shells

(e.g., EMYCIN vs OPS5); there is more in a knowledge base than rules

and object names; complex procedures contain considerable knowledge,

even though not represented declaratively; and a single concept, or a

single clause in a rule, may stand for something very complex (e.g.,

"state of the patient") or for something quite straightforward (e.g.,

"patient's age").

An approximate characterization of the complexity of present-day

knowledge bases is shown in Table C-l. Assuming that the facts are

represented as object-attribute-value triples (e.g., "the identity of Organ-

ism-2 is E. coli"), it makes some sense to ask how many there are. The
numbers in Table C-l represent empirical, not theoretical, upper bounds

on several key parameters. With problems much smaller than those in

Table C-l, along these dimensions, the flexibility of expert systems may
not be required. With much larger problems, resource limitations (espe-

cially time for construction) may be exceeded. There are complications,

Table C-l.

Approximate Measures of Complexity of Expert Systems Built Routinely

in the Late 1980's.

Vocabulary

Objects 1,000s of objects or classes of objects

Attributes 10-250 named attributes per object

Legal values 3-100 discrete values per attribute, or

arbitrarily many discrete ranges of

values of continuous attributes

Inferential Relations

Rules or Taxonomic Links 100s to 1,000s

Depth of Longest Reasoning Chains 2-10 steps from primary data to final

conclusion

Breadth of Reasoning 2-10 ways of inferring values of any

single attribute

Degrees of Uncertainty Facts and relations may be expressed

with degrees of uncertainty beyond "true

or false" (or "true, false, or unknown")

C State of the Art 183

however, because classes may be denned for arbitrarily many instances;

and attributes may take on continuous values (e.g., any real number).

So, instead of showing only the number of rules, Table C-l indicates the

depth and breadth of the chains of inferences. It also suggests that

knowledge bases are more complex when they must deal with uncertain

facts and relations.

As developers attempt to encode more information in objects

(attempting to make fewer assumptions about how the knowledge will

be used), the number of rules tends to be reduced. This occurs because

the rules are written to be applied to members of hierarchically organized

classes of objects and not just to single individuals. An important strategy

in scaling up from a small system to a large one is to find nearly inde-

pendent subproblems and build subsystems that address them, with

other subsystems addressing the (few) interactions. When followed, this

simple idea keeps the complexity of the composite system from growing

exponentially with the number of objects or facts being related.

The amount of detail required in a knowledge base is determined by

the degree of precision required in the solution to a problem. If a diag-

nostic system, for example, is useful in locating errors within large,

replaceable components (such as an aircraft's radar system), it need not

reason about all the individual parts within the component. This would

be reflected especially in the size of the vocabulary and the depth of the

reasoning. Often this consideration is called the grain size or granularity

of the description.

The time it takes to build a system varies greatly depending on the

scope of the problem and the expectations about the end product. A
prototype that is expected to demonstrate feasibility on a small troub-

leshooting problem, for example, may be built by a single person in one

to ten weeks. A fully developed system ready for field use on a complex

problem, on the other hand, may take a team of several persons one to

three years or more. One measure of our increased understanding of

knowledge programming is that students are now routinely assigned

one-term class projects that would have been two-year doctoral research

projects a decade ago.

C2. Type of System

Several types of problems for which systems can be built were listed

earlier in the categories: interpretation and construction. We lack a

robust taxonomy of problem types (among the most complete so far is

the one proposed in Chandrasekaran, 1986), so the individual examples
still provide a better characterization of the types of problem than gen-

184 Fundamentals of Expert Systems XVIII

eral descriptions. Most expert systems described in the open literature

address problems of data interpretation, mostly for purposes of trouble-

shooting or equipment diagnosis. They are mainly organized around the

method of evidence gathering, in which evidence is gathered for and
against a fixed set of hypotheses (or solutions), and the answer(s) with

the best evidence is selected (Buchanan and Shortliffe, 1984). This is

also known as catalog selection or heuristic classification (Clancey, 1985).

Most commercial shells address problems of this type. However, more
and more systems are being built for problems of the second category,

construction, and shell systems are emerging to handle the myriad con-

straints that shape a design, assembly, configuration, schedule, or plan.

C3. Some Observed Limitations

Expert systems are designed to solve specific problems in well-circum-

scribed task domains in which specialists can articulate the knowledge

needed for high performance. Current methods for designing and build-

ing them have limitations, naturally, so that attempts to implement and
use an expert system may not always be successful. Working within

known limitations is more likely to lead to success, however, than work-

ing without regard for them.

The observations about the limitations of today's tools highlight

opportunities for further research. Taken together with current research,

the limitations also point to extensions of our methods that can be

expected in the future. In the following subsections we mention several

pieces of current research on some of these topics, and additional ones

that are likely to advance the state of the art over the next several years.

This is not a complete list by any means, but it points to several areas

of active work in which improvements are likely. It is also not a list that

does justice to any of the topics or any piece of work mentioned.

Traditionally, research in artificial intelligence generally has focused

on problems of knowledge representation and knowledge use, or reason-

ing. Advances in these fundamental areas will certainly advance the

state of the art of expert systems. There are additional demands that

expert systems make on programmers, however, because of the desired

high performance, flexibility, and understandability. The corresponding

areas of research in expert systems work are known as problems of

robustness and validation, knowledge acquisition and maintenance of

knowledge bases, and explanation.

In addition, several problems crop up repeatedly in work on expert

systems that are broader issues of software engineering or computer

science generally. Pragmatic problems of putting expert systems into

C State of the Art 185

actual routine use involve research on the integration of expert systems

with existing applications software, the security of knowledge and data

in expert systems, design specification and testing, and the costs and
logistics of hardware for AI applications. There is also considerable work
on interfaces and human factors whose advances will make a difference

in future expert systems.

Expertise. Expert systems work within narrow areas of expertise

(Davis, 1982 and 1989). Technical domains, in which terms are well

denned and in which subproblems can be solved separately, are more
amenable to the introduction of expert systems than more open-ended

domains. Engineering and business are thus better problem domains

than political science and sociology. When the limitations are well under-

stood, there is little problem in using an expert system reliably for

substantial gains in productivity, and many of the notable successes are

of just this sort (Feigenbaum, 1989).

Difficulties arise, however, when a user of a system expects that the

system can solve a problem for which the knowledge or reasoning prin-

ciples are totally inadequate. Often, regrettably, this is the fault of

overselling on the part of the designers; sometimes it is the result of

misunderstanding on the part of the user; and sometimes the result of

blind spots or errors in the program.

Applications over the last several years have become larger and more
complex. In the past we had to choose between building a 3,000-rule (or

5,000-object) system that is either narrow and deep, or shallow and broad.

Mostly it has been easier to demonstrate proficiency and utility with the

former. With advances in our methods for dealing with very large prob-

lems, we will be able to have both breadth and depth. Several of the

techniques from AI that help us manage large, combinatorial problems

will also apply to large expert systems. These include problem decom-

position, omitting (nearly) irrelevant details, reasoning at successively

finer levels of detail, and reasoning at a strategic level before (and

during) problem solving.

First Principles. The domain models used by expert systems are

not generally the theoretical first principles of textbooks, but are a looser

collection of facts and associations (Davis, 1987). Expert systems rely

more on special-case formulations of relations than on "first principles."

Although a set of general principles such as Maxwell's equations governs

the behavior of a large class of devices, designers of expert systems prefer

to codify special cases, exceptions, and empirical associations, as well as

some causal associations, in order to put the general principles in forms

that can be applied more quickly and more precisely. As a result, they

are unable to fall back on a better theory in some situations. There is

substantial research in AI on using first principles in reasoning, much
of it in the area of electronics troubleshooting (Davis, 1987). As this

186 Fundamentals of Expert Systems XVIII

matures, it will allow us to build expert systems that blend the theoret-

ical soundness of the first principles with the precision of special-case

exception clauses that map the theory into the world of practical appli-

cations.

Limits of Knowledge. Expert systems tend to perform well on the

classes of cases that have been explicitly considered but may fail precip-

itously on new cases at the boundaries of their competence (Davis, 1987;

Lenat, 1986). In part this is due to lack of knowledge of first principles.

The performance of humans is more robust. As we reach the extent of

what we know about a problem area, we often can give appropriate

answers that are approximately correct, although not very precise—and
we know that we have reached the limits of our knowledge. For expert

systems, the standard solution today is to codify rules that screen out

cases that are outside the intended scope in order to further ensure that

the system is being used in an appropriate way. Current research on

reasoning from a sound theoretical basis mentioned earlier will help

overcome this problem. The general approach is to back up (or perhaps

replace) the specialized rules that are now encoded by expressions of a

sound theory. Thus, when a system finds few or no specialized items in

its knowledge base covering a situation, it can resort to reasoning from

first principles. It can also use the theory to check the plausibility of

conclusions reached by using the specialized knowledge.

Self-knowledge. Expert systems have little or no self-knowledge,

and thus do not have a sense of what they do not know (Lenat et al.,

1983). Although expert systems can often give explanations of what they

know, they do not have a general "awareness" of what the scope and
limitations of their own knowledge are. Meta-level knowledge, such as

rules of strategy, can offset this shortcoming in special situations but

does not constitute a general capability.

Commonsense Knowledge. Expert systems can only represent

commonsense knowledge explicitly and do not use commonsense modes
of reasoning such as analogical reasoning or reasoning from the most
similar recent case (McCarthy, 1983). Designers of current expert sys-

tems resolve this by assuming that users can exercise some common
sense, and by specifying common facts explicitly when needed. The
INTERNIST system, for example, contains about 100,000 commonsense
medical facts such as "males do not get pregnant" and "aspirin obscures

the results of thyroid tests" (personal communication from R. Miller).

The challenge is to construct a "commonsense reasoning component" that

is general enough to avoid errors that "any fool" would avoid and specific

enough to reason reliably and efficiently. Current research on case-based

reasoning attends to some of these difficulties (See, for example, the 1989

Proceedings of the Case-based Reasoning Workshop, published by Mor-

gan-Kaufman, San Mateo, CA).

C State of the Art 187

Explicit Knowledge. The knowledge of expert systems must be

made explicit; they have no intuition (Dreyfus and Dreyfus, 1986). So

far, the problems that have been most successfully solved with expert

systems have been those in which inferential knowledge is easily for-

mulated as rules and the organization of objects and concepts is easily

formulated as taxonomic (class-subclass-instance) hierarchies and part-

whole hierarchies. Reasoning by analogy or by intuition is still too unpre-

dictable (and ill-understood) to use in high-performance systems.

Because expert systems depend on knowledge formulated explicitly, it is

important to develop better methods for facilitating the process through

which experts articulate what they know. Any task for which knowledge

cannot be articulated for any reason is not a good candidate for an expert

system.

Reusable Knowledge. Knowledge bases are not reusable (Lenat,

1986). Since the cost of building a knowledge base is substantial,

it is desirable to amortize it over several related expert systems, with

unique extensions to cover unique circumstances. For example, many
medical systems use facts about anatomy and physiology, yet often each

encodes those facts specifically for use in a unique way. The challenge is

to develop knowledge representations that can be used efficiently, inde-

pendent of the specific context of use. By contrast, considerable progress

has been made in building lower level components of expert systems that

are reusable—this has led to the widespread use of expert system shells.

Representing knowledge in structured objects improves the chances of

reusability, and substantial current research is exploring this and other

means of improving reusability of knowledge bases (see, for example,

Lenat, 1986).

Learning. Expert systems do not learn from experience (Schank,

1983). Research on machine learning is maturing to the point where
expert systems will be able to learn from their mistakes and successes.

Learning by induction from a large library of solved cases is already well

enough understood to allow induction systems to learn classification

rules that an expert system then uses (Michie et al., 1984; Michalski et

al., 1986). Prototype systems have been built that emphasize learning in

context, sometimes called explanation-based learning or apprentice

learning, which appears to hold promise for expert systems (Mitchell et

al., 1986). The challenge is to design learning mechanisms that are as

accurate as knowledge engineering but are more cost effective.

Reasoning Methods. It is generally not possible to prove theorems
about the scope and limits of an expert system because the reasoning is

not formal (Nilsson, 1982). Although some systems are implemented in

a logic programming language such as PROLOG, or otherwise use pred-

icate calculus as a representation language, many systems are more "ad

188 Fundamentals of Expert Systems XVIII

hoc." In this regard, though, expert systems are not in a much different

state than other software in which complex reasoning with heuristics

defies proofs of correctness. There is considerable research on formalizing

the reasoning methods of AI programs and combining those with a pred-

icate calculus representation of knowledge.

Knowledge Context. Expert systems may fail if the user's concep-

tual framework is not the same as that of the expert and others on the

design team (Winograd and Flores, 1986). Knowledge engineers work
under the assumption that the experts they work with know the context

of intended use and the intended users' terminology and point of view.

This may result in misuse of a system when a user attaches different

meaning to terms than did the expert who designed the knowledge base.

There are no safeguards built into today's systems to test this assump-

tion. Thus the challenge is to provide enough ways of explaining what
is in a knowledge base to make its contents clear to all users. But a

simple, more pragmatic remedy is to include members of the intended

user community on the design team.

A related problem is that the conceptual view of the design team

—

even if only a single expert—may change over time, and thus maintain-

ing a knowledge base over time becomes difficult.

D. DESIGN PRINCIPLES AND SUMMARY

Dl. Design Principles

Out of the experimental work with expert systems over the last five to

ten years, several "architectural principles" of expert systems have

emerged. In 1982, Davis (1982) articulated an early set of principles

based on experience with a few rule-based systems. (See also McDermott,

1983, for another set of generalizations and Chapter 5 of Hayes-Roth et

al., 1983, and practical advice for knowledge engineers.) Given additional

experience, we can augment and refine these principles. Note that many
of these "principles" in fact represent design tradeoffs. Where appropri-

ate, we identify the relative advantages of each side of tradeoffs.

Modular, Declarative Expressions ofKnowledge Are Necessary

1. Represent all knowledge explicitly. This simplifies the explanation of

system behavior as well as refinement, both by human designers and

by the system itself. The main feature of an expert system is the

suite of specific knowledge it has about its domain of application. For

reasons of extensibility and flexibility, it is important to separate the

abstract concepts and relations of the target domain from inferences

that can be made in the domain, i.e., "what is known" from "how to

use it."

2. Keep elements of the knowledge base as independent and modular as

possible. When updating rules or links among objects, the fewer the

interactions with other parts of the knowledge base the easier the

isolation and repair of problems. Although complete independence of

rules or objects is impossible (without complex, lengthy descriptions

of the context of relevance), partitioning the knowledge base into

small, nearly independent modules facilitates maintenance. Common
partitionings include:

a. Domain-specific knowledge (e.g., a model of structural geology,

which could be used in a variety of applications).

b. Task-specific knowledge (e.g., the knowledge of how to use the

model of structural geology, together with a model of the data

sensed by a dipmeter tool, to interpret the data in terms of geo-

logical structures).

c. Knowledgeable interaction with developers and users.

189

190 Fundamentals of Expert Systems XVIII

d. Problem-solving knowledge (e.g., strategies like top-down refine-

ment and least-commitment constraint propagation).

e. Other domain-independent knowledge (e.g., commonsense facts

and mathematics).

3. Separate the knowledge base from the programs that interpret it.

Historically this has been phrased as "separate the knowledge base

and the inference engine" (Davis, 1982).

4. Consider interaction with users as an integrated component. It is

important to avoid dealing with user interaction issues in an "add

on" manner, after the expert system has been designed. High-quality

user interaction frameworks are often essential to end-user utility.

They are also important to widen the knowledge acquisition bottle-

neck.

5. Avoid assumptions about context of use. Extending a knowledge base

is made difficult when assumptions about how the individual packets

of knowledge will be used are implicitly encoded. For example, impor-

tant premise conditions of a rule may be omitted because the system

developer knows the context in which that rule will be applied (as

noted earlier with the sample rule from the Dipmeter Advisor sys-

tem). This is also important if domain-specific knowledge bases are

to be reused for a variety of applications.

Uniformity, Simplicity, Efficiency, and Expressive Power Are
Interdependent

1. Use as uniform a representation as possible, although specialized

representations are often worth the cost of translating among rep-

resentations because they may improve run-time performance and

simplify knowledge acquisition.

2. Keep the inference engine simple. A program's ability to reason about

its actions depends on its ability to reason about the way it makes
inferences, and complex inference procedures make this task more
difficult. However, this must be balanced against problems that sim-

plicity may cause in expressing knowledge in "appropriate" ways and

in run-time efficiency.

3. An object-centered paradigm offers the most flexibility, and thus the

most expressive power, even though there is a logical equivalence

among representational choices.

4. Be sure the reasoning is based on sound, conceptually simple strategic

knowledge. A knowledge base is more than a bag of facts and rela-

tions; it is used for a purpose, with a reasoning strategy in mind.

The clearer that strategy is, the more coherent the knowledge base

D Design Principles and Summary 191

will be. Again, however, this must be balanced against possible dete-

rioration in run-time performance.

Redundancy Is Desirable

Exploit redundancy. One advantage of a modular representation of the

domain knowledge is that it allows the system to explore multiple lines

of reasoning. By contrast, a conventional program typically has a single

procedure with a fixed sequence of steps for achieving a goal. Reasoning

with uncertain or missing data, or with knowledge that is uncertain

or incomplete, requires building redundancy into the reasoning to allow

correct conclusions to be drawn in spite of these deficiencies.

D2. Summary

Expert systems use AI methods for representing and using experts'

knowledge about specific problem areas. They have been successfully

used in many decision-making contexts in which:

1. Experts can articulate much of what they know (e.g., in training

manuals).

2. Experts reason qualitatively (e.g., based on what they have learned

from experience) to augment the formulas in textbooks.

3. The amount of knowledge required to solve problems is circumscribed

and relatively small.

Although many interesting and important research problems remain
open, expert systems—and the shell systems that make them easy to

build—encapsulate solutions to many problems associated with the rep-

resentation, use, acquisition, and explanation of knowledge. The engi-

neering solutions used in today's expert systems are not without limits,

but they are well enough understood and robust enough to support com-

mercial applications of importance. Many applications are in routine use,

with annual savings of millions of dollars each (AAAI, 1989; Feigenbaum
et al., 1989), and all of them were built with the tools and methods
developed in the last decade or so. Future research will extend the scope

of the commercial successes, but there is no limit to the number of

systems that can succeed using tools available today.

192 Fundamentals of Expert Systems XVIII

Acknowledgments

Eric Schoen and David Hammock assisted in generating the Dip-

meter Advisor System figures. The ideas in this chapter synthesize arti-

cles by and discussed with many friends and colleagues, no one of whom
will agree with every statement (including this one). We are grateful to

them all. An earlier version of this paper appeared in the Annual Review

of Computer Science 1988, Vol. 3: 23-58.

Chapter XIX

Natural Language Understanding

James Allen—University of Rochester

CHAPTER XIX: NATURAL LANGUAGE
UNDERSTANDING

A. Overview I 195

B. Unification Grammars I 198

C. Semantic Interpretation I 206
D. Semantic Interpretation Strategies I 213
E. Modeling Context I 223
F. Discourse Structure I 233

G. Conclusion I 238

A. OVERVIEW

Research in natural language understanding is entering a new phase

of development where significant progress will be made toward building

comprehensive conversational systems. There are two major reasons for

this, one relating to methodology and system organization and the other

relating to the steady growth in our knowledge ofhow extended discourse

is organized. This chapter addresses both of these areas in some detail

and describes some directions for future research. 1

The methodological change results from a growing trend to separate

the description of linguistic structure from the methods for actually

processing language. As a result, computational models have moved
closer to formal linguistic theories, and a rich interaction has arisen

between the two disciplines. On the computational side, this separation

allows particular aspects of language to be formulated in detail without

regard to how and when the information will be used in the actual

system. To better grasp this point, consider the traditional division made
between a grammar and a parser (see Article IV.C and D, Vol. I). The
grammar defines the structure and, in simple formulations such as an
unextended context-free grammar, many different parsing strategies can

be explored. More importantly, different strategies for combining syn-

tactic processing with other aspects of the system can be explored as

well. The surprise is that, until recently, a large number of computational

grammar formalisms did not have this property. In particular, most
parsing systems have been based on network grammars or context-free

grammars (CFG) that are then augmented with operations that are per-

formed whenever that particular part of the grammar is used in the

parse.

Although the augmentation produces the extra power needed for

natural language analysis, the augmentations usually depend on the

parsing strategy. If the parsing strategy is changed, the augmentations

may also need modification. In recent years, augmented formalisms

based on unification have been developed that allow the augmented
grammar to be completely independent of the parsing strategy. In other

words, the result of using a set of rules to analyze a sentence is the same
regardless of the order in which the rules are applied. Besides effecting

1 All of the terminology and early research referred to in this chapter was introduced in Chapter

IV, Volume I Handbook of AI.

195

196 Natural Language Understanding XIX

the obvious simplifications, this separation also opens the door to more
flexible parsing strategies involving other parts of the system such as

semantic and pragmatic interpretation.

If the division between grammars and parsers was not quite com-

plete, the division between semantic interpretation rules and the seman-

tic interpreter has for the most part been nonexistent. In systems such

as LUNAR (Woods, 1978; see also, Article IV.F3, Vol. I) and DIAGRAM
(Robinson, 1982), the semantic interpreter is little more than LISP code

that produced the semantic representation from the syntactic analysis.

Recent work, however, shows the possibility of interpretation rules inde-

pendent of the interpretation algorithm. One great advantage of this is

that the resulting system is much more easily comprehended. In addition,

the wide range of techniques for combining syntactic and semantic inter-

pretation found in the literature can all be examined within essentially

the same framework.

The second reason to believe natural language understanding is

entering a new phase is the development of a wide range of theories

describing particular aspects of multi-sentence discourse. This includes

models that apply general world knowledge about actions and commu-
nication to integrate multiple sentences into a coherent structure as well

as work that examines the more structural aspects of discourse itself.

Substantial progress has been made in particular problem areas, and I

believe it is now time that these individual solutions can be integrated

into a comprehensive system.

Virtually all language understanding systems divide their work into

subcomponents, at least between the parsing processes and the contex-

tual interpretation processes. Many also separate syntactic and semantic

processing. I will pursue a similar strategy here, though it has a signif-

icant difference: the division is based on the different types of linguistic

structural knowledge, not on the processes. Whereas a process-based

division typically creates a less integrated model of processing, the

descriptive-based division does not, because the processor might apply

all descriptive rules in a parallel fashion. Each module (in the descrip-

tive-based model) specifies a mapping from one or more input represen-

tations to an output representation. Ultimately there will be many
different such modules (as contextual processing becomes better under-

stood), but this chapter keeps to a fairly traditional division as shown in

Figure A— 1. The mapping from a sentence to a syntactic form is specified

by the syntax component, the mapping from the syntactic form to a

logical form by the semantic interpretation component, and the mapping
from both the syntactic and logical forms to a final representation by a

contextual/world knowledge component.

First, this chapter examines the emergence of unification-based

grammars that give exactly the separation between description and pro-

Overview 197

I ate the pizza

\
The Parser

(S SUBJ(NP PROD
MAIN-V ate

TENSE PAST
OBJ (NP DET the

HEAD pizza))

\
The Semantic Interpreter

I
(PASTalEAT-EVENT

[AGENT (PRO pi PERSON "I")]

[THEME (DEF/SING p2 PIZZA)])

/
The Contextual Interpreter

I
ATE(JAMES1,PIZZA4, TIME3) & BEFORE-NOW(TIME3)

Figure A-l. The flow of information.

cessing needed for syntax. Next, it considers work suggesting a similar

formalism for semantic interpretation. The flexibility of these represen-

tations is then demonstrated by showing how a wide range of different

processing strategies found in existing systems can be specified without

changing the syntactic or semantic specifications. Finally, the last two

sections consider the application of contextual knowledge in interpreting

sentences and the exploitation of constraints based on the structure of

extended discourse.

B. UNIFICATION GRAMMARS

Although the development of grammatical formalisms has experienced

an explosive growth in the last decade, for the most part they share some
common properties and may be classified as unification grammars. Most
of these formalisms share a common basis—context-free grammars—and

are extended using the concept of unification (or matching) or partially

specified tree structures. This section examines one such system after

motivating some of the important issues by examining an early aug-

mented formalism—the augmented transition network (ATN).

It has been generally accepted since Chomsky's development of the

Chomsky hierarchy (Chomsky, 1956) that context-free grammars are

inadequate for describing natural languages. This has been called into

question in recent years, and all the early arguments against the context

free nature of language were refuted in the early eighties (for example,

see Gazdar, 1982). The debate is now more active than it has been in

years. Whatever the outcome, however, it is clear that the pure context-

free grammar notation is at best unwieldy for capturing the syntax of

natural language. (Context-free grammars are described in Article

IV.C1, Vol. I.)

In computational systems, the standard way to extend the notation

has been to allow augmented grammars. Most prominent among these

have been the augmented transition network (ATN), which has been the

basis of many practical systems such as Woods (1970), Kaplan, (1973),

and Bates (1978). (See Article IV.D2, Vol. I.) In addition, many aug-

mented context-free grammar formalisms have been developed such as

Robinson (1982) and Sager (1981). In essence, an augmentation specified

a set of procedures to execute whenever the grammatical rule (or network

link) was used in a parse. These procedures could save state in a set of

variables, called registers, as well as test state to determine whether the

rule should be applied. Figure B-l shows an example of a very simple

ATN that checks for subject-verb agreement and for a simple form of

passive.

The ATN in Figure B-l contains four nodes and three transition arcs.

The first arc (labeled 1) can only be followed if a noun phrase (NP) can

be found in the input. (The noun phrase structure would be defined by

another network using this same notation.) The second arc can only be

followed if a word in the AUX category (an auxiliary verb) is found in

the input, while the third can only be followed if a verb is next in the

198

B Unification Grammars 199

NP AUX VERB

/^~N 1 /^^\
"~~~2~"

^~^\ 3 /"~N© © ©
Arc Test Actions

1 Store the NP found in the
register SUBJ

2 If number feature
of AUX agrees
with number feature
ofSUBJ

Store the AUX found in the
register AUXS

3 IfFORM ofVERB is "en" and
ROOT

ofAUXis"be"
then

1) Store value ofSUBJ into the
OBJ register

2) Set SUBJ to nil

Figure B-l. A simple ATN.

input. The annotations are listed below the network for each arc. For

example, arc 2 can only be followed if the number feature of the auxiliary

(the AUX) agrees with the number feature of the subject NP (in the

register SUBJ, set in the action on arc 1). The action on arc 2 indicates

that the auxiliary verb found should be stored in a register called AUXS.
Arc 3 is annotated with a conditional action that checks the verb form

and auxiliary to detect the passive, and if found, moves the noun phrase

in the SUBJ register to the OBJ register. This specification works fine as

long as the parsing algorithm is determined in advance. In particular,

ATNs typically use a top-down search through the network. Thus the

actions on arc 1 in Figure B-l are performed before those on arc 2 and
so on.

In some applications, however, a different parsing strategy might be

desirable. For instance, in speech understanding, one parsing strategy

starts with the most reliable word information and works outwards, to

the right and to the left. This immediately causes difficulties. For exam-
ple, say the input is "Jack was seen" and the word "was" is reliably

recognized. Unfortunately the test on arc 2 cannot be performed since

the SUBJ register is not set yet. Similarly, if arc 3 were executed before

arc 1, the NP "Jack" would still end up in the SUBJ register since setting

SUBJ to nil in arc 3 will have no effect on setting the SUBJ register to

200 Natural Language Understanding XIX

"Jack" later in arc 1. Thus augmented systems can be very sensitive to

the parsing strategy. This makes a large grammar extremely difficult to

build because a new arc cannot be considered in isolation. Rather, the

entire context of the parse when the arc is followed must be anticipated.

Restrictions can be placed on augmented systems to remedy this

situation. In particular, if registers are not allowed to be reassigned once

they have a value, many problems disappear because a system can then

be developed that delays the evaluation of tests until all the necessary

registers are set. In recent years, a generalization of this strategy has

become widespread, and such grammars are called unification grammars.
Instead of treating register assignments like the assignment to variables

in a programming language, the systems use the notion of unification

between logical variables (for an overview of unification, see Article

XII.B, Vol. III). Such systems include a wide range of approaches, includ-

ing definite clause grammars (DCG) based on PROLOG (Pereira and War-
ren, 1980; McCord, 1980), generalizations of context free grammars (such

as Shieber, 1984; Tomita and Carbonell, 1987), and grammatical for-

malisms developed by linguists such as LFG (Kaplan and Bresnan, 1982),

GPSG (Gazdar et al., 1985), and HPSG (Pollard and Sag, 1987).

This approach has gained popularity due to its flexibility and gen-

erality, and its clean theoretical foundations. The most notable advan-

tages stem from the independence of the grammar from a particular

parsing algorithm, so each rule in the grammar can be better isolated

as a unit of study, and from the unification-based representation of

uncertainty. In particular, a variable can be assigned a structure that

contains other variables representing information that will be filled in

later.

The remainder of this section introduces a simple unification-based

formalism that captures the essential ideas. Consider a notation common
to many augmented systems: a constituent is represented by a list start-

ing with the type of constituent (i.e., S, NP, PP) and followed by a number
of slot-filler pairs (or register values). Thus

(S MAIN-V (VERB ROOT LOVE))

is an S constituent with a slot MAIN-V filled with a VERB constituent

consisting of the ROOT slot filled with the word love. Uncertainty can

be represented by a disjunction of values enclosed in curly braces. Thus

(NP NUM (3s 3p})

is an NP with the NUM slot filled either with the value 3s (i.e., third

person singular) or 3p (i.e., third person plural). Such a disjunction would

capture the ambiguity inherent in the word fish, which can be singular

or plural.

This system is defined as an extension of a standard context-free

B Unification Grammars 201

formalism where each rule is annotated by a set of unification equations.

Specifically, two register-value structures unify if each of the specified

register values is consistent with that same register's value in the other

structure. Any register specified in one but not the other is simply copied

to the resulting structure. For example, the structures

(S MAIN-V (VERB ROOT LOVE))

and

(S MAIN-V (VERB FORM en)
NUM {3s})

unify to produce a new structure

(S MAIN-V (VERB ROOT LOVE
FORM en)

NUM {3s})

Registers that take a set of disjunctive features (indicated with curly

brackets) are unified in the obvious way by intersecting their sets. If the

intersection is empty, the unification of the structures fails. This is the

way that agreement restrictions can be enforced. For example, the word
sing agrees with any person and number subject except third person

singular. Its NUM register is {Is 2s lp 2p 3p} (allowing first person

singular, second person singular, first person plural, second person plu-

ral, or third person plural). The noun phrase the fish, on the other hand,

can be singular or plural and thus has the number feature {3s 3p}. When
these two features are unified in the sentence The fish sing, the inter-

section of the NUM registers is unambiguously third person plural, {3p},

as desired.

All unification equations are of the form structure = structure, as in

(NP NUM (IS 3p}) = (NP NUM {1s 2s})

which has the result (NP NUM {Is}). To be useful as a rule annotation,

equations may specify registers in the current constituent being built

and in the subconstituents (i.e., the right-hand side of the rule). Thus
the following are possible unification equations with the rule NP <— ART
ADJS NOUN:

DET = ART

This equation unifies the DET register (in the NP being built) with the

structure built as the ART. Note that if the DET register is empty prior

to this unification, this situation is similar to the register assignment in

a traditional augmented formalism. If the DET register is set to some
value before the unification, the two values are unified, and both the

202 Natural Language Understanding XIX

DET register and the ART constituent are changed to the resulting

structure.

NUM = NDMart = NUMnoun

The values of the NUM register in the constituents ART and NOUN are

unified, and the result is unified with the NUM register in the new NP.

If the result of the unification is empty, the entire rule is rejected. This

equation is equivalent to both testing for number agreement and the

register assignment action to the NUM register.

This formalism can be defined precisely by defining each slot name
as a function from its containing constituent to its value. You can see

this by using a representation based on directed, acyclic graphs. In

particular, each constituent and value is represented as a node, and the

slots are represented as labeled arcs. Thus the constituents

(ARTi ROOT THE (NOUNi ROOT FISH
NUM I3s 3p}) NUM (3s 3p}

)

would be represented by the graphs in Figure B-2.

The unification equations on a rule state how to construct a new
constituent out of the subconstituent graphs. Most importantly, nodes

may be collapsed together as the result of a unification (assuming the

intersection of their values is nonempty, of course). For example, if ARTi
and NOUNi represent the entries for a noun phrase the fish, the equations

associated with the rule

NP «- ART NOUN DET = ART
HEAD = NOUN
NUM = NUMart = NUMnoun

specify how to construct the graph denning the new NP constituent, as

shown in Figure B-3. Assume that the verb phrase is sick has been

analyzed in a similar fashion and is represented as in Figure B-4. Given

these initial analyses, the analysis of the sentence The fish is sick con-

structed by the following rule is shown in Figure B-5.

woun)

Figure B-2. Lexical entries for the and fish.

B Unification Grammars

HEAD

203

ROOT

ROOT

Figure B-3. The graph for the NP the fish.

COMP

ROOT

(sick)

Figure B-4. The analysis of the VP is sick.

NP VP SUBJ = NP
MAIN-V - MAIN-Vvp
COMP = COMPvp
NUM = NUMnp - NDMvp

Note that the value of the NUM slot is now the same node for Si,

NPi, ARTi, NOUNi, VPi, and VERBJ Thus the value of the NUM slot of

ARTi, for instance, changes as the NUM slots of NPi and VPi are unified.

In Figure B-5, all these slots now have the value {3s}, disambiguating

the noun phrase the fish.

The ability to maintain partial information allows you to represent

constraints between constituents easily. For example, to handle infinitive

constructs as in / hope to eat a fish in a traditional ATN system, a new
mechanism is introduced to preset registers. This is used to set the SUBJ
of the embedded clause to the value of the SUBJ of the outer clause, so

the final representation corresponds closely to the sentence / hope that I

204 Natural Language Understanding XIX

SUBJ

COMP

ROOT R00T

(j3s}J) 0*O

Figure B-5. An analysis of The fish is sick.

1. S «- NP VERB S-INF

2. S <- NPi VERB NP2 S-INF

3. S-INF <- AUX VERB NP

SUBJ = SUBJSINF = NP
MAIN-V = VERB
SUBCATverb = {TO-INF}

COMP = S-INF

SUBJ = NP!
MAIN-V = VERB
SUBCATverb = {OBJ + TO-INF}
OBJ = SUBJs-iNT = NP2

COMP = S-INF

AUXS = (AUX ROOT TO) = AUX
MAIN-V = VERB
OBJ = NP

Figure B-6. A simple unification-based grammar for infinitive

complements.

eat a fish. No such extension is necessary in the unification grammar
because the notation already allows the necessary manipulations. For

example, a unification-based context-free grammar dealing with simple

infinitive complements is shown in Figure B-6. Consider the first unifi-

cation equation on rule 1, that is, SUBJ = SUBJS-inf = NP. This equa-

tion unifies the SUBJ register in the new S being built, the SUBJ register

B Unification Grammars 205

in the infinitive complement (S-INF), and the NP constituent. In partic-

ular, if both SUBJ registers are initially unset, both will be assigned the

NP constituent as desired. As another example, the equation SUB-

CATverb = {TO-INF} simply checks that the verb in the sentence allows

this form of complement.

Because the SUBJ register of S-INF is always set from outside rule

3, there is no mention of the SUBJ register in rule 3. The structure built

when this rule is successfully applied, however, will always have its

SUBJ register set as appropriate.

An important property of graph unification, which is shared with the

traditional unification, is that you get the same result from unifying a

set of structures regardless of the order in which they are combined. A
direct consequence of this property is that any parsing strategy could be

used, and given that the same rules were eventually used in the analysis,

the resulting structures would be the same. Not only does this allow

different parsing strategies to be explored easily, it also opens the door

for the parsing strategy to be modified by other parts of the system, such

as semantic interpretation.

C. SEMANTIC INTERPRETATION

Deriving the syntactic structure of a sentence is just one step toward

the goal of building a model of the language understanding process. It

is important to also identify the sentence's meaning. Although it is

difficult to define precisely, sentence meaning allows you to conclude that

the following two sentences are saying much the same thing:

I gave a contribution to the Boy Scouts.

The Boy Scouts received a donation from me.

Sentence meaning, coupled with general world knowledge, is also used

in question answering. Thus, if it is asserted that John drove to the store,

the answer to the question Did John get into a car? is yes. To answer
such a question, you need to know that the action described by the verb

driving is an activity that must be done in a car (see Article IV.F5-6,

Vol. I).

These two examples of semantics involve quite different mechanisms,

however. The two sentences about contributing to the Boy Scouts can be

identified as saying the same thing based on the knowledge of the struc-

ture of the sentences and the words used. Answering the question about

driving, however, involves general world knowledge about what is usu-

ally involved in the driving action. The answer is derived not directly

from the structure of the sentence and the words used, but by applying

other knowledge about the world as well. The approach taken here makes
a clear distinction between structural meaning and interpretation in

context, and it divides the problems of semantic interpretation into two

stages. In the first stage the appropriate meaning of each word is deter-

mined, and these meanings are combined to form a logical form (LF).

The logical form is then interpreted with respect to contextual knowl-

edge, resulting in a set of conclusions that can be made from the sentence.

An intermediate semantic representation is desirable because it pro-

vides a natural division between two separate, but not totally indepen-

dent, problems. The first problem concerns the ambiguity inherent in

word senses and in the structure of sentences. Just as many words fall

into multiple syntactic categories, each word within each syntactic class

may have several different meanings, or "senses." The verb go, for

instance, has over fifty distinct meanings. Even though most words in a

sentence have multiple senses, a combination of words in a phrase often

has only a single sense since the words mutually constrain each others'

206

C Semantic Interpretation 207

possible interpretations. Encoding and enforcing these constraints, which

is a complex process worth study in its own right, is essentially the

process of deriving the logical form.

The second problem involves using knowledge of the world and the

present context to identify the particular consequences of a certain sen-

tence. For instance, if you hear the sentence The president has resigned,

you must use knowledge of the situation to identify who the president is

(and what organization he or she heads) and to conclude that that person

no longer holds that office. Depending on the circumstances, you might

also infer other consequences, such as the need for a replacement presi-

dent. In fact, the consequences of a given sentence could have far-reach-

ing effects. Most attempts to formalize this process involve encoding final

sentence meaning in some representation (often based on logic) and

modeling the derivation of consequences as a specialized form of logical

deduction.

The logical form is the intermediate representation between the

syntactic form of the sentence and a logical representation of the sen-

tence. It resembles a logic in many ways but has a syntax closer to that

of syntactic structure. Any decisions that require contextual knowledge

will not be made in deriving the logical form. Rather the information

from the sentence structure is recorded in the logical form for use later

by the contextual analyzer.

Before you can specify the meanings of words and sentences, you
need some methods of expressing knowledge about the structure of the

world. The most important aspect of this knowledge is the way that

objects in the world are classified into groups by their properties. One of

the most fundamental properties of any object is its type, which identifies

what kind of object it is. For example, some objects can be classified as

dogs and others as cats. More generally, these same objects can be clas-

sified as examples of animals or living creatures.

You can construct type hierarchies describing the physical world, as

shown in the simple example in Figure C-l. Note a few things about

this hierarchy. Some decompositions are exhaustive; for example, every

physical object (PHYSOBJ) must be either living or nonliving. Similarly,

every LIVING thing is either ANIMATE or VEGETATIVE. Others are not

exhaustive; there are more classes of ANIMATE objects than HUMAN,
CAT, and DOG. The presence of such hierarchies will allow the specifi-

cation of general constraints between words. For instance, the adjective

healthy constrains the word it modifies to be some living object (e.g., dogs

or trees). This constraint can be expressed as saying that healthy can

only modify words with senses under the general sense of LIVING on the

hierarchy. This one general statement allows healthy to modify any
animal or plant, but no rocks, cars, or other kinds of objects not classified

under LIVING.

208 Natural Language Understanding XIX

PHYSOBJ

LIVING NON-LIVING

ANIMATE VEGETATIVE ROCK CAR BUILDING

HUMAN DOG CAT TREE PLANT HOUSE APARTMENT-COMPLEX

Figure C-l. A type hierarchy of physical objects.

These modification constraints are often called selectional restric-

tions, and one of the most fruitful examples of such restrictions involves

how noun phrases are semantically related to the main verb in a sen-

tence. The most influential work for computational approaches has been

case grammar (Fillmore, 1968; Article IV.C4, Vol. I) and its successors

and modifications. For present purposes, case grammar outlines the

range of semantic roles, called cases, that a noun phrase may play with

a verb. One of the most interesting claims of case grammar is that the

number of possible semantic relationships is quite small, although there

has been little agreement on what this small set consists of. The approach

discussed here assumes that the set of possible semantic cases forms a

well-defined hierarchy (distinct from the word sense hierarchy) and that

the number of immediate subcases for any case is limited to a small

quantity. Given this framework, different researchers may have proposed

different sets of cases because they based their semantic analysis at

differing levels in the case role hierarchy.

Since the ultimate goal of this analysis is to extract the meaning of

a sentence, the analysis of sentences with different meanings should lead

to different results. Similarly, sentences with different syntactic struc-

tures but the same meaning should get mapped to similar structures.

For example, consider the group of sentences:

John broke the window with a hammer.
The hammer broke the window.

The window broke.

John, the hammer, and the window play the same semantic roles in each

of these sentences. John is the actor, the window is the object, and the

hammer is an instrument used in the act "breaking of the window." The
logical form, a representation based on case roles, captures these intui-

tions directly.

C Semantic Interpretation 209

The Logical Form

The logical form (LF) introduced here can be viewed as a linear form

of a semantic network or frame-like representation used in many rep-

resentation systems. (See Chapter III in Vol. I.) The basic structure

identifies an instance of a particular type in the type hierarchy, followed

by a list of additional facts about the instance. For example, the sentence

Jack kissed Jill would be represented by a form that can be paraphrased

as follows: An instance si of a kiss event in the past has as its AGENT
case a person named Jack and as its THEME case a person named Jill.

In LF notation this is:

(PAST S1 KISS-ACTION [AGENT (NAME j1 PERSON
"Jack")

]

[THEME (NAME j2 PERSON
"Jill")]

)

Each LF statement is made up of the following components:

• Operator indicating the type of structure (in this case, PAST means that

this represents some event occurring in the past).

• Name for the object being described (in this case, the instance of KISS-

ACTION called si).

• Type of the object (in this case, KISS-ACTION).

• Modifiers of the object, which may be a list of LF structures (in this case,

the modifiers defining two cases, AGENT and THEME).

Other simple operators for sentence structures will include PRES
(simple present tense), FUT (simple future), and INF (infinitive clauses).

The Logical Form ofNPs

Noun phrases can be represented in the same language. The operator

for simple noun phrases is used to indicate the determiner information

for later use in processing. Some of the possible operators for NPs are:

Operator Description Example

DEF/SING Definite singular reference the boy

DEF/PL Definite plural reference the boys

INDEF/SING Indefinite singular reference a boy

INDEF/PL Indefinite plural reference boys

The name and type for simple NPs are as expected, and the modifiers

consist of any qualifications produced by adjectives or other modifying

phrases. Thus the LF for the NP the large boy would be:

(DEF/SING b1 BOY (LARGE b1)

)

210 Natural Language Understanding XIX

The quantified NPs map to similar structures using different opera-

tors as appropriate. Thus the sentence Every boy loves a dog would be

represented as

(PAST a1 LOVE-EVENT
[AGENT (EVERY b2 BOY)

]

[THEME (INDEF/SING p1 DOG)])

Note that the logical form does not force any quantifier scoping. The
two quantified noun phrases every boy and a dog are not scoped, so the

logical form retains the ambiguity between the situation where there is

one dog that every boy loves and the situation where every boy loves

some dog (though they do not all love the same dog). The ambiguity is

retained in the logical form because quantifier scoping usually can only

be determined using contextual information.

The logical form for NPs that describe events is virtually identical

to the representation of event sentences, except that the marker indicates

a determiner rather than a tense marker. For example, the NP The
arrival of George at the station would be represented as:

(DEF/SING a1 ARRIVE-EVENT
(AGENT a1 (NAME g1 PERSON "George"))
(TO-LOC a1 (DEF s4 STATION)))

whereas the sentence George arrived at the station would be represented

by the logical form:

(PAST a2 ARRIVE-EVENT
[AGENT (NAME g1 PERSON "George")]
[TO-LOC (DEF S6 STATION)])

With the logical form and the syntactic structure of sentences well

defined, semantic interpretation rules can now be formulated to map
from one to the other. These are specified as a set of mapping rules that

relate fragments of syntactic structure to fragments of logical form. The
final LF is generated by unifying the partial logical forms. Allen (1987)

provides a detailed description of this; here only a brief introduction and

a few examples are given.

Patterns are specified in the same notation as the syntactic structure,

except that there may be additional semantic tests on the LF of subcon-

stituents. Thus a pattern that matches any sentence with a verb that

can denote an action and an animate subject would be:

(S SUBJ + animate
MAIN-V + action-verb)

C Semantic Interpretation 211

The partial logical form is specified by allowing special symbols:

• ? for no information

• * for a new instance to be generated by the interpreter to stand for the

object denoted by the constituent

and special functions:

• T (slotname) that returns the semantic type of the LF of a constituent in

the indicated slot

• V (slotname) that returns the LF of the constituent in the slot

Thus a mapping rule that sets the semantic type and the AGENT case

for an action verb would be:

(RULE 1)

(S SUBJ + animate
MAIN-V + action-verb) -> (? * T(MAIN-V)

[AGENT V(SUBJ)

]

The right-hand side is a specification of a partial description consisting

of

• No information on the tense (the ?)

• A new instance (the *)

• The type of the verb denoting an action (i.e., the sense of the verb in

MAIN-V)

• The restriction that the AGENT case (of the new instance) is the semantic

interpretation of the SUBJ slot

Applying this rule to the syntactic structure:

(S MAIN-V ran
SUBJ (NP DET the

HEAD man)
TENSE past)

produces the partial description (assuming other rules interpret the

embedded NP):

(? r1 RUN1 [AGENT (DEF/SING ml MAN)])

The tense information could be analyzed by another rule such as

(S TENSE past) -» (PAST ? ?).

Unifying the results of these two rules gives the final LF, namely,

(PAST r1 RUN1 [AGENT (DEF/SING ml MAN)]).

212 Natural Language Understanding XIX

A set of semantic interpretation rules in this notation is given in

Allen (1987). An important point here is that the rules have been spec-

ified independent of an interpretation strategy to apply them. As dem-
onstrated in the next section, a wide range of interpretation strategies

are now possible.

D. SEMANTIC INTERPRETATION STRATEGIES

Semantic interpretation strategies differ in the way they interact

with syntactic processing. One method is a strict separation of the pro-

cessing. The syntactic module produces complete interpretations that the

semantic module then maps to a logical form. There are many ways to

make the processing more integrated. Some methods such as the seman-

tic grammar approach (Brown and Burton, 1978; Hendrix et al., 1978;

Article IV.F7, Vol. I; Article IX.C3, Vol. II) encode semantic information

directly into the grammar, whereas others interleave semantic interpre-

tation with syntactic processing. Constituent-based interleaving involves

the semantic interpretation of each major constituent (e.g., S, NP, and
PP) as it is completed, whereas rule-by-rule systems perform the semantic

interpretation incrementally as each syntactic rule is used. Finally, there

are semantically driven parsers that use minimal syntactic information

during the parsing (Birnbaum and Selfridge, 1981). Although these

systems do surprisingly well, a rich syntactic model needs to be reintro-

duced to capture sentences with more complex structure (see Lytinen,

1986).

There are advantages to each of these approaches. Semantic gram-
mars tend to be easily built for small domains and can be very efficient.

They are not easily transportable to new domains, however. The inter-

leaved strategies are generally more domain-independent because of the

syntactic grammar. Most of the work in moving to a new domain involves

changes or extensions to the semantic interpreter. The rule-by-rule anal-

ysis offers the strongest form of interaction and can be used to eliminate

syntactically valid but semantically anomalous interpretations as early

as possible. These methods, however, do incur a hidden cost over the

completely separate syntactic and semantic processing. In particular,

syntactic analysis may cost considerably less than semantic interpreta-

tion. Because of this, much time could be wasted building semantic

interpretations of fragments that turn out later not to be syntactically

possible. If the syntactic processing were to complete before semantic

interpretation was tried, the cost of interpreting such structurally impos-

sible fragments could be saved.

In the remainder of this section, a few of these strategies will be

explored in enough detail to give a flavor of the techniques. A more
detailed survey can be found in Allen (1987).

213

214 Natural Language Understanding XIX

Semantic Grammars

The first technique for combining syntactic and semantic processing

involves collapsing them into a single uniform framework—either a

context-free grammar or an ATN. This result, called a semantic grammar,

looks like a standard syntactic grammar, except that it uses semantic

categories for terminal symbols. For example, rather than having a rule

such as

VP <- SIMPLE-VP PPS

a semantic grammar would have a separate rule for each semantic verb

class. Thus, in a simple airline query domain, you might replace this

rule with the following rules:

(sem.1) RES-VP «- RESERVING RES-MOD
(sem.2) RES-VP «- RESERVING
(sem.3) DEP-VP <- DEPARTING DEP-MODS

Rule (sem.l), which might be realized by the phrase book a flight for me,

involves verbs of reserving, such as book, plus their allowable comple-

ments. Rule (sem.3), on the other hand, is for verbs of departure and
might be realized by the phrase leaves for Chicago.

Similarly the rules for SIMPLE-VP and PPS are replaced by their

semantic grammar equivalents. For the RESERVING verbs, you need the

rules:

(sem.4) RESERVING +- RESERVE-VERB FLIGHT
(sem.5) RES-MOD <- for PERSON

Notice that only those PP modifiers that are semantically interpretable

are now allowed by this grammar fragment. In particular, for any
RESERVE-VERB, a modifying PP such as for me is acceptable, as in book

it for me, but the PP to Boston is not acceptable (since no RES-MOD rule

allows a to). Neither is the PP for Boston an acceptable modifier as Boston

is not in the class PERSON, and thus the PP cannot be RES-MOD.
For the DEPARTING verbs, you need the rules:

(sem.6) DEPARTING +- DEPART-VERB
(sent. 7) DEPARTING ^- DEPART-VERB SOURCE-LOCATION
(sem.8) DEP-MODS <- DEP-MOD DEP-MODS
(sem.9) DEP-MODS *- DEP-MOD
(sem.10) DEP-MOD +- to DEST-LOCATION
(sem.1 1) DEP-MOD *- from SOURCE-LOCATION

Again, only the PPs that are semantically acceptable with verbs of

departing are now accepted by this grammar.
So far, a few syntactic rules have been replaced with eleven semantic

D Semantic Interpretation Strategies 215

grammar rules to cover two verb categories. Adding more verb categories

in this domain could continue to expand this semantic grammar at

approximately this same rate of about six new rules per verb category.

Thus semantic grammars tend to be much larger than their correspond-

ing syntactic grammars. In compensation, the number of words in each

terminal category is considerably smaller, so only a small fraction of the

grammar is applicable with any given sentence. The main disadvantage

of semantic grammars is thus not efficiency, but the difficulty of con-

structing the large grammar itself. This problem can be avoided by

specifying the syntactic and semantic rules separately and then compil-

ing them together to form a semantic grammar (e.g., Tomita and Car-

bonell, 1987). For example the syntactic rule:

S <- NP VERB

with an annotation assigning the registers SUBJ and MAIN-V appropri-

ately might be combined with the semantic interpretation rule:

(S SUBJ + animate
MAIN-V + action-verb) -* (? T(MAIN-V)

[AGENT V(SUBJ) 3

)

to produce the semantic grammar rule:

S «- ANIMATE-NP ACTION-VERB

Semantic Filtering

Perhaps the simplest way to combine syntactic and semantic pro-

cessing is to invoke the semantic interpreter each time the parser builds

a major syntactic constituent. If the constituent cannot be interpreted,

the parser rejects it and continues the parse as though it were never

constructed. Thus the semantic interpreter acts as a filter on constituents

proposed by the parser.

Consider an abstract example that demonstrates the point. A sen-

tence consisting of the structure NPi Vi NP2 PPi PP2 is structurally

ambiguous in five ways, depending on whether the PPi modifies Vi or

NP2 , and whether PP2 modifies Vi, NP2 , or the noun phrase in PPi. The
different structural interpretations are shown schematically in Figure

D-l, where parentheses indicate subconstituent grouping.

Without semantic filtering, a syntactic parser must generate all five

interpretations and then pass them on to the semantic interpretation

module. If we assume that it is semantically anomalous for PPi to modify

NPi, the semantic interpreters would reject interpretations (3), (4), and
(5). If it is then anomalous that PP2 could modify Vi, interpretation (1)

216 Natural Language Understanding XIX

(1) NP, Vi NP2 PPi PP2

(2) NPi Vi NP2 (PPi PP2)

(3) NPi Vi (NP2 PPi PP2)

(4) NPi Vi (NP2 (PPi PP2))

(5) NPi Vi (NP2 PPO PP2

Figure D-l. Five structural interpretations.

is eliminated and interpretation (2) remains as the analysis of the sen-

tence.

Consider the same example if the semantic interpreter were called

each time a noun phrase constituent was suggested. In this case, the

first time the structure (NPi PPi) (i.e., PPi modifies NPi) is suggested,

the semantic interpreter rejects it as impossible. The parser then acts as

though the structure (NPi PPi) never existed and consequently never

goes further to build interpretations (3), (4), and (5). The decision is made
once, and the effect is a large pruning of the search space generated by

the grammar. In fact, these interpretations can be eliminated even before

the phrase PP2 is processed at all. The end result is the same, but the

work the parser does constructing interpretations that will later be elim-

inated is dramatically reduced.

There are problems with this method, however. In particular, an NP
may appear anomalous in isolation, but it can participate in a legal

sentence. For instance, the NP the moon in our car makes no sense in

isolation, yet it could be used in a sentence such as It's impossible for

you to have seen the moon in our car, because it wouldn't fit. On the other

hand, if you relax the semantic filtering so that this NP is acceptable,

the semantic filter will be of no use in disambiguating a sentence such

as We saw the moon in our car, which has a good interpretation corre-

sponding to We saw the moon while we were in our car. Since the bad
interpretation involving the NP the moon in our car would be acceptable

in order to handle the first sentence, this second sentence would remain
ambiguous. The problem, of course, is that the semantic filter is an all-

or-nothing filter. It can only accept or reject, and as you find various

strange sentences, the boundary of acceptance must keep moving closer

and closer to accepting everything. What is needed is a way of rating

semantic interpretations so that some are preferred over others. The job

of the parser then would be to find the best interpretation. Some tech-

niques for designing such a system are discussed in the next section.

D Semantic Interpretation Strategies 217

Semantic Interpretation Based on Preferences

The strategy of having the semantic interpreter simply accept or

reject a proposed syntactic constituent can be shown to be too rigid for

many situations. In particular, it either eliminates many sentences that

should be interpretable or weakens the mechanism of case-value restric-

tions on verbs to the point that they do not reduce ambiguity at all. This

section considers a generalization of the interleaved parser in which the

semantic interpreter assigns a well-formedness rating to each constituent

and thereby avoids this dilemma.

For example, assume that the verb give is defined by using the case-

value restrictions that the THEME case is nonhuman and the TO-POSS
case is a human or an organization. This information allows sentences

such as:

We gave the man the money
We gave the money to the mman.

With the former, the NP immediately following the verb is of type

HUMAN and is classified as the TO-POSS. With the latter, the NP imme-
diately following the verb is nonhuman and so is classified as the THEME.

Although these restrictions seem reasonable, they can easily be vio-

lated, as in the sentence We gave the man to the police. To handle this

sentence in the present framework, the case restriction on the THEME
case would have to be revised to simply be a PHYSOBJ. But even this is

too restrictive because there are contexts where nonphysical objects

might fill the THEME case, as in The water gave the plant a new lease on

life. Similar examples could be formed to nullify virtually all the case-

value restrictions. If there were no case-value restrictions, however, the

number of spurious readings of sentences would grow dramatically.

The solution to this dilemma is to allow the semantic interpreter to

return some rating of semantic well-formedness rather than a simple

accept or reject. The parser can then be modified to find the best rated

interpretations. Thus in the usual situations the case-value restrictions

eliminate many spurious readings (that are not as semantically well

rated), but in the exceptional cases an interpretation can still be found.

The idea is that if a case-value restriction is violated, the interpreter

still returns a semantic interpretation but reflects the violation in a

measure of well-formedness. One simple measure might be just to count

the number of violations that occurred in an interpretation. A perfectly

acceptable sentence would have a reading of (no violations), whereas
a sentence with a single violation would have a rating of 1, and so

on. Wilks (1975) was the first to suggest this type of strategy and built

one entire system with preference criteria as the organizing principle

(see Article IV.F2, Vol. I). Techniques closer to those just described can

218 Natural Language Understanding XIX

be found in work dealing with "ill-formed input" such as Weischedel and
Sondheimer (1983) and Fass and Wilks (1983).

Rule-by-Rule Semantic Interpretation

One of the unsatisfying characteristics of the interleaved parser

involves the size of the constituents that are built before the semantic

filter is called. In particular, whole NP and S structures were constructed

without any semantic guidance and were verified only after the fact.

This section pushes the interleaved approach to its logical conclusion

and examines methods of calling the semantic interpreter each time a

syntactic rule is applied. This technique is called the rule-by-rule

approach because there is a pairing of syntactic and semantic rules.

To employ this approach, you have to have a valid logical form

corresponding to each syntactic category. For example, many grammars
have rules such as:

1. S^NPVP
2. VP^-VERBNP

If you perform semantic interpretation whenever a rule is used, you
must have for rule 2 an interpretation of the VP (built from the inter-

pretation of the VERB and the NP), which can later be combined with an
NP interpretation to produce an S interpretation. Presumably the VP
analysis would look like the S analysis, except that the subject NP would
be missing. A formal way to allow such forms is to use a version of the

lambda calculus. The lambda (X-) calculus provides a general mechanism
for specifying functional expressions. For instance, if the final logical

form for the sentence The man kissed the dog is:

(PAST k1 KISS [AGENT (DEF/SING ml MAN)]
[THEME (DEF/SING d1 DOG)])

then the semantic interpretation of the VP kissed the dog would be the

function:

X (x) (PAST k1 KISS [AGENT x]

[THEME (DEF/SING d1 DOG)])

In general the form of these expressions is:

X (x) Px

which denotes a function of one variable (x), which takes an argument
and produces an expression that is the result of substituting the argu-

ment for x in the expression Px. An operator Apply is defined to compute

the value of the function. Thus:

D Semantic Interpretation Strategies 219

Apply (A (x) (PAST k1 KISS [AGENT x]),
(DEF/SING ml MALE-HUMAN))

would produce:

(PAST k1 KISS [AGENT (DEF/SING ml MALE-HUMAN)]).

How would the VP interpretation be constructed from the VERB and

NP interpretations when rule 2 is used? One way is for the lexicon entry

for each transitive verb to specify a function that maps an NP interpre-

tation into a VP interpretation. In our example, the meaning for kissed

would be:

X (O) (A (X) (PAST k1 KISS [AGENT x] [THEME o]))

Consider a parser operating on this example. The grammar is as

shown in Figure D-2. Each rule has a semantic interpretation formula

attached that indicates how the analysis of the subconstituents are com-

bined to form a semantic analysis of the whole. Any framework that

always produces the interpretation of the constituent as a function of the

interpretation of its subconstituents is called a compositional system.

The lexicon, besides defining the syntactic properties of each word, spec-

ifies a semantic value as well. Figure D-3 shows a simple lexicon.

Consider a parse of the sentence the man kissed the dog. As each

grammar rule in the parse is completed, its semantic value is computed
using the formula. Most left-to-right parsing strategies would produce

Syntactic Rule Interpretation Function

(1) S - NP VP Apply (VP, NP)

(2) VP <r- VERB NP Apply (VERB, NP)

(3) NP - ART NOUN Apply (A (x) (DEF/SING * x), NOUN)

Figure D-2. A simple grammar.

Word Semantic Interpretation

kissed A (o) A (x) (PAST * KISS
[AGENT x]

[THEME o])

man MALE-HUMAN

dog DOG

Figure D-3. A simple lexicon.

220 Natural Language Understanding XIX

constituents in the following order: Using rule (3), the parser would

construct the constituent:

(NP ART the
NOUN man)

The interpretation function for rule (3), namely, Apply (\ (x) (DEF/

SING) * x), NOUN), with the semantic value of the NOUN slot being

MALE-HUMAN would produce the semantic value:

(DEF/SING ml MALE-HUMAN).

Next is the constituent:

(NP ART the
NOUN dog)

This is interpreted in the same way to produce the value (DEF/SING dl

DOG)). Next rule (2) applies to build a verb phrase:

(VP VERB kissed
NP (DEF/SING d1 DOG))

.

Applying the interpretation of kissed to the NP produces the semantic

value

X (x) (PAST k1 KISS [AGENT x]
[THEME (DEF/SING d1 DOG)])

The final constituent produced is:

(S NP (DEF/SING ml MALE-HUMAN)
VP X (x) PAST k1 KISS [AGENT x]

[THEME (DEF/SING d1

DOG)]))

.

Applying the interpretation of the VP to the NP produces the final logical

form:

(PAST k1 KISS [AGENT (DEF/SING ml MALE-HUMAN)]
[THEME (DEF/SING d1 DOG)]).

Work in this area usually draws from the work of Montague (see

Dowty, et al., 1981). Computational systems include Rosenschien and
Shieber (1982), Schubert and Pelletier (1982).

Many computational systems use a different technique and directly

represent partial structures and use pattern matching to produce a rule-

by-rule system. Hirst (1987), for example, uses a frame-based system

similar in many ways to the logical form represented here. His system

is compositional in the strongest sense, and besides interpreting S and
NP constituents, it interprets every smaller constituent down to the word
level. For example, prepositions map to slot names, and prepositional

P V SEM
SUBJ
VERB

=
(TENSEv
NP
V

?e SEMv

ART N SEM
DET
HEAD

=
(SEMart
ART
N

?o TYPE N)

D Semantic Interpretation Strategies 221

phrases are handled by a single rule: the interpretation of a PP is a slot-

value pair in which the slot is the interpretation of the preposition and

the value is the interpretation of the NP.

In systems based on unification grammars, the semantic interpre-

tation can be accomplished using variables to represent the partial log-

ical forms. For example, allowing a register SEM for the semantic

interpretation, some rules for simple intransitive sentences in the nota-

tion introduced in Section 1 might be as follows:

NP

If the SEM of the is DEF, the SEM of cat is FELINE, and the SEM of slept

is SLEEP and TENSE of slept is PAST, then the sentence the cat slept

would be parsed by this grammar as an S with its SEM set to

(PAST ?e SLEEP [THEME (DEF ?o CAT)])

by the unifications outlined earlier. Thus the semantic interpretation is

built using the same mechanism that builds the syntactic structure.

Systems using techniques like these include Pereira and Warren (1980),

McCord (1985), and Kaplan and Bresnan (1982).

Semantically Directed Parsing Techniques

Since at the syntactic level of analysis there may be considerable

ambiguity that can be resolved by semantic interpretation, researchers

have done a fair amount of work to design parsers that primarily perform

semantic interpretation directly on the input and use syntactic infor-

mation only when necessary. Typically these systems do not construct a

syntactic representation of the sentence, and thus only local syntactic

information about the sentence is available to the parser.

Although the actual representation details vary, these systems all

perform a case analysis of sentences directly from the input words. The
grammatical and semantic information is stored in the lexicon entries

for the words. In particular the lexicon contains essential information

such as the different senses possible for the word, including case-frame

information for verbs and adjectives, and a specification of a procedure

for disambiguating the word and integrating it into larger semantic

structures by combining it with other words. A good example of such a

system is by Birnbaum and Selfridge (1981).

Although parsers can be built quickly in such a framework to handle

222 Natural Language Understanding XIX

some specific sets of sentences, problems arise in viewing these systems

as a general model of parsing. In particular, since all the rules are

indexed by individual words, there is no opportunity to capture linguistic

generalizations conveniently. More importantly, these systems can use

only local syntactic information since the only state they maintain con-

sists of the current case-frame structure being specified and the current

input. Thus, to disambiguate a word, you can at best inspect one word
or so before it and a few words after. In practice, as these rules become
more complex, they apply to fewer and fewer situations, and more equally

complex rules need to be added to handle simple syntactic variants.

Recent work such as by Lytinen (1986) has aimed at remedying these

deficiencies by reinstating a syntactic component that can be used to aid

the interpretation in complex sentences. You can maintain syntactic

context by running a syntactic parser in tandem with this interpreter.

The actions of the parser, however, will be suggested by the semantic

analyzer. The syntactic parser can simply return whether the syntactic

operation identified by the semantic analyzer is a possible next move or

not. If it isn't, the semantic interpreter attempts to find a different

analysis. It is not clear, however, whether the semantic analyzer can

handle complex sentences involving movement in a clean way. When the

syntactic analyzer is controlling the processing, the syntactic component
can be used to eliminate these complexities before the semantic analyzer

is invoked. With the control scheme suggested here, the semantic ana-

lyzer itself would have to be able to handle the complexities, and only

then would it have the syntactic component verify the analysis.

Discussion

Although the representations and parsing techniques differ dramat-

ically among the preceding systems, all can be described within a rea-

sonably uniform framework of combining the same syntactic and
semantic interpretation rules in different ways. We saw systems that

produced full syntactic analyses first and then interpreted them seman-

tically, systems that interpreted each major constituent as it was built

during the syntactic analysis, and systems that performed semantic anal-

ysis directly in parallel to the syntactic analysis using the rule-by-rule

approach. If the semantic interpretation rules themselves are specified

using mechanisms such as unification and do not contain the equivalent

of variable assignment, we can be confident that the same rules should

work for any one of these strategies since the order in which the rules

are applied has no effect on the final result. This property will become
even more important as systems using true parallelism are developed

and as systems start to integrate more contextual processing.

E. MODELING CONTEXT

Examination of even simple dialog illustrates the necessity of extra-

linguistic knowledge such as plans and goals for understanding lan-

guage. For example, imagine the demands that would be placed on a

computer system capable of taking the role of the clerk in the following

dialog:

1. Passenger

2. Clerk

3. Passenger

4. Clerk

The eight fifty to Milan?

Eight fifty to Milan. Gate 7.

Could you tell me where that is?

Down there to the left. Second one on the left. No need

to hurry though. The train is running late.

To process fragmentary or incomplete utterances such as (1), the

system needs knowledge regarding the context of the utterance. For

example, if the train clerk knows that persons seeking information typ-

ically are boarding a train, meeting a train, or looking for a room in the

station, utterance (1) can be understood by recognizing that the speaker

wants to board a train and that to do this the speaker needs to know
what gate to go to. Plan analysis is also useful for understanding full

utterances as well. Since the system not only knows what was said but

also why, recognition of how an utterance connects with a speaker's

underlying goals provides a deeper level of understanding.

Knowledge of a speaker's domain plans and goals is also useful for

understanding indirect speech and providing more information than

requested. Consider indirect speech. Although utterance (3) is literally

a yes-no question, the clerk responded as if the passenger had asked the

clerk the location of gate 7. The clerk inferred that this was the intent

behind the passenger's utterance since the literal interpretation corre-

sponded to achieving what was likely an already satisfied passenger goal

(i.e., knowing if the clerk knew the location of gate 7). Furthermore, note

that the clerk's reply included information irrelevant to the location of

the gate, but important from the perspective of the passenger's plan.

The next section presents a simplified representation of actions and
plans (for example, Fikes and Nilsson, 1971; Sacerdoti, 1977) that sup-

ports a model of reasoning typical of general-purpose problem solvers.

(See Chapter XV, Vol. Ill and Article IV.F6, Vol. I.) The following sections

then show how this framework can provide a model of the topic of simple

stories and task-oriented dialog. Finally, the last section shows how to

223

224 Natural Language Understanding XIX

introduce speech acts into the framework and use them to model the

communication process.

Plans and Goals

To be concrete, consider a simple representation for actions, plans,

and goals. Assume that the world at any particular time is described by

a set of propositions in the first-order predicate calculus. (See Article

III.C2, Vol. I and Article XII.A-B, Vol. III.) In addition, there is a set of

action-types defined by conditions that fall into the following three

classes:

• Preconditions: A set of logical formulas that must be true before the action

can successfully be executed.

• Effects: A set of formulas that will be true after the action has been

successfully executed.

• Body: A set of actions that describe the decomposition of the action into

subactions. Each subaction can itself either be executed or decomposed

into subactions.

Intuitively, if the body of (an instantiation of) an action-type is

executed in a situation where the preconditions hold, the action is said

to have been executed and the effects will hold. A plan is represented as

a tree of nodes representing action instances, annotated with the relevant

preconditions and effects as shown in Figure E-l. The tree represents

both a hierarchy of actions (i.e., subactions are below their parent action)

as well as a temporal ordering indicated by reading from left to right

across one level of the tree.

In particular, the TAKE-TRIP action consists of three substeps: a BUY
action, a GOTO action, and a GET-ON action. The BUY action is further

decomposed into substeps, specifically, GOTO and GIVE, both of which

are considered basic (i.e., it is not decomposed further).

Consider a set of propositions, functions, and actions that could be

used in modeling a train station. We must have predicates such as:

HAS(actor, object)—The actor possesses the object.

ON-BOARD(actor, train)—The actor is on the train.

ATXactor, object)—The actor is located next to the object.

IN(actor, city)—The actor is located in the specified city.

and functions such as:

Price(ticket)—The price of a ticket

Loc(object)—The location of an object

Modeling Context 225

TAKE-TRIP(Actor, Train, Dest)

Preconditions: DESTINATION(Train,
Effect: IN(Actor, Dest)

Dest)

PURCHASE(Actor, Clerk, Ticket-for(Train)))

Preconditions:HAS(Actor, Price(Ticket-for (Train)))

Effects: HAS(Actor, Ticket-for(Train))

GET-ON(Actor,TRl)
Preconditions: AT(Actor, Train)

HAS(Actor, Ticket-for(Train))

Effects: ON-BOARD(Actor, Train

GOTCKActor, Clerk)

Effects: AT(Actor, Clerk)

GOTCKActor, Train)

Effects: AT(Actor, Train)

GIVE(Clerk, Actor, Ticket-for(Train))

Preconditions: HAS(Clerk, Ticket-for(Train))

Effects: HAS(Actor, Ticket-for(Train))

GIVE(A, Clerk, Price(Ticket-for(Train)))

Preconditions: HAS(Actor, Price(Ticket-foKTrain)))

Effects: HAS(Clerk, Price(Ticket-for(Train)))

Figure E-l. A plan to take a trip to Milan.

Ticket-for(train)—The ticket for a train (making the simplification that

there is only one ticket for each train)

The Use ofPlans to Model Topic Structure

If an agent constructs and executes plans, a crucial part of under-

standing another agent's actions should be to recognize the plans that

motivate the actions. Plan recognition then can be viewed roughly as

the inverse of the process of plan generation. Rather than start with a

goal and plan a sequence of actions to achieve the goal, the system

observes an executed action and uses its knowledge of other actions to

construct a motivating plan and goal. That plan can be used to model
the topic structure of simple stories involving activities as well as the

topic structure in dialog discussing activities. The former application

originates from the use of scripts and plans (Schank and Abelson, 1977;

226 Natural Language Understanding XIX

Wilensky, 1983) in story understanding. In particular, such knowledge

can be used to characterize our intuition as to why language can be

coherent or incoherent as well as to help analyze difficult problems such

as reference.

The reference problem concerns identifying the object to which a

particular noun phrase (or other phrase) refers. The simplest form of

reference is the use of proper names, in which all systems simply use a

predefined table lookup to associate the name with the object in knowl-

edge representation. Definite noun phrases (such as the ticket) are con-

siderably more complicated since their interpretation depends on the

context. The plan-based model provides an elegant solution to one class

of such noun phrases.

As a simple example, assume the context is such that an agent JACK1
is going to take a train trip somewhere. Consider the simple story frag-

ment:

1. Jack bought a ticket to Milan.

2. He rushed for the train.

The logical form of sentence 1 might be:

(PAST b1 BUY [AGENT (NAME p1 PERSON "Jack")]
[THEME (INDEF/SING t1 TICKET

(DESTINATION t1

(NAME d CITY "Milan"))]

)

Assuming that the name table maps "Jack" to JACK1, that the indef-

inite noun phrase introduces a new object ticl of type ticket, and that

the word sense BUY maps to the action PURCHASE in the plan represen-

tation, the final representation of the sentence might be:

PURCHASE(JACK1 , Clerkl , tid

)

DESTINATI0N(tic1 , MILAN)

Matching this into the TAKE-TRIP plan (Fig. E-l) would find the

obvious PURCHASE step, and bind the plan parameters Actor to JACK1
and Ticket-For(Train) to ticl, and derive DESTINATION(Train, MILAN).

Thus the system could conclude that Jack is taking a train to Milan and

expects further sentences to be relevant to this plan.

Now consider processing sentence 2. Assume its logical form is as

follows:

(PAST r1 RUSH [AGENT (PRO p1 PERSON "he"]
[TO-LOC (DEF/SING t1 TRAIN)]).

The pronoun he could easily be resolved to JACK1 by simple tech-

niques based on the pronoun gender and number information. The defi-

nite NP the train, however, cannot be analyzed out of context—the system

E Modeling Context 227

could not identify the referent unless only one train existed in the entire

world. This is where the plan representation helps significantly. Assum-
ing a dummy referent train2 for the moment, the final meaning of

sentence 2 in the plan representation might be the action:

GOTO(JACK1 , train2)

.

This can be interpreted as a continuation of the plan recognized

above. There is a strong convention in simple narratives that the tem-

poral ordering of the actions is the same as the order in which they are

described. Thus the system should check for GOTO actions in the plan

following the PURCHASE act. The second step of the TAKE-TRIP plan is

recognized and the referent of the train is found to be the Train parameter

in the plan (Fig. E-l). Thus, although a particular train is not identified,

the sentence is fully integrated into the context and much is known
about what train is being referred to (i.e., it is going to MILAN and

JACK1 will be on it). Subsequent sentences in the story could be inter-

preted and integrated with the previous sentences in the same way.

The plan-based model becomes even more useful as we consider

natural language dialog systems. Assume we want to model conversa-

tions between two actors who want to cooperate with each other. Then a

dialog such as:

A: I want to buy a ticket to Milan. Here's the money.

B: OK. (Hands A the ticket)

A: Where do I go?

B: Gate 7. Better hurry though—the train is about to leave.

can be explained in much the same way as the preceding stories. For

example, A's first utterance both identifies a goal to perform a PUR-
CHASE action and indicates the execution of the second subaction of

PURCHASE (recall Figure E-l). B can then use knowledge of the decom-

position of A's PURCHASE action to perform the next and final subaction.

Furthermore, just as in the previous example, B can use the library of

actions to hypothesize that A is performing a PURCHASE action as part

of the action TAKE-TRIP(A, trainl, MILAN). Knowledge of the decompo-
sition of TAKE-TRIP can then be used to capture the coherence of A's

question "Where do I go?" This is because in task-oriented dialog such

as the preceding one, the topic structure naturally follows the execution

of the actions in the plan (Grosz, 1977). Thus B assumes that A's question

is related to the next action in TAKE-TRIP, i.e., GOTO(A, trainl). Finally,

B can use knowledge of TAKE-TRIP to include in the reply not only the

information explicitly requested, but also useful information with respect

to A's overall goals. Some systems built using this type of model include

Allen, (1980); Carberry, (1983); and Sidner, (1985).

228 Natural Language Understanding XIX

Plans about Language

The preceding discussion showed how using plans to represent the

topic of conversation was essential to complete understanding. Similarly,

plans can be used to model the conversational goals of the participants

of a dialog with further added benefits. This requires the introduction of

explicit linguistic acts called speech acts. To see this, consider for a

moment a problem in generating language. Once speech acts are intro-

duced, they can then be reused for language understanding. Consider

taking the role of agent A as A tries to buy a ticket to MILAN. Recall

that the decomposition of the PURCHASE action involved three steps:

1 . GOTO(A, CLERK) ;

2. GIVE(A, CLERK, Price (Ticket-for (TR1))

)

where TR1 goes to, MILAN;
3. GIVE(CLERK, A, Ticket-for (TR1))

.

Two major problems arise when A attempts to execute this plan. The
first is that A may not know what the price of a ticket to Milan is and
so cannot execute step 2. The second is that since this is A's plan, there

is no reason to suppose that the clerk knows about the plan; the clerk

will thus probably not know to execute step 3. Both problems can only

be solved by using some means of communication. Intuitively the first

problem may be solved by asking the clerk how much the ticket is, and
the second by asking the clerk to give A the ticket. To formalize this,

some actions must be defined that correspond to linguistic actions such

as "inform" and "ask." Such actions are usually called speech acts, adopt-

ing the terminology used by philosophers (for example, Searle, 1969).

Consider defining an act of asking called REQUEST. REQUEST must
be defined so that it affects the goals and plans of another agent. To

represent this, a new predicate WANT(agent, action) is introduced, which

is true when an agent intends to perform an action. For the purposes of

this chapter, we can assume this means that the agent has a plan that

contains the action. To incorporate this type of knowledge into plans, a

new precondition is added to every action, namely, that the actor intends

to perform the action. This condition should be trivially true for one's

own actions in one's own plans because having the action in the plan is

equivalent to intending to perform the action. For other agents, however,

this precondition may have to be explicitly achieved. Given these addi-

tions, a simple formulation of the act REQUEST is:

REQUEST(a, b, action)
Preconditions: none
Effects: WANT(b, action)

E Modeling Context 229

In a richer framework, the effect of REQUEST might need to be

modified. In particular it might be that the hearer knows that the

speaker wants the hearer to want to perform the act. This second for-

mulation allows for the case where a request can be refused, i.e., it is up

to the hearer to "decide" whether to adopt the action since the effect only

changes the hearer's beliefs and not the hearer's goals. For a detailed

analysis of these issues see Cohen and Perrault (1979).

The other speech act needed for our examples is the inform act, which

consists of the speaker telling the hearer the value of one of the functions

(e.g., Price(ticket)). To model the effect of this act, a new predicate (or

modal operator) KNOW-REF(agent, function) is needed, which means that

the agent knows the value of the function. Various semantics have been

suggested for such an operator, but there is no space to discuss them
here (see Moore, 1981; McCarthy, 1980; Haas, 1986; Konolige, 1985).

Here, we will refer to KNOW-REF informally as a predicate. We again

need to add additional implicit preconditions on every act, namely, that

in order to execute any action with functional parameters Pi, P2 . . . , Pn ,

the actor must know the value of each of the parameters (e.g., KNOW-
REF(A, PI), and so on). Given these additions, the action of a sincere

informing can be denned as follows:

INFORM-REF(speaker, hearer, function)
Effects: KNOW-REF (hearer , function)
Preconditions: KNOW-REF(speaker , function)

As with the definition of REQUEST, more complicated definitions are

needed if we need to reason about situations where the hearer doesn't

automatically believe what was said. To handle these cases, the effect

would have to be that the hearer believes the speaker wants the hearer

to know what the value of the function is.

Consider agent A again trying to buy a ticket to MILAN. To execute

step 2, A needs to achieve the implicit precondition:

KN0W-REF(A, Price (Ticket-for (TR1
))

)

Looking for an action that can achieve this goal, we see that an INFORM-
REF act would do the trick, so A plans for the action:

INFORM-REF(actor, A, Price (Ticket-for (TR1))

)

Checking the preconditions of this action, A sees that whoever fills the

actor parameter should already know what the price of the ticket is. If

it is known in the train domain that the clerk knows such prices, i.e.,

KNOW-REF(CLERK, Price (Ticket-for (TR1))

)

230 Natural Language Understanding XIX

then by making actor = CLERK, the precondition is satisfied. Now A
only needs to satisfy the "want" precondition of the just-introduced

INFORM-REF, i.e.,

WANT(CLERK (INFORM-REF (CLERK , A, Price (Ticket-
for(TR1))

)

This can be accomplished by having A request CLERK to perform the

act. Thus A can accomplish step 2 by executing the new subplan:

2.1) REQUEST(A, CLERK, INFORM-REF (CLERK, A,

Price(Ticket-for(TR1)))

)

achieving
WANT(CLERK, INFORM-REF (CLERK , A,

Price(Ticket-for(TR1)))

)

2.2) INFORM-REF(CLERK, A, Price (Ticket-for (TR1))

)

achieving
KNOW-REF(A, Price (Ticket-for (TR1))

)

2.3) GIVE(A / CLERK, Price (Ticket-for (TR1))

)

Similarly, A can ensure that step 3 is executed by planning another

request action,

REQUEST(A, CLERK, GIVE(CLERK, A, Ticket-for (TR1))

)

An example dialog reflecting these speech acts is as follows:

A
Clerk

A

How much is a ticket to Milan? (request (2.1))

Thirteen Fifty (inform (2.2))

Could I have a ticket please (request for (3))

Note that the discussion to this point has said nothing about the

mapping of sentences to their speech act forms. In particular, there are

many cases when the system will not be able to compute speech act

descriptions directly from the input. Consider the widespread use of

indirect speech acts (Searle, 1975), utterances where the speaker, iftaken

literally, says one thing yet actually means another. For example, "Do

you know the time?" is literally a yes-no question, but it is usually used

as a request for the time (i.e., REQUEST to INFORM-REF the time). In

some settings, where the speaker knows the time and the hearer doesn't,

it can even be meant as an offer to tell the hearer the time! Thus, instead

of computing a speech act from the actual sentence, we assume that the

system will compute a surface speech act form encoding the literal mean-
ing of the sentence out of context. There is not the space to go into this

in detail. The interested reader should see (Perrault and Allen, 1980).

E Modeling Context 231

Speech Acts and Understanding

Recognizing the plan underlying an agent's speech acts will be useful

for generating an appropriate response in conversations. For an example

demonstrating this, consider the issue of generating helpful responses.

For instance, if the CLERK observed the speech act:

REQUEST(A, CLERK, GIVE(CLERK, A, Ticket-for (TR1))

)

with

DESTINATI0N(TR1 , MILAN)

,

then he could infer from the effect of the REQUEST (i.e., that A wants

the clerk to give A a ticket) that A's plan is:

TAKE-TRIP(A, TR1 , MILAN)

This would be inferred in the same way that we constructed a plan

earlier. To be helpful, the clerk inspects the plan to see if he can assist

A in other ways besides those that were explicitly asked. For instance,

since the clerk believes that A will next perform the act GOTO(A, TR1),

he believes A will need to know where TR1 is since:

KNOW-REF(A, Location (TR1)

)

is an implicit precondition of GOTO(A, TR1). Thus the clerk might plan

to perform the action:

GIVE(CLERK, A, Ticket-for (TR1)

)

as requested, but in addition might perform:

INFORM-REF(CLERK, A, Location (TR1)

)

to satisfy the precondition on the GOTO act. Of course, if the clerk had
believed that A already knew where TR1 left from, the precondition would

have already been satisfied and we would not have generated the addi-

tional action. Such a situation would occur in a small country rail station

where all trains left from the same single track. This model thus provides

some account of helpful behavior in dialogs, where the participants do

not simply respond to every request with the minimum effort required.

The preceding approach shows how both linguistic and nonlinguistic

actions can be incorporated into the same formalism to provide a rich

theory of the events that occur during a dialog. It also shows that an
appropriate response can be generated from sentence fragments where
the initial speech act is not known. In the first case, the clerk responded

as though A's utterance were a question about the price of a ticket to

232 Natural Language Understanding XIX

MILAN (i.e., a REQUEST to INFORM-REF), whereas in the second case,

when A also gave the clerk some money, the clerk responded as though
the utterance was a request to give A a ticket.

There is a built-in assumption, however, that the clerk and passenger

agree on what the actions are and what makes up a reasonable plan.

Pollack (1986) has investigated ways of generalizing this model to handle

conversations in which one agent's plan is faulty and/or unexecutable.

F. DISCOURSE STRUCTURE

This section examines a model of discourse structure that allows the

previously described techniques to be generalized and integrated with

other processing techniques based on the structural properties of dis-

course. The key idea is that discourses can be broken down into discourse

segments, each one a coherent piece of text, that can be analyzed using

techniques similar to those presented already.

Until the last ten years, computational models of language dealt

with multiple sentences as though the discourse had a linear structure.

The plan-based understanding in the last section was a good example of

this. Each new sentence was integrated into the plan at some time after

the point of the previous sentence. There was no opportunity for topic

change, interruption, or resumption. As another example, techniques for

finding the referents of pronouns have typically been based on recency.

A list was kept of all the objects mentioned so far, and the antecedent of

the pronoun was taken to be the most recently mentioned object that

satisfied the pronouns restrictions. For example, the pronoun he would
check for a male individual, whereas they would check for a set of indi-

viduals. This technique can be extended by considering the plan infer-

ence techniques as discussed in the previous section, but it still uses a

new form of linear ordering of candidates. In particular, the antecedent

would be searched for in the next part of the plan following the event

described in the last sentence.

In dialogs where the topic may shift and change, however, you can

easily see that these techniques are inadequate. For instance, consider

the following constructed dialog fragment (say, over the telephone)

between some expert E and an apprentice A while E helps A fix a lawn
mower:

1. E: Now attach the pull rope to the top of the engine.

2. By the way, did you buy gasoline today?

3. A: Yes. I got some when I bought the new lawn mower wheel.

4. I forgot to take the gas can with me, so I bought a new one.

5. E: Did it cost much?
6. A: No, and we could use another anyway to keep with the tractor.

7. E: OK, how far have you got?

8. Did you get it attached?

The referent of it in sentence 8 was last mentioned seven sentences

earlier. In addition, several of the objects mentioned since then would

233

234 Natural Language Understanding XIX

satisfy any of the selectional restrictions that would be derived for it

from its thematic role with attach (for example, the wheel is something

that can be attached to the lawn mower). Thus the history list mechanism
would fail to find the correct referent in this situation, and no simple

generalization of that mechanism that retained its linear ordering of

referents can provide a satisfactory solution. Intuitively you know what
is going on. Sentences 2 through 6 are a subdialog incidental to the other

interaction involving attaching the pull rope. In sentence 7, E makes it

clear that the original topic is being returned to. Thus in the interpre-

tation of sentence 8, the relevant previous context consists only of the

analysis of sentence 1. An account of this structure needs a notion of

discourse segments, stretches of discourse in which the sentences are

addressing the same topic, and requires a generalization of the history

list structure that takes the segments into account.

A generalization of the plan inference models derived in the last

section might be useful for identifying the segments. Using such tech-

niques, the system could recognize that sentence 2 is not the expected

continuation of the plan to attach the pull rope and thus represents a

digression. But this could be quite expensive, and it may not be possible

in some cases because there could be an obscure interpretation that

would allow a sentence such as 2 to be viewed as a continuation of the

action described in sentence 1 (for instance, the gasoline might be used

to clean the engine before attaching the rope).

Intuitively, however, you no doubt recognize that E explicitly told A
that the topic had changed in sentence 2 by using the phrase By the way.

Such phrases, called cue phrases by Grosz and Sidner (1986) and clue

words by Reichman (1985), play an important role in signaling topic

changes in discourse. There must be some other form of discourse struc-

ture beyond the plan or topic reasoner to allow a clean analysis of cue

phrases.

Segmentation

Although the need for segmentation is almost universally agreed

upon, there is little consensus on what the segments of a particular

discourse should be or how segmentation could be accomplished. One
reason for this is that there is no precise definition of a segment beyond

the intuition that certain sentences naturally group together. A good

model of segmentation is essential to simplify the problem of understand-

ing discourse. In particular, it should divide the problem into two major

subproblems: what techniques are needed to analyze the sentences

within a segment and how segments can be related to each other.

A segment of discourse can be defined as a sequence of sentences

that display local coherence. In particular, a segment should have:

F Discourse Structure 235

• A recency technique (for example, a history list) for reference analysis and
handling ellipsis.

• A simple time and location progression.

• A fixed set of relevant background assumptions.

Note that this definition allows segments that include sentences not

adjacent to one another in the text. For example, the dialog given earlier

has a segment consisting of sentences 1, 7, and 8 that satisfies the

definition. The simple history list generated from this sequence will

correctly predict the referent for it in sentence 8, and sentences 1 and 8

are describing the same activity.

Consider some examples that show that identifying the structural

properties of discourse can be very useful for determining reference and
for constructing causal analyses of a text. In stories where the simple

past is used to indicate a normal temporal progression for the events in

the story, a shift to the past perfect signals a new segment and indicates

that the new segment describes a situation prior to what was described

in the last segment (Webber, 1988). Now the story could continue dis-

cussing more detail at the time in the past (thus continuing the new
segment), or it could resume discussing the story where it left off before

the tense shift (thus resuming the first segment). By maintaining a now
point relative to each segment, the same plan reasoning mechanism can

be used for both of these cases. For example, consider the following simple

constructed story:

2.1 Jack and Sue went to a hardware store to
buy a new lawn mower

2.2 since their old one had been stolen.
2.3 Sue had seen the men who took it
2.4 and had chased them down the street,
2.5 but they'd driven away in a truck.
2.6 After looking in the store, they realized

that they couldn't afford a new one.

Here, clause 2.1 starts a segment that is then interrupted by a second

segment (in the past perfect) that describes what happened to the old

lawn mower (clauses 2.2 to 2.5). The initial segment is resumed in

sentence 2.6 by resuming the simple past. Identifying this structure is

crucial for determining the referent of the pronoun they in sentence 2.6,

since the most recent candidate using a linear history list would be the

men. Thus the segmentation is needed to provide the information nec-

essary to eliminate the most recent (but wrong) candidate.

Another major source of information about discourse segments is the

use of cue phrases to signal segment boundaries. For example, the pre-

ceding story might continue as follows:

236 Natural Language Understanding XIX

2.7 By the way, Jack lost his job last month
2.8 so he's been short on cash recently.
2.9 He has been looking for a new one,
2.10 but so far hasn't had any luck.
2.11 Anyway, they finally found one that met

their needs at a garage sale.

The phrase By the way explicitly signals that a new segment (which

will be some sort of digression) is starting. Thus a new segment is

signaled even though the tense remains in the simple past. The digres-

sion continues on until sentence 2.11, where another cue phrase is used.

The word Anyway signals that the current segment is completed and the

speaker will be returning to a previous segment. Without the cue phrase

in clause 2.7, some direct connection would be searched for between

clauses 2.7 and 2.6. If the information in the cue phrase were used,

however, such a search could be avoided because a digression is explicitly

signaled.

The structural organization of segments in a discourse can be

revealed by considering the three main types of functions that cue

phrases can signal:

• Those that signal that the clause ends a segment (OK, fine, that's all)

• Those that signal that the clause resumes a previous segment (anyway, in

any event, so)

• Those that signal that the clause begins a new segment, not completing

the previous segment (now, by the way, next)

Given these functions, a stack-based organization of segments, where
the top segment is always the one being extended by the next sentence,

is a reasonable starting model. Newly created segments are pushed onto

the stack, completed segments are popped off the stack, and a segment
is resumed by popping off the segments above it on the stack. Most
notations for segmentation reflect this stack-based organization. For

instance, the structure of a dialog can be represented as a tree, a boxing

of text, or a sequence of states of the stack, but all of these (see Figure

F-l) are essentially equivalent. Since computational models emphasize

the process of integrating the next sentence of a discourse at a particular

time, the stack-like representation is the most convenient.

The diverse area of discourse analysis has mainly consisted of work
that addresses only one particular aspect such as focus of attention, plan

tracking, and so on. Only recently have attempts been made to specify

an overall framework into which all these pieces fit. In particular, Grosz

and Sidner (1986) and Allen (1987) have the most concrete proposals,

but no comprehensive discourse system has yet been built.

Discourse Structure 237

The Structure Represented by Boxing:

SEG1
2.1 Jack and Sue went to buy a new lawnmower.

SEG2
2.2 since their old one had been stolen.

2.3 Sue had seen the men who took it and

2.4 had chased them down the street,

2.5 but they'd driven away in a truck.

2.6 After looking in the store, they realized they couldn't afford a new one.

SEG3
2.7 By the way, Jack lost his job last month
2.8 so he's been short on cash recently.

2.9 He has been looking for a new one,

2.10 but so far hasn't had any luck.

2.11 Anyway, they finally found one at a garage sale.

The Structure Represented as a Tree:

SEGK2.1, 2.6, 2.11)

SEG2(2.2,2.3,2.4,2.5) SEG3(2.7, 2.8, 2.9, 2.10)

The Structure Represented as a Sequence of Stacks:

SEG2(2.2) SEG2(2.2,2.3,2.4,2.5)

SEGK2.1) SEGK2.1) SEGK2.1)

After 2.1 After 2.2 After 2.5

SEG1(2.1,2.6)

After 2.6

SEG3(2.7) SEG3(2.7, 2.8, 2.9,2.10)

SEGK2.1.2.6) SEG1(2.1,2.6)

After 2.7 After 2. 10

SEGK2.1, 2.6, 2.11)

After 2.11

Figure F-l. Three equivalent representations of segment

structure.

G. CONCLUSION

We can expect great progress in the next decade toward practical con-

versational natural language systems. The area of syntactic processing

is at an advanced stage of development, and the methods of integrating

syntax and semantics are well understood. Considerable work remains

to be done in denning a sufficiently general logical form notation and in

dealing with extensive word sense ambiguity. In particular application

areas, however, many of these problematic areas can be avoided.

This chapter first examined the recent development in syntactic the-

ory based on the technique of graph unification. It was shown that

systems built with these techniques are both theoretically better mo-

tivated, being close to recent work in formal linguistics, and also are

more adaptable to experimentation with different parsing strategies.

Next the chapter explored a similar approach to define the semantic

structure of sentences and examine the range of possible system organ-

izations based on different ways of combining syntactic and semantic

processing.

Next, the application of plan reasoning systems as a technique for

modeling contextual knowledge was examined. Plans were seen to be

useful both for modeling the context of some forms of multisentence

discourse. More importantly, plans were also seen to be essential

for modeling the communicative process itself in two person dialogs.

Plan-based approaches were seen to be useful for recognizing indirec-

tion in language and for constructing a computer system that could

provide helpful, informative responses. Finally, we examined some recent

work demonstrating that discourse has some significant structural prop-

erties in its own right, and how these structural properties may be

exploited to aid in understanding multisentence language.

Although no comprehensive multisentence discourse system has been

built to date, the groundwork has been laid for such projects in the near

future. Crucial to the success of these projects will be the ability to define

each part of the language understanding process in a way that separates

the description of the structure from the processing to build the struc-

tures. This separation has been achieved for syntactic processing, is close

for some stages of semantic interpretation, and remains to be done for

contextual processing. It is this separation that will allow focused

238

G Conclusion 239

research on a particular topic area to be used in a highly integrated

system where the control structure will necessarily need to be highly

dynamic, using and exploiting information from syntax, semantics, and
context, wherever it is best denned at a given moment, to lead the system

to the appropriate interpretation.

Chapter XX

Knowledge-based Software Engineering

Michael Lowry—Kestrel Institute

Raul Duran—Stanford University

CHAPTER XX: KNOWLEDGE-BASED SOFTWARE
ENGINEERING

A. Overview I 243
B. Specification Acquisition I 253

1. Knowledge-based Specification Acquisition I 253

2. Specification Languages I 255
3. Specification Acquisition Methodologies I 258
4. Specification Validation I 261

5. Specification Maintenance I 263

6. Recovering Specifications from Code I 265

C. Program Synthesis I 268
1

.

Historical Perspective I 269
2. Transformational Approach I 272
3. Deductive Approach I 274

4. Basic Rules I 275
5. Large-grained Rules I 281

6. Reusing Derivations I 282
7. Basic Search Techniques I 284

8. Knowledge-intensive Search Techniques I 286
D. Systems for Specification Acquisition I 292

1. IDeA I 292
2. Explainable Expert Systems I 294

3. DRACO I 295
4. The Requirements Apprentice I 296
5. KATE I 298
6. Ozym I 299
7. Watson I 301

E. Program Synthesis Systems I 303
1. CIP I 303
2. Designer I 304

3. KIDS I 307
4. MEDUSA I 310
5. KBEmacs I 311

6. REFINE I 313

7. SETL I 315
8. STRATA I 316
9. ELF I 318

10. PHiNix I 320
F. Further Readings I 322

A. OVERVIEW

Software engineering is the discipline of denning, designing, develop-

ing, and maintaining software systems. The current generation of com-

puter-aided software engineering (CASE) tools helps to reduce the clerical

overhead involved in software engineering. Since software engineering

is a knowledge-intensive activity, even greater productivity gains will

be achieved with intelligent computer-based tools. Artificial Intelligence

(AI) is just beginning to achieve a commercial impact on software engi-

neering through intelligent computer-based tools. The application of AI

technology to software engineering is called knowledge-based software

engineering (KBSE). As AI research matures and knowledge-based tools

are developed, the future impact will likely be significant.

Motivation for KBSE

The potential economic impact of increasing software design quality

and productivity is enormous (Boehm, 1981). Software now accounts for

80% of the average total cost of a computer system. In the next decade,

software engineering is projected to be a one hundred billion dollar per

year industry in the United States alone. In the United States, software

engineering professionals now number over one million people. Despite

this large existing market, software engineering is still in its infancy

and is not satisfying current needs, much less projected future needs.

The potential of new computer hardware to run sophisticated software

applications is not being met by current software engineering technology.

Large software projects typically cost twice as much as budgeted, are

delivered late or never at all, and have so many errors that the cost of

eliminating the defects can exceed the cost of the design and coding

combined. Furthermore, modification is so difficult that maintenance
soaks up more than half of the total resources. This state of affairs is

often called the "software crisis."

The origins of the software crisis lie in the difference between soft-

ware technology and hardware technology. Hardware has always been
limited by material and manufacturing technologies. Advances in these

technologies have led to over a thousandfold price/performance gain in

hardware in the last three decades, primarily by vastly increasing the

number of components that can be placed on one chip. This is illustrated

by the improvement from the magnetic core memories of the 1960s to

243

244 Knowledge-based Software Engineering XX

the 1-megabit memory chip in 1987. In contrast to hardware, software

is a design problem and not a manufacturing problem. The tenfold gain

in software design productivity is due to the development of higher level

languages, structured methods for developing software and managing
project complexity, and better educated software engineers.

The emerging technology of computer-aided software engineering

(CASE) provides computer support for structured software development

and project management. CASE is expected to mature in the mid 1990s.

However, CASE technology does not address the basic characteristic of

software engineering: Software design is a knowledge-intensive activity

that begins with an informal, vague requirement of what needs to be

done and results in a highly detailed formal object, namely, a software

system. Currently this process is labor intensive and error prone. More-

over, the end result is devoid of the design knowledge that led to the

software system. It is precisely this design knowledge that is needed to

maintain and update a software system, and that can profitably be reused

in developing new software systems.

What is KBSE?

The technology of software engineering has evolved significantly

since the introduction of the digital computer. At first, programmers
encoded knowledge into computers as strings of Os and Is—machine-

level programming. This level of programming is far removed from the

level at which humans conceive of problems and their solutions. Then
the computer itself was turned to the task of raising the conceptual level

of programming. Compilers were one of the first automatic programming
tools developed, enabling knowledge to be encoded at the level of alge-

braic formulas and high-level control structures.

In the 1980s, three groups of software development tools collectively

known as CASE (computer-aided software engineering) were introduced

into the commercial market: code generators, analysis and design aids,

and project management tools. Code generators take over routine pro-

gramming tasks such as generating programs that produce reports, video

display screens, and transaction processing. Code generators usually

consist of program templates that are filled in interactively through a

graphical user interface. Design aids provide computer support for struc-

tured and hierarchical software design. A user designs a software system

as a hierarchy of modules interlinked by control and data flow. The
design tool provides a convenient graphic interface and a dictionary of

data structure definitions and checks overall consistency of the hierarchy

of modules. Project management tools help a manager produce a plan

for a software project, lay out the interdependencies between tasks, allo-

cate resources, and then track the project under development.

A Overview 245

Knowledge-based software engineering will probably succeed com-

puter-aided software engineering by supplanting data-based tools with

knowledge-based tools. A knowledge base is a database augmented with

rules for reasoning about the data and an inference engine that applies

the rules. Because of this added reasoning capability, knowledge-based

tools are more powerful than data-based tools; intuitively the difference

is between reasoning about the semantics of a software system versus

merely reasoning about the structure of a software system. Program
synthesis tools that greatly expand the capabilities of current code gen-

erators have been developed in research laboratories, and some are avail-

able commercially. Design tools are being developed that reason about

the semantics of a domain and help the user develop a correct design.

Current CASE design tools only help to ensure the internal consistency

of the hierarchy of modules. Finally, project management tools that

effectively coordinate large groups of people and understand the integra-

tion of their separate tasks will supplant current tools that only help to

track the statistics and costs of a project.

Goals ofKBSE

Knowledge-based software engineering introduces a fundamental

change in the software lifecycle—maintenance and evolution occur by
modifying the specifications and then rederiving the implementation,

rather than by directly modifying the implementation. This fundamental

change is reflected in the organization of this chapter into separate

sections on specification acquisition and program synthesis. KBSE uses

knowledge-based and other AI techniques to go beyond the capabilities

of current CASE tools. The overall objective is to provide intelligent

computer-based assistance for all parts of the software lifecycle. More
specifically, KBSE has five goals (Green et al., 1983):

1. To formalize the artifacts of software development and the software

engineering activities that produce these artifacts (Scherlis and Scott,

1983). For example, formal specification languages enable specifica-

tions to be stated precisely and unambiguously (Spivey, 1989).

2. To use knowledge representation technology to record, organize, and
retrieve the knowledge behind the design decisions that result in a

software system. This knowledge base would form a computer-based

"corporate memory" that coordinates the efforts of the software devel-

opment team and facilitates evolution and maintenance. An explicit

record of design decisions and their rationale would be a considerable

improvement over current debugging and maintenance methods,

which essentially require reconstructing design decisions from the

source code and written documentation.

246 Knowledge-based Software Engineering XX

3. To produce knowledge-based assistants to synthesize and validate

source code from formal specifications. This will enable maintenance

to be performed by altering the specification and then replaying the

steps for synthesizing source code, with appropriate modifications.

There is also a need for knowledge-based assistance to recover high-

level specifications from source code. Many institutions are locked

into existing software systems that are largely undocumented and so

brittle that maintenance is extremely difficult. Computer assistance

for program understanding complements the synthesis of source code

from specifications.

4. To produce knowledge-based assistants to develop and validate spec-

ifications. Knowledge-based assistance for specification development

will help a user resolve conflicting requirements, refine incomplete

and informal requirements into precise specifications, and use

domain knowledge in developing system designs. Validation methods

may use the specification itself as an executable prototype or perform

various types of analysis on specifications.

5. To produce knowledge-based assistants to manage large software

projects. The knowledge bases will form semantic models of an entire

project, including history, procedures, and policies. In the near term,

existing expert system technology can be used to integrate the infor-

mation of a large software project (Garg and Scacchi, 1989) and to

automate non-creative aspects of project managment (Kaiser et al.,

1988; Perry, 1987).

Software Development: Present and Future

Software development logically proceeds along an extended what-to-

how spectrum. This ordering is the basis of the "waterfall model" (Royce,

1970) of software development, shown in Figure A-l. The waterfall

metaphor suggests the development of software through separate suc-

cessive phases. The U.S. Department of Defense currently requires con-

tractors to adhere to this model of software development (designated

DOD Standard 2167A). DOD spent $11 billion on new software in 1986;

so several CASE tools support aspects of this model. The waterfall model
works well for developing familiar types of software; however, recent

studies have shown that for new types of software the waterfall model

is flawed and that prototyping is needed early in software development

(Boehm, 1986). Prototyping will be discussed at the end of this section;

AI technology provides good tools for rapid prototyping. The waterfall

model also does not effectively reuse the design knowledge gained from

previous software projects for familiar types of software (Biggerstaff and
Perlis, 1989). AI technology provides a foundation for recording and
reusing design knowledge.

As an example of the software lifecycle we will consider the U.S.

Overview 247

Requirements
Specification n

Behavioral

SpecificationQ
Design

Specification

I

Implementation I i

Validation J-*
Maintenance

Figure A-l. The waterfall model of software development.

space station scheduled to be built in the 1990s. Although project Mer-

cury required 1 million lines of machine instructions and the space

shuttle required 40 million lines, the space station is estimated to require

1,000 million lines of machine instructions. The reliability of the soft-

ware will be crucial to the lives of the space station's inhabitants. The
efficacy of tools for software design and for coordinating 4,000 personnel

in 30 major companies will be a major factor in bringing the space station

on line, on budget, and on time. It is unlikely that this software could

be successfully developed without advances in software engineering.

Requirements and Behavioral Specifications. The first step in

the software lifecycle is to consider what needs the software will fulfill.

The space station will require life support, orbital maintenance, com-

munication, and support for activities such as scientific experiments.

These needs are elaborated into an analysis of the requirements for the

software. The result is a requirements specification. The second step is

the behavioral specification, sometimes simply called specification, which

describes the system's external behavior as well as constraints on the

system's performance. This specification treats the system as a "black

box," describing required characteristics of its external behavior

("what"), but not the internal structure that will generate that behavior

("how"). At present, the product of requirements and behavioral analysis

is usually a written document. In the research stage are knowledge
representation tools that will aid the development of conceptual models

of a domain and the requirement and behavioral specifications.

248 Knowledge-based Software Engineering XX

Design Specification. After the behavioral analysis phase, there

are one or more design phases whose end result is a design specification

of the internal structure of the software system. This design specification

is usually a decomposition of the system into a set of interconnected

modules (module specifications)—a top-down, hierarchical decomposition

with modules higher in the hierarchy implemented in terms of modules
lower in the hierarchy. The decomposition is such that the submodules

are interconnected via well-defined interfaces. For example, the overall

communications module might be broken down into a submodule that

controls the direction of antennas, another submodule that controls and
monitors electrical properties of the antennas such as power consump-

tion, and various modules for initializing communication, observing com-

munication protocols, and encoding/decoding messages.

The result of the design phase is the identification of modules and a

graph structure showing which modules are to be used in implementing

other modules. Later design phases are often used to elaborate the struc-

ture of modules that were considered as black boxes in earlier design

phases, in a recursive fashion. This work is usually done by a systems

analyst, who again typically produces a written document. In a large

project like the software for the space station, the systems analyst is

likely to be a different person than the one developing the requirements

specification. Consequently misunderstandings are likely to arise, per-

haps due to the ambiguity of natural language. An important aspect of

project management is to ensure that misunderstandings are resolved

early in the software lifecycle, before they become costly to correct.

Implementation. The implementation phase turns the design into

code executable in the run-time environment. This entails denning the

internal mechanisms by which each module will meet its module speci-

fication, and then mapping module mechanisms and interface properties

into the implementation language. Program synthesis research in AI

attempts to automatically or semi-automatically generate implementa-

tion language code from module specifications. Algorithm synthesis

defines the high-level control and data flow for the internal module
mechanisms. The output of algorithm synthesis is typically a high-level

specification of the internal mechanism, independent of the details of

programming language. Transforming a high-level algorithm into target

language code has been the focus of much automatic programming
research.

Validation. Validation checks whether the software system satis-

fies the needs for which it was developed. Validation failure can result

from problems due to errors in the requirements, behavioral, or design

specification, miscommunications, or a poor understanding of the initial

needs. Techniques for incremental validation facilitate testing software

systems that have not been completely implemented, thereby detecting

A Overview 249

problems early in the lifecycle. One technique is rapid prototyping, where
an inexpensive prototype is developed that is sufficient to refine ideas

about the desired functionality. Rapid prototyping is particularly useful

when the initial needs are not well understood. AI languages, environ-

ments, and expert system shells are useful tools for rapid prototyping.

For example, communication protocols can now be rapidly prototyped

using the ProSpec system developed within the REFINE software devel-

opment environment (Section E6). In the future knowledge-based tech-

nology will enable aspects of validation to be done prior to prototyping.

For example, the Watson system (section D7) interacts with telephone

design engineers to derive specifications for new telephone features, like

call-forwarding. Watson uses knowledge ofthe telephone domain to inter-

actively resolve ambiguities and inconsistencies in natural language

scenarios of new features.

Critical software is sometimes verified (mathematically proven) to

be correct with respect to a formal specification. Program synthesis tools

based on formal mathematics produce verifiably correct code. The orbital

maintenance software would be a good candidate for formal verification

since it is critical and its functionality is easy to specify mathematically.

Maintenance. As the needs for which a software system was devel-

oped evolve, the software system is updated and maintained. Over half

of current software costs are due to maintenance, including fixing bugs.

Maintenance is the transformation of an existing system satisfying pre-

vious needs to a new system satisfying present needs. Maintenance is in

part an incremental reiteration of the entire software lifecycle. Much of

a programmer's time for maintenance is spent simply trying to under-

stand the existing program, by reconstructing the rationale for imple-

mentation decisions. Good documentation and structured programming
techniques of the last decade facilitate program understanding. In the

near future, knowledge-based techniques could be used to explicitly rec-

ord, index, and explain the program implementation; thereby providing

interactive assistance in program understanding. Further along, success

in program synthesis could enable maintenance to be done at the speci-

fication level instead of at the code level.

A difficult challenge for maintenance is older systems, written ten

to twenty years ago, before the widespread acceptance of structured

programming techniques. The older systems that have experienced sig-

nificant enhancements resemble inner tubes that have been patched so

many times that additional patches cause the system to break in new
places. AI research has directly addressed automated program under-

standing of undocumented code (see Section B6).

Alternative Models of Software Development. The waterfall

model is appropriate where errors in the early stages of requirements

analysis and design specification are unlikely, for example, in well-

250 Knowledge-based Software Engineering XX

understood domains. The resulting implementation will probably be con-

ceptually clear and well modularized. However, this is a risky approach

since it costs 10 to 1,000 times as much to fix an error in a requirement

during the implementation phase than in the requirements analysis

phase. Thus early validation of requirements and specifications is crucial

for controlling costs.

Another model for software development is the evolutionary ap-

proach, which is often used in AI research systems. Software devel-

opment starts with a prototype and proceeds by incremental modification

and maintenance of the prototype. The development of the system

changes the understanding of the problem; in interactive environments,

the existence of the system might even change the environment, result-

ing in an evolutionary process. The evolutionary approach is appropriate

for poorly understood domains or problems and in highly interactive

systems. The risk is that the resulting implementation will be highly

convoluted and become progressively more difficult to modify. This risk

is ameliorated if modification is done at the specification level rather

than at the low-level language level. Very high-level languages, which

are compiled using program synthesis techniques, support modification

near the specification level.

The spiral model of software development, illustrated in Figure A-
2 and developed by Barry Boehm (1986), encompasses both the waterfall

and evolutionary models. It incorporates early validation through proto-

typing and also a top-down approach to software development. The idea

is to start with a small set of the core requirements, and then to develop

Validation Requirement
Specification

V V First

\ \Prototyp<
\ Operational N.

^System —
Prototyping ^^.^^
& Coding

/ 1

^^^^^ Design
Specification

Figure A-2. The spiral model of software development.

A Overview 251

a prototype of the key components of the system, which can be used to

validate and refine the basic functionality. This is the first complete turn

of the spiral. The second pass expands the set of requirements and the

functionality of the system. Since relatively little effort was deployed in

the first pass prototype, it can be discarded if modification would become
too convoluted. Successive turns of the spiral expand the requirements

and the system's functionality, until the final turns become maintenance

phases. The spiral model minimizes both risk and costs by combining

both the well structured management techniques of the waterfall model

and the early validation techniques of the evolutionary model.

Current Status ofKBSE

Since 1982 and the publication of Volume II of the Handbook of

Artificial Intelligence (which included a chapter on automatic program-

ming), two major trends have emerged in automatic programming
research. The first is the maturation ofwork on program synthesis, where
a high-level specification is transformed into a working program. It is

now possible to buy commercial systems such as REFINE (see Section

E6), in which programs are specified declaratively at the level of sets

and logic. Knowledge-based compilers transform these high-level con-

structs to procedural control and data flow constructs. Interactive design

assistants such as KIDS (see Section E3) are approaching the break-even

point where even high-level algorithm development is faster when
machine assisted than manual development. The use of program synthe-

sis tools will leverage other KBSE tools.

The second trend is the broadening of automatic programming to

include the entire software lifecycle: knowledge-based software engi-

neering. In particular, specification acquisition research has progressed

from program specification to system specification. Knowledge-based

assistants for acquiring, validating, and maintaining specifications have
been developed in research laboratories. This work is still in the basic

research phase. However, the development of knowledge-based tech-

niques is likely to radically transform the software lifecycle.

AI technology is currently being introduced to the commercial soft-

ware engineering market through three channels. First, CASE vendors

are enhancing the performance of their products by incorporating AI

technology. For example, some CASE vendors offer expert systems to

tutor and assist users of particular CASE tools. Second, expert system

companies are integrating their expert system shells into conventional

software engineering environments and languages. These shells are then

used for rapid prototyping and also for developing "moving-target" sub-

systems that are subject to frequent revision. Third, several large cor-

252 Knowledge-based Software Engineering XX

porations are developing in-house software engineering environments

that incorporate KBSE technology.

Guide to This Chapter

This chapter is a survey of knowledge-based software engineering.

Section B reviews techniques and tools for specification acquisition, the

process of developing models that describe a problem, and the software

system that provides its solution. In particular, specification acquisition

entails both domain modeling and requirements. Domain modeling is

the construction of a conceptual model of the domain in which the desired

software system will be operating. Domain modeling and system speci-

fication draw heavily on AI techniques for knowledge representation.

Section C reviews program synthesis, which is the technology for auto-

mating traditional programming tasks such as algorithm design and

data structure selection. The objective of automatic program synthesis

is to enable humans to specify what they want done to solve particular

problems, without the details of how it should be done. Section D surveys

current research in knowledge-based specification acquisition. Section E
surveys research in knowledge-based program synthesis. Section F is a

guide to further readings in knowledge-based software engineering.

B. SPECIFICATION ACQUISITION

Bl. Knowledge-based Specification Acquisition

Prior to the development of computer-aided software engineering

(CASE) tools, a specification was just a written document. A requirements

document describes what the customer wants; a specification document
describes the external behavior of a software system including the user

interface; and a design document describes the internal structure of the

software system, particularly, the hierarchical decomposition of the sys-

tem into modules and the external data formats used by the modules.

Specification acquisition is the process of producing these three types of

specifications.

Current CASE tools are relatively unsophisticated and perform with-

out benefit of semantic models of problem domains. They include design

and analysis tools that provide computer support for creating and main-

taining a design specification. Using an interactive graphics editor, a

system designer specifies the hierarchical decomposition of a system into

modules and the control and data flow linking modules. CASE design

tools perform limited syntactic consistency checks such as determining

whether or not there are any dead ends in the flow of control between
modules.

The goal of AI research in specification acquisition is to develop

knowledge-based tools that rely on semantic models of problem domains
to help users produce complete, consistent, and correct specifications. A
problem domain model enables a knowledge-based tool to communicate
with a user in domain-oriented terms, to perform semantic consistency

checks, and to guide the user according to the constraints of the problem

domain. Because software development is knowledge intensive, knowl-

edge-based tools should ultimately be more effective and cover more of

the software lifecycle than current CASE tools. The key idea is to use

knowledge acquisition techniques to formulate a semantic model of a

problem domain. Once a computer-based model exists for a problem
domain, intelligent assistants can help users develop requirements, spec-

ifications, and designs. (Section D reviews several projects developing

such intelligent assistants.) Next we discuss the major components of

knowledge-based specification acquisition.

253

254 Knowledge-based Software Engineering XX

Domain Models

Knowledge representation formalisms provide a means of specifying

a computer-based model of a real-world problem domain. Knowledge
acquisition techniques provide a means of developing problem domain
models. Domain models serve as knowledge bases for expert systems that

assist users in specification acquisition. Furthermore, a domain model
specifies some of the information needed for program synthesis. A com-

puter-based domain model should represent the following aspects of a

problem domain (Brodie et al., 1984):

1. Static properties, which include the objects of a domain, attributes of

objects, and relationships between objects.

2. Dynamic properties, which include operations on objects, their prop-

erties, and the relationships between operations. The applicability of

operations is constrained by the attributes of objects.

3. Integrity constraints that express the regularities of a domain.

Application domain knowledge is necessary to write good programs

within a domain (Adelson, 1985) and is required for program generators

(Barstow, 1984). However, this knowledge is usually poorly defined

within a field and frequently takes years to gather (Curtis, 1988). Devel-

oping a computer-based domain model is a knowledge acquisition prob-

lem. It is a difficult process, currently requiring a sustained collaborative

effort between domain experts and knowledge engineers. Domain mod-
eling is known to be a bottleneck in developing intelligent assistants for

specification acquisition and program synthesis (Iscoe et al., 1989). Pre-

liminary research has already begun on developing intelligent assistants

to help domain experts develop domain models for software engineering

(see Ozym in Section D6).

Requirements and Specifications

A domain model provides the knowledge needed by intelligent assis-

tants to help users develop requirements and specifications. Several

approaches are being studied in research laboratories; all of them use

the domain model as a communication medium between the automated

assistant and the user.

1. Requirements and specification decisions can be recorded in domain
terms and partially justified by reference to the domain model. This

explicit record facilitates maintainance, as explained in Section B6.

2. Portions of previous requirements and specifications can be reused;

the domain model provides the domain definitions that enable pre-

vious requirements to be retrieved and suitably modified.

3. Knowledge-based assistants such as KATE (see Section D5) serve as

B Specification Acquisition 255

analysts that use the domain model to find potential problems with

developing requirements.

4. Knowledge-based assistants such as the Requirements Apprentice

(see Section D4) can help the user generate formal and consistent

specifications from initial vague, informal requirements.

In all these approaches, intelligent assistants use the domain model

to provide semantic support for specification acquisition.

Design Specifications

Expert system technology can be applied to the existing CASE frame-

work to make CASE design tools more powerful, flexible, and interactive.

Whereas previous CASE tools only provided batch design checking,

expert system technology facilitates the development of interactive and
user-friendly assistants. Essentially these are experts in the structured

design methods developed for software engineering in the 1970s. They
guide a user in developing a data dictionary and a decomposition of a

design into a hierarchy of modules. An example is the Exsys system,

which originated at the University of Wellington. Exsys is a design tool

that uses expert system techniques to guide a user in developing a system

specificiation by prompting the user with a series of analytical questions.

Exsys steers developers in the right direction and provides interactive

checking of completeness and consistency of a design.

Knowledge-based tools use a domain model to provide support in

developing a system design. Although not yet commercial products,

research prototypes such as DRACO (Section D3), IDeA (Section Dl), and
the Explainable Expert Systems project (Section D2) support reusing

existing design knowledge in the context of a new requirement. In order

to reuse previous system designs a domain model must enable intelligent

retrieval from a knowledge base and context-sensitive modification. This

is one substantial advantage knowledge-based design tools will have over

existing CASE design tools. Another advantage is their ability to explain

an evolving design in domain terms. This requires both a domain model
and an explicit record of the rationale for a design.

B2. Specification Languages

Specification languages provide the means for describing problem
domains, the required behavior of a software system, and also the overall

design of a software system. The tradeoff in specification languages is

between their expressive power and the degree to which they can be

supported with tools such as compilers, interpreters, and theorem prov-

256 Knowledge-based Software Engineering XX

ers. The more expressive the language, the more difficult it is to support

with automated tools; progress is measured by the expressiveness of

languages that can be computer supported. For example, FORTRAN (FOR-

mula TRANslator) was developed in the 1950s to enable users to specify

programs at the level of algebraic formulas; these are then automatically

translated to machine language by a compiler. When it was developed,

the FORTRAN compiler was considered an automatic programming tool.

Today the frontier has progressed to logic programming languages

such as PROLOG and executable specification languages such as REFINE
(Section E6). The languages at this frontier are expressive enough to

facilitate rapid specification yet limited enough so that specifications can

be executed on test cases. These languages are suitable in many cases

for rapid prototyping and exploratory development. However, even if a

specification can be compiled, the resulting code might be so inefficient

that it takes days to run even small test cases. Research on automatic

algorithm synthesis, reviewed in Sections C and E, addresses the issue

of transforming a high-level specification into high-level algorithms that

compile into efficient code.

Specification languages differ in what can be stated concisely, what
must be stated redundantly, and what is stated by default. For example,

languages that directly support constraints and class hierarchies facili-

tate specification development because constraints economically express

relationships that would otherwise need to be repeated in multiple loca-

tions. Consider the constraint that two things glued together are always

in the same location. In a specification language with constraints, this

can be stated once; without constraints, statements must be inserted in

the specification of each operation that moves things to also update the

location of any attached item.

Similarly, class hierarchies group together objects that share similar

structure and similar operations. Languages with class hierarchies

enable this similarity to be stated explicitly and concisely. A subclass

consists of objects with additional structure; the subclass relationship

defines a hierarchy. By default a subclass inherits the properties and
operations of its superclass. This achieves both an economy of expression

and ensures consistency since any changes to the superclass are auto-

matically inherited by its subclasses.

AI languages are useful as specification languages because they sup-

port different ways of conceptualizing a problem and its domain. Fur-

thermore, they are relatively close to the conceptual level at which

humans conceive of problems. Next we discuss various types of AI lan-

guages and how they are used as specification languages; consult Chapter

VI, in Vol. II, for more information on programming languages for AI

research.

B Specification Acquisition 257

Logic Programming Languages

The key idea underlying logic programming is specification through

the development of a logical description of a problem domain. When
combined with an inference engine, this problem domain description can

be used to directly solve problem instances. The specification is main-

tained in a database, and the logic programming system provides pattern

matching facilities and an application-independent inference procedure.

(Logic programming was discussed in Article XII.F, in Vol. III.)

A logic programming system can be viewed as a type of rule-based

system or production system. All encode transformations in terms of a

left- and right-hand pair of patterns. The transformations are applied by

matching a left-hand pattern to a particular instance and then trans-

forming it to the corresponding instantiation of the right-hand pattern.

Though similar, these approaches have different cultural legacies: Logic

programming grew out of automatic theorem proving, production sys-

tems grew out of cognitive modeling, whereas rule-based systems grew
out of research on expert systems. A more substantial difference is that

of formality: Logic programming languages have a formal declarative

semantics that is defined independently of the operation of the inference

procedure. In contrast, rule-based systems and production systems are

defined only by reference to the operation of their inference procedures.

It is important for a specification language to have a formal declarative

semantics in order to verify the correctness of programs derived from a

specification.

Object-oriented Languages

Object-oriented languages were developed because real-world enti-

ties were not adequately represented in conventional programming lan-

guages. The first object-oriented language, SIMULA, was an extension of

ALGOL 60 (Dahl, 1966). This SIMUlation LAnguage was designed to

provide a set of basic building blocks for programming discrete event

simulation problems. SIMULA was extended by adding structuring prim-

itives called classes. Objects and their classes provide a convenient way
to encapsulate data and the procedures that access or change the data.

Object-oriented languages can be used as executable specification

languages in which domain objects are classified in a hierarchy and in

which the properties, relationships, and attributes of an object are

directly associated with an object. Procedural attributes are called

methods; objects inherit methods by default from classes higher in the

hierarchy. This inheritance reduces the need to specify redundant infor-

mation and simplifies modification since information can be entered and

258 Knowledge-based Software Engineering XX

changed in one place. A specification formulated in an object-oriented

language can be used to simulate a domain model, thereby facilitating

rapid prototyping and specification validation.

System Specification Languages

System specification languages include constraints for specifying the

relation between system components, and a means of specifying states

and state transitions. For example, in the GIST specification language

(Balzer, 1985) a system is specified in terms of its components, the attri-

butes of components, and the relations between components. A state is

described as a snapshot of the attribute values of the components of the

system. A history is a sequence of states. The specification of a system

in GIST denotes a set of alternative possible histories, also called behav-

iors.

GIST supports the refinement of system specifications: starting with

an underconstrained, nondeterministic system specification, the user

adds constraints to prune the set of behaviors. Constraints are used for

several purposes, the most important is to denote the set of admissible

behaviors. Constraints restrict both the admissible state transitions and
the legal states. GIST has historical reference so that a description of a

state can make reference to the attribute values in previous states.

The REFINE language (Section E6) also supports system specifica-

tions. In addition to GIST's capabilities, REFINE can compile a system

specification to LISP. To enable compilation, REFINE's constructs for

specifying nondeterministic system constraints are more limited. REFINE
incorporates the styles of logic-programming, constraint-based program-

ming, transformational technology, and object-oriented programming

—

all within a unified framework. The object-oriented style can be used to

describe the system components and their attributes. Constraints can

then be used to describe relationships among components in a legal state.

In summary, a system specification language needs constructs for

denoting states, attributes of states, and transitions between states. Con-

straints facilitate the refinement of system specifications. For system

prototyping and validation, the specification should be executable.

B3. Specification Acquisition Methodologies

A specification acquisition methodology is a set of methods and guiding

principles for prescribing what is to be modeled by a specification and
how the specification should be developed. A methodology focuses the

activities of the specification acquisition process. Here we describe sev-

B Specification Acquisition 259

eral specification acquisition methods and evaluate when they are appro-

priate.

Conventional Approach

The conventional approach, which is epitomized by the waterfall

model in Figure A—1, reduces the complexity involved in transforming

the initial requirements into a software system by first concentrating on

what the system should do and only then addressing how the system

should accomplish its objectives. The conventional approach is suitable

in well-understood domains where the problems are familiar, and real-

istic requirements can be specified without first testing out a prototype.

The conventional approach was developed in response to software

implementation disasters of the 1960s that resulted from the lack of a

clear set of fixed requirements and overall design. It leads to a rational,

well-structured development of software systems in which a fixed set of

requirements forms a stable base for an implementation. Its advantage

is at once its disadvantage. By fixing requirements early and only allow-

ing each phase to feedback to the preceding phase, errors in the require-

ments or design might not manifest themselves until the system is

implemented and repair is costly or impossible. In poorly understood

domains, design errors are inevitable.

Reuse

In familiar problem domains, much software has already been

designed, and the designers have a good deal of experience and knowl-

edge. One deficiency of the waterfall model is that it provides for only

limited reuse of previous design efforts, mainly at the level of subroutine

libraries and text editing of existing programs. For example, a growing

trend in commercial data processing is to buy a generic software package

(e.g., an accounting package) and then customize the programs for a

particular application (e.g., customer's accounts).

For reuse to become a full-fledged methodology, it will require sup-

port from more powerful tools than simple text editors. In addition to

reusing programs (Dershowitz, 1983), we would like to reuse require-

ments specifications, design specifications, and program derivations

(Tracz, 1988). In particular, we need three kinds of knowledge-based

support tools:

1. Tools for retrieving relevant previous designs.

2. Tools for determining which portions of a previous design can be

directly reused and which need to be redesigned.

260 Knowledge-based Software Engineering XX

3. High-level editing tools for modifying a previous design based on

semantic changes. One high-level edit command can result in many
text level changes.

All of the systems reviewed in Section D reuse knowledge for devel-

oping requirements specifications or design specifications. However, since

these are research prototypes, the knowledge bases were hand-crafted.

From these prototypes we have a better understanding of the type of

knowledge that needs to be recorded in order to achieve reuse. The next

step is to tackle the knowledge acquisition issue: developing methods for

extracting reusable design knowledge during the course of developing

real systems with real users.

Experimentation and Evolution

The rapid prototyping capabilities of AI languages support an
entirely new methodology for software development: exploratory pro-

gramming. In unfamiliar problem domains, a client has no experience

upon which to base a requirements specification. By empirically explor-

ing the properties of some putative solutions, a client can determine

what is really needed. Unfamiliar problems require programming sys-

tems that allow the requirements and design to emerge from experimen-

tation with a program; the program is an experimental tool. A good

example is AI research systems. Since intelligent activity is always

poorly understood, the AI system designer invariably has to restructure

and modify the system many times before it becomes proficient. Explor-

atory programming environments first emerged in the AI research com-

munity.

Several options follow the initial experimentation phase. The first is

to branch off into the conventional approach, viewing the experimental

program as a throw-away prototype (Brooks, 1982). This option is used

in commercial data processing, where a limited prototype is often devel-

oped to experiment with the user interface. Consider, for example, the

user interface of an airline reservation system, which displays informa-

tion on video screens to ticketing agents. It is difficult to predict without

experimentation exactly what information should be presented and how
it should be displayed. Special commercially available screen prototyping

tools simulate the "look and feel" of screen-oriented transaction systems;

these tools have been quite successful.

A more radical option, suitable for domains with continuously evolv-

ing requirements, is to view the entire software development lifecycle as

one of evolution and adaptive maintenance. For example, in the mid- to

late- 1980s, federal and state tax codes underwent major revisions every

B Specification Acquisition 261

year. Thus, every year, tax preparation programs also underwent major

revisions. Instead of viewing revision and evolution as necessary evils of

maintaining a software system, exploratory programming methodologies

make them a central feature. Since maintenance is the dominant cost of

software engineering, it is likely that as exploratory programming meth-

odologies are developed and become proficient they will supplant the

conventional approach. The spiral model of software development (see

Figure A-2) incorporates features of the conventional approach and the

exploratory approach.

One goal of current KBSE research (Green et al., 1983) is to develop

tools to support evolution at all levels of software design. Specifications

can be very complex, and they often describe some part of the environ-

ment in which the system will be embedded. Often the only way to

understand or develop the specification is to evolve it. The first step

toward tools for specification evolution is to categorize the types of

changes that are commonly made to specifications. The next step is to

develop a high- level editor that can make these changes to a specification

when guided by a user. This step is the current state of KBSE research

(see Davis, 1984; Johnson, 1988; Balzer et al., 1983).

Specification evolution is a restricted type of reuse; the modifications

are incremental. The technology developed to support specification evo-

lution will likely support aspects of reuse. These methodologies require

that validation and maintenance can be done at the specification level,

which are the subjects of the next two subsections.

B4. Specification Validation

A valid specification describes a software system that satisfies the needs

of the client. Validating a specification is necessarily an interactive

process. In contrast, verifying the correctness of a program can in prin-

ciple be done automatically. A program is verified by proving that it is

a mathematically correct implementation of a formal specification.

In many contracted software projects, the requirements are negoti-

ated with a client, and then the specification document is developed and
presented to the client for validation. However, the real validation occurs

only after the system is implemented and delivered to the client. This is

an inherently risky approach since major revisions are much more expen-

sive after the system is implemented than during the earlier phases of

the software lifecycle. A client often has only a vague idea of the behavior

he or she wants in a system; furthermore the ambiguity inherent in

natural language can lead to misunderstandings between the require-

262 Knowledge-based Software Engineering XX

merits analyst and a client. How many analysts, designers, and program-

mers have not heard the dreaded words, "But this isn't what I asked

for!" at the end of some software development project?

Prototyping is widely used in engineering disciplines to test a design

before manufacturing. Since software is a design problem, not a manu-
facturing problem, software prototyping has a different purpose than

hardware prototyping. The objective of software prototyping is to validate

a proposed design by constructing a low-cost system that has enough
functionality to test out major design decisions on examples. As we
discussed in the previous section, many AI languages and environments

are good for rapid prototyping because they have very high-level con-

structs and provide good interactive facilities.

As part of the knowledge-based specification assistant project at ISI

(Johnson, 1988), research prototypes of the next generation of specifi-

cation validation tools have been developed. These tools provide richer

feedback than just running a prototype on test cases. The following tools

perform various types of analysis on specifications written in GIST,

thereby clarifying for a user the actual meaning of the specification:

1. The symbolic evaluator—takes a system specification and deduces

properties of a generic initial state. The user is then prompted with

a list of possible actions that could take place. When an action is

chosen by the user, the symbolic evaluator deduces properties of the

new state by propagating the description of the initial state through

the specification of the operators. The symbolic evaluator has facili-

ties for going back and forth in a history, and even for adding new
assumptions to a previous state. The difference between the evalua-

tion of test cases and symbolic evaluation is that the latter uses

generic or symbolic test cases. The system's behavior at the boundary

of its legal inputs is often made explicit as a result of symbolic

evaluation.

2. The paraphraser—creates a natural language paraphrase of a GIST

specification. Paraphrasing can make implicit consequences of a spec-

ification explicit. This feedback helps users see their specification

from a different viewpoint and also alerts them to unintended con-

sequences of their specification. Paraphrasing also provides auto-

matic documentation.

3. The static analyzer—checks that the specification is consistent, which

means that there is at least one realizable system that implements

the specification. A consistent specification is free of contradictions.

Users can also annotate specifications in GIST. An extension of the

static analyzer, called the ontological analyzer, checks for semantic

consistency between a GIST specification and user annotations.

B Specification Acquisition 263

B5. Specification Maintenance

The most expensive phase of software engineering is maintaining a

system after it has been placed into service. Currently maintenance

accounts for over half of software engineering resources; at present main-

tenance is done by directly patching code. The major effort in mainte-

nance is program understanding, which entails reconstructing the design

information lost during implementation and furthermore determining

that making a change to a program will not have any unintended effects.

It is not unusual for a maintenance programmer to spend all day study-

ing a program and then change only one line of code. The goal of AI

research on program understanding is to recover a high-level specifica-

tion from source level code (see Section B6). Maintenance includes the

following activities:

1. Corrective maintenance to fix bugs and other defects.

2. Perfective maintenance to improve the quality, efficiency, and reli-

ability of a software system.

3. Adaptive maintenance to update a system to meet changing needs.

The first two activities are partially addressed by research on pro-

gram synthesis whose principle objective is technology for deriving cor-

rect and efficient code from formal specifications. If this research is

successful, maintenance will be raised to the specification level since

correct and efficient code can be rederived from an updated specification.

Rederiving efficient code might be done by replaying the program deriv-

ation for the previous version of the specification, as discussed in Section

C6. To replay a program derivation, a design record must be kept linking

the steps of the derivation to their justification in the formal specification.

Thus only those steps whose justification is no longer true in the updated

specification need to be changed.

Adaptive maintenance is greatly facilitated if updates are made at

the specification level rather than at the code level. Ultimately, with

appropriate tools and with specifications sufficiently close to a conceptual

understanding of a problem, the end users themselves will be able to

perform adaptive maintenance. Small changes in the desired function-

ality of a system are reflected in small changes to the specification.

However, small changes to a specification can result in large changes to

the code. For example, adding an argument to an operation is a small

change at the specification level, but it can require completely changing
the procedure that implements the operation and furthermore all the

264 Knowledge-based Software Engineering XX

calls to the procedure. For this reason, enabling maintenance to be done

directly on specifications will result in large gains of software develop-

ment productivity by decreasing the effort required for adaptive main-

tenance.

Specifications are designed artifacts just like programs. Successfully

reiterating the design during adaptive maintenance requires under-

standing the previous design rationale and the ramifications of any
proposed changes. For example, consider the design specification of a

computer system that monitors a small switching network for a regional

telephone company. A requirement for high performance would justify

the design decision to assign one processor to each node in the network.

A small number of processors is then justified if the network is expected

to remain small. If in the future the telephone company decided to go

national, the design rationale either requires purchasing additional pro-

cessors or sacrificing performance by assigning one processor to multiple

nodes.

A specification maintenance assistant keeps a record of specification

design decisions and the justification links for design decisions. This is

similar to recording the derivation history of a program. The justification

links can span multiple levels; for example, a fact in a domain model

might justify a requirement that in turn justifies a design decision. Then
a change in the domain model—for example, a state law being repealed

—

would propagate down to multiple design decisions. Conversely, if a user

did not like some aspect of a system's behavior, the system could be

debugged by tracing up through justification links. The explainable

expert systems project (Section D2) is based on this architecture. Like-

wise future versions of IDeA (Section Dl) will be based on an explicit

record of design decisions and a dependency maintenance system.

Dependency maintenance systems (DMS) (Doyle, 1979; deKleer,

1985) were first developed in the mid-1970s to facilitate automated
reasoning about qualitative physics. When applied to specification main-

tenance, a DMS is used first to record justification links between design

decisions, requirements, and domain models. The "state changes" are in

response to a user updating a specification. The DMS performs the fol-

lowing functions in response to a state change:

• Maintains the dependencies in the face of change.

• Indicates when a dependency cannot be maintained.

• Reports when changes occur that affect dependencies.

Thus a DMS performs the dependency record keeping that enables a

specification maintenance assistant to explain the rationale for a speci-

fication and the ramifications of any proposed updates.

B Specification Acquisition 265

B6. Recovering Specifications from Code

The previous parts of Section B have reviewed how specifications will

be developed, validated, and maintained in the KBSE paradigm. How-
ever, more than half of present software engineering resources are

devoted to maintaining the current stock of software, which is often

poorly documented and difficult to understand. Moreover, institutions

are frequently locked into using outdated systems that are difficult to

update. In order to make KBSE relevant to existing software, it is nec-

essary to recover specifications from existing code. To a first approxi-

mation program synthesis rules, reviewed in Section C, are applied in

reverse to recover specifications from code.

There is a spectrum of specification recovery tasks. At one extreme,

reverse engineering seeks to recover low level specifications from code.

These specifications are usually at the level of abstract syntax or data

flow and control flow. These low level specifications can be used to

restructure programs and to translate programs into different dialects

and different languages. At the center of the spectrum, program under-

standing systems seek to recover information about the design of a

system from source code and other information in order to assist human
maintenance. At the other extreme, programming tutors seek to under-

stand the intentions behind a student's bug-ridden code in order to assist

teaching software design.

Adapting existing code to new environments consumes a large frac-

tion of current maintenance budgets. Current reverse engineering tools

apply compiler technology in reverse to derive intermediate level rep-

resentations from which restructured code is derived. KBSE technology

can improve upon compiler technology for developing reverse engineer-

ing tools. First, knowledge-based technology enables the rapid construc-

tion of program transformation systems, including reverse engineering

tools (see Section E6). Second, KBSE technology enables a semantically

deeper analysis of existing code than the syntactic methods of current

compiler technology. This is illustrated by the UNPROG program under-

stander (Hartman, 1989), which recognizes plans such as "bounded linear

search" in large, unstructured, imperative programs. The plans are

stored in a library of programming concepts. A restructuring system,

which uses UNPROG's semantic recognition capabilities, performs COBOL
restructuring with much higher quality than existing syntactic methods.

Program understanding systems recognize abstract concepts, called

plans or cliches, in the text of existing programs. Program understanding
is arbitrarily difficult, depending on the depth of the semantic analysis.

While reverse engineering systems apply a shallow but complete analysis

266 Knowledge-based Software Engineering XX

in order to automatically restructure code, program understanding sys-

tems apply a deeper but possibly partial analysis, usually in order to

assist human maintenance of code. Program understanding systems

differ in the representation they use for programs and the sources of

information they use in recovering a specification. The CPU system

(Letovsky, 1988) represents programs in the lambda calculus, which is

a mathematical formalism for LISP. CPU applies transformational imple-

mentation rules (see Section C2) in reverse, thereby transforming parts

of concrete programs into instances of cliches. CPU's output is a hierar-

chical description of a program from abstract cliches to the concrete

program.

KBEmacs (Section E4) represents programs in the plan calculus,

which is a graph grammar for describing data flow and control flow. The
recognizer component of KBEmacs (Wills, 1986) applies graph matching

algorithms to the graph representation of a program in order to identify

instances of cliches, which are stored in a library. The recognizer uses

implementation relationships between cliches to construct a hierarchical

description of a program's design. Because the plan calculus is a general

graph representation instead of the tree structured representation of the

lambda calculus, the matching process is more expensive. However cer-

tain operations, such as recognizing cliches in source code with variable

references, can be done in one step.

Both CPU and KBEmac's recognizer use only the source code for

program understanding. In system maintenance, human programmers
use many clues to recover the design specification, including comments,

identifier names, and knowledge of the application domain. The inter-

active DESIRE design recovery system (Biggerstaff, 1989) uses these

informal clues to assist program understanding. DESIRE's domain knowl-

edge is stored in a distributed representation similar to a semantic

network. DESIRE's first step in program understanding is to use string

matching to locate instances of "linguistic idioms", like the words 'queue',

'head', or 'tail' that provide informal evidence for the use of plans. The
second step is a neural network algorithm that computes the likelihood

that a program plan such as QUEUE is present in the text under exam-
ination. Program understanding based on informal clues complements

program understanding based on the formal analysis of source code.

Automated programming tutors such as Proust (Johnson, 1986) and
Talus (Murray, 1988) try to find the cliches that best fit a possibly

"buggy" student program. In order to effectively diagnose novice pro-

gramming errors they need to correlate the problem specification to the

student's written code. To diagnose buggy code, this process must be

robust. Conceptually, Proust uses a two step process. First the problem

specification is decomposed into subgoals. These subgoals are correlated

with cliches in a library. The second step is to map the cliches to the

B Specification Acquisition 267

actual code written by the student. Because of the size of the search

space, Proust actually performs the specification decomposition and the

mapping of cliches to source code in tandem. The tandem processing

enables these steps to be mutually constraining and robust. In addition

to knowledge of correct decompositions and mapping of cliches, Proust

also has knowledge of buggy decompositions and buggy cliche realiza-

tions. Proust was tested on 206 different student programs for the same
problem specification. Each program was the first syntactically correct

program the student wrote for the programming exercise, so there were
still many semantic bugs. Proust was able to completely analyze 79% of

the student programs, and of these it's analysis was correct 95% of the

time.

C. PROGRAM SYNTHESIS

The goal of program synthesis research is to develop tools that syn-

thesize efficient programs from program specifications. A program spec-

ification is a description of the preconditions that hold before a program
is entered and the postconditions that hold after a program terminates.

Most work on program synthesis has focused on deriving applicative

programs, which produce an output given an input and have no side

effects. A program specification for an applicative program consists of an
input predicate that defines the legal inputs and an input-output relation

that defines the legal outputs for each legal input. The input predicate

is the precondition and the input-output relation is the postcondition.

Program synthesis techniques for imperative programs, which are

applied for their side effects, are less well developed than those for

applicative programs. Research has just begun on techniques for speci-

fying and synthesizing programs that do not terminate, such as operating

systems, and also programs that execute on parallel-processing hard-

ware. This section only overviews techniques for synthesizing applicative

programs.

The central idea behind many approaches to program synthesis is to

incrementally refine a high-level specification until an implementation

as a procedural program is derived. The two major approaches to this

incremental refinement are the transformational approach and the con-

structive theorem-proving approach. In both, a program is usually

derived by repeatedly applying rules, transformation rules in the first

case and logical inference rules in the second case. At each step of a

derivation, many rules could apply. If at each step just two could be

applied, there are eight three-step possibilities, one thousand ten-step

possibilities, and 2
100

hundred-step possibilities. As the number of steps

increases the total possibilities grow exponentially; computer scientists

call this growth combinatorial explosion. It is beyond the capabilities of

any present day computer to search through 2
100

possibilities in even a

thousand years. Faster computers are not the answer to combinatorial

explosion. Because of combinatorial explosion, the major issue in both

approaches to program synthesis is guiding the search through the large

number of possibilities.

The first approach to program synthesis is to apply transformations

that incrementally modify a high-level specification until a procedural

268

C Program Synthesis 269

program is derived. This approach is often used with wide-spectrum

languages that encompass within one language the spectrum from high-

level specification constructs to lower level procedural constructs. In a

wide-spectrum language, a transformation can be written as a rule con-

sisting of two patterns. The first pattern matches against parts of a

specification; the second pattern shows how these parts are then replaced

and modified.

The second approach to program synthesis is to apply rules of logical

inference to prove from a high-level specification and domain axioms

that for any legal input there exists a legal output. A constructive proof

not only shows existence of a legal output but moreover produces a term

that shows how to compute a legal output from a legal input. This term

consists of nested functions applied to the input. If each function is a

primitive in the target programming language, then this term is an
applicative program.

This section first gives a historical overview, starting with the roots

of program synthesis in automatic theorem proving and concluding with

an outlook on how program synthesis technology may be used in future

software engineering environments. The next two subsections present

an overview of the transformational approach and then the theorem

proving approach. The last five subsections discuss the issue of guiding

the search through the large number of possible implementations. The
first topic is basic sets of rules adequate just to generate the possible

implementations. However, program derivations using basic rule sets

are far too long and tedious to be suitable even for manual guidance

through the search space, much less feasible for automatic guidance.

Therefore, the second topic is large-grained rules that are more suitable

to program synthesis since derivations require only a fraction of the

steps required for derivations with minimal rules. The third topic dis-

cusses how program derivations can be recorded and partially reused

through analogy to derive new programs. The fourth topic is how tradi-

tional AI search techniques like best-first search can be used to automate

or partially automate program derivations. The last subsection shows
how knowledge about program derivations can itself be encoded as tactics

to automate program derivations.

CI. Historical Perspective

Robert Floyd began the study of program synthesis by showing how a

verifiably correct program could be constructively derived from a formal

270 Knowledge-based Software Engineering XX

specification (Floyd, 1967). Since then, the study of algorithm derivations

has provided fresh avenues of research to the more established fields of

verification theory and complexity analysis. Soon after Floyd's paper, the

AI community began research on automatically deriving programs from

specifications. If successful, a human could specify what should be done;

an automatic programming system would then determine how to do it

and derive a correct program.

An early effort was Cordell Green's application of resolution theorem
proving first to problems in planning (straight line programs) and then

to conditional programs and recursive programs (Green, 1969). Resolu-

tion theorem proving fell out of favor in the early 1970s because of

seemingly intractable problems with the combinatorial explosion of the

search space. Then, in 1975, a group at the University of Marseille in

France developed a restricted and efficient application of resolution

called PROLOG (Roussel, 1975). PROLOG and other types of logic pro-

gramming have had a significant impact on both AI and software engi-

neering research. One use of logic programming is to rapidly prototype

a software design before committing resources to a full-scale system. A
related use is as an executable specification language, which enables a

user to interactively develop a precise specification of a system before

developing production code.

The theorem proving and transformational approaches to program
synthesis have continued to develop, as discussed in subsequent subsec-

tions. In its purest form, the transformational approach is inference using

the rules of equational logic. Thus the approaches are closely related;

both use rules of logical inference to derive programs from formal spec-

ifications. In fact, Manna and Waldinger's deductive tableau, described

in Section C4, uses many of the same inference rules developed in their

earlier transformational system called Dedalus (see Article X.D5 in

Vol.11)

Transformational development encompasses a wide range of ap-

proaches from equational logic to expert system approaches. Early

work in transformational development includes work at Edinburgh
(Burstall and Darlington, 1977), the CIP group in Munich (Section El),

and Cordell Green's group at Stanford University and later Kestrel

(see Article X.D1 in Vol. II). In the transformational implementation

approach, an abstract construct is substituted with a more concrete but

equivalent construct. Transformational implementation is easier to con-

trol than undirected theorem proving since the search space is directional

from abstract to concrete. The inverse of transformational implementa-

tion is transformational analysis (Letovksy, 1987; 1988). Transforma-

tional analysis starts with the concrete source code and incrementally

applies transformation rules in reverse to derive an abstract specification

C Program Synthesis 271

of the original source code. Transformational analysis is facilitated by

wide-spectrum languages that can represent a program at many levels

of abstraction.

To date, the field of program synthesis has had only a minor impact

on commercial software development. Although it is now possible to buy
commercial products that transform high-level specifications into pro-

grams, they typically limit the search space by considering only one

predefined alternative, so the resulting code is not efficient enough for

commercial systems. These products are currently used commercially for

rapid prototyping and for generating efficient code in restricted domains.

To date, AI has contributed to software engineering through its program-

ming languages and environments. Examples include logic programming
languages such as PROLOG, object-oriented languages such as Smalltalk,

and development environments such as the Symbolics Lisp machine
environment. Expert system shells are also used as development envi-

ronments and rapid prototyping systems.

In the future, program synthesis may have significant impact. For

example, program synthesis technology can be applied to MIS (manage-

ment information systems) in two ways. It can help to generate nonster-

eotyped code, which will become the next bottleneck after the widespread

adoption of current fourth-generation languages (these can generate 70%
to 90% of the highly stereotyped code). Second, code generators based on

AI technology such as transformation rules are much more flexible and
modular than current code generators, permitting customization for par-

ticular applications.

Whereas the algorithms used in MIS applications are highly stereo-

typed, those used in engineering applications are much more varied and
difficult. This second major class of commercial software encompasses

applications from controlling a microwave oven to controlling the future

U.S. space station. Technically the software is embedded in mechanical

and electrical systems and driven by real-time inputs requiring real-

time outputs. Because of the complexity and variety of these algorithms,

general-purpose automatic code generators do not yet exist for engineer-

ing applications.

Program synthesis research can be applied to these applications in

two ways. First, we can construct special-purpose code generators for

restricted domains and restricted classes of algorithms because in

restricted domains it is feasible to build in the knowledge of domain
concepts and domain problem solving techniques. Unfortunately there

are too many domains and too few experts to rely on special-purpose code

generators; and, at the boundaries of their knowledge, special-purpose

code generators are limited and brittle (which is also true of conventional

expert systems). Second, program synthesis techniques can be used to

272 Knowledge-based Software Engineering XX

provide general purpose interactive program development environments,

such as KIDS (Section E3).

C2. Transformational Approach

Transformational programming is a method of incremental program
construction by successive modifications by transformation rules. Usu-

ally the input to a transformation system is a high-level formal specifi-

cation, though transformational programming can also be applied to the

task of refining an incomplete, informal set of requirements into a com-

plete, formal specification. In transformational implementation, trans-

formations refine a high-level algorithm into a target language program
by incrementally transforming high-level control and data structures

into low-level target language constructs. Optimization transformations

may also be applied. The transformational approach can be applied to

many phases of software development, including the refinement of an
incomplete specification, the development of a high-level algorithm, the

implementation in target language constructs, and program optimiza-

tion.

The basic unit of knowledge in the transformational approach is a

transformation rule, which is a partial mapping from programs to pro-

grams. Transformation rules are either procedures or production rules

that transform a pattern matching part of a program into another pat-

tern. Global transformations such as transformations based on data flow

analysis and consistency checks are usually encoded as procedures.

Global transformations transform the whole program into another pro-

gram; in contrast, local transformations only transform part of a pro-

gram. Local transformations are usually encoded as conditional

production rules whose left-hand sides match part of a program and
whose right-hand sides give a schematic pattern for the result. These

production rules can express domain knowledge, algebraic properties,

and knowledge of how to implement higher level program constructs in

terms of lower level constructs. The application of a transformation rule

can be conditional, thereby requiring some deductive capability to deter-

mine when a rule can be used:

If Condition

then Left-Hand-Pattern -> Right-Hand-Pattern

The most important semantic property of a transformation rule is

whether or not it preserves correctness. The application of correctness

preserving transformations to a formal specification ensures the correct-

C Program Synthesis 273

ness of the resulting program. The strongest correctness property is strict

equivalence, which means that the transformed program behaves exactly

the same as the original specification on all inputs. A weaker condition

is descendence, which ensures correctness only for inputs satisfying the

input predicate.

Sets of transformation rules can be broadly classified as either min-

imal generating sets or catalogs of rules. A minimal generating set that

is language independent will be described in Section C4, and the catalog

approach will be discussed in Section C5. Catalogs of rules, often called

the knowledge-based approach or expert systems approach, can in prin-

ciple be constructed by composing basic transformation rules. In practice,

catalogs of transformation rules are usually constructed with the same
development process as applied to expert systems.

The application of transformation rules can be manually guided,

semi-automatic, or fully automatic. The full manual guidance of a set of

basic transformation rules is far too tedious and detailed to be a viable

method of program development. It is almost always easier to develop

the program by hand. An exception is when the correctness of the result-

ing program is of utmost importance, in which case manual guidance of

minimal but verifiably correct transformation rules is an alternative to

developing a program by hand and then verifying it interactively with

a program verification system.

Semi-automatic control of transformation rules provides substantial

assistance to human guidance, suppressing detail but leaving difficult

choices to human control. Using large-grained transformation rules is

one method of suppressing detail. Another approach is to have the pro-

grammer provide high-level strategic advice, perhaps in the form of

schematized intermediate steps in the derivation, while letting the sys-

tem fill in the details of the derivation. Another approach toward semi-

automatic control is the use of directives in transformational implemen-
tation. For example, the human provides both a high-level algorithm

using set-theoretic constructs and indicates how the sets should be imple-

mented—as hash tables, lists, bitmaps, and so on. The system fills in the

implementation details.

Full automatic guidance in a commercial strength system is cur-

rently feasible when the choices are relatively few and can be determined

with little search. Examples include the REFINE and SETL compilers,

both of which use predefined implementations of high-level data struc-

tures such as sets. In the research stage are systems that automate the

application of transformation rules when significant choices are made.

One approach is the use of strategies and tactics described in Section C7.

Full automation of search control will be approached asymptotically;

robust commercial systems will either be semi-automatic or will limit

the scope of possibilities. However, if a record is kept of the choices made

274 Knowledge-based Software Engineering XX

in deriving a program from a specification, it should be possible to

"replay" the derivation for a similar specification. This would be partic-

ularly useful when maintaining a slowly evolving system, enabling the

changes to be made at the level of specifications while reusing the work
done on the derivations.

C3. Deductive Approach

Another technique for program synthesis is automatic theorem prov-

ing. First, the specification is transformed into a theorem to be proved.

Then, a constructive proof that the theorem is true is generated. The
basic idea is that each step of a constructive proof corresponds to a step

in a computation (Constable, 1971). For example, case analysis in a

constructive proof corresponds to a conditional statement in a program.

Finally, a program is extracted from the constructive proof.

Suppose that a desired program is specified as taking an input x and
producing an output y. Furthermore, suppose the specification states that

the input x satisfies a precondition P(x) when the program is entered and
that when the program terminates the output v satisfies the postcondi-

tion R(x,y), relating the input to the output. For example the specification

for a sorting program has the precondition that the input is a list of

elements and the output is a sorted list with the same elements as the

input but in ascending order. The specification of the precondition and

postcondition of the desired program can be turned into a theorem of the

following form:

Vx3y[P(x) =>R(x,y)l

This theorem states that for every input satisfying the precondition

there is a suitable output satisfying the postcondition. This theorem and
the domain axioms are then given to a constructive theorem prover. The
theorem prover either proves that the theorem is false, in which case

there is no feasible program, or it proves that the theorem is true by
constructing the definition of a function f that makes the following theo-

rem true:

Vx[P(x) =>R(x,fix))]

The definition of the function f is a program satisfying the specifi-

cation.

By reformulating program synthesis as an application of theorem

proving, automatic programming can be cast in a formal, precise frame-

work. Automatic theorem proving dates back to 1963 when Robinson

(Robinson, 1965) showed that a single easily programmed rule of infer-

C Program Synthesis 275

ence, resolution, is a complete inference method for proofs by contra-

diction. In the late sixties, Cordell Green (Green, 1969) and Richard

Waldinger (Waldinger, 1969) showed how programs could be synthesized

as a side effect of doing resolution proofs.

Theoretically, given enough computational power, the reformulation

of program synthesis as automatic theorem proving solves the automatic

programming problem. However, there are two practical problems with

this approach. First, the brute force application of the resolution rule

leads to a combinatorial explosion in the computational resources re-

quired to synthesize moderately long programs. Roughly, each addi-

tional instruction in a synthesized program doubles the amount of com-

putational resources required for the formal derivation. This means that

a computer the size of the universe, based on the fastest and smallest

conceivable quantum devices, would still require more than a billion

years to synthesize a medium-sized program such as a word processor.

Clearly, practical success requires applying automatic theorem proving

in an intelligent manner to avoid this combinatorial explosion.

The second practical problem is inherent to any formal approach to

program synthesis: The creation of a formal domain theory and a formal

specification is a difficult task for humans. Practical success necessitates

reusing domain models so that the cost of creating them can be amortized

over many different programs. Furthermore, mechanical assistance in

developing formal specifications is needed. Sections B and D discuss

research work that address these issues.

C4. Basic Rules

The objective of defining a minimal set of basic rules is to obtain a

small set that is logically sufficient for deriving programs. If more com-

plex rules can always be generated as combinations of the basic rules,

the set is complete. This provides a way for proving that a set of rules

is correct. First, find a minimal set and prove that each rule is correct.

The other rules are then correct if they can be defined as combinations

of the correct minimal rules. This subsection defines a basic set of trans-

formation rules and a basic set of inference rules.

Transformation Rules: Substitution ofEquals for Equals

The mathematical basis for transformation rules is the substitution

of equals for equals. By iteratively replacing parts of a specification with

equivalent forms, an efficient program can be derived that is functionally

equivalent to the original specification. The cleanest example of a min-

276 Knowledge-based Software Engineering XX

imal set of transformation rules founded on the substitution principle

are the fold/unfold transformations developed by Burstall and Darlington

(1977). These transformations have been incorporated into a program
development environment at Imperial College in London under the Flag-

ship project (Darlington et al., 1989). Flagship is sponsored by Alvey,

which is a British funding program charged with developing next gen-

eration computers and computing environments.

A prototype transformation system was developed earlier that trans-

formed program specifications written in NPL into efficient programs

(Darlington, 1981). The NPL language itself is based on the principle of

substitution of equals for equals, also known as equational logic. As an
example, consider the NPL specification of the factorial function:

fact(O) => 1

fact(N+1) => N+1 * fact(N)

Instead of using just ordinary equalities (=) the NPL language uses

oriented equalities (=>) called rewrite rules, which are applied left to

right. This means that NPL is a logic programming language (see Section

B3) since the rewrite rules are applied like production rules. A specifi-

cation in the NPL language consists of a set of rewrite rules that define

the value of a function on various inputs. For example, the first equation

defines the value of factorial on the input 0, whereas the second equation

defines the value of factorial on all the positive integers. This specifica-

tion of the factorial function is executable, which means that by repeat-

edly applying the rewrite rules an expression such as fact (0 + 1+1) is

reduced to its value. An expression is reduced by repeatedly matching
parts of the expression against the left-hand side of rewrite rules and
then substituting the corresponding right-hand side. For fact (0 + 1+1)

the reduction proceeds as follows:

fact(0+1+1) ->
(0+1+1)*fact(0+1) ->
(0+1+1)*(0+1)*fact(0) ->
(0+1+1)*(0+1)*1 ->

(1+1)*(0+1)*1 ->

(1+1)*1 *1 ->

(1+1)*1 ->

(1+1)

The reduction illustrates rewrite rules defining fact, as well as

simple algebraic laws. One of the strengths of equational logic is that it

provides a uniform framework for specifying both algebraic laws defining

the regularities of a domain and also recursive definitions of functions

for which efficient programs are desired.

C Program Synthesis 277

The unfold transformation is similar to reduction except that, instead

of rewriting an expression, unfold rewrites rewrite rules! The unfold

transformation takes a rewrite rule and unfolds the right-hand side by

applying other rewrite rules, thereby deriving a new rewrite rule. Con-

sider the following example of developing an efficient program for the

double append function. The first equation defines the append function

when its first argument is the empty list nil, and the second equation

defines the append function when its first argument is a nonempty list,

that is, a list formed by prefixing an element X 1 onto the front of a list

X (the cons function).

append(nil, X) => X

append(cons(X1 , X) , Y) => cons (X1 , append(X, Y)

)

dblappend(X,Y,Z) => append (append (X, Y) , Z)

The third equation defines the double append function as two appli-

cations of the append function. However, as specified the double append
function is inefficient since the list append(X,Y) is computed as an
unnecessary intermediate result. Applying fold/unfold transforms the

inefficient double append specification into a version optimized for exec-

ution. First, the definition of double append is instantiated to the two

different cases for the first argument, nil and cons. Second, these instan-

tiations are unfolded by applying rewrite rules. The result of an unfold

transformation is a new rewrite rule:

dblappend(nil, Y, Z) ->

append (append(nil, Y), Z) -> append(Y,Z)

New rule : dblappend(nil, Y, Z) => append(Y,Z)

dblappend(cons(X1 ,X) , Y,Z) ->

append(append(cons(X1 ,X) ,Y) ,Z) ->

append(cons(X1 ,append(X,Y)) ,Z) ->

cons(X1 ,append(append(X,Y) ,Z)

)

New rule: dblappend(cons (X1 , X) , Y, Z) =>

cons(X1 ,append(append(X,Y),Z))

Third, the fold transformation takes the right-hand side of the second

derived rewrite rule and folds it back into an instance of double append.

The result is an optimized version of the double append rewrite rule that

does not compute the unnecessary intermediate list append(X,Y):

cons(X1 ,append(append(X,Y) ,Z)) ->

cons(X1 ,dblappend(X,Y,Z))

New rule : dblappend(cons(X1 ,X) , Y, Z) =>

cons(X1 ,dblappend(X,Y,Z)

)

The fold transformation folds a definition back into itself. It is the

278 Knowledge-based Software Engineering XX

inverse of the unfold transformation since it applies the rewrite rules in

the opposite direction. Both fold and unfold transformations are based

on the principle of substitution of equals for equals, which is the basis

for equational logic. Fold/unfold together with instantiation are a com-

plete set of transformations, which means that from a set of oriented

equations any valid rewrite rule can be derived from this minimal set of

transformations. The reason they are complete is because equational

logic is complete; fold/unfold account for the two directions in which
oriented equations can be applied.

Fold/unfold transformations use rewrite rules to transform rewrite

rules. These transformations can also be applied to transform languages

that are not based on equational logic or rewrite rules. In this case, there

is a distinction between the language constructs and the rewrite rules

used to transform language constructs. By convention, these rewrite

rules are themselves called transformation rules and are applied left to

right.

As implemented in the Flagship programming environment, the fold/

unfold transformations are applied by meta-programs called scripts (Dar-

lington and Pull, 1987). The use of meta-programs and tactics for apply-

ing rules will be discussed in later subsections.

The Nonclausal Resolution Rule

The clausal resolution rule developed by Robinson (1965) is a com-

plete inference rule for proofs by contradiction. If a theorem logically

follows from a set of axioms, there is a proof using resolution that the

negation of the theorem is inconsistent with the set of axioms. The
clausal resolution rule and its use in AI is explained in many introductory

text books, including (Genesereth and Nilsson, 1987). Early approaches

to automatic program synthesis such as (Green, 1969) and (Waldinger,

1969) used clausal resolution. However, the clausal resolution rule has

several disadvantages for program synthesis. One disadvantage is that

it leads to long proofs for even simple programming constructs such as

conditional statements. A second disadvantage is that to apply clausal

resolution both domain axioms and specifications need to be converted

into a special syntactic form called conjunctive normal form. This con-

version can greatly increase the number of axioms and also obscure the

meaning of axioms. For example, the sentence "All humans are mortal"

is converted into the sentence "Not human or mortal". A third disadvan-

tage is the difficulty of representing mathematical induction with clausal

resolution, which impedes the synthesis of iterative and recursive pro-

grams. Because of these and other disadvantages, clausal resolution was
abandoned as a viable method for automatic program synthesis in the

1970s.

C Program Synthesis 279

To make resolution theorem proving suitable for program synthesis,

Manna and Waldinger (1980) developed the nonclausal resolution rule.

Like clausal resolution, this too is a complete inference rule for proofs

by contradiction. Hence it is also a minimal rule that can generate all

possible programs. However, nonclausal resolution applies directly to

axioms and specifications without conversion to a special normal form,

thereby making proofs shorter and easier to follow. Manna and Waldin-

ger also developed a formalism called the deductive tableau that incor-

porates nonclausal resolution, transformation rules, and structural

induction. Nonclausal resolution directly synthesizes conditional state-

ments in a developing program, as will be shown here. Structural induc-

tion is used to synthesize recursive programs. The deductive tableau

formalism has the power of Manna and Waldinger's earlier transforma-

tion-based system called Dedalus (see Article X.D5, in Vol. II) in a

simple, uniform structure. This formalism also addresses many of the

shortcomings of clausal resolution when applied to program synthesis.

However, the deductive tableau formalism by itself does not solve the

combinatorial explosion inherent in automatic theorem proving.

A deductive tableau consists of rows with separate columns for asser-

tions, goals, and outputs. The specification for an applicative program
with input variable x, output variable y, precondition P(x) and postcon-

dition R(x,y) would be represented as follows:

Assertions Goals Outputs

P(x) R(x,y) y

A derivation proceeds by adding new rows through rules of logical

inference. As part of these rules, variables such as y are unified with

terms such as fix). Unification is a bidirectional matching procedure that

given two terms with variables finds substitutions for the variables that

makes the two terms equal. Through unification the output column is

transformed from an output variable in the specification row into terms

denoting program fragments in new added rows. A derivation succeeds

if a row with the goal true is derived and whose output column is a term

consisting entirely of primitives from the target programming language;

this term is the desired program.

Consider the following derivation of a min2 program that takes two
inputs u and v, returning as output y the lesser of the two inputs. The
first row is the specification, the second and third rows are intermediate

rows, and the fourth row is derived through nonclausal resolution from

the second and third rows. The final row is the result of applying a

simplification transformation to the goal of the fourth row. This simpli-

fied goal is true so the output column of the final row is the desired min2
program:

280 Knowledge-based Software Engineering XX

Assertions Goals Outputs

1. min2 (<u, v>
, y

)

y

2. u< V u

3. not(u<v) V

4. TRUE And not(FALSE) if u<v then u else v

5. TRUE if u<v then u else v

Nonclausal resolution takes two rows (2 and 3) that have a common
subexpression (the expression u<v) and then generates a new row (4)

that joins the two rows together and substitutes TRUE for the common
subexpression in one row and FALSE for the common subexpression in

the other row. Two goals are joined together And. Thus to derive row 4

from rows 2 and 3, nonclausal resolution takes the following steps:

1. It finds a common subexpression, which is u<v.

2. It substitutes TRUE for u<v in row 2, yielding TRUE.

3. It substitutes FALSE for u < v in row 3, yielding not (FALSE)

.

4. It joins the two together with And, yielding TRUE And not

(FALSE).

5. It joins the output columns of row 2 and 3 together with a conditional

expression, yielding if u<v then u else v. This is the final con-

ditional program for min2.

Consider the following general schema for joining two goals. The
common subexpression, denoted p, must have a boolean type. This means
that the common subexpression can have one of two possible values:

True or False. The conditional expression has P as the test and the two

outputs as the separate branches of the conditional expression.

Assertions Goals Outputs

1. FCP] t1

2. GCP] t2

3. FETrue] And GCFalse] if P then t1 else t2

The justification for the nonclausal resolution rule can be found in

Manna and Waldinger (1980), as well as an extension of this rule to the

general case when the common subexpressions are not identical, but

they can be matched together through unification.

In summary, this subsection has described a minimal set of transfor-

mation rules and a minimal inference rule, both of which are logically

adequate for synthesizing programs. In principle, these rules enable a

sufficiently powerful computer to mechanically synthesize programs from

formal specifications. However, in practice, the brute force application of

these rules results in a combinatorial explosion of possibilities. The key

is to apply these rules intelligently, through some combination ofmanual
guidance and/or automatic guidance. Although automatic guidance is

C Program Synthesis 281

not yet feasible, research in combined manual/automatic guidance is

approaching the break-even point, where use of computer-assisted pro-

gram synthesis is more efficient than complete manual derivation of

programs. The next subsections overview some of this research.

C5. Large-grained Rules

In the last subsection we discussed how a small set of basic rules could

be used to derive programs from specifications. However, because these

rules take very small steps, the derivations are very long, detailed, and
unnatural. This is a severe disadvantage for manually guided or semi-

automatic program synthesis systems because a human will become
mired in the level of detail. Large-grained rules result in derivations

that are shorter, more natural, and are easier to understand. It is also

easier to develop automatic program synthesis systems that guide the

application of large-grained rules rather than small-grained rules.

There are several approaches to developing large-grained rules. The
first is to write meta-programs or scripts in a language whose primitives

are minimal rules and whose programs are larger grained rules. Most
interactive tools like text editors or spreadsheet programs have a script-

ing language whose constructions denote various ways of composing

primitives together. For example, one meta-program is to iteratively

apply unfold transformations until a fold transformation can be applied;

this meta-program would transform the double append function de-

scribed in Section C4. The larger grained rules defined by meta-pro-

grams are suitable for manual interactive application. This is the

approach being taken by the Flagship project.

A second approach to developing a catalog is to represent the knowl-

edge ofhuman programmers as large-grained rules (Barstow, 1979). This

knowledge engineering approach uses the knowledge acquisition meth-

ods of expert system development to construct rules corresponding to

human expertise. Barstow's PECOS program (see Article X.D4, in Vol.

II) used a catalog of these rules for transformational implementation,

which transforms abstract algorithms into implementations as concrete

programs. An example is the following English paraphrase of a PECOS
transformation rule: "The intersection of two sets may be implemented
by enumerating the objects in one and collecting those that are members
of the other."

A third approach is to develop procedures that directly transform

parts of a specification or do some portion of a proof. An example is

Manna and Waldinger's use of theory resolution to define new inference

rules. Theory resolution is a general method for interfacing inference

procedures to the deductive tableau formalism (Stickel, 1983). Suppose

Assertionis Goals

1. F[P3
2. GCQ]

282 Knowledge-based Software Engineering XX

we have a procedure for solving sets of linear inequalities; theory reso-

lution then allows us to add this procedure as a new inference rule to

the deductive tableau formalism. Let H [P , Q 3 be a valid consequence of

a theory that is computed by our new inference procedure. Then given

the following rows in a deductive tableau:

Outputs

tl

t2

we add the following row through theory resolution:

3. FCtrue] And GCtrue] if P then t1 else t2

And -iH[false, false]

Normal resolution is a special case of theory resolution, so we can

view the deductive tableau formalism as providing a common interface

and data structure for a catalog of inference procedures.

We have discussed three approaches to developing a catalog of large-

grained rules. The unguided application of a catalog of rules results in

combinatorial explosion. Although the larger grained rules result in

shorter derivations than minimal rules, there are many more large-

grained rules, so the possibilities multiply faster. However, the large-

grained rules are suitable for manual guidance since they abstract from

tedious detail, and if well chosen, they appear natural to a human. The
next three subsections discuss complementary approaches to automati-

cally guide the application of a catalog of rules.

C6. Reusing Derivations

Barry boehm, a noted expert on the economics of software engineering,

exhorts us to write less code; instead, we should reuse code developed in

previous efforts. However, with the exception of subroutine libraries of

well-defined mathematical functions there is relatively little code that

can be reused without considerable reworking. The problem is that pro-

grams written in concrete programming languages are the result of

transforming abstract specifications into efficient code. As a result of this

transformation, constructs that are conceptually independent at the spec-

ification level become distributed throughout a concrete implementation

and intertwined (Chetam, 1984). This makes reuse difficult at the code

level because small changes in the desired functionality of a program or

run-time environment require many changes to the concrete program.

Object-oriented languages and ADA were developed with the inten-

tion of localizing small conceptual changes to limited areas of a program.

Although they do succeed in localizing some changes, transformational

C Program Synthesis 283

programming offers the potential for a more general solution. In trans-

formational programming, the user first develops a high-level specifica-

tion and then manually or semi-automatically applies a sequence of

transformation rules to derive a concrete program. When the user later

makes a small change to the specification, the sequence of transforma-

tions is replayed, only being modified for those parts of the specification

that were modified. Reuse at the level of specifications and transforma-

tional derivations is more flexible than reuse at the level of concrete

programs because the relationship between the specification and the

program is made explicit in the derivation history.

There are several contexts in which reusing derivations is feasible

and profitable. The first is adaptive maintenance (see Section B5), where
the specification changes but most of the derivation decisions still apply.

The second is experimentation and evolution (see Section B3), which is

a software development methodology that views the entire software life-

cycle as one of adaptive maintenance. In both of these contexts, the

original derivation sequence is replayed with modifications. A third con-

text is in developing an implementation for a new specification. Often

the derivation is similar to some previous derivation, but finding the

appropriate previous derivation can be difficult. Derivational analogy

(Carbonell, 1986) is a method for retrieving a previous derivation from

a library and determining the correspondence that maps the previous

derivation steps onto a derivation for the new specification.

To reuse a derivation, it must first be recorded and its hierarchical

structure made explicit. Although a derivation is realized as a sequence

of transformation steps, the internal structure of a derivation is a goal/

subgoal tree whose leaves are transformation steps. Languages such as

paddle (Wile, 1983) have constructs such as goals, subgoals, and depen-

dencies that make this structure explicit. A derivation step depends on

another derivation step if the first needs to be applied either to make
the application of the second legal or to enable the second to achieve its

goal.

A derivation is reused during adaptive maintenance by traversing

down the hierarchical goal structure and replaying the derivation steps

until one does not apply because the relevant part of the specification

was changed. At this point, the replay mechanism either invokes an
automatic derivation system or notifies the user to achieve the subgoal

that was the purpose of the now inapplicable derivation step. After the

subgoal is achieved, the replay mechanism resumes applying the original

derivation steps, suitably modifying those steps that depended on the

now inapplicable step. Preliminary work on reusing derivations is

reported in Mostow and Barley (1987), and Steinberg and Mitchell

(1985).

Reusing a derivation on a new specification is much more difficult

284 Knowledge-based Software Engineering XX

than reusing a derivation for adaptive maintenance. The key issue is to

develop an analogy between the previous specification and the new spec-

ification that extends to an analogy between the derivations. Preliminary

research on derivational analogy is reported in Dietzen and Scherlis

(1986), Mostow (1987), and Huhns and Acosta (1987).

C7. Basic Search Techniques

A well-developed area of AI is the theory of search. A search strategy

takes a set of generation rules, such as the basic rules described in

Section C4 or large-grained rules described in Section C5, and guides

the application of these rules. In this subsection we describe how two

basic AI search techniques—problem decomposition and best first heu-

ristic search—have been applied in program synthesis systems.

Using Decomposition in a Transformation System

Even synthesizing a moderately sized software system can require

more than 10,000 transformations, the exact number depending on the

grain size of the transformation rules and the conceptual distance be-

tween the specification and the implementation. The REFINE compiler

manages this complexity by partitioning the rules into packages that

are exhaustively applied in separate passes. This partitioning of trans-

formation rules decomposes the search space into subspaces. Since the

rules are exhaustively applied and there is currently only one default

implementation, little search control is necessary. See Nilsson (1980) for

an introduction to decomposable transformation systems. Programs pro-

duced by REFINE are suitable for rapid prototyping, but are usually not

efficient enough for production code (see the KIDS system, Section E3,

for further elaboration of this point). As commercial systems move
toward producing efficient code requiring significant choices in program
derivations, search control will become a dominant concern. Research in

transformational programming has already addressed some of the search

control issues.

Although REFINE statically decomposes the set of transformation

rules, systems that make significant design decisions usually decompose

a specification into quasi-independent subspecifications. The programs
for the subspecifications are then joined together into a program for the

whole specification. Given a large specification AB that can be decom-

posed into two independent specifications A and B, the combined search

space is roughly proportional to the sum of the search spaces for A and
B. In contrast, if A and B are dependent on each other, every choice for

C Program Synthesis 285

A must be considered with respect to every choice for B. In this case, the

combined search space is roughly proportional to multiplying the search

spaces for A and B. Applied hierarchically, multiplicatively dependent

search spaces result in a combinatorial explosion. In contrast, indepen-

dent search spaces applied hierarchically still result in combined search

spaces proportional to the sum. This is the reason that a design specifi-

cation decomposes a software system into a hierarchy of quasi-indepen-

dent modules. Similarly, to effectively apply a transformation system to

a specification, some of the transformations must decompose the speci-

fication into quasi-independent subspecifications. The KIDS, MEDUSA,
and STRATA systems reviewed in Section E all use decomposition to

factor a specification into subspecifications. An analysis of quasi-inde-

pendence in factoring the search space can be found in McCartney (1988).

Search control can also be formulated as an explicit goal/subgoal

relationship between derivation steps. An expert system can then guide

a program derivation by decomposing the overall goal of deriving a

program into a hierarchy of subgoals; a primitive subgoal is achieved

directly by a single transformation. For example, "jittering" transfor-

mations are applied to massage a developing program so that a major

program transformation can be applied. Performing the jittering trans-

formation is a subgoal of the goal of achieving the major transformation.

This idea was used in the PADDLE system (Wile, 1983), which began as

an editor for derivation histories. A grammar was created for parsing

derivation histories, which was then used as a generative grammar to

create derivations.

Applying Best First Search to Guide a Theorem Prover

Best first heuristic search is a search strategy that at each step uses

a heuristic evaluation function to score the possible next moves. The best

scoring move is then taken, and the cycle repeats until the final state is

achieved. A heuristic is a rule of thumb that is not formally justified yet

empirically yields good results. The PSEUDS system, developed by Stuart

Russell (1985), guides the derivation of a deductive tableau proof using

a best first heuristic search. Consider how we can view the derivation of

a deductive tableau proof as a search space:

• Each node in the search is a deductive tableau consisting of a number of

rows. The rows are either assertions or goals whose output column is a

term corresponding to a program fragment.

• The moves are inference rules that add new rows to the tableau.

• The final state is a deductive tableau with a row that has "true" in the

goal column and a term consisting of programming language primitives

in the output column.

286 Knowledge-based Software Engineering XX

A nice feature of this search space is that it is additive: adding a

new row does not preclude adding any of the other rows that are possible

next moves. This means that the search space is commutative-the choices

can be taken in any order. Hence no backtracking is necessary.

In a deductive tableau proof, the main difficulty is to establish a

structural induction step that corresponds to recursion in the synthesized

program. Accordingly the PSEUDS system uses a set of heuristic rules to

evaluate which next move is most likely to lead to developing the induc-

tive part of a proof. Each heuristic rule returns an integer value; the

evaluation function simply sums all the integer values.

C8. Knowledge-intensive Search Techniques

The unguided use of theorem proving or transformation rules quickly

leads to combinatorial explosion. The tree of possibilities grows exponen-

tially with the depth of the moves. In contrast to the basic search tech-

niques discussed in Section C7, knowledge-intensive search techniques

provide a global plan for guidance throughout a derivation. Strategic

knowledge should be general enough to cover an interesting class of

derivations, but not so broad that it does not provide sufficient guidance

for limiting possible moves. Strategic knowledge can be applied to both

the theorem proving approach (Bundy and vanHarmelen, 1988) and the

transformational approach.

Strategic search control continues to be a fundamental research issue

in artificial intelligence. Strategic knowledge in program synthesis is

knowledge about program derivations. One source of strategic knowledge

comes from design analysis, in which a class of algorithms such as divide

and conquer algorithms is analyzed to understand their common logical

structure, computational structure, and derivational structure. This

analysis is formalized in terms of a theory, a program schema, and a

design tactic. These three components can then be automated in order

to derive algorithms of this class from specifications.

Strategic knowledge will be illustrated by showing how a design

tactic for divide and conquer can be applied to the specification of sorting

to derive insertion sort. The design analysis of divide and conquer algo-

rithms was formalized in Smith (1985). There are three parts to the

formal structure of an algorithm class (Smith and Lowry, 1989).

1. A theory that specifies the logical components of an algorithm and

the constraints between the components. These constraints can be

arranged in a hierarchy (Lowry, 1987a).

2. One or more program schemas that are parameterized program tern-

Program Synthesis 287

plates. After the theory is instantiated with the theory for a partic-

ular algorithm, a program schema is then directly instantiated to

obtain a program.

3. A design tactic that encapsulates strategic knowledge for instantiat-

ing the theory and hence deriving an algorithm.

For the class of divide and conquer algorithms both the theory and
the program schema are illustrated by Figure C-l:

The divide and conquer program schema for computing a function F
consists of two cases. The first case is when the input to F is primitive,

then the function F is computed directly without recursion. The second

case is when the input to F is complex and decomposable (not primitive),

then the input is decomposed, the function F is recursively applied, and
the outputs are composed together to obtain the output for the original

input to F. There are really two varieties of decomposition, one in which
an input is decomposed into two or more inputs of the same type, and
the second in which an input is decomposed into an auxiliary type and
another input of the same type. For example, a sequence of cards can be

decomposed into the first card (of type card) and the rest of the sequence

(of type sequence). In this second variety of decomposition (see Figure

C-l) the function G is applied to the auxiliary type after the decompo-

sition step. To ensure termination, the output of the decomposition step

must be less than the input in some well-founded ordering, which is an
ordering that always bottoms out. For example, the sequence [2 3 4] is

a suffix of the sequence [12 3 4] since it consists of all elements but the

Primitive

Not Primitive

X

X

Directly

Solve

<a,b>

Decompose

Recurse

GxF

WFO: b< x

Y

Y

Compose

<G(a),F(b)>

Figure C-l. Schema for divide and conquer algorithms.

288 Knowledge-based Software Engineering XX

first. The suffix relation defines a well-founded ordering, since it even-

tually bottoms out in the empty sequence.

The key to the theory of divide and conquer algorithms is the Strong

Problem Reduction Principle (SPRP) constraint, which is illustrated by

Figure C-l. This constraint relates the function F, the decomposition

function, and the composition function. The arrows in figure C-l define

two paths from the input of F to the output of F; these two equivalent

paths are the two sides of the conditional equation which formalizes the

SPRP constraint:

not(primitive(jc)) => F(x) = compose(GxF(decomposeOt))

The other axioms of the divide and conquer theory are concerned

with the nonprimitive case and the well-founded ordering:

primitive(jc) => F(x) = directly-solve(x)

WFO(jt,Second(decompose(x))

The axioms of divide and conquer theory not only define the class of

divide and conquer algorithms, but they can also be used to derive a

divide and conquer algorithm from a formal specification with a design

tactic. The axioms are constraints; given instantiations for some of the

components of a divide and conquer algorithm the constraints can be

used to "solve" for the remaining components. An analogy can be made
to spreadsheets in which the instantiated value for a cell is propagated

through equations to instantiate the value of dependent cells. The SPRP
constraint is also an equation: Given a value for some of the parameters,

the equation can be solved for the unknown parameters. However, in

constructing an algorithm, it is not the values of variables that are

propagated through the equations, rather it is the value of function

parameters that are propagated through the equations. Solving a para-

meterized equation for the unknown parameters requires reformulating

the partially instantiated equation using domain knowledge expressed

as domain axioms. Reformulation is a generalized inference problem

encompassing both theorem proving and formula simplification.

A design tactic is a mechanizable method for deriving an algorithm

from a specification using the logical structure of an algorithm class.

One design tactic for divide and conquer algorithms is to choose a simple

operator to instantiate the decomposition function parameter, propagate

constraints to the composition parameter, and then solve for the com-

position parameter. This design tactic will be illustrated with the deriv-

ation of the insertion sort algorithm.

Insertion sort is used by card players. A sequence of unordered cards

can be sorted by transferring them to a new sequence one by one. As
each card is transferred, it is inserted into its proper order in the new
sequence. First, the last card is transferred, then the second to last card

Program Synthesis 289

is transferred and inserted either before or after the last card, then the

third to last card is transferred and inserted into its proper order, and

so on until all the cards are transferred and put into their proper order.

Insertion sort can be formulated as a recursive program that calls itself

on the tail of a sequence of cards, sorts the tail, and then inserts the

head of the sequence into the sorted tail. The head is the first card in a

sequence, whereas the tail is the rest of the sequence. Note that since

the tail is a suffix of the whole sequence, this means that head-tail

decomposition satisfies the constraints of a well-founded ordering.

The divide and conquer design tactic starts the derivation of an
algorithm for sorting by choosing a simple decomposition operator for

sequences. There are two possibilities in the library: head-tail decom-

position and splitting the sequence into two equal-sized subsequences.

Insertion sort is derived by choosing the first possibility, whereas merge
sort is derived by choosing the second possibility. Let us assume that

head-tail decomposition is chosen, so the next step is to propagate this

constraint to the other parameters through the SPRP constraint. We will

assume that the nonprimitive parameter is instantiated with x t^

EMPTY since this is a precondition for being able to apply head-tail

decomposition. Furthermore, we will assume that the auxiliary function

parameter G is instantiated to the identity function. The result of these

instantiations, which include the instantiation of F to sorting, can be

viewed in terms of Figure C-2.

With these instantiations, SPRP constrains the unknown parameter

x=Empty X

X

x * Empty

Directly

Solve

Sort

Y

<Head(X),Tail(X)> identity x Sort

WFO: Tail(X)<X

Compose

<Head(X),

Sort(Tail(X))>

Figure C-2. Partial instantiation of schema for insertion sort.

290 Knowledge-based Software Engineering XX

Compose from both the input side and the output side. This constraint

is expressed by the following conditional equation:

X9^ empty => sort(x) = compose(head(x),sort(tail(;e))

This equation can be "solved" to obtain a specification for the un-

known Compose parameter using the definition of sort and a form of

deductive reasoning called directed inference. Directed inference refor-

mulates this constraint into constraints on the input (zl,z2) and output

(y) variables of the unknown Compose function. Directed inference uses

the domain axioms that describe the sorting domain in order to refor-

mulate the constraint to the following specification:

Compose(z7,z2) <= y such that permutation(prepend(2i,22)j)

AND Ordered(Z2) => Ordered^)

A permutation of a sequence of cards is a reshuffling of the cards,

and prepending a card to a sequence of cards means to insert it at the

beginning of the sequence. Thus the reformulated constraint states that

the output of the unknown compose function is some reshuffling of insert-

ing the card zl at the beginning of the sequence z2, and furthermore

that if the sequence z2 is ordered, the output will also be ordered. What
directed inference has done is to take the constraint that the inputs to

the Compose function are the head of a sequence of cards and the sorted

tail of a sequence of cards and reformulated the constraint in terms of

an input-output specification.

The divide and conquer design tactic can be applied again to derive

an algorithm for this specification of Compose. Once again, a head-tail

decomposition is chosen for the sequence (the variable z2), resulting in

the same instantiations for the primitive predicate. However, in this

case, the Compose function is conditional. If zl is less than the first card

in the sequence z2, the output is prepend(zl,z2). If zl is greater than the

first card in the sequence z2, the function is called recursively on the

tail of z2. This corresponds to looking through the ordered sequence z2

card by card until the right spot for zl is found. If the overall function

is called insert-order, the output for this second case is:

prepend(head(z2),insert-order(zl,tail(z2))

After the algorithm for insert-order is derived, the divide and conquer

schema is fully instantiated as shown in Figure C-3. This instantiated

schema can be compiled into Lisp using the REFINE compiler.

Many other types of sorting algorithms can be synthesized using

tactics for divide and conquer algorithms. The tactic we just discussed is

to choose a simple decomposition operator, and then propagate con-

straints to the composition operator. A different tactic is to choose a

simple composition operator and then propagate constraints to the

Program Synthesis

x=Empty X

>

Identity ^ Y

Sort
f ^ v
\ -^" Y

x * Empty

ail(X

1

Insert-order

<Head(X),T > Identity x Sort
^ <Head(X),

Sort(Tail(X))>

291

WFO: Tail(X)<X

Figure C-3. Instantiated schema for insertion sort.

decomposition operator. Both tactics use the SPRP constraint to propagate
constraints. For each of these two tactics, there is a choice of whether
the simple operator works on two subsequences or a single card and a

sequence of cards. For example, a simple operator that takes two se-

quences and joins them together is append, whereas a simple operator

that takes a card and a sequence and joins them together is prepend.

Depending on which tactic is chosen and which simple operator is

used different sorting algorithms are derived, each derivation uses the

SPRP constraint.

Simple Composition Operator

Simple Decomposition Operator

Singleton Equal-Sized

Selection Sort Quick Sort

Insertion Sort Merge Sort

D. SYSTEMS FOR SPECIFICATION ACQUISITION

Dl. IDeA

The Intelligent Design Aid (IDeA) (Lubars and Harandi, 1987; 1988)

is a research prototype design assistant that supports knowledge-based

refinement of specifications and design. In this knowledge-based para-

digm (Harandi and Lubars, 1986), requirement specification and design

specification are concurrent and mutually constraining activities. The
objective is for the designer, IDeA, to provide the requirements analyst

with incremental feedback on the completeness and consistency of a

developing requirements specification. This paradigm contrasts with the

waterfall model of software development where the requirements anal-

ysis phase completely precedes the design phase, without any interme-

diate feedback.

IDeA represents designs as dataflow diagrams with inputs and out-

puts described in terms of domain-oriented data types and properties.

This allows the human analyst to use these domain concepts to com-

municate with IDeA. The initial unrefined requirement specification is

given to IDeA in terms of domain-oriented system inputs, outputs, and
general system function. IDeA generates an initial top-level design spec-

ification by selecting an abstract design schema from its knowledge base

of design abstractions, using partial matches on dataflow and system

function. IDeA then applies refinement rules to add new levels in the

hierarchical dataflow design. Each refinement rule specializes a compo-

nent of the schema or decomposes a component into subcomponents. The
human analyst supplies requirements constraints that guide IDeA in the

selection of refinement rules and the specialization of data types. IDeA
also propagates constraints through the dataflow diagram in order to

refine data types and other related components. IDeA provides feedback

to the human analyst through a graphical interface that presents the

current system design as a dataflow diagram and definitions of data

types. The overall paradigm is illustrated in Figure D-l.

As an example, consider how IDeA could be used in specifying and
designing a library system. Assume that IDeA's knowledge base contains

an abstract design schema for inventory control systems, with library

systems being a type of inventory control system. The analyst specifies

a library system that checks books in and out of the library. IDeA then

matches this specification against the abstract design schema for inven-

292

D Systems for Specification Acquisition 293

Known Solutions:

Schemas

w

f
Select Schema

Problem
Specification

Current

Design

Apply

Refinement
Rule

Figure D-l. Architecture of IDeA.

tory control systems to generate an initial design for the library system.

As a result of the partial match, constraints that are particular to the

library specification are propagated so that they can direct the refine-

ment of other components and data types. For example, the constraint

that books are returned causes IDeA to refine the return inventory subop-

eration of inventory control systems to the correct design for book

checkin.

An agenda of goals tracks components that need to be further refined

and to resolve mismatches between the analyst's specification and the

abstract design schema. For example, the abstract design schema for

inventory control systems contains a component for generating inventory

reports, but there is no corresponding component in the analyst's speci-

fication for the library system. Resolving this mismatch would be put on

the goal agenda. Later, when this goal is selected, the analyst could

decide to add a component for generating an inventory report. Constraint

propagation would cause this component to be specialized to generating

reports about books available for loan.

IDeA facilitates the incremental and parallel development of require-

ments specifications and design specifications. The requirements speci-

fications are validated by developing a complete and consistent design.

IDeA's knowledge base of domain-dependent abstract design schemas and
refinement rules enables the analyst to express requirements specifica-

tions and to understand IDeA's design specifications using application-

specific terms. Moreover, IDeA supports the reuse of existing design

knowledge that is encoded as abstract design schemas and refinement

rules.

Future work will support design exploration and the construction of

knowledge bases for new application domains. The current prototype of

294 Knowledge-based Software Engineering XX

IDeA does not support design exploration since it lacks facilities for

incrementally updating the design in response to deletions in the require-

ments specifications. To support design exploration, IDeA needs better

records of the design history and mechanisms for dependency-directed

backtracking.

D2. Explainable Expert Systems

The explainable Expert Systems research project (ESS) (Neches et al.,

1985) is an automatic programming system for the development and
maintenance of expert systems. The ESS framework, illustrated in Figure

D-2, is based on the principle that by formally recording the knowledge

used in designing an expert system, the resulting system will be able to

explain its own behavior, enabling domain experts to debug and maintain

the expert system.

In the Explainable Expert Systems approach, knowledge engineers

and domain experts collaborate to produce a model of the declarative

and procedural knowledge of a problem domain. The resulting knowledge

base is the foundation of the EES framework; it contains knowledge such

as causal links, domain problem solving strategies (called domain prin-

ciples), and optimization knowledge. The knowledge base is used to guide

an automatic program writer in designing an expert system. The pro-

gram writer maintains a record of its choice points and decisions, which

constitutes the design history. The design history is organized as a tree

structure whose leaf nodes represent system implementation code and

Knowledge Base

Descriptive Domain
Knowledge

(Domain Model)

Problem Solving

Knowledge
(Domain Principles)

Tradeoffs/

Preferences
Terminology
Definitions

Integration

Knowledge
Optimization

Knowledge

Program
Writer

Design

History

(Refinement

Structure)

Interpreter

Explanation

Generator

Execution

Trace

User

Figure D-2. Architecture of Explainable Expert System

generator.

D Systems for Specification Acquisition 295

whose interior nodes represent goals and decisions made on the way to

generating the implementation. The resulting code is executed by an
interpreter, which maintains a record of the execution history.

All together the knowledge base, design history, code, and the exec-

ution history provide domain experts with the means to critique the

system, to understand the abilities and limitations of the system, and to

find the parts of the domain model or implementation responsible for an
error. When an error occurs the domain expert searches the execution

trace to determine which component of the expert system was responsi-

ble. The design history is then analyzed to determine which design

decisions were responsible for the faulty component. These decisions are

analyzed to determine the parts of the domain model on which they are

based. Finally, the domain model is modified to resolve the error. The
expert system is then regenerated.

The program writer creates an expert system in a top-down fashion,

by refining a high-level goal into subgoals. The writer iteratively imple-

ments goals using goal/subgoal refinement until the level of system

primitives is reached. Goals are decomposed through the domain prin-

ciples, which have three components: a goal, a method, and a domain
rationale. The goal states what the method can accomplish, whereas the

method itself refines the higher-level description of the goal into one

expressed in lower level terms. When the program writer tries to refine

a goal, it examines the domain problem solving strategies to find one

whose goal most closely matches the goal to be refined. The purpose of

the domain rationale is to integrate knowledge from the descriptive

domain model into the refinement process by defining terms at one level

of refinement using terms at the next level down.

The EES framework is a first step toward self-aware, self-healing

software. The recorded design history enables the expert system to

explain its own behavior so that a human can determine how to modify

the domain model used to generate the expert system. In the future, we
would like our software systems to understand and modify themselves.

D3. DRACO

During the traditional requirements analysis phase of software con-

struction, an end user interacts with an analyst who specifies what the

system should do. This specification is then given to a systems designer

who produces a system design. The DRACO research project (Neighbors,

1984) defines two new human expert roles: the domain analyst and the

domain designer. The objective is to encode the expert knowledge of the

domain analyst and domain designer as a domain model within the

296 Knowledge-based Software Engineering XX

DRACO knowledge base so that the knowledge can be reused. A domain
analyst is a person who examines the needs and requirements of a

collection of systems in a specific domain. The goal of the domain analyst

is to define the objects and operations of the domain; the result is a

domain language that can be used as a specification language for the

domain. A domain designer then determines different implementations

for these objects and operations in terms of other domains already known
to DRACO.

A systems analyst can then develop the specification for a new system

in terms of a domain language, developed previously by a domain ana-

lyst. This makes the job of the systems analyst much easier since his or

her specification is now at the level of domain concepts; in fact, an end

user with little formal training might now be able to do this job for

simple systems. After a system has been specified, a systems designer

interacts with DRACO to refine the specification to executable code. In

this interaction, the systems designer can decide between different imple-

mentations as specified by the domain designers.

The domain designers can reuse the knowledge encoded into DRACO
for previously analyzed domains. For example, suppose that DRACO
already has the inventory control system domain, and the library domain
is given to a domain analyst. The domain analyst specifies the pertinent

objects and operations of the library domain, for example, borrower, book,

lend, and return. The domain designer can then implement the library

objects and operations in terms of the objects and operations in the

domain of inventory control systems. For example, books in a library

correspond to inventory in stock, and borrowers to customers. By setting

up this correspondence, implementations for the inventory domain can

be used for the library domain.

The DRACO approach enables reusing knowledge about domain anal-

ysis and system designs by reusing designs from other domains, as shown
in Figure D-3. DRACO provides language creation facilities (e.g., parser

generators) and a transformation system that allows the user to relate

the constructs of the newly defined language to those of the languages

already known to DRACO. Furthermore, the constructs are at the con-

ceptual level of several domains, and the users are free to express their

needs and requirements using the terms and operations that are most

natural to them.

D4. The Requirements Apprentice

The goal of the Programmer's Apprentice (PA) research project at MIT
is to provide intelligent assistance in various phases of software devel-

Systems for Specification Acquisition 297

.
~r~ ,

(Domain Design j

^*
Domain Specification

Acquisition

Specific problem

V

Domain
Language

Problem Analysis ,

Known Domain
Languages

Problem Specification

—*•

m
Known Domain
Implementations

System Design

MDomain

System specifications

System Specification

Acquisition

Figure D-3. The DRACO approach. Reuse of domain analysis

and domain implementations.

opment (Rich and Waters, 1988). Viewed at the highest level, software

development is a process that begins with the desires of an end user and
ends with a program that can be executed on a machine. The first step

of this process is traditionally called requirements acquisition, and the

last step is called implementation. To date, two demonstration systems

have been developed as part of the PA project: the Knowledge-Based
Editor in Emacs (KBEmacs) and the Requirements Apprentice (RA).

Emacs is a standard text editor which can serve as an interface for other

programs. KBEmacs supports program implementation; it is reviewed in

Section E5. The RA supports requirements acquisition.

The Requirements Apprentice (RA) (Reubenstein and Waters, 1989)

helps a human requirements analyst create and modify software require-

ments. Unlike current requirements analysis tools, which assume a for-

mal description language, the focus of the RA is on the boundary between
informal and formal specifications. The RA is intended to support the

earliest phases of creating a requirement, in which incompleteness, con-

tradiction, and ambiguity are common features.

From an AI perspective, the central problem the RA faces is one of

knowledge acquisition—it has to develop a coherent internal represen-

tation from an initial set of disorganized statements. Research on the

RA addresses two fundamental issues: informality and the process by
which informal descriptions evolve into formal specifications, and the

role of prior domain knowledge in developing a formal specification.

Informality is an inevitable and desirable feature of the specification

298 Knowledge-based Software Engineering XX

process. Lack of rigidity in designing informal specifications serves to

reduce the complexity of building the formal specification—it allows for

an iterative process, accepts detail at varying levels, and may develop

several different aspects of the specification simultaneously. However,

informal communication between an end user and an analyst presents

several challenges to developing an automated requirements assistant:

1. Special terms or jargon are used to abbreviate the communication.

2. Informal communication is inherently ambiguous and incomplete so

context needs to be used to resolve ambiguity and fill in gaps.

3. Statements that are true in the abstract are sometimes false when
considered in detail.

4. Different aspects of the description may be in direct contradiction

with each other.

The RA organizes prior domain knowledge into a library of require-

ments cliches, which capture the common structures of the domain. An
example of a cliche is the term "repository". This cliche has a number of

roles including: the items that are stored in the repository, the place

where the items are stored, and the users that utilize the repository. The
term "cliche" refers to commonly occurring structures. Formally, a cliche

consists of a set of roles embedded in a body. The roles of a cliche are

the parts that vary from one use of the cliche to next. The body contains

both constraints and fixed elements of structure, which are parts that

are present in every occurrence of the cliche. Constraints are used to

check that the parts that fill the roles of a particular occurrence are

consistent and to compute parts to fill empty roles in a partially specified

occurrence.

The implementation of the RA is based on a hybrid, knowledge-

representation and reasoning system called Cake (Rich, 1985), which has

been developed within the Programmer's Apprentice project. Among
other things, Cake supports dependency-directed reasoning with full

retraction and a frame-based knowledge representation. In the RA,

cliches are represented as frames with associated logical constraints, and
the reasoning capabilities of Cake are used to support disambiguation

and contradiction detection.

D5. KATE

Kate (Fickas, 1987) is a proposed interactive analyst used for developing

a requirements specification. The key idea is that developing a require-

ments specification is an interactive problem-solving process between an

D Systems for Specification Acquisition 299

end user (client) and an analyst. In contrast to the traditional viewpoint

that sees analysis as a process of translating user intent to a formal

document, KATE assumes that an end user might only have a vague idea

of what he or she wants. This means that the analyst must be both a

domain expert and an expert in the software development process.

KATE is based on observations and protocol experiments with clients

and human analysts at the University of Oregon. First, client complaints

with software systems were traced back to bugs in analysis. From these

observations a classification of analysis bugs was developed, as well as

insights into which analysis techniques avoided bugs and which analysis

techniques created bugs. Second, protocols ofhuman analysts interacting

with clients were used to understand the knowledge and techniques used

by expert analysts. Experienced analysts use their domain knowledge to

zero in on key questions. Experienced analysts also use hypothetical

examples both for interviewing clients and for explaining issues to a

client. Finally, experienced analysts use summarization and paraphras-

ing to validate a requirements specification and to ensure that there is

a complete understanding between analyst and client.

The proposed KATE system is built around four components:

1. A knowledge base that models the problem domain.

2. A problem acquisition component that controls the interaction be-

tween client and system.

3. A critic that attempts to poke holes in the current problem descrip-

tion.

4. A specification generator that can map a requirements model into an

existing specification language.

The objective ofKATE is to find bugs with a requirement specification

before design and implementation. The method uses domain knowledge
to find bugs with a problem description that could not be found using

solely syntactic criteria. A prototype research system called SKATE has

been developed and has shown the usefulness of an automated critic that

uses a domain model. Future work will concentrate on an interactive

problem acquisition component.

D6. Ozym

The long term goal of the Ozym research project (Iscoe et al., 1989) is

to provide the means for application program designers, who are neither

domain experts nor computer programmers, to directly specify and imple-

ment application programs. The focus of the research is to create a

300 Knowledge-based Software Engineering XX

domain modeling system that enables a domain expert to create a

domain-specific application program generator. The application program
designer then uses the application program generator to generate appli-

cation programs. Thus the domain modeling system is a meta-generation

system. Figure D-4 illustrates the paradigm.

Modeling domain knowledge (the top right portion of Figure D-4) is

the focus of this research. An object-oriented model has been developed

that provides a conceptual structure for the types of domain knowledge
required to specify application programs. Libraries of domain-indepen-

dent and domain-specific classes are populated by a domain expert who
uses attribute characteristics to structure class taxonomies and to con-

strain the definitions and runtime behavior of class methods and object

states. The attribute characteristics that are common across domains are

identified and classes are specified in terms of parameterized properties

such as scales, units, defaults, and population parameters. The lower right

portion of Figure D-4 represents a domain-specific transformational pro-

gram generation system. The figure is meant to imply that application

designers, who range in sophistication from domain experts to endusers,

Program
Generation

runtime use

Domain
Knowledge n

Attributes

Values
Operations
Constraints

Scales & Units

Class Libraries

Composition
Rules
Relationships

Transformation System

1

Composition of Primitive

Functions

Type
Manager

Computer

Figure D-4. Domain modeling for application program
generation.

D Systems for Specification Acquisition 301

interact with a design editor to create a set of application specifications.

These specifications are then transformed into a composition of primitive

functions that can be executed by a type manager. Program synthesis is

described elsewhere in this chapter, and is not the focus of this research.

Instead, Ozym should be viewed as a project to create a system for the

generation of program generators in a manner analogous to the way
EMYCIN was created to provide a system for the creation of expert

systems.

D7. Watson

Watson (Kelly and Nonnenmann, 1987), is a specification acquisition

research system developed at AT&T Bell Laboratories. Watson uses

domain knowledge of telephone switching software to allow designers to

specify new features, such as call waiting, through English-language

scenarios. Watson inductively generates a finite state machine (FSM)

specification from a scenario. The telephone domain knowledge is crucial

in both constraining the induction of FSMs from scenarios and in being

able to communicate with users in the English sub-language of telephone

engineers. Watson needs a variety of background knowledge about tele-

phone hardware, telephone network protocols, expected end-user eti-

quette, and principles of finite-state machine design.

Watson interacts with two types of users: domain experts and tele-

phone design engineers. Watson's knowledge base is maintained by

domain experts who must be comfortable with the mathematics of tem-

poral logic. Watson provides knowledge base audit tools which assist

domain experts in testing new knowledge bases against "benchmark"
scenarios. In contrast, interaction with telephone feature designers hides

the mathematical rigor of temporal logic. After a feature designer pres-

ents an English-language scenario, Watson proposes expanded scenarios

to the designer in order to resolve incompleteness and inconsistencies

with its background knowledge.

Figure D-5 shows the relationship between Watson's three knowl-

edge representations for background knowledge and new features: goal-

directed plans, temporal logic formulas, and relational approximations

to FSMs.

Scenarios and plans are the medium for interaction with telephone

feature designers. These are converted to temporal logic constraints on

state transitions through justified generalization. The relational model
is an approximation to a finite state machine which realizes a feature

being designed. During a session with Watson, this relational model
converges upon a minimal FSM which is compatible with the scenarios

302 Knowledge-based Software Engineering XX

Scenarios

and Plans

Trace Theory Relational

Model^

Justified >v

Generalization^

/Kripke
/ Semantics

Temporal

Logic

Constraints

Figure D-5. Watson's three knowledge representations.

and obeys all the temporal logic constraints in the knowledge base. The
scenarios must be realizeable as traces of paths through the FSM. The
relational model is constructed from the temporal logic constraints in

accordance with the mathematics of Kripke semantics. After the model

is constructed, Watson reasons directly with the model whenever possible

rather than its temporal logic theorem prover.

In summary, Watson uses extensive domain knowledge to derive

specifications from examples. Heterogenous knowledge representation

enables Watson to hide the details of its formal, mathematical specifi-

cations from users and to communicate in a restricted subset of English.

E. PROGRAM SYNTHESIS SYSTEMS

El. CIP

The CIP (Computer-Aided Intuition-Guided Programming) project (Broy

and Pepper, 1981) has been an ongoing effort at the Technical University

of Munich since 1974. This project was a pioneering effort in the trans-

formational approach to program synthesis. The CIP project produced a

wide-spectrum language, CIP-L, and an associated manually guided

transformation system, CIP-S. The emphasis of the CIP project has been

on mathematically clear semantics and correctness preserving transfor-

mations. The semantics are built upon a functional kernel language with

well-defined semantics. New language constructs are defined as exten-

sions of the functional kernel; the definitions also serve as transforma-

tions from the new language constructs to the functional kernel. The CIP

system has been specified in CIP-L itself.

At the beginning of the project, CIP-L was designed to consist of

several discrete language layers, with transformations between layers.

This approach was found to be unworkable. The problem was that in the

course of transforming a high-level specification into a program at the

level of the functional kernel, different parts of the program would be

distributed in different language layers. The machinery that was needed

to keep track of interrelated program fragments at different language

layers was found to be significantly more complex than having one wide-

spectrum language. The current wide-spectrum language encompasses

constructs at all different levels.

A user of the CIP system repeatedly specifies transformations to apply

to a high-level specification. CIP applies these transformations and rec-

ords them in a history. CIP also collects the preconditions of the trans-

formations into a theorem. If the theorem can be proved, the concrete

program is a verifiably correct version of the abstract specification. Mem-
bers of the CIP project expressed the view that a manually controlled

transformation system was a cost-effective way of deriving programs

only when extreme reliability is required. In the absence of extreme

software reliability requirements, it was usually faster for a human to

write a concrete program by hand than to write an abstract specification,

and then manually guide the detailed transformations to a concrete

program. More recent work has focused on automating the selection of

303

304 Knowledge-based Software Engineering XX

transformations. This work has been influenced by the ML language at

the University of Edinburgh.

E2. Designer

The designer research project investigated knowledge-based automatic

algorithm design, focusing on understanding the methods used by human
algorithm designers (Kant, 1985; Kant and Newell, 1984; Steier, 1989).

Based upon a protocol analysis of colleagues at Carnegie Mellon Uni-

versity deriving algorithms in computational geometry, four systems

were developed: Designer, Designer-Meets-Soar, Cypress-Soar, and
Designer-Soar. The original Designer system was implemented in OPS5
(Forgy, 1981), which is a general purpose production system, while the

last three systems were implemented in Soar (Laird et al., 1987), which

is described here.

The protocol analysis identified the following cognitive aspects of

human algorithm design:

1. Designers used an abstract representation of algorithms based upon

dataflow and a small set of general primitive steps such as generate,

test, and store.

2. Designers typically chose a basic scheme like divide and conquer for

the algorithm relatively quickly, and then spent considerable time

refining the initial scheme.

3. Designers refined an algorithm through means-ends-analysis (MEA)

of symbolic and test-case execution of partial algorithms. MEA finds

differences between the desired properties of the algorithm and the

properties present in the partial design. These differences triggered

a locally-driven process of refinement.

4. Designers used a strategy of repeatedly executing the partially

refined algorithm, progressively extending the execution on each

repetition. This progressive deepening strategy is similar to that

encountered by Newell and Simon in protocol analyses of chess play-

ers (Laird et al., 1987).

These protocol findings formed the foundation of a model of algorithm

design that was partially implemented in the Designer system. Designer

represented algorithms using dataflow graphs of process components,

and each component of the graph could be recursively refined into its

own dataflow graph. The refinement process was driven by MEA based

on the results of symbolic and test-case execution. Execution consisted

of manipulating assertions on data items arriving on an input port of a

E Program Synthesis Systems 305

component to produce appropriate assertions on the output port. These

output assertions were compared against expected values in order to flag

opportunities and difficulties. These in turn triggered design rules which

modified the configurations. An example of a design rule is that if an
item on the input port of a component does not satisfy a precondition,

and it is known that some other component can produce an object sat-

isfying the precondition, then this other component is spliced into the

configuration. The rules controlling design and execution in Designer

were implemented in OPS5.

In 1985 the Designer project moved from OPS5 to Soar, which is a

general architecture for problem-solving and learning. Soar formulates

all problem-solving in terms of problem spaces. A problem space consists

of a set of states and operators which map from state to state until a

goal state is reached. Knowledge is represented as productions which

operate on data stored in working memory. The basic problem-solving

cycle in Soar follows these steps:

1. Fire productions that add information about which operator should

be applied next.

2. Select an operator.

3. Apply the operator, resulting in a new state.

Whenever there is insufficient information to proceed in this cycle,

Soar automatically generates a subgoal. In response to a subgoal, Soar

selects a problem space to acquire the necessary information. When this

subgoal is achieved, Soar pops up and continues in the original problem

space. Subgoaling can be applied recursively.

Another key aspect of Soar is a learning mechanism called chunking,

which encapsulates the result of subgoaling as a new production rule in

the original problem space. This new production has as left-hand side a

generalized version of the state prior to subgoaling and as right-hand

side a generalization of the information derived through subgoaling.

Thus when Soar encounters a similar situation, instead of subgoaling it

immediately applies the new production rule to select the next operator.

Systems implemented in Soar have solved problems and learned in

domains ranging from the traditional AI toy problems to more complex

knowledge-intensive tasks, such as configuring VAX computer systems.

The latter is a re-implementation in Soar of part of the Rl/XCON expert

system.

Designer-Meets-Soar (DMS) was a direct re-implementation of De-

signer in Soar's architecture. The data flow networks representing

partial algorithms were kept in Soar's working memory. While DMS was
successful in designing five simple algorithms, its performance on larger

306 Knowledge-based Software Engineering XX

algorithms was too slow for practical use, due to the overhead of keeping

data flow networks in working memory.
Cypress-Soar (Steier, 1987) is a partial re-implementation in Soar of

the divide and conquer design strategy described in Section C8. Cypress-

Soar represented the abstract divide and conquer scheme as a set of

instantiation operators in a problem space. Cypress-Soar showed that an
algorithm design system could learn and improve its performance

through chunking. However, Cypress-Soar's propositional representation

for algorithms led to slow performance in Soar. Cypress-Soar also had
no clear role for the use of examples, which is an important source of

knowledge used by human designers.

Designer-Soar (Steier and Newell, 1988) combines elements of both

DMS and Cypress-Soar in a new formulation of the algorithm design

task. Designer-Soar represents algorithm designs directly as problem

spaces for a computational domain. Each state in these problem spaces

represents a computational state. Execution sequences are paths through

the problem space. In Designer-Soar, designing an algorithm is equiva-

lent to learning to execute it. Designer-Soar learns the generalized exec-

ution path representing an algorithm from repeated executions.

Chunking and production-rule matching are used to store and
retrieve this generalized execution path as operator selection and imple-

mentation knowledge in the computational domain problem spaces.

Designer-Soar also uses another set of problem spaces that model the

objects and operators of the application domain. Designer-Soar essen-

tially designs algorithms by mapping methods defined in terms of appli-

cation domain operators to the computational domain. In contrast to

Cypress-Soar and DMS, Designer-Soar's formulation of the algorithm

design task is far less expensive and cognitively more plausible than

storing all parts of previous and current designs as explicit data struc-

tures in Soar's working memory.
Designer-Soar can design several simple generate and test, and

divide and conquer algorithms in a few application domains. It uses

multiple levels of abstraction in problem solving in the computational

spaces, and generalizes from examples in the application domain spaces.

Furthermore, it learns from experience, transferring knowledge acquired

during the design of one algorithm to aid in the design of others. For

example, Designer-Soar took 860 decision cycles to design merge sort.

However, if insertion sort was designed first, Designer-Soar took only

551 decision cycles to design merge sort. Designer-Soar was able to reuse

knowledge gained in designing insertion sort while designing merge sort.

Designer-Soar is consistent with what is known from cognitive psy-

chology about human designers, and is shaped by the necessity to cope

with both diversity in knowledge and limitations on problem-solving

resources.

E Program Synthesis Systems 307

E3. KIDS

The Kestrel interactive development research system (KIDS) is an inter-

active program synthesis system that integrates a number of sources of

programming knowledge (Smith, 1988). The KIDS' user interface is an
interactive display whose left side is a textual representation of a pro-

gram under development and whose right side is an abstract represen-

tation for the program specification and various assertions used in

program synthesis. The user develops a program by choosing program
development operations from a menu and then selecting the expression

to operate on with the mouse. Figure E-l shows a user specifying an
unfold operation on part of a program under development to solve the

K-queens problem. The K-queens problem is to place K queens on a

K x K chessboard such that no queen attacks another queen.

KIDS is built on top of REFINE and uses REFINE's object-oriented

knowledge base and compiler. Both specifications and programs can be

represented in REFINE's wide-spectrum language. KIDS translates from

a textual representation of a developing program to an abstract repre-

sentation using REFINE's grammar-based parsers and unparsers. KIDS
also uses an inference system (RAINBOW II) in which inference rules are

implemented as transformation rules in REFINE.
A user develops a program with KIDS by first developing a mathe-

matically oriented domain model through definitions of appropriate

domain concepts and laws for reasoning about them. RAINBOW II sup-

ports a generalized form of algebraic law to reason about specifications

at the level of domain concepts and mathematical properties rather than

at the level of detailed definitions. This vastly simplifies the inference

search space. The user then defines a high-level specification in REFINE
of the program he or she wants to develop.

KIDS then enters into an interactive loop with the user. The first

step is to choose an algorithm design tactic to apply to the specification;

current choices are divide and conquer, local search, and global search.

After semi-automatic development of a high-level algorithm (Section C8),

the user chooses further program development operations from the menu
such as simplifying an expression. Finally, based on the operations per-

formed on data types, KIDS chooses efficient implementations; for exam-
ple, sets taken from a fixed universe are implemented with bit-vectors.

An experimental knowledge-based compiler then produces efficient

imperative code from the REFINE program and data structure imple-

mentations.

The initial algorithm KIDS designed for the K-queens specification

takes 60 minutes to find all 92 solutions for an 8 x 8 chessboard; the

final optimized version designed with KIDS takes 2 seconds to find all

308 Knowledge-based Software Engineering XX

E
t/>

w
E
ro

E

W <u> (J

CO
ro

i-

c 3

F

c

a
ic

>
4)

a X

0) s
> c

y
a.
o
a.

c— N

4) ro

c

*:

CO
n
U-

r
o

a.
II

CD 3
v a

01 ** *>
:> c

c
C 3
«- O

L
u * n *
a «
x n a n
*> i. V ~ * X L
i « * *> «
x > .* 1 3
C I .-H .-« i-> 1

O *J H 3 *J
C>4 3 Uirt UJ a 3 M

1 • a u -^ o UJ c a
X ~ c ru e o — c
=5
<r

i

CO
01 ->

iu <r
a r ot

i x ~ i

x a 3 x

r~ X
to ^ 1

CN

""

uj a
E
UJ
UJ

C V— o>
MlSlflH
3>- 13

~0 X
CO CO t-

E t.

UJ V
uj a>

E O^
x to to
a: ^-_i

3O
V C

i mwc i

>- 3 _) X >~
UJ 1 (Z O UJ

X 10 3
E -I 1O X t-

3 Vo *>

c

1 CO X
X _J E
I- X o

e W -- co •- r o to O E UJ E * >-, E Oo UJOI^ SOU) o>^ ^ 3 O X
« (7 UWOmW t-H C3 »-i a 1 C3 i-i

L V <r a <4- an . >- u l-CQ
X v n i »-i a x n UJ 1-4 1

o o>~ 33QCT) e a to O ~ to Q E
u *> w^» i 3 *> c 3 1 ~ p-i >-> C 1 3

u. JJ V c VUJQ.O tl 030Q.UI U. V c .0. o
C *) o o o>3> 3 o »> a 3 3> >- in o -ODQ

a CO C M I 1 iJ u 4-> CO 1 1

UJ n iJ C t- UJ UJ II a uj uj >- UJ *> JJ -^ ^UJ UJ
a. n v *) L O 3 3 "D CO 3 3 CJ a. v O UJ 3 3
CO v a (. 3 UJ O O _J C o o uj co axi c r> o o

a x c C < ~) t-H »-l O O CO i—• •—»
-

5

i x c O « >-< >-(

QL x *j > o e e e o O Q E E »-t at u o O >- E Eo ±J 1 1 o :* •-! a a a. E 3 3 m O 1 o 1 O 3 3
1 ••-> *J U UJ t- *> jj UJ

X *> 3 3 u 3 < < < X 3 4J 3 3 < <

<X 3 a a z> ax or a 3 Q..H
UJ a j-> Q •u cu UJ »-> auco
0. c 3 C 3 a. 3 c 3

cro
V E
*) X

*-« OJ

^O 3
--sO X
CO. I .

v — .to
0) X E E'
D ii O UJ

C C «J E 3
-^ (I U30

i>- 3 - «->

o ao a
Q. 3

.-« x > ^H
_ ^ a ^^— UJ I II UJ
UJ O X 0)OO E »- C E
e x h-i e x
x a: 3 c qc

.or i i i

i x - u x
x »- uj »-

Ih

Q

CD

be

t- o
.(_) UJ
UJ 33 a:
•i 3

0)0 <». _l
C E <*- O
« X •»- ^O
C QC X3 _) X«l WO^
_l X 4) O X r-i
X «- « X 4J 4J

^ h-.>--^ a lO 3 X X C O
Ul I t)i> V JQ— >- a a x
UJ UJ C C •• •—

'

CO CO tl V *J

O — — — '-'-'- w
« o o e c « u
O O O O O O L.

0) 05 0) 05 0) 0)

X -C E £ E E O
O O O O O O CD
C. C C C L C E
a a « « « « m

E Program Synthesis Systems 309

solutions. Equally important, each version of the program from initial

algorithm to final version is a mathematically correct implementation

of the initial specification.

Figure E-2 shows timing results for a job scheduling program at

various stages of development with KIDS. The initial specification is to

schedule a set ofjobs subject to partial constraints on their order; math-

ematically this is known as topological sort. The combinatorics of job

scheduling is similar to that of K-queens and many other problems.

At the very left is the curve showing the performance from just

compiling the initial REFINE specification. The performance is worse

than exponential, increasing in proportion to the factorial of the number
of jobs. Although scheduling five jobs takes 4 seconds, scheduling seven

jobs takes 75 hours. This is unacceptable even for validating a specifi-

cation by execution of test cases. The second curve shows the performance

after developing a high-level algorithm (see Section C8) and then com-

piling. This performance is adequate for specification validation, but it

is inadequate for production code that must work on very large numbers
of jobs. The third curve shows the performance after applying a finite

differencing transformation to the initial algorithm. Note that the per-

formance is actually slightly worse than the initial algorithm on small

number of jobs, but as the number of jobs increases performance

improves.

15

Time in

seconds

10

Rapid prototyped

specification

5 10 50
Number of Jobs

Final Implementation

100

Figure E-2. Program development with KIDS.

310 Knowledge-based Software Engineering XX

Finite differencing is a transformation that improves performance

by reusing partial results. For example, if the size of a set is used in a

program, instead of counting the elements each time the size is needed,

an alternative is to update the size each time an element is added or

deleted from the set. For small sets this can lead to worse performance,

as shown in Figure E-2, but for large sets the performance can be

enhanced considerably. The application of finite differencing is very sim-

ilar to the unfold/fold transformation of double append described in Sec-

tion C4.

The final curve shows the performance after transforming the pro-

gram to use efficient data structures. This version of the program was
slightly faster than one developed by an experienced programmer; it

takes only 15 milliseconds to schedule 100 jobs.

Several lessons are to be learned from this example. First, it dem-
onstrates that it is possible to use current program synthesis technology

to traverse the whole distance from high-level specification to efficient

program. Second, it lends credibility to the aspiration of greatly improv-

ing software design productivity through automation. Once the domain
axioms were developed, the human effort to synthesize the job scheduling

program was comparable to manual development. Since the domain
axioms are highly reusable, this indicates that the technology is already

within an order of magnitude of the break-even point. Third, this exam-
ple demonstrates the need for transforming a high-level specification

into an initial high-level algorithm just to effectively validate the spec-

ification on test examples. Fourth, developing an efficient implementa-

tion requires going beyond default compilation techniques in order to

reason about alternative data structure implementations.

E4. MEDUSA

Robert McCartney (1987) developed a high performance algorithm

synthesis system for the restricted domain of planar intersection prob-

lems in computational geometry. The MEDUSA research system achieved

its high performance by constraining the algorithm synthesis search

space in three ways:

1. MEDUSA synthesized algorithms top down; the top-level task of syn-

thesizing an algorithm from a formal specification was decomposed

into subtasks of synthesizing algorithms for subspecifications. The
result was a tree structure with the leaves of the tree being known
algorithms. Algorithm synthesis can be viewed as generation within

a grammar where the terminals are known algorithms. The decom-

E Program Synthesis Systems 311

position of specifications into subspecifications helped to make the

search space tractable (see Section C7).

2. Part of the input to MEDUSA was a cost constraint for the final

algorithm. MEDUSA used the cost constraint to prune subtasks that

it estimated would violate the cost constraint, and to order the

remaining subtasks by simplicity. Cost constraints are propagated

from tasks to subtasks. MEDUSA used asymptotic time complexity as

a cost constraint, which considerably simplified estimating costs as

compared with Libra's cost estimates (see Article X.D8, in Vol. II, for

a description of Libra).

3. Subtasks were generated in only a small number of ways. First, a

task could be decomposed into a functionally equivalent skeletal

algorithm; the total cost was defined in terms of the costs of the

subcomponents. Second, a task could be transformed into an equiv-

alent task using domain knowledge. Third, a task could be decom-

posed into disjoint subcases through case decomposition. Fourth, a

task could be transformed into dual task, for example, to determine

if three points are colinear transform the points to lines and deter-

mine if the lines intersect. Dual transforms are a type of problem

reformulation.

The basic synthesis loop ofMEDUSA was to take a task and generate

a functionally equivalent sequence of subtasks while propagating the

cost constraints from the task to the subtasks. Then MEDUSA recursively

calls itself on each subtask. The recursion stops when the current task

can be solved by a known algorithm.

E5. KBEmacs

One of the central developments of the Programmer's Apprentice

research project (see Section D4. and also Article X.D3, in Vol II) has

been the Knowledge-based Editor in Emacs (KBEmacs) (Waters, 1985).

KBEmacs allows a programmer to build up a program rapidly and reli-

ably by combining prototypical program fragments called cliches. KBE-
macs also enables a programmer to modify a program in terms of its

component cliches.

The key basis for KBEmacs is a representation for programs and
programming knowledge called the Plan Calculus (Rich, 1981). The key
virtue of Plans is that they facilitate the manipulation of programs by
representing data flow and control flow explicitly and by representing

the algorithmic structure of a program in terms of the cliches out of

which it is built. In both development and modification, KBEmacs gains

312 Knowledge-based Software Engineering XX

most of its power from the fact that its actions are performed on an

abstract plan for the program rather than on the program text.

The architecture of KBEmacs is shown in Figure E-3 (Waters, 1985).

At each moment, KBEmacs maintains two representations (program text

and a plan) for the program being developed or modified. Given the text

for a program, the analyzer module can construct the corresponding plan.

The coder module performs the reverse transformation, creating program
text from a plan. The text editor can be used to modify the program text.

The plan editor can be used to modify the plan. The library contains

common program fragments (cliches) represented as plans.

The leverage provided by KBEmacs comes primarily from two

sources. First, the programmer can rapidly and accurately build up a

program by referring to the fragments in the plan library. Second, the

editor provides a variety of commands specifically designed to facilitate

the modification of programs to suit different needs. In particular, KBE-
macs enables a programmer to develop and modify systems via knowl-

edge-based editing—the direct manipulation of a program in terms of its

component cliches.

KBEmacs adds to Emacs, rather than replacing it. The programmer
is able to modify a program by editing the program text as well as by

using the special knowledge-based commands that deal with cliches. This

requires that the analyzer module be able to recognize cliches in the

textually edited code, so that KBEmacs can maintain an accurate model

of the program's structure.

A prototype program recognition system has been developed which

Figure E-3. Architecture of KBEmacs.

E Program Synthesis Systems 313

identifies instances of cliches in a program (Wills, 1986). Based on the

implementation relationships between the cliches, the system constructs

a hierarchical description of the program's design. The recognition sys-

tem represents the program as a Plan, encoded as a graph. Recognition

is achieved by parsing this graph in accordance with a graph grammar,
which encodes the cliche library. This yields a hierarchical description

of the program in the form of a derivation tree.

E6. REFINE

REFINE is a commercially available interactive software development

environment from Reasoning Systems, a company based in Palo Alto,

California. REFINE provides an executable specification language, object-

oriented knowledge base, and facilities for constructing knowledge-based

compilers built with transformation rules. The knowledge base can rep-

resent all aspects of a software system, including specification, code, and
documentation.

The specification language is a very high-level, wide-spectrum lan-

guage that supports a variety of specification techniques including set

theory, logic, transformation rules, procedures, and object-oriented pro-

gramming. The REFINE compiler is implemented in REFINE itself as a

program transformation system; the current version produces Common
Lisp and a code generator for C is currently under development.

Particularly noteworthy are facilities for creating new languages and
re-engineering existing languages with knowledge-based compilers. Typ-

ically, a user defines a textual representation for a language and the

corresponding abstract syntax with REFINE's grammar definition facili-

ties. Then REFINE compiles a lexical analyzer, parser, and pretty-printer

from the grammar. The user can then develop a knowledge-based com-

piler using transformation rules defined on the abstract syntax.

Commercial users of REFINE typically develop software systems

three times faster than with high-level languages such as ADA and Lisp.

For example, a communication system that took 9 person-months to

develop in ADA only took 3 person-months to develop in REFINE. Pro-

gramming-language oriented applications such as compilers, program
translators, and re-engineering tools show even larger productivity

gains, usually exceeding an order of magnitude. For example, a system

to translate logic expressions to SQL database queries took 3 person-

months to develop in Lisp but only 5 person-days in REFINE. Productivity

gains over older languages are even more substantial. For example, a

computer equipment configuration system took 36 person-months to

develop in COBOL but only 1 person-month in REFINE.

314 Knowledge-based Software Engineering XX

One application of REFINE is the rapid construction of re-engineering

tools that port programs between different environments and dialects.

This application uses REFINE's language definition facilities and the

capabilities for directly specifying transformation rules. In theory, high-

level languages make it easy to port a program from one machine and
operating environment to another. In practice, popular languages such

as FORTRAN and COBOL have a maddening variety of incompatible

dialects. Thus a substantial portion of human resources in commercial

data processing is devoted to converting programs. An example is con-

verting programs written in NATURAL 1.2 to NATURAL 2.0. NATURAL
is a COBOL-like language used primarily for business applications. The
most recent version is NATURAL 2.0, which runs almost identically on

IBM mainframes and DEC equipment. The older and most widely used

version for IBM mainframes is NATURAL 1.2, which is largely incom-

patible with NATURAL 2.0. Thus customers must convert NATURAL 1.2

applications to NATURAL 2.0 and then recompile them in order to run

them on DEC equipment.

A fully automated NATURAL 1.2 -> 2.0 converter is currently under

development using REFINE. Before choosing REFINE, the customer inves-

tigated several strategies for conversion tools, including text-based

approaches and approaches using YACC and C. The customer and Rea-

soning Systems jointly developed a prototype converter using REFINE in

two weeks. The prototype included parser/printers for subsets of both

NATURAL 1.2 and NATURAL 2.0, and transformation rules that handled

several key incompatibilities between the two language versions. The
prototype was able to completely convert several small examples.

Consider the following sample conversion rule used in the NATURAL
1.2 -> 2.0 prototype converter. This rule makes a conversion that is

necessary because NATURAL 1.2 allows variables to be defined anywhere
within a program, whereas NATURAL 2.0 requires that all variable def-

initions occur within a single "data definition" clause at the beginning

of the program.

rule hoist-variable-definition (node)
variable(node)
var-fmt = variable-format (node) &

data-def-clause =

'DEFINE DATA LOCAL $old-defs END-DEFINE*
->

variable-format(node) = undefined &

new-var = make-variable(var-name, var-fmt) &

data-def-clause =

'DEFINE DATA LOCAL $old-defs,
(5)new-var END-DEFINE'

E Program Synthesis Systems 315

The terms in this rule are part of the abstract syntax denned for the

NATURAL 1.2 and 2.0 languages. In this rule, the input node is first

tested to see if it is an inline variable declaration. If so, var-fmt is set

to the format of the inline declaration. On the right-hand side of the

rule, a new variable declaration new-var is created and added to the

"data definition" clause *data-def-clause*. Also, the variable format

of node is erased, effectively deleting the inline variable declaration from

the program.

In summary, the commercially available REFINE system is based on

technology developed through program synthesis research over the last

two decades. Substantial software development productivity gains have

been achieved by customers, exceeding an order of magnitude in the area

of programming language applications.

E7. SETL

SETL (Dewar et al., 1979) is a very high-level language that provides set

theoretic data types with the conventional control structures found in

block structured languages like Pascal. It also has language constructs

for backtracking, universal quantification, and existential quantifica-

tion. The SETL project was started in the early 1970s and is an ongoing

effort at New York University. Many regard SETL as the first executable

specification language. SETL was used to construct the first verified

correct ADA compiler in 1982. Despite being a rapid prototype, this ADA
compiler actually ran faster than the hand-coded ADA compilers built at

that time.

The key issue addressed by SETL is the compilation of set data types

into efficient concrete data structures. SETL compiles sets into dynamic
linked hash tables, which provide asymptotically optimal performance

for set operations such as enumeration, membership tests, insertion, and
deletion. However, even though asymptotically optimal, there can be a

large constant time overhead for set operations implemented with these

hash tables.

SETL augments dynamic linked hash tables with BASES—auxiliary

data structures that do not have the large constant time overhead of

dynamic linked hash tables. For example, if A is a subset of B, then

BASING would represent A by a bit on each object in B. A heuristic

algorithm for choosing bases was developed and implemented for the

SETL compiler (Schonberg et al., 1981). BASING significantly reduces the

constant time overhead of dynamic linked hash tables, thus making set

operations efficient in practice.

316 Knowledge-based Software Engineering XX

Another key efficiency issue for the SETL compiler is to determine

when data structures can be shared—that is, when it is possible to pass

pointers instead of copying data structures. The SETL language has value

semantics like APL, rather than pointer semantics like LISP. Value

semantics are a higher level of abstraction than pointer semantics, but

they can lead to repeated copying of data structures especially in recur-

sive programs. The SETL compiler automatically determines when point-

ers can be passed instead of copying data structures.

E8. STRATA

The strata research system (Lowry, 1987b) synthesizes algorithms

through problem reformulation. The basic idea is illustrated in Figure

E-4.

An algorithm that solves a problem through reformulation consists

of an encode step, an algorithm to solve the reformulated problem in the

new domain, and a decode step. For example, to compute decimal arith-

metic operations, a computer first encodes the decimal numbers into

binary numbers, computes the answer in binary arithmetic, and then

decodes the result back to decimal arithmetic. A fundamental theorem

of problem reformulation (Lowry, 1989) states that whenever there is an

ADT Arithmetic

Abstract Implement

Decimal

Arithmetic

Binary

Arithmetic

7

+4

11

Encode

Decode

111

+100

1011

Run Time Reformulation

Figure E-4. Problem reformulation through abstraction, then

implementation.

E Program Synthesis Systems 317

encode/decode reformulation, the original problem and the reformulated

problem are both implementations of the same abstract problem speci-

fication. In Figure E-4 this abstract specification is the abstract data

type (ADT) for arithmetic. All concrete representations of arithmetic are

implementations of this ADT.

This theorem suggests that to synthesize an algorithm the problem

and its domain theory should first be abstracted to generate an abstract

problem specification and abstract domain theory. Then, the program
synthesis methods described in Section C can be applied to this abstract

specification. First, an abstract algorithm is designed, and then this

abstract algorithm is implemented with efficient concrete data structures

and concrete operations. If different data structures are derived than

those in the original problem specification, encode/decode functions also

need to be synthesized to reformulate problem instances at run-time.

The encode/decode run-time reformulation is a side effect of abstracting

the problem specification and then implementing the abstract algorithm

in a different representation. STRATA synthesizes algorithms in three

steps, as shown in Figure E-5.

The main contributions of STRATA are methods for abstracting prob-

lem specifications. These methods are based on a semantic theory of

problem reformulation (Lowry, 1989), developed by extending the math-

ematical theory of abstract data types (Goguen et al., 1978; Goguen and
Burstall, 1985). These methods can generate new abstract data types

because they are based on first principles. In contrast, the program
understanding systems discussed in Section B6 use predefined libraries

of abstractions. One of STRATA'S abstraction methods is to discover

behavioral equivalences and then incorporate them into the domain

Abstracted problem

specification and
domain theory

t Abstract

Original problem

specification and
domain theory

Design

Abstract

Algorithm

Implernent W

Concrete

Algorithm

Figure E-5. STRATA'S algorithm synthesis method.

318 Knowledge-based Software Engineering XX

theory. A behavioral equivalence is a relation among domain objects

which behave equivalently with respect to a problem. Behaviorally

equivalent objects can be grouped together into the same abstract object.

STRATA transforms the domain theory into a new domain theory denot-

ing these abstract objects.

STRATA is interfaced to KIDS (Section E3), which provides a shell for

the algorithm design and implementation steps. STRATA includes a

design tactic for local search algorithms (Lowry, 1988b), also known as

hill-climbing algorithms. This design tactic is similar in structure to the

divide and conquer design tactic described in Section C8. A hill-climbing

algorithm starts with a feasible solution and searches its neighborhood

to find a better solution. If a better solution is found, then this solution

becomes the current solution, and the algorithm iterates. If the current

solution is the best in its neighborhood, the algorithm returns this locally

optimal solution and then terminates.

The major issue in designing a hill-climbing algorithm is to define a

neighborhood structure over the space of feasible solutions. STRATA
does this with mathematical techniques related to abstraction through

symmetry (Lowry, 1988). A symmetry is defined by a group of transfor-

mations. STRATA'S hill-climbing design tactic first defines a group of

transformations that map feasible solutions to feasible solutions. A sub-

set of these transformations then defines the map from a feasible solution

to neighboring feasible solutions. The effectiveness of this design tactic

was demonstrated by synthesizing a variant of the simplex algorithm

from the abstract specification of linear optimization problems.

E9. ELF

Elf is a high-performance application-domain specific program synthesis

research system developed at Carnegie Mellon University (Setliff, 1988;

1989; 1989a). ELF automatically generates C source code for VLSI wire-

routing software from high-level specifications. ELF is implemented as a

rule-based software generator and currently consists of 1,400 OPS5 rules.

For a typical specification, 30,000 rules are fired to generate a wire router

with 2,500 lines of C code.

Successful Computer-Aided Design (CAD) tools, such as VLSI wire

routers, must cope with changing technology and application environ-

ments. Rapid changes in VLSI manufacturing and design technology

require constant change in CAD tools. The philosophy behind ELF is that

the appropriate place for technology-dependent information is not as run-

E Program Synthesis Systems 319

time parameters for CAD tools, but in a high-level specification given to

a generator for CAD tools. To generate wire-routing software, ELF inte-

grates application-domain knowledge with algorithm and programming
knowledge.

ELF has three key features. First, algorithms and data structures

are represented and developed at a very abstract level. A custom-

designed language called ADL (Algorithm Development Language),

which is essentially a simplified version of SETL (see Section E7), is used

to describe algorithm design schemata. ADL is based on sets and lacks

data structure implementation specifications. Instead, data structures

are specified separately by hierarchically composing simple templates

for elementary structures such as arrays and lists.

Second, wire-router design knowledge and generic program synthesis

knowledge are used to guide search, to select among candidate algorithm

design schemata for all necessary component algorithms, and to deduce

compatible data structure implementations for these components. Can-

didate representations are analyzed and modified to reflect selection

decisions. An important aspect of ELF's architecture is its logical sepa-

ration of algorithm selection and data structure selection. ELF alternates

algorithm selection decisions with data structure selection decisions to

ensure that dependencies between algorithms and data structures are

taken into account.

Third, code generation is used to transform the resulting abstract

descriptions of selected algorithms and data structures into C source

code. Code generation is an incremental, stepwise refinement process

that uses wire-router design knowledge, generic program synthesis

knowledge, and knowledge of how these two interact.

ELF has synthesized wire routers for a variety of VLSI technologies,

illustrating how its architecture copes with shifting technology. These

wire routers compared well against hand-crafted production-quality wire

routers, and were verified on both synthetic and industrial wire-routing

benchmarks. ELF has proven its ability to generate high-quality wire-

routing code.

In summary, ELF is a software generator based on AI technology.

ELF efficiently generates high-quality CAD software using application-

specific and generic program synthesis knowledge. Like current CASE
code generators, ELF selects and composes templates. However there are

substantial differences. The templates ELF composes are very high-level

algorithm schemata and data structure templates, as opposed to source

level templates. ELF also uses a sophisticated rule-based architecture for

selecting and composing templates. Finally, ELF uses stepwise refine-

ment to convert abstract algorithm and data structure specifications into

source code.

320 Knowledge-based Software Engineering XX

E.10. PhiNix

PhiNix is a transformational implementation research system that gen-

erates programs that interact with physical devices through temporal

streams of data and control (Barstow, 1988). Abstract specifications are

stated in terms of constraints on the values of input and output streams.

The target language is the Stream Machine (Barth et al., 1985), which
includes concurrently executing processes communicating and synchro-

nizing through streams. PhiNix 's specific domain of expertise is device

drivers for controlling oil well logging tools (Barstow, 1985). These tools

are inserted into an exploratory oil well to gather geological data rele-

vant to oil exploration.

PhiNix is distinguished in two ways from other transformation sys-

tems based on wide-spectrum languages. First, its target domain is

embedded software which reacts to its environment, unlike the target

domain of most program synthesis systems which produce applicative

programs that take an input, produce an output, and then terminate.

Second, this target domain requires that PhiNix's wide-spectrum lan-

guage, PhiLang, includes both applicative constructs for specification

and imperative constructs for the target language. PhiNix first trans-

forms an abstract specification into an applicative expression, and then

into imperative expressions denoting processes that consume and pro-

duce streams. An applicative operator takes input values and produces

output values, while an imperative operator takes values from a com-

putational context (e.g. global memory) and produces side effects on that

context.

PhiLang varies along two dimensions. The first dimension varies

from abstract data types such as sets to concrete data types such as

sequences. A stream is a sequence that is temporally ordered. The second

dimension varies from applicative to imperative. During transforma-

tional implementation a program will contain a mixture of applicative

and imperative constructs. PhiLang supports this mixture through envi-

ronments. An imperative environment is an applicative operator defined

in terms of imperative constructs, whereas an applicative environment
is an imperative operator defined in terms of applicative constructs.

Currently (Barstow, 1988), the language PhiLang has been defined

and implemented with enough transformations to generate a small error

correction data routine. PhiNix transformations are guided either man-
ually or through a script. In the future, a tactic and strategy language

will be developed for controlling the transformational search space.

Another future extension is to incorporate language constructs for spec-

ifying real-time performance constraints, which is an important aspect

E Program Synthesis Systems 321

of embedded software. These performance constraints will help to guide

the search in program synthesis.

In summary, the major significance of the PhiNix project is the

extension of the transformational implementation paradigm to the syn-

thesis of embedded, reactive software. This type of software is an impor-

tant component of many engineering applications.

FURTHER READINGS IN KNOWLEDGE
BASED SOFTWARE ENGINEERING

Survey Articles

"Artificial Intelligence and Software Engineering," David Barstow, 9th Inter-

national Conference on Software Engineering, Monterey, CA., pp. 200-211,

March 1987.

"Automatic Programming: Myths and Prospects", C. Rich and R.C. Waters, IEEE
Computer, Vol 21(8) pp. 40-51, August 1988.

"Knowledge-Based Programming: A Survey of Program Design and Construction

Techniques," Allen T. Goldberg, IEEE Transactions on Software Engineer-

ing, Vol. SE-12 (7) pp. 752-768, July 1986

"Program Transformation Systems," Helmut Partsch and R. Steinbruggen, ACM
Computing Surveys, Vol 15(3) pp. 199-236, September 1983

Special Issues

IEEE Expert, Special issue on "Building Intelligence into Software Engineering,"

Vol. 1(4), 1986

IEEE Transactions on Software Engineering, Special issue on "Artificial Intel-

ligence and Software Engineering," November 1985, Volume SE-11, Number
11, Jack Mostow (Ed.)

Books

Algorithm Synthesis: A comparative study, David Steier and Penny Anderson,

Springer-Verlag, New York, 1989

Artificial Intelligence and Software Engineering, Derek Partridge (Ed.), Ablex

Publishers, New York, 1989

Automatic Program Construction Techniques, Alan Biermann, Gerard Guiho,

and Yves Kodratoff (Eds.), Macmillan Publishing Company, 1984

Automating Software Design, Proceedings of Workshops held at AAAI-88 and

IJCAI-89, Michael Lowry and Robert McCartney (Eds.), AAAI Press, 1990

IEEE Tutorial on New Paradigms for Software Development, W. W. Agresti (Ed.),

IEEE Computer Society Press, 1986

Readings in Artificial Intelligence and Software Engineering, Charles Rich and

Richard Waters (Eds.), Morgan Kaufmann Publishers, 1986

322

Chapter XXI

Qualitative Physics

Yumi Iwasaki—Stanford University

CHAPTER XXI: QUALITATIVE PHYSICS

A. Overview I 325
B. Qualitative Calculus I 339

C. Reasoning About Behavior Using Qualitative Calculus I 350
1. Qualitative Behavior and Qualitative States I 350
2. State Transitions I 351

3. Difficulties in Qualitative Prediction I 357
D. ENVISION I 362

1. Device Model I 362

2. Predicting Behavior I 366
3. Conclusion I 368

E. Qualitative Process Theory I 371

1. Representation of Objects I 372

2. Process Representation I 373
3. Predicting Behavior I 376
4. Conclusion I 380

F. QSIM I 382

G. Causal Ordering I 392

H. Causal Action!Event-based Approaches I 403

1. Commonsense Algorithm I 403

2. Functional Representation ofDevices I 406
3. Consolidation I 409
4. Conclusion I 411

A. OVERVIEW

Qualitative physics is an area of artificial intelligence concerned with

reasoning qualitatively about the behavior of physical systems. Physical

systems include any systems, natural or man-made, operating under the

laws of physics. Although numerical simulation using computers has

been a tool for predicting behaviors of systems in many disciplines of

natural and social sciences for a long time, interests in the topic of

qualitative physics has grown very rapidly in the recent years. Quali-

tative physics is different from numerical simulation of physical system

behavior in that reasoning about behavior is carried out not at the level

of a collection of numerical values of variables at different time points,

but at a more abstract level of qualitative characteristics of its behavior.

Many of the qualitative physics systems described in this chapter per-

form qualitative simulation or prediction, but the goals of qualitative

physics go beyond being able to simulate behavior. The goals are to

understand the types of knowledge required for carrying out qualitative

reasoning about behavior, to develop a general representation scheme
for such knowledge, and to develop procedures for making useful infer-

ences about the behavior of physical systems.

This chapter gives an overview of qualitative physics, discussing

basic issues and techniques and describing some people's work in the

field. The discussion in this chapter focuses on what can be called qual-

itative dynamics—qualitative representation of time-varying quantities

and its use in reasoning about behavior.

One important type of physical reasoning that this chapter does not

attempt to cover is reasoning about shapes and motion. Much work has

been done on spatial reasoning in the field of robotics, and also some
researchers in qualitative physics have been studying the problem of

qualitative spatial reasoning. We do not attempt to cover this area in

this chapter because issues involved in spatial reasoning are considera-

bly different from and in some ways much more difficult than issues in

qualitative dynamics. For the readers interested in the problem of qual-

itative spatial reasoning, references are included at the end of this

section.

Motivations for Qualitative Physics

In his work on naive physics (Hayes, 1978 and 1979) Hayes at-

tempted to construct a formalization of ordinary, everyday knowledge

325

326 Qualitative Physics XXI

about the physical world. This work provided much inspiration to the

research in qualitative physics. Today, modeling commonsense physical

reasoning is still an important goal for some researchers in qualitative

physics, but there are many more motivations for studying qualitative

physics that go beyond the scope of commonsense reasoning.

Commonsense Reasoning About the Physical World. People

perform commonsense reasoning all the time about everyday physical

situations in daily life, and they seem to do so without much effort. For

example, if we put a kettle filled with water on a stove, we can predict

that the water will eventually start boiling, the amount of water in the

kettle will decrease and eventually the kettle will be empty. If we throw

a ball up into the air, we can easily predict that at first the ball will

keep rising for a while with the upward speed steadily decreasing. Even-

tually the upward speed will reach and the ball will start falling. The
ball will continue to fall with an increasing downward speed until it

eventually hits the ground. Though we could certainly set up mathe-

matical equations and solve them to compute the trajectory of the ball,

people make such a prediction even without knowing mathematics nor

the precise physical laws. People's intuitive physical reasoning in these

cases seems very different from that taught in formal physics classes.

One of the motivations for qualitative physics research is the desire to

identify the types of knowledge required to perform commonsense phys-

ical reasoning and also to learn how people use such knowledge.

Qualitative Reasoning. People often reason qualitatively not only

about everyday situations, but also about situations that are beyond the

scope of commonsense reasoning and that require much specialized

knowledge of the domain. There are many advantages to being able to

reason qualitatively about a complex situation.

In many areas of natural and social sciences, we have only qualita-

tive knowledge about behavior. Precise information may be unavailable

both about variable values or about relations among variables. For exam-

ple, in ecology, a person studying the population balance between foxes

and rabbits may know that an increase in the population of foxes tends

to cause the population of rabbits to decrease because foxes prey on

rabbits. He may also know that a decrease in rabbit population has a

negative effect on the fox population because there will be less food for

foxes. However, it may be impossible to know the precise form of the

mathematical relations between the two populations implied by these

statements. Even then, we may need to make some qualitative predic-

tions, and people in fact do so in the absence of quantitative information.

Some problems are simply too difficult to completely solve analyti-

cally. Numerical simulation, a tool widely used for prediction of behavior

when an analytic solution is unavailable, may require more computa-

tional efforts than it is worth. In such circumstances, it may still be

A Overview 327

possible to make some statements about the future course of events

through a qualitative analysis of the problem. Even when an analytic or

numerical solution is possible, a detailed quantitative prediction may be

unnecessary. If all that is desired is a qualitative description of behavior,

it may be more efficient to figure out roughly what will happen using

qualitative information, and then to resort to more detailed quantitative

reasoning only when it is necessary to do so to resolve ambiguities in

the prediction.

Model-based Reasoning from First Principles. The last decade

has seen a great success of expert systems research (see Chapters VII,

VIII, and IX), and many programs have been built that achieve human
expert level performance in their area of application. The high level of

performance of these expert systems is made possible by their rich body

of heuristic knowledge that enables them to search a very large search

space efficiently. Reliance on heuristic knowledge acquired from experts

makes it possible to build a system relatively easily that achieves expert

level performance. However, their lack of explicit representation of more
fundamental knowledge about the domain that underlies heuristic

knowledge causes some serious problems for these systems. One of the

main goals for research described in this chapter is to study reasoning

from fundamental knowledge of the domain to overcome these problems.

One problem with conventional heuristic reasoning systems is that

their performance degrades sharply outside their narrow domain of

expertise. When a human expert encounters a novel problem for which

he does not have hard-and-fast rules, he can still try to solve the problem

using more basic knowledge of the domain. However, if a given problem

falls slightly outside its area of expertise, a system that lacks funda-

mental knowledge of the domain can only give up or, worse yet, it may
draw an erroneous conclusion by failing to recognize the limitation of its

own knowledge.

Another problem is the inability to transfer knowledge to other tasks.

Since their knowledge is encoded as heuristic associations that are spe-

cific to the particular type of tasks they are designed to solve, it is not

easily reusable for other tasks even in the same domain. For example,

the rule that says, "If the gas mileage is below normal and the color of

the exhaust gas is blue, clean the carburetor" may be useful for diag-

nosing automobile malfunctions, but it cannot be used for designing

better cars even though the underlying mechanisms and physical prin-

ciples are the same for both tasks.

These problems of conventional expert systems result from their lack

of more fundamental knowledge of the domain. Research in qualitative

physics tries to address this problem by reasoning with a detailed domain
model, i.e., an explicit representation of the causal mechanisms and first

principles of the domain that underlie heuristic knowledge.

328 Qualitative Physics XXI

Temporal Reasoning. Another motivation for research on quali-

tative physics is the need for systems to reason about dynamic aspects

of problems, i.e., reasoning about how situations evolve over time. Many
expert systems reason qualitatively about problems, but most of their

reasoning is static analysis and involves only limited analysis of dynamic
aspects of the problems because they lack a well-developed notion of time

and a sophisticated temporal reasoning mechanism. Numerical simula-

tion programs, on the other hand, can reason about behavior over time,

but they require an extensive amount of numerical computation. One
goal of qualitative physics research is to understand what it takes to

perform qualitative temporal reasoning about behavior and how to rep-

resent necessary knowledge in such a way as to enable problem solving.

Allen's temporal logic based on time intervals instead of time points

provides a basis for the representation of temporal states employed by

several qualitative physics systems (Allen, 1984).

Causal Reasoning. Another important aspect of human reasoning

about the physical world is causal reasoning. There is little doubt that

causality plays an important role in human understanding of the world.

Although a formal treatment of the foundations of science avoids the

notion of causality, in informal explanations of phenomena, statements

of the form "A caused B" are exceedingly common. If an artificial intel-

ligence program is to provide an intuitive causal explanation, it needs

to have an operational concept of causality and knowledge of causal

relations in the world.

Conventional heuristic reasoning systems perform poorly here, too.

The explanatory power of a reasoning system based on compiled heuristic

knowledge tends to be limited by its inability to provide causal accounts.

When a human expert is asked to explain his conclusion, he can do so

in terms of fundamental causal mechanisms of the domain. When a

heuristic program is asked to explain its reasoning, it can only do so in

terms of the heuristics used to draw the conclusion. Such explanations

are usually not sufficient causal explanations because in the process of

compiling heuristic knowledge, knowledge about intermediate causal

steps is left out or combined with other types of knowledge for the sake

of efficiency.

This difficulty of generating intuitive causal explanations exists also

when a problem is solved analytically or numerically. The result of

numerical simulation describes behavior as a set of numerical values of

variables at successive time points, but it does not constitute a causal

explanation of why things behave as they do. When a problem is solved

analytically, a person must interpret the solution so that its intuitive

meaning can be understood. Neither the solution nor the process (prob-

lem-solving trace) of obtaining it provides a causal explanation.

By reasoning from knowledge of the structure and physical principles

A Overview 329

underlying functions in a manner similar to that of humans, qualitative

physics programs not only draw conclusions about behavior but also

provide intuitive, causal explanation of how the behavior is achieved.

Some programs (see Sections E, F, and H) described in this chapter rely

on the knowledge of causal relations provided in their knowledge base.

Others (see Sections D and G) attempt to infer causal relations in a given

model.

What Is Qualitative Physics?

Four tasks underlie describing physical systems. They are listed here

in ascending order of the amount of information and efforts required:

1. Identifying the relevant objects, variables, and parameters in the

domain.

2. Identifying relations among those variables and parameters, includ-

ing not only mathematical but also causal relations.

3. Describing behavior of the system in terms of qualitative character-

istics (increasing, decreasing, oscillating, melting, boiling, and so on)

of the changes over time in the variable values.

4. Predicting the magnitudes of such changes.

Qualitative physics is concerned with tasks 1 through 3. In contrast,

physics is concerned with all four tasks. Tasks 1 and 2 are building a

model of the domain, and tasks 3 and 4 make use of the model for

reasoning purposes.

Consider the following questions and answers about a physical sit-

uation:

Question: A few ice cubes are put in a glass. If the glass is left on a

table in a room, what will eventually happen to the ice?

Answer: Since ice is at a lower temperature than the surrounding

air, heat will flow from the air to the ice, causing the tem-

perature of the ice to rise until it reaches the freezing tem-

perature. At that point, the ice will start to melt, and there

will be a mixture of ice and water in the glass for a while,

during which time the temperature of the mixture will

remain constant at the freezing temperature. When the ice

has completely melted, the temperature of the water will

start to rise again and will continue to do so until it reaches

room temperature. After that point, the temperature of the

water will remain constant indefinitely.

Question: What will happen if, instead of leaving the glass on a table,

I put it in a refrigerator?

330 Qualitative Physics XXI

Answer: Provided that you don't put the glass in the freezer, since

the air in the refrigerator must be cooler than the room
temperature, it will take longer for the temperature of the

ice to go up to the freezing temperature and to melt. But it

eventually will, and after the ice melts, the temperature of

the water will go up to the temperature of the air in the

refrigerator and remain constant there.

It is easy for humans to produce and to understand explanations like

these. Two important characteristics of the type of inferences demon-
strated by these explanations are their qualitativeness and their reliance

on the knowledge of fundamental principles (such as physical laws)

governing the ways things behave in the domain. The area of research

described in this chapter is concerned with building programs that can

make these types of inferences about the behavior of physical systems.

Qualitative Inference. As the title of the chapter suggests, the

qualitativeness of reasoning is an important characteristics of the re-

search described here, and it distinguishes the field from traditional

numerical simulation or automated physics. Inference is qualitative in

both the information used and the conclusions drawn; it uses imprecise

information about the values of quantities, and nonquantitative infor-

mation such as causality, stability, and so on.

Imprecise information about a quantity can take different forms, for

example, an interval in which the real value lies, whether it is decreas-

ing, steady, or increasing, and so on. Because information about values

of quantities is imprecise, the information about functional relations

among quantities can be imprecise, also. Functional relations can be

described imprecisely as in "x tends to decrease as y increases." Because

of this imprecision in the knowledge used, most of the programs perform

some type of qualitative simulation of behavior in order to infer possible

behavior instead of trying to solve functional relations analytically.

Explanations produced by these programs are also qualitative in the

sense that they are given in terms of some salient qualitative character-

istics of the way things change such as ice melting, the temperature

rising, something causing something else, and so on.

For example, in the questions in Section A2, no precise numerical

data are given in the description nor are needed to produce the answers.

Both the information given explicitly and assumptions made implicitly

about quantities are at most ordinal; for example, room temperature is

normally higher than the freezing temperature of water and the tem-

perature of ice is probably lower than or at most equal to the freezing

temperature. Also, it requires only qualitative knowledge of thermo-

dynamic laws; for instance, the heat flows from a body of a higher

temperature to a body of a lower temperature, and the larger the tern-

A Overview 331

perature difference, the higher the heat flow rate. It is not necessary to

know the exact mathematical form of the laws.

Note, however, that emphasis on qualitative reasoning is certainly

not unique to this area of artificial intelligence research. In fact, the

reasoning performed by most artificial intelligence programs is more
heuristic and qualitative than numerical or analytic. Even before arti-

ficial intelligence became an established field, much work had been done

in many fields of engineering and science (for example, econometrics,

ecology, applied mathematics, control theory, and so on) on qualitative

analysis of system behavior.

Reasoning from Domain Principles. Another important char-

acteristic of this research area is having an explicit domain model. A
model in domains of physical systems consists of the knowledge of the

physical structure of the system as well as physical principles governing

behavior in the domain. The former includes knowledge of the objects

involved, their physical relations to each other, and their general behav-

ioral characteristics. The latter include physical laws governing the ways
various aspects of the objects change or the ways they interact. Quali-

tative physics programs infer and explain the behavior of a system as

the consequence of objects changing states and interacting with each

other according to physical principles.

Moreover, efforts are made to make the representation of the domain
knowledge as independent as possible of specific application goals such

as diagnosis, prediction, or teaching. In most expert systems that use

heuristic knowledge, the knowledge is encoded in a format that is par-

ticularly efficient for its application goal. However, a format that is

convenient for some specific application, such as diagnosing faults, may
obscure the underlying domain principles to which knowledge used in

diagnosis must ultimately be reducible. For example, a rule in a diag-

nostic program for automobile engines may state, "If the engine temper-

ature is abnormally high but the fan is working, stop the engine and
check the oil." The basic domain knowledge about the structure of a car

engine and how it works is nowhere explicit. However, rules like this

one, in which intermediate causal steps are compiled out, linking their

antecedent and conclusion directly, are efficient for some purposes. The
terms "shallow knowledge" and "deep knowledge" are sometimes used

to distinguish compiled knowledge and more basic knowledge about the

domain. Shallow knowledge refers to compiled knowledge, and deep

knowledge refers to more fundamental knowledge of the domain.

Obviously the depth of knowledge is a relative matter. In troubleshooting

computer hardware, a knowledge of input/output behavior of individual

chip and their interconnections that together produce the overall behav-

ior of the computer can be considered deep knowledge as compared to

332 Qualitative Physics XXI

empirical knowledge such as "when this symptom is observed, replace

the board A." However, such knowledge of behavior in terms of input/

output behavior of chip may be considered shallow when we are con-

cerned with how such I/O behavior is achieved by actual electric circuits

on the chip.

What makes the domain model explicit or implicit is not the absolute

"depth" of knowledge but whether or not a distinction is made between
different types of knowledge. Heuristic knowledge arises from different

sources, including structural knowledge, laws of nature, knowledge of

the functions of subcomponents, empirical or statistical knowledge about

what faults are more likely to occur than others, and so on. (Examples

of several different types of knowledge underlying the rules in MYCIN
knowledge base are discussed by Clancey (1983).) Expert systems relying

on heuristic rules make no distinctions between these different types of

knowledge because pieces of different types are compiled into one unit

of knowledge such as a rule. The domain model is made explicit when
distinctions between different types of knowledge and the roles that each

of them play in the problem-solving process is made clear. The programs

described in this chapter all attempt explicit representation of the do-

main model in this sense.

In relation to explicit representations of the domain model, physical

systems must be explained. The requirement of an explicit domain model

makes domains like the physical world, in which we have knowledge of

fundamental principles, more suitable for studying qualitative reasoning

than other domains in which these principles are not well understood.

In medicine, for example, most of the knowledge used for diagnosing and
treating diseases is empirical, not based on a model of the relevant

biological and chemical mechanisms. The domains dealing with man-
made physical devices are particularly suitable because both the physical

structure of the device and the physical laws governing the functioning

of the device are well understood. In fact, most of the programs discussed

in this chapter work in such domains. However, qualitative reasoning

techniques that are developed should be, in principle, applicable to a

wider range of domains, including natural and social sciences, as long

as some theories exist about causal mechanisms in the domain, based on

which the user can build a model to explain and predict behavior.

Physics, Naive Physics, and Expert Qualitative Reasoning.
The desire to understand people's commonsense physical reasoning pro-

vided much initial motivation for qualitative physics research. It still is

an important goal for many researchers. However, a clear distinction

must be made between this and the goal of reasoning qualitatively about

complex situations, which is what most qualitative physics programs are

currently pursuing.

In complex domains, human experts with much knowledge of under-

A Overview 333

lying physical principles can set up equations and attempt to solve them
numerically or analytically to answer a given question about the domain.

However, before attempting a detailed solution, experts often reason

qualitatively in a way that is beyond the scope of commonsense physical

reasoning. Even though both are qualitative, such expert reasoning

appears to be very different from commonsense physical reasoning.

Besides qualitativeness of inference, there is yet another feature

common to naive reasoning and expert qualitative reasoning that distin-

guishes the two from formal physics. It is the emphasis in qualitative

physics on interpretation of the solution. The formal physics approach to

reasoning about a physical situation involves setting up equations that

describe the situation. Solving them gives a mathematical answer, which

still needs to be interpreted by a human being for it to "make sense" and

be useful. "Making sense" in this case involves describing the actual

implications of the formal answer in the physical world. For example,

an answer that the height of a ball is given by x(t) = jc - gt
2
/2 can be

obtained by a formal physics approach, but to interpret the answer, to

provide an explanation such as "the ball will keep falling at an ever-

increasing speed because of the gravitational force pulling the ball con-

stantly toward the earth" is a different matter. The mathematical

approach of formal physics does not help us produce such an interpre-

tation, but a qualitative physics answer will look more like the inter-

pretation than the mathematical expression. Producing this type of

explanation (or interpretation) is in fact a very crucial step in the entire

endeavor of physical reasoning, and it is hoped that the research in

qualitative physics will complement the formal physics approach by
shedding light on this interpretation process.

Basic Issues

Many issues must be investigated to build a system to reason qual-

itatively about behavior based on an explicit domain model. These in-

clude representation of the model of the domain, principles along which

such models are to be built, representation and reasoning with causality,

and complexity of the reasoning process. There are also different tasks

that qualitative physics systems perform. This section briefly discusses

each of these topics.

Representation. An important characteristic of programs dis-

cussed in this chapter is the way a domain model is represented in the

knowledge base. Two main types of knowledge need to be represented,

structural knowledge and behavioral knowledge. Since the method of

representation of the domain knowledge depends very much on the choice

of ontological primitives, we discuss them first.

334 Qualitative Physics XXI

Ontological primitives. All the work to be discussed is concerned

in some way with explaining how behavior is brought about. Such

explanations are given in terms of basic facts about the domain and

their interactions. The choice of which types of facts will be the primi-

tives of the domain representation is an important characteristic of

qualitative physics programs, de Kleer and Brown's ENVISION program
(see Section D) takes the topological structure of a device, in terms of

components and their interconnections, to be the primitives. In Forbus's

Qualitative Process Theory (see Section E), the notion of physical pro-

cesses is primitive. In causal action-based approaches such as those by
Chandrasekaran and his colleagues (see Section H2), actions, events,

and states, and the causal links to connect them are the primitives.

Structural knowledge. Structural knowledge is about objects in

the domain and their physical configurations. In most programs de-

scribed in this chapter, the structure of a device is represented in terms

of its components and physical connections among components.

Behavioral knowledge. Behavioral knowledge includes knowl-

edge about the laws of physics and functions of subcomponents. Behav-

ioral knowledge in the Commonsense Algorithm (see Section H) is

represented by various types of causal links connecting events. Simi-

larly, in work by Chandrasekaran and his colleagues, behavioral knowl-

edge is represented by a sequence of states connected by causal links

denoting behaviors or functions of subcomponents. Other programs rep-

resent behavioral knowledge as qualitative mathematical relations

among variables pertaining to various aspects of the objects in the

domain. Such mathematical relations must come from various sources,

for example, intrinsic characteristics of objects in the domain or influ-

ences of active physical processes.

In ENVISION, such mathematical relations must come from the

knowledge of physical structure of the domain. In Iwasaki and Simon's

work (see Section G), they come from the notion of mechanisms in the

domain. In the Qualitative Process Theory, behavioral knowledge takes

the form of definitions of various types of physical processes that are

possible in the domain as well as behavioral characteristics of various

types of objects in the domain.

Modeling Principles. Modeling refers to the process of building a

model of a domain. The quality of any inferences made about the domain
depends very much on the model as well as on the reasoning scheme

employed. If a scheme for reasoning about physical situations is to dem-

onstrate a wide range of applicability, its model of the domain must be

constructed according to some general principles to guarantee a high

level of objectivity of the model.

de Kleer and Brown's Locality Principle (see Section D) states that

effects must propagate locally through specified connections. In quali-

tative physics, the locality of two locations is defined by whether or not

A Overview 335

there is some direct physical connection between the two. For example,

in the domain of electric circuits, locality is determined by whether or

not two points are represented in the structural representation as being

directly connected by wire. However, this definition of locality is ob-

viously too narrow for general application as can be seen from the fact

that in a domain dealing with forces that act over a distance, such as

electro-magnetic force or gravity, propagation of effects does not require

any physical connections. In general, whether or not direct propagation

of effects is allowed depends on what types of interactions are relevant

for bringing about behavior.

de Kleer and Brown's No-Function-in-Structure Principle states that

a description of a part of a device should not presume the functioning of

the whole. This principle has the same kind of difficulty as the Locality

Principle. Since it is not possible to describe the behavior of a part in all

possible ways, we must decide what particular aspect of the behavior to

represent. In other words, behavior can only be described in some rea-

soning context. And the particular aspect chosen for description must be

the one relevant to the expected behavior of the whole if the knowledge

is to be useful at all.

Simon's causal ordering analysis (see Section G) requires that the

system of equations comprising a model be self-contained i.e., the same
number of equations as variables, and that each equation constituting a

model represent a conceptually distinct mechanism in the situation.

These requirements force all internal and external mechanisms influ-

encing variables to be clearly identified. However, a model builder is still

left with the problem ofhow to identify conceptually distinct mechanisms
or that of how to determine whether a given equation represents such a

mechanism.

Although clearly these principles cannot be achieved in their strict

sense and they can only be approximated to a degree, they still provide

good guidelines for building a model that is as free as possible of hidden

assumptions about what its behavior should be. When building a model,

it is essential to explicitly state the underlying assumptions to clarify

the limitation of its applicability.

Causality. Explanations of behavior must show how a structure

and physical laws ultimately give rise to observed or predicted behavior

through a series of causal interactions. Effects in one part of a model
can be propagated to other parts to cause further effects. The programs

described in this chapter have several different ways of handling cau-

sality. Some (see Section H) have a predefined knowledge of causal rela-

tions between events, and causal relations are considered primitives for

these programs. In the Qualitative Process Theory, knowledge of causal

relations is given in the definitions of physical processes, which are

considered to be the medium to transmit causality. ENVISION defines

336 Qualitative Physics XXI

causality based on the way effects of a disturbance are propagated to

other parts of the model of a device during the process of predicting its

behavior. Iwasaki and Simon determine causal relations among the var-

iables of a system based on the notion of causal ordering in a system of

equations.

Qualitative Reasoning and Complexities. We have emphasized

qualitativeness of reasoning as one of the defining characteristics of this

field. In actually building a program, this is accomplished by reasoning

about changes not with actual values of quantities but with their qual-

itative features such as the signs of the values and the direction (increas-

ing, decreasing, or steady) in which they are changing, ordinal relations

among them, and so on. It was hoped that by using only qualitative

information, we could predict most of the important aspects of the be-

havior with much less computational effort than would otherwise be

required.

However, using qualitative information almost always means that

inferences are highly ambiguous. For example, the initial behavior of a

ball thrown straight up into the air is that its vertical position is positive

and increasing, zero being defined as ground level and positive being

above the ground. This description alone does not even allow us to

determine whether or not it will stop rising eventually. Even if the

information that the upward speed is decreasing is added, we cannot

answer this question because the possibility is not ruled out that the

upward speed approaches zero asymptotically. A prediction based on this

type of qualitative information is highly ambiguous as it predicts many
possible courses of behavior without the means to select the correct or

the most likely ones. In fact, the process of predicting qualitative behav-

ior is combinatorially explosive.

Therefore, it becomes important both to control combinatorial explo-

sion and to eliminate spurious behaviors as much as possible by adding

information, for example, additional assumptions, domain specific heu-

ristics, teleological knowledge of components, and information on higher

order derivatives. Exploiting abstraction hierarchies is also important

in reducing complexity.

Tasks Performed. Most qualitative physics systems perform some
type of prediction or simulation. Several different types of tasks fall into

this category. One is prediction of the device behavior over time; deter-

mining a likely course of future behavior, given a representation of a

device and some initial conditions. The word "envisioning" is often used

to refer to this activity. There are several ways to represent behavior

over time when this type of prediction is carried out. In ENVISION and
QSIM (see Section F), behavior over time is represented as a sequence of

qualitative states, defined by a set of qualitative value assignments to

variables. In the Qualitative Process Theory, on the other hand, behavior

A Overview 337

is represented by instances of physical objects and processes coming into

existence or disappearing during some time interval, as a result of

changes in the world, and causing more changes in turn. An advantage

of the latter representation is that parts of the world that do not interact

may be reasoned about separately.

Other related types of prediction involve the prediction of effects of

some external disturbance or of some change in a system parameter.

They are called disturbance analysis or comparative analysis. For exam-

ple, what will happen to the behavior of a mass-spring system if the

block is replaced by a heavier one? Or, what will happen to the efficiency

of the coal-burning boiler if the atmospheric pressure increases? If the

system is assumed to be in equilibrium when the disturbance happens,

will it return to equilibrium after some time?

Another task, similar to prediction, is consolidation, studied by

Bylander (see Section H3). Consolidation is a process of generating

behavior descriptions of a device by combining behavior descriptions of

its components. The output is not a prediction of an actual behavior but

behavioral knowledge of the device that can be used, for example, by a

simulation program.

In this Chapter

The remainder of this chapter is organized as follows. Section B gives

the basics of the qualitative calculus used by many qualitative physics

programs to represent and reason about quantities and the functional

relations among them. Section C goes on to describe how this calculus

can be used to reason about behavior over time. The rest of the chapter

describes various qualitative physics programs. Section D describes de

Kleer and Brown's work on the program called ENVISION. Section E
discusses Forbus's Qualitative Process Theory. Section F discusses Kui-

pers's qualitative simulation program, QSIM. Section G describes Iwasaki

and Simon's work on Causal Ordering and their program called CAOS.
All these approaches use qualitative functional relations among varia-

bles to describe behavior. In contrast, the work described in Section H,

including the Commonsense Algorithm of Rieger and Grinberg, the func-

tional representation of Chandrasekaran, and consolidation of Bylander,

employs representation in terms of causal states and links.

References

See Bobrow (1984) for a brief summary of issues in qualitative phys-

ics research. Hayes' work on naive physics is described in Hayes (1978

and 1979). Fishwick (1988) and Rajagopaian (1986) survey qualitative

reasoning and modeling from the standpoint of computer simulation.

338 Qualitative Physics XXI

Clancey (1983) discusses different types of knowledge in MYCIN knowl-

edge base.

References in qualitative spatial reasoning include Forbus (1981),

Faltings (1987a and 1987b), Davis (1986), Nielsen (1988), and Joskowicz

(1987). Forbus (1987) discusses the difficulties in establishing a general

framework for qualitative spatial reasoning and proposes mixed quan-

titative and qualitative approach.

B. QUALITATIVE CALCULUS

The programs discussed in this chapter reason qualitatively as people

do about physical phenomena. In this section, we describe what it means
to reason qualitatively. In particular, we describe qualitative calculi that

many programs use to reason qualitatively about quantities.

To reason qualitatively is to reason with information that is less

precise than actual numerical data such as the signs, relative magni-

tudes, and the directions of change in variable values. Since these data

are imprecise, our conclusions will be imprecise also. However in many
situations, imprecise conclusions are sufficient or they are the best we
can hope for. Consider the following examples:

Question: If a rabbit and a turtle run a race of the distance of one

block, who will win the race?

Answer: The rabbit will probably win because a rabbit can run faster

than a turtle.

Question: If an ice cube is left at the room temperature, what will

eventually happen to the ice cube?

Answer: The temperature of ice is 0°C or less, and the normal room
temperature is above 0°C. Since the heat flows from an object

at a higher temperature to one at a lower temperature, heat

will flow into the ice cube from the surrounding atmosphere.

As a result, the ice will eventually melt.

We do not need to know the absolute speeds of the rabbit and the

turtle, or the length of the block, or the temperatures of the ice cube and
the ambient air, to solve these problems. The values of these variables

can be imprecise. Signs and ordinal relations will suffice. Observe,

though, that our answers are themselves necessarily qualitative: "The

rabbit will reach the goal before the turtle." "The ice cube will melt

eventually."

Imprecise knowledge of quantities and relations between quantities

are expressed in terms of qualitative variables, qualitative equations,

and qualitative inequalities. The value of a usual (quantitative) variable

specifies only one element in the set of possible values. If the set is the

entire real number line, a value represents a specific point. On the other

hand, the value of a qualitative variable can represent an element as

well as a set of elements.

339

340 Qualitative Physics XXI

Functional relations also can be described qualitatively. Take, for

instance, Hooke's law of ideal springs, which is expressed as

F = kX

where F is the force on the spring, k is the spring constant, and X is the

distance from the equilibrium point. This relation can be described qual-

itatively as: "The stronger the force on the spring, the larger the dis-

placement from the equilibrium position."

Qualitative variables are constructed as follows. For a variable with

a continuous domain, the entire domain is subdivided into a finite num-
ber of nonoverlapping subintervals, and all values in the same interval

are treated as equivalent. The qualitative value of a variable, then, is

the name of the interval in which its actual numerical value lies.

Subdividing the continuous domain of a variable is counterproductive

if we lose important information about the behavior of physical systems

by doing so. Ideally the values at the boundaries between subintervals

should reflect significant changes in behavior, whereas behavior within

a subinterval should be qualitatively uniform. One such significant value

is 0°C for the temperature ofwater because the behavior ofwater changes

significantly as water changes between solid and liquid phases at that

temperature. The behaviors of cool water and cold water are not notice-

ably different, but behavior of water and ice are so qualitatively different

that our language gives them different names.

Boundary values used to subdivide a continuous domain are called

landmark values or distinguished values. A variable can have any num-
ber of landmark values at which behavior changes significantly, but

qualitative reasoning programs usually assume their number to be finite.

The most common subdivision of continuous domains is into three inter-

vals: negative, zero, and positive. We will use this subdivision in the

following description of the qualitative calculus, but the discussion can

obviously be extended to cases where different quantizations are used.

One significant aspect of this particular subdivision into negative num-
bers, zero, and positive numbers is that when a variable represents the

rate of change in the value of some quantity, the value of the qualitative

variable indicates whether the quantity is decreasing, constant, or

increasing.

Qualitative Arithmetic Rules

Qualitative calculus is calculus of intervals instead of real numbers.
In this section, we subdivide real numbers into three intervals: (-00, 0),

[0, 0], and (0, +00). We denote these three intervals by -, 0, and + .

Qualitative variables take these values only. In addition, we assume that

all the variables are continuous and differentiate everywhere. The nota-

B Qualitative Calculus 341

tion [x] denotes the qualitative variable corresponding to the quantita-

tive variable x. The relation between x and [x] is denned as follows:

[x]

[x]

[x]

+ iff x >
iff ^ =

- iff x <

The value of [x] is thus the sign of the value of x. The brackets []

can be thought of as the operator that generates a qualitative variable

given a quantitative variable.

Qualitative equations and inequalities involve only qualitative var-

iables. Because they are relations among signs of variables, the condi-

tions on the actual values of variables represented by these relations are

weaker than those represented by their quantitative counterparts. For

example, the following quantitative equation represents a relation be-

tween the variables x and y:

c\x + ciy =

where d and c2 are positive constants. The qualitative version of this

equation is as follows:

[x] + [y] = 0.

The qualitative equation correctly expresses that y must be if x is

0, and if not, that x and y are of opposite signs, as implied by the original

equation. However, the information, also implied by the original equa-

tion, that

£2

is lost in the qualitative equation.

The meaning of some qualitative calculus operators and qualitative

equality and inequality are denned as follows. (Note that some values

are undefined and denoted by "?".)

Addition: M + W
^\ [x]

[yi*\ + -

+ + + ?

+ -
— ? — —

Subtraction: [x] --M
^\ M
M>N^ + -

+ ? - -

+ -
- + + ?

342 Qualitative Physics XXI

Multiplication: [x] x [y]\m
M \^ + -

+ + -

- - +

Unary Minus: -[x]. . . unary minus x

[x] ~[x]

+ —

- +

Qualitative Equality: [x] = [y]

N.M
M ^\ + -

+ T F F
F T F

- F F T

Qualitative Inequality: [x] > [y]

\w
M \^ + -

+ F F F
T F F

- T T F

With these definitions, quantitative equations can be converted to

qualitative equations. Consider the following examples, where x and y
are variables, and c is a constant.

Quantitative Equation Qualitative Equation

1. x + y = z [x] + [y] = [z]

2. x - y = z [x] - [y] = [z]

3. X X y = z [x] x [y] = [z]

4. x + cy = z

Case 1 c = [x] = [z]

Case 2 c > [x] + [y] = [z]

Case 3 c < [x] - [y] = [z]

Observe that in example^ 3 and 4, -both multiplication and division

in quantitative equations become multiplication in the qualitative equa-

tions: No division operator is needed in this qualitative calculus of signs.

Also, constant coefficients in qualitative equations are dropped but their

signs are maintained in the qualitative equations.

B Qualitative Calculus 343

Qualitative Derivatives

Qualitative physics is concerned with the dynamic behavior of the

physical world, but knowing whether quantities are negative, zero, or

positive only tells us about the state of the world, not about its behavior.

However, qualitative variables can describe behavior when they stand

for time derivatives of quantities. The qualitative derivative of x is

denned as [dx/dt], the qualitative variable of the derivative of x. We will

write [dx] instead of [dx/dt] to designate the qualitative derivative of x

to simplify the notation. Qualitative derivatives are important for

describing behavior because the value of a qualitative derivative indi-

cates how the value of the variable is changing, as follows:

[dx] Direction of Change in x

Increasing

Steady

Decreasing

With equations of qualitative variables and derivatives, we can for-

mulate qualitative rules that govern how quantities change. For exam-
ple, the following qualitative equation tells us that a quantity x increases

monotonically as another quantity y increases, but not the actual func-

tional relation between x and y or between dx/dt and dy/dt:

[dx] = [dy]

Many qualitative reasoning systems, including those discussed in

Sections D through F, use equations with qualitative derivatives to rep-

resent their knowledge about behavior.

Sources ofEquations of Qualitative Derivatives

Before we describe the procedure for predicting the qualitative

behavior of a system from qualitative equations, we discuss where the

knowledge of qualitative functional relations may come from.

Differential equations. If the differential equation describing the

dynamic behavior of the system is known, it can be converted to a

qualitative equation. A differential equation

ft
c(y + x),

where c > 0, is converted into the qualitative form

[dx] - [y] + [x].

Qualitative knowledge of how variable values depend on oth-

ers. We may notice that the viscosity of a liquid decreases as its tern-

344 Qualitative Physics XXI

perature increases, although we may not know the precise functional

relationship between viscosity and temperature. The relation is

expressed qualitatively as

[dv] = -[dk],

where v and k represent viscosity and temperature, respectively.

Differentiating an equation with respect to time. Differentiat-

ing the equation

x + y = z (1)

yields

^ +
dy = dz_

^ (2)
dt dt dt

which can be converted into a qualitative equation

[dx] + [dy] = [dzl (3)

We must be careful about interpreting qualitative equations such as

equation (3). If the original equation expresses an equilibrium condition

of a physical system, it gives no information about how the variables

will change when the equilibrium is disturbed. Thus equations produced

by time-differentiating equilibrium equations do not necessarily describe

how variables change when the system is out of equilibrium.

If equation (1) is an equilibrium condition, to assume equations (1)

and (2) is to assume that an equilibrium relation between x, y, and z is

instantly restored when disturbed, and therefore equilibrium between x

and y holds practically all the time. Imagine that x in equation (1) is

increased suddenly while y is held constant. Then since equation (2) is

always true, z must increase by the same amount at the same time as x

is increased, restoring equilibrium instantly. Since in reality it takes

some time for any signal to propagate from one place to another, equation

(2) will not strictly hold if equation (1) represents a physical phenome-

non. Only if equation (1) represents a purely mathematical relation (e.g.,

a definition of z in terms of x and y) will equation (2) be strictly true.

Nevertheless equation (2) is often a reasonable assumption when the

signal propagation time among variables is negligible with respect to

the time scale of the behavior of interest. For example, de Kleer and
Brown make this {quasi-static) assumption that disturbances propagate

instantaneously through a network of qualitative equations, and equi-

librium is restored in no time. (See Section D.)

B Qualitative Calculus 345

Solving Systems of Qualitative Equations

Solving systems of qualitative equations means finding qualitative

values of variables that satisfy the equations. Unlike quantitative equa-

tions, a set of n qualitative equations in n variables can have more than

one solution. The problem of finding a set of qualitative variables con-

sistent with the given set of qualitative equations is a constraint-

satisfaction problem, where the equations are the constraints to be sat-

isfied. Techniques for solving constraint satisfaction problems can be

applied to solving systems of qualitative equations.

Value propagation is a common technique for determining the values

of variables in systems of qualitative equations. Given the values of all

but one of the variables in an equation, the value of the unknown
variable can be determined by substituting in the values of the known
variables and simplifying the expression. This can be regarded as prop-

agating values through networks of equations. In fact, when the equa-

tions model a physical device and variables in an equation represent

physically connected components of the device, value propagation can be

interpreted as the propagation of causal effects within the device. (Sec-

tion D discusses this causal interpretation of value propagation in more
detail.)

The following system is an example of qualitative equations and the

determination of unknown variable values by value propagation.

[a] + [6] = [c] (4)

[d] = [a] (5)

[e] + [f\ = ib] (6)

Given the following values for [d], [e], and [/], we can determine the

values of the rest of the variables.

[d\ = (7)

[e] = + (8)

[/] = (9)

Substituting equations (8) and (9) in equation (6) gives

+ + = [6],

which simplifies to

[6] = + . (10)

Substituting equation (7) in equation (5) gives

[a] = 0. (11)

Substituting equations (10) and (11) in equation (4) gives

346 Qualitative Physics XXI

+ + = [c],

which simplifies to

[c] = +. (12)

Ambiguities in Qualitative Calculi

Although the values of variables are uniquely determined in the

previous example, in general a set of qualitative equations cannot be

solved to obtain a unique solution. There are several reasons for this.

One is that the qualitative calculus is inherently ambiguous, as indicated

by the many ?'s in the definitions of qualitative calculus operators.

Observe what happens if equation (9) is now changed to

[/] = -. (13)

From equations (6), (8), and (13), we obtain

+ + - = U>1

According to the addition table on page 341, the value of [b] is undeter-

mined. Any value, +, -, or for [b] is consistent with the rest of the

equations and value assignments. If we wish to determine the values of

remaining variables, we must consider three possible cases, depending

on the value assumed for [6], and continue to propagate for each case.

Case 1 [6] = +, [a] = 0, [c] = +

Case 2 [6] = 0, [a] = 0, [c] =

Case 3 [6] = -, [a] = 0, [c] = -

This is an inevitable consequence of using only qualitative infor-

mation of variable values. This ambiguity leads to a very large number
of possible courses of behavior being predicted as the size of the system

becomes large. The only means to reduce this type of ambiguity is to use

more quantitative information.

Limitations of the Value Propagation Method

Due to its sequential nature, the value propagation method alone is

weaker than the more general method for solving systems of linear

equations.

Consider the following equations and the value given for [x]:

(14)

(15)

(16)

[x] + [y] + [z] =

[yl- [z] =

[x] =

B Qualitative Calculus 347

This system of equations cannot be solved by value propagation. After

substituting the value of [x] into the first equation, we are left with

[y] + [z] = (17)

[y] - [z] = (18)

with no means to reduce the equations further.

In cases like this we can try different value assignments exhaus-

tively. We can assume the value of a variable and continue propagating

values to other variables unless we encounter a contradiction. This

amounts to a depth-first search in the space of value assignments to

variables.

For example, to solve equations (17) and (18), we might first intro-

duce the assumption

[y] = +. (19)

Then equation (18) becomes

+ - [z] = 0,

which simplifies to

[z] = +. (20)

Equations (19) and (20) yield

+ + + = 0,

which is a contradiction. Therefore, assumption (19) cannot be true. So

we introduce a new assumption:

[y] = 0. (21)

From equations (18) and (21), we obtain

0-[z] = 0,

which simplifies to

[z] = 0. (22)

Since equations (21) and (22) are consistent with the original set of

equations, [x] = [y] = [z] = is a solution for the equations (14), (15),

and (16).

Because of the ambiguity of the qualitative calculus, systems of

equations can have multiple solutions. However, the complexity of the

search for a solution can grow very rapidly with the number of variables

in the system and the number of possible assumptions. In fact, the

complexity of the problem of finding consistent variable value assign-

ments in a set of qualitative equations is NP-complete. Considering that

one goal of the qualitative calculus is to make reasoning easier, this is

348 Qualitative Physics XXI

a disappointing revelation. The problem of solving a set of normal linear

equations is O(n), where n is the number of variables. This seems to

suggest that reasoning qualitatively actually makes the problem harder

in some sense instead of easier. But this is not surprising because we
lose much information by making a problem description qualitative.

Improvements

There have been many suggestions for dealing with the problems of

ambiguity and search complexity in qualitative calculus. Some involve

using additional knowledge, including quantitative information. Others

involve extending the methods for propagating values.

Heuristic Knowledge to Guide Search. Search efficiency can

often be improved by ordering and pruning the search with heuristic

knowledge. To increase the efficiency of search for a consistent set of

variable value assignments, de Kleer and Brown use heuristic rules that

restrict the types of assumptions introduced during value propagation.

(See Section D.)

Use of More Quantitative Knowledge. This simple qualitative

calculus allows only the three values: + , 0, and -. A qualitative calculus

that allows more qualitative values is an obvious direction for improve-

ment. QSIM, described in Section F, employs a qualitative calculus where
each variable can have any number of landmark values as long as the

number is finite.

Some of the ambiguities in qualitative calculus can be resolved by

knowing ordinal relations among variables. An arithmetic reasoning

system called the Quantity Lattice, developed by Simmons (1986), is

capable of representing and reasoning with information of partial order-

ing relations among variables and calculus expressions. Order of mag-
nitude reasoning by Raiman (1986) extends qualitative calculus to make
use of order-of-magnitude information about variables. Karp (1985)

developed an abstract mathematical language that is more sophisticated

than the simple one introduced in this section for expressing imprecise

knowledge of mathematical constraints. MINIMA, developed by Williams

(1988), is a more general hybrid algebra that offers a user the flexibility

of being able to choose an abstraction level between algebra of signs and
that of real values.

Extending the Value Propagation Technique. Dormoy and Rai-

man (1988) extend the value propagation method by allowing a variable

to be eliminated between two qualitative equations in a manner analo-

gous to the Gaussian elimination procedure that is used to solve sets of

normal linear equations. It can greatly improve the efficiency of the

search by reducing the number of times assumptions must be made
during value propagation. However, the use of qualitative resolution

B Qualitative Calculus 349

must be controlled because the number of its possible applications can

grow exponentially, resulting in increased complexity (Dormoy, 1988).

References. The qualitative calculus introduced in this section is

largely based on that described in de Kleer and Brown (1984). The
complexity of the search for a solution of a set of qualitative equations

is discussed in Davis (1987) and Struss (1987).

The technique of qualitative constraint propagation is used to reason

about the behavior of electrical circuits in EL by Stallman and Sussman
(1977), in EQUAL by de Kleer (1984), and in TQ (temporal qualitative)

analysis by Williams (1984), to name some of the most notable work.

REASONING ABOUT BEHAVIOR USING
QUALITATIVE CALCULUS

The previous section described qualitative arithmetic and explained

how the technique of value propagation can determine the values of

variables given qualitative equations. We now turn to a discussion of

how to predict behavior with qualitative equations.

CI. Qualitative Behavior and Qualitative States

Let's define system X to be a finite set of variables,

X = {Xi, X2 , X3 , ..., Xn},

where n is the number of variables in X. A qualitative behavior of system

X is represented as a sequence of qualitative states that the system goes

through over time. A qualitative state is defined as a set of qualitative

values of the system variables. The number of different combinations of

qualitative value assignments to a set of n variables is

ft q(xi\
i=l

where q(xd is the number of distinct qualitative values the variable [xi]

can take. This is also the total number of qualitative states that can be

defined by the set of variables. We will continue to use the simple qual-

itative arithmetic of +, -, and defined in the previous section. There-

fore, q{x) = 3 for all x. We will use [x(s)] to denote the value of [x] in

state s, [x{t)] to denote the value of [x] at some time t, and x(t) to denote

the actual value of x at time t. Note the difference between [x(s)] and
[x(t)]. The former is the value of [x] that is part of the definition of s,

whereas the latter simply denotes a value. This difference is due to the

fact that a state s represents a certain condition, whereas t represents a

time instance.

A system is said to be in state s at time t if the value of every

qualitative variable at time t is equal to the value of the same variable

in the definition of the state. In other words, a device is in the qualitative

state s at time t if and only if [x(s)] = [x(t)] for all x. There are states in

350

C Reasoning About Behavior Using Qualitative Calculus 351

which the device can stay only for an instant, and states in which the

device must stay for a nonzero interval of time.

The rules governing the behavior of a system are given as a set of

qualitative equations representing constraints on variables. A system

behavior may be described by several different sets of constraints, each

of which describes a behavior under different conditions. For example,

different phases of substances (and different operating regions of devices)

warrant different sets of behavior equations. The behavior of water

depends on whether it is vapor, liquid, or ice. Consequently, a different

set of equations must be given for each of the three possible phases.

Among all possible combinations of qualitative values of variables,

only the states satisfying the given set of qualitative equations are

physically realizable by the device. These are the legal states of the

device. Here, a legal state does not mean that it is a normal state for the

device to be in. When a set of qualitative equations describes the normal

behavior of a system, modeling its faulty behavior may require a differ-

ent set of qualitative equations. States that are legal in the normal

behavior model may be illegal in a model of the faulty device, or vice

versa. Predicting how faults change qualitative equations is an impor-

tant question for programs performing fault diagnosis based on quali-

tative physics techniques.

C2. State Transitions

Given the set of all legal states, predicting the behavior of a device over

time involves determining the order in which the device will go through

these states. Such ordering is not necessarily a total ordering if the device

can move into several states from a given state. Predicting a sequence

of qualitative states and state transitions is called envisioning, and the

prediction produced is an envisionment.

In practice, there are two ways to generate an envisionment for a

device. One is to start from one state and to generate the sequence of all

states that can follow. Such a prediction is called possible envisionment,

and it amounts to searching all the states reachable from the initial

state. Another is to generate all legal states and all state transitions.

Such a prediction is called total envisionment and requires a complete

search of the space. Possible envisionment consists of the future states

that can follow the given initial state, whereas total envisionment con-

sists of all the states that the device can be in and all the possible

transitions between states.

Note that, since the information used to generate an envisionment

is qualitative and the predictive power of the information is weaker than

352 Qualitative Physics XXI

that of more precise information, both a total and possible envisionment

can contain states and transitions that are not possible in reality. This

problem and others in envisionment are discussed in Section C3.

Generating an Envisionment

We will illustrate how an envisionment can be generated for the

ideal mass-spring system shown in Figure C— 1. A block is attached to

an ideal spring resting on a frictionless table top. The system consists of

four variables, x, a, f, and v, where x represents the position of the block,

v is its velocity (v = dx/dt), a is acceleration (a = dv/dt), and fis the force

acting on the block, x = is defined to be the rest position of the block

when the spring is relaxed, x > when the block is to the right of the

rest position, and x < when it is to the left.

The block is pulled to the right and released. Two rules govern the

behavior of the system. Newton's second law states that the force equals

mass times acceleration, that is,

f- ma,

where m (> 0) is a constant representing the mass of the block. A
qualitative statement of this law is

[/] = [a]. (23)

Hooke's law of ideal springs states that a spring applies a force

proportional to the displacement in the opposite direction. In other words,

f=-(kx x),

where k (> 0) is the spring constant. Again, this equation is converted

to a qualitative equation as

[/] = ~[xl (24)

Given the qualitative constraints (23) and (24), we can produce all

combinations of variable values that satisfy them, using the technique

I
'

I I

•+ * > X

Figure C-l. A mass-spring system.

C Reasoning About Behavior Using Qualitative Calculus 353

described in the previous section. Table C-l shows all the possible states

for the mass-spring system.

Determining State Transitions

The value of qualitative derivative in a state indicates whether the

variable is increasing, decreasing, or stable. Based on this information,

we can determine what other states the device may move into from each

state. For example, if we know that x is negative and increasing in state

s, we can infer that x may eventually become 0, making the system

transition into a new state.

Recall that we assumed earlier that all the variables were continuous

and differentiate. The following rules governing transitions between

states follow from these assumptions and the mean value theorem of

calculus.

Continuity Rule. Since the actual values of variables are assumed

to be continuous, their qualitative counterparts must also vary contin-

uously in the space of qualitative values, -, 0, and + . This means that

the value of a qualitative variable cannot jump from + to - or from -

to + without passing through 0. For instance, if [x(sl)] = + and [jc(s3)]

= -, s3 cannot immediately follow si (or vice versa); the system must
pass through another state s2 where [x(s2)] = before reaching s3.

Derivative Rule. The value of the qualitative derivative of a var-

iable indicates whether the variable value is increasing, decreasing, or

constant. The value of a variable cannot change unless its derivative is

nonzero. This is stated more precisely as follows:

[dx(sO)] = * [x(s0)] implies [x(sl)] (25)

[jc(sO)] < [x(sl)] implies [dx(sO)] = + (26)

[x(s0)] > [x(sl)] implies [dx(sO)] = - (27)

where we assume si is a state immediately following state [s0].

Table C-l

All States for the Mass-Spring System

State si s2 s3 s4 s5 s6 s7 s8 s9

[x] + + + - - -

[v] + - + - + -

[a] - - - + + +

[/]
- - - + + +

354 Qualitative Physics XXI

Observe that the converse is not true for implications (25) through

(27). That is,

[dx(sO)] = + or -

does not imply

[x(sO)] < [x(sl)] or [x(sO)] > [x(sl)])

because [x] can remain positive or negative in both sO and si even if it

is changing.

Change-from-zero Rule (or Change-from-equality Rule). If in

a state s a variable is equal to and changing, the system must imme-
diately transition out of s into another state where the variable is not

equal to 0. More precisely,

If si is an immediate successor of sO, then

[x(s0)] = 0, [dx(sO)] = +,

and

and

and

that + is one of the possible values for [x],

implies [jc(sD] = +

[x(s0)] = 0, [dx(sO)] = -,

that - is one of the possible values for [jc],

implies [x(sl)] = -.

Moreover, the system can stay in state sO only for an instant because

when a quantity is changing continuously, its value can equal any par-

ticular value only for an instant.

This rule easily generalizes to qualitative calculi with different ways
to subdivide the domains of continuous variables. The generalized ver-

sion of this rule is called the Change-from-equality rule. For example, if

the domain of a variable y is (-<», +<»), the set of distinguished values

is {dl, d2) such that d\ < d2, and the corresponding set of qualitative

values for y is {qO, dl, ql, d2, q2}, where qO represents the interval (-<»,

dl), ql represents (dl, d2), and so on, then the Change-from-equality

rule in the vicinity of dl will state:

If si is an immediate successor of sO, then

[y(s0)] = dl and [dy(sO)] = + implies [y(sl)] = ql

and

iy(sO)] = dl and [dy(sO)] = - implies [y(sl)] = qO

C Reasoning About Behavior Using Qualitative Calculus 355

Change-to-zero Rule (or Change-to-equality Rule). A change-

to-zero is a transition from a state where x is moving toward (but is

not zero) into a state where x is 0. Unlike a change-from-zero, a change-

to-zero is not a necessary transition, because x can approach asymp-

totically, never actually becoming equal to 0. As in the case of Change-
from-zero rule, this rule can be generalized to other qualitative calculi,

where it is known as Change-to-equality rule.

Moreover, if a change-to-zero does occur, it does not happen instan-

taneously. Let si and sO be states such that sO can immediately follow

si, x is positive and decreasing in si, and x is in sO. While the system

is in state si, there is a nonzero difference between the value of x and 0.

Since x is continuous, it takes a nonzero amount of time for the value of

x to change from its current value to zero. Therefore, transition from si

to sO cannot happen instantaneously, and it follows that the state si

must last for a nonzero time interval. These facts have further implica-

tions on the ordering of states, summarized in the following Instanta-

neous-change rule.

Instantaneous Change Rule. If, in a given state s, x is equal to

and changing, and y is not equal to but changing toward 0, the device

must transition into a new state where x <> and y <> before it can

transition into a state where y — 0.

Consider a system with two variables, x and y, and three legal states

shown in the Table C-2. Since x is and increasing in state si, it must
be positive in the state immediately following si. Also, y is positive and
decreasing in si, which means that it may become in the following

state. However, as noted earlier, a change-from-zero happens instanta-

neously, whereas a change-to-zero takes time. Therefore the transition

to state s3 must happen first. This rule can be generalized as could the

previous two rules. Note that in the generalized version, the distin-

guished value that x is equal to and the one that y is approaching need

not be the same.

These rules enable us to determine transitions between states. In

general, a state may have more than one successor and more than one

predecessor. We can conveniently display the result of a state transition

Table C-2

Three States of the System with

Variables x and y

State si s2 s3

[x] +

[dx] + + +

M + +

[dy] - - -

356 Qualitative Physics XXI

analysis in a directed graph whose vertices represent states. A transition

from state s t to state Sj is represented in a transition graph by an arc

from vertex s» to vertex s,-.

Example: The Mass-spring System

We now show an example of a transition analysis for the mass-spring

system in Figure C-l. All the legal states of the system are shown in

Table C-l. Given these, we can determine state transitions.

Suppose the current state is si. In si, x is increasing but since x is

already positive, [x] cannot change. Since v is positive but decreasing,

[v] can become zero in the next state. Therefore, s2 is the only state that

can immediately follow si.

In s2, x is not changing since [u] = 0. But since [v] = 0, and [a] = -,

by the Change-from-equality rule, the system must immediately tran-

sition into a state where [v] = -, which is s3.

In s3, the only change that can happen is [x] becoming 0. [x] is in

states s4, s5, and s6. s4 is ruled out because [v] would change from - to

+ in the transition from s3 to s4, violating the Continuity rule. s5 is

also ruled out because [v] cannot become in the next state since v is

negative and decreasing in s3. The only possible successor of s3 is s6.

In s6, since x = and decreasing, the system must immediately

transition into a state where x is negative. There are three such states:

s7, s8, and s9. s7 is ruled out because [v] changing from - to + would
violate the Continuity rule. s8 is also ruled out because [a] is in s6 and
thus [v] cannot have a different value in a following state. s9 is the only

possible successor to s6.

Likewise, it can be shown that s9 is followed by s8, then s7, then s4.

Finally, the only possible successor state of s4 is si. Note that the system

never enters state s5, the quiescent state. Since nothing is changing in

s5, no other state can be reached from s5. Moreover, it is easy to see that

s5 cannot be reached from any other state.

Figure C-2 shows the total envisionment of the mass-spring system.

It is the transition graph showing all the possible qualitative states and
transitions among them. The diagram has a loop (si —> s2 —» s3 —> s6 —

>

s9 —» s8 —> s7 — s4 —> si), indicating a cyclic behavior. The loop corre-

sponds to the oscillation of the spring. Keep in mind that the graph

indicates that an oscillatory behavior is possible but not necessary since

some of the arcs in the cycle ([si, s2], [s3, s6], [s9, s8], and [s7, s4]), which

are indicated by dotted lines in the figure, represent possible transitions,

whereas the others, indicated by solid arrows, represent necessary ones.

Also, even if oscillation is assumed, we cannot tell from the graph

whether it is a harmonic (constant amplitude), damped (decreasing

amplitude), or forced (increasing amplitude) oscillation. In reality, if the

system starts out in any of the states in the loop, oscillation will neces-

Reasoning About Behavior Using Qualitative Calculus 357

-• Possible transition

_^. Necessary transition

Figure C-2. Transition graph for the mass-spring system.

sarily happen and it will be harmonic oscillation since we assumed a

frictionless surface. However, the initial qualitative formulation of the

problem lacks the necessary information to make such distinctions.

C3. Difficulties in Qualitative Prediction

As the previous example of oscillation attests, envisionments are usu-

ally ambiguous in the sense that they indicate several possible behaviors

without providing any way to decide which are most likely. Moreover,

some predicted behaviors may never happen in reality. These problems

arise from the fact that the knowledge used to generate envisionments

is qualitative.

Two important issues for qualitative prediction are completeness and
soundness. Soundness here refers to whether all the behaviors predicted

by a qualitative prediction procedure can in fact be physically realized

in the situation. Completeness, on the other hand, refers to whether or

not the behaviors predicted by the procedure include all those that can

be physically realized. Kuipers has shown the qualitative simulation

algorithm used by the QSIM program (see Section F) to be complete.

Soundness is not achieved by any qualitative reasoning programs, which
cannot avoid producing spurious behaviors because of inherent ambi-

guities in the information used.

Another serious problem with envisionment is complexity. Envision-

ments become unmanageable very rapidly as the size of the problem

increases. To see how quickly complexity can grow, consider the following

358 Qualitative Physics XXI

situation. Let Cx and Cy be some landmark values toward which the

variables x and y are moving. Also assume that x and y change mono-
tonically in the vicinity of Cx and Cy , respectively. Then, there are 3

2 =
9 possible states just in the vicinity of Cx and Cy if all these states are

legal and if no additional information is constraining the order in which
x and y reach Cx and Cy . Thus it is easy to see that the total number of

possible states and transitions in an envisionment can grow exponen-

tially with the number of variables in the system and also with the

number of landmark values for each variable.

Ambiguity and complexity are closely related problems. When there

is ambiguity, all possibilities must be generated, adding to the complex-

ity. We next discuss some techniques to reduce ambiguity and complexity

in envisionment.

Knowledge About Ordinal Relations

Information about ordinal relations among variable values and land-

mark values can often help reduce complexity. For example, if x and y
are both negative and increasing in a state sO, there are three possible

states into which the system can move as shown in Table C-3, assuming
that x and y keep increasing past 0.

If we have additional information that x > y, states si and s3 are no

longer permissible and s2 is the only possible successor of sO.

Partitioning of a Problem

One cause of complexity is the fact that all states are global states.

This sometimes forces us to consider relations between variables that we
would normally consider unrelated. In the previous example, as x and y
move towards 0, we must distinguish the cases in which x reaches first,

y reaches first, or they reach simultaneously even if this distinction

is not interesting. Williams (1986) offers an interesting illustration of

this point. Imagine we are studying the activities of a panda bear in

China and a polar bear in the Arctic. Though the bears' activities are

Table C-3

Possible Transition from State sO

^\^ State

Variables sO si s2 s3

[*]
- -

M - -

[dx] and [dy] + + + +

C Reasoning About Behavior Using Qualitative Calculus 359

independent for all practical purposes, having only global states to

describe their behavior forces us to create an enormous number of states

to represent every possible temporal relation between the panda's activ-

ities and the polar bear's activities—states that contribute nothing to

our understanding of the bears' behaviors.

When the situation to be modeled can be divided into different sub-

parts that do not interact or interact only rarely, modeling each part

separately reduces the complexity of envisionment. Obviously the envi-

sionment procedure will be more complex since it must be able to detect

and properly treat the interactions between subparts.

Forbus employs Hayes's notion of histories to represent behavior in

terms of processes taking place at different times. This representation

does not force us to impose temporal orderings between two processes

until a possibility of interaction makes it necessary. (See Section E for

more discussion of Forbus's representation of history.)

Higher Order Derivatives

Knowledge about higher order derivatives of variables can some-

times resolve ambiguity about the ordering of states (de Kleer, 1979).

Imagine a ball is thrown straight up toward the ceiling and it bounces

back. Let h be the vertical position of the ball, being the level of ceiling

and h < being below the ceiling. Thus h is defined on (-°°, 0]. Given

the qualitative constraint

[dh\ <> when [h] = -,

we can generate all the legal states as shown in Table C-4.

The transition graph of this system, shown in Figure C-3, leads us

to believe that transitions between states s2 and s4 and between states

s3 and s4 are possible in both directions. The graph even suggests that

the ball can oscillate forever among these states, which is certainly

counterintuitive. This ambiguity can be eliminated by adding knowledge

about the second derivative of h. We will denote the qualitative value of

the £th derivative of variable x as [d
k
x\. Since the gravitational force

Table C-4

All Legal States for the Ball Thrown Against the Ceiling

,\^. State

Variables ^"^^^ sO si s2 s3 s4

[h] - -

[dh] + - - +

[d
2
h] - - - - -

360 Qualitative Physics XXI

a dh

Possible transition

Necessary transition

Transition ruled out after adding
constraints on [d

2
h]

Figure C-3. Transition graph for the ball.

acting on the ball always accelerates it downwards, this knowledge can

produce the following additional constraint:

[d
2
h] <

The additional constraint adds a row of -'s for [d
2
h] in Table C-4 without

adding to the number of states. The transitions from s4 to s3 and from

s2 to s4 in the transition graph of Figure C-3 are ruled out as a result.

Thus the addition of the constraint on the second derivative of h reduces

ambiguity.

We must be careful with this technique, however. Each new variable

v (whether or not it is the derivative of an existing variable) multiplies

the total number of states by the number of distinct qualitative values

for [v]. Unless additional knowledge about higher order derivative con-

strains the predicted behavior substantially, it will only make envision-

ment more complex.

Asymptotic Behavior

We noted earlier that due to the possibility of asymptotic behavior,

a change-to-zero transition does not happen necessarily, as does a change-

from-zero transition. This is why some of the arrows represent necessary

transitions, whereas others represent merely possible transitions in the

transition graph of the mass-spring system shown in Figure C-2.

Some qualitative reasoning systems that perform envisionment as-

sume no possibility of asymptotic behavior. More formally, if x is pos-

itive (or negative) and decreasing in state sO and if a state si where x is

equal to is a possible successor of sO, the system will eventually move

C Reasoning About Behavior Using Qualitative Calculus 361

into si from sO. This assumption makes all the arcs in the transition

graph of Figure C-2 necessary transitions, reducing ambiguity in the

envisionment. This is a heuristic, and if asymptotic behavior is actually

possible, the program will fail to predict it. Nevertheless, in domains

where asymptotic behaviors are unlikely or uninteresting, it is a reason-

able assumption.

Abstraction

Abstraction is another powerful way to control the complexity of the

qualitative prediction process. In order for a reasoning scheme in general

to be able to handle a domain of even a moderate complexity, the ability

to abstract away unnecessary details is essential if the problem is to

remain computationally tractable. In qualitative reasoning about behav-

ior, abstraction can be carried out along several dimensions. Structural

descriptions are usually organized in an abstraction hierarchy consisting

of subcomponent relations. Functional and behavioral descriptions can

be abstracted along the same dimension as subcomponent hierarchies.

It is also possible to abstract functional and behavioral descriptions

along the temporal or causal dimensions. Kuipers proposes the use of

levels of temporal abstraction and additional mathematical knowledge

to control the combinatorial explosion of the qualitative simulation pro-

cess of QSIM (Kuipers, 1987a, and Kuipers and Chiu, 1987). In a slightly

different vein, Weld proposes abstraction by recognizing cycles in a

sequence of steps in behavior simulation process, and aggregating the

steps in one cycle into a macro-step to be used to speed up the simulation

process.

References

The envisioning procedure described in this section is based on those

described in de Kleer and Brown (1984) and Kuipers (1986). A similar

envisioning procedure is also described in Williams (1984). Kuipers

shows that the envisioning procedure of QSIM is complete but not sound

(Kuipers, 1986).

Sacks developed a more sophisticated qualitative mathematical rea-

soner that can generate a qualitative description of the behavior of a

wider class of functions by dividing the entire domain of a function into

discrete intervals, in each of which the behavior of the function is mon-
otonic (Sacks, 1987a and 1987b).

Weld has studied another, slightly different type of reasoning about

behavior, which he calls comparative analysis (Weld, 1988). Given a

description of a system and its behavior, comparative analysis predicts

how the behavior would change if the system were slightly modified.

D. ENVISION

The research of de Kleer and Brown at the Xerox Palo Alto Research

Center has been among the most influential work on qualitative reason-

ing about physical systems. Their work is motivated by the desire to

identify the core knowledge that underlies people's physical intuitions.

In their research on qualitative physics, they attempt to provide an
alternative way to describe physical phenomena that is far simpler than

the classical physics but still captures all the important aspects of the

physical phenomena. An additional goal is to produce causal accounts of

physical mechanisms that are easy to understand.

de Kleer and Brown implemented a program called ENVISION. ENVI-

SION predicts the behavior of an entire device as a sequence of possible

future states along with complete causal analysis for the behavior. It is

given a description of the physical structure of a device, a set of behavior

rules for each component, and an input force applied to the device.

Dl. Device Model

Envision takes a component-oriented view of a device. This means that

a device is described in terms of physically disjoint components and
conduits connecting the components.

Conduits are defined as physical parts of a device whose only function

is to transmit information between components without altering the

information. For example, in the domain of electric circuits, pieces of

wire connecting the components are conduits; in the domain of fluid flow,

conduits are pieces of pipe. Wires and pipes are assumed to have no

resistance because conduits are supposed to transmit information with-

out altering it. This is an idealization and cannot be strictly true in

reality, but it is a reasonable assumption in many situations.

Components, on the other hand, have more complex behavior. Com-
ponents are typed, and rules determine the behavior of each type. Behav-

ior rules are encoded in the form of qualitative equations of component
variables.

Since the goal of de Kleer and Brown is to predict the behavior of a

device from the descriptions of individual components and their connec-

tions, the description of a component must be as free as possible from

362

D Envision 363

presuppositions about how the component is to be used, such as the

function of the entire device or the way the component is supposed to

contribute to that function. Otherwise, it would be impossible to know
whether the inferences made about the behavior of the device are already

implicit in the descriptions of components. Two principles have been

formulated to ensure the generality of their approach, by preventing

knowledge of the expected behavior of the whole device from being some-

how built into the descriptions of individual components. The two prin-

ciples are as follows:

1. Locality Principle. The description of a component should not refer

to any other part. For example, if a behavioral rule of a component

A specifically referred to a parameter of a neighboring component B,

the rule would not be a general description of the behavior of A
because it is only valid when A is connected to B.

2. No-function -in-structure Principle. The description of a component

should not presume the functioning of the whole. For example, a

behavior rule of an electrical switch that states "if the switch is

closed, current will flow between the two terminals" violates this

principle because it presumes that the switch is connected to a power

source, that the circuit is closed, and so on.

In reality, it is impossible to adhere strictly to these principles in

describing components because all descriptions require some context.

Choices among the many ways a physical component can be described

must be influenced by the knowledge of the purpose the component is

expected to serve in the device. For example, a piece of coil can function

as a conduit, as a resistor, as a generator of a electromagnetic field, as a

spring, and so on. A component's type cannot be decided without knowing
the context in which it will be used.

As for conduits, their behavior descriptions are relatively simple

since, by definition, they only transmit information without altering it.

In addition, the following two conditions are imposed on qualitative

equations for conduits:

1. Continuity Condition. Conduits are assumed to be always completely

full of incompressible material. Therefore, any increase of flow at

one end of a conduit it is reflected by an increase at the other end

without delay. In other words, conduits transmits information instan-

taneously.

2. Compatibility Condition. When there are multiple conduits between

two components, the sum of the pressure drops along a conduit

between the two components must be the same for all the conduits.

Example. We will illustrate de Kleer and Brown's approach with

the device shown in Figure D-l, which consists of two tanks connected

364 Qualitative Physics XXI

Tank 2

0/n,

Qout,-+
p

0,.—» +-Q rp +-Qout 2 p

Figure D-l. Two tanks connected by pipe.

by a conduit. First, we present behavioral descriptions of the types of

components and the conduit. The behavioral rules for a liquid container

with an opening at the bottom are listed here, with the variables denned
as follows:

P The pressure at the bottom of the container. P >
L The level of liquid in the container. L >
V The volume of liquid in the container. V >

Q in The flow rate of liquid into the container from the top. Q > 0.

Qout The flow rate of liquid out of the container through the opening

in the bottom.

• The pressure is proportional to the level of the water. Therefore, P = L x

c, where c is some positive constant. Differentiating both sides with respect

to time and converting it to a qualitative equation produces this qualitative

equation in terms of time derivatives of the variable, which de Kleer and
Brown call a confluence.

[dP] = [dL]

• Likewise, the level of the water is a monotonically increasing function of

the volume.

[dL] = [dV]

• The difference between the flow rate in and the flow rate out is the change

in the volume.

[Qin] ~ [Qout] = [dV]

The behavioral rules for a conduit are listed next, with the variables

denned as follows:

D Envision 365

Qi, Qr The flow rate into the pipe through the two ends of the

conduit.

Pi, Pr The pressure at the two ends of the conduit. Pr , Pi ^ 0.

Pd The difference between the pressures at the two ends.

• By conservation of material:

Ql= - Qr.

By differentiating and taking the qualitative form, we have

[dQi] = - [dQA.

• The flow rate is proportional to the pressure difference between both ends:

[dQi] = [dPd].

• From the definition of Pd'.

[dPd\ = [dPt]
- [dPrl

ENVISION's representation of this device is composed of two compo-

nents—the containers—and a conduit.

The behavior rules for the device are in Figure D-l. The variable

subscripts indicate to which container the variable belongs.

The constraints for container CI.

(1) [dPi] = [dLi]

(2) [dLi] = [rfVi]

(3) [Q ini]
- [Qoutl] = [dVi]

The constraints for container C2.

(4) [dP2] = [dL2]

(5) [dL2] = [dV2]

(6) [Qin2] - [Qou,A = [dV2]

The constraints for the conduit.

(7) Qi = - Qr .

(8) [dQi] = - [dQrl

(9) [dQi] = [dPdl

(10) [dPd] = [dPi] - [dPrl

The constraints for the connections between the conduit and container

CI.

(ID [QoutJ = [Qi]

(12) [dQouh] = [dQi]

(13) [dPi] = [dPi]

366 Qualitative Physics XXI

The constraints for the connections between the conduit and container

C2.

(14) [Qout2] = [Q r]

(15) [dQout2] = [dQr]

(16) [dP2] = [dPr]

D2. Predicting Behavior

The behavior of a device is predicted using its qualitative equations,

de Kleer and Brown distinguish two types of behavior: inter-state behav-

ior and intrastate behavior. A state is denned by the qualitative values

of all variables of the system. Intra-state behavior determines the qual-

itative values of variables in one state. Inter-state behavior, on the other

hand, is the sequence of qualitative states that the system goes through

over time.

Intra-state Behavior

The intra-state behavior, that is, the behavior within one qualitative

state, is determined by propagating the values of the parameters whose
values are known to other variables through qualitative constraint equa-

tions to determine their values. The procedure of value propagation is

described in Section B. In the process of propagating values, the program
must often make assumptions about the values. ENVISION has some
heuristics for this; for example, "if a variable representing an input or

output flow rate of a conduit is changing, assume that the corresponding

input or output pressure variable of the conduit is changing in the same
direction," and "if some but not enough variables in an equation are

known to be changing, assume that the ones that are not known to be

changing are negligible."

Mythical Causality, de Kleer and Brown view value propagation

as a causal process. If an external disturbance to a system makes a

system variable [a] to be +, and "[a] = +" is propagated through a

constraint equation "[a] + [b] = 0", to determine [b] - -, the value of

[a] is considered to "cause" the value of [&]. However, unlike the usual

notion of causal processes that act over time, value propagation among
variables is assumed to take no time. This concept of causality within a

state is called mythical causality because it acts instantaneously. If the

variable values that are initially known are regarded as given by some
external disturbances to the system, the intra-state behavior is a descrip-

D Envision 367

tion of the way the system reacts instantaneously to the disturbances

through mythical causality.

Example: The Two-tank System. The following example dem-
onstrates the procedure for determining the intra-state behavior with

the model of the device in Figure D-l. We will determine the intra-state

behavior of the device when liquid is added to the container on the left

(Qim = +)• We assume that no liquid is added to the container on the

right from the top (Q;„ 2
= 0), and that there is initially no flow of liquid

between the containers (Qou ti
= Qout2 = 0).

Variable Value Assignments Justifications

Given

Given

Given initial condition.

(3), (18), (19)

(2), (20)

(1), (21)

(13), (22)

(10), (23), assuming dPr is negligible.

(11), (19)

(7), (24)

(14), (25)24

(6), (17), (2Q 2^
(5), (2*)

(4), (28) Z°\

(16), (29)

(9), (34) iH
(11), (32)

(8), (32)

(15), (34))

Note that the assumption on line (24) in the preceding example is

not the only one that could be made. Another alternative would be to

assume that dPd is negligible with the conclusion that WP2] — + • When
an assumption is introduced in the process of propagating values, it may
lead to value assignments to the rest of variables that satisfy the equa-

tions, or it may lead to a contradiction. If an assumption leads to a

contradiction, the assumption is incorrect and must be retracted. Differ-

ent assumptions may lead to different sets of values for variables, and
more than one set may be consistent with the constraint equations. In

such a case, each one is a valid mythical causal account of the intra-

state behavior. As many assumptions can usually be introduced in a

given case, ENVISION has heuristics to restrict the kinds of assumptions

made in different situations, thus reducing the number of alternative

causal interpretations produced by the system.

(17) [Q in2\
=

(18) [Q ini]
= +

(19) [QoutJ ==

(20) [dVx] = +

(21) [dU] = +

(22) [dPi] = +

(23) [dPi] = +

(24) [dPd]
= +

(25) [Qi\ =

(26) [Q r] = <)

(27) [Qout2]
--=

(28) [dV2]
=

(29) [dL2]
=

(30) [dP2]
=

(31) [dPr]
=

(32) idQi] = +

(33) [dQoutx] =

(34) [dQ r]
= -

(35) [dQout2]
=

368 Qualitative Physics XXI

Feedback. A variable can be initially assumed negligible, but later

a disturbance can be propagated that assigns it a nonzero value. ENVI-

SION interprets this as an indication of a possible feedback loop. If there

is a loop in the structural description that corresponds to the feedback

path in the network of constraints, ENVISION decides that it is a real

feedback loop. For example, on line (31) in the preceding example, a

signal propagates back to Pr , which is assumed negligible earlier on line

(24), indicating a potential feedback loop. But because there is no loop

in the structure of the device, ENVISION decides it is not a real feedback

loop.

Inter-state Behavior

Once the intra-state behavior is determined, the future states of the

device can be predicted. The procedure for doing this is essentially the

one described in Section C. The device in the previous example has five

legal qualitative states if one keeps adding liquid to container CI but

not to C2 (in other words, [QmJ = + and [Q\ n2 \ = 0.) Table D-l shows

these states, and Figure D-2 shows the transition graph.

D3. Conclusion

Given a description of the physical structure of a device, a set of behavior

rules and an input force applied to the device, ENVISION predicts its

behavior in terms of a sequence of possible future states along with

complete causal analysis for the behavior. The behavior rules are con-

straint equations that must be satisfied by parameters of components.

Table D-l

Five Possible States

^^^^^ States

Variables ^^\^_^ si s2 s3 s4 s5

[Qim] + + + + +

[Q in2]

WVi],[dLi],[dPi],[dP/] + + + + +

[QouuUQi] + - + +

[dQouU],[dPdl[dQi] + + + -

[dV2\,[dL2 \ y
[dP,2\XdPA + - + +

[QouttUQr] - + - -

[dQouttUdQr] - - - +

D Envision 369

S) ^® KS)* t5^—*(5t)

- - - Possible transition

Necessary transition

Figure D-2. Transition graph.

ENVISION distinguishes two types of behavior: inter-state and intra-

state behavior. Intra-state behavior is concerned with the assignment of

qualitative values to variables and the direction in which they are chang-

ing within one state, and it is determined by constraint propagation.

Inter-state behavior is concerned with the transition from one state to

another. Intra-state behavior within one state determines the subsequent

inter-state behavior. Causality within one state, called mythical causal-

ity, is determined on the basis of how the initial disturbance produced

by the input force applied is propagated through the network of con-

straints.

de Kleer and Brown require models to adhere to the no-Function-in-

structure Principle to prevent the inferences made by the system about

the behavior from being implicitly pre-encoded in the structural descrip-

tion. Also, the Locality Principle restricts propagation of disturbances

strictly to topological paths so that prior expectations about the device

function will not influence the process of inferring its behavior from the

structure.

In reality, any description of device topology is likely to have some
knowledge of the function built in because deciding what topological

paths to represent explicitly in the structural description requires some
prior knowledge about the function, especially about the main forces

involved in the device function and all the paths through which these

forces can act. Paths, which are also the paths through which disturb-

ances propagate, are not always obvious because they may not be visible

as physical structures of the device. Radiation and magnetic force provide

examples of ways objects can interact without being visibly connected.

Therefore, it is not necessarily possible nor desirable to describe any
system without assumptions, but it is critical to make underlying

assumptions explicit, so that they can be retracted and new ones made
as needed, de Kleer and Brown's two principles provide good guidelines

about how to build a model and reason about its behavior in such a way
that the conclusions of the program will have a high degree of objectivity

given the assumptions underlying their approach.

370 Qualitative Physics XXI

References

A comprehensive description of ENVISION and de Kleer and Brown's

approach to qualitative physics is given in de Kleer and Brown (1984).

de Kleer (1984) discusses the same approach in the domain of electrical

circuit analysis. They discuss the problem of ambiguity in envisioning

and some techniques for reducing ambiguity in de Kleer (1979) and de

Kleer and Bobrow (1984). Iwasaki and Simon (1986a and b) and de Kleer

and Brown (1986) discuss mythical causality in comparison with another

approach to causality described in Section G.

E. QUALITATIVE PROCESS THEORY

Qualitative Process Theory (QPT) was developed by Ken Forbus at

Massachusetts Institute of Technology. The goal of research on QPT is to

understand commonsense reasoning about physical processes. Forbus's

program, Qualitative Process Engine (QPE), uses general knowledge

about physical processes and objects in the world to infer which processes

will occur, their effects in given physical situations, and when they will

stop. The research was directed toward developing a framework for rep-

resenting commonsense knowledge about various types of physical pro-

cesses and objects and an inference procedure to use the representation

to perform everyday physical reasoning. The Qualitative Reasoning

Group, led by Forbus at the University of Illinois, Urbana-Champaign,
is continuing this research.

In QPT, physical situations are modeled as collections of objects, their

relationships and processes. Objects have variables to represent their

properties, and processes act through time to influence properties of

objects. The notion of physical processes plays the central role in QPT.

They are the sole agents of change. A description of behavior over time

is given in terms of processes and their effects on the world.

Examples of processes in QPT include heat flow, fluid flow, boiling,

motion, and so on. QPT itself does not define any particular theory about

how such processes occur, but it provides a language for stating such

theories. The language allows us to define processes in terms of their

preconditions and effects. QPT also provides an inference procedure to

predict what will happen, given a theory about the physical world. We
can encode in QPT any theory of physics such as the Newtonian and
impetus theories of motion, and QPE will make predictions about physical

situations according to the theory.

The overall operation of QPE is divided into four phases:

1. Given a collection of objects and general knowledge of processes (i.e.,

a theory of processes), decide which instances of processes can exist

in the given situation.

2. Determine which process instances are active by examining whether
their conditions are satisfied.

3. Determine which changes will be caused by active processes. When
several processes affect one variable, try to determine the net effect

on the variable.

371

372 Qualitative Physics XXI

4. Predict behavior over time. Changes brought about by active pro-

cesses may eventually cause conditions for other inactive processes

to become true, or those for currently active processes to become
false, thereby making formerly inactive processes active, or active

ones inactive. QPE produces an account of the activity of processes

over time.

We will describe the QPT representations of objects and processes,

and then QPE's envisionment procedure is illustrated with an example
of reasoning about boiling water.

El. Representation of Objects

A physical situation is described as a collection of objects and their

relations. Objects in the physical world can exhibit dramatically different

characteristics depending on conditions—even if they are made of the

same substance. For example, water looks and behaves very differently

depending on whether it is frozen, liquid, or vaporized. Even liquid water

is viewed very differently depending on, for example, whether it is com-

pletely contained or is part of a larger body of liquid and is free to move
around in any direction. Views of objects that focus on the enabling

conditions of their behavioral characteristics are called individual views

in QPT.

There can be individual views for generic types of objects, objects

under specific conditions (compressed, evaporated, and so on), and com-

binations of objects in particular relations to each other (e.g., liquid and
its container). Some examples of individual views are solid, liquid, gas,

elastic object, plastic object, compressed object, contained liquid, and so

on. Individual views are organized in a general-to-specific hierarchy in

QPE's knowledge base.

Figure E-l shows a definition of a contained liquid as an example
of an individual view.

An individual view is defined in four parts, as follows:

1. Individuals. The objects involved. This part specifies the set of objects

that must exist for the individual view to hold. For example, for the

individual view of an elastic object to hold, an object must exist.

Likewise, the individual views of compressed, relaxed, and stretched

object all require the existence of an elastic object. The preceding

example of the contained-liquid individual view requires a set of

objects, a liquid, and a container.

2. Quantity Conditions. Statements of inequalities between quantities

belonging to the individuals, and statements about whether other

E Qualitative Process Theory 373

Individual view: Contained-Liquid

Individuals:

con: a container

sub: a liquid

Preconditions:

con can contain sub.

Quantity Conditions:

The amount of sub in con is greater than zero.

Relations:

There is p such that:

p is a piece-of-stuff,

the substance of p is sub,

p is in con,

the amount of p is equal to the amount of sub in con.

Figure E-l. Example of an individual view definition.

individual views and processes hold. For example, for the individual

views of compressed, relaxed, or stretched object to hold, the length

of the object must be less than, equal to, or greater than the rest

length of the object, respectively. For the liquid to be contained in a

container, nonzero quantity of the liquid must exist.

3. Preconditions. Further conditions that do not pertain to quantities.

For example, for the individual view of elastic object to hold, the

object must be made out of elastic substance. For the liquid to be

contained in a container, the container must be capable of holding

the liquid.

4. Relations. Statements of further relations among attributes of indi-

viduals that hold whenever the individual law holds. For example,

when the individual view of gas holds, certain relations hold among
its temperature, pressure, and volume such as PV = nRT

Individuals, preconditions, and quantity conditions together specify

the sufficient conditions for the view to hold. Relations give further

consequences and properties of the individuals.

E2. Process Representation

Processes acting on objects are the sole agents of change. Some exam-
ples of processes are heat flow, liquid flow, boiling, and motion. The
representation of a process is similar to that of an individual view except

that it must describe the effects of the processes. The definition of a

374 Qualitative Physics XXI

process must include what objects must exist in the world for the process

to happen, in what circumstances the process will happen, and what
changes are caused by the process. Figure E-2 shows examples of process

definitions for boiling and heat flow processes.

Process: heat-flow

Individuals:

src: an object with a quantity, heatsrc

dst: an object with a quantity, heatdst.

path: a path through which heat can travel between src and dst.

Preconditions:

path is not obstructed.

Quantity Conditions:

temperatureSrc > temperaturedst.

Relations:

Let flow-rate be a quantity.

Flow-rate > 0.

Flow-rate °cQ+ (temperatureSrc - temperaturedst)

Influences:

I -(heatsrc, flow-rate)

I + (heatdst, flow-rate)

Process: boiling

Individuals:

w : a contained-liquid. The boiling temperature of w is temperatureb

hf: an instance of the heat-flow process, such that the destination of hf is w.

Quantity Conditions:

hf is active.

~(temperaturew < temperatureb).

Relations:

There is g such that:

g is a piece-of-stuff,

g is gas,

g is of the same substance as w,

temperatureb = temperatureg .

Let generation-rate be a quantity,

generation-rate > 0.

generation-rate <*Q+ flow-rateh f

Influences:

l-(heatw , flow-ratehf) ; counteracting the heat flow's

; influence

l-(amountw ,
generation-rate),

l + (amountg ,
generation-rate),

l-(heatw ,
generation-rate),

l+(heatg . generation-rate)

Figure E-2. Examples of process definition.

E Qualitative Process Theory 375

In these process definitions, src, dest, path, w, and hf are variables

that are bound to specific instances of individual views or other processes

when an instance of the process is created.

Here, we must introduce the QPT notation for describing mathemat-

ical relations among quantities qualitatively, which is different from the

notation introduced in Section B. In QPT,

[I+(a, b)] and [I-(a, b)] (28)

denote a direct positive or negative influence of b on a. (See the following

explanation of Influences and Relations for the distinction between direct

and indirect influences.) The notation of equation (28) means that a is

increased (or decreased) by b. In the notation of Section B, the qualita-

tive functional relations implied by equation (28) can be written respec-

tively as

[da] = [b] and [da] = -[&] (29)

However, the QPT expressions of equation (28) not only imply the rela-

tions of equation (29) but also imply that a causally depends on 6. In

other words, while the relations of equation (29) are symmetric and

acausal, those of equation (28) are antisymmetric and causal.

Likewise,

a «Q+ b and a «q- b (30)

denote a qualitative proportionality relation between a and b. The
expressions of 30 mean that a increases (or decreases) as b increases. In

the notation of Section B, they imply

[da] = [db] and [da] = -[db]. (31)

In addition, they imply that a is causally dependent on b.

A process definition consists of five parts:

1. Individuals. The individuals involved; objects or instances of individ-

ual views. For example, in the heat flow process of Figure E-2 there

must exist some objects to act as heat source and sink and also a

heat path between them. For the stretching and compressing process

to take place, there needs to be an elastic object.

2. Preconditions. Nonquantitative conditions that must hold for the

process to be active. For example, for a flow process to take place,

the passage of flow between the source and the destination must not

be blocked. For an object to be able to move, the position of the object

must not be constrained.

3. Quantity Conditions. Conditions on quantities that must hold among
the individuals. Also, requirements about presence or absence of

other processes and individual views. For example, for the heat flow

376 Qualitative Physics XXI

process to take place, the temperature of the source must be higher

than that of the sink. For the stretching process to take place, the

elastic object must not be compressed. If it is compressed, the process

of it lengthening is called relaxing and not stretching.

4. Relations. The set of relations that the process imposes on individu-

als, along with any new entities that are created. For example, in

the heat flow process, the rate of heat flow is proportional to the

temperature difference. In the boiling process, a new entity, vapor,

is created as a consequence of the process.

5. Influences. The direct influences caused by the process on the varia-

bles of individuals. The distinction between relations and influences

is as follows: Since processes cause changes, influences are the pri-

mary changes caused by the process, whereas relations are further

conditions that hold among quantities whenever the process takes

place. For example, we usually mean by heat flow a transfer of

thermal energy from one body to another. Therefore, the direct effects

(i.e., influences) of heat flow is that the total thermal energy of the

source decreases and that of the destination increases.

E3. Predicting Behavior

Given a description of the world as a collection of objects and their

relationships, QPE first looks for individual views that are valid in the

situation. If objects in the scene satisfy the conditions (individuals, pre-

conditions, and quantity conditions) of the definition of an individual

view, an instance of that individual view is created. Likewise, instances

of processes are created. Process instances are determined active if their

conditions are satisfied.

Individual views and processes impose qualitative functional rela-

tions on variables of objects in the situation. Also, active processes specify

what and how variables are changing. Given these relations and changes,

QPT predicts the future course of events in terms of processes happening

and stopping, causing changes in the situation.

Representation ofBehavior Over Time

QPT employs Allen's (1984) representation of time. Time is composed

of intervals, which are related by various relations such as before, after,

and during. The QPT representation of behavior over time uses Hayes's

notion of history. Behavior is represented as a collection of fragments,

E Qualitative Process Theory 377

each of which describes a particular condition of one part of the situation

in some time interval. Such fragments can be about a variable taking

on a particular qualitative value, a process being active, or a valid

individual view. The two types of fragments are called episodes and events

of individual views and processes. The difference between episodes and
events is that the former last for nonzero periods of time while the latter

are instantaneous.

Here are some examples of episodes and events:

• The temperature t of an object A is increasing—an episode of the vari-

able t.

• The instance hf\ of heat-flow process is active—an episode of the process

instance hfi.

• The position x of the object A is location 1—an episode or an event of x

depending on whether x stays at 1 only for an instant or longer.

• An object A is a compressed, elastic object—an episode of an individual

view about A.

A sequence of episodes and events describing the possible evolution

of the situation is called a history. Histories describe behavior in terms

of variable values changing, processes happening and stopping, and indi-

vidual views becoming valid or invalid over time. A predicted history is

not necessarily a linear sequence of events and episodes since in many
situations several possible courses of behavior can be predicted.

Quantity Space ofQPT

The space of values of each variable is specified by a finite number
of distinguished values and ordinal relations among them. Qualitative

values of a variable are either a distinguished value or a range of values

between two distinguished values such that there is no other distin-

guished value between the two. Therefore, the number of qualitative

values of a variable is finite. The quantity space of QPT has a more
complex structure than the space of +, 0, and - used in the qualitative

calculus (Section B). Since the distinguished values of a variable need

not be totally ordered, every possible total ordering of distinguished

values that do not contradict known ordinal relations give a set of totally

ordered qualitative values. The quantity space of QPT must include all

of them.

For example, consider the variable x defined on (-<», oo) with three

distinguished values, v , vi 9
and v2 , such that vo > vi and v > v2 . Since

the ordinal relation between vi and v2 is unknown, there are three

378 Qualitative Physics XXI

possibilities: vi > v2 , vi = v2 , and v2 > v\. In each case, there is a set of

totally ordered qualitative values for x as follows:

vi> v2 : (-°°, v2), v2 , (v2 , vi), vi, (vi, vo), v
, (v , »)

Vi = lft : (- 00
, v2), v2 , (v2 , v), vo, (vo, °°)

vi < v2 : (-00, Vi), Vi, (vi, v2), v2 , (v2 , vo), v
, (v ,

oo)

And the quantity space of the qualitative values of x includes all of these

possible qualitative values.

Limit Analysis

Since processes are the only causes of changes, identifying active

processes enables QPT to predict changes. If the value of a variable p is

increasing due to an active process, the episode EP1, denned as

EP1: [dp] = +,

is created. Moreover, if the initial value, p , ofp is known to be less than

a distinguished value pd, and if there is no other distinguished value

between p and pd, the episode EP1 may be followed by the event (or an
episode, depending on whether p continues to change afterwards) of p
being equal to pd- This may trigger other processes to become active or

may terminate active processes.

This process of looking for distinguished values toward (or away
from) which variables are moving is called limit analysis in QPT. If a

limit analysis shows that the value of a variable is moving toward a

nearest distinguished value, a new event defined by the variable taking

on the value is created to follow the current episode. If a variable has a

distinguished value currently and is changing, a new episode is created

for the variable value being greater (or less, depending on the direction

of change) than the current value.

Example: Boiling Water

We demonstrate the procedure for behavior prediction using the

example of boiling water. In the initial situation, pictured in Figure E-
3, a container filled with water is placed over a heat source. To simplify

the example, all properties of the container are ignored except that it

holds water and heat flows through it. Also, we ignore the vapor gener-

ated by boiling, and we assume that the temperature of the heat source

stays constant.

The quantity space for the temperature tw of the water consists of

the following distinguished values and inequalities:

E Qualitative Process Theory 379

Contained-water

Figure E-3. Contained water and a heat source.

finit

?src

£boil

The initial temperature of the water.

The temperature of the heat source.

The boiling temperature of the water.

finit "^ tboil

?src -^* tinit

Since the individual view of contained liquid, shown in Figure E-l,

is valid here, an instance of it is is created. Also, an instance of the heat

flow process, whose definition is shown in Figure E-2, is created and is

made active. The variables src and dst in the definitions are bound to

the heat source and the water.

Initially heat flow is the only active process. The heat flow process

causes the temperature of the water to increase, creating an episode

EPO: [dtw] = + .

Limit analysis shows that tw may reach either tsrc or £boii. There are three

possibilities depending on the ordinal relation between tSYC and £b0ii.

tsrC < thou In this case, tsrc is reached first. £w becoming equal to tsrc

will invalidate the quantity condition of the heat flow

process, deactivating the process.

tsrc > £boii In this case, tboii is reached first. When tw becomes equal to

£boii, an instance of boiling process becomes active. While

the boiling process is active, the temperature remains at

ft>oii, but the amount of water decreases. A limit analysis

shows that the amount of water will eventually become 0,

at which point the individual view instance of contained

liquid ceases to be valid and both the processes, boiling and

heat flow from the heat source to water, terminate.

tsrc = tbo\\ In this case, tw reaches tboii, at which point the heat flow

process terminates. Since a boiling process requires an
active heat flow process, it will not become active, and
there will be no further change.

380 Qualitative Physics XXI

Figure E-4 shows the evolution of the water temperature along with

the episodes and events, individual views, and processes for the second

case.

E4. Conclusion

QPT was developed by Forbus to understand how physical processes can

be reasoned about, namely, how to identify their causes and effects and

to detect when they will start and stop. In contrast to the component-

oriented view of the world taken by de Kleer and Brown, Forbus takes

a process-oriented view. Different types of physical processes are denned

in terms of objects that must be present, the preconditions that must be

satisfied by the objects for the process to take place, and the qualitative

relations that hold between parameters when it does occur. Given this

knowledge of processes, Forbus's program, Qualitative Process Engine,

Time

Evolution of tw t^
;i

tinit

Episodes of tw [EPO: tM < t w < f boil]

dtw
>

dt

Episodes of heat-flow [EP2: Heat-flow process active

process

Episodes of boiling

process

Episodes of Vw [EP4: Vw = V jnit

dVw
=

dt

[EP1: tw = f b0 j|]

dtw
=

dt

]

[EP3:]

Boiling process[active -,

EP5: < Vw < V jnit J

dV*

<0
dt

Individual view of [individual view of contained-water valid

Contained-water
i

Figure E-4. Histories of boiling and evolution of some of the

variables.

E Qualitative Process Theory 381

detects the processes that must take place in a given situation and
predicts their course. QPT provides a way of formalizing a given inter-

pretation of causal actions. It is an attempt to model people's common-
sense reasoning about physical processes.

QPT has been applied to many different physical domains. It provides

a language for describing a wide variety of processes. By denning an
appropriate set of individual views and processes, QPT can be also applied

to domains outside physics where it is natural to think of changes as

manifestations of underlying processes taking place.

References

A good source of information about QPT is Forbus (1984). Forbus

(1983) discusses using QPT for interpreting measurements. Falkenhainer

and Forbus (1988) discusses using a layer of QPT models at different

abstraction levels in order to manage the complexity of modeling a large

system.

F. QSIM

The QSIM program, developed by Kuipers, simulates the behavior of

physical systems described as systems of qualitative equations. It takes

a set of qualitative functions describing the behavior of a device and an
initial state description, and it produces a sequence of future states,

possibly with branching. Although the basic ideas of using qualitative

mathematics to predict possible future courses of behavior are similar to

those explained in Sections B and C, the quantity spaces of QSIM can be

much more complicated than the simple space of +, 0, and - described

in Section B.

The procedure for generating future states is different from that

described in Section C. Given an initial qualitative state for each func-

tion, QSIM first generates all possible successor states for each function.

Then, it uses qualitative constraints among functions and also global

consistency rules to rule out inconsistent or redundant combinations of

states.

Quantity Space of QSIM

In QSIM, all variables are functions of time. QSIM assumes that all

functions are reasonable functions denned on a subset of the extended

real number line R* = (— <», + °°). A reasonable function is a function

f:[a, b] —> R*, where [a, b] C R*, such that fis continuous and differ-

entiate, has only finitely many critical points in any bounded interval,

and the limits of dft)/dt as t approaches a from above and b from below

exist in i?*. A system in QSIM is denned as a finite set of reasonable

functions.

The qualitative calculus employed by QSIM is a generalization of the

simple qualitative calculus introduced in Section B. Variables in the

simple qualitative calculus have only one landmark value, namely, 0,

and three qualitative values, + , 0, and -. The functions in QSIM can

have any number of landmark values as long as the number is finite.

Each function fit) defined on [a, b] has its own set of landmark values,

which must include at least and the values of ft) at all its critical

points. If a > — o° or b < — °°, the set of landmark values must also

include the values of f at the end points, fia) and fib). These landmark
values divide the entire range of a function into a finite number of

intervals. If function /has n landmark values, {/o, h, I2, ••-, Zn -i}, and the

382

QSIM 383

range of the function is i?*, the range is divided up into the following

nonoverlapping intervals and points: {(-°°, /o), /o, (/o, l\), h, ..., ln-i, (ln-i,

+ 3c)}. These 2n + 1 intervals and points are the qualitative values of

function f A time point t such that /(£) equals a landmark value of f is

called a distinguished time point of /*.

Qualitative States

A qualitative state of a function is defined as a pair of a qualitative

value for the function and its direction of change, determined by the sign

of its time derivative. A qualitative state can last for either an instant

or for a nonzero period of time. The qualitative state of the function fat
time t (or during a period of time (#, (,)), denoted QS(f, t) or QS(f, U, t>),

is a pair <qval, qdir>, where qval is a qualitative value of /"and qdir is

one of decreasing {dec), increasing (inc) or steady (std) at time t (or

during (tt , tj)).

The behavior of a function over time is represented as an alternating

sequence of instantaneous states and states that last for a nonzero period

of time. For example, consider the function f{t) whose behavior is shown
in Figure F-l. Assume that fit) is a reasonable function, that l , h, and

h are among the landmark values of ft), and that to, t\, and t2 are

distinguished time points of /"such that ft) = lo, fih) = h, and /(fe)
=

Z2 . Furthermore, ft) is strictly increasing over Uo, t2]. Then the qualita-

*> t

Figure F-l. Behavior of function ft) over [t , t2].

384 Qualitative Physics XXI

tive behavior of fit) over the period [to, £2] is described by the following

sequence of qualitative states of f:

1. Qif, to) = </o, inc>

2. Q(f,(to,h)) = <(lo, h), inc>

3. Q(/;*i) = </i, inc>

4. Q(f,(ti,t2)) « <(/i, fa), inc>

5. Q(/", fc) = <fa, inc>

Since a system is denned as a set of functions, a qualitative state of

a system at time t (or during (fc, fc+i)) is the set of qualitative states of

the functions in the system at £, or during (fc, fc+i). Likewise, a behavior

of a system is an alternating sequence of instantaneous and noninstan-

taneous qualitative states of the system.

State Transitions

A transition from an instantaneous state to a noninstantaneous state

is called a P-transition, and a transition from a noninstantaneous state

to an instantaneous state is called an I-transition. Table F-l shows all

the permissible state transitions. Note a slight difference between tran-

sitions from a value permitted in the qualitative simulation procedure

described in Section C and QSIM. In the procedure described in Section

C, if the value of a variable v is /, at time t, its derivative must be nonzero

at the same time in order for its qualitative value to be different in the

following state. In QSIM, the value of a function is steady in one instan-

taneous state, its value can be different in the next state as long as the

derivative is nonzero in the next state. QSIM can discover a previously

unknown landmark value of a function if other constraints force the

derivative of the function to become zero. In the list of I-transitions, I*

denotes a new landmark value such that /, < /* < lj+i.

Given an initial qualitative state of a function, Table F-l enables us

to generate all the permissible states that could follow the initial state.

For example, if the state of a function fat time t t is </,-, std>, the function

can transition to one of three possible states: <(,-, std>, <(/,, lj+i), inc>,

and <(lj-u lj), dec>.

Qualitative Constraints

In addition to a set of functions, a description of a physical system

includes qualitative constraints representing relations among the func-

tions. To predict the behavior of a system, QSIM first generates for each

function all the qualitative states that could succeed the current quali-

QSIM 385

Table F-l

State Transition Table

P-transitions QS(f, td = > QSif, tu U+i)

PI <lj, std> <lj, std>

P2 <lj, std> <(/,, lj+i), inc>

P3 <lj, std> <(//-i, /,), dec>

P4 <lj, inc> <(/,, Z/+i), inc>

P5 <{lj, Ij+i), inc> <(/y, lj+i), inc>

P6 <lj, dec> <(/,-+ 1, /,-), dec>

P7 <(lj, lj+i), dec> <ilj, lj+i), dec>

I-transitions QS(f, U, tt+ij = > QS(f,ti+ i)

11 <lj, std> <lj, std>

12 <(lj, lj+i), inc> </, + i, std>

13 <(/,, /,+i), inc> <//*-i, inc>

14 <dj, h+i)> inc> <Hj, lj+i), inc>

15 <(//, (r+i), dec> <Z/, std>

16 <(i"i (f+i)» dec> </,, dec>

17 <(/,-, lj+i), dec> <(/,, Z,+i), dec>

18 <(/,, /, + i), inc> </*, std>

19 <(/,-, /,+i), dec> </*, std>

Table F-2

QSIM Predicates and their Meanings

QSIM Predicate Meaning

ADDif g, h) fit) + git) = h(t)

MULTK/; g, h) ffkt) * g{t) = M)
MINUSC/; g,4i) f(t)--git)^Ji&p:

M+
(f, g) f is some monotonically increasing function of g.

M'if g) /*is some monotonically decreasing function of g.

DERIVE g) fit) = dgit)/dt

tative state of the function using the list of possible transitions in Table

F-2. Each combination of such qualitative states for the functions defines

a possible successor state of the system. Once all successor states for

each function are generated, qualitative constraints among functions are

used to rule out system states that are inconsistent with the given

constraints.

386 Qualitative Physics XXI

The constraints are represented as two-place or three-place predi-

cates of functions, expressing qualitative mathematical relations among
functions. The predicates used in QSIM are explained next. Assume f, g,

and h are reasonable functions.

The predicates M +
and M -

enable us to represent monotonic relations

between functions without specifying exact functional forms of the rela-

tions. For example, if fit) = 2t and g(t) = e\ the relation between f and

g can be represented as M +
(f, g).

QSIM has many rules to exclude combinations of functional states

based on qualitative constraints. Since a qualitative state of a function

is defined as a pair—a qualitative value and a direction of change—

a

qualitative constraint among functions can rule out combinations of

states in two ways: by constraining qualitative values of functions and

by restricting the directions of changes.

Constraining Qualitative Values. Qualitative constraints on func-

tions restrict the qualitative values of functions. For example, consider

a system S consisting of three functions f, g, and h. If ADD(/", g, h) holds,

and if the qualitative values of /"and g over the time interval (ti, t2) are

as follows:

qualitative value of /"is (h, l2)

qualitative value of g is (mi, m2),

then the qualitative value {i%\, n2) of h over the same time interval must
be such that the following holds:

(/ii, n2) C (Zi + mi, l2 + m2).

Furthermore, suppose that all the functions are decreasing over (h,

t2) and also that h + mi = n\. In other words, the qualitative states of

the functions are as follows:

QS(f,h,t2)= <(li,l2),dec>

QS(g, fa, t2) = <(mi, m2), dec>
QS(h, h, t2) = <(ni, n2), dec>

Given the state of f, g, and h during the period {h, t2), Table F-l shows
that I-transitions 15, 16, 17, and 19 are possible for each function. There-

fore there are 4
3 = 64 possible states for the system consisting of these

three functions.

Since all the functions are decreasing toward landmark values h,

mi, and ni, respectively, zero, one, two, or all of the functions could reach

their respective landmark value in the next instantaneous state to follow

if there were no constraints. However, the constraint ADD(f, g, h) and
the fact that h + mi = n\ imply that it is not possible for two of the

functions to reach their landmark values in the next state while the

remaining one does not. Given the states for f, g, and h and the constraint

F QSIM 387

ADD(f, g, h), the only possible states of the system at time t2 are those

in which one of the following conditions hold:

1. /(fe) = h, g(t2) = mi, h{t2) = ah

2. f{t2) = h, g(t2) > mi, h(t2) > ni

3. f{t2) > h, g(t2) = mi, h(t2) > m
4. fit2) > h, g(t2) > mi, h(t2) > aii

For example,

QS(f, t2) = </i, dec>,

QS{g, t2) = <(mi, m2), dec>,

QS(/i, *2) = <(/ii, n 2), dec>

is a possible state of S at time £2, but not

QS(f, t2) = </i, dec>,

QS(^, fe) = <mi, dec>,

QS(/i, t2) = <(m, n2), dec>.

Among the original 64 possible successor states for system S, 32 of them
are ruled out by this constraint on the qualitative values of functions.

Constraining Directions of Changes. Qualitative constraints can

also represent constraints on the directions of changes of functions. For

example if ADD(/", g, h) holds, and if f and g are increasing in a given

state, h cannot be decreasing or steady in the same state. Table F-3
shows the rules for determining the direction of change of h from those

of /"and g in the same state if ADDC/", g, h) holds. Similar tables can also

be produced for other predicates, MINUS, MULTI, M +
, and M~.

Table F-3 is essentially identical to the table of qualitative addition

given in Section B if inc, dec, std, and any are replaced by +, -, 0, and

?, respectively. This is because predicates of QSIM in general represents

the same constraints expressed by qualitative equations of derivatives

involving analogous qualitative operators. For example, the constraint

implied by ADD(/*, g, h) on the direction of changes can be expressed as

[df] + [dg] = [dh] in the qualitative arithmetic language presented in

Section B.

Table F-3

Directions of Changes Satisfying ADD(/", g, h)

g^./ inc std dec

inc inc inc any

std inc std dec

dec any dec dec

388 Qualitative Physics XXI

Going back to our sample system S, in any possible state of system

S at time £2, f and g can be either decreasing or steady. In such a case,

Table F-3 shows that the direction of change of h is determined uniquely

from those of /"and g. For example,

QS(ft2) = </i,dec>,

QSig, t2) = <mi, dec>,

QS(h, t2) = <ni, dec>

is a possible state of S at time ti, but not

QS(f, t2) = <h, dec>,

QSig, t2) = <mi, dec>,

QS(h, t2) = <ni, std>.

This constraint on the directions of changes further reduces the total

number of possible states of S at time t2 to 16.

The Qualitative Simulation Algorithm

This section describes what the algorithm QSIM employs to generate

an envisionment. The system used as an example is a system consisting

of a ball thrown upward. The example used to illustrate the algorithm

is the one given by Kuipers (1986). The system involves the following

three variables:

Y The vertical position of the ball.

V The vertical speed of the ball.

A The vertical acceleration of the ball.

The constraints are as follows:

DERIV(Y, V) V is the derivative of Y.

DERIV(V, A) A is the derivative of V.

A = g < There is constant downward acceleration

due to gravitational force.

Assume that the current state is where the ball is moving upward
with a decreasing speed. In other words, if (t

, h) is the current state,

then

QS(A, tO, tl) = <g, std>

QS(V, tO, tl) = <(0, 00), dec>

QS(Y, tO, tl) = <(0, oo), inc>

Given the current state and the set of constraints, the steps QSIM
goes through to generate the list of possible successor states are as

follows:

Step 1. For each function, generate the list of possible transitions from
the current state. For the ball system, given the current state,

QSIM 389

which is an interval, the set of possible transitions for each

function according to Table F-4 is shown below. L* and M*
denote new landmark values for V and Y, respectively, such

that L* ^ and M* > 0. For simplicity, we disregard the

possibility of the next state being at t = «>, thereby excluding

12 and 13 for Y from further consideration.

Step 2. For each constraint, generate the set of tuples of transitions of its

arguments, and filter out the ones that are inconsistent with the

constraint. For each constraint of the ball system, there are the

following pairs of transitions of the arguments:

DERIV(Y, V): (14, 15), (14, 16), (14, 17), (14, 19), (18, 15), (18, 16), (18, 17),

(18, 19)

DERIV(V, A): (15, II), (16, II), (17, II), (19, II)

Among these pairs, those that are not in bold letters are filtered out

because they violate the constraint. For example, <I4, 15> and <I4,

I6> both violate the constraint DERIV(Y, V) because 14 indicate that Y
is increasing, whereas 15 and 16 each indicate that V, the derivative of

Y, is 0.

Step 3: Perform pairwise consistency filtering on the sets of tuples asso-

ciated with the constraints in the system. This is essentially the

same as Waltz filtering used in vision (Waltz, 1975). If two con-

straints have some variables in common, they must agree on the

transition assigned to the common variables. Among the re-

maining pairs of transitions for the ball system, (14, 19) and

(18, 15) for the pair (Y, V) are eliminated by this step because

neither 19 nor 15 is allowed for V according to the constraint

DERIV(V, A).

Table F-4

Transactions and States for the Ball System

Function Transition Next State

A 11 <g, std>

V 15 <0, std>

16 <0, dec>

17 <(0, oo), dec>

19 <L*, std>

Y 14 <(0, »), inc>

18 <M*, std>

390 Qualitative Physics XXI

Step 4: Generate all possible global interpretations from the remaining

tuples. Create new qualitative states resulting from each inter-

pretation, and filter them for global consistency. The remaining

global states are the possible successor states. The remaining

pairs for the ball system can be formed into the following two

global transitions:

14 17 II

18 16 II

Since the first one of these will result in a state that is identical to the

current state, it is not necessary to pursue it any further. Therefore, the

only global transition leading to a new state is the second one.

Even though in the case of this particular example there is only one

successor state, in general there can be several. To produce an envision-

ment, successors to each of the possible successor states must be gener-

ated in turn. The number of states in the envisionment can grow
exponentially as QSIM carries out one cycle of the simulation algorithm.

This problem of complexity plagues all envisionment programs, and how
to control the complexity is a topic actively investigated in qualitative

physics.

Conclusion

Kuipers studies how a qualitative description of the behavior of a

system is derived from a qualitative description of its mathematical

relations between variables. QSIM is Kuipers's qualitative simulation

program. His "causal structural" description consists of a set of con-

straints holding among time-varying parameters. The envisioning pro-

cess consists of a constraint propagation part and a prediction part

corresponding to the determination of intra-state and inter-state behav-

ior in ENVISION. As in the case of ENVISION, Kuipers's concept of

causality is based on mathematical constraints among variables. How-
ever, unlike ENVISION, QSIM does not determine the causal structure in

a model but is given a causal structural description as an input in the

form of a network of constraints. Kuipers does not address the problem

of how directions of causality in a network of constraint relations are

determined in order to construct a causal structure. A causal account in

QSIM is an account of how variable values change over time according

to these constraints.

F QSIM 391

References

Good sources of information on QSIM are Kuipers (1986) and Kuipers

(1987b). Kuipers (1985) discusses the limitations of QSIM algorithm. The
problem of controlling the complexity of qualitative simulation is dis-

cussed in Kuipers (1987a), Kuipers and Chiu (1987), and Berleant and
Kuipers (1988).

G. CAUSAL ORDERING

Causality is the central issue in Iwasaki and Simon's research in qual-

itative reasoning. A number of artificial intelligence systems have been

built to perform reasoning with causal knowledge, but all but a few of

them have knowledge of the domain in which directions of causality are

prespecified. Such knowledge is less general than the acausal functional

description usually employed in formal description of a phenomenon.
Iwasaki and Simon focus on the problem of inferring causal relations in

a model consisting of acausal mathematical relations.

Their approach is based on the theory of causal ordering first pre-

sented by Simon (1952 and 1953). They have explored the theory and its

extension in reasoning about the behavior of physical systems. Their

approach has been implemented in a program named CAOS. The program
consists of a collection of modules for generation of an equation model,

causal analysis of the model, dynamic stability analysis, and qualitative

prediction of the effects of external disturbance on the model. The causal

analysis module takes a description of a system in terms of a set of

equations and determines the causal relations among the variables. In

this section, we mainly focus on the causal analysis module.

Theory of Causal Ordering

The theory of causal ordering provides a technique for inferring the

causal relations among variables in a set of functional relations. The
theory of causal ordering defines causal ordering as an asymmetric rela-

tion among the variables in a set of simultaneous equations. Causal

ordering reflects people's intuitive notion of causal dependency relations

among variables in a system. Establishing a causal ordering involves

finding subsets of variables whose values can be computed independently

of the remaining variables and then using those values to reduce the

structure to a smaller set of equations containing only the remaining

variables. The approach offers a computational mechanism for defining

a causal dependency structure.

Causal Ordering in an Equilibrium Structure. Causal ordering

was initially defined by Simon for an equilibrium structure consisting of

equilibrium equations (Simon, 1952). First we need to define an equilib-

rium structure.

392

G Causal Ordering 393

Definition 1: Self-contained equilibrium structure.

A self-contained equilibrium structure is a system of n equilibrium

equations in n variables that possesses the following special properties:

1. That in any subset of k equations taken from the structure at least

k different variables appear with nonzero coefficients in one or more
of the equations of the subset.

2. That in any subset of k equations in which m > k variables appear

with nonzero coefficients, if the values of any m - k variables are

chosen arbitrarily, the equations can be solved for unique values of

the remaining k variables.

Condition 1 ensures that no part of the structure is over-determined.

Condition 2 ensures that the equations are not mutually dependent; if

they are, the equations cannot be solved for unique values of the varia-

bles.

The idea of causal ordering in a self-contained equilibrium structure

can be described roughly as follows. A system of n equations is called

self-contained if it has exactly n unknowns. Given a self-contained sys-

tem S, if there is a proper subset s of S that is also self-contained and
that does not contain a proper self-contained subset, s is called a minimal
complete subset. Let So be the union of all such minimal complete subsets

of S; then So is called the set of minimal complete subsets of zero order.

Since So is self-contained, the values of all the variables in So can, in

general, be obtained by solving the equations in So. By substituting

these values for all the occurrences of these variables in the equations

of the set (S — So), we obtain a new self-contained structure, which is

called the derived structure of first order. Let Si be the set of minimal
complete subsets of this derived structure. It is called the set of complete

subsets of first order.

Repeat the preceding procedure until the derived structure of the

highest order contains no proper subset that is self-contained. For each

equation e t in S, let V, denote the set of variables appearing in e», and
let Wi denote the subset of V, containing the variables belonging to the

complete subsets of the highest order among those in Vt . Then, the

variables in Wi are said to be directly causally dependent on the elements

in (Vi ~ W £).

Since the preceding definition is very syntactic, the notion of causal

ordering depends critically on the choice of equations included in the

model. For the preceding procedure to produce causal relations in the

model that agree with our intuitive understanding of the causal relations

in the real situation, the equations comprising a model must come from

an understanding of mechanisms. The term "mechanism" is used here

in a general sense to refer to distinct conceptual parts in terms of whose
functions the working of the whole system is to be explained. Mecha-

394 Qualitative Physics XXI

nisms are such things as laws describing physical processes or local

components that can be described as operating according to such laws.

An equation representing such a mechanism is called a structural equa-

tion, and every equation in the model should be a structural equation

standing for a mechanism through which variables influence other var-

iables. This requirement is crucial for the correct application of the

method of causal ordering.

According to the theory of causal ordering, the notion of causal

dependency relationship is context-dependent. Knowledge of one mech-

anism alone does not imply a causal relation among the variables in the

mechanism. It is only after all the other mechanisms influencing the

variables are known and assumptions about the exogenous mechanisms,

including external mechanisms controlling the system variables, that

we can discover asymmetric relations among them. Requiring that the

equations be structural and that the structure be complete for causal

analysis forces all such mechanisms to be taken into consideration and
the context of causal analysis to be clearly identified. What causal order-

ing analysis accomplishes after these requirements are met is to make
explicit the asymmetric relations among variables implied by the model

and assumptions.

In general, given a device, we can write down a large number of

correct equations about its behavior, and we must choose from these

equations the ones that reflect our understanding of mechanisms to

produce a correct causal structure. Unfortunately there is no simple

formal answer to the question of how to know that an equation is struc-

tural. Iwasaki and Simon's solution to this problem is to have an explicit

representation of mechanisms from which equations can be systemati-

cally derived in such a way that only structural equations are produced.

They use a network representation of processes for the purpose of

explicitly representing our understanding of mechanisms underlying an
equation model (Iwasaki, 1988a).

Another thing to note about the method of causal ordering is that it

does not require knowledge about the precise functional forms of equa-

tions. The only information that the method makes use of is what vari-

ables appear with a nonzero coefficient in what equations, which in terms

of mechanisms translates to what variables are causally linked by each

mechanism.

Causal Ordering in a Dynamic Structure. Although the causal

ordering just introduced provides a means to determine causal depen-

dency relations in a model describing an equilibrium state, the word
"behavior" usually implies changes over time. This section introduces

causal ordering in a dynamic system, in particular, causal relations in a

system of first-order differential equations. Differential equations of

higher order can be converted into a set of first-order equations by

G Causal Ordering 395

introducing new variables to stand for derivatives. The definition of a

self-contained dynamic structure (Simon and Rescher, 1966) is as follows:

Definition 2: A self-contained dynamic structure.

A self-contained dynamic structure is a set of n first-order differential

equations involving n variables such that:

1. In any subset of k functions of the structure, the first derivative of

at least k different variables appear.

2. In any subset of k functions in which r(r>k) first derivatives appear,

if the values of any (r - k) first derivatives are chosen arbitrarily,

the remaining k are determined uniquely as functions of the n var-

iables.

The preceding definition of self-containment for a dynamic structure

is analogous to that for an equilibrium structure. As in the case of an
equilibrium structure, condition (1) ensures that no part of the structure

is over-determined, whereas condition (2) ensures that the structure is

not under-constrained.

Given a self-contained dynamic structure, we can perform elemen-

tary row operations to the equations to solve them for the n derivatives.

This operation produces an equivalent system of equations in canonical

form. A differential equation is said to be in canonical form if and only

if there is only one derivative in the equation, and the derivative is the

only expression that appears on the left-hand side of the equation. A
self-contained dynamic structure in n variables, jci, ..., xn , in canonical

form consists of n equations of the following form:

Xi = fi(Xi, X2 , ..., Xn),

where fis (1 < i < n) are functions of their arguments.

The equations in this form in a dynamic structure are interpreted to

be mechanisms of the system. Therefore, ith. equation, the only one

containing Xi , is regarded as the mechanism determining the time path

of xt. Furthermore, variable Xi, whose derivative appears in the ith equa-

tion, is said to be directly causally dependent on the variables that appear

with a nonzero coefficient in the equation.

Causal Ordering in a Mixed Structure. When the behavior of a

system is described in terms of equations, the description very often

consists of a mixture of dynamic and static equations. Iwasaki and Simon
extended the concepts of self-contained structures and of causal ordering

to apply to such mixed systems. First, they define self-containment for

mixed systems. Causal ordering in such a mixed system is a natural

extension of the ones for equilibrium and dynamic structures. Dynamic
structures can be regarded as extreme cases of mixed structures.

Before defining self-containment for mixed structures, we must intro-

396 Qualitative Physics XXI

duce some notation. Let M be a system of n equations in n variables

such that some of the equations are equilibrium equations and others

are dynamic equations of the type denned in the previous section. Then,

let Dynamic(M) be the subset of M consisting of all the differential

equations in M, and let Static(M) be the set consisting of all the equilib-

rium equations in M and one constant equation for every variable v

whose derivative appears in Dynamic(M). A constant equation of a var-

iable is an equation of the form v = c, where c is a constant.

The intuitive meaning of the set Static(M) may be understood as

follows. The set of equilibrium equations in a mixed set represent mech-
anisms that restore equilibrium so quickly that they can be considered

to hold in units of time within some time frame (e.g., days if the time

frame is centuries). On the other hand, the dynamic equations represent

slower mechanisms that require nonzero units of time for the variables

on their right-hand sides to affect appreciably the variable on their left-

hand sides. Therefore, in a very short period of time—shorter than is

required for the variables on the right-hand sides of d\ and d2 to appre-

ciably affect xi and x2 on the left-hand sides

—

xi and x2 can be considered

unchanging. Thus, set Static(M) represents a snap-shot picture (i.e., a

very short-term equilibrium description) of the dynamic behavior of

mixed structure M.

Definition 3. The set M of n equations in n variables is a self-contained

mixed structure if:

1. One or more of the n equations are first-order differential equations,

and the rest are equilibrium equations.

2. In any subset of size k of Dynamic{M), the first derivative of at least

k different variables appear.

3. In any subset of size k of Dynamic(M) in which r (r > k) first deriv-

atives appear, if the values of any (r - k) first derivatives are chosen

arbitrarily, the remaining k are determined uniquely as function of

the n variables.

4. The first derivatives of exactly d different variables appear in

Dynamic{M), where d is the size of the set Dynamic(M).

5. Static{M) is a self-contained static structure.

Conditions 2 through 4 in the preceding definition ensure that

the dynamic part of the model is neither over-constrained nor under-

constrained. Condition 5 ensures that its short-term, snap-shot picture

is also self-contained.

Given a self-contained mixed structure, as defined earlier, the causal

ordering among its variables and derivatives follows the definitions of

G Causal Ordering 397

causal ordering in dynamic and static structures. In other words, the

causal ordering in a mixed structure can be determined as follows:

1. The ordering among n variables and m derivative in subset

Dynamic(M) is given by the definition of causal ordering in a dynamic
structure.

2. The ordering among variables (but not their derivatives) in Static(M)

is given by the definition of causal ordering in a static structure.

A mixed structure can be viewed as an approximation of a dynamic
structure. When a mechanism in a dynamic structure acts very quickly

to restore relative equilibrium, we can regard it as acting instanta-

neously. Or, when a mechanism acts much more slowly than other mech-
anisms in the system so that its effect on the variable it controls is

negligible, the variable may be considered constant. In the first case, the

description of a system behavior as a dynamic structure may be simpli-

fied by replacing the differential equation representing the fast mecha-
nism by the corresponding equilibrium equation, an operation called

equilibrating. In the second case, the model can be simplified by replacing

the equation representing the slow mechanism with a constant equation,

which is called exogenizing. In contrast to numerical model abstraction

techniques (Simon and Ando, 1961), equilibrating and exogenizing are

qualitative techniques.

No precise numerical information is necessary to produce a mixed
structure from a dynamic structure. The equations comprising the orig-

inal dynamic structure may be qualitative, and the decision as to which
equations among them to equilibrate or to exogenize is made based on

qualitative knowledge about relative speeds at which different mecha-
nisms restore equilibrium.

Example: A Mixed Model of an Evaporator

This section presents a detailed example of an application of the

concepts defined in Section Gl to a mixed model of the evaporator.

We describe this representation using the example of an evaporator,

a component of a refrigerator, in which the refrigerant evaporates,

absorbing heat from the surrounding medium. Figure G-l shows an
evaporator. Liquid refrigerant flows through an expansion valve from
the receiver into the evaporator. When it goes through the valve, it starts

to vaporize because of the sudden pressure drop, which causes the refri-

gerant's boiling temperature to fall below its current temperature. At
first, the vaporization takes place without any heat flowing from the

surrounding medium into the refrigerant because the thermal energy in

398 Qualitative Physics XXI

Compressor

Expansion
Valve

Receiver

Cooling Pipe

Figure G-l. Evaporator.

the liquid supplies the requisite latent heat to convert it into vapor,

sharply decreasing the temperature of the liquid refrigerant.

The refrigerant temperature continues to drop sharply until it

becomes equal to the temperature, Tw , of the medium surrounding the

cooling pipe. It continues to decrease, but more slowly, because Tw's is

now higher than the refrigerant temperature, which causes heat to start

flowing into the refrigerant from the surrounding medium. Eventually

the refrigerant temperature falls to the condensing temperature at the

ambient pressure and stabilizes, but the refrigerant continues to boil,

the latent heat now being entirely supplied by the heat absorbed through

the cooling-pipe wall from the surrounding medium. The refrigerant that

passes through the expansion valve is in liquid phase. The refrigerant

that leaves the chamber is at the condensing temperature, and is vapor,

liquid, or a mixture of both.

The variables and brief descriptions for the model of the evaporator

are as follows:

Variables Description

Qin, Qout Input and output refrigerant flow rates (mass/second)

Tin, Tout Temperatures of incoming and outgoing refrigerant

G Ratio of vapor to total mass of outgoing refrigerant

H Heat gained by the refrigerant

P Pressure within cooling pipe

Tc Condensing temperature of refrigerant

Tw Temperature of the surrounding medium

The following equations describe the steady state of the evaporator.

In these equations, spl, I, and k are constants denoting the specific heat

of the refrigerant in liquid phase, the latent heat of the refrigerant, and
the heat conduction coefficient of the cooling pipe wall, respectively.

H = k{Tw - Tc) (32)

G Causal Ordering 399

Characteristics of the heat flow process: The rate of heat flow from

the surrounding medium to the refrigerant is proportional to the tem-

perature difference.

H + Tm Qm spl = G Qout I + Tout Qout spl (33)

Energy flow equation for the output refrigerant.

Tc = f(P) (34)

Characteristics of the refrigerant: The condensing temperature is a

function of the pressure.

Tout = Tc (35)

Characteristics of the evaporator: The output temperature of the

refrigerant is equal to the condensing temperature.

Qin = Qout (36)

The flow equation for the refrigerant flow process.

Tin = ci (37)

Qin = C2 (38)

P = c3 (39)

Tw = c4 (40)

Equations (37) through (40) represent the assumptions that the var-

iables, Tin , Qin, P, and Tw are externally controlled.

Let M be the mixed structure of the evaporator consisting of equa-

tions (32) to (40) with equations (33), (35), and (36) replaced with the

following differential equations. The reason these equations are replaced

by dynamic ones is that relations represented by equations (32) and (34)

are restored to equilibrium very quickly when disturbed, whereas those

represented by equations (33), (35), and (36) are restored relatively

slowly. Therefore, in an analysis of medium temporal grain-size, it is

reasonable to regard the former equilibrium relations as always holding

and the latter as taking time.

dG = C5
\H + spKTin Qin - Tout Qout) _ G] (41)

dt [Qout / J

^^ = c6 (Tc - T ut) (42)

" = Cl (Qi„ - Qout) (43)
dt

M clearly satisfies conditions 1 through 4 of the definition of a self-

contained mixed structure. Static(M) consists of equations (32), (34), and

(37) through (40) as well as the following constant equations of G, Tout,

and Qout.

400 Qualitative Physics XXI

G = c8

Tout — C9

Qout = ClO

(44)

(45)

(46)

The equilibrium structure Static(M) is self-contained. Each one of

equations (37) through (40) and (44) through (46) forms a minimal com-

plete subset of zero order. Removing these equations and variables from

Static(M) produces the following derived structure of first order:

Derived structure of first order: Static(Mi)

H = k(c4

Tc = fic3)

Tc) (47)

(48)

Equation (48) forms a minimal complete subset of first order. Removing
the equation and variable Tc from Static(Mi) produces the following

derived structure of second order:

Derived structure of second order: Static(M2)

H = k(c4 - fics)) (49)

Since Static(M2) is its own minimal complete subset, the process

stops. The causal ordering in M thus derived is shown in Figure G-2.

Causal links in the dynamic part of the model, consisting of equations

(41) through (43), are indicated by arrows drawn with broken lines.

Integration links are indicated by the arrows marked with i. An inte-

gration link simply links the derivative of a variable to the variable

itself.

The causal structure in Figure G-2 can be explained informally in

English as follows: The condensing temperature depends (instanta-

neously) on the pressure, and the heat flow rate from the surrounding

medium to the refrigerator depends (instantaneously) on the condensing

temperature and the temperature of the medium. The output refrigerant

_

- -»• G'

Q
ou,

T H

P T
/

T
,"*"
i^^^rr~^^

~ r̂Z"__--»• /

G

Figure G-2. Causal ordering in the evaporator.

G Causal Ordering 401

flow rate changes more slowly depending on its current value and the

input flow rate. Likewise, the output refrigerant temperature changes

more slowly depending on its current value and the condensing temper-

ature. The percentage of vapor in the outgoing refrigerant changes

depending on the condensing temperature, heat absorbed, and input and
output flow rates and temperatures. The pressure inside the evaporator,

the input flow rate of the refrigerant, the input temperature, and the

temperature of the surrounding medium are determined externally.

Reasoning About Behavior

CAOS uses the causal ordering of variables in an equilibrium struc-

ture to predict the effects of a disturbance on the variables. A disturbance

is given to the system as the direction (up or down) in which one of the

variable values is changed, and this information is propagated to the

variables that are causally dependent on the first variable to determine

how they are affected. This propagation procedure makes use of the

information about the signs of coefficients in the equations and is similar

to that described in the propagation technique described in Section B.

One major difference is that the directions in which CAOS propagates

disturbances is determined by the causal ordering relations, whereas the

technique described in Section B can propagate a disturbance in any
direction.

However, one critical requirement that must be satisfied for such

prediction to be meaningful is that the equilibrium be stable. Although

an equilibrium system describes the behavior of the device in equilib-

rium, it does not describe the behavior when it is disturbed out of equi-

librium. If the equilibrium is dynamically stable, meaning that the

system will eventually go back to equilibrium after a disturbance, the

procedure of propagating disturbances in an equilibrium structure is a

prediction of how the new equilibrium values of the variables will com-

pare to the old values.

The stability of a system must be determined by examining its

dynamic behavior. Given a dynamic structure describing the behavior of

a device when it is out of equilibrium, the stability analysis module of

CAOS applies various qualitative techniques to determine stability of the

system.

Conclusion

This section discussed the application of the method of causal order-

ing to models of physical devices. The theory of causal ordering provides

an operational definition of causal dependency relations among variables

in a wide range of models, from entirely equilibrium models to entirely

402 Qualitative Physics XXI

dynamic ones, and from qualitative models to quantitative models. It

provides an alternative to approaches used by other researchers in qual-

itative reasoning. It does not require that knowledge of causal relations

be explicitly prespecified in the knowledge base. The approach clearly

separates the task of determining causal relations from the task of deter-

mining effects of a disturbance on the system.

References

The original accounts of the theory of causal ordering are presented

in Simon (1952 and 1953). Iwasaki (1988b) discusses the extension to

mixed systems and also the relation with the theory of aggregation of

dynamic systems. Iwasaki and Simon (1986a and 1986b) and de Kleer

and Brown (1986) compare ENVISION'S approach to causality and causal

ordering theory.

H. CAUSAL ACTION/
EVENT-BASED APPROACHES

This section discusses three other approaches to qualitative reasoning.

They represent knowledge about behavior in terms of causal actions. In

contrast to the work discussed so far, in which knowledge about device

behavior is represented in the form of qualitative mathematical relations

governing the behavior, the work described in this section represents

knowledge about how a device achieves its function in terms of sequences

of events or actions connected by causal links.

The first project described in this section, the Commonsense Algo-

rithm by Rieger and Grinberg (1977), is one of the earliest attempts at

declarative representation of mechanisms. It represents mechanisms as

events, actions, and states, connected by various types of links, which

describe the way states, actions, and events trigger each other. The
second project, by Chandrasekaran and his colleagues, is similar to the

Commonsense Algorithm in that it also represents the way the function

of a device is achieved by a chain of states connected by causal links.

The last work, by Bylander and Chandrasekaran, employs a small num-
ber of generic behavior types to describe the behavior of components,

and infers the behavior of a composite device from behavior descriptions

of its components.

HI. Commonsense Algorithm

The work on Commonsense Algorithm (henceforth CSA) by Rieger and
Grinberg is an attempt to represent causal relations in knowledge about

how devices function and also to use the representation to simulate the

mechanisms in a way that approximates human reasoning.

Representation

CSA represents mechanisms as a graph whose nodes represent events

and whose links represent relations between events, including but not

limited to causal relations. CSA categorizes events, into four types:

403

404 Qualitative Physics XXI

Action An action performed by an external agent such as a

human operator.

Tendency An event that is similar to an action but that happens

without someone intending to make it happen. For

example, gravity acting on a balloon is a tendency,

whereas a person's pulling down on a string attached to

the balloon is an action.

State Any piece of description of a state of anything involved

in the mechanisms being described.

Statechange An event of something undergoing a transition from one

state to another. For example, "A being at a location 11"

and "A being at 12," where A is some object, and 11 and

12 are distinct locations, are states whereas "A changing

locations from 11 to 12" is a statechange.

These four type of events are connected by the following types of

relations. For causal, enablement, and state coupling relations, there are

one-shot and continuous links. For a one-shot causal link, the causing

action only has to happen once, whereas for a continuous causal link,

the causing action must be sustained while the effect is happening.

Causal, state coupling, and state equivalence links can be qualified by a

set of conditions that must be satisfied for the link to be effective.

Causal link

Enablement

State coupling

State equivalence

State antagonism

Rate confluence

Threshold

A causal connection from action or tendency to a

state or statechange.

A link from a state to an action or tendency such

that the latter cannot take place without the

former. The state "enables" the action or tendency.

A link from a state or statechange to another state

or statechange that the former indirectly produces.

This link makes it possible to abstract out detailed

causal steps that link the two events.

State equivalence links two states or statechanges

that are equivalent in the sense that they describe

the same event in two different ways. For example,

"the light is not on" and "the light is off" are two

equivalent states.

This links two states or statechanges that are

mutually exclusive such as "the light is on" and

"the light is off."

When multiple statechanges are taking place at

the same time resulting in some net statechange,

the former statechanges are linked by a rate-

confluence link to the latter.

When there is a state representing some threshold

of interest in the mechanisms, and if there is a

statechange representing a move toward the

threshold, the statechange is linked to the state by

a threshold link.

H Causal Action/Event-based Approaches 405

Figure H-l shows an example of CSA representation of the function-

ing of a thermostat.

(?) (From Box 3)

/Mercury Envelope^ f Gravity ^ /"Mercury Envelope\

\^ Sloping Left J \^ Mercury J I Sloping Right)

T
(Mercury no, a, a)

-||^^to Jfr+Q Q^uJ.R^
l h^^ "" " °)

» H 21 27 y>

¥ 22 200 1w

)/ Loc Mercury "N /" Loc Mercury "\

^ (-100 2) Any ^ ^ (2 100) Any JE_

J
*• To

Figure H-l. CSA representation of a thermostat function.

(Rieger and Grinberg, 1977)

Simulation

When simulating a mechanism, CSA does not directly use the graph

representation presented in the preceding section. Instead, the graph

representation is first converted into a procedural representation in the

form of a collection of small independent computing units. A computing
unit is a demon that fires when the attached conditions become true and
simulates one event in the declarative representation. Thus, the func-

tioning of the entire mechanism is simulated by a chain of many demons
firing, causing changes in the state of the world.

406 Qualitative Physics XXI

There is a reason for converting the declarative representation to a

procedural representation. Any physical system consists of physical prin-

ciples and components, which operate autonomously in parallel. A gross

physical phenomenon, such as the behavior exhibited by a device, is the

cumulative effect of the workings of all such autonomous agents and
their interactions. In the procedural representation, each cause-effect

relation in the declarative representation is a computing unit existing

independently, being triggered by external conditions, and producing

effects on its own. This enables the user to simulate the behavior of a

new device invented out of existing components and physical lawsTfieips

debug the new device by discovering interactions that arise from novel

combinations of existing components and laws.

Abstraction

Rieger and Grinberg propose two ways to produce a more abstract

CSA representation from a detailed representation. The first is to replace

multiple links by a single state-coupling link thereby suppressing unin-

teresting details. A state-coupling link can be used for this purpose

because its definition allows it to link any two states or statechanges

that are causally linked indirectly.

The second method is to pick out only events in the declarative

representation that are relevant to some aspect of interest. Thus, from

the description of thermostat given in Figure H-l, we could produce a

more abstract description by extracting only events that are relevant to,

say, heat transfer. Clearly the first and the second methods can be com-

bined. The second method can be used to determine what events are

interesting.

H2. Functional Representation of Devices

Chandrasekaran and his colleagues' research on functional represen-

tation of devices is motivated by the questions of what it means to

understand the relation between a function of a device and its structure

and of how to represent such understanding so as to enable problem

solving. They represent knowledge about how a device achieves its func-

tion by a causal chain of states in a fashion similar to CSA representation.

Their main interests are in representing such knowledge and using it

efficiently to solve problems. In particular, diagnosis of device behavior

is one of their goals. The declarative representation of device function is

H Causal Action/Event-based Approaches 407

automatically converted into a set of hierarchically organized diagnostic

rules. In this discussion, we focus on the representation of mechanisms.

Representation

A device is represented in terms of its structure, function, and behav-

ior. The structural representation consists of a component-subcomponent

hierarchy together with interconnections between components.

A function is defined as the intended response of a device to an
external or internal stimulus, whereas behavior is a description of how
such a response is produced. A behavior is represented as a causal chain

of states, where a state is any assertion about the state of some object

in the world.

Figure H-2 shows the representation of one of the functions of a

buzzer, namely, to buzz. In the figure, pressed (manual-switch) denotes

the state where the manual switch of the buzzer is pressed. In the figure,

assumptionl is an assumption, represented separately from the function

itself, that relies on the assumption being true. It includes such assump-

tions as the existence of electrical connections between appropriate

points in the structure.

A function is achieved by a behavior or set of behaviors. A behavior

is a sequence of causally related states, in which each causal link can in

turn be explained by the function or the behavior of a component. Thus
behaviors and functions form a hierarchy of more and more detailed

causal descriptions. Since the distinction between function and behavior

is only a matter of relative levels of abstraction, we will drop the dis-

tinction in the remainder of this section and use the terms behavior and
function interchangeably.

A causal link, besides being explained further by a more detailed

functional or behavioral account, can be qualified by a set of conditions,

called assumptions, that must be satisfied for the causal link to hold.

Figure H-3 shows a representation of the behavior behaviorl that

enables a buzzer to achieve its function.

In addition to knowledge specific to devices, namely structures, func-

FUNCTIONS:
buzz: TOMAKE buzzing (buzzer

)

IF pressed(manual-switch

)

PROVIDED assumptionl
BY behaviorl

END FUNCTIONS

Figure H-2. Function: buzz.

408 Qualitative Physics XXI

BEHAVIOR
behaviorl
state-1 pressed(manual-switch)

BY behavior2
state-2 (elect-connected(t7, t8), elect-connected(t7,

t8))*

USING FUNCTION mechanical
OF clapper(t7, t8, space2)

state-3 repeated-hit(clapper)
USING FUNCTION acoustic
OF clapper(t7, t8, space2)

state-4 buzzing(clapper

)

state-5 buzzing(buzzer)

si = s2 means the states si and s2 are equivalent.

(si, s2)* means the sequence of states si followed by s2 is repeated many
times.

clapper is a component ofthe buzzer specified in its structural representation.

Likewise, t7, t8, and space2 are parts specified in the structural represen-

tation.

Figure H-3. Behavior representation.

tions, and behavior, a causal description of how a function is achieved

can refer to generic knowledge. Generic knowledge is knowledge about

general physical principles, for example, Kirchoff 's law of electric cur-

rents. Generic knowledge is used in Chandrasekaran's representation as

an element in a behavior description, which needs no further explana-

tion.

Knowledge Compilation

The knowledge representation is used to generate a system for diag-

nosing malfunctions of a device by converting the functional represen-

tation into a hierarchy of diagnostic rules. Rules confirm or reject

hypotheses about a cause of a malfunction. These rules are called spe-

cialists. The difference between simple rules and specialists is that the

latter not only reject or confirm hypotheses but also include domain
specific knowledge about how the antecedent part of the rule can be

tested. Conditions in the antecedent of a rule may be very easy to test;

for example, the conditions "the switch is pressed" and "the buzzer is

buzzing" can be easily tested by simple observation. Others may require

taking measurements or even conducting an experiment, e.g., "the ter-

minals tl and t2 are electrically connected".

H Causal Action/Event-based Approaches 409

Chandrasekaran calls the process of generating diagnostic specialists

from functional representations knowledge compilation. It is a process of

representation transformation from a form that is more descriptive of

the way devices function to a form that is more efficient to use for

diagnostic problem solving.

H3. Consolidation

The work on consolidation by Bylander and Chandrasekaran focuses on

the problem of composing the behavior description of components into a

behavior description of the whole. Their task is not prediction or simu-

lation, but it is one of aggregation of descriptions. They have a vocabu-

lary of a few generic types of behavior, in terms of which behavior of

individual components are described. They also have rules, called causal

patterns, for combining behavior to generate behavioral descriptions of

composite devices. Given information about the structure of a device in

terms of the connections among components and descriptions of the

behaviors of the components, their system attempts to combine behavior

descriptions of more and more components to generate a description of

the behavior of the device as a whole.

Representation of Components

In Bylander and Chandrasekaran's representation, a device has com-

ponents and substances. Components have behavior and interact with

other components through physical connections. Components can also

contain substances. Substances are the "stuff" that moves within and
between components and affects their behavior. Substances include real

physical substances such as fluid as well as other physical phenomena
such as heat, which could be thought of as something that moves around.

Substances can contain other substances in turn; for example, water can

contain heat.

Figure H-4 shows part of an electrical circuit involving a switch and
a battery, together with descriptions of some of their behaviors.

One of the central claims in the work on consolidation is that a small

set of primitives, describing different generic types of behavior, can be

used to describe actions of devices. In this respect, their work is remi-

niscent of Schank's work on conceptual dependency (Schank, 1975).

Schank's goal was understanding of natural language sentences, and he

denned eleven primitive actions such that all verbs of a natural language
can be given classified as a special case of one of the primitives. In the

410 Qualitative Physics XXI

gate

end2

battery

light

bulb

allow electricity between endl and end2
thru electrical,

resistance 0, sfafe closed

allow signal from gate to sensor

change state to closed

when move signal from gate

to sensor, rate on

pump electricity from negative terminal
i

to positive terminal thru electrical, h
amount positive

i

1

allow electricity between negative terminal
i

and positive terminal thru electrical, h
resistance positive

i

. _
,

allow electricity between endl and end2 \-

thru electrical, resistance positive •-

propagate

pump —
electricity

serial

allow —
electricity

propagate

pump —
electricity

serial

allow

electricity

pump move
electricity

allow light between light source

and surface

i
create light in light source,

i rare [proportional (magnitude (rate

i move electricity between endl
i and end2))] V

consolidation

Figure H-4. Behavioral description of a light bulb.

(From Nishida, T. 1987. Qualitative Reasoning—Formal models of

commonsense reasoning. Journal ofJapanese Society for Artificial Intel-

ligence, Vol. 2(1). Modified from Bylander and Chandresekaran. 1985.)

work on consolidation, the goal is composition of descriptions of compo-

nent behavior, and the set of primitive behavior types are the following:

Allow An allow behavior indicates that a substance is

permitted to move through a specified path. It can be

unidirectional or bidirectional.

Expel An expel behavior is an attempt to move a substance

from or to a container. It does not specify a path but

only a single place from which the behavior happens.

Pump A pump behavior is an attempt to move a substance

through a path.

Move A move behavior states that a substance is actually

moving from one place to another.

Create A create behavior states that a substance is being

created. Includes such behavior as emission of light as

well as generation of physical substances.

Destroy A destroy behavior states that a substance is being

destroyed. Includes such behavior as obstruction of

light and sound as well as disappearance of physical

substances.

change modes A component can have operational modes, in each of

which it may behave differently. A change mode
behavior is changing from one such mode to another.

H Causal Action/Event-based Approaches 411

Composing Behavioral Descriptions

Given descriptions of individual components and the physical con-

nections among components, Bylander and Chandrasekaran's program
generates the behavior description of composite components by combin-

ing the descriptions of individual components. The program has rules

about how to combine individual behaviors for a number of different

situations, called causal patterns. They combine component behaviors

that are physically connected in some fashion: connected in parallel or

serial, sharing the same end point, on the same path, and so on. Consider

the following causal patterns:

Serial/parallel allow, An allow, a pump, or a move behavior can be

Serial/parallel pump, caused by two behaviors of the same type in

Serial/parallel move serial or parallel.

Propagate expel An allow and an expel located at the end point

of the allow make an expel.

Include expel A pump and an expel located at the end point of

the pump make a pump.

Propagate pump A pump and an allow in serial make a pump.

Pump move A pump and an allow on the same path can

cause a move.

Carry move A move behavior of a substance containing

another substance causes a move of the latter

substance.

The behaviors of the switch and the battery in Figure H-4 can be

combined using these causal patterns to generate behavior description

of the composite device comprised of the two. The right half of Figure

H-4 shows the consolidation process. For example, the "allow electricity"

behavior of the switch and the "pump electricity" behavior of the battery

is combined by the "propagatepump" causal pattern to form an aggregate

"pump electricity" behavior.

H4. Conclusion

CSA's cause-effect graph consists of various types of nodes representing

events, and links representing causal interactions connecting events.

With these nodes and links, we can represent our perception of how a

device works as a network of causally related events. The purpose of CSA
is to represent our common sense understanding of how a device works
and not to represent an accurate design model of a device.

412 Qualitative Physics XXI

The CSA representation suffers from lack of clear definitions for the

representation primitives, namely, various types of events and links.

Some of the distinctions between different types of events, such as the

distinction between tendency and action and that between statechange

and tendency, seem arbitrary or irrelevant to the working of a mecha-
nism. The relationship between a mathematical or structural model of a

given device and its CSA representation is not obvious, and it would be

difficult to define the notions of completeness or soundness for CSA rep-

resentations of any given device.

Chandrasekaran and his colleagues' research on functional represen-

tation of devices is motivated by the questions of what it means to

understand the relation between a function of a device and its structure

and of how to represent such understanding so as to enable problem

solving. They represent knowledge about how a device achieves its func-

tion by a causal chain of states, similar to CSA representation. Their

main interests are in representing such knowledge and using it effi-

ciently to solve diagnostic problems. The declarative representation of a

device function is automatically converted into a set of hierarchically

organized diagnostic rules. A device is represented in terms of its struc-

ture, function, and its behavior.

As in the case of CSA, Chandrasekaran's functional representation

has no obvious relation to the physical structure or the mathematical

model of the device. Since no guiding principles are offered about how a

given device should be modeled, a functional representation model of

any device may be highly subjective, and it will not be easy to assess its

predictive power or limitations.

A weakness common to all three systems described in this section is

the lack of temporal reasoning. In all cases, a causal link implies only a

weak temporal relation between connected states. That state A causes

state B implies only that the beginning of B does not precede that of A.

The lack of a clear notion of time is not a major difficulty to Chandra-

sekaran and Bylander's work because the descriptions their systems

produce, diagnostic rules or aggregate behaviors, are essentially static,

requiring no sophisticated temporal reasoning capability. However sim-

ulation performed by CSA does require temporal reasoning. CSA converts

a declarative representation to a procedural one in order to simulate a

situation with many small demon-like computing units run in parallel.

However, without much more information about temporal relations

between events connected by causal links, it is difficult to coordinate

firing of demons to simulate behavior correctly.

H Causal Action/Event-based Approaches 413

References

CSA is described in Rieger and Grinberg (1977). Use of CSA for

simulation is discussed in Rieger and Grinberg (1978). Chandrasekaran's

functional representation is described in Sembugamoorthy and Chan-

drasekaran (1986). Consolidation is described in Bylander (1987).

Chapter XXII

Knowledge-based Simulation

Alfred Round—Intelligent Interfaces

CHAPTER XXII: KNOWLEDGE-BASED
SIMULATION

A. Overview I 417
B. The Evolution ofKnowledge-based Simulation I 419

1. An Overview of Simulation I 419

2. The Limitations ofNumerical Simulation I 424

3. Object-oriented Language for Simulation I 425

C. Applications ofKnowledge-based Simulation I 437
1. The Design of Flexible Manufacturing Systems I 437
2. Planning Therapies for Cancer Treatment I 441

3. Evaluating Business Proposals I 444

4. Solving Problems in Molecular Genetics I 448
D. The Design ofKnowledge-based Simulation Systems I 452

1. Sequential Integrated Systems I 452

2. Parallel Integrated Systems I 455

3. Intelligent Front Ends for Building Numerical Simulation I 459
4. Rule-driven Simulation I 462

E. Qualitative Aspects ofKnowledge-based Simulation I 464

1. Simplification ofProcesses I 464

2. Aggregation ofProcesses I 467
3. Multiple Levels ofAbstraction I 470
4. Multiple Levels of Precision I 476

F. Real-world Applications ofKnowledge-based Simulation I 483

1. COMAX: Knowledge-based Simulation for Cotton Crop

Management I 483

2. SimKit: An Integrated, Knowledge-based Environment for

Simulation I 487
3. ABLE: Knowledge-based Control for Particle Accelerators I 493

4. Forecast Pro: Intelligent Prediction ofBusiness Trends I 500

G. Issues in the Development and Use ofKnowledge-based

Simulation I 504
1 . Simulation, Inferencing, and Time I 504

2. The Development ofKnowledge-based Simulation

Applications I 510
3. The Validation ofKnowledge-based Simulation

Applications I 513
H. Conclusion I 518

A. OVERVIEW

The post-industrial era has forced decision makers in all sectors of

society to face problems whose scope and complexity are beyond the grasp

of any single individual or committee. The manufacturer who wishes to

increase productivity, the medical researcher who tries to develop better

cancer treatments, and the government bureaucrat who formulates pol-

icy all must confront an overwhelming number of potential courses of

action that have uncertain outcomes. Since it is generally impractical or

unethical to try out even a small fraction of these plans, a decision-

maker needs some means of predicting their outcomes in order to make
the best choice.

Two of the principal methods for predicting the behavior of complex

systems are simulation and knowledge-based programming. Both of these

methods use digital computers to construct models of a system and to

execute these models in order to obtain information on the system's

behavior. The two methods differ in the way the system is modeled and
in how the model is used to make predictions. The behavior of a system

is usually represented by mathematical equations or probability distri-

butions in a simulation model, and by rules in a knowledge-based pro-

gram. Simulators predict the future state of a system by propagating the

values of system variables through time, whereas knowledge-based pro-

grams infer facts about the state of the system or show how to achieve

a predefined state, usually without explicitly considering time. Simula-

tors generally function as black boxes that take numerical data as input

and produce numerical data as output, whereas knowledge-based pro-

grams are often able to explain the reasoning process that led to a given

result.

The choice of technique depends on the application; simulation is

suited toward problems that can be modeled analytically, whereas knowl-

edge-based programming is amenable to problems that are better

expressed in the form of heuristics. Since the accumulated knowledge

about most complex domains has both analytical and heuristic compo-

nents, it is of great interest to investigate the potential of integrating

knowledge-based techniques with simulation for the purpose of predict-

ing complex system behavior.

This chapter surveys the current state of the art in knowledge-based

simulation. The field is so new that no attempt shall be made to precisely

define the term "knowledge-based simulation." Instead, the programs

417

418 Knowledge-based Simulation XXII

described in the following sections will illustrate a variety of applica-

tions, techniques, and issues in making simulation more "intelligent."

Section B presents some background on simulation in general and the

motivation for incorporating knowledge-based paradigms into simulation

modeling. Section C illustrates the variety of problems that knowledge-

based simulation is uniquely qualified to solve. Many simulation appli-

cations combine both numerical and rule-based components; the integra-

tion of these components is the subject of Section D. Most interesting

problems occur in domains where knowledge is incomplete and is rep-

resented with varying degrees of precision; Section E discusses simula-

tion techniques that deal with such situations. Section F describes

several applications and tools that have been tested in the real world.

Section G discusses development issues such as validation, verification,

and the use of time. Section H concludes the chapter by emphasizing the

importance of proper validation to knowledge-based simulation applica-

tions.

B. THE EVOLUTION OF KNOWLEDGE-BASED
SIMULATION

This section traces the roots of knowledge-based simulation in meth-

odologies first developed in the 1950s: discrete-event and continuous

simulation. A simple example of discrete-event simulation is presented

to give an intuitive feeling for the kind of problems for which simulation
is useful. The limitations inherent in the most frequently used simula-

tion techniques are then discussed. Object-oriented programming tech-

niques were originally developed to address these limitations and
expanded the range of problems amenable to simulation. We will describe

two object-oriented languages, SIMULA and Smalltalk, that were

designed specifically for simulation applications; these two languages

were influential in the subsequent development of knowledge-based sim-

ulation.

Bl. An Overview of Simulation

To illustrate discrete-event simulation, we will consider a factory that

makes orange juice. A conveyor belt carries each orange to a processing

station that slices and squeezes the orange. We would like to know the

average amount of time that an orange spends in the system since this

knowledge will help us devise ways to increase the rate of juice produc-

tion. If the processing station is busy when an orange arrives at it, the

orange must enter a queue and wait until all the oranges in front of it

have been processed; otherwise, the orange gets processed right away.

The delay of an orange is equal to the time it spends in queue plus the

time it takes to be processed. Only one orange can be processed at a time,

and the orange at the front of the queue starts being processed at the

instant that the preceding orange departs from the processing station.

The time that orange n spends in queue is therefore the departure time

of orange n - 1 minus the arrival time of orange n.

If the processing rate is much faster than the arrival rate, there will

never be a queue, and the average delay of an orange will simply be the

average processing time. At the other extreme, if oranges arrive at a

rate much faster than the processing rate, the conveyor belt will always

419

420 Knowledge-based Simulation XXII

be full of oranges. In this case, the average time that an orange spends

in queue will be the number of oranges that fit on the conveyor belt

times the average processing time. As an example, suppose that the

conveyor belt has a capacity of 10 oranges and is always full, and that

the average processing time for an orange is 2 seconds. An orange that

has just entered the system will have to wait about 20 seconds in queue
since each of the 10 oranges in front of it requires about 2 seconds of

processing time. The total delay for this orange is about 22 seconds since

it requires about 2 seconds of processing time after having waited 20

seconds in queue. If the arrival and processing rates are relatively close,

however, there is no simple way to compute the average delay directly.

We now show how the average delay can be calculated using simulation.

Simulation of the Orange Juice Manufacturing Facility

We will simulate 5 oranges as they pass through the system. We are

given two pieces of data for orange n: the time interval between the

arrival of orange n — 1 and the arrival of orange n (called the inter-

arrival time), and the time it takes to process orange n (called the

processing time). These times (in arbitrary units) are shown in Table

B-l. Note that the inter-arrival time for orange 1 is since there is no

orange preceding it.

These times are not constant because most real-world processes do

not occur at a constant rate—oranges sometimes fall off the line, the

processing station occasionally breaks down, and so on. These variations

are accounted for by probability distributions. The input data to a sim-

ulation is usually generated by random sampling from the probability

distributions for each input parameter. For example, the inter-arrival

and processing times in Table B-l might have been generated by sam-

pling five times from an exponential distribution and a normal distri-

bution, respectively.

Table B-l

Inter-arrival and Processing Times for the

Orange Juice Simulation

Orange Inter-arrival time Processing time

1 5

2 4 9

3 3 7

4 6 9

5 5 5

B The Evolution of Knowledge-based Simulation 421

At time 0, orange 1 arrives at the processing station. Since the

processing station is idle, the processing of orange 1 begins right away.

We know from the table that the processing time orange 1 is 5, so we
calculate that orange 1 will depart from the system at (0 + 5) = 5. We
also see from the table that orange 2 arrived at time 4. Since orange 1

is undergoing processing until time 5, orange 2 is delayed in the queue

(5 - 4) = 1. At time 5, orange 2 begins processing. Since the processing

time of orange 2 is 9, it will depart the system at time (5 + 9) = 14.

In the meantime, orange 3 will have arrived at time (4 + 3) = 7,

and orange 4 will have arrived at time (7 + 6) = 13. Orange 3 arrived

at 7 but cannot begin processing until orange 2 departs at 14. The delay

in the queue for orange 3 is therefore (14 - 7) = 7. Orange 3 has

processing time of 7, so it departs the system at (14 + 7) = 21. Orange
4 must wait until time 21 to begin processing, so it experiences a delay

in the queue of (21 - 13) * 8. It has a processing time of 9, and so it

departs the system at (21 + 9) = 30. Orange 5, which arrived at time

(13 + 5) = 18, must wait until time 30 to begin processing, giving it a

delay in queue of (30 - 18) = 12. With a processing time of 5, orange 5

departs the system at (30 + 5) = 35.

At this point, all 5 oranges have been processed. We can now calcu-

late the total delay for each orange as the sum of its delay in the queue
and its processing time. These statistics are presented in Table B-2. The
average delay of an orange is therefore the sum of the total delays divided

by 5 (the total number of processed oranges), which turns out to be 12.6.

The moral of the story is that we were able to calculate the average

delay of the 5 oranges given their inter-arrival and processing times by

using simulation to predict the delay in queue for each one. The hallmark

of simulation is its ability to predict the future state of a system given

a model of the system and its current state. Another way to put it is that

simulation predicts the behavior of a system, if we use the term "behav-

ior" to mean the set of values that describes a system over a time period

of interest.

Table B-2

Statistics Derived from the Orange Juice Simulation

Orange Arrival Delay in queue Departure Total delay

1 5 5

2 4 1 14 10

3 7 7 21 14

4 13 8 30 17

5 18 12 35 17

422 Knowledge-based Simulation XXII

Discrete-event and Continuous Simulation

The orange juice facility exemplifies a wide range of systems in which
a finite number of entities (such as oranges) arrive at the system, form

queues, undergo processing, and depart the system. Since each of these

events occurs at a single point in time for each entity, the simulation of

such systems is called discrete-event simulation. There are 10 events in

the orange juice simulation—the arrival of each of the 5 oranges and the

departure of each orange after it has been processed. From the data in

Table B-2, we can construct a time-ordered list of these 10 events, as

shown in Table B-3.

Systems such as a chemical processing plant, a bacterial cell, or an
airplane in flight are characterized by variables that change continu-

ously (e.g., the rate of a chemical reaction, the concentration of a mole-

cule, or the velocity of an airplane). The behavior of these systems is

usually modeled as a set of differential equations that express how the

system variables change with time. Once the initial state of the system

is specified, the techniques of continuous simulation generate values for

the system variables at future times by solving these equations. A com-

bination of discrete and continuous simulation is appropriate for systems

such as a chemical reaction that undergoes abrupt changes in tempera-

ture or pH. Because of its analytical nature, continuous simulation is

sometimes called mathematical simulation. We will use the term numer-
ical simulation to refer to either discrete-event or continuous simulation

Table B-3

Listing of Events in the Orange

Juice Simulation

Event Type Time

1 Al

2 A2 4

3 Dl 5

4 A3 7

5 A4 13

6 D2 14

7 A5 18

8 D3 21

9 D4 30

10 D5 35

A = Arrival, D = Departure

(e.g., Al is the arrival of orange 1)

B The Evolution of Knowledge-based Simulation 423

since both take an initial set of numerical values and predict a new set

of numerical values at a future time.

Computer Implementation of a Discrete-event Simulation

We were able to perform the orange juice simulation by hand since

the system is very simple and the number of oranges is very small. Since

most real-world systems are much more complex, we will want to sim-

ulate them on a digital computer. For the sake of simplicity, we will stick

to the orange juice example in order to illustrate the computer imple-

mentation of simulation.

Figure B-l shows the flowchart for the program that implements

the orange juice simulation. The program makes use of a simulation

clock, which always gives the time of the next event. Since nothing

happens between events, we can move the simulation clock to the time

of event n immediately after event n - 1 has been processed.

The INIT routine initializes the simulation by setting the simulation

clock and all statistics to 0, and it generates the random variables for

the inter-arrival and processing times. The routine for processing

arrivals increments the number of oranges in queue and schedules the

INIT

\ r

^^1s Next Event^^.
^— an Arrival? ^s*

Yes Process
Arrival

of an Orange

'

No
r

< t

Process
Departure

of an Orange

^^ ^v. No
^s^ More ^v.
N. Events? ^^ REPORT

Yes

Update Simulation

Nex + Event

Figure B-l. Flowchart for Orange Juice Simulation.

424 Knowledge-based Simulation XXII

next arrival, if any. The routine for processing departures decrements

the number of oranges in queue, computes the total delay of the orange

that just departed, computes the delay in queue of the orange that just

started processing, and schedules the departure of the latter orange.

Prior to 1965, almost all simulations were implemented as programs
written in a high-level programming language such as FORTRAN. The
introduction in the 1960s of specialized simulation languages such as

GASP, SimScript, and GPSS helped reduce development time by including

routines to automatically process arrival and departure events, generate

input data, and collect and report results (Law and Kelton, 1982). Some
of these languages also facilitate the coding of continuous simulation

models. All numerical simulations have inherent limitations, however;

these will be discussed in the next section.

B2. The Limitations of Numerical Simulation

The average delay of an orange in the preceding example could have

been computed directly using mathematical techniques such as queueing

theory; simulation was used for the purpose of illustration. For a more
complex system, however, there may be no mathematical technique that

can directly compute the system parameters, and numerical simulation

may be the only feasible method to determine these parameters. This

would be the case if we expanded the orange juice manufacturing plant

by adding more assembly lines and processing stations, making the lines

merge and separate in complex ways, and dividing the stations into

separate slicing and squeezing stations. Furthermore there are a large

number of possible plant designs since there are a great many ways to

configure lines and stations. Numerical simulation allows us to predict

performance parameters for a proposed design and to identify its poten-

tial trouble spots such as bottlenecks at squeezing stations.

Simulators written in high-level programming languages or special-

ized simulation languages can, in theory, handle systems of any com-

plexity, given the appropriate probability distributions for system

variables or a set of solvable equations that describe the system's behav-

ior over time. These simulators are still black boxes, however; they take

numbers as input and generate numbers as output. There is a lot of

information about the system that cannot be obtained in this way.

Numerical simulators can predict the occurrence of events such as bot-

tlenecks, but they do not tell us how to handle such events. These

simulators can make predictions given a system model, but they cannot

decide which model is likely to provide the best solution to a problem.

This is a serious consideration when there are so many potential models

B The Evolution of Knowledge-based Simulation 425

(e.g., the designs of our expanded orange juice plant) that it is not feasible

to simulate them all. We may sometimes want to simulate a particular

part of the system in detail, perhaps to trouble-shoot a squeezing

machine, whereas at other times we are interested only in the overall

performance of the whole system and don't need to simulate each com-

ponent in detail. A separate numerical simulator would have to be run

for each component and subcomponent in the system in order to meet
this requirement. The user cannot stop the simulation in the middle to

inspect the state of the system or to pose "what-if" questions (e.g., "what

would happen if I eliminated line 2 and speeded up line 4?"). From a

development point of view, a numerical simulation program must be

recompiled every time a change is made to the system model. Perhaps

most importantly, a numerical simulator provides no interpretation or

explanation of its output; it just generates numbers and leaves their

interpretation up to the user.

The theme of this chapter is the incorporation of knowledge into

simulation in order to overcome these limitations. The next section shows

how object-oriented programming languages such as SIMULA and Small-

talk took the first steps toward achieving knowledge-based simulation.

B3. Object-oriented Languages for Simulation

SIMULA

SIMULA is an ALGOL-based language that was created to facilitate

the development of discrete-event simulation models (Birtwistle et al.,

1968). We will first describe the SIMULA language by using it to model

a post office (Birtwistle et al., 1968), and then we discuss how to imple-

ment a simulation of this model.

The SIMULA Language

All objects can be classified by their characteristics and their behav-

iors. For example, all oranges have certain characteristics in common
such as size, tartness, juice content, and place of origin. Individual

oranges have different sizes, origins, and so on, but the characteristics

themselves are shared among all oranges. Likewise, all oranges share

certain behaviors such as "growth on trees," even though the time and
rate of growth might vary among individual oranges. The common char-

acteristics and behaviors of a set of objects are described in SIMULA by

a class. Each individual member of the class in called an instance of the

class.

A class consists of three parts: a heading, a data declaration part,

426 Knowledge-based Simulation XXII

and an action part. A class that represents all the customers that enter

the post office can be defined as follows:

Heading CLASS CUSTOMER (NROFTASKS , URGENT)

;

INTEGER NROFTASKS;
BOOLEAN URGENT;
BEGIN

Data Declaration Declared list of tasks;
REF(CUSTOMER) NEXT;

Action WHILE NROFTASKS>0 DO

BEGIN
Select a task;
Select a counter;
IF URGENT THEN enter front of

counter queue
ELSE enter tail of counter queue;
Interrupt or wait;
Participate in transactions;
Leave counter;
NR0FTASKS:=NR0FTASKS-1

;

END;
END;

The heading declares a class named CUSTOMER with integer argu-

ment NROFTASKS, the number of tasks on the customer's list, and Boo-

lean argument URGENT, which is false unless the customer's needs are

urgent. The data declaration part declares the variables that are used

by the action part to describe the behavior of a customer. The syntax

REF(CUSTOMER) NEXT means that NEXT is a pointer to a CUSTOMER
instance. As we shall see, such a pointer is used to determine the order

of customers in a queue. The data declaration part also contains the list

of tasks that a customer will execute while in the post office. The action

part describes the behavior of the customer in the post office. For illus-

trative purposes, the action part is written mostly in English; it would
actually be coded as a set of statements in SIMULA. The action part of

the CUSTOMER class is a loop that executes once for each item on the

list of tasks.

Each customer in the post office is represented by a separate instance

of the CUSTOMER class. Each instance inherits the data declaration and

action parts of the class, although the actual contents of these parts will

likely be different between different instances. For example, all CUS-
TOMER instances have a set of tasks, but the tasks may differ between

them: Customerl may have to send a registered letter, pay rent on a

box, and apply for a passport, whereas Customer2 just wants to buy a

roll of stamps. Similarly, all customers go through the statements in the

action part loop once for each task, although the particular action cor-

B The Evolution of Knowledge-based Simulation 427

responding to each statement differs between customers. The statement

"Participate in transactions" is executed for each task by all customers,

but the particular transaction may be "apply for passport" for Customerl

and "buy a roll of stamps" for Customer2. As soon as a new CUSTOMER
instance is created, it immediately begins to execute the code in its action

part, so that different CUSTOMER instances can be engaged in entirely

different activities at the same time.

Since there is usually a queue at each counter in a post office, it is

natural to define a class that represents queues:

CLASS QUEUE;
BEGIN

REF(CUSTOMER) FIRST, LAST;
END;

The definition of class QUEUE is unique in our post office example
in that it contains no action part. Its data declaration part declares FIRST
and LAST as pointers to the first and last customers in the queue, respec-

tively. Figure B-2 shows Queue 1, an instance of QUEUE with three

customers.

Each arrow in Figure B-2 represents a pointer to a CUSTOMER
instance: Queuel.FIRST points to Customerl, Customerl.NEXT points to

Customer2, Customer2.NEXT and Queuel.LAST both point to Customer3,

and Customer3.NEXT is NIL. In this way, the order of the customers in

queue is established.

There must be a clerk to handle the customers in each queue. The
CLERK class in SIMULA is defined as

i*

Queue 1

•«*

Customer 1

Next

Customer 2

Next

Customer 3

Figure B-2. The SIMULA implementation of a post office

queue.

428 Knowledge-based Simulation XXII

CLASS CLERK(Q); REF(QUEUE)Q;
BEGIN REF(CUSTOMER)PERSON;
SERVICING:
WHILE Q. FIRST = / = NONE DO
BEGIN

PERSON :- Q. FIRST;
take PERSON out of the queue

and engage with him in transactions;
END;
do other work until interrupted by the
arrival of a customer in the queue
GOTO SERVICING;

END;

The Q in the CLERK heading is a pointer to the queue that a clerk

is attending. The PERSON denned in the data declaration part points to

the current customer being served by a clerk. The WHILE loop of the

action part is executed as long as there is a first person in the queue
(i.e., the queue is not empty).

A counter is associated with a clerk and a queue. The class

COUNTER is defined as:

CLASS COUNTER;
BEGIN REF(QUEUE)Q; REF (CLERK) POSTOFFICER

;

Q :- NEW QUEUE;
POSTOFFICER :- NEW CLERK(Q);

END;

The data declaration part of COUNTER declares pointers to a queue
called Q and to a clerk called POSTOFFICER. The two pointer assignment

statements of the action part create a new queue and a new clerk to

service that queue.

Finally, customers have to enter the post office in order to carry out

their tasks. Customers are generated with an instance of class DOOR:

CLASS DOOR;
BEGIN REAL ARRTIME;
WHILE TIME <= CLOSETIME DO
BEGIN
ARRTIME := time of arrival;
suspend further actions until ARRTIME;
NEW CUSTOMER(NROFTASKS)

;

END;
END;

END;

CLOSETIME is the time that the post office closes. We assume that

the times of customer arrivals are generated by a probability distribu-

B The Evolution of Knowledge-based Simulation 429

tion. The WHILE loop therefore creates a new CUSTOMER instance at

each ARRTIME and waits until the next ARRTIME.
The entire post office consists of four counters and a door, as shown

in Figure B-3.

We have seen that the clerks and queues are generated from

COUNTER instances and that customers are generated from a DOOR
instance. What generates the counter and door instances? The system

object serves the purpose of generating the first objects, from v/hich all

other objects will be generated. The action part of the system object can

be coded as:

BEGIN
OPENTIME:=8.00;
CLOSETIME:=17.00;
wait until OPENTIME;
SERVICE1 :-NEW COUNTER
SERVICE2:-NEW COUNTER
SERVICE3:-NEW COUNTER
SERVICE4:-NEW COUNTER
NEW DOOR;
wait until CLOSETIME;
close down the post office;

END;

Door

C stands for customer. The number of customers in each queue
at a given time is or a positive integer.

Figure B-3. The SIMULA implementation of a post office.

430 Knowledge-based Simulation XXII

Note that the pointer to the DOOR instance is not assigned, since it is

never referred to by any of the other objects.

The Implementation of Simulation Models with SIMULA

The post office system that we have described consists of a collection

of objects (customers, queues, clerks, counters, and a door), each of which
executes its action pattern independently of the others. The objects of

the collection must coordinate their activities in some way, however, if

the post office is to operate as we expect. For example, the participation

of a customer in a transaction and the service of that customer by a clerk

must occur at the same time. The SIMULA language contains a prede-

fined class called SIMULATION, which contains procedures for coordi-

nating the actions of objects with respect to time. The class SIMULATION
is part of SIMULA; it is not defined by a programmer. The entire post

office can be represented as an instance of class SIMULATION:

SIMULATION CLASS POSTOFFICE

;

BEGIN
PROCESS CLASS COUNTER . .

PROCESS CLASS DOOR . . .

PROCESS CLASS CLERK . . .

PROCESS CLASS QUEUE . . .

PROCESS CLASS CUSTOMER .

REAL OPENTIME, CLOSETIME;
REF(COUNTER)SER VICE 1 , SERVICE2 , SERVICE3 , SERVICE4

;

OPENTIME: =8. 00;
CLOSETIME:=17.00;
wait until OPENTIME;
SERVICE1 :-NEW COUNTER
SERVICE2:-NEW COUNTER
SERVICE3:-NEW COUNTER
SERVICE4:-NEW COUNTER
NEW DOOR;
wait until CLOSETIME;
close down the post office;

END

The data declaration part of the preceding SIMULATION instance

contains the definitions of the five classes of objects that comprise the

post office. The SIMULATION class provides a simulation clock for syn-

chronizing activities between objects. It also provides routines for sched-

uling activities with respect to the clock. In addition, it maintains an
event queue of all events that are scheduled to occur in the future, like

the one in Table B-3 for the orange juice simulation. The three principal

routines for scheduling activities are HOLD, PASSIVATE, and ACTI-

B The Evolution of Knowledge-based Simulation 431

VATE. Figure B-4 shows an initial event queue and how each of these

routines affects the queue.

There are three fates that an object can have with respect to time:

1. It can be scheduled for activation at a specific time in the future.

2. It can be suspended for an unknown amount of time until something

causes it to resume activity.

3. It can cease to exist as far as the simulation is concerned.

The last occurs when the object has completed executing its action part;

for example, when a customer's number of tasks becomes 0. With these

definitions, we can rewrite the action parts of the CUSTOMER, CLERK,
and DOOR classes as follows:

Action part of CUSTOMER:

WHILE NROFTASKS>0 DO
BEGIN

select a task;
select a counter;
IF URGENT THEN enter front of queue
ELSE enter tail of queue;
IF CLERK is free THEN ACTIVATE CLERK
ELSE PASSIVATE;
participate in transactions;
leave counter;
NROFTASKS:=NROFTASKS-1

;

END;

Action part of CLERK:

SERVICING:
WHILE Q. FIRST =/= NONE DO

BEGIN
PERSON:-Q. FIRST;
ACTIVATE PERSON;
engage in transaction with PERSON;

END;
PASSIVATE;
GOTO SERVICING;

Action part of DOOR:

WHILE TIME<=CLOSETIME DO
BEGIN

ARRTIME:=time of arrival;
HOLD(ARRTIME-CURTIME)

;

NEW CUSTOMER(NROFTASKS, URGENT)

;

END;

432 Knowledge-based Simulation

A) Initial Configuration

Event List

XXII

3 5

A

////////

B

Active

B) Effect of "Hold(6)" on A)

Suspended

Active Suspended

C) Effect of "Passivate" on A)

Event List

B

Y/////M

11

11

D E

Passive

Event List

5 7 9 11

B

////////

C A D E

Passive

Active Suspended Passive

D) Effect of "Activate E" on A)

Event List

3 3 5 7 11

E

////////

A B C D

Active Suspended

Figure B-4. The effect of messages HOLD, PASSIVATE, and
ACTIVATE on a SIMULA event queue.

(Birtwistle et al., 1968, p. 282.)

B The Evolution of Knowledge-based Simulation 433

When the clerk becomes free, the ACTIVATE CLERK statement in

the CUSTOMER class will cause the clerk to resume executing its action

part immediately after PASSIVATE (thus executing the GOTO SERVIC-

ING statement). If the clerk is not free, the PASSIVATE statement will

cause the Customer instance to be suspended until it is reactivated by

the ACTIVATE PERSON statement in the CLERK instance. The PASSI-

VATE statement causes an object to be suspended for an unknown length

of time until reactivated by a statement from another object. In contrast,

the HOLD statement schedules an event for a specific time in the future.

The HOLD statement in the DOOR class causes an event (the creation of

a new CUSTOMER instance) to occur at time ARRTIME by scheduling it

ARRTIME - CURTIME time units in the future, where CURTIME is the

current time on the simulation clock.

The HOLD, ACTIVATE, and PASSIVATE statements are called mes-

sages in object-oriented programming terminology. A message is a state-

ment that tells a particular object to perform a particular action.

"ACTIVATE CLERK" is a message from a CUSTOMER instance to a

CLERK instance; it tells the clerk to resume activity. HOLD and PAS-
SIVATE are messages an object sends to itself: HOLD tells the object to

reschedule its activation at a specific future time, and PASSIVATE tells

the object to suspend itself without scheduling a future reactivation.

By encoding a simulation in terms of its objects, we can describe the

characteristics and behaviors of the object. We know, for example, that

a customer is in a particular queue and that its position in the queue
depends on the urgency of its tasks. We can describe the overall char-

acteristics and behavior of an object by its class definition, which can be

specialized for each particular instance. In addition, the class SIMULA-
TION implements synchronization between objects. The combination of

knowledge about individual objects plus a means of synchronizing their

activities gives the SIMULA programmer the ability to control the behav-

ior of the model. By writing the appropriate code in the data declaration

and action parts of CUSTOMER, for example, the programmer can give

very specific directions about how to choose a queue (e.g., based on length

of all current queues), what order to perform the tasks on the list (e.g.,

according to priority), how to handle special cases (e.g., the customer's

tasks are urgent), etc. This type of control is impossible with the pure

numerical simulation illustrated by the orange juice model.

Smalltalk. The class concept introduced by SIMULA was adopted

and generalized in Smalltalk. We will discuss a version called Smalltalk-

80 (Goldberg and Robson, 1983, and Xerox Learning Research Group,

1981).

The Smalltalk-80 Language. A Smalltalk-80 class consists of a

class name, instance variables, and methods, corresponding to the name,

434 Knowledge-based Simulation XXII

class name
instance variable names
methods

Point

x y

Message
Pattern

x: xCoordinate y: yCoordinate
|

xCoordinate
yCoordinate

t'
yl I

+ aPoint sumX sumY ^
Temporary
Variable

Names

sumX
sumY

x + aPoint x.

y + aPoint y.

Point newX: sumX Y: sumY
r Expressions

aPoint
|
differenceX differenceY

|

differenceX + x - aPoint x.

differenceY -4 Y - aPoint y.

T Point newX: differenceX Y: differenceY

scaleFactor
|
scaledX scaledY

|

scaledX •*— x . scaleFactor.
scaledY •* y .scaleFactor.

* Point newX: scaledX Y: scaledY

Figure B-5. The definition of the Smalltalk-80 class Point.

data part, and action part of a SIMULA class. Figure B-5 shows the

definition of the Smalltalk-80 class Point that represents points in the

Cartesian plane (Xerox Learning Research Group, 1981).

All procedural and behavioral information is implemented in the

form of methods. A method is analogous to the action pattern of a SIM-
ULA object in that it consists of code that describes the behavior of an
object. The difference is that there is only one action part to a SIMULA
object, whereas there can be any number of methods for a Smalltalk-80

object. A method consists of a message pattern, temporary variable

names, and expressions (statements in Smalltalk-80 that implement
behavior). Every time a message is sent to an object, the message is

compared to the message patterns of the object until a match is found;

the corresponding code is then executed. In this way, the object that

receives a messages knows which one of its methods it should execute.

For example, consider the class Point in Figure B-5, and two

instances called origin and offset. This class describes operations on

B The Evolution of Knowledge-based Simulation 435

points in the Cartesian plane. The expression origin + offset sends

the message + offset to the object origin. The receiving object origin

searches its message patterns for a match to + offset, and finds it with

the message pattern + aPoint. The variable aPoint in the message

takes on the value offset. In the first two expressions of the method
whose message pattern is + aPoint, x and y refer to the x- and y-

coordinates of origin, and aPoint x and aPoint y refer to the x- and

^-coordinates of offset. The variable sumX is assigned the sum of the

x-coordinates of origin and sumY is assigned the analogous sum of the

y-coordinates. The third expression creates a new instance of class Point,

with instance variables x and y having the values sumX and sumY,

respectively. Two other methods are given for class Point: one has mes-

sage pattern - aPoint for subtracting two points, and the other has

message pattern * scaleFactor for multiplying two poionts.

The Implementation of Simulation Models with Smalltalk-80

The entire Smalltalk-80 environment is implemented using classes

that are denned in the Smalltalk-80 language. Two classes are provided

specifically for performing simulations.

A simulation is implemented in Smalltalk-80 as an instance of the

class Simulation. As in SIMULA, each Simulation instance maintains

a simulation clock and a queue of events, and can use any of a predefined

set of messages that schedule and synchronize the objects that take part

in a simulation. A simulation is started by sending the message ini-
tialize to a Simulation instance. The message defineArrival-
Schedule causes an initial set of simulation objects to be added to the

event queue. An object proceeds through the simulation by receiving the

messages startup, tasks, and f inishUp, in sequence.

The startup message is sent to an object at the time that the object

is scheduled to enter the simulation. When a simulation object enters

the simulation at its scheduled time, it begins executing its associated

tasks. The tasks message then causes the object to send a series of

messages in sequence. For example, the message holdForraTimeDelay
is sent by an object to itself in order to suspend execution of its remaining

tasks for the amount of time specified by aTimeDelay. Another task

might be the scheduling of a different object in the form of the message
scheduleArrivalOf : aSimulationOb jectClass accordingTo:
aProbabilityDistribution to the Simulation instance.

As an example, consider a simulation in which visitors enter a room,

remain in the room anywhere from 4 to 10 time units, and leave the

room. Visitor is created as a subclass of SimulationObject, and it

sends the following message as one of its tasks: self holdFor: (Uni-

form from: 4 to 10) next. The term self refers to a particular Vis-

436 Knowledge-based Simulation XXII

itor instance, and Uniform indicates a probability distribution in which

any value between 4 and 10 is equally likely to occur. The Simulation

instance schedules the arrival of each visitor with the message self
scheduleArrivalOf : Visitor accordingTo: (Uniform from: 4

to 8) startingAt: 3. According to these specifications, a visitor will

arrive every 4 to 8 units of simulated time starting at time 3, and stay

between 4 and 10 simulated time units.

Smalltalk-80 extended the capabilities of SIMULA by allowing an
instance to have any number of actions, each implemented as a method
that responds to a specific message. This capability is enhanced by the

fact that subclasses and their instances can add their own methods and
override the method definitions of their superclasses. In addition, Small-

talk-80 provides classes that implement tools for browsing, editing, win-

dow manipulation, command menus, and other features that facilitate

program development. The combination of message-passing capabilities,

built-in classes for simulation, and a large set of development tools all

implemented in classes defined by the Smalltalk-80 language, made
Smalltalk-80 the first truly integrated environment for developing and
executing simulations.

APPLICATIONS OF KNOWLEDGE-BASED
SIMULATION

Problems in complex domains are often solved by combining precise

analysis with less precise rules of thumb. A car mechanic may reach a

diagnosis by considering both measurements from electronic instruments

and heuristic judgments acquired from long experience ("sounds like the

timing is off"). The first three systems described in this section solve

problems in manufacturing systems design, cancer therapy, and business

planning by applying heuristic knowledge to predictions generated

through numeric simulation. The fourth system solves a problem in

molecular biology by directly using heuristics to make predictions.

CI. The Design of Flexible Manufacturing Systems

Most manufacturing facilities produce large quantities of a particular

type of unit because it is not practical to constantly retool the facility to

produce many variations on the unit for different specialized applica-

tions. However, economic considerations sometimes make it cost-effective

to implement flexible manufacturing systems (FMS) that can produce

small quantities of customized units in a timely manner. An FMS consists

of". . . machine tools, other workstations (washing, measuring, palletiz-

ing for example), a storage system for parts and for tools, a handling

system which may consist of robots and/or automated guided vehicles,

and a computerized control system" (Wolper, 1987). A layout for an FMS
that manufactures engine components is shown in Figure C-l.

The design of an FMS requires the specification of system parameters

such as the number and configuration of machine tools and workstations

as well as the paths for routing parts through the system. An FMS is

also designed with one or more goals in mind; such a goal might be the

overall maximization of production or profits, or it might be the more
modest goal of minimizing inventory or increasing the throughput of a

particular part. Simulation is a useful tool for predicting the dynamic
behavior of any given FMS design. However, the number of potential

designs is so large that it is impractical to simulate all of them in order

to determine which one optimally satisfies the stated goals.

438 Knowledge-based Simulation XXII

Jr . T T T T. T T T. 7

Jd I j> MC

nnn

^} [?

e
ud br~d

MC Machine Center CS Clamping Station

WM Washing Machine SP Storage Pool

Figure C-l. The layout of a flexible manufacturing system.

(Seliger et al., 1987, p. 67)

MOSYS is a computer program developed at the Fraunhofer Institute

of Berlin that helps manufacturing systems designers with little simu-

lation experience to design FMSs that optimally meet a set of perfor-

mance goals (Seliger et al., 1987). The basic idea behind MOSYS is to

take a model of an FMS and refine it until it meets the performance

goals. The refinement of a model consists of three steps:

1. Determine its behavior using analytical techniques such as discrete-

event simulation.

2. Propose model refinements using a knowledge base that interprets

the analytical results.

3. Refine the model using the proposals as guidelines.

The cycle of analysis, interpretation, and model refinement is repeated

until the human systems designer is satisfied that the performance goals

have been optimally achieved.

The first step in the design process is to build an initial model by

specifying functional and topological descriptions of the system (see Fig-

ure C-2). The functional description is carried out by specializing the

five functional building blocks—manufacture, assemble, transport, test,

and store—to meet specific system requirements. Interactive graphical

Applications of Knowledge-based Simulation 439

Functional

Description

Topological

Description

\]

Initial

Model

"

Perform Mathematical
Analysis and Run

Simulation

! r

Update Model
Data

Update System
Values

i i

\
'

Modify

Design
Run Knowledge

Base
Performance

Goals

^Jtr 1 '

^^^Proposals^^^^ Propose Design
Changes^v. Accepted ^s'

1

No
I

Design

Complete

FigureC-2. verall MOSYS design process.

tools are available to support this process. The topological description

represents the physical layout of system parts as a network of nodes and
paths. The building blocks of the functional description are explicitly

attached to the nodes of the topological description. The model is repre-

sented as a set of declarative statements in PROLOG. For the FMS layout

of Figure C-l, these statements include:

type_of_function (mcl ,manufacture);

capacity (mcl,l);

can_substitute (mcl, mc2);

route (mcl, mc2);

storage (mcl, pooll);

In other words, machine center 1 serves a manufacturing function,

is capable of processing one unit, can be replaced by machine center 2 if

440 Knowledge-based Simulation XXII

necessary, routes units to machine center 2 when it has finished pro-

cessing them, and can store units in storage pool 1.

Two analysis techniques are applied to the model in order to generate

its dynamic behavior. First, a set of mathematical techniques is used to

estimate the characteristic values of the entire system such as maximum
throughput and overall turnaround time. Second, a discrete-event sim-

ulator uses these characteristic values to make specific performance

predictions such as turnaround times for particular order types and the

utilization of individual components. The results of both types of analysis

are also represented declaratively, for example,

actual_value (throughput, 25);

utilization_in_% (mcl, 64.12);

That is, the overall throughput of the system is 25 components per unit

time, and machine center 1 is in use 64.12% of the time the system is

operating. The system parameters and performance values generated by
the two analysis techniques are then passed to by the knowledge-based

component of MOSYS.
The knowledge used by MOSYS is based on interviews with experts

in manufacturing systems design and is encoded in the form of rules.

These rules generate proposals that suggest changes to some of the

model's parameters. A paraphrased example of a rule is as follows:

If ((the utilization of the transport system > 80%)
and (the utilization of other resources < 50%)
and (the ratio of the running time to the transfer time > 2)

then (consider increasing the velocity of the transport system by 10%)

else (consider increasing the number of transport systems by 1).

The proposals are generated by reasoning about the current model

data, the current system values, and the performance goals. The infer-

encing mechanism inherent in PROLOG is used for this process. The
human systems designer then decides whether to accept or reject the

proposals. If a proposal is accepted, the model is modified accordingly,

and the cycle of analysis, interpretation, and model refinement is

repeated until the systems designer is satisfied with the design (see

Figure C-2).

MOSYS has been used to design a system that manufactures an
engine block and an engine head, each in 3 to 6 different variants, using

a variable number of clampings, pallets, and processing times. The fol-

lowing (paraphrased) piece of dialog was generated during the design

process:

Goal: maximize throughput

Message: mc_3 is a bottleneck whose utilization is 87%.

Message: 7 out of 7 pallets for clamping_6 are in use.

Proposal: consider increasing the number of pallets for clamping_6 by 1.

C Applications of Knowledge-based Simulation 441

The knowledge-based component of MOSYS generates proposals for

refining a model based on the results of simulating the model and on a

set of performance goals. MOSYS users can rapidly converge on an opti-

mal design by incorporating these proposals on each cycle of model

refinement until they decide that the goals have been satisfied. The
knowledge-based component does not impact the simulation directly;

rather, its value lies in greatly reducing the number of designs that need

to be simulated in the first place.

C2. Planning Therapies for Cancer Treatment

ONYX is a program developed at Stanford University to assist physicians

in planning therapies for cancer patients (Langlotz et al., 1985; Langlotz

et al., 1986; and Langlotz et al., 1987). A therapy plan consists of a series

of treatment decisions based on the patient's test results at each visit.

For example, consider a patient who has been taking the anti-cancer

drug combination POCC and whose white blood cell count is low on the

current visit. The physician has three overall options at this point: reduce

the dosage of POCC, delay administration of POCC until the next visit,

or administer a different drug combination. Suppose that the decision is

to reduce the dosage of POCC. On the next visit, the white blood cell

count and tumor size will be measured again, and a new decision will

be made based on these results. The therapy plan is the sequence of such

decisions made over the entire course of therapy. These plans are created

by ONYX in a three-stage process, as illustrated in Figure C-3:

1. Plan Generation. Use general treatment strategies to generate a

small set of reasonable plans by selecting combinations of treatment

components appropriate for the current patient state.

2. Plan Simulation. Use knowledge about the structure and behavior of

the human body to design simulations that predict the future states

of the patient after the execution of each proposed plan.

3. Plan Ranking. Use decision analysis (Langlotz et al., 1987) to rank
the plans according to how well the predictions for each plan meet
the therapeutic goals for the patient.

An enormous number of plans is possible because there are a great

many ways to select drug combinations, their dosages, and the timing

of their administration. A major goal of ONYX is to reduce the number
of possible plans to the few that are most likely to achieve the treat-

ment goals. This reduction is performed during the plan generation

step.

We will focus on the second step, plan simulation. The physiological

442 Knowledge-based Simulation XXII

Treatment
Strategies

Treatment
Goals

Patient

State

Possible

Treatment
Components

Step 1

:

Plan

Generation

Step 2:

Plan

Simulation

Step 3:

Plan

Ranking

Ordered
- Set of

Plans

Physiology
Knowledge

Figure C-3. The three-step planning process in ONYX.

model to be simulated is represented symbolically as shown in the screen

display of Figure C-4. The model on the left side of the figure represents

the body in terms of its parts. The parts communicate with each other

through ports, the small boxes containing an x. Each of these parts can

itself be modeled in terms of its component parts, as shown in the case

of bone marrow on the right side of the figure. Associated with each part

is a mathematical equation that describes its time-dependent behavior.

Each such equation contains numerical constants that represent the size,

growth, and maturation rate of the cells comprising the part.

ONYX simulates the model shown in Figure C-4 in order to predict

the effects of administering a hypothetical anti-cancer drug on bone

marrow. The passage of the drug from one part of the body to another is

simulated in the form of messages sent between ports. When the port for

a body part receives a message (i.e., the drug has just arrived at the

part), rules associated with that part are fired. These rules predict the

effect of the drug on the numerical constants in the mathematical equa-

tion that represents the behavior of the part. The equation is then solved

to predict the change in the variables that describe the part. For example,

the arrival of a toxic drug at the bone marrow may invoke rules that

change the growth rate parameters in the equation that models the

Applications of Knowledge-based Simulation 443

Promyelocyte-5
|

Neutrophil Myelocyte-5

1
Neutrophil Metamyelocyte-5

]

[Neutrophil Band Cell-5|

Neutrophil-5
j

Marrow Space-21

Figure C-4. ONYX model of the bone marrow and its context

within the body. Each of the two large

rectangular boxes signifies a model. Solid lines

represent connections between models. (Langlotz

et al., 1987, p. 291.)

number ofmarrow precursor cells over time. When the equation is solved,

the values of the variables describing bone marrow may change. These

updated values then trigger rules that cause new messages to be trans-

mitted to all body parts connected to the bone marrow.

Both intermediate and final results of a simulation can be visually

depicted. For example, the movement of a drug through the parts of the

physiological model is graphically displayed during simulation. Once a

simulation is complete, plots of the state variables over time can be

displayed, as shown in Figure C-5. Such information can be useful in

determining how well the simulated plan will meet actual treatment

goals. Once all plans proposed by the plan generation step have been

simulated, the plan ranking step is performed in order to rank the plans

according to the treatment goals.

444 Knowledge-based Simulation XXII

4000.0

ceo

M
<

0.0

0.0

Figure C-5.

27.0
Days

A plot generated by an ONYX simulation that

shows the size of a population of bone marrow
cells over 27 days.

ONYX makes predictions about the effects of a therapy plan for a

cancer patient by simulating a mathematical model of the body. The
accuracy of these predictions is improved by using rules that modify the

mathematical model itself as the simulation proceeds.

C3. Evaluating Business Proposals

In the previous two examples, the simulation component of the pro-

gram was developed in conjunction with a knowledge-based component.

As we saw in Section B, however, most existing simulators operate

without a knowledge-based component; they perform discrete-event or

mathematical simulation on a set of input data to generate a set of

output data. Can knowledge be used to interpret the mass of numbers
that come out of an already existing discrete-event or mathematical

simulator, without having to modify the simulator? A program called

EXSYS (Moser, 1986), developed at James Madison University for the

purpose of evaluating business proposals, does just that.

EXSYS models a business situation as a set of variables whose values

describe the situation and a set of mathematical equations that express

the relationships between the variables. These variables might include

the price of raw materials, transportation costs, advertising budgets, and
tax rates. Simulation is performed by solving the set of equations for a

given time period in order to compute the values of the relevant variables

for the next time period. The values of the variables can be computed

for any number of consecutive future time periods during which the

C Applications of Knowledge-based Simulation 445

model is considered to be valid. The following simulation model is for a

proposed business project in which the time interval between simulation

runs is one year (only 6 out of 15 equations are shown):

TOTMKT = 1.10 * TOTMKT (total market)

SALES = 1.13 * SALES (total sales)

UNITS = SALES / PRICE (units produced)

LABCOST = 650000 / UNITS (labor costs)

MATCOST = 590000 / UNITS (cost of materials)

MARGIN = PRICE - LABCOST - MATCOST (profit margin per

unit)

The variables on the left-hand sides of the equations are computed
from the values of the same variables from the previous year and from

external variables such as tax rates. For example, the first equation

predicts a 10% annual market growth rate for a product, and the second

equation predicts a 13% annual sales growth rate for the company if it

goes ahead with the project. By running the simulator (i.e., solving the

set of 15 equations) for each of the years 1986 to 1991, the table of values

in Figure C-6 is generated:

EXSYS uses a knowledge base of 240 rules to interpret simulation

data such as that of Figure C-6. Two paraphrase rules from this knowl-

edge base are as follows:

If (Net Present Value <= 0.0)
then (Profitability := 'very low')

If ((Profitability = 'low')
and (risk = • high

'

)

and (market = 'normal')
and (tech = 'normal))

then (reject project)
The first rule states that if the "net present value" (the difference

between the cash inflows and the cash outflows of a project) is zero or

negative, then the profitability should be rated as "very low." The second

rule states that if the profitability of the project is low, the risk is high,

the market is not particularly interesting, and there are no special

technological advantages, then the project should be rejected. The knowl-

edge base also contains a library of functions for computing values of

interest such as net present value. An inference engine applies the rules

to data generated by the simulation. The inference engine can run in

either forward-chaining or backward-chaining mode according to the

user's wishes; the default is backward-chaining mode. Any conclusion

inferred by running the knowledge base can be justified by the expla-

nation component of the system.

A sample session illustrating the operation of EXSYS is shown in

Figure C-7. After running the simulation, the user selects the goal

446 Knowledge-based Simulation XXII

ooi-oocdlot-cdo^oooooco
oo^-oocdoocoocdloocooco
tf T_ o 00 00 CM o T_ O I

s- J_ I
s- O CO

o "t CD I
s- CM CM i— O O "* CD CD O CD

LO h- CO "* r- o CM I
s- CM LO O 00

^r CD <tf CD * o CD i— CO CD CM
00 CO 00 CO "* CD CM ^ 00 CO ro-

00 CO 00 cd LO T— I
s- CD CO ot)

LO I
s- CD co T- T—

CD

o o T_ ,_ oo CM CM CO O I

s- O LO co O CO
o LO «- CO LO cd CD 00 O ^ LO CM CD O CD

^ -<t o I
s- I

s- -tf CM CD O CM * o CD O O
o CD CM 00 CM CM LO O O CD T- CO O I

s-
o CO CD o CT> o CM 00 co CO O ,—

LO T- C\J CD CM o T— CD CO CD 00
CD CM 00 eg "* CD OO CD CD CO ,—

00 LO N 00 LO CM O CO CO LO
O) co LO CO j— T~
LO

o o ,_ CD LO CD CD CD O 0) O O CO O 00
o o «- LO CO •"] LO O O CM LO O CD O CO

"3- 00 o o CD oo LO O O CD N I

s- O O CD
o CO CD 00 CM CM -tf O CD 00 LO CD o cd
o LO LO o CD o T- LO CO 00 o CD
o r~ OJ CO CM o r- CD CD CD "*

LO I
s- CD CM LO CD co CM CO CO o

* r- CD N LO LO LO y— CO CM
«* LO "t CM r- i-

CO
K
rX.

W

ft*O i-
LO LO CO

LO CO CO
CD y-
CO
CD
o

CO

m
X
w
c

o

OOOOOCMOOCDOt-lOLO'^-Ot-OOi-OtOOCOOOtOSStOtO
-too
o o
O CD
O I

s*

o o
lO T-
O LO

CM O i- 00 O O
i- CO CO CM O O
CD rf o o
CM O CM O
i- CM I

s- CD
CD CD LO

O) O) S (J) O CO
00 CD CO O O I

s-

y- LO CD CM O CDswocos
CO CM t- CO CM
CO O CD CO CD
CO CM

OOOOOLOCOCOOCNLOLOCOOCOOOi-OOCDCOOO^CMCMOO*-

O O
o o
o o
O CM
O LO
LO "fr

OOOLOCMOOi-
O 00 CO CO O O 00
*t O O O t-
CM 00 o o
^ i- o co
LO CO LO

o o o o o
O O CM O CO
O CD CD O 00
O I

s- CD CD CM
00 h- O CO oo
CM LO I

s- CO CD
CO t-

«
tX

oo a:

W oo
J H
tX UZ
CO s

fr< & Sr*

00 00 00 U 25

O O O W H
CJ CJ CJ 05 O
co h x Oi a
<X tX M W rX
.-) S P^ Q S

H
CO

w
co a
w w
X H
<C 25
H M

05

H -*
W CL,

« OQ

Pn
o
w o
H M
cc; pq

— a

w
CO

w
oc
Oj PC <c
W CO

H H >h

W 25 rt
25 H CU

COm

CO
Io
CD

CBASE CB
DBASE DB
LIB LI
CONS CO
PRES PR
EXPLAIN EX
LBASE LB
GOALS GO
DATA DA
SBASE SB
PBASE PB
ZBASE ZB

C Applications of Knowledge-based Simulation 447

EXSYS - main commands

function command abbrev.

create knowledge base
delete knowledge base
review library
run a consultation
print results
explain reasoning
load knowledge base
enter goals
enter additional data
show a knowledge base
print a knowledge base
edit a knowledge base

For other possibilities and commands see the EXSYS manual

* PLEASE ENTER A COMMAND : CONS
* NAME OF THE KNOWLEDGE BASE : PROJ86
* KNOWLEDGE BASE CONNECTED. WARNING: THE KNOWLEDGE BASE
CONTAINS GLOBAL INDICATORS THAT REQUIRE A SIMULATION.

* NAME OF THE SIMULATION MODEL: MODEL 86
* SIMULATION MODEL CONNECTED.

DO YOU WANT TO START THE SIMULATION NOW (Y/N) ? : Y.
* Please wait.

* Simulation completed. Consultation session resumes.
* WOULD YOU LIKE TO EXPLORE A PARTICULAR GOAL (Y/N)? : Y
* NAME OF THE GOAL OR CONCLUSION : REJECT PROJECT
* Please wait

* CONCLUSION: NOT SUFFICIENT EVIDENCE TO REJECT PROJECT
* WOULD YOU LIKE TO TRY ANOTHER GOAL (Y/N)? : Y
* NAME OF THE GOAL OR CONCLUSION : ACCEPT PROJECT
* Please wait

* CONCLUSION: SUFFICIENT EVIDENCE TO ACCEPT PROJECT
* RECOMMENDATION: ACCEPT PROJECT
* PLEASE ENTER A COMMAND : EXPLAIN

Figure C-7. Partial transcript of an EXSYS consultation session.

(Moser, 1986, p. 228)

448 Knowledge-based Simulation XXII

"reject project" and invokes backward chaining in order to see if there is

any chain of inferences that would cause the project to be rejected. In

the present example, there is not. The user then selects the goal "accept

project," and again the backward-chaining mechanism tries to come up
with a chain of inferences, this time leading to the conclusion that the

project should be approved. Such a chain is indeed found, and the user

invokes the explanation component in order to display the line of rea-

soning that led to this conclusion.

The simulation models used by EXSYS, as illustrated by the preced-

ing subset of equations, were developed and used completely indepen-

dently of EXSYS. Like all other numerical models, these equations are

only capable of generating numbers such as those of Figure C-6. EXSYS
has shown that a knowledge-based component can be applied to the

output of a numerical simulation in order to help evaluate a business

proposal.

C4. Solving Problems in Molecular Genetics

The MOSYS, ONYX, and EXSYS examples have shown how discrete-event

or mathematical simulation models can be integrated with knowledge-

based components in order to solve design and planning problems that

could not be solved by these simulation techniques alone. In the next ex-

ample, the behavior ofa virus is predicted solely by inferencing on a knowl-

edge base of facts and rules without the use of numerical simulation.

The virus called bacteriophage lambda can inject its DNA into a

bacterial cell with two possible outcomes: the DNA can incorporate itself

directly into the chromosome of the bacterium (lysogenic growth) or it

can exist apart from the chromosome (lytic growth). In either case, the

genes on the viral DNA direct the synthesis of viral proteins through a

process called transcription. These proteins have finite lifetimes and must
therefore be continuously synthesized by the cell if the virus is to survive.

Molecular biologists are interested in understanding what causes

lambda to choose between lytic and lysogenic growth. To investigate this

problem, biologists perform experiments that introduce mutations into

the genes of lambda. The combinations of mutations that lead to each

mode of growth are noted. Researchers hope that this information will

be useful in formulating a theory that explains the choice of growth

mode. Since each experiment is costly and time consuming, a knowledge-

based simulator was developed (as part of the MOLGEN project at Stan-

ford University (Meyers and Friedland, 1984)) (see also, Article XV.02,

Vol. 3) to predict whether the DNA of lambda will undergo lysogenic or

lytic growth given a set of mutations on the lambda genes. The simulator

Applications of Knowledge-based Simulation 449

was developed with the Unit System (Stefik, 1979) for the acquisition,

representation, and manipulation of hierarchically organized knowledge.

The overall structure of the knowledge base used by the simulator

is shown in Figure C-8. The knowledge base consists of two parts: rules

that are completely general to regulatory genetics, and facts that are

specific to the regulation of lambda. The rules are contained in the box

labeled SIM-RULES in Figure C-8. These rules predict the activity of

each DNA regulatory unit (active or inactive), the state of each gene

(undergoing transcription or not), and the remaining lifetime of each

protein (a non-negative integer). An example of a rule that determines

the lifetime of a viral protein is:

If BEING-TRANSCRIBED GENE is false, then set
NEWLIFE to NEWLIFE-1 , else set NEWLIFE to LIFESPAN.

This means that if a gene is not being transcribed during the current

simulation cycle, no new protein will be produced during this cycle, so

the remaining lifetime of the currently existing protein will be decre-

mented by one unit of simulation time. If the gene is being transcribed,

new protein is being created during this cycle, so the remaining time for

the existence of this protein equals the intrinsic lifespan of the protein.

The facts specific to lambda are divided into three classes: genes,

proteins, and DNA loci (the regulatory units on the DNA, such as pro-

moters), corresponding to the similarly named boxes in Figure C-8. Each
class is represented by a prototypical unit in the Units System. A unit

describes an object class or instance with slots, each of which contains a

name, data type, and value. The value of a slot in a prototypical unit

can be a particular instance (such as the name of the creator of the unit),

Root Node

Genes Proteins DNA Loci Sim-Rules

Operators Promoters Nut-Sites Terminators

Figure C-8. Structure of the lambda knowledge base. (Meyers

and Friedland, 1984, p. 5)

450 Knowledge-based Simulation XXII

or it can be the set of permissible values (such as TRUE or FALSE). The
prototypical unit GENES is partially encoded as follows:

Name Datatype Value

DESCR: <DESCR> "This node is the root of all genes"

CREATOR: <CREATOR> "CSD.MEYERS"
ORGANISM: <STRING> One of: ["LAMBDA" "E-COLI"]

PROMOTERS: <LIST> Units:

MUTATED: <STRING> One of: ["TRUE" "FALSE"]
BEING-TRANSCRIBED <STRING> One of: ["TRUE" "FALSE"]

The specific genes that will be used in the simulation are created as

children units of the prototypical GENES unit; the slot values of these

units are either inherited from the prototypical unit or directly assigned

as specific instances (e.g, a particular set of promoters for the PROMOT-
ERS slot).

The input to a simulation run is a set of mutations to the genes of a

lambda virus. The simulation proceeds in cycles. During each cycle,

forward chaining is invoked on all applicable rules in order to update

the states of all genes, the activities of all DNA loci, and the lifetimes of

all proteins. At the end of each cycle, the current state of all genes, DNA
loci, and proteins is used to determine whether a choice between lytic

and lysogenic growth can be deduced. The cycles continue until such a

choice has been asserted, at which point the simulation ends. The follow-

ing example shows part of the output for a simulation cycle on a lambda
virus with mutations in the n and trl genes:

states ofpromoters E and L
P-E IS INACTIVE
P-L IS ACTIVE

states ofgenes CI and CII

CI IS NOT BEING TRANSCRIBED
CII IS BEING TRANSCRIBED

remaining lifetimes ofproteins produced by CI and CII

REMAINING TIME OF CI-PROTEIN IS 0.0

REMAINING TIME OF CII-PROTEIN IS 3.0

This simulation was one of eight performed for various mutations of

lambda. In all but two cases, the simulation results agreed with labo-

ratory observations. The two exceptions were attributed to the determin-

istic nature of the lambda model (e.g., in reality a gene is not turned

completely on or off).

The lambda simulator is entirely driven by an inference engine

acting on rules. Once the system variables are initialized, the forward-

chaining mechanism keeps deducing facts until a conclusion about the

viral growth mode is reached.

C Applications of Knowledge-based Simulation 451

The lambda simulator has uses beyond the prediction of growth

mode. A molecular biologist can confirm theories by encoding them in a

model with UNITS, running simulations with a variety of inputs, and
comparing the simulation results with laboratory results. If there are

discrepancies between the two types of results, and if the model can be

verified as correctly representing the theory being tested, the molecular

biologist must revise the theory. This incremental approach to theory

formation and testing could greatly facilitate research since it is much
faster and cheaper to simulate experiments on a computer than to

actually perform them. For this reason, a major emphasis of the

MOLGEN project has been to provide a user interface that assists the

molecular biologist in constructing and modifying the knowledge base

rules and data.

D. THE DESIGN OF KNOWLEDGE-BASED
SIMULATION SYSTEMS

We have seen that many knowledge-based simulation applications use

numerical simulation models. The overall design of a knowledge-based

simulation system can be described by the way in which information is

transferred between the numerical and knowledge-based components.

This section explores several ways in which numerical and knowledge-

based components can be integrated (see O'Keefe (1986) for a comparable

classification scheme):

1. The information flow is one-way in sequential integrated systems. A
knowledge-based component generates results that are then used by

the simulation component, or vice versa. In either case, the two

components are run one after the other in sequence.

2. Information in a parallel integrated system is continuously passed

back and forth between the knowledge-based and simulation com-

ponents during run-time.

3. A knowledge-based component can serve as a front-end for defining

a numerical simulation model, which is subsequently used on its

own.

4. Some systems (including MOLGEN, (Section C4) are entirely rule-

driven.

Dl. Sequential Integrated Systems

The most common type of sequential integrated system runs a knowl-

edge-based component to generate scenarios for achieving a set of goals

and then calls a numerical simulator to predict the results of imple-

menting each of the competing scenarios. The simulation results are

then evaluated in order to choose the scenario that best satisfies the set

of goals.

A sequential integrated system was developed at the University of

452

D The Design of Knowledge-based Simulation Systems 453

Florida to select the best insecticide for controlling velvetbean caterpillar

infestation of Florida soybean fields (this system will subsequently be

referred to as VBC) (Jones et al., 1986). The knowledge-based component

of the system is used to generate a set of candidate insecticides. A
numerical simulator called the Soybean Integrated Crop Management
Model (SICM) (Wilkerson et al., 1983) is then used to predict the results

of using the candidate insecticides. Finally, these results are evaluated

according to their cost-effectiveness. The sequence of candidate selection,

prediction, and evaluation is analogous to the ONYX scheme of plan

generation, simulation, and ranking (see Section C2).

The heuristics used in the knowledge-based component come from

two sources:

1. General rules of thumb obtained from agricultural extension publi-

cations, including knowledge about critical insect population thresh-

olds, relative effectiveness of various spray materials, and insecticide

application rates.

2. Interviews with two expert entomologists.

A set of candidate insecticides is obtained by applying these heuristics

to information such as the current VBC density, the date that the soybean

crop was planted, the current growth stage of the crop, and facts about

the proposed insecticides.

The SICM simulation model is then run for each of the candidate

insecticides as well as for various combinations of insecticides. SICM
predicts both the relative increase in crop yield that would be gained by

using the insecticide (denoted as dy) and the number of applications that

would be necessary to achieve a given level of pest control (denoted as

Napp). SICM also computes the threshold of insect density below which

it is not cost-effective to apply insecticide.

As shown in Figure D-l, there is a tradeoff between dy and Napp
since maintaining a lower insect density threshold will result in a cor-

respondingly higher crop yield but will require more insecticide appli-

cations (hence a higher cost). The situation is complicated by the fact

that this threshold is not constant but depends on the date of crop

planting and the stage of growth since the crop is more susceptible to

VBC infestation at certain times of the year and at certain growth stages.

Another tradeoff that SICM must consider occurs when insecticide A is

cheaper than insecticide B, but B requires fewer applications than A.

For each choice of insecticides, SICM produces a value for dy and for

Napp. These two values are plugged into the following formula:

Z = (P * dy) - (Napp * (Ci + Ca))

454 Knowledge-based Simulation XXII

Cost of Control

Tin = Crop Injury Threshold

T* = Optimal or Economic Threshold

Increased Crop
Value Due to

Control

Tin x*

Threshold for Application, No./Ft.

Figure D-l

where

Schematic of the components in the simple VBC
economic model: cost of control for the remainder

of the season, increased crop value due to

maintaining the threshold at different levels for

the rest of the season, and increase in profit.

(Jones et al., 1986, p. 17.)

Z = net dollar return on the crop

P = value of crop per kilogram

Ci = cost of insecticide per application

Ca = cost of applying insecticide per application

The last three variables are assumed to be constant, and dy and
Napp are predicted by SICM for each insecticide choice. The first term in

the equation, P * dy, represents the gain from saving dy kilograms of

crop whose value is P dollars per kilogram. The second term, Napp * (Ci

+ Ca), represents the expense of Napp applications, each of whose total

cost is Ci + Ca. The equation thus simply represents the net economic

gain of applying an insecticide choice. When SICM has been run for all

D The Design of Knowledge-based Simulation Systems 455

choices and the results plugged into the equation, the results can be

evaluated simply by ordering them from highest to lowest Z.

We have seen that the VBC insecticide program runs a knowledge-

based component and a numerical simulator in sequence. A sequential

integrated system can also run in the other direction; a numerical sim-

ulator can generate data that is then acted upon by the knowledge-based

component. We saw an example of the latter design in Section C3; the

EXSYS system first runs a simulator to generate values of system vari-

ables for a number of time periods, and then the knowledge-based com-

ponent applies its rules to these values in order to evaluate business

proposals.

D2. Parallel Integrated Systems

Parallel systems consist of a knowledge-based component and a numer-
ical simulation component, each of which functions as an independent

entity. The two components pass data back and forth to each other as

needed in order to assert facts or calculate numerical results.

Most modern manufacturing processes use a large number of

machines. Since machine failures are inevitable, it is desirable to antic-

ipate or detect them as soon as possible in order to minimize the time

and expense of repairs. Researchers at the University of Louisville have
demonstrated the potential of a parallel integrated system to automate

the early detection of failures in manufacturing processes (Brown et al.,

1985). The drilling of holes in a pipe was used as a test application.

The Louisville program simulates the drilling of two pipe parts

having similar dimensions but different tolerance requirements. The
required tolerance of the hole in pipe type A is 0.1 inch, whereas that of

pipe type B is 0.001 inch. Each pipe is fed to the drill and held in place

by a hydraulic clamp. After being drilled, the pipe is passed to an inspec-

tion station, which checks whether the hole meets the tolerance require-

ment for the type of pipe.

Two kinds of system variables are simulated: signals from the drill-

ing station and the tolerance fits of the drilled holes. The signals from

the drilling station are the temperature of the main drill spindle bearing

and the vibration at the fixture clamp. Variations in these signals can

cause three fault conditions to occur:

1. When both temperature and vibration increase, there is a tool wear

condition. An exponential distribution is used to predict the next

time that both temperature and vibration will increase.

456 Knowledge-based Simulation XXII

2. When only the vibration increases, there is a fixture fault. An expo-

nential distribution is also used to predict the next time that only

vibration will increase.

3. When the vibration sharply decreases, there is tool breakage. A fixed

probability that a sharp decrease in vibration will occur at any time

is assumed.

The tolerance fits of the holes are modeled by normal distributions.

A tool wear condition or fixture fault in either pipe causes a change in

the parameters of the normal distribution for the diameter of the corre-

sponding hole since the tolerance requirements are less likely to be met
in this case.

A flowchart of the entire system is shown in Figure D-2. The times

at which the next fault conditions will occur are generated from the

probability distributions for the temperature and vibration at the drilling

station. The system is simulated by advancing a simulation clock from

event to event, where an "event" is the occurrence of a fault. On each

event, two types of facts can be asserted:

1. Process facts (e.g., the temperature and vibration are increasing).

2. Product facts (e.g., the diameter of the hole is within a standard

deviation).

For example, suppose that the next event generated from the distribu-

tions is an increase in vibration 6 minutes from the current time. If no

events are scheduled during the next 6 minutes, the simulation clock is

advanced 6 minutes and the process fact (vibration increases) is asserted.

On each event, the process and product facts are passed to the knowledge-

based component, which determines the appropriate action to take, if

any. Note that the time of an event is a multiple of a basic time unit

(e.g., one minute), and that this unit represents simulated time, not

computer processing time (this issue is discussed further in Section Gl).

The knowledge-based component uses forward chaining on three

types of rules: part, process, and link rules. Part rules take the product

facts and infer conclusions about whether the process is out of control.

Consider the following part rules:

(Rule 1 (If (No unnatural states detected)) (Then (Natural)))

(Rule 2 (If (x is beyond 3 Sigma Limit)) (Then (Unnatural)))

(Rule 3 (If (2 of 3 points beyond 2 Sigma Limit)) (Then (Unnatural)))

(Rule 6 (If (Control Limit less than specs)) (Then (Can Proceed)))

where x refers to the hole diameter, Sigma Limit refers to the standard

deviation of the normal distribution that models the diameter, and
Unnatural means that the process is out of control.

D The Design of Knowledge-based Simulation Systems 457

c Start

Simulate

Process Facts

(Temperature and
Vibration)

Product Facts

(Hole Dimensions)

Process
Rules

Part

Rules

Process
Conclusions

and Fault States

1 '

Yes

Change Parameters
of Hole

Distribution

Link

Rules

System
Conclusions

and
Recommendations

Change Appropriate

Parameters and
Advance Simulation

Clock

Yes

c End 3

Figure D-2. Flowchart for the drilling simulation.

Process rules take the process facts and make conclusions about

possible faults. Examples of process rules include:

(Rule 8 (If (Temperature and Vibration Increase)) (Then (Tool Wear)))

(Rule 9 (If (Vibration Increases)) (Then (Fixture Fault)))

(Rule 10 (If (Vibration Decreases)) (Then (Tool Breakage)))

(Rule 11 (If (Tool Breakage)) (Then (Stop Process)))

(Rule 12 (If (Nothing Happens)) (Then (Steady Process)))

458 Knowledge-based Simulation XXII

If the process rules conclude that a tool wear or fixture fault has

occurred, the parameters of the normal distributions for hole diameter

change since it is more likely that a hole will fail the tolerance require-

ments under these conditions.

Link rules use conclusions from the part and process rules to rec-

ommend actions to the user:

(Rule 14 (If (Part A)

(Unnatural)

(Can Proceed)

(Fixture Fault)

(Then (The process is out of control, but can continue to run. Cause:

Fixture Fault)))

(Rule 18 (If (Part A)

(Natural)

(Tool Wear)

(Then (Process in control. Tool Wear detected. Process likely to go

out of control.)))

(Rule 19 (If (Part A)

(Tool Wear)

(Then (Tool Wear Detected)))

(Rule 20 (If (Part A)

(Fixture Fault)

(Then (Fixture Fault Detected)))

(Rule 21 (If (Part B)

(Tool Wear)

(Then (Stop Process - Tool Wear)))

For example, if rule 20 is fired in response to a fixture fault, the user

can either change the tool or stop the simulation. If the user decides to

change the tool, the parameters defining the normal distribution for hole

diameter are reset and the simulation clock is advanced by 10 minutes

(the time required to change the tool).

The simulation component samples the distributions for tempera-

ture, vibration, and hole diameter to determine the next time to assert

a fault. The assertion of a fault triggers rules in the knowledge base that

forward chain on the current system state to infer a recommended action.

If the user takes the action, the hole dimension distribution parameters

are modified, which affects the next value of hole dimension that is

sampled during simulation. The hole dimension, in turn, triggers rules

to determine whether the process is going out of control (see Figure D-
2). The simulation and knowledge-based components thus continuously

pass information back and forth to each other in order to assert a fault

as soon as possible. These two components are independent of each other

as well; the probability distributions could be used by themselves to

drive a discrete-event simulation, and the rules are generally valid for

D The Design of Knowledge-based Simulation Systems 459

the drilling system, independent of the way that the process and product

facts are generated. The drilling system is analogous to the plan simu-

lation component of ONYX (Section C2); the rules in ONYX modify

constants in mathematical equations that are then solved, whereas the

drilling system rules modify the parameters of probability distributions

that are then sampled.

D3. Intelligent Front Ends for Building Numerical
Simulation Models

Both EXSYS (Section C3) and VBC (Section Dl) integrate a knowledge-

based component with an existing numerical simulation model that had
been used independently of the integrated system. In both cases, the user

interacts with the knowledge-based component, which either interprets

the output from a simulation (as in EXSYS) or generates scenarios to be

simulated (as in VBC). The user can enter, delete, or modify information

in the knowledge-based component and can ask it to explain the line of

reasoning that led to an assertion. The simulation component, on the

other hand, is a black box in both systems. There is no way to modify,

query, or interact in any way with the simulation model. This presents

two problems. First, an end user or domain expert is unlikely to be

proficient in the mathematical, simulation, and programming skills that

are required to develop a numerical simulation model. Second, there is

no assurance that an off-the-shelf simulation model accurately reflects

the particular circumstances of the problem to be solved. For example,

is SICM (Section Dl) valid for a slightly different type of soybean, or for

farms in Georgia as well as in Florida, or for a different strain of vel-

vetbean caterpillar? In general, the only way to know how variations in

the model's original assumptions affect its predictions is through expe-

rience in applying the model. Both of these problems could be largely

overcome through tools that assist end users and domain experts in

building numerical simulation models without having to acquire the

requisite programming and simulation skills.

ECO is a program developed at the University of Edinburgh as an
intelligent front end "designed to help ecologists with little mathematical

modeling experience to construct dynamic simulation models of ecologi-

cal systems" (Meutzelfeldt, 1986). ECO captures the facts and relations

about a particular ecological domain through dialog with an ecologist.

These facts and relations are then converted into a FORTRAN program
that performs numerical simulation on that domain.

The overall structure of ECO is shown in Figure D-3. The central

460 Knowledge-based Simulation XXII

Ecologist

Modeler
Ecology

Database

i

f

i
r -[

i Browser i

}

Dialog

Handling

i 1

i
Mathematical

i

i Consistency i

i Checking i

i i

1

Ecology
Rule Base

} i

Task
Specification

< t

Program
Generator

i i < f

FORTRAN
Numerical Simulator

Master Simulation

Program in PROLOG

i i

1

C or FORTRAN
Math Routines

Figure D-3. Overall structure of ECO.

component of ECO is the task specification, which encodes the user's

ecological description as a well-defined mathematical model that even-

tually is converted into a FORTRAN numerical simulator. The encoding

of the task specification is supported by three components:

1. A set of dialog systems that allow the user to describe a model.

2. A database of domain-specific facts and relations.

3. A rule base that checks the consistency of the growing model.

D The Design of Knowledge-based Simulation Systems 461

Three dialog systems—free-form, menu-based, and question-and-

answer—are available to the user for describing a model. A free-form

dialog system allows the user to enter a description using a small set of

standard sentence forms, for example:

component action

e.g. GRASS RESPIRES

component action component
e.g. SHEEP EATS GRASS

variable USES module-name
e.g. GRAZING USES DONREC

SET variable value

e.g. SET RADIN 53

A menu-based dialog system presents the user with a set of dialog

options relevant to the current context, for example,

Do you want to:

1. Specify a component.

2. Specify a process.

A question-and-answer dialog system prompts the user with a specific

question at each point in the dialog; the answer to one question provides

the context for the next, for example,

1. What components do you wish to include?

deer, trees

2. What attribute(s) characterize deer?

population density

3. What are the units for population density?

numbers per hectare

9. What attribute(s) characterize trees?

volume per hectare

Domain-specific knowledge for ECO is provided by a database. The
database stores facts (e.g., statistics on the fecundity of deer in Scotland),

relationships (e.g., equations relating the rate of photosynthesis to light

intensity), and loosely structured information based on observation. All

of the knowledge in the database is readily accessible during model
construction through the browser, which can search the database for any
desired piece of information at any time.

As it grows, the model is continuously checked for mathematical

correctness and for "ecological sense." The checks for mathematical cor-

rectness include detecting loops among functional relationships, ensur-

ing the consistency of substructure specifications among different model

462 Knowledge-based Simulation XXII

components, and verifying that the time scales of different processes are

consistent. These checks are part of the code that implements dialog

handling and construction of the task specification. In contrast, the

checks for ecological sense are made by a rule base that monitors the

dialog and attempts to detect inconsistencies in the developing model.

For example, this rule base would detect an inconsistency if the user

asserts that "grass eats sheep," since the rule base knows that grass is

a plant, a sheep is a herbivore, and herbivores can eat plants, but not

vice versa.

The final task specification is represented in the form of PROLOG
predicates that assert the properties of model elements and their rela-

tionships. Once complete, the task specification can be converted into an
executable numerical simulation in two ways. A program generator can

create a FORTRAN program from the task specification and from a set of

FORTRAN subroutines that implement the mathematical relationships

encoded by the task specification. Alternatively the task specification

itself can be used to directly control a master simulation program written

in PROLOG, whereas the mathematical relationships are implemented
in FORTRAN or C. The latter approach allows a more detailed specifica-

tion of model substructure as well as the ability to switch between model
development and model simulation at any point since no program gen-

eration or compilation is involved.

The result is a standalone mathematical simulator that executes

independently of any knowledge-based component. The simulator is a

direct implementation of the ecologist's conceptual model of a particular

ecological system. The model is captured in the form of a task specifi-

cation that is independent of the particular language into which it is

ultimately converted, so the ecologist is spared the necessity of learning

a programming language. The model can be altered at will; the changes

are captured in the task specification, so it is guaranteed that they will

also be implemented in the revised simulation program.

D4. Rule-driven Simulation

The MOLGEN program (Section C4) determines the lifestyle of a lambda
virus by forward chaining on sets of rules. Predictions about the future

state of the viral system are therefore made by inferencing on the current

system state, rather than by running a numerical simulator. Time is

measured in simulation cycles instead of clock time (see Section Gl); for

example, the remaining lifetime of each protein is decremented by one

unit on each simulation cycle until reaching zero.

The choice between rule-based and numerical simulation depends on

D The Design of Knowledge-based Simulation Systems 463

what is known about the problem domain and on the type of results that

are sought (see Section G2). If there is considerable detailed knowledge
in the domain and precise predictions are required, numerical simulation

is likely to be the most appropriate technique. If the knowledge in the

problem domain is heuristic, vague, or incomplete, and the desired

results can be expressed as overall trends or approximate classifications,

rule-based simulation is probably the technique of choice.

E. QUALITATIVE ASPECTS OF KNOWLEDGE-
BASED SIMULATION

The knowledge that we possess about most interesting domains is a

mixture of precise numerical measurements, general heuristics, and edu-

cated guesses. This knowledge is necessarily incomplete, and at present

there is no methodology for representing "what we know we don't know"
(Modjeski, 1987). The fact that there are so many different types of

knowledge in a given domain presents a paradox. On the one hand, the

amount of detailed quantitative information may overwhelm our (or the

computer's) ability to make sense out of it. On the other hand, the

generality and vagueness of heuristic information may preclude the

prediction of concrete results. This section describes several methodolo-

gies that have been developed for making predictions using knowledge

with different degrees of precision.

El. Simplification of Processes

The genetic regulatory system of the amino acid tryptophan has been

modeled by researchers as a set of 15 partial differential equations.

However, this set of equations is not solvable! To be of practical use to

molecular biologists, we need a representation of the tryptophan system's

behavior that is both solvable and accurate. There are many other real-

world systems whose precise description is extremely complicated, but

whose behavior can be represented in a relatively simple and tractable

way that is sufficient for making good predictions.

A program called QSOPS (Round, 1987; another part of the MOLGEN
project is described in Section C4) provides molecular biologists with a

graphical simulation environment for making predictions about the

behavior of the tryptophan (trp) system under a variety of experimental

conditions. QSOPS uses a very simple representation of the processes that

make up this system, and its predictions are consistent with known
experimental and theoretical results. QSOPS is implemented in KEE 2.1

(see Section F2) and INTERLISP on a Xerox 1186 workstation. Before

discussing how QSOPS represents processes, we describe the trp system.

Trp is synthesized by proteins called trp -proteins. These proteins are

464

E Qualitative Aspects of Knowledge-based Simulation 465

coded by five genes on a piece of DNA called the trp-operon (see Figure

E-l; the five genes are labeled E through A, and the components to the

left of the genes regulate the trp-operon). The trp-operon undergoes

transcription when a molecule of RNA polymerase binds to the promoter

(pro in Figure E-l) and slides down the genes; the result is an RNA copy

of the trp-operon genes called mRNA. The mRNA then undergoes trans-

lation into the trp-synthesizing proteins when a ribosome binds to it and
slides down its length. The other processes regulate the rate of transcrip-

tion in order to maintain a steady-state concentration of trp in the cell.

This cycle of processes, pictured in Figure E-2, constitutes a negative

feedback loop: an increased concentration of trp increases the rate of trp

repression (process 5) and vice versa.

The QSOPS view of simulation is that a process creates new objects

and/or destroys old objects at a certain frequency. Each object also has a

finite lifetime. For example, the process of trp synthesis (process 3 in

Figure E-2) converts a trp-precursor molecule into a trp molecule. If the

frequency of trp synthesis is 50 reactions per second and the simulation

clock ticks once per second, 50 trp-precursor molecules will be destroyed

and 50 trp molecules will be created on the current tick. If 40 trp mole-

cules have reached the end of their lifetime on this tick, there will be a

net gain of 10 trp molecules. An object is thus created by a process and
is either destroyed by another process or expires at the end of its lifetime.

A process is simulated by recomputing the concentration of its prod-

uct molecule on each clock tick, using the process frequency and product

lifetime. The frequency of each process is computed once per tick using

a simple rule. These frequency rules model a process as a reaction

between two molecules to form a product molecule. One of the reactant

pro op lea E D C B A

I -- Single Deletion

I -- Single Substitution

"I -- Large Deletion

Figure E-l. Decomposition of the trp-operon. The promoter,

operator, and leader constitute the control

region. The five genes, labeled E through A
comprise the structural region. Mutations

such as the single deletion mutation in gene C
can be placed anywhere on the trp-operon.

466 Knowledge-based Simulation XXII

free trp-operon

RNA-polymerase

activated

trp-repressor

©
-# mRNA

© ribosomes

trp-proteins

trp-precursors

trp fragments

1 - Transcription

2 - Translation

3 - Trp Synthesis

4 - Trp Repressor Activation

5 - Trp Repression

6 - Trp Degradation

Figure E-2. The trp-operon process cycle. (Round, 1987,

p. 214)

molecules is present in great excess relative to the other. The frequency

of the process is directly in proportion to the concentration of the mole-

cule that is not in excess. For example,

frequency of translation is as follows:

the rule that determines the

If [ribosome] is in excess,
then frequency = k*[mRNA]
else if [mRNA] is in excess,
then frequency = k*[ribosome]
else frequency = 0.5 * k * ([mRNA] + [ribosome]

)

where [x] means the concentration of molecule x, and k is a proportion-

ality constant.

This rule makes intuitive sense since if ribosomes are in great excess

over mRNA, the rate of the reaction will change proportionately to the

concentration of mRNA but will not be affected by the concentration of

ribosomes (and vice versa). The frequency of translation computed by

this rule gives the number of trp-protein molecules created on the current

tick. To obtain the actual trp-protein concentration on this tick, the

number of trp-protein molecules that have expired on this tick are sub-

tracted from the number created. The lifetimes of molecules are given

as constants. Therefore, if trp-proteins have a lifetime of 5 ticks, the trp-

proteins that expire on the current tick are those that were created 5

ticks previously.

The process frequencies and molecule lifetimes are initialized before

E Qualitative Aspects of Knowledge-based Simulation 467

starting the simulation. At each tick of the clock, a new round of simu-

lation begins. The frequency rule of process 1 (transcription in Figure

E-2) computes a new value for [mRNA], and this new value causes the

frequency of process 2 to be recomputed. The frequency rule of process 2

then computes a new value for [trp-proteins], which causes the frequency

of process 3 to be recomputed, and so on. The current round of simulation

ends when a new value for [free trp-operon] is computed by process 5

and the frequency of process 1 is recomputed. At the end of a simulation

round, new concentrations for all molecules have been obtained.

The QSOPS user can choose to automatically graph the concentra-

tions of any of the molecules as the simulation proceeds. In addition, the

user can interrupt simulation at any point and change any quantity in

the system (such as temperature, pH, or concentrations of molecules).

This facility enables users to ask what-if questions, for example, "What
would happen if I double the concentration of trp?". The user can also

enter mutations on the trp-operon before or during simulation. Figure

E-l shows a single deletion mutation placed on gene C of the trp-operon.

The placement of a mutation triggers a rule that recomputes the pro-

portionality constant k for the relevant process. For example, a mutation

rule for process 1 is:

If there is a single deletion mutation on a gene, then k = 0.1 * k.

The rule for process 1 will then use the new value of k for as long

as the single deletion mutation holds.

The simulation technique used by QSOPS is "qualitative" in the sense

that it represents a great simplification of actual behavior, but "quanti-

tative" in that values of the simulated concentrations are real numbers.

QSOPS has been used to predict the concentration of trp over time with

a variety of mutations, and in all cases the results have been consistent

with known experimental results.

E2. Aggregation of Processes

QSOPS (Section El) accurately predicts the behavior of the trp system

by modeling it as a cycle of five discrete processes, each of whose behavior

is represented by a simple linear equation. Since this cycle of five pro-

cesses repeats continuously, it is reasonable to ask if even greater sim-

plification could be achieved by modeling the entire cycle as a single

continuous process.

A simulator called PEPTIDE, developed at the Artificial Intelligence

Laboratory of the Massachusetts Institute of Technology, integrates both

discrete and continuous process models for the purpose of predicting the

behavior of molecular genetic systems (Weld, 1984 and 1985). PEPTIDE

468 Knowledge-based Simulation XXII

defines continuous processes by a set of preconditions and a set of influ-

ences. For example, the process of discharging a battery has the two

preconditions "switch closed" and "battery voltage greater than 0," and
the two influences "decrease in battery charge" and "increase in resistor

temperature." PEPTIDE predicts the outcome of a continuous process

through limit analysis, a technique that determines when the precondi-

tions of a process are violated or satisfy the preconditions of another

process. Limit analysis predicts that a battery will continuously dis-

charge until its voltage drops to zero since one of the preconditions of

the process ("battery voltage greater than 0") is then violated.

PEPTIDE has used these concepts to predict the effects of reacting a

molecule of DNA with an enzyme E that cleaves a fragment from the end

of the DNA molecule (Figure E-3):

Two discrete processes are defined:

1. BIND. If there is an E whose cleft is empty and there is a DNA with

nothing bound to its right end, then the E will bind the right end of

the DNA.

2. SNARF. If there is an E bound to the right of a DNA, then the E will

digest the end segment of the DNA. The result will have E floating

free, and the length of DNA one segment shorter than before.

For each of these discrete process definitions, the preconditions are

given in the "if" part, and the influences are given in the "then" part.

For example, the two preconditions of BIND are "there is an E whose
cleft is empty" and "there is a DNA with nothing bound to its end," and
the single influence is "E binds to the end of the DNA."

When the simulation begins, only the preconditions of BIND are

satisfied. PEPTIDE therefore simulates the BIND process. The result is

depicted as (Figure E-4):

Now the preconditions for SNARF are satisfied, whereas those for

BIND are not. Therefore, the SNARF process is simulated, with the result

shown in Figure E-5):

The piece of DNA is now shorter than the original piece, but the

preconditions for BIND are again satisfied. At this point, a PEPTIDE

DNA

Figure E-3. Initial situation. (Weld, 1985, p. 141)

E Qualitative Aspects of Knowledge-based Simulation 469

DNA

Figure E-4. Situation after E binds DNA. (Weld, 1985, p. 141)

DNA

Figure E-5. Situation after E digests a section of DNA. (Weld.

1985, p. 141)

component called the aggregator recognizes that BIND has been active

before, and searches through a history of the processes that have already

been simulated in order to detect a cycle. In this case, the cycle recognized

is (BIND SNARF). The aggregator then generates a single continuous

process that represents multiple iterations of the cycle. This continuous

process is denned in terms of the preconditions and influences of the

cycle. In the present example, the aggregator determines that the pre-

conditions of the cycle are "there must be at least one free DNA" and
"there must be at least one free E," and that the single influence is

"decrease in length of DNA." Finally, PEPTIDE uses limit analysis to

determine the eventual outcome of the continuous process. When the

length of DNA becomes 0, the cycle precondition "there must be at least

one free DNA" is violated. The outcome is therefore that E remains, but

there is no more DNA.
The aggregator can also detect cycles within cycles. For example, if

there are many molecules of DNA and one molecule of E, the continuous

process generated by multiple iterations of (BIND SNARF) repeats for

each molecule of DNA until no molecules of DNA remain. If the contin-

uous process for a single DNA molecule is called CP1, the continuous

process for many DNA molecules can be modeled as (CP1).

PEPTIDE'S "knowledge" lies in its ability to detect cycles and to

predict the outcome of executing those cycles continuously over time.

The efficiency of simulation is greatly increased by eliminating the need

470 Knowledge-based Simulation XXII

to repeatedly simulate each discrete process in a cycle. The techniques

used by PEPTIDE should therefore prove useful in other domains whose
processes can be represented as cycles of discrete processes.

E3. Multiple Levels of Abstraction

QSOPS (Section El) models the behavior of a cyclic set of discrete pro-

cesses at one level of abstraction. PEPTIDE (Section E2) recognizes con-

tinuous cycles of discrete processes and can model behavior at both the

discrete process level and at the continuous cycle level. An even more
general process representation would model a system at an arbitrary

number of levels and would permit simulation at any one these levels.

For example, a personal computer system could be modeled from the

bottom up as a set of chips, a set of boards containing the chips, a set of

system components that consist of the boards, and the entire system,

which is built up from the system components. To understand the behav-

ior of the CPU, we do not need to simulate the overall system. Conversely,

it should not be necessary to simulate the behavior of every subcompo-

nent in order to predict overall system power consumption.

MARS (Singh, 1983; Brown, Tong, and Foyster, 1983) is an experi-

mental program, developed at the Knowledge Systems Laboratory of

Stanford University, that hierarchically models the structure and behav-

ior of an integrated circuit and permits the simulation of its components

at any level in the hierarchy. As an example, the device D74 shown in

Figure E-6 has three inputs and two outputs. The substructure consists

of three multipliers and two adders; the adders, in turn, are made up of

four full-adders (Figure E-7), each of which is composed of a collection

of gates (Figure E-8). All statements about the structure and behavior

of a device are coded as propositions in the declarative language MRS
(Genesereth, 1980). For example, the first input port of adder Al in D74
is represented in MRS as (port inl al). A partial description of D74 is:

(type ml multiplier)

(type a2 adder)

(conn (port out ml) (port inl al))

(conn* (port out m2) (port in2 al) (port inl a2))

The first two propositions state that ml is a multiplier and a2 is an

adder. The third proposition states that the output port ofml is connected

to the input port of al. The conn* relation describes multiple connections;

the fourth proposition uses it to state that the output port of m2 is

connected to both the second input of al and to the first input of a2. The
entire hierarchical structure of D74 is as follows:

E Qualitative Aspects of Knowledge-based Simulation 471

D74

ml

in1

a1

outl

in2

m2

in3

a2

out2

m3

Figure E-6. The top-level structure of device D74. (Singh,

1983, p. 5)

In1 In2

Adder

| | | | | | | |

F4 F3 F2 F1

1 1 1 1
"

Out

Figure E-7. The structure of an adder. (Singh, 1983, p. 5)

(prototype d74
((subpart* d74 ml m2 m3 a1 a2)

(type ml multiplier) (type m2 multiplier)
(type m3 multiplier)

(type a1 adder) (type a2 adder)
(conn (port out ml) (port in1 a1)

)

(conn* (port out m2) (port in2 a1

)

(port in1 a2))
(conn (port out m3) (port in2 a2))

472 Knowledge-based Simulation XXII

Full-Adder

Figure E-8. The structure of a full-adder. (Singh, 1983, p. 5)

(subconn* (port in1 d74)
(port in1 m2))

(subconn* (port in2 d74)
(port in2 m3))

(subconn* (port in3 d74)
(port in1 m3)

)

(subconn (port out a1) (port outl d74))
(subconn (port out a2) (port out2 d74))))

(port in2 ml

)

(port in1 ml

)

(port in2 m2)

The subconn and subconn* relations define port connections across

hierarchy boundaries, whereas the conn and conn* relations connect

ports at a given level in the hierarchy.

The behavioral specification of a device relates values between its

ports with respect to time. To relate port values, the true relation is used;

it has the form (true (value (port <p> <dev>) <val>) <time>), i.e., the

port <p> of the device <dev> has the value <val> at time <time>.
Given this definition, the behavior of D74 can is defined in MRS as follows:

(protobehavior d74
((if (and

(and

(true
(true
(true
(= $d
(= $e
(true
(true

(value (port in1 d74) $a $t)
(value (port in2 d74) $b $t)
(value (port in3 d74) $c $t)

* $a $b) (* $a $c))

)

$a $c) (* $b $c))

)

$d $t)
e $t)))))

(+

(
+

(

(*

(value (port outl d74) $i

(value (port out2 d74) $<

where $t is the variable representing time.

The description of D74 is completed by creating similar definitions

for the structure and behavior of all the lower level components (adders,

E Qualitative Aspects of Knowledge-based Simulation 473

multipliers, full adders, and so on). The set of operations that can be

performed on values may depend on the level at which they occur in the

hierarchy. For example, a proposition in the prototype behavior of an
adder (see Figure E-7) is:

(if (and (true (value (port inl adder) $v) $t)

(= $b (bit $j $v)))

(true (value (port inl fal) $b $t)))

The preceding proposition states that if the value at port 1 of the

adder is $v at time $t, then the value at port 1 of full adder 1 is the jth.

bit of $v at time $t. The variable $v represents an integer, whereas the

variable $b represents a Boolean value. The operations at the adder level

consist of arithmetic on integers, whereas those at the full adder level

are Boolean operations on bits.

The MARS simulator propagates an initial set of signals through the

structural and behavioral description of the device in order to predict its

behavior. Values are propagated through device components via a for-

ward-chaining inference mechanism. For example, consider the following

propositions:

(if (and (type $x multiplier)

(true (value (port inl $x) $a) $t)

(true (value (port in2 $x) $b) $t))

(true (value (port out $x) (* $a $b)) $t))

(type foo multiplier)

(true (value (port in2 foo) 3) 4).

The rule describes the behavior of multipliers. It states that if $x is

a multiplier, the value of input port 1 of $x is $a at time $t, and the

value of input port 2 of $x is $b at time t, then the value of the output

port of $x is a*b at time $t. The two facts assert the foo is a multiplier

whose second input port has value 3 at time 4. If the fact (true (value
(port inl foo) 2) 4) is also asserted, then all the preconditions in

the rule will be satisfied, and the fact (true (value (port out foo)

6) 4) will be asserted (since 2*3 = 6).

In the examples so far, all the values have been propagated instan-

taneously. However, rules can schedule an event for a future time and
can refer to past events. The MARS simulator maintains an event queue,

and the simulation clock moves from event to event. On simulating a

given event, only the values of ports affected by the event are recom-

puted; the effect of propagating a change is usually local, so it would be

wasteful to recompute the state of every port on every event. The way
MARS handles time will be further discussed in Section Gl.

The simulation of a full adder is depicted in Figure E-9 and is

474 Knowledge-based Simulation XXII

Simulation Operations

Simulate

Reset Simulation

DIAGNOSE

Load Test

Save Test

Flush Test

Modify Test

Zap Value

Add Text Traces

Add Shade Traces
Delete Traces
Move Traces
Edit Behavior

Edit Sub Behavior
Edit Simulator Rules

Inspect World
View Context

View Simulation Events

EDIT

Simulator Break Options

No Break

Step Break
Time Break
Single Step

-o

Figure E-9. Simulation of a full-adder. (Singh, 1983, p. 30)

controlled through the menus shown in the figure. The first step is to

build a simulation model of the full adder by describing its structure and
behavior. The structure is described graphically by selecting and con-

necting symbols representing the inputs and outputs of the full adder

and the gates that make up its subcomponents. The behavior of the full

adder is entered textually in the form of MRS propositions. The behavior

of the subcomponents can also be entered or modified if necessary.

The initial inputs to the simulation are specified by assigning values

to the three input ports of the full adder; for example,

(true (value (port cin foo) 1) 0)
(true (value (port in1 foo) 1) 0)
(true (value (port in2 foo) 0) 0).

That is, at time 0, the carry-in and the first input of the full adder are

1 and the second input is 0. The user can select the Add Shade Traces
option to specify the nodes to be monitored during simulation; in the

present example, these nodes can be any subset of the subcomponents,

including the entire full adder.

By interrupting the simulation with a break, the user can inspect

E Qualitative Aspects of Knowledge-based Simulation 475

the state of the full adder and its subcomponents at that point, and make
changes to the design if desired before resuming. Break conditions can

be specified on the port values, the number of event occurrences, and the

number of simulation cycles. As signals are propagated during simula-

tion, ports whose value is true are displayed in black, and those whose
value is false are displayed in white. As shown in the lower right menu
of Figure E-9, the simulator can be single-stepped, set to stop on a break,

or run continuously.

MARS can automatically select the hierarchical level at which to

simulate. This level depends on which components in the hierarchy have

a behavioral description and which nodes are being monitored by the

user. It is not required that every node have a behavioral description

associated with it. If a node does not have a behavioral description, it

must be simulated at the highest subcomponent level at which the behav-

ior is completely specified. For example, if there is no behavioral descrip-

tion of the full adder in Figure E-9, the full adder must be simulated at

the level of its subcomponent gates. If the gates are at the most primitive

level in the hierarchical structure and one or more gates lack a behav-

ioral description, the full adder cannot be simulated. If the full adder

does have a behavioral description, then that description is sufficient for

simulation, and no reference need be made to the behavioral descriptions

(if any) of the gates. The simulation level is also affected by the nodes

selected for monitoring since simulation cannot be performed at a level

higher than the lowest level containing a selected node.

The user can also select the simulation level manually via the simsub
and simtop relations. The simsub relation declares that a part is to be

simulated in terms of its subcomponents, and the simtop relation indi-

cates that the top-level behavior is to be used. For example, (simsub

(part $x d74)) indicates that all subparts of d74 are to be simulated in

terms of their substructure.

MARS provides justifications for the state of any component of the

simulated device. For example, to inquire why the carry output bit of

the full adder has value 1 at time 0, the user can select the why command
and enter the query

(true (value (port co fa) 1) 0).

The system responds with

- P542: (true (value (port co fa) 1) 0) by:
P658: (if (true (value (port out o1) 1) 0)

(true (value (port co fa) 1) 0))
P541 : (true (value (port out o1) 1) 0)

That is, the carry output of the full adder is 1 because the output of the

or gate is 1. The why command can be applied to the propositions in the

476 Knowledge-based Simulation XXII

justification to obtain further explanation; for example, the user can

query (why T541).

MARS generalizes the process abstraction abilities of QSOPS and
PEPTIDE by defining and simulating a design in terms of its hierarchy

of structure and behavior. MARS resembles the MOLGEN system of Sec-

tion C4 in that both perform simulation by forward inferencing. The
MARS simulator is more powerful and general, however, due to its ability

to specify hierarchy, to automatically select the simulation level, to

schedule events in the future, and to reason about events in the past.

E4. Multiple Levels of Precision

The three systems described so far in this section have abstracted

processes in the form of linear equations (QSOPS), continuous cycles

(PEPTIDE), and hierarchically specified device behaviors (MARS). Even
though the processes are modeled abstractly, the simulated values that

are propagated through a process model are precise: concentrations are

real numbers in QSOPS, DNA lengths are integers in PEPTIDE, and
signals are integers or Booleans in MARS. There are many situations in

which we would like to predict the future state of a system, but our

knowledge of its current state is vague. As an example, consider the

problem of predicting the time it takes to drive a car from point A to

point B. We might know that the gas tank is almost full, that our speed

is 60 mph and increasing, that we are probably somewhat over the speed

limit, that the oil light is not on, and that traffic looks pretty heavy up
ahead. How can values such as "almost full," "60," "increasing," "some-

what over," "not on," and "pretty heavy" be simultaneously propagated

through a traffic model in order to predict the time of arrival at point B?

In the domain of molecular biology, there is quite a bit of quantitative

information about genetic regulation, but the values and interrelation-

ships of some state variables are known imprecisely or not at all. Recent

work in the MOLGEN project (see Sections C4 and El) has attempted to

create a framework for simulating genetic regulatory systems whose
variables take on values with a wide range of precision (Karp and Fried-

land, 1987). The techniques used by MOLGEN for representing variables,

their interactions, and their propagation will be presented after describ-

ing the research domain.

The domain of this research is the same as that of the QSOPS system

described in Section El—the regulation of the set of genes responsible

for synthesizing the amino acid tryptophan (trp). These genes lie on a

piece of DNA called the trp-operon, depicted in Figure E-l. The enzyme
RNA-polymerase can bind to a site on the trp-operon called the promoter

E Qualitative Aspects of Knowledge-based Simulation 477

(labeled pro in Figure E-l). After binding to the promoter, RNA-poly-

merase synthesizes mRNA as it zips down the trp-operon in a process

called transcription. The mRNA then undergoes processing to yield the

enzymes that synthesize trp. The whole process of trp synthesis is there-

fore regulated by the rate of transcription. Regulation of transcription is

achieved by a molecule called activated trp-repressor that binds to the

operator (labeled op in Figure E-l), directly adjacent to pro. When
activated trp-repressor is bound to op, it blocks transcription since RNA-
polymerase cannot simultaneously bind to pro. Activated trp-repressor

has a molecule of trp attached to it; it is no longer active if it loses its

trp. When the concentration of trp increases, the fraction of the trp-

repressor that is bound by trp also increases. Activated trp-repressor

binds to the promoter, preventing RNA-polymerase from initiating tran-

scription, so the concentration of trp decreases. The reduced trp concen-

tration decreases the fraction of trp-repressor that is bound by trp,

allowing more RNA polymerase to bind to the operator, and resulting in

an increased rate of transcription and an increased concentration of trp.

This negative feedback mechanism is the principal form of regulation of

trp synthesis.

The state variables of the system and their interrelationships are

depicted in Figure E-10. The arrows indicate influences', for example,

the amount of Activated.trp-R (activated trp repressor) is influenced by
the amounts of trp and Total.trp-R (total trp repressor). Assertions about

the values of variables can be made with respect to quantitative values

(e.g., trp = .001, trp < .005) or relative to other values (e.g., trp <
trp.maximum, trp = 2 * trp.equilibrium). Three types of representations

are provided for describing the interactions among variables: pairwise

interactions, functions, and mappings. Each of these representation

schemes is implemented as a data structure called a frame in the expert

system development tool KEE (see Section F2).

A pairwise interaction describes whatever is known about how one

variable influences another. The information associated with a pairwise

interaction might include the sign of the interaction, whether the inter-

action is monotonic, and the form of the functional relationship (e.g.,

linear, higher polynomial, exponential, unknown). The following pair-

wise interaction describes the influence of Free-Promoter.Lifetime on
Transcription.Initiation.Rate (see Figure E-10):

Input.Variable: Free-Promoter.Lifetime

Output.Variable: Transcription.Initiation.Rate

Monotonic: T
Functional.Form: LINEAR
Slope: INCREASING

The second way of representing relationships among variables is

called a function, which describes how a combination of input variables

478 Knowledge-based Simulation XXII

mRNA Synthesis

Control Total.trp-R

Activated.trp-R

I
Operator-Repressor.Complex. Lifetime

I
Free.Promoter. Lifetime

I
Transcription. Initiation. Rate

I
trp-mRNA.Synthesis.Rate

trp-mRNA

I—

-

trp-Enzyme.Synthesis.Rate

\Enzyme
Inhibition

trp-Enzymes

Control

Activated.trp-Enzymes

I *-
trp-Biosynthesis. Rate

\
trp

RNA. Polymerase

mRNA.Half.Life

mRNA.Degradation.Rate

mRNA Degradation

Control

Charismate

Cell.Growth.Rate

\
Cell. Protein.Synthesis.Rate

/
Cell.trp.Consumption.Rate

Figure E-10. The network of state variables in the trp system

used in simulations. (Karp and Friedland, 1987,

p. 17)

E Qualitative Aspects of Knowledge-based Simulation 479

influences an output variable. All combinations are additive, multipli-

cative, or unknown. A function that describes how RNA-Polymerase and
Free-Promoter.Lifetime combine to influence Transcription.Initiation.

Rate (see Figure E-10) is encoded as:

Input Variables: (RNA-Polymerase Free-Promoter.Lifetime)

Output.Variable: Transcription.Initiation.Rate

Combined.Influence: Additive

The third type of representation, called a mapping, is a list of cor-

responding values between two sets of variables. Mappings are useful

when the complete functional relationship between two sets of variables

is unknown, but a few points have been experimentally determined. The
following mapping describes how the amount of activated trp-repressor

varies with trp for three points:

Clamped. Influences: (Total. trp-R Total. trp-R.
normal)

Input . Variable: trp
Output . Variable: Activated. trp-R
Points: ((0 0)

(equilibrium-trp-concentration
(Total. trp-R * .5)

)

(trp-excess-
threshold Total . trp-R)

)

Monotonic: T

Functional. Form: UNKNOWN
Slope: INCREASING

For example, when trp is at its equilibrium concentration, activated

trp-repressor will be one half of total trp-repressor. If a mapping is

monotonic and linear, additional points can be obtained by interpolation.

Also, the definition of a function can include one or more mappings.

Pairwise interactions, functions, and mappings provide a context for

representing process behavior over a wide range of precision. A precise

mathematical formulation of a process is achieved by assigning numbers
to all the slots in the frames that represent the process relationships.

The omission of numeric values from the frames results in qualitative

constraints on the relationships. Minimal information will result in min-

imally precise relationships.

Since interactions can be modeled over any range of precision, there

must be a means of propagating values of varying degrees of precision

during simulation. Six methods are available for dealing with this prob-

lem. All six methods are considered when propagating a value since each

method may provide unique information. The following six methods are

listed in order from most quantitative to least quantitative:

480 Knowledge-based Simulation XXII

1. Numerical calculations. The interaction is represented by an analyt-

ical expression, and exact quantitative values are known for all the

variables to be propagated. If A = 2*B + C is a relationship among
integers, and if integer values have been assigned to B and C, then

the propagation step assigns an integer value to A by performing the

arithmetic.

2. Using mappings. Mappings can be used to directly evaluate functions

if a value in the domain of the mapping is represented. For example,

if trp = equilibrium,trp.concentration and the mapping just described

is valid, then the propagation step asserts that Activated.trp-R =

Total.trp-R * 0.5.

3. Interpolating mappings. If the value of a variable is not in the range

of a mapping, but some information about the nature of the relation-

ship is available (e.g., that it is monotonic and linear), then the range

and domain values can be interpolated. Ifwe know that the preceding

mapping is monotonic and linear with a ^-intercept of 0, and that trp

= 4 * equilibrium.trp.concentration, then we can infer that Acti-

vated.trp-R = 2 * equilibrium.trp.concentration.

4. Relative calculations. Interpolations can also be performed in the

absence of mappings. If the behavior of the system is known at

tryptophan concentration trpl, its behavior at (trp2 = trpl * 2) can

be predicted by interpolation if the relevant interactions are known
to be linear with y-intercepts of 0.

5. Qualitative calculations. If nothing is known about a pair of inter-

acting variables except their relative values, the propagation step

asserts a constraint between the variables by applying inference

rules. Several examples of such rules are as follows:

(X rel Y) implies (X-Y rel 0)

(Y rel 0) implies (X+Y rel X)

((X rel 0) and (Y > 1)) implies (X*Y rel X)

((X rel 0) and (Y > 0) and (Y < 1)) implies (X rel X*Y)

where rel stands for one of the relations (<,< = ,
= ,<>,> = ,>).

6. Monotonicity calculations. If a function is known to be monotonic, its

inputs can be analyzed to deduce whether it increases, decreases, or

remains constant with respect to its value at a previous point in time.

For example, if the current value of trp is greater than its previous

value while Free.trp-R has remained the same, the value of Total.trp-

R has increased from the previous to the current time.

These techniques for representing and simulating systems whose
variables and functional relationships are known with varying degrees

of precision have been used to make predictions about the behavior of

the trp-operon system. Table E-l shows the values associated with the

state variables in the network of Figure E-10 after the first and second

E Qualitative Aspects of Knowledge-based Simulation 481

rounds of simulation. These values are expressed relative to a constant

(e.g., Transcription.Initiation.Rate.l = Transcription.Initiation.Rate.

maximal) or relative to a value from a previous simulation cycle (e.g.,

trp-Enzymes.2 > trp-Enzymes.l) The simulation was started by assign-

ing initial values to the external variables (such as Total.trp-R, RNA-
Polymerase, and trp, which is assigned an initial value of 0).

Sometimes the rate of a process and the amount of its product change

in opposite directions. For example, trp-mRNA.Synthesis.Rate.2 has

value (< trp-mRNA.Synthesis.Rate.l), whereas trp-mRNA.2 has value (>

trp-mRNA.l). This is because the rate ofmRNA degradation has increased

on the second cycle but is still less than the rate of mRNA synthesis.

Results of the type shown in Table E-l are consistent with molecular

genetic theory.

482 Knowledge-based Simulation XXII

4h

CO
CD

I

6 6 d d
ae s .o o

CO
'-£ '•+j CO d

'•£ '-H cd cd
CO

CN CD 0) i—

1

CO 'Sh 0)
t+H «+H '-3 '•+3

52 42 X
Pi '3 3 CO

'2 3 43 4J
£a Fh $H

cd •~j •^ d '3
>> —

'

o o
6 fi

0)

s
4>

d
o
'-C 11

Pi '2 <
cr
CD

< <
CO g
CD d
fi

'8

2 2

cd* cd

13

fi

fa

<
o
co

d
T—

1

CO (^
d ai

55

S
rH

Z
Pi

fi

Pi

fi

s a

2 2
fa fa

'3

1
03 -+J 03 4-i

f ^ P5

V V A V A V

d
cr
^ ^H
CO .

CD CD

a s
N N
d d
fa fa

& &
V A V

CD
4J -S
03

& dS
CO CO

'So 'co E
CD CD 3
43 43
+j -+j 5-i

d d 42
>» ,__ >> ^3
CO 03 CO
O

e
o 3

pq X s CD

& 03 d d

A V A

I

fa)

pq

<!

co

d
o
CD

o

CD

5

T3
d
fa

o
d
Pi

i

o
s
o *d
Jh TO

Pi fi

CD 'd

2 9
£ 2

«8 ^ ^
d 2
.2 fi

4V ft

t£

fi

s CO
d

'co
CD

d
'C
42

'co
CD

-d -
42

CD

43

5 -d 'd

'd
cr
CD

co
CD

B

co

'co fi

CO g
<

cd a
fi ^d

CD

-d ^
d 2

.2 42
PQ 3

d

43

fi ai

Pi

fi

-Enzy

e.

equ N
d
fa

"3

CD

n d *I & &
+3 ^ Pi -M -M 0) *a

ii V V V V V

CO

cd

d
Of

03

fi
C

d

05

• ^
CD ><
+5 cd

2
CD

Pi fiS fi

4^
& 2 2 'o
+3 £ fi fa

13 ® "5 <i

2 s fc
H fe 3 Pi

CD

£
+3
CD

c+5

Pi
H-l

5-i

&
CD

Pi
O
fid CD O

Sh -M J^
4J cd Ph

>
03 CD

-t-> '-m CD
O >HH < fa

CD ."5

* g
fi °

d cd

cd pi

CO CD ,3
CD 43 Pi
43 +3
-H d co

d >> 'co

>» CO CD

CO
CD

CO
CD

43
4^

< < g fi d
^ 2 >> >> £
Pi CD

fi i
Pi

fi

N
d
fa

CD

cd

a
fa s

dpi d d Pi d d
j-T u Jh Jh

F. REAL-WORLD APPLICATIONS OF
KNOWLEDGE-BASED SIMULATION

Most of the programs described so far have not been extensively applied

to solve problems "in the field." This section describes two applications

and two tools that have proven beneficial in solving real-world applica-

tions. Cotton farmers in Mississippi have reported greatly increased

yields using COMAX. SimKit has facilitated the development of simu-

lation models for a number of manufacturing systems. Physicists have

reduced the start-up times of particle accelerators by two orders of mag-
nitude with ABLE. Finally, Forecast Pro is a low-cost, off-the-shelf PC
product that has been used to predict business trends.

Fl. COMAX — Knowledge-based Simulation for

Cotton Crop Management

COMAX (Lemmon, 1986, and Comis, 1986) assists cotton farmers by

predicting the dates for irrigation, fertilizer application, and harvesting

that will maximize crop yield.

The fruit of the cotton plant, called a cotton boll, contains the lint

that is of commercial value. The yield of bolls is affected by the amount
of nitrogen applied to the crop through fertilizer, the amount of water

applied to the crop through irrigation and rainfall, and the date of

harvesting. Insufficient nitrogen or water (as indicated by the conditions

known as nitrogen stress and water stress) will stunt plant growth. Too

much nitrogen is economically wasteful and causes excessive plant

growth, making the crop difficult to harvest. Yield will be low if the crop

is harvested before enough bolls have sufficiently matured. On the other

hand, if the cotton is not harvested before the rainy season, yield will

also suffer since rain can knock the bolls off the plant, lower cotton

weight, and cause discoloring fungus growth. These factors must be

considered in combination as well as separately. For example, increased

irrigation can induce plant growth, thereby increasing the demand for

nitrogen. The problem that COMAX must solve is how to schedule irri-

gation, fertilizer application, and harvesting to achieve optimum yield,

taking into account the particular conditions of each individual farm.

483

484 Knowledge-based Simulation XXII

The overall structure of COMAX is indicated in Figure F-l. COMAX
works by running the GOSSYM numerical simulation model (Baker et

al., 1983) and interpreting its results. GOSSYM is a program that simu-

lates the growth of a cotton plant for an entire growing season, given a

set of soil conditions and the daily weather data (real or predicted)

throughout the season. In particular, it predicts the dates that the plant

will next go into nitrogen and water stress.

The COMAX knowledge base consists of facts about the present con-

ditions on a particular farm and rules that apply to all cotton farms in

the same geographic area. The facts include the prior history of nitrogen

applications, irrigation, and daily weather conditions on that farm for

the current growing season. The rules determine the next dates for

nitrogen application, irrigation, and harvesting. These dates depend on

the weather for the remainder of the growing season. Since the future

weather is unknown, COMAX predicts these dates by running GOSSYM
for each of three future weather scenarios (hot and dry, normal, and cold

and wet) and applying its rules to the resulting dates of nitrogen and

water stress.

COMAX is run once a day throughout the growing season. On each

new day, the actual weather for the previous day is used by GOSSYM, so

C
Start of \ Data Files GOSSYM

Growing SeasonJ w

Soil Condition

Updated Weather

Hypothesized Schedules

i '

Updated
Weather

Next Water Stress Date

Next Nitrogen Stress Date

JYes

\ f

Simulate n.
Another Day ^X—

Recommended Next

Dates for Irrigation and

COMAX Knowledge
Base

.. ? ^^ Nitrogen /Application
Inference Engine

c

No

End 3

Figure F-l. The overall structure of COMAX.

F Real-world Applications of Knowledge-based Simulation 485

that the predicted dates become more accurate as the growing season

progresses. To determine the next irrigation date, COMAX calls GOSSYM
for each of the three weather scenarios. For each scenario, GOSSYM
predicts the next water stress date, which in turn triggers rules that

determine the best irrigation date. Running COMAX with the hot-dry

scenario gives the earliest date by which irrigation would be needed,

whereas the normal scenario gives the most likely date. These dates can

change as the actual weather for the current day is used in the next

day's run. For example, if the current day turns out to be cold and rainy,

the predicted irrigation date under the hot-dry scenario will be later on

the next day's run than on the current day's run. The rules that deter-

mine the next irrigation date also take into account such factors as the

type of irrigation system used on the farm and the number of days

required for an application.

Nitrogen applications are determined in a similar manner. For each

of the three weather scenarios, GOSSYM predicts the next date of nitro-

gen stress, and this date is used by rules to predict the best date and
amount for nitrogen application. Each predicted nitrogen application is

then fed into GOSSYM again to determine whether the application will

cause nitrogen stress or undesired plant growth; the amount of nitrogen

is adjusted by the rules and GOSSYM is rerun until the amount of

nitrogen causes neither nitrogen stress nor excessive growth.

An entire growing season can be run with simulated weather data

in 20 to 30 minutes on an IBM PC-AT. The results can be displayed

graphically as in Figure F-2. Each row in Figure F-2 gives the results

of a growing season with a particular set of nitrogen and water appli-

cations. The first graph in each row shows the date and amount of

nitrogen applications, and the degree of nitrogen stress. The second

graph in each row shows the timing of water application? and the water

stress. The third graph in each row shows the development of the plant

throughout the growing season in terms of its height and the number of

bolls and squares. The fourth graph in each row shows overall yield at

harvest time.

The first two rows in Figure F-2 were generated by COMAX imme-
diately after the third application of nitrogen. Comparison of the first

two rows shows that additional water applications in row 2 relieved

water stress but aggravated nitrogen stress; the overall yield was the

same as in row 1. In the third row, COMAX hypothesized a fourth nitrogen

application of 30 pounds per acre, which relieved the nitrogen stress

relative to that of the second row. In the fourth row, 60 pounds per acre

was hypothesized for the fourth nitrogen application. Doubling the nitro-

gen eliminated nitrogen stress entirely and increased the final yield, but

it also induced a spurt of new growth at the end of the season (see third

graph), which would make the cotton difficult to harvest. In the fifth row,

486 Knowledge-based Simulation XXII

Nitrogen/

stress

o<

Nitrogen)

apphcolions

2i

Water /•

Stress

272

Nitrogen,,/
Stress

Nitrogen 1

•ppKotiorn

ivyv

iy

Water
atress

liliL

/S
Water

applications

Height

/Squofes /

Bolls
<-

272

Yield .

boles/acre

Nitrogen^/

O
Ntrogan

applicationŝ

Nitrogen ___^/
stress

"""

o
Nitrogen X

applications

i^yvj

JllL

/ Wotar
/•ppticatlom

pwy^l
*

Wotar
applications

Nitrogen ^/
stress j

> ° . 1

•y
Nitrogen /

applications

rw^
/<

Water
applications

Days

3 43

Yield ^-
bales/acre

160 190

Figure F-2. Graphs produced by COMAX from the results of

GOSSYM simulations, showing the process

whereby COMAX reduces the water stress and
then the nitrogen stress. (Lemmon, 1986, p. 32)

F Real-world Applications of Knowledge-based Simulation 487

a compromise of 50 pounds per acre was hypothesized. This amount gave

almost the same yield as would be obtained by applying 60 pounds,

without the growth spurt. The fifth row therefore represents the nitrogen

and irrigation schedules predicted by COMAX for maximum cotton yield.

COMAX has actually been tested on cotton farms in Mississippi.

Weather conditions are automatically entered into the farmer's PC every

day from a weather station, and COMAX is run with the updated weather.

The last row of Figure F-2 was COMAX's prediction for an actual 6,000-

acre farm. The farmer had not intended to make a fourth nitrogen

application, so he cautiously tested COMAX by applying 20 pounds per

acre on a 6-acre test plot (COMAX recommended 50 pounds). At harvest

time, the test plot gave a net increase of at least 115 pounds per acre,

representing a net gain of at least $60 per acre. The gain from this small

plot is comparable to the cost of all the hardware needed to run COMAX,
including the computer, the printer, and the weather station.

F2. SimKit: An Integrated, Knowledge-based
Environment for Simulation

SimKit comprises a set of general-purpose modeling and simulation tools

built on top of KEE, a frame-based programming environment written

in CommonLISP. Both SimKit and KEE are commercial products sold by

Intellicorp. A discrete-event simulation model is built in SimKit using

knowledge bases called libraries. We will discuss the development of

libraries, the development of models using these libraries, and the sim-

ulation of the resulting models.

The Development of Libraries

A SimKit library is a KEE knowledge base that contains definitions

of object classes and the relationships between them. A library repre-

senting a factory might contain object classes for drills, lathes, conveyor

belts, and storage bins, for example. Each class is implemented as a

frame in KEE. A frame contains slots, which are like the fields of a record

in structured programming languages, except that slots can contain LISP

functions as well as data. The frames that implement object classes

therefore give both the structure and the behavior of the objects they

describe.

To model a system, we need to know the relationships between objects

as well as their internal structure and behavior. For example, if a man-
ufacturing process requires that a part is first assembled and then drilled,

488 Knowledge-based Simulation XXII

we can say that the assembling machine is upstream of the drill, or that

the drill is downstream of the assembling machine. Interobject relations

such as "upstream" and "downstream" can be denned with SimKit.

Libraries are created and modified with the SimKit Library Editor,

which is used to define the object classes and relations in a library. Each
object class and relation is graphically depicted with an icon. An icon is

either provided by SimKit or created as a bitmap by the library devel-

oper. Icons associated with each class and relation are displayed in the

editor viewports, as shown by the simple model of a factory in Figure F-
3. The object classes viewport on the left contains one icon to represent

each of the object classes defined for the library. The relations viewport

on the right contains icons that represent the relations between classes.

The design viewport in the center is used to construct, display, modify,

and run a model.

Object classes are created for a library by creating their frames,

defining slots for the frames, and giving values to the slots. The process

of object class creation is facilitated by using pop-up menus, interactive

dialog, and other tools provided by KEE for knowledge base construction

(Intellicorp, 1986).

A new relation is denned with the Relations Editor by giving its

name, the name of its inverse relation, and its domain and range. The
classes of domain and range objects must be specified. For example,

machine set A (the domain) can be upstream ofmachine set B (the range);

€E3

EB

->ao.->

SIf*S

III Tile QLIB MODEL Model of the QLIB L

m

£E}

Figure F-3. The SimKit Library and Model Editors with a

small queueing model. The design viewport is

in the center. The object class viewport is on the

left, and the relation viewport is on the right.

(Stelzner et al., 1987, p. 9)

F Real-world Applications of Knowledge-based Simulation 489

this specification automatically causes set B to be the domain and set A
to be the range of the downstream relation, if downstream is defined as

the inverse of upstream. The frame representing an object class has a

slot for a relation if the object class is in the domain or range of the

relation. The instances of the object class will also contain the relation

slot. For example, the frames representing objects in the machine sets A
and B have both upstream and downstream slots whose values are the

machines at the other end of the relation. As with object classes, relations

are created with simple mouse and menu operations.

Sublibraries are specializations of parent libraries to narrower

domains. For example, a library that describes a general manufacturing

system can be specialized for an airplane factory or an automobile assem-

bly plant. Each sublibrary automatically inherits the classes and rela-

tions of its parent library using the KEE inheritance mechanism. A
sublibrary can add new object classes and relations and can override or

delete those inherited from the parent library.

The Development of Models

A major goal of SimKit is to allow nonprogrammers to easily and

rapidly construct simulation models of a system. This goal is achieved

with the SimKit Model Editor, a user interface that helps the modeler

create simulation models from libraries of object classes and relations.

The particular objects that comprise a model are selected with a mouse
from the object class viewport and moved into the design viewport (see

Figure F-3). The relations between objects are selected with a mouse
from the relations viewport and moved between the objects they connect.

In Figure F-3, the downstream relation, represented by the arrow in the

relations viewport, connects Ql (queue l)and SSI (single server 1) to

show that SSI is downstream of Ql. In this way, the user creates a model

on the screen that intuitively reflects his concept of the objects and

relations that comprise the system to be simulated.

The underlying computer representation of the model is encoded as

a knowledge base that contains a frame for each object in the model. The
frame for each object is an instance of the object class to which it belongs

(see the discussion of classes and instances in Section B3). The close

correspondence between the graphical depiction of objects on the screen

and the underlying representation of those objects as frames in a knowl-

edge base permits easy modification of the model. For example, to add

single server SS3 between Q3 and SI1, the user simply selects "SINGLE
SERVERS" from the object class viewport, moves the single server icon

between Q3 and SI1, names the single server SS3, and invokes a pop-up

menu to select "splice." Figure F-4 shows the result of applying these

actions to the model of Figure F-3. A frame for SS3 is created, and the

490 Knowledge-based Simulation XXII

IP The QLIB.MODEL Model of the OLIB Libi

€E3
LIFO

QUEUES

£E>
FIFO

QUEUES

sines

m

7 Q1

£Eh

EE> „& o€E> oQ

\
,-F^T> ^*oa&« ^-T^ g

Figure F-4. The queueing model after several modifications.

(Stelzner et al., 1987, p. 9)

splice operation converts the downstream relation between Q3 and SI1

into two downstream relations: one from Q3 to SS3, and the other from

SS3 to SI1. The values of the upstream and downstream slots of Ql, SS3,

and SI1 are automatically updated to reflect the splice operation.

Another useful modeling feature provided by SimKit is the Composite

Object Editor. This editor allows the grouping of several object classes

into a single composite class within a library. The modeler can then use

the model editor to create instances of a composite class, just as it creates

instances of single classes.

To summarize, a library is a set of object classes and relations that

are created by programmers proficient in KEE and LISP; a model is a

representation of a system that nonprogrammers can create by selecting

instances of object classes and relations that are defined in a library.

Both libraries and models are implemented as knowledge bases in KEE.
The implementation of a model as a knowledge base is transparent to

the model developer.

The Simulation of Models

As in Smalltalk, the objects in a SimKit simulation model contain

methods that are invoked by messages. The frames that represent object

classes have special slots for methods, so the objects in simulation models

automatically inherit these slots and methods. A method can contain

either functions coded in LISP or rules coded in the declarative rule

language of KEE. The behavior of a system is modeled by defining the

messages that objects can send to each other and the way that objects

F Real-world Applications of Knowledge-based Simulation 491

respond to them through their methods. The name of the slot that con-

tains a method is explicitly included as part of a message. This contrasts

with the Smalltalk approach, which requires pattern matching between
the message and the method that it invokes.

There is also a way to invoke methods in SimKit without receiving

any message. This technique is useful in situations where an action

should automatically be taken whenever some change in the state of the

model occurs. For example, whenever a part arrives at the queue for a

drill, the queue object might invoke a method that determines whether

to divert that part to another drill queue. This method is implemented

as an active value, which is attached to the slot in the drill queue that

contains the number of parts in the queue. This active value is a method
that is automatically executed whenever the number of parts in the

drill's queue increases. Active values are another example of a KEE
facility that is available to SimKit library developers.

To perform discrete-event simulation, SimKit must have a means to

schedule the transmission of messages. Every model created with SimKit
automatically includes instances of the object classes CALENDER,
CLOCK, and SIMULATOR. These object classes are part of SimKit, just

as similar classes are denned as part of SIMULA and Smalltalk (Section

C3). A model can also include objects that generate random variables

from probability distributions to drive the simulation and objects that

collect statistics on the simulation results.

The CALENDAR object for a model maintains an event queue in its

FUTURE.EVENTS slot. When it is time for an event to occur, that event

is deleted from the FUTURE.EVENTS slot and placed in the CUR-
RENT.EVENT slot. The CALENDAR then formulates and sends a message
to the appropriate object. The method invoked within the receiving object

might in turn generate another message that causes a new event to be

added to the FUTURE.EVENTS queue. The CLOCK object of a model is

always updated to the time of the current event. The simulation contin-

ues until one of the following occurs: there are no more events, a pre-

specified amount of time has elapsed, or the simulation is interrupted.

A model's SIMULATOR object controls the simulation by initializing

the model and by starting and stopping simulation runs. The SIMULATOR
object contains a slot with the message INITIALIZE! that causes all objects

in the simulation model to return to a standard starting point or to a

default state. The SIMULATOR object also provides a menu that allows

the user to control the simulation. The run option on this menu permits

specification of the terminating conditions for a simulation run (e.g.,

when there are no more events). The user may step through a simulation,

event by event, in order to debug the model or to better understand how
the model works. The simulation can always be interrupted regardless

of whether it is running one step at a time or continuously.

492 Knowledge-based Simulation XXII

Some messages sent between objects in the model pictured in Figure

F-3 might include:

An ITEM . ARRIVES! message that is received by an object when an item

arrives at the object.

A START. ACTIVITY! message that is sent to an object so that it can

begin processing the item that arrived.

A COMPLETE . ACTIVITY! message that is sent to an object when it has

finished processing an item.

An ITEM .DEPARTS! message that is sent to an object when an item

departs it so that it can prepare for the next one.

For example, when the COMPLETE.ACTIVITY! message is sent to an
object that has just finished processing an item, it invokes a LISP function

in that object that determines the next downstream object of the item

and whether the downstream object can accept the item. If the down-

stream object can accept the item, an ITEM. departs! message is sched-

uled for the upstream object and an ITEM . arrives! message is scheduled

for the downstream object. Otherwise, the upstream object puts itself

into a waiting state until the downstream object becomes available.

SimKit and Smalltalk take very similar approaches to simulation.

SimKit goes beyond Smalltalk in both the range of systems it can model
and the ease of developing models due to:

Its ability to express object behaviors in a variety of ways: procedural

code, rules, active values, or some combination thereof. This ability is

important since object behaviors differ in the way they are most natu-

rally expressed. Smalltalk offers only procedural code for implementing

behaviors.

Its distinction between libraries and models. Libraries are created by

programmers for subsequent use by model builders who need know
nothing about the underlying implementation of the models they are

developing. A Smalltalk model builder must know the Smalltalk lan-

guage in order to develop a model.

Its interface to the modeler. The model editor allows simple and rapid

construction of simulation models that directly reflect the modeler's

intuition about the structure and behavior of a system.

Finally, SimKit provides automatic verification of simulation models

to ensure their correct implementation. This important subject is consid-

ered further in Section G2.

Real-world Applications of Knowledge-based Simulation 493

F3. ABLE—Knowledge-based Control for

Particle Accelerators

To successfully perform experiments in elementary particle physics,

an accelerator must provide an extremely well-focused and well-posi-

tioned beam to a target that can be kilometers away from the source.

The beam travels through a pipe and is focused by many magnets that

surround the pipe at various positions along its length. Beam particle

monitors (BPMs) are interspersed throughout the beam line to measure
the deviation of the beam trajectory from the ideal trajectory (see Figure

F-5).

When an accelerator is brought up for the first time, or resumes

operation after a long shutdown, calibration and alignment errors in the

magnets cause the beam to deviate from its desired trajectory. The diag-

nostic problem is to figure out which magnets are the sources of these

deviations. The strengths and alignments of the offending magnets can

then be adjusted to deliver the beam along its proper path.

For most of the 30-year history of accelerator operation, physicists

have had only their intuition to aid in the search for the error-causing

magnets. More recently, interactive simulators have been developed

which predict the beam trajectory that corresponds to a given set of

magnet strengths and alignments. These simulators use a mathematical

model of particle beams to generate the trajectory for a set of magnets.

The physicist can "twiddle the knobs" to adjust magnet settings and then

run the simulator. The resulting simulated trajectory is then compared
to the actual trajectory by computing a statistical fit between the simu-

lated and actual BPM measurements. If the fit is very close, it is reason-

able to suppose that the "twiddled" magnets are causing the problem.

MM MM MM M M M MM
V/A L/XJ VA

Vacuum

YZA

^^ Beam ^.

Y7~\ pv\ rm FT]

nn nn nn n n n nn
^ = BPM yi = Magnet

Figure F-5. Segment of a beam line. (Selig, 1987, p. 1.)

494 Knowledge-based Simulation XXII

An optimization program was subsequently developed to partially

automate this process by eliminating the "knob twiddling." With the

optimizer, the physicist needs only to specify the particular magnets and
BPMs to simulate. The optimizer then computes the magnet settings

that will result in the best possible fit between the simulated and real

trajectories. If this fit is close enough, the simulation and optimization

are repeated using the same magnets and additional BPMs further down
the beam line. Otherwise, a magnet might be added to or subtracted

from the current set of magnets in order to improve the fit. This process

is repeated until the measurements from all BPMs in the beam line have
been included.

The overall strategy taken by the physicist using these techniques

is to plan an experiment (a set of magnets and BPMs), simulate the

experiment with optimized magnet settings, and evaluate the closeness

of fit between the simulated and actual BPM data. The cycle of experi-

ment planning, simulation, and evaluation continues until all BPM read-

ings in the beam line of interest have been fit. This approach saves time

and money by solving the problem on a computer instead of using the

actual accelerator, but it doesn't tell the physicist which magnets should

be experimented with in the first place. As a result, the start-up proce-

dure can still take weeks to complete. A program called ABLE (Selig,

1987, p. 1), developed at Stanford University in conjunction with the

Stanford Linear Accelerator Center, uses the same overall strategy, but

greatly decreases the start-up time by automating the planning and
evaluation stages of the experiment cycle.

As its first experiment, ABLE fits the first BPM (relative to the

particle beam source) with the first magnet. It then tries to fit the first

and second BPMs with the first magnet (this experiment is called

planl#l&l-2 in Figure F-6, meaning planl is using magnet 1 to fit

BPMs 1 through 2). This experiment is called a child of the first experi-

ment; a child experiment is the same as its parent experiment, with

additional magnets and/or BPMs. As seen in Figure F-6, the second

experiment results in a good fit, so ABLE creates a child experiment that

adds a third BPM. ABLE runs the simulator on this child experiment and
judges the resulting fit to be bad, so instead of adding more BPMs to the

child experiment, it adds another magnet to the parent experiment.

Figure F-6 shows that four new child experiments were generated by

adding magnets 7, 8, 9, and 10, respectively, to the parent experiment

in an attempt to better fit the first three BPMs. ABLE completes all

experiments at the current depth (i.e., same last BPM) before planning

experiments with BPMs further down the line.

The planning, simulation, and evaluation stages are controlled by
rules in ABLE's knowledge base. Figure F-7 shows the structure of these

Real-world Applications of Knowledge-based Simulation 495

?=

^ * % % %

T3

cd

43
be

15 c+j 13 "« c? 3
o

nerat

me>
rs>.

CO 0&
fl

i—i

tree

ge

Ian

na

numbe

cd Oi

2 ^H
CO

o
• 1—

<

s
* Q»»_ 3 1 o

CD • • tt
fl fl PQ

8.1*

03 'E s

cm

o

1
H +3

G5

n

example

of

an

ex

BLE.

Naming

conv<

magnet

numbers

>

gnet

and

BPM

nu

-"

means

through

s

magnets

1
and

Selig,

1987,

p.

6)

cd s
CO< < v S cd S3 co

CO

i
•l-H

Knowledge-based Simulation

BEST. MAGNET. .

'-'

TO. TRY. RULES * ;~

BEST. MONITORS
TO. TRY. RULES

EXECUTE.
RULES

, DEFAULT. MAGNETS. TO. TRY
„ FRONT. OF. BEAM. LINE
^ GOOD. TO. BAD. TRANSITION
- GOOD. TO. QUSETIONABLE. TRANSITION
-GRANDPARENT. ADDED. 1. MAGNET
v GRANDPARENT. ADDED. 1 MAGNET. 2
^ JUST. ADDED. 1. MAGNET
> NO. GRANDPARENT
- DEFAULT. MONITORS. TO. TRY
- SKIP. AHEAD. MONITORS

j - EXECUTE. EXPT
m '- - MIXED. INITIATIVE. MODE. NEVER
**- MIXED. INITIATIVE. MODE. QUESTIONABLE

- REPORT. SOLUTIONS

RPQiiiTiwr pit ic RAn - - ADD. MONITORS. TO. BEST. QUESTIONABLE.RESULTING. FIT. IS. BAD r ^ CHILDREN.2
\

* BACK. TRACK. AND. TRY. TO. ADD. MAGNETS

RESULTING. FIT.

IS. GOOD x

- ADD. EXPERIMENT. TO. SOLUTIONS
i ADD. MONITORS. TO. GOOD
J SUSPECT. MONITOR. 2

N ., ADD. EXPERIMENT. TO. POSSIBLE.
\ •' SOLUTIONS

RESULTING FIT 'S. *- ADD. MONITORS. TO. BEST.
IS QUESTIONABLE < * \ \ QUESTIONABLE. CHILDREN

^ v - ADD. MONITORS. TO. QUESTIONABLE
v "** CHANGE. QUESTIONABLE. TO. GOOD

STATUS. IS.

ANYTHING. ELSE

N SUSPECT. MONITOR

- SPAWN. BUT. SKIP. MONITOR
- SPAWN. WITH. 1. MORE. MAGNET. FROM. GOOD
- SPAWN. WITH. 1. MORE. MAGNET. FROM.

QUESTIONABLE
* SPAWN. WITH. BEST. MONITORS. TO. TRY

STATUS. IS. TRY. . C
TO. ADD. MAGNET * t

-

ADD. MAGNET. TO. ANCESTOR
ADD. MAGNET. TO. PARENT
ADD. MAGNET. TO. PARENT. OF. BAD. AS. WELL.

AS. QUESTIONABLE
ADD. MAGNET. TO. QUESTIONABLE. PARENT

'

^ r DELETE. TRY. TO. ADD. MAGNET
N SPAWN. WITH. 2. MORE. MAGNETS!
SPAWN. WITH. UNTAMED. REASONABLE. MAGNET

- FIT. IS. BAD. BY. OBJ. AND. CONSISTENCY
FIT. IS. BAD. '-' - FIT. IS. BAD. BY. OBJ. VALUE. CHANGE

%- - FIT. IS. BAD. DIFFERENCE. TRAJECTORY. TREND
5 - FIT. IS. BAD. OBJ. VALUE. CREEP

x
FIT. IS. BAD. OBJ. VALUE. CREEP. GRANDPARENT

.
- FIT. IS. GOOD. BY. OBJ. AND. CONSISTENCY

FIT. IS. GOOD m '- - FIT. IS. GOOD. BY. OBJ. VALUE. CHANGE
*"" - FIT. IS. GOOD. NO. PARENT

^
- FIT. IS GOOD. QUESTIONABLE. PARENT

FIT. IS. QUESTIONABLE

FIT. MAGNET. VALUE.
CONSISTENCY. RULES

CONSISTENCY. IS. BAD
CONSISTENCY. IS. GOOD
CONSISTENCY. IS. QUESTIONABLE

SIZE. OF. FIT. MAGNET.
VALUES. RULES

. ' SIZE. IS. NO. PROBLEM
- - SIZE. IS. TOO. LARGE
- - SIZE. IS. TOO. SMALL

Figure F-7. Part of ABLE's current rule base. (Selig, 1987, p. 5)

Real-world Applications of Knowledge-based Simulation 497

rules in their implementation as part of a KEE knowledge base (see

Section F2). The overall flow of control in ABLE is shown in Figure F-
8. The first planned experiment is always the same: fit the first BPM
with the first magnet. All subsequently generated planned experiments

are kept in an experiment queue. The Execute.Rules (see Figure F-7) of

ABLE take the first experiment off the experiment queue and run it

through the optimizing simulator. These rules are also able to recognize

and report solutions to the fitting problem for the entire segment.

The Resulting.Fit rules take the results of a simulation and judge

them to be "good", "questionable", or "bad." Two principal criteria are

used to make this decision. One, called the objective value, is the statis-

tical measure of how well the simulated trajectory fits the actual trajec-

tory. The other criterion is a measure of the change in each magnet's

strength between the current and parent experiments since an abrupt

change in magnet strength may require backtracking to the experiment

where this magnet was added. An example of a Resulting.Fit rule is:

Initialize Plan

i 1

FC on Execute . Rules

I

BC on Resulting . Fit . Rules

i i

i r

FC on Planning . Rules

i i i i

1 f i
j

BC on
Best . Magnet . To . Try . Rules

BC on
Best . Monitors . To . Try . Rules

FC = Forward Chain BC = Backward Chain

Figure F-8. The flow of control between ABLE's rule clusters.

(Selig, 1987, p. 8)

498 Knowledge-based Simulation XXII

if ((> (the objective . value .change of ?exp)
(* 0.75 (the
max. allowable. objective. value. change of
controller)

)

and
(the fit . value .consistency fo ?exp is bad))

then
(change. to (the resulting . fit of ?exp is bad)
using planning . rules

)

The maximum allowable objective value change referred to in the

first premise of the rule is a threshold value for distinguishing between

questionable and bad fits. This premise is true if the change in objective

value from the parent experiment to the current experiment is greater

than 75% of this maximum value. If this premise is true, backward
chaining is performed on the second premise to determine whether the

magnet strengths are sufficiently consistent between the current and
parent experiments. If both premises are true, the resulting fit of the

current experiment is asserted to be bad.

An assertion made by the Resulting.Fit rules triggers the Plan-

ning.Rules. The planning rules contain rule subsets for dealing with

good, questionable, and bad fits (see Figure F-7). An example of a rule

triggered by a good fit is:

if ((the resulting . fit of ?current.exp is good) and
(< (last . monitor ?current . exp

)

(last . monitor of segment))
then

(the status of ?current.exp is add . monitors

)

This rule means that if the fit of the current experiment is judged to

be good, and there are more BPMs in the segment to be fit, then plan a

child experiment with more BPMs. The assertion of this conclusion trig-

gers backward chaining on the Best.Monitors.To.Try.Rules to determine

which BPMs should be added to the current experiment. The result is a

child experiment that is placed on the experiment queue and that will

later be simulated to fit the new set of BPMs with the current set of

magnets.

There are two strategies for handling a questionable fit. The "opti-

mistic" strategy assumes that the current path will eventually turn out

to be good, so it creates a child experiment just as if the parent experi-

ment were good. If a descendant of the parent experiment turns out to

be bad, ABLE backtracks to the parent experiment. The "pessimistic"

strategy waits until all other experiments at the same depth have been

completed, and then compares the results of these experiments with each

other to determine which ones should be extended.

Real-world Applications of Knowledge-based Simulation 499

The basic strategy for handling a bad experiment is to backtrack to

the parent experiment and generate new child experiments by adding

another magnet. The Planning.Rules that fire on bad experiments assert

a status of Try. To.AddMagnet, which in turn triggers backward chaining

on the Best.Magnet. To. Try.Rules. An example was shown in Figure F-
6, where four child experiments of planl#l&l-2 were generated when
planl#l&l-3 was judged to be bad.

The cycle of experiment planning, execution, and evaluation contin-

ues until all the BPMs have been fit for the beam line segment under

consideration. ABLE may conclude that there are many good solutions

for the segment. The set of good solutions represents the pruning of the

entire search space of solutions down to a few that are worth testing on

the real accelerator. All good solutions must be asserted since the actual

cause of the physical beam deviation is unknown.
ABLE was first implemented in KEE 3.0 (see Section F2) on a Sym-

bolics 3600 LISP machine. The ABLE control panel, shown in Figure F-
9, is used to specify how ABLE should be run. By selecting from the "stop

executing when?" menu, the user can single-step through experiments,

stop on a break condition, or run without pause until all solutions have

been found. The user can change the "resulting fit" of any experiment

and can add, delete, or modify any of the rules in the knowledge base.

Since a physicist will learn to modify and refine his own heuristics for

experiment search and evaluation as he gains experience with ABLE,
the ability to easily and rapidly make changes to the knowledge base is

essential.

The performance of ABLE has been tested by comparing its diagnoses

with those of experts for six sample problems. ABLE achieved comparable

results to those obtained by the experts, but in vastly less time. A
FORTRAN version of ABLE called GOLD has been used on actual beam

Control Panel for PLAN!

EXECUTE INITIALIZE

PLAN 1# 1.9.204 1-11

PLAN1#1.9.1841-11
PLAN1#1.10. 1841-11
PLAN1#1.9. 1941-11
PLAN 1# 1.10.204 1-11

PLAN1#1. 10.1941-11

Istop rxrruting when?

NEVE* QUESTIONABLE

PLAN 1# 1.9, 20A 1-9

1 Rrtulting Fit

questionable BAD

Figure F-9. The ABLE control panel. (Selig, 1987, p. 12)

500 Knowledge-based Simulation XXII

line data from several accelerators and achieved excellent results that

could not have been obtained using any other existing techniques. The
validation of ABLE is further discussed in Section G3.

F4. Forecast Pro—Intelligent Prediction of

Business Trends

All businesses make plans based on how they perceive the future. These

plans are usually formulated by extrapolating from past experience. A
number of statistical techniques have been developed that analyze past

data in order to predict future trends. Most business planners, however,

are not sufficiently versed in these techniques to decide which one is

most appropriate for interpreting a given case. Several recent commer-

cial products combine numerical simulation with an expert system in

order to guide the user in running the simulation. For example, the

Retail Planning System and Advisor (developed by Jacques LaFrance

(1989) and colleagues at MPSI) combines a demographic simulation model

with expertise on how to run the model so that retailers can formulate

optimal plans for their distribution outlets. Users of this program are

guided by suggestions on which parameters to change (e.g., store loca-

tions and hours of operation) in order to achieve specified goals given

constraints on time and cost.

Another commercial product for assisting business planners in mak-
ing forecasts based on past data is Forecast Pro (Forecast Pro, 1987;

Goodrich, 1987; and Bryan, 1987) from Business Forecast Systems. Its

use does not require any knowledge of statistics. The input to a fore-

casting session is a set of time series. A time series is a sequence of values

for a variable at equally spaced intervals over a given time range. The
example shown in Figure F-10 gives airline passenger data every month
over a 12-year period.

A time series can be statistically characterized in a number of ways.

Two commonly used characteristics of a time series are its volatility

(degree of randomness) and its seasonality (extent of cyclic trends, such

as the yearly patterns shown in Figure F-10). The choice of an appro-

priate forecasting technique depends on the evaluation of such charac-

teristics for a given time series.

The three forecasting techniques used by Forecast Pro are called

exponential smoothing, Box-Jenkins, and dynamic regression. Exponen-

tial smoothing is often used when there are relatively few data points or

when the data is highly volatile. Box-Jenkins is used in cases where the

data is relatively stable and there are many points, but there are no

Real-world Applications of Knowledge-based Simulation 501

1952/1 AIRLINE PASSENGER DATA 1963/12

6 6

5 5

4 - 4

3 „>

2 2

1 1

X 100 G X 100

Figure F-10. A time series for airline passenger data.

(Forecast Pro, 1987)

leading indicators (variables that are considered especially significant in

the forecast). Dynamic regression is used when there are one or more
leading indicators, or when it is desirable to test the effect that changing

certain variables has on the forecast. Note that these methods do not

forecast by simply attempting to fit the time series data to a function

and then extrapolating the function since more recent data is more
highly indicative of future trends than is less recent data.

The first step taken by Forecast Pro in creating a forecast is to

analyze the time series data to determine their characteristics. A for-

ward-chaining, rule-based expert system then uses these characteristics

to deduce the forecasting technique most appropriate to the data. If

exponential smoothing is selected, the expert system recommends one of

five variations of this technique. The forecast and all associated statistics

are generated automatically when exponential smoothing or Box-Jen-

kins is used. If dynamic regression is selected, Forecast Pro starts an
interactive dialog that guides the user in adding, modifying, or deleting

variables that may be relevant to the forecast. A set of diagnostics

automatically analyzes and interprets the resulting models, and the

expert system then suggests the next step that the user should take. The
Forecast Pro graphics module can display multiple time series, error

functions, and statistics. All transactions that take place during a fore-

casting session are stored in an audit trail, which can be queried to

explain its decisions by selecting "Why?" on the main screen (see Figure

F-ll).

502 Knowledge-based Simulation XXII

DATA TASKS EXPLORE DATA FORECAST UTILITY

Graph variables

Expert system
Audit trail

FORECAST PRO Expert Audit Trai

29 BASIC PROPERTIES
30 Correlational structure is strong

31 Series is nonstationary. even after differencing

32 There are no active explanatory variables

33 Data do not appear to be homogeneous
34 Series is seasonal.

35

36 RECOMMENDED METHOD: BOX-JENKINS
37

38 REASONING: Correlations are relatively complex I chose

39 Box-Jenkins rather than regression because there are no a

40 significant explanatory variables

Cursor keys Scroll <fl>:Why? <CR> Proceed <ESC> E)

Figure F-ll. The FORECAST PRO main screen and Expert

Audit Trail. (Forecast Pro, 1987, p. 1)

Forecast Pro is a menu-driven program. The menu bar of the main
screen is shown in Figure F-ll. The first step in a forecasting session is

to select or enter the time series data by choosing "Define Variables"

from the Data Tasks submenu. This data can be displayed by choosing

"Graph Variables" from the Explore Data submenu (see Figure F-ll). If

the user wants to let the program determine the appropriate forecasting

technique, he chooses "Expert System" from the Explore Data submenu.
The statistics and error data for the resulting model can then be

inspected by choosing the "Examine Model" option of the Model sub-

menu. The "Compute Forecasts" and "View Forecasts" options of the

Forecast submenu can then be chosen, with the results displayed as in

Figure F-12. This figure shows upper and lower confidence intervals for

the forecast. Finally, the forecast can be graphed by choosing the "Graph
Variables" option from the Explore Data submenu.

Forecast Pro has made accurate forecasting accessible to a large

number of individuals and organizations because its embedded rule base

can automatically deduce the most appropriate forecasting technique for

a given set of data. It is an off-the-shelf product that runs on IBM personal

computers and compatibles.

As a final note to this section, it is interesting to observe that the

knowledge bases of COMAX, ABLE, and Forecast Pro all contain about

50 rules. Perhaps this indicates that only a small set of well-selected

rules is needed to greatly extend the capabilities of numerical simulation.

Real-world Applications of Knowledge-based Simulation 503

DATA TASKS EXPLORE DATA MODEL FORECAST Q
Compute forecasts
View forecasts
Write forecasts

Cursor keys: Scroll <f1>:Why? <CR>: Proceed <ESC>: Exit

FORECAST PRO Expert Audit Trail

41 Forecast va riable &F0RECST
42 Period Forecast Lower (9556) Upper (9558)

43 1-1986 22.836084 19.589694 26.082475
44 2-1986 25.759111 22.479790 29.038433
45 3-1986 27.667364 24.352913 30.981815
46 4-1986 29.663895 26.312090 33.015699
47 5-1986 34.618729 31.336131 38.118932
48 6-1986 34.545349 31.185475 38.051982
49 7-1986 37.450520 33.927260 38.022721
50 8-1986 36.714371 24.059770 40.286787
51 9-1986 27.683107 25.978360 31.306444
52 10-1986 29.654873 24.026326 33.331386

Figure F-12. A forecast generated by FORECAST PRO.

(Forecast Pro, 1987, p. 3)

ISSUES IN THE DEVELOPMENT AND USE OF
KNOWLEDGE-BASED SIMULATION

Now that we have described a number of programs that use knowledge-

based techniques for simulation, we turn our attention to issues that the

developer and end user of all such programs must face. We first consider

the role of time since numerical simulators and knowledge-based pro-

grams generally handle time in very different ways. We then explore the

problems that must be addressed in the development of these programs.

Finally, we focus on an aspect of development that is particularly impor-

tant to the end user: the validation of a knowledge-based simulation

model.

G2. Simulation, Inferencing, and Time

The concept of simulation is associated with predicting the values of

system variables at future points in time, whereas knowledge processing

usually refers to making inferences about the state of a system at a given

time. Is there a way of handling time that is particular to knowledge-

based simulation, or is time simply handled by the simulation component

and ignored by the knowledge-based component? Before answering this

question, we will try to clarify what is meant by time in a knowledge-

based simulation.

Simulation Time vs. Computer Time

Many of the systems discussed in previous sections run a simulation

model on each tick of a simulation clock. EXSYS (Section C3), for exam-
ple, solves a set of simple algebraic equations in sequence to evaluate

the variables of a business system for a given year using the values of

the variables from the previous year. The clock therefore "ticks" once a

year. This does not mean that the computer running EXSYS is idle for

each 365-day period between simulation runs! The simulation of a busi-

ness model over many years takes place on the computer in a matter of

microseconds, since the values of the variables for each year are used to

calculate those for the next year up to the last year of interest. If the

504

G Issues in the Development and Use of Knowledge-based Simulation 505

time period of interest is 10 years, the computer will simply solve 150

algebraic equations in succession since there are 15 equations to solve

for each of the 10 years. The rate-limiting step in running EXSYS is the

interactive dialog with the user; the actual simulation time is negligible

by comparison.

ABLE (Section F3), on the other hand, is not directly concerned with

time; its goal is to deduce combinations of magnets that may be causing

deviations from the actual beam trajectory. Many hours of processing

time may be consumed in generating all the solutions for a given beam
line due to the large number of computer operations that are executed

each time the numerical simulator and optimizer are run for an experi-

ment. IfABLE is run automatically, then almost all of its processing time

is taken up by simulation and optimization; that is, simulation time and
computer processing time are nearly the same in this case.

The meaning of time in a knowledge-based simulation therefore

depends on the context of the system being simulated. In a clock-driven

simulation such as EXSYS, simulation time is the total number of clock

ticks multiplied by the interval between ticks (which is one year in the

case of EXSYS); the amount of computer processing that is performed on

each tick may be none or may be enormous, but it is independent of this

interval. In a simulation such as ABLE that is not clock-driven, simu-

lation time is equivalent to the amount of computer processing time

required to perform simulation. This distinction will now be discussed

in more detail.

Clock-Driven Knowledge-based Simulation

The purpose of a clock-driven simulation is to predict the values of

system state variables over a specified time period. Two types of clock-

driven simulations can be distinguished: those that process actions on

each tick of the clock and those that process actions only on the occur-

rence of an event. EXSYS and the three MOLGEN systems (Sections C4,

El, and E4) are examples of the former: on each tick of the clock EXSYS
solves the set of 15 equations that models a business system, and the

MOLGEN programs apply rules to deduce the states of the molecular

components of the trp system. The interval between ticks is exactly one

year in EXSYS since it predicts the values of system variables for each

successive year. The interval between ticks in the MOLGEN examples
are not directly correlated to any time period in the actual cell, although

the remaining lifetimes of proteins in the virus lifestyle predictor (Sec-

tion C4) are decremented by one unit of simulation time on each tick.

The results obtained from simulating the trp system show the overall

trends of its behavior over time. For example, running QSOPS (Section

El) over many units of simulated time generates a regular oscillation in

506 Knowledge-based Simulation XXII

the concentration of trp, although the amplitude and frequency of this

oscillation do not correspond to any experimentally measured values.

The second type of clock-driven simulation is illustrated by the drill-

ing system of Section D2. This simulation is driven by sampling from

probability distributions to predict the times of machine failures. The
machine repair times are given as constants. The simulation clock is

advanced from event to event, where an event is either a machine failure

or completion of a machine repair. Even though the simulation is "event-

driven," a clock tick is implicit since every event has to occur at a

multiple of some basic time unit (e.g., a second, minute, day, or year).

Nothing happens between events, however, so the simulation proceeds

from event to event. This is in contrast to EXSYS and MOLGEN, which
assume that the state of the system changes on each tick.

COMAX is a hybrid of the clock-tick and event-driven approaches.

Each day, the GOSSYM simulator is run with the previous day's weather;

the COMAX knowledge base then schedules the dates of irrigation and
fertilization "events" by reasoning about the results of the daily GOSSYM
run.

Clock-independent Knowledge-based Simulation

The term "clock-independent" is applied to programs that employ

knowledge-based simulation to deduce specific results that are meaning-
ful at the present time, as opposed to generating the behavior of system

variables over time. An example is provided by VBC (Section Dl), which

attempts to choose the best insecticide to use on Florida soybean fields.

The statement of the problem implicitly assumes that the decision is

made once and for all at an early stage in the growing season. For each

candidate insecticide selected by the rules, the SICM simulator predicts

the relative crop yield and the expected number of insecticide applica-

tions for the entire growing season. The insecticides can then be ranked

based on the results of the simulation. The SICM simulator itself uses

time to make its predictions, but this use of time is transparent to the

user, who only sees the listing of insecticides ranked by economic advan-

tage.

Another example is provided by ABLE. The problem here is to deter-

mine which combination of magnets is causing the beam to deviate from

its desired trajectory. ABLE's numerical simulator does use time in order

to generate a beam trajectory, but the only purpose of generating this

trajectory in the first place is to allow the rules to solve the beam
deviation problem. As with VBC, the purpose of knowledge-based simu-

lation in ABLE is to solve a problem now, and not to predict future states

of the system per se.

G Issues in the Development and Use of Knowledge-based Simulation 507

Reasoning about Time

The previous discussion has classified knowledge-based simulation

programs with respect to time. We can also classify these programs

according to whether the simulation is performed by inferencing on rules

(e.g., the MOLGEN virus lifestyle predictor) or numerically (e.g., EXSYS).

We saw that in the MOLGEN examples, each tick of the simulation clock

invokes rule-based inferencing in order to make assertions about the

current state of the system. This type of inferencing has no explicit notion

of time; it cannot make assertions about the future, nor can it reason

about past events.

We now directly address the question posed at the beginning of this

section: Is there a way of handling time that is unique to knowledge-

based simulation? More specifically, can a rule-driven simulator reason

about time? Can such a simulator assert facts about the future and
reason about events in the past? We again look at MARS (Section E3) to

help answer these questions.

The discussion of MARS in Section E3 provided several examples of

how the behavior of circuit components was coded in MRS. The premises

and conclusions of the MRS rules often contained a time variable; e.g.,

(true (value (port inl $x) $a) $t) means that at time $t, the value of

input port 1 of device $x is $a. Such rules assume that there is zero delay

in propagating values between ports. However, devices can have arbi-

trary delay. The example of the multiplier in Section E3 can be modified

to introduce a delay of 3 time units at the output:

(if (and (type $x multiplier)

(true (value (port inl $x) $a) $t)

(true (value (port in2 $x) $b) $t))

(true (value (port out $x) (* $a $b)) (+ $t 3)))

That is, if at time $t the value of input port 1 is $a and that of input

port 2 is $b, then at time ($t + 3) the value at the output port will be

($a * $b). Now suppose that, just as in Section E3, we assert the following

facts:

(type ml multiplier)

(true (value (port inl ml) 2) 4)

(true (value (port in2 ml) 3) 4)

That is, the values at time 4 on input ports 1 and 2 are 2 and 3,

respectively. The forward-chaining inference mechanism will then use

the rule and these facts to deduce

(true (value (port out ml) 6) 7).

508 Knowledge-based Simulation XXII

Now suppose that the output port of multiplier ml is connected to

the first input port of adder al, as in Figure E-6. If we are currently at

time 4, and we do not know what the value of the second input port of

al will be at time 7, we cannot assert the value of the first input port at

time 7. To handle this situation, MARS implements an event queue of

facts that are to be asserted in the future. Each fact in the event queue
is stored along with the time at which it is to be asserted; all facts that

are true for a given time are asserted when that time arrives. The
assertion of a fact in MARS can therefore trigger one of two responses:

forward chaining on the fact at the current time or placement of the fact

on the event queue for future assertion.

MARS also has the capability of reasoning about past events. To
illustrate, we consider the behavior rule for the D flip-flop Dl, shown in

Figure G-l. The device has two input ports (a clock and a data port) and
an output port. A rule describing the behavior of Dl is:

(if (and (true (value (port clock Dl) high) $t)

(true (value (port clock Dl) low) (- $t 1))

(true (value (port data Dl) $v) $t))

(true (value (port output Dl) $v) $t))

This rule states that whenever there is a rising edge at the clock input

(i.e., the clock changes from low at time ($t — 1) to high at time $t), then

the output port at time $t has the same value as the data port at time

$t.

More generally, MARS allows the behavior rules to refer to the state

of the simulation at any time in the past. To do so, it must have access

to the state of the system (i.e., the values at all ports) for all times since

the start of the simulation. A great deal of memory would be wasted by

storing all port values at all times since most of these values do not

change from one simulation time to the next. MARS solves this storage

problem by dividing the assertions about port values into partitions. Each
partition corresponds to a single simulation time and contains only those

assertions that became true at that time.

Clock

Output

Figure G-l. The flip-flop Dl.

G Issues in the Development and Use of Knowledge-based Simulation 509

To illustrate, consider the simple circuit of Figure G-2, which con-

sists of an inverter and a buffer. If the values at a and b are both at

time 0, their values for simulation times through 3 are:

1

1 1

The boxes in Figure G-3 indicate the assertions that were made at times

0, 1, 2, and 3, respectively. Partition 1 does not contain the assertion

a = because this assertion was made previously at time and did not

change at time 1.

To determine the value of a port at time t, it is then necessary to

begin searching the most recent partition less than or equal to t, and to

sequentially search the preceding partitions until an assertion about the

value of that port is found. The value of inverter port b of Figure G-2
at time 2.5 would be found in partition 1 because no assertion about this

port is found in partition 2, which is the most recent partition at time

2.5.

a V b

->°

Figure G-2. A simple circuit consisting of an inverter and a

buffer.

1 2 3

a =
b = b = 1 a = 1 b =

Figure G-3. Partitioning the simulation time in MARS.

510 Knowledge-based Simulation XXII

Even though partitioning greatly reduces the amount of information

that needs to be stored, the reduction might not be sufficient. MARS has

several strategies for handling this case, all of which require user input.

For example, the user can specify particular port values to save and keep

only the most recent values of the others, or he can specify that infor-

mation on all ports is to be kept for only the given number of time units

in the past.

G2. The Development of Knowledge-based
Simulation Applications

In this section, we briefly discuss some of the issues involved in actually

building a knowledge-based simulation program. One of these issues,

validation, is important enough to warrant a separate section (Section

G3).

Should the simulation be performed by inferencing or by run-

ning a numerical simulation model? One way to answer this ques-

tion is by considering the type of simulation output that is desired. If

the purpose of simulation is to predict overall trends of system variables

through time, and precise parameter values are not important, then

inferencing on the facts and rules of the system may be sufficient to

generate the trends. QSOPS (Section El), for example, generates the

pattern of trp concentration over time by forward chaining on rules.

Simulation can also be performed by inferencing on rules if the desired

outcome is a particular result that can be deduced from the system's

knowledge; this is the case with the MOLGEN viral life cycle predictor

(Section C4). Otherwise, precise numerical results must be obtained from

discrete-event simulation (as in the case of the drilling system, MARS,
and the orange juice plant of Section B) or mathematical simulation (as

in the case of VBC, COMAX, and ABLE).

Another way to answer the question is by considering the type and
extent of knowledge in the simulated domain. A great deal of precise

information is known about the systems modeled by GOSSYM and SICM,

so mathematical simulation is appropriate in these cases. If no numerical

models are available but there is some heuristic knowledge about a

system, rule-based simulation may be the best alternative.

How should knowledge be integrated with numerical simula-

tion? The knowledge-based component can serve as the "front end" by

generating a set of scenarios for the simulation component to evaluate

(e.g., VBC, ONYX) or as the "back end" by evaluating the results of a

prior simulation (e.g., EXSYS). These two cases are referred to as "sequen-

G Issues in the Development and Use of Knowledge-based Simulation 511

tial integrated systems" in Section D. Alternatively, numerical simula-

tion and inferencing can alternate with each other for many cycles—the

results of a simulation run trigger rules that modify the state of the

system; this new state is then simulated on the next run, and so on (e.g.,

the drilling system, COMAX, and ABLE). Such simulators were called

"parallel integrated systems" in Section D.

How can existing numerical simulation models be used to

develop knowledge-based simulation applications? It would cer-

tainly require much less time to build a knowledge-based application if

the numerical simulator were already available. We have seen that

EXSYS, VBC, COMAX, and ABLE all run numerical simulators that

existed prior to their integration with knowledge-based components.

There are two requirements for using an existing numerical simulator

with a knowledge-based component. First, the outputs of one component
must be compatible with the inputs of the other component. For example,

the result of an ABLE simulation is a beam trajectory, which is compared
to the experimental trajectory to compute a statistical goodness-of-fit

measure. It is this measure that triggers the subset of rules that deter-

mines whether the fit is good, questionable, or bad. Second, the numerical

simulator and knowledge-based components must be compiled and linked

together into an executable form. This is an important consideration

since numerical simulators are usually coded in a high-level program-

ming language such as FORTRAN, whereas the knowledge-based com-

ponents are often coded in LISP or PROLOG.
What tools are available for building the numerical simulator?

the knowledge base? If either or both of these components must be

built, it is reasonable to choose tools that will save development time

and are appropriate for the application. As discussed in Section Bl, most
numerical simulations were and still are written in a high-level pro-

gramming language like FORTRAN or in a simulation language such as

GASP. In addition, SIMULA, Smalltalk, and SimKit all facilitate the

implementation of discrete-event simulation models by allowing the

developer to code or select objects and their methods, messages, and
relations. Forecast Pro chooses an appropriate statistical model based on

past data, and ECO creates a standalone numerical simulator through

interactive dialog with a human modeler.

The knowledge-based components of some of the integrated programs
are encoded directly in a high-level declarative language such as

PROLOG (MOSYS) or MRS (MARS). Others use tools such as UNITS (MOL-
GEN in Section C4) or KEE (QSOPS and MOLGEN in Section E4, ABLE,
and the SimKit Library Editor) that facilitate the encoding of simulation

models as knowledge bases by making techniques such as object-oriented

programming, inheritance, and active values available to the program-

mer. The SimKit Model Editor allows simulation models to be created

512 Knowledge-based Simulation XXII

without programming; the developer need not even be aware that the

model is implemented as a knowledge base.

The choice of tools depends on the application. A principal idea of

ABLE is that accelerator physicists should be able to modify its knowl-

edge base as they acquire experience using it. It was therefore more
appropriate to use a tool such as KEE that has facilities for rapidly

adding, deleting, modifying, and verifying knowledge rather than a lan-

guage like PROLOG that does not have these facilities. On the other

hand, if the number of rules is small and a programmer is available, it

may be cost- and time-effective to code the rules in a high-level language

such as PROLOG, LISP, or MRS.
How is the user to interact with the program? In most of the

preceding applications, the user interacts with the program through its

knowledge-based components since the simulation components usually

appear as black boxes. EXSYS and Forecast Pro use rules to formulate

an interactive dialog that guides the user during a simulation session.

In contrast, COMAX and ABLE can be run automatically without any
user input. Some of the programs (QSOPS and ABLE) can be interrupted

in the middle of a simulation run so that the user can pose queries or

make changes to the model before resuming. This capability allows the

user to obtain a deeper understanding of the behavior of the model.

The role of the user in running the simulation is an important

consideration in the choice of development tool. If the ability to interrupt

a simulation to query or change the model is a desired feature, it would

be appropriate to develop the model in a knowledge-based environment

such as KEE that supports this capability.

How is the program verified? Verification is the process of ensur-

ing that the computer model of a system correctly implements the inten-

tions of the model's developer. Usually a number of constraints on the

structure and behavior of a system must be reflected in its computer

model. If a factory model includes two conveyor belts that head toward

each other and collide, there is an error in the model. This might occur,

for example, if a SimKit model developer makes a mistake filling in

values for the upstream and downstream slots of the objects on either

end of the conveyor belts. This mistake might be difficult to detect and

might lead to erroneous simulation results if there is no way to auto-

matically verify the model before it is used. Verification is especially

important when the knowledge used by the simulation model is expected

to be modified often.

The SimKit library developer has access to the value class and car-

dinality verification mechanisms provided by KEE, and to the SimKit KB
Verifier as well. A value class defines the set of permissible values for a

frame slot, similar to a variable type in a procedural programming
language. The SimKit developer is immediately warned whenever an

G Issues in the Development and Use of Knowledge-based Simulation 513

attempt is made to assign a value to a slot that is not in the value class

denned for that slot. The cardinality of a slot is the number of values

that the slot can contain. The "relatives" slot in a "person" object can

have any nonnegative number of "person" values, whereas the "pH" slot

of a "chemical solution" object must have exactly one numerical value.

As with value classes, an attempt to violate the cardinality of a slot

immediately generates a warning.

The SimKit KB Verifier is an automatic verification tool that is run

on user request to check slots for value class and cardinality violations.

The KB Verifier can be run on an entire library or model or on any

subset thereof. It also allows the library developer to create and run his

own verification tests.

What are the development costs? The development of any sizable

program incurs substantial costs for its design, coding, testing, verifica-

tion, validation, support, and maintenance. It is hard to make general

comparisons between the costs of developing a knowledge-based simu-

lation application and those of other types of programs because these

costs depend on the particular application. The scope of some programs

may require that they be developed on mainframes, regardless of

whether they are knowledge-based simulations. Although software tools

such as SimKit may seem to shorten the time required to code, test, and
verify an application, this advantage may be offset by the time required

to acquire the application knowledge in the first place.

However, the knowledge-based approach offers a clear advantage

over its purely numerical counterparts for one aspect of development

—

the rapid prototyping of simulation models. Facilities such as object-

oriented programming, graphical interfaces, active values, rules, and
automatic verification that are incorporated into tools such as KEE and
SimKit reduce development time from weeks or months to hours or days.

An example is provided by FORCEM, "a fully automated theater-level

combat simulation model . . . used by the US Army Concepts Analysis

Agency as an analytic tool in the study of theater-level issues for the

Army" (Modjeski, 1987). A complete working prototype of FORCEM was
developed in 36 hours by a programmer using KEE 2.0 on a Symbolics

3670 LISP machine.

G3. The Validation of Knowledge-based
Simulation Applications

In general, a system is said to be valid if it accomplishes its purpose.

More specifically, validation is the measurement of how well a system

514 Knowledge-based Simulation XXII

achieves stated performance goals. Does the use of MOSYS achieve "bet-

ter" designs for flexible manufacturing systems, as proven by increased

throughput, less down times, or any other stated goal? Does the use of

VBC decrease crop losses due to insects? Does the use of ABLE permit

faster start-ups of particle accelerators? In this section, we will see how
these questions might be answered. First we, discuss some of the require-

ments for performing a validation. Next, we consider the qualitative and
quantitative techniques that are used to validate a model. Finally, we
ask whether there are any considerations or techniques that are unique

to the validation of knowledge-based simulations, and which of the pro-

grams discussed so far have actually been validated.

Requirements for Performing a Validation

The following set of issues that must be considered before validating

a knowledge-based simulation is adapted from O'Keefe et al. (1987),

which discusses the same issues for validating expert systems:

What to validate. The results of a knowledge-based simulation

program are what ultimately must be validated. These results may con-

sist of designs, plans, recommendations, numbers, or problem solutions.

The validation of simulation results is meaningful only in terms of the

original performance goals. In the case of the MOLGEN work on viruses

(Section C4), the result is a binary choice between two viral lifestyles. It

would seem easy to validate such a program since it is easy to tally how
many choices were correct and incorrect. The issue is not so simple,

however, if we ask how to establish meaningful performance criteria. In

the MOLGEN case, is 80% correct performance excellent, fair, or unac-

ceptable? The validation of ABLE in terms of its results is perhaps more
straightforward because the fit between a simulated and experimental

beam trajectory can be objectively measured. This still leaves the ques-

tion, however, of determining how good a solution's fit must be to qualify

as "good enough."

What to validate against. There are three overall types of criteria

against which the results of a knowledge-based simulation are evaluated:

known results, expert judgment in the presence of known results, and

expert judgment in the absence of known results.

Validating against known results has an obvious advantage—we can

directly compare known results with the output of a knowledge-based

simulator operating on prior data. For example, we might claim that

EXSYS has been validated if it is run on actual business data from 1980

to 1985, and the simulated 1986 results agree with the known 1986

results. If, however, we are given no reason to believe that the program
will perform well in cases other than those against which it was vali-

dated, we might be begging the question of why we developed the pro-

G Issues in the Development and Use of Knowledge-based Simulation 515

gram in the first place. Presumably, we didn't develop the program just

to tell us what we already knew. The QSOPS simulator (Section El) uses

knowledge-based simulation to predict that the concentration of trp will

oscillate regularly over time, which was already known to be true under

most circumstances. Does the use of QSOPS contribute anything to molec-

ular biology besides making this prediction? This is an important ques-

tion because the same result could have been obtained by simply

modeling the concentration of trp with a sine wave.

Expert systems are often validated against the judgments of experts,

so it seems reasonable to apply the same approach to knowledge-based

simulations. If there are known results as well, is it meaningful to

validate against expert judgment for the cases that produced these

results? If the answer is yes, we assume that expert judgment is in some
way "better" than the actual results. If the answer is no, there is no

reason to validate against expert judgment for any cases. If there are no

known results, expert prediction may be the only validation criterion

available. Validation against expert prediction in the absence of results

is a Catch-22 in two ways, however:

1. There is no way to independently validate the expert predictions

except by obtaining additional predictions from different experts.

2. Since there are relatively few experts in most domains, it is likely

that the expert predictors are the same people who contributed their

knowledge to the system in the first place, thereby "guaranteeing"

validation.

What to validate with. To obtain predictions to use in validation,

a knowledge-based simulator must be run on a set of test cases. The
MOLGEN system for predicting virus lifestyle (Section C4) was tested on

8 combinations of viral mutations whereas ABLE tried to solve 50 com-

binations of magnet misalignments. The question here is how to know
that a sufficient number and variety of test cases has been run in order

to conclude that the system has been validated for the stated performance

goals. Even if the performance goals are clear, there are still many
problems in determining the number and type of test cases:

1. Suppose the three possible outcomes of a situation are A, B, and C,

with probabilities .05, .25, and .70, respectively. We then might

assume that 5% of the test cases should result in A, 25% in B, and
- 70% in C (O'Keefe et al., 1987). It may be difficult or impossible to

obtain such a "stratified sample" in many situations, however.

2. Even if stratified sampling were possible, it is still not obvious how
many tests should be run. Furthermore, the cases that result in B
and C may be easy for nonexperts to handle, whereas the A cases

may be considerably more complex and require a high level of exper-

516 Knowledge-based Simulation XXII

tise. The program might be declared "95% valid" if it handles B and

C correctly but not A, yet the real proof of performance is in how it

handles A since these are the cases where the program's knowledge

is really put to use.

3. By definition, a system "works" on the cases used in its development.

A knowledge-based simulator could be declared "valid" if it was coded

to be valid. This error usually occurs innocently but all too frequently.

4. There may not be any known test cases, so scenarios have to be

invented. This is likely to be the case in extremely complex and

rapidly changing environments such as might be found in military

domains. The meaning of simulation, whether knowledge-based or

otherwise, may be questionable in such situations.

When to validate. Presumably, validation should be an ongoing

process, with the knowledge-based simulator becoming "more valid" with

time as it is tested in the field and its knowledge-based and/or simulation

components are revised based on field experience. A Catch-22 occurs in

critical domains where lives or fortunes are at stake, however: the level

of performance must be very high from the start, yet it is difficult to

achieve a high level of performance unless the system has undergone

extensive field testing.

The cost of validation. The validation of a system may be time

consuming and expensive in terms of the human and technical resources

required. A tradeoff must be made between the cost of validation, the

importance of validation, and the risks of using a system that is not

properly validated.

Techniques for Performing Validation

We now consider how a validation might actually be carried out. We
very briefly consider both qualitative and quantitative validation tech-

niques that have been applied to both expert systems and numerical

simulation models (O'Keefe et al., 1987).

Qualitative techniques for validation. The following discussion

is based on Law and Kelton (1982). Several techniques for qualitatively

validating a system include:

1. Face validation. The designers, experts, and potential end users can

intuitively compare the performance of the simulator with known
results or with expert judgments.

2. Predictive validation. The simulator runs historical test cases, and

the results are compared with known results (if available) or with

expert predictions.

G Issues in the Development and Use of Knowledge-based Simulation 517

3. Turing tests. Human experts evaluate the performance of the simu-

lator and domain experts without knowing which results came from

which source.

4. Field tests. The simulator is tested by its performance in "real" sit-

uations. As mentioned earlier, this method of validation is usually

not feasible in critical applications.

5. Subsystem validation. The modeled system is decomposed into sub-

systems, which are separately validated. Validation of subsystems

does not guarantee validation of the entire system, however.

Quantitative techniques for validation. There are a number of

statistical tests for comparing the results of a simulation with either

known results or expert judgments. The reader interested in pursuing

these statistical methods should consult Law and Kelton (1982). It will

simply be noted here that the limitations and appropriateness of a given

statistical technique should be thoroughly understood before the tech-

nique is used. In the case of numerical simulations, for example, the

simulation output is not directly amenable to classical statistical tests

because the simulation output is both nonstationary (the distribution of

the output results changes over time) and auto-correlated (the simulation

results are not independent of each other).

Validation Techniques for Knowledge-based Simulation

We now return to the questions posed at the end ofthe first paragraph

of this section: Are there validation techniques specific to knowledge-

based simulation? Which of the programs discussed so far have actually

been validated?

The first question is impossible to answer in a theoretical way. Most
of the issues and techniques mentioned earlier apply both to numerical

simulators and to expert systems; whether there are issues or techniques

uniquely applicable to knowledge-based simulators is difficult to say. We
will probably have to acquire a great deal more experience in attempting

to validate such systems in order to begin answering this question.

This leads us directly to the second question: What experience has

been acquired so far in the validation of knowledge-based simulators?

Of the more than 80 knowledge-based simulation programs reviewed for

this chapter from published reports, only 2 directly addressed the issue

of validation. COMAX was informally "validated" through a few field

tests. ABLE is the only reviewed program that directly discusses vali-

dation against both field test results (again a very small number) and
expert judgment.

H. CONCLUSION

The main purpose of this chapter has been to describe a variety of

knowledge-based simulation programs from the published literature. The
only conclusion that can safely be drawn is that knowledge-based para-

digms such as object-oriented programming and rule-based inferencing

seem to facilitate the development of computer simulation models in

many domains. It is tempting to make assertions like "the integration

of numerical and rule-based components greatly extends the range of

systems that can be simulated," but the general lack of validation cur-

rently makes such statements true on paper at best.

It is to be hoped that formal validation techniques will be developed

and consistently applied for knowledge-based simulation programs. Until

then, it is important that such programs are not used in critical appli-

cations that affect individual or societal well-being. Formal validation

might require years for a program such as COMAX, which can literally

be "field tested" only once per year on a given cotton farm. However, the

benefits of proper validation will undoubtedly outweigh the risks of

prematurely accepting these programs.

Acknowledgements

I would like to thank Marilyn Stelzner and Harold Brown for helpful

discussions on the subject of knowledge-based simulation and for review-

ing initial drafts of this chapter.

518

Chapter XXIII

Computer Vision Update

Robert M. Haralick—University of Washington
Alan K. Mackworth—University of British Columbia

Steven L. Tanimoto—University of Washington

CHAPTER XXIII: COMPUTER VISION UPDATE

A. Overview I 521

B. Low -level Vision I 523

1. Segmentation Techniques I 523

2. Edges I 534

3. Stereo I 536
4. Mathematical Morphology for Image Analysis I 539

C. Computational Vision Advances I 547

1. Shape Representation and Analysis I 547

2. Criteria for Shape Representation I 547

3. Object Recognition I 558
4. Constraint Satisfaction I 560

D. Vision Architecture I 565

A. OVERVIEW

Computer vision is the science and technology of obtaining models,

meanings, and control information from visual data. Inputs of a computer

vision system typically are scanner outputs (usually in the form of digital

images), range finder outputs, or images reconstructed by medical imag-

ing equipment. Vision science and technology have grown more and more
varied in recent years. The range of applications has been widening, and

it includes many uses in manufacturing, medicine, and remote sensing.

As with artificial intelligence in general, work in vision falls mainly

into two camps. The first kind of work seeks a coherent theory of visual

perception and understanding (this approach is called computational

vision), and researchers in this group often develop computational models

of biological vision processes. The second camp does research and devel-

opment directed toward useful applications (this is sometimes called

machine vision). Their emphasis is on working, economical solutions to

industrial, medical, and military problems rather than on the discovery

of new theories or knowledge about human perception.

Perhaps the most significant development of the last five years in

computational vision has been the emergence of regularization theory as

a means for making mathematically ill-posed surface-inference problems

well posed. This technique has applications in many kinds of vision

problems, including reconstructing intensity maps from a limited set of

samples, analyzing stereo pairs of images, and computing optical flow in

dynamic imagery.

During the same period, the applications side of the field has seen

important advances in three-dimensional modeling and model construc-

tion, experience with methods like those of "mathematical morphology,"

(resulting in better methodologies for applying such techniques), and
exciting improvements in parallel computer architectures tailored to

vision applications.

There has also been an interplay between computational vision and
machine vision. The stereo algorithms, developed largely within the

computational vision camp, have moved out into the realm of industrial

application. Computer architectures, developed with industrial vision in

mind, are influencing studies in computational vision, for example, in

the development of parallel algorithms for solving reconstruction prob-

lems on meshes.

Because of the large amount of activity in these two areas of com-

521

522 Computer Vision Update XXIII

puter vision, and because of page limitations here, the scope of this

chapter is necessarily limited. The major advances in low-level vision,

computational vision, and vision architectures are emphasized. Rela-

tively little is said about specific software implementations (this is in

contrast to the vision coverage in Chapter XIII of the Handbook).

B. LOW-LEVEL VISION

Underlying some approaches to computational vision and to machine
vision are basic tasks of breaking up an image into component regions.

This segmentation problem must be tackled before determining 3-D sur-

face characteristics or recognizing objects in the scene. A large variety

of methods have been invented and studied for this initial analysis task.

The next subsection gives an overview of this subfield, expanding upon

the description of region analysis in Article XIII.C5 in Volume III.

Bl. Segmentation Techniques

In traditional approaches to computer vision, the pixels of an image

are grouped into regions in a process called segmentation, and this is

done prior to any attempt to interpret the regions as objects in the scene.

A perceived advantage of computing a segmentation is that one could,

relatively easily, achieve a relatively concise representation of the

image's essential pictorial aspects, and that this would permit the seman-

tic phase of the analysis to be accomplished painlessly. Except in certain

artificial environments, segmentation has proven to be difficult in itself,

and it seems that semantic considerations are often needed at the seg-

mentation level. Nonetheless, various segmentation methods make up
an important part of the arsenal of techniques that can be employed in

computer vision, and they provide a good starting point for a tutorial

overview of developments in vision.

What should a good image segmentation be? Although this depends

largely on the application, it can be answered in an application-indepen-

dent way to a certain extent. Let us attempt to do so.

Regions of an image segmentation should be homogeneous—uniform

with respect to some characteristic such as gray tone or texture. Region

interiors should usually be simple and without many small holes. Adja-

cent regions of a segmentation should have significantly different values

with respect to the characteristic on which they are uniform. Boundaries

of each segment should be simple, not ragged, and must be spatially

accurate.

Achieving all these desired properties is difficult because strictly

uniform and homogeneous regions are typically full of small holes and

523

524 Computer Vision Update XXIII

have ragged boundaries. Insisting that adjacent regions have large dif-

ferences in values can cause regions that ought to be kept separated to

merge and thus the intervening boundaries to be lost.

Just as there is no generally accepted theory of clustering in statis-

tics, there is no well-accepted theory of image segmentation. Image seg-

mentation techniques tend to be ad hoc. They differ in the ways in which
they emphasize one or more of the desired properties and in the ways in

which they balance and compromise one desired property against

another.

Image segmentation techniques can be classified into one of the

following groups:

1. Measurement-space-guided spatial clustering

2. Single-linkage region-growing schemes

3. Hybrid-linkage region-growing schemes

4. Centroid-linkage region-growing schemes

5. Spatial clustering schemes

6. Split-and-merge schemes

As this brief typology suggests, image segmentation can be viewed as a

clustering process. The difference between image segmentation and clus-

tering is in grouping. In clustering, the grouping is done in measurement
space (e.g., the space of gray values rather than the space of pixel coor-

dinate pairs). In image segmentation, the grouping is done on the spatial

domain of the image, and there is an interplay in the clustering between

the (possibly overlapping) groups in measurement space and the

mutually exclusive groups of the image segmentation.

The single-linkage region-growing schemes are the simplest and
most prone to the unwanted region-merge errors. The hybrid-linkage

and centroid-linkage region-growing schemes are better in this regard.

The split-and-merge technique is not as subject to the unwanted region-

merge error. However, it suffers from large memory usage and exces-

sively blocky region boundaries. The measurement-space-guided spatial

clustering tends to avoid both the region-merge errors and the blocky

boundary problems because of its primary reliance on measurement
space. But the regions produced are not smoothly bounded, and they

often have holes, giving the effect of salt-and-pepper noise. The spatial

clustering schemes may be better in this regard, but they have not been

tested well enough. The hybrid-linkage schemes appear to offer the best

compromise between having smooth boundaries and few unwanted
region merges.

The remainder of this section describes the main ideas behind the

major image segmentation techniques. Additional image segmentation

B Low-level Vision 525

surveys can be found in Zucker (1976), Riseman and Arbib (1977), Kan-

ade (1980), and Fu and Mui (1981), and Haralick and Shapiro (1985).

Measurement-space-Guided Spatial Clustering

This technique for image segmentation uses the measurement-space

clustering process to define a partition in measurement space (e.g., the

space of pixel gray values of the image). Then each pixel is assigned the

label of the cell in the measurement-space partition to which it belongs.

The image segments are defined as the connected components of the

pixels having the same label.

The accuracy of image segmentation using the measurement-space

clustering process depends directly on how well the objects of interest on

the image separate into distinct measurement-space clusters. Typically

the process works well in situations where there are a few kinds of

distinct objects having widely different gray-tone intensities (or gray-

tone intensity vectors, for multiband images) and these objects appear

on a nearly uniform background.

Clustering procedures that use the pixel as a unit and compare each

pixel value with every other pixel value can require excessively large

computation times because of the large number of pixels in an image.

Iterative partition-rearrangement schemes such as ISODATA have to go

through the image data set many times and if done without sampling

can also take excessive computation time. Histogram-mode seeking,

because it requires only one pass through the data, probably involves

the least computation time of the measurement-space clustering tech-

niques, and it is the one we discuss here.

Histogram-mode seeking is a measurement-space clustering process

in which it is assumed that homogeneous objects on the image manifest

themselves as the clusters in measurement space. Image segmentation

is accomplished by mapping the clusters back to the image domain where
the maximal connected components of the mapped back clusters consti-

tute the image segments. For single-band images, calculation of this

histogram in an array is direct. The measurement-space clustering can

be accomplished by determining the valleys in this histogram and declar-

ing the clusters to be the interval of values between valleys. A pixel

whose value is in the ith interval is labeled with index i and the segment
it belongs to is one of the connected components of all pixels whose label

is i. -

Ohlander et al. (1975) refines the clustering idea in a recursive way.

He begins by defining a mask selecting all pixels on the image. Given
any mask, a histogram of the masked image is computed. Measurement-
space clustering enables the separation of one mode of the histogram set

from another mode. Pixels on the image are then identified with the

526 Computer Vision Update XXIII

cluster to which they belong. If there is only one measurement-space

cluster, the mask is terminated. If multiple clusters are present, the

process is repeated for each connected component (region) associated with

each cluster. Note that one cluster may produce more than one connected

component. During successive iterations, the next mask in the stack

selects pixels in the histogram-computation process. Clustering is

repeated for each new mask until the stack is empty. The process is

illustrated in Figure B-l.

Single-linkage Region Growing

Single-linkage region growing schemes regard each pixel as a node

in a graph. Neighboring pixels whose properties are "similar enough"

are joined by an arc. The image segments are maximal sets of pixels all

belonging to the same connected component. Single-linkage image-

segmentation schemes are attractive for their simplicity. They do, how-

ever, have a problem with chaining, because it takes only one arc leaking

from one region to a neighboring one to cause the regions to merge.

The simplest single-linkage scheme defines "similar enough" by pixel

difference. Two neighboring pixels are similar enough if the absolute

value of the difference between their gray-tone intensity values is small

enough. Bryant (1979) defines "similar enough" by normalizing the dif-

ference by the quantity V2 times the root-mean-square value of neigh-

boring pixel differences taken over the entire image.

For pixels having vector values, the obvious generalization is to use

a vector norm of the pixel-difference vector. Instead of using a Euclidean

distance, Asano and Yokoya (1981) suggest that two pixels be joined

together if the absolute value of their difference is small enough com-

pared to the average absolute value of the center pixel minus neighbor

pixel for each of the neighborhoods to which the pixels belong. The ease

with which unwanted region chaining can occur with this technique

limits its potential on complex or noisy data.

Hybrid-linkage Region Growing

Hybrid single-linkage techniques are more powerful than the simple

single-linkage technique. The hybrid techniques seek to assign a prop-

erty vector to each pixel where the property vector depends on the neigh-

borhood of the pixel. Pixels that are similar are so because their

neighborhoods in some special sense are similar. Similarity is thus estab-

lished as a function of neighboring pixel values, and this makes the

technique better behaved on noisy data.

One hybrid single-linkage scheme relies on an edge operator to estab-

lish whether two pixels are joined with an arc. Here an edge operator is

applied to the image, labeling each pixel as edge or nonedge. Neighboring

B Low-level Vision 527

pixels, neither of which are edges, are joined by an arc. The initial

segments are the connected components of the nonedge labeled pixels.

The edge pixels can either be left as edges and be considered as back-

ground or they can be assigned to the spatially nearest region having a

\
\

Stack

\ \
\ \
\

Compute
Histogram
of Masked
Image

Cluster

< Only One Cluster >
Terminate Current Mask:
Pop Next Mask More Than

One Cluster

Connected
x// Components

Original Mask
Covers Entire Image

Figure B-l. The recursive histogram spatial clustering

method of Ohlander.

528 Computer Vision Update XXIII

Figure B-2. Image of a bulkhead of an F-15 aircraft.

label. Successful use of this technique may require closing edge gaps

before performing the region growing.

Figure B-2 illustrates an image of a section of an F-15 aircraft

bulkhead. Figure B-3 illustrates a second directional derivative zero-

crossing operator applied to the image of Figure B-2. Figure B-4 shows

the segmentation that results from connecting the non-edge pixels. The
method is thus a hybrid-linkage region-growing scheme in which any
pair of neighboring pixels, neither of which are edge pixels, can link

together. The resulting segmentation consists of the connected compo-

nents of the nonedge pixels and where each edge pixel is assigned to its

nearest connected component.

Centroid-linkage Region Growing

In centroid-linking region growing, in contrast with single-linkage

region growing, pairs of neighboring pixels are not compared for simi-

larity. Rather, the image is scanned in some predetermined manner such

as left to right or top to bottom. A pixel's value is compared to the mean
of an already existing but not necessarily completed neighboring seg-

ment. If its value and the segment's mean value are close enough, the

pixel is added to the segment and the segment's mean is updated. If more
than one region is close enough, it is added to the closest region. However,

if the means of the two competing regions are close enough, the two

B Low-level Vision 529

Figure B-3. Directional derivative zero-crossing operator

applied to the F-15 image.

regions are merged and the pixel is added to the merged region. If no

neighboring region has its mean close enough, a new segment is estab-

lished having the given pixel's value as its first member. The scan geom-
etry for the centroid-linkage region-growing scheme is shown in Figure

B-5.

Keeping track of the means and scatters for all region as they are

being determined does not require large amounts ofmemory space. There

cannot be more regions active at one time than the number of pixels in

a row of the image. Hence a hash table mechanism with the space of a

small multiple of the number of pixels in a row can work well.

One way of performing the region growing is by the use of the T-

test. Let R be a segment ofN pixels neighboring a pixel with gray-tone

intensity y. Define the mean X and scatter S2
by

X Tj 2 Kr,c)
iV (r,c)<Ji

(1)

and

S2 = 2 (Kr,c)-X)' (2)
(r,c)zR

530 Computer Vision Update XXIII

Figure B-4. Segmentation of the F-15 image.

Under the assumption that all the pixels in R and the test pixel y
are independent and identically distributed normals, the statistic

(N - 1)N

(N+ 1)
(y ~ X)2

/S' (3)

has a Tn-i distribution. If T is small enough, y is added to region R and
the mean and scatter are updated using y. The new mean and scatter

are given by

and

«?
2

•Jnew •Sold

(iVXoid + y)/(N + 1)

+ {y-X) 2 + N{Xr XoidY

(4)

(5)

If T is too high, the value y is not likely to have arisen from the

population of pixels in R. If y is different from all of its neighboring

regions, it begins its own region. A slightly stricter linking criterion can

require that not only must y be close enough to the mean of the neigh-

boring regions, but also that a neighboring pixel in that region must
have a close enough value to y. This combines a centroid linkage and

single linkage criterion.

The Levine and Shaheen scheme (1981) is similar. The difference is

that Levine and Shaheen attempt to keep regions more homogeneous

B Low-level Vision 531

2 3 4

1 y

Figure B-5. Region-growing geometry for the one-pass scan,

left-right, top-bottom region growing.

and try to keep the region scatter from getting too high. They do this by
requiring the differences to be more significant before a merge takes

place if the region scatter is high. For a user-specified value 6, they

define a test statistic T where

T =\y~ Xnew| " (1 " S/Xnew)6 (6)

If T < for the neighboring region R in which \y
- X\ is the smallest, y

is added to R. If T > for the neighboring region in which \y
- X\ is the

smallest, y begins a new region.

Figure B-6 illustrates the application of the centroid-linkage region-

growing technique to the bulkhead image. This application uses two
successive scans of the image. The first is a left-right top-down scan, and
the second is a right-left bottom-top scan.

Hybrid-linkage Combination Techniques

The centroid-linkage and the hybrid-linkage methods can be com-

bined in a way that takes advantage of their relative strengths. The
strength of the single-linkage method is that boundaries are placed in a
spatially accurate way. Its weakness is that edge gaps result in excessive

merging. The strength of the centroid-linkage method is its ability to

place boundaries in weak-gradient areas. It can do this because it does

not depend on a large difference between the pixel and its neighbor to

declare a boundary. It depends instead on a large difference between the

pixel and the mean of the neighboring region to declare a boundary.

532 Computer Vision Update XXIII

Figure B-6. The two-pass top-down centroid segmentation of

the bulkhead image.

The combined centroid-hybrid linkage technique does the obvious

thing. Centroid linkage is only done for nonedge pixels; that is, region

growing is not permitted across edge pixels. Saying it another way, edge

pixels are not permitted to be assigned to any region and cannot link to

any region. Thus, if the parameters of centroid linkage were set so that

any difference, however large, between pixel value and region mean was
considered small enough to permit merging, the two-pass hybrid com-

bination technique would produce a connected components of the nonedge
pixels. As the difference criterion is made more strict, the centroid link-

age produces boundaries in addition to those produced by the edges.

Figure B-7 illustrates the application of the hybrid-linkage technique

to the bulkhead image.

Split-and-Merge

The split-and-merge method for segmentation begins with the entire

image as the initial segment. Then it successively splits each of its

current segments into quarters if the segment is not homogeneous
enough. Homogeneity can be easily established by determining if the

difference between the largest and smallest gray-tone intensities is small

enough. Algorithms of this type were first suggested by Robertson (1973)

B Low-level Vision 533

Figure B-7. Segmentation using the one-pass combined

centroid and hybrid linkage method.

and Klinger (1973). Kettig and Landgrebe (1975) try to split all nonuni-

form 2x2 neighborhoods before beginning the region merging. Fukada
(1980) suggests successively splitting a region into quarters until the

sample variance is small enough. The efficiency of the split-and-merge

method can be increased by arbitrarily partitioning the image into

square regions of a user-selected size and then splitting these further if

they are not homogeneous.

Because segments are successively divided into quarters, the bound-

aries produced by the split technique tend to be squarish and slightly

artificial. Sometimes adjacent quarters coming from adjacent split seg-

ments need to be joined rather than remain separate. Horowitz and
Pavlidis (1976) suggest a split-and-merge strategy to take care of this

problem. Muerle and Allen (1968) suggest merging a pair of adjacent

regions if their gray-tone intensity distributions are similar enough.

They recommend the Kolmogorov-Smirnov test.

Chen and Pavlidis (1980) suggest using statistical tests for uniform-

ity rather than a simple examination of the difference between the

largest and smallest gray-tone intensities in the region under consider-

ation for splitting. The uniformity test requires that there be no signif-

icant difference between the mean of the region and each of its quarters.

534 Computer Vision Update XXIII

The Chen and Pavlidis tests assume that the variances are equal and
known.

Let each quarter have K pixels, Xy be thejth pixel in the ith region,

Xi be the mean of the ith quarter, and X.. be the grand mean of all the

pixels in the four quarters. Then, for a region to be considered homoge-

neous, Chen and Pavlidis require that

\Xt - X.\ < e, i = 1, 2, 3, 4 (7)

We give here the F-test for testing the hypothesis that the mean and

variances of the quarters are identical. The value of variance is not

assumed known. If we assume that the regions are independent and

identically distributed normals, the optimal test is given by the statistic

F, which is defined by

KlUiiXt. -X..)
2
/3

2Ui?* = i(Xik-Xi.rt4(K-l)
(8)

It has a F3,4(k-d distribution. IfF is too high, the region is declared not

uniform.

The data structures required to do a split-and-merge on images larger

than 512 x 512 are very large. Execution of the algorithm on virtual-

memory computers results in so much paging that the dominant activity

may be paging rather than segmentation. Browning and Tanimoto (1982)

describe a split-and-merge scheme where the split-and-merge is first

accomplished on mutually exclusive subimage blocks and the resulting

segments are then merged between adjacent blocks to take care of the

artificial block boundaries.

B2. Edges

If an image is successfully segmented into regions, the contours of the

regions are available for shape analysis. However, it is sometimes more
expedient to compute the contours directly from the image, rather than

to go through one of the previously described segmentation processes. To

compute contours directly from the image, "edge detection" must be

performed. This subsection discusses the important characteristics of

edges. Edge detection continues to be a subject of intense research. Ele-

mentary methods for edge detection, including the Roberts cross operator

and the Sobel operator, are described in Article XIII.C4, Vol. III.

The Difficulties ofFinding the Contours of Objects in an Image

What is an edge in a digital image? The first intuitive notion is that

a digital edge occurs on the boundary between two pixels when the

B Low-level Vision 535

respective brightness values of the two pixels are significantly different.

"Significantly different" may depend on the distribution of brightness

values around each of the pixels.

We often point to a region on an image and say this region is brighter

than its surrounding area, meaning that the mean of the brightness

values of pixels inside the region is greater than the mean of the bright-

ness values outside the region. Having noticed this, we would then say

that an edge exists between each pair of neighboring pixels where one

pixel is inside the region and the other is outside the region. Such edges

are referred to as step edges.

Step edges are not the only kind of edge. If we scan through a region

left to right observing the brightness values steadily increasing, and

then after a certain point we observe that the brightness values are

steadily decreasing, we are likely to say that there is an edge at the

point of change from increasing to decreasing brightness values. Such
edges are called roof edges.

Thus, in general, an edge is a place in an image where there appears

to be ajump in brightness value or ajump in brightness value derivative.

In some sense, this summary statement about edges is quite reveal-

ing because in a discrete array of brightness values there are jumps (in

the literal sense) between neighboring brightness values if the bright-

ness values are different, even if only slightly different. Perhaps more
to the heart of the matter, there exists no definition of derivative for a

discrete array of brightness values. The only way to interpret jumps in

value and jumps in derivatives when referring to a discrete array of

values is to assume that the discrete array of values comes about as

some kind of sampling of a real-valued function denned on a bounded
and connected subset of the real plane R 2

. The jumps in value and jumps
in derivative really must refer to points of discontinuity of/and to points

of discontinuity in the partial derivatives of f.

Edge finders should then regard the digital picture function as a

sampling of the underlying function f, where some kind of random noise

has been added to the true function values. To do this, the edge finder

must assume some kind of parametric form for the underlying function

f, use the sampled brightness values of the digital picture function to

estimate the parameters, and finally make decisions regarding the loca-

tions of discontinuities of the underlying function and its partial deriv-

atives based on the estimated values of the parameters.

Of course, it is impossible to determine the true locations of discon-

tinuities in value or derivatives based on samplings of the functions. The
locations are estimated by function approximation. The location of the

estimated discontinuity will be where the first derivative has a relative

maximum. This is where the second derivative will have a negatively

shaped zero-crossing if the edge is being crossed from low value to high

value. Sharp discontinuities will reveal themselves in high values for

536 Computer Vision Update XXIII

estimates of first partial derivatives. Sharp discontinuities in derivative

will reveal themselves in high values for estimates of the second partial

derivatives. This means that the best we can do is to assume that the

first and second derivatives of any possible underlying image function

have known bounds. Therefore any estimated first- or second-order par-

tials that exceed these known bounds must be due to discontinuities in

value of the underlying function. The location of the estimated discon-

tinuity in derivative will be where the second derivative has a relative

extremum and this will be where the third derivative has an appropri-

ately shaped zero-crossing.

Recent Developments

Marr and Hildreth (1980) used for the second derivative the isotropic

Laplacian. Haralick (1984) and Canny (1986) used, for the second deriv-

ative, the second directional derivative taken in a direction that extrem-

izes the first directional derivative. The implementation of each of these

zero-crossing edge operators is quite different.

Since the differentiation of a sampled signal is, properly speaking,

an ill-posed problem, it has been proposed that edge detection be per-

formed by first filtering the image (or "regularizing" it) and then differ-

entiating it. A mathematical problem is well-posed in the sense of

Hadamard, provided its solution exists, is unique, and depends contin-

uously on the given data. Regularization refers to the transformation of

an ill-posed problem into a well-posed one. Standard methods of regu-

larization have been developed—see, for example, Tikhonov and Arsenin

(1977)—and applied in edge detection. Details may be found in Torre

and Poggio (1986). A good overview of edge detection, including a dis-

cussion of regularization, may be found in Hildreth (1987).

B3. Stereo

Overview

The objective in many computer vision problems is to reconstruct a

three-dimensional surface representation of a scene from the image infor-

mation output by cameras. Video cameras provide only 2-D images, and
stereo methods must be used to obtain depth information. The use of two

(or more) images of the same scene, taken from different positions, can

permit the determination of depth using parallax—the analysis of each

triangle formed by some notable surface point in the scene and the two

camera viewpoints. With two such images, the method of depth deter-

mination is called binocular stereo. With three, it is trinocular stereo.

With more, it is sometimes called multiple-image stereo. For an intro-

B Low-level Vision 537

duction to binocular stereo, see Article XIII.D3, or see Barnard and
Fischler (1987). When the scene is static but a sequence of images is

taken from a moving viewpoint, motion stereo may be used to establish

3-D information.

The usual sequence of steps needed in binocular stereo is as follows:

1. Input images either from two cameras or from one camera at two

different times and positions.

2. Determine camera parameters—position, orientation, focal length,

and so on.

3. Detect/select feature points in the images that are candidates for

matching (e.g., edge points).

4. Match feature points by constructing a correspondence between fea-

ture points of the two images.

5. Compute depth values at the locations of the matched feature points.

6. Interpolate depth values at all or many of the points in the image

that are not locations of matched feature points.

Feature Point Detection/Selection

With a simple camera geometry we may assume that the two images

of a point in the scene have a positional disparity along the x-axis of the

image but not along the j-axis. To determine this disparity, using fea-

ture-based or edge-based stereo, the points must be detected in each

image and then put into correspondence. Generally speaking, only cer-

tain points in the image are capable of being matched directly; these are

prominent locations in the image that are easily distinguished from

neighboring points. In most cases the feature points can be obtained

using edge-detection methods.

A popular method for finding feature points for stereo matching
requires that the Laplacian operator be applied to the image (see Volume
3, p. 211-212). Then the zero-crossing contours of the resulting image
are identified. The points on the zero-crossing contours are taken as the

feature points. Since the digital images have a limited number of scan

lines, the number of zero-crossing points is generally manageable.

Because the disparities occur in the x direction, it is usually sufficient

to perform the differentiation (or apply the Laplacian) in one dimension,

along each scan line of the image. This is computationally inexpensive

in comparison with two-dimensional Laplacians.

If general camera geometries are used, the feature points must be

distinguishable in both the x and y directions. Although the detection of

these points is therefore more computationally expensive, the resulting

number of points is usually less than for one-dimensional analysis, and
this can speed up the matching process. Scene points that generate good

538 Computer Vision Update XXIII

feature points with distinction in both dimensions are corners (vertices)

of polyhedra and bright spots and corners of 2-D patterns painted on the

surfaces of objects in the scene.

It is also possible to match areas rather than features. In area-based

matching, correspondences are typically established using cross-corre-

lation. This tends to be computationally more expensive and also less

accurate than feature-based or edge-based matching. However, area-

based stereo can be more robust in cases of noisy images or images with

poorly denned edges.

Matching. Although matching for stereo is similar in spirit to

model matching for object recognition, it is also somewhat different. In

the case of horizontally constrained displacement, we have a collection

of one-dimensional matching problems, one for each scan line. We can

expect the disparity function along the scan line to exhibit some coher-

ence as we move to each successive scan line, as well as along the line.

Therefore the solutions to each 1-D matching problem are not completely

independent.

Some of the approaches to matching are as follows:

1. Coarse-to-fine (see Marr and Poggio, 1977; and Grimson, 1985)

2. Dynamic programming (see Baker and Binford, 1981)

3. Energy minimization (see Direct Matching with Simulated Anneal-

ing, described below)

4. Ad hoc correspondence building

Interpolating Depth Values. The problem of obtaining a full set

of depth values from the sparse set obtained from feature-based stereo

can be solved with interpolation. However, this interpolation should

satisfy both smoothness on surfaces and maintain sudden depth changes

at surface boundaries. In the case of natural terrain, quadratic surface

fitting may be appropriate (see Smith, 1984). For rapid interpolation

subject to smoothness constraints, multigrid methods may be used (see

Section D).

Direct Matching with Simulated Annealing. A method of match-

ing a stereo pair of images using simulated annealing has been proposed

by Barnard (1987). This is an area-based rather than a feature-based

approach. An energy measure E is to be minimized through the adjust-

ment of disparity values Dtj\

7 = 2 (|A7tf| + k\VDy\)

where A/ = IdiJ) - IrHJ + Dy); II and IR are the left- and right-

image intensity values; and Dy is the disparity value for location (ij).

This measures the difference in intensity between each two matched

B Low-level Vision 539

points as well as the unsmoothness of the disparity function. If both of

these terms are zero, the two images match perfectly, except for a trans-

lation, and the scene must be flat.

Starting from an initial high-energy state, the disparity values are

adjusted stochastically according to the Metropolis algorithm (see page

576) or with an alternative method proposed by Barnard.

Nonbinocular Methods. Trinocular stereo employs three images

of a scene to obtain 3-D surface data. The third image, taken from a

viewpoint not colinear with the other two, greatly reduces the number
of incorrect matches and it can increase the accuracy of the resulting

depth information. A method that permits the three cameras to be in

arbitrary positions is described by Ayache and Lustman (1987). One that

requires the viewpoints to form a right triangle is given by Ohta et al.

(1986). Others are given by Yachida et al. (1986), Ito and Ishii (1986),

and Pietikainen and Harwood (1986). The number of viewpoints need

not be limited to three. Multiple-image stereo allows additional improve-

ments in accuracy at the expense of higher computational cost (see

Yachida, 1985).

In addition to binocular, trinocular, and multiple-image stereo, sur-

face orientation may be computed using two images from the same
viewpoint, but taken under illumination by a light source in two different

positions. This method is called photometric stereo and is described briefly

in the Overview to Chapter XIII in Volume III of the Handbook. The
change in shading at a surface point from one image to the other gives

an indication of the surface gradient at that point. Such methods are

described in Woodham (1980).

B4. Mathematical Morphology for Image Analysis

A class of techniques called mathematical morphology has found a

variety of applications in industrial machine vision. This section presents

the primary operations of mathematical morphology: dilation, erosion,

opening, and closing. In addition to their definitions, some properties of

these operations are also given.

The mathematical morphology approach to the processing of digital

images is based on shape. Appropriately used, these techniques can

simplify image data, preserving essential shape characteristics and elim-

inating irrelevancies. Since the identification of objects, features, and
manufacturing defects depend closely on shape, this approach is natural

for such tasks.

Although the techniques are being used in the industrial world, the

basis and theory of binary morphology are not covered in many texts or

540 Computer Vision Update XXIII

monographs. Exceptions are the highly mathematical books by Matheron
(1975) and Serra (1982).

The language of mathematical morphology is that of set theory. Sets

in mathematical morphology represent the shapes that are manifested

on binary or gray-tone images. The set of all the black pixels in a black

and white image (a binary image) constitutes a complete description of

the binary image. Sets in two-dimensional Euclidean space are repre-

sented by foreground regions in binary images. Sets in three-dimensional

Euclidean space may actually represent time-varying binary imagery or

static gray-scale imagery as well as binary solids. Sets in higher dimen-

sional spaces may incorporate additional image information such as

color, or multiple perspective imagery. Mathematical morphology trans-

formations apply to sets of any dimensions, including those in Euclidean

iV-space and its discrete or digitized equivalents, the set of iV-tuples of

integers, ZN . For the sake of simplicity we will refer to either of these

sets as EN .

Those points in a set being morphologically transformed are consid-

ered as the selected set of points, and those in the complement set are

considered as not selected. Hence, morphology from this point of view is

binary morphology. We begin our discussion with the morphological oper-

ation of dilation.

Dilation

Dilation is a morphological transformation that combines two sets using

vector addition of set elements. IfA and B are sets in iV-space (E
N

) with

elements a and b, respectively, a = (ai, ..., a^) and b = (6i, ..., 6at) being

iV-tuples of element coordinates, then the dilation ofA by B is the set of

all possible vector sums of pairs of elements, one coming from A and one

coming from B. Denoting dilation by 0,

A®B = {c<EEN \c = a + b for some a e A and b E B}

Dilation as a set theoretic operation was proposed by Minkowski

(1903) to characterize integral measures of certain open (sparse) sets.

Dilation as an image-processing operation was employed by several early

investigators in image processing as smoothing operations: Unger (1958),

Golay (1969), and Preston (1961, 1973). Dilation as an image operator

for shape extraction and estimation of image parameters was explored

by Matheron (1975) and Serra (1972).

Mathematically the roles of the sets A and B are symmetric; the

dilation operation is commutative because addition is commutative.

Hence A ® £ = £ ® A. In practice, A and B are handled quite differently.

The first operand is considered to be the image undergoing analysis,

whereas the second operand, referred to as the structuring element, is

B Low-level Vision 541

thought of as constituting a single shape parameter of the dilation trans-

formation.

Dilation of a set by a structuring element in the shape of a disk

results in an isotropic swelling or expansion of the set. (Approximating

the disk by a small square, 3x3, the expansion can be implemented as

a neighborhood operation on a mesh architecture or pipelined image-

processing architecture.) Some sample dilation transformations are illus-

trated in Figures B-8 and B-9. In Figure B-8, the upper left is the input

image consisting of a cross. The lower right shows an octagonal struc-

turing element. The upper right shows the input image dilated by the

octagonal structuring element. In Figure B-9, the upper left contains

the input image consisting of two objects. The upper right shows the

input image dilated by the structuring element {(0, 0), (14, 0)}. The lower

left shows the input image dilated by the structuring element {(0, 0),

(0, 14)}. The lower right shows the input image dilated by the structuring

element {(0, 0), (14, 0), (0, 14)}. This example illustrates that dilation

can be viewed as the replication of a pattern. In actual use, the replicated

copies of the pattern usually overlap, as in Figure B-8.

Since addition is associative, the dilation of an image A by a struc-

turing element D, which is itself a dilation D = B C, can be computed

as

A®D=A®{B@C) = {A®B)®C

r
1

1

1

1 1

r

1 1

1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

r 1 1

1 1 1 1

1 1 1 1

1 1

Figure B-8. Dilation by an octagonal structuring element.

542 Computer Vision Update XXIII

-:-::::::::::::::::::

""~iiiiiiii::::i:z::_:

Figure B-9. Dilation with an additional structuring element.

That is, dilation is associative. The form (A(BB)(&C gives a considerable

savings in number of operations to be performed when A is the image
and B C is the structuring element. The savings come about because

a brute force dilation by B © C might take as many as N2
operations,

whereas first dilating A by B and then dilating the result by C could

take as few as 2N operations, where N is the number of elements in B
and in C.

The dilation ofA by B can be computed as the union of translations

ofA by the elements of B. That is,

B = U (A) b
b(EB

Erosion

Erosion is the morphological dual to dilation. It is normally used to

eliminate small protrusions on a shape or islands in an image. It can

B Low-level Vision 543

widen cracks and holes. Erosion combines two sets using vector subtrac-

tion of set elements. IfA and B are sets in Euclidean Af-space, the erosion

of A by B is the set of all elements x for which x + b E A for every

b<EB.
Let us denote the erosion ofA by B as A © B. Erosion is thus denned

by

AQB = {x(EEN \x + b<EA for every 6 e B}

The utility of the erosion transformation is better appreciated when
the erosion is expressed in a different form (that given by Matheron,

1975). The erosion of an image A by a structuring element B is the set

of all elements x ofEN for which B translated to x is contained in A.

AQB = {x<=EN
\
(B)x C A}

Erosion is illustrated in Figure B-10. The upper left shows the input

image consisting of two blobs. The upper right shows the input image
eroded by the structuring element

1

Figure B-10. Erosion of an image of two blobs.

544 Computer Vision Update XXIII

{(0, 0), (-14, 0)}

The lower left shows the input image eroded by the structuring element

{(0, 0), (0, -14)}

The lower right shows the input image eroded by the structuring element

{(0, 0), (0, -14), (-14, 0)}

Openings and Closings

In practice, dilations and erosions are usually employed in pairs, either

dilation of an image followed by the erosion of the dilated result or image
erosion followed by dilation. In either case, the result of iteratively

applied dilations and erosions is an elimination of specific image detail

smaller than the structuring element without the global geometric dis-

tortion of unsuppressed features. The opening of image B by structuring

element K is denoted byfio^ and is defined as B o K = (B K) K.

The closing of image B by structuring element K is denoted by B • K
and is defined by B • K = (B K) K.

For example, opening an image with a disk-shaped structuring ele-

ment smooths the contour, breaks narrow isthmuses, and eliminates

small islands and sharp peaks or capes. Closing an image with a disk-

structuring element smooths the contours, fuses narrow breaks and long

thin gulfs, eliminates small holes, and fills gaps on the contours.

Of particular significance is the fact that image transformations

employing iteratively applied dilations and erosions are idempotent, that

is, their reapplication effects no further changes to the previously trans-

formed result. The practical importance of idempotent transformations

is that they comprise complete and closed stages of image analysis algo-

rithms because shapes can be naturally described in terms of under what
structuring elements they can be opened or can be closed and yet remain

the same.

If B is unchanged by opening it with K, we say that B is open with

respect to K, whereas if B is unchanged by closing it with K, then B is

closed with respect to K.

Sets that can be expressed as some set dilated by K are necessarily

open under K.

A®K=(A®K)oK

Similarly, images that have been eroded by K are necessarily closed

under K.

AQK = (AQK)mK

B Low-level Vision 545

From these two facts, the idempotency of opening and closing follows.

Openings and closings have other properties. For example, it follows

immediately from the increasing property of dilation and the increasing

property of erosion that both opening and closing are increasing.

There is a nice geometric characterization to the opening operation.

This characterization justifies why mathematical morphology provides

material for extracting shape information from image data. The opening

ofA by B is the union of all translations of B that are contained in A.

Discussion

Dilation, erosion, opening, and closing can be used as the basis of

image algebras. These algebras allow the definition of shape transfor-

mations that are customized for particular applications. A sequence of

these operations, with suitable structuring elements, can be used to

identify gear teeth in images of gears, or holes of particular sizes in

images of machine parts. These techniques have been successfully

applied to the problem of visually detecting shorts and open circuits in

the wiring of printed circuit boards. This is illustrated schematically in

Figure B-ll.

Opening removes small protrusions, isthmuses and islands. Closing

removes small cracks, bays, and holes. Taking the exclusive-OR of the

resulting image with the original gives an image in which only potential

defects remain. The original binary image is shown in the upper left.

The result after erosion is in the upper center. After dilating that image,

the result in the upper right is obtained. A second step of dilation takes

us to the result in the lower left, and then another erosion takes us to

the lower center. Exclusive-ORing this with the original produces the

image of the isolated defects, shown in the lower right.

These operations can be efficiently computed with appropriate hard-

ware. An entire session of the 1985 IEEE Computer Society Workshop
on Computer Architecture for Pattern Analysis and Image Database

Management was devoted to computer architecture specialized to per-

form morphological operations. Papers included those by McCubbrey and
Lougheed (1985), Wilson (1985), Kimmel, Jaffe, Manderville, and Lavin

(1985), Leonard (1985), Pratt (1985), and Haralick (1985). Gerritsen and
Verbeek (1984) show how convolution followed by a table lookup opera-

tion can accomplish binary morphology operations.

Mathematical morphology is being extended to encompass more and
more general classes of operators. Gray-scale extensions have been stud-

ied. Efforts have been made to cast morphology operations into a digital

signal processing framework. A tutorial article presenting many more
of the details of mathematical morphology is the paper by Haralick,

Sternberg, and Zhuang (1987).

546 Computer Vision Update XXIII

i li

Figure B-ll. Application of opening and closing to PC board

inspection.

C. COMPUTATIONAL VISION ADVANCES

CI. Shape Representation and Analysis

The task facing a computational vision system is to compute descrip-

tions of a 3-D scene given projections of that scene into 2-D images. The
current paradigm for computational vision research assumes that a sys-

tem must be structured into levels or modules with various special-

purpose representations at each level and that processes transform

descriptions from one representation into another. Each representation

serves to make explicit some properties of the image or scene and leave

others implicit. The choice of a representation for each particular level

constitutes the determining design decisions for a particular vision sys-

tem. A wide variety of criteria enter into these choices; it is important

to discover and explicate these criteria. (See Articles II.C5 and XIII.D5, 6

for discussions of earlier work.)

For vision, we can distinguish four varieties of domains that need

explicit shape representation:

1. Functions of one variable such as those that occur in, say, examining

the intensity profile across a discontinuity in an image.

2. 2-D shapes such as the contour of an image region.

3. Functions of two variables such as the depth map of a visible surface

that gives depth as a function of x and y.

4. 3-D shapes such as the bounding surface of a solid object.

This section will be structured around descriptions of some advances in

representation techniques for each of these domains.

C2. Criteria for Shape Representation

Given that the concept of "shape" is intuitive rather than formal and
the fact that for any shape domain there are infinitely many possible

representations of the "shape" of an object, many researchers have felt

the need to explicate adequacy criteria for shape representations. These
necessary criteria allow us to make sensible design decisions and trade-

offs when choosing a "good" shape representation. Here we shall provide

547

548 Computer Vision Update XXIII

a set of criteria based on the current state of the art (Marr and Nishihara,

1978; Binford, 1982; Brady, 1983; Mokhtarian and Mackworth, 1986a;

Mackworth, 1987; Woodham, 1987a, 1987b).

Computable: Given the input data and model assumptions, the repre-

sentation should be efficiently computable on a suitable serial or parallel

architecture; that is, the computational complexity should be a low-

order polynomial in time, space, and number of processors.

Local: A useful representation must still be computable for portions of

an object. If the parts of the representation depend only on data in a

defined neighborhood of the object, it has local support. If only some of

the neighborhoods are present in the data, a useful representation can

still be computed for occluded or distorted objects. Also the inherent

parallelism can be exploited by using special-purpose architectures that

process the neighborhoods in parallel.

Stable: A small local change in the object should induce a small local

change in the representation. This is required for noise resistance and

shape matching.

Unique: A given object must have a unique representation. The map-
ping from object to representation must be a single-valued function from

the object domain to the representation domain. This rules out schemes

that make arbitrary choices about the mapping.

Complete: For a large and important domain of objects, the function

from object to representation should be "total"; that is, for each and

every object there is a corresponding representation.

Invertible: Ideally the mapping from object to representation should be

invertible (also called rich or information preserving). If the object-to-

representation mapping is many-to-one, different objects cannot be dis-

tinguished on the basis of their representation. Thus the mapping must
be one-to-one; that is, a representation specifies a unique object. If the

one-to-one mapping is computationally invertible (which it might not

be even if the mathematical mapping is one-to-one), then, for example,

the visual appearance of an object can be predicted from its represen-

tations.

Invariant: If a pair of 2-D or 3-D objects differ only by a rigid translation

or rotation or by a magnification (a uniform change in scale), we say

they have the same shape. Accordingly we require that the shape rep-

resentation be essentially invariant under these transformations. This

requirement is apparently in conflict with the requirement for inverti-

bility; two objects seem to have the same representation. However, if

this representation includes translation, rotation, and magnification

parameters as components, the conflict with invertibility is resolved.

Scale-sensitive: The representation should incorporate information

about the object at varying levels of detail, coarse to fine. This usually

C Computational Vision Advances 549

corresponds to varying the size of the "neighborhood of local support."

It also contributes to the required stability and matching properties of

the representation. By suppressing the fine detail in the representation,

we can concentrate on the broad, overall shape features and save on

storage and processing time at the expense of accuracy and the inver-

tibility criterion.

Composite: 2-D and 3-D objects have a natural recursive part-whole

composition structure that should be explicit in the representation.

Matchable: The representation should be designed to support a match-

ing process that compares two shape descriptions (one, for example, from

the image; the other, a stored prototype) and returns a description of

their difference. This includes computing properties of an object using

the representation. For example, we can determine whether or not an

object is symmetric by matching its description with that of a generic

symmetric object.

Generic: A shape representation should support the description of a

generic class of objects as well as specific objects (perhaps through par-

ameterization). Thus if the representation is invertible as well as

generic, it can be used in symbolically predicting appearances.

Refinable: If the representation supports generic descriptions, they

should be refinable with the acquisition of more constraints (from the

image or elsewhere) to characterize a more specific object class.

These dozen criteria serve as useful tools not only for the evaluation

of existing shape representations, but also for their elaboration and the

discovery of new methods. We now turn to examine their applications to

the four levels of object domains found in most vision systems.

Descriptions ofFunctions of One Variable

Suppose we wish to describe a noisy one-dimensional signal fix) in

order, say, to find intensity changes. A Fourier decomposition of the

signal has many desirable properties. It satisfies many of our criteria,

but crucially fails to satisfy the criterion of locality: that each of the

Fourier basis functions have an infinite neighborhood of support.

Suppose we want to use the description to find edges characterized

by abrupt changes of intensity. If the signal has undergone significant

degradation due to blurring and noise processes, an edge can be said to

exist at location x and scale cr if the slope at point x and scale a achieves

a local maximum with respect to x. To make this precise, the slope at

point x and scale a can be defined to be the result of differentiating the

function F(x, a) that arises from convolving fix) with the Gaussian

G(x, a).

550 Computer Vision Update XXIII

Fix, a) = G(x, a) (g> fix)

= I' ~=e- {x- u)^2

f{u)du
J-* aV2TT

An "edge" exists at location x and a wherever Fxix, a) reaches a

maximum or minimum or where

F^ix, cr) = and Fxxx ix, cr) #

This technique, introduced by Stansfield (1980) and, most effectively,

by Witkin (1983), is known as scale-space filtering. It plays an important

role in many new techniques for shape representation. The (x, a) space,

known as scale space, can be used to represent a binary image, the scale

space image of fix), with a mark wherever Fxxix, a) = and Fxxx t^ 0.

We note the following:

F^ix, cr) = £j [Gix, cr) <g> fix)]
riX

= Gxxix, a) ® fix)

Thus the scale space image can be computed by precomputing the masks,

Gxx(x, a).

For an extensive discussion of scale-space methods with good exam-
ples, see Witkin (1987). The Gaussian is the only filter that does not

create generic zero-crossings as the scale increases, and this is true in

any dimension (Babaud et al., 1986, Yuille and Poggio, 1986). This key
monotonic property means that the scale-space image of a function of one

variable is hierarchically structured. In the scale-space image, the con-

tours of Fxxix, a) = only have maxima—not minima. This property

allowed Witkin (1983) to define the interval tree in scale space. The
"edges" whose scales exceed any given value of a partition the x-axis

into intervals. As a is decreased from a coarse scale, new edges appear

in pairs dividing the containing intervals into three subintervals.

This subdivision process continues as a is decreased down to the

finest available scale (Witkin, 1987). This interval tree can be used as a

representation of the shape of the function that satisfies many of the

criteria of Section C2. It is not as stable as one might like—small changes

in the function can produce large changes in the topology of the interval

tree. Surprisingly, it is invertible.

Yuille and Poggio (1984) show that the scale-space image uniquely

characterizes the curve modulo a multiplicative constant and a linear

additive component, but the inversion may not be "computationally well

conditioned" even if the slope or strength of each zero-crossing is known
(Hummel, 1986).

Mokhtarian and Mackworth (1986) show how to match scale-space

images using the A* algorithm (cf. Volume I).

C Computational Vision Advances 551

Clark (1987) observes that the "edges" marked in the scale-space

image can be classified as "authentic edges" and "phantom edges."

"Authentic edges" correspond to positive maxima and negative minima
ofFx(x y

a), whereas "phantom edges" correspond to negative maxima and

positive minima ofFx(x, ct). These can be simply discriminated based on

the sign of Fx(x, a) Fxxx(x, a). The removal of the phantom edges from

the scale-space image produces a reduced scale-space image that is not

as well behaved as the scale-space image.

Canny (1986) presents an edge detector that is almost optimum with

respect to the tradeoff of detectability in the presence of noise and local-

ization based on similar multiscale techniques. His operator detects local

maxima in the convolution with the first derivative of a Gaussian. Der-

iche (1987) improves on Canny's results.

Descriptions of Two-Dimensional Shapes

An arbitrary curve in 2-D space is the simplest generalization pos-

sible beyond a function of one variable. A 2-D connected region in a

binary image may be represented by the simple closed curve correspond-

ing to the exterior boundary and zero or more closed curves corresponding

to the boundaries of any holes. It is, therefore, important to have shape

representations for open and closed curves that satisfy our criteria.

Many current vision systems use global 2-D shape-dependent fea-

tures such as the number of holes, aspect ratio, the ratio of perimeter

squared to the area, moments of inertia, and the like (Brady, 1983).

Although such properties can be computed efficiently and can be used in

simple industrial inspection jobs (where the lighting can be controlled

and the context is narrowly limited), they are not sufficiently local,

stable, invertible, scale-sensitive, composite, generic, or refinable to han-

dle more general vision tasks such as interpreting outdoor scenes.

Brady and Asada (1984) proposed smoothed local symmetries as a

representation of 2-D shape. Essentially a local symmetry exists for a

pair of points A and Bona simple smooth closed curve if and only if the

right bisector of the straight line joining A and B serves as an axis of

symmetry for the tangents to the curve at A and B.

In Figure C-l the point O lies on an axis of local symmetry. In

theory, for all pairs of points on the curve, we compute the set of all

points that lie on axes of local symmetry. Then we compute the maximal
smooth loci of those points. Each locus is a candidate axis. A local

symmetry constitutes a locally plausible way to describe a portion of the

contour and the region it subtends, called the "cover" of that axis. Each
axis whose cover is properly contained in the cover of another axis is

deleted to give the final representation.

In practice, the algorithm must contend with incomplete and noisy

552 Computer Vision Update XXIII

Figure C— 1. Point O lies on an axis of local symmetry.

data and so is more complicated and must be optimized for better effi-

ciency. Brady and Asada (1984) propose placing knots at points of high

curvature on the bounding contour, constructing a piecewise smooth
approximation to the curve using straight lines and circles, and then

computing the smoothed local symmetries of the approximation to the

contour. Asada and Brady (1986) propose using the scale-space image of

the curvature as a function of arc length to recognize the existence of

certain primitives that embody orientation and curvature discontinui-

ties.

The smoothed local symmetries representation is a development of

the symmetric axis transform (Blum and Nagel, 1978) and the 3-D gen-

eralized cylinder representation (see Section C3). The symmetric axis

transform is the locus of the centers of maximal circles contained within

the region. Such circles must touch the boundary at two points, at least.

Hoffman and Richards (1982) also used curvature, proposing that

knots be placed at negative minima of curvature and that a dictionary

of "codons" be used as primitives between the knots. This has the advan-

tage of nicely explaining figure-ground reversal segmentation phenom-
ena as occur in Rubin's Vase (see Figure C-2), for example, but it does

not satisfy the need for scale-sensitive and stable representations.

In searching for ways to generalize the scale-space transform from

functions of one variable to two-dimensional shape analysis, several

approaches are possible. We have already mentioned smoothing the

boundary curvature as a function of arc length (Asada and Brady, 1986).

Another approach would be to smooth the 2-D image of the region with

a 2-D Gaussian filter and extract the zero-crossings of the Laplacian

Computational Vision Advances 553

Figure C-2. Rubin's Vase.

operator (d
2
/dx

2 + d
2
/dy

2
) (Marr, 1982). Unfortunately, as Yuille and

Poggio (1986) show, as the scale of the filter is increased, a zero-crossing

contour so obtained can split into two, or two contours can merge into

one. Babaud et al. (1986) show a dumb-bell-shaped region that exhibits

both these behaviors. The single initial contour splits into two as the

scale increases, but as it increases still further, they merge back again

into a single contour. Although the monotonic property discussed earlier

holds for 2-D smoothing in the sense that no new contour can appear

(without splitting off an existing contour), this behavior is nonmonotonic

in the sense that the number of regions denned goes from 1 to 2 and
back to 1 as a increases. This is not satisfactory from the point of view

of scale-sensitivity.

Accordingly, Mokhtarian and Mackworth (1986) propose a boundary
smoothing approach. It is not appropriate to smooth y = y(x) as a function

of x for several reasons, one of which is simply that a smoothed version

of the curve and the smoothed version of the curve rotated through tt/2

would have radically different shapes, which violates our invariance

criterion. They propose smoothing in a natural path-based coordinate

frame. The curve is described parametrically as

{(x(t), y{t))\t e [0, 1)}

where t is a linear function of path length. Then the curve is smoothed
by a 1-D Gaussian kernel G(t, a). The resultant smoothed curve repre-

sents the original curve at coarser detail. If the original curve is closed,

the smoothed curve is closed. The zeros of curvature (the inflection points)

on the smoothed curves can be displayed as a map in (t, a) space as a

generalized scale-space image of the curve. This hierarchically structured

554 Computer Vision Update XXIII

scale-space image is a useful representation of the shape of the curve or

the region contained in the curve if it is closed. Mokhtarian and Mack-
worth (1986) show how to use this representation to match landforms in

a map and a LANDSAT satellite image using a coarse-to-fine strategy.

The major disadvantage of this representation is that all simple convex

curves have the same representation, the empty scale-space image,

because they have no points of inflection. Compared with the alternative

of smoothing the curvature function (Asada and Brady, 1986), it has the

advantage of preserving the closure of closed curves (Horn and Weldon,

1986).

Horn and Weldon (1986) propose a representation called the extended

circular image for simple, closed convex curves. This is the 2-D analog

of the extended Gaussian image representation for convex 3-D objects

(both discussed later in this article). In the extended circular image, we
are given the radius of curvature R as a function of normal direction i|/.

For a circle radius R, we have R(\\f) = R. In general, R(\\t) = 1/k(s), where
k(s) is the curvature as a function of path length. The integral of the

extended circular image over a range of angles is the length of the portion

of the curve with a normal direction within that range. The extended

circular image of a closed convex curve is unique and invertible. One
may smooth a closed convex curve by convolving its extended circular

image with a smoothing filter (such as the Gaussian) and inverting the

result to produce a smoothed, closed convex curve. This representation

has most of the properties of a good shape representation. With regard

to completeness, its domain is complementary to that of Mokhtarian and
Mackworth with respect to the set of all closed curves.

Descriptions ofFunctions of Two Variables

It is important to have good shape descriptions of single-valued func-

tions of two variables—surfaces in 3-space. Describing the image inten-

sity surface I{x, y) and the visible surface depth map z{x, y) are two

examples of where this is needed. The depth map z(x, y) may be an
intermediate stage of description of the scene or it may be obtained

directly as a range image from an active sensor using sonar or structured

light from, say, a laser. Besl and Jain (1985) survey some recent work
in the description of surfaces.

Haralick et al. (1983) survey several papers on topographical clas-

sification of digital surface features and propose a descriptive scheme
based on a set of ten labels that include features such as peak, ridge,

saddle, planar, and pit. At each pixel in the intensity image, the param-

eters of an analytical facet model are estimated to give the best local fit.

Those parameters can then be used to determine slope, the principal

directions of curvature, and the two principal curvatures that determine

C Computational Vision Advances 555

the pixel labels. Nackman (1984) proposes a similar scheme for seg-

menting surfaces based on critical points (local maxima, local minima,

and saddle points).

Scale-sensitive descriptions of functions of two variables may be

obtained using the 2-D scale-space approach with the drawbacks dis-

cussed in the previous section.

Recovery of the depth map z(x, y) from the image intensity function

I(x, y) is in general an ill-posed problem (Tikhonov and Arsenin, 1977)

because the solution is not unique—the imaging process is not uniquely

invertible. If, however, the imaging model is simple, we can recover the

"best" surface that could have produced the given image, under known
illumination and imaging geometry and radiometry conditions. Suppose

the image intensity at a point on the surface imaged is known to depend

only on the surface gradient (p, q) (Mackworth, 1983). Then the image
irradiance equation takes the form (Horn, 1986):

I(x, y) = R(p, q)

Clearly, given I(x, y) on a digital grid as 1$ = I(xi, yd and the func-

tional form of R{p, q), we cannot determine {py-} and {qij} because they

are underconstrained. The extra constraint necessary can be provided by

insisting that the surface found be the one that minimizes a weighted

sum of the squared error in the image irradiance equation and a quad-

ratic measure of the smoothness of the surface (Ikeuchi and Horn, 1981).

This functional essentially selects a single surface from the set of all

possible surfaces. We can determine this surface by setting the partial

derivatives of this functional with respect to the orientation parameters

equal to zero and solving the large sparse set of linear equations by an
iterative relaxation method. Terzopoulos (1986, 1987) has shown that

the convergence of this process can be accelerated using multigrid relax-

ation methods, again demonstrating the importance of scale-sensitive

descriptions. (Further details on multigrid methods are given in Section

D.) Woodham (1987a) and Horn (1986) provide excellent overviews of

the shape-from-shading method and the use of multiple light sources and
photometric stereo (Woodham, 1980) to overconstrain the surface gra-

dients.

Another approach to determining shape-from-X is based on fractal

modeling of the surface (Pentland, 1983). If we assume that a surface

has isotropic fractal characteristics, then under certain imaging assump-
tions the image intensity surface will also have fractal characteristics.

By measuring those characteristics, we can arrive at estimates of the 3-

D surface characteristics.

Another class of shape-from-X methods is shape-from-contour. The
blocks world scene domain was the development ground for many of

these methods as documented in Volume III of the Handbook. Despite the

556 Computer Vision Update XXIII

fact that most researchers abandoned the blocks world, many important

theoretical and practical problems remained unsolved. Sugihara (1986)

has continued to attack those problems. His book is an excellent sum-
mary of his results. It is organized around the exposition of a four-module

procedure for the interpretation of line drawings as polyhedral scenes.

The first module is the classical Huffman-Clowes labeling. However,

Huffman-Clowes labeling may generate specious labelings that are not

realizable as polyhedral scenes (Mackworth, 1977a). Accordingly, the

second module determines which of the proposed labelings are realizable.

This test of geometric feasibility is carried out by reducing the problem

to the determination of a feasible solution to a linear programming
problem. The third module allows tolerance in the definition of geometric

feasibility by removing redundant constraints and "correcting" the orig-

inal line drawing (moving vertices and the like). The fourth module
allows the use of additional information sources such as 3-D range find-

ing, surface shading, and texture to pick a unique scene interpretation

from the infinite number of possible scenes in the equivalence class of

interpretations depicted by the image.

There were at least four main open issues at the end of the first

decade of blocks world research. First, procedures such as Huffman-
Clowes-Waltz labeling and gradient space reasoning applied necessary

but not sufficient tests for realizability (see Article XIII.B5, Vol. III).

Second, it was not clear how to characterize the degrees of freedom in

the scene equivalence class. Third, the computational complexity of the

problems and their algorithms was not understood (see Section C4 on

constraint satisfaction). Fourth, it was not known how to apply these

methods to "real" images, integrating these methods with other shape-

from-X methods and coping with noisy data. Sugihara has contributed

substantially to the solution of each of these problems.

The old question as to whether this approach will generalize outside

the blocks world must be faced. Obviously the techniques will not work
on images of tea cups or clouds. But, just as with the gradient space

approach, the underlying methodology does apply generally. It is a dem-
onstration of the power of characterizing the equivalence class of scenes

in terms of the constraints from the image imposed on the a priori degrees

of freedom of the scene (Mackworth, 1983) and furthermore of finding a

unique scene by minimizing a functional over the equivalence class.

Moreover, Sugihara (1986) contributes to the theme of structure rigidity

by developing the analogy between the duality principle behind gradient

space structures and the corresponding duality principle behind force

diagrams of rod and pin structures. These ideas will generalize far

beyond the blocks world as we design and build large space frame struc-

tures on earth and beyond. The developments in Sugihara's book depend
on recent advances in matroid theory, which makes them somewhat
inaccessible to many readers.

C Computational Vision Advances 557

Representing Three-Dimensional Shapes

As discussed in Article XIII.D6 of Volume III, three dimensional

object shape representations can be vertex and edge-oriented, surface-

oriented, or volume-oriented. The volume-oriented representation most

commonly mentioned in vision work is the generalized cylinder. As Bin-

ford (1982) demonstrates, it satisfies many of our shape representation

criteria. But note that it may not be unique—often an arbitrary choice

of axis must be made. Shafer and Kanade (1983) provide a very useful

categorization of generalized cones and cylinders. Brady and Asada's

(1984) smoothed local symmetries can be seen as a 2-D generalized cone

representation. It may be useful for accessing stored 3-D representations.

The extended Gaussian image (EGI) is an important 3-D object

representation tool that has received attention recently (Horn, 1986,

Chapter 16). For a convex solid object, this is an invertible shape rep-

resentation. It can be derived from the needle map produced by photo-

metric stereo or a depth map produced either by binocular stereo or by

a direct depth sensor.

The extended Gaussian image of an object is defined on the unit

Gaussian sphere that corresponds to the set of all possible normals on

the object. For a polyhedron, the EGI is a set of impulses. Each impulse

corresponds to the face with the appropriate normal. The weight of the

impulse is the area of the face. Little (1983) shows how to invert the

representation; he reports on an iterative algorithm that reconstructs a

polyhedron, given the areas and orientations of the faces.

The EGI of a smooth convex object must be approximated by tessel-

lating the Gaussian sphere. The weight of each facet on the sphere equals

the surface area on the object for which the normals lie within the facet.

Coarse-to-fine EGI representations can be constructed using successively

finer tessellations. The extended circular image discussed in Section A4
is the 2-D analog of the EGI.

An interesting proposal for 3-D shape modeling is the superquadrat-

ics approach (Barr, 1981) advanced by Pentland (1986). This can be seen

as an attractive alternative to the generalized cones approach. The prim-

itives in this approach are chosen from a parameterized family of super-

quadric 3-D shapes. A simple superquadric is a shape described by the

following equations:

x(t\, co) = (cos n)
€1

(cos 0))
€2

y(y\, co) = (cos n)
ei

(sin co)
62

z{r\, co) = (sin co)
62

where {x{t\, co), y(r\, co), z(r\, co)) is a 3-D vector that sweeps out a surface

parameterized by latitude n and longitude co. The shape of the surface

is controlled by the parameters €i, and e2 . For example, if en = €2 = 1,

the shape is a sphere. But the complete family of superquadrics also

558 Computer Vision Update XXIII

includes cubes, diamonds, pyramids, and cylinders. The complete mod-
eling system allows these parts to be stretched, bent, twisted, and
tapered, and then combined using Boolean combinations (ANDs, ORs,

and NOTs) to form new prototypes that can then, recursively, be again

deformed and combined with other prototypes. From the perspective of

our adequacy criteria for shape representation, this proposal offers sev-

eral advantages. The completeness of the domain of coverage is high,

though there are still some difficulties with such things as pentagonal

solids. Most other proposals such as generalized cones are essentially

subsumed by superquadrics.

C3. Object Recognition

Let us now review developments in the automatic recognition of objects.

We refer to several important systems that focus on recognition in a

"bin-picking" (factory robotics) environment. Bolles and Cain (1982)

present the "local-feature-focus method" for recognizing and located 2-D

possibly occluded objects. An object model consists of a graph whose
vertices represent features such as corners and holes and whose edges

are labeled with the distance and relative orientation of the two features

related by the edge. The edge constraints help to control the matching

process.

Similarly, Grimson and Lozano-Perez (1984) show how to use local

measurements of 3-D positions and surface normals to identify and locate

objects in a scene from a set of known objects. The objects are modeled

as polyhedra with three degrees of rotational freedom and three degrees

of translational freedom. The local measurements could come from a set

of tactile sensors or 3-D range sensors. The measurements are assumed
to have a small range of possible errors, although the normal measure-

ments are assumed to be less reliable than the position measurements.

The problem can easily be formulated as an exhaustive search problem;

the trick is to reduce the search space to one of manageable size. For

each object in the repertoire, the system searches an interpretation tree.

If there are s measurements and n faces for the object, the tree has s

levels and a branching factor of n at each level. The tree has, potentially,

n
s
leaves each corresponding to a set of assignments of the s measure-

ments to the n faces. However, the search tree may be cut off above the

leaf level using such binary constraints as:

1. Distance constraint—The distance between a pair of measurements
must be a possible distance between the pair of faces assigned to

them.

C Computational Vision Advances 559

2. Angle constraint—The range of angles between measured normals

must include the angle between the pair of faces assigned to them.

These and other constraints are used very effectively to prune the inter-

pretation trees as early as possible. Considerable data is provided to

demonstrate the power of using such local constraints to control the

global object matching process.

Grimson (1986) provides careful combinatorial analysis of the effi-

cacy of various constraints. Grimson (1987) extends the approach to the

recognition of objects that can vary in parameterized ways, with parts

that may have rotational, translational, scaling, and stretching degrees

of freedom.

Bolles and Horaud (1986) describe 3DPO, a system for determining

the 3-D position and location of parts in a jumbled bin of identical parts.

It generates hypotheses about part locations using 3-D edge features

extracted from range data and then matches distinctive features to con-

firm or refine the match.

Another successful approach to the bin-picking problem has been

reported by Ikeuchi and Horn (1984) (see also Horn (1986), Chapter 18).

This approach does not use direct range data, relying instead on photo-

metric stereo (Woodham, 1980, and Article XIII.A, Vol. III). Multiple

images are captured, changing the position of the light source but keep-

ing the camera in place. These images, combined with a reflectance map
model of the imaging situation and the surface reflectance, provide suf-

ficient constraints to extract an image-registered map of surface grad-

ients (the needle diagram).

The needle diagram can then be mapped onto a tessellated Gaussian

sphere, giving an orientation histogram where each facet contains the

sum of the object surface areas corresponding to that range of orienta-

tions. This is a discrete approximation to the visible half of the extended

Gaussian image (Section C2). This shape representation can be matched
against a stored histogram obtained from a prototype model of the part.

The best match gives the attitude (but not the distance away) of the

object to be picked up. The object gripper is moved out along the ray

from the camera on which the object is known to lie until a proximity

sensor is triggered, at which point the gripper can be oriented for the

known attitude of the object. The object is then grasped and removed.

Advances in 3-D object recognition from a single intensity image
beyond ACRONYM (Brooks, 1981) (Handbook, Article XIII.F3, Vol. Ill)

have been reported by Goad (1983) and Lowe (1985, 1987). Goad presents

an interesting view of recognition as special-purpose automatic program-

ming. His assumption is that a program to recognize a particular object

can be optimized offline for that object by considering all possible views

of the object to minimize actual recognition time. Recognition is seen as

560 Computer Vision Update XXIII

a process of searching for the camera viewpoint in an object-centered

coordinate system. As with Grimson and Lozano-Perez (1987), this pro-

cess is seen as a tree search that matches image data to model data. In

this case the matched data are lines from the image with edges in the

model. The order of matching is precompiled to minimize search times.

Recognition times on the order of one second are reported on a 1 MIP
machine.

Lowe (1987) has also described a system, SCERPO, that can recognize

and locate 3-D objects in single gray-scale images. The system first

extracts edge-based features and forms perceptual groups (based on col-

linearity, parallelism, and proximity) that are likely to be invariant over

a wide range of viewpoints. These are then matched against object struc-

tures with a probabilistic matching structure used to reduce the size of

the search space. Finally, the unknown viewpoint and model parameters

are determined by an iterative process of spatial correspondence based

on Newton's method. Results on an image of a bin of disposable razors

show robustness in the presence of occlusion and poor segmentation data.

Besl and Jain (1985) provide an extensive survey of 3-D object rec-

ognition systems and techniques with a particular emphasis on the use

of range images.

C4. Constraint Satisfaction

The term "constraint satisfaction" is used both to describe a class of

problems and to name a method of solving these problems. Constraint

satisfaction problems have considerable importance in vision and other

areas of AI (Mackworth, 1987b). We shall briefly survey the two main
approaches, emphasizing some recent results. Boolean constraint satis-

faction problems, as typified by Huffman-Clowes-Waltz labeling, are one

main class. The other is the class of optimization problems that used to

be known as probabilistic relaxation problems.

Boolean Constraint Satisfaction Problems

A Boolean constraint satisfaction problem (CSP) is specified if we
have a set of variables

V = {Vl, V2, ..., vn }

and a set of Boolean constraints limiting the set of allowed values for

specified subsets of the variables. Each variable takes on values in some
domain. The set of solutions to the CSP is the largest subset of the

Cartesian product of the domains of the n variables such that each n-

tuple in the set satisfies all the given constraint relations. We may have

C Computational Vision Advances 561

to list or describe all the solutions, find one, or just report if the solution

set contains any members—the decision problem (Mackworth, 1977b;

Haralick and Shapiro, 1979).

For example, deciding if an image can be labeled using the Huffman-

Clowes labels is a CSP decision problem. There the variables can corre-

spond to the junctions, the domains to the set of possible corners allowed

for each junction type, and the constraint relations to the binary con-

straint that the corners at each end of an edge must have the same label

for the edge. Or, dually, we could set up a CSP with the variables corre-

sponding to the edges, the domains to be the set of possible edge labels

allowed, and the constraint relations to the &-ary relations corresponding

to the set of possible corners allowed by each junction type.

Determining if a planar map can be colored with three colors is a

Boolean CSP that is NP-complete; therefore efficient (polynomial) algo-

rithms are unlikely to be found for the general class. Moreover, it has

recently been shown that even the Huffman-Clowes labeling CSP is NP-

complete (Kirousis and Papadimitriou, 1985).

Since the general problem may well require exponential time to

solve, approaches have concentrated on polynomial approximation algo-

rithms that enforce necessary but not sufficient conditions for the exis-

tence of a solution.

Waltz's (1975) filtering algorithm is one ofthe arc consistency approx-

imation algorithms. These algorithms are members of a class of network

consistency approximation algorithms (Mackworth, 1977b) further gen-

eralized by Freuder (1978). Mackworth and Freuder (1985) settled a long-

standing debate by proving that Waltz's arc consistency algorithm

requires time linear in the number of constraints, at most.

Although in the past it was felt that CSPs are amenable to parallel

solution, Kasif (1986) showed that arc consistency is "inherently" a serial

problem. Precisely, he has shown that arc consistency is log-space com-

plete for P. (Log-space complete problems for P are those problems solv-

able on a single Turing machine in polynomial time.) The implication is

that it is very unlikely that arc consistency can be solved in time poly-

nomial in log n with a polynomial number of processors. This somewhat
counterintuitive result can be understood better if we realize that we
can set up CSPs with serial data dependencies. A local inconsistency can

be discovered by one processor at a vertex, which when removed causes

an inconsistency at an adjacent vertex and so on. Since this propagation

is serial, all but one of the processes may be idle all the time.

Nudel (1983) has shown some tight results on expected time com-

plexity for classes of CSP on a single processor. Mackworth, Mulder, and
Havens (1985) have described a new algorithm, hierarchical arc consis-

tency, that exploits the situation where the values within a domain can

be organized hierarchically with common properties. They describe the

application of the algorithm in a schema-based recognition system for

562 Computer Vision Update XXIII

maps and provide theoretical and experimental complexity results. Malik
(1987) describes the application of the hierarchical approach to line

labeling.

Optimization Problems

In computational vision one is often not just satisfying a set of

Boolean constraints, rather one is optimizing the degree to which the

solution satisfies a variety of possibly conflicting constraints: trading one

constraint off against another. For example, Zucker, Hummel, and Rosen-

feld (1977 and as covered in Article XIII.E4) in a curve enhancement
application attach weights or "probabilities" in [0, 1] to each of nine

labels (corresponding to eight compass orientations and "no line") and
the relation matrices or "compatibilities" have entries in [-1, 1] that

measure the extent to which two values from related domains are com-

patible. This scheme, known as probabilistic relaxation, iterates the

application of a parallel updating rule, modifying the weights in each

domain until a fixed point is reached or some other stopping rule applies.

For an excellent overview of applications of this paradigm, see the survey

by Davis and Rosenfeld (1981).

The probabilistic interpretation has problems of semantics and con-

vergence—other interpretations are now preferred (Ullman, 1979; Hum-
mel and Zucker, 1983). Algorithms in this class have been called

cooperative algorithms (Julesz, 1971; Marr, 1982). Compatible values in

neighboring domains can cooperatively reinforce each other while incom-

patible values compete, trying to suppress each other. Each value in a

domain is competing against each of the other values in that domain.

Cooperative algorithms are attractive because they are inherently par-

allel, requiring only local neighborhood communication between uniform

processors that need only simple arithmetic operations and limited mem-
ory such as is available on the Connection Machine (Hillis, 1985; and
Article D5 of this Chapter). These features suggest implementations for

lower level perception (such as stereo vision) in artificial and biological

systems (Marr, 1982; Ikeuchi and Horn, 1981; Zucker, 1983; Ackley et

al., 1985; Little et al., 1987).

The design of these algorithms is best based on the minimization of

a figure-of-merit. Ikeuchi and Horn (1981), as described in Section C2,

carry out shape-from-shading using a figure-of-merit based on a combi-

nation of a measure of deviation from the image data and a measure of

surface smoothness. The iterative relaxation solution corresponds to

using gradient descent on the figure-of-merit, searching for the best set

of orientation values for the surface elements. Note that the domains do

not consist of a finite set of values each with a weight in [0, 1], but rather

they consist simply of one value that is the current best estimate of the

local value of the solution.

C Computational Vision Advances 563

Gradient descent techniques are only guaranteed to find the global

minimum of the figure-of-merit or "energy" surface if that surface is

everywhere an upward concave function of the state variables of the

system. In that case, there is only one local minimum and it is the global

minimum. If the surface has local minima that are not the global mini-

mum, techniques such as "simulated annealing" based on the Metropolis

algorithm and the Boltzmann distribution can be used to escape local

minima (Kirkpatrick et al., 1983, and Ackley et al., 1985).

Earlier, in Section C2, we described the shape-from-shading approach

of Ikeuchi and Horn (1981) as an example of using regularization theory

to solve an "ill-posed" problem. Regularization theory has been applied

to a wide variety of early (low-level) vision problems (Poggio et al., 1985).

For example, edge detection is an ill-posed problem because locating

zeros of the numerical first derivative of the image is unstable; its solu-

tion does not depend continuously on the input intensities. Smoothing
the image regularizes the problem, making discontinuity detection well

posed (Hildreth, 1987).

Poggio, Voorhees, and Yuille (1984) and Torre and Poggio (1986)

derive an optimal smoothing operator as follows. Suppose I(x) is the

image intensity function and S(x) is the smoothed intensity function

required. S(x) should fit the image intensities closely and be as smooth
as possible. In other words, S{x) should minimize

£ [Iixk) - S(xk)]
2 + X J* \S"(xfdx

k— i

where X is a constant controlling the tradeoff between fidelity to the

image and smoothness. The solution to this minimization problem is

equivalent to convolving the image with a cubic spline, which is similar

to the Gaussian.

Hadamard defined a problem to be well posed if its solution exists,

is unique, and depends continuously on the initial data. An ill-posed

problem, one that is not well posed, fails to satisfy one or more of these

conditions. A well-posed problem may, however, still be numerically ill

conditioned and oversensitive to noise in the initial data (Poggio et al.,

1985).

One general approach to the regularization of an ill-posed problem

(Tikhonov and Arsenin, 1977) is as follows. Suppose we wish to solve the

inverse problem: given Az = y, find z given the data y. This is solved by
determining the function z that minimizes

\\Az - yf + X\\Pz\\
2

where X, the regularization parameter, controls the relative importance

of the fit to the data and the degree of regularization of the solution.

\\Pz\\
2
is the regularization criterion—usually some measure of "smooth-

ness." Poggio, Torre, and Koch (1985) discuss the regularization of seven

564 Computer Vision Update XXIII

ill-posed problems in early vision: edge detection, optical flow, surface

reconstruction, spatiotemporal reconstruction, color, shape-from-shad-

ing, and stereo. Difficulties arise when the regularization imposes a

smoothness constraint on the world that may be inappropriate. They also

discuss how linear analog electrical and chemical neuron-based networks

could solve the minimization problems that arise in a regularization

approach.

D. VISION ARCHITECTURE

Overview

In the past decade the growth of interest in parallel computing within

the computer vision community has been changing the field. More and
more studies of machine vision are based on or motivated by a particular

computer architecture. This section discusses the most influential archi-

tectural directions, along with their relationships with computer vision.

Architecture's Influence on Algorithms. Although much
research in computer vision is driven purely by the insights about vision

that the research community has accumulated, some research responds

directly to the possibilities that new computer architectures offer. Com-
puting with cellular-logic processors, connection machines, and real-time

video processors has a flavor sufficiently different from conventional

mainframe, mini, and micro computing that it has encouraged lines of

research substantially different from those of the more traditional com-

putational vision.

Those who have programmed highly parallel machines such as the

CLIP4 and the Connection Machine say that after some experience, one

begins to think "in parallel" on a whole new, higher, algorithmic plane

than before. There are two reasons for this. First, the highly parallel

machines offer relatively high-level instructions as the conceptual build-

ing blocks for algorithm design. A typical instruction of such a machine
causes two images to be added together, whereas an ordinary computer
could only add two individual pixels together in one instruction (or it

might even take several instructions). Therefore the programmer is

encouraged to work at a higher level of abstraction than otherwise.

Second, these machines perform such operations very quickly—in a mat-

ter of microseconds, rather than seconds. This means that the program-

mer/researcher can effectively interact with the system at this high level

of abstraction, rather than work with it in a batch mode.

Relationship with Data Structures. Some highly parallel com-

puters are designed specifically to support operations on certain kinds of

data structures. The CLIP4 operates on images. The Connection Machine
can operate on images or pointer maps. Some pipelined systems such as

Aspex's PIPE operate on video data streams. Parallel pyramid machines
operate on pyramid data structures (see Uhr, 1987, for accounts of several

pyramid machines).

By operating on these data structures as units, many of these parallel

566 Computer Vision Update XXIII

architectures have an organizing principle built in; the data structure

becomes the machine structure.

Parallelism in Vision

Although the computing community generally has been moving
toward parallel processing, the case for parallelism in vision has been

promoted with even greater strength. This is both because the human
visual system seems to be a massively parallel system and because it is

fairly obvious how images can be handled in regularly structured parallel

systems (e.g., one processor per pixel). Nonetheless, parallelism can be

used in vision in a significant variety of ways. A review of these will

make the essential architectural alternatives clearer.

Parallel Methodologies

SIMD versus MIMD Systems. As is customary, let us divide the

realm of parallel architectures into two broad groups:

1. Those in which a single program is being executed and in which at

any one time all processors perform the same instruction on their

own data.

2. Those in which processors follow different programs or different cop-

ies of the same program more or less independently on their own
data.

In the terminology of Floyd, the first class of architectures are single-

instruction-stream/multiple-data-stream (SIMD) systems, whereas the

latter are multiple-instruction-stream/multiple-data-stream (MIMD) sys-

tems.

This distinction is a matter of processor autonomy; SIMD systems use

many processing elements with little autonomy—they are permitted

their own data but must execute programs in lockstep with one another.

On the other hand, MIMD systems have highly autonomous processors

that may work independently except when their programs call for com-

munication and synchronization with other processors. In reality, many
systems do not fall at one end or the other of this spectrum of processor

autonomy; for example, their processors may have conditional instruc-

tions based on local conditions or they may have highly autonomous
addressing capabilities. However, the SIMD-versus-MIMD distinction is

very useful in examining the broad realm of parallel architectures.

In the vision community, there are vocal proponents of both SIMD
and MIMD architectures. Consequently it is useful to understand the

relative strengths and weaknesses of the two families.

First, we have the matter of cost. If cost were measured in the number

D Vision Architecture 567

of logic gates in a computer, we could provide more processing elements

in an SIMD system than in an MIMD system for the same cost because

the SIMD system's processing elements do not require program counters

and instruction-decoding logic. Proponents of MIMD systems argue that

the flexibility ofMIMD systems allows them to be manufactured and sold

in larger quantities and therefore more cheaply than the more special-

purpose SIMD systems.

Second, let us consider the programming problems these architec-

tures present. The SIMD architectures tend to be structured according to

some data structure such as a two-dimensional image array, and pro-

gramming them is relatively easy. Whereas an MIMD system requires

the programmer to write synchronization protocols and work out load-

balancing arrangements, SIMD systems obviate most synchronization,

and the programmer is not normally concerned with load balancing. This

is because it is impractical to map computations onto the array in a

fashion that does not follow the machine's special (e.g., image) structure.

In some ways, SIMD systems execute parallel computations more
efficiently than MIMD systems—there is little communication overhead

between processing elements because their interactions are prepro-

grammed and presynchronized. Depending on the interconnection net-

work that links the processing elements, the overhead of routing data

can be very low in SIMD systems. A limitation of SIMD systems, however,

is that in computations where only one or a small number of processing

elements are doing meaningful work, all the others must either operate

on dummy or garbage data or wait idly. In MIMD systems, processors are

not constrained by the architecture to idle if other meaningful tasks are

ready to execute.

Data Flow. Another way of thinking about parallel processing is

in terms of the flow of data through a network of operations where the

data get transformed. The nodes of a data-flow network represent points

in the process where the data is operated upon. It is not necessary that

each node correspond to a processor; however, at some point during the

computation, each node must be assigned to some processor so that the

operation(s) can actually be performed. Several data objects might flow

to the same node; one operation involving several operands might take

place there, or a succession of operations might be performed at the node.

Data-flow paradigms have not been used much in machine vision

except to the extent that image-stream processing may be thought of as

data-flow processing. However, this particular kind of data-flow para-

digm is better known as pipelining. In the future, general data-flow

techniques may be appropriate for higher level (symbolic) processing of

visual information.

MIMD Systems: Butterfly, Hypercubes, RP3, Warp. Computer
systems that incorporate multiple processors, each executing an instruc-

568 Computer Vision Update XXIII

tion sequence that is independent of the others, are of interest because

of their ubiquity and flexibility, especially for vision-related computa-

tions at the symbolic level (rather than the pixel level). Several promi-

nent MIMD systems are these: the Butterfly developed by Bolt, Beranek,

and Newman, Inc., the Cosmic Cube developed at the California Institute

of Technology (Seitz, 1984), the RP3 developed by IBM (Pfister et at,

1985), and the Warp at Carnegie-Mellon University. Of these, the two

architectures designed principally for Al/vision applications are

described here in more detail.

The Butterfly architecture covers a family ofMIMD parallel processor

systems that can have up to 256 processors in a system (Crowther et al.,

1985). Each processor has a local memory with access time of about two

microseconds, but the processor can also access the local memories of all

the other processors through the network, and such an access takes

approximately six microseconds. The Butterfly architecture works well

on problems that can be decomposed for large-grain parallel processing

with only modest amounts of interprocessor communication.

The Warp computer (Annaratone et al., 1987) is a linear array of

programmable processors developed at Carnegie-Mellon University.

Intended primarily for computer vision, it can also be applied to signal

processing and scientific computation. A ten-processor prototype became
operational in 1986. Originally it was conceived of as a "systolic" system

in which data would be piped through the line of processors with SIMD
control. Later it was decided to make the processors autonomous, and it

became an MIMD system. The processors in the linear array operate on

32-bit words, and they are interconnected with 16-bit wide data paths.

The linear array is connected through an interface unit to a host (Sun-

3 workstation plus additional processors).

Multicomputers with Reconfigurable Interconnections. To
avoid the limitations of any particular fixed interconnection structure,

"reconfigurable" systems have been proposed. At a cost of slightly more
switching hardware, the data and control paths among processing ele-

ments and control units can be made programmable. The CHiP computer

and the PASM are two specific systems that have been described in the

literature.

A CHiP (configurable highly parallel) computer is an array of pro-

cessing elements interconnected with a system of wires and program-

mable switches (Snyder, 1982). Because the processing elements and
switches are laid out on VLSI chips in an integrated manner, it is possible

to achieve SIMD cellular array efficiency (including short data paths and
synchronous communication). It is also possible to embed rich nonplanar

interconnection graphs in a CHiP system because the switches can also

be programmed to produce long, convoluted data paths containing cross-

overs.

D Vision Architecture 569

The PASM (partitionable SIMD/MIMD) system permits the set of pro-

cessing elements to be grouped (under program control) and each group

associated with a separate control unit (Siegel et al., 1979 and Chu et

al., 1987). The effect of this is to allow PASM to contain a multiplicity of

SIMD parallel programs each executing independently of (or communi-
cating asynchronously with) the others. A number of simulations have

been reported that give the predicted performance of PASM on image
analysis tasks.

Neighborhood Parallelism and Pipelined Systems. Another
way to organize the processing of image data for parallel computation is

to treat the neighborhood as the atomic unit of computation. In a neigh-

borhood-parallel, pipelined image processing system, one neighborhood

(generally a 3x3 set of pixels) is processed in a single machine cycle. The
image data is shifted through the neighborhood processor so that every

neighborhood (of the given size) is processed in a single scan of the image.

Examples of neighborhood-parallel pipelined systems include PICAP
(Kruse, 1980), the Cytocomputer (Lougheed et al., 1980), and PIPE (Kent

et al., 1985), among others. It has also been proposed that such systems

be implemented optically (Huang et al., 1987).

Let us describe PIPE (pipelined image processing engine) in more
detail. It is a commercially available system that is oriented largely

toward the processing of digitized video data in real time (30 frames/

second). A PIPE consists of from three to eight "modular processing

stages," each of which consists of a frame buffer, a neighborhood pro-

cessing unit, and an address generator. In addition to these stages, there

are an input stage, output stage, control unit, and control and data paths.

Six modular processing stages and their interconnections are dia-

grammed in Figure D-l.

In typical operation, a stream of digitized video is passed from the

input stage to the first processing stage, where a filtering operation is

performed on it. By piping the image through the 3x3 neighborhood

processor (which computes a single output value with the help of pro-

grammable lookup tables), the filtering is accomplished in a frame time.

The result is then fed to the second stage where it is averaged with a

similarly filtered picture from the video frame preceding the one on
which this filtered image is based. This output is then passed to a third

modular processing stage where an edge template is applied. The final

outputs may be displayed or passed to a host for additional analysis.

Because almost all aspects of the computation are programmable (neigh-

borhood operators, data paths, and address generators), the programmer
has substantial flexibility in designing algorithms for PIPE.

Although processing the nine points of a neighborhood in parallel

can significantly speed up an image processing operation, an architecture

that provides a separate processor for each pixel of an image can achieve

570 Computer Vision Update XXIII

Processing Stages

M
>J

M ff\ MM
fwWWw

M

Slage Control Units

Pixelby Pixel

Within Stage
Recursion

Pixel by Pixel

Forward Transformation
(Image Flow)

Pixelby Pixel

Retrograde Transformation
(Feedback Flow)

Stage by Stage
Processing Control

Figure D-l. Modular processing stages and data paths in

PIPE (from Kent et al., 1985, courtesy of

E. Kent).

much faster performance, albeit at an increased hardware cost. The
mesh-based architectures of the next section demonstrate this.

Mesh Architectures

The period 1980 to 1987 saw major advances in the realization of

massively parallel mesh-oriented processors. Notable systems in this

group include the CLIP4, MPP, and the Connection Machine.

CLIP4. The first such machine, CLIP4 (Cellular Logic Image Pro-

cessor, version 4), became operational in early 1980 at the Department
of Physics and Astronomy, University College, London (Duff, 1976). The
CLIP4 consists of a 96 x 96 array of processing elements controlled by a

single program-interpretation unit. Each processing element (PE) of the

CLIP4 has one bit of input from each of its eight nearest neighbors. These

inputs can be masked under program control and then logically OR'ed

and further combined with Boolean data from the PE's local memory.
Thus each CLIP4 instruction performs a cellular-logic operation on an
entire 96x96 binary image in one cycle. A conventional computer would

have to perform over 10 billion operations per second to keep up with

the CLIP4 (Preston and Duff, 1984).

MPP. The Massively Parallel Processor (MPP) became operational

in 1983. Developed by Goodyear Aerospace under sponsorship of the

NASA Goddard Space Flight Center, the MPP contains a 128x128 array

of processing elements roughly comparable in power to the CLIP4 PEs.

D Vision Architecture 571

Each PE in the MPP has a reconfigurable shift register that speeds up
bit-serial arithmetic by a constant factor over the CLIP4; however, each

PE in the MPP can only access a bit of data from one neighbor at a time,

rather than eight at a time in CLIP4. The MPP augments the mesh with

a "staging memory," which is provided to lessen the effect of the input/

output bottleneck from which both the CLIP4 and the MPP suffer

(Batcher, 1980). By using later technology than the CLIP4 and a larger

array, the MPP achieves approximately the equivalent of one trillion

operations per second on a conventional computer (Preston and Duff,

1984).

Multilevel Architectures

Mesh-based architectures are highly efficient for computing trans-

formations of images where the output at a pixel is only a function of

the local neighborhood of that pixel. However, many computer vision

problems require the computation of more global and symbolic represen-

tations of an image. To make the more general kinds of computation

efficient, meshes have been augmented in a variety of ways. The CLIP4

and MPP actually include a feature that lets the control unit know
whether any PE has a nonzero value in its accumulator. However, this

is a very minimal augmentation to a mesh.

Pyramid Machines. A relatively straightforward augmentation to

a mesh is some additional meshes. Although it would be possible to build

a three-dimensional mesh and thereby increase processing power and
efficiency for 3-D spatial problems, such a system would still lack the

capability to efficiently gather data globally from an image. An alter-

native is to let the additional meshes get progressively smaller, tapering

to a point, thus forming a "pyramid." By connecting each PE to four

"children" in the mesh below and a "parent" in the mesh above, a quad-

tree of interconnections is added to the mesh interconnections. The pyr-

amid can then perform the computations of a tree machine if and when
desired. For example, after some filtering operation has been applied to

the image in the largest (bottom-level) mesh, the average value can be

obtained by letting each PE compute the average value from its four

children, until the global average emerges at the apex; the value is

obtained in 0(log N) time, whereas a pure mesh would require 0{N)
time.

Pyramid machines also efficiently support multiresolution compu-
tations (Tanimoto, 1983; Rosenfeld, 1984; and Dyer, 1987) as well as

hierarchical extensions to cellular logic (Tanimoto, 1984). These systems

can also be thought of as specialized processors for manipulating pyramid
data structures (see Article XIII.E1). Prototypes of pyramids have been
constructed at the University of Washington (Tanimoto et al., 1987),

572 Computer Vision Update XXIII

George Mason University (Schaefer et al., 1985), and are under devel-

opment elsewhere (Cantoni et al., 1987). Closely related to the pyramid
architecture is the mesh augmented by a tree without auxiliary meshes;

an example of such a system is NON-VON, developed at Columbia Uni-

versity (Shaw, 1985).

Darpa Image Understanding Architecture. Another multilevel

architecture based on a mesh is one developed at the University of

Massachusetts (Levitan et al., 1987). This system was designed specifi-

cally for vision applications in which computation is to proceed in real-

time at three levels of abstraction: the pixel (or low) level, the feature

(or intermediate) level, and the symbolic (or high) level. The architecture

calls for three corresponding processor levels: a mesh of 512x512 PEs,

another mesh (64x64) of more powerful intermediate-level processors,

and a collection of 64 LISP processors. Shared between the lowest two
levels is a one-gigabyte dual-ported memory, whereas a 512-megabyte
shared memory sits between the upper two levels.

The system is designed to efficiently support the algorithms devel-

oped for the VISIONS system (Riseman and Hanson, 1986), among others.

A prototype is currently under development with the cooperation of

Hughes Aerospace and sponsorship of the Defense Advanced Research

Projects Agency.

The Connection Machine. Rather than augment a mesh with a

tree or additional meshes, the Connection Machine uses a data-routing

network, which is physically arranged as a hypercube. The general archi-

tecture of the system is given in Hillis (1985). The first version of the

Connection Machine, the CM-1, became operational in 1986. That model
allows either a 128x128 or a 256x256 array of processing elements to

be installed. Each PE has 4K bits of local memory. The system operates

from a 4MHz clock. The CM-2, available since the fall of 1987, uses 64K
bits/PE and an 8MHz clock, plus optional floating-point hardware. The
hypercube-based router of each model is 12-dimensional, with each rou-

ter node responible for 16 PEs. However, the user programs data transfers

as if each PE were accessible directly from any other. A good account of

how the Connection Machine may be programmed for computer vision

problems is given in Little et al. (1987).

Part of the inspiration for the Connection Machine was NETL (Fahl-

man, 1979), which is a model for a large hardware system based on a

semantic-network/neural-network paradigm. Neural networks have also

inspired research into a more amorphous family of information process-

ing systems that are usually described as "connectionist."

Connectionist Architectures

The various models of computing that fall under the heading of

connectionist architectures generally have their roots in observations of

D Vision Architecture 573

human and other biological neural systems. In addition to the influence

of neurophysiology and experimental psychology, the connectionist

approach benefits from a recognition of some inherent limitations of

conventional computers.

The "Von Neuman bottleneck" is the principal limitation of a con-

ventional serial computer system. There is only one processing unit, the

CPU, and it can perform only one operation at a time. These operations

involve only one word-sized data object at a time, and memory can be

accessed directly only by using addresses (not by contents, by semantic

associations, or by structure). It is true that today's serial computers can

perform an operation in 100 nanoseconds. Yet these operations are com-

paratively simple, and those required for artificial intelligence appli-

cations are complex enough to need thousands of the elementary

operations. The result is that AI applications (and especially vision appli-

cations) run very slowly on Von Neumann-style computers.

Further underscoring the limitations of the traditional serial archi-

tecture is the fact that biological systems succeed at complex tasks even

though their neural computing elements run several orders of magnitude
more slowly than the corresponding electronic elements. The biological

"proof" that parallelism works starts with the observation that a neuron

requires on the order of one millisecond to fire, whereas computer switch-

ing times are on the order of 10

~

8
seconds (10 nanoseconds). To account

for the computing power and intelligence of the human brain, we are

forced to rule out the speed of the neuron as the key; the speed of human
perception must be due to the brain's parallel architecture, not the speed

of individual computing elements.

If we could have the same massive parallelism that we have in the

brain, but with electronic computing elements instead of neurons, it

seems that we should be able to obtain intelligent systems with 1,000

times the power of the brain. With systems of this power, what would
take a human three years to learn might take such a computer only one

day to learn, if the computer could somehow be provided with an efficient

enough learning environment. The hope that man will be able to improve

machine intelligence by building highly parallel, highly interconnected

computer systems has stimulated considerable activity in connectionist

research.

General Structure of a Connectionist System. A connectionist

architecture consists of a specification for an elementary processing ele-

ment, called a "unit" plus a specification of the interconnections among
a collection of these units.

A unit may be thought of as a processor: a computing element that

takes one or more inputs, maintains a state, and may produce one or

more outputs. One of the inputs may be external, from outside the system;

whereas other inputs to the unit may be the outputs or the states of

other units, which are tied to the unit by connections. The set of states

574 Computer Vision Update XXIII

that a unit can be in may be binary (i.e., the set {0, 1}), or it may be the

set of real numbers or some interval of the reals or the integers, or it

may be some other set. Many connectionist architectures use units that

sum their inputs and then compare the sum with a threshold. Other

systems use units that compute other, sometimes more complex, func-

tions.

The connections among units are like the arcs of a graph; units are

connected pairwise. Each connection from unit A to unit B is assigned a

weight (or a strength). The weights are usually real numbers that regu-

late the influence that the state of one unit can have on the state of

another. In some architectures, connections are constrained to be sym-

metric; in a symmetric-weight architecture, the connection from A to B
always has the same weight as the connection from B to A.

An important aspect of some connectionist architectures is the man-
ner in which the network changes over time. In addition to units chang-

ing state, the weights on the interconnecting arcs may change value.

Knowledge is represented in connectionist systems in different ways.

In the "localist" approaches, each unit holds some knowledge. In the

"wholistic" approaches, a given item of knowledge is represented as a

configuration of several (and possibly all) units.

In the remainder of this section, we present several well-known types

of connectionist networks and attempt to describe the manner in which

they may solve problems.

The terms "connectionist architecture," "connectionist network," and
"neural network" are often used interchangeably. We will often use the

abbreviations "network," or "net" to refer to such a system.

Perceptrons. In the late 1950s and 1960s, a class of connectionist

networks called perceptrons were studied (Rosenblatt, 1962). In the

excitement of the day, great expectations were raised about the capabil-

ities of perceptrons. Some negative results by Minsky and Papert (1969)

triggered a backlash that subdued attention given to these systems for

approximately a decade. Today there is a better understanding of per-

ceptrons that makes it clear that many of the limitations cited by Minsky
and Papert can be overcome by generalizing the model. (The introduction

of "hidden units" into the networks is the key to increasing their power.)

Perceptrons have been most commonly studied as layered systems in

which computations proceed bottom-up. Typically, input signals from

sensors are fed up into the first layer, in which combinations of the

inputs are weighted, summed, and thresholded to obtain a set of outputs

from the first layer. These are subsequently weighted, summed, and
thresholded in a second layer, etc., until the desired level of abstraction

is reached. At that level, the inputs are classified (e.g., "Grandmother is

in the picture").

Hopfield Nets. Whereas a. layered perceptron typically produces

each classification on a single separate output unit and therefore repre-

D Vision Architecture 575

sents results locally, another approach is to represent results as global

states of the network. This notion is combined with an iterative relaxa-

tion approach in the model of Hopfield (1982). In a Hopfield net, the

units are started in a pattern of states that represents the input vector.

Each unit then continually examines the units to which it is connected

and computes a local energy function. Whenever this energy would be

lowered by the unit's changing its state, it does so. Because the overall

energy in the network decreases as long as there is activity, a Hopfield

net must relax or converge. An analogous convergence criterion for relax-

ation labeling has been given by Hummel and Zucker (1983). The global

state at which it converges represents the output.

Let us describe the Hopfield model more precisely. For a network of

units connected symmetrically, the connection between unit i and unit j
has a weight Wtj, which represents the extent to which the two units

should attempt to be in the same state. A fixed threshold 0, is associated

with each unit. Let Si denote the (current) state of unit i; that is, si = 1

if unit i is on, and if it is off. Then the energy of the net (for a given

state vector) is

E = - 2 SiSjWij + 2 sSi
i<j i

Each unit can compute the effect that its changing state would have

on the total energy, using the formula,

AE = E io(t
- E lon = 2 SjWij

J

If the unit is off and AE is negative, it should turn on. If the unit is on

and AE is positive, it should turn off; otherwise, it should maintain its

current state.

To use a Hopfield net for pattern recognition, certain units can be

designated as input units. After holding the input units in the input

state until the rest of the system converges, the global state represents

a local minimum configuration consistent with the input. This state may
not be a global minimum.

Boltzmann Machines. To overcome the tendency of a pure Hop-

field net with hidden units to become trapped in local minima that are

not global minima, the transition of each unit from one state to another

can be made probabilistic. By starting the relaxation at a high "temper-

ature" in which transitions are almost completely random, and then

gradually lowering the temperature so that transitions tend more and
more to only reduce the system's energy, the probability of finding the

global minimum can be made close to 1. This method, known as simu-

lated annealing, was developed by Geman and Geman (1984) and inde-

pendently with a different emphasis and name—Boltzmann machine

—

by Fahlman, Hinton, and Sejnowski (1983).

576 Computer Vision Update XXIII

A Boltzmann machine is a computational system consisting of a set

of elements called units. Each unit may be in either the state or the 1

state, and it changes its state at each iteration (of a system cycle) sto-

chastically according to the probability:

(1 + e-^IT
)

where AE t is the difference in energy between the 1 state and the state

of the ith. unit, and T is a parameter analogous to temperature.

A Boltzmann machine can be thought of as a network of binary

processors that use a form of the Metropolis algorithm (Metropolis et al.,

1953) to update their states (Hinton and Sejnowski, 1987).

The Metropolis Algorithm. The Metropolis algorithm is a general

procedure for finding the minimal energy state of a system by stochas-

tically making local adjustments to it. It is a precursor of simulated

annealing. The algorithm goes as follows:

Randomly select a state S.

Set T <— initial temperature (high).

while T > do

Randomly generate an adjustment yielding state S'.

Compute the energy difference: AE «- E(S') - E(S).

If AE < then accept the state change: S <— S'.

else accept it anyway with probability P:

p <_ e
-^'T

x <— random number in [0,1].

Ifx<PthenS^S\
If there has been no significant decrease in E for many iterations

then lower the temperature T.

An important element of such a procedure is the temperature sched-

ule, which controls the gradual lowering of the temperature from one

iteration to the next. Geman and Geman (1984) suggest the following

schedule, where k is the iteration number and C is an appropriate energy

constant:

T = C/log(l + k)

Clearly, in early iterations, when T is large, the system energy is

permitted to increase often, thus allowing the system to escape from local

minima. As T approaches zero, the system energy decreases almost mon-
otonically; then the system "freezes" at a local minimum that is very

likely to be the global minimum.
Application to Figure/Ground Discrimination. To illustrate

how a stochastic-relaxation approach (which is based on a neural-net-

work model) can solve problems in machine vision, an example is pre-

sented in which a figure/ground discrimination must be made. As

D Vision Architecture 577

demonstrated in Kienker et al. (1986) and in Hinton and Sejnowski

(1987), a parallel system can efficiently solve this problem even when
the input information is noisy and incomplete.

A classical problem of visual perception is to take a binary (black

and white) image and decide whether the black regions are figure and
white regions background, or vice versa. The chalice of Rubin (Rubin's

vase) is a particularly ambiguous case (see Figure C-2). The problem is

just as difficult or more difficult when the black/white information is

gone and only edge information is available.

Let us consider an array such as that shown in Figure D-2. Each
square or triangle in the figure represents one unit. Each unit is con-

nected to those immediately adjacent to it. The square units may be

thought of as small regions, and the triangles represent oriented edges.

A triangle that is on (white) corresponds to a strong edge, whereas one

that is off indicates the lack of the corresponding edge. If a square is on,

it is interpreted as belonging to the figure; otherwise, it is taken to be

background.

The connections among units embody constraints about what consti-

tutes a reasonable figure/ground interpretation. The weights are sym-

metric and isotropic (equivalent under 90-degree rotations). A square is

connected to each of its eight nearest neighbors with weight +10. The

^

« «

n
Figure D-2. Cell array for figure/ground resolution, showing

(a) excitatory and inhibitory connections to a

square (shaded), and (b) excitatory and
inhibitory connections to a triangle (also

shaded) Diagram after Sejnowski and Hinton

(1987).

578 Computer Vision Update XXIII

weight between a triangle and the square A it points to is + 12, whereas
for the one B that it points away from the value is -12. For each of the

two squares on either side of A the weight with the triangle is +10,

whereas for those on either side of B the weight is -10. The weight

between an adjacent pair of triangles (facing in opposite directions) is

strongly inhibitory (-15).

The input to the algorithm is an initial assignment of values to each

unit. The inputs to the triangles represent the strengths of edges in an
image, and they are called "bottom-up" inputs since they depend on the

image data. On the other hand, the figure units are given initial weights

"top-down" from an imaginary process that controls the focus of atten-

tion.

In the example shown, the edge elements bordering on a 9x6 rec-

tangle were given initial inputs of 60; since those with values over 41

are shown in Figure D-3, this rectangle is visible. The top-down inputs

to the figure units were given values according to a Gaussian distribution

centered on the unit just to the right of the rectangle's center. The figure

units shown are those with values exceeding 1.

Applying simulated annealing to this network, Kienker et al. (1986)

found that it consistently converged on the desired solution. Figure D-
4 shows their results. Although the method provides a useful demon-
stration of cooperative computation with simulated annealing, it breaks

down on more complicated shapes such as spirals, unless a very long

annealing schedule is adopted. However, figure/ground distinctions are

also difficult for humans to make in cases of highly convoluted shapes

like spirals.

Figure D-3. Display of initial input values for the figure/

ground problem. (Courtesy of T. Sejnowski.)

D Vision Architecture 579

i r

l i

#

% mi _m m% \ _wm

_ ^ _ » \ %\

« ^ ^< ^ ^ m

W #. 2? % %> WW /:

1 1 1 i li

Figure D-4. Stages in the simulated annealing of the figure/

ground problem: (a) after three iterations and T
= 16.2, (b) after ten iterations and T = 7.7, and
(c) after 28 iterations and T = 3.3. (Courtesy of

T. Sejnowski.)

Multigrid Algorithms. Over the past decade it has been found

that certain vision problems require the solution of two-dimensional

numerical constraint satisfaction or optimization problems. Traditional

numerical algorithms for these problems are computationally expensive.

However, a class of numerical techniques called multigrid methods has

been brought to the attention of the vision community by Terzopoulos

(1984a). These methods make the solution of certain field reconstruction

problems computationally much more attractive than they otherwise

would be.

As noted in the preceding pages of this chapter, several vision prob-

580 Computer Vision Update XXIII

lems boil down to computing a complete set of surface points or image
pixels from sparse data. Stereo image analysis, for example, requires the

determination of a depth map from a sparse set of depth values that have

been determined by matching feature points in the two images (for

example, Grimson, 1981, 1985). Since the sparse data is generally not

sufficient to completely constrain the desired surface, assumptions about

continuity of the surface are usually brought to bear on the desired

solution. The resulting problem is one of finding the optimal surface that

obeys the surface continuity constraints (which may allow for disconti-

nuities) and the particular constraints imposed by the sparse data.

One formulation of this general reconstruction problem is as follows:

imagine the surface to be reconstructed as the equilibrium state of a

flexible plate that is supported by vertical pins of different lengths and
attached to them by springs with different spring coefficients. The pins

are irregularly spaced. The solution to the problem can be obtained by

using a "variational principle" (Courant and Hilbert, 1953), which states

that the equilibrium surface u(x,y) is one that minimizes the potential

energy of the system, which is composed of the energies due to the

deformation of the plate, the springs, general external forces (e.g., grav-

ity), external forces on the boundary, and bending moments applied to

the boundary.

After approximation and discretization, the use of a finite-differences

method to solve such a problem results in a large and sparse system of

linear equations,

AV = f

where uh
is the vector of nodal variables on the mesh using spacing h.

Although it is sometimes possible to solve such systems directly using

Gaussian elimination or other methods to obtain an exact solution (up

to machine precision), direct methods are more often than not inapplic-

able to realistic problems. For these cases, iterative techniques are

required. Conventional iterative methods such as the Jacobi and Gauss-

Seidel iterations continually update their current approximation, nor-

mally converging on the solution. Such convergence, however, is slow.

On the other hand, multigrid methods perform their iterations at differ-

ent levels of resolution in such a way as to accelerate the convergence.

The reason that the Jacobi and Gauss-Seidel methods converge

slowly (when they converge) is that each local updating operation works

on the neighborhood of a point in the mesh. Consequently excess energy

or a deficiency of energy in the current approximation can move only

one grid unit per iteration. This means that although high frequency

components of the error surface can be damped rapidly, the low frequency

portions require many iterations for their attenuation.

Multigrid relaxation achieves its acceleration of convergence by

D Vision Architecture 581

allowing the low frequency components of the error surface to move
rapidly across the space at coarse resolution levels. As in a pyramid data

structure, a single neighborhood at a coarse level covers a large area in

the finest level. Once a coarse level solution has been found, it can be

projected into the next finer level as the starting approximation for a

relaxation at that level.

Although the most obvious approach to multilevel relaxation (per-

forming a sequence of conventional relaxation operations starting at a

coarse level and progressing to the finest level) improves on unilevel

relaxation, the best results are obtained by a more complex schedule of

relaxation steps at different levels. Such schedules are discussed in

Briggs (1987), and Hackbusch and Trottenberg (1982). One schedule is

that implicit in the following two procedures adapted from Terzopoulos

(1986):

procedure FullMultiGrid

uhs <- SOLVE(s,u /ls
,f

/ls

);

for / <- s + 1 to L do

v* 1 <- EXPAND^'" 1

);

MultiGrid(Z,v*',f*0;

procedure MultiGrid

if I = s then u «- SOLVE(s,u, g)

else

for i <— 1 to n\ do

RELAX(/,u,g);

v «- REDUCE(u);
d <- Ah,-W + REDUCER - AV;
for i <— 1 to ri2 do MultiGrid(/ - l,v,d);

u <- u + EXPAND(v - REDUCE(u))
for i:

<- 1 to n3 do u <- RELAX(/,u,g)

Here SOLVE applies unilevel relaxation long enough to achieve some
desired degree of accuracy. RELAX applies a single unilevel iteration of

the relaxation. The parameters jii, 712, and m are set to obtain the best

performance for a given class of problems. The coarsest level (or "start-

ing" level) is indexed by s, and L is the index of the finest level. The
vector u^ s holds the approximation to the solution at the starting level.

Vectors u, and v hold current approximations at any level, with v one

level coarser than u at any particular time. The matrices Ahl and A*'" 1

represent versions of the original matrix Ah
at resolution levels / and

/ - 1, respectively.

The function EXPAND(w) takes a current approximation at level /
-

1 and produces an approximation at level / by using bilinear interpola-

tion. Thus it maps data from one grid to the next finer grid.

Similarly, the function REDUCE(w) takes the approximation at level

582 Computer Vision Update XXIII

/ and produces a reduced-resolution version of it at level / - 1 using

simple injection.

Multigrid methods have been applied by Terzopoulos to a variety of

visual reconstruction problems including reconstruction of geometric sur-

faces, depth maps from stereo, lightness, and optical flow fields. The
computational savings over unilevel relaxation were found to be quite

significant; typically the time required for the multigrid approach was
only two percent of that used by the non-multigrid method.

For addition information on multigrid algorithms see Terzopoulos

(1986, 1984a), the tutorial by Briggs (1987), the collection of papers

edited into a book by Hackbusch and Trottenberg (1982), and the seminal

paper of Brandt (1977). For related work on relaxation in computer

vision, see Article XIII.E4, and Glazer (1984).

Bibliography

List of Abbreviations

AAAI American Association for Artificial Intelligence

ACM Association for Computing Machinery

AFIPS American Federation of Information Processing Societies

AMS American Mathematical Society

CACM Communications of the Association for Computing Machinery

IEEE Institute for Electrical and Electronic Engineers

IJCAI International Joint Conferences on AI

IJCPR International Joint Conferences on Pattern Recognition

IRE WESCON Western Conference of the Institute for Radio Engineers

SIGART ACM Special Interest Group on AI

SIGPLAN ACM Special Interest Group on Programming Languages

SPIE Society of Photo-Optical Instrumentation Engineers

TINLAP Workshops on Theoretical Issues in Natural Language Processing

BIBLIOGRAPHY

AALPS. 1985. SRI: AI and the military. The Artificial Intelligence Report. 2(1):

6-7.

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. 1985. A learning algorithm

for Boltzmann machines. Cognitive Science 9:147-169.

Adelsberger, H. H., Pooch, U. W., Shannon, R. E., and Williams, G. N. 1986.

Rule based object-oriented simulation systems. Society for Computer Simu-
lation, Simulation Series 17(1): 107-111.

Adelson, B. and Soloway, E. 1985. The role of domain experience in software

design, IEEE Transactions on Software Engineering: 11(11)1351-1360.

Agresti, W. W. 1986. Tutorial on new paradigms for software development. Wash-
ington, D.C.: IEEE Computer Society Press.

Aiello, N. 1983. A comparative study of control strategies for expert systems:

AGE implementation of three variations of PUFF. Proceedings of the National

Conference on Artificial Intelligence, 1-4.

Aiello, N. 1986. User-directed control ofparallelism: The CAGE system. Technical

Report KSL Report 86-31, Knowledge Systems Laboratory, Computer Sci-

ence Department, Stanford University.

Aiello, N., Bock C, Nii, H. P., and White, W. C. 1981. AGE reference manual.
Heuristic Programming Project, Stanford University.

Allen, J. F. 1979. A plan-based approach to speech act recognition. Ph.D. thesis,

University of Toronto.

Allen, J. F. 1984. Towards a general theory of action and time. Artificial Intel-

ligence 23(2):123-154.

Allen, J. F. 1987. Natural language understanding. Menlo Park, Calif.: Benjamin/
Cummings.

Allen, J. F., and Koomen, J. A. 1983. Planning using a temporal world model.

Proceedings of the Eighth International Joint Conference on Artificial Intel-

ligence, Karlsruhe, West Germany.

Allen, J. F., and Perrault, C. R. 1980. Analyzing intention in utterances. Artificial

Intelligence 15 (3):143-178 (reprinted in RNLP).

American Association for Artificial Intelligence. 1989. Proceedings of the confer-

ence on innovative applications of artificial intelligence. Stanford University,

March 28-30, Menlo Park, Calif.

Annaratone, M., Arnould, E., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, O.,

and Webb, J. A. 1987. The Warp computer: Architecture, implementation,
and performance. IEEE Transactions on Computers C-36(12):1523-1538.

Appelt, D. E. 1982. Planning natural language utterances to satisfy multiple goals

.

Technical Note 259, SRI International, Menlo Park, Calif.

Aragones, J. K., and Bonisonne, P. P. 1985. LOTTA: An object-based simulator
for reasoning in antagonistic situations. General Electric Corporated
Research and Development.

585

586 Bibliography

Arkin, R. C, Riseman, E. M., and Hanson, A. R. 1987. ArRA: An architecture

for vision-based robot navigation. Proceedings of the DARPA Image Under-
standing Workshop, Los Angeles, Calif., 17-431.

Arthur Anderson & Co. Cell design aid. Artificial Intelligence Series.

Arthur, L. J. 1988. Software evolution: The software maintenance challenge. New
York: Wiley, 1-13.

Asada, H., and Brady, J. M. 1986. The curvature primal sketch. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence PAMI-8:2-14.

Asano, T., and Yokoya, N. 1981. Image segmentation schema for low-level com-
puter vision. Pattern Recognition 14:267-273.

Ayache, N., and Lustman, F. 1987. Fast and reliable passive trinocular stereo-

vision. Proceedings of the First International Conference on Computer Vision,

London, England, 422-427.

Babaud, J., Witkin, A. P., Baudin, M., and Duda, R. O. 1986. The uniqueness of

the Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern

Analysis and Machine Intelligence PAMI-8: 15-25.

Baker, D. N., Lambert, J. R., and McKinion, J. M. 1983. S.C. Agric. Exp. Stn.

Tech. Bull. 1089.

Baker, H., and Binford, T. O. 1981. Depth from edge and intensity based stereo.

Proceedings of the Seventh International Joint Conference on Artificial Intel-

ligence, Vancouver B.C., 631-636.

Balzer, R. 1985. A 15 Year Perspective on automatic programming. IEEE Trans-
actions on Software Engineering (SE-1 1)1 1:1257-1267.

Balzer, R. 1985. Automated enhancement of knowledge representations. Pro-

ceedings of the Ninth International Joint Conference on Artificial Intelligence,

Los Angeles, Calif., 203-207.

Balzer, R., Cheatham, T. E., and Green, C. 1983. Software Technology in the

1990s: Using a New Paradigm. IEEE Computer 16(ll):39-45.

Barnard, S. T. 1987. Stereo matching by hierarchical microcanonical annealing.

Technical Note No. 414, SRI International, Menlo Park, Calif.

Barnard, S. T., and Fischler, M. A. 1987. Stereo vision. In S. Shapiro (Ed.), The
encyclopedia of artificial intelligence. New York: Wiley, 1083-1090.

Barr, A. 1981. Superquadrics and angle-preserving transformations. IEEE Com-
puter Graphics and Applications 1:1-20.

Barr, A., Cohen, P. R., and Feigenbaum, E. A. 1981. Handbook of artificial

intelligence, Volumes I-III. Reading, Mass.: Addison-Wesley.

Barstow, D. 1988. Automatic Programming for Streams II: Transformational

Implementation. Proceedings of the Tenth International Conference on Soft-

ware Engineering, Singapore.

Barstow, D. 1984. A perspective on automatic programming. AI Magazine 5(1):5-

27.

Barstow, D. 1985. Domain-specific automatic programming. IEEE Transactions

on Software Engineering, SE-ll(ll): 1321-1336.

Barstow, David R. 1979. An experiment in knowledge-based automatic program-
ming. Artificial Intelligence Journal 12(2):73-119.

Barth, P., Gutery, S., and Barstow, D. 1985. The Stream Machine: a data flow

architecture for real-time applications. Proceedings of the Eighth Interna-

tional Conference on Software Engineering, London, England, 103-110.

Batcher, K. E. 1980. Design of a massively parallel processor. IEEE Transactions

on Computers C-29:836-840.

Bibliography 587

Bates, M. 1978. The theory and practice of augmented transition networks. In

L. Bloc (Ed.), Natural language communication with computers. New York:

Springer.

Benda, M., Jagannathan, V., and Dodhiawalla, R. 1985. On optimal cooperation

of knowledge sources. Technical Report BCS-G2010-28, Boeing AI Center,

Boeing Computer Services, Bellevue, Wash.

Berleant, D., and Kuipers, B. 1988. Using incomplete quantitative knowledge in

qualitative reasoning. Proceedings of the Seventh National Conference on
Artificial Intelligence: 324-329.

Besl, P. J., and Jain, R. C. 1985. Three-dimensional object recognition. ACM
Computing Surveys 17(1):75-145.

Biggerstaff, T. J., and Perlis, A. J. (Eds.) 1989. Software Reusability, Vol. 1:

Concepts and Models. Reading, MA: Addison-Wesley Publishing Company.

Biggerstaff,T. J., Hoskins, J., and Webster, D. 1989. Design Recovery for Reuse
and Maintenance. MCC Technical Report, STP-378-88.

Binford, T. O. 1982. Survey of model-based image analysis systems. International

Journal ofRobotics Research 1(1): 18-64.

Birnbaum, L., and Selfridge, M. 1981. Conceptual analysis of natural language.

In R. Schank and C. Riesbeck (Eds.), Inside computer understanding. Hills-

dale, N.J.: Lawrence Erlbaum.

Birtwistle, G. M., Dahl, O. J., Myhrhaug, B., and Nygaard, K. 1968. SIMULA
BEGIN, Studentliteratur, Lund, Sweden.

Bisiani, R. 1986. A software and hardware environment for developing AI appli-

cations on parallel processors. Proceedings of the National Conference on
Artificial Intelligence, Philadelphia, 742-747.

Blakemore, J. W., Dolins, S. B., and Thrift, P. 1986. A general purpose robotic

vehicle simulator. Society for Computer Simulation, Simulation Series 18(1):

151-161.

Bliss, D. R. 1979. Analysis of the dynamic behavior of the tryptophone operon of

escherichia coli: The functional significance of feedback inhibition. Ph.D.
Thesis, Dept. of Biology, University of California at Riverside.

Blum, H., and Nagel, R. N. 1978. Shape description using weighted symmetric
axis transforms. Pattern Recognition 10:167-180.

Bobrow, D. G. (Ed.) 1980. Artificial intelligence (Special Issue on Nonmonotonic
Logic) 13:1-1-2.

Bobrow, D. G. 1984. Qualitative reasoning about physical systems: An introduc-

tion. Artificial Intelligence 24:1-5.

Bobrow, D. G., and Stefik, M. J. 1986. Perspectives on Artificial Intelligence

Programming. Science 231:951-957.

Boehm, B. W. 1986. A spiral model of software development and enhancement.
ACM SIGSOFT Software Eng. Notes ll(4):22-42.

Boehm, B. W. 1981. Software engineering economics. Englewood: Prentice Hall.

Bolles, R. C, and Cain, R. A. 1982. Recognizing and locating partially visible

objects: The local-feature-focus method. International Journal of Robotics

Research l(3):57-82.

Bolles, R. C, and Horaud, P. 1986. 3DPO: A three-dimensional part orientation

system. International Journal ofRobotics Research 5(3):3-26.

Bond, A. H., and Gasser, L. 1988. Readings in distributed artificial intelligence.

San Mateo, Calif.: Morgan Kaufmann.

588 Bibliography

Borgida, A., Greenspan, S., and Mylopoulos, J. 1985. Knowledge representation

as the basis for requirements specifications. IEEE Computer, 18(4):82-90.

Brady, J. M. 1983. Criteria for representations of shape. In J. Beck, B. Hope, and
A. Rosenfeld (Eds.), Human and machine vision. New York: Academic Press.

Brady, J. M., and Asada, H. 1984. Smoothed local symmetries and their imple-

mentation. In Proceedings of the First International Symposium on Robotics

Research. Cambridge, Mass.: MIT Press, 331-354.

Brandt, A. 1977. Multi-level adaptive solutions to boundary value problems.

Mathematics of Computation 31:333-390.

Briggs, W. L. 1987. A multigrid tutorial. Philadelphia, Penn.: Society for Indus-

trial and Applied Mathematics.

Brinkley, J. F., Buchanan, B. G., Altman, R. B., Duncan, B. S., and Cornelius,

C. W. 1987. A heuristic refinement for spatial constraint satisfaction problems.
Technical Report KSL-87-05, Knowledge Systems Laboratory, Computer Sci-

ence Department, Stanford University.

Brodie, M. L., Mylopoulos, J., and Schmidt, J. W. (Eds.), 1984. On conceptual

modeling: Perspectives from Artificial Intelligence. New York: Springer-Ver-

lag.

Brooks, F. P., Jr. 1982. The mythical man-month. Reading, Mass.: Addison-
Wesley.

Brooks, R. A. 1981. Symbolic reasoning among 3-D models and 2-D images.

Artificial Intelligence 17:285-348.

Brown, C. M. 1984. Computer vision and natural constraints. Science

224(4655):1299-1305.

Brown, H., Buckman, J. et al. 1982. Final report on HANNIBAL. Technical Report,

ESL, Inc. Internal document.

Brown, H., Tong, C, and Foyster, G. 1983. Palladio: An exploratory environment
for circuit design. IEEE Computer, 41-56.

Brown, J. S., and Burton, R. R. 1978. A paradigmatic example of an artificially

intelligent instructional system, Int'l. J. of Man-Machine Studies 10:323-

339.

Brown, T., Alexander, S. M., Jagannathan, V., and Kirchner, R. 1985. Demon-
stration of an expert system for manufacturing process control. In G. Bir-

twistle (Ed.), Artificial intelligence, graphics, and simulation. The Society

for Computer Simulation, 110-113.

Browning, J. D., and Tanimoto, S. L. 1982. Segmentation of pictures into regions

with a tile-by-tile method. Pattern Recognition 15:1-10.

Brownston, L., Farrel, R., Kant, E., and Martin, N. 1985. Programming expert

systems in OPS5. Reading, Mass.: Addison-Wesley.

Broy, Manfred, and Pepper, P. 1981. Program development as a formal activity.

IEEE Transactions on Software Engineering SE-7(1): 14-22.

Brutlag, D. 1987a. Symbolic simulation of DNA metabolism. Proposal, Depart-

ment of Biochemistry, Stanford University.

Brutlag, D. 1987b. Expert system simulations as active learning environments.
Proposal, Department of Biochemistry, Stanford University.

Bryan, M. 1987. Predicting the future proves easy with forecast pro planner. PC
Week.

Bryant, J. 1979. On the clustering of multidimensional pictorial data. Pattern

Recognition 11:115-125.

Bibliography 589

Buchanan, B. G. 1986. Expert systems: Working systems and the research lit-

erature. Expert Systems 3(1):32-51.

Buchanan, B. G. 1988. Artificial intelligence as an experimental science. In J. H.

Fetzer (Ed.), Aspects of artificial intelligence. Amsterdam: D. Reidel.

Buchanan, B. G., and Shortliffe, E. H. 1984. Rule-based expert systems: The
MYCIN experiments of the Stanford heuristic programming project. Reading,

Mass.: Addison-Wesley.

Bundy, A. (Ed.) 1986. Catalogue of artificial intelligence tools. New York: Sprin-

ger-Verlag.

Bundy, A. A., and van Harmelen, A. F. 1988. Experiments with proof plans for

induction, Report UK-EDNB-DAI-413, University of Edinburgh.

Burstall, R. M., and Darlington, J. 1977. A transformation system for developing

recursive programs. JACM 24(l):44-67.

Bylander, T. 1987. Using consolidation for reasoning about devices. Technical

Report, Laboratory for Artificial Intelligence Research, Department of Com-
puter and Information Science, Ohio State University.

Cammarata, S., McArthur, D., and Steeb, R. 1983. Strategies of cooperation in

distributed problem solving. Proceedings of the Eighth International Joint

Conference on Artificial Intelligence, Karlsruhe, West Germany, 767-770.

Canny, J. F. 1986. Finding edges and lines in images. MIT Artificial Intelligence

Lab., Tech. Rep. 720, Cambridge, Mass.

Cantoni, V., and Levialdi, S. 1987. PAPIA: A case history. In L. Uhr (Ed.), Parallel

computer vision. Orlando, Fla.: Academic Press, 3-13.

Carberry, S. 1983. Tracking user goals in an information-seeking environment.
Proc. AAAI. Washington, 59-63.

Carbonell, J. G. 1983. Derivational analogy and its role in problem solving.

Proceedings of the National Association for Artificial Intelligence, 64-69.

Carbonell, J. G. 1986. Derivational analogy: A theory of reconstructive problem
solving and expertise acquisition. In R. Michalski, J. Carbonell, T. Mitchell,

Eds., In machine learning: An artificial intelligence approach, Volume II, Los
Altos, Calif.: Morgan Kaufmann, 371-392.

Cellier, F. E., and Zeigler, B. P. 1987. AI's role in control of systems: Structural

and behavioral knowledge. Proceedings of the Second European Simulation
Multiconference, Vienna, Austria, 165-171.

Chandrasekaran, B. 1986. Generic tasks in knowledge-based reasoning: High-
level building blocks for expert system design. IEEE Expert l(3):23-30.

Chang, E. 1987. Participant systems. In M. N. Huhns (Ed.), Distributed artificial

intelligence. New York: Pitman, 311-339.

Cheatham, T. E. 1984. Reusability through program transformations. IEEE
Transactions on Software Engineering 10:5, 589-594, (reprinted in Readings
in Artificial Intelligence and Software Engineering).

Chen, P. C, and Pavlidis, T. 1980. Image segmentation as an estimation problem.
Computer Graphics and Image Processing 12:153—172.

Chomsky, N. 1956. Three models for the description of language. IRE Transac-
tions PGIT 2:113-124.

Chu, H., Delp, E. J., and Siegel, H. J. 1987. Image understanding on PASM: A
user's perspective. Proceedings of the Second International Conference on
Supercomputing, May, 440-449.

Clancey, W. J. 1983. The epistemology of a rule-based expert system—A frame-
work for explanation. Artificial Intelligence 20.

590 Bibliography

Clancey, W. J. 1985. Heuristic classification. Technical Report KSL-85-5, Knowl-
edge Systems Laboratory, Computer Science Department, Stanford Univer-
sity.

Clancey, W. J. 1985. Heuristic classification. Artificial Intelligence 27(3):289-350.

Clancey, W. J. 1986. From GUIDON to NEOMYCIN and HERACLES in twenty
short lessons: ONR final report 1979-1985. AI Magazine 7(3)40-60, 187.

Clark, J. J. 1987. Singularities of contrast functions in scale space. Proceedings

of the First International Conference on Computer Vision, London, England,
491-495.

Clearwater, S. and Engelmore, R. Expert systems in particle beam line analysis.

Unpublished manuscript, Knowledge Systems Laboratory, Stanford Univer-
sity.

Cleary, J., Goh, K., and Unger, B. 1985. Discrete event simulation in Prolog. In

G. Birtwistle (Ed.), Artificial intelligence, graphics, and simulation. The
Society for Computer Simulation, 8-13.

Cline, T., Fong, W., and Rosenberg, S. 1985. An expert advisor for photolithog-

raphy. Technical Report, Hewlett-Packard, Palo Alto, Calif.

Clocksin, W. F., and Mellish, C. S. 1981. Programming in PROLOG. New York:

Springer-Verlag.

Cohen, P. R. 1978. On knowing what to say: planning speech acts. Ph.D. thesis,

University of Toronto.

Cohen, P. R., and Howe, A. E. 1988. How evaluation guides AI research. AI
Magazine 9(4):35-43.

Cohen, P. R., and Levesque, H. J. 1987. Intention = choice + commitment.
Proceedings of the National Conference on Artificial Intelligence, 410-415.

Cohen, P. R., and Perrault, C. R. 1979. Elements of a plan-based theory of speech

acts. Cognitive Science 3:177-212 (reprinted in RNLP: 423-440).

Cohen, P., and Howe, A. 1988. Toward AI research methodology: Three case

studies in evaluation. COINS Report 88-31. (To appear in the IEEE Trans-

actions on Systems, Man, and Cybernetics, 1989.)

Collins, W. R., and Feyock, S. 1985. Syntax programming, expert systems, and
fault diagnosis. Society for Computer Simulation, Simulation Series, 41-46.

Comis, D. 1986. When Comax speaks, farmers listen. Agricultural Research, 6-
10.

Conry, S. E., Meyer, R. A., and Lesser, V. R. 1988. Multistage negotiation in

distributed planning. In A. H. Bond and L. Gasser (Eds.), Readings in dis-

tributed artificial intelligence. San Mateo, Calif.: Morgan Kaufmann, 367-
384.

Conry, S., Meyer, R., and Searlemen, J. 1985. A shared knowledge base for

independent problem solving agents. Proceedings of the IEEE Expert Systems
in Government Symposium, McLean, Va.

Constable, R. 1971. Constructive mathematics and automatic program writers.

IFIP, Ljubljana, Yugoslavia, 229-233.

Constable, R. L., Allen, S. F., Bromley, H. M. et al. 1986. Implementing mathe-
matics with the Nuprl Proof Development System: New York: ACM Press.

Corkill, D. D. 1979. Hierarchical planning in a distributed environment. Pro-

ceedings of the Sixth International Joint Conference on Artificial Intelligence,

Cambridge, Mass., 168-175. (An extended version was published as Tech-

nical Report 79-13, Department of Computer and Information Science, Uni-
versity of Massachusetts, Amherst, Mass., February 1979.)

Bibliography 591

Corkill, D. D. 1983. A framework for organizational self-design in distributed

problem solving networks. Ph.D. thesis, University of Massachusetts.

Corkill, D. D., and Lesser, V. R. 1983. The use of meta-level control for coordi-

nation in a distributed problem solving network. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, 748-756.

Courant, R., and Hilbert, D. 1953. Principles of mathematical physics, Vol. 1.

London: Interscience.

Croft, W. B., and Lefkowitz, L. S. 1988. Knowledge-based support of cooperative

activities. Proceedings of the Twenty -first Annual Hawaii International Con-
ference on System Sciences, 312-318. (Published by IEEE Computer Society

Press, Catalog Number 88TH0213-9.)

Crowther, W., Goodhue, J., Gurwitz, R., Rettberg, R., and Thomas, R. 1985. The
Butterfly parallel processor. Newsletter, Computer Architecture Technical

Committee, IEEE Computer Society, Sept./Dec, 18-45.

Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of the software design

process for large systems. Communications of the ACM, 31, 1268-1287.

Dahl, O. J., and Nygaard, K. 1966. SIMULA—an Algol Based Simulation Lan-
guage. Communications of the ACM 9, 1268-1287.

Dangelmaier, W., Becker, B. D., and Himmelstoss, P. 1987. Concepts and expe-

riences building a knowledge base for strategy construction in material flow

networks. Proceedings of the Second European Simulation Multiconference,

Vienna, Austria, 83-87.

Darlington, J. 1981. An experimental program transformation and synthesis

system. Artificial Intelligence 16, North-Holland Publishing Company, 1-46.

Darlington, J., Khoshnevisan, H., McLouughlin, L. M. J., Perry, N., Pull, H. M.,

Sephton, K. M., and While, R. L. 1989. An introduction to the Flagship

Programming Environment. Technical Report, Department of Computing,
Imperial College, London, England.

Darlington, J., and Pull, H. M. 1987. A program development methodology based
on a unified approach to execution and transformation. IFIP-TC-2 Workshop
on Partial Evaluation and Mixed Computation GI, Avernaes, Denmark.

Davis, E. 1986. A logical framework for solid object physics. Technical Report

245, Courant Institute of Mathematics, New York University.

Davis, E. 1987. Constraint propagation with internal labels. Artificial Intelligence

32(3).

Davis, L. S., and Rosenfeld, A. 1981. Cooperating processes for low-level vision:

A survey. Artificial Intelligence 17:245-263.

Davis, R. 1982. Expert systems: Where are we? And where do we go from here?

AI Magazine 3(2):l-22.

Davis, R. 1984. Diagnostic reasoning based on structure and behavior. Artificial

Intelligence 24:347-410.

Davis, R. 1987. Robustness and transparency in intelligent systems. In Human
Factors in Automated and Robotic Space Systems. Committee on Human
Factors, National Research Council, Washington, D.C., 211-233.

Davis, R. 1989. Expert systems: How far can they go? Part 1. AI Magazine
10(l):61-68.

Davis, R., and King, J. 1977. An overview of production systems. In E. W. Elcock

and D. Michie (Eds.), Machine intelligence 8: Machine representative of
knowledge. New York: John Wiley.

592 Bibliography

Davis, R., and Lenat, D. B. 1982. Knowledge-based systems in artificial intelli-

gence. New York: McGraw-Hill.

Davis, R., and Smith, R. G. 1983. Negotiation as a metaphor for distributed

problem solving. Artificial Intelligence: 20:63-109.

de Kleer, J. 1979. The origin and resolution of ambiguities in causal arguments.
Proceedings of the International Joint Conference on Artificial Intelligence,

Cambridge, Mass.

de Kleer, J. 1984. How circuits work. Artificial Intelligence 24:205-280.

de Kleer, J. 1985. An assumption-based TMS. Artificial Intelligence 28(2): 127-
162.

de Kleer, J., and Bobrow, D. G. 1984. Qualitative reasoning with higher order

derivatives. Proceedings of the National Conference on Artificial Intelligence.

de Kleer, J., and Brown, J. S. 1984. Qualitative physics based on confluences.

Artificial Intelligence 24:7—83.

de Kleer, J., and Brown, J. S. 1986. Theory of causal ordering. Artificial Intelli-

gence 29:31-61.

deKleer, J., and Brown, J. S. 1984. A qualitative physics based on confluences.

Artificial Intelligence 24:7—83.

Deriche, R. 1987. Optimal edge detection using recursive filtering. Proceedings

of the First International Conference on Computer Vision, London, England,
501-505.

Dershowitz, Nachum. 1983. The evolution ofprograms. Boston: Birkhauser.

Deutsch, T. 1986. The use of UC-PROLOG for medical simulation. Society for

Computer Simulation, Simulation Series 17(l):53-57.

Dewar, R.B.K., Grand, A., Liu, S. C, Schwartz, J. T., and Schonberg, E. 1979.

Programming by refinement, as exemplified by the SETL representation

sublanguage. ACM Transactions on Programming Languages and Systems
l(l):27-49.

Dietzen, S. R., and Scherlis, W. L. 1986. Analogy in program development.

Proceedings of the Second Conference on the Role of Language in Problem
Solving, Amsterdam: North Holland, 95-113.

Dormoy, J. 1988. Controlling qualitative resolution. Proceedings of the Seventh
National Conference on Artificial Intelligence: 319-323.

Dormoy, J., and Raiman, O. 1988. Assembling a device. Proceedings of the Sev-

enth National Conference on Artificial Intelligence: 330-335.

Doukidis, G. I., and Paul, R. J. 1986. Experiences in automating the formulation

of discrete event simulation models. Society for Computer Simulation, Sim-
ulation Series 18(l):79-90.

Dowty, D. R., Wall, R. E., and Peters, S. 1981. Introduction to Montague seman-
tics. Dordrecht, Holland: D. Reidel.

Doyle, J. 1979. A truth maintenance system. Artificial Intelligence 24:231-272.

Draper, B. A., Collins, R. T., Brolio, J., Hanson, A. R., and Riseman, E. M. 1988.

Issues in the development of a blackboard-based schema system for image
understanding. In R. Engelmore and T. Morgan (Eds.), Blackboard systems.

Wokingham, England: Addison-Wesley.

Dreyfus, H., and Dreyfus, S. 1986. Why expert systems do not exhibit expertise.

IEEE Expert l(2):86-90.

Duff, M. J. B. (Ed.) 1986. Intermediate-level image processing. London: Academic
Press.

Bibliography 593

Duff, M. J. B. 1976. CLIP4: A large scale integrated circuit array parallel proc-

essor. Proceedings of the Third International Joint Conference on Pattern

Recognition, Coronado, Calif., 728-733.

Dumas, M. B. 1984. Simulation modelling for hospital bed planning. Simulation.

Durfee, E. H. 1988. Coordination of distributed problem solvers. Norwell, Mass.:

Kluwer Academic Publishers.

Durfee, E. H., Lesser, V. R., and Corkill, D. D. 1987. Coherent cooperation among
communicating problem solvers. IEEE Transactions on Computers
C(ll):1275-1291.

Durfee, E. H., Lesser, V. R., and Corkill, D. D. 1987. Cooperation through com-
munication in a distributed problem solving network. In M. N. Huhns (Ed.),

Distributed artificial intelligence. New York: Pitman, 29-58.

Durfee, E. H., and Lesser, V. R. 1987. Using partial global plans to coordinate

distributed problem solvers. Proceedings of the Tenth International Joint

Conference on Artificial Intelligence, Milan, Italy, 875-883.

Durfee, E. H., and Lesser, V. R. 1988. Predictability versus responsiveness:

Coordinating problem solvers in dynamic domains. Proceedings of the

National Conference on Artificial Intelligence, 66-71.

Dyer, C. R. 1987. Multiscale image understanding. In L. Uhr (Ed.), Parallel

computer vision. Orlando, Fla.: Academic Press, 171-213.

Ebrahimzadeh, M., Barnnon, S., and Sinuani-Stern, Z. 1985. A simulation of a

multi-item drug inventory system. Simulation.

Elmaghraby, A. S. and Jagannathan, V. 1985. An expert system for simulation-

ists. In G. Birtwistle (Ed.), Artificial intelligence, graphics, and simulation.

The Society for Computer Simulation, 106-109.

Elmaghraby, A. S., Demeo, R. S., and Berry, J. 1985. Testing an expert system
for manufacturing. Artificial Intelligence and Simulation, Society for Com-
puter Simulation, 62-64.

Elmaghraby, A. S., Jagannathan, V., and Ralston, P. 1986. An expert system for

chemical process control. Artificial Intelligence and Simulation, Society for

Computer Simulation, 1-5.

Elzas, M. S. 1986. The kinship between artificial intelligence, modelling, and
simulation: An appraisal. In M. S. Elzas, T. I. Oren, and B. P. Zeigler (Eds.),

Modelling and methodology in the artificial intelligence era. B.V. (North-

Holland): Elsevier Science Publishers, 3-13.

Elzas, M. S. 1986. The applicability of artificial intelligence techniques to knowl-
edge representation in modelling and simulation. In M. S. Elzas, T. I.

Oren, and B. P. Zeigler (Eds.), Modelling and methodology in the artificial

intelligence era. B.V. (North-Holland): Elsevier Science Publishers,

19-40.

Endesfelder, T., and Tempelmeier, H. 1987. The SIMAN module processor—

A

flexible software tool for the generation of SIMAN simulation models. Pro-
ceedings of the Second European Simulation Multiconference, Vienna, Aus-
tria, 38-43.

Engelmore, R., and Morgan, T. 1988. Blackboard systems. Wokingham, England:
Addison-Wesley.

Ensor, J. R., and Gabbe, J. D. 1985. Transactional blackboards. Proceedings of
the Ninth International Joint Conference on Artificial Intelligence, Los Ange-
les, Calif., 340-344.

Erickson, S. A. Jr. 1986. Fusing AI and simulation in military modeling. Society

for Computer Simulation, Simulation Series 18(1): 140-150.

594 Bibliography

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. 1980. The HEAR-
SAY-II speech understanding system: Integrating knowledge to resolve

uncertainty. ACM Computing Survey 12:213-253.

Erman, L. D., London, P. E., and Fickas, S. F. 1981. The design and an example
use of HEARSAY-III. Proceedings of the Seventh International Joint Confer-
ence on Artificial Intelligence, 409-415, Vancouver, B.C., Canada.

Fahlman, S. E. 1979. NETL: A system for representing and using real-world

knowledge. Cambridge, Mass.: MIT Press.

Fahlman, S. E., Hinton, G. E., and Sejnowski, T. J. 1983. Massively parallel

architectures for AI: NETL, THISTLE, and Boltzmann machines. Proceedings

of the National Conference on Artificial Intelligence, Washington, D.C.

Falkenhainer, B., and Forbus, K. 1988. Setting up large-scale qualitative models.
Proceedings of the Seventh National Conference on Artificial Intelligence:

301-306.

Faltings, B. 1987a. Qualitative place vocabularies for mechanisms in configura-

tion space. Technical Report UIUCDCS-R-87-1360, Department of Computer
Science, University of Illinois at Urbana-Champaign.

Faltings, B. 1987b. Qualitative kinematics in mechanisms. Proceedings of the

Tenth International Joint Conference on Artificial Intelligence, Milan, Italy:

436-442.

Fass, D., and Wilks, Y. 1983. Preference semantics, ill-formedness, and metaphor.
Computational Linguistics 9:3-4 (Special Issue on Ill-Formed Input), 178-
187.

Feather, M. S., and London, P. E. 1982. Implementing specification freedoms.

Science of Computer Programming 2, Amsterdam, North Holland, 91-131.

Feigenbaum, E. A. 1977. The art of artificial intelligence: I. Themes and case

studies ofknowledge engineering. Proceedings ofthe Fifth International Joint

Conference on Artificial Intelligence, 1014-1029, Cambridge, MA.
Feigenbaum, E. A., Buchanan, B. G., and Lederberg, J. 1971. On generality and

problem solving: A case study using the DENDRAL program. In B. Meltzer
and D. Michie (Eds.), Machine intelligence 6. New York: American Elsevier,

165-190.

Feigenbaum, E. A., McCorduck, P., and Nii, H. P. 1989. The rise of the expert

company, forthcoming. New York Times Books.

Feinstein, J. L., and Siems, F. 1985. EDAAS: An expert system at the U.S.

Environmental Protection Agency for avoiding disclosure of confidential

business information. Expert Systems 2(2):72-85.

Fennell, R. D., and Lesser, V. R. 1977. Parallelism in AI problem solving: A case

study of HEARSAY-II. IEEE Transactions on Computers, 98-111.

Fickas, S. 1987. Automating the software specification process. Technical Report
87-05, Computer Science Department, University of Oregon, Eugene.

Fikes, R. E. and Nilsson, N. J. 1971. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence 2(3/4): 189-208.

Fillmore, C. J. 1968. The case for case. In E. Bach and R. Harms (Eds.), Universals

in linguistic theory. New York: Holt, Rinehart, and Winston, 1-90.

Findler, N. V., and Lo, R. 1986. An examination of distributed planning in the

world of air traffic control. Journal of Parallel and Distributed Computing
3:411-431.

Fishwick, P. A. 1988. Qualitative simulation: Fundamental concepts and issues.

Proceedings of the 1988 AI and Simulation Conference. Society for Computer
Simulation.

Bibliography 595

Fjellheim, R. A. 1986. A knowledge-based interface to process simulation. Society

for Computer Simulation, Simulation Series 18(1):97-102.

Floyd, R. W. 1967. Assigning meaning to programs. Proceedings of the Symposia
in Applied Mathematics, American Mathematical Society, 19:19-32.

Forbus, D. K. 1981. A study of qualitative and geometric knowledge in reasoning

about motion. Technical Report AI-TR-615, Department of Electrical Engi-

neering and Computer Science, M.I.T.

Forbus, D. K. 1982. Qualitative process theory. Ph.D. thesis, M.I.T. Lab Memo
664.

Forbus, D. K. 1983. Measurement interpretation in qualitative process theory.

Proceedings of the Eighth International Joint Conference on Artificial Intel-

ligence, Karlsruhe, West Germany: 315-320.

Forbus, D. K. 1984. Qualitative process theory. Artificial Intelligence 24.

Forbus, D. K., Nielsen, P., and Faltings, B. 1987. Qualitative kinematics: A
framework. Proceedings of the Tenth International Joint Conference on Arti-

ficial Intelligence, Milan, Italy: 430-435.

Forbus, K. D. 1984. Qualitative process theory. Artificial Intelligence 24:85-168.

Forecast Pro promotional brochure. 1988. Business Forecast Systems, Belmont,
Mass.

Forgy, C. L. 1981. OPS5 User's Manual. Technical Report CMU-CS-81-135, Com-
puter Science Department, Carnegie Mellon University.

Forgy, C. and McDermott, J. 1977. OPS, A domain-independent production sys-

tem language. Proceedings of the Fifth International Joint Conference on

Artificial Intelligence, 1:933-939.

Forgy, C, Gupta, A., Newell, A., and Wodig, R. 1984. Initial assessment of

architectures for production systems. Proceedings of the National Joint Con-
ference on Artificial Intelligence, 16-119.

Fox, M. S. 1979. Organization Structuring: Designing large complex software.

Technical Report 79-155, Computer Science Department, Carnegie-Mellon
University, Pittsburgh.

Fox, M. S. 1981. An organizational view of distributed systems. IEEE Transac-
tions on Systems, Man, and Cybernetics ll(l):70-80.

Fox, M. S., and Smith, S. F. 1984. ISIS: A knowledge-based system for factory

scheduling. Expert Systems l(l):25-49.

Fox, M., and Reddy, Y. V. Knowledge representation in organization modeling
and simulation: Definition and interpretation. Robotics Institute, Carnegie-

Mellon University.

Freeman, P., 1987. Software perspectives: The system is the message. Addison-

Wesley: Reading, Mass.

Freuder, E. C. 1978. Synthesizing constraint expressions. Communications of the

ACM 21:958-966.

Fried, L. 1987. The dangers of dabbling in expert systems. Computerworld 21:6.

Fu, K. S., and Mui, J. K. 1981. A survey on image segmentation. Pattern Rec-
ognition 13:3-16.

Fujitsu Laboratories, Education Section. 1987. The application of OS IV
ESHELL. Kawasaki, Japan: Fujitsu Ltd. In Japanese.

Fujiwara, R., and Sakaguchi, T. 1986. An expert system for power system plan-

ning. Society for Computer Simulation, Simulation Series 18(1): 174-177.

Fukada, Y. 1980. Spatial clustering procedures for region analysis. Pattern Rec-
ognition 12:395-403.

596 Bibliography

Futo, I., Gergely, T., and Deutsch, T. 1986. Logic modelling. Society for Computer
Simulation, Simulation Series 18(1): 117-129.

Futo, I., Papp, I., and Szeredi, J. 1986. The microcomputer version of TC-PROLOG.
Society for Computer Simulation, Simulation Series 17(1): 123-128.

Gaines, B. R. 1986. Expert systems and simulation in industrial applications.

Society for Computer Simulation, Simulation Series 17(1): 144-149.

Gaines, B. R. and Shaw, M. L. G. 1985. Expert systems and simulation. In G.

Birtwistle (Ed.), Artificial intelligence, graphics, and simulation. The Society

for Computer Simulation, 95-101.

Galbraith, J. 1973. Designing complex organizations. Reading, Mass.: Addison-
Wesley.

Galbraith, J. R. 1977. Organization design. Reading, Mass.: Addison-Wesley.

Garg, P. K., and Scacchi, W. 1989. The design of an intelligent software hypertext

system. IEEE Expert 5.

Garzia, R. F., Garzia, M. R., and Ziegler, B. P. 1986. Discrete-event simulation.

IEEE Spectrum, 32-36.

Gasser, L. 1986. The integration of computing and routine work. ACM Transac-
tions on Office Information Systems, New York: ACM Press.

Gasser, L., Braganza, C, and Herman, N. 1987. MACE: A flexible testbed for

distributed AI research. In M. N. Huhns (Ed.), Distributed Artificial Intelli-

gence. New York: Pitman, 119-152.

Gasser, L., and Rouquette, N. 1988. Representing and using organizational

knowledge in distributed AI systems. Proceedings of the 1988 Distributed AI
Workshop, Lake Arrowhead, CA: May 1988.

Gazdar, G. 1982. Phrase structure grammar. In P. Jacobson and G. K. Pullum
(Eds.), The nature of syntactic representation. Dordrecht, Holland: D. Reidel,

131-186.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. 1985. Generalized phrase struc-

ture grammar. Oxford: Basil Blackwell.

Geman, S., and Geman, D. 1984. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis

and Machine Intelligence PAMI-6, 6:721-741.

Genesereth, M. 1980. The MRS manual. Heuristic Programming Project Memo
HPP-80-24, Stanford University.

Genesereth, M. R., and Nilsson, N. J. 1987. Logical foundations of artificial

intelligence. San Mateo, Calif.: Morgan Kaufmann.

Georgeff, M. 1983. Communication and interaction in multiagent planning. Pro-

ceedings of the National Conference on Artificial Intelligence, Washington,
D.C., 125-129.

Georgeff, M. 1984. A theory of action for multiagent planning. Proceedings of
the National Conference on Artificial Intelligence, Austin, Tex., 121—125.

Georgeff, M. 1986. A representation of events in multi-agent domains. Proceed-

ings of the National Conference on Artificial Intelligence, Philadelphia, 70-
75.

Gerritsen, F. A., and Verbeek, P. W. 1984. Implementation of cellular logic

operators using 3x3 convolution and table lookup hardware. Computer
Vision, Graphics, and Image Processing 27:115-123.

Gevarter, W. B. 1987. The nature and evaluation of commercial expert system
building tools. Computer 20(5):24-41.

Bibliography 597

Glazer, F. 1984. Multilevel relaxation in low-level computer vision. In A. Rosen-

feld (Ed.), Multiresolution image processing and analysis. New York: Sprin-

ger-Verlag, 312-330.

Glicksman, J. 1986. A simulator environment for an autonomous land vehicle.

Society for Computer Simulation, Simulation Series 17(l):53-57.

Goad, C. 1983. Special-purpose automatic programming for 3-D model-based

vision. Proceedings of DARPA Image Understanding Workshop, Arlington,

Va., 94-104.

Goguen, J. A. More thoughts on specification and verification. ACM SIGSOFT
6(3): 38-41.

Goguen, J. A., Thatcher, J. W., and Wagner, E. 1978. An initial algebra approach

to the specification, correctness, and implementation of abstract data types.

In R. Yeh (Ed.), Current Trends in Programming Methodology, Vol. IV.

Englewood Cliffs, N. J.: Prentice-Hall, 80-149.

Goguen, J. A., and Burstall, R. M. 1985. Institutions: Abstract model theory for

computer science. Stanford CSLI-85-30.

Golay, M. J. E. 1969. Hexagonal parallel pattern transformations. IEEE Trans-

actions on Computers C-18:733-740.

Goldberg, A., and Robson, D. 1983. Smalltalk -80. The language and its imple-

mentation. Reading, Mass.: Addison-Wesley.

Golden, D. The use of heuristics in bus route modification. In G. Birtwistle (Ed.),

Artificial intelligence, graphics, and simulation. The Society for Computer
Simulation, 114-118.

Goldman, N., Balzer, R., and Wile, D. 1978. Informality in program specifications.

IEEE Trans, on Software Eng. 4(2):94-102.

Goodrich, R. L. 1987. Questions and answers on the forecast pro expert system.

Seventh International Symposium on Forecasting, Boston.

Gorry, G. A. 1970. Modelling the diagnostic process. Journal of Medical Educa-
tion 45:293-302.

Goyal, S., and Worrest, R. 1988. Expert system applications to network manage-
ment. In J. Leibowitz (Ed.), Expert system applications to telecommunications.

New. York: Wiley, 3-44.

Green, C, Luckham, D., Balzer, R., Cheatham, T., and Rich, C. 1983. Report on
a Knowledge-Based Software Assistant. Technical Report KES.U.83.2, Kes-
trel Institute, Palo Alto, CA.

Green, Cordell. 1969. Application of theorem proving to problem solving. Pro-

ceedings of the First International Joint Conference on Artificial Intelligence,

Washington D.C., 219-239.

Grimson, W. E. L. 1981. From images to surfaces. Cambridge, Mass.: MIT Press.

Grimson, W. E. L. 1985. Computational experiments with a feature-based stereo

algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence

PAMI-7, 1:17-34.

Grimson, W. E. L. 1986. The combinatorics of local constraints in model-based
recognition and localization from sparse data. Journal of the ACM 33(4):658-

686.

Grimson, W. E. L. 1987. Recognition of object families using parameterized
models. Proceedings of the First International Conference on Computer
Vision, London, England, 93-101.

Grimson, W. E. L., and Lozano-Perez, T. 1987. Localizing overlapping parts by
searching the interpretation tree. IEEE Transactions on Pattern Analysis

and Machine Intelligence PAMI-9:4:469-482.

598 Bibliography

Grimson, W. E. L., and Lozano-Perez, T. 1984. Model-based recognition and
localization from sparse range or tactible data. International Journal of
Robotics Research 3(3):3-35.

Groen, A., van den Herik, H. J., Hofland, H. G., Kerckhoffs, E. J. H., Stoop, J. C,
and Varkevisser, P. R. 1986. The integration of simulation and knowledge-
based systems. Society for Computer Simulation, Simulation Series

18(1):189-197.

Grosz, B. J. 1977. The representation and use of focus in a system for under-

standing dialogs. Proceedings ofUCAI 67-76 (reprinted in RNLP: 353-362).

Grosz, B. J., and Sidner, C. L. 1985. Discourse structure and the proper treatment
of interruptions. Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, 832-839.

Grosz, B. J., and Sidner, C. L. 1986. Attention, intention, and the structure of

discourse. Computational Linguistics 12(3):175-204.

Grosz, B. J., and Sidner, C. L. 1988. Plans for discourse. In Cohen, Morgan, and
Pollack, (Eds.), Intentions in communication. Cambridge, Mass.: M.I.T. Press.

Gruber, T. R. 1987. Acquiring strategic knowledge from experts. Proceedings of
the Second AAAI Knowledge Acquisition for Knowledge-based Systems Work-
shop: 214-219.

Guangleng, X., and Song, A. 1986. An expert system for dynamic system simu-
lation. Society for Computer Simulation, Simulation Series 18(1):106-110.

Haas, A. R. 1986. A syntactic theory of belief and action. Artificial Intelligence

28(3):245-292.

Hackbusch, W., and Trottenberg, U. (Eds.) 1982. Multigrid methods, Lecture

Notes in Computer Science, Vol. 960. New York: Springer-Verlag.

Halpern, J. Y., and Moses, Y. 1984. Knowledge and common knowledge in a
distributed environment. IBM Research Report IBM RJ 4421, IBM.

Haralick, R. M. 1984. Digital step edges from zero crossing of second directional

derivative. IEEE Transactions on Pattern Analysis and Machine Intelligence

PAMI-6:58-68.

Haralick, R. M. 1985. A reconfigurable systolic network in computer vision. IEEE
Computer Society Workshop on Computer Architecture for Pattern Analysis

and Image Database Management, Miami Beach, Fla., November 18-20,

507-515.

Haralick, R. M., Laffey, T. J., and Watson, L. T. 1983. The topographic primal
sketch. International Journal ofRobotics Research 2(l):50-72.

Haralick, R. M., Sternberg, S., and Zhuang, X. 1987. Image analysis using

mathematical morphology: Part I. IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-9(4):532-550.

Haralick, R. M., and Shapiro, L. 1979. The consistent labeling problem: Part 1.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
1:173-184.

Haralick, R. M., and Shapiro, L. 1985. Survey: Image segmentation techniques.

Computer Vision, Graphics, and Image Processing 29:100-132.

Harandi, M. T., and Lubars, M. D. 1986. Knowledge-based software development:

A paradigm and a tool. Proceedings of the 1986 National Computer Confer-

ence, Las Vegas, Nevada, 43-50.

Harmon, P. 1987. Currently available expert systems-building tools. Expert Sys-

tems Strategies 3(6): 11-18.

Harmon, P., and King, D. 1985. Expert systems: artificial intelligence in business.

New York: Wiley.

Bibliography 599

Hartman, J. 1989. Automatic control understanding for natural programs. Ph.D.

Thesis, Dept. of Computer Sciences, University of Texas at Austin.

Hayes, P. J. 1978. Naive physics I: Ontology for liquids. Technical Report 35,

Centre pour les Etudes Semantiques et Cognitives.

Hayes, P. J. 1979. Naive physics manifesto. Expert Systems in the Microelectron-

ics Age. Edinburgh: Edinburgh University Press.

Hayes-Roth, B. 1983. The blackboard architecture: A general framework for prob-

lem solving. Technical Report HPP-83-30, Knowledge Systems Laboratory,

Computer Science Department, Stanford University.

Hayes-Roth, B. 1985. Blackboard architecture for control. Journal of Artificial

Intelligence 26:251-321.

Hayes-Roth, B. 1985. A blackboard architecture for control. Artificial Intelligence

26:251-321.

Hayes-Roth, B., Buchanan, B., Lichtarge, O., Hewett, M., Altman, R., Brinkley,

J., Cornelius, C, Duncan, B., and Jardetzky, O. 1987. PROTEAN: Deriving

protein structure from constraints. Proceedings of the National Conference

on Artificial Intelligence, 904-909.

Hayes-Roth, B., Hayes-Roth, F., Rosenschein, S., and Cammarata, S. 1979.

Modelling planning as an incremental, opportunistic process. Proceedings of
the Sixth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., 375-383.

Hayes-Roth, F., Erman, L. D., Fouse, S., Lark, J. S., and Davidson, J. 1988. ABE:
A cooperative operation system and development environment. In M. Richer
(Ed.), AI tools and techniques. Norwood, N.J.: Ablex Publishing Corporation.

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B. (Eds.) 1983. Building expert

systems. Reading, Mass.: Addison-Wesley.

Hayes-Roth, F., and Lesser, V. R. 1976. Focus of attention in a distributed logic

speech understanding system. Technical Report, Computer Science Depart-

ment, Carnegie-Mellon University.

Hendrix, G. G., Sacerdoti, E., Sagalowicz, D., and Slocum, J. 1978. Developing a

natural language interface to complex data. ACM Trans, on Database Sys-

tems 3(2):105-147.

Hernandez, R. 1987. Big eight firm audits with Mac. Applied Artificial Intelli-

gence Reporter 4(7):9.

Hewitt, C. 1977. Viewing control structures as patterns of passing messages.

Artificial Intelligence 8(3):323-364.

Hewitt, C. 1986. Offices are open systems. Communications of the ACM 4(3):271-

287.

Hi-Class. 1985. AI brings smarts to PC-board assembly. Electronics 58:17-18.

Hickam, D. H., Shortliffe, E. H., Bischoff, M. B., and Jacobs, C. D. 1985. The
treatment advice of a computer-based cancer chemotherapy protocol advisor.

Annals of Internal Medicine 103(6):928-936.

Hildreth, E. 1987. Edge detection. In S. Shapiro (Ed.), The encyclopedia of arti-

ficial intelligence. New York: Wiley, 257-267.

Hillis, D. 1985. The connection machine. Cambridge, Mass.: MIT Press.

Hinton, G. E. and Sejnowski, T. J. 1987. Separating figure from ground with a
Boltzmann machine. In M. A. Arbib and A. R. Hanson (Eds.), Vision, brain

and cooperative computation. Cambridge, Mass.: MIT Press, 703-724.

Hinton, G. E., Sejnowski, T., and Ackley, D. 1985. Boltzmann machines: Con-
straint satisfaction machines that learn. Cognitive Science 9:147-169.

600 Bibliography

Hirst, G. 1987. Semantic interpretation against ambiguity. New York: Cambridge
University Press.

Hoff, W., and Ahuja, N. 1987. Extracting surfaces from stereo images: An inte-

grated approach. Proceedings of the First International Conference on Com-
puter Vision, London, 284-294.

Hoffman, D. D., and Richards, W. A. 1982. Representing smooth plane curves

for recognition: Implications for figure-ground reversal. Proceedings of the

National Conference on Artificial Intelligence, Pittsburgh, Pa., 5-8.

Hollan, J. D., Hutchins, E. L., and Weitzman, L. 1984. STEAMER: An interactive

inspectable simulation-based training system. AI Magazine 5(2): 15-27.

Hopfield, J. J. 1982. Neural networks and physical systems with emergent col-

lective computational abilities. Proceedings of the National Academy of Sci-

ences USA 79, 2554-2558.

Horn, B. K. P. 1986. Robot vision. Cambridge, Mass.: MIT Press.

Horn, B. K. P., and Weldon, E. J., Jr. 1986. Filtering closed curves. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-8:665—668.

Horn, K. A., Compton, P., Lazarus, L., and Quinlan, J. R. 1985. An expert

computer system for the interpretation of thyroid assays in a clinical labo-

ratory. The Australian Computer Journal 17(1):7-11.

Horowitz, S. L., and Pavlidis, T. 1976. Picture segmentation by a tree traversal

algorithm. Journal of the ACM 23:368-388.

Huang, K. S., Jenkins, B. K., and Sawchuk, A. A. 1987. Optical cellular logic

architectures based in binary image algebra. Proceedings of the 1987 Work-
shop on Computer Architecture for Pattern Analysis and Machine Intelligence,

October 5-7, Seattle. Washington D.C.: IEEE Computer Society, 19-26.

Huhns, M. (Ed.), 1987. Distributed artificial intelligence. San Mateo, Calif.: Mor-
gan Kaufmann.

Huhns, M. N., and Acosta, R. D. 1987. ARGO: an analogical reasoning system
for solving design problems. MCC Technical Report AI/CAD-092-87.

Huhns, M., Mukhopadhyay, U., Stephens, L. M., and Bonnell, R. D. 1987. DAI
for document retrieval: The MINDS project. In M. N. Huhns (Ed.), Distributed

artificial intelligence. New York: Pitman, 249-284.

Hummel, R. A. 1986. Representations based on zero-crossings in scale-space.

Proceedings ofIEEE Comp. Soc. Conference on Computer Vision and Pattern

Recognition, 204-209.

Hummel, R. A., and Zucker, S. W. 1983. On the foundations of relaxation labeling

processes. IEEE Transactions on Pattern Analysis and Machine Intelligence

PAMI-5(3):267-287.

Ikeuchi, K., and Horn, B. K. P. 1981. Numerical shape from shading and occlud-

ing contour. Artificial Intelligence 17:141-184.

Ikeuchi, K., and Horn, B. K. P. 1984. Picking up an object from a pile of objects.

In Brady, J. M. and Paul, R. (Eds.), Robotics Research: The First International

Symposium. Cambridge, Mass.: M.I.T. Press, 139-162.

Intel Corp., 1986. KEE Software Development System, Core Reference Manual,
Version 3.0, Doc. #3.0-KCR-l., Mountain View, Calif.

Iscoe, Neil, Browne, J. C, and Werth, John. 1989. Modeling domain knowledge:

An object-oriented approach to program specification and generation. Tech-

nical Report TR-89-13, Dept. of Computer Sciences, University of Texas at

Austin.

Ito, M., and Ishii, A. 1986. Three view stereo analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8(4):524-531.

Bibliography 601

Iwasaki, Y. 1988a. Model-based reasoning ofdevice behavior with causal ordering.

Ph.D. thesis, Department of Computer Science, Carnegie Mellon University.

Iwasaki, Y. 1988b. Causal ordering in a mixed structure. Proceedings of the

National Conference on Artificial Intelligence: 313-318.

Iwasaki, Y., and Simon, H. A. 1986a. Theory of causal ordering: Reply to de

Kleer and Brown. Artificial Intelligence 29:3-32.

Iwasaki, Y., and Simon, H. A. 1986b. Causality in device behavior. Artificial

Intelligence 29:63-72.

Jackson, M. A. 1978. Information systems: Modeling, sequencing and transfor-

mations. Proceedings ofthe Third International Conference on Software Engi-
neering, 72-81.

Johnson, W. L. 1986. Intention-based diagnosis of novice programming errors.

Los Altos, Calif.: Morgan Kaufmann.
Johnson, W. L. 1988. Deriving specifications from requirements. Tenth Interna-

tional Conference on Software Engineering, 428-437.

Jones, J. W., Jones, P., and Everett, P. A. 1986. Applying agricultural models
using expert system concepts. Proceedings of the American Society of Agri-

cultural Engineers, Chicago.

Joskowicz, L. 1987. Shape and function in mechanical devices. Proceedings of the

Sixth National Conference on Artificial Intelligence: 611-615.

Julesz, B. 1971. Foundations of Cyclopean perception. Chicago, 111.: University of

Chicago Press.

Kahn, G., and McDermott, J. 1986. The mud system. IEEE Expert l(l):23-32.

Kaiser, G. E., Barghouti, N. S., Feiler, P. H., and Schwanke, R. W. 1988. Database
Support for Knowledge-Based Engineering Enviorments. IEEE Expert 3(2):

18-32.

Kanade, T. 1980. Region segmentation: Signal vs. semantics. Computer Graphics
and Image Processing 13:279-297.

Kant, E. 1985. Understanding and automating algorithm design. IEEE Trans-
actions on Software Engineering SE-1 1(11): 1361-1374.

Kant, E., and Newell, A. 1984. Problem solving techniques for the design of

algorithms. Information Processing and Management 20(l-2):97-118.

Kaplan, R. M. 1973. A general syntactic processor. In R. Rustin (Ed.), Natural
language processing. New York: Algorithmics Press: 193-241.

Kaplan, R. M., and Bresnan, J. 1982. Lexical-functional grammar: A formal

system for grammatical representation. In J. Bresnan (Ed.), The mental
representation ofgrammatical relations. Cambridge, Mass.: MIT Press.

Karp, P. D. 1985. Thesis proposal: Qualitative simulation and discovery in molec-

ular Biology. Technical Report KSL-85-36, Knowledge Systems Laboratory,

Department of Computer Science, Stanford University.

Karp, P. D., and Friedland, P. 1987. Coordinating the use of qualitative and
quantitative knowledge in declarative device modeling. Knowledge Systems
Laboratory Report No. KSL 87-09, Stanford University.

Kasif, S. 1986. On the parallel complexity of some constraint satisfaction prob-

lems. Proceedings of the National Conference on Artificial Intelligence, Phil-

adelphia, Pa., 349-353.

Kelly, Van, and Nonnenmann, Uwe. 1987. Inferring formal software specifica-

tions from episodic descriptions. Proceedings ofAAAI-87, Seattle, Wash.

Kent, E. W., Shneier, M. O., and Lumia, R. 1985. PIPE (pipelined image process-

ing engine). Journal ofParallel and Distributed Computing 2(l):50-78.

602 Bibliography

Kerckhoffs, E. J. H., and Vansteenkiste, G. C. 1986. The impact of advanced
information processing on simulation—An illustrative review. Simulation
46(1): 17-26.

Kerschberg, L. (Ed.) 1986. Expert database systems: Proceedings of the first inter-

national workshop. Menlo Park, Calif.: Benjamin Cummings.

Ketcham, M. G. 1987. IBIS: Information-based integrated simulation: The design

of a simulation model base for manufacturing. Proceedings of the Second
European Simulation Multiconference, Vienna, Austria, 26-30.

Kettig, R. S., and Landgrebe, D. A. 1975. Computer classification of multispectral

image data by extraction and classification of homogeneous objects. The
Laboratory for Application of Remote Sensing, LARS Information Note
050975, Purdue University, West Lafayette, Ind.

Khoshnevis, B., and Chen, A. 1986. An expert simulation model builder. Society

for Computer Simulation, Simulation Series 17(1): 129-132.

Kienker, P. K., Sejnowski, T. J., Hinton, G. E., and Schumacher, L. E. 1986.

Separating figure from ground with a parallel network. Perception 15:197-

216.

Kimmel, M. J., Jaffe, R. S., Manderville, J. R., and Lavin, M. A. 1985. MITE:
Morphic Image Transform Engine, an architecture for reconfigurable pipe-

lines of neighborhood processors. IEEE Computer Society Workshop on Com-
puter Architecture for Pattern Analysis and Image Database Management,
Miami Beach, Fla., November 18-20, 493-500.

Kirkpatrick, S., Gelcett, C. D., Jr., and Vecchi, M. P. 1983. Optimization by
simulated annealing. Science 220:671-680.

Kirousis, Papadimitriou, C. H. 1985. The complexity of recognizing polyhedral

scenes. Twenty-sixth Annual Symposium on the Foundations of Computer
Science. Washington, D.C.: IEEE Computer Society, 175-185.

Klahr, P. 1986. Expressibility in Ross: An object-oriented Simulation System.
Society for Computer Simulation, Simulation Series 18(1): 136-139.

Klahr, P., et al. 1987. The authorizer's assistant: A large financial expert system
application. Proceedings of the Third Australian Conference on Applications

ofExpert Systems. New South Wales Institute of Technology, Sydney, 11-32.

Kline, P. J., and Dolins, S. B. 1985. Choosing architectures for expert systems.

Technical Report RADC-TR-85-192, Texas Instruments Inc.

Klinger, A. 1973. Data structures and pattern recognition. Proceedings of the

First International Joint Conference on Pattern Recognition, Washington,
D.C., October, 497-498.

Kolcum, E. H. 1986. NASA demonstrates use of AI with expert monitoring system.

Aviation Week & Space Technology, 79-85.

Konolige, K. 1982. Circumscriptive ignorance. Proceedings of the National Con-
ference on Artificial Intelligence, Pittsburgh, 202-204.

Konolige, K. 1983. A deductive model of belief. Proceedings of the Eighth Inter-

national Joint Conference on Artificial Intelligence, Karlsruhe, West Ger-

many, 377-381.

Konolige, K. 1985. A computational theory of belief introspection. Proceedings

of the Ninth International Joint Conference on Artificial Intelligence, Los
Angeles, Calif., 502-508.

Kornfeld, W. A. 1979. ETHER: A parallel problem solving system. Proceedings of
the Sixth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., 490-492.

Bibliography 603

Kornfeld, W. A., and Hewitt, C. E. 1981. The scientific community metaphor.
IEEE Transactions on Systems, Man, and Cybernetics SMC-ll(l):24-33.

Koton, P. H. 1985. Empirical and model-based reasoning in expert systems.

Proceedings of the Ninth International Joint Conference on Artificial Intel-

ligence, Los Angeles, Calif., 297-299.

Kreiger, H., Bossel, H., Schafer, H., and Trost, N. 1987. Complex models of tree

development dynamics and the simulation of tree response to pollution

stress. Proceedings of the Second European Simulation Multiconference,

Vienna, Austria, 197-201.

Kreutzer, W. 1986. System simulation programming styles and languages. Read-
ing, Mass.: Addison-Wesley.

Kruse, B. 1980. System architecture for image analysis. In S. L. Tanimoto and
A. Klinger (Eds.), Structured Computer Vision: Machine Perception through
Hierarchical Computation Structures. New York: Academic Press, 189-216.

Kuipers, B. The limits of qualitative simulation. 129-135.

Kuipers, B. 1985. Qualitative simulation of mechanisms. Tech. Rept. TM-274,
MIT Laboratory for Computer Science.

Kuipers, B. 1985. The limits of qualitative simulation. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, Los Angeles, Calif.:

128-136.

Kuipers, B. 1986. Qualitative simulation. Artificial Intelligence 29:289-338.

Kuipers, B. 1987a. Abstraction by time-scale in qualitative simulation. Proceed-

ings of the Sixth National Conference on Artificial Intelligence: 621-626.

Kuipers, B. 1987b. Qualitative simulation as causal explanation. IEEE Trans-
actions on Systems, Man and Cybernetics.

Kuipers, B., and Chiu, C. 1987. Taming intractible branching in qualitative

simulation. Proceedings of the Tenth International Joint Conference on Arti-

ficial Intelligence, Milan, Italy: 1079-1085.

Kulikowski, C, and Weiss, S. 1982. Representation of expert knowledge for

consultation: The CASNET and EXPERT projects. In P. Szolovits (Ed.), Arti-

ficial intelligence in medicine. Boulder, Colo.: Westview Press, 21-55.

Kunz, J., Fallat, R., McClung, D., Osborn, J., Votteri, B., Nii, H. P., Aikins, J. S.,

Fagen, L., and Feigenbaum, E. A. 1978. A physiological rules based system

for interpreting pulmonary function test results. Technical Report HPP-78-19,
Knowledge Systems Laboratory, Computer Science Department, Stanford

University.

LaFrance, J. 1989. Building an expert system for commercial use. Unpublished
Report, MPSI Corporation, Tulsa, Oklahoma.

Laird, J. E., Newell, A., and Rosenbloom, P. S. 1987. SOAR: An architecture for

general intelligence. Artificial Intelligence 33:1-64.

Lakin, W. L., and Miles, J. A. H. 1984. A blackboard system for multi-sensor

fusion. Technical Report, ASWE, Portsdown, Portsmouth, England.

Lander, S., and Lesser, V. 1988. Negotiation among cooperating experts. Pro-
ceedings of the 1988 Distributed AI Workshop, Lake Arrowhead, CA.

Langlotz, C. P., Fagan, L. M., Tu, S. W., Sikic, B. I., and Shortliffe, E. H. 1986.

Combining artificial intelligence and decision analysis for automated ther-

apy planning assistance. MEDINFO 86, North-Holland, 794-798.

Langlotz, C. P., Fagan, L. M., Tu, S. W., Williams, J., and Sikic, B. 1985. ONYX:
An architecture for planning under uncertainty. Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, Los Angeles, Calif.,

1: 447-449.

604 Bibliography

Langlotz, C. P., Fagan, L. M., Tu, S., Sikic, B. I., and Shortliffe, E. H. 1987. A
therapy planning architecture that combines decision theory and artificial

intelligence techniques. Computers and Biomedical Research 20:279-303.

Lansky, A. L., and Fogelsong, D. 1987. Localized representation and planning
methods for parallel domains. Proceedings of the National Conference on
Artificial Intelligence, Seattle, Wash., 240-245.

Larson, L. G., and Lekteus, I. 1981. Stimulating aircraft in flight: Class basic

flying and more. Proceedings of the Ninth SIMULA Users' Conference,

Geneva, Switzerland, 31-42.

Law, A. M. 1986. Introduction to simulation: A powerful tool for analyzing
complex manufacturing systems. Industrial Engineering, 46-63.

Law, A. M., and Kelton, W. D. 1982. Simulation modeling and analysis. New
York: McGraw Hill.

Lee, M., and Clearwater, S. 1987. GOLD: Integration of model-based control

systems with artificial intelligence and workstations. Invited talk presented

at the Workshop on Model-Based Accelerator Controls, Brookhaven National

Laboratory, Upton, New York, August 19, 1987.

Lemmon, H. 1986. COMAX: An expert system for cotton crop management. Sci-

ence.

Lenat, D. B. 1975. Beings: Knowledge as interacting experts. Proceedings of the

Fourth International Joint Conference on Artificial Intelligence, Stanford,

Calif., 126-133.

Lenat, D. B., Davis, R., Doyle, J., Genesereth, M., Goldstein, I., and Schrobe, H.

1983. Reasoning about reasoning. In R. Hayes-Roth, D. A. Waterman, and
D. B. Lenat (Eds.), Building expert systems. Reading, Mass.: Addison-Wesley.

Lenat, D. B., Prakash, M., and Shepherd, M. 1986. CYC: Using common sense

knowledge to overcome brittleness and knowledge acquisition bottlenecks.

AI Magazine 6(4):65-85.

Leonard, P. F. 1985. Pipeline architectures for real-time machine vision. IEEE
Computer Society Workshop on Computer Architecture for Pattern Analysis
and Image Database Management, Miami Beach, Fla., November 18-20,

502-505.

Lesser, V. R., Fennell, R. D., Erman, L. D., and Reddy, D. R. 1974. Organization

of the HEARSAY-II speech understanding system. In IEEE Symposium on
Speech Recognition, Contributed Papers: 11-M2-21-M2. IEEE Group on
Acoustics, Speech and Signal Processing, Computer Science Department,
Carnegie-Mellon University.

Lesser, V. R., and Corkill, D. D. 1981. Functionally accurate, cooperative dis-

tributed systems. IEEE Transactions on Systems, Man, and Cybernetics SMC-
ll(l):81-96.

Lesser, V. R., and Corkill, D. D. 1983. The distributed vehicle monitoring testbed:

A tool for investigating distributed problem solving networks. AI Magazine
4(3):15-33.

Lesser, V. R., and Corkill, D. D. 1983. The distributed vehicle monitoring testbed:

A tool for investigation distributed problem-solving networks. AI Magazine
3:2:15-33.

Lesser, V. R., and Erman, L. D. 1977. The Retrospective View of the HEARSAY-
II Architecture. Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, 790-800, Cambridge, MA.

Lesser, V. R., and Erman, L. D. 1980. Distributed interpretation: A model and
experiment. IEEE Transactions on Computers C-29(12):1144-1163.

Bibliography 605

Letovsky, S. 1987. Program understanding with the lambda calculus. Proceedings

of the Tenth International Joint Conference on Artificial Intelligence, Milan,

Italy.

Letovsky, S. 1988. Plan analysis of programs. Ph.D. thesis, Yale University CSD
Technical Report RR 662, 512-514.

Levine, M. D., and Shaheen, S. I. 1981. A modular computer vision system for

picture segmentation and interpretation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence PAMI—3:540-556.

Levitan, S. P., Weems, C. C, Hanson, A. R., and Riseman, E. M. 1987. The
UMass image understanding architecture. In L. Uhr (Ed.), Parallel Computer
Vision. Orlando, Fla.: Academic Press, 215-248.

Lindsay, K. J. 1987. Expert systems in the CIM environment, IntelliCorp.

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. 1980.

Applications of artificial intelligence for organic chemistry: The DENDRAL
project. New York: McGraw-Hill.

Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. 1980. Appli-

cations of artificial intelligence for organic chemistry: The dendral project.

New York: McGraw-Hill.

Liskov, B. H., and Berzins, V. 1986. An appraisal of program specifications. In

N. Gehani and A. D. McGettrick (Eds.), Software specification techniques.

Reading, MA: Addison-Wesley, 3-24.

Little, J. J. 1983. An iterative method for reconstructing convex polyhedra from
extended Gaussian images. Proceedings of the National Conference on Arti-

ficial Intelligence, Washington, D.C., 247-250.

Little, J. J., Belloch, G. and Cass, T. 1987. Parallel algorithms for computer
vision on the Connection Machine. Proceedings of the First International

Conference on Computer Vision, London, England, 587-591.

Little, J. J., Blelloch, G., and Cass, T. 1987. How to program the Connection
Machine for computer vision. Proceedings of the CAPAMI'87, The 1987 IEEE
Computer Society Workshop on Computer Architecture for Pattern Analysis
and Machine Intelligence, Seattle, Wash., 11-18.

Lougheed, R. M., McCubbrey, D. L., and Sternberg, S. R. 1980. Cytocomputers:
Architectures for parallel image processing. Proceedings of the IEEE Work-
shop on Picture Data Description and Management, Pacific Grove, Calif.,

281-286.

Lowe, D. G. 1985. Perceptual organization and visual recognition. Boston, Mass.:

Kluwer.

Lowe, D. G. 1987. Three-dimensional object recognition from single two-dimen-
sional images. Artificial Intelligence 31:355-395.

Lowry, M. R. 1987. Algorithm synthesis through problem reformulation. AAAI-
87, Seattle, Wash: 432-436.

Lowry, M. R. 1987. The abstraction/implementation model of problem reformu-
lation. Proceedings of the Tenth International Conference on Artificial Intel-

ligence, Milan, Italy, 1004-1010.

Lowry, M. R. 1988. Invariant logic: A calculus for problem reformulation. AAAI-
88, St. Paul, Minn.

Lowry, M. R. 1988. The structure and design of local search algorithms. Proceed-

ings ofthe AAAI-88 Workshop on Automating Software Design: 88-97. (Avail-

able through AAAI, Menlo Park, Calif.)

Lowry, M. R. 1989. Algorithm synthesis through problem reformulation. Ph.D.
thesis, Stanford University.

606 Bibliography

Lubars, M. D. 1987. Schematic techniques for high-level support of software

specification and design. Fourth International Workshop on Software Speci-

fication and Design, IEEE Computer Society Press, 68-75.

Lubars, M. D. and Harandi, M. T. 1988. The knowledge-based refinement para-

digm and IDeA: Concepts, limitations, and future directions. Proceedings of
the 1988 AAAI workshop on Automating Software Design. (Available through
AAAI, Menlo Park, Calif.)

Lubars, M. D., and Harandi, M. T. 1987. Knowledge-based software design using
design schemas. Ninth International Conference on Software Engineering,

IEEE Computer Society Press, 253-262.

Lytinen, S. L. 1986. Dynamically combining syntax and semantics in natural

language processing. Proceedings ofAAAI 574-578.

Mackworth, A. K. 1973. Interpreting pictures of polyhedral scenes. Artificial

Intelligence 4:121-137.

Mackworth, A. K. 1977a. How to see a simple world: An exegesis of some
computer programs for scene analysis. In E. W. Elcock and D. Michie (Eds.),

Machine Intelligence 8:510-537.

Mackworth, A. K. 1977b. Consistency in networks of relations. Artificial Intel-

ligence 8:99-118.

Mackworth, A. K. 1983. Constraints, descriptions and domain mappings in com-
putational vision. In O. J. Braddick and A. C. Sleigh (Eds.), Physical and
Biological Processing ofImages. Berlin: Springer-Verlag, 33-40.

Mackworth, A. K. 1987a. Adequacy criteria for visual knowledge representation.

In Z. Pylyshyn (Ed.), Computational processes in human vision. Norwood,
N.J.: Ablex.

Mackworth, A. K. 1987b. Constraint satisfaction. In S. Shapiro (Ed.), The ency-

clopedia of artificial intelligence. New York: Wiley, 205-211.

Mackworth, A. K., Mulder, J. A. and Havens, W. S. 1985. Hierarchical arc

consistency: Exploiting structured domains in constraint satisfaction prob-

lems. Computational Intelligence 1(3):118-126.

Mackworth, A. K., and Freuder, E. C. 1985. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Artifi-

cial Intelligence 25(l):65-74.

Malik, J. 1987. Interpreting line drawings of curved objects. International Jour-

nal of Computer Vision 1(1):73-103.

Malone, T. W. 1988. What is coordination theory? Proceedings of the National

Science Foundation Coordination Theory Workshop.

Malone, T. W., and Smith, S. A. 1984. Tradeoffs in designing organizations:

Implications for new forms of human organizations and computer systems.

Working Paper CISR WP 112 (Sloan WP 1541-84), Center for Information

Systems Research, Massachusetts Institute of Technology, Cambridge, Mass.

Manna, Z., and Waldinger, R. 1980. A deductive approach to program synthesis.

ACM Transactions on Programming Languages and Systems 2(1): 90-121.

Reprinted in C. Rich and R. C. Waters (Eds.), Readings in Artificial Intelli-

gence and Software Engineering. San Mateo, Calif.: Morgan Kaufmann.
March, J. G., and Simon, H. A. 1958. Organizations. New York: Wiley.

Marcus, S. 1987. Taking backtracking with a grain of SALT. International Journal

ofMan-Machine Studies 26(4):383-398.

Marr, D., and Hildreth, E. 1980. Theory of edge detection. Proceedings of the

Royal Society ofLondon B, 200, 269-294.

Bibliography 607

Marr, D. 1982. Vision. San Francisco, Calif.: Freeman.

Marr, D., and Nishihara, H. K. 1978. Representation and recognition of the

spatial organization of three-dimensional structure. Proceedings of the Royal
Society ofLondon B200, 269-294.

Marr, D., and Poggio, T. 1977. A theory of human stereo vision. Memo 451,

Artificial Intelligence Lab., MIT, Cambridge, Mass.

Marsh, C. A. 1985. RBMS—An Expert System for modelling NASA flight control

room usage. Artificial Intelligence and Simulation, Society for Computer
Simulation, 47-50.

Mason, C, Johnson, R., Searfus, R., Lager, D., and Canales, T. 1988. A seismic

event analyzer for nuclear test ban treaty verification. Proceedings of the

Third International Conference on Applications of Artificial Intelligence in

Engineering.

Matheron, G. 1967. Elements pour une theorie des milieux poreux. Paris: Masson.

Matheron, G. 1975. Random sets and integral geometry. New York: Wiley.

Mazer, M. S. 1987. Exploring the use of distributed problem-solving in office

support systems. Proceedings of the IEEE Computer Society Symposium on
Office Automation, 217-225.

McCarthy, J. 1958. Programs with common sense. Proceedings of the Symposium
on the Mechanisation of Thought Processes. National Physical Laboratory,

77-84. (Reprinted in 1968 in M. L. Minsky (Ed.), Semantic Information
Processing. Cambridge, Mass.: MIT Press, 403-409.)

McCarthy, J. 1980. Circumscription: A form of non-monotonic reasoning. Artifi-

cial Intelligence 13:27-39.

McCarthy, J. 1983. Some expert systems need common sense. Annals of the New
York Academy of Science 426:129-137. Invited presentation for the New
York Academy of Sciences Science Week Symposium on Computer Culture,

April 5-8.

McCarthy, J., and Hayes, P. 1969. Some philosophical problems from the stand-

point of artificial intelligence. In B. Meltzer and D. Michie (Eds.), Machine
Intelligence 4. Edinburgh: Edinburgh University Press.

McCartney, R. 1987. Synthesizing algorithms with performance constraints. Pro-

ceedings ofAAAI-87, Seattle, Wash., 155-160.

McCartney, R. 1988. Sibling independence in algorithm synthesis. Proceedings

oftheAAAI-88 Workshop on Automating Software Design. (Available through
AAAI, Menlo Park, Calif.)

McClelland, J. L., Rumelhart, D. E., and the PDP Research Group. 1987. Parallel

distributed processing: Explorations in the microstructure of cognition (2

Vols.). Cambridge, Mass.: MIT Press.

McClelland, J. L., and Rumelhart, D. E. 1981. An interactive activation model
of context effects in letter perception: Part 1, An account of basic findings.

Psychological Review 88:375-407.

McCord, M. C. 1980. Slot grammars. AJCL 6(l):31-43.

McCord, M. C. 1985. Modular logic grammars. Proceedings ofACL 104-117.

McCubbrey, D. L., and Lougheed, R. M. 1985. Morpholocial image analysis using
a raster pipeline processor. IEEE Computer Society Workshop on Computer
Architecture for Pattern Analysis and Image Database Management, Miami
Beach, Fla., November 18-20, 444-452.

McCune, B. P., and Drazovich, R. J. 1983. Radar with sight and knowledge.
Defense Electronics, August.

608 Bibliography

McDermott, J. 1983. Extracting knowledge from expert systems. Proceedings of
the Eighth International Joint Conference on Artificial Intelligence, Karls-

ruhe, West Germany, 1:100-107.

McDermott, J., and Newell, A. 1983. Estimating the computational requirements

for future expert systems. Technical Report, Internal Memo, Computer Sci-

ence Department, Carnegie-Mellon University.

McKinion, J. K., and Lemmon, H. E. 1986. Symbolic computers and AI tools for

a cotton expert system. Proceedings of the American Society ofAgricultural

Engineers, Chicago.

McRoberts, M., Fox, M., and Husain, N. 1985. Generating model abstraction

scenarios in KBS. In G. Birtwistle (Ed.), Artificial intelligence, graphics, and
simulation. The Society for Computer Simulation, 29-33.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. 1953. Equation of state calculations by fast computing machines. Journal

of Chemical Physics 21:1087-1091.

Meutzelfeldt, R., Bundy, A., Uschold, M., and Robertson, D. 1986. ECO—An
intelligent front end for ecological modelling. Society for Computer Simu-
lation, Simulation Series 18(l):67-70.

Meyer, G. E., and Curry, R. B. 1986. Soybean production decision-making with
the real soy model. Proceedings of the American Society of Agricultural

Engineers, Chicago.

Meyers, S. and Friedland, P. 1984. Knowledge-based simulation of genetic reg-

ulation in bacteriophage lambda. Nucleic Acids Research 12(1): 1-9.

Michalski, R. S., Mozetic, I., Hong, J., and Lavrac, N. 1986. The multipurpose
incremental learning system AQ15 and its testing application to three med-
ical domains. Proc. AAAI-86. AAAI, Philadelphia, 1041-1045.

Michie, D., Muggleton, S., Riese, C, and Zubrick, S. 1984. RULEMASTER: A
second-generation knowledge-engineering facility. In IEEE, The first confer-

ence on artificial intelligence applications. Silver Spring, Md.: IEEE Computer
Society Press.

Middleton, S., and Zanconato, R. 1986. Blobs: An object-oriented language for

simulation and reasoning. Society for Computer Simulation, Simulation
Series 18(1):130-135.

Miller, F. D., Copp, D. H., Vesonder, G. T., and Zielinski, J. E. 1985. The ACE
Experiment; Initial evaluation of an expert system for preventive mainte-
nance. In J. J. Richardson (Ed.), Artificial intelligence in maintenance: Proc.

joint services workshop. Air Force Systems Command, Park Ridge, N.J.:

Noyes Publications, Publication #AFHRL-TR-84-25, 421-427.

Minkowski, H. 1903. Volumen und Oberflache. Mathematical Annals 57:447-

495.

Minsky, M. 1975. A framework for representing knowledge. In P. H. Winston
(Ed.), The psychology ofcomputer vision. New York: McGraw-Hill, 211-277.

Minsky, M., and Papert, S. 1969. Perceptrons. Cambridge, Mass.: MIT Press.

Mishkoff, H. C. 1985. Understanding artificial intelligence. Texas Instruments
Information Publishing Center, Dallas.

Mitchell, J. M., Carbonell, J. G., and Michalski, R. S. (Eds.) 1986. Machine
learning: A guide to current research. Boston: Kluwer Academic Publications.

Mittal, S., Dym, C. L., and Morjaria, M. 1985. PRIDE: An expert system for the

design of paper handling systems. In C. L. Dym (Ed.), Applications of knowl-
edge-based systems to engineering analysis and design. New York: ASME
Press.

Bibliography 609

Modjeski, R. B. 1987. Artificial intelligence study. Research Paper CAA-RP-87-

1, Research and Analysis Support Directorate, U.S. Army Concepts Analysis

Agency, Bethesda, Maryland.

Mokhtarian, F., and Mackworth, A. K. 1986. Scale-based description and recog-

nition of planar curves and two-dimensional shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-8:34-43.

Montanari, U. 1974. Networks of constraints: Fundamental properties and appli-

cations to picture processing. Information Science 7:95-132.

Moore, R. C. 1981. Problems in logical form. Proceedings of ACL 117-124,

(reprinted in RNLP).

Moser, J. G. 1986. Integration of artificial intelligence and simulation in a
comprehensive decision-support system. Simulation 47(6):223-229.

Moses, J. 1971. Symbolic integration: The stormy decade. Communications ACM
8:548-560.

Mostow, J. 1989. An object-oriented representation for search algorithms. Pro-

ceedings of the Sixth International Workshop on Machine Learning. Cornell

University, Ithaca, N.Y., San Mateo, Calif.: Morgan Kaufmann: 489-491.

(Available as Rutgers AI/Design Project Working Paper Number 131.)

Mostow, J. 1989. Exploiting DIOGENES' representations for search algorithms:

propagating constraints. 1989 International Joint Conference on Artificial

Intelligence Workshop on Automated Software Development. (Available as

Rutgers AI/Design Project Working Paper Number 129.)

Mostow, J. 1989. Design by derivational analogy: Issues in the automated replay

of design plans. 40:1-3:119-184.

Mostow, J. 1989. Towards automated development of specialized algorithms for

design synthesis: Knowledge compilation as an approach to computer-aided

design. Research in Engineering Design 1:3. (Available as Rutgers AI/Design

Project Working Paper Number 141.)

Mostow, J., Barley, M., and Weinrich, T. 1989. Automated reuse of design plans.

International Journal for Artificial Intelligence in Engineering 4:4.

Mostow, J., and Barley, M. 1987. Automated reuse of design plans. International

Journal on Artificial Intelligence in Engineering 4:4.

Mostow, J., and Prieditis, A. E. 1989. Discovering admissable heuristics by
abstracting and optimizing: A transformational approach. Proceedings of the

Eleventh Joint International Conference on Artifical Intelligence, Detroit,

Mich.: 701-707 (Available as Rutgers AI/Design Project Working Paper
Number 114-1.)

Mostow, J., and Tong, C. 1988. Syllabus for graduate seminar in knowledge
compilation, September 1988. (Rutgers AI/Design Project Working Paper
Number 109.)

Muerle, J., and Allen, D. 1968. Experimental evaluation of techniques for auto-

matic segmentation of objects in a complex scene. In G. Cheng et al. (Eds.),

Pictorial Pattern Recognition. Washington, D.C.: Thompson, 3-13.

Murray, W. 1988. Automatic program debugging for intelligent tutoring systems.

Los Altos, Calif.: Morgan Kaufmann.

Nackman, L. R. 1984. Two-dimensional critical point configuration graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-6(4):442-
449.

Nagao, M., and Matsuyama, T. 1980. A structural analysis of complex aerial

photographs. New York: Plenum Press.

610 Bibliography

Neches, R., Swartout, W. R., and Moore, J. D. 1985. Enhanced maintenance and
explanation of expert systems through explicit models of their development.
IEEE Transactions on Software Engineering Vol Se-ll(ll):1337-1351.

Neighbors, J. 1984. The DRACO approach to constructing software from reusable

components. IEEE Transactions on Software Engineering 10(5):5-27.

Newell, A. 1962. Some problems of basic organization in problem-solving pro-

grams. In M. C. Yovits, G. T. Jacobi, and G. D. Goldstein (Eds.), Conference
on Self-Organizing Systems. Washington, D.C.: Spartan Books, 393-423.

Newell, A. 1969. Heuristic programming: Ill-structured problems. In J. Aronof-

sky (Ed.), Progress in operations research. New York: Wiley, 360-414.

Newell, A., Barnett, J., Green, C, Klatt, D., Licklider, J. C. R., Munson, J.,

Reddy, R., and Woods, W. 1973. Speech understanding system: A final report

of a study group. New York: North-Holland.

Newell, A., and Simon, H. A. 1972. Human problem solving. Englewood Cliffs,

N.J.: Prentice-Hall.

Newell, A., and Simon, H. A. 1976. Computer science as empirical inquiry:

Symbols and search. Communications of the ACM 19(3): 113-126.

Nielsen, N. R. 1985. Expert systems and simulation. SRI International.

Nielsen, N. R. 1987. The impact of using Al-based techniques in a control system
simulator, IntelliCorp.

Nielsen, P. 1988. A qualitative approach to mechanical constraint. Proceedings

of the Seventh National Conference on Artificial Intelligence: 270--27'4.

Nii, H. P., Aiello, N. and Rice, J. 1989. Experiment on cage and poligon: Mea-
suring the performance of parallel blackboard systems. In L. Gasser and
M. N. Huhns (Eds.), Distributed artificial intelligence, Volume II. San Mateo:
Morgan Kaufmann.

Nii, H. P., Feigenbaum, E. A., Anton, J. J., and Rockmore, A. J. 1982. Signal-

to-symbol transformation: HASP/SIAP case study. AI Magazine 3(2):23-35.

Nii, H. P., Feigenbaum, E. A., Anton, J. J., and Rockmore, A. J. 1982. Signal-

to-symbol transformation: HASP/SIAP case study. AI Magazine 3:2:23-35.

Nii, H. P., and Aiello, N. 1979. AGE: A knowledge-based program for building

knowledge-based programs. Proceedings of the Sixth International Joint Con-
ference on Artificial Intelligence, Cambridge, Mass., 645-655.

Nii, H. P., and Feigenbaum, E. A. 1978. Rule-based understanding of signals. In

D. A. Waterman and R. Hayes-Roth (Eds.), Pattern -directed inference sys-

tems, New York: Academic Press, 483-501.

Nilsson, N. J. 1980. Principles of artificial intelligence. Palo Alto, Calif.: Tioga.

Nilsson, N. J. 1980. Two heads are better than one. SIGART Newsletter (73):43.

Nirenburg, S., and Lesser, V. 1988. Providing intelligent assistance in distributed

office environments. In A. H. Bond and L. Gasser (Eds.), Readings in dis-

tributed artificial intelligence. San Mateo, Calif.: Morgan Kaufmann, 590-
598.

Noche, B., Hoppe, U., and Boenke, M. 1987. Integration of CAD and simulation

for the planning of material flow systems. Proceedings of the Second Euro-
pean Simulation Multiconference, Vienna, Austria, 31-37.

Nolan, P. J. and Fegan, J. M. 1987. An Al-based program generator for discrete

event simulation. Proceedings of the Second European Simulation Multicon-

ference, Vienna, Austria, XXI-XXVI.

Nudel, B. A. 1983. Consistent-labeling problems and their algorithms: Expected
complexities and theory-based heuristics. Artificial Intelligence 21:135-178.

Bibliography 611

O'Keefe, R. 1986. Singulation and expert systems—A taxonomy and some exam-
ples. Simulation 46(1): 10-16.

O'Keefe, R. M., Balci, O., and Smith, E. P. 1987. Validating expert system
performance. IEEE Expert 2(4):81-89.

Oddson, J. K., and Aggarwal, S. 1985. Discrete event simulation of agricultural

pest management systems. Simulation.

Ohlander, R., Price, K., and Reddy, D. R. 1978. Picture segmentation using a

recursive region-splitting method. Computer Graphics and Image Processing,

8:3, December, 313-333.

Ohta, Y., Watanabe, M., and Ikeda, K. 1986. Improving depth map by right

angles trinocular stereo. Proceedings of the Eighth International Conference
on Pattern Recognition, Paris, 519-521.

Oren, T. I. 1986. Implications of machine learning in simulation. In M. S. Elzas,

T. I. Oren, and B. P. Zeigler (Eds.), Modelling and methodology in the arti-

ficial intelligence era. B.V. (North-Holland): Elsevier Science Publishers, 41-
57.

Pan, J. 1984. Qualitative reasoning with deep-level mechanism models for diag-

noses of mechanism failures. IEEE, 295-301.

Parunak, H. V. D. 1987. Manufacturing experience with the contract net. In

M. N. Huhns (Ed.), Distributed artificial intelligence. New York: Pitman,
285-310.

Parunak, H. V. D., Irish, B. W., Kindrick, J., and Lozo, P. W. 1985. Fractal actors

for distributed manufacturing control. Proceedings of the Second IEEE Con-
ference on AI Applications, 653—660.

Pave, A., and Rechenmann, F. 1986. Computer aided modelling in biology: An
artificial intelligence approach, AI applied to simulation. Society for Com-
puter Simulation, Simulation Series 18(l):52-66.

Pearl, J. 1986. Fusion, propagation, and structuring in belief networks. Artificial

Intelligence 29:241-251.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of plau-

sible inference. San Mateo, Calif.: Morgan Kaufmann.

Pentland, A. P. 1983. Fractal-based description. Proceedings of the Eighth Inter-

national Joint Conference on Artificial Intelligence. Karlsruhe, West Ger-

many, 973-981.

Pentland, A. P. 1986. Perceptual organization and the representation of natural

form. Artificial Intelligence 28:293-331.

Pereira, F. C. N., and Warren, D. H. D. 1980. Definite clause grammars for

language analysis—A survey of the formalism and a comparison with aug-

mented transition networks. Artificial Intelligence 13(3):231-278, (reprinted

in RNLP: 101-124).

Perrault, C. R., and Allen, J. F. 1980. A plan-based analysis of indirect speech

acts. AJCL 6(3-4): 167-182.

Perry, D. 1987. Version control in the inscape environment. Ninth International

Conference on Software Engineering, Monterey, Calif., 142-149.

Pfister, G. F., Brantley, W. C, George, D. A., Harvey, S. L., Kleingelder, W. J.,

McAuliffe, K. P., Melton, E. A., Norton, V. A., and Weiss, J. 1985. The IBM
Research parallel processor prototype (RP3): Introduction and architecture.

Proceedings ofthe 1985 International Conference on Parallel Processing, 764-
771.

Pietikainen, M., and Harwood, D. 1986. Depth from three-camera stereo. Pro-

ceedings of the CVPR '86, Miami Beach, Fla., 2-8.

612 Bibliography

Poggio, T., Torre, V. and Koch, C. 1985. Computational vision and regularization

theory. Nature 317:314-319.

Poggio, T., Voorhees, H. and Yuille, A. L. 1984. A regularized solution to edge
detection. MIT Artificial Intelligence Lab. Memo 773, Cambridge, Mass.

Pollard, C, and Sag, I. 1987. Information-based syntax and semantics, CSLI
Lecture Notes 13, Chicago University Press.

Pollard, C. Generalized phrase structure grammars, head grammars, and natural

languages. New York: Cambridge University Press, forthcoming.

Pratt, W. K. 1985. A pipeline architecture for image processing and analysis.

IEEE Computer Society Workshop on Computer Architecture for Pattern Anal-
ysis and Image Database Management, Miami Beach, Fla., November 18-

20, 516-520.

Preston, K. P., Jr., and Duff, M. J. B. 1984. Modern cellular automata. New York:

Plenum.

Preston, K., Jr. 1961. Machine techniques for automatic identification of binu-

cleate lymphocyte. Proceedings of the Fourth International Conference on
Medical Electronics, Washington D.C., July.

Preston, K., Jr. 1973. Application of cellular automata to biomedical image
processing. Computer Techniques in Biomedicine and Medicine. Philadel-

phia: Auerbach Publishers.

Raiman, O. 1986. Order of magnitude reasoning. Proceedings of the Fifth

National Conference on Artificial Intelligence: 100—104.

Rajagopaian, R. 1986. Qualitative modeling and simulation: A survey. AI Applied
to Simulation: 9-30.

Ramana Reddy, Y. V., Fox, M. S., Husain, N., and McRoberts, M. 1986. The
knowledge-based simulation system. IEEE Software, 26-37.

Rauch-Hindin, W. B. 1986. Artificial intelligence in business, science, and indus-

try: Volume I—Fundamentals, Volume II—Applications. Englewood Cliffs,

N.J.: Prentice-Hall.

Raulefs, P., and Thorndyke, P. 1987. An architecture for heuristic control of real-

time processes. Proceedings of the 1987 JPL Workshop on Space Telerobotics.

Reddy, D. R., Erman, L. D., and Neely, R. B. 1973a. A model and a system for

machine recognition of speech. IEEE Transactions on Audio and Electro-

acoustics AU-21:229-238.

Reddy, D. R., Erman, L. D., and Neely, R. B. 1973b. The HEARSAY speech

understanding system: An example of the recognition process. Proceedings

ofthe Third International Joint Conference on Artificial Intelligence, Stanford

University, 185-193.

Reddy, Y. V., Fox, M. S., and Husain, N. 1985. Automating the analysis of

simulations in KBS. In G. Birtwistle (Ed.), Artificial intelligence, graphics,

and simulation. The Society for Computer Simulation, 34-40.

Reed, S., and Lesser, V. R. 1980. Division of labor in honey bees and distributed

focus of attention. Technical Report 80-17, Department of Computer and
Information Science, University of Massachusetts, Amherst, Mass.

Reedy, Y. B., Fox, M. S., and Husain, N. 1984. Automating the analysis

of simulations in KBS. Robotics Institute, Carnegie-Mellon Univer-
sity.

Reichman, R. 1985. Getting computers to talk like you and me. Cambridge, Mass.:

MIT Press.

Bibliography 613

Reubenstein, H.B., and Waters, R.C. 1989. The requirements apprentice: An
initial scenario. Proceedings of the Fifth International Workshop on Software

Specification and Design, Pittsburgh, Penn.

Rice, J. P. 1986. Poligon: A system for parallel problem solving. Technical Report

KSL-86-19, Knowledge Systems Laboratory, Computer Science Department,
Stanford University.

Rich, C. 1985. The layered architecture of a system for reasoning about programs.

Proceedings of the Ninth International Joint Conference on Artificial Intel-

ligence, Los Angeles, Calif., 540-546.

Rich, C, Waters, R. C, and Reubenstein, H. B. 1987. Toward a requirements

apprentice. Fourth International Workshop on Software Specification and
Design, IEEE Computer Society Press, 79-86.

Rich, C, and Waters, R. C. 1988. The programmer's apprentice: A research

overview. IEEE Computer 21(ll):10-25.

Rich, R. C. 1981. A formal representation for plans in the programmer's appren-

tice. Proceedings of the Seventh International Joint Conference on Artificial

Intelligence, Vancouver, B.C., 1044-1052.

Richer, M. H. 1986. Evaluating the existing tools for developing knowledge-based

systems. Expert Systems 3(3):166-183.

Richer, M. H., and Clancey, W. J. 1985. Guidon-Watch: A graphic interface for

viewing a knowledge-based system. IEEE Computer Graphics and Applica-

tions 5(ll):51-64.

Rieger, C, and Grinberg, M. 1977. The declarative representation and procedural

simulation of causality in physical mechanisms. Proceedings of the Fifth

International Joint Conference on Artificial Intelligence, Cambridge, Mass.:

250-256.

Rieger, C, and Grinberg, M. 1978. A system of cause-effect representation and
simulation for computer-aided design. Artificial Intelligence and Pattern Rec-

ognition in Computer Aided Design. New York: North Holland: 250-257.

Riseman, E. M., and Arbib, M. 1977. Segmentation of static scenes. Computer
Graphics and Image Processing 6:221-276.

Riseman, E. M., and Hanson, A. R. 1986. A methodology for the development of

general knowledge-based vision systems. In M. A. Arbib and A. R. Hanson
(Eds.), Vision, brain, and cooperative computation. Cambridge, Mass.: MIT
Press, 285-328.

Roberston, T. V., Swain, P. H., and Fu, K. S. 1973. Multispectral image parti-

tioning. TR-EE-73-26 (LARS Information Note 071373), August, School of

Electrical Engineering, Purdue University.

Robertson, P. 1986. A rule-based expert simulation environment. Intelligent

Simulation Environments. Society for Computer Simulation, Simulation

Series 17(1):9-15.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle.

JACM 12(1):23-41.

Robinson, J. J. 1982. DIAGRAM: A grammar for dialogues. Commun. of the ACM
25(l):27-47, (reprinted in RNLP: 139-160).

Rosenblatt, F. 1962. Principles of neurodynamics. New York: Spartan Books.

Rosenfeld, A. (Ed.) 1984. Multiresolution image processing and analysis. New
York: Springer-Verlag.

Rosenschein, J. S. 1982. Synchronization of multi-agent plans. Proceedings of the

National Conference on Artificial Intelligence, Pittsburgh, 115-119.

614 Bibliography

Rosenschein, J. S., and Genesereth, M. R. 1987. Communication and cooperation

among logic-based agents. Proceedings of the Sixth Phoenix Conference on
Computers and Communications, Scottsdale, Ariz., 594—600.

Rosenschein, J. S., and Genesereth, M. R. 1985. Deals among rational agents.

Proceedings of the Ninth International Joint Conference on Artificial Intel-

ligence, Los Angeles, Calif., 91-99.

Rosenschein, S. 1983. Reasoning about distributed action. AI Magazine 84:7.

Rosenschein, S. J., and Shieber, S. M. 1982. Translating English into logical

form. Proc. ACL 1-8.

Round, A. D. 1987. QSOPS: A workbench environment for the qualitative simu-
lation of physical processes. Proceedings of the Second European Simulation
Multiconference, Vienna, Austria, 213-217.

Round, A. D. 1989. AI tools for simulation. In M. Richer (Ed.), Tools and Tech-

niques. Norwood, N.J.: Ablex, 219-239.

Roussel, P. 1975. Prolog: Manuel de reference et d'utilisation. Groupe d'lntelli-

gence Artificielle, Universite d'Aix-Marseille, Luminy, France.

Royce, W. W. 1970. Managing the development of large software systems: Con-
cepts and techniques. 1970 WESCON Technical Papers Vol. 14, Los Angeles,

Calif.: 328-338.

Rumelhart, D. E., and McClelland, J. L. 1982. An interactive model of context

effects in letter perception: Part 2, The enhancement effect and some tests

and extensions to the model. Psychological Review 89:60-94.

Russell, Stuart. 1985. Unpublished manuscript, Computer Science Department,
Stanford University.

Sacerdoti, E. D. 1977. A structure for plans and behavior. New York: Elsevier

North-Holland.

Sacks, E. P. 1987a. Piecewise linear reasoning. Proceedings of the Sixth National

Conference on Artificial Intelligence: 655-659.

Sacks, E. P. 1987b. Hierarchical reasoning about inequalities. Proceedings of the

Sixth National Conference on Artificial Intelligence: 649-654.

Sager, N. 1981. Natural language information processing: A computer grammar
of English and its applications. Reading, Mass.: Addison-Wesley.

Sathi, A., Morton, T. E., and Roth, S. F. 1986. Callisto: An intelligent project

management system. AI Magazine, Winter: 34-52.

Schaefer, D. H., Wilcox, G. C, and Harris, V. J. 1985. A pyramid of MPP pro-

cessing elements — experiences and plans. Proceedings of the Eighteenth

Annual Hawaii International Conference on System Sciences, 1, 178-184.

Schank, R. C. 1983. The current state of AI: One man's opinion. AI Magazine
4(l):3-8.

Schank, R. C. and Abelson, R. 1977. Scripts, plans, goals and understanding.

Hillsdale, N.J.: Lawrence Erlbaum.

Scherlis, W. L., and Scott, D. S. 1983. First steps towards inferential program-
ming. Tech Report CMU-CS-83-142, Pittsburgh: Carnegie Mellon University.

Schoen, E. 1986. The CAOS system. Technical Report STAN-CS-86-1125, Computer
Science Department, Stanford University.

Schonberg, E., Schwartz, J. T., and Sharir, M. 1981. An automatic technique for

the selection of data representations in SETL programs. ACM Transactions

on Programming Languages and Systems Vol. 3: 126—143.

Schubert, L. K., and Pelletier, F. J. 1982. From English to logic: Context-free

computation of conventional logical translation. AJCL 8(1): 165-176,

(reprinted in RNLP: 293-312).

Bibliography 615

Scown, S. J. 1985. The artificial intelligence experience. Digital Equipment Corp.,

Maynard, Mass.

Scriber, T. J. 1987. The nature and role of simulation in the design of manufac-
turing systems. Proceedings of the Second European Simulation Multicon-

ference, Vienna, Austria, 5-18.

Searle, J. R. 1969. Speech acts, An essay in the philosophy of language. New
York: Cambridge University Press.

Searle, J. R. 1975. Indirect speech acts. In P. Cole and J. Morgan (Eds.), Syntax
and semantics 3: Speech Acts. New York: Academic Press, 59-82.

Seitz, C. L. 1984. The cosmic cube. Communications of the ACM 28(l):22-33.

Sejnowski, T. J., and Hinton, G. E. 1987. Separating figure from ground with a

Boltzmann machine. In M. A. Arbib and A. R. Hanson (Eds.), Vision, brain,

and cooperative computation. Cambridge, Mass.: MIT Press, 703-724.

Selfridge, O. G. 1959. Pandamonium: A paradigm for learning. Proceedings of
the Symposium on the Mechanization of Thought Processes, 511—529.

Selig, L. J. 1987. An expert system using numerical simulation and optimization

to find particle beam line errors. Knowledge Systems Laboratory, Report No.

KSL 87-36, Stanford University.

Selig, L., Clearwater, S., Lee, M., and Engelmore, R. 1987. Simulation and expert

systems for finding particle beam line errors. Second Workshop on AI and
Simulation, AAAI Conference, Seattle.

Seliger, G., Viehweger, B., Wieneke-Toutouai, B., and Kommana, S. R. 1987.

Knowledge-based simulation of flexible manufacturing systems. Proceedings

of the Second European Simulation Multiconference, Vienna, Austria, 65-
68.

Sembugamoorthy, V., and Chandrasekaran, B. 1986. Functional representation

of devices and compilation of diagnostic problem-solving systems. In Expe-
rience, memory, and reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.

Serra, S. 1972. Stereology and structuring elements. Journal of Microscopy, 93-
103.

Serra, S. 1982. Image analysis and mathematical morphology. London: Academic
Press.

Setliff, D, and Rutenbar, R. 1989. ELF: A tool for automatic synthesis of custom
physical CAD software. Design Automation Conference, IEEE: 102-108.

Setliff, D. 1989. Knowledge-based synthesis of custom VLSI router software.

Ph.D. dissertation, Carnegie Mellon University.

Setliff, D., and Rutenbar, R. 1988. Knowledge-based synthesis of custom VLSI
physical design tools: First steps. Conference on Artificial Intelligence Appli-

cations, IEEE.

Shafer, G., Shenoy, P. P., and Mellouli, K. 1989. Propagating belief functions in

qualitative Markov trees. International Journal ofApproximate Reasoning,
forthcoming.

Shafer, S. A., Stentz, A., and Thorpe, C. 1986. An architecture for sensor fusion

in a mobile robot. Proceedings of the 1986 IEEE International Conference on
Robotics and Automation.

Shafer, S. A., and Kanade, T. 1983. The theory of straight homogeneous gener-

alized cylinders and taxonomy of generalized cylinders. Technical Report
CMU-CS-83-105, Carnegie-Mellon Univ., Pittsburgh, Pa.

Shank, R. C. 1975. Conceptual information processing. New York: North-Holland.

Shannon, R. E. 1986. Intelligent simulation environments. Society for Computer
Simulation, Simulation Series 17(1):150-156.

616 Bibliography

Shaw, D. E. 1985. NON-VON's applicability to three AI task areas. Proceedings

of the Ninth International Joint Conference on Artificial Intelligence, Los
Angeles, Calif., pp. 61-70.

Sheil, B. 1983. Power tools for programmers. Datamation, Feb. 1983, 29(2):131-

144.

Sheil, B. 1983. Power tools for programmers. Datamation 29(2): 131-144.

Sheil, B. A. 1984. Power tools for programmers. In D. R. Barstow, H. E. Shrobe,

and E. Sandewall (Eds.), Interactive programming environments. New York:

McGraw-Hill, 19-30.

Shieber, S. 1984. The design of a computer language for linguistic information.

Proceedings ofCOLING, 362-366.

Shirai, Y. 1987. Three-dimensional computer vision. New York: Springer-Verlag.

Shortliffe, E. H. 1976. Computer-based medical consultation: MYCIN. New York:

American Elsevier.

Sidner, C. 1985. Plan parsing for intended response recognition in discourse.

Computational Intelligence 1(1):1-10.

Siegel, H. J. 1979. PASM: A partitionable multimicrocomputer SIMD/MIMD
system for image processing and pattern recognition. IEEE Computer
C-30(12):934-947.

Siegel, H. J., Siegel, L. J., McMillen, R., Mueller, P., and Smith, S. 1979. An
SIMD/MIMD multimicroprocessor system for image processing and pattern

recognition. Proceedings of the 1979 Conference on Pattern Recognition and
Image Processing, Chicago, 111., 214-224.

The SimKit System User Manual, KEE Version 3.0. 1983. IntelliCorp.

Simmons R. 1986. Commonsense arithmetic reasoning. Proceedings of the Fifth

National Conference on Artificial Intelligence: 118-124.

Simon, H. A. 1952. On the definition of the causal relation. Journal ofPhilosophy
49:517-28.

Simon, H. A. 1953. Causal ordering and identifiability. In Studies in Econometric

Methods. New York: Wiley, 49-74.

Simon, H. A. 1957. Models of man. New York: Wiley.

Simon, H. A. 1969. The sciences of the artificial. Cambridge, Mass.: MIT Press.

Simon, H. A. 1969. The sciences of the artificial. Cambridge, Mass.: MIT Press.

Simon, H. A. 1977. Scientific discovery and the psychology of problem solving.

In Models of discovery. Boston, Mass.: D. Reidel.

Simon, H. A., and Ando, A. 1961. Aggregation of variables in dynamic systems.

Econometrica 29:111-138.

Simon, H. A., and Rescher, N. 1966. Causes and counterfactual. Philosophy of
Science 33:323-40.

Singh, N. 1983. MARS: A multiple abstraction rule-based simulator. Stanford

Heuristic Programming Project, Memo HPP-83-43, Stanford University.

Smith, D. 1988. KIDS—A knowledge-based software development system. Pro-

ceedings of AAAI-88 Workshop on Automating Software Design, St. Paul,

Minn.

Smith, D. R. 1985. Top down synthesis of divide-and-conquer algorithms. Arti-

ficial Intelligence 27 (l):43-96.

Smith, D. R., and Lowry, M. R. 1989. Algorithm theories and design tactics.

Proceedings of Mathematics of Program Construction, Gronigen, The Neth-

erlands, Lecture Notes in Computer Science No. 375, Springer-Verlag.

Bibliography 617

Smith, D. and Westfold, S. 1987. Application of REFINE to knowledge-based
modeling. Application Note 1.3, Reasoning Systems Inc.

Smith, D., and Broadwell, M. 1987. Plan coordination in support of expert sys-

tems. Proceedings ofthelDARPA Knowledge-based Planning Workshop, Aus-
tin, Tex.

Smith, G. B. 1984. A fast surface interpolation technique. Proceedings of the

Image Understanding Workshop, New Orleans, La., October, 211-215.

Smith, R. G. 1978. A framework for problem solving in a distributed processing

environment. Ph.D. thesis, Stanford University. (A revised version was pub-

lished by UMI Research Press.)

Smith, R. G. 1979. A framework for distributed problem solving. Proceedings of
the Sixth International Joint Conference on Artificial Intelligence, Cambridge,
Mass., 836-841.

Smith, R. G. 1980. The contract net protocol: High-level communication and
control in a distributed problem solver. IEEE Transactions on Computers C-

29(12):1104-1113.

Smith, R. G. 1984. On the development of commercial expert systems. AI Mag-
azine 5(3):61-73.

Smith, R. G., Barth, P. S., and Young, R. L. 1987. A substrate for object-oriented

interface design. In B. Shriver and P. Wegner (Eds.), Research directions in

object-oriented programming. Cambridge, Mass.: MIT Press, 253-315.

Smith, R. G., Winston, H. H., Mitchell, T. M., and Buchanan, B. G. 1985. Rep-
resentation and use of explicit justifications for knowledge-base refinement.

Proceedings of the Ninth International Joint Conference on Artificial Intel-

ligence, Los Angeles, Calif., 673-680.

Smith, R. G., and Davis, R. 1981. Frameworks for cooperation in distributed

problem solving. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
ll(l):61-70.

Smith, R. G., and Davis, R. 1983. Negotiation as a metaphor for distributed

problem solving. Artificial Intelligence 20:63-109.

Smith, R. G., and Young, R. L. 1984. The design of the dipmeter advisor system.

Proceedings of the ACM Annual Conference, 15-23.

Smith, S. F., and Hynynen, J. E. 1987. Integrated decentralization of production

management: An approach for factory scheduling. In C. R. Liu, A. Requicha,
and S. Chandrasekar (Eds.), Intelligent and integrated manufacturing anal-

ysis and synthesis. New York: The American Society of Mechanical Engi-
neers, 427-439.

Snyder, L. S. 1982. Introduction to the configurable highly parallel computer.

IEEE Computer 15(l):47-64.

Spain, D. S. 1983. Application of artificial intelligence to tactical situation assess-

ment. Proceedings of the Sixteenth EASCON83A57-464.
Spivey, J. M. 1989. An introduction to Z and formal specifications. Software

Engineers Journal (UK), vol.4: 40-50. See also J. M. Spivey. 1985. Under-
standing Z. Cambridge University Press.

Stallman, R. M., and Sussman, G. J. 1977. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Arti-

ficial Intelligence 9:135-196.

Stankovic, J. A., Ramamritham, K., and Cheng, S.-C. 1985. Evaluation of a
flexible task scheduling algorithm for distributed hard real-time systems.

IEEE Transactions on Computers C-34(12):1130-1143.

618 Bibliography

Stansfield, J. L. 1980. Conclusions from the commodity expert project. MIT Arti-

ficial Intelligence Lab. Memo 601, Cambridge, Mass.

Steeb, R., Cammarata, S., Narain, S., Rothenburg, J., and Giarla, W. 1986.

Cooperative intelligence for remotely piloted vehicle fleet control. Technical

Report R-3408-ARPA, Rand Corporation.

Stefik, M. 1979. An examination of a frame-structured representation system.

Proceedings of the Sixth International Joint Conference on Artificial Intelli-

gence, Cambridge, Mass., 468-476.

Stefik, M. J., and Bobrow, D. G. 1986. Object-oriented programming: themes and
variations. AI Magazine 6(4):40-62.

Steier, D. M. 1987. Cypress-Soar: A case study in search and learning in algo-

rithm design. Proceedings of the Tenth International Conference on Artificial

Intelligence, Milan, Italy, 327-330.

Steier, D. M. 1989. Automating algorithm design within a general architecture

for intelligence. Ph.D. thesis, Carnegie Mellon University.

Steier, D. M., and Newell, A. 1988. Integrating multiple sources of knowledge
into Designer-Soar, an automatic algorithm designer. AAAI-88, 8-13.

Steier, D., and Kant, E. 1985. The roles of execution and analysis in algorithm

design. IEEE Transactions on Software Engineering, Vol. SE-11, 11, 1375-
1386.

Steinberg, L. I., and Mitchell, T. M. 1985. The redesign system: A knowledge-
based approach to VLSI CAD. IEEE Design & Test, 2(l):45-54.

Stelzner, M., Dynis, J., and Cummins, F. 1987. The SimKit system: Knowledge-
based simulation and modeling tools in KEE, IntelliCorp.

Stenz, A., and Shafer, S. 1985. Module programmer's guide to local map builder

for ALVan. Technical Report, Computer Science Department, Carnegie-Mel-

lon University.

Stickel, M. 1983. Theory resolution; building in nonequational theories. 83, 391-
397.

Struss, P. 1987. Mathematical aspects of qualitative reasoning. Technical Report,

Siemens Corp.

Sugihara, K. 1986. Machine interpretation of line drawings. Cambridge, Mass.:

MIT Press.

Sweet, L. 1985. Research in progress at General Electric. AI Magazine 6(3):220-

227.

Sycara, K. 1987. Planning for negotiation: A case-based approach. IDARPA
Knowledge-based Planning Workshop, 11.1-11.10.

Sycara, K. 1988. Multi-agent compromise via negotiation. Proceedings of the

1988 Distributed AI Workshop, Lake Arrowhead, CA.

Sycara, K. 1988. Resolving goal conflicts via negotiation. Proceedings of the

National Conference on Artificial Intelligence, 245-250.

Sycara-Cyranski, K. 1985. Arguments of persuasion in labour mediation. Pro-

ceedings of the Ninth International Joint Conference on Artificial Intelligence,

Los Angeles, Calif., 294-296.

Szolovits, P., and Pauker, S. G. 1978. Categorical and probabilistic reasoning in

medical diagnosis. Artificial Intelligence 11:115-144.

Tangen, K., and Wretling, U. Intelligent front ends to numerical simulation

programs. Hovik, Norway: Computas Expert Systems.

Bibliography 619

Tanimoto, S. L. 1983. A pyramidal approach to parallel processing. Proceedings

of the Tenth International Symposium on Computer Architecture, Stockholm,
Sweden, 372-378.

Tanimoto, S. L. 1984. A hierarchical cellular logic for pyramid computers. Jour-
nal ofParallel and Distributed Computing 1(2): 105-132.

Tanimoto, S. L., Ligocki, T. J., and Ling, R. 1987. A prototype pyramid machine
for hierarchical cellular logic. In L. Uhr (Ed.), Parallel computer vision.

Orlando, Fla.: Academic Press, 43-83.

Teknowledge. 1987. TEKSolutions: Customer success stories. Teknowledge, Palo

Alto, Calif.

Terry, A. 1983. The CRYSALIS project: Hierarchical control ofproduction systems.

Technical Report HPP-83-19, Heuristic Programming Project, Stanford Uni-
versity.

Terzopoulos, D. 1984a. Multilevel reconstruction of visual surfaces: Variational

principles and finite-element representations. In A. Rosenfeld (Ed.), Multi-

resolution image processing and analysis. New York: Springer-Verlag, 237-
310.

Terzopoulos, D. 1984b. Multiresolution computation of visible-surface represen-

tations. Ph.D. Thesis, MIT.

Terzopoulos, D. 1986. Image analysis using multigrid relaxation methods. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-8(2):129-
139.

Terzopoulos, D. 1987. Visual depth map. In S. Shapiro (Ed.), Encyclopedia of
artificial intelligence. New York: Wiley, 1152-1160.

Thorndyke, P. W., McArthur, D., and Cammarata, S. 1981. Autopilot: A distrib-

uted planner for air fleet control. Proceedings of the Seventh International

Joint Conference on Artificial Intelligence, 171-177, Vancouver, B.C.

Tikhonov, A. N., and Arsenin, V. Y. 1977. Solutions of ill-posed problems. New
York: Winston.

Tomita, M., and Carbonell, J. G. 1987. The universal parser architecture for

knowledge-based machine translation. Proceedings ofthe Tenth International

Joint Conference on Artificial Intelligence, Milan, Italy, 718-721.

Torre, V., and Poggio, T. 1986. On edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence PAMI-8: 147-163.

Tracz, W. 1988. Software reuse: Emerging technology. IEEE Computer Society,

299-308.

Uhr, L. rEd.) 1987. Parallel computer vision. Orlando, Fla.: Academic Press.

Ulgen, O. M., and Thomasma, T. 1987. A graphical simulation system in Small-

talk-80. Proceedings of the Second European Simulation Multiconference,

Vienna, Austria, 53-58.

Ullman, S. 1979. Relaxation and constrained optimization by local processes.

Computer Graphics and Image Processing 10:115-125.

Unger, B., Dewar, A., Cleary, J., and Birtwistle, G. 1986. The jade approach to

distributed software development. Society for Computer Simulation, Simu-
lation Series 18(1):178-188.

Unger, S. H. 1958. A computer oriented to spatial problems. Proceedings of the

IRE 46:1744-1750.

Uyeno, D. H., and Seeberg, C. 1984. A practical methodology for ambulance
vocation. Simulation.

620 Bibliography

Vassilacopoulis, G. 1985. A simulation model for bed allocation to hospital inpa-

tient departments. Simulation.

Vaucher, J. G. 1985. Views of modelling: Comparing the simulation and AI

approaches. In G. Birtwistle (Ed.), Artificial intelligence, graphics, and sim-

ulation. The Society for Computer Simulation, 3-7.

Wah, B. W. (Ed.) 1987. Computer (Special issue on computers forAI applications).

IEEE.

Waldinger, R. J., and Lee, R. C. 1969. PROW: A step toward automatic program
writing. Proceedings of the First International Joint Conference on Artificial

Intelligence, Washington D.C., 241-252.

Walker, T. C, and Miller, R. K. 1986. Expert systems 1986. Madison, Ga.: SEAI
Technical Publications.

Waltz, D. 1975. Understanding line drawings of scenes with shadows. In P. H.

Winston (Ed.), The psychology of computer vision. New York: McGraw-Hill,
19-91.

Wang, Q., and Sterman, J. D. 1985. A disaggregate population model of China.

Simulation.

Waterman, D. A. 1986. A guide to expert systems. Reading, Mass.: Addison-

Wesley.

Waters, R. C. 1985. The programmer's apprentice: A session with KBEmacs. IEEE
Transactions on Software Engineering, Vol. SE-ll(ll): 1296-1320.

Webber, B. L. 1988. Tense as discourse anaphor. Computational Linguistics

14(2):61-73.

Weischedel, R. M., and Sondheimer, N. K. 1983. Meta-rules as a basis for pro-

cessing ill-formed output. Computational Linguistics 9(3-4) (Special Issue

on Ill-Formed Input), 161-177.

Weiss, S., and Kulikowski, C. 1984. A practical guide to building expert systems.

Totowa, N.J.: Rowman & Allanheld.

Weld, D. S. 1984. Switching between discrete and continuous process models to

predict genetic activity. MIT Artificial Intelligence Laboratory, Technical

Report 793.

Weld, D. S. 1985. Combining discrete and continuous process models. Proceedings

of the Ninth International Joint Conference on Artificial Intelligence, Los
Angeles, Calif., 141-143.

Weld, D. S. 1988. Exaggeration. Proceedings of the Seventh National Conference

on Artificial Intelligence: 291-295.

Wesson, R., Hayes-Roth, F., Burge, J. W., Statz, C, and Sunshine, C. A. 1981.

Network structures for distributed situation assessment. IEEE Transactions

on Systems, Man, and Cybernetics SMC-ll(l):5-23.

Westfold, S. J., Markosian, L. Z., and Brew, W. A. 1987. Knowledge-based soft-

ware development. In V. Montanari and A. N. Haberman (Eds.), Innovative

Software Factories and Ada. Berlin: Springer-Verlag.

Wile, D. S. 1983. Program developments: Formal explanations of implementa-
tions. Communications of the CACM 26(11): 902-911.

Wilensky, R. 1983. Planning and understanding. Reading, Mass.: Addison-Wes-
ley.

Wilkerson, G., Mishoe, J., Jones, J., Stimac, J., Boggess, W., and Swaney, D.

1983. SICM: Soybean integrated crop management model: Model description

and user's guide, Version 4.2. Agricultural Engineering Department
Research Report AGE-1, Agr. Engr. Department, University of Florida,

Gainesville, Fla.

Bibliography 621

Wilks, Y. 1975. An intelligent analyzer and understander of English. Commu-
nication of the ACM 18(5):264-274, (reprinted in RNLP: 193-204).

Williams, B. C. 1984. Qualitative analysis of MOS circuits. Artificial Intelligence

24:281-346.

Williams, B. C. 1986. Doing time: Putting qualitative reasoning on firmer

ground. Proceedings of the Fifth National Conference on Artificial Intelli-

gence, Philadelphia, Penn.: 105-113.

Williams, B. C. 1988. MINIMA: A symbolic approach to qualitative algebraic

reasoning. Proceedings of the Seventh National Conference on Artificial Intel-

ligence, St. Paul, Minn.: 264-269.

Williams, M. A. 1985. Distributed, cooperating expert systems for signal under-

standing. Proceedings of Seminar on AI Applications to Battlefield:3.4-1-

3.4-6.

Williams, M., Brown, H., and Barnes, T. 1984. TRICERO Design Description.

Technical Report ESL-NS539, ESL, Inc.

Wills, L. M. 1986. Automated program recognition. Massachusetts Institute of

Technology Technical Report MIT-AI-TR 904.

Wilson, S. 1985. The Pixie-5000—A systolic array processor. IEEE Computer
Society Workshop on Computer Architecture for Pattern Analysis and Image
Database Management, Miami Beach, Fla., November 18-20, 477-483.

Winkelbauer, L., and Fedra, K. 1987. Intelligent decision support for the man-
agement of hazardous substances: Symbolic simulation of chemical produc-

tion processes. Proceedings of the Second European Simulation

Multiconference, Vienna, Austria, 191-196.

Winograd, T. 1975. Frame representations and the procedural/declarative con-

troversy. In D. G. Bobrow and A. Collins (Eds.), Representation and under-

standing: studies in cognitive science. New York: Academic Press, 185-210.

Winograd, T., and Flores, F. F. 1986. Understanding computers and cognition.

Norwood, N.J.: Ablex.

Witkin, A. P. 1983. Scale space filtering. Proceedings of the Eighth International

Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1019-
1022.

Witkin, A. P. 1987. Scale space methods. In S. Shapiro (Ed.), Encyclopedia of
artificial intelligence. New York: Wiley, 973-980.

Wolper, J. T. 1987. F.M.S. behaviour and general systems theory. Proceedings of
the Second European Simulation Multiconference, Vienna, Austria, 111.

Woodham, R. J. 1980. Photometric method for determining surface orientation

from multiple images. Optical Engineering 19:139-144.

Woodham, R. J. 1987a. Shape analysis. In S. Shapiro (Ed.), Encyclopedia of
artificial intelligence. New York: Wiley, 1039-1048.

Woodham, R. J. 1987b. Stable representation of shape. In Z. Pylyshyn (Ed.),

Computational processes in human vision. Norwood, N.J.: Ablex.

Woods, W. A. 1968. Procedural semantics for question answering. Proceedings of
AFIPS Conference 33, 457-471.

Woods, W. A. 1970. Transition network grammars for natural language analysis.

Communication of the ACM 13:591-606, (reprinted in RNLP: 71-88).

Woods, W. A. 1973. An experimental parsing system for transition network
grammars. In R. Rustin (Ed.), Natural language processing. New York: Algo-

rithmics Press.

622 Bibliography

Woods, W. A. 1975. What's in a link: Foundations for semantic networks. In

D. G. Bobrow and A. Collins (Eds.), Representation and understanding:

Studies in cognitive science. New York: Academic Press.

Woods, W. A. 1977. Lunar rocks in natural English: Explorations in natural

language question answering. In A. Zampoli (Ed.), Linguistic structures

processing. New York: Elsevier North-Holland.

Woods, W. A. 1978. Semantics and quantification in natural language question

answering. In M. Yovitz (Ed.), Advances in computers (vol. 17). New York:

Academic Press, (reprinted in RNLP).

Woods, W. A. 1980. Cascaded ATN grammars. AJCL 6(1):1-12.

Wu, S. D., and Wysk, R. A. 1987. MPECS—An intelligent flexible machining cell

controller. Proceedings of the Second European Simulation Multiconference,

Vienna, Austria, 71-76.

Xerox Learning Research Group. 1981. The Smalltalk-80 System. BYTE Maga-
zine, 36-47.

Yachida, M. 1985. 3—D data acquisition by multiple views. Proceedings of the

Third International Symposium on Robotics Research, Gouvieux, France
(Cambridge, Mass.: MIT Press).

Yachida, M., Kitamura, Y., and Kimachi, M. 1986. Trinocular vision: New
approach for correspondence problem. Proceedings ofthe Eighth International

Conference on Pattern Recognition, Paris, 1041—1044.

Yuille, A. L., and Poggio, T. 1984. Fingerprint theorems. Proceedings of the

National Conference on Artificial Intelligence, Austin, Tex., 362-365.

Yuille, A. L., and Poggio, T. 1986. Scaling theorems for zero crossings. IEEE
Pattern Analysis and Machine Intelligence PAMI-8(1): 15-25.

Zadeh, L. A. 1979. A theory of approximate reasoning. In J. E. Hayes, D. Michie,

and L. I. Mikulich (Eds.), Machine Intelligence 9. Chichester, England: Ellis

Horwood Ltd., 149-195.

Zave, P. 1982. An operational approach to requirements specification for embed-
ded systems. IEEE Transactions on Software Engineering SE-9(3): 250-269.

Zave, P. 1984. The operational versus the conventional approach to software

development. Communications of the ACM 27:2:104-118.

Zave, P., and Yeh, R. T. 1986. Executable requirements for embedded systems.

In N. Gehani and A. D. McGettrick (Eds.), Software specification techniques.

Reading, MA: Addison-Wesley, 341-360.

Zeigler, B. P. 1986. System knowledge: A definition and its implications. In M.
S. Elzas, T. I. Oren, and B. P. Zeigler (Eds.), Modelling and methodology in

the artificial intelligence era. B.V. (North-Holland): Elsevier Science Publish-

ers, 15-17.

Zucker, S. W. 1976. Region growing: Childhood and adolescence. Computer
Graphics and Image Processing 5:382-399.

Zucker, S. W. 1983. Cooperative grouping and early orientation selection. In O. J.

Braddick and A. C. Sleigh (Eds.), Physical and biological processing of
images. New York: Springer-Verlag, 326-334.

Zucker, S. W., Hummel, R. A., and Rosenfeld, A. 1977. An application of relax-

ation labeling to line and curve enhancement. IEEE Transactions on Com-
puters C-26:4:394-403.

Cumulative Indexes

NAME INDEX FOR VOLUMES I, II, III, AND IV

AALPS, IV.156

Abbott, R., 111:416, 565

Abelson, R.P., 1:15, 149, 212-215, 216, 217,

219, 221, 222, 232, 255, 300-302, 305,

306, 308-310, 313-315, 365, 383,

11:225, 291, 294, 383, 111:10, 65-70, 74,

552, 561, 565, 582, IV:226

Abrahams, P.W., 11:33, 395

Ackley, D.H., IV:562, 563

Acosta, R.D., IV:284

Adelson, B., IV:254

Adelson-Velskiy, G.M., 1:95, 96, 99, 102,

103, 104, 108, 365

Adlercreutz, J., 11:110, 399

Agarival, K.K., 11:139, 140, 142, 390

Aggarwal, J.K., 111:246, 248, 565, 568

Agin, G.J., 111:132, 258, 269, 272, 273-274,

304, 565, 571

Aho, A.V., 1:68, 71, 365, 111:337, 565

Aiello, N., 11:84, 126, 396, 111:348, 579,

IV:28, 46n, 50, 51, 51n, 53, 78

Aikins, J.S., 1:217, 220, 365, 11:182, 383,

IV:46n

Akmajian, A., 1:248, 365, 369

Albus, J.S., 111:258, 584

Alexander, S.M., IV:455

Allen, D., IV:533

Allen, J., 1:16, 365, 11:29, 383

Allen, J.F., IV:144, 165, IV:210, 212, 213,

- 227, 230, 236, 328, 376

Altman, R., IV:28, 56, 57, 59, 64, 66

Altschuler, M.D., 111:258, 565

Altschuler, T.B., 111:258, 565

Amarel, S., 1:27, 30, 365, 11:325, 383, 401,

111:26, 565

Ambler, A.P., 111:274, 580

American Association for Artificial Intelli-

gence, IV: 189

Anderson, J.R., 1:15, 180, 185, 189, 193, 195,

365, 111:5-6, 9, 34, 35, 42-49, 50-54,

55, 509-510, 565

Ando, A., IV:397

Andose, J.D., 11:142, 391

Andrews, H.C., 111:228, 568

Angebranndt, S., 11:335, 391

Annaratone, M., IV:568

Anton, J.J., IV:28, 170

Appelt, D.E., 1:232, 280, 365, 381, IV:144

Arbib, MA., 111:229, 580, IV:525

Arbuckle, T., 1:99, 105, 108, 366

Arkin, R.C., IV:90

Arlazarov, V.L., 1:96, 99, 102-104, 108, 365

Arnold, D., 111:253, 565

Arnold, R.S., 11:167, 383, 387

Arnould, E., IV:568

Arsenin, V.Y., IV.536, 555, 563

Artsouni, G.B., 1:233

Asada, H., 111:252, 253, 257, 268, 574, 578,

IV:551, 552, 554, 557

Asano, T., IV:526

Ashton-Warner, S., 11:291, 383

Atkin, L.R., 1:95, 96, 99, 100, 102, 103, 108,

384

Atkinson, R.C., 11:226, 228, 230, 344, 383,

384, 394

Austin, H., 11:293, 383

Ayache, N., IV:539

Babaud, J., IV:550, 553

Babu, K.R., 111:224, 318, 579

Backus, J.W., 11:6, 297, 383

Baddeley, A.D., 111:28, 565

Badler, N., 111:246, 248, 278, 290, 565

Bahl, L.R., 1:329, 365

Baird, M.L., 111:302, 305, 566

Bajcsy, R., 111:231, 278, 565, 566

Baker, D.N., IV:484

Baker, H., 111:253, 566

Baker, J.K., 1:329, 349, 365, 366

Baker, R., 1:204, 366

Balci, O., IV:178, 514, 516

Ballantyne, A.M., 111:99, 100, 566, 567, 575

Ballard, D.H., 111:138, 310-312, 566

Ballard, J.P., 11:84, 392

Balzer, R.M., 11:298, 305, 336-342, 383,

IV:245, 258, 261

Bamberger, J., 11:294, 383

Banerji, R.B., 111:452-453, 484-493, 578

Bar-Hillel, Y., 1:233, 236, 238, 366

Barghouti, N.S., IV:246

Barley, M., IV:283

Barnard, S.T., 111:253, 566, IV:537, 538

Barnea, D.I., 111:252, 566

625

626 Name Index

Barnes, T., IV:28

Barnett, J., 1:327, 333, 358, 366, 379, IV:27

Baron, R.V., 11:364-369, 384

Barr, A., 11:89, 226, 228, 230, 384, 111:354,

566, IV:557

Barrett, P., 11:155, 162, 389, 111:268, 277-

278, 569

Barrow, H.G., 1:318, 321, 366, 111:132-134,

135, 238-242, 243, 285, 295-297, 566,

583

Barstow, D.R., 1:16, 194, 366, 11:305, 307,

330, 335, 350-354, 379, 384, 391,

IV:254, 281, 320

Barth, P.S., IV:175, 177, 320

Bartlett, F.C., 1:216, 307, 315, 366

Barton, D., 11:147-148

Batcher, K.E., IV:571

Baudet, G.M., 1:91, 93, 366

Baudin, M., IV:553

Bauer, M., 11:319, 325, 384

Bayes, T., 11:90

Beard, M., 11:230, 384

Beasley, C, 1:195, 365

Bell, A.G., 11:229, 253, 385

Belloch, G., IV:572

Belsky, M.A., 1:99, 105, 108, 366

Benda, M., IV:128

Bendix, P., 111:98, 99, 100, 574

Bennett, J.S., 11:84, 384, 111:99, 345, 566

Bennett, W., 111:566

Berleant, D., IV:391

Berliner, H.J., 1:95, 96, 98, 99-100, 102,

103, 104, 106-107, 108, 366

Bernstein, M.I., 1:198, 333, 358, 366, 367

Bernstein, A., 1:99, 105, 108, 366

Bernstein, P.A., 11:172, 396

Besl, P.J., IV.554, 560

Bibel, W., 111:98, 566

Biermann, A.W., 11:298, 305, 311, 318-319,

322, 325, 384, 396, 111:509, 511, 566

Biggerstaff, T.J., 11:316, 325, 384, IV:246,

266

Binford, T.O., 111:132, 258, 269, 271, 273-

274, 275, 290, 565, 567, 579, IV:538,

548, 557

Birnbaum, L., IV:213, 221

Birnstein, M., 111:558, 582

Birtwistle, G.M., IV.425, IV., 432

Bischoff, M.B., 11:180, 398, IV:157, 171

Bisiani, R., IV:147

Black, F., 111:78, 85, 566

Blaine, L.H., 11:284, 290, 384, 399

Bledsoe, W.W., 111:97, 99, 100, 101, 102, 112,

314, 566, 567

Blelloch, G., IV:562

Bloom, S., 1:127, 377

Blount, S.E., 11:227, 233, 394

Blum, R.L., 11:180, 303-307, 384, IV:552

Bobrow, D.G., 1:15, 147, 148, 152, 158, 217,

219, 220-221, 222, 231, 232, 267, 284,

367, 11:45, 64, 385, 111:9, 78, 83, 522,

567, IV:158, 164, 337, 370

Bock, C, IV:50, 50n

Boden, M., 1:15, 152, 232, 287, 299, 367

Boehm, B.W., IV:243, 246, 250

Boggess, W., IV:453

Boivie, R.H., 11:139, 140, 142, 390

Bolles, R.C., 1:318, 321, 366, 111:135, 259,

567, IV:558, 559

Bond, A.H., IV:147

Booth, A.D., 1:231, 234, 238, 367, 376

Borgida, A., 1:186, 378

Borkmeyer, E., 111:258, 584

Borning, A., 11:293, 385

Bott, M.F., 1:226, 367

Bourne, D.A., 111:291, 567

Bower, G.H., 1.15, 1.180, 1.185, 1.189, 1.193,

1.365, III.5-6III.9, 111:34, 35, 42-49, 66,

67, 74, 565, 567

Boyer, R.S., 111:93, 102-103, 108, 111, 113,

567

Brachman, R.J., 1:147, 152, 184, 217, 221,

222, 367, 111:41, 567

Brady, J.M., IV:548, 551, 552, 554, 557

Braganza, C, IV:128

Brain, A.E., 111:255, 259, 579

Brandt, IV:582

Brantley, W.C., IV:568

Bratko, I., 1:95, 103, 107, 108, 367, 378

Braun, H., 11:138, 142, 402

Bresnan, J., 1:248, 367, IV:200, 221

Brice, C.R., 111:130, 226, 567

Briggs, IV:581, 582

Brinkley, J., IV:28, 56, 57, 59, 64, 66

Britten, D.H.V., 1:234

Broadwell, M., IV:90

Brodatz, P., 111:237, 567

Brodie, M.L., IV:254

Brolio, J., IV:66

Brooks, F.P., Jr., IV:260

Brooks, R., 1:367, 11:84, 392, 111:132, 135,

269, 271, 290, 313-321, 567

Brooks, R.A., IV:559

Brown, CM., 111:138, 274, 310-312, 566,

580

Brown, G.P., 11:227, 233, 385

Brown, H., 11:103, 111, 115, 385, 387, IV:28,

470

Name Index 627

Brown, J.S., 1:368, 11:144, 227, 228, 229,

231, 233, 234, 235, 247-253, 254-260,

279-282, 385, 386, 390, 399, IV:213,

349, 361, 370, 402

Brown, R.H., 1:16, 387, 111:509, 567

Brown, T., IV:455

Browne, J.C., IV:254, 299

Browning, J.D., IV:534

Brownston, L., IV: 168, 176

Broy, M., IV:303

Bruce, B., 1:254, 255, 367

Bruell, P., 111:97, 567

Bryant, J., 526

Buchanan, B.G., 1:16, 151, 195, 369, 376,

11:101, 108, 109, 110, 115, 120, 123,

182, 183, 192, 386, 388, 389, 394, 398,

399, 111:334, 369, 372, 428-437, 456,

464, 568, 575, IV.24, 28, 36, 56, 57, 59,

64, 66, 154, 154, 157, 158, 164, 171,

172, 174, 175, 177, 184

Buchs, A., 11:109, 115, 386, 398

Buckman, J., IV:28

Bullwinkle, C, 1:221, 367

Bundy, A., IV:X76, 296

Burge, J., 111:350, 359, 572, IV:89

Burger, J.F., 1:228, 384

Burstall, R.M., 11:7, 310, 314, 315, 325, 386,

388, 111:102, 568, IV:270, 276, 317

Burton, R.R., 1:318, 367, 368, 11:227, 228,

229, 231, 233, 234, 235, 247-253, 254-

260, 279-282, 385, 386, 390, IV:213

Bylander, T., IV:413

Byran, M., IV:500

Cadiou, J.M., 11:167, 387

Cain, R.A., 111:259, 567, IV:558

Cammarata, S., IV: 16, 28, 56, 66, 76, 89,

113, 135, 136

Campbell, A.B., 11:180, 398

Canales, T., IV:89

Canny, J.F., IV:536, 551

Cantoni, V., IV:572

Carberry, IV:227

Carbonell, J.R., 1:186, 368, 11:226, 227, 229,

236-241, 386, 387, IV:70, 200, 215, 283

Carhart, R.E., 11:109, 11C, 111, 112, 114,

115, 387, 395, 399, 401

Carnap, R., 111:384, 568

Carr, B.P., 11:231, 233-234, 261-266, 387,

400

Carson, D.F., 111:93, 585

Cass, T., IV:562, 572

Chafe, W.L., 1:368

Chandrasekaran, B., IV:154, 183, 413

Chang, C.L., 1:80, 81, 83, 368, 11:167, 173,

387, 111:91, 93, 568

Chang, E., IV:90

Charness, N., 1:95, 108, 368

Charniak, E., 1:15, 222, 232, 248, 255, 262,

291, 299, 368, 385, 11:10, 14, 387, 400

Cheatham, T.E., IV:245, 282

Chen, P.C., IV:533

Cheng, S.-C, IV:94

Cherry, C, 111:5, 9, 568

Chien, Y.P., 111:221, 568

Chilausky, R.L., 111:423, 426-427, 577

Chiu, C, IV:361, 391

Chomsky, N., 1:227, 229, 237, 239, 243, 244,

245, 247, 248, 368, 111:494-498, 510,

568, IV: 198

Choplin, J.M., 11:138, 142, 402

Chow, W.K., 111:246, 568

Chu, H., IV:569

Church, A., 11:21, 387

Clancey, W.J., 11:191, 228, 229, 235, 267-

278, 387, 111:345, 566, IV:70, 154, 170,

171, 175, 184, 332, 338

Clark, B.B., 111:246, 575

Clark, J.J., IV:551

Clark, K., 11:138, 312, 325, 387

Clearwater, S., IV:499

Cline, T., IV:155

Clippinger, J.H., Jr., 1:279, 368

Clocksin, W.F., 11:13, 387, IV:168

Clowes, M.B., 111:132-133, 146, 155-161,

164, 568

Codd, E.F., 1:292, 369, 11:167, 387

Cohen, P.R., 1:186, 232, 280, 369, 378,

IV:144, 177, 229

Cohen, P.S., 1:329, 365

Colby, K.M., 1:15, 257, 369, 383, 111:70-74,

568, 570

Cole, A.G., 1:329, 365

Cole, R.A., 1:331, 369

Coleman, G.B., 111:228, 568

Collins, A.M., 1:15, 147, 152, 186, 232, 367,

368, 372, 400, 11:7, 227, 229-230, 231,

233, 234, 235, 236-241, 242-246, 274,

386, 387, 388, 111:9, 38, 39, 40, 199, 567,

568

Collins, J.S., 11:7, 386

Collins, R.T., IV:66

Colmerauer, A., 111:123, 568

Comis, D., IV:483

Compton, P., IV.155

Conrad, C, 111:40, 41, 568

Conry, S.E., IV:89, 90, 111

Constable, R., IV:274

628 Name Index

Conway, M.E., 1:267, 369

Cook, CM., 111:509, 568

Copp, D.H., IV:155

Corey, E.J., 11:134-138, 142, 388

Corkill, D.D., 111:550, 568, IV:51, 89, 93,

117, 123, 126, 128, 129, 131, 136, 138,

139

Cornelius, C.W., IV:28, 56, 57, 59, 64, 66

Courant, R., IV:580

Crawford, G.F., 111:274, 580

Creary, L.A., 11:84, 384

Crocker, S.D., 1:95, 100, 101, 104, 108, 372

Croft, J., 11:179, 388

Croft, W.B., IV:90

Crowder, N.A., 11:226, 388

Crowder, R.G., 111:10, 51, 568

Crowther, W., IV:568

Culicover, P.W., 1:248, 369

Cummins, F., IV:488, 490

Curtis, B., IV:254

Dacey, R., 111:118, 119, 568

Dahl, O.-J., IV:257, 425, 432

Damerau, F.J., 11:165, 388

Darlington, J., 11:310, 314, 315, 325, 386,

388, IV:270, 276, 278

Date, C.J., 111:337, 568

Davidson, J., IV:147

Davies, A., 11:12, 53, 388

Davies, D.J.M., 1:176, 369

Davis E., IV:338, IV:349

Davis, L.S., 111:224, 234, 284, 569, 582,

IV:562

Davis, R., 1:16, 147, 151, 194, 195, 197, 198,

199, 369, 11:46, 57, 87-101, 115, 130,

182, 192, 388, 111:330, 333, 348, 349,

569, IV:19, 28, 103, 107, 161, 177, 185,

186, 189, 190, 261

de Champeaux, D., 1:73, 369

de Kleer, J., 11:76, 253, 385, 388, 111:82, 569,

IV:264, 349, 359, 361, 370, 402

Delfino, A.B., 11:109, 115, 386, 398

Delp, E.J., IV:569

Deo, N., 1:64, 66, 381

Deriche, R., IV:551

Derkson, J.A., 1:176, 382, 11:111-12, 397

Dershowitz, N., IV:259

Desforges, J., 11:180, 398

Dewar, B.K., IV:315

Dietterich, T.G., 111:334, 370, 372, 384, 400,

411-415, 416-419, 423, 569

Dietzen, S.R., IV:284

Dijkstra, E.W., 1:64, 66, 369

Dinstein, I., 111:231, 572

diSessa, A., 11:225, 291, 294, 383

Dixon, J.K., 1:91, 93, 98, 102, 108, 384

Djerassi, C, 11:109, 110, 111, 385, 387, 389,

398, 399, 401, 11:114-115

Dodd, G.G., 111:138, 569

Dolins, S.B., IV:70

Donskoy, M.V., 1:96, 99, 102-104, 108, 365

Doran, J.E., 1:60, 63, 67, 71, 369, 370

Dormoy, J., IV:348, 349

Dowty, D.R., IV:220

Doyle, J., 1:178, 377, 11:74, 75, 76, 388,

111:78, 117, 119, 483, 569, 577, IV:264

Draper, B.A., IV:66

Drazovich, R.J., IV:28

Dreyfus, H.L., 1:370, IV:187

Dreyfus, S., IV:187

Druffel, L., 111:135, 569

Duda, R.O., 1:196, 197, 370, 11:86, 155-162,

246, 253, 255, 259, 268, 389, 111:138,

195, 198, 202, 215, 221, 225, 277-278,

286, 292, 375, 379, 382, 565, 569, 579,

IV:553

Duff, M.J.B., IV:570, 571

Duffield, A.M., 11:109, 110, 115, 389, 398,

399

Dugdale, S., 11:255, 389

Duncan, B.S., IV:28, 56, 57, 59, 64, 66

Dunham, B., 111:325, 570

Durfee, E.H., IV:89, 96, 121, 131, 132, 137,

138, 139, 140, 142

Dyer, C.R., 111:231, 585, IV:571

Dym, C.L., IV:156

Dynis, J., IV:488, 490

Eastlake, D.E., 1:95, 100, 101, 104, 108, 372

Eastman, CM., 1:202, 370

Ebbinghaus, H., 111:28

Edwards, D.J., 11:33, 395

Ejiri, M., 111:301, 302-303, 305, 569, 574,

577, 584

Elcock, E.W., 1:122, 370

Elschlager, R., 11:307, 391

Engelman, E., 1:127, 377

Engelmore, R.S., 11:84, 110, 124, 126, 133,

389, 399, IV:82

Engleman, C, 11:143-149

Ensor, J.R., IV:51

Erman, L.D., 1:196, 197, 331, 336, 342, 343,

345, 348, 370, 381, 111:309, 570, IV:3,

20, 23, 28, 29, 30, 31, 89, 93, 97, 117,

118, 126, 147

Name Index 629

Ernst, G.W., 1:30, 63, 113, 117, 118, 370,

379, 111:98, 570

Evans, T.G., 111:499, 509, 570

Everett, P.A., IV:453

Fagan, L.M., IV:441, 443

Fagan, L., 11:180, 182, 192, 206, 389, IV:46n

Fahlman, S.E., 1:204, 222, 370, 11:146, 389,

IV:572, 575

Fain, J., 11:84, 389

Falk, G., 111:131, 147-154, 570

Falkenhainer, B., IV:381

Fallat, R., IV:46n

Faltings, B., IV:338

Farrel, R., IV:168, 176

Fass, D., IV:218

Fateman, R.J., 11:144, 389

Faugeras, O.D., 111:234, 580

Faught, W.S., 111:66, 74, 570

Feigenbaum, E.A., 1:14, 16, 29, 30, 63, 198,

232, 287, 336, 343, 370, 376, 380, 11:5,

84, 86, 108, 109, 110, 115, 120, 122,

123, 124, 126, 133, 183, 389, 394, 398,

399, 111:8, 25, 28-35, 437, 570, 575,

579, 582, IV:24, 28, 36, 46n, 157, 158,

170, 181, 185, 189

Feiler, P.H., IV:246

Feinstein, A., 11:178, 389

Feinstein, J.L., IV: 156

Feitelson, J., 111:522, 570

Feldman, J.A., 1:14, 29, 30, 232, 287, 370,

11:5, 11, 41, 52, 318, 325, 384, 389, 390,

111:132, 226, 310-312, 509, 511, 566,

585

Fennell, R.D., 1:336, 343, 345, 370, 381,

IV:23, 23n, 30

Fennema, C.L., 111:130, 226, 567

Fickas, S.F., IV:28, 298

Fikes, R.E., 1:42, 128, 134, 169, 176, 188,

370, 381, 11:5, 64, 69, 73, 390, 398,

111:522, 523, 530, 561, 570, IV.223

Fillmore, C, 1:252, 255, 371, IV:208

Filman, R.E., 1:169, 170, 205, 371

Findler, N.V., 1:16, 152, 189, 371, IV:89

Fischler, M.A., 111:238, 253, 566, 583, IV:537

Fisher, G., 11:254, 390

Fishwick, P.A., IV:337

Flanagan, J., 1:325, 371

Flavell, J.H., 1:145, 147, 371
Fletcher, J.D., 11:226, 390
Flores, F.F., IV: 188

Floyd, R.W., 11:311, 390, IV:270

Fogel, L.J., 111:325, 570

Fogelsong, D., IV: 136

Fong, W., IV:155

Forbus, D.K., IV:338, 381

Forgie, J., 1:327, 379

Forgy, C, 1:197, 371, 377, 11:84, 390, IV:4,

19, 51, 304

Fouse, S., IV:147

Fox, M., 1:348, 371

Fox, M.S., IV:126, 127, 157

Foyster, G., IV:470

Fraser, B., 1:267, 367

Frege, G., 1:200

Freuder, E.C., IV:561

Frey, P.W., 1:95, 102, 104, 108, 371

Fried, L., IV:173

Friedberg, R.M., 111:325, 570

Friedland, P.E., 111:522, 551, 557-562, 570,

IV:448, 449, 476, 478

Friedman, D.P., 11:29, 390

Friedman, J.I., 268, 273, 371

Fu, K.S., 111:221, 227, 291, 380, 381, 382,

506, 511, 568, 570, 581, 585, IV:525

Fujitsu Laboratories, IV:28, 50, 78

Fukada, Y., IV:533

Fuller, S.H., 1:91, 93, 371

Funt, B.V., 1:203, 205, 206, 371

Furakawa, K., 11:170, 173, 390

Furbach, L, 11:310, 398

Gabbe, J.D., IV:51

Gabriel, R.P., 11:329, 335, 390

Gagalowicz, A., 111:234, 580

Gaines, B.R., 11:13, 392

Galanter, E., 111:515, 577

Galbraith, J.R., IV:126

Galen, R.S., 11:222, 111:402

Gardner, M., 111:416, 571

Garg, P.K., IV:246

Garvey, T.D., 1:129, 134, 318, 321, 366, 372

Gaschnig, J.G., 1:59, 63, 91, 93, 371, 372,

11:86, 155, 162, 389

Gasser, L., IV:126, 127, 128, 147

Gazdar, G., IV:198, 200

Gelcett, CD., IV:563

Gelernter, H.L., 1:119, 122, 201/372, 11:135-

136 139-14.2, .390, 111:77, 100, 449, 571

Gelperin, D., 1:65, 66, 372

Geman, D., IV:575, 576

Geman, S., IV.575, 576

Genesereth, M.R., 11:146, 147, 232, 111:390,

IV:94, 136, 144, 278, 470

Gennery, D.B., 111:253, 571

Gentner, D.R., 1:147, 372, 11:234, 396

630 Name Index

George, D.A., IV:568

Georgeff, M., IV:135, 136

Gerberich, C.L., 1:122, 372

Gerritsen, F.A., IV:545

Gevarter, W.B., IV:176

Gibson, J.J., 111:230, 571

Gilbert, W., 111:557-558, 576

Gillman, R., 1:333, 358, 366

Gillogly, J.J., 1:91, 93, 97, 98, 99, 102, 103,

108, 371, 372

Gilmore, P.C., 1:122, 372

Ginsparg, J.M., 11:327, 329, 390

Gips, J., 11:318, 325, 390, 111:291, 571

Glazer, F., IV:582

Gleason, G.J., 111:304, 571

Goad, C, IV:559

Goguen, J.A., IV:317

Golay, M.J.E., IV:540

Gold, E., 111:499-500, 501, 505-506, 571

Goldberg, A., 11:228, 293, 390, 393, IV:164,

433

Goldin, S., 11:234, 242, 246, 400

Goldman, N., 1:278, 279, 304, 305, 372, 383,

11:336-342, 383

Goldstein, G.D., 111:325, 586

Goldstein, LP., 1:217, 221, 372, 11:228, 229-

234, 235, 254, 260, 261-266, 288, 293,

385, 386, 387, 390, 391, 395, 400

Gonzalez, R.C., 111:511, 571

Good, I.J., 1:27, 30, 372

Goodhue, J., IV:568

Goodrich, R.L., IV:500

Goodwin, G.C., 111:379, 571

Gorlin, D., 11:84, 389, 392

Gorry, G.A., 11:202, 205, 206-211, 391, 396,

IV:171

Gosper, R.W., 11:144, 391

Gould, L., 11:236, 241, 391

Grand, A., IV:315

Graves, W.H., 11:284, 290, 399

Gray, N., 11:114

Green, B.F., Jr., 372, 1:282

Green, C.C., 1:155, 168, 170, 327, 372, 379,

11:11, 305, 307, 311, 312, 313, 316, 319,
**- V l ^-335, 350, 391, 111:78, 85, 102,

Greenblatt, R.D., 1:95, 100, 101, 104, 10S,

372

Greiner, R., 111:269, 271, 290, 330, 567, 571

Griffith, A.K., 1:97, 108, 372

Grignetti, M.C., 11:236, 241, 391

Grimson, W.E.L., 111:135, 251, 571, IV:538,

558, 559, 560, 580

Grinberg, M., IV:403, 413

Grishman, R., 1:262, 372

Gritter, R.J., 11:122, 386

Grosch, C.B., 111:253, 572

Gross, T., IV:568

Grossman, R., 11:146, 391

Grosz, B.J., 1:232, 373, 381, IV:144, 227,

234, 236

Gruber, IV:171

Gumb, R.D., 111:119, 571

Gund, P., 11:142, 391

Gupta, M.M., 11:13, 392, IV:51n

Gurwitz, R., IV:568

Gutery, S., IV:320

Guzman, A., 111:130-131, 143-146, 149, 571

Haas, N., 11:169, 392, IV:229

Hackbusch, IV:581, 582

Hall, P.A.V., 1:64, 66, 373

Halliday, M.A.K., 1:249, 251, 373, 378

Halpern, J.Y., IV:144

Hamada, T., 111:303, 305, 577

Hamburger, H., 111:509, 510, 571

Hammer, M., 11:172, 298, 305, 369, 392

Hanlon, C., 111:509, 567

Hannah, M.J., 111:253, 571

Hansen, J.R., 1:122, 372

Hanson, A.R., 1:16, 336, 343, 373, 111:138,

229, 309-310, 571, 572, 578, IV:66, 90,

572

Haralick, R.M., 111:231, 237, 572, IV:525,

536, 545, 554, 561

Harandi, M.T., IV:292

Hardy, S., 11:319, 325, 392

Harlow, C.A., 111:226, 572

Harman, G., 1:248, 373

Harmon, P., IV:154, 176

Harris, G., 11:234, 385

Harris, L.R., 1:69, 71, 97, 100, 102, 108, 232,

373, 11:164, 392

Harris, P.E., 1:64, 66, 134, 169, 196, 197,

370, 373, 11:152, 153-154, 155, 160,

162, 215, 221, 253, 286, 292, 375, 379,

382, 389, 392, 522, 530, 561, 569, 570,

111:138, 195, 198, 202

Harris, Z., 111:506, 572

Haft, T.P., 11:33, 395

HartmaYi, d.;iV:265

Harvey, S.L., IV:568

Harwood, D., IV:539

Hausmann, C.L., 11:236, 241, 279, 282, 386,

391

Havens, W.S., IV.561

Name Index 631

Hawkinson, L.B., 1:217, 220, 385

Hayes, P.J., 1:148, 170-171, 172, 175, 177,

179, 186, 200, 201, 373, 374, 377, 11:73,

392, 111:82, 572, IV:165, 325, 337

Hayes, S.P., 11:222, 394

Hayes-Roth, B., 1:336, 343, 374, 111:7, 22-

27, 519, 522, 572, IV:16, 28, 56, 57, 66,

70, 76

Hayes-Roth, F., 1:16, 199, 331, 336, 343, 345,

348, 370, 374, 385, 11:9, 57, 84, 86, 389,

392, 401, 111:7, 22-27, 309, 333, 334,

336, 338, 345-348, 349, 350, 353, 359,

364, 391-392, 400, 410, 519, 570, 572,

575, 578, IV:3, 16, 28, 29, 31, 34, 56,

66, 76, 89, 93, 147, 160, 171, 173

Hays, D.G., 1:238, 374, 11:146, 392

Hearst, E., 1:96, 108, 374

Heathcock, C.H., 11:138, 391

Heckerman, IV: 172

Hedrick, C, 1:195, 374

Heidorn, G.E., 1:374, 11:298, 305, 311, 370-

374, 392

Heiser, J.F., 11:84, 180, 392

Hellman, W.F., 111:463

Hemphill, L., 11:234, 402

Henderson, R.L., 111:253, 572

Hendrix, G.G., 1:184, 186, 188, 232, 316,

318, 321, 370, 374, 381, 11:166, 169,

173, 390, 392, IV:189, 213

Heny, F., 1:248, 365

Herman, N., IV:128

Hernandez, R., IV:156

Herrik, H., 11:297, 383

Herskovits, A., 1:289, 291, 387

Hewett, M., IV:28, 56, 57, 93

Hewitt, C, 1:172, 175, 176, 178, 179, 374,

11:9-10, 35, 46, 393, 111:78, 99, 572,

IV:120, 126, 133, 144, 165

Hi-Class, IV:157

Hickam, D.H., IV.157, 171

Hilbert, D., IV:580

Hildreth, E., 111:135, 218, 576, IV:536, 563

Hilf, F., 1:257, 369

Hillier, F.S., 1:64, 66, 374

Hillis, D., IV:562, 572

Hintikka, J., 111:84, 572

Hinton, G.E., IV:562, 563, 575, 576, 577,

578

Hintzman, D.L., 111:34, 572

Hirst, G., IV:220

Hjelmeland, L., 11:115, 385

Hoff, M.E., 111:379, 585

Hoffman, D.D., IV:552

Hofstadter, D., 1:4, 1:15, 374

Hollan, J.D., IV:174

Holland, S.W., 111:301, 303-304, 305, 573

Holt, J., 11:291, 393

Hong, J., IV: 187

Hopcroft, J.E., 1:68, 71, 241, 244, 365, 374,

111:337, 497, 565, 573

Hopfield, J.J., IV:575

Horaud, P., IV:559

Horn, B.K.P., IV:554, 555, 557, 559, 562,

563

Horn, P.K.F., 11:14, 29, 402, 111:134, 238,

241, 242, 243, 245, 260, 262, 267, 573

Horn, K.A., IV:155

Horning, J.J., 11:318, 325, 390, 111:503- 505,

573

Horowitz, S.L., IV:533

Howe, J.A.M., 11:225, 293, 393, IV:177

Huang, K.S., IV:569

Huang, T.S., 111:248, 573

Hudson, R.A., 1:251, 374

Hueckel, A., 111:218, 573

Huet, G., 111:83, 100, 573

Huffman, D.A., 111:132-133, 146, 155-161,

173, 181, 573

Huggins, B., 11:282, 386

Huhns, M., IV:90, 147, 284

Hummel, R., 111:298-300, 586, IV:550, 562,

575

Hunt, E., 111:384, 406-408, 573

Hunt, E.B., 11:228, 393

Hutchins, E.L., IV:174

Hynynen, J.E., IV:89

Igarashi, K., 111:303, 578

Ikeda, S., 111:305, 569, 584

Ikeda, Y., 111:305, 306-308, 578

Ikeuchi, K., 111:264, 265, 573, IV:555, 559,

562, 563

Illich, I., 11:291-292, 393

Inhelder, B., 11:291, 397

Intelcorp, IV:488

Irish, B.W., IV:90

Iscoe, N., IV:254, 299

Ishii, A., IV:539

Ito, M., IV:539

Iwasaki, Y., IV:370, 394, 402

Jackendoff, R., 1:207, 374, 375

Jackson, P.C., 1:15, 30, 42, 375

Jacobi, G.T., 111:325, 586

Jacobs, CD., 11:180, 398, IV:157, 171

Jacquez, J.A., 11:177, 393

632 Name Index

Jaffe, R.S., IV:545

Jagannathan, V., IV:455

Jain, R., 111:247, 573, IV:554, 560

Jakobovits, L., 1:248, 384

Jardetzky, O., IV:28, 56, 57

Jelinek, F., 1:329, 365

Jelliffe, R.W., 11:206, 393

Jenkins, B.K., IV:569

Johnson, C.K., 11:124, 133, 389

Johnson, C.R., Jr., 111:334, 372, 456, 464,

568

Johnson, R., IV:89

Johnson, W.L., IV:261, 262, 266

Johnson-Laird, P.N., 1:207, 378, 456, 464,

568

Johnston, A.R., 111:255, 573

Jones, J., IV:453

Jones, J.W., IV:453

Jones, P., IV:453

Joskowicz, L., IV:338

Josselson, H.H., 1:238, 375

Judd, D.B., 111:205, 573

Julesz, B., 111:231, 573, IV:562

Jurs, P.C., 11:118, 393

Kadane, J.B., 1:59, 63, 68, 71, 384

Kahl, D.J., 577, 111:229

Kahn, K., 11:62, 293, 393, IV:155

Kahneman, D., 111:67, 584

Kaiser, G.G., IV:146

Kak, A.C., 111:138, 215, 224, 237, 581

Kameny, I., 1:333, 358, 366

Kanade, T., 111:133, 134, 136, 138, 183-194,

228, 229, 252, 257, 265, 268, 312, 574,

576, 577, 579, IV:525, 557

Kanoui, H., 111:123, 568

Kant, E., 11:330, 335, 351, 354, 375-379,

383, 393, IV:168, 176, 304

Kaplan, R.M., 1:219, 221, 232, 260, 261, 267,

268, 272, 293, 294, 367, 375, 388,

IV:198, 200, 221

Kaplan, S.J., 1:232, 375, 11:167, 393

Karp, R.M., 1:69, 71, 375, IV:348, 476, 478

Kashioka, S., 111:301, 302-303, 305, 574,

577

Kasif, S., IV:561

Kassirer, A., 11:202, 205, 396

Katz, J., 1:248, 375

Kay, A., 11:293, 393

Kay, M., 1:219, 1:221, 232, 268, 272, 367,

375

Kedzierski, B., 11:335, 393

Kelley, K., 111:279, 506, 574

Kellogg, C, 1:228, 375, 11:173, 393

Kelly, M.D., 111:279, 306, 574

Kelly, V., IV:301

Kelton, W.D., IV:424, 516, 517

Kender, J.R., 11:134, 111:133, 188, 194, 203,

204, 228, 242, 264, 265, 267, 574

Kent, R.M., IV:569, 570

Kerschberg, L., IV: 162

Kettig, R.S., IV:533

Khoshnevisan, H., IV:276

Kibbey, D., 11:255, 389

Kidode, M., 111:252, 253, 578

Kienker, P.K., IV:577, 578

Kiessling, A., 111:257, 581

Kimball, R.B., 11:226, 393

Kimmel, M.J., IV:545

Kindrick, J., IV:90

King, D., IV:154

King, J.J., 1:194, 197, 199, 369, 11:170, 171,

173, 394, IV:19, 28

Kingsland, L.C., 11:222, 394

Kirchner, R., IV:455

Kirkpatrick, S., IV:563

Kirousis, IV:561

Kister, L.C., 1:99, 103, 108, 375

Klahr, P., 11:173, 393, 111:334, 336, 338, 345-

348, 349, 350, 352, 353, 359, 364, 410,

572, 575, IV:156

Klatt, D.H., 1:326, 327, 330, 375, 379, IV:27

Klein, E., IV:200

Klein, S., 1:274, 275, 375, 384, 111:494, 506,

509, 574

Kleingelder, W.J., IV:568

Kline, P., 1:195, 365, IV:70

Kling, R., 1:129, 134, 372, 111:112, 574

Klinger, A., 111:112, 282, 583, IV:533

Klotz, I.M., 111:66, 574

Knobe, K., 508, 111:507, 509, 574

Knuth, D.E., 1:86, 87, 89, 90, 91, 93, 269,

375, 111:98, 99, 100, 574

Koch, C, IV:563

Koffman, E.B., 11:227, 230, 233, 394

Kolcum, E.H., IV:155

Kommana, S.R., IV:438

Konolige, K., 11:155, 162, 389, IV:136, 144,

229

Koomen, IV: 165

Kopec, D., 1:95, 107, 108, 367

Kornfeld, W.A., 11:46, 394, IV:93, 126, 133

Kotok, A., 1:104, 108, 375

Kotovsky, K., 111:406, 574

Name Index 633

Kowalski, R., 1:25, 30, 73, 81, 83, 175, 375,

11:312, 325, 394, 111:78, 81, 82, 93, 112,

123, 574

Kremers, J.H., 1:318, 321, 366, 111:259, 567

Kripke, S.A., 111:84, 574

Krishnaswamy, R., 11:318-319, 384

Kruse, B., IV.569

Kuchner, D., 111:93, 574

Kuipers, B., 1:222, 376, IV:361, 388, 391

Kulikowski, C.A., 11:179, 180, 193-196,

212- 216, 217-222, 396, 401, 402,

IV:70, 172

Kung, H.T., IV:568

Kunz, J., 11:180, 394, IV:46n

Kuppin, M., 111:494, 506, 509, 574

Laffey, T.J., IV.554

LaFrance, J., IV:500

Lager, D., IV:89

Laird, J.E., IV: 171', 304

Lakin, W.L., IV:28

Lam, M., IV:568

Lambert, J.R., IV:484

Lander, S., IV:90

Landgrebe, D.A., IV:533

Landsbergen, S.P.J., 1:232, 376

Langley, P.W., 111:371, 401-406, 410, 575

Langlotz, C.P., IV:441, 443

Lankford, D.S., 111:98, 99, 100, 566, 575

Lansky, A.L., IV:136

Lantz, K., 1:318, 321, 366

Lark, J.S., IV:147

Larkin, K.M., 11:279-282, 385

Larsen, D.L., 11:139, 140, 142, 390

Larson, J.B., 111:365-367, 398, 423-426,

427, 575, 577

Laubsch, J.H., 11:227, 229, 231, 394

Laughery, K., 1:282, 372

Lavin, M.A., IV:545

Lavrac, N., IV:187

Law, A.M., IV:424, 516, 517

Lawler, E.W., 1:64, 66, 376

Lazarus, L., IV: 155

Le Faivre, R., 11:13, 394

Lea, G., 111:360-361, 372, 375, 582

Lea, W., 1:16, 232, 325, 326, 329-331, 335,

344, 348, 376

Lederberg, J., 1:16, 376, 11:103, 106-110,

120, 122, 123, 386, 389, 394, 398, 399,

111:437, 575, IV:24, 28, 36, 157, 158

Ledley, R., 11:177, 394

Lee, M., IV:499

Lee, R.C., 111:91, 93, 568

Leese, J.A., 111:246, 575

Lefkowitz, L.S., IV:90

Lehnert, W.C., 1:16, 212, 376

Lemmon, H., IV:483, 486

Lenat, D.B., 1:16, 194, 195, 196, 197, 369,

376, 11:86, 307, 316, 318, 325, 391, 392,

394, 111:101, 330, 334, 336, 338, 364,

369, 410, 438-451, 571, 575

Leonard, P.F., IV:545

Lesser, V.R., 1:196, 197, 331, 336, 342, 345,

348, 370, 376, 111:309, 570, IV:3, 23, 28,

29, 30, 31, 34, 51, 89, 90, 93, 97, 111,

117, 118, 121, 126, 128, 129, 131, 132,

137, 138, 139, 140

Letovsky, S., IV:266, 270

Letsinger, R., 11:228, 277, 278, 387

Levesque, H.J., IV: 144

Levi, G., 1:81, 83, 376

Levialdi, S., IV:572

Levin, M.I., 11:33, 395

Levine, M.D., 1:336, 343, 376, IV:530

Levinson, S., 1:325, 371

Levitan, S.P., IV:572

Levitt, K., 11:312, 325, 401

Levy, D., 1:101, 108, 376

Lewis, B.L., 1:219, 365

Lewis, V.E., 11:147, 394

Lewis, W.H., 11:147, 166, 392

Lichtarge, O., IV:28, 56, 57

Licklider, J.C.R., 1:217, 379, IV:27

Lieberman, G.J., 1:64, 66, 374

Ligocki, T.J., IV:571

Lindberg, D.A.B., 11:222, 394

Lindsay, P.H., 111:8, 56-64, 581

Lindsay, R.K., 1:16, 281, 282, 376, 11:110,

123, 394, 111:437, 575, IV:24, 28, 36,

157

Ling, R., IV:571

Lipkin, B.S., 111:217, 234, 581

Liskov, B.H., 11:343-344, 394

Little, J.J., IV:557, 562, 572

Liu, S.-C, IV:315

Lo, R., IV:89

Locke, W.N., 1:238, 376

London, P.E., 11:74, 76, 389, 394, 111:119,

569, IV:28

Long, R.E., 1:228, 384

Long, W., 11:207-211, 395

Lougheed, R.M., IV:545, 569

Loveland, D.W., 1:122, 372, 111:93, 97, 575

Low, J.R., 11:11, 52, 317, 325, 390, 395

634 Name Index

Lowe, D.G., IV:559, 560

Lowerre, B., 1:342, 349, 352, 377

Lowry, M.R., IV:286, 316, 317, 318

Lozano-Perez, T., IV:558, 560

Lozo, P.W., IV:90

Lubars, M.D., IV:292

Lucas, B.D., 111:252, 576

Luckham, D., IV:245

Lumia, R., IV:569, 570

Lusted, L., 11:177, 394

Lustman,, IV.539

Lyons, J., 1243, 1:244, 248, 377

Lytinen, S.L., IV:213, 222

McArthur, D., IV:89, 113, 135, 136

McAuliffe, K.P., IV:568

McCarthy, J., 1:148, 170, 177, 201, 377, 11:5,

6, 7, 15, 29, 33, 395, 111:78, 85, 118,

122, 332, 345, 346, 360, 576, IV:161,

165, 186, 229

McCartney, R., IV:285, 310

McClelland, J.L., IV:16, 93

McClung, D., IV:46n

McConlogue, K., 1:384

McCord, M, 1:251, 377, IV:200, 221

McCorduck, P., 1:5, 14, 15, 377, 111:77, 576,

IV:181, 189

McCubbrey, D.L., IV:545, 569

McCune, B., 11:300, 307, 329-330, 335, 391,

395, IV:28

McDermott, D.V., 1:15, 175, 176, 178, 368,

377, 384, 11:10, 14, 29, 35, 56, 387, 395,

400, 111:78, 82, 117, 119, 576, 577

McDermott, J., 1:194, 197, 371, 376, 377,

11:84, 390, 111:391-392, 400, 572, IV:4,

19, 71, 155, 189

McDonald, D., 1:280, 378

Mcintosh, A., 1:251, 378

McKeown, D.M., 111:136, 577

McKeown, K., 1:280, 378

McKinion, J.M., IV:484

Mackworth, A.K., 111:133, 138, 173-182,

300, 576, IV:548, 550, 553, 554, 555,

556, 560, 561

McLeod, D., 11:172, 392

McLoughlin, L.M.S., IV:276

Malik, J., IV:562

Malone, T.W., IV: 127

Manderville, J.R., IV:545

Mandler, G., 111:74, 576

Mann, W., 1:280, 377

Manna, Z., 1:171, 377, 11:308, 355-363, 395,

IV:278, 280

Manove, M., 1:121, 377

March, J.G., IV:92, 126

Marcus, M.P., 1:16, 230, 262, 377, IV:171

Marin, J., 111:384, 406, 408, 573

Marinov, V.V., 11:284, 290, 399

Marr, D„ 11:251-252, 269, 271, 290, 576,

111:134-135, 138, 218, 231, 232, 238,

242, 243, IV:536, 538, 548, 553, 562

Martelli, A., 1:66, 74, 83, 377, 111:221, 576

Martin, N., IV: 168

Martin N., IV:176

Martin, W.A., 1:217, 220, 385, 11:143-149,

316, 325, 364-369, 395

Maryanski, F.J., 111:507, 576

Masinter, L., 11:67, 103, 111, 115, 385, 390,

400

Mason, C, IV:89

Matheron, G., IV:540, 543

Mathias, J., 1:238, 374

Matsuyama, T., 111:306-308, 578, IV:28, 66

Matuzceck, d., 1:267, 377

Maxam, A., 111:557-558, 576

Mazer, M.S., IV:90

Mellish, C.S., 11:13, 387, IV:168

Melosh, R.E., 11:84, 384

Melton, E.A., IV:568

Menzilcioglu, O., IV:568

Mercer, R.L., 1:219, 365

Mese, M., 111:303, 305, 569, 577

Metropolis, N., IV:576

Meutzelfeldt, R., IV:459

Meyer, R.A., IV:89, 90, 111

Meyers, S., IV:448, 449

Michalski, R.S., 111:334, 365-367, 370, 372,

384, 398-399, 400, 411-415, 419, 423-

427, 569, 575, 577, IV:187

Michie, D., 1:59, 63, 67, 71, 95, 103, 107-

108, 367, 370, 378, IV:187

Miles, J.A.H., IV:28

Milgram, D.L., 111:229, 577

Miller, M.L., 11:229, 232-233, 282, 293, 386,

395

Miller, F.D., IV:155

Miller, G.A., 1:207, 378, 111:5, 6, 515, 577

Miller, L., 111:6, 577

Miller, R.K., IV:154

Miller, W.J., 111:253, 572

Minker, J., 1:31, 385, 11:173, 395

Minkowski, H., IV:540

Minsky, M.L., 1:14, 29, 30, 159, 216, 217,

220, 222, 231, 232, 287, 307, 315, 378,

111:6, 41, 77, 78, 84, 310, 325, 326, 331,

343, 379, 577, IV:163, 574

Name Index 635

Mishkoff, H.C., IV:181

Mishoe, J., IV:453

Mitchell, T.M., 11:110, 120, 121, 123, 395,

396, 111:334, 369, 372, 384, 385-391,

396-398, 400, 428, 434-436, 437, 452-

453, 456, 464, 484-493, 505, 568, 577,

578, IV.175, 283

Mittal, S., IV:156

Mittman, B., 1:96, 108, 378

Miyatake, T., 111:303, 305, 577

Miyazaki, S., 111:303, 578

Modjeski, R.B., IV:464, 513

Mokhtarian, F., IV:548, 550, 553, 554

Mont-Reynaud, B., 11:335, 391

Montanari, U., 1:74, 83, 377, 111:221, 578

Moore, E.F., 1:64, 66, 378

Moore, J.D., IV:294

Moore, J.S., 1:197, 280, 377, 111:102-103,

108, 111, 113, 567

Moore, R.C., 1:178-179, 378, 111:78, 81, 84,

578, IV:229

Moore, R.W., 1:86, 87, 89, 90, 91, 93, 375

Moravec, H.P., 111:250-251, 253, 578

Morgan, T., IV:82

Morgan-Kaufman, IV: 186

Morgenstern, M., 11:364-369, 395, 396

Mori, K., 111:252, 583

Mori, S., 111:231, 583

Morjaria, M., IV: 156

Morton, T.E., IV:90, 116

Morton, V.A., IV:568

Moser, J.G., IV:444, 447

Moses, J., 1:125, 127, 378, 11:143-149, 396,

IV:157

Moses, Y., IV: 144

Mostow, D.J., 111:333, 345-348, 349, 350-

359, 572, 578, IV:283, 284

Mozetic, I., IV: 187

Muerle, J., IV.533

Mui, J.K., IV:525

Mulder, J.A., IV:561

Munson, J., 1:327, 379, IV:27

Murray, IV:266

Musser, D.R., 11:144, 396

Myers, J., 11:197-201

Myhrhaug, B., IV:425, 432

Mylopoulos, J., 1:186, 378, 11:172, 396,

IV:254

Nagin, P.A., 111:229, 578

Naruse, M., 111:303, 578

Nash-Webber, B.L., 1:293, 294, 326, 378,

379, 388

Neches, R., IV:294

Neely, R., 1:343, 381

Neely, R.B., IV:20, 28, 29

Neighbors, J., IV:295

Neisser, I., 111:6, 578

Nelson, C.G., 111:100, 579

Nevatia, R., 111:220, 224, 274, 275, 318, 579

Nevins, A.J., 111:98, 99, 579

Newborn, M., 1:91, 93, 96, 101, 108, 379

Newell, A., 1:4, 14, 29-31, 63, 98, 100, 105,

106, 108, 109, 111, 112, 113, 117, 118,

121, 157, 169, 193, 197, 327, 331, 335,

351, 370, 377, 379, 11:4, 396, 111:3, 5, 6,

9, 11-21, 77, 518, 579, IV:18, 19, 27,

28, 51, 69, 71, 171, 304, 306

Nielsen, P., IV:338

Nievergelt, J., 1:64, 66, 381

Nii, H.P., 1:336, 343, 380, 11:84, 126, 133,

389, 396, 111:25, 348, 579, IV:28, 36,

46n, 50, 50n, 51n, 53, 78, 170, 181, 189

Nilsson, N.J., 1:7, 15, 30, 31, 35, 38, 42, 45,

51, 53, 56, 57, 58, 60, 63, 64, 65, 66, 71,

75, 78, 83, 87, 93, 102, 108, 128, 134,

169, 171, 197, 370, 373, 380, 11:102,

154, 160, 389, 396, 111:78, 85, 87, 91,

93, 377, 382, 522, 523, 530, 561, 570,

579, IV:144, 187, 223, 278, 284

Nirenburg, S., IV:90

Nishihara, H.K., 111:135, 269, 271, 290, 576,

IV:548

Nitzan, D., 111:255, 259, 268, 277-278, 569,

579

Nonnenmann, U., IV:301

Nordyke, R., 11:179, 396

Norman, A.C., 11:144, 396

Norman, D.A., 1:15, 149, 180, 185, 189, 207,

215, 219, 221, 232, 255, 367, 380,

11:234, 396, 111:8, 10, 56-64, 326, 579,

581

North, J.H., 111:325, 570

Nourse, J., 11:113

Novak, C.S., 111:246, 575

Novak, G.S., 1:221, 380

Nudel, B., 111:484, 493, 578, IV:561

Nygaard, K., IV:425, 432

Nackman, L.R., IV:555

Nagao, M., 111:306-308, 578, IV:28, 66

Nagel, H.H., 111:247, 573, IV:552

O'Connell, D.N., 111:244, 584

Oettinger, A.G., 1:235, 238, 380

Ohlander, R.B., 111:227, 228, 579, IV:525

636 Name Index

Ohta, Y., 111:228, 312, 579, IV:539

O'Keefe, R.M., IV:178, 452, 514, 516

Oppen, D., 111:100, 579

O'Rourke, J., 111:290, 291, 565, 580

Osborn, J., IV:46n

O'Shea, T., 11:293, 393

Oshima, M., 111:287-277, 580

Owens, A.J., 111:325, 570

Paige, J.M., 1:285, 380

Pao, T.W., 111:505, 580

Papadimitriou, C.H., IV:561

Papert, S., 11:225, 291-294, 396, 399,

111:325, 379, 577, IV:574

Parkinson, R., 111:74, 570

Parunak, H.V.D., IV:90

Pasero, R., 111:123, 568

Passafiume, J.J., 11:237, 388

Pauker, S.G., 11:180, 202-205, 206-211,

391, 396, 400, IV:165, 171

Pavlidis, T., 111:279, 291, 580, 583, IV:533

Paxton, W.H., 1:361, 380

Payne, R.L., 111:379, 571

PDP Research Group, IV:93

Pearl, IV: 165

Pelletier, F.J., IV:220

Pentland, A.P., IV:555, 557

Pepper, P., IV:303

Pereira, F., 11:13, 401, 111:82, 123, 585

Pereira, L.M., 11:13, 401, 111:82, 123, 585

Pereira, F.C.N., IV:200, 221

Perlis, A.J., IV:246

Perrault, C.R., 1:232, 369, IV:229, 230

Perry, D., IV:246

Perry, N., IV:276

Peters, S., IV:220

Peterson, G.E., 111:99, 100, 580

Petrick, S.R., 1:260, 380

Petry, F.E., 11:322, 325, 396

Pfister, G.F., IV:568

Phillips, J., 11:319, 322, 324, 325, 329, 335,

391, 397

Piaget, J., 11:291, 397

Pietikainen, M., IV:539

Pinker, S., 111:509, 510, 580

Pitrat, J., 1:107, 108,380

Plath, W., 1:380

Poggio, T., 111:135, 242, 251-252, 576,

IV:536, 538, 550, 563

Pohl, I., 1:24, 51, 52, 53, 59, 63, 67, 69, 71,

72, 73, 380

Pollack, IV:232

Pollard, C, IV:200

Polya, G., 1:29, 31, 381, 11:294, 397, 111:561,

580

Pople, H., 11:180, 197-201, 397

Popplestone, P.J., 111:285, 566

Popplestone, R.J., 11:7, 12, 397, 111:274, 285,

580

Post, E., 1:190, 381

Postal, P., 1:243-244, 248, 375, 381

Prakash, M., IV:181

Pratt, V.R., 11:29, 397

Pratt, W.K., 111:234, 580, IV:545

Prawitz, D., 1:169, 381

Presburger, M., 111:100, 580

Pressburger, T., 11:335, 391

Preston, K., 11:177, 397

Preston, K., Jr., IV:540, 570, 571

Prewitt, J.W.S., 111:227, 580

Pribram, K.H., 111:515, 577

Price, K., 111:227, 579

Propp, V., 1:307, 315, 381

Pull, H.M., IV:276, 278

Pullum, G.K., IV:200

Pylyshyn, Z., 1:201, 206, 381

Quillian, M.R., 1:156, 180, 185, 228, 230,

275, 276, 381, 11:5, 111:8, 36-41, 568,

580

Quine, W.V., 111:119, 580

Quinlan, J.R., 111:406, 408-410, 580, IV:155

Rabiner, L., 1:325, 371

Raiman, O., IV:348

Rajagopaian, R., IV:337

Ramamritham, K., IV:94

Raphael, B., 1:15, 27, 31, 64, 66, 173, 185,

228, 283, 373, 381, 11:11, 111:522, 567

Rauch-Hindin, W.B., IV:154, 155, 156, 157,

174, 176, 181

Raulefs, P., IV:66

Reboh, R., 1:176, 381, 11:64, 69, 155, 160,

162, 389, 398, 111:348, 580

Reddy, D.R., 1:327, 331, 336, 342, 343, 345,

348, 349, 352, 370, 377, 379, 381,

111:227, 309, 570, 579, IV:3, 20, 22, 23,

27, 28, 29, 30, 31, 93

Reder, S., 11:318, 325, 390

Reed, S., IV:117

Reeker, L.H., 111:510, 580

Reich, CM., 111:68, 565

Reichman, R., IV:234

Reiner, E., 1:235

Reingold, E.M., 1:64, 66, 381

Name Index 637

Reiser, J.F., 11:11, 70, 397

Reiter, R., 1:176, 381, 11:172, 173, 239, 397,

111:98, 100, 117, 580

Rescher, N., IV:395

Rettberg, R., IV:568

Reubenstein, H.B., IV:297

Rhodes, J.B., 11:142, 391

Rice, J., IV:51n

Rice, J.P., IV:93

Rich, C, 11:343-349, 397, IV:245, 297, 298,

311

Richards, W.A., IV:552

Richens, R.H., 1:234

Richer, M.H., 175, IV:176

Rieger, C, 1:303, 305, 381, 383, 11:14, 397,

IV:403, 413

Riesbeck, C.K., 1:15, 196, 261, 262, 303, 305,

306, 315, 368, 381, 383, 11:14, 29, 33,

387, 398

Rinehart, A.R., 11:141

Risch, R., 11:82, 144, 397, 111:100, 580

Riseman, E.M., 1:16, 336, 343, 373, 111:138,

229, 309-310, 571, 572, 578, 580,

IV:66, 90, 525, 572

Rissland, E.L., 111:363, 581

Roberts, L.G., 111:129-130, 139-143, 147,

150, 216, 581

Roberts, M. de V., 1:99, 105, 108, 366

Roberts, R.B., 1:217, 221, 372

Robertson, IV:533

Robertson, A.V., 11:109, 389

Robertson, T.V., 111:227, 581

Robinson, A.E., 1:232, 381

Robinson, G.A., 111:93, 581, 585

Robinson, J.A., 111:77-78, 86, 91, 93, 121,

123, 581, IV:274, 278

Robinson, J.J., 1:232, 359, 381, 382, IV:196,

198

Robson, D., IV: 164, 433

Rochester, N., 1:122, 372

Rockmore, A.J., IV:28, 170

Roecker, F., 111:257, 581

Rosenberg, A., 1:325, 371

Rosenberg, L., 11:14, 397

Rosenberg, R.S., 1:254, 255, 385

Rosenberg, S., IV: 155

Rosenblatt, F., 111:325, 378-379, 581, IV:574

Rosenbloom, P.S., IV:304

Rosenbluth, A.W., IV:576

Rosenbluth, M.N., IV:576

Rosenfeld, A., 111:138, 215, 217, 224, 229,

231, 233, 234, 237, 291, 298-300, 509,

568, 581, 582, 585, 586, IV:562, 571

Rosenschein, S., 11:84, 389, 392, IV:16, 28,

56, 66, 76, 94, 136, 144, 220

Ross, R., 1:59, 63, 378

Rossol, L., 111:138, 301, 303-304, 305, 569,

573

Roth, S.F., IV:90, 116

Rothschild, L., 11:144, 401

Rothstein, M., 11:144, 397

Round, A.D., IV:464, 466

Rouquette, N., IV: 127, 128

Roussel, P., 111:123, 568, IV:270

Roussopoulos, N.D., 11:167, 171-172, 387,

397

Rovner, P.D., 11:11, 381

Rowe, N., 11:293, 397

Royce, W.W., IV:246

Rubenstein, R., 11:247, 248, 252, 253, 385

Rubin, S., 111:312, 581

Rulifson, J.F., 1:176, 382, 11:11-12, 397

Rumelhart, D.E., 1:15, 149, 180, 185, 189,

207, 215, 255, 306, 307, 315, 336, 343,

380, 382, 111:8, 10, 56-64, 579, 581,

IV: 16, 93

Russell, B., 1:111, 112, 386

Russell, S., IV:285

Russell, S.W., 1.212, 1.382. See also S.

Weber.

Rustin, R., 1:232, 382

Ruth, G., 11:298, 305, 364-369, 392, 397

Rychener, M.D., 1:193, 195, 196, 382

Sacerdoti, E.D., 1:135, 139, 176, 318, 321,

374, 381, 382, 11:64, 69, 164, 173, 280,

392, 398, 111:516, 522, 523, 530, 541-

550, 581, IV:136, 213, 223

Sacks, E.P., IV:361

Safir, A., 11:180, 193-196, 222, 402

Safrans, C, 11:180, 397

Sag, I., IV:200

Sagalowicz, D., 1:176, 318, 321, 374, 381,

11:64, 69, 398, IV:213

Sager, N., IV:198

Sakai, T., 111:228, 579

Sakamoto, Y., 111:301, 302-303, 305, 574

Samet, H., 11:14, 397

Samlowski, W., 1:255, 382

Samuel, A.L., 1:27, 31, 45, 95, 97, 102, 104,

108, 382, 111:332, 338, 339-344, 452,

457-464, 582

Sanders, A.F., 11:139, 140, 142, 390

Sandewall, E.J., 1:63, 382, 11:65-66, 67, 398

Saridis, G.N., 11:13, 392

Sathi, A., IV:90, 116

638 Name Index

Sawchuk, A.A., IV:569

Scacchi, W., IV:246

Scha, R.J.H., 1:382

Schachter, G.J., 111:234, 582

Schaefer, IV:572

Schaffert, C, 11:344, 394

Schank, R.C., 1:14, 15, 149, 211, 212-215,

216, 217, 219, 220, 221, 222, 231, 232,

237, 238, 254, 255, 278, 291, 300, 301-

303, 305, 306, 309, 310, 313-315, 382,

383, 11:14, 29, 33, 398, 111:10, 70, 74,

519, 522, 561, 582, IV:225, 409

Schatz, B.R., 111:232, 582

Scherlis, W.L., IV:245, 284

Schmidt, C.F., 11:13, 398

Schmidt, J.W., IV:154

Schoen, E., IV:93

Schonberg, E., IV:315

Schreiber, J.F., 11:310, 398, 111:98, 566

Schroll, G., 11:109, 398

Schubert, L.K., 1:383, IV:220

Schumacher, L.E., IV:577, 578

Schunck, B.G., 111:242, 245, 573

Schwanke, R.W., IV:246

Schwarcz, R.M., 1:384

Schwartz, J.T., IV:315

Schwartz, W., 11:202, 205, 396

Schwenzer, G.M., 11:110, 121, 396

Scott, A.C., 11:180, 398

Scott, D.S., IV:245

Searfus, R., IV:89

Searle, J.R., 1:7, 383, IV:228, 230

Searleman, J.E., 11:139, 140, 142, 390, IV:90

Seitz, C.L., IV:568

Sejnowski, T.J., IV:562, 563, 575, 576, 577,

578

Self, J.A., 1:251, 383, 11:229, 235, 398

Selfridge, O.G., IV:18, 213, 221

Selig, L.J., IV:493. 494, 495, 496, 497, 499

Seliger, G., IV:438

Sembugamoorthy, V., IV:413

Sephton, K.M., IV:276

Serra, S., IV:540

Setliff, D., IV:318

Shafer, S.A., 111:228, 582, IV:16, 28, 165, 557

Shaheen, S.I., IV:530

Shanmugam, K., 111:231, 572

Shannon, C.E., 1:27, 31, 94-99, 103, 108,

383, 111:5, 582

Shapiro, L., IV:525, 561

Sharir, M., IV:315

Sharp, G.C., 11:222, 394

Shaw, D.E., 11:172, 307, 319, 325, 391, 398,

IV:572

Shaw, J.C., 1:29, 30, 98, 105, 108, 109, 111,

112, 113, 118, 379, 11:4, 396, 111:6

Sheikh, Y.M., 11:115, 398

Sheil, B., IV:70, 179

Shepard, M., IV:181

Shieber, S., IV:200, 220

Shirai, Y., 111:132, 168-172, 221, 258, 272-

273, 276-277, 312, 580, 582

Shneier, M.O., IV:569, 570

Shortliffe, E.H., 1:195, 197, 369, 383, 11:180,

183, 184-192, 398, 111:331, 582, IV:4,

28, 154, 157, 158, 164, 171, 172, 174,

177, 184, 441, 443

Shostak, R.S., 111:97, 100, 567, 582

Shoup, J., 1:329, 330, 333, 344, 376, 383

Shrobe, H.E., 11:343-349, 387, 398

Sibel, W., 11:310, 398

Sibert, E.E., 111:123, 581

Sickel, S., 11:312, 325, 387

Sidner, C.L., IV:144, 227, 234, 236

Sieber, W., 11:138, 142, 402

Siegel, H.J., IV:569

Siems, F., IV:156

Sikic, B.I., IV:441, 443

Siklossy, L., 1:16, 383, 11:29, 319, 325, 398,

399

Silverman, H.F., 11:180, 206-211, 391, 398,

111:252, 566

Simmons, R., IV:348

Simmons, R.F., 1:182, 186, 189, 228, 254,

256, 274, 277, 287, 375, 383, 384, 387

Simon, H.A., 1:4, 14, 15, 29-30, 31, 59, 63,

68, 71, 98, 100, 105, 106, 108, 109, 111,

112, 113, 118, 121, 149, 157, 169, 285,

379, 380, 384, 11:4, 317, 325, 396, 399,

111:3, 5, 6, 9, 11-21, 26, 28-29, 35, 77,

326, 327, 375, 405, 518, 570, 574, 579,

582, IV:19, 28, 67, 68, 92, 126, 171, 370,

392, 395, 397, 402

Singh, N., IV:470, 471, 472, 474

Sint, L., 1:73, 369

Sirovich, F., 1:81, 83, 376

Skinner, B.F., 111:4, 582

Skolem, T., 111:102, 582

Slagle, J.R., 1:80, 81, 83, 87, 91, 93, 98, 102,

108, 123, 127, 368, 384

Slate, DJ., 1:95, 96, 99, 100, 102, 103, 108,

384

Sleeman, D., 11:228, 399

Slocum, J., 1:182, 186, 277, 318, 321, 374,

384, 11:155, 160, 162, 389, IV:213

Sloman, J., 1:200, 205, 206, 384

Smirnov-Troyansky, P.P., 1:233

Smith, B.C., 1:152, 367

Name Index 639

Smith, D., IV:90, 307

Smith, D.H., 11:109, 110, 111, 112, 114-115,

387, 398, 399, 401

Smith, D.R., IV:286

Smith, E.P., IV:178, 514, 516

Smith, G., 11:138, 142, 402

Smith, G.B., IV:538

Smith, R.G., 11:46, 399, 111:334, 372, 456,

464, 568, IV:103, 107, 151, 155, 175,

177

Smith, R.L., 11:228, 284, 290, 384, 399

Smith, S.A., IV:127

Smith, S.F., IV:89, 157

Smith, W., 111:558, 582

Snape, K., 11:125, 399

Snyder, A., 11:344, 394

Snyder, L.S., IV:568

Solomon, C, 11:293, 399

Solomonoff, R., 111:507, 583

Soloway, E., 111:363, 364, 581, 583

Sondheimer, N.K., IV:218

Soroka, B.I., 111:316, 583

Sowa, J.F., 11:171-172, 399

Sowizral, H., 11:84, 389, 392

Spain, D.S., IV:28, 66

Spivey, J.M., IV:245

Sridharan, N.S., 11:13, 86, 111, 115, 140,

183, 395, 399

Stallman, R.M., 11:73-74, 400, IV:349

Standfield, J.L., 11:261, 266, 400

Stankovic, J.A., IV:94

Stansfield, J.L., IV:550

Statz, C, IV:89

Steeb, R., IV:89, 113, 135, 136

Steel, J., 11:76, 388

Stefik, M.J., 1:184, 217, 221, 384, 11:84, 400,

111:520, 522, 551-557, 559, 561, 570,

583, IV: 158, 164, 449

Steier, D.M., IV:206, 304

Stein, P., 1:99, 103, 108, 375

Steinberg, L.I., IV:283

Steinberg, L., 11:307, 329, 391, 400

Steinberg, S., 1:248, 384

Stelzner, M., IV:488, 490

Stentz, A., IV: 16, 28

Sternberg, S., 111:50, 583, IV.545

Sternberg, S.R., IV:569

Stevens, A., 11:229-230, 234, 242-246, 274,

396, 400

Stevens, K., 111:242, 265, 583

Stickel, M., 111:97, 99, 100, 575, 580, IV:281

Stimac, J., IV:453

Stone, P.J., 111:384, 406, 408, 573

Struss, P., IV:349

Sugar, L., 1:186, 378

Sugihara, K., 111:274-275, 276, 583, IV:556

Summers, P.D., 11:325, 400

Sunshine, C.A., IV:89

Suppes, P., 1:171, 384, 11:227, 283-290, 400

Sussman, G.J., 1:175, 176, 299, 384, 385,

11:10, 56, 73-74, 76, 316, 317-318, 325,

361, 388, 400, 111:452, 475-483, 520,

531-535, 540, 583, IV:349

Sutherland, G.L., 1:197, 370, 11:108, 109,

110, 115, 160, 162, 389, 398

Suwa, M., 111:258, 272-273, 582

Swain, P.H., 111:227, 581

Swaney, D., IV:453

Swartout, W., 11:91, 180, 182, 206-211, 319,

325, 398, 400

Swartout, W.R., IV:294

Sweet, L., IV:155

Swinehart, D.C., 11:11, 41, 52, 390

Sycara, K., IV:91, 107, 115

Sycara-Cyranski, K., IV: 115

Sykes, D., 11:319, 325, 399

Szolovits, P., 205, 11:180, 183, 202, 206, 400,

IV:171

Szolovitz, P., 1:217, 229, 385, IV:165

Taboada, J., 111:258, 565

Tamura, H., 111:231, 583

Tanimoto, S., 111:279, 282, 583, IV:571

Tanimoto, S.L., IV:534

Tappel, S., 11:335, 391

Tate, A., 111:535-537, 540, 550, 583

Taylor, B., 1:254, 255, 385

Taylor, R.H., 11:11, 41, 52, 390

Teitelman, W., 11:8, 400

Teknowledge, IV: 155, 156

Teller, A.H., IV.576

Teller, E., IV:576

Tenenbaum, J.M., 1:318, 321, 366, 111:132,

134, 238-242, 243, 295-297, 566, 583

Terry, A., 11:133, 389, 401, IV:28, 57, 66, 76

Terzopoulos, D., IV:555, 579, 581, 582

Thatcher, J.W., IV:317

Thomas, R., IV:568

Thompson, C., 1:374

Thompson, F.B., 1:228, 385

Thompson, H., 1:219, 221, 232, 367

Thompson, M.G., 111:511, 571

Thompson, W.B., 111:305, 583

Thorndyke, P.W., 1:306, 315, 385, IV:66, 89

Thorp, E., 1:103, 108, 385

Thorpe, C.E., 111:284, 583, IV:28

Thurston, M., 111:217, 233, 581

Tikhonov, A.N., IV:536, 555, 563

640 Name Index

Tokunaga, T., 111:305, 584

Tolzis, H., 111:290, 565

Tomita, F., 111:227, 233-234, 235, 236, 584,

IV:200, 215

Tong, C, IV:470

Torre, V., IV, 563, IV:536

Tracz, W., IV:259

Trager, B.M., 11:144, 401

Traub, J.F., 11:144, 385

Travis, L., 11:173, 393

Trigoboff, M., 11:180, 212-216, 401

Trottenberg, IV:581, 582

Tsichlis, P., 11:180, 398

Tsuji, S., 111:219, 227, 233-234, 235, 236,

584, 585

Tsypkin, Y.Z., 111:382, 584

Tu, S.W., IV:441, 443

Tukey, J.W., 111:119, 584

Turing, A.M., 1:4, 99, 103, 108, 385

Turner, K.J., 111:222, 291, 584

Tversky, A., 111:67, 584

Tyson, M., 111:101, 567

Ueda, H., 111:305, 584

Uhr, IV:565

Ulam, S., 1:99, 103, 108, 375

Ullian, J.S., 111:119, 580

Ullman, J.D., 1:68, 71, 241, 244, 365, 374,

111:135, 245, 247, 337, 565, 573, 584

Ullman, S., 111:247, 497, 584, IV:562

Unger, s.h., IV:540

Uno, T., 111:305, 569, 584

Utgoff, P.E., 111:452-453, 484-493, 578

Vanderbrug, G.J., 1:31, 385, 111:258, 584

van Harmelen, A.F., IV:286

VanLehn, K., 11:282, 386

van Melle, W., 11:84, 180, 276, 398, 401,

111:348, 584

Vecchi, M.P., Jr., IV:563

Verbeek, P.W., IV:545

Vere, S.A., 1:195, 385, 111:391, 392, 400, 584

Verkony, T.H., 11:109, 110, 114-115, 401

Vesonder, G.T., IV:155

Viehweger, B., IV:438

Vincens, P., 1:325, 385

von Neumann, J., 11:6

Voorhees, H., IV:563

Votteri, B., IV:46n

Wagner, G., IV:317

Wah, B.W., IV:159

Wahlster, W., 11:13, 401

Walden, W.E., 1:99, 103, 108, 375, 385

Waldinger, R.J., 1:176, 381, 382, 11:11, 12,

64, 69, 307, 308, 312, 325, 355-363,

391, 395, 398, 401, 111:537-540, 584,

IV:275, 278, 280

Walker, D.E., 1:186, 361, 385

Walker, T.C., IV:154

Wall, R.E., IV:220

Wallach, H., 111:244, 584

Walsh, M.J., 111:325, 570

Waltz, D.L., 1:232, 385, 11:164, 401, 111:133,

146, 161-167, 292, 295, 300, 584,

IV:561

Wang, H., 111:77, 584

Wang, P., 11:144, 401

Ward, M.R., 111:301, 303-304, 305, 573

Warnock, E.H., 11:237, 388

Warren, D.H.D., 11:13, 401, 111:82, 123, 584,

585, IV:200, 221

Wason, P.C., 111:119, 585

Wasow, T., 1:248, 369

Watanabe, M., IV:539

Waterman, D.A., 1:16, 195, 199, 385, 11:9,

57, 84, 86, 389, 392, 401, 111:331, 452,

465-474, 585, IV:160, 173, 181, 189

Waters, R.C., 11:343-349, 401, IV.297, 311

Watson, L.T., IV:554

Weaver, W., 1:226, 234, 237, 238, 288, 304,

385, 111:5, 582

Webb, J.A., IV:568

Webber, B.L., IV:235

Weber, S., 1.257, 1.369. See also S.W. Rus-

sell.

Wee, W.G., 111:380, 585

Weems, C.C., IV:572

Wegbreit, B., 11:45, 315, 325, 384, 401

Weischedel, R.M., IV:218

Weiss, J., IV:568

Weiss, S., IV:70, 172

Weiss, S.M., 11:180, 193-196, 217-222, 394,

402

Weissman, C, 11:29, 402

Weitzman, L., IV: 174

Weizenbaum, J., 1:228, 285, 286, 386

Weld, D.S., IV:361, 467, 468, 469

Weldon, E.J., Jr., IV:554

Welin, C.W., 1:255, 386

Wells, M., 1:99, 103, 108, 375

Werth, J., IV:254, 299

Wescourt, K., 11:234, 402

Wesson, R., IV:89

Westfold, S., 11:335, 391

Weszka, J.S., 111:229, 231, 585

Name Index 641

Wexler, J.D., 11:227, 402

Wexler, K., 111:55, 509, 510, 571, 585

Weyhrauch, R.W., 1:169-171, 371, 386,

11:13, 402, 111:82, 119, 585

While, R.L., IV:276

White, W.C., 11:122, 386, IV:50, 50n

Whitehead, A.N., 1:111, 112, 386

Widrow, B., 111:379, 585

Wiederhold, G., 11:303-307, 384, 111:337,

585

Wieneke-Toutouai, B., IV:438

Wilber, M., 1:176, 381, 11:64, 69, 398, 402

Wile, D., 11:336-342, 383, IV:283, 285

Wilensky, R., 1:232, 313, 314, 315, 386,

IV:226

Wilkerson, G., IV:453

Wilkins, D„ 1:95, 107, 108, 386

Wilks, Y., 1:149, 207, 209, 210, 215, 232,

237, 238, 248, 254, 255, 262, 279, 288,

289, 291, 299, 368, 386, 387, IV:217,

218

Williams, B.C., IV:348, 349, 358

Williams, C, 11:336-342, IV:28

Williams, J., IV:441

Williams, M.A., IV:66

Wills, L.M., IV:266, 313

Wilson, H.A., 11:226, 383

Wilson, S., IV:545

Winograd, T., 1:9, 14, 31, 147, 150-152, 156,

158, 159, 173, 176, 177, 179, 189, 199,

207, 215, 217, 219, 221, 222, 227, 230-

232, 244, 251, 260, 261, 262, 267, 276,

287, 291, 295, 296, 298, 299, 319, 367,

385, 387, 11:10, 64, 383, 400, IV:161,

174, 188

Winston, P.H., 1:15, 16, 87, 90, 93, 199, 387,

11:14, 29, 86, 330-332, 402, 111:138,

160, 161, 162, 163, 167, 175, 286, 326,

364, 392-396, 400, 443, 585

Wipke, W.T., 11:134-139, 142, 388, 402

Witkin, A.P., 111:265, 585, IV:550, 553

Wodig, R., IV:51

Wolf, A.K., 1:282, 372

Wolf, H.C., 1:318, 321, 366

Wolf, J., 1:329, 342, 353, 354, 356, 357, 387

Wolper, J.T., IV:437

Wong, H.K., 1:278, 387, 11:172, 396

Wood, D.E., 1:64, 66, 376

Woodham, R.J., 111:260, 263, 585, IV:539,

548, 555, 559

Woods, W., 1:173, 184, 186, 230, 260, 261,

263, 266, 267, 292, 293, 294, 327, 329,

342, 353, 354, 356, 357, 379, 387, 388

Woods, W.A., IV:27, 196, 198

Wos, L., 111:93, 581, 585

Wyszecki, G., 111:205, 573

Xerox Learning Research Group, IV:433,

434

Yachida, M., 111:219, 234, 235, 236, 584,

585, IV:539

Yakimovsky, Y., 111:132, 226, 585

Yamada, T., 111:303, 578

Yamawaki, T., 111:231, 583

Yamazaki, I., 111:303, 305, 577

Yeo, A, 11:110, 399

Yngve, V., 1:233, 273, 275, 388

Yob, G., 11:261, 402

Yokoya, N., IV:526

Young, R.L., IV:151, 155, 175, 177

Yovits, M.C., 111:325, 586

Yu, V., 900, 11:182, 192, 267, 402

Yuille, A.L., IV., 550, IV:563

Yun, D.Y., 11:144, 396

Zadeh, L., 11:13, 402, 111:356, 586, IV:172

Zielinski, J.E., IV:155

Ziles, L.A., 11:343-344, 402

Zippel, R., 11:144, 402

Zuang, X., IV:545

Zucker, S.W., 111:229, 234, 298-300, 586,

IV:525, 562, 5754

SUBJECT INDEX FOR VOLUMES I, II, III, AND IV

A* algorithm, 1:64-73, 80

AA, IV:156

AALPS, IV:156

Ablation studies of HARPY, 1:335

ABLE, IV:494-500

evaluation of simulations, IV:497

processing time, IV:505

rules of knowledge base, IV:494-497

simulation time, IV:506

testing results, IV:499

validation, IV:514, 517

Abstract data type, IV:317

Abstract information, IV: 118

Abstract operators in NOAH, 111:542

Abstraction

in Commonsense Algorithm (CSA),

IV:406

in qualitative prediction, IV:361

and uncertainty, IV: 171

Abstraction space, 111:516-518

in ABSTRIPS, 1:136, 111:528-530

ABSTRIPS, 1:22, 28, 134, 135-139, 169,

111:517-518, 523-530

Acceptable solutions, IV:96

Acceptance of expert systems, 11:89, VI: 174-

178

ACE, IV:155

Acoustics, 1:343, IV:24-26, 36-47. See also

Speech signal.

Acquisition of knowledge. See Knowledge

acquisition; Learning; Transfer of

expertise.

ACRONYM, 111:132, 137, 313-321, IV:559

generalized cylinders in, 111:314-316

interpretation in, 111:319-320

modeling classes of objects in, 111:314-316

predicting relations in, 111:317

predicting shapes in, 111:316-317

ACT, 1:195, 111:9, 50-54

Action clause. See Production rule

Action part, blackboard design, IV:78

Action-centered representation, expert sys-

tems, IV:162, 164, 167

Actional predicates, 111:58

Active instance selection, 111:363. See also

Instance space, search of.

Active structural network, 1:185, 111:56-64.

See also Semantic network.

Acyclic molecular structures, 11:106, 111

Ad hoc parsers, 1:287

Adaptive learning. See Adaptive systems.

Adaptive production system, 1:195

Adaptive systems, 111:325, 371, 373-382

ADD list, 11:73

in ABSTRIPS, 1:135

in NOAH, 111:544-545, 550

in STRIPS, 1:128-134

Admissibility

of A*, 1:65

condition, 1:65, 67, 73

of ordered search, 1:80, 83

of shortfall density strategy, 1:341, 356

Advice Taker, 111:78

Advice-taking, 111:328, 333, 345-359, 427,

467-468. See also Learning situations.

Advisor in MACSYMA, 11:147

Aerial photograph interpretation, 111:306—

308, 319-320

AGE, 11:84, 111:348

use of in TRICERO, IV:53-54

use of, in CRYSALIS, 11:126

Agenda, 1:338, 356, 360

IV:61,63,64,79. See also Control structures

and strategies Scheduler

Blackboard in AM, 111:440

in SCHOLAR, 11:239

Agreement in natural language, 1:263. See

also Unification grammars
Agricultural pest-management systems,

11:154

AI programming, 11:30-32

AI programming languages, 1:10, 172, 175,

11:3-76. See also Knowledge represen-

tation languages.

ALGOL, 1:237, 11:6, 11

CONNIVER, 1:175, 176, 11:4, 8-10, 38-

39, 50-51, 56, 60-61, 68, 146, 202

context mechanisms in, 11:10, 35-37, 39,

44, 46, 73

control structures in, 11:31-32, 45-57

data structures in, 11:30-31, 34-44

database facilities in, 11:44

643

644 Subject Index

AI programming languages (cont.)

features of, 11:30-71

FOL, 11:13

FUZZY, 11:13, 43, 53-55, 63-64

INTERLISP, 1:320, 11:8, 67-68, 70-71,

212, 362

IPL, 11:4

IPL-V, 1:281-282, 11:29

LEAP, 11:11, 41, 317

LISP, 1:15, 173, 237, 283, 295, 303, 11:4,

11:5-9, 15-29, 37, 46-47, 59, 66-68,

187, 298, 300, 312-314, 355, 111:103,

120-123, IV: 258, 290,

list processing in, 1:227, 281-287

MACLISP, 11:8, 202, 206, 369

MICRO-PLANNER, 1:295-297, 11:10

pattern matching in, 11:32, 58-64

PLANNER, 1:151, 155, 171, 175-178,

295-297, 11:8-10, 38, 47-50, 56, 60, 68,

74, 79, 111:82, 121, 533

POP-2, 11:7, 12, 42, 53, 63, 70

POPLER, 1:176, 11:12

programming environment of, 11:3-4, 7-

9, 32, 65-71

PROLOG, 11:13, 111:82, 123-124 IV:

168,176,187,256,270,271,440

QA3, 1:129, 168, 169, 111:78

QA4, 1:176, 11:11, 79

QLISP, I, 176, 11:12, 39-41, 51-52, 61-62,

69, 362, 111:543

SAIL, 11:11, 41-42, 52-53, 62-63, 69-70,

317, IV: 31

SLIP, 1:286

AIMDS/BELIEVER, 11:13

Air traffic control

least spatially constrained strategy,

IV:114

most knowledgeable, least committed

strategy, IV: 114-1 15

shared convention strategy, IV: 113-1 14

task centralization, IV: 113

task sharing, IV: 115

Airspace surveillance, TRICERO, IV:50-56

Albedo map, 111:238

ALCHEM in SECS, 11:137

Algebraic manipulation, 11:143. See also

MACSYMA.
ALGOL, 1:237, 11:6, 11

Algorithm development language (ADD,
IV:319

Aliphatic amines, 11:117

Allocation of storage. See Variable scoping.

Allophone, 1:333, 337, 349. See also Speech

pattern, Phonetics, Phonemics

Alpha-beta pruning of game trees, 1:88-93,

94, 101

Alternative dialogues in GUIDON, 11:272

AM, 1:157, 195-197, 111:100, 326, 330, 370,

371, 372, 422, 438-451

best-first search in, 111:438, 441

performance of, 111:447-451

reasoning about boundary examples in,

111:443-444

refinements operators in, 111:444-445

representation of mathematical concepts

in, 111:438

searching instance space in, 111:442-444

searching rule space in, 111:444-445

Ambiguity

in natural language, 1:208-211, IV: 201

in program specification, 11:336-337

qualitative calculus, IV:346, 348, 359

in speech, 1:325-327

Analogical knowledge representation. See

Direct (analogical) knowledge repre-

sentation.

Analogical reasoning, 1:146

as a method of learning, 111:328, 334, 443-

445

Analytic chemistry, 11:102-133, 111:428

Anaphoric reference, 1:293, 358, 11:250

Anchoring, IV:59

AND/OR graph, 1:26, 38-40, 43, 74, 113,

119, 124. See also Problem represen-

tation,

generalized, 1:82

search of, 1:54-57, 74-83

AND/OR tree, 1:39, 56, 94, 268, 11:90, 95,

134, 190, 270, 375. See also Problem

representation,

context tree, 1:197

degree of, 1:91

game tree, 1:25, 43-45, 84

solution tree, 1:40, 75, 77-79

transition tree, 1:316-317

Androstanes, 11:122

Antecedent reasoning. See Bottom-up rea-

soning; Control structures and strate-

gies; Reasoning.

Antecedent theorem

in logic programming, 111:120-123

in PLANNER, 11:38, 48, 73

Antimicrobial therapy, 11:184

AP2 in SAFE, 11:337

Subject Index 645

APL, 11:6

Application language in LIFER, 1:316

Applications of AI. See Expert systems;

Games; Puzzles.

Applicative style of programming, 11:6-7,

15, 17

Apprentice for MACSYMA, 11:148

AQ11, 111:421, 423-427

Aq algorithm, 111:398, 419, 423-427

Arbitration, IV: 116

Areal features, 111:251

Arithmetic rules, in qualitative calculus,

IV:340-342

Arithmetic skills, 11:279-282

ARPA speech understanding research

(SUR), 1:327, 353

Articulate expert. See also Explanation,

in ICAI systems, 11:230

in SOPHIE, 11:252

Askable vs. unaskable hypotheses, 11:161

Asking act, IV:228-229

ASQ, IV: 156

Assembly, 111:542

automation of, in SRI computer-based

consultant, 11:150-154

Associated pair, 111:335. See also Paired-

associate learning.

Associations. See also LEAP; Property lists,

in AI programming languages, 11:4

in LISP, 11:7

in SAIL, 11:41

Associative triple

in MYCIN, 11:188

in SAIL, 11:41

Assumptions, IV:407

Asymptotic behavior, qualitative predic-

tion, IV:360-361

Asynchronous process, problem solving as,

IV: 118. See also Opportunistic Process-

ing.

Atom in LISP, 11:7, 16

Atom migration in mass spectroscopy,

11:117, 111:430-434

Attribute-object-value triple. See Associa-

tive triple.

Attribute/value, blackboard design, IV:75

Augmented links in IRIS, 11:212

Augmented transition network (ATN),

1:186, 230, 261, 263-267, 111:56,

IV: 198-200. See also Grammar; Pars-

ing,

in GSP, 1:268, 271

in LIFER, 1:316

in LUNAR, 1:292-294

in MARGIE, 1:303, 304

in MEMOD, 111:56

in speech-understanding systems, 1:350,

355

in text-generation systems, 1:277-279

Authentic edges, IV:551

Automata as objects of learning, 111:380—

381

Automated programming tutors, IV:266.

See also Computer assisted instruction

Automatic backtracking. See Backtracking.

Automatic coding, 11:299. See also Auto-

matic programming.

Automatic deduction, 111:76-123. IV:269,

270, 274-275. See also Logic; Theorem
proving.

Boyer-Moore theorem prover, 111:102-113

circumscription in, 111:116

and commonsense reasoning, 111:78

control strategies in, 111:80-82

decision procedures in, 111:99-100

deduction contrasted with evaluation in,

111:79

default reasoning in, 1:176-177, 11:239,

111:115-116, 119

with examples, 111:100

heuristics for, 111:91-92, 98-100

IMPLY, 111:95-96, 98

and induction, 111:109-110

logic programming, 11:13, 111:77, 82, 120-

121, 123

Logic Theorist (LT), 1:24, 109-112, 113,

116, 119, 11:4, 79, 111:3, 77

and natural deduction, 1:163-164, 169,

175, 11:283, 285-286, 111:94-95, 101

and nonmonotonic logic, 11:74-75,

111:114-119

and nonresolution theorem proving,

111:94-102

resolution method in, 1:168, 175, 11:11,

313, 111:77-78, 86-87, 91-94, 97

and reduction, 111:98-99

and unification, 11:61-62, 111:89-90, 91,

96, 120, 121

Automatic derivation of NL front end,

11:166

Automatic programming (AP). See Program

synthesisProgram specification, Knowl-

edge-based software engineering.

Automatic theory formation, 11:116. See

646 Subject Index

Automatic theory formation (cont.)

also Hypothesis, formation of; Learn-

ing.

Average branching factor. See Branching

factor.

Axiomatic system, 1:165. See also Auto-

matic deduction.

Axiomatization of operations, 11:319

BABEL, 1:278

Backed-up values. See also Minimax.

in game trees, 1:87

Backgammon, 1:103

Backtracking, 1:23, 138, 203, 258, 266, 271,

298, 339, 341, 351, 11:121, 336, 339,

111:24, 120, 121, 293-295, 520-521,

526-530, 537, 542, 547, 552. See also

Planning,

automatic, 11:9

chronological, 11:50, 72

in CONNIVER, 11:50

dependency-directed, 11:73

in the General Space Planner, 1:203

in the General Syntactic Processor, 1:271

in HARPY, 1:341

in logic programming, 111:120-121

and parallel processing, 1:258, 266

in PROGRAMMAR, 1:298

after protection violation, 111:531-537

and relaxation, 111:293-295

in STRIPS and ABSTRIPS, 1:138, 111:526-

530

Backward chaining, 1:23-25, 36, 51, 56, 74,

110, 111, 196, 198, 11:83, 87, 93, 136,

111:80, 95, 97, IV:4, 169. See also Con-

trol structures and strategies; Reason-

ing; Top-down processing,

as depth-first search, 11:189

in IMPLY, 111:95, 97

in MYCIN, 1:196, 198, 11:189-191

in PROSPECTOR, 11:156, 160-161

BACON, 111:184, 370, 401-406, 444, 452

refinement operators in, 111:401-403

BADLIST, 11:107

Bag in QLISP, 11:34, 39-41

BAIL in SAIL, 11:70

Bandpass filtering, 111:212-215

Bandwidth condition, 1:69

Bandwidth search, 1:60, 69-71

Bare template, 1:288, 290

Bartering, partial global planning, IV: 141-

142

BASEBALL
Green's program, 1:227, 237, 282

Soloway's program, 111:364

Bayes theorem. See also Probabilistic rea-

soning,

in grammatical inference, 111:503

in medical diagnosis, 11:179, 267

and uncertainty, IV: 171

Beam search, 1:337, 341, 350, 356, 111:411-

415

Behavioral description, in consolidation,

IV:411

Behavioral knowledge, IV:334

Behavioral specification of programs,

11:336-338, 343, IV:247

BEINGS system, IV:93

Belief revision, 11:72-76

Belief systems, 111:9, 65-74

Beliefs contrasted with facts, 111:65-68

Best-first search, 1:59, 60, 102, 360, 11:141,

111:41, 252, 438, IV:285-286

Bidirectional search, 1:24, 51-53, 72-73, 74

Binary images, 111:214

Binocular vision, 111:249-253, 254, IV:536,

537. See also Stereo vision.

BIP, 11:230, 234

Bit-map display, in TRICERO, IV:56

Blackboard, 1:197, 331, 336, 343-346, 11:31,

104, 126, 342, 111:519, IV: 1-82. See also

Control structures and strategies;

Scheduler; Knowledge source,

blackboard framework, IV: 11-12

and complex problems, IV:68-69

as conceptual entity, IV:6

control, IV:6, 13-14, 79, 80-81

data structure, IV:6, 13

hierarchies in, IV:5

historical perspective, IV: 18-20

and ill-structured problems, IV:69-70

illustrations of, IV:6-11

in integrated vision systems, 111:306-310

iteration of problem-solving activities,

IV:14

knowledge sources, IV:6, 12-13

as a model of planning, 111:25-27, 519

problem-solving behavior, IV: 14-16

recognition paradigm, IV:73-74

scheduler, 1:347, 356, II: 347, 338-342,

IV:6, 79-80

search paradigm, IV:7 1-73

solution space, IV:4

termination criteria, IV: 14

uses of, IV: 16

Subject Index 647

Blackboard design, IV:74-81

action part, IV:78

attribute/value, IV:75

condition part, IV.77-78

control, IV:79

control data, IV:80-81

control knowledge, IV:81

domain-specific knowledge, IV:81

levels, IV:75

meta-knowledge, IV:81

nodes, IV:75

panels, IV:76-77

posting/noticing changes, IV:80

schedulable entities, IV:79-80

scheduling, II: 347, 338-342, IV:6, IV:80

static knowledge, IV:78

Blackboard systems

CRYSALIS, 11:126-127

HASP, IV:24-26, 36-47

HEARSAY, 1:343-346, 11:31, IV:20-24,

27-36

PROTEAN, IV:56-65

TRICERO, IV:50-56

VISIONS, 111:309-310

Blind search, 1:21, 29-30, 46-57. See also

Combinatorial explosion,

bidirectional, 1:72

and heuristic search, 1:58

and Logic Theorist, 1:111

and ordered search, 1:61-62

Blocks world, 1:276, 111:136, 139-141,

IV:158, 556

Blow molding injection advisor, IV: 155

Boltzmann machines, IV:575-576

Bond environment, 111:430

Boolean constraint satisfaction problems,

IV:560-562

Bottleneck in knowledge acquisition,

IV:173

Bottom-up processing, 1:23-24, 51, 56, 74,

198, 220, 259, 270, 326, 334, 338, 358,

11:129, 196, 199-201, 214, 257, 111:129,

288-290, 306, IV:46,55. See also Con-

trol structures and strategies; forward

chaining,

in CASNET, 11:196

definition of, 1:23-24

in grammatical approaches to vision,

111:288-290

in INTERNIST, 11:199-200, 201

in IRIS, 11:214

in natural-language parsing, 1:259, 270

in production systems, 1:198

in speech understanding, 1:326, 334, 338,

358

in vision systems, 111:129, 306

Bounded rationality, IV: 126. See also Satis-

ficing.

Box-Jenkins, IV:500, 501

Boyer-Moore theorem prover, 111:100, 102-

113

Branch-and-bound, 1:64

Branching factor

average, in speech-system grammars,

1:328-329

of a search tree, 1:91, 98

Breadth-first search, 1:47-48, 56-57, 61, 68,

73, 111, 111:39. See also Search.

Bridging, IV: 116

British Museum Algorithm, 11:35

BUGGY, 11:231, 279-282, 292

evaluation of, 11:280

sample protocol from, 11:281-282

Bugs. See Generalized bugs.

Business proposal evaluation, EXSYS,
IV:444-448

Business trend forecasting

Forecast Pro, IV:500-503

Retail Planning System and Advisor,

IV:500

Butterfly architecture, vision architecture,

IV:568

Caching, 111:336

Calling hierarchy, 11:31

Camera. See also Imaging devices,

calibration, 111:198

CCD, 111:200, 255

pinhole, 111:195

Vidicon,, 111:200

Camera rrJodel, 111:195-199

for stereo vision, 111:253

Camera-centered representation, 111:272

Cancer treatment planning, ONYX,
IV:441-444

Candidate-elimination algorithm, 111:386-

391, 396-399, 436, 484, 487-488, 490,

505

G set (of most general hypotheses) in,

111:386, 424, 426

learning disjunctions using, 111:490-491

multiple boundary-set extension, 111:396,

490

S set (of most specific hypotheses) in,

111:386, 411, 426

Update-G routine, 111:388-391

648 Subject Index

Candidate-elimination algorithm (cont.)

Update-S routine, 111:388-392

version space (set of plausible hypotheses)

in, 11:121, 111:387

CAOS, the KSL system, IV:93

CAOS, Iwasaki and Simon's system,

causal ordering in, IV:392, 401

CAPS, 1:106, 196

Case analysis, 111:354

Case-based reasoning, negotiation process,

IV:115-116

Case-directed knowledge base, IV: 174

Case grammar, 1:229, 249, 252-255, 277,

11:238, IV:208

ambiguity, 1:291, VI: 201

case frame, 1:182, 186, 231, 253, 111:59, 63

Case-method tutor, 11:235, 242

CASNET, 11:160, 180, 181, 182, 193-196,

215, 221

Catalog of rules, IV:273. See also Produc-

tion rules, Production systems

Catalog selection, IV: 184. See also Classifi-

cation systems.

Categorical reasoning, 11:205

Category-size effect, 111:8

CATS, IV:155

Causal chain, 1:301

Causal disease model in CASNET, 11:180-

181, 193-195

Causal ordering, IV:392-402

in CAOS, IV:392, 401

definition of, IV:392

in dynamic structure, IV:394-395

in equilibrium structure, IV:392-394

mixed model of evaporator, example of,

IV:397-401

in mixed structure, IV:395-397

theory of, IV:392, 394, 401-402

Causal patterns, in consolidation, IV:409,

411

Causal reasoning, and qualitative physics,

IV:328-329

Causal resolution rule, and program syn-

thesis, IV:278

Causative predicates, 111:58, 60

CENTAUR, 11:182

Central projection, 111:195

Centralized multiagent planning, IV: 135-

136

Centroid-linkage region growing, image

segmentation, IV:528-531

Certainty factor (CF), 11:13, 271, 277,

IV: 172. See also Uncertainty.

in CASNET, 11:193, 195-196

in CRYSALIS, 11:131

in EXPERT, 11:221

in IRIS, 11:215

in MYCIN, 11:180, 188-191, 111:67,

IV:172

Certainty in probabilistic relaxation,

111:297-298. See also Uncertainty.

Chain rule, 111:86. See also Resolution rule

of inference

Change predicates, 111:57

Change-from-zero rule, IV:354

Change-to-zero rule, IV:354-355

Chart, 1:260, 268-271, 354. See also

Parsing

Checkers, 1:26, 43, 44, 95, 97, 111:332-333,

339-344, 457-464

Chemistry, 1:168

analysis in, 11:102-133, 111:428, IV:56-65

synthesis in, 11:102, 134-142

Chess, 1:6, 22, 23, 26, 43, 94-108, 205, 334,

351, 11:4, 72, 111:11

CHI, 11:326, 333-335

Chief complaint, 11:202

CHip system, IV:568

Chomsky hierarchy, IV: 198

Chronological backtracking, 11:9, 50, 72. See

also Backtracking.

Chunk, 111:5

CIP-L, IV:303

CIP-S, IV:303

Circuits, IV: 112

Circumscription, 111:115-116, 118, 119. See

also Default reasoning, Nonmonotonic

reasoning

Classes, IV: 165, 257

Classification

for multiple classes, 111:423-427

of patterns, 111:127

as a performance task, 111:331, 383

Classification systems, 11:217, IV:184. See

also Diagnosis.

Classification tables in CASNET, 11:194-

196

Clause form, 111:87, 89-91, 92, 94, IV:278

converting a formula to CNF, HI: 92-93

Cleavage rules, 111:428, 430

Cliche, roles of, IV:298

Clinical reasoning. See Diagnosis; Medical

diagnosis.

CLIP4 system, IV:565, 570

CLISP in INTERLISP, 11:8, 68

Clock-event list, in HASP, IV:43, 44

Subject Index 649

Closed-world assumption, 111:115, 360

in SCHOLAR, 11:240

CLS, 111:384, 406-408

refinement operator, 111:408

Clustering, 111:227-228, IV:525-526. See

also Region splitting.

Co-occurrence matrix, 111:230

Co-routining, 1:271. See also Control struc-

tures and strategies; Parallel process-

ing.

COBOL, 11:3, IV:265

Code

code generators, IV:244

program understanding systems, IV:265-

266

recovery of specifications from, IV:265-

267

reuse derivations, IV:282-284

and update, IV:265

Code generation in program synthesis. See

Program synthesis.

Codification of programming knowledge.

See Representation of programming
knowledge.

Cognitive science, 111:4. See also Memory
models; Psychology.

Cohesiveness, 111:252

Cold war ideologue, 111:68, 69

Color, 111:203-205, IV:540,564

in edge detection, 111:219-220

features, 111:203-205

spaces, 111:203-205

COMAX, IV:483-487

simulation time, IV:506

structure of, IV:484

testing results, IV:487

validation, IV:517, 518

Combinatorial explosion, 1:27, 28, 58, 98,

99, 154, 155, 168, 260, 339, 356, 11:79,

134, 136, 140, 303, 313, 368, 111:78, 519,

IV:268. See also Search.

COMINT, in TRICERO, IV:52, 53, 55

Commonsense Algorithm (CSA), IV:403

abstraction in, IV:406

representation in, IV:403-405

simulation in, IV:405-406

Commonsense reasoning, 111:84

and expert systems, IV: 186

and qualitative physics, IV:326

Communication

plans and goals in, IV:224, 228-230

topic structure, use of models, IV:225-

228

Communication characteristics

completeness of message, IV: 138

interrelationship of, IV: 139

relevance of message, IV: 138

timeliness of message, IV: 138

Communication policy

effectiveness of, IV: 139-140

first-and-last, IV: 139

locally complete, IV: 139

send-all policy, IV: 139

Compatibility condition, IV:363

Competence vs. performance, 1:245

Compiled knowledge, 1:336-337, 349

Compiler, 11:3, 297

compared to AP system, 11:302

incremental, 11:70,300

REFINE, IV:249, 256, 258, 273, 284, 313-

315

Completeness

of a knowledge representation, 1:178,

111:79

in logic, 111:91

and qualitative prediction, IV:357

Completeness of program specification,

11:300, 308

Complex problems, and blackboard system,

IV:68-69

Complexity issue, qualitative prediction,

IV:357-358, 361

Composition of substitutions, 111:96

Computational linguistics, 1:226, 229. 1:233,

304. See also Natural language, Nat-

ural language understanding

Computational vision, IV:521. See also

Computer vision.

Computer-Aided Intuition-Guided Pro-

gramming (CIP), IV:303-304

Computer-aided software engineering

(CASE), IV:243, 244, 253

and AI technology, IV:251-252, 255

code generators, IV:244

design aids, IV:244, 253

project management tools, IV:244,

245

utility of, IV:245, 253

Computer-assisted instruction (CAD. See

Intelligent computer-assisted instruc-

tion.

Computer-based consultant (CBC), 11:177,

111:541. See also Expert systems.

Advisor for MACSYMA, 11:147

for air-compressor assembly system (SRI),

11:150-154, 111:541

650 Subject Index

Computer-based consultant (CBC) (cont.)

communication skills of, 11:150

definition of, 11:150

Computer coach in ICAI systems, 11:231,

234, 254-255, 257-259, 261-266. See

also Intelligent computer-assisted

instruction, Tutoring strategies in

ICAI.

Computer games in ICAI systems, 11:234,

252, 254, 261-266

Computer vision, see Vision, Vision archi-

tectures

Concavity and gradients, 111:176-178, 185-

186

in the Origami world, 111:188-194

Concept formation, See Hypothesis, forma-

tion of; Learning, multiple concepts;

Learning, single concepts.

Conceptual analyzer in MARGIE, 1:303

Conceptual bugs, 11:279-280. See also Diag-

nosis of student misconceptions.

Conceptual dependency theory (CD), 111:69.

See also Case grammar
in MARGIE, 1:300-303

in SAM and PAM, 1:306

and semantic primitives, 1:211-215, 231

and text generation, 1:278-279

Conceptualization, 1:213

Concordance, 1:226

Condition part, blackboard design, IV:77-

78

Conditional statements, 11:31

Conditional-formation principle, 11:357

Confidence measure. See Certainty factor;

Uncertainty

Configuration, expert systems for, IV: 156

Conflict resolution, see also Control struc-

tures and strategies

in blackboard systems, IV: 19-20, 54

in PECOS, 11:350

in production systems, 1:192, 197, IV: 19

Conflicting subgoals. See Subgoals, inter-

acting.

CONGEN, 11:106, 111-115, 111:429. See also

DENDRAL.
status of, 11:110, 113-115

use of constraints in, 11:112

user interface in, 11:112

Conjunctive normal form, 111:87, 89-91, 92,

94

IV:278

converting a formula to CNF, III: 92-93

Conjunctive subgoals. See Subgoals, con-

junctive.

Connection Machine, IV:565, 572

Connection problem, IV: 103-104

Connectionism, IV:93

Connectionist architectures, vision archi-

tecture, IV.572-578

CONNIVER, 1:175-176, 11:4, 8-10, 146, 202

backtracking in, 11:50

control structures in, 11:50-51

data structures in, 11:38-39

Consequent reasoning. See also Backward
chaining.

in logic programming, 111:120

in PLANNER, 11:9, 12, 48

in PROSPECTOR, 11:156, 160-161

CONSIGHT-I, 111:303-305

Consistency. See also Constraint satisfac-

tion; Relaxation.

of a knowledge representation, 1:178

in nonmonotonic logics, 111:116

in picture interpretation, 111:157

of program specifications, 11:302

Consistency assumption in search algo-

rithms, 1:66, 69, 73

Consolidation, IV:409-411

behavioral descriptions in, IV:411

representation of components, IV:408-

409

Constancy in visual perception, 111:240

Constraint, 1:344, 11:146, 111:133, 292-300,

520-521

on bond fragmentations, 11:106, 111

continuity, 111:264, 271

formulation, 111:553-556

generator, 11:106

local, 111:300

in MOLGEN, 111:551-556

on operator ordering, 111:520-521

propagation, 11:146, 111:553-556

semantic, 11:118

in shape-from methods, 111:262-267

in structure elucidation, 11:103

uniqueness, 111:264, 270-271

Constraint satisfaction, 11:102, 111:292-300,

553-556. See also Relaxation.

Boolean constraint satisfaction problems,

IV:560-562

in CONGEN, 11:112

continuous, 111:292, 297-300

in CRYSALIS, 11:124, 128

in DENDRAL, 11:107-108

Subject Index 651

discrete, 111:292-297

in Meta-DENDRAL, 11:118

in program specification, 11:302, 336, 338-

340

use of term, IV:560

in the Waltz algorithm, 111:164

Constraint-structured planning, 1:203

Constrictor relation in INTERNIST, 11:200

Construction in geometry, 1:121

Constructive bugs, 11:234, 254. See also

Tutoring strategies in ICAI.

Consultation, See Expert systems; Com-
puter-based consultant

Content addressing, 11:58

Context

context dependency, causal relationships,

IV:394

context mechanisms, 11:10, 35-37, 39, 44,

46,73

context of knowledge, and expert systems,

IV:188, 190

in dialogue and discourse, 11:270, IV:233-

237

in natural language, IV: 196, 223-237

in production systems, 1:190, 197

in speech understanding, 1:333

Context tree in MYCIN, 1:197

Context-free grammar, IV: 195, 198. See also

Phrase-structure grammar.

debate about, IV: 198

definition of, 1:242-243

in grammatical inference, 111:495

in parsing, 1:260, 263

in text generation, 1:273-274

in transformational grammar, 1:247

Context-sensitive grammar, 1:241-242. See

also Phrase-structure grammar.

Continuity condition, IV:363

Continuity rule, IV:353

Continuous simulation, IV:422

Contract-net protocol

limitations, IV:111

message structures in, IV: 109-1 10

performance evaluation, IV:108-109

task allocation in, IV: 108

utility of, IV: 1 11

Contrast in vision, 111:304. See also Prepro-

cessing.

Control

of deductive inference, 111:80-82

in integrated vision systems, 111:306-312

of physical systems, 111:373

Control structures and strategies. See also

Problem solving; Reasoning; Search

algorithms.

agenda, 1:338, 356, 360, 11:239, 111:440

of AI programming languages, 11:9, 31-

32, 45-57

backtracking, 1:23, 138, 203, 258, 266,

271, 298, 339, 341, 352, 11:121, 336,

339, 111:24, 120, 121, 293-295, 520-

521, 526-530, 537, 542, 545, 547, 552

backward chaining, 1:196, 198, 11:83, 87,

93, 136, 111:80, 95, 97, IV:4, 169

blackboard, 1:197, 331, 336, 343-346,

11:31, 104, 126-127, 342, 111:25-27,

306-310, 519, IV:6, 13-14, 79, 80-81

bottom-up, 1:23-24, 51, 56, 74, 198, 220,

259, 270, 326, 334, 338, 358, 11:129,

196, 199-201, 214, 257, 111:129, 288-

290, 306

conflict resolution, 1:192, 197

consequent reasoning, 11:156, 160-161

constraint satisfaction, 11:102, 111:292—

300, 553-556, IV:560-562. See also

Relaxation.

cooperative, IV:101, 104-105. See also

Cooperative, distributed problem solv-

ing

coroutining, 1:271, II: 45, 51, 53

definition of, 1:22

demons, 1:303, 11:38, 46, 52, 111:99, IV:18,

19

dependency-directed backtracking, 11:73

distributed, 1:336, IV:94, 111, 136-137.

See also Cooperative, distributed prob-

lem solving; Distributed processing

event queue or list, 1:356, 11:128, IV:41-

42,48

focus of attention, 1:190, 197, 338, 340,

347, 356, 360, 11:351, 376, 111:53, 279,

IV: 34

forward chaining, 1:23-25, 51, 56, 74, 198,

220, 11:129, 214, 257, 111:19, 80, 99-

100, 129, 306, 452

generate-and-test, 1:30, 11:106-109,

111:351, 369, 411-415, 430, IV:20, 32-

34,47

in HASP, IV:44-45

in HEARSAY-II, 1:343-348, IV:32-34

hill climbing, 11:145, 317, 111:252, 375-

380, 434, 458, IV:318

hybrid, 1:340, 356

hypothesis posting, 1:336, 338, 354, IV:80

652 Subject Index

Control structures and strategies (cont.)

island driving, 1:259, 337, 339, 346, 356,

361, 111:23, 519

means-ends analysis, 1:24, 59, 113, 117,

126, 129, 135, 169, 11:139, 317, 111:3, 7,

14-15, 517, 524-530, 554-556

opportunism, 11:129, 111:7, 22-27, 516-

519, 521, IV:4-8, 65, 169

parallel processing, 1:179, 230, 258-259,

265, 271, 298, 336, 11:146, 111:48

procedural attachment, 1:156, 158, 179,

218-221

and procedural knowledge representa-

tion, 1:174

in production systems, 1:194, 197-198,

11:350-351

in PROTEAN, IV:60-61, 62-64

relaxation, 111:292-300, see also Con-

straint satisfaction

scheduler, 1:347, 356, VI: 33-34, 47, 79-

80, 157, 169-170.

in speech systems, 1:336-342, 347, 350-

351, 355-357, 359-360

top-down, 1:24, 183, 198, 216-218, 232,

259, 326, 334, 336, 338, 344, 355, 358,

359, 11:201, 111:129, 131-133, 168, 169,

269-278, 283-286, 288-290, 306, 314-

316

in TRICERO, IV:54

Conversational LISP (CLISP), 11:8, 68

CONVERSE, 1:228

Convexity

and gradients, 111:176-178, 185-186

in the Original world, 111:188-194

COOP, 11:167

Cooperation

cognitive models, IV:91-93

computer assistant concept, IV:90-91

expert systems and, IV:90

Cooperative algorithms, IV:562

Cooperative distributed problem solving

(CDPS)

and cognitive models, IV:91

as computer assistants, IV:90-91

contract-net protocol, IV: 108-1 11

control problem, IV: 104-105

corroboration of results, IV: 103

distributed interpretation applications,

IV:89

distributed planning/control applications,

IV:89-90

Distributed Vehicle Monitoring Testbed,

IV:128-132

effectiveness, requirements for, IV: 146

examples of, IV:97, 99-104

focus of, IV:85

formal models, IV:143-145

functionally accurate cooperation,

IV:116-122

inconsistencies, approaches to, IV: 117

integration of partial results, IV: 101-102

multiagent planning, IV: 134-137

negotiation, IV: 107-1 16

and network coordination, IV:93

network of problem solvers, IV:96-97

organizational structuring, IV: 122-134

parallelism, potential for, IV: 101

partial global planning, IV: 137

problem solving node, IV:95-96

scheduling problem, IV:101

scientific community metaphor, IV:133-

134

sophisticated local control, IV: 137-143

subproblem interactions, IV: 100-101

taxonomy of, IV:98, 99

transferring subproblems and/or opera-

tors, IV: 103-104

utility of, IV:86-88

value/insights of, IV: 147

vs. distributed processing, IV:94

Cooperative responses in DBMS, 11:167

Coordination. See also Cooperative distrib-

utive problem solving (CDPS).

partial global planning and, IV: 142-143

Coroutining, 11:45. See also Control struc-

tures and strategies, parallel process-

ing; Multiprocessing.

in CONNIVER, 11:51

in SAIL, 11:53

Correspondence problem

finding features, 111:250-251

matching features, 111:251-253

in motion, 111:244-246

in stereo vision, 111:249-253

Cosmic Cube, IV:568

Cost

in search, 1:75-77, 11:140

of tests in diagnosis, 199, 11:193-194

Cotton crop management, COMAX,
IV:483-487

Counterexamples, 111:100-101. See also

Examples.

Subject Index 653

Courseware, 11:226, 240. See also Computer-

assisted instruction.

CPM in MACSYMA, 11:146

Cracks, 111:161. See also Lines; Edge; Edge

detection

Credit authorization, expert systems for,

IV:156

Credit-assignment problem, 11:72, 88, 121,

111:331, 348, 454-456, 459, 467-468,

480, 489. See also Learning,

in ICAI student models, 11:232

solved by analysis of goals and intentions,

111:480

solved by asking expert, 111:467

solved by deeper search, 111:457

solved by post-game analysis, 111:467-470

solved by wider search, 111:489

Criterion tables, and uncertainty, IV: 172

Critical node, in a game tree, 1:91

Criticality value, in ABSTRIPS, 1:136,

111:528-530

Critics, 111:541, 546-550

in HACKER, 111:477-478

in ICAI student models, 11:233

in NOAH, 111:546-550

Cross-correlation, 111:283, IV:538

Cryptarithmetic, 111:11, 13

CRYSALIS, 1:336, 11:104, 124-133, IV:57

sample protocol from, 11:130-133

status of, 11:133

Cumulative frequency distribution (CFD),

111:209

Current best hypothesis (CBH), and HASP,
IV:26, 39, 40

Cut set of lines, 111:181

Cybernetics, 1:4, 233, 111:6

Cyclic molecules, 11:111

Cytocomputer, IV:569

Data abstraction, 11:172, 344

Data consistency problem, in PROTEAN,
IV:65

Data interpretation, see also Classification

systems

expert systems for, IV: 155

Data structure, 11:30-31, 34-44, 308, 350

automatic selection of, in AP, 11:316-317

blackboard, IV:6, 13

Data types, 11:34, 39-41, 43-44

Data-driven processing. See Bottom-up pro-

cessing; Forward chaining.

Data-manipulation language, 11:163

Data-processing systems, synthesis of,

11:364-369. See also Program synthe-

sis.

Data-reduction task, 111:383

Database, 1:22, 328. See also Information

retrieval,

facilities in AI programming languages,

11:44

knowledge base, IV: 162

relational, in MACSYMA, 11:146

schema, 11:163, 171-172

Database management systems (DBMS),

11:163-173

cooperative resources in, 11:167

data independence, 11:163, 164

data model, 11:171-172

incremental query formulation, 11:167

logic in, 11:172-173

NL front ends, 11:164-170

query optimization in, 11:170-171

DEACON, 1:228

Dead position in a game, 1:87, 99

Debugging. See also Diagnosis of student

misconceptions,

in Programmer's Apprentice, 11:344-347

in TEIRESIAS, 11:192

Decision

and bounded rationality, IV: 126

criteria in PIP, 11:203

procedures in theorem proving, 111:99—

100

rules in EXPERT, 11:218-220

tables in IRIS, 11:214-215

tree representation of concepts, 111:406-

407

Declarative knowledge representation vs.

procedural knowledge representation,

1:151, 172, 219, 230, 111:56, 120,

IV:161,189-190 See also Representa-

tion of knowledge

Decomposition, search, IV:284-285, 287

DEDALUS, 11:12, 302, 304, 355-363

Deduction

natural. See Natural deduction,

program synthesis, IV:274-275

Deductive inference, 1:146, 205, 111:76-123.

See also Automatic deduction; Infer-

ence; Reasoning, Logic.

654 Subject Index

Deductive inference (cont.)

control, 111:80-82

directed inference, IV:290

search, 111:80

Deductive tableau, IV:279, 282

Deep knowledge, IV:31. See also Modeling

and model-directed knowledge base

IV:174

contrast with shallow knowledge: IV:331

Deep structure in language, 1:247, 266

Default reasoning, 1:176-177, 11:239,

111:115-116, 119. See also Circumscrip-

tion; Nonmonotonic reasoning.

Default values, 1:183, 216-220

Defense Advanced Research Projects

Agency Project, IV:27, 572. See also

ARPA.
Defense Department, IV.246

Degree of a tree, 1:91. See also Branching

factor.

Delete list, 11:73

in ABSTRIPS, 1:135

in NOAH, 111:544-545, 550

in STRIPS, 1:128

Delimited languages, 111:501, 505

Demon, 1:303, 11:46, 111:99. See also Control

structures and strategies.

as antecedent theorems in PLANNER,
11:38

in SAIL, 11:52

shrieking, IV: 18, 19

DENDRAL, 1:60, 157, 198, 11:79, 82, 103,

104, 106-123, 111:331, 429, IV:157, 158

plan-generate-test cycle in, 11:106-109,

IV:25

relationship to HASP, IV:24-26

status of, 11:109-110

use of constraints in, 11:107-108

Denotative knowledge representation, 1:200

Dependencies and assumptions, 11:72-76.

See also Nonmonotonic reasoning.

Dependency grammar, 1:274

Dependency-directed backtracking, 11:73

See also Chronological backtracking.

Dependency maintenance system, IV:264.

See also Dependencies and assumptions;

Nonmonotonic logic.

Depth. See Stereo vision

Depth bound, 1:49, 57, 99, 115

Depth map, 111:254, 256, 258

Depth measurement, 111:141, 168-278. See

also Range data analysis; Range find-

ers; Stereo vision; Support hypothesis,

depth values, interpolation of, IV:538

with laser light, 111:254-255

with light spot, 111:257

with light stripe, 111:258

with multiple stripes, 111:257

resolution, 111:254-255

with sound, 111:254

by stereo vision, 111:249-253, IV:536, 537,

539

by time of flight, 111:254-255

by triangulation, 111:255-259

Depth of a node, 1:49

Depth-first search, 1:49-51, 57, 60, 61, 101,

113, 138, 203, 11:50, 189-190

Derivations

derivative rule, IV:353-354

in qualitative calculus, IV:343, 353-354,

359-360

reuse of, IV:282-284

Derivation tree, 1:229, 242, 246, 256, 266,

273, 281, 293, 296, 302, 111:497

Design, expert systems for, IV: 156

Design aids, IV:244, 253, 292-294

Design notebook in Programmer's Appren-

tice, 11:348

Design space, 111:552

Design specifications, and software devel-

opment, IV:248

Designer system, IV:304-306

DESIRE, IV:266

Diagnosis, II: 177-222, 274. See also Medi-

cal diagnosis systems,

cost of tests in, 11:193-194, 199

decision-theoretic approaches to, 11:179

differential, 11:204

errors in, 11:177

hypothesis confirmation in, 11:204-205

in hypothesis formation, 11:179-180

as search, 11:179

sequential, 11:179

statistical approaches to, 11:179

teaching strategies for, 11:247-253, 267-

278

thresholding in, 11:181

Diagnosis of student misconceptions, 11:226,

254. See also Intelligent computer-

assisted instruction; Plan recognition;

Student model,

conceptual bugs, 11:279-280

Subject Index 655

diagnostic model for, 11:233, 279-280

differential modeling in, 11:255-256

partial solutions in, 11:273

in SCHOLAR, 11:239

in WHY, 11:245

Diagram, reasoning from, 1:201

Dialectical argumentation, 11:74

Dialogue comprehension, IV: 144.

See also Discourse; Dialogue manage-

ment;

Dialogue systems.

Dialogue management, 11:259. See also

Mixed-initiative dialogue; Natural

language; Tutoring strategies on ICAI.

agenda in SCHOLAR, 11:239

alternative dialogues, 11:272

askable vs. unaskable hypothesis in

PROSPECTOR, 11:161

context, 11:270

dialectical argumentation, 11:74

discourse model, 11:150, 238, 259, 263, 266

discourse procedure, 11:272-273

explicating in GUIDON, 11:235, 267, 272-

273

focus of attention, 11:351, 376

in PSI, 11:329

rules, 11:268

Socratic tutoring method, 11:242-256

via tutorial goals, 11:244

in WUSOR, 11:263

Dialogue systems

free-form, IV:461

menu-based, IV:461

question-and-answer, IV:461

Dictionary, for machine translation, 1:234

Difference. See also Means-ends analysis.

in GPS, 1:113, 111:116

in means-ends analysis, 1:24

in STRIPS, 1:129

Difference measures, 11:320

Differential diagnosis, 11:204

Differential modeling, 11:255-256. See also

Diagnosis of student misconceptions;

Student model.

Digitalis Therapy Advisor, 11:206-211

sample protocol from, 11:208-211

status of, 11:211

validation of, 11:211

Digitization, 111:202

Dilation, in mathematical morphology,

IV:540-542

Dipmeter Advisor System, IV: 151-152, 154,

155, 160

Direct (analogical) knowledge representa-

tion, 1:158, 177, 200-206

and parallel processing, 1:204

vs. propositional knowledge representa-

tion, 1:200

Direct modeling of distortion, 111:207-208.

See also Preprocessing.

Directed inference, IV:290

Directedness of reasoning, 1:151, 174-177,

185, 188, 193, 219

Direction of reasoning. See Backward

chaining; Forward chaining; Reason-

ing.

DIRECTOR, 11:293

Discourse, 1:339, 358, IV:233-237

See also Dialogue

definition of, IV:233, 234

extended, 1:279

pragmatics, 1:249, 327, 332, 334, 359,

IV:228-232 See also Speech acts,

segmentation in, IV.234-235

sources of information in, IV:235-236

stack-based organization, IV:236

structural aspects, IV:236

Discourse model, 11:150, 238, 259, 263, 266,

272-273. See also Dialogue manage-

ment.

Discovery by AM, 1:196, 111:438-451

Discovery learning. See Learning, by dis-

covery.

Discrete-event simulation, IV: 422,

423-424

Discrimination

in ACT, 111:54

network, 1:158, 278, 304, 111:29-35

rules, 111:423-427

Discussion agenda in SCHOLAR, 11:239

Disease,

in CASNET, 11:193

etiology, 11:179

in INTERNIST, 11:197-201

process, see Monitoring dynamic proc-

esses.

Distortion model, 111:206-208

direct modeling, 111:207

indirect modeling, 111:208

linear and bilinear models, 111:207

Distributed AI, 1:336, IV:94. See also Cor-

outining; Multiprocessing; Parallel

656 Subject Index

Distributed AI (cont.)

processing; Cooperative, distributed

problem solving;

compared to CDPS, IV:94

in PUP, 11:318

Distributed constraint satisfaction prob-

lems, IV:111

Distributed multiagent planning, IV: 136-

137

Distributed Vehicle Monitoring Testbed

(DVMT)
CDPS network in, IV: 132

interest areas in, IV: 129, 130

scheduler, IV: 129

use of, IV: 128

Distributional analysis, 111:506

Divide-and-conquer. See also Problem

reduction,

algorithms, Strong Problem Reduction

Principle (SPRP) constraint, IV:288,

289

in search, IV:287-290

DNA sequencing, 111:557

Document retrieval task, 1:328, 351

Domain analyst, IV:294-295

Domain designer, IV:294-295

Domain independence, 11:276. See also Tools

for building expert systems; Generality

vs. power; Domain-specific knowledge,

and constraint propagation, 11:146

and rules, 11:84

Domain models, IV:254-255, IV:294

design aspects, IV:255

and reasoning, IV:331-332

requirements and specifications for,

IV:254-255

in SAFE, 11:339

static and dynamic properties of, IV.254

Domain-specific knowledge, 1:151, 176, 220,

11:79, 129, 111:541, 543-545, IV:81, 151.

See also Heuristic; Knowledge,

blackboard design, IV:81

Double append function, IV:277

DRACO, IV:255, 295-296

DRAGON, 1:328-329, 337

Drilling simulation, IV:455-459

DRILLING ADVISOR, IV: 155

simulation time, IV:506

Drug-preference categories in MYCIN,
11:191

Due process, definition of, IV: 120

DWIM in INTERLISP, 11:68

Dynamic allocation, 11:33. See also Variable

scoping,

lists, 11:53

ordering, 1:102

weighting, 1:69

Dynamic processes. See Monitoring

dynamic processes.

Dynamic programming, 1:351

in Protosystem I, 11:368

Dynamic range, 111:199. See also Imaging

devices.

Dynamic regression, IV:500, 501

Dynamic scoping, 11:18, 33. See also Vari-

able scoping.

Dynamic structure, causal ordering in,

IV:394-395

Early processing, 111:128, 130. See also Pre-

processing.

Ecological system construction, ECO,
IV:459-462

Economy principle, 111:39-41

EDDAS, IV:155

Edge

authentic edges, IV:551

bounding, 111:161

color in, 111:219

concave, 111:161

connect, 111:178-180

detection, 111:130-131, 216-224, 250,

IV:534-536

difficulties of, IV:534-536

discontinuities in, IV:535-536

Hueckel's, 111:218

ideal, 111:216

image segmentation, IV:534-536

noise in, 111:130, 216

pattern-matching in, 111:218

phantom edges, IV:551

and pyramids, 111:281-282

in the "Play-Doh" domain, 111:240

recent developments, IV:536

roof edges, IV:535

segmentation in, 111:221-223

separable, 111:161

spatial differentiation in, 111:216-218

step edges, IV:535

EDITSTRUC in CONGEN, 11:112

Education. See also Intelligent computer-

assisted instruction; Tutoring strate-

gies in ICAI.

Subject Index 657

applications of AI in, 1:186, 11:225-294

environmental approach to, 11:225, 291-

294

learning by discovery, 11:254

learning by doing, 11:291

learning environment in, 11:292

learning resources in, 11:292-293

LOGO lab, 11:225

nontutorial CAI, 11:291-294

pedagogical style in, 11:275-276

Efficiency of synthesized programs, 11:327

in program synthesis systems, 11:302-

303, 317

by eliminating redundant computations,

11:314

estimation of, 11:375-378

in LIBRA, 11:330, 351, 375-379

in Protosystem I, 11:368

8-puzzle, 1:32, 51, 62, 67, 68

Electron density map interpretation, 11:124

Electron trees, 11:115

Elementary information processes (EIP),

111:12-13

Eleusis, 111:416-419

ELF, IV:318-319

Elimination rule in logic, 1:163, 164, 169

ELINT, in TRICERO, IV:52, 55

ELIZA, 1:227, 257, 260, 285-287

Ellipsis in natural language, 1:320, 358,

11:165, 250

Embedding in natural language, 1:263

Embedding algorithm, in CONGEN, 11:112

Emotion, 111:67, 72-74

EMYCIN, 11:84, 183, 276, 111:348, IV:170

English. See Natural language.

Enhancement, 111:206. See also Preprocess-

ing.

of lines and curves, 111:298-300

Ensemble averaging, 111:214

Environment, 111:327

errors in training instances, 111:362-363,

370, 396-397, 429, 432, 490

programming, 11:3-4, 7, 28, 32, 65-71,

230, 232, 234

providing the performance standard,

111:331, 454

providing the training instances, 111:328—

329, 455-456

role of, in learning, 111:328-329

runtime, 11:3, 9

stability of, over time, 111:337

Environmental approach to CAI, 11:291-294

ENVISION, IV:334, 335, 336, 362-370

behavior prediction process, IV:366-368

device model, IV:362-366

examples of, IV:363-366, 367

feedback, IV:368

inter-state behavior, IV:368, 369

intra-state behavior, IV:366-368, 369

Envisioning, IV:351

Envisionment. See also ENVISION; Quali-

tative prediction,

generation of, IV:352

possible envisionment, IV:351

total envisionment, IV.351

EPAM, 1:158, 196, 11:5, 111:8, 28-35

Epipolar line, 111:250, 252-253. See also

Stereo vision.

Episodes, in memory, 111:60

Epistemological adequacy, 111:290, 346

Epistemology, 1:151, 153, 170

Equality in logic, 111:93

Equational logic, IV:276

Equations

differential equations, IV:343

qualitative equations, IV:343-348

Equilibrating, IV:397

Equilibrium structure, causal ordering in,

IV:392-394

Equipment diagnosis, expert systems for,

IV: 155

Equipment tuning, expert systems for,

IV: 156

Erosion, in mathematical morphology,

IV:542-544

Errors in training instances, 111:362-363,

370, 396-397, 429, 432, 490

ESEL, 111:427

ESPm, IV:155

Etiology of a disease, 11:179

EURISKO, 111:449

Evaluation, as opposed to deduction, 111:79—

80

Evaluation of expert systems. See Valida-

tion, of expert systems.

Evaluation function, 1:60, 61-62, 64, 67-73,

77, 78, 80, 83, 97, 11:3, 27, 141. See also

Interpreter; Static evaluation function.

EVAL in LISP, 11:15, 17, 28, IV:179

Evaluation of ICAI systems. See Validation,

of ICAI systems.

Event queue or list, I: 356

in CRYSALIS, 11:128

in HASP, IV:41-42, 48

658 Subject Index

Event-driven processing. See Bottom-up

processing; Forward chaining.

Evidence, 11:120

Evolution, program specification methodol-

ogies, IV:261

Evolutionary model, software development,

IV:250

Examples

in automatic deduction, 111:100-101

generic, 11:307

in learning, 111:328, 333-334, 360-511

program specification from, 11:300, 306-

308, 318-325

in PSI, 11:329

traces, 11:307-308, 321-325

EXCHECK, 11:227, 283-290

explanation in, 11:97

sample protocol from, 11:284-285

Exhaustive search, see Search, blind;

Search breadth-first; Search, depth-

first

Existential qualification, 111:88-89, 91

Exogenizing, IV:397

Expanding procedure calls, 11:315

Expansion of a node, 1:46, 55

Expectation list, in HASP, IV:42

Expectation-based filtering, 111:364. See

also Top-down processing.

Expectation-driven processing. See Top-

down processing; Backward chaining.

Experiment planning. See also Instance

space, search of.

in MOLGEN, 111:551-562

Experimentation, specification acquisition

methodologies, IV:260

EXPERT, 11:180, 217-222

status of, 11:222

Expert systems, 1:9, 11:9, 79-294, 111:345,

348, 427. See also Knowledge engi-

neering,

acceptance of, 11:89

for agricultural pest management, 11:154

for cancer therapy, 11:180, IV: 157, 441-

444

characteristics of, IV: 151

chemical analysis, 1:168, 11:102-133,

111:428

chemical synthesis, 11:102, 134-142

for classification, 11:217, IV:154, 170, 184.

and commonsense knowledge, IV: 186

for configuration, IV: 156

as consultation system, 11:81-82, 177

and context of knowledge, IV: 188, 190

cooperating systems, IV:90

costs of, IV: 173

for credit authorization, IV: 156

for data interpretation, IV: 155

for database management, 11:163-173

debugging of, in TEIRESIAS, 11:192

desiderata, IV:151, 152, 154

for design, IV: 156

design principles, IV: 154, 160-161

for digitalis administration, 11:206-211

in education, 1:186, 11:225-294

for electromechanical assembly, 11:150—

154

for equipment diagnosis, IV: 155

for equipment tuning, IV: 156

for evaluating business proposals,

IV:444-448

evaluation, 11:182, 192, 211, 267, IV:179-

180

exhaustive solutions in, 11:177, 190

and expertise, IV: 185

explanation, 1:9, 195, 198-199, IV: 174-

175

explicit knowledge of, IV: 187, 190

for financial auditing, IV: 156

and first principles, IV: 185-186

for glaucoma, 11:193-196, 215-216

and hardware, IV: 158-159

for heuristic classification, IV: 154, 170,

184.

historical view, 11:79-80, IV: 157-159

in internal medicine, 11:197-201

for inventory control, IV: 156

issues in construction of, IV: 178-180

knowledge base development, IV: 173-

174, 190

and knowledge limits, IV: 186

knowledge representation, IV: 161-167

and learning mechanisms, IV: 187

limitations of, IV: 184-188

for loading, IV: 156

logic in, IV.164-165

for manufacturing IV:438-441

for mathematics, 1:195, 11:143-154

measures of complexity, IV: 182

for medical diagnosis, 11:177-222

for mineral exploration, 11:154, 155-162

and mixed language environments,

IV:177

for monitoring, IV: 155

for oil exploration, IV: 151-152, 154, 155,

160

performance factors, IV: 152, 160

Subject Index 659

for planning, IV: 157

for preventive maintenance, IV: 155

problems addressed in, IV:154, 157, 183-

184

publications on, IV:181

pulmonary disease diagnosis, 11:180,

182-183

reasoning methods, IV: 167-172, 187-188

for renal disease, 11:202-205

and reusable knowledge, IV: 187

in rheumatology, 11:222

for scheduling, IV: 157

for screening, IV: 156

and self-knowledge, IV: 186

shells, IV: 159, 170, 175-176

size of, 11:85, 159, IV:181-183, 185

sociological considerations concerning,

11:177

for software consulting, IV: 156

status of, 11:83-85

in stereochemistry, 11:113

for therapy management, 11:180, 206-

211, IV:157, 441-444

time in construction of, IV: 183

tools for building, 11:84, 126, 183, 212-

216, 217-222, 267-278, IV:176, 177

for treatment regimen, 11:206-211

for troubleshooting, IV: 155

tutorial, 11:267-278, see also Intelligent

computer-assisted instruction

types used, IV: 155-157

utility of, IV:178-179

validation of, 11:182, 192, 211, 267,

IV:177-178

Expert systems design

declarative knowledge in, 1:151, 172, 219,

230, 111:56, 120, IV:161,189-190

explicit knowledge, 1:150, 172, IV: 170-

171, 187, 190

interaction framework, IV: 190

modularity in, IV: 190

redundancy, use of, IV: 191

simplicity in, IV: 191

uniformity in, IV: 191

Expert-systems-building tools. See Tools for

building expert systems.

Expertise, 11:80. See also Knowledge acqui-

sition,

in automatic programming, 11:315

interactive transfer of, 1:199, 11:72, 80-83,

88-89, 116

Expertise model of ICAI systems, 11:229-

231

and simulation, 11:229-230, 245-246, 251

in WEST, 11:256

in WUSOR, 11:263-264

Experts in PSI, 11:326. See also Knowledge

sources.

Explainable Expert Systems (ESS), IV:294-

295

Explanation, 11:6, 72, 81-83, 89-91, 120

and acceptance of expert systems, 11:89

by articulate expert, 11:252

by computer coaches, 11:257-259

for debugging, 11:89, 192

in Digitalis Therapy Advisor, 11:206, 211

in EXCHECK, 11:97, 287-289

by expert systems, 1:9, 195, 198-199

in HASP, IV:49

in ICAI systems, 11:97, 228, 229

for justification of conclusions, 11:89

in medical consultation systems, 11:182

in production systems, 11:187-188

in Programmer's Apprentice, 11:348

in PROSPECTOR, 11:155

in PSI, 11:329

and self-reflective programs, 11:6-7, 89

in TEIRESIAS, 11:95-97

of therapy selection in MYCIN, 11:191

WUSOR, 11:263, 266

Explicit knowledge

and expert systems, IV: 187, 190

vs. implicit knowledge representation,

1:150, 172

and reasoning, IV: 170-171

Exploratory programming, IV:70

Exponential smoothing, IV:500, 501

EXSYS, IV:255, 444-448

simulation time in, IV:504, 505

validation, IV:514

Extended circular image, in computer

vision, IV:554

Extended discourse, 1:279, IV:228-235

Extended grammar, 1:245-255

parsers, 1:260

Extended inference, 1:176

Extensibility, 11:69

Face validation, validation, IV:516

Fan effect, 111:48, 50-53

Fan-out, 111:48, 50-53

Feature point detection, stereo vision in,

IV:537-538

Features of images, 111:250-253

areal, 111:251

difference measures, 111:251

660 Subject Index

Features of images (cont.)

lineal, 111:251

matching, 111:251-253

Feedback in learning, 111:331. See also Per-

formance standard.

Field tests, validation, IV:517

15-puzzle, 1:68, 73

Figure/ground discrimination, in vision

architecture, IV:576-578

Filtering

high-pass, 111:212-213

low-pass, 111:214-215

Financial auditing, expert systems for,

IV:156

Finding in medical diagnosis, 11:178

in EXPERT, 11:218-220

in PIP, 11:202

Finite termination property, 111:99

Finite-state automata, 111:380

Finite-state grammar, 1:337. See also Reg-

ular grammar.

Finite-state transition diagram (FSTD),

1:263-264

Firing a rule, IV: 164 See Production rule;

Production systems

First principles

and expert systems, IV: 185-186

and qualitative physics, IV:327

First-and-last, communication policy,

IV:139

First-order logic. See Logic, first order.

Fixed ordering of nodes in search, 1:90, 101

Flagship project, IV:276, 278

Flexibility. See also Self-reflective pro-

grams,

of knowledge representation, 11:130

and meta-knowledge, 11:89, 267

of a model, 11:118

of production rules, 11:228

Flexible manufacturing systems, MOSYS,
IV:438-441

Focus of attention. IV: 14,34,42,44,45,48,

54,65,79. See also Agenda, Selective

attention; Control structures and strat-

egies,

in ACT, 111:53

in LIBRA, 11:376

in PECOS, 11:351

problem related to, IV:34

Focus-of-control database, IV:96

FOL, 1:169, 171, 205, 11:13

Fold transformation, IV:277-278

FOO, 111:333, 346-347, 349, 350-359

FORCEM, IV:513

Forecast Pro, IV:500-503

forecasting methods in, IV:500-501

menu options, IV:502

Forgetting, 111:33-34, 44, 48, 49, 338, 342

Formal derivatives, 111:506

Formal language, 1:239-244, 263. See also

Context-free languages; Delimited lan-

guages; Regular grammar,

in automatic programming, 11:301, 312-

314

in grammatical inference, 111:494-497

in structural learning, 111:381-382

Formal program specifications. See also

Informality; Program specification;

Very high level language,

for CDPS, IV: 143-145

in DEDALUS, 11:355

definition of, 11:300

vs. informal, 11:326, 336

Formal reasoning, 1:146

Formula in preference semantics, 1:288-289

FORTRAN, 11:3, 5, 217, 297, 299, IV:161,

256, 424

Forward chaining, 1:23-25, 51, 56, 74, 198,

220, 11:129, 136, 214, 257, 111:19, 80,

99-100, 129, 306, 452, IV:4, 169. See

also Backward chaining; Bottom-up

processing; Control structures and

strategies.

Forward pruning of game trees, 1:104

Fragmentation in mass spectrometry,

11:104, 106, 111, 116-117, 111:430-434

Frame knowledge representation, 1:149,

156, 158-159, 216-222, 334-335. See

also Script knowledge representation;

Object-centered representation; Object-

oriented languages,

in automatic programming systems,

11:316 IV:257-258

and case frames, 1:183, 254

for concepts, 111:438-439

in IRIS, 11:212-213

matching in, 1:159

in PIP, 11:181, 202-204

for plans, 111:557-562

and preference semantics, 1:208, 229, 231

and semantic networks, 1:183, 186, 189

Frame problem, 1:177, 201, 111:337, 343

Frame-oriented CAI, 11:226, 231

Fregean knowledge representation. See

Subject Index 661

Propositional knowledge representa-

tion.

Frequency domain contrasted with the spa-

tial domain, 111:206

FRL-0, 1:221

Front end in numerical simulation model

ECO, IV:459-462

user transaction in, IV:459

Full-width search, 1:103

FUNARG, 11:46

Function, 1:165, 11:34

in the Boyer-Moore Theorem Prover,

111:104

in logic, 1:165, 11:88-89, 111:91

Functional Description Compiler, 11:317

Functional distribution, IV:86

Functional relationships, 11:245-246

Functional representation of devices,

IV:406-409

knowledge compilation in, IV:408-409

representation in, IV:407-408

Functionally accurate cooperation

inconsistent/incorrect information and,

IV:118-119, 121

versus negotiation, IV: 122

open systems, IV: 120-121

problem solving structure, IV: 117-1 18

FUZZY, 11:13

control structures in, 11:53-55

data structures in, 11:43

pattern matching in, 11:63-64

Fuzzy automata, 111:380

Fuzzy logic, and uncertainty, IV: 172

Fuzzy set, 11:13

G set (of most general hypotheses), 111:386,

424, 426

Game tree, 1:25, 43-45, 84

random, 1:92

totally dependent, 1:92

uniform, 1:91-93

Game-tree search, 1:84-108, 111:339-342.

See also Search algorithms; AND/OR
tree.

alpha-beta, 1:88-93, 94, 101

backed-up values, 1:87

dead position, 1:87, 99

forward, 1:104

horizon effect, 1:99

killer heuristic, 1:102

live position, 1:87

method of analogies, 1:104

minimax, 1:84-87, 88, 90, 91, 94, 98,

111:339-342, 465

negmax, 1:86-87, 89

plausible-move generation, 1:104

quiescence, 1:99-100, 103

refutation move, 1:102

secondary search, 1:100

static evaluation function, 1:87, 96-97,

100

tapered forward, 1:104

Games, 1:153. See also Puzzles,

backgammon, 1:103

in Intelligent computer-assisted instruc-

tion 11:234, 252, 254, 261-266

checkers, 1:26, 43, 44, 95, 97, 111:332-333,

339-344, 457-464

chess, 1:6, 22, 23, 26, 43, 94-108, 205, 334,

351, 11:4, 72, 111:11

Eleusis, 111:416-419

Go, 1:103

Hearts, 111:351

poker, 111:331, 465-474

tic-tac-toe, 1:43, 94

voice chess, 1:328, 334, 344

Garbage collection, 11:4, 18

GASP, IV:424

General Problem Solver (GPS), 1:113-118,

129, 135, 169, 196, 11:4, 47, 79, 111:3, 7,

11-21. See also Means-ends analysis.

General Space Planner, 1:202-203

General Syntactic Processor (GSP), 1:268-

272

General-to-specific ordering, 111:385

Generality vs. power, 1:335, IV: 158-159

Generality of rules for molecular processes,

11:120

Generalization

in ACT, 111:54

in the Boyer-Moore theorem Prover,

111:108

in learning programs, 111:360, 365-368,

385

response, 111:28-35

stimulus, 111:28-35

Generalization methods

by adding options, 111:366, 411, 444, 502

by climbing concept tree, 111:395, 487, 491

by curve-fitting, 111:367, 376-380, 401-

405, 457

by dependency analysis, 111:480, 492

by disjunction, 111:366-367, 397

by dropping conditions, 111:366, 385, 391,

662 Subject Index

Generalization methods (cont.)

393, 411, 435, 444, 466

by internal disjunction, 111:367, 411, 466-

467

by merging nonterminals, 111:501

by partial matching, 111:487

by turning constants to variables,

111:365-366, 387, 388-390, 391, 414,

444, 482

by zeroing a coefficient, 111:367

Generalization principle in DEDALUS,
11:360-361

Generalized AND/OR graph, 1:82

Generalized bugs, 111:475-476, 480-482,

532-535

Generalized cylinders, 111:132-133, 137,

269, 273-274, 290 See also Shape

description.

Generalized scale-space image, in computer

vision, IV:553-554

Generalized subroutines, 111:475, 479-480

Generate-and-test, 1:30, IV: 18, 20, 25-26,

47, 64. See also Plan-generate-test.

in DENDRAL, 11:106-109, IV:25-26

HASP, IV:20, 25-26, 47

in HEARSAY-II, IV:47

in Meta-DENDRAL, 11:120

operationalization method, 111:351

for searching rule space, 111:369, 411-415,

430

Generative CAI, 11:227, 229

Generative grammar, 1:229, 245, 247

Generative semantics, 1:248

Generator, 11:4, 45

Generic examples for program specification,

11:307

Generic traces for program specification,

11:307

Genetics

lambda simulator, IV:448-451

MOLGEN, 111:24-25, 518, 551-556, 557-

562, IV:462-463, 476-481

QSOPS, IV:464-467

Geography tutor, 11:236-241

Geological data models, 11:155, IV:151-152

Geometrical correction, 111:206-208. See

also Preprocessing.

Geometry and physics in vision, 111:133-134

Geometry Theorem Prover, 1:119-122, 201-

202

Ghost tracks, IV:55

GIST, IV:257, 262

Glaucoma consultation system, 11:193-196,

215-216

Go, 1:103

Goal, 1:22, 33, 36, 105, 114, 306, 308, 310-

311, 11:90, 95, 111:12, 523, 541,

IV:4,14,15,19,20,27,29,34,35,69,78,

88-100,104,107, 111, 113-116, 122,

124, 127-138, 140, 143-147, 160, 169,

174, 175, 191. See also Problem reduc-

tion; Problem solving; Subgoal.

Goal reduction. See Problem reduction.

Goal regression, 111:537-540

Goal-directed reasoning. See Backward

chaining; Control strategy; Expecta-

tion-driven processing; Top-down rea-

soning.

Goal-directed theorem proving. See Natural

deduction.

GOLD, IV:499-500

Gold's Theorems, 111:499

GOLUX, 1:171, 175

GOODLIST, 11:107, 113

Goodness of fit in PIP, 11:202

GPS. See General Problem Solver.

GPSS, 11:303, 370-374, IV:424

Graceful degradation, 1:336

Gradient space, 111:133, 173-182, 185-194,

216, 238, 261-267

unique determination of gradients in,

111:190-194

Gradient-descent, see Hill climbing.

Gradual refinement, 11:350

Grain size of a knowledge representation,

1:147, IV:183

Grammar. See also Parsing; Natural lan-

guage understanding,

array, 111:287

augmented transition network (ATN) for,

1:186, 230, 261, 263-267, 268, 271,

277-279, 292-294, 303, 304, 316,

111:56, IV: 198-200

automatic derivation of, in TED, 11:166

average branching factor of, 1:328, 329

case, 1:229, 249, 252-255, 277, 11:238,

111:59, 63, IV:208

context-free, 1:242-243, 245, 247, 260,

263, 273, 274, IV:195, 198

context-sensitive, 1:241-242, 245

in DBMS, 11:164-165

definition of, 1:225, 229

dependency, 1:274

extended, 1:260-261

Subject Index 663

finite-state, 1:337

formal, 1:239-244

generative, 1:229, 245, 247

graph, 111:499

habitability of, 1:328

mood system of, 1:249

obligatory and optional transformations

in, 1:246-247

parsing, 1:225, 229, 239-240, 256-272,

11:293, 111:497, IV: 195-205

performance, 1:245, 261, 335, 355, 359

phrase-structure, 1:240-246, 260, 262

regular, 1:243, 245, 263, 111:501, 505-507,

509

semantic, 1:229, 261, 318, 320, 335, 355,

359, 11:160, 250-251, IV:214-215

semantic interpretation, IV:206-222

in speech systems, 1:326, 332, 349

story, 1:221, 231, 300, 306

systemic, 1:229, 249-251, 297

transformational, 1:229, 233, 237, 245-

248, 249, 251, 252, 111:497-498, 510

transition tree in LIFER, 1:316-317,

11:165-166

transitivity system of, 1:249

tree, 111:287

unification-based grammars, IV: 198-205

in vision systems, 111:287

web, 111:287

Grammarless parsers, 1:260-261

Grammatical inference, 11:116, 138, 111:381,

453, 494-510

by construction, 111:505-507

by enumeration, 111:503-505

by generate-and-test, 111:503-505

guided by semantics, 111:509-510

by refinement, 111:507-509

refinement operators, 111:508-509

Graph deformation condition, 111:510

Graph grammars, 111:499

Graph Traverser, 1:67

Graphics, 11:293

Gray scale, 111:199

histogram flattening, 111:209

modification, 111:208-209

Ground restriction, 111:99

Ground space, 111:528-530

in ABSTRIPS, 1:135

GSP. See General Syntactic Processor.

GUIDON, 11:6, 228, 230, 235, 243, 267-278,

292, IV:175

alternative dialogues in, 11:272

domain independence in, 11:276

sample protocol from, 11:268-270

status of, 11:276-278

GUS, 1:220, 231

Habitability of a language, 1:328

HACKER, 11:10, 315, 317-318, 111:452, 475-

483, 491, 493, 531-535, 546

performance element, 111:477

Half-order theory of mass spectrometry,

11:118-119, 111:428, 431-432, 436

HAM. See Human Associative Memory.
HAM-RPM, 11:13

Hardware, expert systems, IV: 158-159

HARPY, 1:328, 329, 335, 337, 339, 344, 346,

349-352, 356

HASP, IV:24-26, 36-47

acoustic input, IV:37-39

blackboard changes, IV:80

blackboard structure, IV:39-47

clock-event list, IV:43, 44

control, IV:44-45

current-best-hypothesis, IV:26, 39, 40

design problems encountered, IV.25-26

event list, IV:41-42

as event-based system, IV:48-49

expectation list, IV:42

explanation in, IV:49

goal of project, IV:24, 36-37

compared to HEARSAY-II, IV:47-49

history list, IV:43

hypothesis elements, IV:41, 42

knowledge sources, IV:43-44, 47

knowledge-application strategy, IV:46-47

plan-generate-test, IV:25

plausible hypothesis generator, IV:46

problem list, IV:43

relationship to DENDRAL, IV:24-26

reports, IV:49

scheduler, IV:47

sonar problem, IV:38-39

HAWKEYE, 1:318

HEADMED, 11:180

HEARSAY-I, I: 197, 328, 334, 335, 343-344

architecture, 1:335, 343, IV:21

limitations of, 1:343, IV:23

HEARSAY-II, 1:328, 345-348, 11:31-32

alternative hypothesis in, IV:35-36

blackboard structure, 1:336, 345-346,

IV:30-35

control, 1:347,338-342, IV:32-34

control data storage, IV:81

664 Subject Index

HEARSAY-II (cont.)

error control in design, IV:29-30

generate-and-test, IV:47

goals of, IV:27, 29

compared to HASP, IV:47-49

hypothesize-and-test, IV:35

knowledge-application strategy, IV:34-35

knowledge sources, 1:336, 345-346,

IV:22-23, 31, 35-36

scheduler, I: 347, 338-342, IV:33-34

temporal events, IV:48

vocabulary of, IV:29

Hearts, 111:350

Heuristic, 1:21, 64, 66, 74, 78, 94, 119, 151,

168, 174, 177, 188, 201, 220, 228, 258,

277, 282, 284, 293, 296, 298, 299, 335,

11:81, 140, 313, 111:11, IV:332. See also

Expertise; Heuristic search; Knowl-

edge,

definitions of, 1:28-30, 58, 109

killer, in game playing, 1:102

phagocyte, 111:226

weakness, 111:226

Heuristic classification, IV:154, 170, 184.

See also Classification systems.

Heuristic Compiler, 11:317

Heuristic DENDRAL. See DENDRAL.
Heuristic evaluators, in PROTEAN, IV:64-

65

Heuristic Path Algorithm, 1:67

Heuristic problem solving. See Expert sys-

tems; Problem solving.

Heuristic search, 1:28, 29-30, 46, 58-83,

94-108, 117, 350, 356 See also Search,

operationalization method, 111:351

HI-CLASS, IV: 157

Hierarchical memory, 111:39-41

Hierarchical planning, 1:135, 528-530, 541-

556, 111:516-518

Hierarchical problem decomposition, IV:68

Hierarchical search, 1:135

Hierarchical representations

of image data, 111:269, 279-282, IV:571-

572

of knowledge in SCHOLAR, 11:237

Hierarchy. See also Inheritance,

of abstraction spaces, 111:528-530

of information, IV:207-208

of procedural knowledge, 11:151

High-emphasis frequency filtering, 111:212—

213

Hill climbing, 11:145, 317, 111:252, 375-380,

434, 458, IV:318, 562

Histogram

in contrast adjustments, 111:209

in region splitting, 111:226-227, 234-235

spatial clustering, IV:525, 527

History

history list in HASP, IV:43

in qualitative process theory, IV:377

HODGKINS, 11:180

Homogeneous coordinates, 111:197-199

Hopfield model, IV:574-575

Horizon effect, in game-tree search, 1:99

Horn clause, 111:121

Hough transform, 111:222-223, 277

"How to" knowledge, IV: 162, 165

How the West Was Won, 11:254, 255

Hueckel operator, 111:218-220

Huffman's-point test, 111:181

Human Associative Memory (HAM), 1:185,

111:9, 42-49, 509-510

Human engineering, 1:319, 11:84. See also

User interface.

Human memory. See also Memory, models

of.

associative, 111:8, 9, 36

episodic, 111:8, 60

long-term, 111:42-49, 50, 52, 56-64

recall, 111:36

recognition, 111:36

semantic, 111:8, 9, 36-37, 41-42

short-term, 111:28

strategy-free, 111:9, 42-49

working, 111:50-54

Human problem solving, 1:6-7, 14, 285,

111:11-21. See also Problem solving.

Humiliation theory, 111:71-74

HWIM, 1:267, 292, 328, 337, 339, 353-357

Hybrid control strategy, 1:340, 356

Hybrid-linkage combination technique of

image segmentation, IV:53 1-532

Hybrid-linkage region growing of image

segmentation, IV:526, 528

Hypothesis. See also Control structures and

strategies.

askable vs. unaskable, 11:161

confirmation, 11:202, 204-205

in EXPERT, 11:218-220

formation of, 11:84, 116, 124-125

in HASP, IV:41-42

in HEARSAY-II, IV:30, 33, 34-36

in INTERNIST, 11:197

in medical reasoning, 11:179-180

posting, 1:336, 338, 354

propagation in PROSPECTOR, 11:160

Subject Index 665

scoring, 1:340-341, 346, 347, 351, 355,

356

status of, in CASNET, 11:195

Hypothesize and test. See also Generate-

and-test.

in HEARSAY-II, IV:35

Hypothetical worlds, 1:360

I-transition, 11:88-89, 116, 111:345-348,

IV:384

Iconic representation, 111:238

ID3, 111:384, 407-410

Ideational function of language, 1:249

Ill-structured problems, and blackboard sys-

tem, IV:69-70

Image domain. See Picture domain.

Image enhancement. See Enhancement;

Preprocessing.

Image features, 111:132

contrasted with scene features, 111:134—

137, 155, 238

The Image Understanding Program, 111:135

Image understanding, 111:127-138. See also

Shape recovery.

Imaging devices, 111:199-201. See also Cam-
era.

Imaging geometry, 111:173-176. See also

Projections.

Implementation phase, software develop-

ment, IV:248

Implicational molecules, 111:68-69

Implicit knowledge, 1:150, 172, 11:277 See

also Declarative knowledge; Explicit

knowledge;

IMPLY, 111:95-96, 98. See also Natural

deduction.

IMPORT property in INTERNIST, 11:199

Importance tags in SCHOLAR, 11:237

Impossible objects, 111:158

Incomplete knowledge, 11:240. See also

Uncertainty.

Incremental aggregation, and uncertainty,

IV:118-119

Incremental compiler, 11:70, 300

Incremental query formulation, 11:167

Incremental stimulation, in HWIM, 1:341

Indeterminancy of knowledge representa-

tions, 1:148

Individualization of instruction, 11:226

INDUCE, 1:2 1.2, 111:411-415

attribute-only rule space, 111:413

structure-only rule space, 111:413

Induction, 111:100, 112, 327, 333-334. See

also Learning situations, from exam-

ples,

in the Boyer-Moore Theorem Prover,

111:102, 109-110

Induction axioms, 11:313

Induction of programs. See also Program

synthesis; Examples, program specifi-

cation from; Traces,

as approach to AP, 11:318-325

axiomatization of operations in, 11:319

from examples, 11:318-325

and grammatical inference, 11:318

program schemas in, 11:319

from protocols, 11:322-325

traces, 11:321-325

Induction templates, 111:109-110, 111

Induction/inference in mass-spectral pro-

cesses, 11:116

Industrial vision systems, 111:301-305

Inexact knowledge, 11:79, 81. See also

Uncertainty,

in medical reasoning, 11:179

Inexact reasoning, 1:195

Infectious-disease consultant system. See

MYCIN.
Inference, 1:146, 154, 155, 160, 162-165,

168, 175, 188, 213, 228, 231, 236-237,

255, 276, 303-304, 11:90, 146, 158,

188-189, 239, 251-252, 111:39, 41,

IV:167-168, 170. See also Control

structures and strategies; Reasoning,

qualitative inference, IV:330-331, 333

Inference engine, IV: 161

See also Interpreter; Control structures

and strategies.

Informality

human, studies of, 11:337

in mathematical reasoning, 11:238-290

of program specifications, 11:326, 336-

338, IV:246-248

Informant presentation, 111:500

Information retrieval, 1:22, 145, 282-283,

292, 316, 318. See also Database man-

agement systems.

Information-processing system (IPS),

111:11-21

Informedness of an algorithm, 1:65

Informing act, IV:229

Infrared image, 111:204

Inherent distribution, IV:86

Inheritance

hierarchy, 1:156, 181, 218

of properties, 1:156, 181-184, 216, 218

666 Subject Index

Inheritance (cont.)

in object-centered representations, IV:

165-170

Initial states, 1:33

Insecticide selection, SICM, IV:453-455

Instance, IV: 165

in semantic networks, 1:182

Instance selection. See Instance space,

search of.

Instance space, 111:360-365

presentation order of instances, 111:363

quality of training instances, 111:362-363,

370, 396-397, 429, 432, 490

search of, 111:363, 371, 408, 435-436, 441-

444, 491-492

Instantaneous change rule, IV:355

Instructional programming environment

BIP, 11:230, 234

SPADE, 11:232

Instructional strategy. See Tutoring strate-

gies in ICAI.

Insulin, 111:554

Integrated circuit modeling, MARS,
IV:470-476

Integration problem, 111:331, 347, 421, 453,

456

Intelligent computer-assisted instruction

(ICAI), I: 186, 11:225-294.

in arithmetic skills, 11:279-282

case-method tutor, 11:235, 242

computer coach, 11:231, 234, 254-255,

257-259, 261-266

computer games, 11:234, 252, 254, 261-

266

diagnosis of student misconceptions in,

11:226, 233, 239, 245, 254, 273, 279-

280

environmental approach in, 11:291-294

in electronics troubleshooting, 11:247-253

geography tutor, 11:236-241

in informal mathematical reasoning,

11:283-290

in logic, 1:283:290

learning by doing, 11:291

learning resources in, 11:292-293

in medical diagnosis, 11:267-278

nontutorial, 11:291-294

pedagogical style in, 11:275

in proof theory, 11:283-290

in set theory, 11:283-290

Socratic method in, 11:234

survey of, 11:225-228

teacherless learning, 11:293

tutoring module, 11:233-235

tutoring strategies in, 11:228, 233, 237

Intelligent Design Aid (IDeA), IV:292-294

Intensional operators, 111:84

Interacting subglobals. See Subgoals, inter-

acting.

Interactive dialogue. See Mixed-initiative

dialogue.

Interactive knowledge acquisition. See

Knowledge acquisition; Transfer of

expertise.

Interactive LISP. See INTERLISP.
Interactive program specification, 11:300,

302, 303, 310-311. See also Program

specification; Rapid prototyping,

in KIDS, IV:307-310

in NLPQ, 11:370-374

Programmer's Apprentice, 11:345, 348,

IV:296-298

in PSI, 11:327, 330-332

SAFE, 11:337-338

Interactive transfer of expertise. See

Knowledge acquisition; Transfer of

expertise.

Interdependent subproblems, 1:56, 81-83.

See also Planning; Subgoals, interact-

ing.

Interest operator, 111:250

Interestingness, 11:119, 134, 135

Interference matching, 111:391-392

Interlingua, 1:234-235, 237, 288, 300, 303,

304

INTERLISP, 1:320, 11:8, 212, 362

CLISP, 11:68

DWIM, 11:68

programmer's assistant for, 11:68

programming environment of, 11:67-68,

70-71

Intermediate OR node, 1:39, 56, 57

Internal medicine, 11:197-201

Internal Problem Description (IPD) in

NLPQ, 11:372-373

INTERNIST, 11:83, 180, 181, 182, 197-201,

205, 215

size of, IV: 181-182, 186

Interpersonal function, of language, 1:249,

280

INTERPLAN, 111:535-537

INTERPRET, 111:147-154

Interpretation

in advice-taking, 111:354

of training instances, 111:364-365

Interpretation tree, IV:558-559

Subject Index 667

Interpreter, 11:3. See also Evaluation func-

tion; Control structures and strategies

EVAL in LISP, 11:15, 17,28

of a production system, 1:190-192

Interpretive semantics, 1:248

Intersection search in SCHOLAR, 11:239-

240

Intonation in speech signal, 1:333

Intrinsic images, 111:134, 137, 238-242

Introduction rule, in logic, 1:163, 164, 169

Introspection, 111:4

Intrusions, 111:34

INTSUM, 111:430-432

in Meta-DENDRAL, 11:119

Inventory control, expert systems for,

IV: 156

INVENTORY SETUP ADVISOR, IV: 156

IPL-V, 1:281-282, 111:29

IPL, 11:4

IRIS, 11:84, 160, 180, 181, 212-216

"Is-a" relation, IV: 165

ISIS, IV: 157

Island driving, 1:259, 337, 339, 346, 356,

361, 111:23, 519, IV:26, 34-35

Island-driving control strategy, 1:259, 337,

339, 346, 356; 111:23, 519 See also Con-

trol structures and strategies.

Iso-intensity contours, 111:262-264

Isolated-word recognition of speech, 1:325,

333, 349

Isomers, 11:108

ISPEC in IRIS, 11:212-214

Issues-and-examples tutoring strategy, II:

256

issue evaluators in, 11:257

issue recognizers in, 11:257

Items in SAIL, 11:41

Iterative deepening search, 1:100-101

Iterative endpoint fit, 111:221

JCL, 11:365

Jittering transformation, IV:285

Judgmental knowledge, 11:277. See also

Uncertainty.

Junction types, 111:163-164

impossible, 111:275

in the Origami world, 111:184-186

SEE, 111:144-147

Juncture rules, in speech understanding,

1:330, 350, 354

Justification. See also Explanation.

for beliefs, 11:74, 111:65-68

in medical consultation systems, 11:182

KAS, 111:348

KATE, IV:298-299

KBEmacs, IV:266

KEE, IV:487, 490, 511, 512

Kestrel interactive development research

system (KIDS), IV:307-310

Killer heuristic, 1:102

Kinetic depth effect, 111:244

Kinship relations, 1:281

Kitchenworld, 111:63

KLAUS, 11:169-170

sample protocol from, 11:169-170

KLONE, 1:221

Knowledge, 1:144. See also Heuristic; Rep-

resentation of knowledge; Models.

cases, IV: 115-1 16, 174

compiled, 1:336, 337, 349

constraining, 1:344

deep knowledge, IV:31

domain-specific, 1:151, 176, 220

expert knowledge, 1:145, 194, 195, 198,

11:79, 80-83, 87, 91-92, 116, 111:326,

IV:173-178

explicit vs. implicit, 1:150, 172, IV: 170-

171 187, 190

"how to" knowledge, IV: 162, 165

model-directed, IV: 174

opacity of, 11:82, 89-90

shallow knowledge: IV:331

"what is" knowledge, IV: 162, 165

world, 1:226, 230

Knowledge acquisition, 1:145, 194, 195, 198,

11:79, 80-83, 87, 91-92, 116, 111:326,

IV:173-178 See also Expert systems;

Learning; Transfer of expertise.

by automatic theory formation, 11:116

bottleneck, IV: 173

case-directed, IV: 174

interactive, in SECS, 11:137

model-directed, IV: 174

in medical consultation systems, 11:182

in Meta-DENDRAL, 11:116-123

REACT, in CONGEN, 11:114-115

in TEIRESIAS, 11:97-101, 191-192

transfer of expertise, 1:199, 11:72, 80, 81-

83

Knowledge-application strategy

See also Control structures and strategies

in HASP, IV:46-47

in HEARSAY-II, IV:34-35

and problem-solving, IV: 14-16

in PROTEAN, IV:64

in TRICERO, IV:55

668 Subject Index

Knowledge base, 11:34, 80, IV: 173-178 See

Expert systems; Knowledge; Represen-

tation of knowledge

case-directed, IV: 174

model-directed, IV: 174

Knowledge-based assistants, IV:246

Knowledge-Based Editor in Emacs (KBE-

macs), IV:311-313

Knowledge-based simulation. See Simula-

tion.

Knowledge-based software engineering

(KBSE), 11:297-379, IV:243-322 See also

Program Synthesis; Program specifi-

cation,

current status of, IV:251

domain models, IV:254-255

goals of, IV.245-246

information sources in, IV:322

meaning of, IV:244-245

motivation for, IV:243-244

program synthesis, 1:9, 11:297-379,

IV:268-291

program synthesis systems, 11:330-335,

350-379, IV:303-321

software development, IV:246-251

specification acquisition, 11:303, 305, 343-

349, IV: 253-267, 292-302

specification languages, 11:309, 315, 326,

355-363, 364-369, IV:255-258

specification maintenance, IV:263

specification acquisition systems, IV:292-

303

Knowledge-based system, 1:227, 229, 11:326.

See also Expert systems.

Knowledge compilation, functional repre-

sentation of devices, IV:408-409

Knowledge engineering, 1:9, 198, 11:326,

111:427, IV: 173-180. See also Expert

systems; Knowledge acquisition,

as approach to AP, 11:301, 315-316, 350-

354, 375-379

definition of, 11:84

in PECOS, 11:350-354

steps in process, IV: 173-174

Knowledge engineers, IV: 167

Knowledge-intensive methods, search,

IV:286-291

Knowledge needed for learning, 111:326,

330, 446-447

Knowledge representation, see Representa-

tion of knowledge

Knowledge-representation languages. See

also AI programming languages.

FRL-O, 1:221

KLONE, 1:221

KRL, 1:158, 221, 231

UNITS, 1:221

Knowledge source, 1:257, 298, 326, 336,

343-348, 353, 11:125, 126, 111:25-27.

See also Blackboard,

ablation studies of, 1:335

blackboard, IV:6, 12-13

experts in PSI, 11:326

in HASP, IV:43-44, 47

in HEARSAY-II, 1:345, IV:22-23, 31, 35-

36

precondition, IV: 12-13

in Programmer's Apprentice, 11:348

in PROTEAN, IV:62

response frame of, 1:345, 347

in SAFE, 11:342

stimulus frame of, 1:345

in TRICERO, IV:53-54

KRL, 1:158, 221, 231

LADDER, 1:318, 11:164-166

sample protocol from, 11:165-166

Lambda simulator, IV:448-451

Landmark values, IV:340

Language, formal. See Formal language.

Language definition system, 1:316, 359

Language understanding. See Natural lan-

guage understanding.

Laplacian image, 111:212, 250

Laplacian operator, 111:211-212, 218, 264

Large-grained rules, development of,

IV:281-282

LAS, 111:509-510

Laser pointer for a computer-based consul-

tant, 11:150

Leading indicators, IV:501

LEAP in SAIL, 11:11,41,317

Learning, 1:9, 97, 128, 145, 157, 193, 195,

11:6-7, 72, 88, 116, 293, 317, 111:325-

512. See also Education; Knowledge

acquisition,

in ACT, 111:53

by debugging, 11:318

by discovery, 11:254

by doing, 11:291

environment, 11:292, 111:328-329

in HACKER, 11:318, 111:452, 475-483,

491, 493

history of, 111:325-326

incremental, 111:363, 370 inductive, III:

328, 333-334, 360-511

Subject Index 669

Meta-DENDRAL, 11:119, 111:326, 332,

369, 372, 422, 428-436

multiple-concepts in, 111:331, 420-451

paired-associate, 111:28-35

resources, 11:292-293

role of the environment in, 111:328-329

role of knowledge representation in,

111:329-330

role of performance task in, 111:330-332

rules for multiple-step tasks in, 111:331,

421, 452-511

and self-reflective programs, 11:6-7, 89,

318

single concepts in, 111:331, 383-419, 420-

422, 436

statistical, in DENDRAL, 11:118

training instances for in DENDRAL,
11:117 unsupervised, 111:363

verbal, 111:28, 33-35

Learning element, 111:327-328. See also

Learning.

Learning methods. See Operationalization

methods; Rule-space search.

Learning, object of, 111:371-372

automata, 111:380, 381

cleavage rules, 111:428, 430

context-free grammars, 111:453, 495

decision trees, 111:406-407

delimited languages, 111:501, 505

discrimination rules, 111:423-427

finite-state automata, 111:380. See also

Regular grammars,

frames, 111:438-439

fuzzy automata, 111:380

generalized bugs, 111:475-476, 480-482

generalized subroutines, 111:475, 479-480

graph grammars, 111:499

linear-discriminant functions, 111:376-

380

macro-operators, 111:475, 493

parameters, 111:375-380

polynomial evaluation functions, 111:457—

459, 463

production rules, 111:452-455, 465-474

regular grammars, 111:501, 505, 506, 507,

509

signature tables, 111:459-464

stochastic automata, 111:380

stochastic grammars, 111:381, 498-499

structural descriptions, 111:381-382, 392-

396, 411, 412

transformational grammars, 111:497-498,

510

Learning problems. See also New-term
problem,

closed-world assumption, 111:362

credit-assignment problem, 111:331, 348,

454-456, 459, 467-468, 480, 489

disjunctive concepts, 111:397-399, 406-

407, 490

errors in training instances, 111:362-363,

370, 396-397, 429, 432, 490

frame problem, 111:337, 343

integrating new knowledge, 111:331, 347,

421, 453, 456

interpretation of training instances,

111:354, 364-365

new terms, 111:370-371, 405, 459

Learning situations

by analogy, 111:328, 334, 443-445

by being told, 111:345-359. See also

Advice-taking,

from examples, 111:328, 333-334, 360-511

by rote, 111:328, 332-333, 335-344

by taking advice, 111:328, 333, 345-359,

427, 467-468

Learning systems. See also individual

entries

AGE, 111:348

AM, 111:326, 330, 370-372, 422, 438-451

AQ11, 111:421, 423-427

BACON, 111:370, 384, 401-406, 444, 452

BASEBALL, 111:364

CLS, 111:384, 406-408

EMYCIN, 111:348

EURISKO, 111:449

FOO, 111:333, 346-347, 349, 350-359

HACKER, 111:452, 475-483, 491, 493

ID3, 111:384, 407-410

INDUCE 1.2, 111:411-415

KAS, 111:348

LAS, 111:509-510

LEX, 111:452-453, 455, 484-493

Meta-DENDRAL, 111:326, 332, 369, 372,

422, 428-436

model of, 111:327

modified model for multiple-step tasks,

111:455-456, 476-477, 486

Samuel's checkers player, 111:332-333,

339-344, 452, 457-464

simple model of, 111:327

SPARC, 111:369-370, 384, 416-419, 452

STRIPS, 111:475, 491, 493

TEIRESIAS, 111:333, 348, 349

Waterman's poker player, 111:331, 349,

452, 456, 465-474, 489

670 Subject Index

Least recently used (LRU) algorithm,

111:338, 342

Least spatially constrained strategy for, air

traffic control, IV: 114

Least-commitment algorithms, 111:387

Least-commitment planning, 111:24-25,

552-556

Legal states, IV:351, 356

Legal-move generator, 1:153, 334, 344

Length-first search, 1:138

Levels, blackboard design, IV:75

Lexicon, 1:247, 333, 346, 354

LEX, 111:452, 453, 484-493

LHASA, 11:104, 134-142

LIBRA, 11:302, 304, 305, 330, 351, 375-379

Library development, Sim Kit, IV:487-492

LIFER, 1:231, 232, 261, 316-321, 360,

11:165-166

interface for PROSPECTOR, 11:160

Light spot, 111:254, 257-259

Light stripe, 111:254, 258-259, 272-278

Limit analysis, in qualitative process the-

ory, IV:378

Limited inference algorithm (CPM) in

MACSYMA, 11:146

Limited-logic natural language systems,

1:228

Line completion, 111:152

Line finding, 111:130-131, 216-224,

IV:534-536, 551. See also Edge,

heuristics for, 111:169-171

Hough transform, 111:222-223

in Shirai's Semantic Line Finder, 111:168—

172

tracking in, 111:220-223

Line junctions. See Junction types.

Lineal features, 111:251

Linear input form, 111:91

Linear programming, 111:379

Linear regression, 111:379

Linear separability, 111:376

Linear systems theory, 111:325

Linear-discriminant functions, 111:376-380

Linearity assumption, 111:478, 520-521,

531, 533

Lines See also Edge,

boundary, 111:168-172

contour, 111:168-172

internal, 111:168-172

Linguistics, computational. See Computa-

tional linguistics.

Link types, 11:212

LISP, 1:15, 173, 237, 283, 295, 303, 11:5-9,

15-29, 187, 111:103, 120, 122-123, IV:

258, 290.

and automatic programming, 11:27

cell, 11:4

control structures, 11:46-47

data structures, 11:37

disadvantages of, 11:28-29

dotted pair, 11:312

formal axioms for, 11:312-314

INTERLISP, 11:8

language primitives, 11:19-21

machines, 11:9

MACLISP, 11:8

pattern matching, 11:59

programming environment, 11:66-67

programs as data, 11:26-28, 298

self-reflective programs in, 11:6-7, 27, 298

syntax of, 11:8

as target language, 11:28, 300, 355,

IV:258,290

List processing, 1:227, 281-287, 11:15. See

also LISP.

List structure, 11:4, 15-17

Live position in a game, 1:87

LMS (least-mean-square) algorithm, 111:379

Loading, expert systems for, IV: 156

Local averaging, 111:214

Locality Principle, IV:334-335, 363, 369

Locally complete, communication policy,

IV:139

Log-rolling, IV: 116

Logic, 1:4, 8, 146, 148, 151, 154-155, 160-

171, 172, 174, 11:283-290, 312, 111:15,

77-122, IV: 164, 274-275, 278-281 See

also Deductive inference; Inference;

Automatic deduction.

completeness and consistency of, 1:178

in DBMS, 11:172

in expert systems, IV: 164

extensional, 111:84

first-order, 1:165, 111:80, 88-89, 91

functions in, 1:165

high order, 111:82-84

intensional, 111:84

introduction rule in, 1:163-164, 169

natural deduction in, 1:163, 164, 169, 175

nonmonotonic, 111:84, 114-119

nonstandard, 111:77, 82-84

predicate, 111:88-89, 91

predicate calculus, 1:128, 163, 200, 292,

297, 299

Subject Index 671

predicates in, 1:163, 182

in program synthesis, deductive tab-

leau, IV:279, 282

propositional, 111:77, 88

propositional calculus, 1:109, 116, 118,

160-163

quantification in, 1:151, 164, 360

resolution method in, 1:168, 175

Logic programming, 11:13, 111:77, 82, 120-

121, 123, IV:168, 176, 187, 256, 257,

270, 271, 440. See also PROLOG.
Logic Theorist (LT), 1:24, 109-112, 113, 116,

119, 11:4, 79, 111:3, 77

Logical decision criteria in PIP, 11:203

Logical form

components of statements, IV:209

noun phrases, IV:209-210

partial logical form, IV:211

semantic interpretation, IV:206, 207,

209-211

LOGO, 11:225, 232, 291-294

Look-ahead power, 111:340. See also Search;

Minimax look-ahead search.

Low-emphasis filtering, 111:214-215. See

also Preprocessing.

LRU, 111:338, 342

LUNAR, 1:230, 267, 292-294, 353

MACE testbed, IV: 128

Machine translation

current transaction status of, 1:237-238

early AI work in, 1:226, 233-237

and semantic primitives, 1:207-213

and text generation, 1:273-274, 279, 289,

291

Wilks's system, 1:288-291

Machine vision, 111:125-322, IV.521-582.

See also Computer vision, vision archi-

tecture

Machine-aided heuristic programming,

111:350, 357

Machinese. See Interlingua.

MACLISP, 11:8, 202, 206, 369

Macro-operators, 1:28, 111:475, 493

MACROP, 1:133

MACSYMA, 11:8, 29, 79, 82, 85, 143-154,

111:99, IV:157

Advisor, 11:232

Apprentice, 11:148

current status of, 11:147-149

Maintenance

in software development, IV:249

of specifications, IV:263-264

Man-machine interaction. See User inter-

face.

Manageability of production systems, 1:193,

198

Manifestations

in INTERNIST, 11:197-198

in medical diagnosis, 11:178

Manufacturing, MOSYS, IV:438-441

MARGIE, 1:149, 211, 231, 278, 300-305,

306, 334

Marr's theory of vision, 111:134-135

MARS, IV:470-476

event queue in, IV:473

full-adder simulation, IV:473-475

propositions in, IV:470-473

and reasoning about time, IV:507-510

simulation levels in, IV:475

Mars Explorer robot, 111:254

Mass spectrometry, 11:104, 106, 111, 116

half-order theory of, 11:118-119, 111:428,

431-436

zero-order theory of, 11:118

Mass spring system, envisionment of,

IV:356

Massively Parallel Processor (MPP),

IV:570-571

Master script, 111:68, 70, 73

Masterscope in INTERLISP, 11:8

Matching. See also Control structures and

strategies; Unification; Pattern match-

ing,

of frames, 1:159

graph unification, IV:202-205

goodness of fit in, 11:202

in HAM, 111:48-49

in PIP, 11:202

programs to schemas, 11:319-320

of semantic network fragments, 1:187,

111:48-49

stereo vision, IV:538

Mathematical morphology in image analy-

sis

dilation, IV:540-542

erosion, IV:542-544

openings/closings, IV:544-545

and set theory, IV:540

Mathematical simulation, IV:422

Mathematics, 1:195, 11:143

Mathlab 68, 11:143

Max cost. See Cost, in search algorithms.

672 Subject Index

Maxam-Gilbert sequencing, 111:557

Maximally general common specialization,

111:388. See also G set; S set.

Means-ends analysis, 1:24, 59, 113, 117, 126,

129, 135, 169, 11:139, 317, 111:3, 7, 14-

15, IV:70-73

in MOLGEN, 111:554-556

in STRIPS and ABSTRIPS, 111:524-530

in Designer-Soar, IV:304

Measurement-space-guided spatial cluster-

ing, image segmentation, IV:525-526

Mechanical translation. See Machine trans-

lation.

Mediation, IV: 116.

See also Negotiation.

Medical diagnosis systems, 1:195, 220, 11:80,

81, 177-222. See also Diagnosis;

Expert systems; Therapy management;

Therapy selection.

CASNET, 11:193-196

Digitalis Therapy Advisor, 11:206-211

EXPERT, 11:217-222

exhaustive solutions in, 11:177, 190

history of, 11:179-180

INTERNIST, 11:197, 199-201

MYCIN, 11:184-192

PIP, 11:202, 204-205

IRIS, 11:212-215

status of, 11:180-183

x-ray and ultrasound image analysis,

11:177

MEDUSA, IV:310-311

Memo function in POP-2, 11:53

MEMOD, 1:215, 111:8, 56-64

Memory models, 111:8-9, 28-56. See also

Psychology; Semantic network.

ACT, 1:195, 111:9, 50-54

associative, 1:230

EPAM, 111:28-36

HAM, 111:42-50

MEMOD, III: 8, 56-65

Quillian's spreading activation system,

111:36-42

Memory organization, 111:337, 342

Memory scanning task, 111:50-53

Mesa effect, 111:343, 458

Mesh architecture, vision architecture,

IV:570-571

Meta-DENDRAL, 11:84, 104, 106, 116-123,

111:326, 332, 369, 372, 422, 428-436

learning multiple concepts, 111:428-436

learning a set of single concepts, 111:436

searching instance space, 111:432-435

searching rule space, 111:432-435

status of, 11:121-122

Meta-evaluation in SAFE, 11:340

Meta-knowledge, 1:144, 147, 11:85, 89, 91,

240-241, 267, 111:82, 330, IV:186

and blackboard design, IV:81

for control of inference, 111:82

Meta-planning, 111:551

Meta-rules, 11:88, 92, 130, 111:347, IV:171

Method of analogies, in game-tree search,

1:104, 11:50. See also Analogical rea-

soning,

pattern matching in, 11:60-61

vs. PLANNER, 11:56

programming environment of, 11:68

Methods in CONNIVER, 11:50

Metropolis algorithm, IV:576

MICRO-PXANNER, 1:295-297, 11:10

Middle-out search strategy. See Island-driv-

ing; Control structures and strategies.

Migration, 11:104

MIMD architecture, IV:566-567

MIND, 1:268, 272

Mineral-exploration systems, 11:154, 155-

162. See also Oil-well drilling; Expert

systems.

Minimal generating sets, IV:273

Minimax look-ahead search in game trees,

1:84-87, 88, 90, 91, 94, 98, 111:339-342,

465

Missionaries and Cannibals puzzle, 11:79

Mixed-initiative dialogue, 11:160, 234, 236-

238, 247, 259, 272, 368. See also Nat-

ural language,

in GUIDON, 11:267

in NLPQ, 11:370-374

for program specification, 11:311, IV:246,

249, 260-262.

in PSI, 11:326, 329-332

Socratic, 11:242

Mixed structure, causal ordering in,

IV:395-397

Mnemonics, 111:42

Mode method of region splitting, 111:227.

See also Region splitting.

Model building

in PROSPECTOR, 11:155, 161

in SECS, 11:139

Model-directed knowledge base, IV: 174

Model-driven reasoning, IV:46-47, 49.

See also Top-down processing

Subject Index 673

Model of learning systems, 111:327

modified for multiple-step tasks, 111:455—

456, 476-477, 486

two-space view, 111:360-372, 383, 411

Models of cognition, 111:4-74

Models in qualitative physics, IV:334-335

Models in simulation, IV: 464-481

Models in vision systems, 111:129, 131-133,

168, 139, 269-278, 283-286, 306, 314-

316. See also Top-down processing.

in INTERPRET, 111:147-154

Modularity

in CRYSALIS, 11:125

in expert systems, IV: 190

in knowledge representation, 1:149, 157,

170, 178, 193, 198, 336, 343, 11:83, 155,

263, IV:189-190

of productions, 11:376

in programs, 11:65

Modus ponens, 1:162, 111:86

Moire patterns in vision, 111:258

Molecular fragmentation, 11:111, 116

Molecular structures

analysis of, 11:102-133

lambda simulator, IV:448-451

PEPTIDE, IV.467-470

PROTEAN, IV:56-65

QSOPS, IV:464-467

MOLGEN, 111:24-25, 518, 551-556, 557-

562, IV:462-463, 476-481

simulation time, IV:505, 507

Monitoring, expert systems for, IV: 155

Monitoring dynamic processes

in CASNET, 11:193-194, 196

in Digitalis therapy Advisor and VM,
11:206

in HASP, IV:20, 24-25

in TRICERO, IV:52

in ONCOCIN, 11:180, IV:157

Mood system, of a grammar, 1:249

Morphemics

in speech understanding, 1:332-333

in transformational grammar, 1:246

Most knowledgeable, least committed strat-

egy, air traffic control, IV: 114-1 15

MOSYS, IV:438-441

Motion, 111:244-248

parallax, 111:250

stereo, IV:537

MOTOR EXPERT, IV:156

MUDMAN, IV:155

Multiagent planning

centralized planning, IV: 135-136

distributed planning, IV: 136-137

focus of, IV:135, 137

Multigrid methods, vision architecture,

IV:579-582

Multiple-image stereo, IV:536

Multipanel blackboards, IV:76,77

Multiple representations of knowledge,

11:229

Multiple sources of knowledge. See Knowl-

edge source.

Multiple-step tasks, 111:452-456, 495

Multiprocessing, 11:45. See also Coroutin-

ing; Parallel processing,

in SAIL, 11:52

Multistage negotiation, task allocation,

IV:112

Mutilated chessboard problem, 1:27

MYCIN, 1:151, 157, 195-199, 11:82-83, 84,

87, 90, 92, 180, 181, 182, 184-192, 205,

215, 235, 267-278, 288, 111:331, 347,

IV:49, 154, 158, 169, 171, 176, 177-178

NEOMYCIN, 11:205, 228, 277

reasoning in, 11:189-191

sample protocol from, 11:184-187

size of, IV: 181

validation of, 11:267

Mythical causality, IV:366

Named plan in PAM, 1:313

Natural deduction, 1:163-164, 169, 175,

11:283, 285-286, 111:94-95, 101 See also

Deductive tableau; Nonclausal resolu-

tion rule.

Natural interpretation of images, 111:183,

187-194

Natural language understanding, 1:3, 8,

225-321, 358-359, IV: 193-239. See

also Speech understanding; Parsing;

Grammar.
agreement in, 1:263

ambiguity of, 1:208-211, 291, IV: 201

anaphoric reference in, 1:293, 358, 11:250

competence vs. performance in, 1:245

augmented transition network (ATN),

1:186, 230, 261, 263-267,

III:56,IV: 198-200

case grammar, 1:229, 249, 252-255, 277,

11:238, IV:208

conceptual dependency, 1:300-303, 306

context, 11:270, IV: 196, 233-237

dialogue, IV: 144

674 Subject Index

Natural language understanding icont.)

discourse structure, IV:233-237

ellipsis in, 1:230, 358, 11:165, 250

embedding in, 1:263

in EXCHECK, 11:283

early research, 1:227-229, 237, 257, 260,

281-287

extralinguistic knowledge, IV:223

graph unification, IV:202-205

habitability, 1:328

in ICAI systems, 11:227

informational retrieval, 1:22, 145, 282,

283, 292, 316, 318

interface, 11:150

in LIFER, 1:316-318

logical form, IV:206, 207, 209-211

machine translation, 1:207-213, 225, 226,

233-238, 273, 274, 279, 281, 288-291

in MARGIE, 1:300-303

methodological changes in development,

IV: 195-196

mixed-initiative dialogue, 11:311

in MYCIN, 11:192

in NLPQ, 11:370-374

paraphrasing, 1:149, 211, 255, 274, 302-

304, 321

program specification, 11:300, 302, 303, 310-

311, 337-338

in Programmer's Apprentice, 11:345, 348

in PSI, 11:327, 330-332

question answering, 1:168-169, 173, 185-

186, 281, 295, 302

in SAM and PAM, 1:306

in SCHOLAR, 11:238-239

semantic grammar, 1:229, 261, 318, 320,

335, 355, 359, 11:250-251

semantic interpretation, IV:206, 207,

209-211

and semantic primitives, 1:149, 207-214

and speech acts, IV:231-232

story understanding, 1:221, 231, 300, 306

subcomponents of processes in, IV: 196

in TED, 11:166-167

unification grammars, IV: 198-205

unification equations, IV:200-203

Near-miss training instance, 111:395

Negative evidence, 11:120

Negmax formalism for game-tree search,

1:86-87, 89

Negotiation

in air-traffic control, IV: 113-1 15

cognitive models, IV: 115-1 16

contract-net protocol, IV: 107-1 11

definition of, IV: 107

multistage negotiation, IV: 11 1-1 12

negotiation operators, IV: 116

NEOMYCIN, 11:205, 228, 277

NETL, IV:572

Network control, satisficing versus optimal

IV: 142-143

Network representation. See also Represen-

tation of knowledge; Semantic net-

work.

active structural network, 1:185, 111:56—

64

ATN, 1:186, 230, 233, 261, 263-267, 268,

271, 277-279, 292-294, 303, 304, 316,

111:56, IV: 198-200

discrimination network, 1:158, 278, 304,

111:29-35

finite-state transition diagram, 1:263-264

partitioning, 1:186

procedural, 111:541-550

pronunciation graphs, 1:330

RTN, 1:264-266

segmented lattice, 1:330, 337, 353, 356

in speech systems, 1:330, 337

spelling graph, 1:330, 337, 346

transition tree, 1:316-317

New-term problem, 111:370-371, 405, 459

NLPQ, 11:301, 302, 303, 311, 370-374

sample protocol from, 11:370-372

status of, 11:374

NLS-SCHOLAR, 11:236

No-function-in-structure principle, IV:335,

363

NOAH, 11:12, 111:24-25, 518, 541-550

Node
blackboard design, IV: 75

cooperating nodes, IV:95-105

critical, 1:91

deletion problem in TRICERO, IV:55-56

depth of, 1:49

expansion of, 1:46, 55

intermediate, 1:39, 56, 57

solvable, 1:40

successor, 1:26, 33, 46

terminal, 1:38, 43

tip, 1:80, 87

unsolvable, 1:40, 55

Noise. See also Preprocessing.

additive, 111:213

in edge detection, 111:130

effects on line tracking, 111:220-221

Subject Index 675

in line finding, 111:168-172

reduction by smoothing, 111:213-215

in region segmentation, 111:147-154, 225,

IV:524

in speech signal, 1:343

in student model, 11:260

in training instances, 111:362-363, 370,

396-397, 429, 432, 490

in vehicle monitoring, IV:55

Nonalgorithmic procedures, 11:144

Noncausal resolution rule, IV:278-281

deductive tableau, IV:279

illustration of use of, IV:279-280

and program synthesis, IV:278-279

Nondeterminism. See Parsing.

Nonmonotonic reasoning, 11:74-75, 111:114—

119

Nonresolution theorem proving, 111:94-102.

See also Natural deduction.

Nonsense syllables, 111:28

Nonterminal symbols of a grammar, 1:239,

111:495

Nontutorial CAI, 11:291-294

Noun phrases, logical form, IV:209-210

NP-complete problems, 1:68, 69

Nuclear-magnetic resonance (NMR) spec-

troscopy, 11:122

NUDGE, 1:221

Numerical problems, 11:143

Numerical simulation, IV:422-423, 424-

425

integration of knowledge issue, IV:510-

511

limitations of, IV:424-425

tools for, IV:5 11-512

Object-centered representation, in vision,

111:272, in expert systems, IV: 162, 163,

165, 167, 191

Object-oriented languages,

in expert systems, IV: 162, 163, 165, 167,

191

for simulation, IV:425

for specification, IV:257-258

Object-oriented programming, inferences

in, IV:170

Object recognition in computer vision,

IV:558-560

bin-picking problem, IV:559

industrial vision systems, 111:301-305

interpretation tree in, IV:558-559

three-dimensional object recognition,

IV:559

Objects

classes, IV: 165

instances, IV: 165

Obligatory transformation in a grammar,

1:247

Ocean surveillance, HASP, IV:36-49

Oil well drilling, Dipmeter Advisor System,

IV:151-152

ONCOCIN, 11:180, IV:157

Ontological primitives, IV:334

See also Semantic primitives.

ONYX, IV:441-444

Opacity, 111:252

of knowledge, 11:82, 89-90

of reasoning, 11:230

Open sets, 11:240

Open systems, functionally accurate coop-

eration, IV: 120-121

Open world, 11:240

Open-ended problems, IV: 157

Openings/closings, in mathematical mor-

phology, IV:544-545

Operationalization methods, 111:333, 346,

350-359

approximation, 111:355

case analysis, 111:354

expanding definitions, 111:354

expressing in common terms, 111:355

finding necessary and sufficient condi-

tions, 111:351

generate-and-test, 111:351

heuristic search, 111:351

intersection search, 111:354

partial matching, 111:355

pigeonhole principle, 111:351

recognizing known concepts, 111:355

simplification, 111:355

taxonomy of, 111:358

Operator schemata, 1:33

Operators, in problem solving, 1:22, 32, 36,

74, 110, 113, 119, 123, 128, 135

Operators', in vision

Hueckel, 111:218-220

interest, 111:250

Laplacian, 111:211-212, 218, 264

noise immunity of, 111:214, 217

Roberts cross, 111:216

Sobel, 111:217

windows, 111:217

OPGEN, IV:157

676 Subject Index

Opportunism, II: 129, 111:22-27, IV: 4-8, 65,

169. See also Blackboard; Control

structures and strategies,

definition, IV:65

Opportunistic tutoring in GUIDON, 11:275

OPS 5, IV:176, 305

OPS, 11:84, IV: 19

Optimal solution in search, 1:28, 62, 74

Optimality of search algorithm, 1:65-67, 80,

83

Optimization of code. See Efficiency of syn-

thesized programs.

Optional transformation in a grammar,

1:247

Orange juice manufacturing facility, simu-

lation, IV:420-422

Ordered search, 1:59-62, 64, 72, 77-81, 82,

102, 124

Organic synthesis, 11:105, 134-142

Organization of knowledge, 1:336

Organizational knowledge processing,

IV:120

Organizational structuring

basic problem, IV: 133

CDPS network, IV: 122-123

conditions for problem solving, IV: 123

control authority relationships, IV: 123-

126

flexible structure, IV: 132

goals of, IV: 122

relationship to organizational theory,

IV:126-128

static structure, IV: 132

use for coordination, IV:128-133

Organizational theory, and organizational

structuring, IV: 126-128

Origami World, 111:183-194

Orthographic projection, 111:176

Oscillation, 111:28-35

Overlapping concept descriptions, 111:421,

434

Overlay model, 11:231, 256, 261, 270, 282

OWL, 11:182

Ozym, IV:299-301

P-transition, IV:384

Paired-associate learning, 111:28-35

PAM, 1:300, 306, 313-314

Pan, 111:198. See also Camera model.

Panels, blackboard design, IV:76-77

Parallax, IV:536

Parallel integrated system, drilling simu-

lation, IV:455-459

Parallel-line heuristic, 111:187-194

Parallel methodologies, vision architecture,

IV:566-570

Parallel processing, 1:258, 265, 298, 11:146,

IV:51, 134

coroutining, 1:271

and direct knowledge representation,

1:204

distributed, 1:336

Parallel search, 111:48

Parallelism, IV: 119-120

and CDPS, IV: 101

Parameter learning, 111:375-380

Paranoia, 111:71-74

Paraphrasing, 1:149, 211, 255, 274, 302-

304, 321, IV:262

Paraplate in preference semantics, 1:279,

291

PARRY, 1:257, 111:70-74

Parse tree, 111:497. See also Parsing.

PARSIFAL, 1:230

Parsing, 1:225, 229, 239-240, 256-272,

11:293, 111:497, IV: 195-213. See also

Grammar; Natural language under-

standing,

ad hoc, 1:287

with an ATN, 1:263-267, 293, 349, 355,

111:56, IV: 198-200

with charts, 1:260, 268-271, 354

control strategies, 1:230, 258-259

in DBMS, 11:164-165

derivation tree, 1:229, 242, 246, 256, 266,

273, 281, 293, 296, 302

with extended grammars, 1:260

grammarless parsers, 1:260, 261

images, 111:287-291

in LIFER, 1:316-318

in LUNAR, 1:292-294

by MARGIE's conceptual analyzer, 1:302-

303

nondeterminism, 1:265

in SAFE, 11:339

semantically directed methods, IV:221-

222

by SHRDLU's PROGRAMMER, 1:297-

298

in speech understanding, 1:327, 359

template matching, 1:260

with a transformational grammar, 1:260

with unification grammars, IV: 198-205

"Part-of" relation, IV: 165

Partial development in search, 1:59, 114

Partial functions, operators viewed as, 1:33

Subject Index 677

Partial global planning

bartering in, IV: 141-142

common knowledge in, IV: 141

coordination and, IV: 143

implementation of, IV: 142

network control and, IV: 142-143

objective of, IV: 140

plan-activity map, IV: 140-141

solution-construction-graph, IV: 141

structure of, IV: 140, 142

Partial match, see also Pattern matching,

to an image, 111:283

to an input sentence, 111:47

Partial program specification, 11:301, 307,

313, 348-349. See also Program speci-

fication,

by humans, 11:337

in NLPQ, 11:370-374

in PSI, 11:326

in SAFE, 11:337-338, 341

Partial results, integration of, IV: 101-102

Partial solutions, 11:273

Particle accelerators, ABLE, IV:494-500

Partitioned semantic network, 1:186, 360,

11:159

Partitioning, time aspects, IV:508-510

Pathogenesis of a disease, 11:178

Patient management. See Monitoring

dynamic processes; Therapy manage-

ment.

Patient-specific model, 11:208-211

Pattern-directed invocation, 11:9, 11, 32, 46,

58

Pattern matching, 1:123, 256, 260, 283-287,

11:32, 58-64, 286, 111:121. See also

Matching; Template matching,

in ICAI, 11:231

network matching, 11:160

in PROSPECTOR, 11:155, 160

in SECS, 11:137

semantic, 11:144-145

Pattern recognition, 111:127, 283-291, 373-

382, 497. See also Vision; Template

matching.

Pattern variables, 11:58

PECOS, 11:302, 304, 305, 330, 350-354, 375,

379

status of, 11:353-354

Pedagogy. See Education.

PEPTIDE, IV:467-470

aggregator in, IV.469

if-then in, IV:468

knowledge in, IV:469-470

Perceptron algorithms, 111:376-380

Perceptrons, 111:325, 376-380, IV:574

Perceptual primitives in WHISPER, 1:204

Perceptual skills of a computer-based con-

sultant, 11:150

Performance element of learning systems,

111:327, 452-453. See also Performance

tasks; Performance trace,

implications for the learning system,

111:330-332, 372

importance of transparency, 111:435, 454,

482

role in providing feedback, 111:333, 374,

454-455

standards, 111:331, 347, 454, 457, 458,

462, 467-468, 479, 492, 501

Performance evaluation, See also Valida-

tion,

of expert systems, 11:182, 192, 211, 267,

IV:177-178

of ICAI systems, 11:280

for knowledge-based simulation, IV:517

in software development, IV:248-249

of specifications, IV:261-262

of speech systems, 1:329

Performance grammar, 1:261, 335, 349, 355,

359, 11:160, 250-251. See also Seman-

tic grammar.

Performance tasks for learning systems. See

also Performance element of learning

systems,

classification, 111:331, 383, 423-427

control of physical systems, 111:373

data reduction, 111:383

diagnosing soybean diseases, 111:426-427

expert systems, 111:345, 348, 427

mass spectrometry, 111:428

multiple-step tasks, 111:452-456, 495

parsing, 111:497

pattern recognition, 111:373-382, 497

planning, 111:452, 475-479

playing Eleusis, 111:416-419

playing Hearts, 111:350

playing poker, 111:331, 465-474

prediction, 111:383

single-step tasks, 111:452

Performance trace, 111:454-455, 469, 475-

477, 478-479, 482-483, 486-487, 489

Perspective projection, 111:139, 197-199,

206, 265

Phantom edges, IV:551

PhiNix, IV:320-321

PHLIQA1, 1:232

678 Subject Index

Phonemics

in speech understanding, 1:327, 332-333

in transformational grammar, 1:246

Phonetics, 1:327, 332-333, 343

Phonological component of a transforma-

tional grammar, 1:248

Photometric stereo, 111:134

Photometry, 111:241, 242

Phrase marker in a transformational gram-

mar, 1:246, 273

Phrase-structure grammar, 1:240-246 See

also Grammar; Parsing; Natural lan-

guage,

compared with transformation grammar,

1:245

definition of, 1:243

in parsing, 1:260, 262

Physics. See also Qualitative physics.

formal physics, IV:333

PICAP, IV:569

Picture domain contrasted with scene

domain, 111:131-135

Picture grammar, 111:287-291

Picture interpretation. See also Image

understanding; Shape recovery,

natural interpretations, 111:187-194

PIPE, IV:569

Pipelined systems, vision architecture,

IV:567, 569

Pixel, 111:127

PL/1, 11:365

Plan-activity map, partial global planning,

IV:140-141

Plan Calculus, IV:3 11

Plan-generate-test, 11:131

in DENDRAL, 11:106-109, IV:25-26

HASP, IV:20, 25-26, 47

in Meta-DENDRAL, 11:120

Plan in natural language understanding,

IV:223-232.

Plan in Programmer's Apprentice, 11:303,

305, 343, 344, 348

Plan recognition, 11:147, 149, 232

for cooperative responses, 11:167

in vehicle monitoring, IV: 128-132

in Programmer's Apprentice, 11:303

Plane, in semantic memory, 111:36-39

PLANES, 11:164

Planes of knowledge in CASNET, 11:193

PLANNER, 1:151, 155, 171, 175-178, 295-

297, 11:8-10, 74, 111:82, 121, 533

antecedent theorems in, 11:38, 48, 73

chronological backtracking in, 11:50

vs. CONNIVER, 11:56

consequent theorems in, 11:48

control structures in, 11:47-50

data structures in, 11:38

MICRO-PLANNER, 11:10

pattern matching in, 11:60

programming environment of, 11:68

Planning, 1:22, 28, 168, 111:69, 70, 350, 452,

475-479. See also Means-end analysis;

Problem solving; Reasoning,

constraint-structured, 1:203

for control, IV:56-65

constructive, 111:522, 539, 552-556

expert systems for, IV: 157

generalized, in STRIPS, 1:131-134

in GPS, 111:518

hierarchical, in ABSTRIPS, 1:135

least-commitment, 111:24-25, 520-521,

552-556

meta-planning, 111:551

multi-agent, IV: 134-137

multidirectional, 111:22-27

nonhierarchical, 111:26, 516-517, 531-540

opportunistic, 111:7, 22-27, 516-519, 521

overconstrained, 111:542, 552

partial global, IV: 140-143

in problem solving, 1:107, 128, 131, 137

ofprogram synthesis in SAFE, 11:339-340

script-based, 111:516-519

by skeletal plan refinement, 111:557-562

in the SRI computer-based consultant,

11:151-152

in story understanding, 1:306, 309, 310

underconstrained, 111:542, 552

Planning space, 111:551

Planning systems. See also individual

entries for each system.

ABSTRIPS, 111:523-530

HACKER, 111:452, 475-483, 491, 493,

531-535, 546

INTERPLAN, 111:535-537

MOLGEN, 111:551-562

NOAH, 111:24-25, 541-550

STRIPS, 111:475, 491, 493, 523-530

PLATO Project, 11:255

Plausible hypothesis generator, in HASP,
IV:46

Plausible reasoning, 1:177, 11:158, 179, 199,

201, 236, 239, 241

Plausible-move generation, in game-tree

search, 1:104

Subject Index 679

Ply in game trees, 1:99

Poker, 111:331, 465-474

POLY, 111:133, 178-182

Polynomial evaluation function, 111:457,

463. See also Static evaluation func-

tion.

POP-2, 11:7, 12

control structures, 11:53

data structures, 11:42

dynamic lists, 11:53

pattern matching, 11:63

programming environment, 11:70

POPLER, 1:176, 11:12

Positive evidence, 11:120

Possibility list in CONNIVER, 11:38

Possible-word semantics, 111:84

Posting/noticing changes, blackboard

design, IV:80

Postprocessing, see also Preprocessing

to eliminate noise regions, 111:228-229

with relaxation algorithms, 111:229

by thresholding, 111:229

Potential solution, in heuristic search, 1:77—

79, 80, 82

Pragmatics, in discourse, See also Dis-

course; Dialogue. 1:249, 327, 332, 334,

359, IV: 223-237

Preconditions of an operator, IV:43

111:523. See also Planning; Means-ends

analysis,

in ABSTRIPS, 1:136, 111:523-530

in NOAH, 111:546-550

prerequisites in HACKER, 111:533-534

in STRIPS, 1:128, 131, 135, 111:523-530

Predicate abstraction, 111:83

Predicate calculus, 1:128, 163, 200, 292, 297,

299, 11:301, 111:77, 88-89, 121-122, IV:

164, 274-275, 278-281. See also Logic.

Predicate function, 11:188

Predicate in logic, 1:163, 182, 111:88-89,91

Prediction. See also Qualitative prediction,

and ENVISION, IV:366-368

qualitative physics, IV:336-337

in qualitative process theory, IV:376-380

Prediction tasks, 111:383

Predictive solutions, IV: 117

Predictive validation, IV:516

Preference semantics, 1:208, 279, 288-291,

IV:217-218

Premise clause of a production rule, 11:188

See also Production systems.

Preprocessing, 111:137, 206-215

distortion model, 111:206

ensemble averaging, 111:214

geometrical correction, 111:206

gray-scale transformation, 111:208-209

resampling, 111:208

sharpening, 111:209-213

smoothing, 111:214

Prerequisite-clobbers-brother-goal , III :533

Presburger arithmetic, 111:99

Present Illness Program (PIP), 11:83, 180,

181, 202-205

Preventive maintenance, expert systems

for, IV: 155

PRIDE, IV:156

Primal sketch, 111:135, 232. See also Intrin-

sic image.

Primitive problem, 1:36, 38, 74, 121

Primitives

perceptual, in WHISPER, 1:204

semantic, 1:148-149, 183, 198, 207-215,

231, 237, 278, 288-291, 300-303, 306.

See also Case; Conceptual dependency.

Proactive inhibition, 111:34

Probabilistic relaxation, III: 297-300. See

also Relaxation.

Probabilistic reasoning.

See Uncertainty; Certainty factor

Probes of memory, 111:46, 51

Problem area in automatic programming,

11:300-301

Problem-behavior graph, 111:18

Problem list, in HASP, IV:43

Problem reduction, 1:7, 25, 36-42, 54, 74,

113, 114, 119, 201, 11:317, 111:477, 551.

See also Means-ends analysis;

Subgoals; Strong Problem Reduction

Principle.

Problem representation. 1:8, 22-28, 32-45,

See also Problem reduction; State

space.

AND/OR graph, 1:26, 38-40, 43, 74, 113,

119, 124

game tree, 1:25, 43-45, 84

for robots, 1:122, 128-139

theorem-proving, 1:25

Problem solving, 1:7, 21, 58, 74, 109, 113,

119, 123, 128, 135, 153, 284, 296, 11:9,

79, 111:7, 8, 11-21., See also Control

structures and strategies; Search;

Expert system; Planning; Reasoning;

Theorem proving,

approach to automatic programming,

680 Subject Index

Problem solving (cont.)

11:301, 317-318, 321, 324-325

automatic, 111:77-78

backward-reasoning model, IV:4

cooperative distributed, IV: 83-147

and discovery, IV: 19-20

forward reasoning model, IV:4

General Problem Solver, 1:113-118,

111:11-21

generate-and-test, 1:30, 11:131, IV:20

human, 1:285, 111:7, 8, 11-21

interdependent subproblems, 1:56, 81-83,

111:520, 531-540, 542

and knowledge-application strategy,

IV:14-16

means-ends analysis, 1:24, 59, 113, 117,

126, 129, 135, 169, 11:139, 317, 111:3, 7,

14-15, 517, 524-530, 554-556

operators, 1:22, 32, 36, 74, 110, 113, 119,

123, 128, 135

opportunistic reasoning model, II: 129,

111:22-27, IV: 4-8, 65, 169

optimal solution, 1:28, 62, 74

plan-generate-test strategy in, 11:131

primitive problem, 1:36, 38, 74, 121

problem reduction, 1:7, 114, 119, 201,

111:477, 551

recognition paradigm, IV:71, 73-74

rule-based backward-reasoning model,

IV:4

satisficing, 111:26, IV: 126,142

search paradigm, IV:71, 72-73

state-space search, 1:30, 35, 46-53, 55,

58-73, 77, 80, 111, 153, 195

use of term, IV:70-71

Problem-solving expertise, 11:247, 256, 263.

See also Expertise.

Problem-solving grammar, 11:229, 232

Problem space, 11:140, 111:13-14, 111:15-17.

See also State space.

Procedural attachment, 1:156, 158, 179,

218-221, 11:59

Procedural-declarative controversy, 1:151,

230

Procedural knowledge representation,

1:146, 149-150, 155-156, 172-179,

193, 198, 219-220, 230, 289, 295-297,

11:9, 73, 151-152, 229, 261, 111:63, 532.

See also Declarative knowledge repre-

sentation.

Procedural network in NOAH, 11:151, 280,

111:541-550

Procedural semantics, 1:229-230

Procedure-formation principle, 11:359

Process. See Coroutining; Multiprocessing.

Process control. See Monitoring dynamic

processes.

Production rule, 1:157, 190, 239, 303, 11:83,

87, 128, 129-130, 136, 212, 228, 235,

261-263, 111:452-455, 465-474 IV:4,

171, 218-221, 272-279,281-282, 462-

462, 494-497,

in EXPERT, 11:218-220

flexibility, 11:228, 267

in ICAI systems, 11:229

large-grained, IV:281-282

in mass spectrometry, 11:106, 116, 117-

118

meta-rules, 11:88, 92, 130, 111:347, IV:171

in program synthesis, 11:350-351,IV:272-

278, 281-282,

in simulation, IV:462-463

Production systems, 1:157, 190-199, 111:50-

54, 438, 452-455. See also Program

Synthesis, transformational program-

ming,

adaptive, 1:195

conflict resolution in, 1:192, 197, 11:350,

IV:19,20

context, 1:190, 197

focus of attention in, 11:351

interpreter, 1:190-192

IRIS, 11:212-213

LIBRA, 11:375-379

manageability of, 1:193, 198

modularity of, in LIBRA, 11:376

MYCIN, 11:187-188

in NLPQ, 11:370

PECOS, 11:350

refinement rules in, 11:350-351

relationship to blackboards, IV: 19

in SAFE, 11:339

Program model

in LIBRA, 11:375

in PSI, 11:327, 329-330, 333

Program net in PSI, 11:327, 329, 330, 332

Program representation. See Representa-

tion of programs in AP systems.

Program schemas, 11:319

Program specification, 11:297, 299-300,

306-311, IV: 253-267, 292-302

See also Program synthesis,

ambiguity of, 11:336-337

behavioral, 11:336-338, 343

Subject Index 681

conventional approach, IV:259

completeness of, 11:300

consistency of, 11:302

constraints in, 11:302, 336, 338-340

efficiency of, 11:336

evolution, IV:261

by example, 11:300, 306-308, 318-325,

329

executability of, 11:336

experimentation, IV:260

formal, 11:300, 308-310, 355

by generic examples, 11:307

human, studies of, 11:337

informality of, 11:326, 336, IV:246-248

interactive, 11:300, IV:246, 249, 260-262.

languages, see Program specification lan-

guages

methods of, 11:306-311, IV:248-261

mixed-initiative dialogue in, 11:311, 326,

329-333, 370-374

natural-language, 11:300, 302, 310-311,

327, 330-332, 337-338, 341, 345, 348,

370-374, IV:301-302

partial, 11:301, 307, 313, 326, 337-338,

341, 348-349, 370-374

protocols for, 11:308

recovery from code, IV:265-267

reuse, IV:259-260

specification maintenance, see Program
specification maintenance

specification validation, IV:261-263

Program specification languages, 11:309,

315, 326, 355-363, 364-369, IV:255-

258

logic programming languages, IV:257

object-oriented languages, IV:257-258

system specification languages, IV:258

types of, IV:255-256

Program specification maintenance, IV:263

activities in, IV:263

dependency maintenance systems, IV:264

maintenance assistant in, IV:264

updates at code level, IV:263

Program specification systems, IV:292-303

AP2 in SAFE, 11:337

DEDALUS, 11:355

DRACO, IV:295-296

Explainable Expert Systems (ESS),

IV:294-295

Intelligent Design Aid (IDeA), IV:292-

294

KATE, IV:298-299

Ozym, IV:299-301

PSI, 11:326-332

Requirements Apprentice (RA), IV:297-

298

SSL in Protosystem I, 11:364-369

V in CHI, 11:334

Watson, IV:301-302

Program synthesis, 1:9, 11:297-379,

IV:268-291.

approaches to, 11:301, 312-325, IV:268-

269

automatic theorem proving,

11:301, 308-309, 312-314, IV:269, 270,

274-275, See also Automatic deduction

and commercial software, IV:271

of data-processing systems, 11:364-369

domain models, 254-255

efficiency of synthesized code in, 11:302-

303, 317, 327, 365, 375-379

future view, IV:271

goals of, 11:297-298, IV:268

historical perspective, IV:269-272

incremental refinement process, IV:268

knowledge engineering, 11:301, 315-316,

350-354, 375-379

knowledge-intensive search techniques,

IV:286-291

large-grained rules, IV:281-282

and learning, 11:297-298, 318

noncausal resolution rule, IV:278-281

and planning, 11:339-340

program understanding, 11:303, 305, 343,

364-369

reuse, of derivations, IV:282-284

search techniques, IV:284-286

transformation rules, IV:275-278

transformational programming,

11:301, 302, 304, 309, 314-315, 350-354,

355-363, 370-374, 375-37, IV:268-

269, 270, 272-274

Program synthesis systems, IV:303-321

Computer-Aided Intuition-Guided Pro-

gramming (CIP), IV:303-304

Designer system, IV:304-306

DEDALUS, 11:355-363

ELF, IV:318-319

Kestrel interactive development research

system (KIDS), IV:307-310

Knowledge-Based Editor in Emacs (KBE-

macs), IV:311-313

LIBRA, 11:375-379

MEDUSA, IV:310-311

682 Subject Index

Program synthesis systems (cont.)

NLPQ, 11:370-374

PECOS, 11:350-354

PhiNix, IV:320-321

PSI, 11:330

REFINE, IV:313-315

SETL, IV:315-316

STRATA, IV:316-318

Program transformation 11:301, 302, 304,

309, 314-315, 350-354, 355-363, 370-

374, 375-37, IV:268-269, 270, 272-

274. See also Program transformation

rules; Program synthesis.

Program transformation rules, IV:272-273,

275-278

classification of, IV:273

fold transformation, IV:277-278

full automatic guidance, IV:273

global transformations, IV:272

historical view, IV:270

manual guidance, IV:273

rewrite rules, IV:276

semi-automatic guidance, IV:273

substitution of equals for equals, IV:275-

278

unfold transformation, IV:276-277

Program understanding, 11:303, 305, 343,

364-369, IV:265-266

PROGRAMMAR, 1:297, 319

Programmer's Apprentice (PA), 11:303, 305,

343-349, IV:296-297

debugging in, 11:344-347

documentation in,11:344-347

sample protocol from, 11:344-347

status of, 11:349

verification in, 11:344-347

Programmer's assistant in INTERLISP,
11:8, 68

Programming. See also Automatic program-

ming; Programming environment; Pro-

gramming languages; Representation

of programming knowledge.

applicative style of, 11:6-7

current problems in,and program synthe-

sis, 11:299

definition of, 11:297

in logic, 11:13, 111:77, 82, 120-123, IV:168,

176, 187, 256, 257, 270, 271, 440. See

also PROLOG.
pattern-directed invocation in, 11:9

recursion in, 11:6

Programming environment, 11:3-4, 32, 65-

71, 299, IV:260,271, 276

BIP, 11:230

CHI, 11:326, 333-335

for instruction, 11:230, 232, 234

interactive, 11:28

LISP, 11:7

Programmer's Apprentice, 11:343-349

SPADE, 11:232

Programming knowledge. See Representa-

tion of programming knowledge.

Programming languages. See also AI pro-

gramming languages; Program speci-

fication languages.

ALGOL, 1:237, 11:6, 11

APL, 11:6

COBOL, 11:3

FORTRAN, 11:3, 5

very high level, 11:309, 315, 326, 355-363,

364-369

Programs as data, 11:7, 15, 26-28. See also

Self-reflective programs.

for explanation, 11:6

for learning, 11:6-7

Program verification, IV: 249

in DEDALUS, 11:355

in Programmer's Apprentice, 11:344-347

of synthesized program in AP, 11:320

Project management tools, IV:244, 245

Projections

central, 111:195

orthographic, 111:176

perspective, 111:139, 197-199, 206, 265

PROLOG, 11:13, 111:82, 123-124, IV:168,

176, 187, 256, 270, 271, 440

Pronoun referents, IV:233-234

Pronunciation graph, 1:330

Proof checking, 11:283

Proof by contradiction, 111:86-87, 93. See

also Resolution rule of inference.

Proof procedure

deductive tableau, IV:279, 282

natural deduction, 111:94-95, 101

resolution, 111:86-87, 93

Proof summarization in EXCHECK, 11:283,

287-289

Proof theory, 11:283-290

Propagation, 11:212

of constraints, 111:553, 556

in IRIS, 11:213-215

of probabilistic hypotheses, 11:160

Property inheritance. See Inheritance.

Property lists, 11:7, 31

Propositional (Fregean) knowledge repre-

sentation, 1:200

Subject Index 683

Prosodies in speech understanding, 1:327,

332-334, 359

ProSpec system, IV:249

PROSPECTOR, 1:157, 181, 196, 198, 11:82,

85, 155-162

natural-language interface, 11:160

sample protocol from, 11:155-158

status of, 11:161-162

PROTEAN, IV:56-65

blackboard structure, IV:60-64

control, IV:62-64

control-data panel, IV:60-61

control-plan panel, IV:61

data consistency problem, IV:65

goals of, IV:57

heuristic evaluators, IV:64-65

information available in, IV:57

knowledge source, IV:62

knowledge-application strategy, IV:64

scheduling, IV:79-80

solution panel, IV:61

Protection mechanism for simultaneous

subgoals, 11:361

Protection violation in HACKER, 111:535

Protein x-ray crystallography, 11:124

Protein molecules, PROTEAN, IV:57-65

Protocol analysis, 11:237, 111:18, 22. See also

General Problem Solver (GPS); Human
problem solving.

Protocols for program specification. See

Traces.

PROTOSYNTHEX, 1:228

Protosystem I, 11:302, 304, 364-369

status of, 11:369

Prototyping, IV:246, 249. See also Specifi-

cation acquisition systems,

and experimentation, IV:260

objective of, IV:262

Proust, IV:266-267

Provability in nonmonotonic logics, 111:116

Pruning, 1:59, 60, 121, 129, 201, 11:114. See

also Game-tree search.

Pseudo-language, 1:233

PSEUDS, IV:285-286

PSI, 11:301, 302, 303-304, 311, 319, 326-

335, 350, 375

PECOS and LIBRA, 11:375, 379
sample protocol from, 11:330-331

Psychology, 1:157, 180, 193, 201, 111:3-74.

See also Human memory; Information-

processing psychology; Memory mod-
els,

behaviorist, 111:4

cognitive, 111:4

human problem-solving, 1:6-7, 14, 285,

111:11-21

memory, 1:180, 187, 201, 230

PUFF, 11:180, 182-183

PUP, 11:318

Puzzles. See also Games.

blocks world, 1:276

8-puzzle, 1:32, 51, 62, 67, 68

15-puzzle, 1:68, 73

mutilated chessboard, 1:27

Tower of Hanoi, 1:36-38, 42, 160, 165

traveling salesman problem, 1:21, 34, 48,

62, 69, 70-71

Pyramid machines, 111:137, 279-282, 309,

IV:571-572

QA3, 1:129, 168-169, 111:78

QA4, 1:176, 11:11, 79

QLISP, 1:176, 11:12, 362, 111:543

control structures in, 11:51-52

data structures in, 11:39-41

pattern matching in, 11:61-62

programming environment of, 11:69

segment variables in, 11:61

unification in, 11:61-62

QSIM, IV:336

predicates/meanings in, IV:385

qualitative calculus, IV:382-383

qualitative constraints in, IV:384-388

qualitative simulation algorithm,

IV:388-390

qualitative states, IV:383-384

quantity space, IV:382-383

state transitions, IV:384

QSOPS, IV:464-467

propagating values with varying degrees

of precision, methods for, IV:479-480

relationships among variables in, IV:477-

479

simulation method in, IV:465-467

what-if questions in, IV:467

Quad tree, 111:137, 279, 282

See also Pyramid machine.

Qualitative calculus

ambiguities in, IV:346, 348, 359

in QSIM, IV:382-383

qualitative arithmetic rules, IV:340-342

qualitative derivations, IV:343

solving systems of equations, IV:345

utility of, IV:339-340

684 Subject Index

Qualitative calculus (cont.)

value propagation method, IV:345, 346-

348

variable construction, IV:340

Qualitative dynamics, IV:325

Qualitative inference, IV:330-331, 333 See

also Qualitative reasoning; Qualitative

Prediction.

Qualitative physics

basis of, IV:329-333

consolidation in, IV:337

issues for investigation, IV:333-337

motivations for study, IV:325-329

prediction in, IV:336-337

QSIM, IV:382-391

Qualitative prediction

abstraction in, IV:361

asymptotic behavior, IV:360-361

change-from-zero rule in, IV:354

change-to-zero rule in, IV:354-355

completeness issue, IV:357

complexity issue, IV:357-358, 361

continuity rule in, IV:353

derivative rule in, IV:353-354

ENVISION, IV:362-370

envisionment, generation of, IV:352

higher order derivatives in, IV:359-360

instantaneous change rule in, IV:355

mass-spring system example, IV:356

partitioning problems in, IV:358-359

and qualitative states, IV:350-351

soundness issue, IV:357

and state transitions, IV:351-352, 353-

356

Qualitative Process Engine (QPE), IV:371

phases in operation, IV:371

Qualitative process theory (QPT), IV:335

behavior prediction, IV:376-380

boiling water example, IV:378-380

goals of, IV:371

limit analysis in, IV:378, 379

objects in, IV:372-373

process representation, IV:373-376

quantity space, IV:377-378

time representation in, IV:376-377

Qualitative reasoning, IV:326-327, 336

causal ordering, IV:392-402

Commonsense Algorithm (CSA), IV:403

consolidation, IV:409-411

functional representation of devices,

IV:406-409

Qualitative simulation algorithm, in QSIM,
IV:388-390

Qualitative validation, IV:516-517

Quantification, 1:151, 164, 360

existential, 111:88-89, 91

in higher order logics, 111:83

universal, 111:88-89, 91

Quantitative shape recovery, 111:133, 173,

187-194

Quantitative validation, IV:517

Quantity space, qualitative process theory,

IV:377-378

Query language, 1:292

Query optimization in QUIST, 11:170-171

Question answering, 1:168-169, 173, 185-

186, 281, 295, 302, 111:63, 78

Quiescence in game-tree search, 1:99-100,

103

QUIST, 11:170-171

RAINBOW II, IV:307

Random-access devices, 111:199. See also

Imaging devices.

Random test generation, 1:233, 273

Range data analysis. See Depth measure-

ment; Range finders.

Range finders, 111:254-259, 268, 272-278

Rapid prototyping, IV:246, 249, 260-262.

See also Interactive program specifi-

cation; Program specification.

Raster-scan devices, 111:199. See also Imag-

ing devices.

Rat-insulin experiment, 111:554

REACT in CONGEN, 11:114-115

Reaction time, 111:40

Reactive learning environment, 11:227, 247,

283

REACTORS, IV:176

Reasoning. See also Control structures and

strategies; Planning; Problem solving;

Inference; Search,

about programs in automatic program-

ming, 11:298

analogical, 1:146, 111:328, 334, 443-445

backward, 1:23-25, 36, 51, 56, 74, 198,

220, 259, 270, 326, 334, 338, 358,

11:129, 196, 199-201, 214, 257, 111:129,

288-290, 306, IV:4, 169

in CASNET, 11:195-196

categorical, 11:205

causal reasoning, IV:328-329

Subject Index 685

consequent, 11:156, 160-161

deductive inference, 1:146, 205, 111:76-

123

default, 1:176-177, 11:239, 111:115-116,

119

dependency-directed backtracking, 11:73

from a diagram, 1:201

directedness of, 1:151, 174-177, 185, 188,

193, 219

direction of, 1:23-24, 198

expectation-or goal-driven, 1:23-24, 183,

197, 216-218, 232, 326, 334, 336, 344.

See also Top-down processing,

in expert systems, IV: 167-172, 187-188

explicit strategies, IV: 170-171

extended inference in, 1:176

formal, 1:146

forward, 1:23-25, 51, 56, 74, 198, 220,

11:129, 214, 257, 111:19, 80, 99-100,

129, 306, 452, IV:169

heuristic, 1:21, 64, 66, 74, 78, 94, 119, 151,

168, 174, 177, 188, 201, 220, 228, 258,

277, 282, 284, 293, 296, 298, 299, 335,

11:81, 140, 313, 111:11

hill-climbing, 11:145, 317, 111:252, 375-

380, 434, 458, IV:318, 562

from incomplete language, 11:236, 240

inexact, see uncertainty

informal, 11:283-290

intersection search, 11:239-240

means-ends analysis, 1:24, 59, 113, 117,

126, 129, 135, 169, 11:139, 317,

111:517

nonmonotonic, 11:74-75, 111:114-119

opportunistic, II: 129, 111:22-27, IV: 4-8,

65, 169.

plausible, 1:177, 11:158, 179, 199, 201, 236,

239, 241

probabilistic, 11:155, 158-160, 205, 215,

271, 277, 195-196, 221, 131, IV:171-

172

qualitative, IV:326-327, 336

schema matching, 11:319-320

spreading activation, 1:185, 187, 189

temporal reasoning, IV:328, 507-510

top-down, 1:24, 183, 198, 216-218, 232,

259, 326, 334, 336, 338, 344, 355, 358,

359, 11:201, 111:129, 131-133, 139, 168,

269-278, 283-286, 288-290, 306, 314-

316

and uncertainty, 1:195, 11:79, 81, 188-191,

215, 271, 277, 195-196, 221, 131,

IV:171-172

Recency effect, 111:48

Recognition paradigm, in problem solving,

IV:71, 73-74

Reconfigurable systems, vision architec-

ture, IV:568-569

Record, 11:34

Recursion, 11:6, 15, 18

Recursion removal, 11:314

Recursion-formation principle, 11:358

Recursive function theory, 111:102

Recursive pattern matcher, 1:256

Recursive transition networks (RTN),

1:264-266

REDUCE, 11:146

Reducers, 111:98-99

complete set, 111:99

immediate reduction, 111:98

Redundancy, in expert systems, IV: 190

REF-ARF, 11:5, 79

Referencing problem, 111:112

REFINE, IV:249, 256, 258, 273, 284, 313-

315

applications of, IV:314

Refinement of plan steps, 111:552, 555-556,

558-562

Refinement-operator method for searching

rule space, 111:369, 401-410, 440, 507-

509

Refinement of program specification,

11:350.

See also Program specification,

in PECOS, 11:350-351

rules for, 11:375

Reflectance map, 111:262

Refutation move in game playing, 1:102

Region analysis, III: 130-131, 143-147, 150,

225-229, IV:523-534. See also Region

growing, Region splitting.

Region boundary, 111:226

Region growing, 111:225-226. See also Seg-

mentation,

centroid-linkage, IV:528-531

hybrid-linkage, IV:526-528, 531-532

measurement-space-guided, IV:525

phagocyte heuristic, 111:226

single-linkage, IV:526

with texture, 111:233-236

thresholding, 111:225-226

weakness heuristic, 111:226

686 Subject Index

Region splitting, 111:225, 226-229, IV:532-

534. See also Segmentation,

with clustering, 111:227-228

with color features, 111:228

with histograms, 111:226-227, 234-235

intensity measures, 111:228

Regions

atomic, 111:225-226

noise, 111:225, 228

Regular grammars, 1:243, 245, 263, 111:501,

505, 506, 507, 509. See also Finite-state

grammar.

Regularization theory, IV:521, 536

vision problems, IV.563-564

Reinforcement in ACT, 111:54

Relational database in MACSYMA, 11:146

Relaxation. See also Consistency; Con-

straint satisfaction,

for intensity measures, 111:264

on intrinsic measures, 111:241-242

for region interpretation, 111:295-297

for region postprocessing, 111:229

in stereo vision, 111:252

Relaxation algorithms, 111:292-300

compatibility functions, 111:299

probabilistic, 111:297-300

sequential, 111:292-297

RENDEZVOUS, 11:167-169

Reports, in HASP, IV:49

Representation of algebraic expressions,

11:147

Representation of knowledge, 1:143-222,

226, 229-232, 11:7, 9, 79, IV:161-167

action-centered, IV: 161-170

ad hoc, 1:227

analogical, see Direct

in applications, see the index entry for the

specific application,

articulate expert, 11:230

associative triple, 11:188

in automatic programming, see Represen-

tation of programming knowledge,

behavioral knowledge, IV:334

case-frame, 1:182, 186, 231, 253, 111:59, 63

causal model, 11:193-195, IV:392-402

closed-world assumption, 11:240, 111:36,

115, 360

in Commonsense Algorithm (CSA),

IV:403-405

completeness of, 1:178, 111:79

consistency of, 1:66, 69, 73, 178, 111:116,

157, 302

decision rules, 11:218-220

decision tables, 11:214-215

declarative, 1:151, 172, 219, 230, 111:56,

120, IV:161,189-190

denotative, 1:200

direct (analogical), 1:158, 177, 200-206

disease model, 11:199

expertise, 11:80, IV: 178-180

for expert systems, IV: 161-167

explicit vs. implicit, 1:150, 172, IV: 170-

171, 187, 190

facts, algorithms, and heuristics, 11:128

findings, 11:219

flexibility of, 11:89, 130, 228, 267

formal vs. informal, 11:128

frame. See Frame knowledge representa-

tion,

functional representation of devices,

IV:407-408

hierarchical, 11:237

homomorphic, 1:200

of hypotheses, 11:220

indeterminancy of, 1:148

with inexact knowledge, 11:180 See also

Uncertainty,

inference network, 11:158

issues in, 1:145, 152

knowledge sources of, 1:257, 298, 326, 336,

343-348, 353, 11:125, 126, 326, 342,

348, IV:6, 12-13

logical, 1:4, 8, 146, 148, 151, 154-155,

160-171, 172, 174, 11:172-173, 283-

290, 312, 111:15, 77-122, IV: 164, 274-

275, 278-281

in logic programming, see Logic program-

ming; PROLOG; Logic,

meta-knowledge in, 1:144, 147, 11:85, 89,

91, 240-241, 267, 269, 111:82, 330, 347,

IV: 81, 171, 186

models, III: 129, 131, 168, 269-278 283-

286, 314-316, IV:334-335,464-481

modularity of, 1:149, 157, 170, 178, 193,

198, 336, 343, 11:83, 125-129, 155, 263,

IV: 189-190

multiple, 11:229

object-centered, IV: 161-170

ontological primitives, IV:334

organization of, 1:336

partitioned semantic net, 1:186, 360,

11:159

problem-solving grammars, 11:229, 232

procedural, 1:146, 149-150, 155-156,

Subject Index 687

172-179, 219-220, 230, 289, 295-297,

11:9, 151-152, 229, 261, 111:532

procedural vs. declarative controversy,

1:151, 230, 111:120, IV:161,189-190

procedural net, 11:151, 280

production rules, 1:157, 190, 239, 303,

11:83, 87, 128, 187-188, 212-213, 229,

261-263, 465-474, 111:452-455 IV:4,

171, 218-221, 272-279,281-282, 462-

462, 494-497

program schema, 11:319

propositional (Fregean), 1:200. See also

Logic,

scope of, 1:147

script, 1:216-222, 300-309, 311, 334,

11:243

semantic network. See Semantic network,

semantic primitive, 1:148, 149, 183, 198,

207-215, 231, 237, 254, 278, 288, 300,

306.

structural knowledge, IV:334

taxonomic network, 11:159

uncertainty in, 11:180-181, 188-189, 193,

215, 221, IV:171-172

Representation mechanisms, IV: 165-166

Representation of programming knowledge.

See also Knowledge engineering,

conditional-formation principle, 11:357

in DEDALUS, 11:355-363

design notebook in Programmer's

Apprentice, 11:348

generalization principle, 11:360-361

internal problem description (IPD) in

NLPQ, 11:372-373

in LIBRA, 11:376-378

in PECOS, 11:350-353

plan library in Programmer's Apprentice,

11:343, 344, 348

procedure-formation principle, 11:359-

360

recursion-formation principle, 11:358

Representation of programs in AP systems.

See also Program specification,

program model, 11:327, 329-330, 333, 375

program net, 11:327, 329, 330, 332

program schema, 11:319

in PSI, 11:327

Requirements Apprentice (RA), IV:297-298

See also Programmer's Apprentice

(PA)

Requirements specifications, software

development, IV:247

Resampling, 111:206, 208

Resolution

of depth, 111:254-255

in depth maps, 111:252

levels of, in vision, 111:279-282

of visual sensor, 111:199-200

Resolution rule of inference, 1:168, 175,

111:86-87, 93, 94, 97

Resolution theorem proving, 11:11, 313,

111:77-78. See also Nonresolution theo-

rem proving.

strategies to improve efficiency, 111:91-92

Resolvents, 111:86, 87-88, 93

Response frame of a knowledge source,

1:345, 347, IV:33

Response generalization, 111:28-35

Restriction-site mapping, 111:558

Retroactive inhibition, 111:28-35

Reuse

of derivations, IV:282-284

knowledge, IV: 187

specification acquisition methodologies,

IV:259-260

Reverse chemical reactions, 11:136

Revision procedure, 11:74

Rewrite rules, 1:239, 1:261, 1:316, IV:276.

See also Grammar; Production rule.

REX, IV:156

Rheumatology consultation system, 11:222

Risch algorithm, 11:82

RLL, 111:330

Roberts Cross Operator, 111:216

ROBOT, 1:232, 11:164

Robot problem solving, 1:22, 128-139, 11:73

Robot vision, 111:132, 137-138, 301-305

Robotics, 1:10

Roll, 111:198

Roof edges, IV:535

Root structure in INTERNIST, 11:201

ROSIE, 11:84

RP3, IV:568

Rule, see Production rule; Production sys-

tem; Inference; Logic; Rewrite rules.

Rule base, of a production system, 1:190

Rule-based backward-reasoning model, IV:4

Rule-based system. See Production system.

Rule-by-rule semantic interpretation,

IV:218-221

example of, IV:218-220

uses of, IV:220-221

Rule-driven simulation, MOLGEN pro-

gram, IV:462-463

688 Subject Index

Rule model, 11:91, 97-101

Rule-oriented programming, IV: 164

reasoning paradigms in, IV: 169

Rule space, 111:360, 365-371. See also

Grammatical inference; Specialization,

representation of, 111:365-369

rules of inference, 111:365. See also Gen-

eralization,

search of, 111:369-370. See also Rule-

space search algorithms.

Rule-space search algorithms. See also Gen-

eralization; Grammatical inference;

Specialization.

Aq algorithm, 111:398, 419, 423-427

beam search, 111:411-415, 438

best-first search, 111:438, 441

candidate-elimination algorithm,

111:386-391, 396-399, 436, 484, 487-

488, 490, 505

distributional analysis, 111:506

formal derivatives, 111:506

generate-and-test, 111:369, 411-415, 430

hill-climbing, 111:375-380, 434, 458

interference matching, 111:391-392

linear programming, 111:379

linear regression, 111:379

LMS (least-mean-square) algorithm,

111:379

perceptron algorithms, 111:376-380

refinement operators, 111:369, 401-410,

440, 507-509

schema-instantiation, 111:369, 416-419,

481

version-space method, 111:369, 385-400

RULEGEN, 111:432-435

in Meta-DENDRAL, 11:120

RULEMOD, 111:434-435

in Meta-DENDRAL, 11:120

Rules of generalization. See Generalization.

Rules of inference. See Inference; Logic;

Rewrite rules. Generalization; Special-

ization Production rule; Production

system; Grammatical inference.

Run-length coding, 111:304

Run-time environment, 11:3, 9

RX, 11:180

S set (set of most specific hypotheses),

111:386, 411, 426

SAD-SAM, 1:158, 227, 237, 260, 281-282,

11:4

SAFE, 11:301, 302, 304, 310, 336-342

status of, 11:341-342

SAIL, 11:11, 317

associations in, 11:41

BAIL, 11:70

control structures in, 11:52-53

coroutining in, 11:53

data structures in, 11:41-42

demons in, 11:52

items in, 11:41

multiprocessing in, 11:52

pattern matching in, 11:62-63

programming environment of, 11:69-70

SAINT, 1:123-127

SAL, 111:34

Samuel's checkers player, 111:332-333, 339-

344, 452, 457-464

rule-space search, 111:458, 461-462

SAM, 1:211, 216, 220, 231, 300, 306, 311-

313, 334

Satisficing, 111:26

and bounded rationality, IV: 126

network control, IV: 142

Scale-space filtering, in computer vision,

IV:550

Scene analysis, 111:127-138

Scene domain, 111:155

contrasted with picture domain, 111:131-

135

Scene features, 111:131, 132, 133. See also

Intrinsic images,

contrasted with image features, 111:134—

137, 155, 238

distance, 111:238

incident illumination, 111:238

orientation, 111:238 reflectance, 111:238

SCERPO, IV:560

Scheduler, 1:347, 356, IV:6, 20, 22-23, 33-

34, 64, 73, 79-80, 96-99, 101, 103, 129

See also Agenda; Blackboard; Control

structures and strategies

blackboard design, IV:79-80

and decisions, IV.169-170

in HASP, IV:47

HEARSAY-II, I: 347, 338-342, IV:33-34

in PROTEAN, IV:62-64, 79-80

in TRICERO, IV:54

Scheduling, expert systems for IV: 157

Schema, 11:91, 319. See also Frame knowl-

edge representation.

Schema-instantiation method for searching

rule space, 111:369, 416-419, 481

Subject Index 689

SCHOLAR, 1:186, 11:227, 229, 232, 236-241,

242, 246, 267, 292

NLS-SCHOLAR, 11:236

sample protocol, 11:238

Scientific applications of AI, 1:221 See also

Expert systems.

Scientific community metaphor, for CDPS,
IV: 133-134

Scope of knowledge representation, 1:147

Scope of variables. See Variable scoping.

Scoring of hypotheses, 11:200

Screening, expert systems for, IV: 156

Script knowledge representation, 1:216-

222, 231, 300, 306, 307-309, 311, 334,

111:69-70, 561. See also Frame knowl-

edge representation,

and skeletal plan refinement, 111:561

in WHY, 11:243

SCSIMP, 11:145

SDC speech system, 1:337

SDM, 11:172

Search. 1:6, 7, 21, 25, 330, 337, 338, 339,

343, 344, 11:72. IV:71, 72-73. See also

Game-tree search; Combinatorial

explosion; Control structures and
strategies; Pruning; Reasoning.

A* algorithm, 1:64-73, 80

alpha-beta pruning, 1:88-93, 94, 101

AND/OR graph search, 1:54-57, 74-83

bandwidth, 1:60, 69-71

beam, 1:337, 341, 350, 356

best-first, 1:59, 60, 102, 360, 11:141

IV:285-286

bidirectional, 1:24, 51-53, 72-73, 74

blind, 1:21, 29-30, 46-57, 58, 61-62, 72,

111

breadth-first, 1:47-48, 56-57, 61, 68, 73,

111, 111:39

decomposition, IV:284-285, 287

depth-first, 1:49-51, 57, 60, 61, 101, 113,

138, 203, 11:50, 189-190

divide and conquer schema, IV:287-290

fixed ordering, 1:90, 101

full-width, 1:103

generate-and-test, 1:30

heuristic, 1:21, 28, 29-30, 46, 58-83, 117,

119, 350, 11:313, IV:286-291, 348

Heuristic Path Algorithm, 1:67

hierarchical, 1:135

interactive deepening, 1:100-101

intersection, 11:239-240

length-first, 1:138

minimax, 1:84-87, 88, 90, 91, 94, 98

negmax, 1:86-87, 89

optimality, 1:65, 66, 67, 80, 83

ordered, 1:59-62, 64, 72, 77-81, 82, 124

ordered depth-first, 1:60, 102

single composition operator, IV:290-291

in speech systems, 1:339-340

strategic search control issue, IV:286-287

uniform-cost, 1:48-49, 51, 61, 65, 73

Search graph, 1:26

Search space, 1:26-28, 58, 94, 339, 343

Secondary search in game trees, 1:100

SECS, 11:105, 134-142

SEE, 111:143-147, 149

Segment variable, 11:61

Segmentation, 111:128, 149-150, 238-242

IV:523-524. See also Region analysis;

Region segmentation.

by texture, 111:233-236

Segmented lattice, 1:330, 337, 353, 356

Selection sort, 11:352

Selectional restrictions, IV:208

Selective attention, 111:279

Selective forgetting, 111:338, 342

Self-contained system, IV:393, 395

Self-description of CHI, 11:334-335

Self-knowledge, and expert systems, IV: 186

Self-organizing systems, 111:325

Self-reflective programs, 11:27. See also

Flexibility of production rules; Pro-

grams as data.

and automatic programming, 11:297-298,

318

and explanation, 11:6-7, 89

FOL, 11:13

HACKER, 11:318

and learning, 11:6-7, 89, 318

in LISP, 11:6-7, 298

and meta-knowledge in production sys-

tems, 11:89, 267

in TEIRESIAS, 11:89

Selfridge's Pandemonium, IV: 18

Semantic ambiguity, 111:38, IV: 201

Semantic analysis in natural language

understanding, 1:228, 230, IV:206-222

Semantic component, of a transformational

grammar, 1:248

Semantic data model (SDM), 11:172

Semantic decomposition. See Semantic

primitives.

Semantic density in preference semantics,

1:290

690 Subject Index

Semantic filtering

example of, IV:215-216

limitations of, IV: 216

Semantic grammar, 1:229, 261, 318, 320,

335, 355, 359, 11:160, 250-251. See also

Performance grammar,

examples of, IV:214

limitations of, IV:215

rules in, IV:214-215

Semantic interpretation, IV:206-222

intermediate type, IV:206

in knowledge representation, 1:200

logical form, IV:206, 207, 209-211

problems in, IV:206-207

selectional restrictions, IV:208

Semantic interpretation strategies

advantages of, IV:213

parsing, IV:221-222

preference based, IV:217-218

rule-by-rule interpretation, IV:218-221

semantic filtering, IV:215-216

semantic grammars, IV:214-215

Semantic marker, 1:297

Semantic memory, 111:36-37, 41-42. See

also Human memory; Memory models.

Semantic model, 11:118

in FOL, 1:205

Semantic network, 1:156, 172, 180-189,

193, 197, 208, 218, 229, 230, 254, 276,

277, 303, 330, 355, 360, 11:30, 32, 146,

212-213, 229, 231, 238, 316, 323, 372,

111:36-41, 42-49, 50-54, 56-64

active structural network, 1:185

fragment matching in, 1:187

intersection search in, 11:239-240

partitioned, in PROSPECTOR, 11:159

partitioning of, 1:186, 360

in SCHOLAR, 11:236-237

spreading activation in, 1:185, 187, 189

Semantic pattern matching, 11:144-145

Semantic primitives, 1:148, 149, 183, 198,

207-215, 231, 237, 254, 278, 288, 300,

306. See also Case; Conceptual depen-

dency,

in MEMOD, 111:57-59, 63

in MYCIN, 11:187

in syntactic approaches to vision, 111:287,

290

Semantic query optimization, 11:171

Semantics, 1:184, 186, 189, 225, 235, 287,

316, 326, 327, 332, 334, 344

generative, 1:248

interpretive, 1:248

preference, 1:208, 279, 288-291, IV:217-

218

procedural, 1:229, 230

Send-all policy, communication policy,

IV:139

Sending a message, IV: 165

Sensing, 111:301

Sentences

logical form, IV:206, 207, 209-211

sentence meaning, IV:206

Sentential connectives, in logic, 1:161

Sequence extrapolation, 11:116

Sequential diagnosis, 11:179

Sequential integrated systems

heuristics, sources of, IV:453

SICM, IV:453-455

Sequential processing, 11:200

Serial scanning model, 111:51

Set, 11:34

Set of support, 111:91

Set theory, 11:283-290

in mathematical morphology, IV:540

SETL, IV:273, 315-316

Shading, 111:134

Shadow, 111:162-163, 304

Shallow knowledge, IV:331

See also Deep knowledge

Shape description, 111:268-272, IV: 247-260

criteria for, IV:547-549

extended circular image in, IV:554

functions of one variable, IV:547, 549-551

functions of two variables, IV:547, 554-556

generalized scale-space image in, IV:553-

554

by generalized cylinder, 111:269

levels of object domains, IV:547

scale-space filtering in, IV:550

superquadratics approach, IV:557-558

by surface, 111:268

three-dimensional shapes, IV:547, 557-

558

two-dimensional shapes, IV:547, 551-554

by vertex and edge, 111:268

by volume, 111:269

Shape recovery, III: 262-278, IV:555

from light-stripe information, 111:272-278

quantitative, 111:133, 173, 187-194

from shading information, 111:262-264

from texture information, 111:264-267

Shape-from methods.

See Shape recovery.

Subject Index 691

Shared convention strategy, air traffic con-

trol, IV: 113-1 14

Sharpening, 111:209-213. See also Prepro-

cessing,

by high-emphasis frequency filtering,

111:212-213

by spatial differentiation, 111:211-212

Shelf in INTERNIST, 11:199

Shell mechanism, 111:104-105, 110

Shells, IV: 159 See also Tools for building

expert systems.

AGE, 11:84, 126, 111:348, IV: 53,54

EMYCIN, 11:84, 183, 276, 111:348, IV:170

expert systems, IV: 159, 170, 175-176

Short-term memory buffer, in production

systems. See Context.

Shortfall density strategy for hypothesis

scoring in HWIM, 1:341, 356

SHRDLU, 1:151, 176, 196, 230, 251, 257,

260, 276, 295-299, 319, 11:10, 60,

IV:174

SIAP. See HASP
SICM, IV:453-455

Signal processing, 111:127, IV:24-26, 36-47

Signal-to-noise (S/N) ratio, 111:199

Signature tables, 111:459-464

Sim Kit, IV:487-492

Composite Object Editor, IV:490

goal of, IV:489

KB Verifier, IV:512-513

library development, IV:487-489

Library Editor, IV:488

model development, IV:489-490

Model Editor, IV:489

Relations Editor IV, IV:488-489

simulation method, IV:490-492

Sim Script, IV:424

SIMD architecture, IV:566-567

Simplex algorithms, 111:99, 379

Simplification

in the Boyer-Moore Theorem Prover,

111:106

of expressions, 11:144

SIMULA, IV:257, 425-433

description of, IV:425-430

post office system, and SIMULA, IV:430-

433

post office system example, IV:430-433

Simulated annealing, stereo vision, IV:538-

539, 563, 575, 578

Simulation, 111:63, IV:417-518. See also

Expertise module of ICAI systems.

abstraction levels, IV:470-476

aggregation of processes, IV:467-470

in Commonsense Algorithm (CSA) (CS),

IV:405-406

continuous simulation, IV:422

costs, IV:513

development issues, IV:510-513

discrete-event simulation, IV:422, 423-

424

in ICAI, 11:229-230, 245-246, 251

front end in numerical simulation models,

IV:459-462

of laboratory reactions, 11:114

mathematical simulation, IV:422

numerical simulation, IV:422-423, 424-

425

orange juice manufacturing facility,

IV:420-422

parallel integrated systems, IV:455-

459

precision levels, IV:467-481

rule-driven simulation, IV:462-463

sequential integrated systems, IV:452

simplification of processes, IV:464-467

simulation time vs. computer time,

IV:504-510

Smalltalk-80, IV:433-436

validation, IV:513-517

Simulation languages, value of, IV:424

Simulation programs.

ABLE, IV:494-500

automated synthesis of, in NLPQ, 11:370-

374

COMAX, IV:483-487

ECO, IV.459-462

EXSYS, IV:444-448

Forecast Pro, IV:500-503

lambda simulator, IV:448-451

MARS, IV:470-476

MOLGEN, IV:462-463, 476-481

MOSYS, IV:438-441

ONYX, IV:441-444

PEPTIDE, IV:467-470

QSOPS, IV:464-467

SICM, IV.453-455

Sim Kit, IV:487-492

SIMULA, IV:425-433

Simulation structure, in FOL, 1:205

Simultaneous goals, 11:361. See also

Subgoals, interacting.

Single composition operator, search,

IV:290-291

692 Subject Index

Single-concept learning, 111:331, 383-419,

420-422, 436

Single-linkage region growing, image seg-

mentation, IV:524, 526

Single-representation trick, 111:368-369,

411, 418, 424-425

Single-step tasks, 111:452

SIN, 1:125-127, 11:143

SIR, 1:158, 173, 185, 228, 237, 260, 283-284,

11:11

Skeletal plans, 111:558-562. See also

Scripts.

Skewed-symmetry heuristic, 111:187-194

Skill acquisition, 111:326, 532. See also

HACKER; Learning.

Skolem function, 111:89-91. See also Clause

form.

Skolemization, 111:95

SLIP, 1:286

Slot of a frame, 1:158, 216

SMALLTALK, 11:293, IV:164

Smalltalk-80, IV:433-436

description of, IV:433-435

simulation model example, IV:435-436

Smoothing, 111:213-215, IV:500, 501. See

also Preprocessing,

by ensemble averaging, 111:214

by local averaging, 111:214

to reduce noise, 111:213-215

of texture edges, 111:233

SNIFFER, 1:188

Soar, IV:305-306

Sobel Operators, 111:217

Socratic tutoring method, 11:237, 242-246

tutorial goals of, 11:244

in WHY, 11:234, 242-243

Software, 11:299. See also Programming;

Knowledge-based software engineer-

ing.

Software consulting, expert systems for,

IV:156

Software crisis, IV:243

Software development, see also Knowledge-

based software engineering,

behavioral specifications, IV:247

design specifications, IV:248

evolutionary model, IV:250

implementation phase, IV:248

maintenance in, IV:249

prototyping, IV:246, 249

requirements specifications, IV:247

software lifecycle, steps in, IV:247-249

spiral model, IV:250-251

validation in, IV:248-249

waterfall model, IV:246, 249-250

SOLDIER, 1:125

Solution

graph, 1:40, 55

in problem solving, 1:33

tree, 1:40, 75, 77-79

Solution panel, in PROTEAN, IV:61

Solution space, blackboard, IV:4

Solution-construction-graph, partial global

planning, IV: 141

Solvable node, 1:40

Sonar interpretation, IV:24-26, 36-47

SOPHIE, 1:257, 261, 11:227, 230, 231, 247-

253, 292-293

sample dialogue of, 11:248-250

SOPHIE-I, 11:230, 247-250

SOPHIE-II, 11:252

Sophisticated local control

basis of, IV: 138

and communication information, IV: 138-

140

partial global planning, IV: 140-143

Sort in logic, 1:163, 166

Soundness issue, qualitative prediction,

IV:357

Soundness in logic, 111:91

SOUP functions, 111:543-550

Soybean diseases, 111:426-427

Space-planning task, 1:202

Spaces in partitioned semantic nets, 11:159

SPADE, 11:232

Spaghetti stack

in CONNIVER, 11:10

in QLISP, 11:12

SPARC, 111:369-370, 384, 416-419, 452

searching rule space, 111:418-419

Spatial differentiation, 111:211-212, 216-

217

Spatial distribution, IV:86

Spatial domain contrasted with frequency

domain, 111:206

Spatial reasoning, IV:325

Specialists, IV:407

Specialization, 111:444

by adding conditions, 111:408, 432, 434

of fragmentation rules, 11:120

by splitting nonterminals, 111:502

Specification acquisition, see

Program specification

Spectroscopy, 11:104

Subject Index 693

Speech acts, 1:280

asking act, IV:228-229

informing act, IV:229

and understanding, IV:231-232

Speech recognition, 1:325, 326, 333, 349

Speech signal, 1:332

acoustics, 1:343

allophone, 1:333, 337, 349

intonation, 1:333

noise, 1:343

stress, 1:333

syllable, 1:333, 343

Speech understanding, 1:158, 186, 226, 231,

257, 259, 267, 292, 325-361, 11:31, 150

connected speech, 1:326

error sources, IV:29

evaluation of system performance, 1:329

HEARSAY-II, 1:328, 345-348, 11:31-32,

IV.-27-36

isolated-word recognition, 1:325, 333, 349

juncture rules, 1:330, 350, 354

morphemics, 1:332-333

network representations in, 1:330, 337

phonemics, 1:327, 332-333

prosodies, 1:327, 332-334, 359

vs. speech recognition, 1:326

SPEECHLIS, 1:328, 353

Spelling correction, 1:320, 11:164

Spelling graph, 1:330, 337, 346

Spiral model, software development,

IV:250-251, 261

Split and merge, image segmentation,

IV:532-534. See also Region analysis.

Spreading activation

in ACT, 111:50-54

in semantic networks, 1:185, 187, 189

SRI computer-based consultant (CBC),

11:150-154

sample dialogue from, 11:153-154

SRI speech system, 1:339, 358-361

SRI Vision Module, 111:304

SSL in Protosystem 1, 11:364-369

Stability in the learning environment,

111:337

Stack frames, 11:45

Start symbol, 111:496

of a grammar, 1:240

Starting state, 111:12, 523

State, in Qualitative physics

I-transition, IV:384

legal states, IV:351, 356

P-transition, IV:384

qualitative, IV:350-351, 383-384

state transition table, IV:385

transitions in, IV:351-352, 353-356, 384

State Description Compiler, 11:317

State space, 1:26, 33, 195

graph, 1:25, 33-34, 43, 46, 61, 64, 74

representation, 1:24, 32-35, 36, 40-42, 46,

74, 113, 129, 111:12-21

search, 1:30, 35, 46-53, 55, 58-73, 77, 80,

111, 153, 195, 111:452

Static analyzer, IV:262

Static evaluation function, 111:339, 457,

459-464

in game-tree search, 1:87, 96-97, 100

Static knowledge, blackboard design, IV:78

Statistical learning algorithms, 11:118,

111:375

Stative predicates, 111:57

Status of hypothesis in CASNET, 11:195

STEAMER, IV: 174

Step edges, IV:535

Stereo vision, 111:249-253, 254. See also

Binocular vision; Depth.

binocular stereo, IV:536, 537

depth values, interpolation of, 111:141,

168-278, IV.538

feature point detection in, IV.537-538

matching approaches, IV:538

motion stereo, IV:537

multiple-image stereo, IV:536

photometric stereo, 111:249-253, IV:539

segmentation of, IV:536-539

simulated annealing, IV:538-539, 563

trinocular stereo, IV:536, 539

Stereochemistry, 11:113, 140

Stereotypes in preference semantics, 1:289

Stimulus frame of a knowledge source, 1:345

IV:33.

Stimulus generation, 111:28-35

Stochastic automata, 111:380

Stochastic grammars, 111:381, 498-499

Stochastic learning models, 11:231

Stochastic presentation, 111:500

Storage allocation, 11:18. See also Variable

scoping.

Store-versus-compute trade-off, 111:337—

338, 342

Story understanding, 1:231, 300

grammar, 1:306

STRATA, IV:316-318

Strategy for control. See Control structures

and strategies; Reasoning.

694 Subject Index

Strategy space, 111:552

Strategy-free memory, 111:42-49

Stream Machine, IV:320

Strengthening in ACT, 111:54

Stress in speech understanding, 1:333

STRIPS, 1:22, 28, 42, 82, 128-134, 135, 138-

139, 169, 11:11, 73, 111:475, 491, 493,

523-530

STRIPS assumption, 111:115. See also

Closed-world assumption.

Strong Problem Reduction Principle (SPRP)

constraint, IV:288, 289

Structural descriptions. See Structural

learning.

Structural family of molecules, 111:429

Structural knowledge, IV:334

Structural learning, 111:381-382, 392-396,

411,412

Structural presentation, 111:501

Structure

determinism, 11:102

elucidation, 11:102, 111

Structure-from-motion theorem, 111:246-

247

Structure-generation algorithm, 11:106, 111

Structured growth as programming regi-

men, 11:65

Structured programming, 11:66

STUDENT, 1:196, 227, 237, 260, 284-285

Student model, 11:225, 229, 235, 265. See

also Diagnosis of student misconcep-

tions; Intelligent computer-assisted

instruction,

as bugs, 11:231-233

conceptual bug in, 11:279-280

constructive bug in, 11:234

critic in, 11:233

diagnostic, 11:233, 279-280

differential modeling of, 11:255-256

in GUIDON, 11:270-271

in ICAI systems, 11:231-233

in the MACSYMA Advisor, 11:232

noise in, 11:260

overlay model of, 11:231, 256, 261, 270,

282

plan recognition in, 11:232

problem-solving grammar in, 11:232

procedural net in, 11:280

sources of information for, 11:232

in SPADE, 11:232

and stochastic learning models, 11:231

Stylistics in text generation, 1:279

Subgoals

in backward chaining, 11:190

in conflict resolution, 11:361

conjunctive, 1:111, 119

in human problem-solving, 111:12, 17

interacting, 1:56, 81-83, 111:520, 531-540,

542

promotion, 111:537

selection function for, 11:141

Subgraph, 11:130

isomorphism, 11:32

Subproblems, interdependent, 1:56, 81-83.

See also Problem solving; Subgoals.

Substitution, 111:95, IV: 116

in the Boyer-Moore Theorem Prover,

111:107

of equals for equals, IV:275-278

Substitution instance, 111:90

Substructure, 11:112, 114, 137

Subsystem validation, validation, IV:517

Successor node, 1:26, 33, 46

Sum cost. See Cost, in search algorithms.

Summarization of proofs in EXCHECK,
11:283, 287-289

Superatoms, 11:111

Superquadratics approach, in computer

vision, IV:557-558

Support hypothesis, 111:141, 150

Support relations, 111:150

Surface structure of a natural language,

1:247, 252, 273, 274, 277. See also Syn-

tax.

Sydney, IV: 155

Syllable in speech understanding, 1:333, 343

Syllabus in WUMPUS, 11:230

Symbol manipulation, 11:3-5, 15

Symbolic algorithms, 11:144

Symbolic evaluator, IV:262

Symbolic execution, 11:323

in SAFE, 11:336, 339-340

Symbolic integration, 1:21, 22, 24, 118, 123-

127

Symbolic reasoning, 11:79, 82

Symptom in medical diagnosis, 11:178

SYNCHEM, 11:85, 105, 134-142

SYNCHEM2, 11:137, 140

SYNCOM, 11:138

Syntactic analysis in natural language

understanding, see Grammar; Parsing;

Syntax.

Syntactic methods in vision, 111:287-291.

See also Grammar in vision.

Subject Index 695

bottom-up parsing, 111:288-290

phrase-structure rules, 111:287-291

top-down parsing, 111:288-290

Syntactic query optimization, 11:171

Syntactic symmetry in the Geometry Theo-

rem Prover, 1:120

Syntax, 1:155, 225, 230, 239, 247, 326, 327,

332, 334, 344, 346. See also Grammar;
Parsing.

Synthesis of molecular structures, 11:102,

134-142

synthesis routes, 11:134

synthesis tree, 11:134

Synthetic chemistry, 11:105, 134-142

System grammar, 1:229, 249-251, 297

System identification, 111:373-375

Systems architecture, for speech under-

standing, 1:332-342, 353

Table of Connections in GPS, 1:115

Tags in CONNIVER, 11:38

Tapered forward pruning, 1:104

Target language for automatic program-

ming, 11:300

GPSS, in NLPQ, 11:370

LISP, 11:28, 355

Target structure of synthesis process, 11:134,

136

Task allocation

contract-net protocol, IV: 108

multistage negotiation, IV: 112

Task centralization, air traffic control,

IV:113

Task transfer, IV: 104

Tautology, 1:162, 111:92

TAXIS, 11:172

Taxonomic net, 11:159

Taxonomy, 1:181. See also Inheritance.

Teachable Language Comprehender (TLC),

1:185, 228

Teacherless learning, 11:293

Team of procedures in QLISP, 11:12

TED, 11:166-167, 170

TEIRESIAS, 1:145, 195-199, 11:57, 84, 85,

87-101, 130, 182, 191-192, 111:333,

348, 349

sample protocol from, 11:92-101

Template

bare, 1:288, 290

in case grammars, 1:253

flexible, 111:283-285

high-level, 111:283-286

low-level, 111:283-285

matching, 1:260, 111:283-286

partial, 111:283-285

piece, 111:283-285

in preference semantics, 1:279, 288-291

in speech recognition, 1:333, 337, 340, 349

total, 111:283-285

word, 1:349

Temporal events, in HEARSAY-II, IV:48

Temporal reasoning, and qualitative phys-

ics, IV:328

Term selection, 111:459

Terminal node of an AND/OR graph, 1:38,

43

Terminal symbol, 111:495

in a grammar, 1:239

Termination criteria, blackboard, IV: 14

Test cases, in validation, IV:515-516

Texel, 111:265

Text-based NL systems, 1:228

Text generation, 1:273-280, 11:239

and machine translation, 1:273-274, 279,

289, 291

in MARGIE, 1:304

random, 1:233, 273

Textual function of language, 1:249

Texture, 111:134, 230-237, 264-267

edges, 111:233

features, 111:230-233

gradient, 111:264

regions, 111:233-236

Theme, 111:69-70

in story understanding, 1:306, 310-311,

313

Theorem in PLANNER, 11:9, 38, 48, 73

Theorem proving, 1:22, 23, 26, 62, 74, 109,

116, 118, 119, 129, 151, 155, 168, 171,

175, 188, 297, 11:62, 111:76-123, IV:269,

270, 274-275. See also Automatic

deduction.

and Program synthesis

goal-directed, 111:94-95

natural-deduction, 111:94-95, 101

nonresolution, 111:94-95, 101

representation, 1:25

resolution, 11:313, 111:86-94

Theory of computation, 11:15

Theory of conclusions, 111:118-119

Theory formation, 11:84, 111:327. See also

Hypothesis; Learning.

Therapy management, expert systems for,

11:206-211

696 Subject Index

Therapy management (cont.)

ONCOCIN, 11:180, IV:157

ONYX, IV:441-444

Therapy selection

drug-preference categories, 11:191

in MYCIN, 11:184, 191

THINGLAB, 11:293

THNOT, 1:176, 11:74

3-D, 111:268-278, IV: 247-260.

See also Shape description

Thresholding

in medical decision making, 11:181

in vision, 111:217-218

Tic-Tac-Toe, 1:43, 94

Tick list, 111:535

Tilt, 111:174, 198. See also Camera model.

Time
clock-driven simulation, IV:505-506

clock-independent simulation, IV:506

in qualitative process theory, IV:376-377

reasoning about time, IV:507-510

simulation time vs. computer time,

IV:504-510

Time of flight, 111:254-255. See also Range

finders.

Time series, IV:500

Tip node of an AND/OR graph, 1:80, 87

TOME (Table of Multiple Effects), 111:545-

550

Tools for building expert systems, 11:84,

IV:176, 177

AGE, 11:84, 126

EMYCIN, 11:84, 183, 276

EXPERT, 11:217-222

GUIDON, 11:267-278

IRIS, 11:212-216

Top-down vs. bottom-up reasoning, 1:198

Top-down processing, 1:24, 183, 198, 216-

218, 232, 259, 326, 334, 336, 338, 344,

355, 358, 359, 11:91-92, 97-101, 201,

111:129, 131-133, 139, 168, 269-278,

283-286, 288-290, 306, 314-316. See

also Backward chaining; Consequent

reasoning; Control structures and

strategies; Reasoning.

TORUS, 1:186

Totally dependent game tree, 1:92

Tower of Hanoi puzzle, 1:36-38, 42, 79, 160,

165, 11:22-24

TQA, 11:165

TQMSTUNE, IV: 156

Traces

completeness of, 11:308

generic, 11:308

problem-solver generated, 11:324-325

protocols from, 11:308, 322-325

in PSI, 11:329, 330-334

Tracking

in edge detection, 111:220-221

moving objects, 111:246-248

Training instances, 111:454, 328-329, 362-

364. See also Instance space,

in DENDRAL, 11:117

global, 111:454-455

local, 111:454-455

Transfer of expertise, 1:199, 11:72, 80, 81-

83, 88-89, 116, 111:345, 348, IV:173-

180. See also Expert systems; Knowl-

edge acquisition; Knowledge engineer-

ing.

Transfer function, 111:213

Transferring subproblems and/or operators,

CDPS, IV: 103-104

Transformation of programs, see Program
transformation; Program transformation

rules.

Transformational grammar, 1:229, 237,

245-248, 249, 251, 252, 111:497-498,

510

parsers, 1:260

Transformations, obligatory and optional,

1:246-247

Transformations in synthetic chemistry,

11:136

Transition operator. See Legal-move gen-

erator.

Transition-tree grammar in LIFER, 1:316-

317

Transitivity system of a grammar, 1:249

Transparency of reasoning, 11:89. See also

Opacity.

Travel budget manager task, 1:353

Traveling-salesman problem, 1:21, 34, 48,

62, 69, 70-71

Treatment regimen systems, see Therapy

management.

Tree. See Grammar; Parsing; Problem rep-

resentation.

Triangle table in STRIPS, 1:131-132

Triangulation, 111:255-259. See also Range
finders.

TRICERO, IV:50-56

in AGE, IV:53-54

bit-map display, IV:56

Subject Index 697

blackboard changes, IV:80

blackboard system, IV:51-55

COMINT in, IV:52, 53, 55

control, IV:54

ELINT in, IV:52, 55

goals of, IV:52

knowledge sources, IV:53-54

knowledge-application strategy, IV:55

node deletion problem, IV:55-56

subsections, IV:52, 55

Trigger. See Procedural attachment.

Triggered knowledge source, IV:77

Trihedral world, 111:136, 155-182. See also

Blocks world.

Trinocular stereo, IV:536, 539

Trivial disjunction, 111:398

Trivial grammar, 111:499

Troubleshooting, 11:247-253. See also Diag-

nosis,

expert systems for, IV: 155

Truth Maintenance, 11:72-76. See also Non-

monotonic logic.

Truth values, in logic, 1:161-612

Tryptophan modeling system, QSOPS,
IV:464-467

Tuple in QLISP, 11:34, 39-41

Turing machine, 1:4, 241, 266

Turing tests, validation, IV:517

Turtle geometry, 11:291-292

Tutor module of ICAI system, 11:263, 266

Tutorial dialogue. See Dialogue manage-

ment; Intelligent computer-assisted

instruction; Tutoring strategies in

ICAI.

Tutorial goals, 11:244

Tutorial programs, 11:225-294

Tutorial rule, 11:267, 272

Tutoring module of ICAI systems, 11:233—

235

Tutoring strategies in ICAI, 11:227-228,

233, 237. See also Diagnosis of student

misconceptions; Dialogue manage-

ment,

case-method tutor, 11:235, 242

computer coach, 11:231, 234, 254-255,

257-259, 261-266

computer gaming, 11:234, 252, 254, 261-

266

constructive bug, 11:234, 254

in GUIDON, 11:272-273

issues and examples, 11:256

opportunistic, 11:275-276

pedagogical style in, 11:275-276

principles of, 11:259

in SCHOLAR, 11:237-238

Socratic method, 11:234

tutorial goals in, 11:244

TV signals, 111:201. See also Imaging

devices.

2-D shapes in computer vision, IV: 547,

551-554

2 1/2 -D sketch, 111:135, 239, 243

Two-space model of learning, 111:360-372,

383, 441

TYPE property, 11:199

Type-token distinction, 111:37

Ultrasound image analysis, 11:177

Uncertainty, 11:188-191, 215, 271, 277,

195-196, 221, 131, IV:171-172. See

also Certainty.

and abstraction, IV: 171

and Bayes theorem, IV: 171

in CASNET, 11:193

and certainty factors, IV: 172

and criterion tables, IV: 172

in FUZZY, 11:13

and fuzzy logic, IV: 172

incremental aggregation, IV: 118-1 19

in INTERNIST, 11:197

and reasoning, IV: 171-172

representation of, 11:180

Understandability of knowledge represen-

tations, 1:150, 156-157, 174, 193

Unfold transformation, IV:276-277

Unification, 11:61-62, 111:89-90, 91, 96, 120,

121

Unification grammars, IV: 198-205

augmented transition network (ATN),

IV.198-200

graph unification, IV:202-205

unification equations, IV:200-203

Uniform game tree, 1:91-93

Uniform scoring policy of hypotheses in

HWIM, 1:340

Uniform-cost search, 1:48-49, 51, 61, 65, 73,

111:484, 489

Unique termination property, 111:99

Unit package, 1:221, 111:551, 559

Unit System, IV:449

UNITS, IV:511

Unity path in MYCIN, 11:191

Universal grammar, 111:499

Universal quantification, 111:88-89, 91

698 Subject Index

Universal specialization in logic, 1:164

Unlinking, IV: 116

UNPROG, IV:265

Unsolvable node of an AND/OR graph, 1:40,

55

Update-G routine, 111:388-391. See also

Candidate-elimination algorithm.

Update-S routine, 111:388-392. See also

Candidate-elimination algorithm.

Updates. See Specification maintenance.

User education in MACSYMA, 11:144, 146-

148

User interface, 11:81, IV:512. See also Dia-

logue management,

computer-generated speech in

EXCHECK, 11:283

in CONGEN, 11:112

cooperative responses in COOP, 11:167

in TRICERO, IV:56

User model, 11:150. See also Plan recogni-

tion; Student model.

V in CHI, 11:334

Validation, IV: 177-180

of AP systems. See Verification of synthe-

sized code.

costs, IV:516

criteria to validate against, IV:514-515

of expert terms, 11:182, 192, 211, 267,

IV:177-178

face validation, IV:516

field tests, IV:517

of ICAI systems, 11:280

for knowledge-based simulation, IV:517

predictive validation, IV:516

qualitative validation, IV:516-517

quantitative validation, IV:517

requirements for, IV:514

in software development, IV:248-249

of specifications, IV:261-262

subsystem validation, IV:517

test cases in, IV.515-516

time for validation, IV:516

Turing tests, IV:517

Value propagation method, IV:345, 346-348

extension of, IV:348-349

improvements to, IV:348-349

limitations of, IV:346-348

uses of, IV:345

Variable domain array in the General Space

Planner, 1:202

Variable in logic, 1:164, 111:88-89, 91

Variable scoping, 11:18, 32-33

Variables, in qualitative calculus, IV:340,

345

Variational principle, IV:580

Verbal learning, 111:8, 28, 33-35

Verification

meaning of, IV:512

in Sim Kit, IV:512-513

in software development, IV:249

Verification of Programs, See

Program verification.

Verification trees in EXCHECK, 11:289

Version space, 11:121, 111:387. See also Can-

didate-elimination algorithm,

method for searching rule space, 111:369,

385-400

Vertex types, 111:155-157. See also Junction

types.

Very high level language, 11:315

AP2, 11:337

in DEDALUS, 11:355

for program specification, 11:300, 309

in PSI, 11:326

SSL IN Protosystem I, 11:364-369

VIBRATION, IV:155

Viewpoints, 111:141-142

Viral systems, MOLGEN, IV:462-463, 476-

481

Vision, 1:10, 330, 334, 111:125-322, IV:521-

582 See also Vision architecture

architecture, 111:301-321, IV.565-582

blocks world, 111:136, 139-141, IV: 556

camera model, 111:198-200, 253, 272

clustering, 111:227-228, IV:525-526. See

also Region splitting,

color, III: 203-205

constraint satisfaction, 111:292-300, 553-

556, IV:560-562. See also Relaxation,

correspondence problem, 111:244-253

edges, 111:130-131, 216-224, 250, 281-

282, IV:534-536, 551. See also Line

finding,

in industry, 111:301-305

intrinsic images, 111:134, 137, 238-242

motion, 111:244-248, 250, IV:537

optimization problems, IV:562-564

preprocessing, III: 137, 206-215

pyramids and quad trees, 111:137, 279-

282, 309, IV:571-572

range finders, 111:254-259, 268, 272-278

real-time, 111:301-303

relaxation, III: 229, 241-242, 252, 292-

300

Subject Index 699

region analysis, III: 130-131, 143-147,

150, 225-229, IV: 526-534 See also

Region growing, Region splitting,

segmentation, 111:128, 149-150, 233-236,

238-242 IV:523-524.

shape, III: 133, 173, 187-194, 260-278,

IV: 547:558

in the SRI computer-based consultant,

11:153

stereo, III: 249-254, IV:536-539. See also

Binocular vision.

3-D, 111:268-278, IV: 247-26. See also

Shape description

Vision architecture, 111:301-321, IV:565-

582

Boltzmann machines, IV:575-576

butterfly architecture, IV:568

CHip system, IV:568

CLIP4 system, IV:565, 570

Connection Machine, IV:565, 572

connectionist architectures, IV:572-578

Defense Advanced Research Projects

Agency system, IV:572

and figure/ground discrimination,

IV:576-578

Hopfield model, IV:574-575

influence on algorithms, IV:565

Massively Parallel Processor (MPP),

IV:570-571

mesh architecture, IV:570-571

Metropolis algorithm, IV:576

multigrid methods, IV:579-582

multilevel architecture, IV:571

parallel methodologies, IV:566-570

pipelined systems, IV:567, 569

pyramid machines, IV:57 1-572

reconfigurable systems, IV:568-569

relationship to data structures, IV:565-

566

SIMD vs. MIMD systems, IV:566-567

VISIONS, 111:309-310

Warp computer, IV:568

VL1, 111:423

VLSI wire routers, IV:318

VM, 11:180, 206

Voice chess, 1:328, 334, 344

Von-Neuman bottleneck, IV:573

Warp computer, IV:568

Waterfall model, IV:259

software development, IV:246, 249-250,

259

Waterman's poker player, 111:331, 349, 452,

456, 465-474, 489

Watson, IV:301-302

Weight space, 111:376

Well-formed formula in logic, 1:164

Well-formed programs in SAFE, 11:338-340

Well-founded relation, 111:104, 109

WEST, 11:232, 234, 254-260, 261, 267, 292

evaluation of, 11:260

WEST-I, 11:230, 231

"What is" knowledge, IV: 162, 165

WHISPER, 1:203

WHY, 11:229, 234, 235, 241, 242-246, 267

sample dialogue from, 11:243-244

Wide spectrum languages, IV:303, 307, 313,

320.

Windows
fixes and variable-sized, 111:217

representing operators, 111:217

Winston's ARCH program, 111:326, 364, 384,

392-296

Word island in HWIM, 1:353

Word senses, 111:36, 38-39

Word template, 1:349

World coordinates, 111:198-199

World knowledge. See Domain-specific

knowledge; Heuristic; Expertise.

World model, 1:22, 128, 135. See also Models

in qualitative physics; Models in sim-

ulation; Models in vision systems.

World state, IV:96

WUMPUS, 11:230, 234, 261-266, 267, 288,

292

WUSOR, 11:261-266, 292

sample protocol from, 11:264-265

XCON, IV:156, 169

size of, IV: 181

X-ray image analysis, 11:177

YES/MUS, IV: 155

Yoking, IV:59

Waltz filtering, 111:137, 164-167, 184, 186,

292, 295, IV:561. See also Constraint

satisfaction; Relaxation.

Zero crossing, 111:218, 250

Zero-order theory of mass spectrometry,

11:118

The Handbook of

Artificial Intelligence

VOLUME I

I. Introduction

II. Search

III. Knowledge Representation

IV. Understanding Natural Language

V. Understanding Spoken Language

VOLUME II

VI. Programming Languages for AI Research

VII. Applications-oriented AI Research. Science

VIII. Applications-oriented AI Research: Medicine

IX. Applications-oriented AI Research. Education

X. Automatic Programming

VOLUME III

XI. Models of Cognition

XII. Automatic Deduction

XIII. Vision

XIV. Learning and Inductive Inference

XV. Planning and Problem Solving

VOLUME IV

XVI. Blackboard Systems

XVII. Cooperative Distributed Problem Solving

XVIII. Expert Systems

XIX. Natural Language Understanding

XX. Knowledge-based Software Engineering

XXI. Qualitative Physics

XXII. Knowledge-based Simulation

XXIII. Computer Vision Update

Jacket design by Copenhaver Cumpston

'A monumental compendium of information that will be a basic reference for people in

Artificial Intelligence (AI) and related fields for some time to come. ... Fascinating

cover-to-cover reading!'

—

BYTE

The Handbook of Artificial Intelligence Volume IV, the much-anticipated fourth

volume in this classic series, provides outstanding articles, each written by a renowned
AI expert, on the many new technologies, theories, and research that have developed

since the publication of the first three volumes.

Edited by Avron Barr, Paul R. Cohen, and Edward A. Feigenbaum, The Handbook of

Artificial Intelligence Volume IV reveals the latest developments in Artificial Intel-

ligence. This volume explores the key topics of this continually changing field including:

Blackboard Systems H. Penny Nii

Cooperative Distributed Problem-solving Professor Edmund H. Durfee,

Professor Victor R. Lesser, and Professor Daniel D. Corkill

Expert Systems Dr. Bruce G. Buchanan and Dr. Reid G. Smith

Natural Language Understanding Professor James Allen

Knowledge-based Software Engineering Dr. Michael Lowry and Raul Duran
Qualitative Physics Dr. Yumi Iwasaki

Knowledge-based Simulation Alfred Round
Computer Vision Professor Robert M. Haralick, Professor Alan K. Mackworth,
and Professor Steven L. Tanimoto

Other volumes in the series:

The Handbook of Artificial Intelligence Volume I covers such topics as algo-

rithms and actual expert system research.

The Handbook of Artificial Intelligence Volume II focuses on LISP and includes

a valuable chapter on the features needed for an AI programming language.

The Handbook of Artificial Intelligence Volume III discusses cognitive theory,

the Boyer-Moore theorem prover, and machine vision.

Avron Barr is chairman and CEO of Aldo Ventures, a management consulting firm on
artificial intelligence techniques and products. Paul R. Cohen is Professor of Computer
and Information Science at the University of Massachusetts at Amherst and directs the

Experimental Knowledge Systems Lab. Edward A. Feigenbaum is Professor of Com-
puter Science at Stanford University, and is a founder and member of the board of

directors of IntelliCorp.

53995

Addison-Wesley 9 78020 1
n5T8"f9

1

Publishing Company, Inc. ISBN o-B01-51flM-fl

