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Volume  HI  contains  five  chapters  on 

models  of  cognition,  automatic  deduction,  vi- 
sion, learning,  and  planning,  as  well  as  an  in- 

dex, bibliography,  and  cumulative  index  for  all 
three  volumes  of  The  Handbook.  Chapter  XI 
discusses  AI  models  of  human  memory,  belief, 

and  planning  and  problem  solving.  These  pro- 
grams were  among  the  earliest  developed  in 

AI,  and  give  some  insight  into  the  powerful  in- 
fluence of  the  computer  in  the  development  of 

AI  and  cognitive  psychology. 
Automatic  deduction,  also  called  automatic 

theorem  proving,  is  the  subject  of  Chapter 

XII.  There  has  been  a  recent  resurgence  of  in- 

terest in  forms  of  predicate  logic  as  a  represen- 
tation language  for  AI,  and  in  deduction  as  a 

mode  of  reasoning.  The  chapter  describes 

resolution  and  natural  deduction  theorem  pro- 

ving, the  Boyer-Moore  theorem  prover,  non- 
monotonic logic,  and  logic  programming. 

Chapters  XIII  and  XIV  are  comprehensive 
discussions  of  vision  and  learning  research, 

respectively.  The  vision  chapter  describes  all 
aspects  of  computer  vision,  from  the  design 
and  calibration  of  cameras  to  preprocessing 

and  edge  detection,  to  the  extraction  of  image 

features,  to  the  inference  of  scene  character- 
istics. It  also  includes  several  articles  on 

blocks-world  vision  research,  a  section  on 
algorithms  for  vision  systems,  and  a  section  on 
applications  of  vision  research.  Chapter  XIV, 
on  learning,  discusses  virtually  all  the  learning 
systems  developed  to  date  in  AI,  and  organizes 
the  discussion  around  a  model  of  learning 

developed  especially  for  this  chapter.  It  in- 
cludes sections  on  rote  learning,  learning  from 

advice,  and  learning  from  examples,  as  well  as 
several  articles  on  the  issues  involved  in 

developing  learning  systems. 
The  last  chapter  in  Volume  III  is  about 

planning.  It  is  intended  as  an  extension  of 
Chapter  II  in  Volume  I  on  search.  That 
chapter  took  the  discussion  of  search  up  to 
hierarchical  planning,  while  Chapter  XV 

reviews  nonhierarchical  planning  and  con- 
tinues on  to  discuss  hierarchical  and  least- 

commitment  planning  and  the  refinement  of 
skeletal  plans. 
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PREFACE 

Intelligence . .  .is  the  faculty  of  making  artificial  objects, 
especially  tools  to  make  tools. 

— Henri  Bergson 

L 'Evolution  Creatice  (1907) 

Artificial  Intelligence  is  a  relatively  young  branch  of  science,  new 
enough  that  we  can  still  trace  the  development  of  the  field  from  its  inception 
in  1956  to  the  present.  About  six  years  ago,  when  we  were  planning  the 
Handbook  of  Artificial  Intelligence,  we  thought  it  would  be  possible  to  present 
AI  comprehensively  in  three  volumes.  In  retrospect,  that  seems  to  have  been 

a  good  guess,  although,  inevitably,  the  outline  has  been  changed  many  times 
to  reflect  changes  in  the  emphasis  and  methods  of  AI.  Some  chapters  are  very 
much  larger  than  we  had  anticipated,  some  are  smaller,  and  one  was  deleted 
altogether;  many  of  the  original  articles  have  been  deleted  or  rewritten.  Such 
is  the  price  (and  the  excitement)  associated  with  the  task  of  researching  and 
reporting  on  a  flourishing,  rapidly  developing  field. 

Although  the  contents  of  the  Handbook  have  changed,  our  intentions 
as  to  its  format  and  style  have  not.  From  the  outset,  we  have  wanted  a 
comprehensive  survey  of  AI  that  stripped  away  jargon,  filled  out  assumptions, 
presented  essential  problems,  and  simply  described  solutions.  From  the  outset, 
we  have  assumed  that,  in  most  instances,  a  piece  of  writing  that  fulfilled  these 
criteria  could  present  a  program,  project,  or  doctoral  dissertation  in  six  or 
seven  pages.  We  do  not  discuss  the  fine  points  of  individual  pieces  of  research 
but  encourage  the  reader  to  discover  them  in  the  references  we  provide  with 

each  article.  On  the  other  hand,  we  do  attempt  to  make  explicit  (in  the  form 

of  cross-references)  some  of  the  subtler  relationships  among  the  areas  of  AI 
research. 

Thus,  guided  by  the  discoveries  and  developments  in  AI,  and  constrained 
by  a  constant  set  of  editorial  goals,  the  Handbook  has  grown  to  about  1,500 
pages,  divided  among  three  volumes.  The  distribution  of  chapters  in  the 
volumes  reflects,  to  some  extent,  the  recent  history  of  AI.  In  the  first  volume, 
we  discuss  search,  knowledge  representation,  understanding  natural  language, 
and  understanding  spoken  language.  These  were  among  the  most  topical  areas 

of  AI  when  the  first  volume  was  drafted.  We  postponed  discussion  of  "areas 
in  transition"  to  later  volumes.  For  example,  automatic  deduction  was  not 
a  popular  subject  of  AI  research  when  Volume  I  was  planned,  and  we  left 
it  until  this  volume.    In  the  interim,  it  has  seen  several  new  developments 

xin 
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and  has  regained  some  of  the  prominence  it  had  in  the  earliest  days  of  AI. 
Similarly,  to  reflect  more  recent  perspectives,  two  chapters  of  the  second 
volume  (on  automatic  programming  and  AI  programming  languages)  were 
completed  just  within  the  last  year.  The  other  chapters  of  Volume  II,  which 
deal  with  scientific,  medical,  and  educational  applications  of  AI,  were  drafted 
earlier.  The  chapters  in  the  present  volume  (with  the  exception  of  Chap.  XI 
on  models  of  cognition)  deal  with  topics  that  we  did  not  understand  very 
well  when  the  Handbook  was  planned.  By  deferring  these  discussions,  we 

have  had  an  opportunity  to  "wait  and  see"  what  happened  in  vision,  learning, 
planning,  and  automatic  deduction.  We  also  deferred  a  chapter  on  robotics 
to  this  volume  but  decided  finally,  for  reasons  discussed  later,  not  to  write  it. 

If  there  is  a  unifying  theme  to  this  volume,  it  is  that  intelligence — artificial 
or  natural — involves  a  great  many  hierarchically  organized,  interacting  infor- 

mation processes.  We  discuss  here  some  of  the  basic  processes  that  are  pre- 
requisite for  a  computer  to  function  intelligently  (by  human  standards)  in  the 

world.  A  computer  must  be  able  to  sense  its  environment,  it  must  have  a 

memory  and  must  learn,  it  should  construct  rudimentary  plans  to  solve  prob- 
lems, and  it  should  be  able  to  reason  deductively  and  inductively.  If,  as  is 

common  in  AI,  the  computer  does  not  interact  with  a  physical  world  but  with 
a  symbolic  world  that  represents  selected  aspects  of  its  physical  counterpart, 
then  the  computer  need  not  sense  its  environment.  Or  if  a  program  has  been 
constructed  to  solve  a  related  set  of  problems  and  it  has  all  of  the  information 
it  needs  at  the  outset,  then  it  need  not  learn.  But  if  a  computer  program  is 

to  behave  with  even  a  fraction  of  the  intelligence  of  a  two- year-old  baby — to 
learn,  for  example,  that  the  family  cat  is  like  the  family  dog  in  appearance, 
but  not  in  personality,  and  to  use  this  information  to  plan  its  interactions 

with  each  animal — then  that  program  will  need  the  skills  discussed  in  this 
volume. 

Chapter  XI,  on  models  of  cognition,  is  an  introduction  to  cognitive  science — 
a  field  at  the  intersection  of  AI  and  cognitive  psychology.  From  the  earliest 

days  of  AI,  researchers  have  designed  artificial  systems  to  improve  their  under- 
standing of  human  thought.  The  overview  of  Chapter  XI  discusses  the  early 

history  (1956-1970)  of  these  ideas,  and  the  early  and  profitable  interaction 
between  computer  scientists  and  psychologists.  In  fact,  we  emphasize  the 

history  of  information-processing  psychology  at  the  expense  of  more  recent 
work  in  cognitive  science  because  it  is  a  fascinating  history  and  because  the 
field  is  developing  so  rapidly  that  we  can  see  it  best  from  a  distance.  More 
recent  work  is  discussed  elsewhere  in  the  Handbook. 

Chapter  XII,  on  automatic  deduction,  describes  modes  of  reasoning.  For- 
mal analyses  of  natural  deduction,  resolution-based  deduction,  induction,  and 

nonmonotonic  reasoning  are  presented.  Modern  symbolic  logic,  a  discipline 

at  least  a  century  old,  originated  as  an  attempt  to  formalize  rules  of  mathe- 
matical reasoning  and  it  has  been  used  by  many  philosophers  as  a  competence 
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theory,  or  even  a  normative  theory,  of  human  reasoning.  Automatic  deduc- 
tion is  the  computational  side  of  logic;  it  seeks  to  discover  procedures  that 

can  deduce  the  logical  consequences  of  facts  with  some  degree  of  efficiency. 
Automatic  deduction  touches  AI  in  at  least  two  ways.  First,  machines  that 

reason  about  the  real  world  almost  certainly  need  to  perform  symbolic  deduc- 
tion in  some  form,  and,  second,  heuristic  methods  can  be  applied  to  the  task 

of  deduction  itself,  as  in  the  case  of  mathematical  theorem  proving.  Both 
concerns  are  evident  in  this  chapter. 

Chapter  XIII  surveys  vision  research.  Vision  systems  work  with  raw 
data  from  a  real,  noisy  environment.  While  most  AI  programs  reason  about 

preselected  aspects  of  the  world  that  are  cleanly  represented  in  some  repre- 
sentation language,  the  task  of  vision  research  is  to  develop  representations 

of  the  physical  world  and  procedures  for  reasoning  from  one  representation 
to  another.  Successive  levels  of  representation  are  less  noisy  and  better  suited 
to  particular  tasks.  This  chapter  was  planned  by  Professor  Takeo  Kanade 

of  Carnegie- Mellon  University.  It  is  a  large  chapter,  about  200  pages,  but  a 
comprehensive  one.  All  aspects  of  vision,  from  cameras  and  range  finders  to 
the  highest  level  inferences  about  the  contents  of  a  scene,  are  discussed.  A 

few  articles  about  technical  problems — articles  with  very  little  AI  content — 
are  included  for  the  completeness  they  bring  to  the  presentation  of  vision 
research. 

Vision  and  robotics  are  closely  related  fields  and,  initially,  a  robotics 
chapter  was  planned  for  the  Handbook.  We  discovered,  however,  that  the 
points  of  intersection  between  robotics  and  AI  had  been  covered  in  other 

chapters — those  on  vision  and  planning — and  that  other  aspects  of  industrial 
and  research  robotics,  such  as  dynamics  and  control,  and  sensor  and  arm 
design,  were  well  beyond  the  scope  of  this  book.  Thus,  we  decided  to  forgo 
the  chapter  rather  than  present  an  incomplete  view  of  the  field. 

Chapter  XIV  describes  attempts  by  AI  researchers  to  create  computer 
programs  that  learn.  The  reader  of  these  volumes  will  have  noted  a  recurring 
theme:  The  power  of  an  AI  program  is  directly  proportional  to  what  it 
knows.  For  this  reason,  much  effort  has  been  devoted  to  making  programs 
more  knowledgeable  and,  in  particular,  to  creating  programs  that  can  acquire 
knowledge  by  taking  advice,  by  rote  learning,  and  by  learning  from  examples. 
The  author  of  this  chapter,  Thomas  G.  Dietterich,  has  developed  a  theoretical 
framework  in  which  he  compares  and  contrasts  these  and  other  approaches  to 
learning.  An  interesting  conclusion  is  that  learning  programs  are  themselves 
subject  to  the  theme  just  mentioned:  The  performance  of  learning  programs 
is  directly  proportional  to  what  they  know. 

The  last  chapter  in  Volume  in  discusses  planning  and  problem-solving. 
It  can  be  regarded  as  an  extension  to  Chapter  II  on  search.  These  chap- 

ters might  have  been  merged,  but  some  important  developments  in  planning 
research  postdate  the  writing  of  the  search  chapter.  Among  those  discussed  in 
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Chapter  XV  are  hierarchical  planning — representing  a  single  plan  at  several 
levels  of  abstraction — and  least-commitment  planning  methods  that  avoid 
backtracking. 
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A.     OVERVIEW 

ANTHROPOMORPHISM  is  a  powerful  tendency  in  human  thinking — we 
ascribe  personalities  and  emotions  to  all  kinds  of  animate  and  inanimate 
objects.  Thus,  it  is  not  surprising  that  we  should  do  the  same  with  computers, 

or  even  that  we  should  reverse  the  terms  of  the  equation  and  describe  our- 

selves in  terms  reserved  for  the  machine.  This  is  not  a  new  trend — it  certainly 
predates  the  electronic  computer  (e.g.,  the  Futurists  around  1910  extolled  the 

virtues  of  the  machine  in  their  manifestos) — but  the  comparison  between  man 
and  machine  is  particularly  compelling  in  the  case  of  the  computer. 

However,  there  is  no  science  and  no  subtlety  in  the  broad,  unqualified 
claim  that  we  behave  like  computers  or  vice  versa;  the  trick  is  to  know  enough 
about  how  humans  and  computers  think  to  say  exactly  what  they  have  in 
common,  and,  when  we  lack  this  knowledge,  to  use  the  comparison  to  suggest 
theories  of  human  thinking  or  computer  thinking.  Thus,  psychology  and 
AI  have  a  reciprocal,  piggyback  relationship:  What  we  learn  about  human 
intelligence  suggests  extensions  to  the  theory  of  machine  intelligence,  and  vice 
versa. 

This  reciprocal  relationship  was  most  evident  during  the  early  years  of 
AI.  For  example,  in  1956,  Allen  Newell  and  Herbert  Simon  developed  a  theory 

of  problem  solving  called  LT  (for  Logic  Theorist),  which  they  implemented  as 
a  computer  program.  Because  the  theory  was  formalized,  Newell  and  Simon 

could  specify  exactly  the  problem-solving  behaviors  they  expected  to  find  in 
human  problem- solvers.  But  when  they  tested  their  theory,  they  found  that  it 
failed  in  one  respect:  Humans  did  not  use  the  same  control  process  (working 
backward  from  theorem  to  axioms)  as  the  program.  Thus,  they  revised  the 
theory,  and  wrote  a  new  program,  to  incorporate  what  they  had  learned 
about  human  control  processes  during  problem  solving.  They  called  the  new 
program  the  General  Problem  Solver  (GPS),  and  the  new  control  process 

means- ends  analysis,  and  found  that  this  process  was  much  more  efficient  (in 
terms  of  computer  time)  than  its  predecessor.  Means-ends  analysis  is  now  an 
established  problem-solving  technique  in  AI. 

This  example  illustrates  how,  by  exploiting  the  comparison  between 

human  and  machine  problem-solving,  it  is  possible  to  develop  theories  of  both 
from  relative  ignorance  of  either.  The  first  step  was  LT,  a  preliminary  theory. 

The  next  step  was  to  test  LT  against  human  problem-solvers.  The  third  step 
was  to  derive  a  new  theory,  GPS,  from  differences  between  the  old  one  and 
the  experimental  data.  This  theory  was  tested  again  and  was  more  successful, 

both  as  a  theory  of  human  problem-solving  and  as  a  technique  for  AI.  Note, 
however,  that  this  development  succeeded  not  by  simply  asserting  that  human 

problem-solving  is  like  machine  problem-solving  but,  rather,  by  describing 
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with  precision  their  similarities  and,  more  importantly  for  the  development  of 
the  theory,  their  differences.  Computer  programs  are  precise  descriptions  of 
behavior  and  so  are  the  results  of  experiments  with  humans;  by  using  each  to 

complement  the  other,  a  theory  of  behavior  develops  quickly. 

This  approach  to  psychological  research  is  called  information-processing 
psychology  and,  more  recently,  cognitive  science.  The  theories  that  are  devel- 

oped— computer  models  of  human  thinking — are  called  models  of  cognition. 
The  central  idea  of  information-processing  psychology  is  to  bring  precision  to 
the  seductive  comparison  between  human  and  artificial  intelligence,  to  benefit 
our  understanding  of  human  cognition.  In  the  next  section,  we  present  a 

historical  background  to  information-processing  psychology. 

A  History  of  AI  and  Information  Processing 

Information-processing  psychology  has  played  an  important  part  in  the 
development  of  American  psychology  since  1950.  It  has  helped  to  reinstate 
the  concept  of  mind,  which  had  been  abolished  by  behavioral  psychologists 

because  it  was  unobservable  except  by  introspection.  Methodological  behav- 
iorism condemned  introspection  as  a  psychological  method  because  there  was 

no  guarantee  that  the  words  used  by  one  person  to  describe  his  (or  her)  mental 
events  would  mean  the  same  thing  to  another  person.  For  example,  if  a  person 

says,  "I  can't  quite  think  of  the  word — it  is  on  the  tip  of  my  tongue,"  you 
may  think  you  know  what  he  is  thinking  and  feeling,  but,  in  fact,  regardless 
of  the  detail  with  which  he  describes  his  state,  you  cannot  guarantee  that 
your  knowledge  of  his  state  is  completely  accurate.  A  stronger  position  on 
introspection  is  taken  by  radical  behaviorism,  which  holds  that  knowledge 
obtained  by  introspection  not  only  cannot  be  accurately  communicated,  but 

is  not  even  accurately  perceived  by  the  introspector:  "An  organism  behaves  as 
it  does  because  of  its  current  structure,  but  most  of  this  is  out  of  the  reach  of 

introspection"  (Skinner,  1976,  p.  19).  Mental  events  are  viewed  as  side  effects 
of  the  interaction  between  an  organism  and  its  environment,  not  causes  and 
thus  not  explanations  of  behavior. 

These  positions — radical  and  methodological  behaviorism — were  objective 
but  resulted  in  a  psychology  that  did  not  admit  the  mind.  Theoretically,  it 

was  possible  to  explain  behavior  in  terms  of  stimulus-response  pairs,  denying 
any  mediating  mental  structures  or  processes: 

A  person  is  changed  by  the  contingencies  of  reinforcement  under  which  he 
behaves;  he  does  not  store  the  contingencies.  In  particular,  he  does  not  store 
copies  of  the  stimuli  which  have  played  a  part  in  the  contingencies.  There 

are  no  "iconic  representations"  in  his  mind;  there  are  no  "data  structures 
stored  in  his  memory";  he  has  no  "cognitive  map"  of  the  world  in  which 
he  has  lived.  He  has  simply  been  changed  in  such  a  way  that  stimuli  now 
control  particular  kinds  of  perceptual  behavior.  (Skinner,  1976,  pp.  93-94) 
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In  contrast,  all  the  research  described  in  the  Handbook  is  concerned 

with  structures  and  processes  that  mediate  intelligent  responses  to  stimuli. 

This  fundamental  change  in  theoretical  positions  took  place  between  1950 

and  1960,  during  which  time  behaviorism  was  largely  displaced  by  cognitive 

psychology.  The  key  to  the  change  was  the  concept  of  information.  Following 

the  publication,  in  1949,  of  Shannon  and  Weaver's  "The  Mathematical  Theory 

of  Communication,"  information  became  a  concrete,  measurable  quantity  (see 
Shannon  and  Weaver,  1963).  Initially,  the  strict  mathematical  conception  of 

information  was  explored;  theorists  tried  to  fit  many  aspects  of  human  com- 
munication into  the  general  model  proposed  by  Shannon  and  Weaver  (see,  e.g., 

Cherry,  1970).  But  the  model  was  best  suited  to  communication  over  electrical 

channels,  and  so,  by  the  mid-1950s,  a  more  relaxed,  and  more  appropriate, 
conception  of  information  was  emerging. 

An  influential  paper  was  "The  Magical  Number  Seven  ..."  in  which  Miller 
(1956)  proposed  that  the  information  capacity  of  mental  processes,  particularly 

short-term  memory,  is  best  measured  in  terms  of  semantic  chunks — meaningful 

units  of  information — not  abstract  bits.  For  example,  words  from  a  sentence 
and  nonsense  syllables  are  considered  to  be  chunks  of  information  and  put 

approximately  equal  demands  on  memory,  despite  the  fact  that  the  words 

contain  more  information,  in  the  mathematical  sense,  than  the  syllables.  In 

the  years  following  Miller's  paper,  information  structures  such  as  discrimina- 
tion nets,  associative  semantic  nets,  and  frames  were  developed  to  represent 

the  information  used  in  cognition.  The  original,  mathematical  formulation  of 

information  has  been  largely  abandoned: 

The  problem  was  that  the  bit  gave  a  very  poorly  articulated  characterization 
of  the  information. ...  As  descriptions  of  the  information  have  become  more 

articulated,  the  theories  composed  out  of  them  have  become  more  successful. 

(Anderson  and  Bower,  1973,  p.  136) 

The  increasing  sophistication  of  computers  and  computer  science  was  the 

most  important  factor  in  the  development  of  information-processing  ideas. 

During  the  late  1950s,  there  was  the  realization  in  information-processing 
psychology  that  the  computer  was  not  simply  a  device  for  shifting  bits  or 

"crunching  numbers,"  but  was  more  generally  capable  of  any  kind  of  symbol 
manipulation,  of  any  kind  of  information  process: 

An  entirely  different  use  of  computers  in  psychology  . . .  has  emerged.  This . . . 
stems  from  the  fact  that  a  computer  is  a  device  for  manipulating  symbols 
of  any  kind,  not  just  numerical  symbols.  Thus  a  computer  becomes  a  way 
of  specifying  arbitrary  symbolic  processes.  Theories  of  this  type,  which  can 
be  called  information  processing  theories,  are  essentially  nonquantitative 

(they  may  involve  no  numbers  at  all),  although  neither  less  precise  nor  less 
rigorous  than  classical  mathematical  theories.  (Newell  and  Simon,  1963, 
p.  366) 
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And  in  cognitive  psychology,  the  computer  and  the  emergence  of  programs 

like  LT  had  a  profound  effect,  even  though  cognitive  psychology  does  not  share 

the  enthusiasm  of  information-processing  psychology  for  computer  models: 

The  activities  of  the  computer  itself  seemed  in  some  ways  akin  to  cognitive 

processes.  Computers  accept  information,  manipulate  symbols,  store  items 

in  "memory"  and  retrieve  them  again,  classify  inputs,  recognize  patterns, 
and  so  on.  Whether  they  do  these  things  just  like  people  was  less  important 
than  that  they  do  them  at  all.  The  coming  of  the  computer  provided  a 

much-needed  reassurance  that  cognitive  processes  were  real. . . .  Some  the- 
orists even  maintained  that  all  psychological  theories  should  be  explicitly 

written  in  the  form  of  computer  programs.  (Neisser,  1976,  pp.  5-6) 

These  theorists  were  Newell,  Simon,  and  J.  C.  Shaw.  Their  position  that 

computer  programs  can  be  psychological  theories  is  the  point  at  which  cog- 

nitive psychology  and  information-processing  psychology  part  company.  For 
most  cognitive  psychologists,  information  processing  is  a  metaphor  for  human 

thought,  a  means  of  focusing  attention  on  new  and  interesting  questions  about 

the  mind.  Very  few  cognitive  psychologists  have  implemented  information- 

processing  models — programs — of  their  theories.  Even  among  those  who  have, 
the  strong  position  that  the  program  is  itself  a  theory  is  not  universally 

accepted;  for  example,  Anderson  and  Bower  (1973)  explicitly  limit  the  sense 

in  which  their  model  of  human  associative  memory  is  a  theory  (Article  XI.E2): 

It  is  important  to  be  clear  about  the  relationship  between  the  theory  and 

this  simulation  program.  We  make  no  claim  that  there  is  any  careful  cor- 
respondence between  the  step-by-step  information  processing  in  the  simula- 

tion program  and  in  the  psychological  theory. . . .  The  claim  is  sometimes 
made . . .  that  the  program  is  the  theory.  This  is  not  the  case  for  HAM,  and 
we  wish  to  make  this  denial  explicit.  HAM  represents  a  very  complicated 

set  of  speculations  about  human  memory.  Only  some  of  these  are  repre- 
sented in  the  simulation  program.  Moreover,  the  simulation  program  does 

not  serve  as  an  embodiment  of  this  subset  of  the  theory;  rather,  it  is  but 

one  test  of  the  adequacy  of  that  subset,  (pp.  142-143) 

(The  relationship  between  cognitive  psychology  and  information-processing 
psychology  is  discussed  in  more  detail  in  Newell,  1970,  and  Miller,  1978.) 

To  complete  this  historical  overview,  we  should  note  the  relationship 

between  AI  and  information-processing  psychology.  It  was  summed  up  nicely 
by  Minsky  (1968)  in  his  own  historical  discussion  in  which  he  identified  three 

extensions  to  early  work  in  cybernetics: 

The  first  was  the  continuation  of  the  search  for  simple  basic  principles. . . . 
The  second  important  avenue  was  an  attempt  to  build  working  models  of 

human  behavior  incorporating,  or  developing  as  needed,  specific  psychologi- 
cal theories. . . .  The  third  approach,  the  one  we  call  Artificial  Intelligence, 

was  an  attempt  to  build  intelligent  machines  without  any  prejudice  toward 

making  the  system  simple,  biological,  or  humanoid.  (p.  9) 
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In  other  words,  AI  does  not  require  that  an  intelligent  program  demonstrate 

human  intelligence,  but  information-processing  psychologists  insist  that  the 
correspondence  be  proved. 

This  overview  is  almost  current;  we  have  discussed  the  common  roots  of 

AI,  information-processing  psychology,  and  cognitive  psychology,  and  we  have 
discussed  the  points  at  which  they  part  company.  However,  we  should  note 

that  we  have  presented  the  strongest  version  of  the  information-processing 
approach,  that  advocated  by  Newell  and  Simon.  Their  position  is  so  strong 

that  it  defines  information-processing  psychology  almost  by  exclusion:  It  is 
the  field  that  uses  methods  alien  to  cognitive  psychology  to  explore  questions 
alien  to  AI.  This  is  an  exaggeration,  but  it  serves  to  illustrate  why  there 
are  thousands  of  cognitive  psychologists,  and  hundreds  of  AI  researchers,  and 

very  few  information-processing  psychologists.  Recently,  the  strong  position 
has  been  relaxed  to  admit  research  that  does  not  necessarily  prove  the  cor- 

respondence between  programs  and  human  behavior  but  that  has  some  avowed 
concern  for  understanding  human  behavior.  This  research  is  called  cognitive 
science  by  its  practitioners. 

The  articles  in  this  chapter  discuss  models  of  cognition  that  have,  for 
the  most  part,  been  the  historical  shoulders  on  which  cognitive  science  now 
stands.  Of  the  eight  articles,  five  are  devoted  to  models  of  human  memory, 

two  to  problem-solving,  and  one  to  belief  systems.  The  emphasis  on  memory 
has  two  causes,  one  historical  and  one  artifactual.  Historically,  cognitive 
psychology  has  concerned  itself  almost  exclusively  with  memory,  so  it  is  not 

surprising  that  it  should  be  a  major  topic  in  information-processing  psychol- 
ogy. However,  the  proportion  of  articles  would  have  been  different  had  we 

included  discussions  of  other  cognitive  science  research  in  this  chapter,  rather 

than  elsewhere  in  the  Handbook — for  example,  research  on  speech  under- 

standing (Chap.  V);  on  natural-language  understanding,  especially  the  work 
of  Schank  and  his  colleagues  (Chap.  IV);  on  planning  (Chap.  XV);  and  on 
learning  (Chap.  XTV). 

The  first  model  discussed  in  this  chapter  is,  appropriately,  Newell  and 

Simon's  General  Problem  Solver  program  (GPS;  Article  XI. B).  It  is  some 
of  the  earliest  research  in  information-processing  psychology.  The  program 
introduced  means- ends  analysis,  which  constrains  a  problem  solver  to  the  task 
of  reducing  the  differences  between  the  current  state  of  a  problem  and  the 
goal  state,  or  solution.  The  problem  solver  often  cannot  derive  a  solution 
immediately  from  the  problem,  so  it  is  necessary  to  transform  the  problem 
into  some  intermediate  state,  from  which  the  solution  might  be  derived.  GPS 

was  tested  extensively  as  a  theory  of  human  problem-solving. 
The  next  article  (Article  XI.C)  is  also  about  problem  solving;  it  discusses 

a  model  of  opportunistic  planning  designed  by  Hayes-Roth  and  Hayes-Roth 
(1978).  Their  model  is  an  interesting  contrast  to  those  discussed  in  Chapter  XV 
on  planning.  Opportunistic  processing  involves  a  flexible  control  strategy 
(implemented  with  a   blackboard  control  structure)  that  permits  planning 
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decisions  to  be  made  when  the  opportunity  arises,  rather  than  in  a  strict  order. 

Hayes-Roth  and  Hayes-Roth  suggest  that  opportunistic  processing  is  neces- 
sary for  complex  problem  solving.  Their  model  was  developed  specifically  as 

a  model  of  human  planning  abilities;  thus,  it  is  discussed  in  the  context  of  this 
chapter  on  models  of  cognition. 

About  the  time  that  GPS  was  being  implemented,  Feigenbaum  was  design- 
ing his  Elementary  Perceiver  and  Memorizer  (EPAM)  program,  the  first  of  the 

memory  models  considered  in  this  chapter  (Article  XI.D).  It  learns  paired- 
associate  nonsense  syllables,  which,  since  the  end  of  the  19th  century,  have 
been  used  in  experiments  to  reduce  the  effect  on  memory  of  the  meaning  of 
the  material  being  remembered.  Paired  associates  allow  probing:  One  of  a 
pair  of  syllables  serves  as  a  cue  to  invoke  the  memory  of  the  other  syllable. 

Many  things  can  be  learned  about  memory  by  varying  the  speed  at  which  syl- 
lables are  presented,  the  number  that  must  be  remembered,  or  the  similarity 

between  the  syllables.  Feigenbaum  modeled  learning  of  the  syllables  as  a 
process  of  storing  just  enough  information  about  a  syllable  to  distinguish  it 
from  the  other  syllables  in  memory  at  the  time  it  was  stored.  Often,  this 
did  not  require  storing  the  whole  syllable,  which  results  in  performance  on  a 
recall  test  that  is  less  than  perfect  and  strikingly  similar  to  that  of  humans 
on  similar  tests. 

In  1968,  Quillian  developed  a  model  of  semantic  memory  that  provided 
the  basis  for  the  work  described  in  the  next  three  articles  in  this  chapter 

(Articles  XI. El,  XI.E2,  and  XI.E3).  Conceptually,  semantic  memory  models  are 
very  simple.  They  can  be  thought  of  as  graphs,  where  the  points  (called  nodes) 
represent  concepts  and  the  lines  represent  relations  between  the  points.  The 
meaning  of  a  concept  in  a  semantic  net  is  represented  by  its  connections  (or 
associations)  with  other  concepts. 

Quillian 's  model  was  not  developed  as  a  psychological  theory  originally, 
but  it  was  the  first  information-processing  model  that  looked  like  it  might 
explain  recently  discovered  and  curious  effects  of  meaning  on  memory,  for 

example,  the  category-size  effect,  whereby  it  takes  longer  to  classify  objects 
that  are  members  of  large  classes  than  those  that  are  members  of  small  classes. 

The  MEMOD  model  developed  by  Lindsay,  Norman,  and  Rumelhart  (LNR; 

see  Article  XI.E4)  is  much  more  ambitious  than  Quillian's  model.  In  the  first 
place,  it  is  intended  to  be  a  model  of  human  memory  that  captures  some 
of  the  richness  of  language.  This  requires  three  types  of  nodes,  instead  of 

just  the  one  "concept"  node  of  Quillian.  Nodes  represent  concepts,  but  also 
episodes  and  events.  Episode  nodes  can  be  the  superordinate  nodes  of  complex 

events  like  stories;  moreover,  MEMOD 's  interpreter  can  "run"  these  events  to 
simulate  them.  Episode  nodes  can  designate  arbitrary  procedures  that  the 
interpreter  can  execute.  The  MEMOD  model  also  permits  a  large  number  of 
relations  between  nodes,  where  Quillian  had  only  about  half  a  dozen.  Further, 
relations  in  this  model  have  a  case  structure  similar  to  that  of  Fillmore  (see 

Article  iv. CM,  in  Vol.  I).     Another  improvement  over  Quillian's  model  was 
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the  introduction  of  more  powerful  interpretive  procedures,  since  semantic-net 
models  do  not  actually  do  anything  except  represent  information.  Interpretive 
procedures  are  required  to  manipulate  this  information. 

The  HAM  model  of  Anderson  and  Bower  (Article  XI.E2)  is  also  a  model 

of  human  long-term  memory  (Human  Associative  Memory;  thus,  HAM),  but 
it  differs  in  a  number  of  important  respects  from  MEMOD.  Although  it  has  a 
network  knowledge  base,  relations  in  the  network  are  much  simpler  than  those 

in  MEMOD.  They  are  based  on  the  syntactic  categories  of  a  simplified  gram- 
mar of  English  that  is  used  to  interact  with  the  system.  Another  difference 

between  the  two  systems  is  that,  in  HAM,  arbitrary  procedures  cannot  be 

written  and  the  simple  procedures  that  are  used  reside  outside  of  the  net- 
work. Anderson  and  Bower  take  the  position  that  experimental  data  from 

the  memory  literature  can  be  explained  by  a  relatively  simple  strategy-free 
process. 

Later  work  by  Anderson  on  his  ACT  system  is  discussed  in  Article  XI.E3. 

The  ACT  model  uses  a  propositional  semantic-network  knowledge  base,  similar 
to  that  of  HAM.  It  has,  in  addition,  a  procedural  component  to  operate  on  the 
knowledge  base.  Procedures,  represented  by  a  production  system,  are  written 
by  the  user  of  ACT.  This  feature  makes  ACT  rather  like  the  MEMOD  system 
in  that  both  provide  a  language  for  their  users  to  build  computer  models  of 
psychological  processes.  The  major  differences  between  the  systems  arise  from 
the  way  procedures  are  represented  and  from  the  interpreter,  which  controls 
the  flow  of  computation  in  the  systems. 

The  last  article  in  this  chapter  (Article  XI.F)  discusses  belief  systems,  in 
particular,  the  models  of  ideological  oversimplification  designed  by  Abelson 
and  the  PARRY  model  of  paranoia  built  by  Colby  and  his  associates.  These 
models  have  in  common  a  representation  of  beliefs  that  affect  interpretations 

of  sentences.  For  example,  a  "typical  liberal"  would  interpret  a  national  event, 
like  Congress  appropriating  money  for  urban  redevelopment,  in  a  different 

way  than  would  a  "typical  conservative."  The  article  reviews  a  recent  paper 
by  Abelson,  in  which  he  discusses  some  differences  between  belief  systems  and 

the  knowledge-based  expert  systems  that  are  current  in  AI. 

References 

A  concise,  personal  history  of  the  first  years  of  information-processing 

psychology  is  given  in  Newell  and  Simon  (1972,  pp.  873-889).  Cherry  (1970) 
is  a  comprehensive  and  readable  account  of  the  very  early  work  in  psychology, 
telecommunications,  cybernetics,  and  computer  science;  it  is  a  good  resource 
for  readers  who  want  to  know  about  the  intellectual  background  that  gave  rise 
to  AI  and  its  related  disciplines.  Anderson  and  Bower  (1973)  present  a  detailed 
review  of  the  history  of  associationism  in  memory  research,  as  well  as  a  review 
and  criticism  of  several  memory  models.  Several  books  by  cognitive  scientists 
give  their  perspective  on  the  new  field:  Bobrow  and  Collins  (1975)  contains 
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several  interesting  papers  on  the  developing  topic  of  knowledge  representation. 

Norman  and  Rumelhart  (1975)  discuss  their  MEMOD  system  in  detail — it  is 

interesting  to  contrast  this  book  with  a  "standard"  text  on  memory 
(e.g.,  Crowder,  1976)  to  see  what  a  difference  the  information-processing  per- 

spective can  make.  Schank  and  Abelson  (1977)  discuss  their  theory  of  knowl- 

edge representation — a  theory  that  is  currently  very  popular.  Finally,  there 
is  a  journal  called  Cognitive  Science  that  publishes  current  research. 



B.     GENERAL  PROBLEM  SOLVER 

HUMAN  PROBLEM-SOLVING  has  received  intensive  examination  by  Allen 
Newell,  Herbert  A.  Simon,  and  their  colleagues  and  students  at  Carnegie- 
Mellon  University.  In  their  book  Human  Problem  Solving  (1972),  Newell  and 

Simon  present  thorough  analyses  of  problem  solving  in  three  task  domains — 
cryptarithmetic,  logic,  and  chess — and  they  present  and  evaluate  information- 
processing  systems  that  accurately  simulate  human  thought  in  these  domains. 

There  is  not  the  space  here  to  summarize  all  the  work  in  human  problem- 
solving.  In  fact,  the  only  system  we  examine  is  the  General  Problem  Solver 

program  (GPS);  and  the  only  task  domain,  logic  problems.  However,  the 

information-processing  system  that  Newell  and  Simon  develop  is  certainly 
general  enough  to  provide  a  framework  for  problem  solving  in  several  other 

task  domains.  GPS  is  not  just  a  logic  problem-solver. 
Problem  solving,  and  most  other  intellectual  activity,  involves  general 

knowledge  that  applies  to  many  problems  and  very  specific  knowledge  that 
is  special  to  a  particular  problem.  For  example,  a  general  rule,  or  heuristic, 

is  "If  you  can't  solve  the  whole  problem,  try  to  solve  part  of  it."  A  specific 
piece  of  knowledge  that  may  be  useful  for  solving  some  word  problems  is, 
for  example,  that  a  mile  is  1,760  yards.  The  distinction  between  general  and 

task-specific  knowledge  is  made  in  GPS,  and  it  was  for  just  this  reason  that 
it  was  called  GPS: 

GPS  obtained  the  name  "general  problem  solver"  because  it  was  the  first 
problem  solving  program  to  separate  in  a  clean  way  a  task-independent  part 
of  the  system  containing  general  problem  solving  mechanisms  from  a  part 
of  the  system  containing  knowledge  of  the  task  environment.  (Newell  and 
Simon,  1972,  p.  414) 

Accordingly,  our  discussion  of  GPS  moves  from  general  to  specific:  First  is 

a  simplified  discussion  of  the  information-processing  system  on  which  GPS 
is  constructed,  then  a  presentation  of  general  problem-solving  methods,  and 
finally  consideration  of  methods  specific  to  the  task  demands  of  logic  problems. 

The  Information-processing  System 

Everything  that  takes  place  in  GPS  is  an  information  process,  and  the 

environment  in  which  GPS  solves  problems  is  called  an  information-processing 
system  (IPS).  A  central  concept  is  that  of  a  state — a  momentary  snapshot 
containing  what  the  IPS  knows  at  the  time.  The  knowledge  implicit  in  a  state 
is  represented  by  symbol  structures. 

11 
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More  formally: 

1.  There  is  a  set  of  elements  called  symbols;  a  symbol  structure  is  a  set  of 

instances  of  symbols  connected  by  relations. 

2.  An  information  process  is  a  process  that  has  symbol  structures  for  all  or 
some  of  its  inputs  or  outputs. 

3.  An  object  is  a  symbol  structure,  or  a  program  that  the  IPS  is  capable  of 
executing,  or  an  external  environment  of  readable  stimuli. 

States  are  derived  from  other  states  by  the  application  of  information 

processes,  often  called  operators.  Two  important  states  are  the  starting  state, 

which  represents  everything  that  the  IPS  knows  at  the  beginning  of  the 

problem,  and  the  goal  state,  which  represents  the  knowledge  of  the  IPS  when 

it  has  solved  the  problem.  There  may  be  many  goal  states,  corresponding 

to  various  solutions  to  a  problem.  For  example,  the  starting  state  in  a  game 

of  chess  is  the  familiar  double  ranks  of  opposing  black  and  white  pieces. 

From  this  single  starting  state  an  enormous  number  of  goal  states  representing 

checkmate  can  be  derived.  Each  new  position  is  derived  from  its  predecessor 

by  an  operator,  a  legal  move  of  one  or  two  chessmen.  A  final  point  about  this 

state-space  representation  is  that  symbol  structures  may  be  nested  in  an  IPS; 
within  the  structure  that  corresponds  to  a  whole  board  position,  there  are  a 

number  of  smaller  structures  corresponding  to  parts  of  it. 

Since  an  object  is  defined  as  a  symbol  structure,  a  program  to  be  executed, 

or  external  data,  no  distinction  is  made  between  data  and  programs.  This  is 

an  important  aspect  of  GPS  and  of  many  other  AI  programs,  but  for  the 

sake  of  simplicity  we  will  ignore  the  possibility  that  objects  can  be  programs. 

From  here  on,  object  refers  to  symbol  structures,  and  operator  or  information 

process  denotes  the  programs  that  the  IPS  executes.  As  an  example  of  this 

more  restrictive  definition,  configurations  of  chess  boards  are  objects  and  the 

moves  of  the  chess  pieces  are  operators.  Note  that  an  object  may  represent 

an  entire  chess  board  or  just  a  part  of  it.  A  state,  then,  is  composed  of  one 

or  more  objects,  and  it  is  transformed  by  operators. 

Elementary  Information  Processes 

Newell  and  Simon  suggest  some  elementary  information  processes  (EIPs) 

from  which  all  the  other  operations  of  an  IPS  can  be  constructed.  They  are: 

1.  Discrimination.  The  IPS  must  be  able  to  invoke  operators  appropriate  to 
the  symbol  structure  it  is  currently  processing. 

2.  Tests  and  comparisons.   The  IPS  must  be  able  to  compare  symbol  struc- 
tures. 

3.  Symbol  creation.  It  must  be  possible  to  create  symbols  and  allow  them  to 
designate  other  symbol  structures. 
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4.  Designation  of  symbol  structures.  It  must  be  possible  to  designate  various 
parts  of  any  symbol  structure  and  obtain  the  designation  of  any  part  of 

any  symbol  structure. 

5.  Input  and  output.  The  IPS  must  be  able  to  read  and  write  symbol  struc- 
tures internally  and  externally. 

6.  Storing  of  symbol  structures.  It  must  be  possible  to  store  a  symbol  structure 
and  retrieve  it  by  means  of  another  symbol  structure  that  designates  it. 

The  Problem  Space 

Newell  and  Simon  define  the  task  environment,  or  problem  space,  of  GPS 

to  be  the  formal  specification  of  the  set  of  symbol  structures  through  which 

GPS  searches  for  a  solution.  This  may  suggest  that  GPS  has  a  collection  of 

states  available  to  search  for  a  goal  state.  In  fact,  search  in  GPS  means  that 

GPS  generates  states  by  applying  operators,  first  to  the  starting  state  (which 

it  is  given),  then  to  states  it  derives  from  the  starting  state,  and  so  on.  GPS 

generates  states  in  its  problem  space  as  it  solves  a  problem. 

The  problem  space  used  by  GPS  varies  with  the  problem.  It  is  a  formal 

specification  of  the  knowledge  needed  to  solve  a  problem.  Consider,  for 

example,  the  famous  cryptarithmetic  problem 

DONALD 

+  GERALD 

ROBERT     Given  D  =  5 

where  the  object  is  to  assign  digits  to  letters  so  that  the  sum  of  the  numbers 

denoted  by  DONALD  and  GERALD  equals  the  number  denoted  by  ROBERT. 

A  problem  space  for  this  example  is: 

(letter) 

(digit) 

(expression) 

(knowledge  state) 

(operator) 

==  A|B|D|E|G|L|N|0|R|T 

=  0|1|2|3|4|5|6|7|8|9 

=  (letter)  has-value  (digit) 

=  (expression)  |  (expression)  &  (knowledge  state) 

=  Assert((expression)) . 

All  knowledge  about  this  problem  is  made  up  of  expressions  of  the  form 

letter  has-value  digit.  The  initial  knowledge  state  is  the  single  expression  D 

has-value  5.  Subsequent  knowledge  states  are  conjunctions  of  expressions. 
The  single  operator  required  to  solve  the  problem  is  to  assert  that  a  letter 

has  a  particular  value,  that  is,  to  assign  it  the  value.  This  problem  space  is 

complete  in  the  sense  that  application  of  the  operator  is  enough  to  generate 

all  the  expressions  needed  for  a  solution. 

In  addition  to  the  problem  space,  the  IPS  needs  a  program,  or  set  of 

instructions,  to  dictate  how  digits  are  to  be  assigned  to  letters  and  to  test  if 
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a  solution  has  been  found.  This  will  be  discussed  further  for  the  domain  of 

logic  problems. 
A  distinction  must  be  made  between  search  in  the  problem  space  and  the 

search  space.  The  former  refers  to  all  the  solutions  and  paths  leading  to  them 

that  the  problem  solver  actually  generates,  while  the  latter  refers  to  all  the 

solutions  and  paths  that  exist.  For  problems  of  any  complexity,  it  is  necessary 

to  keep  the  problem  space  smaller  than  the  search  space.  To  rephrase  a 

point  made  in  Chapter  II:  Search  in  the  problem  space  involves  generating 

just  enough  of  the  search  space  to  find  a  solution  to  the  problem.  In  GPS, 

two  methods  are  used  to  accomplish  this.  One  is  a  general  heuristic  called 

means- ends  analysis,  and  the  other  is  a  form  of  planning.  We  will  not  consider 

planning  here;  the  interested  reader  should  see  pages  429-435  of  Newell  and 
Simon  (1972)  and  Article  XV.A  in  the  Handbook. 

General  Problem-solving  Methods:  Means-ends  Analysis 

Problem  solving  in  GPS  is  a  matter  of  transforming  the  start  state  into  a 

goal  state.  Thus,  at  any  point  during  problem  solving,  GPS  has  two  goals: 

1.  Transform  state  1  to  state  2  by  the  application  of  operators. 

2.  Apply  some  operator  to  state  1  (or  some  intermediate  state). 

These  goals  do  not  specify  which  operator  should  be  applied  to  any  object. 

There  are  numerous  strategies  for  deciding  this.  One  is  to  apply  all  legal 

operators  to  the  first  object,  then  apply  all  legal  operators  to  all  the  results 

of  the  first  application,  and  so  on.  This  method,  called  exhaustive  search, 

generates  the  entire  search  space.  It  is  guaranteed  to  find  a  solution  eventually 

but  is  much  too  costly  to  be  used  for  problems  of  any  complexity.  Means-ends 
analysis  is  a  powerful  heuristic  that  constrains  search  by  anchoring  paths  in 

the  search  space  to  the  current  state  and  the  desired  state;  it  implies  a  third 

problem-solving  goal  for  GPS: 

3.  Reduce  the  difference  between  state  1  and  state  2  by  modifying  state  1. 

This  rules  out  directionless  expansion  of  possible  solutions: 

By  taking  account  of  the  characteristics  of  the  goal  object  it  is  seeking  to 
reach,  the  problem  solver  extracts  from  the  situation  an  enormous  amount 
of  information  about  the  direction  in  which  it  should  explore,  and  almost 

immediately  rules  out  of  bounds  all  but  a  tiny  portion  of  the  problem  space. 
(Newell  and  Simon,  1972,  p.  428) 

Means-ends  analysis  is  incorporated  into  GPS  as  follows: 

1 .    If  the  current  state  is  not  the  desired  one,  differences  between  it  and  the 
desired  state  will  be  detected. 



B  General  Problem  Solver  15 

2.  Operators  can  be  classified  according  to  the  differences  they  eliminate. 

3.  It  may  be  necessary  to  modify  the  current  state  to  make  it  compatible 
with  a  desired  operator. 

4.  "Difficult"  differences  between  states  might  be  simplified  by  transforming 
the  current  state,  even  if  this  results  in  more,  though  simpler,  differences. 

The  IPS,  problem  space,  search,  and  means-ends  analysis  are  domain- 
independent  ideas.  The  GPS  program  was  designed  to  separate  them  from 

any  given  problem- solving  task.  In  the  next  section,  we  look  at  an  example 

of  GPS  in  the  task-domain  of  logic  problems. 

Task  Demands  of  Logic  in  GPS 

Symbolic  logic  problems  provide  an  ideal  situation  to  study  problem 

solving  because  one  can  describe  the  task  environment  of  these  problems  in 

great  detail.  One  such  problem  is: 

Translate  the  expression  R  &  (-«P  ->  Q)  into  (P  V  Q)  &  R . 

It  is  unimportant  what  the  connective  symbols  (— ►,  -i,  &,  V)  mean.  (In  fact, 
the  human  problem-solvers  who  provided  data  for  Newell  and  Simon  were 
told  nothing  about  them  except  that  they  were  a  set  of  transformations  for 

turning  one  expression  into  another.)  Each  transformation  reduces  a  difference 

between  two  expressions.  The  problem  is  to  use  these  transformations  to  turn 

the  first  expression,  R  &  (->P  — ►  Q),  into  the  second  one,  (P  V  Q)  &  R.  The 

available  transformations  were  the  following  (in  which  " :  "  means  "translates 

to"  and  A  and  B  are  arbitrary  expressions): 

—A  :  A  ASlA  :  A 

A&B : A  A&B : B 

A\J  A  :  A  A  and  P  :  A  &  B 

A&B  :  BSlA  A\l  B  :  B  V  A 

A  V  B  :  -(-A  &  -.5)  A  ->  B  :  -A  V  B 

A  ->  B  :  -*B  ->  ̂ A  A  -►  B  and  A  :  B 

A  V  (B  V  C)  :  (A  V  B)  V  C  A  &  (B  &  C)  :  (A  &  B)  &  C 

A  V  (B  &  C)  :  (A  V  B)  &  (A  V  C)  A  &  (B  V  C)  :  (A  &  B)  V  (A  &  C) 

A  — ►  P  and  P  — ►  C  :  A  — ►  C  A  :  A  V  X  (X  is  any  expression) 

Consider  how  these  rules  can  be  used  to  translate  from  the  original  to  the 

goal  expression: 
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Expression  Transformation 

R  &  (-.P  —  Q)  A&B  :  B&A 
yields  (-.P  ->  Q)  &  R 

(-.p  ->  Q)  &  P  (A-^B):(Mv  P) 
applied  to  left  part  yields 
(--.P  \J  Q)8iR 

(-.--P  V  Q)  &  P  —A  :  A 
applied  to  left  part  yields 

(P  V  Q)  <fc  P 

(P  V  Q)  &  P  is  the  goal  expression.       Q.E.D. 

One  can  now  see  how  GPS  works  in  the  task  environment  of  logic  prob- 
lems. Exhaustive  search  would  eventually  generate  the  goal  state  but  is 

wasteful  here  because  it  ignores  the  information  provided  by  the  goal  state. 

Means-ends  analysis  directs  GPS  to  reduce  the  difference  between  the  starting 
state  and  the  goal  state.  For  example,  comparing  the  start  state  to  the  goal 
state,  it  is  immediately  obvious  that  the  former  needs  to  be  turned  around: 
R  must  appear  on  the  right  of  the  parentheses  instead  of  on  the  left.  This  is 
a  difference  between  the  two  states;  it  can  be  reduced  by  the  transformation 
A  &  B  :  B  &  A.  Instead  of  applying  all  applicable  transformations  to  the 
starting  state,  GPS  might  simply  apply  this  one,  which  will  yield  the  state 

(-P  ̂ Q)&R. 
Continuing  this  reasoning,  one  might  try  to  reduce  the  differences  between 

(-iP  — >  Q)  and  (P  V  Q).  There  are  two  differences:  P  has  a  "-■"  prefix  in 
one  case  but  not  the  other,  and  the  connective  between  P  and  Q  is  "— ►"  in 
one  case  and  "V"  in  the  other.  One  transformation  will  reduce  the  latter 
difference,  namely,  A  — >  B  :  ->A  V  B.  Application  of  this  transformation 

yields  (-1-. P  V  Q)  &  P. 

The  final  problem  is  to  get  rid  of  the  "^^"  prefixing  P.  One  transforma- 
tion is  available  to  do  this,  -i-iA  :  A,  which  yields  the  goal  state  (P  V  Q)  &  R 

when  it  is  applied. 

(The  reader  who  wants  a  "real  life"  example  of  problem  solving  with 
means-ends  analysis  is  encouraged  to  read  Article  XV.B  on  the  STRIPS  planner, 
in  the  Handbook.) 

The  reasoning  of  the  last  paragraphs  is  a  simplified  version  of  the  opera- 
tion of  GPS.  Means-ends  analysis  is  demonstrated  here  in  its  simplest  form: 

At  each  step  in  solving  the  problem,  a  transformation  is  chosen  that  will 
reduce  one  difference  between  the  current  state  and  the  goal  state.  GPS  is 
able  to  do  this  because  each  of  the  transformations  it  uses  in  a  task  domain 

is  classified  according  to  the  differences  it  reduces.  For  the  logic  task  domain, 
there  are  six  differences  that  can  be  reduced  by  transformations.  In  GPS  these 
are  summarized  in  a  difference  table.  Three  of  the  reducible  differences  are: 
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1.  A  difference  in  position  of  components  of  the  expression.  Several  trans- 
formations will  eliminate  this  difference: 

AW  B  :  BV  A,      A  &  B  :  B  &  A,      A  ->  B  :  ̂ B  -+  -.A,      etc. 

2.  A  difference  in  the  symbol  that  appears  between  letters.  Transformations 
to  eliminate  this  difference  are: 

A  V  B  :  -(-A  &  -.£),      A  -+  £  :  -A  V  B, 

A  V  (B  &  C)  :  (A  V  B)  &  (A  V  C),      etc. 

3.  A  difference  in  the  number  of  "->"  prefixes  of  a  letter.  Several  transfor- 
mations change  the  number  of  prefixes: 

-.-iA  :  A,      A  ->  £  :  -A  V  B,      A  -+  £  :  ~^B  -*  -iA,      etc. 

To  solve  the  problem  above,  GPS  determines  the  differences  between  the 
starting  state  and  the  goal  state  and  then  applies  transformations  that  reduce 
them.  However,  the  problems  solved  by  GPS  are  rarely  so  simple;  several 

complications  must  be  considered.  First,  if  several  transformations  are  appli- 
cable to  a  state,  GPS  must  choose  between  them.  To  do  so,  it  consults  a 

ranking  of  differences  that  tells  it  which  differences  to  reduce  first. 
Another  complication  arises  when  GPS  cannot  find  an  operator  to  reduce 

a  particular  difference.  In  this  case,  it  must  transform  the  current  state  into 
an  intermediate  state  from  which  it  can  reduce  the  difference.  For  example, 

consider  adding  the  transformation  rule  A  *  B  :  A  V  ->B  and  solving  the 

problem  defined  by  the  starting  state  R  *  (~>P  — ►  Q)  and  the  goal  state 

(-iP  &  ->Q)  V  R.  In  this  case,  GPS  sets  up  the  goal  of  moving  R  to  the 
other  side  of  the  expression,  as  it  did  in  the  last  problem,  but  it  has  no 
transformations  available  to  accomplish  this.  Instead,  it  must  defer  this  goal 
and  transform  the  starting  state  into  a  state  from  which  it  can  accomplish  the 

goal.  To  do  this,  it  transforms  R  *  (->P  — ►  Q)  into  R  V  ~,(~,P  — ►  Q)  and  then 
into  -i(-iP  — ►  Q)  V  R-  Thus,  GPS  has  the  ability  to  set  up  nested  subgoals. 

The  design  of  GPS  is  dictated  by  the  heuristic  of  means-ends  analysis  and 
by  the  task  demands.  The  general  part  of  GPS  is  means-ends  analysis  and 
the  information-processing  system  in  which  it  operates.  The  remainder  of  the 
system  follows  from  the  task  of  solving  logic  problems.  There  are  a  limited 
number  of  differences  possible  and  a  limited  number  of  operations  to  reduce 
them. 

Empirical  Tests  of  GPS 

GPS  was  proposed  as  a  psychological  theory  of  human  problem-solving. 
In  this  section  we  give  evidence  for  the  theory.  Recall  that  the  most  general 

aspect  of  GPS  is  means-ends  analysis,  which  is  used  to  guide  the  generation 
of  states  in  the  problem  space.  Some  general  behaviors  are  a  natural  conse- 

quence of  means-ends  analysis;  for  example,  GPS  works  forward  from  the 
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current  state  to  the  goal  state,  as  opposed  to  working  backward  from  the 
goal.  Another  general  characteristic  of  GPS  is  the  repeated  application  of 
transformations  to  states.  This  refers  to  the  situation  in  which  GPS  finds  a 

transformation  it  wants  to  use,  but  the  current  state  is  not  in  a  form  that  will 

accept  the  transformation;  the  state  must  be  altered  and  the  transformation 

reapplied. 

If  GPS  is  a  theory  of  human  problem-solving,  one  would  expect  humans 
to  use  means-ends  analysis  and  exhibit  the  behaviors  that  derive  from  it  in 
situations  where  GPS  exhibits  these  behaviors.  In  the  case  of  logic  problems, 
this  is  easily  tested.  Task  demands  are  equated  by  ensuring  that  GPS  and  the 
human  subjects  have  the  same  transformations  to  work  with  and  the  same 
problems  to  solve.  GPS  is  programmed  to  print  out  its  goals  as  it  tries  to 
solve  the  problem,  and  the  humans  are  instructed  to  talk  out  loud  as  they 

solve  the  problem.  The  subjects'  comments  are  recorded  and  the  resulting 
record  is  called  a  protocol,  which  is  broken  down  into  phrases: 

"I'm  looking  at  reversing  these  two  things  now." 

"Then  I'd  have  a  similar  group  at  the  beginning ..." 

"I  could  easily  leave  something  like  that  'til  the  end." 

These  are  classified  as  evidence  of  goals  and  applications  of  transformations. 
Breaking  down  the  protocols  is  a  painstaking  process,  but  it  is  expedited 

by  a  structure  called  the  problem  behavior  graph,  a  graphic  display  of  the 

problem  solver's  progress.  The  nodes  of  the  graph  represent  the  knowledge 
of  the  problem  solver  at  a  given  point  in  time,  and  the  arcs  represent  the 
transformations  that  lead  to  new  nodes  (states).  There  is  also  provision  for 
returning  to  parts  of  the  problem  that  were  left  dormant  while  a  particular 
line  of  reasoning  was  being  explored.  The  protocol  of  each  subject  is  mapped 
onto  a  problem  behavior  graph.  Newell  and  Simon  do  not  expect  that  any 
problem  behavior  graph  will  precisely  match  the  output  of  GPS  on  a  problem. 
Their  claim  is,  rather,  that  patterns  of  behavior  will  be  common  to  GPS  and 
all  their  subjects.  The  problem  behavior  graph  provides  an  explicit  record  of 
the  behavior,  from  which  patterns  can  be  abstracted  if  they  exist. 

The  following  is  a  summary  of  an  analysis  of  the  problem-solving  behavior 
of  seven  human  subjects  on  a  single  problem.  Newell  and  Simon  classify  the 
behavior  of  both  GPS  and  their  subjects  into  patterns  and  compare  them  for 

overlap.  (This  analysis  is  taken  from  pp.  489-502  of  Newell  and  Simon,  1972.) 
Mnemonics  for  these  patterns  and  the  percentage  of  their  occurrence  in  the 

protocols  of  each  subject  are  shown  in  Table  B-l.  Total  percentages  are  shown 
for  the  pooled  sum  of  utterances  in  all  seven  protocols.  Table  B-l  has  three 
horizontal  divisions,  or  tiers,  representing  (a)  patterns  exhibited  by  both  GPS 
and  the  subjects,  (b)  patterns  exhibited  by  the  subjects  and  not  by  GPS,  and 
(c)  uninterpretable  behavior  on  the  part  of  the  subjects. 



General  Problem  Solver 

19 

Table  B-i 

Percentages  of  Particular  Problem-solving  Patterns 
in  Protocols  of  Individual  Subjects 

Subject 

B D TOTALS 

Tier  1.  Behavior  exhibited  by  subjects  and  by  GPS 

Means-ends  analysis 37 
47 48 

38 
52 

50 
45 

39 

(toward  goal  object; 

operator  applicability) 

Working  forward 
17 0 

13 
14 2 1 9 7 

Repeated  application 
46 44 37 39 39 44 42 38 

(after  subgoal; 

implementation) 
Subtotal     84 

Tier  2.  Behavior  exhibited  by  subjects  and  absent  in  GPS 

Means-ends  analysis 

(consequence  avoidance) 

Working  backward 

Repeated  application 

0 

0 

0 

0 

2 

0 

0 

0 

5 

<1 
0 

15 
<1 0 

6 

5 

0 

8 

7 

0 

9 

(review) 

>3 

<1 

7 

Subtotal     11 

Tier  3.  Uninterpretable  behavior 

0          3          2            9            7 5 4                        5 

TOTAL     100 

In  the  first  tier  of  the  table,  means-ends  analysis  has  two  manifestations  in 
which  states  are  transformed  to  achieve  the  goal  expression  or  are  transformed 

into  a  form  compatible  with  a  desired  transformation.  A  second  pattern  of 

behavior  is  working  forward,  that  is,  searching  through  transformations  for 

one  that  will  apply  to  the  current  state.  A  third  pattern  is  repeated  application 

of  a  transformation  on  the  same  state.  This  event  arises  mostly  when  a  desired 

transformation  is  incompatible  with  a  state.  A  goal  is  set  up  to  transform  the 

state,  and  the  original  transformation  is  then  successfully  reapplied.  Another 

type  of  reapplication  found  here  is  to  try  out  consequences  of  a  transformation 

before  committing  the  system  to  it.   Table  B-l  shows  clearly  that  the  great 
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majority  of  the  utterances  of  the  seven  subjects  conform  to  these  patterns  of 

behavior — 84%,  in  fact. 
Tier  2  represents  human  behaviors  that  were  not  implemented  in  GPS 

at  the  time.  The  greatest  percentages  were  obtained  for  the  reapplication 
of  transformations  for  the  sake  of  review  (refreshing  the  memory).  Working 
backward  from  the  goal  was  another  behavior  that  had  not  been  implemented 
in  GPS.  A  third  is  a  complex  behavior  in  which  a  transformation  is  applied 
before  the  application  of  the  desired  transformation,  because  the  latter  has 
undesirable  consequences  (as  well  as  the  desired  ones)  if  applied  before  the 
intermediate  transformation.  These  behaviors  constitute  7%,  1%,  and  3%  of 

the  protocols,  respectively. 

Tier  3  of  the  table  accounts  for  5%  of  the  subjects'  protocols  and  rep- 
resents uninterpretable  behavior  that  could  not  be  assigned  to  any  pattern. 

These  behaviors  include  grunts  and  yawns,  and  unfinished  and  ambiguous 
phrases  such  as  Well,  this  looks  like,  uh  . . .  /  dunno. 

Conclusion 

From  this  and  other  analyses,  Newell  and  Simon  conclude  that  GPS 

is  an  explicit,  operational,  and  sufficient  model  of  some  human  problem- 
solving.  In  GPS,  a  separation  is  maintained  between  general  components, 

such  as  the  information-processing  system  and  means-ends  analysis,  and  task- 
specific  components,  such  as  details  of  the  problem  space.  Newell  and  Simon 
claim  that  the  general  components  apply  in  a  wide  range  of  task  domains. 
Chess  and  cryptarithmetic  were  examined  in  addition  to  logic  problems,  and 

these  analyses  certainly  support  Newell  and  Simon's  argument  of  generality. 
Moreover,  since  GPS,  means-ends  analysis  has  been  used  in  several  other 

problem-solving  programs  (see  Article  XV. A). 
Some  problems  are  not  solved  efficiently  with  means-ends  analysis.  For 

example,  the  heuristic  can  lead  one  down  a  long  path  of  problem-solving 
operators  that  dead-ends,  forcing  the  problem  solver  to  back  up  to  a  previous 
decision  point  and  try  a  different  path.  Also,  means-ends  analysis  may  con- 

struct a  series  of  problem-solving  operators  that  will,  in  fact,  solve  the  prob- 
lem, but  that  is  much  longer  than  necessary.  Lastly,  means-ends  analysis  can 

be  inefficient  when  there  are  interacting  subgoals  to  be  achieved;  if  accom- 
plishing one  subgoal  prevents  accomplishing  another,  the  problem-solver  can 

do  no  more  than  return  to  the  beginning  of  the  problem  to  try  the  subgoals  in 
a  different  order  (see  Article  XV.A  for  a  detailed  discussion  of  this  problem). 

However,  the  efficiency  of  problem-solving  is  a  big  concern  for  computers, 
but  perhaps  not  a  serious  concern  for  humans.  The  fact  that  means-ends 
analysis  can  be  inefficient  does  not  detract  from  the  empirical  fact  of  its 

generality  in  human  problem-solving.  This  is  not  to  say  that  means-ends 
analysis  is  the  only  problem-solving  strategy  used  by  humans;  the  following 
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article  (Article  XI. C)  will  discuss  a  planning  problem  that  is  best  solved  by  a 
process  called  opportunistic  planning. 

References 

The  most  comprehensive  and  exhaustive  information-processing  analysis 
of  human  problem-solving  is  Newell  and  Simon  (1972). 



C.     OPPORTUNISTIC  PROBLEM  SOLVING 

THIS  ARTICLE  discusses  a  theory  of  planning  developed  by  Barbara  Hayes- 

Roth  and  Frederick  Hayes-Roth  (1978;  B.  Hayes-Roth,  1980).  The  theory  is 
specifically  of  human  planning,  and  the  authors  and  their  colleagues  have  run 
several  experiments  to  test  it.  For  this  reason,  the  theory  is  discussed  here 
rather  than  in  Chapter  XV,  on  planning. 

Hayes-Roth  and  Hayes-Roth  have  implemented  their  theory  in  a  model 
that,  due  to  its  complexity,  will  be  sketched  later  in  this  article  but  not 
presented  in  detail.  The  first  part  of  the  article  discusses  an  exploratory 
experiment  with  human  planners  in  which  subjects  were  required  to  think  out 
loud  while  planning.  This  technique  is  familiar  from  the  work  of  Newell  and 
Simon  (Article  XI. B).  A  transcript,  or  protocol,  is  broken  down  into  phrases 

that  are  interpreted  as  evidence  of  particular  planning  or  problem-solving 
operations. 

In  the  planning  experiment  (Hayes-Roth  and  Hayes-Roth,  1978),  subjects 
were  given  a  map  of  a  small  town  marked  with  points  of  interest  such  as  movie 
theaters,  the  veterinarian,  stores,  and  restaurants.  They  were  asked  to  plan 

a  day's  activity  that  included  10  errands,  such  as  Get  medicine  from  the  vet 
and  Buy  fresh  vegetables  at  the  grocery.  A  couple  of  errands  included  explicit 
constraints,  such  as  the  showtimes  of  movies.  Constraints  about  other  errands 

were  implied;  for  example,  fresh  vegetables  should  probably  be  purchased  in 
the  evening,  rather  than  leaving  them  in  a  car  all  day. 

With  the  map  and  list  of  errands  in  hand,  subjects  talked  about  their 
developing  plans  for  the  day.  What  they  said  was  recorded  and  transcribed; 

Table  C-l  shows  samples  of  one  subject's  comments  as  he  planned  his  activi- 
ties. These  paragraphs  are  excerpted  from  a  longer  protocol  of  47  such  para- 

graphs; the  numbers  in  parentheses  indicate  the  position  of  each  paragraph  in 
the  protocol.  The  paragraphs  illustrate  a  number  of  important  characteristics 
of  human  planning.  In  the  first,  the  subject  uses  his  knowledge  to  assign 
importance  to  each  errand  and,  thus,  to  order  them.  World  knowledge  is  also 
used  to  order  plan  steps  in  the  later  paragraphs,  in  which  the  subject  tries  to 
schedule  the  purchase  of  groceries  to  avoid  spoilage. 

The  second  and  third  paragraphs  illustrate  two  styles  of  control  of  plan- 
ning. In  the  second  paragraph  the  subject  is  motivated  by  a  number  of  indi- 

vidual goals;  his  thinking  is  bottom-up,  or  driven  by  what  he  perceives  to 
be  the  immediately  attainable  goals  of  the  problem.  In  the  third  paragraph, 
however,  he  starts  planning  at  a  different  level  of  abstraction.  From  the  goals 

previously  articulated,  he  abstracts  a  higher  level  goal,  to  do  the  errands  in  the 
southeast  corner.  For  three  more  paragraphs  in  the  protocol  (not  excerpted 
here),  the  subject  tries  to  fit  errands  into  the  general  plan  of  heading  southeast. 

22 
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Table  C-i 

Excerpts  from  a  Planning  Protocol  (from  Hayes-Roth  and  Hayes-Roth,  1978) 

1.  (1)  Let's  go  back  down  the  errand  list.  Pick  up  medicine  for  the  dog 
at  the  veterinary  supplies.  That's  definitely  a  primary,  anything  taking 
care  of  health   Buy  a  toy  for  the  dog  at  the  store.  If  you  pass  it,  sure. 
If  not,  the  dog  can  play  with  something  else. 

2.  (7)  The  appliance  store  is  a  few  blocks  away.  The  medicine  for  the 

dog . . .  isn't  too  far  away.  Movie  theaters — let's  hold  off  on  that  for  a 
little  while.  Pick  up  the  watch.  That's  all  the  way  across  town.  Special- 
order  a  book  at  the  bookstore. 

3.  (8)  Probably  it  would  be  best  if  we  started  in  a  southeasterly  direc- 
tion. ...  I  can  see  later  on  there  are  a  million  things  I  want  to  do  in  that 

part  of  town. 

4.  (23)  Third  item  will  be  the  newsstand  since  we  are  heading  in  that 
direction.  Often  I  like  to  do  that.  I  know  buying  a  gardening  magazine 

is  hardly  a  primary  thing  to  do,  but  since  I'm  heading  that  way,  it's  only 
going  to  take  a  second  . . . 

5.  (31)  I  would  like  to  plan  it  so  I  can  see  the  movie,  pick  up  the  vegetables, 
pick  up  my  car,  and  then  go  home.  Vegetables  would  rot. 

6.  (38)  Now  we  do  have  a  problem.  It's  2:00  and  all  we  have  left  to  do  is 
see  a  movie  and  get  the  vegetables.  And  that's  where  I  think  I've  blown 
this  plan.  I've  got  an  hour  left  there  before  the  movie . . . 

7.  (40)  If  I  go  get  the  groceries  now,  it's  not  really  going  to  be  consistent 
with  the  plans  throughout  the  day  because  I've  been  holding  off  on  the 
groceries  for  rotting.  If  I  take  them  to  the  movie . . .  vegetables  don't 
really  perish  like  ice  cream. 

When  immediately  attainable  errands  are  pointed  out  to  the  subject,  he  says, 

/  can  still  do  that  and  still  head  in  the  general  direction.  In  contrast  to 

the  earlier  mode  of  planning,  driven  bottom-up  by  immediate  goals,  he  now 
attempts  to  incorporate  these  goals  into  an  abstract  plan.  This  illustrates  the 

ability  of  human  planners  to  reason  at  many  levels  of  abstraction  and  to  move 

freely  between  them.  Hayes-Roth  and  Hayes-Roth  call  this  multidirectional 
processing. 

The  fourth  paragraph  illustrates  one  of  the  most  interesting  and  fun- 
damental characteristics  of  planning,  and  indeed  of  other  aspects  of  cognition: 

It  is  opportunistic.  The  subject  realized  that  he  could  fulfill  one  of  his  obliga- 

tions "for  free,"  and  promptly  did  so.  Goals  that  fit  into  a  developing  plan  are 
integrated,  and  goals  that  belong  together  are  clustered  into  subplans,  often 

without  regard  for  how  the  subplans  will  integrate  with  the  overall  plan.  For 

example,  early  on  in  the  protocol  (not  shown  above),  the  subject  plans  to 
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end  his  day  at  the  movie  and  then  walk  to  a  parking  lot  where  his  car  is 
parked.  This  subplan  is  constructed  when  the  subject  notices  the  proximity 
of  the  movie  and  parking  lot.  There  is  a  strong  parallel  between  this  process 
and  island  driving,  in  which  a  problem  solver  finds  part  of  a  solution  that  he 

thinks  is  correct — an  island — and  extends  the  solution  from  there,  possibly 
toward  another  island.  Subplans  can  be  regarded  as  islands  that  are  linked 

by  sequences  of  planning  actions.  (For  a  detailed  discussion  of  island  driving 
in  speech  understanding,  see  Article  V.Cl,  in  Vol.  I.) 

The  fifth  and  sixth  paragraphs  of  the  protocol  show  the  subject  sum- 
marizing his  current  state  and  realizing  that  the  plan  is  flawed  because  he  has 

too  much  time  for  what  he  has  to  do.  At  this  point,  he  relaxes  one  of  his 
requirements,  that  he  purchase  vegetables  after  the  movie,  to  fill  in  the  hour 
before  the  movie. 

Opportunistic,  multidirectional  planning  is  very  different  from  that  prac- 
ticed by  the  planners  discussed  in  Chapter  XV;  human  planning  can  be  sig- 

nificantly more  complex  than  that  of  current  AI  planners.  Before  we  discuss 

the  Hayes-Roths'  model,  we  consider  some  of  these  differences. 
Opportunistic  processing  has  a  bottom-up  component;  planning  processes 

are  instigated  by  something  the  problem  solver  notices  about  the  state  of 
the  world.  In  human  planning,  steps  are  introduced  into  a  plan  whenever 

the  opportunity  arises  to  do  so.  This  contrasts  with  the  least- commitment 
strategies  in  NOAH  and  MOLGEN  (see  Articles  XV.Dl  and  XV.D2),  in  which 
planning  steps  are  refined  only  when  there  is  evidence  that  they  will  not 
have  to  be  abandoned  later.  In  human  planning,  the  carefully  controlled 
introduction  of  plan  steps  implicit  in  NOAH  and  MOLGEN  is  abandoned  for 
the  advantage  of  introducing  steps  in  a  plan  wherever  they  are  convenient. 

A  closely  related  issue  is  that  human  planning  is  multidirectional;  that  is, 
it  takes  place  at  several  levels  of  abstraction  simultaneously.  This  contrasts 
with  the  hierarchical  planners  (discussed  in  Articles  XV.B,  XV.Dl,  and  XV.D2), 

which  develop  detailed  plans  from  abstract  plans  in  a  purely  top-down  fashion. 
NOAH  and  MOLGEN  do  not  include  detailed  steps  in  a  plan  unless  they  have 
been  refined  from  more  abstract  ones.  This  strategy  helped  them  to  avoid 

interactions  between  plan  steps;  MOLGEN  would  post  constraints  summa- 
rizing the  implications  of  refining  an  abstract  plan  step  for  other  parts  of  the 

plan,  and  NOAH  used  critics  to  check  for  interactions  between  plan  steps  as 

its  plan  developed.  Both  approaches  rely  on  developing  abstract  plans  into 

detailed  ones  in  a  top-down  manner. 
The  major  advantage  of  the  least-commitment  strategy  of  hierarchical 

planning  is  that  it  allows  the  planner  to  avoid  subgoal  interactions  and, 
thus,  plan  constructively  with  a  minimum  of  backtracking.  Opportunistic 
planning  leaves  the  planner  susceptible  to  these  interactions;  an  opportunistic, 
multidirectional  planner  is  more  likely  to  need  to  rewrite  parts  of  its  plan  or 

change  its  goals  than  is  a  hierarchical  planner.  In  fact,  Table  C-l  showed  the 
planner  committing  himself  to  a  plan  that  does  not  fulfill  all  his  goals — he  is 
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left  with  too  much  free  time.  However,  instead  of  backtracking  to  a  previous 
point  in  the  plan  and  replanning,  the  planner  instead  relaxes  one  of  his  goals 
and  decides  to  buy  groceries  before  the  movie. 

Hayes-Roth  and  Hayes-Roth  argue  that  opportunistic,  multidirectional 
planning  is  more  efficient  than  hierarchical  planning  when  the  problem  to 
be  solved  is  very  complex.  They  say  that  hierarchical  planning  restricts 
the  problem  solver  and  does  not  permit  organizing  parts  of  a  plan  around 

interesting  possibilities  that  emerge  bottom-up  (as  can  be  done  in  island 
driving). 

The  relative  efficiencies  and  advantages  of  hierarchical,  least-commitment 
planning  and  multidirectional,  opportunistic  planning  are  issues  for  AI.  How- 

ever, our  chief  concern  in  this  article  is  not  with  efficiency  but,  rather,  with 
how  human  planners  plan.  The  remainder  of  the  article  summarizes  the 

Hayes-Roths'  model. 

The  Control  of  Planning 

Hayes-Roth  and  Hayes-Roth  propose  a  blackboard  model  to  represent 
the  complex  control  structure  of  human  planning.  Blackboards  have  been 
used  primarily  to  facilitate  interpretation  of  noisy  signals  such  as  speech  (see 
discussion  in  Article  V.Cl,  in  Vol.  i)  and  data  from  sensors  (see  Article  VII.C3, 
in  Vol.  II,  on  CRYSALIS;  also,  Nii  and  Feigenbaum,  1978).  A  blackboard 
model  for  signal  interpretation  typically  has  a  number  of  specialist  programs 

that  produce  hypotheses  about  aspects  of  the  signal.  For  example,  a  speech- 
understanding  program  has  specialists  for  dividing  the  speech  signal  into 
phonetic  units,  for  guessing  the  syntax  of  the  spoken  message,  for  predicting 
the  next  word  given  those  that  have  been  spoken  already,  and  so  on.  The 
hypotheses  produced  by  each  specialist  are  accessible  to  all,  since  they  are 
posted  on  a  central  blackboard.  Hypotheses  posted  by  one  specialist  are  data 
for  others;  for  example,  if  the  syntactic  specialist  posts  the  hypothesis  that  the 
next  word  is  a  verb,  the  lexical  specialist  can  use  this  information  to  narrow 
the  search  for  the  exact  word. 

Theoretically,  the  control  of  processing  in  a  blackboard  model  is  asyn- 
chronous and  opportunistic:  Specialists  post  hypotheses  in  no  particular  order, 

and  they  use  hypotheses  posted  by  other  specialists  whenever  they  appear 
helpful.  Although  human  planning  involves  generating  behavior  rather  than 
interpreting  it,  it  does  seem  to  be  an  asynchronous,  opportunistic  process. 
Plans  are  not  developed  all  of  a  piece,  but,  instead,  clusters  or  islands  of 
planning  actions  are  constructed,  and  they  are  linked  to  other  clusters  when 
an  opportunity  arises. 

The  Hayes-Roths'  planning  model  involves  a  blackboard  with  five  planes 
of  planning  decisions  and  many  specialists  that  generate  tentative  decisions 

and  record  them  on  the  blackboard.  Planes  are  organized  to  reflect  charac- 
teristic processes  in  planning.    One  is  the  plan  plane,  a  plane  of  operations. 
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Decisions  to  execute  the  processes  discussed  in  the  protocol — going  to  the 
veterinarian,  seeing  a  movie,  and  so  on — are  recorded  in  the  plan  plane.  More 
general  goals  and  general  plans  to  accomplish  them  are  also  recorded  in  the 

plan  plane. 

At  the  level  of  the  meta-plan  plane,  the  planner  makes  decisions  about 
how  to  solve  the  problem  at  hand.  As  we  note  in  the  discussion  of  MOLGEN 

(Article  XV.D2),  a  planner  can  do  a  lot  of  reasoning  about  a  problem  before 
proposing  so  much  as  a  single  action  to  solve  it.  Decisions  recorded  on  the 

meta-plan  plane  capture  some  of  this  reasoning.  For  example,  the  planner 
must  represent  the  problem  to  itself  and  decide  what  type  of  problem  it  is,  so 

that  it  can  pick  out  a  problem-solving  model,  or  strategy.  The  way  a  problem 
is  represented  by  the  problem  solver  can  affect  the  ease  with  which  it  is  solved 

(Amarel,  1968);  thus,  identifying  a  problem  and  finding  an  approach  to  solving 
it  are  two  very  important  decisions.  Most  planning  programs  have  a  single 
representation  of  a  problem  and  a  single,  implicit  strategy  for  solving  it;  for 
example,  some  nonhierarchical  planners  (discussed  in  Article  XV.C)  represent 
problems  as  a  collection  of  propositions  to  be  made  true,  and  they  solve  the 

problems  by  pattern-directed  invocation  of  procedures  with  backtracking.  It 
is  possible,  even  likely,  that  a  human  planner  might  adopt  means-ends  analysis 
with  backtracking  as  a  method;  the  choice  between  this  and  other  possibilities 

is  recorded  on  the  meta-plan  plane. 
Another  kind  of  planning  decision  represented  at  the  meta-plan  level 

involves  the  policies  followed  by  the  problem  solver:  What  constitutes  a  good 
solution?  Is  it  to  be  quick  and  dirty  or  painstaking  and  elegant?  Again, 
most  AI  planning  programs  do  not  make  such  decisions,  which  obviously  lend 

power  and  flexibility  to  human  problem-solving.  We  can  usually  decide  when 
a  solution  is  good  enough  (what  Simon,  1969,  calls  satisficing);  those  who  are 

never  satisfied  and  those  who  are  too  easily  satisfied — the  compulsive  and  the 
slob — are  often  inefficient  problem  solvers. 

The  meta-plan  plane  records  global  decisions  about  how  to  approach  a 
problem;  between  this  level  and  that  of  individual  planning  operations,  the 

Hayes-Roths  place  the  plan- abstraction  plane.  Decisions  recorded  at  this  plane 
motivate  operations  recorded  on  the  plan  plane.  For  example,  the  decision  to 

do  all  of  the  "primary"  errands  first  is  a  formulation  of  an  abstract  plan;  it 
motivates  the  decision — recorded  on  the  plan  plane — to  divide  errands  into 

"primary"  and  "secondary"  groups. 
A  fourth  plane  in  the  Hayes-Roths'  model  contains  world  knowledge. 

For  the  errand-planning  task,  the  knowledge-base  plane  includes  a  list  of  the 
errands  and  a  representation  of  the  map.  A  point  made  earlier — that  the 
representation  of  the  problem  affects  the  efficiency  with  which  it  is  solved — 
holds  also  for  the  representation  of  knowledge  pertinent  to  the  problem.  The 

Hayes- Roths  represent  the  map  in  several  ways  to  enhance  problem-solving 
efficiency.  At  one  level,  the  map  is  represented  as  sectors,  for  example,  the 
southeast  corner;  at  another  level,  neighbors  are  recorded,  for  example,  a 
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movie  house  neighbors  on  a  parking  lot.  A  third  level  of  information  about 
the  map  represents  routes  between  points  of  interest.  This  knowledge  base 
would,  of  course,  change  for  another  kind  of  problem. 

The  fifth  plane,  the  executive  plane,  schedules  the  planning  decisions 
made  by  specialists  that  are  recorded  on  other  planes  of  the  blackboard.  We 
have  characterized  the  kinds  of  decisions  that  are  found  in  human  planning, 
for  example,  decisions  about  specific  planning  actions,  about  approaches  to 
a  problem,  and  about  abstractions  of  planning  actions.  The  decisions  are 
tentatively  proposed  and  recorded  on  the  appropriate  plane  of  the  blackboard 
by  specialist  programs  that  are  sensitive  to  particular  kinds  of  decisions. 
For  example,  a  proximity  detector  specialist  would  note  when  two  points  of 
interest  are  nearby  on  the  map;  it  would  record  pairs  of  neighbors  on  the 

knowledge-base  plane  of  the  blackboard.  Specialists  operate  independently 
and  asynchronously,  as  mentioned  above.  Consequently,  a  scheduler  is  needed 

to  decide  on  a  sequential  order  (since  most  present-day  computers  are  sequen- 
tial machines)  for  all  the  actions  of  specialists.  Scheduling  might  be  queue 

oriented,  that  is,  first  come  first  served,  but,  in  general,  humans  do  not 
schedule  actions  this  way.  Instead  they  schedule  them  according  to  their 
perceived  efficiency,  productivity,  and  the  like. 

Conclusion 

Hayes-Roth  and  Hayes-Roth  present  a  detailed  example  explaining  how 

their  model  accounts  for  the  protocol  of  a  subject  planning  a  day's  activities 
(excerpted  above).  Rather  than  discuss  the  model  in  detail,  we  have  presented 
its  planes  and  specialists  in  quite  general  terms,  attempting  to  characterize  the 

types  and  levels  of  decisions  that  are  necessary  for  planning.  One  general  con- 
clusion of  this  article  is  that  human  planners  are  much  more  sophisticated  than 

any  of  the  programs  discussed  in  Chapter  XV  on  planning.  Multidirectional, 

asynchronous,  and  opportunistic  processing  is  proposed  to  model  this  sophis- 
tication. 

References 

Hayes-Roth  and  Hayes-Roth  (1978;  B.  Hayes-Roth,  1980)  give  accounts  of 
their  experiments  and  the  model  developed  from  them. 



D.     EPAM 

EPAM  (Elementary  Perceiver  and  Memorizer)  was  developed  in  the  period 

1956-1964  by  Edward  Feigenbaum  and  Herbert  Simon.  This  program  was 
the  first  information-processing  model  of  a  number  of  well-known  human 
verbal-learning  behaviors.  Though  it  sounds  simple,  rote  learning  of  nonsense 
material  has  provided  much  evidence  about  the  characteristics  of  short-term 
and  long-term  memory.  Nonsense  material  is  useful  in  that  it  avoids  the 
effect  of  the  meaning  of  a  stimulus  on  how  well  it  is  learned;  for  example, 

familiar  stimuli  or  stimuli  that  "fit  in"  with  previously  learned  material  are 
relatively  easy  to  learn.  When  Ebbinghaus  first  used  nonsense  syllables  in  the 
1870s,  these  factors  were  not  understood.  His  method  limited  their  effects, 
which,  he  felt,  obscured  the  fundamental  characteristics  of  memory.  (An 
interesting  sidelight  on  the  topic  of  nonsense  syllables  is  that  Anderson  and 
Bower,  whose  work  is  discussed  in  Article  XI.E2,  used  meaningful  sentences  for 

their  experiments  on  strategy-free  memory  because  they  felt  that  their  subjects 
were  likely  to  employ  mnemonic  strategies  to  remember  nonsense  stimuli.) 
EPAM  provides  an  explanation  of  some  of  these  characteristics,  among  them 
oscillation  and  retroactive  inhibition,  forgetting,  and  stimulus  and  response 
generalization. 

Verbal  Learning  Behavior 

To  simplify  the  study  of  human  verbal  learning,  psychologists  have  devel- 
oped a  number  of  experimental  techniques  (for  a  survey,  see  Baddeley,  1976). 

Most  are  based  on  the  following  procedure:  The  subject  (whether  human  or 
EPAM)  is  required  to  memorize  nonsense  syllables  in  serial  lists  or  associate 
pairs.  The  syllables  are  typically  comprised  of  three  letters,  beginning  and 

ending  with  a  consonant,  and  are  supposed  to  be  meaningless  for  most  sub- 
jects (e.g.,  XUM,  JUR,  FAZ).  In  paired-associate  learning  experiments,  the  first 

syllable  of  a  pair  is  called  the  stimulus  and  the  second  is  called  the  response. 

EPAM  was  designed  for  paired-associate  and  serial  learning,  but  in  this 
article  we  will  consider  only  the  former.  In  a  typical  experiment,  a  set  of 
nonsense  syllable  pairs  is  used.  For  each  pair  in  the  set,  the  stimulus  syllable 
is  displayed  to  a  subject,  who  then  attempts  to  say  the  associated  response. 
Any  errors  made  by  the  subject  are  recorded.  The  response  syllable  is  then 
shown,  so  that  both  stimulus  and  response  are  in  view,  and  the  subject  is  able 
to  refresh  his  (or  her)  memory  of  the  association  (or  learn  it,  if  this  is  the  first 
presentation).  After  a  few  seconds,  the  next  pair  of  syllables  is  displayed.  This 
continues  until  all  of  the  pairs  have  been  displayed.    The  entire  sequence  is 

28 
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called  a  trial.  Trials  are  repeated  until  the  subject  is  able  to  give  the  correct 
response  for  each  stimulus.  This  is  called  learning  to  criterion.  There  is  a 
relatively  short  period  of  time  between  trials,  and  the  sequence  of  pairs  is 
randomized  from  trial  to  trial. 

A  number  of  behaviors  are  typical  in  a  paired-associate  verbal-learning 
experiment: 

1.  Stimulus  and  response  generalization.  Overt  errors  in  recall  are  often  attrib- 
utable to  confusion  by  the  subject  between  similar  stimuli  or  similar 

responses.  When  similar  stimuli  are  confused,  their  responses  may  become 
interchanged;  when  two  responses  are  similar,  the  wrong  one  may  be 
given  to  a  stimulus. 

2.  Oscillation.  Associations  that  are  recalled  correctly  over  several  trials  are 
sometimes  forgotten  only  to  reappear  and  then  later  disappear  again. 

3.  Retroactive  inhibition.  When  the  paired-associate  task  is  modified  to 
include  an  intervening  learning  task,  so  that  one  list  of  syllables  is  learned 
and  then  another,  and  the  retention  of  the  original  list  is  tested,  the 

subject's  ability  to  give  correct  responses  is  reduced  by  the  intervening 
learning.  Moreover,  overt  errors  in  recall  are  usually  intrusions  from 
the  second  list.  The  phenomenon  disappears  rapidly,  however,  and  the 

subject's  memory  of  the  first  list  is  refreshed  during  the  next  trial. 

The  EPAM  Model 

The  EPAM  program  was  written  in  IPL-V,  one  of  the  first  list-processing 
languages.  EPAM  is  a  two-part  system,  with  performance  and  learning  com- 

ponents. In  the  performance  mode,  EPAM  attempts  to  produce  responses  to 
stimulus  syllables.  In  the  learning  mode,  EPAM  learns  to  discriminate  and 
associate  stimuli  and  responses.  The  model  is  easier  to  understand  if  the 
performance  mode  is  discussed  first. 

The  Performance  System 

After  EPAM  has  learned  a  set  of  stimulus-response  pairs,  it  is  tested  in 
a  standard  paired-associate  task.  The  test,  which  is  identical  to  that  given 
to  a  human,  involves  presenting  stimulus  syllables  to  EPAM,  which  then  must 
produce  the  associated  response  syllables.  The  performance  system  proceeds 
as  follows.  A  stimulus  syllable  is  encoded  into  an  input  code  that  directs  the 

search  of  EPAM's  memory,  called  a  discrimination  net.  This  search  leads  to 
a  node  in  the  net  that  contains  a  cue.  Cues  are  information  with  which  to 

search  for  a  response  syllable.  Using  the  cue,  EPAM  searches  the  net  again 
for  a  node  containing  the  response,  called  a  response  image.  The  cue  does  not 
always  hold  enough  information  to  find  the  response  syllable.  If  it  does,  the 
response  is  given;  otherwise,  EPAM  makes  an  error. 
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EPAM  codes  each  stimulus  syllable  into  an  internal  representation  called 
the  input  code.  This  is  based  on  certain  features  of  the  input  characters,  such 

as  the  "openness"  of  a  letter  (e.g.,  C  versus  O)  and  whether  the  letter  contains 
crossed  straight  lines  (e.g.,  X).  Different  sets  of  features  have  been  used,  but 
in  all  cases  they  must  satisfy  two  criteria:  They  must  be  related  in  some  way 
to  features  of  letters,  and  they  must  be  highly  redundant  (having  many  more 
features  than  are  required  to  distinguish  letters). 

For  the  remainder  of  this  discussion,  to  simplify  the  examples,  we  will 
assume  that  letters  themselves  and  not  features  of  letters  are  used  as  input 
codes.  Thus,  when  EPAM  is  tested  with  the  stimulus  MUR,  features  of  the 
letters  M,  U,  and  R  are  actually  used  as  the  input  code,  but  for  simplicity  we 
assume  here  that  the  input  code  is  MUR. 

The  primary  memory  structure  of  EPAM  is  the  discrimination  net.  It  is 

constructed  during  EPAM's  learning  mode  and  searched  during  the  response 
mode.  The  input  code  is  used  to  traverse  the  discrimination  net,  which 
normally  contains  a  dozen  or  more  pairs.  The  net  is  simply  a  binary  search 
tree,  with  internal  nodes  representing  tests  of  features  of  stimuli.  The  leaf 
nodes  represent  either  cues  or  response  images.  A  diagram  of  a  discrimination 

net  that  has  been  constructed  in  response  to  the  associate  pairs  DAX-JIR, 
PIB-JUK  is  shown  in  Figure  D-l. 

An  example.  Imagine  that  the  input  code  to  EPAM  is  the  syllable  PIB. 
EPAM  will  sort  down  the  tree  until  it  gets  to  the  node  representing  PIB.  It 
does  this  by  going  left  or  right  at  each  internal  node  contingent  on  the  results 

of  the  test  at  that  node.  At  the  PIB  node  it  will  find  a  cue,  J-K,  which  will 
be  used  to  traverse  the  tree  again,  from  the  root  node  down  the  right  branch 
to  the  next  node,  then  down  the  left  branch  to  the  JUK  node.  At  this  point, 
it  will  respond  with  the  syllable  JUK.  Note  that  it  is  only  necessary  to  store 

<JUKcue:J-K>  <JIR  cue:J--> 

Figure  D-l.     A  discrimination  net  for  the  associate  pairs 
DAX-JIR,  PIB-JUK. 
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enough  features  of  the  cue  to  direct  EPAM  to  the  response  syllable  at  the  time 
the  cue  is  created.  The  method  of  constructing  cues  will  be  discussed  later. 

We  have  seen  how  EPAM  performs  when  it  gives  correct  responses  to 

stimuli  in  the  paired-associate  task.  To  understand  how  EPAM  fails  at  the 
task  in  ways  that  are  characteristic  of  human  memory,  we  will  consider  how 
it  learns. 

The  Learning  System 

The  discrimination  learning  system  operates  by  constructing  a  discrimina- 
tion net  from  a  set  of  stimulus-response  pairs.  Initially  the  net  is  empty,  and 

only  a  set  of  simple  processes  for  growing  nets  and  storing  images  at  leaf  nodes 
is  available. 

Suppose  that  the  first  stimulus-response  pair  is  DAX-JIR  and  has  already 
been  learned.  The  discrimination  net  at  this  point  is  shown  in  Figure  D-2. 

The  full  response  image  must  be  stored  in  order  to  produce  the  response, 

but  only  partial  stimulus-image  information  need  be  stored  to  recognize  the 
stimulus.  In  this  simple  net,  a  single  letter  is  enough  to  discriminate  between 
the  two  syllables;  therefore,  the  test  at  the  root  node  is  on  a  single  letter  and 
no  other  tests  are  necessary.  Moreover,  the  cue  to  find  the  response  need  be 
only  a  single  letter.  The  amount  of  information  that  needs  to  be  stored  at 
internal  and  leaf  nodes  is  determined  by  the  program  as  the  net  grows. 

Suppose  the  second  syllable  pair  to  be  learned  is  PIB-JUK;  see  Figure  D-3. 
The  net,  as  it  stands,  does  not  know  about  PIB;  therefore,  another  test  must 
be  added  to  discriminate  between  the  input  codes  for  DAX  and  PIB.  This  new 
test  is  placed  at  the  point  in  the  net  where  there  is  a  failure  to  discriminate. 

Let  us  assume  that  the  test  is  placed  so  as  to  discriminate  between  PIB  and 

DAX,  as  shown  earlier  in  Figure  D-2.  (The  test  could  have  been  between  PIB 
and  JIR;  EPAM  is  able  to  determine  where  the  failure  to  discriminate  occurs.) 

Figure  D-3  does  not  include  a  response  image  for  the  second  syllable,  JUK, 
or  a  cue  at  the  leaf  of  the  PIB  branch  to  help  EPAM  find  JUK  later.  The  input 
code  JUK  is  used  to  traverse  the  net  until  a  discrimination  failure  occurs.  In 

Figure  D-2.     Discrimination  net  for  the  associate 

pair  DAX-JIR. 



32 Models  of  Cognition XI 

<JIR  cue:  J— > 

Figure  D-3.  Discrimination  net  for  the  associate  pair  DAX- 
JIR,  which  also  discriminates  PIB  from  DAX  but 
does  not  include  a  cue  or  response  image  for  the 
PIB-JUK  association. 

this  case,  the  D:  J  test  takes  the  J-branch  and  again  a  new  discrimination  must 
be  added  to  distinguish  JUK  and  JIR.  Human  subjects  generally  consider  final 
letters  before  middle  letters  and  EPAM  does  the  same:  It  notes  that  the  last 

letters  of  JUK  and  JIR  differ,  and  a  test  is  added  to  reflect  this. 
A  cue  to  lead  from  the  end  of  the  PIB  branch  to  the  JUK  response  image 

is  still  lacking.  It  is  constructed  by  trial  and  error.  Each  time  a  letter  is  added 

to  the  potential  cue,  it  is  used  to  traverse  the  net;  see  Figure  D-4.  Information 
is  added  to  the  cue  as  necessary  until  it  leads  to  the  correct  response  image. 
This  method  ensures  that  a  cue  contains  the  minimum  information  required 

to  find  the  appropriate  response  image  at  the  time  of  memorization. 

It  is  now  possible  to  see  EPAM's  source  of  errors  on  the  paired-associate 
task:  Cues  are  constructed  to  guarantee  correct  retrieval  of  the  appropriate 
response  image  at  the  time  the  association  is  formed.  If  at  some  later  time  the 
net  incorporates  other  images  and  cues,  the  cue  might  no  longer  be  sufficient  to 
perform  that  task.  Thus,  responses  are  forgotten  temporarily.  No  information 
is  destroyed,  but  some  becomes  inaccessible.  This  can  be  seen  by  comparing 

Figures  D-2  and  D-4.  When  the  DAX- JIR  association  was  first  constructed 

(Fig.  D-2),  the  cue  for  JIR,  J--,  was  sufficient  to  find  the  response  to  DAX. 
However,  when  JUK  was  added  to  the  net  (Fig.  D-4),  J--  became  inadequate 
to  discriminate  between  JIR  and  JUK. 

The  DAX- JIR  association  is  not  necessarily  lost  forever.  If  the  association 
is  repeated  (typically  during  a  later  trial),  it  will  be  reconstructed  in  the  net 
with  the  information  necessary  to  maintain  the  association  at  that  time. 

There  is  another  aspect  of  the  cue-construction  method  that  results  in 
inadequate  cues.  This  has  nothing  to  do  with  the  discriminability  of  a  cue 
changing  due  to  the  expansion  of  the  net;  rather,  it  derives  from  a  single 
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<JUKcue:J-K>  <JIR  cue:J— > 

Figure  D-4.     Final  discrimination  net  for  the  associate 
pairs  DAX-JIR,  PIB-JUK. 

random  decision  made  by  EPAM  while  it  is  constructing  a  cue.  For  example, 

if  J--  is  proposed  as  a  cue  for  JUK,  when  the  cue  is  tested,  it  will  lead  to  a 
branch  in  the  tree  that  has  JUK  on  its  left  branch  and  JIR  on  its  right.  At 
this  point,  EPAM  chooses  one  of  the  branches  at  random.  If  it  goes  left,  it 
will  find  JUK  and  conclude  that  the  cue  is  sufficient  to  find  JUK  in  future, 
when  in  fact,  this  is  not  so. 

EPAM's  Verbal-learning  Behavior 

EPAM  behaved  very  much  like  a  human  subject  in  classical  rote-learning 
experiments.  It  provided  a  parsimonious  explanation  of  rote-learning  behav- 

ior, since  retroactive  inhibition,  oscillation,  stimulus  and  response  general- 
ization, and  forgetting  can  all  be  seen  to  stem  from  a  single  mechanism. 

As  items  are  learned,  the  discrimination  net  grows  to  accommodate  new 

stimulus-response  pairs.  However,  the  cues  that  associate  the  stimuli  with 
their  responses  guarantee  correct  response  retrieval  just  at  the  time  of  the 
association.  A  cue  that  leads  to  the  appropriate  response  image  can  fail  to  do 
so  at  a  later  time. 

The  oscillatory  behavior  exhibited  by  EPAM  serves  as  a  basis  for  an  alter- 
native explanation  of  forgetting.  The  usual  explanation  is  that  the  informa- 

tion is  destroyed  over  time,  typically  by  overwriting  or  decay.  Forgetting 
in  EPAM  occurs  not  because  the  information  is  physically  destroyed  but 
because  it  becomes  inaccessible  in  the  growing  network  of  new  associations. 
Furthermore,  forgetting  in  EPAM  is  only  temporary:  Lost  associations  can 
be  recovered  by  updating  the  appropriate  cue  with  more  information  during 
another  trial. 

This  process  accounts  for  the  fact  that  more  than  one  trial  is  usually 

required  to  learn  to  criterion,  that  is,  to  give  the  correct  response  to  each 
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stimulus.  During  the  first  trial,  each  cue  is  constructed  with  enough  infor- 
mation to  find  the  correct  response  at  the  time  it  is  stored;  a  subsequent 

stimulus-response  pair  may  be  added  such  that  the  original  cue  can  now  no 
longer  discriminate  between  its  correct  response  and  the  new  one.  This  was 

shown  in  Figure  D-4:  The  J--  cue  was  sufficient  to  produce  a  response  when 
DAX-JIR  were  the  only  elements  in  the  net,  but  as  soon  as  PIB-JUK  were 
added,  J--  was  ambiguous  with  respect  to  JIR  and  JUK.  Thus,  on  the  next 
trial,  EPAM  might  respond  to  DAX  with  JUK;  this  would  be  incorrect  and  an 
example  of  response  generalization.  However,  the  correct  association  is  always 

shown  after  a  stimulus-response  test,  so  EPAM  has  the  opportunity  to  update 
the  J--  cue  to  make  it  discriminate  JIR  and  JUK.  On  the  next  trial,  it  will  not 
confuse  the  two.  Thus,  in  the  course  of  a  number  of  trials,  EPAM  gradually 
learns  to  discriminate  all  stimuli  and  their  responses. 

If  stimuli  and  their  responses  were  initially  very  discriminable,  EPAM 
would  require  less  time  to  learn  them.  This  is  because  there  is  less  chance 

of  response  generalization.  Operationally,  this  means  that  when  EPAM  con- 
structs a  cue  with  the  minimum  information  needed  to  find  a  response  image, 

it  is  less  likely  that  a  subsequent  stimulus-response  pair  will  render  the  original 
cue  ambiguous. 

If  the  same  discrimination  net  is  used  for  two  trials,  that  is,  two  different 

sets  of  stimulus-response  pairs,  the  discrimination  net  that  was  sufficient  to 
respond  correctly  to  all  stimuli  during  the  first  trial  may  now  be  unable  to 
discriminate  between  responses  for  trial  1  and  responses  for  trial  2.  This 
produces  the  phenomenon  of  retroactive  inhibition,  which  is  the  deleterious 
effect  of  learning  an  intermediate  list  on  recall  of  the  original  list.  It  also 
predicts  the  result  that  errors  are  likely  to  be  intrusions  from  the  second  list, 
rather  than  confusions  between  responses  in  the  first  list. 

One  problem  with  EPAM  was  that  it  had  no  mechanism  to  model  proactive 
inhibition,  the  situation  in  which  learning  one  list  of  stimuli  interferes  with  the 
learning  of  the  next  list.  Typically,  when  a  subject  is  tested  on  the  second  list, 
intrusions  from  the  first  result.  Both  proactive  and  retroactive  inhibition  are 

evident  in  verbal-learning  experiments,  but  EPAM  exhibited  only  the  latter. 
EPAM  has  since  been  extended  to  deal  with  proactive  inhibition  by  Hintzman 

(1968)  in  his  SAL  (Stimulus  and  Association  Learner)  program.  This  was 

accomplished  by  having  a  push-down  stack  at  each  leaf  node  in  the  discrimina- 
tion net.  Instead  of  a  single  image  and  cue  at  a  leaf  node  during  an  experi- 

ment, the  associations  from  multiple  experiments  were  allowed  to  accumulate 
by  being  pushed  onto  the  appropriate  stacks.  Thus,  the  most  recently  learned 

association  would  be  on  the  top  of  each  of  the  stacks.  If  the  stacks  were  ran- 

domly disrupted,  the  responses  that  "spontaneously  rise"  to  the  top  of  the 
stacks  might  be  responses  from  previous  experiments.  Another  accounting 

of  proactive  inhibition  given  by  Anderson  and  Bower  (1973,  pp.  74-75)  in 
their  review  of  EPAM  is  that  instead  of  a  stacklike  structure,  a  list  of  cues  is 
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kept,  and  the  ordering  of  elements  in  the  lists  gets  reshuffled,  possibly  as  a 
consequence  of  the  subject  thinking  about  the  material  he  has  learned. 

References 

Feigenbaum  (1963)  and  Simon  and  Feigenbaum  (1964)  are  interesting 
treatments  of  EPAM  and  the  empirical  studies  done  with  it.  Feigenbaum  and 

Simon  (1962)  is  a  discussion  of  an  important  verbal-learning  effect — the  serial- 
position  effect.  Anderson  and  Bower  (1973,  pp.  69-76)  review  and  criticize  the 
EPAM  theory,  and  Simon  (1979,  pp.  99-100)  provides  a  rebuttal  to  each  of 
their  criticisms. 



E.     SEMANTIC  NETWORK  MODELS  OF  MEMORY 

El.     Quillian's  Semantic  Memory  System 

THERE  are  numerous  intelligent  behaviors  of  computers  that  depend  on 

knowing  the  meanings  of  words,  for  example,  machine  translation,  summa- 
rizing text,  and  speech  understanding.  The  semantic  net  formalism  developed 

by  Ross  Quillian  was  the  first  attempt  to  provide  an  operational  representation 

of  word  meaning.  The  basis  for  Quillian's  model  is  remarkably  simple,  namely, 
that  the  meaning  of  a  word  can  be  expressed  by  relating  it  to  other  words. 

This  leads  to  the  concept  of  word  senses — a  word  may  have  many  meanings 
that  depend  on  the  context  in  which  it  is  used. 

Quillian  found  that  to  recognize  the  meanings  of  words  it  is  adequate  to 
find  the  relations  between  them.  However,  for  another  task  this  conception 

of  meaning  might  be  less  appropriate.  For  example,  in  the  game  "Twenty 
Questions"  one  may  know  many  things  about  a  word— that  it  denotes  a 
common  household  item,  the  item  is  wooden,  and  so  on.  One  may  know 
everything  about  a  word  that  would  go  into  defining  its  meaning  but  still  be 
unable  to  guess  what  it  is,  that  is,  to  recall  it.  Quillian  makes  the  distinction 
between  recognition  memory  and  recall  memory  for  the  meaning  of  words. 
His  model  is  concerned  with  the  former;  recall  memory  is  not  considered. 

The  tasks  Quillian  chose  to  implement  using  semantic  memory  were  com- 
parison of  word  meanings  and  expression  of  the  comparisons  in  English.  Both 

were  motivated  by  linguistic  theory  contemporary  with  Quillian's  research, 
which  subordinated  meaning  to  syntax  in  search  of  rules  to  produce  "all  and 

only"  grammatical  sentences.  In  contrast,  Quillian  regarded  semantic  memory 
as  primary  to  language  production  and  syntax  as  secondary.  Thus,  he  chose 
tasks  to  show  that  this  new  conception  of  language  production  could,  in  fact, 
both  produce  language  and  understand  it. 

The  Associative  Structure  of  Quillian's  Semantic  Network 

Quillian's  model  is  an  associative  network  of  nodes  that  represent  concepts 
and  arcs  that  represent  relations  between  the  concepts.  When  one  is  asked 
to  say  all  one  knows  about  a  concept,  for  example,  machine,  a  string  of 
associations  often  results:  A  machine  does  work,  has  moving  parts,  is  used  to 
convert  energy,  and  so  on.  Machine  is  associated  with  energy  via  the  concept 
convert. 

Word  definitions  have  an  associative  structure.  The  set  of  associations 

and  concepts  that  make  up  a  definition  is  called  a  plane  (see  Fig.  El-1).  The 

36 
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Figure  El-1.     Illustration  of  planes  for  Machine,  Steam-shovel, 
Convert,  and  Energy,  showing  type-token  links. 

concept  being  defined,  called  the  type  node,  appears  at  the  top,  and  the  starred 
words  beneath  it  are  called  token  nodes.  They  are  instances  of  the  type  nodes 

of  other  planes  that  are  connected  to  their  type  nodes  by  arcs.  (In  Fig.  El-1, 
these  arcs  are  not  filled  in  for  all  token  nodes;  steam  shovel  is  a  subclass  of 

machine,  *  machine  is  an  instance  of  machine,  and  *  convert  and  *  energy  are 
instances  of  their  associated  type  nodes.)  Every  plane  contains  only  a  single 
type  node  and  enough  token  nodes  to  define  the  concept  it  names.  Every 
plane  represents  a  new  concept  defined  by  associations  to  those  previously 
defined.  Planes  are  linked  together,  type  node  to  token  node,  throughout  the 
associative  memory. 

The  utility  of  the  type-token  distinction  is  that  it  saves  space  in  computer 
memory.  Imagine  the  size  of  a  memory  in  which  every  definition  of  a  particular 
machine  included  the  entire  plane  for  machine,  and  the  planes  of  its  other 
defining  concepts,  within  its  own.  A  more  efficient  organization  is  to  have  a 
single  plane  define  machine  and  to  connect  it  to  token  nodes  in  all  the  planes 
that  include  machine  as  part  of  their  definition. 

Quillian  believes  that  semantic  memory  should  have  a  large  enough  selec- 
tion of  arcs  to  represent  the  richness  of  relations  between  concepts  in  English, 

but  not  so  many  that  the  mechanisms  required  to  process  the  arcs  are  very 
complicated.  Six  kinds  of  arcs  were  used,  representing  the  following  relations: 
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1.  Subclass/superclass, 

2.  Modification  (adverb,  adjective), 

3.  Conjunctive  (a  and  b  and  c), 

4.  Disjunctive  (a  or  b  or  c), 

5.  6.    Two  other  relations  representing  unspecified  binary  predicates. 

Other,  more  complex  schemes  for  associating  nodes  have  been  proposed 

(see  Article  XI. E4).  In  a  later  publication,  Collins  and  Quillian  (1972)  describe 

several  other  kinds  of  arcs,  representing  proximity  (or  adjacence),  conse- 
quence, precedence,  and  similarity. 

Meaning- dependent  Tasks  in  the  Model 

One  important  contribution  of  Quillian's  work  was  providing  a  simple 
model  of  semantic  ambiguity.  There  are  two  sources  of  semantic  ambiguity: 

A  word  may  have  different  meanings  (e.g.,  the  noun  and  the  verb  forms  of 

plant),  and  it  may  have  different  senses  depending  on  context  (e.g.,  animal  in 

the  context  of  species  or  animal  in  the  context  of  untamed).  Quillian's  model 
is  able  to  find  many  of  the  senses  of  words. 

When  the  model  is  presented  with  two  words  to  compare,  it  starts  to 

search  outward  from  the  planes  representing  the  words  in  its  memory.  The 

type  nodes  of  the  planes  are  called  the  patriarch  nodes.  The  program  alter- 
nately examines  nodes  emanating  from  each  patriarch.  Each  node  is  tagged 

with  a  double  label,  one  part  containing  the  name  of  the  patriarch  and  the 

other  the  name  of  the  last  node  examined  (the  immediate  ancestor).  Searching 

continues  until  the  path  from  one  patriarch  "bumps  into"  a  node  labeled  with 
the  name  of  the  other  patriarch.  At  that  point,  a  path  from  one  patriarch 

to  the  other  has  been  completed.  Its  nodes  represent  the  concepts  that  relate 

the  two  patriarch  concepts,  the  raw  material  of  a  comparison.  A  program 

that  expresses  this  conceptual  pathway  in  English  is  summoned  and  produces 

a  crudely  expressed  comparison. 

It  is  likely  that  there  is  more  than  one  path  between  two  words.  In  fact, 

Quillian  estimates  that  in  a  network  of  the  850  words  of  basic  English,  at  least 

10  nontrivial  paths  could  be  found  relating  any  pair.  Each  of  these  constitutes 

a  sense  in  which  one  word  is  used  in  the  context  of  another.  For  example,  the 

pair  man,  business  yields  the  following  comparison: 

Man3  is  person,  and 

Business  can  be  activity  which  person  must  do  work. 

Also,  the  program  discovers  the  generic  sense  of  man: 

Man2  is  man  as9  group,  and 

Business  is  question  for  attention  of  group. 
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Thus,  man  used  in  the  context  of  business  has  two  meanings.  In  the  context 
of  live,  another  sense  emerges: 

Man  is  animal,  and 

To  live  is  to  have  existence  as7  animal. 

Also: 

Man  is  a  live+being2. 

Although  this  version  of  the  model  contains  less  than  60  definitions,  it  still 
produces  interesting  comparisons. 

Quillian  notes  that  the  breadth-first  search  (Article  II. Cl,  in  Vol.  I)  between 
nodes  is  a  form  of  inference.  The  relations  between  nodes  within  a  plane  are 
entered  by  the  coder  who  defines  it.  In  constructing  a  definition,  the  coder 

makes  pairwise  associations  between  a  plane  and  (through  type-token  links) 
the  other  planes  that  define  it.  Any  path  between  planes  that  encompasses 

more  than  a  single  type-token  pair  is  a  novel  conceptual  link  discovered  by 
the  model: 

While  a  path  lying  completely  within  one  plane  (except  for  its  terminal 
points)  amounts  only  to  a  representation  of  some  piece  of  the  information 

put  into  memory,  a  "plane-hopping"  path  represents  an  idea  that  was 
implied  by,  but  by  no  means  directly  expressed  in,  the  data  that  were  input. 
(Quillian,  1968,  p.  240) 

Empirical  Tests  of  Quillian 's  Model 

Inference  was  an  important  concept  to  Collins  and  Quillian  (1969)  in  their 
research  on  the  psychological  validity  of  the  semantic  network  model.  They 
sought  to  prove  that  human  memory,  like  their  semantic  memory,  obeyed  the 

organizational  principles  of  hierarchy  and  economy.  Figure  El-2  represents 
a  hierarchical  tree  of  information  about  animals.  The  lower  nodes  constitute 

proper  subsets  of  upper  nodes;  this  is  the  principle  of  hierarchy.  Note  that 
properties  of  nodes  are  not  repeated  at  each  node  at  which  they  apply,  but  at 
the  highest  possible  node  above  all  the  subsets  to  which  the  property  applies. 
The  properties  of  subsets  are  then  inferred  from  the  superordinate  nodes  at 
which  they  are  stored.  This  is  the  principle  of  economy. 

For  example,  although  a  canary  is  feathered,  this  information  is  stored 
with  the  ancestor  of  the  set  of  feathered  things,  the  concept  bird.  Higher  still, 
stored  with  the  concept  animal,  is  the  information  that  a  canary  is  ambulatory. 
The  knowledge  that  a  canary  is  ambulatory  is  achieved  by  inference:  A  canary 
is  a  bird;  a  bird  is  an  animal;  animals  are  ambulatory;  thus,  by  inference, 
canaries  are  ambulatory. 

Collins  and  Quillian  reasoned  that  predictions  can  be  made  to  test  whether 
the  principles  of  hierarchy  and  economy  hold  for  human  memory.  The  first  of 
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i   ►  Has  Skin 

//   ►  Can  Move  Around Animal   »►  Eats 

Can  Fly  \  > — ►  Has  Fins 

Has  Wings  \      /^-^  Can  Swim 
-  Feathered  Fisln  — ►  Has  Gills 

/   ►  Has  Long  Legs      /  \        / — ►  is  Pink 

Canary  — ►  Sings     Ostrich  — ►  Tall  Shark  -►  Bites    Salmon-^  Is  Edible 

N — ►  Is  Yellow  ^ — ►  Can't  Fly  N — ►  Dangerous     ̂  — ►  Swims  Upstream 

Figure  El-2.     A  hierarchical  memory  structure  (from  Collins  and 
Quillian,  1969). 

these  concerns  the  hierarchy  principle:  Since  it  requires  more  inferential  steps 
to  confirm  a  proposition  like  A  canary  is  an  animal  than  a  tautology  like  A 
canary  is  a  canary,  humans  should  require  more  time  to  confirm  the  former 
than  the  latter.  They  should  need  intermediate  amounts  of  time  to  confirm 

propositions  requiring  intermediate-length  chains  of  reasoning,  such  as  A  bird 
is  an  animal  or  A  salmon  is  a  fish.  In  fact,  reaction-time  data  support  this 
prediction: 

Proposition  Time  to  confirm  (in  seconds) 

A  canary  is  a  canary.  1.0 
A  canary  is  a  bird.  1.17 
A  canary  is  an  animal.  1.25 

These  reaction  times  have  been  replicated  for  similar  tasks  (Conrad,  1972) 

and  support  the  hypothesis  that  semantic  memory  is  organized  hierarchically. 

Collins  and  Quillian  used  a  similar  experiment  to  test  the  economy  prin- 
ciple. They  predicted  that  A  canary  can  sing  should  require  less  time  to  verify 

than  A  canary  has  skin,  with  intermediate  propositions  requiring  intermediate 
time.  They  found: 

Proposition  Time  to  confirm  (in  seconds) 

A  canary  can  sing. 1.31 

A  canary  can  fly. 
1.38 

A  canary  has  skin. 1.47 
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They  presented  this  evidence  in  support  of  the  economy  principle.  The  alter- 
nate hypothesis,  that  a  property  common  to  a  superset  is  stored  with  each 

member  of  each  subset,  is  ruled  out  by  the  reaction-time  data:  If  a  super- 
ordinate  property,  like  having  skin,  is  stored  with  each  subordinate  node,  for 
example,  canary,  it  should  take  no  longer  to  verify  that  a  canary  has  skin 
than  that  it  can  sing. 

Although  Collins  and  Quillian's  data  support  the  economy  principle,  there 
is  evidence  that  the  increasing  reaction  times  can  be  explained  in  other  ways. 

Conrad  (1972)  found  that  the  time  required  to  verify  a  property  was  propor- 
tional to  its  familiarity,  not  to  the  hierarchical  distance  between  a  property 

and  the  noun  it  is  associated  with  in  a  proposition.  An  alternative  to  the 

economy  principle  is  that  "properties  are  stored  in  memory  with  every  word 
which  they  define  and  can  be  retrieved  directly  rather  than  through  a  process 

of  inference"  (p.  154).  Conrad  explains  the  differences  in  reaction  time  as  a 
function  of  the  familiarity  of  the  words.  When  familiarity  was  controlled,  and 
the  experiment  run  again,  no  differences  in  reaction  time  as  a  function  of  the 
presumed  hierarchical  placement  of  the  property  could  be  found.  However, 

the  effect  of  position  in  hierarchy  for  superset-subset  sentences  was  replicated. 
The  status  of  the  economy  principle  is  unsure.  The  hierarchy  principle  has 

more  support,  but  Collins  and  Quillian's  model  of  sentence  verification  leaves 
a  number  of  phenomena  unexplained.  For  example,  it  does  not  account  for 
how  false  sentences  (Fish  can  play  hopscotch)  are  discontinued.  Unfortunately, 
the  reaction  times  obtained  for  discontinuing  negative  sentences  are  difficult 
to  interpret.  It  is  difficult  to  tell  whether  this  is  because  of  a  failing  in  the 
model  or  because  reaction  time  is  an  inappropriate  tool  for  examining  this 
kind  of  model. 

Conclusion 

Since  Quillian's  pioneering  work,  semantic  nets  and  other  associative  rep- 
resentations (e.g.,  frames)  have  become  part  of  the  language  of  AI.  Although 

Quillian  developed  his  model  as  a  representation  of  linguistic  knowledge  and 

was  motivated  largely  by  issues  in  linguistics,  semantic  nets  have  been  general- 
ized to  representations  of  many  other  kinds  of  knowledge.  Several  issues 

raised  by  Quillian  have  been  examined  in  detail  in  AI.  The  issues  of  modes 
of  inference,  inheritance  of  properties,  and  the  numerosity  and  semantics  of 
arcs  are  discussed  in  the  domain  of  knowledge  representation  (see  Chap.  Ill, 
in  Vol.  I;  also,  Brachman,  1978).  In  psychology,  the  model  was  subjected  to 
empirical  analysis  and  several  other  associative  models  were  developed.  Three 
will  be  discussed  in  the  succeeding  articles. 
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In  THEIR  BOOK  Human  Associative  Memory  (1973),  psychologists  John 

Anderson  and  Gordon  Bower  present  an  associationist  theory  of  human 

long-term  memory  (LTM).  Aspects  of  their  theory  have  been  implemented  in 
a  computer  simulation  called  HAM  that  parses  simple  propositional  sentences 

and  stores  the  parsed  sentences  in  its  memory.  HAM  also  answers  simple 

questions.  Its  abilities  are  limited,  but  intentionally  so,  in  that  Anderson  and 

Bower  have  eliminated  the  mnemonic  strategies  and  tricks  that  result  in  smart 

memory  performance  in  humans.  Their  goal  was  to  model  the  strategy-free 

component  of  human  long-term  memory  and  to  explain  the  vast  experimental 
data  on  the  subject.  With  respect  to  this  goal  they  write: 

Why  not  add  some  more  inferential  routines  to  increase  the  intelligence 

with  which  it  (HAM)  answers  questions?  We  started  down  this  enticing, 
seductive  path;  but  we  slowly  came  to  the  realization  that  this  was  no  way 
for  experimental  psychologists  to  proceed. . . .  The  end  product  of  such  an 
enterprise  would  appear  to  be  thousands  of  lines  of  program  that  described 
the  countless  heuristics,  procedures,  tricks,  and  rules  that  the  human  has 
learned  in  his  lifetime.  We  would  have  translated  one  incomprehensible 
mass  of  particulars,  the  human  mind,  into  another  incomprehensible  mass, 
a  computer  program.  But  the  task  of  science  is  surely  to  reduce  particulars 
to  general  laws  rather  than  translate  particulars  from  one  idiom  to  another, 

(p.  145) 

Anderson  and  Bower  assume  that  long-term  memory  is  strategy  invariant; 
the  strategies  that  are  obviously  used  to  remember  things  are,  they  assume, 

imposed  by  an  executive  component  of  cognition.  LTM  is  thought  to  be 

much  simpler  than  the  experimental  literature  suggests,  because  much  of 

the  literature  does  not  separate  out  the  effects  of  mnemonic  strategies  on 

memory  performance.  Memory  experiments  that  use  single  words  or  nonsense 

material  as  stimuli  are  considered  especially  likely  to  have  their  results  compli- 

cated by  mnemonic  strategies,  because  these  materials  are  more  easily  remem- 
bered with  some  strategy  than  without.  Consequently,  most  of  Anderson  and 

Bower's  research  concerns  memory  for  sentences  or  phrases  that  are  appar- 
ently less  likely  to  evoke  mnemonic  strategies. 

Anderson  and  Bower  chose  question-answering  as  the  task  environment 
for  HAM.  This  may  be  the  simplest  task  on  which  to  examine  a  memory  model, 

since  it  requires  only  storage,  retrieval,  and  rudimentary  parsing  functions. 

HAM  accepts  two  kinds  of  inputs,  facts  and  questions,  which  it  parses 

into  input  structures  (described  below).  To  facilitate  parsing,  inputs  are  made 

only  in  a  natural  subset  of  English.  We  will  not  consider  HAM's  parser  in  this 
article  other  than  to  say  that  it  is  a  top-down,  left-to-right,  predictive  parser; 

42 
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we  refer  the  reader  to  Chapter  8  of  Anderson  and  Bower's  book  (1973)  for 
more  details. 

The  parameters  of  memory  that  interest  Anderson  and  Bower  are: 

1.  The  set  of  possible  memory  structures, 

2.  The  set  of  possible  inputs  to  memory, 

3.  The  set  of  possible  outputs  from  memory  in  response  to  probes, 

4.  The  set  of  possible  probes, 

5.  The  encoding  process  by  which  the  structure  of  memory  is  modified  to 
record  new  information, 

6.  The  decoding  function  by  which  the  structure  of  memory  is  probed  to 
determine  what  is  recorded  there. 

Some  assumptions  are  made  about  these  parameters.  First,  the  only 

allowable  input  structures  are  facts  and  questions.  The  latter  are  called 

probes.  It  is  assumed  that  probes  are  always  parsed  into  the  same  input 

structure,  that  the  encoding  function  always  matches  the  input  structure  to 

memory  in  the  same  way,  and  that  the  same  output  will  be  generated  to  a 

probe. 

Representation  of  Knowledge  in  HAM 

All  knowledge  in  HAM  is  represented  as  propositions,  encoded  in  binary 

trees.  For  example,  the  structure  of  In  a  park  a  hippie  touched  a  debutante  is 

shown  in  Figure  E2-1.  The  numbers  identify  nodes  in  memory;  the  labels  are 
interpreted  as  follows: 

■abel 
Interpretation 

C Context  in  which  Fact  is  true 

F Fact 

L Location 

T Time 

S Subject 
P Predicate 

R Relation 

0 Object 
E Set  membership 

A  proposition  tree  may  also  consist  of  a  fact  without  a  context.  In  this 

case,  it  always  has  the  subject-predicate  form;  sometimes  the  predicate  is  just 

a  single  concept  (see  Fig.  E2-2). 

The  relation-object  pair  is  used  to  express  implicit  or  explicit  causality, 

among  other  things.    Cause  is  illustrated  as  a  relation  in  Figure  E2-3.   This 
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PARK 

33  34 

HIPPIE     TOUCH     DEBUTANTE 

Figure  E2-1.     HAM  structure  for  In  a  park  a  hippie  touched 
a  debutante. 

structure  represents  the  sentence  John  opened  the  door  with  the  key.  It 

includes  an  implicit  cause,  namely,  turning  the  key  caused  the  door  to  open. 

This  tree  is  more  abstract  than  the  one  shown  in  Figure  E2-1,  because  it  does 
not  show  the  terminal  quantifiers  leading  to  the  terminal  nodes  of  the  tree.  Set 

membership,  labeled  "E"  above,  is  one  of  three  terminal  quantifiers.  It  is  used 
when  the  terminal  concept  is  a  member  of  a  set,  such  as  the  set  of  debutantes. 

A  generic  link  is  used  when  the  terminal  node  denotes  all  members  of  a  set, 

for  example,  the  entire  class  of  dogs  in  All  dogs  chase  some  cats.  A  subset  link 
is  used  to  indicate  that  the  terminal  node  denotes  neither  an  entire  class  nor 

a  single  member,  but  a  subset  of  a  class.  Cats  in  the  previous  sentence  takes 

a  subset  link.  These  links  give  HAM  the  representational  power  of  second- 

order  predicate  calculus  (Anderson  and  Bower,  1973,  pp.  167-169;  however, 

the  reader  is  referred  to  Anderson,  1976,  pp.  165-169,  for  a  criticism  and 
reworking  of  the  terminal  quantifications  of  HAM). 

Properties  of  HAM 's  Knowledge  Representation 

Anderson  and  Bower  (1973)  specify  the  properties  of  their  memory  struc- 
ture as  a  set  of  postulates: 

Symmetry:  If  an  associative  link  exists  between  two  nodes,  then  an  inverse 

link  also  exists.  Concretely,  if  one  knows  a  relation  between  two  objects, 
one  also  knows  the  inverse  of  that  relation. 

No- forgetting:  Once  a  structure  is  incorporated  into  memory,  it  cannot  dis- 
appear from  memory.  Therefore,  forgetting  must  occur  by  losing  access  to 

the  information  in  the  structure,  not  the  information  itself.  (For  more  on 
this  view,  see  Article  XI. D.) 
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The  debutante  is  tall 

debutante       tall 

Figure  E2-2.     Simple  subject-predicate  structure. 

First  Empiricist  Postulate:  There  is  no  innate  knowledge  in  the  form  of  asso- 
ciations between  memory  nodes.  All  associations  are  formed  in  response  to 

inputs. 

Second  Empiricist  Postulate:  Concepts  (nodes)  similarly  are  acquired  only 
through  inputs.  However,  this  can  lead  to  the  idea  that  HAM  is  initially 
empty,  which  Anderson  and  Bower  explicitly  reject.  They  postulate  a  base 
set  of  simple  ideas  that  are  present  in  HAM  at  its  birth  and  upon  which  more 
complex  ideas  are  built. 

An  Example  of  HAM  in  Operation 

HAM  accepts  input  sentences  (indicated  by  **  below),  builds  associative 
structures  of  them  in  memory,  and  answers  questions  about  them: 

**  In  a  park  a  hippie  touched  a  debutante. 

HAM  responds  by  building  and  printing  the  structure  (shown  in  Fig.  E2-4) 
that  corresponds  to  this  assertion.  It  is  the  same  structure  as  shown  in 

Figure  E2-1. 

**   Who  was  touched  by  the  tall  hippie? 

The  tall  hippie — which  one? 

8/     \P DOOR       OPEN 

Figure  E2-3.     Implicit  cause  in  the  sentence  John  opened 
the  door  with  the  key. 
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HAM  does  not  know  of  any  tall  hippies.  It  is  told  that  the  current  hippie 
is  tall. 

**  The  hippie  was  tall. 

HAM  incorporates  this  new  knowledge  and  prints  out  its  structure.  The 

new  knowledge  structure  is  illustrated  in  Figure  E2-5;  for  clarity,  we  have 
shown  it  connected  to  the  structure  from  Figure  E2-4,  although  HAM 
would  not  print  all  these  nodes,  but  only  the  new  nodes— 45,  46,  4%  4$> 
and  32 — and  the  associative  links  between  them. 

**   Who  was  touched  by  the  tall  hippie? 

HAM  can  now  answer  the  question. 

The  debutante. 

This  example  illustrates  HAM's  operation.  When  input  sentences  are 
typed  in,  they  are  parsed  into  tree  structures.  If  the  input  material  is  an 

assertion  like  The  hippie  was  tall,  HAM  incorporates  it  into  memory  by  finding 

and  merging  common  nodes  in  memory  and  in  the  input.  In  this  case,  part  of 

the  input  structure  matches  node  32  of  HAM's  memory,  corresponding  to  the 
hippie  concept.  HAM  incorporates  the  input  structure  into  memory  by  joining 

it  to  node  32,  as  shown  in  Figure  E2-5.  Thus,  HAM  learns  by  associating  new 
knowledge  in  the  form  of  input  trees  with  old  knowledge  already  in  memory. 

If  the  input  sentence  is  a  question,  the  parser  generates  an  input  tree  that 

may  be  missing  a  part.  This  kind  of  tree  is  called  a  probe.  For  example,  the 

question  Who  was  touched  by  the  tall  hippie?  is  parsed  into  a  probe  of  the 

form  The  [blank]  was  touched  by  the  tall  hippie;  see  Figure  E2-6.  To  answer 
questions,  HAM  quite  literally  fills  in  the  blanks.  It  searches  its  memory  for  a 

structure  like  the  probe  that  has  a  node  instead  of  a  blank.  This  node  is  the 

answer  to  the  question.  In  this  case,  the  probe  in  Figure  E2-6  matches  the 

memory  structure  in  Figure  E2-5,  and  the  node  corresponding  to  the  blank 
is  debutante. 

37 

>/\ 

38 
36 

v / T       S V / 

31 

E/ 

PARK 

PAST     32     35 

HIPPIE  /R 

\° 

33 
A 

TOUCH 
34 
DEBUTANTE 

igure  E2-4.     H AN \  stru< :ture  for  In  a  par 
touched  a  debutante. 



E2 HAM 
47 

TOUCH        DEBUTANTE 

Figure  E2-5.     Illustration  of  how  HAM  incorporates  the  fact  The 
hippie  was  tall  into  its  memory. 

HAM  matches  input  trees  to  extant  memory  structures  to  associate  new 
information  with  old  and  to  answer  questions.  Its  operation  becomes  more 
complicated  when  partial  matches  are  involved.  The  1973  version  of  HAM 

was  run  in  two  modes.  The  mode  illustrated  in  Figures  E2-4  and  E2-5  has 
HAM  not  accepting  a  partial  match  in  the  case  of  the  tall  hippie.  The  pro- 

gram wants  to  be  told  explicitly  that  the  tall  hippie  in  the  input  tree  and  the 

hippie  in  memory  are  the  same  hippie.  In  the  other  mode,  HAM  accepts  par- 
tial matches.  For  example,  it  would  answer  the  question  Who  was  touched  by 

the  tall  hippie?  by  matching  the  probe  tree  in  Figure  E2-6  to  the  memory 

TOUCH      BLANK 

Figure  E2-6.     Probe  tree  for  Who  was  touched  by 
the  tall  hippie? 
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structure  in  Figure  E2-4.  It  would  not  be  necessary  to  spell  out  that  the 
hippie  was  tall,  as  in  Figure  E2-5.  (Partial  matching  is  discussed  further  in 
Anderson  and  Bower,  1973,  pp.  242-246.) 

From  these  examples,  one  can  see  that  the  matching  process,  MATCH,  is 

fundamental  to  HAM's  operation.  MATCH  is  simple  in  conception.  First  it 
finds  nodes  in  memory  that  correspond  to  the  terminal  nodes  of  an  input 
structure,  and  then  it  attempts  to  find  links  in  memory  that  correspond  to 
the  links  in  the  input  structure.  In  other  words,  MATCH  finds  paths  between 
input  terminal  nodes  that  correspond  to  paths  in  memory.  A  memory  path 
and  an  input  structure  path  are  considered  equivalent  if  they  have  the  same 
number  of  links  and  the  same  sequence  of  relations  labeling  the  links. 

HAM  searches  for  paths  in  memory  from  all  of  the  input  terminal  nodes 
in  parallel.  For  example,  after  matching  the  terminal  nodes  of  the  probe 

(Fig.  E2-6)  to  nodes  in  the  memory  structure  (Fig.  E2-5),  MATCH  would 
search  from  each  of  the  nodes  (past,  touch,  hippie,  past,  tall),  in  parallel,  to 
determine  whether  the  paths  that  connect  them  are  identical  in  memory  and 
in  the  probe.  However,  if  a  node  has  more  than  one  path  emanating  from 

it  (hippie  has  two),  they  are  searched  sequentially.  Consequently,  the  time 
required  to  establish  that  a  node  falls  on  a  path  is  proportional  to  the  number 

of  associations  it  has — the  number  of  paths  it  belongs  to.  This  is  called  the 
fan  effect. 

HAM  knows  many  facts,  and  a  given  terminal  node  like  hippie  is  likely 
to  be  part  of  several  trees.  In  this  case,  hippie  is  associated  to  nodes  36  and 
47  in  memory  by  means  of  a  subject  link.  The  nodes  associated  with  each 

node  by  a  link  are  stored  in  a  GET-list  for  the  node  and  link.  The  hippie 
node  in  Figure  E2-5  would  have  a  single  GET-list  with  two  members  for  the 
subject  relation.  One  can  imagine  other  associations  made  with  other  links 

(e.g.,  object)  resulting  in  other  GET-lists.  To  reduce  search,  MATCH  follows 
only  the  links  from  a  node  in  memory  that  have  the  same  label  as  the  links 
from  the  corresponding  node  in  the  input  tree.  If  the  hippie  node  in  memory 
were  connected  to  other  structures  by  an  object  link,  MATCH  would  not  search 
them,  since  the  input  structure  it  is  matching  to  memory  has  only  subject 
links  emanating  from  hippie. 

Search  is  further  speeded  by  using  recency  information.  The  members  of 

the  GET-list  are  examined  in  the  order  of  most  recent  mention.  Moreover, 
HAM  will  not  necessarily  search  all  members  of  a  GET-list;  it  may  be  too  long. 
This  leads  to  the  sole  mechanism  of  forgetting  in  HAM:  An  association  between 
two  nodes  that  has  not  been  mentioned  in  a  long  time  will  drop  farther  and 

farther  down  the  GET-lists  for  both  nodes,  thereby  increasing  the  probability 
that  HAM  terminates  its  search  from  one  of  the  nodes  without  finding  the 
association  with  the  other. 

Search  can  be  speeded  to  some  extent  by  these  methods,  but  a  node  may 
still  be  a  member  of  many  paths.  Hippie  could  be  the  subject  of  dozens  of 
sentences,  and  MATCH  would  have  to  check  each,  serially,  to  see  if  an  input 
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structure  corresponds  to  one  of  them.  The  number  of  associations  a  node  has 

is  called  its  fan- out;  since  fanning  nodes  are  searched  sequentially,  the  fan- 
out  contributes  to  the  amount  of  time  required  to  answer  a  question.  This 

property  is  the  basis  for  reaction-time  experiments  with  human  subjects.  HAM 
predicts  that  it  should  take  humans  longer  to  process  memory  concepts  with 

a  high  fan-out  than  those  with  a  low  one.  See  the  following  article  on  ACT 
for  an  explanation  of  the  Sternberg  effect  in  terms  of  the  fan  effect. 

To  summarize,  MATCH  associates  terminal  nodes  in  the  input  structure 
with  corresponding  nodes  in  memory  and  then  starts  a  parallel  search  from 
these  nodes  for  paths  between  them  that  are  equivalent  to  the  paths  between 
the  terminal  nodes  of  the  input  structure.  To  do  this,  it  examines  the  label 
of  each  link  emanating  from  a  node  in  the  input  structure  and  searches  the 

appropriate  GET-list  associated  with  the  corresponding  node  in  memory.  The 
GET-list  may  not  be  searched  completely  and  thus  associations  between  nodes 
may  appear  to  be  lost,  which  accounts  for  forgetting  in  HAM.  The  position  of 

a  node  on  the  GET-list  is  a  function  of  how  recently  it  was  mentioned,  so  that 
old  associations  are  more  likely  to  appear  to  be  forgotten  than  recent  ones. 

Lastly,  the  nodes  on  a  GET-list  are  searched  serially,  so  that  a  large  GET-list 
can  take  a  long  time  to  search. 

Conclusion 

Anderson  and  Bower  have  a  strong  commitment  to  empirical  data  about 

human  memory.  The  HAM  model  was  designed  as  a  parsimonious  and  opera- 
tional explanation  of  a  wide  range  of  results.  It  also  made  a  number  of  predic- 

tions that  were  tested  with  the  standard  experimental  methods  of  cognitive 
psychology.  The  individual  results  are  voluminous  and  of  interest  primarily 
to  cognitive  psychologists;  none  of  the  particulars  is  presented  here.  However, 
the  general  result  is  especially  important:  A  wide  range  of  memory  tasks 

can  be  modeled  by  a  strategy-free  process.  Although  humans  use  sophisti- 
cated strategies  to  remember  difficult  (often  meaningless)  material,  the  study 

of  long-term  memory  is  simplified  by  assuming  that  the  strategies  overlay 
a  relatively  simple  mechanism  common  to  all  memory  performance.  The 
MATCH  process  is  such  a  mechanism,  and  in  experiments  in  which  the  utility  of 
mnemonic  strategies  is  reduced,  it  predicts  many  interesting  empirical  results. 
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E3.     ACT 

THE  ACT  system  was  built  by  John  Anderson  following  his  work  on  HAM 

(see  Article  XI.E2).  There  are  many  points  of  overlap  between  HAM  and  ACT, 
but  there  are  also  fundamental  differences.  Most  significantly,  ACT  is  intended 
as  a  general  model  of  cognition,  while  HAM  is  a  model  of  human  memory.  HAM 
answers  questions  and  learns  new  information;  ACT  does  more,  in  that  it  can 
be  programmed  to  perform  a  wide  variety  of  cognitive  tasks.  In  addition  to  its 

long-term  memory,  ACT  has  a  short-term  working  memory  of  active  concepts 
and  a  programmable  production  system  that  brings  about  changes  in  working 

and  long-term  memories.  Common  to  HAM  and  ACT  are  certain  features 
of  long-term  memory;  for  example,  strategy  invar iance  has  been  carried  over 
to  ACT,  and  so  has  the  propositional  representation  of  knowledge,  although 
modified  in  some  details. 

Overview  of  ACT 

ACT  has  a  long-term  memory  component  and  a  user-programmable  pro- 
cedural component.  The  memory  is  a  propositional  associative  network  made 

up  of  nodes  representing  concepts  and  arcs  representing  relations  between 

the  concepts.  ACT's  memory  is  not  very  different  from  HAM's  (discussed  in 
Article  XI.E2),  so  it  will  not  be  described  in  detail  here. 

An  important  feature  of  ACT's  memory  is  that  only  parts  of  it  are  active 
at  any  time.  Activation  can  spread  through  the  network  as  nodes  activate 
adjacent  nodes.  The  time  required  to  activate  the  neighbors  of  an  active  node 

depends  on  its  fan-out,  that  is,  the  number  of  nodes  connected  to  it.  ACT 
attends  to  a  limited  number  of  active  nodes.  Those  that  are  not  marked  for 

attention  are  eventually  made  inactive;  those  that  are  marked  for  attention 

are  put  in  a  first-in,  first-out  buffer  called  the  ALIST.  They  may  displace  older 
nodes,  because  the  ALIST  has  a  capacity  of  just  10  items.  In  this  article,  the 
ALIST  will  be  called  the  working  memory. 

The  programmable,  procedural  component  of  ACT  is  a  production  system. 
Each  production  has  a  condition  part  as  well  as  an  action  part  that  is  invoked 
if  the  condition  is  true.  In  ACT,  all  conditions  test  for  a  conjunction  of  features 
of  memory,  and  all  action  parts  specify  a  change  to  be  made  to  memory.  The 
conditions  of  productions  can  examine  only  the  active  part  of  memory.  A 
number  of  productions  may  be  activated  by  the  state  of  memory,  in  which 
case  each  of  them  has  a  probability  of  being  executed. 

An  Example  of  ACT 

Anderson  shows  how  ACT  can  be  programmed  to  perform  the  Sternberg 

memory- scanning  task  (Sternberg,  1969).  In  this  task,  subjects  are  presented 
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with  a  list  of  numbers,  for  example,  4  9  13,  and  a  probe  number,  which  may 

or  may  not  be  on  the  list.  Sternberg's  result  is  that,  if  the  probe  number 
is  in  the  list,  then  the  amount  of  time  required  to  confirm  it  increases,  by 
.038  seconds,  for  each  number  on  the  list.  Curiously,  the  serial  position  of 
the  matching  digit  is  irrelevant;  the  time  required  to  confirm  the  presence  of 
a  probe  in  a  list  of  numbers  is  independent  of  where  the  probe  occurs  in  the 
list.  Sternberg  originally  explained  this  effect  in  terms  of  a  serial  exhaustive 
scanning  model,  in  which  the  list  is  kept  in  working  memory  and  a  comparator 
compares  the  probe  digit  to  each  list  element.  The  comparison  process  was 
thought  to  be  exhaustive,  meaning  that  all  list  elements  are  scanned,  even  if 
a  match  to  the  probe  has  already  been  found.  (This  paradigm  is  discussed  in 

detail  in  Crowder,  1976,  pp.  354-366.) 
Anderson  offers  a  different  explanation  in  terms  of  ACT.  When  the  list  of 

numbers  is  presented,  a  structure  is  built  in  memory  to  represent  it.  In  the 
case  of  the  list  4  9  1  3,  a  node  called  LIST  is  connected  to  four  nodes,  4,  9,  1, 

and  3,  by  the  relation  CONTAINS,  as  shown  in  Figure  E3-1.  In  ACT's  memory, 
the  LIST  node  is  connected  to  four  others  and  ultimately  to  four  numbers  by 

the  relation  CONTAINS.  The  LIST  node  has  a  fan-out  of  four,  since  four  links 
emanate  from  it. 

The  first  production  for  the  Sternberg  task  is: 

PI.     State  =  Ready  — ►  State  and  List. 

It  says  that  if  ACT  is  in  the  ready  state,  the  next  step  is  to  rehearse  the  state 
and  the  list.  In  the  context  of  memory,  rehearsal  means  repeating  something 
over  and  over  to  keep  it  in  memory,  much  as  we  do  with  telephone  numbers. 

Production  PI  brings  about  rehearsal  behavior  by  the  simple  device  of  put- 
ting on  the  ALIST  the  condition  to  satisfy  PI  again.  Production  PI  is  satisfied 

whenever  state  =  ready;  when  it  is  executed,  it  sets  the  state  to  ready  and 
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P:  Predicate 
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Figure  E3-1.     ACT  memory  structure  for  a  list  of  numbers. 
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puts  the  LIST  node  on  the  ALIST  again.    This  potentially  infinite  iteration 
continues  until  another  production  is  satisfied. 

The  second  production,  P2,  tests  whether  a  probe  digit  has  been  given.  If 
it  has  not,  then  P2  cannot  have  any  effect  and  ACT  will  continue  to  rehearse. 
If  it  has,  then  P2  changes  the  value  of  the  state  variable  from  ready  to  test 
and  puts  the  probe  digit  on  the  ALIST  with  the  state  variable: 

P2.  State  =  Ready  and  Probe  given 
— ►  State  =  Test  and  Probe  digit. 

The  third  and  fourth  productions  check  for  the  presence  of  the  probe 
digit  in  the  list  and  signal  their  findings.  They  then  reset  the  state  variable 
to  ready  for  the  next  problem: 

P3.  State  =  Test  and  List  contains  Probe 

— ►  Signal  "Found  it"  and  State  =  Ready. 
P4.  State  =  Test  and  List  does  not  contain  Probe 

— ►  Signal  "Not  there"  and  State  =  Ready. 

This  simple  production  system  and  the  idea  of  spreading  activation  in 
memory  account  for  the  Sternberg  result  that  reaction  time  to  identify  a  digit 
increases  with  the  number  of  digits  in  the  list.  At  the  beginning  of  a  trial,  ACT 
has  encoded  the  list  in  memory  as  described  above,  and  the  LIST  node  is  put 

into  working  memory  (see  Fig.  E3-2).  It  is  active,  but  the  nodes  emanating 
from  it  are  not;  they  must  be  activated  by  following  links  from  the  LIST  node 

in  working  memory  into  long-term  memory. 
With  working  memory  in  the  state  shown  in  Figure  E3-2,  production  PI 

applies.  It  will  rehearse  the  contents  of  working  memory  until  a  probe  digit  is 
given.  When  this  happens,  the  value  of  the  state  variable  is  changed  to  test, 

ALIST  or 

working  memory 

State  =  Ready 

List  Node 

Long-term  memory 

Memory  Structure 

from  Figure  E3-1. 
A    A    A     A 

Figure  E3-2.     Illustration  of  working  memory,  showing  links 
into  long-term  memory. 
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the  state  necessary  for  P3  or  P4  to  apply.  The  other  condition  for  P3  is  that 

the  list  contains  the  probe  digit.  Since  the  numbers  on  the  list  reside  in  long- 
term  memory,  they  must  be  activated  for  P3  to  check  them.  The  fan  of  the 
LIST  node  determines  how  long  it  will  take  to  activate  the  nodes  connected  to 
it;  as  the  number  of  links  from  the  LIST  node  increases,  it  takes  ACT  longer 
to  search  them.  This  is  a  slightly  different  explanation  of  the  Sternberg  effect. 

Instead  of  serially  scanning  a  list  of  numbers  in  working  memory,  ACT 
activates  the  memory  structure  representing  the  numbers;  the  amount  of  time 

required  to  do  this  depends  on  the  fan-out  of  the  LIST  node.  This  determines 
the  reaction  time  in  the  Sternberg  task. 

Performance  in  ACT 

ACT  is  a  highly  dynamic  system.  Its  focus  of  attention  changes  as  nodes  in 

long-term  memory  are  activated  and  put  in  working  memory,  as  other  nodes 
are  pushed  out  of  working  memory,  and  as  nodes  are  damped  in  long-term 
memory  and  become  inactive.  There  is  a  constant  fluctuation  of  activity  that 
is  complex  and  nondeterministic  due  to  the  probabilistic  nature  of  spreading 
activation. 

Limitations  were  imposed  on  ACT  to  make  it  resemble  human  cognition 
more  closely.  Some  of  these  are: 

1 .  The  parameters  that  affect  spread  of  activation  are  extremely  important 
to  the  operation  of  the  system  because  nodes  must  be  active  to  get  to 
working  memory,  where  productions  operate  on  them.  The  fan  of  a  node 
is  one  such  parameter.  Others  include  how  far  activation  must  travel  in 
the  memory  network,  how  frequently  nodes  in  memory  are  damped,  and 
how  strong  the  links  are  between  nodes. 

2.  The  ALIST,  or  working  memory,  is  of  limited  size,  so  ACT  attends  to 
just  a  few  concepts  at  a  time. 

3.  Only  some  productions  in  ACT  are  applicable  at  any  given  time.  There 
are  strategies  for  determining  which  are  applicable  and  for  deciding 
among  them.  The  strategies  affect  the  amount  of  time  ACT  takes  to 
perform  a  task. 

4.  When  new  information  is  added  to  ACT,  it  has  only  a  probability  of 
being  remembered. 

Learning  in  ACT 

There  are  four  methods  for  learning  in  ACT.  Designation  refers  to  telling 

ACT  something,  for  example,  a  proposition  or  a  production  rule.  Generaliza- 
tion and  discrimination  are  two  methods  for  automatically  generating  new 

production  rules.  The  fourth  learning  method,  strengthening,  is  a  reinforce- 
ment procedure. 
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The  first  method,  designation,  is  the  simplest  means  of  adding  informa- 
tion to  ACT.  It  is  the  method  that  was  used  in  HAM.  The  second  method, 

generalization  of  productions,  works  by  replacing  constant  terms  in  the  con- 
ditions of  two  productions  by  variables.  To  avoid  creating  terms  that  are  too 

general  to  be  interesting,  ACT  will  not  replace  more  than  one-half  of  the  con- 
stants of  the  smallest  condition.  Discrimination,  the  third  learning  method, 

produces  two  or  more  productions  from  one  with  too  many  variables  in  its 
condition.  It  does  so  by  instantiating  the  variables.  Discrimination  applies 
whenever  ACT  gets  feedback  that  a  production  is  too  general. 

Generalizations  and  discriminations  of  productions  do  not  replace  the 

original  rules;  rather,  they  exist  with  them.  A  generalization  will  apply 
whenever  either  of  its  original  productions  applies  but  will  have  the  same  effect 

as  both.  However,  ACT  has  a  conflict-resolution  strategy  that  favors  executing 
specific  rules  before  more  general  ones,  so  discriminations  of  general  rules,  or 
the  rules  from  which  a  generalization  has  been  formed,  have  precedence  over 

generalizations. 
Associated  with  each  production  is  a  strength  that  is  used  to  resolve 

conflicts  when  several  productions  are  applicable.  Strengthening,  the  last  of 

the  four  learning  methods,  reinforces  productions  by  increasing  or  decreas- 
ing their  strength.  If  a  production  is  found  to  be  applicable,  its  strength  is 

increased  by  a  constant  number.  However,  its  strength  is  decreased  by  25% 
if  its  execution  leads  to  a  mistaken  conclusion.  Negative  strengthening  is 

therefore  more  effective  than  positive.  Strengthening  also  applies  to  produc- 
tions that  are  consistent  with  other  applicable  or  misapplied  productions.  (A 

production  is  consistent  with  another  if  its  condition  is  more  or  less  general 
but  its  action  is  the  same.) 

Conclusion 

ACT  is  a  general  framework  in  which  cognitive  performance  is  simu- 
lated. It  is  not  custom-built  to  perform  a  particular  task,  unlike  most  of  the 

systems  discussed  in  this  chapter.  (MEMOD,  another  general  system,  is  dis- 

cussed in  Article  XI.E4.)  Anderson  considers  ACT's  design  to  be  psycholog- 
ically plausible;  he  goes  to  lengths  to  present  the  "predisposing  biases"  that 

motivated  design  decisions  in  terms  of  the  psychological  literature.  Moreover, 
ACT  makes  reasonable  predictions  about  human  behavior  in  experimental 

situations.  ACT  can  be  considered  a  theory,  in  the  sense  that  it  makes  predic- 
tions, and  a  programming  language,  or  package,  in  the  sense  that  it  provides 

an  environment  for  building  psychological  models. 

References 

Anderson  has  published  a  lengthy  book  on  the  ACT  system  (1976)  that 
includes  chapters  on  the  structure  and  behavior  of  ACT,  spreading  activation 



E3  ACT  55 

in  memory,  learning,  and  language  comprehension.  It  is  an  exhaustive  treat- 
ment, in  which  Anderson  presents  not  only  the  ACT  system  but  also  the 

theoretical  motivations  for  it.  The  book  is  reviewed  by  Wexler  (1978),  and  a 
reply  to  the  review  can  be  found  in  Anderson  (1980).  The  review  and  reply 
are  worthwhile  reading  for  those  interested  in  cognitive  science,  since  they  are 
two  different  positions  on  how  a  science  of  mind  should  proceed. 



E4.     MEMOD 

THE  LNR  research  group,  named  for  Peter  Lindsay,  Donald  Norman,  and 
David  Rumelhart,  is  engaged  in  the  ongoing  development  of  a  general  model 

of  human  long-term  memory  called  MEMOD.  Of  the  five  memory  models 
discussed  in  this  chapter,  MEMOD  may  be  the  most  ambitious  (ACT,  discussed 
in  Article  XI.E3,  is  the  other  candidate)  because  of  its  scope  and  because  of 

LNR's  basic  tenet  that  a  single  system  accounts  for  cognition: 

One  system  has  to  be  capable  of  handling  the  representation  and  processing 
issues  in  syntactic  and  semantic  analysis  of  language,  in  memory,  perception, 
problem  solving,  reasoning,  question  answering,  and  in  the  acquisition  of 
knowledge.  (Norman,  Rumelhart,  and  the  LNR  Research  Group,  1975, 
p.  160) 

It  is  a  major  goal  of  the  LNR  group  that  the  MEMOD  system  should  be  a 

general  knowledge-representation  system,  that  is,  one  that  can  represent  any 
kind  of  knowledge.  Until  quite  recently,  however,  it  was  used  primarily  to 
represent  linguistic  knowledge.  Accordingly,  the  MEMOD  system  has  three 

main  components:  a  parser,  which  is  based  on  an  augmented  transition  net- 
work (ATN;  see  Article  IV.D2,  in  Vol.  i);  a  node  space,  which  is  a  semantic-net 

representation  of  world  knowledge;  and  an  interpreter,  which  performs  opera- 
tions on  the  node  space.  The  node  space  represents  both  declarative  and 

procedural  knowledge;  node-space  structures  represent  facts  about  the  world 
and  also  specifications  of  operations  to  be  performed  in  the  node  space  by  the 
interpreter.  Because  it  is  not  a  passive  repository  of  knowledge  but  contains 
procedures  that  manipulate  knowledge,  the  node  space  is  called  the  active 
structural  network,  or  ASN. 

In  this  article,  the  design  of  the  active  structural  network  is  sketched 
briefly,  followed  by  a  more  formal  discussion  of  how  concepts  and  events  are 
represented.  Here,  the  role  of  the  interpreter  will  be  more  obvious.  We  will 
not  consider  the  parser  at  all,  since  ATN  parsers  and  case  grammars  are  dealt 
with  in  Chapter  IV  (in  Vol.  i)  on  understanding  natural  language. 

The  Active  Structural  Network 

The  design  of  the  active  structural  network  was  constrained  by  a  number 

of  goals  arising  directly  from  the  natural-language  applications  intended  for 
the  MEMOD  model.  Briefly,  these  were: 

1.    Completeness.    The  model  must  be  able  to  represent  any  knowledge  of 
any  type,  including  nonlinguistic  knowledge. 
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2.  Extendability.  The  model  must  be  extendable  whenever  new  information 
is  available.  If,  for  example,  the  model  learns  that  to  saunter  is  not 
merely  to  walk  but  is  to  exhibit  some  degree  of  indolence,  it  must  be 
able  to  incorporate  this  information. 

3.  Invariance  under  paraphrase.  Expressions  that  have  the  same  meaning 
should  have  the  same  underlying  representation  in  the  ASN  regardless 
of  how  they  are  stated  at  a  surface  level. 

4.  Preservation  of  overlap  in  meaning.  The  representation  of  words  and  larger 
units  of  meaning  in  the  ASN  should  reflect  the  possibilities  of  synonymy, 
partial  overlap,  and  no  overlap  in  meaning.  Meanings  that  overlap, 
such  as  stroll  and  saunter,  should  have  common  components  in  their 
representations.  Unrelated  words  should  not. 

5.  Continuity.  In  a  psychological  model  of  knowledge,  words  with  similar 

meanings  should  have  similar  structures,  and  a  small  change  in  mean- 
ing should  not  cause  a  major  change  in  its  representation.  Similarly, 

concepts  that  have  very  different  meanings  should  have  very  different 
representations. 

Semantic  Decomposition  and  Case  Structure  of  Predicates 

The  technique  employed  by  the  LNR  group  to  satisfy  these  goals  is  seman- 
tic decomposition  of  words  (or  more  generally,  concepts)  into  primitive 

elements  called  predicates  (see  Article  III.C6,  in  Vol.  I,  for  a  detailed  discus- 
sion of  semantic  decomposition).  For  example,  they  identify  four  classes  of 

predicates — stative,  change,  causative,  and  actional — that  can  be  combined  to 
yield  different  verb  meanings. 

Stative  predicates.  The  stative  component  of  a  verb  indicates  that  a 

state  of  the  world  holds  over  some  time  period.  One  of  the  stative  predicates 

in  the  MEMOD  system  is  LOC.  It  takes  four  arguments,  the  last  two  of  which 

are  optional: 

LOC [object,    at-loc,    (from- time) ,    (to-time)]    . 

A  semantic-net  representation  of  the  LOC  predicate  shows  the  LOC  node 

linked  to  four  argument  nodes,  as  shown  in  Figure  E4-1.  Here,  a  network 
structure  is  shown  to  represent  the  sentence  A  stadium  was  located  in  the 

park  from  1 956  to  1 963.  In  addition  to  the  LOC  node,  this  figure  also  shows 

nodes  representing  the  concepts  of  stadium,  park,  1956,  and  1963.  A  point 

of  notation  is  that  the  angle  brackets  and  parentheses  in  this  diagram  denote 

tokens — or  copies — of  concepts  and  predicates,  respectively.  A  token  repre- 
sents a  concept  in  some  context;  a  dictionary  of  type,  or  original,  nodes  is 

also  maintained,  and  token  nodes  are  linked  to  them;  see  Article  XI.El  for  a 

discussion  of  the  type- token  distinction. 
Change  predicates.  A  verb  like  move  can  be  represented  as  a  CHANGE 

predicate  taking  two  LOC  predicates  as  arguments,  as  shown  in  Figure  E4-2, 
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object                     at-loc 
<stadium>  ^   (|_0C)   

from-time 

<1956> 

to-time 

<1963> 

<park> 

Figure  E4-1.  The  LOC  component  of  the  verb  located  in 
the  sentence  A  stadium  was  located  in  the 

park  from  1956  to  1963. 

which  represents  the  sentence  The  team  moved  from  the  stadium  to  the  train- 
ing camp  in  May. 
Causative  predicates.  One  can  imagine  how  another  verb,  say,  push, 

might  be  represented  by  a  structure  like  the  one  shown  in  Figure  E4-2,  but 
predicated  with  a  causative;  that  is,  to  push  is  to  CAUSE  to  move  from  one 

location  to  another.  Figure  E4-3  represents  the  concept  of  a  person  causing 
an  unspecified  object  to  move  from  one  unspecified  place  to  another  at  an 

unspecified  time.  It  is  the  skeleton  of  a  cause-to- change-location  verb;  the 
reader  can  think  of  numerous  verbs  that  have  this  general  structure. 

Actional  predicates.  Consider  this  example  in  the  context  of  the  design 
goals  discussed  earlier.  Semantic  decomposition  is  a  representational  tool 
that  guarantees  that  similar  meanings  have  similar  structures.  The  structure 
above  is  common  to  several  verbs  with  overlapping  meanings:  push,  shove, 
carry,  pull,  transport,  and  so  on.  The  actional  predicate  is  instrumental  in 
making  finer  distinctions  in  meaning;  however,  LNR  has  done  little  work  with 
actionals,  and  generally  the  primitive  predicate  DO  is  used. 

<stadium>- 

(CHANGE) 

from-state 

at- 

time\  to-state 

at-loc 
(LOC) 

<May> 
(LOC) 

from- 
time 

to- 

time 

-►<team> 

at-loc 
-►<training  camp> 

object object 

Figure  E4-2.  Move  consists  of  CHANGE  and  LOC  predicates;  it  is  a  CHANGE 
in  Location — as  in  The  team  moved  from  the  stadium  to  the 
training  camp  in  May. 
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(CAUSE) 

event   /  \  result 

<  person  >  ̂    (DO)  (CHANGE) 

agent 

from- 
state 

  (LOG)  (LOC) 

/  I  \      /  I  \ 

Figure  E4-3.  Skeleton  of  a  verb  with  CAUSE,  CHANGE,  and 
LOC  predicates  organized  to  represent  the 
concept  of  causing  a  change  in  location,  as 

in  push,  pull,  and  carry. 

Once  a  word  is  defined,  it  is  stored  in  MEMOD 's  dictionary  as  a  type  node 
and  can  be  used  in  more  complex  structures,  as  in: 

<lion>  «■   (CARRIED)    ■♦  <antelope> 

A  final  point,  before  proceeding  to  a  more  formal  description  of  knowledge 
representation  in  MEMOD,  is  that  predicates  have  a  case  structure  (discussed 
in  Article  IV. C4,  in  Vol.  i).  For  example,  LOC  has  two  necessary  and  two 
optional  arguments: 

LOC [object,   at-loc,    (f rom-time) ,    (to-time)]    . 

This  facilitates  parsing.  When  the  parser  recognizes  a  predicate  or  a  verb,  it 
can  make  predictions  about  what  kinds  of  words  to  expect  next  on  the  basis 

of  knowing  the  verb's  arguments. 

Encoding  Concepts,  Events,  and  Episodes 

In  a  1972  paper,  Rumelhart,  Lindsay,  and  Norman  specified  four  catego- 
ries of  rules  for  constructing  complex  knowledge  structures  from  the  simple 

ones  we  have  already  considered: 

1.  Rules  of  formation  for  concepts, 

2.  Rules  of  formation  for  relations, 

3.  Rules  of  formation  for  propositions, 

4.  Rules  of  formation  for  operators. 

Concepts  are  objects,  for  example,  lion  and  stadium.  Relations  are  the 

names  of  associations  that  may  hold  among  concepts,  for  example,  HIT  [actor, 
object,  instrument].  Propositions  are  instantiations  of  relations,  for  example, 
HIT[John,    ball,    bat].      Operators,    the   last   group,    are  of  two  varieties, 



60  Models  of  Cognition  XI 

prepositional  and  relational.  The  former  modifies  concepts  of  time  or  location 
to  generate  new  concepts: 

before (noon)   or  under (water)  . 

The  latter  modifies  relations: 

slowly (walk)   or  very (big)  . 

LNR  gives  five  rules  for  forming  concepts.  First,  an  existing  concept 
can  be  qualified.  This  corresponds  most  closely  to  the  action  of  adjectives. 
A  qualified  concept  has  a  node  of  its  own;  for  example,  the  node  lamb  is 
defined  as  young(sheep).  Second,  quantification  of  concepts  can  yield  new 
concepts,  as  when  crowd  is  defined  to  be  many  (per  sons).  Third,  new  concepts 
of  location  and  time  can  be  derived  from  prepositional  operators.  Fourth, 

concepts  can  be  conjoined  to  form  new  concepts;  for  example,  and(dog,  cat) 
denotes  the  concept  of  the  class  of  dogs  and  cats.  Finally,  concepts  can  denote 

propositions.  For  example,  in  the  proposition  HIT(  John,  ball,  bat),  there  is  a 
concept  hit,  which  corresponds  to  an  instance  of  the  general  relation  HIT  in 
the  context  of  John  and  his  ball  and  bat. 

There  are  three  ways  to  generate  new  relations  from  old.  The  first  is 
to  modify  the  relation,  as  with  an  adverb.  For  example,  the  relation  stroll 
is  defined  as  slowly(walk).  Another  method  is  to  modify  one  or  more  of  the 
arguments  of  the  relation.  For  example,  if  the  relation  of  walking  is  defined 
as: 

WALK [actor,   path,    time]    , 

then  a  new  relation,  CLIMB,  could  be  derived  by  specifying  that  the  path 
should  be  uphill.  Finally,  new  relations  can  be  generated  by  conjoining  old 
ones  with  special  conjunctions.  BECAUSE  is  one  such  conjunction: 

FLEE [actor,    object,   time]    is  defined  as 
quickly (  GO (actor,    from (object) ,    time)) 

BECAUSE 

FEAR (actor,    object,    time)    . 

Propositions  are  formed  by  instantiating  a  relation  with  concepts.  For 

example,  the  arguments  of  FLEE  might  be  (Dorothy,  lions,  always).  The  other 
method  for  obtaining  propositions  is  to  conjoin  them  with  conjunctions  like 
BECAUSE  and  AND. 

Operators  are  constructed  in  some  of  the  same  ways.  New  qualifiers  are 
generated  from  old  by  applying  relational  operators  to  them;  for  example,  tiny 
is  very(small).  Relational  operators  also  apply  to  each  other;  for  example, 
partly  is  not(completely). 

Sentences  that  describe  events,  such  as  The  lion  chased  Mary,  can  be 
encoded  in  MEMOD.  Conjoining  events  by  using  conjunctions  like  BECAUSE, 
AND,  THEN,  and  WHILE  allows  one  to  represent  complex  episodes.  Graphically, 
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(growl) 
A 

act 

<  > 

(hear) 

act 

(raise) 

A 

act 

<  > 

actor 

<  > 

object 

->►  <rifle> 

<  lion  > 

actor 

<  big-game  hunter  > 

Figure  E4-4.     A  representation  of  the  episode  The  big-game 
hunter  heard  the  lion  growl  and  raised  his  gun. 

an  episode  is  simply  a  sequence  of  event  nodes  connected  by  conjunctions.  An 

example  of  a  graphical  representation  of  an  episode  in  which  a  big-game  hunter 

hears  a  lion  growl  and  raises  his  gun  is  shown  in  Figure  E4-4.  (The  empty 
nodes  represent  tokens  of  the  three  events,  hearing,  growling,  and  raising.) 

A  simple  propositional  sentence  can  be  broken  down  into  a  relation  and  a 

set  of  concept  arguments.  A  relation  can  be  broken  down  further  into  primi- 
tive predicates  by  semantic  decomposition.  Rules  were  discussed  here  that 

conjoin  and  modify  concepts,  relations,  propositions,  and  operators  and  that 
create  more  complex  structures  such  as  episodes.  These  rules  give  MEMOD  the 
power  to  represent  episodes  of  varying  complexity.  The  next  section  outlines 
the  interactions  between  these  representations  and  the  interpreter. 

The  Interpreter 

Knowledge  is  supplied  to  MEMOD  in  the  form  of  sentences.  After  these 
are  parsed,  the  interpreter  makes  the  appropriate  changes  to  the  ASN  by 
executing  the  program  associated  with  each  relation  in  the  input  sentence. 
For  example,  a  basic  relation  built  into  MEMOD  is  CONNECT.  There  is  a  type 
node  for  CONNECT  that  is  linked  to  a  computer  program  that  joins  nodes 

together  in  the  ASN,  as  shown  in  Figure  E4-5. 
If  the  interpreter  encounters  a  parsed  version  of  the  sentence  Connect  dog 

to  animal  with  is  a,  it  will  look  up  the  word  connect;  find  that  it  denotes  a 

built-in  program  that  takes  three  arguments;  bind  the  arguments  dog,  animal, 
and  isa  to  the  variables  X,  Y,  and  Z;  and  execute  the  program.  The  result 
is  a  network  structure: 

dog 

isa 
animal 
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(the  computer  program 
connect  — =   ►   that  links  nodes 

variable  (—  -Y-  —I  together  in  the  ASN) 

isa  with 

Figure  E4-5.     Representation  of  the  relation  CONNECT. 

The  CONNECT  program  was  built  into  MEMOD  from  the  outset.  However, 

it  is  possible  to  define  words  by  associating  programs  with  them.  For  example, 

the  LNR  group  gives  the  following  definition  for  the  word  son. 

Define  son  as  predicate. 

the  definition  frame  for  son  is:  X  is  son  of  Y 

the  definition  is: 

Connect  X  to  male  with  sex. 

If  age  of  X  is  less  than  18,  then 
connect  X  to  child  with  isa. 

connect  Y  to  X  with  parent-of. 
## 

(This  represents  an  interaction  with  the  MEMOD  system.  The  text  in  ordinary 

type  is  entered  by  the  user;  MEMOD's  replies  are  in  italics.) 
The  relation  DEFINE  is  itself  a  built-in  procedure  that  builds  structures 

in  the  ASN.  For  example,  defining  son  yields  a  structure  that  is  something 

like  the  one  shown  in  Figure  E4-6  (which  is  not  exact,  since  all  of  the  arrows 
pointing  to  the  node  CONNECT  would  be  pointing  to  the  same  type  node  in 

the  ASN). 

iswhen                    then                        then 
(son)   ►(     )   ►(     )   ►(     ) 

(connect)  (conditional)  (connect) 

/    I    \        /     \       /   I    \ 
X      male   sex        age  then        Y        X    parent-of 

less  18 

(connect) 

/   I   \ 
X     child    isa 

Figure  E4-6.     Representation  of  the  definition  of  son. 
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The  important  thing  about  this  structure  is  that  it  invokes  changes  to  the 

ASN  when  interpreted.  Although  its  representation  is  uniform  with  declar- 
ative network  structures,  it  is  a  representation  of  a  procedure.  When  the 

interpreter  is  given  the  sentence  Oedipus  is  the  son  of  Jocasta,  it  will  create 
a  structure  in  the  ASN  representing  the  facts  that  Jocasta  is  the  parent  of 
Oedipus  and  that  Oedipus  is  male.  The  distinction  between  procedural  and 
declarative  knowledge  in  MEMOD  is  obscured  by  the  uniform  representation 
used  for  both.  It  appears  that  there  are  two  kinds  of  procedural  knowledge, 

built-in  programs  like  CONNECT  and  definitions  that  are  formally  very  similar 
to  episodes  except  for  an  IS  WHEN  link.  IS  WHEN  links  a  node  with  its  definition, 
and  interpreting  the  definition  results  in  changes  to  the  ASN. 

A  word  like  son,  when  defined  in  MEMOD,  carries  with  it  the  procedures 
necessary  to  make  inferences  about  what  it  means  to  be  a  son;  for  example, 
one  can  infer  that  a  son  is  male  because  part  of  the  definition  of  son  is  a 
procedure  that  makes  that  connection  in  the  ASN.  Because  definitions  carry 
implicit  inferences  about  what  it  means  to  be  something,  MEMOD  can  answer 
many  questions.  For  example,  given  an  appropriate  definition,  it  can  say 
what  it  means  to  be  a  sandwich.  Here  is  one  definition  from  the  Kitchenworld 

implementation  of  MEMOD: 

Define  sandwich  as  recipe. 
the  definition  frame  for  sandwich  is:  (subject)sandwich  X. 
the  definition  is: 

Place  a  slice  of  bread  on  the  counter. 

Spread  preferred  spread  of  X  on  the  bread. 
Place  each  ingredient  of  X  on  the  bread. 
Place  a  second  piece  of  bread  on  the  bread. 
## 

This  definition  has  a  network  structure  similar  to  those  shown  above. 

It  is  composed  of  nodes  representing  simple  actions  like  place,  which  are 
composed  of  simpler  predicates  like  CONNECT.  To  answer  questions  such  as 

"What  containers  would  be  left  on  the  counter  after  I  made  a  sandwich?"  the 
interpreter  executes  the  sandwich  recipe  in  the  ASN.  This  results  in  changes 
to  the  ASN.  For  example,  containers  that  were  previously  associated  with 
refrigerator  by  an  IN  link  may  subsequently  be  linked  to  counter  by  ON. 

Conclusion 

MEMOD  implements  a  number  of  powerful  ideas,  which  were  reviewed 
here.  Semantic  decomposition,  for  one,  ensures  that  concepts  with  similar 
meanings  have  similar  structures.  This  was  illustrated  by  a  general  structure 
for  verbs  that  mean  to  cause  a  change  in  location.  In  MEMOD,  the  meaning 
of  a  concept  is  reflected  in  its  structure,  its  composition  of  simpler  units  of 
meaning. 
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Verbs  and  other  structures  in  MEMOD  have  a  case  structure,  which  means 
that  MEMOD  knows  how  many  arguments  a  verb  takes  and  what  kinds  of 
arguments  they  are.  There  is  a  grammar  for  building  structures  in  MEMOD, 
and  rules  for  building  concepts,  relations,  propositions,  and  operators  were 
discussed. 

Events  in  MEMOD  can  be  linked  by  conjunctions.  The  THEN  conjunction 
is  particularly  important  because  it  orders  events  of  an  episode  in  time  and 
for  the  interpreter.  Another  important  link  is  IS  WHEN.  It  links  words  to  their 

definitions,  which  are  episode-like  procedures  for  building  structures  in  the 
ASN. 
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F.    BELIEF  SYSTEMS 

IMAGINE  a  conversation  with  a  person  who  speaks  only  facts,  the  kind  of 
conversation  you  might  have  with  an  official  who  refuses  to  give  a  personal 
opinion  or  make  a  prediction  about  the  future  or  guess  at  an  explanation  for 
a  past  event.  Or  consider  the  testimony  of  police  officers;  they  say  things  like 

"We  were  called  to  the  scene  at  12:07  A.M.  and  found  the  suspect  holding  two 
hostages.  We  succeeded  in  disarming  the  suspect  without  injury.  The  suspect 

is  now  undergoing  psychological  evaluation."  What  they  do  not  say  is  that 
they  believe  the  suspect  is  guilty,  that  they  believe  he  is  a  doped-up  crazy, 
that  tljey  were  scared  stiff  while  disarming  him,  that  they  sincerely  hope  he 
gets  the  maximum  sentence,  that  holding  an  old  lady  hostage  is  a  miserable 
act  of  terrorism,  and  so  on.  Police  officers  rightly  stick  to  the  facts.  At  least, 
they  do  while  on  duty.  Afterwards,  we  assume  they  are  as  full  of  opinion, 
belief,  innuendo,  prejudice,  and  emotion  as  the  rest  of  us. 

In  this  example,  the  distinction  between  fact  and  belief  has  been  amplified 

to  emphasize  that  much  human  discourse  is  in  beliefs,  speculations,  predic- 
tions, desires,  and  so  on.  The  research  discussed  in  this  article  is  concerned 

with  the  structure  of  beliefs,  how  we  reason  with  beliefs,  how  beliefs  function 
as  prejudices  to  influence  interpretation,  and  how  emotions  affect  reasoning. 
These  questions,  and  the  computational  systems  that  have  been  implemented 
to  explore  them,  fall  in  the  domain  of  belief  systems. 

Abelson  (1979)  has  outlined  a  number  of  peculiarities  that  set  beliefs  apart 
from  facts  and  that  distinguish  belief  systems  from  other  systems  in  AI: 

1.  Belief  systems  are  not  consensual.  Different  beliefs  may  result  in  different 
interpretations  of  the  same  phenomena.  For  example,  depending  on 

one's  beliefs,  the  "generation  gap"  results  from  insensitive  and  restric- 
tive parents  or  from  ungrateful  and  immoral  children.  One's  beliefs 

can  influence  interpretation  of  relatively  sure  facts;  for  example,  some 
smokers  refuse  to  believe  that  smoking  causes  cancer,  and  some  people 
insist  that  concentration  camps  never  existed  but  are  the  creation  of 

propagandists. 

2.  Beliefs  deal  with  conceptual  entities  such  as  the  generation  gap,  the 
supernatural,  and  extrasensory  perception.  Thus,  an  entity  that  exists 
in  one  belief  system  may  be  absent  in  another. 

3.  Sometimes  belief  systems  represent  alternative  "worlds,"  typically,  "the 
world  as  it  should  be."  Ideologies  often  have  implicit  alternative  worlds. 

4.  Beliefs  have  an  evaluative  or  affective  component.  Events  tend  to  be  good 
or  bad,  to  evoke  pleasure  or  displeasure.  Abelson  distinguishes  between 
two  aspects  of  affect.  One  involves  the  world  divided  up  into  good  and 

65 
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bad  things  (or  into  as  many  categories  as  there  are  affects).  From  this 
categorization  one  can  infer  the  goodness  or  badness  of  events  or  objects. 
For  example,  if  X  is  bad,  and  Y  helps  X,  then  Y  must  be  bad  also. 

Much  of  Abelson's  early  research  was  devoted  to  this  kind  of  reasoning. 
A  second  aspect  of  affect  is  how  it  influences  the  operation  of  a  system; 

for  example,  Faught  (1975)  characterizes  emotions  as  leading  to  motives, 
and  Bower  (1981)  discusses  the  effects  of  emotion  on  memory. 

5.  Beliefs  may  be  based  on  subjective  experiences  or  episodes.  Logical, 
rational  deductions  may  be  based  on  a  subjective  event.  For  example,  an 
elaborate  theory  may  be  constructed  around  an  event  that  was  believed 
to  occur  but  that  actually  did  not.  An  interesting  historical  example 

is  the  mass  hallucination  of  French  physicists  in  the  "N-Ray  Affair" 
(Klotz,  1980).  It  was  believed  that  N-rays  could  be  detected  by  their 
effects  on  the  brightness  of  an  electric  light-bulb,  and  for  many  years, 
French  physicists  published  reports  of  the  curious  properties  of  N-rays. 
This  research  continued  (though  at  a  lesser  pace)  even  after  it  was 
demonstrated  that  perceived  fluctuations  in  brightness  were  entirely 

illusory.  N-rays  do  not  exist  and  the  physics  that  had  been  developed 
to  explain  them  was  founded  on  a  hallucination. 

6.  One  does  not  know,  a  priori,  what  knowledge  is  relevant  to  a  belief. 
The  knowledge  pertinent  to  diagnosis  of  glaucoma,  for  example,  can  be 
circumscribed  relatively  easily.  It  is  less  easy  to  decide  what  is  irrelevant 

to  conceptual  entities  such  as  the  sexual  promiscuity  of  today 's  youth. 

7.  Credibility  and  emotion  interact  in  evaluation.  One  may  believe  some- 
thing is  true,  passionately;  or  there  may  be  no  emotional  investment  in  a 

belief.  For  example,  it  may  be  true  that  one  brand  of  pain  reliever  con- 
tains more  aspirin  than  another,  but  it  is  hard  to  achieve  the  enthusiasm 

necessary  to  value  one  more  highly. 

These  characteristics  of  belief  and  belief  systems  make  reasoning  from 

belief  more  complicated  than  reasoning  from  facts  or  measurable  uncertainties. 

This  is  for  several  reasons,  all  related  to  what  the  belief  system  knows.  First, 

the  nonconsensuality  argument  is  that  different  belief  systems  house  different 

bodies  of  knowledge;  thus,  it  may  be  difficult  for  one  system  to  explain  or 

predict  the  behavior  of  another.  For  example,  it  is  a  difficult  task  for  the 

BUGGY  system  (see  Article  DC.C7,  in  Vol.  Il)  to  derive  the  inference  rules 

applied  by  its  students  in  working  arithmetic  problems.  The  students  make 

assumptions  about  arithmetic  that  are  not  consensual  with  the  assumptions 

of  the  adult  community;  consequently,  they  make  errors.  BUGGY's  task  is  to 

explain  the  errors  by  inferring  the  students'  mistaken  assumptions.  Another 
example  from  the  ICAI  literature  (see  Chap.  IX,  in  Vol.  n)  illustrates  the  power 

of  assuming  consensuality:  Several  ICAI  systems  maintain  a  student  model — a 

representation  of  what  the  student  knows — to  facilitate  teaching. 
Just  as  nonconsensuality  is  a  problem,  so  are  existence  and  openness, 

and  for  much  the  same  reason.    The  existence  problem  is  that  reasoning  in 
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one  system  may  be  predicated  on  premises  that  do  not  exist  in  another;  for 
example,  one  can  do  little  to  mollify  a  person  who  believes  that  his  (or  her)  bad 
fortune  is  preordained.  The  belief  in  preordination  is  so  central  to  his  belief 

system  (though  alien  to  one's  own)  that  he  accepts  misfortune  with  resignation 
and  will  do  nothing  to  improve  his  lot.  The  openness  problem  is  concerned 
with  the  relevance  of  the  knowledge  used  for  reasoning;  in  one  system  a  fact 
may  be  central  to  an  argument,  while  in  another  it  is  tangential.  For  example, 
one  person  may  attribute  the  decline  of  our  society  to  the  availability  of  drugs, 
while  another  may  believe  the  cause  is  inflation  and  a  third  may  insist  that 
impiety  is  responsible.  The  first  person  constructs  the  causal  argument  that 
society  is  being  destroyed  by  drugs.  He  holds  this  argument  with  a  conviction 
that  is  lacking  in  the  second  person,  who  views  drugs  as  a  symptom  of  an 

inflated  economy,  not  as  a  symptom  of  impiety  or  as  a  cause  of  society's  ills. 
Two  other  aspects  of  belief  make  reasoning  difficult.  One  is  the  role  of 

affect,  or  emotion,  and  the  other  is  the  role  of  confidence,  or  certitude.  It  is 
tempting  to  make  a  dichotomy  between  rational  and  irrational  thought  and 
to  assign  emotion  to  the  latter  category  and  ignore  it.  But  there  is  strong 
evidence  that  emotion  has  powerful  effects  on  human  cognition.  In  a  recent 
and  extensive  series  of  experiments,  Bower  (1981)  and  his  colleagues  have 
shown  that  emotion  influences  what  we  learn,  what  we  remember,  and  how  we 
make  a  variety  of  judgments.  Our  evaluations  of  ourselves  and  others  and  of 

events  are  subtly  but  strongly  biased  by  what  we  are  feeling.  Bower's  results 
suggest  that  emotion  cannot  be  ignored  as  a  factor  in  human  cognition  and 

that  it  is  at  least  one  factor  that  argues  against  a  strong  rational-irrational 
dichotomy. 

The  problem  of  confidence,  or  certitude,  is  that  much  of  the  information 

used  in  reasoning  is  not  true  or  false,  but  somewhere  in  between,  and  that  one's 
confidence  in  the  information  affects  one's  reasoning.  One  attempt  to  capture 
this  aspect  of  reasoning  is  found  in  MYCIN  (see  Article  VIII.Bl,  in  Vol.  Il), 
which  attaches  certainty  (or  confidence)  factors  (CFs)  to  its  conclusions.  The 
initial  CFs  are  supplied  to  the  MYCIN  system  with  its  heuristic  rules  by  expert 
diagnosticians.  Then,  as  MYCIN  reasons,  it  combines  the  CFs  associated 
with  the  rules  to  produce  a  CF  for  its  conclusion.  The  CF  mechanism  is 
quite  crude,  however,  and  very  ad  hoc.  Clearly,  MYCIN  does  not  embody  a 
theory  of  human  reasoning  under  uncertainty.  More  successful  are  Tversky 
and  Kahneman  (1974),  who  have  identified  a  number  of  factors  that  influence 
judgments  under  uncertainty. 

Even  though  reasoning  with  beliefs  involves  certain  sophistications  over 
reasoning  with  facts,  the  two  have  been  modeled  in  much  the  same  way. 

Belief  systems  are  formally  similar  to  some  of  the  knowledge-based  systems 
in  the  Handbook.  For  example,  the  belief  that  //  A  likes  B,  then  A  will  help 
B  can  be  phrased  as  a  production  from  which  the  conclusion  A  will  help 
B  follows  logically  from  the  premise  A  likes  B.  This  deduction  is  logically 
and  psychologically  valid.    Other  conclusions  may  maintain  a  formal  logical 
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validity  but  be  psychologically  odd;  for  example,  If  you  are  suffering,  then 
you  have  found  true  happiness.  It  is  useful  to  distinguish  the  formal  logical 
structure  of  a  belief  system  from  the  psychological  conclusions  that  arise  from 
it.  The  remainder  of  this  article  is  concerned  with  both  of  these  factors — with 
formal  representations  that  facilitate  psychological,  not  necessarily  logical, 
behavior. 

Implicational  Molecules 

Abelson  and  Reich  (1969)  described  a  system  based  on  implicational  mole- 
cules, that  is,  sets  of  clauses  related  by  psychological  implication.  For  example: 

[A  does  X,   X  causes  Y,   A  wants  Y]    , 

or 

[A  likes  B,   A  helps  B]    . 

Just  as  a  premise  implies  a  conclusion,  so  does  one  part  of  an  implicational 
molecule  imply  another.  Thus,  implicational  molecules  can  predict  or  explain 
events: 

If  A  wants  Y,  it  is  plausible  to  predict  A  does  X.  A  does  X  because  X  causes 
Y  and  A  wants  Y. 

Abelson  and  Reich  used  implicational  molecules  in  a  system  that  simu- 
lated the  extreme  right-wing  viewpoint  of  a  cold- war  ideologue.  The  system 

used  stereotyped  concepts  such  as  Western- governments,  situations- help ful- 
to-the- Communists,  and  prevent,  promote,  and  control.  These  were  com- 

bined to  form  generic  sentences  such  as  Liberals  control  Western-governments. 
Generic  sentences  were  then  combined  into  implicational  molecules  that  define 
the  conclusions  that  are  reasonable  in  the  system: 

[Western-governments  promote 
situations-helpful-to-the-Communists, 

Standing-up-to-Communists  prevents 
situations-helpful-to-the-Communists, 

Liberals  control  Western-governments, 
Liberals  fear  standing-up-to-Communists]    . 

A  higher  order  structure  was  the  master  script,  which  spelled  out  several 
general  contingencies  for  the  fate  of  the  free  world.  Part  of  the  script  says 
that  the  Communists  want  to  dominate  the  world  and  will  do  so  unless  the 

free  world  exercises  its  power,  in  which  case  the  free  world  will  surely  prevail. 

Generic  events  were  considered  instances  of  very  general  master-script  events. 
The  system  could  judge  the  credibility  of  events;  bad  events  were  attrib- 

uted to  the  Communists,  good  to  the  free  world,  and  never  the  other  way 
around.    It  could  also  predict  events  and  say  what  should  be  done  if  and 
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when  they  happened.  This  was  accomplished  by  associating  an  event  with 
one  on  the  master  script  and  following  it  to  a  conclusion.  For  example,  an 
event  interpreted  as  Communist  domination  was  predicted  to  result  in  world 
takeover  unless  the  free  world  flexed  its  muscles. 

The  system  answered  specific  questions  about  real  people,  not  just  abstract 

questions  about  generic  sentences.  It  did  so  by  instantiating  generic  sen- 
tences with  more  concrete  concepts.  For  example,  Liberals  control  Western- 

governments  might  be  instantiated  in  the  belief  that  LB  J  controls  the  United 
States. 

One  characteristic  of  belief  systems  in  general  is  that  they  perform  well 

with  stereotyped  beliefs.  They  reflect  what  we  suspect  to  be  true — that  little 
knowledge  is  required  to  hold  an  oversimplified,  dogmatic  opinion.  (Why  let 

facts  interfere  with  what  one  knows  is  right?)  Abelson's  Cold  War  Ideologue 
was  not  very  knowledgeable;  it  could  easily  conclude  that  the  Berlin  Wall  was 
built  by  the  Red  Chinese,  since  it  is  just  the  sort  of  miserable  thing  that 

Communists  do.  Ideological  oversimplification  seems  to  provide  a  counter- 
example to  the  pervasive  idea  that  knowledge  is  power.  To  achieve  strong 

dogma,  one  must  ignore  the  evidence,  counterexamples,  and  qualifications 
that  compromise  a  position. 

The  Structure  of  Belief  Systems 

Abelson  (1973)  later  developed  a  hierarchical  formalism  for  beliefs,  based 
on  conceptual  dependency  analysis  (see  Articles  IILC6  and  IV.F5,  in  Vol.  i). 
Abelson  starts  his  analysis  with  three  kinds  of  atoms:  purposes,  actions,  and 
states.  Purposes  encode  the  wants  or  desires  of  actors;  for  example,  Mary 
wants  John  to  do  his  share  of  housework.  Actions  are  the  things  that  the 
actors  want  to  do,  and  states  are  the  situations  that  they  want  to  bring  about. 

The  next  level  of  Abelson's  hierarchy  combines  these  atoms  into  molecules; 
these  are  similar  to  the  implicational  molecules  described  earlier. 

Molecules  represent  actions  undertaken  by  actors  to  produce  outcome 
states.  In  their  simplest  form  they  are  (Purpose,  Action,  State)  triples,  but 
larger  chains  and  networks  are  also  possible.  Among  the  larger  structures 

are  plans,  themes,  and  scripts.  Plans  represent  action-state  sequences,  where 
each  state  enables  a  subsequent  action  until  a  final  goal  state  is  obtained.  The 
structure  of  plans  reflects  that  a  set  of  sequential  or  parallel  actions  is  usually 
required  to  achieve  a  goal.  By  assumption,  plans  are  always  related  directly 
to  the  purposes  of  a  main  actor.  If  other  actors  are  involved,  they  are  simple 
agents  or  instruments  with  no  autonomy;  they  cannot  enhance  or  frustrate 
the  plans  of  the  main  actor. 

While  plans  represent  the  purposes  of  a  single  actor,  interactions  of  the 
purposes  and  plans  of  autonomous  actors  are  represented  in  themes.  Abelson 
formed  a  taxonomy  of  themes  based  on  the  possible  interactions  of  two  actors 

(see  Table  F-l). 
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Table  F-i 
A  Taxonomy  of  Themes  (from  Abelson,  1973) 

Influence  of  Actors 

Sentiments Neither One Both 

toward  Other influences  Other influences  Other influence  Other 

Some  positive, Admiration Devotion Cooperation 
no  negative Appreciation 

Love 

One  actor Alienation Betrayal Rebellion 

negative (also  Freedom) 
Victory 

Dominance 

Both  actors Mutual  Antagonism 
Oppression 

Conflict 

negative (also  Law  and 

Order) 

Mutual  antagonism,  for  example,  refers  to  agents  who  are  negative  to 
each  other,  but  powerless  to  inflict  harm.  When  one  actor  is  able  to  harm  the 
other,  oppression  results;  when  each  can  influence  the  other,  conflict  results. 

Scripts  are  sequences  of  themes  that  follow  each  other  in  some  psychologi- 
cally plausible  fashion.  (The  reader  should  be  aware  that  this  is  an  earlier 

and  different  interpretation  of  the  roles  of  themes  and  scripts  than  is  found 

in  Abelson's  research  with  Schank,  1977;  see  Schank  and  Abelson,  1977,  and 
Article  IV.F6,  in  Vol.  I.)  Simple  scripts  involving  two  actors  are,  for  example, 
blossoming  relationships,  wherein  a  Love  theme  develops  from  the  themes 

of  Admiration,  Cooperation,  Devotion,  or  Appreciation,  and  souring  relation- 
ships, which  happen  when  Love  is  complicated  by  Rebellion  and,  subsequently, 

Mutual  Conflict. 

Differences  between  individual  belief  systems  are  manifest  primarily  at 
the  theme  and  script  levels.  These  constructs  provide  for  alternative  views 
of  the  same  events;  for  example,  a  relationship  might  be  viewed  as  alienation 
by  one  actor  and  as  mutual  antagonism  by  the  other.  One  may  feel  he  is 
not  at  fault  for  a  deteriorating  relationship;  the  other  may  feel  that  hostility 
is  involved.  The  greatest  idiosyncrasy  of  belief  is  found  at  the  script  level, 
where  the  repertoire  of  scripts  maintained  by  an  individual  defines  his  ideology 

(recall  the  master-script  that  defined  the  beliefs  of  the  cold- war  ideologue). 

We  now  turn  from  Abelson's  designs  for  general  belief  systems  to  a  specific 
kind  of  belief,  namely,  paranoid  belief. 

PARRY 

PARRY  was  one  of  the  earliest  and  most  ambitious  simulations  of  the  role 

of  beliefs  and  affects  in  cognition.    It  is  a  model  of  what  its  designers  call 
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the  paranoid  mode,  a  pattern  of  behavior  motivated  by  paranoid  beliefs  and 

intentions.  PARRY's  original  designer,  Kenneth  Colby,  is  a  psychiatrist,  and 
PARRY  embodies  his  theory  of  paranoid  behavior.  We  will  discuss  this  theory 
shortly,  but  first  we  consider  the  characteristics  of  paranoia. 

Paranoids  are  suspicious;  they  think  that  other  people  intend  to  harm 
them.  They  believe  they  are  the  target  of  conspiracies.  They  have  a  great 

concern  with  "evidence,"  and  are  likely  to  treat  a  random  event  as  significant 
and  intentional  (the  intentions  are  held  by  "them" — those  malevolent  others). 
Paranoids  are  also  hypersensitive  to  criticism: 

References  to  the  self  are  misconstrued  as  slurs,  snubs,  slights,  or  unfair 
judgements.  He  may  feel  he  is  being  watched  or  stared  at.  He  is  excessively 
concerned  about  his  visibility  to  eyes  that  threaten  to  see  concealed  inade- 

quacies, expose  and  censure  them.  Cameras,  telescopes,  etc.  that  may  be 
directed  his  way  unnerve  him.  He  may  feel  mysteriously  influenced  through 
electricity,  radio  waves,  or  (more  contemporaneously)  by  emanations  from 
computers.  He  is  hypersensitive  to  criticism.  In  crowds  he  believes  he  is 
intentionally  bumped.  Driving  on  the  highway  he  feels  repeatedly  followed 
too  closely  by  the  car  behind.  Badgered  and  bombarded  without  relief  by 

this  stream  of  wrongs,  he  becomes  hyperirritable,  querulous,  and  quarrel- 
some. (Colby,  1975,  p.  4). 

Two  other  characteristics  of  paranoia  are  fearfulness  and  hostility.  One 
can  see  how  both  might  arise  from  the  conviction  that  the  self  is  in  a  hostile 
and  intentionally  malevolent  world.  A  last  characteristic,  which  Colby  says 
makes  paranoia  very  difficult  to  treat,  is  rigidity  and  absolute  conviction. 
Once  a  paranoid  is  convinced,  for  example,  that  his  doctor  is  in  collaboration 

with  "them,"  it  becomes  extremely  difficult  to  reestablish  rapport  because  the 
patient  will  not  compromise  his  beliefs. 

The  characteristics  of  paranoia  are  so  clear-cut  that  it  is  possible  to 
simulate  the  paranoid  mode.  PARRY  was  and  is  an  ambitious  project  because 

it  involves  integrating  beliefs,  intentions,  and  affects  with  more  "rational" 
cognition.  The  manner  in  which  these  components  interact  is  dictated  by 

Colby's  theory  of  paranoia. 
Paranoid  behavior  arises,  according  to  Colby,  from  attempts  to  avoid 

humiliation.  In  the  PARRY  simulation,  humiliation  arises,  and  is  intently 

avoided,  during  an  interview  with  a  doctor.  (PARRY  has  a  natural-language 
front-end,  but  it  is  not  very  sophisticated  and  we  will  not  be  concerned 
with  it  here.)  Briefly,  the  paranoid  (and  PARRY)  is  hypersensitive  to  any 
comment  that  can  be  interpreted  as  reflecting  his  own  inadequacy.  Any 
such  comment  increases  shame  and  humiliation.  (Intense  paranoia  involves 
interpreting  virtually  all  interactions  in  this  way.)  The  paranoid  seeks  to  avoid 
humiliation  and  shame,  since  it  is  intensely  painful,  so  whenever  he  detects 
a  situation  in  which  the  doctor  might  be  making  a  humiliating  comment, 
he  takes  three  defensive  actions:  One  is  to  change  his  opinion  of  the  doctor 

(e.g.,  Anyone  who  thinks  I'm  crazy  must  be  really  incompetent);  another  is  to 
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decrease  his  level  of  shame,  since  he  has  concluded  that  the  doctor,  and  not 
he  himself,  is  at  fault;  and  the  third  is  to  take  some  action,  which  may  be 
hostile. 

To  achieve  this  behavior,  PARRY  has  a  number  of  beliefs,  a  number  of 
common  inferences,  and  several  processes  that  we  will  describe  briefly.  Beliefs 
include  The  doctor  is  crazy  or  The  doctor  is  friendly.  PARRY  also  has  four 
beliefs  that  reflect  humiliation:  PARRY  is  stupid,  PARRY  is  dishonest,  PARRY 
is  crazy,  and  PARRY  is  worthless.  PARRY  must  avoid  concluding  that  any  of 
these  are  true,  since  these  conclusions  cause  pain.  Unfortunately,  PARRY  is 
always  trying  to  find  evidence  for  them  in  its  interactions  with  the  doctor. 
This  is  the  problem:  To  avoid  humiliation,  the  paranoid  must  constantly 
search  for  it;  he  must  catch  the  insult  and  deflect  it  before  it  harms  him. 

PARRY  has  a  set  of  inferences  that  alert  it  to  insults,  and  its  hypersen- 

sitivity arises  from  these  inferences.  For  example,  if  the  doctor  says,  "You 
didn't  answer  my  question,"  PARRY  infers  that  the  doctor  thinks  he  is  stupid; 
this  statement  can  also  be  taken  as  evidence  that  the  doctor  thinks  PARRY 

is  not  telling  the  truth — is  dishonest.  Whenever  the  doctor  says  anything, 
PARRY  makes  whatever  inferences  it  can,  and  if  the  inferences  support  any 
of  the  four  humiliation  beliefs  that  we  just  mentioned,  then  PARRY  increases 
its  level  of  shame. 

Thus,  one  of  PARRY's  processes  is  to  search  for  evidence  of  humiliation  in 
the  doctor's  communications.  When  this  process  finds  evidence,  another  affect 
process  increases  PARRY's  shame;  if  the  level  of  shame  crosses  a  threshold, 
PARRY  launches  into  characteristic  hostile  paranoid  behavior.  This  involves  a 

third  process  dealing  with  intentions.  PARRY  has  three  emotions — fear,  anger, 

and  shame — each  of  which  plays  a  role  in  PARRY's  intentions.  When  anger  is 
high,  PARRY  intends  to  attack  the  doctor;  when  fear  is  high,  PARRY  intends 
to  alter  the  interview  situation  so  that  the  outcome  it  fears — humiliation — is 
less  likely.  And  when  shame  is  high,  PARRY  does  three  things:  It  defends 
itself  by  throwing  out  the  belief  that  led  to  humiliation  and  replacing  it  with 
another  one,  usually  a  revised  and  uncomplimentary  belief  about  the  doctor 
(e.g.,  The  doctor  is  crazy);  it  reduces  its  shame,  since  the  belief  that  caused 
shame  has  been  exorcised;  and  it  intends  a  strong  action,  usually  based  on  its 
new  belief  about  the  doctor.  It  may  intend  to  attack,  lie,  or  withdraw. 

We  have  discussed  how  PARRY  integrates  inferences  with  affects  and 
intentions  to  produce  paranoid  behavior;  we  conclude  with  the  following  brief 
example  of  a  dialogue  with  PARRY.  Initially,  the  doctor  asks  a  lot  of  innocuous 
questions,  from  which  PARRY  concludes  that  the  doctor  is  friendly,  wants  to 
help,  and  can  help.  For  example: 

Doctor:        What  do  you  do  for  a  living? 

PARRY:       I  work  at  Sears. 

Hut  the  doctor  is  sure  to  stumble  onto  a  topic  that  PARRY  finds  sensitive,  at 
which  point  PARRY  will  experience  an  increase  in  shame: 
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Doctor:        How  much  do  you  get  paid  an  hour? 

PARRY:       My  salary  is  none  of  your  business. 

In  this  interaction,  PARRY  concluded  that  the  doctor  was  implying  that 

PARRY  had  no  money — was  worthless.  Although  shame  was  not  elevated  to 
the  point  that  PARRY  enters  paranoid  mode,  it  does  provoke  an  angry  attack. 

PARRY  can  be  mollified  if  the  doctor  goes  back  to  asking  innocuous  questions, 

or  compliments  PARRY,  or  apologizes. 

At  a  later  point  in  the  interview,  PARRY  introduces  its  main  concern — 
that  bookies  and  the  Mafia  are  out  to  get  him.  At  this  point,  the  doctor 

must  tread  very  carefully.  If  the  doctor  expresses  any  skepticism  about 

PARRY's  delusions,  shame  will  increase  markedly,  and  PARRY  will  become 
uncooperative.  As  long  as  the  doctor  asks  simple  questions,  PARRY  will 
answer  them: 

Doctor:        What  about  bookies? 

PARRY:       A  bookie  didn't  pay  me  off  once. 
Doctor:        And  then  what  happened? 

PARRY:  I  had  an  argument  with  the  bookie  who  did  not  pay  off. 
Later  on  I  remembered  he  had  friends  in  the  underworld 

and  I  thought  he  would  use  them  to  get  even  with  me. 

Incidentally,  PARRY  has  an  elaborate  story  about  the  bookies,  rather  like 

Abelson's  master-script.  One  of  PARRY's  goals  for  the  interview  is  to  tell  the 
whole  story.  The  last  interchange  was,  therefore,  quite  successful.  However, 

telling  the  whole  story  makes  PARRY  vulnerable  and  sensitive,  so  that  when 

the  doctor  says: 

Doctor:        I  find  you  interesting. 

PARRY  thinks  it  is  an  insult  and  responds  angrily: 

PARRY:       Are  you  trying  to  say  something? 

The  doctor  then  asks  several  questions  that  are  inflammatory  and  that  elevate 

PARRY's  affects.  The  doctor  finally  says: 

Doctor:        You  appear  to  be  very  sick. 

This  is  intolerable  to  PARRY.  It  increases  his  fear,  anger,  and  shame  markedly. 

From  this  point  on,  the  interview  deteriorates.  PARRY  lies: 

Doctor:        How  do  you  feel  right  now? 

PARRY:       I  am  perfectly  fine. 

And  withdraws: 

Doctor:        Do  you  need  to  have  psychiatric  treatment? 

PARRY:       I  don't  want  to  talk  about  it. 
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PARRY  substitutes  uncomplimentary  beliefs  about  the  doctor  for  shame- 
ful beliefs  about  himself,  concluding  that  all  doctors  are  bad  and  that  this  one 

is  abnormal.  These  beliefs  allow  PARRY  to  reduce  shame  and  drop  out  of  the 

paranoid  mode  into  being  merely  angry,  so  that  when  the  doctor  concludes 
the  interview  and  thanks  PARRY  for  his  cooperation,  PARRY  bluntly  tells  him 
not  to  come  back. 

Conclusion 

The  study  of  belief  systems  is  challenging  because,  unlike  "facts,"  beliefs 
are  nonconsensual,  have  associated  affects,  and  have  associated  confidences 
or  credibilities.  Even  the  basic  problem  of  how  confidences  in  beliefs  are 
adjusted  by  evidence  has  no  general  solution,  and  the  more  difficult  problems 
(e.g.,  the  effects  of  emotion  on  cognition)  are  barely  formulated,  much  less 
solved.  Despite  these  difficulties,  the  researchers  surveyed  here  are  convinced 
of  the  importance  of  belief  systems,  since  humans  clearly  do  not  reason  entirely 
from  facts  with  consistent  inference  rules,  but  instead,  prejudices,  biases, 
episodic  memory,  confidences,  and  emotional  states  are  neatly  integrated  into 

"rational"  reasoning. 
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A.     OVERVIEW 

A  CENTRAL  PROBLEM  in  AI  research  is  how  to  make  it  possible  for  com- 
puters to  draw  conclusions  automatically  from  bodies  of  facts.  Any  attempt 

to  address  this  problem  requires  choosing  an  application,  a  representation  for 
bodies  of  facts,  and  methods  for  deriving  conclusions.  This  article  provides  an 
overview  of  the  issues  involved  in  drawing  conclusions  by  means  of  deductive 

inference  from  bodies  of  commonsense  knowledge  represented  by  logical  for- 

mulas. We  first  review  briefly  the  history  of  automatic  deduction — its  origins, 
its  fall  into  disfavor,  and  its  recent  revival.  We  show  why  deductive  methods 

are  necessary  to  solve  problems  that  involve  certain  types  of  incomplete  infor- 
mation and  how  supplying  domain-specific  control  information  offers  a  solu- 

tion to  the  difficulties  that  previously  led  to  disillusionment  with  automatic 
deduction.  We  discuss  the  relationship  of  automatic  deduction  to  the  new 
field  of  logic  programming.  Finally,  we  survey  some  of  the  issues  that  arise  in 

extending  automatic-deduction  techniques  to  nonstandard  logics. 

Historical  Background 

Automatic  deduction,  or  mechanical  theorem-proving,  has  been  a  major 
concern  of  AI  since  its  earliest  days.  At  the  first  formal  conference  on  AI,  held 

at  Dartmouth  College  in  the  summer  of  1956,  Newell  and  Simon  (1956)  dis- 
cussed the  Logic  Theorist,  a  deduction  system  for  propositional  logic.  Minsky 

was  concurrently  developing  the  ideas  that  were  later  embodied  in  Gelernter's 
theorem  prover  for  elementary  geometry  (see  McCorduck,  1979,  p.  106;  Gelern- 
ter,  1963).  Shortly  after  this,  Wang  (1960)  produced  the  first  implementation 

of  a  reasonably  efficient,  complete  algorithm  for  proving  theorems  in  proposi- 
tional logic. 

Following  these  early  efforts,  the  next  important  step  in  the  development 

of  automatic-deduction  techniques  was  Robinson's  (1965b)  description  of  a 
relatively  simple,  logically  complete  method  for  proving  theorems  in  first-order 

predicate  calculus  (see  Article  III. CI,  in  Vol.  i).  Robinson's  procedure  and  those 
derived  from  it  are  usually  referred  to  as  resolution  procedures  (Article  XII.B), 
because  the  basic  rule  of  inference  they  use  is  the  resolution  principle: 

From  (A  V  B)  and  (-.A  V  C),    infer  (B  V  C) . 

Robinson's  work  had  a  major  influence  on  two  somewhat  distinct  lines 
of  research.  One  of  these  was  mathematical  theorem-proving,  which  aims  at 
providing  practical  tools  for  discovering  new  results  in  mathematics.  (That 
line  of  research  is  not  the  main  focus  of  this  chapter,  although  Article  XII. C 

is  oriented  in  that  direction.)  But  Robinson's  work  also  had  a  major  impact 
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on  research  into  commonsense  reasoning  and  problem  solving.  His  ideas  in 

this  area  brought  about  a  rather  dramatic  shift  in  attitudes  toward  automatic 

deduction.  The  early  attempts  at  automatic  theorem-proving  were  generally 
thought  of  as  exercises  in  expert  problem  solving:  the  Logic  Theorist  was 

regarded  as  an  expert  in  propositional  logic  and  Gelernter's  program  was 
considered  an  expert  in  geometry.  However,  the  resolution  method  seemed 

powerful  enough  to  make  it  possible  to  build  a  completely  general  problem- 
solver  by  describing  problems  in  first-order  logic  and  deducing  solutions  by  a 
general  proof  procedure. 

The  idea  of  using  formal  logic  as  a  representation  scheme  and  deductive 
inference  as  a  reasoning  method  was  apparently  first  suggested  as  an  approach 
to  commonsense  reasoning  and  problem  solving  by  McCarthy  in  1959,  in  his 

"Advice  Taker"  proposal  (see  McCarthy,  1968).  Black  (1968)  made  the  first 
serious  attempt  to  implement  McCarthy's  idea  in  1964.  Robinson's  work 
provided  encouragement  for  this  approach,  and  a  few  years  later  Green  (1969) 

carried  out  extensive  experiments  with  a  question-answering  and  problem- 
solving  system  based  on  resolution  (see  Article  III.Cl,  in  Vol.  I,  on  the  QA3 

program). 

The  results  of  Green's  experiments  and  several  similar  projects  were  dis- 
appointing, however.  The  difficulty  was  that,  in  the  general  case,  the  search 

space  generated  by  the  resolution  method  grows  exponentially  with  the  num- 
ber of  formulas  used  to  describe  a  problem,  so  that  problems  of  even  moderate 

complexity  cannot  be  solved  in  a  reasonable  time.  Several  domain-independent 
heuristics  (e.g.,  set  of  support;  see  Article  XII. B)  were  proposed  to  deal  with 
this  issue,  but  they  proved  too  weak  to  produce  satisfactory  results. 

It  appears  that  these  failures  resulted  principally  from  two  constraints 
the  researchers  had  imposed  upon  themselves:  They  attempted  to  use  only 

uniform,  domain-independent  proof  procedures,  and  they  tried  to  force  all 
reasoning  and  problem-solving  behavior  into  the  framework  of  logical  deduc- 

tion. Like  a  number  of  earlier  ideas  such  as  self-organizing  systems  and 
heuristic  search,  automatic  theorem-proving  turned  out  not  to  be  the  magic 
formula  that  would  solve  all  AI  problems  at  once.  In  the  reaction  that  fol- 

lowed, however,  not  only  was  there  a  turning  away  from  attempts  to  use 

deduction  to  create  general  problem-solvers,  but  there  was  also  widespread 
condemnation  of  any  use  of  logic  or  deduction  in  commonsense  reasoning  or 
problem  solving.  Arguments  made  by  Minsky  (1980,  Appendix)  and  Hewitt 
(1975;  Hewitt  et  al.,  1973)  seem  to  have  been  particularly  influential  in  this 
regard. 

Despite  the  disappointments  of  the  late  1960s  and  early  1970s,  there  has 

recently  been  a  revival  of  interest  in  deduction-based  approaches  to  common- 
sense  reasoning.  This  is  apparent  in  the  work  of  McDermott  (1978),  Doyle 
(1979,  1980),  and  Moore  (1980a,  1980b);  in  the  current  work  on  nonmonotonic 
reasoning  (Bobrow,  1980);  and  in  recent  textbooks  by  Nilsson  (1980)  and 
Kowalski  (1979).  To  a  large  extent,  this  renewed  interest  seems  to  stem  from 
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the  recognition  of  an  important  class  of  problems  that  resist  solution  by  any 
other  method. 

Why  the  Deduction  Problem  Will  Not  Go  Away 

If  a  description  of  a  problem  situation  is  complete  in  terms  of  the  objects, 
properties,  and  relations  relevant  to  the  problem,  we  can  answer  any  question 

by  evaluation — deduction  is  unnecessary.  To  illustrate,  suppose  we  have  a 
knowledge  base  of  personnel  information  for  a  company  and  we  want  to  know 

whether  there  is  any  programmer  who  earns  more  than  a  vice-president  earns. 
We  could  express  this  question  in  first-order  logic  as: 

SOME  (X,Y)  ( (TITLE (X)  =  PROGRAMMER)  AND 

(TITLE (Y)  =  VICE-PRESIDENT)  AND 
(SALARY (X)  >  SALARY (Y)))  . 

If  w$  have  recorded  in  our  knowledge  base  the  job  title  and  salary  of  every 
employee,  we  can  simply  find  the  salary  of  each  programmer  and  compare 

it  with  the  salary  of  every  vice-president.  No  deduction  is  involved  in  this 
process.  On  the  other  hand,  we  may  not  have  specific  salary  information  for 
each  employee.  Instead,  we  may  have  general  information  about  classes  of 
employees,  such  as: 

All  vice-presidents  are  managers. 

ALL    (X)     ( (TITLE  (X)    =  VICE-PRESIDENT)    -► 
(CATEGORY (X)    =  MANAGER)) 

All  programmers  are  professionals. 

ALL  (X)  ( (TITLE  (X)  =  PROGRAMMER)  -► 
(CATEGORY (X)  =  PROFESSIONAL)) 

All  professionals  earn  less  than  all  managers. 

ALL  (X,Y)  (( (CATEGORY (X)  =  PROFESSIONAL)  AND 

(CATEGORY (Y)  =  MANAGER))  -► 
(SALARY (X)  <  SALARY (Y)))  . 

From  this  information  we  can  deduce  that  no  programmer  earns  more  than 

any  vice-president,  although  we  have  no  information  about  the  exact  salary 
of  any  employee. 

A  representation  formalism  based  on  logic  gives  us  the  ability  to  express 

many  kinds  of  generalizations,  even  when  we  do  not  have  a  complete  descrip- 
tion of  the  problem  situation.  Using  deduction  to  manipulate  expressions 

in  the  representation  formalism  allows  us  to  make  logically  complex  queries 
of  a  knowledge  base  containing  such  generalizations,  even  when  we  cannot 
evaluate  a  query  directly.  On  the  other  hand,  AI  inference  systems  that  are 

not  based  on  automatic-deduction  techniques  either  do  not  permit  logically 
complex  queries  to  be  made  or  they  answer  such  queries  by  methods  that 
depend  on  the  presence  of  complete  information.  For  an  AI  system  to  handle 
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the  kinds  of  incomplete  information  people  can  understand,  it  must  at  least 

be  able  to  do  the  following: 

1.  Say  that  something  has  a  certain  property  without  saying  which  thing 
has  that  property: 

3(X)P(X); 

2.  Say  that  everything  in  a  certain  class  has  a  certain  property  without 

saying  what  everything  in  that  class  is: 

V(X)(P(X)-Q(X)); 

3.  Say  that  at  least  one  of  two  statements  is  true  without  saying  which 
statement  is  true: 

P\/Q\ 

4.  Say  explicitly  that  a  statement  is  false,  as  distinguished  from  simply  not 

saying  that  it  is  true: 

Any  representation  formalism  that  has  these  capabilities  will  be,  at  the  very 

least,  an  extension  of  classical  first-order  logic  (see  Article  III.C1,  in  Vol.  i),  and 

any  inference  system  that  can  deal  adequately  with  these  kinds  of  generaliza- 

tions will  have  to  have  at  least  the  capabilities  of  an  automatic-deduction 
system.  Thus,  although  Al  rejected  logic  as  a  representation  method  and 

deduction  as  a  reasoning  method,  AI  systems  that  reason  with  incomplete 

information  are  actually  equivalent  to  automatic-deduction  systems. 

The  Need  for  Specific  Control  Information 

As  we  remarked  above,  the  fundamental  difficulty  with  attempting  to 

base  a  general,  domain-independent  problem-solver  on  automatic-deduction 
techniques  is  that  there  are  too  many  possible  inferences  that  can  be  drawn 

at  any  one  time.  Finding  the  inferences  that  are  relevant  to  a  particular 

problem  can  be  an  impossible  task,  unless  domain-specific  guidance  is  supplied 
to  control  the  deductive  process. 

One  kind  of  guidance  that  is  often  critical  to  efficient  system  performance 

is  information  about  whether  to  use  facts  in  a  forward- chaining  or  backward- 
chaining  manner.  The  deductive  process  can  be  thought  of  as  a  bidirectional 

search  process  (see  Article  II.C3d,  in  Vol.  i),  partly  working  forward  from 

known  facts  to  new  ones,  partly  working  backward  from  goals  to  subgoals,  and 

meeting  somewhere  in  between.  Thus,  if  we  have  a  fact  of  the  form  (P  — ►  Q), 
we  can  use  it  either  to  generate  Q  as  a  fact,  given  P  as  a  fact,  or  to  generate 

P  as  a  goal,  given  Q  as  a  goal.  Early  theorem-proving  systems  used  every  fact 
both  ways,  leading  to  highly  redundant  searches.  More  sophisticated  methods 
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that  eliminate  these  redundancies  were  gradually  devised.  Eliminating  redun- 
dancies, however,  creates  choices  as  to  which  way  facts  are  to  be  used.  In  the 

systems  that  attempted  to  apply  only  domain-independent  control  heuristics, 
a  uniform  strategy  had  to  be  imposed.  Often  the  strategy  was  to  use  all  facts 

in  a  backward-chaining  manner  only,  on  the  grounds  that  this  would  at  least 
guarantee  that  all  the  inferences  drawn  would  be  relevant  to  the  problem  at 
hand. 

The  difficulty  with  this  approach  is  that  the  question  of  whether  it  is 
more  efficient  to  use  a  fact  for  forward  than  for  backward  chaining  depends 
on  the  specific  content  of  that  fact.  For  instance,  according  to  the  Talmud, 
the  primary  criterion  for  determining  whether  someone  is  Jewish  is: 

V(X)  (Jewish(mother(X))  ->  Jewish(X)) . 

That  is,  a  person  is  Jewish  if  his  or  her  mother  is  Jewish.  Suppose  we  were  to 
try  to  use  this  rule  for  backward  chaining,  as  most  uniform  proof  procedures 
would.  It  would  apply  to  any  goal  of  the  form  JEWISH  (X),  producing  the 
subgoal  JEWISH  (MOTHER  (X)).  This  expression,  however,  is  also  of  the  form 

JEWISH  (X),  so  the  process  would  be  repeated,  resulting  in  an  infinite  descend- 
ing chain  of  subgoals: 

GOAL 

GOAL 
GOAL 
GOAL 

JEWISH (MORRIS) 
JEWISH (MOTHER (MORRIS)  ) 
JEWISH (MOTHER (MOTHER (MORRIS)  ) ) 
JEWISH (MOTHER (MOTHER (MOTHER (MORRIS)  )  )  ) 

If,  on  the  other  hand,  we  use  the  rule  for  forward  chaining,  the  number  of 
applications  is  limited  by  the  complexity  of  the  fact  that  originally  triggers 
the  inference: 

FACT 
FACT 

FACT 

JEWISH (MOTHER (MOTHER (MORRIS) ) ) 
JEWISH (MOTHER (MORRIS)  ) 
JEWISH (MORRIS)  . 

It  turns  out,  then,  that  the  efficient  use  of  a  particular  fact  often  depends 
on  exactly  what  that  fact  is  and  also  on  the  context  of  other  facts  in  which 
it  is  embedded.  Many  examples  illustrating  this  point  are  given  by  Kowalski 

(1979)  and  Moore  (1980a),  involving  not  only  the  distinction  between  forward 
and  backward  chaining  but  other  control  decisions  as  well. 

Since  specific  control  information  needs  to  be  associated  with  particular 
facts,  the  question  arises  as  to  how  to  provide  it.  The  simplest  way  is  to  embed 
it  in  the  facts  themselves.  For  instance,  the  distinction  between  forward  and 

backward  chaining  can  be  encoded  by  having  two  versions  of  implication, 

for  example,  (P  — ►  Q)  to  indicate  forward  chaining  and  (Q  <—  P)  to  indi- 
cate backward  chaining.  This  approach  originated  in  the  distinction  made  in 
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the  programming  language  PLANNER  (see  Article  VI.A,  in  Vol.  Il)  between 

antecedent  and  consequent  theorems.  A  more  sophisticated  approach  is  to 

make  certain  decisions  (such  as  whether  to  use  a  fact  in  the  forward  or 

backward  direction)  themselves  questions  for  the  deduction  system  to  reason 

about,  by  using  "meta-level"  knowledge.  The  first  detailed  proposal  along 
these  lines  appears  to  have  been  made  by  Hayes  (1973),  while  experimental 

systems  have  been  built  by  McDermott  (1978)  and  de  Kleer  et  al.  (1979), 

among  others.  Weyhrauch  (1980)  has  perhaps  done  the  most  to  explore  the 

kind  of  system  architecture  in  which  this  sort  of  reasoning  would  be  possible. 

Theory  Formation  and  Logic  Programming 

Another  factor  that  can  greatly  affect  the  efficiency  of  deductive  reasoning 

is  the  way  in  which  a  body  of  knowledge  is  formalized.  That  is,  logically 

equivalent  formalizations  can  have  radically  different  behavior  when  used  with 

standard  deduction  techniques.  For  example,  we  could  define  the  relation 

ABOVE  as  the  transitive  closure  of  ON  in  at  least  three  ways: 

V(X,Y)    (ABOVE  (X,Y)    <-* 
(0N(X,Y)    OR  3  (Z)     (AB0VE(X,Z)    AND  0N(Z,Y))))   , 

V(X.Y)    (ABOVE (X,Y)    <-> 
(0N(X,Y)    OR  3  (Z)    (0N(X,Z)    AND  ABOVE(Z.Y))))   , 

V(X,Y)    (ABOVE (X,Y)    <-► 
(0N(X,Y)    OR  3  (Z)     (AB0VE(X,Z)    AND  ABOVE(Z.Y))))   . 

(These  formalizations  are  not  quite  equivalent,  as  they  allow  for  different  pos- 
sible interpretations  of  ABOVE  if  infinitely  many  objects  are  involved.  They 

are  equivalent,  however,  if  only  finitely  many  objects  are  being  considered.) 

Each  of  these  formalizations  will  produce  different  behavior  in  a  standard 

deduction  system,  no  matter  how  we  make  local  control  decisions  of  the 

kind  discussed  in  the  previous  section.  Kowalski  (1974)  noted  that  choosing 

among  such  alternatives  involves  decisions  similar  to  those  made  when  writing 

programs  in  a  conventional  programming  language.  In  fact,  he  observed  that 

there  are  ways  to  formalize  many  functions  and  relations  so  that  applying 

standard  deduction  methods  will  have  the  effect  of  executing  them  as  computer 

programs.  These  observations  have  led  to  the  development  of  the  field  of  logic 

programming  (Kowalski,  1979)  and  the  creation  of  new  computer  languages 

such  as  PROLOG  (Warren,  Pereira,  and  Pereira,  1977).  Such  developments 
are  discussed  in  Article  XII. F. 

Automatic  Deduction  in  Nonstandard  Logics 

So  far,  we  have  discussed  automatic  deduction  for  classical  first-order 

logic  only.  Many  commonsense  concepts,  however,  are  most  naturally  treated 
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in  either  higher  order  or  nonclassical  logics.  This  presents  a  problem,  because 

classical  first-order  logic  is  the  most  general  logic  for  which  the  techniques  of 
automatic  deduction  are  at  all  well  developed.  It  turns  out,  though,  that  there 
are  a  number  of  techniques  for  reformulating  representations  in  nonstandard 

logics  in  terms  of  logically  equivalent  representations  in  classical  first-order 
logic. 

Higher  order  logic  differs  from  first-order  logic  in  that  it  allows  quantifi- 
cation over  properties  and  relations  as  well  as  individuals.  That  is,  if  we  have 

a  first-order  logic  that  allows  us  to  make  statements  about  all  physical  objects, 
the  corresponding  second-order  logic  would  allow  us  to  make  statements  about 
all  properties  of  and  relations  among  physical  objects;  a  third-order  logic 
would  allow  us  to  make  statements  about  properties  of  and  relations  among 
these  properties  and  relations;  and  so  forth. 

In  some  cases,  the  transition  from  first-order  to  higher  order  logic  presents 
fewer  difficulties  than  might  at  first  appear.  In  fact,  the  standard  deductive 

procedures  for  first-order  logic  also  work  for  higher  order  logic,  except  that 
general  predicate  abstraction  is  not  performed;  that  is,  these  procedures  will 
not  construct  predicates  out  of  arbitrary  complex  formulas.  If  John  is  a  man 
is  represented  as  MAN  (JOHN) ,  the  predicate  MAN  can  be  retrieved  when  we  ask 

the  second-order  question,  What  properties  does  John  have?  All  the  deduction 
system  has  to  do  is  match  X(JOHN)  against  MAN  (JOHN)  and  return  MAN  as  the 
value  of  the  variable  X.  But  from  the  assertion  that  John  is  either  a  butcher 

or  a  baker,  represented  as 

BUTCHER (JOHN)  OR  BAKER (JOHN)  , 

the  system  could  not  infer,  without  using  predicate  abstraction,  that  John 

has  the  disjunctive  property  of  being  a  butcher-or-baker.  The  system  would 
have  to  recognize  that  this  complex  expression  could  be  reformulated  as  a 

one-place  predicate  applied  to  JOHN, 

(LAMBDA  (Y)  (BUTCHER (Y)  OR  BAKER (Y) )) (JOHN)  , 

which  is  of  the  right  form  to  match  X(JOHN) . 

If  this  sort  of  predicate  abstraction  is  not  required,  standard  first-order 
deduction  techniques  are  sufficient.  There  has  been  some  work  extending  the 
standard  techniques  to  handle  the  more  general  case  (e.g.,  Huet,  1975),  but 
this  makes  the  deduction  problem  much  harder  because  of  the  combinatorics 
of  all  the  different  ways  predicate  abstraction  may  be  performed. 

Another  problem  commonly  encountered  is  how  to  do  automatic  deduc- 
tion in  logics  that  allow  intensional  operators.  These  are  operators,  such  as 

BELIEVE  and  KNOW,  that  produce  sentences  whose  truth  values  depend  fully 
on  the  meanings,  not  just  the  truth  values,  of  their  arguments.  Classical  logic 
is  purely  extensional,  because  the  truth  value  of  a  complex  formula  depends 

only  on  the  extensions  (denotations,  referents)  of  its  subexpressions.  The 
extension  of  a  formula  is  considered  to  be  its  truth  value,  so  the  operator  OR 
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is  extensional  because  the  truth  of  (P  or  Q)  depends  only  on  the  truth  of  P 
and  the  truth  of  Q;  no  other  properties  of  P  and  Q  matter.  The  operator 
BELIEVE,  on  the  other  hand,  is  intensional  because  the  truth  of  A  believes  that 
P  depends  generally  on  the  meaning  of  P,  not  just  on  its  truth  value. 

Many  of  the  rules  of  classical  logic,  such  as  substitution  of  equals  for 
equals,  do  not  apply  within  the  scope  of  an  intensional  operator.  To  use  a 
classic  example,  since  the  morning  star  and  the  evening  star  refer  to  the  same 
object,  it  must  be  the  case  that  The  morning  star  is  Venus  is  true  if  and  only 
if  The  evening  star  is  Venus  is  true.  However,  it  might  be  that  John  believes 
the  morning  star  is  Venus  is  true,  but  that  John  believes  the  evening  star  is 
Venus  is  false  because,  although  the  two  embedded  sentences  have  the  same 

truth  value,  they  differ  in  meaning. 
Fortunately,  many  of  the  difficulties  presented  by  intensional  operators 

can  be  overcome  by  reformulating  the  statements  in  which  they  occur.  There 
are  a  number  of  methods  for  doing  this,  but  one  that  is  particularly  elegant  is 

to  reformulate  intensional  operators  in  terms  of  their  possible-world  semantics 
(Kripke,  1971;  Hintikka,  1971).  The  idea  is  that,  rather  than  talking  about 
what  statements  a  person  believes,  we  talk  instead  about  what  states  of 
affairs,  or  possible  worlds,  are  compatible  with  what  he  believes.  Essentially, 
A  believes  that  P  is  paraphrased  as  P  is  true  in  every  world  that  is  compatible 

with  what  A  believes.  This  can  be  expressed  in  ordinary  first-order  logic 
by  making  all  predicates  and  functions  depend  explicitly  on  the  particular 
possible  world  they  are  evaluated  in.  The  failure  of  equality  substitution  in 
the  preceding  example  is  then  accounted  for  by  noting  that  what  John  believes 
depends  on  what  is  true  in  all  possible  worlds  that  are  compatible  with  what 
he  believes,  but  an  assertion  that  the  morning  star  and  the  evening  star  are 
the  same  is  a  statement  only  about  the  actual  world.  Application  of  this  idea 
to  reasoning  about  intensional  operators  in  AI  systems  has  been  explored  in 

depth  by  Moore  (1980b). 

Finally,  a  type  of  nonstandard  logic  that  has  received  much  recent  atten- 
tion is  nonmonotonic  logic.  Minsky  (1980,  Appendix)  has  noted  that  the  treat- 

ment of  commonsense  reasoning  as  purely  deductive  ignores  one  of  its  crucial 

aspects — the  ability  to  retract  a  conclusion  in  the  face  of  further  evidence. 
A  frequently  cited  example  is  that,  if  we  know  something  is  a  bird,  we  nor- 

mally assume  it  can  fly.  If  we  find  out  that  it  is  an  ostrich,  however,  we 
will  withdraw  that  conclusion.  This  sort  of  reasoning  is  called  nonmonotonic 
because  the  set  of  inferable  conclusions  does  not  increase  monotonically  with 
the  set  of  premises  as  in  conventional  deductive  logics.  The  addition  of  the 
premise  that  something  is  an  ostrich  results  in  removing  the  conclusion  that 
it  can  fly.  While  many  procedures  have  been  implemented  that  support  this 
type  of  reasoning,  their  theoretical  foundations  are  questionable.  Most  of  the 
recent  work  on  nonmonotonic  logic  (Bobrow,  1980;  see  Article  XII.E)  has  thus 
been  directed  at  developing  a  coherent  logical  basis  for  this  kind  of  reasoning. 
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B.  THE  RESOLUTION  RULE  OF  INFERENCE 

ONE  of  the  best  known  methods  of  automatic  theorem-proving  is  the  reso- 
lution procedure  introduced  by  J.  A.  Robinson  (1965b).  In  this  article,  we 

describe  the  method,  present  some  examples,  and  discuss  extensions  to  it. 

Derivation  of  the  Resolution  Rule 

The  resolution  method  shows  whether  a  theorem  logically  follows  from 

its  axioms.  If  a  theorem  does  follow  from  its  axioms,  then  the  axioms  and 

the  negation  of  the  theorem  cannot  all  be  true — the  axioms  and  the  negated 
theorem  must  lead  to  a  contradiction.  The  resolution  method  is  a  form  of 

proof  by  contradiction  that  involves  producing  new  clauses,  called  resolvents, 

from  the  union  of  the  axioms  and  the  negated  theorem.  These  resolvents 

are  then  added  to  the  set  of  clauses  from  which  they  were  derived,  and  new 

resolvents  are  derived.  This  process  continues,  recursively,  until  it  produces 

a  contradiction.  Resolution  is  guaranteed  to  produce  a  contradiction  if  the 

theorem  follows  from  the  axioms.  The  simple  resolution  rule  that  produces 

resolvents  is  derived  in  the  following  paragraphs. 

By  the  expression  (P  — >  Q)  we  mean  If  P  is  true,  then  Q  is  true;  for 

example,  John  is  a  boy  — >  John  is  male.  A  central  rule  of  inference  in  logic  is 
modus  ponens: 

(((P  -  Q)  and  P)  f-  Q), 

which  means  that  if  (P  — ►  Q)  is  true  and  if  P  is  true,  then  we  can  conclude 
that  Q  is  true.  An  extension  of  this  is  the  chain  rule: 

((P  -  Q)  and  (Q  -  R)  \-  (P-+R)). 

When  the  implications  in  the  chain  rule  are  rewritten  in  their  logically  equiv- 

alent form  (-«P  V  Q),  the  chain  rule  becomes 

(-P  V  Q)  and  (-.Q  V  R)  \-  (-P  V  R) , 

which  can  be  written  as: 

(-P  V  Q) 

hQ  V  R) 

(-P  V  R)  . 

86 
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There  is  an  apparent  cancellation  of  the  Q  and  ̂ Q.  The  disjunctions 

(->P  V  Q),  (->(?  V  P),  and  (iP  V  P)  are  called  clauses,  and  (--P  V  R)  is  called 

the  resolvent  of  (-.P  V  Q)  and  (-.Q  V  P). 
Implications  in  this  simple  form,  called  clause  form,  can  be  resolved 

against  each  other;  two  clauses  can  be  resolved  to  a  single  one.  The  heart 

of  the  resolution  proof  method  is  to  negate  the  theorem  to  be  proved  and 

then  to  simplify  and  resolve  clauses  until  a  contradiction  is  found. 

An  Example 

As  an  example  of  resolution,  consider  proving  that  (D  V  E)  follows  from 

(A  -+  C  V  D)  A  (A  V  D  V  E)  A  (A  ->  ->C).  The  first  step  is  to  negate  the 

theorem:  (->(D  V  E)).  This  is  logically  equivalent  to  (->D  A  ->E).  The  next 
step  is  to  convert  the  axioms  and  theorem  to  clauses.  The  procedures  for 

this  are  explained  in  the  last  section  of  this  article  and  in  several  texts 

(e.g.,  Nilsson,  1980);  all  we  need  to  know  here  is  that  the  implication  (A  — ►  B) 

can  be  rewritten  as  the  equivalent  clause  (->A  V  B). 
The  axioms  are: 

(A-+CV  D)A 

(A  V  D  V  E)  A 

They  are  rewritten  as  the  clauses,  and  the  theorem  is  added  to  the  list: 

(-.A  V  C  V  D)  A 

(A  V  £  V  £)  A 

(iA  V  -.C) 
(-.£>  A  -.£7) . 

The   A   conjunctions  are  dropped,  leaving  five  clauses: 

1.  MVCVD) 

2.  (AVDVE) 

3.  (-AV-C) 

4.  (-,!>) 

5.  (^). 

If  the  theorem  follows  from  its  axioms,  the  axioms  and  the  negation  of  the 

theorem  cannot  all  be  true.  Consequently,  a  contradiction  must  be  implicit 

in  the  five  clauses  just  derived;  they  cannot  all  be  true  simultaneously.  The 

purpose  of  resolution  is  to  find  the  contradiction.  We  will  resolve  clauses 

against  each  other  until  a  contradiction  "drops  out" : 
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Resolution  I 

1.  (-A  V  C  V  D) 
2.  (A\f  Dy  E) 

(CV  DW  E) 
^A  and  A 

cancel  each  other. 

Resolution  2: 

2.  (AV  DV  E) 

3.  (-.A  V  -.C) 

(DV  EV  -.C) 

^A  and  A 

cancel  each  other. 

Resolution  3: 

Resolution  1.  (CvDvS) 

Resolution  2.  (D  V  E  V  -iC) 

(DVS) 

->Cand  C 

cancel  each  other. 

Resolution  4: 

Resolution  3.  (D  V  E) 

(£) 
-»Z)  and  £> 

cancel  each  other. 

Resolution  4.  (£) 

5-   hE) 
CONTRADICTION 

This  illustrates  the  process  by  which  we  determine  that  clauses  and  their 

resolvents  cannot  all  be  true  simultaneously. 

The  example  just  presented  is  from  propositional  logic.  Now  let  us  con- 

sider first-order  predicate  calculus,  where  variables,  predicates,  quantifiers,  and 
functions  are  permitted  (see  Article  III. CI,  in  Vol.  I,  for  a  discussion  of  logics). 

The  expression  P(x)  means  P  is  true  for  x.  For  example,  P(x)  might  mean 

x  is  a  positive  number,  so  that  P(2)  is  true,  whereas  P(— 3)  is  false.  Or  P(x) 
might  mean  that  x  is  a  boy,  in  which  case  we  would  expect  P(John)  to  be  true 

and  P(Peggy)  to  be  false. 
We  will  use  the  notation  Vi  P(x)  and  3x  P(x)  to  mean  For  all  x  P(x) 

and  For  some  x  P(x),  respectively.  The  first  form  is  called  a  universal  quan- 
tification, since  it  conveys  the  meaning  that  the  clause  is  true  for  all  objects; 

the  second  is  called  an  existential  quantification,  since  it  says  that  the  clause 
is  true  for  at  least  one  object.  For  example, 

Vz(7V(x)   -*   x2  >  0),  and 
3x(N(x)   A   x  <  0) 

are  true  formulas.  The  first  says  that  if  x  is  a  number,  then  the  square  of  all 

x  is  either  positive  or  zero,  whereas  the  second  says  that  there  is  at  least  one 
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object  that  is  a  number  and  is  negative.  Notice  that  ->Vx  P{x)  is  equivalent 
to  3x  -<P(x),  and  ~^3x  P(x)  is  equivalent  to  Vi  ->P(x). 

It  is  also  possible  to  have  function  symbols  such  as  /  and  g.  For  example, 
}{x)  can  mean  father  of  x.  Thus,  if  M(x)  means  x  is  a  male,  then  M{f(x))  is 
always  true. 

Two  complications  arise  when  proving  theorems  with  variables,  quanti- 
fiers, predicates,  and  functions.  One  is  getting  them  into  clause  form;  the 

other  is  the  process  of  unification.  Converting  predicate  logic  to  clause  form 
is  formally  straightforward  (see  the  last  section  of  this  article).  However,  it 
is  important  to  understand  the  conceptual  operations  as  well  as  the  formal 
ones,  especially  those  associated  with  eliminating  quantifiers.  To  eliminate 

existential  quantifiers,  we  simply  choose  a  constant;  for  example,  3  x  P(x)  is 
replaced  by  P(a).  We  instantiate  the  claim  that  an  x  exists  by  choosing  a 
particular  a  to  take  its  place.  However,  if  an  existential  quantifier  is  within 
the  scope  of  a  universal  quantifier,  there  is  the  possibility  that  the  x  that  exists 
somehow  depends  on  the  identity  of  the  universally  quantified  variable.  Thus, 
we  cannot  replace  it  with  an  arbitrary  constant.  To  account  for  this,  whenever 
an  existential  quantifier  occurs  within  the  scope  of  a  universal  quantifier,  its 
variable  is  replaced  with  a  function  of  the  universally  quantified  variable. 

For  example,  Vx3y  P(x,y)  is  rewritten  as  Vx  P(x, /(x)),  denoting  that  the 
second  argument  of  the  predicate  P  is  a  function  of  the  first.  In  this  example, 

/  is  called  a  skolem  function,  and  f(x)  is  called  a  skolem  expression. 
We  have  discussed  the  rationales  for  eliminating  existential  quantifiers. 

Universal  quantifiers  are  simply  dropped  from  clause  form,  because  after  exis- 
tentially  quantified  variables  have  been  replaced  by  constants  or  skolem  func- 

tions, we  may  assume  that  the  remaining  variables  are  universally  quantified. 
In  the  previous  example,  y  was  replaced  by  a  skolem  function  and  x  is  assumed 
to  be  universally  quantified;  thus,  the  quantifier  V  is  deleted,  resulting  in  the 
clause  P(x,  f(x)). 

The  other  complication  in  proving  theorems  in  predicate  calculus  arises 
during  resolution  itself.  Recall  that  during  resolution  we  would  have  constants 

"canceling"  each  other  out;  for  example,  -A  V  B  and  A\J  C  would  resolve 
to  B  V  C  after  canceling  A  and  ->A.  But  how  are  resolvents  to  be  produced 
when  there  are  variables  and  skolem  functions?  For  example,  does  P(a)  cancel 

~>P{x)  in  the  following  resolution? 

-nP(x)  V  Q(x)  and 
P(a)  V  R(z) 

Q(a)  V  R(z) 

In  this  case,  the  answer  is  yes:  P(a)  cancels  ->P(x),  because  the  expression 
-<P(x)  is  claiming  that  there  is  no  x  for  which  P(x)  is  true  (recall  that  x  is 
universally  quantified),  and  P(a)  is  claiming  that  there  is  an  object  a  for  which 
P(a)  is  true.  This  is  an  example  of  unification,  the  process  of  deciding  whether 
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the  arguments  of  predicates  are  comparable  for  the  purpose  of  resolution,  and, 

if  they  are  comparable,  what  common  substitution  instance  should  be  used. 

In  this  case,  the  substitution  instance  was  a;  it  replaces  all  instances  of  x, 

including  that  in  the  predicate  Q.  The  process  of  unification  is  analogous 

to  that  of  finding  a  common  denominator  for  fractions:  In  order  to  make 

comparisons  between  numbers  expressed  as  x/3  and  numbers  expressed  as 

x/17,  each  is  re-expressed  as  x/51.  Similarly,  there  is  a  unification  algorithm 
that  finds  a  common  substitution  instance  for  the  arguments  of  predicates. 

With  these  preliminaries  over,  we  can  now  proceed  to  examples  of  resolu- 
tion theorem  proving  in  the  predicate  calculus. 
The  first  step  is,  again,  to  negate  the  theorem  and  then  put  the  axioms 

and  the  theorem  in  clause  form: 

(-.P(a)  A  V  x  (P{x)  V  Q(f{x))))         (Axioms) 

3  z  Q(z)  (Theorem) 

V  z  ̂ Q(z)  (Negated  Theorem) 

In  this  case,  a  is  a  constant  symbol,  and  there  are  no  existential  quantifiers 

and  so  no  need  for  skolemization.  Universal  quantifiers  are  simply  dropped. 

The  A  connectives  are  also  dropped  to  yield  three  clauses: 

1.  -P(a) 

2.  P(x)vQ(f(x)) 

3.  ̂ Q(z). 

These  are  resolved  against  each  other  as  follows: 

1.  Clause  1  and  clause  2  are  resolved  to  produce  Q(f(a));  the  substitution 
is  a  for  x,  or  a/x. 

2.  Q(f(a))  is  resolved  against  clause  3  to  yield  a  contradiction;  the  sub- 
stitution is  f(a)  for  z,  or  f(a)/z. 

Since  a  contradiction  is  produced,  we  can  conclude  that  the  theorem  followed 
from  its  axioms. 

Another  example  is  proving  that  there  is  always  a  number  greater  than 
another  number  from  the  axiom  that  a  number  is  less  than  its  successor.  (In 
this  case,  infix  arithmetic  functions  are  used  in  the  clauses;  they  could  equally 

well  be  written  in  prefix  notation;  e.g.,  Vt  <  (t,  PLUS(£,  1)).) 

V*  (t  <  t  +  1)  (Axiom) 

Vx3y  (x  <  y)  (Theorem) 

First  we  negate  the  theorem: 

3xVy  ̂ {x  <  y). 

Then,  since  x  is  an  existentially  quantified  variable  that  is  not  within  the  scope 

of  a  universal  quantifier,  we  replace  it  with  a  constant.   This  eliminates  the 
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existential  quantifier;  universal  quantifiers  are  simply  dropped  as  before.  The 
resulting  clauses  are: 

1.  t  <  t+  1 

2.  -(a  <  y). 

But  this  immediately  results  in  a  contradiction  when  a  is  substituted  for  t 
and  a  +  1  is  substituted  for  y. 

A  final  example  illustrates  skolemization: 

V x3y  P(x,y)         (Axiom) 

3  z  P(a,  z)  (Theorem) 

where  a  is  a  constant.  First,  we  negate  the  theorem,  yielding  V '  z  ->P(a,  2). 
Next,  we  eliminate  quantifiers.  Since  3  y  is  within  the  scope  of  the  universal 
quantifier  Vx,  the  variable  y  is  replaced,  not  with  a  constant,  but,  instead, 
with  a  skolem  function.  Universal  quantifiers  are  dropped  as  usual: 

1.  P{x,g(x)) 

2.  -iP(a,z). 

These  clauses  obviously  resolve  to  a  contradiction  under  the  substitution 

a/x,  g(a)/z. 
It  can  be  shown  that  resolution  is  complete  for  (i.e.,  can  prove  all  theorems 

in)  first-order  predicate  logic  (Robinson,  1965b)  and  is  sound  (i.e.,  will  not 
indicate  that  nontheorems  are  true). 

Strategies 

Although  resolution  is  complete,  it  can  be  extremely  time-consuming.  As 
brought  out  in  the  overview  (Article  XII. A),  resolution-based  approaches  to 
problem  solving  fell  into  disfavor  for  just  this  reason. 

Several  strategies  have  been  proposed  to  minimize  the  branching  factor 

of  resolution  proof  trees.  Several  are  discussed  in  detail  in  Nilsson  (1980)  and 
in  Chang  and  Lee  (1973),  and,  thus,  only  two  are  briefly  discussed  here. 

Set-of-support  strategy.  When  at  least  one  parent  of  each  resolvent  is 
chosen  from  the  negation  of  the  theorem  or  from  the  set  of  clauses  that  are 

derived  from  it,  a  set-of-support  strategy  is  being  used.  This  strategy  clearly 
restricts  the  number  of  clauses  that  can  be  resolved  at  any  given  time.  It  is 

usually  more  efficient  than  breadth-first  search. 
Linear-input-form  strategy.  This  strategy  involves  choosing  resol- 

vents so  that  one  resolvent  is  always  from  the  base  set  (the  set  of  original 
clauses).  It  is  more  efficient  than  the  previous  strategy,  but  it  is  not  complete, 

which  is  to  say  that  there  are  cases  in  which  it  will  not  find  a  contradic- 
tion when  one  exists.  Nonetheless,  the  strategy  is  often  used  because  of  its 

simplicity  and  efficiency. 
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In  addition  to  strategies  designed  to  reduce  the  combinatorial  explosion 

involved  in  resolution,  other  simplifications  can  be  made.  One  is  to  eliminate 

tautologies  from  the  set  of  clauses.  A  tautology  is  a  trivially  true  clause 

containing  the  subexpression  A  V  ->A 

Converting  a  Formula  to  Clausal  Form 

A  formula,  F,  to  be  proved  by  resolution  must  first  be  negated  and 

converted  to  clausal  form.  It  is  assumed  that  F  is  a  first-order  formula  that 

is  fully  quantified.  Conversion  to  clausal  form  is  done  by  a  series  of  steps: 

1.  Negate  F:  Replace  F  by  ->F. 

2.  Remove  — ►  and  «-►  by  replacing  (A  — ►  B)  by  (-A  V  B)  and  (A  <-►  B)  by 

((-A  VS)A  (-.fl  V  A)). 

3.  Move   -i   inward,  using  the  rules: 

-(A  A  B)  =  -A  V  -»# , 

-(A  v5)  =  ̂ AA-iB, 

^Vx  A(x)  =  3  x  ->A(x) , 

-i3  x  A(x)  =  Vx  -iA(i)  . 

4.  Move  V  and  3  inward  (optional). 

5.  Rename  variables  so  that  no  two  quantifiers  quantify  the  same  variables. 

6.  Exchange  3  for  skolem  functions  and  then  drop  V's  (see  below). 

7.  Convert    to    CNF    (conjective    normal    form)    by    repeatedly   applying 

De  Morgan's  Laws: 

--(A  AB)  =  MV-B 

-.(A  V  B)  =  ̂ AA^B. 

m In  step  6,  if  3  y  P(y)  is  within  the  scope  of  universal  quantifiers  V  X\  V  X2  . . .  V  x 

and  not  within  the  scope  of  any  existential  quantifier,  then  replace  3  y  P{y) 

by  P{fixi,  •••>£n)))  where  /  is  a  new  function  symbol  (a  skolem-function 
symbol).  All  universal  quantifiers  are  then  dropped  from  the  formula.  Thus, 

V  x3y\f  z3w  P(x,  y,  z,  w) 

is  replaced  successively  by 

V x V z3w  P(x,  f\ (x),  z,  w) 

VxVzP(x,fl(x),z,f2(x,z)) 

P(x,fl(x),z,f2(x,z)). 

If  n  =  0,  then  y  is  replaced  by  a  skolem  constant  yo  (i.e.,  a  function  of 
0  arguments). 
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It  is  usually  faster  to  replace  ->(P  — ►  Q)  by  (P  A  ->Q)  before  converting 

(P  — >  Q)  to  (-iP  V  Q),  when  P  is  a  large  formula. 

References 

The  resolution  rule  of  inference  was  first  described  by  Robinson  (1965b). 
Resolution  has  been  extended  to  handle  the  equality  relation;  this  is  discussed 

in  Robinson  and  Wos  (1969).  This  extension  permits  one  to  prove  theorems 

such  as  P{a)  A  a  =  b  — >  P(b). 
Strategies  for  speeding  up  resolution  theorem  proving  have  been  discussed 

in  several  places.  Wos,  Robinson,  and  Carson  (1965)  discussed  set  of  support; 

hyper-resolution  was  considered  by  Robinson  (1965a);  locking  was  the  subject 

of  Boyer's  thesis  (1971);  and  SL-resolution  was  discussed  by  Kowalski  and 
Kuchner  (1971).  Model  elimination  was  introduced  by  Loveland  (1978).  Gen- 

eral texts  on  theorem  proving  are  Loveland  (1978)  and  Chang  and  Lee  (1973). 

Nilsson's  two  textbooks  (1971,  1980)  are  clearly  written  introductions  to, 
among  other  things,  theorem  proving  as  a  problem-solving  tool  for  AI  systems. 



C.     NONRESOLUTION  THEOREM  PROVING 

In  nonresolution  or  natural- deduction  theorem-proving  systems,  a  proof  is 
derived  in  a  goal-directed  manner  that  is  natural  for  the  humans  using  the 
theorem  prover.  Natural-deduction  systems  represent  proofs  in  a  way  that 
maintains  a  distinction  between  goals  and  antecedents,  and  they  use  inference 

rules  that  mimic  the  reasoning  of  human  theorem-provers. 
In  resolution  theorem-provers,  no  distinction  is  made  between  goals  and 

antecedents.  But  in  natural-deduction  systems,  the  distinction  is  carefully 
maintained  for  the  clarity  that  it  brings  to  the  proof  process.  For  example, 

a  natural-deduction  system  might  display  the  following  "worksheet"  during  a 
proof: 

Hi.    P 
H2.    (P-Q) 

H3.    (RAQ-^S) 
Ci.    Q 

C2.    (R-+S) 

It  indicates  that  Hi,  H2,  and  H$  are  three  hypotheses  and  C\  and  C2  are 
goals.  A  resolution  system  would  represent  the  same  situation  uniformly  with 
a  set  of  clauses: 

1.  P 

2.  -PvQ 

3.  -ftvfrQvs) 
4.  ̂ QvR 

5.  -.QvS. 

Although  these  representations  are  logically  equivalent,  we  have  lost  all  infor- 
mation in  the  second  one  about  goals — about  what  we  want  to  prove. 

The  representation  of  proofs  in  natural-deduction  systems  is  especially 
advantageous  for  man-machine  interactive  theorem-proving,  in  which  a  human 
is  required  to  intervene  occasionally  to  help  with  the  proof.  It  also  facilitates 

the  implementation  of  semantic  or  domain-specific  heuristics  that  help  to 
guide  the  search. 

However,  the  clausal  representation  has  one  powerful  advantage:  A  proof 

can  be  derived  with  a  single  inference  rule — the  resolution  rule.  In  contrast, 

natural-deduction  systems  have  relatively  complex  inference  rules  that  simu- 
late the  kinds  of  reasoning  steps  that  humans  use  to  develop  proofs.  For 

example,  suppose  we  want  to  prove  that  Fred  has  a  hot  tub,  and  we  know 

94 
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that  everyone  who  lives  in  California  has  a  hot  tub  and  that  Fred  lives  in 
California: 

Antecedents:     (Live- Calif ornia(Fred))  A  (Live- Calif ornia(X)  — ►  Hottub(X)) 
Goal:  ->  Hottub(Fred)  . 

To  prove  Hottub(Fred),  we  scan  the  antecedents  for  anything  that  will 

enable  us  to  conclude  Hottub(Fred),  and,  if  we  find  such  a  hypothesis,  we  set 

up  the  subgoal  of  proving  it.  In  this  case,  we  can  conclude  Hottub(Fred)  if 

we  can  prove  (Live- Calif ornia(X)  — ►  Hottub(X)  and  (Live- Calif ornia(Fred)). 

So  we  set  up  the  subgoal  of  proving  Live- Calif ornia(Fred).  Formally,  we  can 
derive  a  back- chain  rule  of  inference: 

To  prove  [H  A  (A  —  B)  ->  C]: 
If  (£  ->  C),  then  prove  (H  ->  A) . 

In  the  next  section,  we  present  several  of  the  proof  rules  from  the  IMPLY 

system,  developed  at  the  University  of  Texas  (Bledsoe  and  Tyson,  1975). 

IMPLY 

IMPLY  views  a  conjecture  to  be  proved  as  a  conjunction  of  goals  to  be 
achieved,  and  it  considers  a  goal  achieved  when  it  finds  a  substitution  under 
which  the  goal  is  valid.  A  substitution  is  simply  an  assignment  of  terms  to 
each  variable  in  the  conjecture.  In  other  words,  IMPLY  considers  a  conjecture 
proved  when  it  finds  some  object  or  objects  for  which  the  conjecture  is  valid. 
For  example,  the  conjecture 

(P(x)  ->  Q(x))  A  P(a)  ->  Q(a) 

is  valid  for  the  substitution  a/x;  that  is,  if  every  x  in  the  formula  were  replaced 

by  a,  then  the  statement  would  be  a  valid  inference. 

Let  C  be  a  conjecture  we  wish  to  prove  and  let  H  be  the  conjunction  of 
hypotheses  that,  hopefully,  imply  C.  IMPLY  will  attempt  to  find  a  substitution 

(9)  such  that  (H  — ►  C)(6)  is  a  propositionally  valid  formula.  For  example, 
if  //is 

P(a)  A  (P(x)  -  Q(x)) 

and  C  is 

Q(a), 

then  the  substitution  (9)  =  a/x  will  make  (H  — >  C)(0)  valid. 
In  the  following  discussion,  we  assume  that  all  formulas  are  quantifier 

free.  That  is,  before  the  proof  process  starts,  all  universal  and  existen- 
tial quantifiers,  V  and  3,  are  removed  by  skolemization  (see  Article  XII.B). 

Skolemization  for  both  resolution  and  natural  deduction  is  done  in  much  the 

same  way,  except  that  the  roles  of  V  and  3  in  natural  deduction  are  the 
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opposite  of  their  roles  in  resolution,  because  resolution  is  a  refutation  pro- 
cedure and  natural  deduction  is  not.  For  example,  for  natural  deduction, 

[VzP(x)->Q(a)]  skolemizes  to  [P(x)  -+  Q(a)\  and  [H  ->  3zVy  P(x,y)} 
skolemizes  to  [H  — >  P(x,  g(x))]. 

Formulas  are  submitted  to  IMPLY,  which  attempts  to  prove  them  by 

application  of  the  rules  discussed  below.  If  F  is  a  formula,  [F]  denotes  the 
value  of  IMPLY  applied  to  F. 

IMPLY  rules.  Some  of  the  IMPLY  proof  rules  are  shown  below. 

1.  MATCH:      [H  ->  C] 

If  H(6)  =  C(0) , 
then  (0) 

(the  empty  substitution  is  T) . 

This  is  the  simplest  of  IMPLY's  rules.  The  goal  C  is  matched  to  the  hypoth- 
esis H  and,  if  a  substitution  can  be  found,  that  substitution  is  returned.  For 

example,  (P(x)  — ►  P{a))  is  MATCH  because  a  substitution  a/x  makes  H  and 
C  equal.  The  substitution  is  found  by  unification  (see  Article  XII.B).  MATCH 

would  fail  for  the  clause  (Q(x)  — ►  P(a))  because  the  predicates  P  and  Q  are 
different. 

2.  AND-SPLIT:      [H  ->  A  A  B] 

If  [H  ->  A]  is  (0) 
and  [H  ->  B(6)\  is  (X) , 
then  (0)(X) . 

If  we  want  to  prove  that  H  implies  A  and  B,  we  first  prove  that  (H  — ►  A) 
for  some  substitution,  and  then,  using  that  substitution  in  B,  we  prove  that 

(H  — ►  B).  For  example,  to  prove  [P(x)  — ►  P(a)  A  (Q(x)  ->  P(a))],  we  obtain 

the  substitution  a/x  when  we  prove  [P(x)  — ►  P(a)],  and  that  substitution  is 

carried  into  the  second  step,  namely,  to  prove  [P(x)  ->  (Q(o)  — ►  P(o))].  If,  in 
proving  this,  we  obtain  another  substitution,  X,  then  6  and  X  are  composed 

to  produce  a  substitution  under  which  the  entire  expression  [P(x)  — >  P(a)  A 

(Q(x)  -»  P(a))]  is  valid. 

3.  CASES:      [Hi  V  #2  -►  C] 

If  [Hi  -H-  C]  is  (^) 

and  [/J2(0)  -»  C]  is  (X) , 
then  (0)(\) . 

To  prove  that  either  of  H\  or  Hi  implies  C,  we  must  prove  that  they  both 

do.  Thus,  we  attempt  first  to  prove  [Hi  ->  C]  for  some  substitution,  then 

[H2  —>  C]  under  the  previous  substitution,  and,  if  this  second  proof  produces 
a  substitution,  the  two  are  composed. 
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4.  OR-FORK:      [A  A  B  -t-  C] 

If  [A  —  C]  is  (5) , 
then  (0) ; 

else  [£  —  C]  . 

To  show  that  A  and  P  imply  C,  we  must  prove  that  A  implies  C  or  that  P 

implies  C.  For  example,  [Q(x)  A  P(a)  — ►  P(x)]  is  valid  if  either  [Q(x)  — ►  P(x)] 
or  [P(a)  ->  P(x)]  is  valid. 

5.  PROMOTE:      [#  —  (A  -►  P)] 

[P  A  A  —  B] . 

This  rule  says  simply  that  in  trying  to  prove  an  implication  (A  — >  B)  we  can 
use  A  as  an  additional  hypothesis. 

6.  BACK-CHAIN:      [H  A  (A  -►  B)  ->  C] 

If  [P  ->  C]  is  (0) 
and  [P  ->  A(^)]  is  (X) , 
then  (0)(\) . 

This  rule  applies  when  a  term  that  implies  the  goal  has  an  antecedent  that 

must  be  proved.  It  says  that  if  C  can  be  implied  from  B,  and  (A  — ►  P),  then 

we  must  try  to  prove  A.  For  example,  we  can  prove  Q  in  [P  A  (P  — ►  Q)  — >  Q] 
if  we  are  able  to  prove  P.  If  we  instantiate  H,  A,  P,  and  C  in  the  BACK-CHAIN 
rule  with  P  and  Q,  we  obtain 

If  [Q  ->  Q]  is  (0) 
and  [P  ->  P(0)]  is  (X) , 
then  (0)(X) . 

Obviously,  [Q  —*  Q]  and  [P  — >  P]  follow  from  the  MATCH  rule.  In  this  example 
we  have  not  considered  substitutions. 

Consider  what  these  inference  rules  do  and  how  they  differ  from  the 

resolution  rule.  Each,  with  the  exception  of  MATCH,  reduces  a  goal  to  sub- 
goals.  Most  of  these  subgoals  are  easily  tested  by  MATCH;  it  simply  tests 
whether  there  is  a  substitution  instance  for  the  expression.  The  resolution 

rule,  by  contrast,  reduces  clauses  but  does  not  propagate  goals  from  one  infer- 
ence to  the  next. 

IMPLY's  rules  are  incomplete,  but  in  most  cases  this  does  not  prevent 
it  from  finding  proofs  of  theorems.  In  fact,  in  many  areas  of  mathematics, 
the  great  majority  of  proofs  can  be  found  without  the  extra  inference  rules 

required  to  make  IMPLY  complete.  However,  it  can  be  made  complete  (Love- 
land  and  Stickel,  1973)  and,  in  fact,  one  application  warranted  this  (Bledsoe, 
Bruell,  and  Shostak,  1979). 
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Some  proof  procedures  similar  to  IMPLY  are  described  in  Reiter  (1976), 
Bibel  and  Schreiber  (1974),  Ernst  (1971,  1973),  and  Nevins  (1974,  1975). 

Incorporating  Heuristics  into  Theorem  Provers 

Most  of  the  advantages  derived  from  the  use  of  natural-deduction  theorem 
provers  are  not  due  to  any  decrease  in  the  theoretical  complexity  of  proofs 
but,  rather,  to  the  ease  with  which  the  proofs  and  the  heuristic  information 

incorporated  into  the  prover  can  be  understood.  Most  domain-dependent 
heuristics  are  discovered  only  after  much  analysis  of  attempted  proofs,  and 
the  more  intelligible  proof  structure  of  natural  systems  facilitates  this  analysis. 

The  next  paragraphs  describe  kinds  of  heuristic  knowledge  that  are  typi- 
cally grouped  together  under  the  heading  of  nonresolution  theorem  proving. 

Reduction.  The  term  reduction  is  used  in  two  distinct  but  analogous 
ways.  One  interpretation  is  that  reduction  is  the  replacement  of  one  logical 
expression  by  an  equivalent,  simpler  expression.  Alternately,  reduction  refers 
to  the  replacement  of  a  term  denoting  an  object  by  a  simpler  term.  In  both 
cases,  the  expression 

stands  for  a  reducer.  The  reducer  L  — ►  R  is  applied  to  a  formula  or  term  F 
by  replacing  an  expression  of  the  form  L{6)  (where  (6)  is  a  substitution)  by 
the  expression  R(6).  The  resulting  formula  or  term  is  called  an  immediate 
reduction.  Reductions  are  simpler  in  that  they  have  fewer  symbols  or  are 
smaller;  formal  requirements  for  simpler  relations  are  discussed  by  Knuth  and 
Bendix  (1970)  and  Lankford  (1975). 

From  elementary  set  theory,  IMPLY  uses  (among  others)  the  following 
reducers: 

te{AnB)-+t€  A  A  t£B 

te  (AuB)  -^teAyteB 

t<Z(AC\B)-^t(ZA/\t<ZB. 

Examples  of  reducers  from  algebra  include: 

x  +  0  — ►  x 

X  •  1  — *■  X 

x  +  (-x)  -►  0 

-(x  +  y)^>(-x)  +  (-y). 

IMPLY  maintains  a  list  of  reducers  that  are  applied  to  a  newly  created  expres- 
sion until  it  cannot  be  reduced  further;  the  resulting  expression  is  called  the 

irreducible  form  of  the  original  expression  relative  to  the  list  of  reducers. 
There  are  two  very  important  properties  of  certain  sets  of  reducers.  A  set 

of  reducers  (£)  is  said  to  have  the  following: 
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1.  The  finite  termination  property  (FTP),  if  there  is  no  sequence  of  expressions 
to,  ti,  . . .  ,  where  ti+i  is  an  immediate  reduction  of  U. 

2.  The  unique  termination  property  (UTP),  if,  for  every  expression  t,  all  irre- 
ducible forms  of  t  are  identical. 

Any  set  of  reducers  that  has  both  the  FTP  and  the  UTP  is  called  a  complete  set 

of  reducers.  There  are  algorithms  for  deciding  whether  a  set  of  reducers  with 

the  FTP  has  the  UTP  (see  Knuth  and  Bendix,  1970;  Lankford  1975;  Peterson 

and  Stickel,  1977).  In  fact,  the  same  algorithm  can  be  used  to  extend  a  set 
of  reducers  that  fails  to  have  the  UTP  to  one  that  does.  Much  research  is 

currently  being  done  on  extending  these  algorithms. 

Forward  chaining.  In  addition  to  the  rules  mentioned  earlier,  IMPLY's 
set  of  rules  includes: 

FORWARD-CHAINING:      [{A  A  (A!  -»  B))  -*■  C] 

If  A  is  ground  (i.e.,  has  no  variables)  and  A  =  A{9) , 

then  [(B{0)  A  A  A  {A!  -+  B))  -*  C]  . 

This  rule  differs  from  backward  chaining  in  that  it  adds  a  new  term  to  the 

set  of  hypotheses:  From  (A  A  {A!  — ►  B)),  this  rule  adds  B(9)  to  the  set  of 
hypotheses  when  A!  =  A(6),  that  is,  when  a  substitution  instance  can  be 
found  for  A  and  A! .  Note  that  this  rule  does  not  produce  smaller  subgoals, 

as  do  the  other  rules  we  described,  but,  rather,  it  is  used  to  infer  auxiliary 
terms. 

The  rule  contains  an  explicit  ground  restriction  that  A  should  have  no 

variables.  An  intuitive  justification  for  the  ground  restriction  is  that,  since 

A  is  an  assertion  made  by  the  hypothesis  about  specific  objects  (the  ground 

terms)  in  the  world,  immediate  consequences  (B(9))  should  be  explored. 

Many  theorem  provers  have  carried  this  forward-chaining  rule  a  step 

further  and  have  incorporated  domain-specific  knowledge  into  a  set  of  demons 
that  scan  the  hypotheses  for  sets  of  assertions.  Upon  finding  the  assertion  it 

is  looking  for,  a  demon  makes  its  own  assertions.  For  example,  a  theorem 

prover  might  contain  the  following  demon  from  elementary  set  theory: 

Scan  the  hypothesis  for  sets  A,  B,  and  C.  If  the  assertions  AC.  B  and 
CCB  are  present,  and  if  the  set  AuC  is  mentioned  somewhere,  then 
assert  A\jC  C  B. 

Provers  using  variations  of  this  technique  are  described  by  Ballantyne  and 

Bennett  (1973),  Ballantyne  and  Bledsoe  (1977),  Nevins  (1975),  and  Hewitt 

(1971). 
Decision  procedures.  Certain  theories,  unlike  number  theory,  have  the 

property  that  there  are  algorithms  to  decide  whether  a  sentence  is  true  or 

false  in  the  theory.  Significantly,  these  algorithms  are  often  direct  and  can 

make  such  decisions  very  quickly.  For  example,  sets  of  linear  inequalities  over 

the  real  numbers  can  be  decided  very  quickly  by  the  simplex  algorithm.  The 
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theory  of  arithmetic  restricted  to  addition  and  multiplication  by  constants  can 
be  decided  (Presburger,  1930),  and,  in  fact,  if  one  restricts  the  quantification 
on  sentences  in  prenex  form  to  universal  quantification,  that  theory  can  be 
decided  quickly  (Bledsoe,  1974;  Shostak,  1975).  Decision  procedures  dealing 
with  integration  (Risch,  1969)  are  a  main  component  of  MACSYMA.  Many 

fragments  of  theories  useful  in  program  verification  have  fast  decision  proce- 
dures (Nelson  and  Oppen,  1978). 

A  particularly  interesting  extension  of  this  idea  is  to  let  the  theorem 

prover  "grow"  its  own  decision  procedures  for  classes  of  equational  theories 
using  the  concept  of  complete  sets  of  reducers  (see  Knuth  and  Bendix,  1970; 
Lankford,  1975;  Huet,  1972;  Lankford  and  Ballantyne,  1977;  Ballantyne  and 
Lankford,  1979;  Peterson  and  Stickel,  1977). 

Induction.  Induction  is  another  area  in  which  the  addition  of  heuris- 
tics can  improve  the  performance  of  a  prover.  Since  the  development  of  a 

sophisticated  set  of  such  heuristics  is  one  of  the  major  achievements  of  the 

Boyer-Moore  theorem  prover,  we  refer  the  reader  to  Article  XII. D. 
Examples  and  counterexamples.  Examples  and  counterexamples  play 

an  important  but  poorly  understood  role  in  automatic  theorem  proving.  Spe- 
cifically, if  T  is  a  set  of  axioms  for  a  theory  and  if  H  — ►  C  is  an  attempted 

theorem,  then  an  example  is  an  interpretation  of  the  predicate,  function,  and 
constant  symbols  that  satisfies  H  and  the  axioms. 

For  example,  let  T  be  the  axioms  for  the  real  numbers,  and  let  H  be 
[/(a)  <  0  A  f(b)  >  0  A  CONTINUOUS(/,  a,  6)],  where  /,  a,  and  b  are  constants 
and  CONTINUOUS(/,  a,  b)  means  that  the  function  /  is  continuous  on  the  closed 
interval  [a,  b].  Then  the  assignment 

a«-0 

b+-  1 

/<-((X)z)(2s-l) 

is  an  example. 
To  see  how  this  example  might  be  useful  in  controlling  the  search  for 

a  proof,  suppose  that  the  theorem  prover  is  asked  to  prove  the  conclusion 

C  =  (SOME  x)(f(x)  =  0),  given  the  above  axioms  and  hypotheses.  Suppose 
that,  in  the  course  of  proving  C,  the  prover  encounters  the  subgoal  f(t)  <  0, 

where  Hsa  term  that  evaluates  to  3/4  in  the  example.  Since  f(t)  =  /(3/4)  = 

2  •  3/4  —  1  =  1/2  and  since  1/2  is  not  less  than  or  equal  to  0,  the  prover  is 
allowed  to  discard  this  subgoal.  Several  theorem  provers  have  incorporated 

examples  as  a  subgoal  filter  (Gelernter,  1959;  Reiter,  1976;  Bledsoe  and  Ballan- 
tyne, 1979).  In  all  these  provers,  the  examples  must  be  generated  by  the 

user.  However,  Bledsoe  and  Ballantyne  describe  a  program  that,  when  given 
an  example,  extends  the  interpretation  to  include  the  skolem  functions  and 
constants  that  result  from  quantifier  elimination. 

It  seems  likely  that  mathematicians  use  examples  much  more  often  as  sub- 
goal  proposers  than  as  subgoal  rejectors.  Mathematicians  often  use  examples 
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to  guide  the  search  for  a  proof  from  beginning  to  end.  Since  they  usually 
discover  theorems  by  building  and  inspecting  examples,  it  seems  likely  that 
the  same  examples  would  be  useful  in  proving  these  theorems.  Constructing 
good  examples  is  a  very  difficult  task  but  one  that  must  be  understood  if 

reasonably  competent  theorem  proving  is  to  be  done  by  computer.  Lenat's 
AM  system  (1976;  Article  XIV.D4c)  constructed  and  used  examples  to  help 
make  conjectures. 

Conclusion 

Nonresolution,  or  natural-deduction,  proof  procedures  are  designed  to 
develop  proofs  in  a  goal-directed  manner  that  is  easy  for  humans  to  under- 

stand. Unlike  resolution  methods,  natural  deduction  uses  many  proof  rules  to 

reduce  goals  to  subgoals.  In  addition,  natural-deduction  systems  often  include 
domain-specific  heuristics  to  speed  up  parts  of  a  proof. 

Any  proof  that  can  be  derived  by  natural  deduction  can  also  be  derived 
by  resolution,  given  enough  time.  The  advantage  of  natural  deduction  is 
chiefly  that  the  proofs  it  produces  are  relatively  easy  to  understand.  This  is 
very  important  whenever  there  is  interaction  between  an  automatic  theorem 
prover  and  a  human. 
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D.  THE  BOYER-MOORE  THEOREM  PROVER 

THE  Boyer-Moore  Theorem  Prover  (BMTP;  Boyer  and  Moore,  1979)  embod- 
ies an  extensible  mathematical  theory  (recursive  function  theory)  in  which 

theorems  can  be  stated  and  automatically  proved.  The  system  is  designed 
to  prove  theorems  by  continuously  rewriting  the  current  formula  (Bledsoe, 
1971,  1977)  without  ever  having  to  backtrack  and  alter  a  decision.  While 
each  rewriting  rule  is  sound,  formal  equivalence  is  not  necessarily  preserved; 
thus,  the  system  is  not  complete.  But  heuristics  are  employed  to  guide  the 

rewriting  process,  applying  rules  that  the  system  believes  will  allow  reten- 

tion of  the  "theoremness"  of  a  formula.  The  theory  can  be  extended  by 
new  function  definitions  and  new  data  types.  Novel  features  include  the 

automatic  use  of  structural  induction  (Burstall,  1969)  and  recursive  quantifi- 
cation (Skolem,  1967).  The  relations  between  recursion,  termination,  and  the 

inductively  defined  data  objects  allow  the  BMTP  to  produce  induction  proofs 
automatically.  Recursive  functions,  used  as  an  alternative  to  quantification, 
offer  a  powerful  form  of  expression  when  dealing  with  finitely  constructed 
objects  such  as  the  discrete  mathematical  structures  employed  by  computer 

programs. 
Rather  than  operate  in  the  predicate  calculus  (see  Article  III.Cl,  in  Vol.  i), 

the  Boyer-Moore  Theorem  Prover  treats  axioms  and  theorems  as  functions. 

Axioms  have  the  values  non-F  (true)  or  F  (false).  A  theorem  is  proved  by 
showing  that  the  value  of  its  function  is  non-F.  For  example,  a  statement 
that  multiplication  is  distributive  over  addition  would  have  appeared  in  QA3 

(Green,  1969;  see  also  Article  III.Cl,  in  Vol.  i)  as: 

FORALL  x  FORALL  y  FORALL  z  SUM(y,z,al)  AND  PRODUCT (x, al , a)  AND 
PRODUCT(x,y,bl)  AND  PRODUCT (x,z,b2)  AND  SUM(bl,b2,b)  AND 
EQUAL (a, b) 

(where  x,  y,  z,  a,  a\,  b,  b\,  &2  are  all  variables).  In  the  BMTP,  the  theorem 
becomes: 

(EQUAL    (TIMES  x    (ADD  y  z))     (ADD    (TIMES  x  y)    (TIMES  x  z)))     . 

The  Boyer-Moore  Theorem  Prover  automatically  proves  the  theorems  it 
is  presented  with,  possibly  using  rewrite  lemmas  that  have  been  retained 
from  the  proofs  of  previous  theorems  or  axioms  that  have  been  added  by  the 
introduction  of  new  data  types.  Most  theorems  cannot  be  proved  from  first 

principles,  so  the  user  must  structure  the  proof  by  determining  intuitively 
which  lemmas  will  be  necessary.  These  are  then  proved  as  theorems  in  their 
own  right  and  saved.     Since  lemmas  must  be  proved  before  they  can  be 
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automatically  used,  the  BMTP  is  assured  of  the  validity  of  the  proof  of  the 

final  theorem.  Even  theorems  that  can  be  proved  without  lemmas  can  have 

their  proofs  speeded  up  by  the  use  of  lemmas.  If  the  BMTP  fails  to  prove  the 

desired  result,  the  proof  attempt  helps  the  user  determine  where  the  proof 

went  awry  and  formulate  new  lemmas.  Thus,  the  BMTP  is  an  automatic 

theorem  prover  in  the  sense  that  the  user  specifies  only  what  to  prove,  not 

how  to  prove  it.  But  if  a  proof  fails,  the  user  provides  a  bit  of  the  "how"  by 
formulating  an  appropriate  lemma. 

The  system  is  experimental  and  is  continually  being  tested  and  improved. 

It  has  proved  approximately  400  theorems,  including  the  soundness  and  com- 
pleteness of  a  tautology  checker  for  propositional  calculus,  the  equivalence  of 

interpreted  and  optimized  compiled  code  for  a  simple  arithmetic  language, 

the  correctness  of  the  Boyer-Moore  fast  string-searching  algorithm,  and  the 

prime-factorization  theorem. 

The  Theory 

The  syntax  of  the  theory  is  closely  related  to  the  prefix  notation  in  LISP. 

Terms  are  variables  or  are  specified  by  (/  x\  . . .  xn),  where  /  is  an  n-ary 

function  symbol  and  all  xz  are  terms.  Constants  are  represented  as  0-ary 
functions  (e.g.,  (TRUE),  (FALSE),  (ZERO)).  The  variables  in  any  formula  are 

implicitly  universally  quantified. 

Functions  are  introduced  by  adding  the  equality  axiom: 

(/  x\  . . .  xn)  =  (function  body)  . 

To  retain  consistency,  the  BMTP  requires  that  each  newly  defined  function  be 

either  nonrecursive  or  recursive  but  provably  total.  The  proof  of  totality  is 

based  on  the  notion  of  measure  functions  and  well-founded  relations.  This  is 
discussed  in  detail  later  in  this  article  in  the  section  on  induction. 

In  making  function  definitions  it  is  often  necessary  to  include  tests  that 
allow  the  returned  value  of  a  function  to  be  one  of  a  set  of  terms.  The  usual 

treatment  of  logic  does  not  allow  for  the  embedding  of  propositions  within 

terms,  so  the  BMTP  recreates  the  effects  of  propositions  at  the  term  level. 

Boyer  and  Moore  create  four  axioms  to  define  the  functions  EQUAL  and  IF; 

these  form  the  core  of  the  BMTP.  We  abbreviate  (TRUE)  as  T  and  (FALSE)  as 

F,  and  add  the  axiom  that  T  and  F  are  distinct: 

1.  T  *  F 

2.  X  =  Y  =>  (EQUAL  X  Y)    =  T 

3.  X^Y*  (EQUAL  X  Y)    =  F 

4.  X  =  F  =>  (IF  X  Y  Z)    =  Z 

5.  X  t  F  =>  (IF  X  Y  Z)    =  Y 
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(For  those  readers  who  are  not  familiar  with  LISP  notation,  (IF  X  Y  Z)  means 
//  X,  then  Y;  else  Z.)  Thus,  the  term  (IF  X  Y  Z)  has  the  value  Z  if  the 

proposition  X  =  F  is  true  and  it  has  the  value  Y  if  X  =  F  is  false. 
Boyer  and  Moore  do  not  define  predicates  but,  instead,  deal  within  a 

theory  of  functions.  Proving  that  the  value  of  a  function  is  not  F  is  the 
way  the  BMTP  proves  that  a  function  is  a  theorem.  Functional  versions  of 
common  logical  connectives  are  defined  with  IF.  These  definitions  capture  the 
semantics  of  the  common  logical  connectives: 

1.  (NOT  P)   =   (IF  P  F  T) 

2.  (AND  P  Q)    =    (IF  P    (IF  Q  T  F)    F) 

3.  (OR  P  Q)    =    (IF  P  T    (IF  Q  T  F) ) 

4.  (IMPLIES  P  Q)    =    (IF  P    (IF  Q  T  F)    T) 

In  addition  to  these  and  other  functions,  the  BMTP  allows  the  creation 

of  arbitrary  data  types.  These  are  typically  defined  inductively  and  made 
known  to  the  system  by  the  Shell  mechanism  (discussed  below),  which  adds 
axioms  that  are  guaranteed  to  leave  the  theory  consistent.  Data  objects  are 
considered  to  be  finitely  constructed.  Data  types  are  mutually  exclusive  yet 
not  assumed  to  be  exhaustive.  This  guarantees  that  the  subsequent  addition 
of  new  data  types  will  not  invalidate  previously  proved  theorems. 

Proofs  within  the  BMTP  are  accomplished  by  absorption,  idempotency, 

the  law  of  excluded  middle  (e.g.,  T  V  X  ̂ T,  F\J  X  -+  X,  XV^X-^T, 
and  their  commutative  counterparts),  and  induction  principles.  Recursion  as  a 

control  structure  is  analogous  to  inductively  defined  data  types  as  a  data  struc- 
ture. The  proof-theoretic  counterpart  of  these  two  is  the  Generalized  Principle 

of  Induction,  or  Noetherian  Induction.  A  consistent  induction  mechanism  is 

presented  within  the  theory.  It  allows  a  base  case  as  well  as  k  remaining 
induction  steps,  each  of  which  can  contain  several  induction  hypotheses.  It 

requires  a  relation  that  is  well-founded  on  a  measured  set  of  variables  over 
all  substitutions  required  to  instantiate  the  k  +  1  cases.  Heuristic  methods 
are  employed  in  the  BMTP  to  formulate  this  schema;  they  are  discussed  later 
in  this  article  in  the  section  on  induction.  A  well-founded  relation  r  is  one 
that  admits  no  infinitely  decreasing  sequences.  That  is,  there  cannot  exist  an 

infinite  sequence  1,2,  ...  such  that  (rX;+iX;).  A  simple  well-founded  relation 
is  <  on  the  nonnegative  integers,  since  for  any  X\  we  cannot  find  an  infinite 
sequence  of  X{  such  that 

•••Xi+i  <Xi  <  Xi-i  <        <  Xi. 

The  Shell  mechanism.  The  Shell  mechanism  is  used  to  introduce  new 

data  types.  It  is  just  a  syntactic  form  from  which  consistent  and  complete 

type-axioms  are  created.  As  an  illustration,  the  definition  of  lists  by  the  Shell 
mechanism  is  as  follows: 
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add  the  shell  CONS,  of  2  arguments 

recognizer  LISTP 
accessors  CAR,  CDR 

default  values  "NIL",  "NIL"  . 

A  few  of  the  important  axioms  that  were  added  (with  symmetric  CDR 

axioms)  are  the  following: 

(LISTP    (CONS  x  y)  )  —  a  CONS  of  two  things  is  always 
a  list 

(EQUAL    (CAR    (CONS  x  y)    x) )  -  definition  of  the  CAR  accessing 
function 

(IMPLIES    (LISTP  x)    (LESSP    (CAR  x)   x) )        -  a  measure  property  used  in 

proving  termination 
(EQUAL    (EQUAL    (CONS  a  b)    (CONS  x  y) )  -  two  CONSes  are  equal  if  their 

(AND    (EQUAL  a  x)    (EQUAL  by)))  parts  are  equal 

(IMPLIES    (LISTP  x)  —  the  system  can  trade  CARs 
(EQUAL    (CONS    (CAR  x)    (CDR  x) )  and  CDRs  for  CONSes 
x)) 

Overview  of  the  Theorem  Prover 

The  BMTP  proves  that  a  formula  is  a  theorem  by  continually  rewriting  the 

formula  until  it  is  reduced  to  T.  The  BMTP  operates  in  a  strictly  linear  manner 

without  backtracking.  This  strategy  leads  to  a  stratification  of  the  classes  of 

rewrite  rules,  so  that  the  more  conservative  transformations  (i.e.,  those  which 

guarantee  equivalence)  are  attempted  first.  Induction  rewrite  rules  are  applied 

last,  since  they  are  the  least  conservative  transformations  and  it  is  important 

that  induction  be  applied  to  the  simplest  and  most  general  form  of  a  formula. 

As  a  consequence,  many  of  the  rewrite  rules  have  been  designed  to  produce  a 

formula  that  is  more  amenable  to  inductive  arguments.  We  will  now  discuss 

these  rule  classes.  Rules  at  level  2  +  1  are  tried  only  when  all  rules  at  level 

i  fail  to  be  applicable.  If  a  rewrite  rule  applies  at  any  level  of  the  hierarchy, 

the  formula  is  rewritten  and  the  entire  theorem  prover  is  recursively  invoked 
on  the  new  formula. 

Simplification 

The  formula  is  rewritten  by  the  logical  proof  rules,  the  initial  axioms, 

the  axioms  added  by  function  and  data-type  definitions,  and  retained  lemmas 
that  were  previously  proved  as  theorems.  (The  formula  is  also  rewritten  to 

conjunctive  normal  form,  or  clause  form;  see  Article  XJI.B.)  All  these  rewriting 

rules  retain  truth- value  equivalence.  The  Simplifier  is  a  small  theorem-prover 
in  its  own  right.  Examples  of  the  information  known  to  the  Simplifier  are: 

1.    Logical  Proof  Rule: 

X  V  T  =  T 
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2.  Initial  Axiom: 

x  =  y  =>  (IF  x  y  z)    =  y 

3.  Function  Axiom: 

(APPEND  x  y)  =  (IF  (LISTP  x) 
(CONS  (CAR  x)  (APPEND  (CDR  x)  y) )  y) 

4.  Data-type  Axiom: 
(CDR    (CONS  x  y))    =  y 

5.  Lemma: 

(APPEND  (APPEND  x  y)  z)  =  (APPEND  x  (APPEND  y  z)) 

Simplification  is  sufficient  to  prove  the  following  formula  (which  is  the 

base  case  of  the  induction  needed  to  prove  that  APPEND  is  associative): 

(IMPLIES  (NOT  (LISTP  A)) 
(EQUAL  (APPEND  (APPEND  A  B)  C) 

(APPEND  A  (APPEND  B  C))))  . 

Knowing  that  A  is  not  a  list  allows  the  APPEND  functions  to  open  up  and 

return  their  second  arguments;  see  the  functional  definition  of  APPEND  above. 

The  formula  simplifies  to: 

(IMPLIES  (NOT  (LISTP  A)) 

(EQUAL  (APPEND  B  C) 
(APPEND  B  C)))  . 

Since  the  two  APPEND  terms  are  identical,  this  simplifies  to: 

(IMPLIES  (NOT  (LISTP  A) )  T)  . 

This  in  turn  simplifies  to  T,  since  the  formula  is  equivalent  to  the  clause 

(LISTP  A)  V  T,  which  by  the  above  proof  rule  is  rewritten  to  T. 

If  simplification  cannot  determine  the  truth  value  of  a  formula,  it  will 

probably  be  necessary  to  apply  the  induction  rewriting  rules.  The  next  four 

cases  illustrate  how  the  formula  is  prepared  for  induction. 

Elimination  of  Undesirable  Concepts 

The  BMTP  restates  a  formula,  trading  some  functions  for  others  when 

the  substituted  formulas  are  easier  to  rewrite  or  have  more  lemmas  involving 

them.  This  type  of  rule  is  a  special  subclass  of  the  general  simplification  rules 

and  is  handled  separately  since  it  requires  special  processing.  An  example  of 
this  kind  of  rule  is: 

(p  x)    =    (p    (CONS  A  B) ) ,     if  x  is  known  to  be  a  list. 

An  example  of  its  application  is  found  in  the  proof  of  the  theorem  that 
the  function  REVERSE  is  its  own  inverse: 
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(IMPLIES 
(AND  (LISTP  X) 

(EQUAL  (REVERSE  (REVERSE  (CDR  X)))  (CDR  X)) 
(PLISTP  (CDR  X))) 

(EQUAL  (REVERSE  (APPEND  (REVERSE  (CDR  X)) 

(CONS  (CAR  X)  "NIL"))) X)) 

=  (IMPLIES 
(AND  (LISTP  (CONS  A  B)) 

(EQUAL  (REVERSE  (REVERSE  (CDR  (CONS  A  B))))  (CDR  (CONS  A  B))) 
(PLISTP  (CDR  (CONS  A  B)))) 

(EQUAL  (REVERSE  (APPEND  (REVERSE  B) 

(CONS  A  "NIL"))) 
(CONS  A  B)))  . 

Here  we  have  traded  a  CAR  and  CDR  for  a  CONS.  Note  that  this  transformation 

was  applicable  since  X  was  known  to  be  a  list  from  the  hypothesis  of  the 
implication.  A  and  B  are  new  variable  names. 

This  fairly  complicated  formula  is  passed  back  to  the  Simplifier,  which 
rewrites  it  as: 

(IMPLIES 
(AND  (EQUAL  (REVERSE  (REVERSE  B))  B) 

(PLISTP  B)) 

(EQUAL  (REVERSE  (APPEND  (REVERSE  B) 

(CONS  A  "NIL"))) 
(CONS  A  B)))  . 

Use  of  Equalities 

The  BMTP  uses  equalities  by  substituting  equals  for  equals,  and  then  it 
usually  removes  the  equality  term  from  the  formula.  This  is  not  guaranteed  to 
be  complete,  but  the  heuristic  decision  procedure  in  BMTP  that  decides  which 

terms  to  substitute  performs  excellently.  The  equality  term  is  removed  to 
simplify  the  statement  of  the  formula  (which  hopefully  is  still  a  theorem).  Two 
distinct  classes  of  substitutions — uniform  substitution  and  cross- fertilization — 
are  performed. 

Uniform  substitution.  If  the  term  (EQUAL  x  ev)  is  found,  where  x  is  a 
term  and  ev  is  an  explicit  value,  then  ev  is  uniformly  substituted  for  x  within 
the  rest  of  the  formula.  The  symmetric  case  applies. 

Cross-fertilization.  If  the  term  (EQUAL  x  y)  is  found,  where  both  x  and 

y  are  not  explicit  values,  and  another  term  of  the  form  "  (p  (any  term)  (term 
that  contains  y))"  is  found,  then  x  is  substituted  for  y  only  in  the  right-hand 
side  of  p,  and  the  equality  is  removed  from  the  formula.  The  symmetric  case 
applies.  This  heuristic  is  closely  related  to  the  way  induction  is  performed;  it  is 
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designed  to  allow  maximum  use  of  the  induction  hypothesis.  The  connection  is 

a  bit  subtle  and  the  reader  is  referred  to  Boyer  and  Moore's  (1979)  description. 
Continuing  the  above  example,  the  antecedent  has  an  equality  of  the 

form  "  (EQUAL  x  B) "  and  the  consequent  term  is  of  the  form  "  (p  (term)  (term 
with  B)) ,"  so  we  cross-fertilize.  This  results  in: 

(IMPLIES 
(PLISTP  B) 

(EQUAL  (REVERSE  (APPEND  (REVERSE  B) 

(CONS  A  "NIL"))) 
(CONS  A  (REVERSE  (REVERSE  B)))))  . 

Generalization 

A  further  simplification  can  be  accomplished  by  replacing  a  term  in  the 
formula  by  a  variable,  thus  generalizing  the  formula  and  allowing  an  induction 
on  the  new  variable  position  in  the  formula.  Hopefully,  by  the  time  we  reach 
this  point,  the  internal  structure  of  the  term  has  already  contributed  its 
significance  to  the  proof  and  can  be  ignored.  To  prevent  the  formula  from 

becoming  overgeneralized,  the  BMTP  can  add  certain  type-restrictions  to  the 
variable  introduced.  The  REVERSE  example  that  we  have  been  following  does 
not  adequately  illustrate  generalization,  so  we  move  temporarily  to  a  different 
example: 

(EQUAL  (APPEND  (FLATTEN  Z) 
(APPEND  (FLATTEN  V)  ANS)) 

(APPEND  (APPEND  (FLATTEN  Z)  (FLATTEN  V)) ANS)) 

=  (IMPLIES  (AND  (LISTP  A)  (LISTP  B)) 
(EQUAL  (APPEND  A  (APPEND  B  ANS)) 

(APPEND  (APPEND  A  B)  ANS)))  . 

Here,  (FLATTEN  Z)  and  (FLATTEN  V)  have  been  generalized  to  A  and  B, 
respectively.  Type  information  has  been  added  showing  that  both  A  and  B  are 
list  data  types,  since  the  system  is  aware  of  a  theorem  stating  that  FLATTEN 
always  produces  a  list.  The  formula  now  is  just  the  statement  that  APPEND 
is  associative. 

Elimination  of  Irrelevant  Terms 

In  performing  the  above  transformations,  it  is  often  the  case  that  irrele- 
vant terms  are  left  in  a  formula.  Removing  these  terms  cleans  up  the  formula. 

While  these  terms  are  difficult  to  spot  in  general,  there  are  two  special  cases, 
shown  as  rules  1  and  2  below,  that  frequently  occur.    In  both  cases,  all  the 
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terms  of  a  formula  are  first  partitioned  into  equivalence  classes  with  term  1 

in  the  same  class  as  term  2  if  they  share  a  common  variable. 

Rule  1.  If  a  class  contains  only  nonrecursive  functions,  then  all  terms  in 
the  class  are  removed  from  the  formula.  If  these  formulas  were 

always  non-F,  the  Simplifier  should  have  been  able  to  prove  this 
fact.  Passing  these  terms  on  to  the  Induction  mechanism  will  not 
help,  since  the  terms  are  not  recursively  defined. 

Rule  2.  If  a  class  contains  a  single  recursive  function,  it  is  removed.  A 

single  function  that  cannot  be  shown  to  be  always  non-F  by  the 
Simplifier  probably  can  assume  non-F  values. 

Continuing  our  example  of  the  proof  (EQUAL  (REVERSE  (REVERSE  X))  X), 

the  theorem  is  generalized  to: 

(IMPLIES 
(PLISTP  B) 

(EQUAL  (REVERSE  (APPEND  X  (CONS  A  "NIL"))) 
(CONS  A  (REVERSE  X)))) 

by  replacing  all  occurrences  of  (REVERSE  B)  with  X.  No  extra  type  information 

is  added  during  generalization.  The  antecedent  is  eliminated  by  rule  2,  leaving 
the  formula: 

(EQUAL  (REVERSE  (APPEND  X  (CONS  A  "NIL"))) 
(CONS  A  (REVERSE  X)))  , 

which  is  a  statement  asserting  that  reversing  the  concatenation  of  X  and  A  is 

equivalent  to  concatenating  A  with  the  reverse  of  X. 

Performing  an  Induction 

If,  in  the  course  of  these  rewrites,  the  theorem  has  still  not  been  reduced 

to  T,  the  BMTP  automatically  formulates  a  valid  induction  argument  to  try 

to  prove  the  theorem.  The  heuristics  employed  here  represent  the  heart  of 

the  BMTP.  Inductions  are  formulated  by  using  information  collected  at  the 
time  the  function  is  defined  and  at  the  time  the  actual  induction  is  needed. 

Function- definition  time.  When  a  function  is  defined,  the  system  must 
prove  that  the  function  terminates  before  allowing  the  definition.  Termination 

is  proved  by  finding  a  well-founded  function  that  decreases  when  applied  to 

a  subset  (measured  set)  of  the  arguments  used  in  all  recursive  calls.  The  sys- 

tem exhaustively  searches  through  all  lexicographic  orders  of  all  well-founded 
functions  (LESSP  is  initially  the  only  one,  but  others  are  added  by  the  Shell 

mechanism)  applied  to  all  subsets  and  permutations  of  a  function's  arguments. 
These  are  all  collected  in  a  set  of  induction  templates  that  are  associated  with 
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the  newly  defined  function.  These  templates  include  the  form  of  the  induc- 
tion to  be  performed  and  all  of  the  variable  substitutions  that  will  need  to  be 

made. 

The  following  illustrates  the  creation  of  induction  templates  at  function- 
definition  time  for  REVERSE,  which  is  defined  as: 

(REVERSE  X)  =  (IF  (LISTP  X) 

(APPEND  (REVERSE  (CDR  X))  (CONS  (CAR  X)  "NIL")) 
(CONS  X  "NIL"))  . 

The  proof  of  termination  is  fairly  simple,  since  REVERSE  is  monadic  and  there 
is  only  one  recursive  function  call  within  its  body.  The  BMTP  utilizes  the 
information  that  the  recursive  function  call  is  executed  only  if  X  is  known 
to  be  a  list.  Thus,  to  prove  that  REVERSE  terminates,  it  tries  to  prove  the 
theorem: 

(IMPLIES  (LISTP  X)  (LESSP  (CDR  X)  X))  . 

The  system  proves  this  theorem  (it  recursively  calls  itself)  by  noticing  that 
this  formula  is  equivalent  to  an  axiom  added  by  the  Shell  mechanism  during 
the  definition  of  lists.  This  is  the  only  way  the  system  can  prove  termination, 
so  the  only  induction  template  produced  is: 

(AND  (IMPLIES  (NOT  (LISTP  x))  (p  x)) 
(IMPLIES  (AND  (LISTP  x) 

(p  (CDR  x))) 

(p  x)))  . 

This  states  that,  to  prove  the  formula  (p  x)  where  p  involves  the  REVERSE 
function,  it  is  sufficient  for  the  BMTP  to  prove  that: 

1.  If  x  is  not  a  list  (the  base  case),  then  (p  x)  can  be  proved. 

2.  If  x  is  a  list  and   (p    (CDR  x))   is  assumed  to  be  true  (the  induction 
hypothesis),  then  (p  x)  can  be  proved. 

Typically,  the  formula  p  will  also  involve  other  recursive  functions  that  have 
their  own  induction  templates.  The  problem  of  which  induction  template  to 

use  cannot  be  handled  at  function-definition  time  (since  the  BMTP  has  no 
way  to  determine  how  a  newly  defined  function  will  be  used)  and  is  handled 
when  the  induction  rewrite  rules  are  trying  to  rewrite  the  formula. 

Instantiation  time.  When  an  induction  rewrite  rule  is  attempted,  the 
induction  templates  for  all  recursive  functions  in  the  formula  are  retrieved. 
These  templates  are  then  sifted  by  the  following  rules: 

1.    Only  legal  templates  (with  valid  substitution  instances)  are  retained. 
Substitutions  may  be  invalid  for  many  reasons,  the  most  common  that 



D  The  Boyer-Moore  Theorem  Prover  111 

the  template  requires  that  a  nonvariable  argument  be  used  as  an  induc- 
tion variable.  The  REVERSE  induction  template  could  not  be  used  if 

the  formula  p  involved  only  terms  like  (REVERSE  (f  x)  ) ;  hopefully,  the 
generalization  heuristics  will  substitute  a  variable  for  the  function  (f  x) . 

2.  Induction  schemata  are  obtained  when  the  legal  templates  are  instan- 
tiated by  performing  the  required  substitutions.  All  subsumed  induction 

schemata  are  discarded.  This  means  that  the  system  will  discard  weaker 

induction  arguments  for  ones  with  a  richer  case  structure  (duplicates  are 
removed  by  this  method  also). 

3.  The  remaining  templates  are  then  merged.  Two  templates  are  merged  if 

they  contain  a  common  induction  variable,  allowing  for  the  final  induc- 
tion scheme  to  contain  induction  hypotheses  for  every  relevant  induction 

variable.  Thus,  if  one  induction  scheme  requires  induction  on  the  vari- 
ables x  and  y  and  another  requires  induction  on  the  variables  y  and 

z,  it  seems  plausible  to  require  simultaneous  induction  on  all  of  x,  y, 
and  z. 

4.  If  more  than  one  scheme  still  exists  and  there  is  one  "unflawed"  scheme, 
then  all  "flawed"  schemes  are  discarded.  An  induction  scheme  is  unflawed 
if  every  occurrence  of  an  induction  variable  is  in  a  position  where  it  is 
decomposed. 

5.  Finally,  if  more  than  one  scheme  still  exists,  a  scoring  function  deter- 
mines which  one  to  use. 

6.  The  final  scheme  is  then  instantiated  for  the  specific  formula  to  be 

proved. 

Boyer  and  Moore  (1979)  report  that  90%  of  all  inductions'  arguments  yield 
only  one  unflawed  scheme  and,  of  the  remaining  10%,  half  have  no  unique 

correct  scheme  (i.e.,  the  theorems  are  symmetric  in  some  variables). 

Continuing  the  REVERSE  example,  the  BMTP  is  about  to  create  an  induc- 
tion argument  for  proving: 

(EQUAL  (REVERSE  (APPEND  X  (CONS  A  "NIL"))) 
(CONS  A  (REVERSE  X)))  . 

It  determines  the  induction  schemata  for  REVERSE  and  APPEND,  and  since 

both  functions  perform  CDR  recursions  on  X,  their  schemata  are  merged  to 

create  the  unique  induction  schema,  which  is  finally  used: 

(AND  (IMPLIES  (NOT  (LISTP  X))  (p  X  A)) (IMPLIES (NOT 
(LISTP  X)) 

(P 

(IMPLIES 
(AND 

(LISTP  X) 

(p  (CDR  X) 

A)) 

(p  X  A)))  . 
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Themes  of  the  Boyer-Moore  Theorem  Prover 

Proof  by  induction.  The  outstanding  feature  of  the  BMTP  is  that  it 

automates  induction  proofs.  Since  most  common  data-types  (integers,  lists, 
trees,  formulas)  are  defined  inductively,  it  is  imperative  that  theorem  provers 
that  prove  properties  of  programs  have  the  capability  of  performing  inductive 
arguments  (automatically  or  manually).  The  excellent  performance  of  the 
BMTP  is  in  a  large  part  due  to  the  heuristic  methods  employed  in  constructing 
induction  proofs.  These  heuristics  form  the  core  contribution  the  BMTP  has 
made  to  AI  research. 

Referencing  problem.  A  key  problem  in  current  theorem-proving  sys- 
tems is  the  performance  degradation  due  to  increased  knowledge.  While 

increased  knowledge  should  improve  a  system's  performance,  it  typically  just 
expands  the  possible  solution  space,  causing  excess  searching.  This  has  been 

named  the  referencing  problem  by  Bledsoe  (1974).  Resolution  theorem-provers 
suffer  greatly  from  this  problem.  Such  methods  as  proof  by  analogy  (Kling, 
1971)  have  been  used  to  restrict  the  reference  set,  but  they  have  met  with  little 
success.  The  BMTP  does  not  address  this  issue  with  any  more  sophistication 
than  trying  the  rewrite  rules  in  reverse  chronological  order  (with  complex 
results  first).  This  simple  strategy  has  proved  effective  even  when  operating 
within  an  environment  that  contains  approximately  400  theorems. 

The  language  of  the  theorem  prover.  Since  the  main  application 

of  the  BMTP  has  been  to  prove  properties  of  programs,  a  possible  misconcep- 
tion should  be  avoided.  There  is  a  difference  between  the  language  used  to 

express  formal  statements  whose  validity  is  being  proved  and  the  language 

used  to  express  a  program.  The  theory  is  just  a  mathematical  tool  for  mak- 
ing precise  assertions  about  the  properties  of  discrete  mathematical  objects. 

The  language  used  to  express  the  theory  is  closely  related  to  the  pure  LISP 
programming  language  and  should  be  considered  as  an  alternative  to  the  use 
of  the  predicate  calculus.  Frequently,  programs  can  be  written  as  functions 

within  the  theory  (since  the  semantics  of  a  LISP-like  program  can  be  easily 
captured  within  the  language  of  the  theory)  just  as  it  is  possible  to  use  predi- 

cate calculus  as  a  programming  language  (Kowalski,  1974).  But  a  distinction 

should  be  made  between  the  language  used  to  express  theorems  and  the  pro- 
gramming language  used  to  describe  an  algorithm  about  which  the  BMTP  is 

proving  theorems.  When  proving  properties  about  programs,  the  user  applies 
a  relevant  theory  of  program  semantics  to  derive  formal  statements  whose 
validity  implies  that  the  program  has  the  desired  properties.  These  statements 
are  then  translated  into  the  theory  on  which  the  BMTP  operates.  The  BMTP 
can  then  be  instructed  to  try  to  establish  the  validity  of  these  statements.  To 
illustrate  this  fact,  the  proof  of  the  correctness  of  the  compiler  is  expressed  by 

McCarthy's  functional  method,  while  the  correctness  of  the  string-searching 
algorithm  is  expressed  by  Floyd's  method  of  inductive  assertions. 
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Performance.  Two  performance  measures  are  relevant  to  theorem  prov- 

ers.  The  first  is  the  system's  ability  to  represent  typical  facts  and  theorems  in 
the  domain  of  interest  (epistemological  adequacy).  The  second  is  the  ability 
to  prove  theorems  within  a  reasonable  amount  of  time.  Both  performance 

measures  contain  ambiguity  (e.g.,  "typical,"  "reasonable").  But  in  the  BMTP, 
many  interesting  facts  and  theorems  can  be  represented,  and  proof  times  are 

commensurate  with  a  user's  patience  when  debugging  proofs  interactively. 
The  BMTP  has  been  applied  to  a  large  number  of  theorem-proving  tasks,  some 
of  which  are  very  difficult  by  human  standards.  Most  theorems  are  proved 
in  well  under  a  minute,  although  most  proofs  require  lemmas  to  be  proved 
previously.  Nevertheless,  this  is  one  of  the  most  powerful  theorem  provers 
available. 

References 

Boyer  and  Moore  discuss  their  theorem  prover  in  their  1979  article. 



E.     NONMONOTONIC  LOGICS 

SEVERAL  FORMS  of  nondeductive  reasoning  have  attracted  careful  scrutiny. 

Purely  deductive  reasoning  techniques  have  long  been  recognized  as  inade- 
quate for  capturing  all  intelligent  thought.  Statistical  and  inductive  reasoning, 

which  concern  inexact  and  generalizing  reasoning,  have  received  much  study 
as  possible  extensions  or  alternatives  to  deductive  reasoning.  Nonmonotonic 
reasoning,  recently  formalized  in  nonmonotonic  logics,  is  the  latest  extension 
to  deductive  reasoning.  This  article  sketches  the  nature  of,  reasons  for,  and 
approaches  to  nonmonotonic  logics. 

The  Task  of  Logic 

The  task  of  logic  is  the  judgment  of  arguments.  Historically,  logic  has 
been  the  science  of  argumentation,  the  study  of  which  arguments  are  good  and 
which  are  not  good.  Different  purposes  engendered  different  conceptions  of 
good.  Arguments  to  convince  capricious,  distracted,  and  sometimes  irrational 
humans  were  judged  by  the  standards  of  effective  rhetoric,  which  concern, 
among  other  things,  the  size,  structure,  motivation,  and  emotional  impact 
of  arguments  and  their  steps.  Inductive  logics  judged  arguments  that  made 
generalizations;  statistical  logics  judged  arguments  that  dealt  with  frequencies 

and  probabilities;  and  deductive  logics  judged  arguments  that  made  restate- 
ments, that  is,  truth-preserving  inferences. 

While  important  insights  were  gained  into  the  philosophical  and  practical 
questions  underlying  rhetorical,  statistical,  and  inductive  reasoning,  perhaps 
the  philosophically  most  striking  advances  were  made  in  connection  with 
deductive  reasoning.  Philosophers,  logicians,  and  mathematicians  explored 

the  powerful  ideas  of  formal  languages,  truth-theoretic  semantics,  set  theory, 
and  the  mathematics  of  formal  systems,  model  theory,  and  proof  theory. 
These  ideas  proved  so  fruitful  that  logic  for  the  most  part  came  to  be  identified 

with  deductive  logic,  the  study  of  truth-preserving  inferences.  This  identifi- 
cation grew  so  strong  that  many  of  the  proposed  nondeductive  logics  have 

been  attacked  as  false  logics.  But  logic  is  a  science  of  thought  and  argument, 

not  merely  a  science  of  truth-preserving  inferences. 

The  Task  of  Nonmonotonic  Logic 

The  task  of  nonmonotonic  logics  is  to  judge  cases  of  nonmonotonic  reason- 
ing, that  is,  reasoning  that  involves  adopting  assumptions  that  may  have  to  be 

abandoned  in  light  of  new  information.  For  example,  a  scheduling  secretary 

114 
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may  employ  the  inference  rule  that  he  (or  she)  should  schedule  each  new 
meeting  on  the  closest  future  Wednesday  unless  and  until  he  finds  reasons  for 

scheduling  the  meeting  otherwise.  While  working  out  the  week's  schedule,  the 
secretary  may  tentatively  schedule  the  first  meeting  on  the  next  Wednesday, 
only  to  reschedule  it  later,  thereby  abandoning  his  initial  assumption,  when  he 

learns  that  a  meeting  is  requested  for  that  Wednesday  specifically  to  accom- 
modate a  visitor. 

This  reasoning  is  called  nonmonotonic  in  contrast  to  the  monotonicity  of 
the  set  of  theorems  of  a  set  of  axioms  in  deductive  logic.  In  deductive  logic, 
the  addition  of  new  axioms  to  a  set  of  axioms  can  never  decrease  the  set  of 

theorems.  At  most,  the  new  axioms  can  give  rise  to  new  theorems,  so  that  the 
set  of  theorems  grows  monotonically  with  the  set  of  axioms.  In  nonmonotonic 
logics,  the  set  of  theorems  may  lose  members  as  well  as  gain  members  when 
new  axioms  are  added. 

Reasoning  by  Default 

Two  cases  of  nonmonotonic  reasoning  have  been  studied:  reasoning  by 
default  and  reasoning  by  circumscription. 

The  defaults  of  reasoning  by  default  are  statements  or  rules  according  to 
which  (as  in  the  scheduling  example  above)  some  statement  is  to  be  believed, 
unless  and  until  otherwise  demonstrated.  Defaults  can  be  found  in  many 
places  in  standard  AI  techniques.  They  are  used  in  stating  generalities  to 
which  exceptions  may  be  acknowledged  without  catastrophe.  For  example,  a 
default  might  be  that  all  birds  can  fly;  penguins  and  ostriches  are  exceptions. 

In  structured  knowledge-representation  systems  (see  Article  III.C7,  in  Vol.  i), 
such  defaults  often  take  the  form  of  default  fillers  of  frame  slots.  For  exam- 

ple, an  airline  reservation  system  might  describe  each  customer  with  a  pas- 
senger frame  in  which  the  class  slot  has  the  default  value  coach.  Defaults  also 

enter  into  many  knowledge-representation  systems  implicitly  through  what  is 
known  as  the  closed-world  assumption.  The  closed-world  assumption  is  that 
all  relationships  not  explicitly  stated  to  hold  do  not  hold.  For  example,  typical 
procedures  for  inheriting  statements  in  one  frame  from  more  general  frames 
by  way  of  generalization  links  assume  that  a  frame  is  generalized  only  by  those 
frames  explicitly  listed  as  generalizations  or,  in  turn,  by  their  generalizations. 
Thus,  if  the  elephant  frame  has  a  sole  generalization  link  to  the  mammal 
frame,  the  inheritance  procedures  will  search  only  mammal  and  not  any 
other  frames,  in  spite  of  the  possibility  that  new  generalization  links  may  be 
attached  to  elephant  later  and  would  then  be  searched  as  well.  Yet  another  use 
of  defaults  is  in  the  typical  STRIPS  assumption  that  performed  actions  change 

none  of  the  program's  beliefs  about  the  world  except  those  explicitly  listed  in 
the  description  of  the  action  (see  Article  XV.B).  For  example,  a  description  of  a 

robot's  action  of  moving  from  one  location  to  another  would  list  only  changes 
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in  beliefs  about  the  robot's  position.    When  the  robot  moves,  the  STRIPS 
assumption  default  would  leave  its  belief  about  world  geography  intact. 

Reasoning  by  Circumscription 

Another  case  of  nonmonotonic  reasoning,  which  may  well  overlap  defaults 

in  some  (or  even  all)  cases,  is  that  of  parsimonious  reasoning,  or  reasoning  by 
circumscription.  In  reasoning  about  some  problem,  one  often  assumes  that 
the  problem  involves  only  those  objects  and  relationships  that  it  mentions, 
and  no  others.  The  inheritance  procedures  mentioned  above  made  such  an 

assumption  (the  closed-world  assumption)  about  the  nonexistence  of  unlisted 
generalization  links  and  generalizing  frames.  As  another  example,  in  the  well- 
known  missionaries- an d-cannibals  problem  of  traversing  a  river  uneaten,  one 
typically  does  not  think  of  solutions  involving  bridges,  rocket  ships,  handcuffs, 
murder  of  the  cannibals,  or  holes  in  the  boat.  Another  way  of  viewing 
the  circumscription  principle  is  the  assumption  that  all  qualifications  to  the 
problem  have  been  stated  explicitly. 

Formal  Characterizations  of  Defaults 

Two  sorts  of  detailed  formalizations  of  nonmonotonic  defaults  have  been 

proposed,  namely,  Reiter's  logic  of  defaults  and  McDermott  and  Doyle's  non- 
monotonic logics. 

Both  logics  roughly  interpret  Default  S  as  S  is  provable  unless  and  until  S 
can  be  disproved.  The  difficulty  with  this  interpretation  is  its  circularity,  that 
what  can  be  inferred  depends  on  what  inference  rules  are  applicable,  while, 
at  the  same  time,  what  inference  rules  are  applicable  depends  on  what  can 
be  inferred.  For  example,  suppose  that  we  decide  to  use  only  the  ordinary 
logical  rules  of  inference  in  attempting  to  disprove  statements  and  that  the 
information  to  be  captured  consists  of  three  statements:  Default  A,  Default  B, 

and  -i(A  A  B).  Here,  neither  A  nor  B  can  be  disproved  using  the  ordinary 
logical  rules  of  inference,  so  we  declare  both  A  and  B  to  be  provable  by  means 
of  the  default  statements.  These  two  new  conclusions  are  inconsistent  with 

->(A  A  B).  Instead  of  declaring  the  initial  three  statements  to  be  inconsistent, 
the  nonmonotonic  logics  try  to  refine  the  notions  of  provability  to  say  that 
there  are  two  coherent  interpretations  of  these  axioms,  namely,  one  in  which 

A  and  ̂ B  are  provable  and  one  in  which  B  and  -vl  are  provable.  This  is  a 
big  departure  from  ordinary  logic,  in  which  a  single  set  of  axioms  has  exactly 
one  set  of  conclusions  that  can  be  drawn  from  it.  The  key  problem  addressed 

by  the  nonmonotonic  logics  is  that  of  providing  some  well-defined  semantics 
for  defaults  that  allows  a  single  set  of  axioms  and  defaults  to  have  several 
coherent  interpretations. 

In  all  the  nonmonotonic  logics,  the  meanings  of  provable  and  consistent  for 
a   statement    and    a   set    of   axioms    are    defined    nonconstructively    by    a 
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mathematical  definition  of  what  coherent  sets  of  conclusions  are,  relative  to 
a  given  set  of  axioms  and  defaults.  These  definitions  are  nonconstructive 
primarily  because  the  coherent  interpretations  supplied  by  the  logics  are  in 
general  not  even  recursively  enumerable.  Roughly  put,  the  logics  declare  that 
interpretations  are  found  by  adding  in  as  many  statements  (assumptions)  as 

possible,  in  accordance  with  the  defaults,  but  at  the  same  time  avoiding  add- 
ing in  so  many  assumptions  as  to  produce  an  ordinary  logical  inconsistency. 

In  the  above  example,  for  instance,  the  two  coherent  interpretations  of  the 
three  statements  are  produced  by  adding  in  just  one  of  the  assumptions,  A  or 
B.  By  the  time  one  assumption  is  added  in,  the  negation  of  the  other  can  be 
deduced  by  ordinary  logical  rules  of  inference,  so  that  the  other  assumption 
is  ruled  out,  as  it  would  lead  to  an  inconsistency.  This  rough  description  of 
the  semantics  provided  by  the  logics  does  not  do  them  justice.  For  the  precise 
definitions  involved,  the  reader  is  referred  to  the  original  papers  (Reiter,  1980; 
McDermott  and  Doyle,  1980). 

While  Reiter's  and  McDermott  and  Doyle's  approaches  to  formalizing 
defaults  have  much  in  common  in  the  way  they  interpret  defaults  and  in 

their  major  theoretical  properties,  they  differ  in  logical  form,  as  one  approach 
formalizes  defaults  as  inference  rules  and  the  other  as  modal  formulas.  Unless 

one  is  vitally  interested  in  logic  for  its  own  sake,  or  in  pursuing  the  future 
development  of  better  nonmonotonic  logics,  these  differences  in  logical  form 
can  be  passed  over  as  small  differences  in  notation  for  capturing  the  same 
ideas. 

Reiter  (1980)  formalizes  defaults  by  adjoining  a  new  sort  of  inference 
rule  called  a  default  to  an  ordinary  logic  of  statements  and  inference  rules. 
Default  inference  rules  are  of  the  form  //  P,  and  it  is  consistent  to  assume 

Q,  then  infer  R,  written  P  :  Q/R,  where  P,  Q,  and  R  are  ordinary  formulas. 
Given  condition  P,  a  default  allows  the  inference  of  R  providing  that  Q  is  not 
disprovable.  With  this  notation,  the  simplest  sort  of  default,  that  of  Assume 

A  if  it  cannot  be  disproved,  is  written  simply  as  " :  A/ A' ;  that  is,  P  is  empty 
and  Q  =  R  =  A. 

Instead  of  stating  defaults  as  inference  rules,  McDermott  and  Doyle  (1980; 
McDermott,  1980)  state  defaults  as  modal  formulas.  They  use  an  ordinary 

logical  language  extended  by  the  unary  modal  operator  not- disprovable.  The 
analogue  in  nonmonotonic  logic  of  a  default  inference  rule  P  :  Q/R  of  the  logic 

of  defaults  is  P  A  not- disprovable  Q  — ►  R.  Thus  the  simplest  sort  of  default  is 
stated  in  these  nonmonotonic  logics  as  not- disprovable  A  — ►  A.  Although  we 
said  earlier  that  nonmonotonic  logics  and  the  logic  of  defaults  are  for  many 
purposes  syntactic  variants,  that  is  not  really  true.  The  modal  nonmonotonic 
logic  formulations  are,  for  better  or  worse,  actually  more  expressive  than  the 
nonmodal  logic  of  defaults.  This  is  because  one  can  make  statements  about 
defaults;  for  example 

not- disprovable{not- disprovable  A  — ►  A)  — ►  {not- disprovable  A  — ►  A) , 
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in  nonmonotonic  logics,  whereas  in  the  logic  of  defaults  no  means  exists  for 

referring  to  the  default  inference  rules. 

The  Genesis  of  Practical  Nonmonotonic  Inference  Rules 

Neither  of  these  approaches  says  anything  about  which  nonmonotonic 

statements  or  rules  should  be  used  in  representing  information  about  a  par- 
ticular domain.  The  logics  all  leave  that  decision  to  the  AI  system  designer. 

However,  McCarthy  (1980)  and  Dacey  (1978)  have  each  developed  theories 

that  appear  to  bear  on  the  problem  of  formulating  defaults.  McCarthy  for- 
malizes reasoning  by  circumscription  as  an  explicitly  nonmonotonic  rule  of 

inference.  Dacey,  on  the  other  hand,  formalizes  his  theory  of  conclusions 

in  terms  of  classical  decision  theory,  rather  than  in  terms  of  nonmonotonic 

reasoning. 

The  idea  of  circumscription,  in  McCarthy's  (1980)  treatment,  becomes  an 
inference  rule  for  formulating  sets  of  assumptions  on  the  basis  of  the  available 

information.  The  circumscription  inference  rule  computes  axiom  schemata 

from  sets  of  axioms,  schemata  that  can  be  applied  to  make  a  variety  of  assump- 
tions. To  circumscribe  a  set  of  axioms  A  with  respect  to  some  predicate  P 

mentioned  in  A,  one  constructs  a  sentence  schema  stating  that  the  only  objects 

satisfying  P  are  those  whose  doing  so  follows  from  the  axioms  A.  All  state- 
ments following  via  ordinary  deductive  rules  of  inference  from  that  sentence 

schema  are  said  to  be  the  conclusions  reached  by  circumscriptive  inference 

with  respect  to  P  from  the  original  axioms  A.  For  example,  suppose  we  know 

only  one  red-haired  person,  our  friend  Jane.  If  we  see  someone  looking  like 

Jane  in  the  crude  sense  of  merely  being  red-haired,  we  might,  by  circumscrip- 
tion, assume  that  that  person  is  Jane,  because  Jane  is  the  only  person  we  know 

fitting  that  description.  This  inference  is  nonmonotonic,  of  course,  since  if  we 

now  learn  that  Jane  has  an  identical  twin  sister  Joan,  we  can  no  longer  con- 
clude that  anyone  who  looks  like  Jane  is  Jane.  Expressed  formally  in  terms  of 

McCarthy's  circumscription,  this  example  might  be  translated  as  follows.  We 
start  with  the  set  of  axioms  A  =  (red-haired(Jane))  and  circumscribe  on  the 

predicate  red-haired.  The  circumscription  of  this  predicate  in  A  is  the  axiom 
schema 

<P(Jane)  AVx($(i)->  red-haired(x))  — ►  Vx  (red- hair ed(x)  — ►  <P(x)) . 

If  we  now  substitute  our  only  known  instance  of  a  red-haired  person  into  this 

schema,  that  is,  if  we  substitute  the  formula  x  =  Jane  for  <P(x),  we  get 

Jane  =  Jane  A  Vx  (x  =  Jane  — ►  red-haired(x))  — ►  Vx  (red-haired(x)  — ►  x  =  Jane) . 

The  first  two  parts  of  this  formula  are  true,  and  simplifying  it  leaves  the 

resulting  assumption,  or  default,  V x  (red- hair ed(x)  — ►  x  =  Jane),  which  we 

can  apply  to  any  new  person  who  looks  like  Jane  (i.e.,  is  red-haired).  Yet  this 

inference  is  nonmonotonic  in  that,  if  we  add  the  new  axiom  red- hair ed(  Joan) 
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to  A,  we  can  no  longer  draw  any  such  identifying  conclusion.  At  best,  we  can 
infer  by  another  application  of  circumscription  the  less  specific  conclusion 

\f  x  (red-  hair ed(x)  — >  x  =  Jane  Vx=  Joan). 
Another  approach  to  forming  and  rejecting  tentative  hypotheses,  the 

theory  of  conclusions  developed  by  Dacey  (1978)  after  a  suggestion  of  Tukey 
(1960),  can  be  viewed  as  proposing  a  general  rule  about  when  to  adopt  and 
when  to  abandon  defaults.  Dacey  formulates  conclusion  theory  in  terms 

of  classical  decision  theory  rather  than  in  the  proof-theoretic  terms  of  the 
preceding  approaches.  Classical  decision  theory  analyzes  how  the  strength  of 

each  of  one's  hypotheses  about  the  world  should  be  revised  with  each  new 
evidential  fact.  The  intent  of  conclusion  theory  is  to  avoid  the  continual 
reevaluation  of  all  hypotheses,  to  instead  accept  certain  strong  hypotheses  as 
conclusions,  and  to  hold  these  conclusions  unless  and  until  the  introduction 

of  very  strong  contrary  evidence.  Although  Dacey  apparently  intends  that 
the  set  of  conclusions  be  the  set  of  beliefs  of  the  reasoner,  his  reasoner  is 
isolated  and  unreflective,  in  that  the  rules  of  adoption  and  abandonment  are 
used  in  developing  scientific  laws  de  novo.  Once  communication  or  summaries 
of  conclusions  are  desired,  as  in  writing  an  initially  substantive  AI  program, 
the  form  of  each  conclusion  seems  to  approximate  that  of  a  default.  Thus, 

conclusion  theory  might  be  adapted  to  the  role  of  judging  the  propriety  of 
adopting  or  abandoning  defaults. 

The  Mathematics  of  Theory  Evolution 

Each  of  the  approaches  above  treats  in  detail  primarily  the  atoms  of 
reasoning,  either  individual  inference  steps  or  the  sets  of  beliefs  preceding  and 
following  the  inference  step.  So  far,  much  less  attention  has  been  devoted  to 
classifying  the  larger,  more  complex  ways  in  which  nondeductive  inferences 
can  change  the  current  set  of  beliefs  of  a  reasoner.  The  beginnings  of  a  larger 
analysis  of  theory  evolution  are  touched  on  by  McDermott  and  Doyle  (1980), 

Doyle  (1979,  1980),  Gumb  (1978,  1979),  Weyhrauch  (1980),  and,  less  formally, 
in  the  philosophy  of  science  literature  in  general  (e.g.,  Quine  and  Ullian,  1978). 
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F.     LOGIC  PROGRAMMING 

LOGIC  PROGRAMMING  refers  to  a  family  of  higher  level  languages  and  an 
associated  programming  style  based  on  writing  programs  as  sets  of  assertions. 
These  assertions  are  viewed  as  having  declarative  meaning  as  descriptive 
statements  about  entities  and  relations.  In  addition,  the  assertions  derive 

a  procedural  meaning  by  virtue  of  being  executable  by  an  interpreter.  Indeed, 
executing  a  logic  program  is  much  like  performing  a  deduction  on  a  set  of 
facts. 

A  logic  program  consists  of  a  set  of  clauses,  where  the  general  form  of  a 
clause  is: 

(consequent)  :-  ( antecedent! ),  (antecedent2),  . . . ,  (antecedent^ 

and  each  item  in  a  clause  is  a  positive  literal,  that  is,  an  atomic  formula 

P(termi,  . . . ,  termn)  for  some  predicate  P.    Not  all  clauses  have  antecedents. 
A  simple  logic  program  for  reversing  a  list  is  given  by  the  following  set  of 

clauses: 

APPEND (NIL, X,X) 

APPEND (CONS (X , Y) , Z , CONS (X ,  U)  )  : -  APPEND (Y , Z , U) 
REVERSE (NIL, NIL) 

REVERSE (CONS (X,Y),Z)  :-  REVERSE (Y , R) ,  APPEND (R, CONS (X, NIL) ,Z)  . 

Two  observations  must  be  made  about  this  program:  First,  the  terms  involving 
CONS  are  not  evaluated  as  they  would  be  in  LISP;  rather,  they  are  treated  as 

symbolic  objects.  Second,  both  APPEND  and  REVERSE  take  one  more  argu- 
ment than  the  corresponding  LISP  function.  This  is  because  APPEND(X,Y,Z) 

does  not  name  a  function  but,  rather,  names  the  relation  Z  is  the  result 

of  appending  X  and  Y.  Similarly,  REVERSE(X,Y)  means  Y  is  the  result  of 
reversing  X.  One  consequence  of  this  is  that  a  logic  program,  unlike  its  LISP 
counterpart,  can  often  be  run  backwards.  For  example,  the  APPEND  program 
could  be  used  to  find  pairs  of  lists  that,  when  concatenated,  yield  a  given  list. 

To  execute  a  logic  program,  we  supply  a  goal,  for  example,  REVERSE 
(CONS(A,CONS(B,CONS(C,NIL))),X).  The  interpreter  finds  substitutions  for  X 
that  make  the  formula  a  consequence  of  the  clauses  in  the  program.  This  is 
done  by  cycling  through  the  clauses,  matching  the  goal  against  the  consequent 

(by  unification;  see  Article  XII. B),  recursively  setting  up  antecedents  as  sub- 
goals,  and  backtracking  in  case  of  failure.  If  all  the  subgoals  can  be  satisfied, 
the  goal  is  proved,  and  the  substitutions  found  during  matching  constitute 
an  answer.  Forced  backtracking  can  be  used  to  produce  systematically  all 
substitutions  that  make  the  goal  provable.  For  the  goal  above,  the  interpreter 
would  find  the  substitution  CONS(C,CONS(B,CONS(A,NIL)))  for  X. 

120 
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One  feature  that  distinguishes  logic  programming  from  ordinary  theorem- 
proving  is  that,  while  the  declarative  semantics  allow  the  clauses — and  the 
antecedents  within  a  clause — to  appear  in  any  order,  the  procedural  interpre- 

tation is  sensitive  to  the  order.  Thus,  the  programmer  can  rely  on  assertions 
being  searched  in  sequence,  top  to  bottom  and  left  to  right,  and  can  structure 
a  program  for  maximum  efficiency. 

Another  difference  between  logic  programming  and  general  theorem- 
proving  has  to  do  with  the  restrictions  on  the  form  of  the  assertions  them- 

selves. In  theorem-proving  terminology,  logic  programs  consist  of  sets  of  Horn 
clauses — disjunctive  formulas  with  at  most  one  positive  literal.  It  is  easy  to 
see  that  the  clauses  of  a  logic  program  are  Horn  clauses:  Any  disjunction 

of  the  form  ̂ A  V  ->B  V  •  •  •  V  ̂ C  V  D  can  be  rewritten  as  an  equivalent 
implicational  formula,  A  &  B  &  •  •  -  &  C  — >  D,  which  is  a  notational  variant 
of  the  form  of  clauses  in  logic  programs. 

By  enforcing  this  restriction  to  Horn  clauses,  logic  programming  ensures 

relative  tractability  of  deductions.  It  should  be  noted  that,  as  with  most  very- 
high-level  programming  languages,  it  is  not  hard  to  write  extremely  inefficient 

logic  programs — especially  since  the  interpreter's  basic  strategy  is  exhaustive 
backtracking.  Many  implementations  give  the  programmer  some  control  over 
backtracking  and  allow  the  insertion  of  a  special  symbol  (typically  a  slash, 

"/")  between  antecedents  in  a  clause  to  prevent  backtracking  past  that  literal. 
This  often  improves  efficiency,  but  at  the  expense  of  semantic  purity,  since 
some  deductive  consequences  of  the  clauses  may  be  underivable  while  other 

formulas,  not  logical  consequences  of  the  clauses,  may  be  "deduced"  from 
failure  to  derive  a  fact.  (This  latter  case  corresponds  to  the  THNOT  construct 
in  the  PLANNER  languages.) 

Logic  Programming  and  AI 

Although  logic  programming  has  been  applied  to  diverse  problems,  some 
of  which  can  hardly  be  considered  exclusively  AI  problems  (e.g.,  database 

management),  there  are  at  least  two  reasons  why  logic  programming  has  spe- 
cial importance  for  AI.  First,  logic  programming  offers  an  alternative  to  LISP 

as  a  powerful  language  for  symbol  manipulation,  apart  from  the  semantic  con- 
tent of  the  symbols  qua  representations.  The  interpreters  that  drive  logic  pro- 

grams do  unification  (Robinson,  1965b,  and  Article  XII. B)  and,  thus,  already 

incorporate  the  pattern-matching  machinery  that  many  applications  require 
and  that  is  programmed  explicitly  in  LISP. 

The  second,  and  more  important,  reason  why  logic  programming  is  of 
interest  to  AI  has  to  do  with  its  usefulness  for  knowledge  representation. 
Predicate  logic  is  a  formalism  considered  by  many  to  be  a  natural  and  powerful 

representation  language  marred  only  by  its  perceived  computational  inef- 
ficiency (see  Article  III.Cl,  in  Vol.  I).   Any  approach  based  on  logic  that  can 
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demonstrate  efficient  execution  (which  logic  programming  does,  in  fact,  claim) 
would  be  a  serious  candidate  as  a  representation  language. 

To  see  how  a  logic  program  could  be  used  to  represent  real-world  knowl- 
edge, consider  the  following  simple  set  of  clauses: 

SEES(X.Y)  :-   PERSON (X) ,    PHYSOBJ(Y),    OPEN (EYES (X) ) ,    IN-FR0NT-0F(X,Y) 

SEES(X.Y)  :-  PERSON (X) ,    EVENT(Y),    WATCHING(X,    FILM-OF(Y)) 
PERSON (MOTHER (John) ) 

EVENT (BIRTHDAY (Henry) ) 

EVENT (GRADUATION (John) ) 

WATCHING (MOTHER (John) ,    FILM-OF (GRADUATION (John)))    . 

Consider  the  following  three  goals: 

1.  SEES (MOTHER (John) ,  GRADUATION (John) ) 

2.  SEES (MOTHER (U) ,  GRADUATION (U) ) 

3.  SEES(U,V) 

These  goals  can  be  viewed  as  queries  to  a  deductive  question- answering  system. 

The  first  can  be  paraphrased  Did  John's  mother  see  his  graduation? — ayes/no 
question.  The  second  and  third  goals  resemble  "Wh-questions" — the  free 
variables  U  and  V  indicating  that  the  answer  is  to  be  the  individual  or  indi- 

viduals satisfying  the  condition.  In  particular,  the  second  goal  corresponds 
to  the  question  Who  is  it  whose  mother  saw  his  graduation?  The  third  asks 

simply,  Who  saw  what? 

The  logic-program  interpreter  would  cycle  through  the  asserted  facts, 
matching  the  goal  against  the  consequent  and  solving  the  antecedents  as 
subgoals.  If  the  subgoals  can  be  satisfied,  the  goal  is  proved  and  the  answer  to 
the  yes/no  question  will  be  YES.  If,  after  exhaustively  trying  alternative  facts, 
the  goal  still  cannot  be  proved,  the  answer  is  NO.  For  goals  with  variables,  the 
system  can  produce  all  substitutions  that  make  the  goal  provable.  With  the 
clauses  given  above,  the  answer  for  goal  1  would  be  YES;  the  answer  for  goal 

2  would  be  U  =  John;  and  the  answer  for  goal  3  would  be  U  =  MOTHER  (John) , 
V  =  GRADUATION (John). 

Development  of  Logic  Programming  and  Current  Status 

The  parallels  between  computation  and  logical  proof  have  long  been  recog- 
nized, especially  in  the  theory  of  computation.  An  interesting  discussion  of 

the  many  connections  between  logic  and  computation  can  be  found  in  an 

early  work  of  McCarthy  (1963).  In  a  sense,  executing  an  applicative  program, 

for  example,  a  program  in  "pure"  LISP,  can  be  thought  of  as  calculating  the 

proof  of  an  identity  "/(arg^  arg2,  . . . )  =  result"  by  applying  various  axioms 
of  identity  according  to  a  fixed  control  regime,  much  as  the  assertions  of  a 
logic  program  are  applied. 
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Ordinarily,  logic  programming  is  understood  to  refer  more  narrowly  to 

the  style  of  programming  introduced  and  advocated  by  Kowalski  (1974,  1979), 

which  was  eventually  incorporated  into  PROLOG,  the  best-known  of  the  logic 
programming  languages.  PROLOG  has  several  dialects  and  is  supported  in 
numerous  installations  in  the  United  States,  in  Britain,  and  on  the  Continent. 

Especially  active  groups  are  in  Edinburgh,  London,  Marseilles,  and  Budapest. 

Diverse  applications  have  been  programmed  in  PROLOG,  including  natural- 
language  processing  (Colmerauer  et  al.,  1973),  database  retrieval  (Warren, 
1981),  and  program  synthesis  and  planning  (Warren,  1974). 

PROLOG,  and  logic  programming  in  general,  has  increased  in  popularity 
in  recent  years.  In  Europe,  especially,  PROLOG  is  a  serious  contender  as 
the  major  AI  implementation  language.  Much  effort  has  been  devoted  to 
developing  PROLOG  compilers  that  compete  favorably  with  LISP  in  efficiency 
of  generated  code  (Warren,  Pereira,  and  Pereira,  1977).  In  the  United  States, 

also,  there  has  been  interest  in  PROLOG,  as  well  as  in  LOGLISP,  a  LISP-based 

logic-programming  system  developed  at  Syracuse  University  (Robinson  and 
Sibert,  1980). 

Conclusion 

To  a  certain  extent,  the  development  of  logic  programming  has  followed 
the  pattern  of  LISP.  Both  languages  are  founded  on  clear,  mathematically 

motivated  formalisms.  Both  languages  have  a  side-effect-free  kernel  and  a 
procedural  interpretation  that  can  be  defined  in  a  simple  and  elegant  fashion. 
Yet  both  language  families  have  yielded  to  the  practical  needs  of  their  user 
communities  and  have  incorporated  numerous  features  that  detract  from 
their  underlying  elegance  in  favor  of  improved  convenience  and  efficiency. 
In  a  sense,  the  fact  that  logic  programming  has  progressed  to  the  point  of 
incorporating  such  features  attests  to  its  practicality  and  growing  popularity. 
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A.     OVERVIEW 

VISION  is  the  information-processing  task  of  understanding  a  scene  from  its 

projected  images.  An  image  is  a  two-dimensional  function  f(x,  y),  obtained 
with  a  sensing  device  (see  Article  XIII.Cl),  that  records  the  value  of  an  image 

feature  at  all  points  (x,  y).  Values  might  be  binary  for  black-or-white  images, 
gray  level  (i.e.,  intensity)  for  half-tone  images,  or  vectors  of  color  measures 
for  color  images.  Images  are  converted  into  a  digital  form  for  processing  with 

a  computer.  An  array  {fij}  of  small  picture-elements  called  pixels  represents 
the  image  by  recording  the  values  of  measurements  at  each  pixel  position 

(Article  XIII.Cl). 

The  task  of  a  computer-vision  system  is  to  understand  the  scene  that 

an  image — an  array  of  pixels — depicts.  However,  many  fields  claim  similar 
tasks  as  their  goal,  among  them,  picture  processing,  image  processing,  pattern 
recognition,  scene  analysis,  image  interpretation,  optical  processing,  video 
processing,  and  image  understanding.  These  fields  overlap  to  some  extent, 
though  each  has  its  own  history  and  character.  For  the  purpose  of  clarifying 
the  goals  and  methods  of  vision  research,  we  categorize  these  fields  into  signal 
processing,  classification,  and  understanding. 

Signal  processing.  Signal  processors  transform  an  input  image  into 
another  image  that  has  desirable  properties.  For  example,  the  output  image 

may  have  a  better  signal- to- noise  ratio  or  may  be  enhanced  by  emphasizing 
the  details  to  facilitate  human  inspection.  The  content  of  the  image  is  often 
irrelevant.  Image  processing  and  picture  processing  are  the  most  common 
terms  for  this  class  of  processing.  As  well  as  digital  techniques,  optical 

techniques  and  electric  video-signal  techniques  can  often  provide  a  very  fast 
throughput. 

Classification.  Classification  techniques  classify  images  into  predeter- 
mined categories.  Character  recognition  is  a  typical  example.  Often,  a 

predetermined  set  of  feature  values  is  extracted  from  images,  and  the  deci- 

sion of  how  closely  an  image  "fits"  a  class  is  made  on  the  basis  of  statistical 
decision  methods  applied  to  the  multidimensional  feature  space.  There  is  a 
large  body  of  theory  for  designing  optimal  decision  rules.  These  methods  are 
usually  called  pattern  recognition  or  pattern  classification,  although  the  word 
recognition  is  used  only  for  historical  reasons. 

Understanding.  Given  an  image,  an  image-understanding  program 
builds  a  description  not  only  of  the  image  itself  but  also  of  the  scene  it 
depicts.  In  the  early  years  of  AI  vision  research,  the  term  scene  analysis  was 

often  used  to  emphasize  the  distinction  between  processing  two-dimensional 
images  (as  in  pattern  classification)  and  three-dimensional  scenes.     Image 
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understanding  requires  knowledge  about  the  task  world,  as  well  as  sophisti- 
cated image-processing  techniques. 

In  this  chapter,  we  emphasize  image-understanding  research  and  say 
very  little  about  signal-processing  and  pattern-recognition  operations  such  as 
image  enhancement,  frequency-domain  techniques,  and  statistical  pattern- 
recognition  methods.  These  techniques  are  covered  only  briefly  in  Articles 
XIII.Cl,  XIII.C3,  and  XIII.C4. 

There  are  a  few  levels  of  information  processing  in  computer  vision.  The 
lowest  level  of  vision  systems  that  we  will  discuss  extracts  primitive  features, 
such  as  change  of  intensity  and  orientation  of  edge  elements,  from  the  original 

intensity  array.  This  is  often  called  low-level  vision,  or  early  processing;  it  is 
covered  in  Section  XIII.C.  After  early  processing,  the  higher  level  features,  such 
as  lines  and  regions,  and  shape  information,  such  as  surface  orientation  and 

occlusion,  are  extracted.  This  level  of  processing  is  sometimes  called  inter- 
mediate processing,  or  segmentation  in  the  context  of  extracting  meaningful 

lines  and  regions.  High-level  vision  processes  (also  called  later  processing)  deal 
with  objects  and  rely  on  domain-specific  knowledge  to  construct  descriptions 
of  scenes. 

Problems  for  Vision  Research 

Vision  is  easy  for  humans,  but  it  is  very  difficult  to  construct  a  comparable 

computer-vision  system.  There  are  several  reasons  for  this.  First  of  all,  an 
image  underconstrains  a  scene:  It  does  not  provide  enough  information,  by 
itself,  to  recover  the  scene.  Among  others,  the  depth  dimension  is  collapsed 

by  the  projection  of  a  three-dimensional  scene  to  a  two-dimensional  picture. 
Additional  constraints  are  needed  to  resolve  such  ambiguities.  These  can  be 
based  on  reasonable  assumptions  or  on  measurements,  but  without  them  the 
vision  task  cannot  be  accomplished. 

Another  reason  that  vision  is  difficult  is  that  many  factors  are  confounded 
in  an  image.  The  appearance  of  an  object  is  influenced  by  its  surface  material, 
the  atmospheric  conditions,  the  angle  of  the  light  source,  the  ambient  light, 
the  camera  angle  and  characteristics,  and  so  on.  All  of  these  factors  contribute 
to  a  single  measurement,  say,  intensity  of  a  pixel.  It  is  difficult  to  determine 
the  contribution  of  each  factor  to  a  pixel  value. 

Third,  understanding  an  image  (and  understanding  in  general)  requires 
a  priori  knowledge  of  the  task  domain.  For  most  interpretive  tasks,  features 
observable  in  the  image  can  be  very  weak,  but  one  knows  what  one  is  looking 

for;  image  understanding  is  impossible  without  such  expectations.  Image- 

understanding  systems  are  often  "blind"  to  objects  that  cannot  be  matched 
to  stored  representations. 

A  fourth  difficulty  with  vision  research  is  that  humans  are  vision  experts, 
but  it  is  very  difficult  to  introspect  about  how  they  see.    It  is  difficult  to 
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perform  a  protocol  analysis  of  vision  as  one  would  with  a  process  like  problem 
solving  (see  Article  DC.B). 

A  final  problem  for  vision  is  practical — an  engineering  problem:  A  com- 
puter vision  system  must  process  an  enormous  amount  of  information,  even 

for  a  simple  task.  For  example,  an  aerial  photo  is  typically  digitized  into 
3,000  X  3,000  pixels  with  8  bits  per  pixel,  or  9  Mbytes  per  image.  A  simple 

edge-detection  process  that  performs,  say,  10  operations  per  pixel  requires  90 
million  operations  for  an  image! 

Delineating  these  problems  was  itself  a  result  of  years  of  vision  research. 

Computer  vision  systems  have  become  more  capable  as  these  and  other  prob- 
lems have  become  better  understood.  In  the  next  section,  we  review  some  of 

the  important  issues  in  computer  vision,  in  the  context  of  a  history  of  vision 
research. 

Issues  in  the  History  of  Computer  Vision 

Early  research:  Bottom-up  approach.  There  was  computer  image- 
processing  prior  to  computer  vision.  This  work  included  character  recog- 

nition, processing  images  of  chromosomes  to  classify  their  shapes  and  to 
obtain  karyotypes,  and  manipulating  line  figures.  Most  such  research  involved 

processing  and  classifying  two-dimensional  patterns. 
The  pioneering  work  in  computer  vision  was  no  doubt  that  of  Roberts 

(1965;  Article  XIII. Bl).  His  program  understood  polyhedral  block  scenes.  The 
image  of  a  scene  was  first  preprocessed  to  reduce  noise,  and  then  the  first 
spatial  derivatives  of  intensity  were  computed  at  each  pixel  in  the  image. 
Pixels  having  high  derivative  values  were  selected  as  edge  elements  (since  they 
correspond  to  places  where  intensity  changes  rapidly)  and  then  grouped  into 

lines  with  a  least-squares  method.  The  input  image  was  converted  into  a  line 
drawing  in  this  way. 

Roberts'  program  had  access  to  three-dimensional  models  of  objects:  a 
cube,  a  rectangular  solid,  a  wedge,  and  a  hexagonal  prism.  They  were  repre- 

sented by  the  coordinates  (x,  y,  z)  of  their  vertices.  The  program  recognized 
these  objects  in  the  line  drawing  of  the  scene.  A  candidate  model  was  selected 
on  the  basis  of  simple  features  such  as  the  number  of  vertices.  Then  the 
selected  model  was  rotated,  scaled,  projected,  and  matched  with  the  input  line 

drawing.  If  the  match  was  good,  the  object  was  recognized,  as  were  its  posi- 

tion and  size.  Roberts'  program  could  handle  even  a  composite  object  made 
of  multiple  primitive  shapes;  it  subtracted  parts  of  a  line  drawing  from  the 
drawing  as  they  were  recognized,  and  the  remaining  portions  were  analyzed 
further. 

Most  of  the  components  of  today's  vision  programs — preprocessing,  edge 
detection,  construction  of  line  drawings,  modeling  objects,  and  matching — 

appeared  in  Roberts'  program.    However,  his  recognition  process  proceeded 



130  Vision  Xm 

sequentially  from  low  to  high  levels  and  from  image  to  object.  Most  of  the 

early  work  on  computer  vision  took  this  sequential  bottom-up  approach. 
Segmentation:  Lines  and  regions.  The  success  of  any  bottom-up  ap- 

proach to  interpretation  depends  on  the  fidelity  of  low-level  and  intermediate- 
level  processes.  Thus,  in  the  early  years  of  vision  research,  numerous 
techniques  were  developed  for  extracting  lines  and  edges  from  images.  All  were 

similar  to  Roberts'  original  method:  At  each  pixel  position,  a  computation  is 
made  over  a  small  local  area  around  it  to  see  whether  or  not  the  pixel  is  on  an 
edge.  This  typically  involves  computing  a  derivative,  or  a  correlation  of  the 
actual  edge  with  a  template  of  an  ideal  edge.  These  local  computations  are 
usually  represented  as  operators  that  see  the  image  through  a  small  window 
(between  2X2  and  15  X  15  pixels).  The  operator  is  moved  over  the  image 

pixel  by  pixel  and  yields  high  output  for  edge-element  candidates.  Usually, 
the  output  is  thresholded  to  produce  a  binary  image  with  a  value  of  1  at  edge 
pixels  and  0  elsewhere.  Several  edge  operators  are  presented  in  Article  XIII.C4. 

After  edge  elements  are  detected,  they  are  grouped  into  meaningful  lines. 
This  can  be  done  by  tracing  the  edge  elements  according  to  a  rule.  The  goal 
of  tracing  is  to  connect  edge  elements,  but  gaps,  sudden  curves,  and  false  edge 
elements  (caused  by  noise)  complicate  the  process;  thus,  the  tracing  rule  needs 
to  be  quite  sophisticated. 

Regions  are  another  important  primitive  image  element.  Segmenting 
an  image  into  regions  became  a  popular  technique  following  the  work  of 
Brice  and  Fennema  (1970).  Region  segmentation  is  exactly  complementary 
to  edge  detection;  instead  of  finding  areas  of  contrasting  intensities,  region 
segmentation  finds  areas  of  pixels  with  similar  intensities.  The  properties 
of  and  relations  between  regions  were  used  to  match  regions  with  models  of 
objects.  This  approach  is  called  region  analysis  (see  Article  XIII.C5). 

The  objective  of  the  segmentation  process — either  by  edge  detection  or 
region  analysis — is  to  obtain  a  description  of  an  image  in  terms  of  meaningful 
lines  or  regions,  so  that  it  can  be  compared  with  the  models.  Despite  con- 

siderable effort  in  edge  detection  and  region  analysis,  it  turned  out  that  seg- 
mentation was  very  difficult.  In  edge  detection,  for  example,  a  low  threshold 

allows  one  to  detect  low-contrast  edges  but  also  detects  fraud  edges  due  to 
smear  or  surface  variation;  a  higher  threshold  is  less  sensitive,  both  to  noise 
and  to  true  edges.  In  tracing  lines,  two  distinct  lines  may  be  identified  as 

one.  In  region  analysis,  regions  may  be  overdivided  or  underdivided — a  region 
may  correspond  to  more  than  one  surface,  or  surface  variations  may  split  a 

whole  surface  into  several  regions.  These  problems  can  be  minimized  by  set- 
ting up  the  environment  carefully  and  tuning  various  threshold  parameters. 

But  obtaining  meaningful  elements  cannot  be  solved  without  some  external, 

top-down,  and  possibly  heuristic  knowledge. 
Heuristics.  The  first  extensive  use  of  heuristics  for  image  understanding 

was  due  to  Guzman  (1968a;  Article  XIII. B2).  His  program,  SEE,  could  segment 

a  line  drawing  into  three-dimensional  bodies.     Guzman  classified  types  of 
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junctions  that  appear  in  line  drawings  and  made  the  important  observation 
that  a  junction  type  makes  a  local  suggestion  about  plausible  associations  of 

regions  into  objects.  For  instance,  the  psi  junction  type  (junction  which  looks 
like  ip)  is  often  seen  in  an  aligned  pillar  of  blocks.  Thus,  it  suggests  that 
the  upper  two  regions  belong  to  a  single  body  and  the  lower  two  to  another. 
Guzman  represented  this  heuristic  rule  of  region  association  with  links  that 
connect  the  regions  that  possibly  belong  to  the  same  object. 

The  SEE  program  links  regions  according  to  these  heuristic  rules  about 
junctions.  Regions  that  are  associated  by  many  links  probably  constitute  a 
single  object,  while  regions  of  different  objects  will  have  none  or  a  few  links 
between  them.  Still,  the  linking  heuristics  do  not  say  conclusively  which 
regions  belong  to  which  objects,  so  Guzman  designed  another  set  of  heuristics 
for  partitioning  regions  into  objects  according  to  the  number,  strength,  and 
topology  of  links  between  regions.  He  developed  the  SEE  program  by  adding 
and  revising  heuristics  as  he  found  cases  for  which  the  current  version  did  not 
work.  Eventually,  SEE  could  correctly  segment  very  complicated  line  drawings 
into  objects. 

Guzman's  work  was  one  of  the  distinguished  successes  in  the  early  period 
of  heuristic  approaches  to  vision.  It  demonstrated  that  line  drawings  could  be 
interpreted  by  symbolic  processes  instead  of  numerical  matching  procedures 

such  as  least-squares  fit  of  lines.  The  research  also  focused  attention  on 
the  blocks  world,  showing  it  to  be  an  abstract  problem  domain,  free  from 
uncontrolled  noise  and  artifacts  that  obscure  essential  issues. 

But  Guzman's  approach  also  had  fundamental  difficulties.  Although 
SEE  recognized  three-dimensional  objects,  its  heuristics  were  tied  to  the  two- 
dimensional  picture  domain.  There  was  no  explicit  treatment  of  three- 
dimensional  scene  features.  Second,  his  heuristics  were  very  ad  hoc  and  there 
was  little  physical  basis  for  them.  This  was  especially  true  of  the  heuristics 
that  grouped  regions  into  objects  by  manipulating  the  graph  made  by  regions 

(as  nodes)  and  links  (as  arcs).  But  these  problems — reasoning  only  with 

picture-domain  features  and  ad  hoc  features — were  not  unique  to  Guzman's 
approach;  they  recur  throughout  vision  research. 

Higher  level  knowledge.  The  sequential,  bottom-up  approach  has 
difficulty  segmenting  images  in  a  meaningful  way.  Even  in  a  simple  blocks 
world,  it  seems  almost  impossible  to  extract  a  perfect  line  drawing.  In  fact, 

there  is  a  dilemma;  a  drawing  is  "perfect"  only  after  it  is  interpreted,  but 
a  successful  interpretation  depends  on  a  perfect  line  drawing.  One  solution 

to  this  circularity  was  to  give  programs  knowledge  of  their  task  domain — 

top-down  models  of  the  objects  in  their  worlds.  Falk's  (1972)  INTERPRET 
used  models  to  aid  interpretation  of  imperfect  line  drawings.  It  analyzed  a 
drawing  and  hypothesized  objects  and  their  orientations,  then  predicted  the 
line  drawing  of  the  hypothesized  scene,  and  finally  tried  to  verify  it. 

The  active  use  of  models  became  very  popular,  as  did  terms  like  model- 
based,  top-down,  semantic,  and  goal-driven.  In  some  systems,  models  simply 
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verified  results,  but,  in  others,  the  models  totally  controlled  what  to  see  where. 

Representative  programs  are  Shirai's  semantic  line  finder  (Shirai,  1973;  Article 
XIII.B6),  Yakimovsky  and  Feldman's  (1973)  semantic-based  region  analyzer, 
and  Tenenbaum  and  Barrow's  (1976a)  interpretation-guided  segmentation. 
Shirai's  program  guessed  where  lines  would  be  found  by  extending  lines  it  had 
already  found.  It  worked  from  easier  lines  (such  as  lines  between  white  blocks 
and  black  background)  to  difficult  lines  (such  as  internal  lines).  Yakimovsky 

and  Feldman  took  a  decision-theoretic  approach  to  region  growing:  Regions 
were  merged  so  that  a  certain  probability  of  correct  interpretation  was  max- 

imized. Tenenbaum  and  Barrow  used  a  table  of  constraints  on  object-object 

relations  (e.g.,  A  adjacent  to  B)  and  object-property  relations  (e.g.,  A  is 
bright),  as  well  as  a  filtering  procedure  and  relaxation  method  that  repeatedly 
eliminated  inconsistent  labels  from  a  set  of  possible  labels  for  each  region  (see 
Article  XIII.E4  for  a  discussion  of  this  program). 

These  systems  are,  for  the  most  part,  subject  to  the  same  criticism  that 

was  leveled  against  the  bottom-up  systems:  They  do  not  distinguish  between 
image  characteristics  and  scene  characteristics.  For  example,  the  knowledge  in 

the  scene  domain  (e.g.,  object  A  is  "on"  object  B)  is  used  in  such  a  degenerated 
sense  that  region  A  is  "above"  region  B  in  the  image.  More  recent  model- 
based  systems  show  a  sharp  contrast  in  this  respect;  for  example,  ACRONYM 
(Brooks,  1981b;  Article  XIII. F3)  makes  a  clear  distinction  between  observable 

image  features,  object-class  models,  and  the  specific  object  model. 
Applications.  While  a  basic  understanding  of  the  vision  process  seemed 

to  be  very  difficult,  many  important  applications  of  computer  vision  technol- 
ogy were  found  in  a  number  of  fields.  One  area  is  the  processing  and  inter- 

pretation of  two-dimensional  images.  This  includes  medical  applications  such 
as  screening  cancer  examinations  by  tissue  image  analysis,  remote-sensing 
applications  such  as  satellite  image  analysis  for  monitoring  natural  resources, 

and  industrial  applications  such  as  inspecting  printed  circuit  boards.  Com- 
puter tomography  (CT)  is  a  notable  success  in  the  area  of  generating  and 

analyzing  images.  Advances  in  computer  technology  and  reductions  in  hard- 
ware costs  have  made  these  applications  practically  feasible. 

Visual  sensing  for  robots  is  another  important  application  of  computer 

vision.  Early  research  was  done  in  the  Hand-Eye  projects  of  the  early  1970s, 
and  today  the  field  has  an  urgent  mandate  to  make  robots  more  versatile  and 

flexible  and,  thus,  to  increase  productivity  in  industry.  Three-dimensional 
information  is  important  for  robots,  so  range-finding  methods  have  been  devel- 

oped to  measure  depth  directly.  (Range  finders  are  discussed  in  Article  XIII. D4, 

and  robot  systems  in  Article  XIII. Fl.)  The  generalized  cylinder — an  important 
representational  tool  for  three-dimensional  shape — emerged  from  the  research 
of  range-data  analysis  (Agin  and  Binford,  1973;  see  Article  XIII. D6).  The 
generalized  cylinder  represents  a  volume  as  the  volume  swept  by  a  cross  section 

along  a  three-dimensional  space  axis.  The  axis  can  be  an  arbitrary  three- 
dimensional  curve.  The  shape  of  the  cross  section  can  be  arbitrary  and  it  can 



A  Overview  133 

even  change  shape  by  a  certain  rule  as  it  moves  along  the  axis.  A  usual  cylinder 
is  obtained  by  sweeping  a  disk  along  a  line,  and  if  the  disk  size  shrinks  linearly 
a  cone  is  obtained.  This  representation  provides  a  good  means  for  describing 
complex  objects  by  part/whole  segmentation  with  natural  semantics. 

Geometry  and  physics.  In  1971,  Huffman  and  Clowes  (see  Article 
XIII.B4)  independently  made  the  crucial  observation  that  lines  in  a  drawing  can 

mean  (or  depict)  different  three-dimensional  entities,  even  though  they  look 
the  same  as  two-dimensional  entities,  and  that  they  must  be  distinguished  on 
the  basis  of  the  physical  role  of  their  corresponding  three-dimensional  edges. 
For  example,  a  line  in  a  drawing  can  depict  a  boundary  or  a  connect  edge. 
Boundary  edges  are  found  when  an  object  occludes  another  or  occludes  the 
background;  connect  edges  are  found  when  two  surfaces  meet  along  their 
edges.  Connect  edges  are  further  divided  into  convex  and  concave  edges. 

Huffman  gave  distinct  labels  to  these  kinds  of  edges:  "+"  for  convex,  "— "  for 
concave,  and  "|"  for  an  occluding  boundary.  Interpreting  a  line  drawing  as  a 
three-dimensional  scene  involves  assigning  these  labels  to  the  lines. 

The  advantage  of  interpreting  images  in  terms  of  physical  features  is  that 
the  interpretive  process  can  utilize  the  constraints  imposed  by  the  physical 
world:  A  line  can  have  only  one  interpretation  at  a  time,  and,  what  is  more 
important,  certain  combinations  of  line  labels  at  a  junction  are  not  physically 
possible.  Waltz  (1972;  Article  XIII. B5)  extended  this  idea  to  a  larger  set  of 
line  classifications,  including  shadows  and  cracks.  Interestingly,  and  contrary 
to  intuition,  increasing  the  number  of  line  types  constrains  more  on  possible 
labelings,  because  a  smaller  percentage  of  the  combinatorially  possible  line 
junctions  are  physically  realizable. 

Of  all  scene  features,  shape  information  is  most  important.  Thus,  theoreti- 
cal and  systematic  study  of  geometrical  representations  for  vision  began. 

Huffman  (1971)  and  Mackworth  (1973;  Article  XIII.B7)  popularized  the  gradient 

space  as  a  powerful  tool  for  reasoning  about  surface  orientation.  It  repre- 
sents surfaces  in  a  parametric  space,  specifically,  in  a  two-dimensional  gradient 

space  in  which  the  axes  represent  the  amount  of  tilt  of  a  surface  with  respect 

to  the  optical  axis  of  the  viewer.  Scene  properties  such  as  convexity,  con- 
cavity, perpendicularity,  and  smoothness  can  be  conveniently  represented  in 

it.  (Recently,  the  Gaussian  sphere  has  proved  a  more  general  and  preferable 
tool  for  vision;  see  Kender,  1980) 

Mackworth's  POLY  (1973;  Article  XIII.B7)  interpreted  line  drawings  by 
reasoning  about  the  gradients  (orientations)  of  surfaces.  Prior  to  this  work, 

line  labeling  represented  only  a  qualitative  interpretation  of  lines.  Conse- 
quently, objects  with  the  same  qualitative  labeling  but  different  quantitative 

parameters  could  not  be  distinguished;  for  example,  a  trapezoidal  block  differs 
from  a  cube  in  its  angle  measurements,  not  in  its  qualitative  labeling.  Using 
gradients,  Kanade  (1979;  Article  XIII.B8)  demonstrated  quantitative  shape 
recovery  from  line  drawings;  with  this  more  complete  specification  of  the 
scene,  he  was  able  to  predict  how  the  scene  would  look  from  different  angles  of 
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view.  Similarly,  a  formal  approach  was  taken  by  Kender  (1980)  in  developing 

a  theory  of  how  texture  could  be  used  to  make  inferences  about  the  three- 
dimensional  structure  of  a  scene.  The  approach  common  to  these  researchers 

is  to  map  image  features,  such  as  length  and  angles  in  the  image,  into  three- 
dimensional  shape  constraints,  by  explicitly  assigning  assumptions  and  repre- 

senting the  constraints  in  an  appropriate  space.  In  this  way,  the  heuristics 

can  be  used  in  a  well-understood  (rather  than  ad  hoc)  manner  (Kanade  and 
Kender,  1980). 

Physics,  especially  photometries,  also  came  into  play.  Shading  is  known 
to  give  important  cues  for  shape,  especially  for  smooth,  curved  surfaces. 

Horn  (1975,  1977)  initiated  a  pioneering  work  on  shape-from-shading  theory, 
which  gave  a  deep  insight  into  the  low-level  vision  process.  It  was  first  for- 

mulated as  simultaneous  partial  differential  equations  and  then  reformulated 

taking  advantage  of  the  gradient-space  representation.  Under  certain  assump- 
tions, the  image  intensity  value  (/)  at  a  point  in  the  image  can  be  related 

to  the  surface  orientation  (p,  q)  at  the  corresponding  three-dimensional  scene 

point.  Thus,  we  have  a  mapping  /  :  (p,  q)  — >  I.  The  task  of  shape  from  shad- 
ing is  to  find  the  inverse  of  this  mapping.  In  general,  the  inverse  function 

/_1  :  /  — ►  (p,  q)  alone  does  not  give  a  unique  orientation  for  the  point.  Other 
constraints,  for  example,  assuming  a  smooth  surface,  are  needed.  Or  there 
may  be  another  image  taken  in  different  lighting  conditions,  from  which  to 

generate  another  mapping  /2  :  (p,  q)  —►  /;  then  both  /_1  and  f^1  may  yield 
a  unique  solution.  This  method  is  called  photometric  stereo. 

Barrow  and  Tenenbaum  (1978;  Article  XIII. Dl)  discuss  the  problem  of 
recovering  intrinsic  characteristics  (distance,  orientation,  reflectance,  etc.) 

from  images.  They  propose  an  iconic  representation  of  these  scene  charac- 
teristics in  the  form  of  images  that  are  registered  with  the  original  image. 

These  are  aptly  called  intrinsic  images.  Once  we  have  intrinsic  images,  opera- 
tions like  segmentation  become  fairly  simple. 

Thus,  in  effect,  recent  vision  research  has  begun  to  go  back  to  the  geometry 

and  physics  that  govern  vision  processes  and  to  represent  them  in  a  computa- 
tionally tractable  form.  This  has  turned  out  to  be  a  powerful  approach  to  the 

problems  of  motion,  texture,  shading,  and  stereo. 

Marr's  theory  of  vision.  Marr  presented  a  theory  of  vision  that  empha- 
sized the  importance  of  choosing  appropriate  representations  for  different 

levels  of  the  vision  process.  His  approach,  as  well  as  his  results  and  those  of 
his  students,  had  a  great  deal  of  influence  in  vision  research.  (It  is  unfortunate 
that  Marr  died  in  1980  before  he  saw  his  theory  of  vision  fully  developed  and 
implemented.) 

Marr  (1978)  pointed  out  that  it  is  important  to  understand  vision  at 
two  levels:  the  first  level  that  specifies  what  is  being  computed  and  why 
(competence  theories)  and  the  second  level  of  particular  algorithms  to  carry 
out  the  computation  (performance  theories).  For  example,  the  theory  of  the 
Fourier  transform  is  at  level  1,  and  algorithms  like  the  Fast  Fourier  Transform 
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or  the  parallel  algorithms  of  coherent  optics  are  at  level  2.  Marr  then  argued 
that  the  theory  of  computation  (level  1)  must  precede  the  design  of  algorithms 
(level  2)  and  that  vision  researchers  must  not  confuse  the  two. 

The  role  of  a  representation  is  to  make  certain  information  explicit  at 

an  appropriate  point  in  the  analysis  of  an  image.  Thus,  the  choice  or  inven- 
tion of  a  representation  affects  the  success  of  analysis.  Marr  discussed  the 

vision  process  in  terms  of  three  levels  of  representation:  Starting  from  images, 

the  framework  consists  of  primal  sketch,  2-q-D  sketch,  and  3-D  model  rep- 
resentation. The  primal  sketch  makes  information  about  intensity  change 

explicit,  the  2^-D  sketch  makes  information  about  the  surface  explicit,  and 
the  3-D  model  makes  information  about  object  shape  explicit. 

Based  on  this  framework,  Marr  and  his  colleagues  studied  methods  to 
obtain  one  representation  from  another.  Obtaining  the  primal  sketch  from 

raw  image  data  involves  edge  detection  and  zero-crossings  (Marr  and  Hildreth, 
1980),  and  stereo  disparity  (Marr  and  Poggio,  1977;  Grimson,  1980)  and  mo- 

tion (Ullman,  1979)  are  used  to  obtain  the  2^-D  sketch.  Marr  and  Nishihara 
(1978)  discuss  the  problem  of  computing  the  3-D  model  from  a  2^-D  sketch. 
They  represented  three-dimensional  model  shapes  of  stick  figures  (such  as 
humans)  hierarchically  from  overall  description  to  detailed  elaboration  of  its 
components. 

The  approaches  discussed  earlier  that  emphasize  geometry  and  physics 

and  Marr's  theory  of  vision  are  both  prone  to  the  bottom-up  processing 
from  image  to  object.  As  we  mentioned  in  the  discussion  of  segmentation, 

image  interpretation  is  difficult  without  top-down  models.  However,  these 

new  approaches  differ  critically  from  the  older  (ad  hoc)  bottom-up  methods 
in  that  they  are  based  on  physical  properties  of  the  world.  Once  appropriate 

representations  are  selected — be  they  intrinsic  images,  primal  sketches,  or 

2^-D  sketches — the  constraints  that  the  world  provides  can  be  systematically 
exploited. 

The  Image  Understanding  Program.  The  ARPA-sponsored  Image 
Understanding  Program  started  in  1975.  Its  purpose  is 

to  investigate  application  of  a  priori  knowledge  to  facilitate  an  understand- 
ing of  the  relationship  among  objects  in  a  scene.  The  appropriate  focus 

is  on  the  world  understanding. . . .  [The  Image  Understanding  Program]  is  a 
catalyst  which  attempts  an  integration  of  many  sciences  [image  processing, 
pattern  recognition,  computer  science,  artificial  intelligence,  neurophysiol- 

ogy, and  physics]  in  search  of  methods  for  automatic  extraction  of  informa- 
tion from  imagery.  (Druffel,  1981,  pp.  2-3) 

Efforts  within  the  program  range  from  the  development  of  a  cohesive  theory 
of  vision  to  the  hardware  issues  of  processing  systems.  For  example,  several 

knowledge-based  systems  for  photo-interpretation  tasks  were  developed,  in- 
cluding ACRONYM  (Brooks,  1981a),  Interactive  Aids  for  Cartography  and 

Photo  Interpretation  (Barrow  et  al.,  1977),  Road  Expert  (Bolles  et  al.,  1978), 
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and  Integrated  Image  and  Map  Database  for  Photo  Interpretation  (McKeown 
and  Kanade,  1981).  Photo  interpretation  is  discussed  in  this  chapter  as  the 
most  obvious  application  of  image  understanding. 

Organization  of  This  Chapter 

The  remaining  five  sections  of  this  chapter  discuss  aspects  of  vision 
research  ranging  from  the  blocks  world  to  applications  in  robotics.  Section 

XIII. B  presents  a  chronological  survey  of  blocks-world  research.  Section  XIII.C 
discusses  techniques  for  early  processing  of  image  features.  Section  XIII.D 
raises  some  issues  involved  in  reasoning  about  scene  features  and  presents 
some  useful  representational  tools  and  techniques.  Section  XIII.E  discusses 

algorithmic  tools  for  matching  and  reasoning  about  features — often  image- 

level  features.  Sections  XIII.C  and  XIII.E  are  related  by  Marr's  distinction 
between  the  theory  of  computation  and  the  design  of  algorithms.  Finally, 
Section  XIII. F  offers  a  glimpse  of  how  various  vision  methods  are  integrated 
into  a  whole  vision  system. 

Blocks  worlds.  Many  important  issues  for  vision  research  have  been 
first  proposed  and  explored  in  the  context  of  blocks  worlds,  because  they  are 
simplified  by  explicit  assumptions  about  the  physical  structure  of  the  world. 
Usually,  these  assumptions  limit  the  kinds  of  vertices  at  which  surfaces  meet 
and,  thus,  the  kinds  of  objects  that  can  exist.  For  example,  the  trihedral 
world  is  constituted  of  objects  that  have  exactly  three  surfaces  meeting  at 

any  vertex. 

One  of  the  advantages  of  blocks-world  research  is  that  observed  features 
correspond  to  real  physical  features:  A  line  corresponds  to  an  edge,  and  a 
region  of  homogeneous  intensity  corresponds  to  a  surface.  This  situation  is 
more  tractable  than  one  in  which  image  features  may  not  correspond  to  scene 
features;  for  example,  a  cylinder  appears  to  have  two  parallel  edges  where  the 
surface  of  the  cylinder  disappears  from  view,  but  these  image  features  do  not 
directly  correspond  to  any  features  of  the  cylinder  itself. 

The  main  disadvantage  of  blocks  worlds  is  that  they  are  so  constrained 

that  associated  image-understanding  methods  do  not  generalize  to  the  real 
world.  One  consequence  is  that  it  is  hard  to  test  the  adequacy  of  blocks- 
world  representations.  This  is  a  valid  criticism  of  individual  blocks-world 
techniques,  but  maybe  not  of  the  blocks-world  approach.  All  vision  systems 
constrain  their  environments  by  assumptions;  the  advantage  of  the  blocks- 
world  approach  is  that  it  makes  the  assumptions  explicit. 

Early  processing  of  image  features.  Section  XIII.C  covers  several 
techniques  for  early  processing  of  image  features.  Some  articles  in  the  section 
deal  with  representations  of  image  features,  and  some  discuss  methods  for 
improving  and  changing  the  representations  of  images.  The  first  articles 
present  the  lowest  level  operations  on  image  data,  starting  with  taking  a 
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picture  of  a  scene  (Article  XIII. Cl).  Once  a  picture  is  obtained,  preprocessing 
techniques  suppress  unwanted  details  such  as  noise  and  enhance  aspects  such 

as  lines  (Article  XIII.C3).  In  fact,  line-finding  is  a  fundamental  operation  in 
vision  research;  it  is  discussed  in  Article  XIII.C4.  Regions  of  homogeneous 
intensity,  color,  or  texture  are  also  important  image  features;  methods  for 
finding  regions  are  discussed  in  Article  XIII.C5,  and  color  and  texture  are 
discussed  separately  in  Articles  XIII.C2  and  XIII. C6,  respectively. 

All  of  the  techniques  in  Section  XIII.C  deal  with  image  features.  No 
attempt  is  made  to  infer  anything  about  the  scene  with  these  techniques. 

Scene  characteristics.  The  main  problem  of  vision  research  is  deciding 

what  the  three-dimensional  world  looks  like  from  two-dimensional  images 
(Sec.  XIII.D).  This  involves  inferring  scene  features  from  image  features.  Scene 
characteristics,  sometimes  called  intrinsic  characteristics,  include  the  tilt, 
reflectivity,  and  smoothness  of  surfaces,  as  well  as  the  arrangement  of  texture. 
These  features  are  discussed  in  Article  XIII.D l. 

The  problems  for  research  on  scene  characteristics  include  determining 
useful  intrinsic  characteristics,  figuring  out  how  to  represent  them  and  how 
to  reason  with  them.  A  few  representational  tools  have  been  developed 

that  facilitate  reasoning,  including  generalized  cylinders  (Article  XIII.D6)  and 
gradient  space  (Article  XIII. B7).  Methods  of  obtaining  scene  features  from 
various  sources  of  information  are  discussed:  motion  (Article  XIII.D2),  stereo 

(Article  XIII. D3),  range  finders  (Article  XIII. D4),  and  shape-from  methods 
(Article  XIII. D5;  specifically,  shape  from  shading  and  shape  from  texture). 

Algorithms  for  vision.  Section  XIII. E  discusses  algorithmic  tools  used 
in  computer  vision  to  perform  matching  and  interpretation.  Historically, 

these  techniques  have  been  applied  most  often  to  pixel-level  and  image-level 
features.  (The  theory  for  extracting  these  features  is  discussed  in  Section 
XIII.C.) 

The  first  article  in  Section  XIII. E  discusses  hierarchical  representations 
of  image  features  called  pyramids  and  quad  trees  (Article  XIII.El).  These 
representations  improve  the  efficiency  of  reasoning  about  image  features.  The 
most  basic  method  for  matching  and  recognition  is  template  matching  (Article 
XIII.E2).  Syntactic  methods  are  related  to  template  matching,  but  they  involve 

"parsing"  pictures,  as  if  they  were  sentences  made  up  of  primitives  (Article 
XIII. E3).  A  more  sophisticated  procedure  is  relaxation  (Article  XIII. E4),  first 
encountered  as  Waltz  filtering  in  Article  XIII. B5.  Relaxation  requires  that  there 
be  constraints  among  primitives  and  a  method  for  propagating  the  constraints. 

Systems.  The  last  section  of  the  chapter  (Sec.  XIII. F)  is  devoted  to 
practical  vision  systems,  rather  than  vision  methods.  In  the  ACRONYM 

system  (Article  XIII.F3),  the  user  specifies  parametric  models  of  objects  in  the 
world  to  aid  image  understanding.  The  same  is  true  of  the  systems  discussed 
in  Article  XIII. F2.  Robot  vision  (Article  XIII.Fl)  is  an  interesting  case  because 
it  is  usually  found  in  applications  where  there  is  detailed  knowledge  of  the 
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environment;  in  these  cases,  the  deficits  in  data — poor-quality,  low-resolution 
images — can  be  compensated  by  strong  top-down  models. 

References 
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point  of  view.  Marr  (1978)  presents  his  theory  of  vision  together  with  the 
results  of  his  group.  Kanade  (1980a)  argues  for  his  model  of  vision  systems 
by  emphasizing  the  importance  of  the  distinction  between  image  and  scene. 

Mackworth  (1977)  reviews  the  history  of  blocks- world  understanding. 



B.     BLOCKS-WORLD  UNDERSTANDING 

Bl.     Recognition  of  Three-dimensional  Objects: 
L.  G.  Roberts 

ONE  of  the  first  researchers  to  be  concerned  with  the  recognition  of  three- 
dimensional  objects  was  L.  G.  Roberts  (1965).  Previous  research  in  vision 

had  dealt  primarily  with  the  recognition  of  two-dimensional  forms  such  as 
alphabetic  characters.  Roberts  noted  that  the  problem  of  recognizing  and 
describing  the  solid  objects  in  a  picture  requires  a  different  approach  from  that 

of  processing  two-dimensional  forms.  A  two-dimensional  representation  of  a 
two-dimensional  object  is  substantially  like  the  object,  but  a  two-dimensional 
representation  of  a  three-dimensional  object  introduces  a  perspective  projec- 

tion that  makes  the  representation  ambiguous  with  respect  to  the  object. 

Thus,  Roberts'  approach  involved  describing  the  three-dimensional  environ- 
ment that  generated  the  picture,  rather  than  describing  the  picture  itself;  that 

is,  he  examined  the  picture-taking  process  by  which  a  perspective  projection 
is  obtained  from  a  three-dimensional  scene.  A  discussion  of  the  picture-taking 
process  is  found  in  Article  XIII. Cl;  we  will  not  duplicate  it  here. 

Roberts  chose  a  simple  domain  consisting  of  cubes,  rectangular  solids, 
wedges,  and  hexagonal  prisms.  He  studied  scenes  of  these  objects  in  arbitrary 
spatial  configurations.  The  program  he  developed  analyzed  a  photograph  of  a 
scene  and  identified  all  the  visible  objects.  Furthermore,  it  determined  their 

orientations  and  positions  in  three-dimensional  space. 

Models 

Roberts  represented  each  possible  type  of  object  (cube,  wedge,  hexagonal 

prism)  in  a  three-dimensional  coordinate  system;  this  representation  is  called  a 
model.  Figure  Bl-1  depicts  the  model  of  a  cube.  An  object  in  a  scene  may 
differ  from  its  model,  because  it  may  occupy  a  different  position  and  orien- 

tation in  three-dimensional  space  and  because  it  may  have  a  different  length 
in  its  dimension.  A  transformation  matrix,  R,  can  be  obtained  that  transforms 
a  model  into  a  scene  object  by  means  of  rotation,  translation,  and  size  change 
(R  is  represented  by  homogeneous  coordinates;  see  Article  XIII.Cl). 

Roberts'  Program 

The  first  step  that  Roberts'  program  takes  is  to  make  a  line  drawing  of 
a  photograph;  this  step  will  not  be  described  here  (see  Article  XIII. C4).  Given 

the  line  drawing  (Fig.  Bl-2),  the  next  step  is  to  find  the  model  (cube,  wedge, 

139 



140 Vision XIH 

y*u 

J- f   * 
Figure  Bl-1.     The  cube  model  in  the  three-dimensional  world  system. 

or  hexagonal  prism)  that  best  matches  the  picture.  A  list  of  two-dimensional 
features  is  associated  with  each  model;  when  these  are  found  in  a  picture, 

they  are  used  to  index  the  appropriate  models. 

The  interior  polygons  A,  B,  and  C  in  Figure  Bl-2  correspond  to  surfaces 
of  the  object.  The  point,  P,  at  which  all  the  polygons  come  together  is  used 

as  a  reference  point.  This  point  and  its  three  surrounding  polygons  constitute 

a  feature;  a  search  of  the  models  finds  that  a  cube  and  perhaps  other  models 

have  three  quadrilaterals  about  one  point.  A  point  in  the  cube  model  with 

the  proper  polygons  around  it  is  then  selected,  and  topologically  equivalent 

point-pairs  are  listed,  resulting  in  seven  three-dimensional  points  from  the 

model  and  seven  corresponding  two-dimensional  points  from  the  picture.  This 
procedure  is  repeated  for  any  other  models  that  pass  the  initial  topology  test. 

Once  a  set  of  potential  models  has  been  found,  the  best  fitting  model  is 

determined.  The  point  pairs  obtained  above  are  used  in  this  step.  Recall  that 

matrix  R  transforms  the  model  into  the  object.  In  addition,  the  perspective 

transform,  which  maps  from  scene  points  to  image  points,  can  be  represented 

as  a  matrix  P  (see  Article  XIII. Cl).  Then, 

H  =  PR (1) 

transforms  the  model  points  into  picture  points. 

The  best  transform,  H,  that  takes  the  seven  model  points  into  the  seven 

corresponding  picture  points  is  found.  A  mean-square  error  that  indicates  how 
well  the  model  fits  the  picture  is  also  obtained  for  each  model.  The  model 
with  the  least  error  is  chosen. 

The  next  step  is  to  determine  the  position  and  orientation  of  the  object 

in  three-dimensional  space.  From  equation  (1),  we  derive 

R 

P    *H 
The  transform  H  has  just  been  calculated,  and  P  is  the  perspective  transfor- 

mation, which  is  also  known.  Thus,  we  can  calculate  R,  the  transformation  of 
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Figure  Bl-2.     Line  drawing  of  a  picture  of  a  rectangular  solid. 

the  model  into  the  object.  This  gives  us  the  precise  orientation  and  position 
of  the  object  and  also  the  dimensions  of  the  object  relative  to  its  total  size. 
We  lack  only  the  depth  variable  that  represents  the  distance  of  the  object 
from  the  picture  plane.  This  must  be  found  some  other  way. 

To  calculate  depth,  the  assumption  is  made  that  each  object  must  be 
supported  in  some  way,  either  by  another  object  or  by  the  ground.  (This  is 

called  the  support  hypothesis.)  By  simulating  the  effect  of  moving  each  object 
away  from  the  camera  and  expanding  it  (so  as  to  maintain  the  same  image  on 
the  picture  plane)  until  it  hits  the  ground  plane  or  another  object,  the  final 
position  and  actual  size  of  each  object  may  be  calculated. 

Now  that  the  precise  position  and  size  of  the  object  in  the  scene  are 

known,  it  may  be  viewed  from  another  point  using  a  three-dimensional  display 

program.  This  illustrates  the  crucial  difference  between  Roberts'  recognition 
program  and  the  approach  to  pattern  recognition  followed  in  most  previous 
programs.  The  earlier  programs  could  classify  the  objects  in  a  scene,  but  they 

could  not  determine  the  precise  three-dimensional  positions  and  sizes  of  the 
objects.  Therefore,  the  appearance  of  the  scene  from  another  viewpoint  could 

not  be  predicted.  Roberts'  program  was  able  to  predict  other  views  of  the 
scene  and,  thus,  showed  a  sophistication  of  image  understanding  beyond  pre- 

vious programs  and  more  like  human  three-dimensional  spatial  understanding 
of  pictures. 

Conclusion 

Roberts  made  three  assumptions  in  developing  his  program: 

1.  The  picture  is  a  perspective  view  of  the  real  world; 

2.  The  objects  in  the  picture  can  be  described  by  transformations  of  known 
models; 

3.  All  objects  are  supported  by  other  objects  or  by  the  ground  plane. 
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(a) 

Figure  Bl-3.  (a)  A  scene  with  a  compound  object  partially  occluding  a  simple 
object  (a  rectangular  solid);  (b)  the  compound  object  consist- 

ing of  two  rectangular  solids  and  a  wedge. 

Under  these  assumptions,  the  program  analyzed  scenes  consisting  of  single 
simple  objects,  and  also  scenes  with  several  objects  and  compound  objects. 

Figure  Bl-3a  shows  a  picture  processed  by  the  program.  It  consists  of  a 
compound  object  partially  occluding  a  simple  object.  A  compound  object  is  a 
single  object  that  is  not  the  transformation  of  a  single  model.  It  is  the  result 

of  piecing  together  several  models.  Figure  Bl-3b  shows  how  the  compound 
object  was  formed  by  piecing  together  the  transformations  of  two  cube  models 

and  a  wedge  model.  Precise  three-dimensional  descriptions  of  the  objects 
in  the  picture  were  generated,  allowing  the  scene  to  be  displayed  from  any 
viewpoint. 

References 

See  Roberts  (1965). 



B2.     Partition  of  Line  Drawings  into  Objects: 

A.  Guzman 

In  CONTRAST  to  Roberts'  work,  which  involved  scenes  of  known  objects 
(e.g.,  cubes  and  wedges),  Guzman  (1968b)  developed  a  program  to  analyze 
scenes  without  prestored  models  of  objects.  His  program,  called  SEE,  starts 
with  a  line  drawing  and  identifies  all  the  separate  objects  in  it,  even  if  they  are 

not  completely  visible.  For  example,  SEE  finds  three  bodies  in  Figure  B2-1: 
the  first  consists  of  regions  6,  2,  and  1;  the  second,  of  regions  11,  12,  and  10; 
and  the  third,  of  regions  3,  4,  5,  7,  8,  9,  and  13. 

Another  contrast  between  SEE  and  Roberts'  program  is  that  SEE  does 
not  provide  a  three-dimensional  description.  It  is  intended  only  to  partition 

the  scene  into  bodies  and  to  provide  this  as  input  to  a  recognizer  like  Roberts' 
program,  which  might  recognize  the  bodies  as  instances  of  models  and  thus 

derive  three-dimensional  descriptions.  Finally,  Roberts'  program  uses  numeri- 
cal methods,  while  SEE  adopts  a  heuristic  and  symbolic  (i.e.,  nonnumerical) 

approach. 

Figure  B2-1.     Example  of  scene  analysis  by  SEE 
(from  Guzman,  1968b). 
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Overview  of  SEE 

The  main  part  of  SEE  analyzes  the  picture  in  terms  of  junctions  and 

regions,  in  search  of  clues  that  indicate  that  two  regions  form  part  of  the 

same  body. 

Guzman  defines  a  set  of  junctions  that  he  considers  significant  for  analysis. 

A  junction  is  a  point  where  two  or  more  lines  meet.  Junctions  are  classified 

into  junction  types  depending  on  the  geometrical  configuration  of  their  inci- 

dent lines.  Figure  B2-2  shows  the  classification.  An  analysis  of  the  regions 
around  junctions  suggests  heuristics  for  assigning  regions  to  one  body  or 

another.  We  discuss  five  of  these  junction  types  briefly  (see  Fig.  B2-3): 

1.  FORK.  If  three  regions  meet  at  a  FORK  junction  and  none  of  them  is 

the  background,  links  are  formed  between  the  regions  (Fig.  B2-3a).  A 
link  between  two  regions  suggests  that  they  belong  to  the  same  object. 

In  Figure  B2-4a,  this  rule  links  regions  1  and  2,  2  and  3,  and  3  and  1 
around  junction  A. 

2.  ARROW.  Two  of  its  regions  are  linked,  as  shown  in  Figure  B2-3b.  In 
Figure  B2-4a,  this  rule  links  regions  1  and  2  at  junction  B,  1  and  3  at 
junction  C,  and  4  and  5  at  junction  D. 

3.  T.  Two  Ts  are  said  to  match  if  their  stems  are  collinear  and  they  "face 

each  other"  (Fig.  B2-3c).  Regions  1  and  2  (Fig.  B2  3c)  are  linked,  as  are 
regions  3  and  4,  but  only  if  a  link  is  not  created  between  background 
and  nonbackground  regions. 

FORK ARROW 

PEAK MULTI 

Figure  B2  2.     Classification  of  junctions  in  pictures  of  polyhedral  scenes 

(from  Guzman,  1968b). 
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Figure  B2-3.     Evidence  used  to  link  regions  together. 

4.  X.  Two  links  are  established  (Fig.  B2-3d),  one  between  regions  1  and  2 
and  the  other  between  regions  3  and  4.  In  Figure  B2-4a,  this  rule  links 
regions  2  and  3  and  regions  4  and  5  around  junction  E. 

5.  PEAK.  All  of  its  regions,  except  the  one  containing  the  obtuse  angle,  are 

linked  to  each  other  (Fig.  B2-3e). 

Thus,  each  link  is  a  piece  of  evidence  suggesting  that  two  or  more  regions 
belong  to  the  same  object.  SEE  contains  many  more  heuristics  like  those 
described  above. 

The  program  uses  all  the  available  evidence  to  determine  which  regions 
should  be  merged  to  form  a  single  object.  The  evidence  is  summarized  in  a 
graph  that  represents  the  relationships  of  regions  and  the  links  established 

by  the  junction-heuristic  rules.  For  example,  the  graph  in  Figure  B2-4b 
represents  the  structure  in  Figure  B2-4a;  each  node  corresponds  to  a  region, 
and  each  arc  to  a  link. 

®o 

(b) 

Figure  B2-4.     (a)  Example  of  planting  links  among  regions; 
(b)  the  graph  of  the  links. 
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Let  us  define  a  nucleus  as  either  a  single  region  or  a  set  of  regions  that 

have  already  been  merged — a  nucleus  represents  a  set  of  regions  that  belong 
to  the  same  object.  The  program  now  expands  the  object  according  to  the 
following  rule:  If  two  nuclei  are  connected  by  two  or  more  links,  they  are 
merged  into  a  larger  nucleus.  That  is,  all  the  members  of  both  sets  of  regions 

belong  to  a  single  object.  For  example,  in  Figure  B2-4a,  regions  1  and  2  are 
connected  by  two  links  and  are  therefore  merged  into  nucleus  1-2.  There  are 
four  links  between  the  regions  in  nucleus  1-2  and  region  3;  they  are  therefore 
merged  into  nucleus  1-2-3.  Similarly,  regions  4  and  5  are  merged  into  nucleus 
4-5.  Since  there  are  no  links  between  nuclei  1-2-3  and  4-5,  regions  1,  2,  and  3 
are  combined  to  form  one  object  and  regions  4  and  5  form  another. 

This  simple  rule  does  not  work  for  more  complicated  cases.  Guzman 

added  many  more  heuristic  rules  for  region  merging,  as  well  as  more  heuris- 
tics for  junction  types,  as  they  became  necessary  to  handle  more  and  more 

difficult  cases.  As  a  result,  the  SEE  program  could  successfully  segment  very 
complicated  line  drawings  into  objects. 

Conclusion 

Guzman's  SEE  was  the  first  program  to  make  use  of  vertices  and  junctions 
in  recognizing  three-dimensional  objects.  As  the  next  articles  will  show,  this 

has  become  a  powerful  and  popular  approach.  However,  where  Guzman's 
analysis  of  junctions  was  heuristic  and  intuitive,  those  of  Huffman  and  Clowes 

(Article  XIII. B4)  and  Waltz  (Article  XIII. B5)  were  successively  more  systematic 
and  powerful. 

References 

For  a  detailed  description  of  SEE,  see  Guzman  (1968a,  1968b). 



B3.     Interpreting  Imperfect  Line  Drawings:  G.  Falk 

FALK  (1972),  like  Roberts  (Article  XIII.Bl),  worked  on  the  problem  of  iden- 
tifying the  visible  objects  in  a  photograph  of  a  scene  and  determining  their 

orientations  and  positions  in  three-dimensional  space.  However,  Falk  allowed 
several  kinds  of  imperfect  input:  Line  drawings  generated  from  the  photograph 

might  not  follow  exactly  the  edges  in  the  image,  there  might  be  degenerate 

views  of  objects,  or  some  edges  may  be  totally  missing  due  to  poor  lighting. 

Falk  used  fixed  models  of  the  objects  that  could  appear  in  the  scene; 

nine  models  represented  simple  objects  such  as  rectangular  solids  and  wedges. 

Unlike  Roberts'  models,  which  were  generic  (a  cube  could  represent  any  right 

parallelepiped),  Falk's  models  specified  precise  shapes  and  sizes.  With  the 

models  and  a  large  set  of  heuristics,  Falk's  program  (called  INTERPRET) 
followed  a  hypothesize- and- test  strategy  to  identify  and  locate  objects  in  a 
scene. 

An  Example 

We  illustrate  here  the  steps  taken  by  INTERPRET  to  analyze  the  picture 

in  Figure  B3-la.  In  the  next  section,  we  will  discuss  INTERPRET  in  more 
detail. 

The  scene  that  produced  Figure  B3-la  consists  of  a  rectangular  solid  with 
a  cube  in  front  of  it.  Because  of  lighting  conditions,  the  top  face  of  the  cube 

and  left  face  of  the  rectangular  solid  appear  to  have  the  same  brightness,  as 

do  the  right  faces  of  both  blocks.  Three  visible  edges  are  therefore  missing 

from  the  input:  two  in  the  corner  connecting  P2  and  Pi ,  and  the  edge  between 

P4  and  P3. 

INTERPRET  proceeds  as  follows: 

1.  Segmentation.  The  picture  is  partitioned  into  pieces  corresponding  to 

individual  bodies,  as  in  Figure  B3-lb.  Some  of  the  lines  in  the  original 
picture  may  not  appear  in  any  of  these  pieces  (e.g.,  the  line  from  Pi 
to  P3). 

2.  Completion.  It  is  easy  to  add  lines  to  complete,  or  partially  complete, 

some  of  the  bodies.  The  completed  version  of  the  bodies  in  Figure  B3-lb 
is  shown  in  Figure  B3-lc.  One  of  the  body  descriptions  is  complete, 
while  the  other  is  not. 

3.  Recognition.  Each  body  is  identified  as  an  instance  of  a  model  and  is 

located  in  three-dimensional  space.  This  constitutes  an  interpretation 
of  the  scene.  Although  this  step  does  not  require  that  the  bodies  in  the 
picture  be  complete,  it  is  more  likely  to  succeed  if  there  are  no  missing 
lines. 
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Figure  B3-1.     Analysis  of  a  line  drawing  (from  Falk,  1972). 
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4.  Prediction.  To  check  that  the  interpretation  of  the  scene  is  consistent 

with  the  original  picture,  the  three-dimensional  locations  and  identities 
of  the  models  are  used  to  generate  a  predicted  line  drawing.  Figure  B3-ld 
is  the  predicted  line  drawing  resulting  from  the  recognition  of  the  bodies 

in  Figure  B3-lc. 

5.  Verification.  The  prediction  and  the  original  picture  are  compared  to  see 

how  closely  they  align.  If,  as  in  Figure  B3-le,  the  two  are  approximately  the 
same,  the  scene  interpretation  is  assumed  to  be  correct.  Otherwise,  part 
of  the  scene  is  reanalyzed  to  produce  a  more  consistent  interpretation. 

The  following  sections  describe  some  of  these  steps  in  more  detail. 

Segmentation 

The  first  step  in  the  interpretation  procedure  is  to  segment  the  line 

drawing  into  bodies.  Guzman  addressed  this  problem  (Article  XIII. B2).  He 

classified  junctions  and  developed  heuristics  to  decide  whether  regions  meeting 

at  junctions  belonged  to  the  same  body.  However,  this  approach  cannot  work 

if  lines  are  missing  from  the  picture.  To  see  why,  consider  again  Figure  B3-la, 
in  which,  due  to  lighting  conditions,  two  faces  of  different  rectangular  solids 

are  identified  as  a  single  region  R.  It  is  useless  to  assign  this  region  to  one 

or  the  other  of  the  bodies,  because  it  corresponds  to  two  separate  surfaces  of 

separate  bodies.  Yet,  this  is  exactly  what  Guzman's  program  tried  to  do. 
To  get  around  this  problem,  Falk  developed  heuristics  to  determine  which 

lines,  rather  than  regions,  meeting  at  each  junction  are  likely  to  belong  to  the 

same  body.  Falk's  junction  classifications  are  the  same  as  Guzman's,  but  each 
junction  type  is  additionally  classified  as  either  GOOD  or  BAD.  For  the  most 

part,  GOOD  junctions  contain  lines  of  only  one  body,  while  BAD  junctions 

contain  lines  of  more  than  one  body.  For  example: 

1.  Arrow  junctions.  If  one  of  the  inner  regions  of  an  arrow  junction  is  the 

background,  it  is  labeled  BADARROW  (Fig.  B3-2b).  Figure  B3-3a  shows 
why  the  three  lines  of  this  junction  cannot  be  assumed  to  belong  to 
the  same  body.  If  the  middle  line  of  an  arrow  junction  is  the  top  of  a 

K  junction  (Fig.  B3-2c),  it  is  also  labeled  BADARROW.  Figure  B3-3b 
shows  that,  when  this  occurs,  the  two  side  lines  of  the  arrow  belong 
to  different  bodies,  while  the  middle  line  is  shared  by  the  two  bodies. 

Otherwise,  the  arrow  junction  is  labeled  GOODARROW  (Fig.  B3-2a).  In 
Figure  B3-3c,  we  see  that  the  three  lines  of  the  GOODARROW  belong 
to  a  single  body. 

2.  Y  (Fork)  junctions.  A  Y  junction  is  labeled  GOODY  if  at  least  one  of  its 

lines  is  also  the  middle  line  of  a  GOODARROW  (Fig.  B3-2d).  Figure 
B3-3c  shows  that  all  the  lines  of  a  GOODY  belong  to  a  single  body. 
Otherwise,  the  Y  junction  is  labeled  BADY. 

Falk  similarly  classified  L,  T,  K,  X,  and  MULTI  junctions. 
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Figure  B3-2.     Some  junction  types  (from  Falk,  1972) 

Once  the  junctions  in  a  line  drawing  have  been  classified,  the  lines  belong- 
ing to  each  body  must  be  grouped  together.  This  is  done  by  constructing  a 

graph  whose  nodes  consist  of  lines  that  are  known  to  be  in  the  same  body 
because  of  the  junction  type  that  connects  them.  Two  nodes  in  the  graph  are 
connected  if  they  share  a  common  line.  A  procedure  merges  all  nodes  sharing 
lines,  and,  ideally,  when  the  merging  stops,  each  remaining  node  corresponds 
to  a  separate  body  in  the  picture.  Regions  in  the  picture  are  then  assigned  to 
bodies  based  on  this  line  segmentation  and  some  other  heuristics  for  splitting 

regions  (such  as  R  in  Fig.  B3-la)  that  correspond  to  more  than  one  body. 

Support  Relations 

To  recognize  bodies  in  the  picture  as  instances  of  three-dimensional  models, 
the  program  first  infers  the  three-dimensional  coordinates  of  some  of  the  ver- 

tices of  each  body.  Falk's  method  of  deriving  three-dimensional  coordinates  of 
picture  points  is  illustrated  in  Figure  B3-4.  For  each  picture  point  P',  the  cor- 

responding point  P  in  3-space  must  lie  along  a  ray  extending  from  the  camera 

center  through  P'.  However,  it  is  not  possible  to  determine  where  on  this  ray 
P  lies  unless  external  constraints  are  introduced  (see  Articles  XIII. D3,  XIII. D4, 

and  XIII. D6).  Falk's  external  constraints  are  the  same  as  Roberts'  support 
hypothesis.  Objects  in  a  scene  are  not  suspended  in  space  but  are  supported 

BAD ARROW 

BADARROW GOODARROW 

(a)  (b)  (c) 

Figure  B3-  3.     Examples  of  junction  types  (from  Falk,  1972). 
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either  by  the  table  or  by  other  objects.  In  Figure  B3-4,  if  we  can  determine 
that  the  corner  P\  of  the  block  lies  on  the  table,  then  the  three-dimensional 
coordinates  of  P\  can  be  determined  as  the  intersection  of  the  table  plane  and 

the  ray  associated  with  the  picture  point  P[.  In  fact,  any  picture  point  may 

be  located  in  three-dimensional  space  if  a  plane  in  which  it  lies  is  known. 
Two  important  steps  are  taken  by  INTERPRET  to  determine  three- 

dimensional  features  from  the  picture.  The  first  is  finding  the  base  edges 
for  each  body;  the  second  is  determining  which  bodies  support  other  bodies. 
INTERPRET  uses  a  number  of  heuristics  (not  described  here)  to  determine 

base  edges.  These  would  identify  P1-P2,  P2-P3,  P4-P5,  and  P^-P&  in  Figure 
B3-5  as  base  edges.  INTERPRET  also  has  heuristics  for  deciding  whether  one 

body  supports  another.  For  example,  in  Figure  B3-5,  a  necessary  (but  not 
sufficient)  condition  for  BODY2  to  support  BODYi  is  that  they  be  adjacent. 

That  is,  a  line  corresponding  to  a  base  edge  of  BODYi  (such  as  P^-Pq)  must 
bound  both  a  region  of  BODYi,  Ri,  and  a  region  of  BODY2,  R<i- 

CAMERA 
CENTER    C 

IMAGE    PLANE 

BLOCK  RESTING 
ON  TABLE 

P2T    /TABLE  PLANE /   

Figure  B3-4.     Deriving  three-dimensional  locations  of  picture  points  (from 
Falk,  1972). 
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BODY1 

Figure  B3-5.     BODY2  supports  BODYi  (from  Falk,  1972). 

Many  object  corners  can  be  located  in  three-dimensional  space  once  sup- 

port relations  and  base  edges  have  been  identified.  In  Figure  B3-5,  since 
BODY2  is  supported  by  no  other  body,  it  is  assumed  to  be  supported  by  the 

table.  Points  Pi,  P2,  and  P3  are  then  identified  as  base  points  (because  they 

are  endpoints  of  base  edges)  and  their  position  in  3-space  is  determined  by 
intersecting  their  rays  with  the  (known)  plane  of  the  table.  The  base  points 

P4,  P5,  and  Pq,  on  the  other  hand,  cannot  be  located  until  BODY2  is  com- 
pletely recognized,  that  is,  until  the  plane  of  R2  is  known.  The  location  of 

these  base  points  can  then  be  determined  by  intersecting  their  rays  with  the 

plane  of  face  R2.  Using  support  relations  in  this  way,  the  program  analyzes 

scenes  from  the  ground  (i.e.,  table)  up. 

Completion 

It  is  easier  to  recognize  objects  if  they  are  complete.  Falk  has  three 

methods  for  completion: 

1.  If,  as  in  Figure  B3-6a,  a  face  F  is  incomplete  because  of  two  dangling 
collinear  lines,  replace  the  two  lines  (L\  and  L2)  by  a  single  line. 

2.  If  a  face  F  is  incomplete  because  of  two  dangling  lines  that  can  be 

extended  to  form  a  corner  (Fig.  B3-6b),  complete  the  face  by  extending 
the  lines. 

3.  If,  as  in  Figure  B3-6c,  there  is  a  pair  of  L-type  junctions  with  parallel 
sides  at  points  P\  and  P2,  add  a  line  between  these  two  points  and  split 
the  face  F  into  two  faces. 

Recognition 

Since  INTERPRET  recognizes  objects  from  the  table  up,  an  object  is  not 

recognized  until  all  its  potential  supporting  objects  have  been  recognized,  after 
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Figure  B3-6.     Examples  of  incomplete  body  descriptions  (from  Falk,  1972). 

which  an  object's  actual  support  is  assumed  to  be  the  potential  supporting 
object  with  the  highest  horizontal  surface.  The  three-dimensional  coordinates 
of  the  corners  of  base  edges  of  an  object  can  be  inferred  once  its  supporting 
plane  is  known. 

An  object  is  recognized  as  an  instance  of  a  model  by  matching  features 
of  its  line  drawing  against  stored  properties  of  the  models.  These  features 

include  the  number  of  visible  faces  and  vertices,  the  shape  of  the  faces  (e.g.,  tri- 
angular, rectangular),  the  lengths  of  base  edges,  and  the  angles  between  base 

edges. 

Although  the  three-dimensional  coordinates  of  the  corners  of  an  object 
have  been  established,  the  position  and  orientation  of  the  object  in  3-space 
must  still  be  determined.  This  is  done  by  matching  the  known  corners  of  the 

object  to  the  model  and  inferring  the  three-dimensional  positions  of  the  other 
corners. 

Prediction  and  Verification 

After  all  objects  in  the  picture  have  been  recognized,  a  line  drawing  of 
the  interpretation  of  the  scene  is  predicted  and  matched  with  the  original  line 
drawing.  Matching  proceeds  by  checking  each  line  in  the  original  drawing  for 
a  line  in  the  predicted  drawing.  If  a  body  has  more  than  three  lines  in  the 
interpretation  that  do  not  appear  in  the  original  line  drawing,  a  new  attempt 
is  made  to  recognize  the  body.  The  methods  used  by  Falk  for  revising  decisions 
are  rudimentary  and  will  not  be  discussed  here. 

Conclusion 

In  addition  to  the  prediction- verification  method  that  Falk  developed  for 

interpreting  imperfect  line  drawings,  Falk's  research  touched  on  several  other 
useful  techniques:  line  and  edge  detection  (Article  XIII. C4),  region  segmenta- 

tion (Article  XIII. C5),  and  determining  the  three-dimensional  coordinates  of 
objects  in  a  scene  (Articles  XIII.D3,  XIII.D4,  and  XIII.D6). 
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B4.     Labeling  Line  Drawings  in  the  Trihedral  World: 

D.  A.  Huffman  and  M.  B.  Clowes 

In  CONTRAST  to  the  highly  heuristic  nature  of  the  work  of  Guzman  and  Falk, 

Huffman  (1971)  and  Clowes  (1971)  independently  attempted  a  more  systematic 
approach  to  polyhedral  scene  analysis.  To  begin  with,  they  emphasized  the 
important  distinction  between  the  scene  domain  and  the  image  domain.  The 

scene  domain  involves  physical,  three-dimensional  aspects  of  a  scene,  such  as 
occlusion  of  one  surface  by  another  or  the  concavity  or  convexity  of  edges. 

The  image  domain  involves  the  projection  of  scene-domain  properties  onto 
the  two-dimensional  picture  plane.  There  is  a  definite  correspondence  between 
image-domain  and  scene-domain  elements  for  the  polyhedral  world:  Junctions, 
lines,  and  regions  in  the  picture  correspond  to  vertices,  edges,  and  surfaces, 
respectively,  in  the  scene.  The  distinction  between  image  and  scene  features 
is  important  enough  that,  henceforth,  the  terms  junction,  line,  and  region 
will  refer  to  image  features,  and  vertex,  edge,  and  surface  will  refer  to  scene 
features.  In  these  terms,  the  goal  of  picture  interpretation  is  to  interpret 
elements  in  the  image  domain  as  properties  in  the  scene  domain.  In  this 
article,  the  method  of  labeling  a  line  drawing  will  be  explained  based  mostly 
on  the  work  of  Huffman  (1971).  Clowes  (1971)  presented  essentially  the  same 
theory  using  a  different  representation. 

Vertex  Labeling 

Huffman  and  Clowes  limited  their  analysis  to  trihedral  polyhedra — objects 
in  which  exactly  three  plane  surfaces  come  together  at  each  vertex.  They 
made  an  exhaustive  listing  of  all  the  different  vertex  types  and  the  different 
ways  they  could  be  viewed.  There  are  only  four  ways  in  which  three  plane 

surfaces  can  come  together  at  a  vertex.  These  are  illustrated  in  Figure  B4-1. 
Notice  that  convex  and  concave  edges  are  found  in  the  vertices  of  Figure 

B4-1.  Combinations  of  these  types  of  edges  produce  the  four  vertices  in  the 
figure.  The  edges  associated  with  the  vertex  in  Figure  B4-la  are  all  convex; 
those  associated  with  Figure  B4-ld  are  all  concave.  In  Figure  B4-lb,  two 
edges  are  convex  and  one  is  concave.  In  Figure  B4-lc,  two  edges  are  concave 
and  one  is  convex. 

In  Figure  B4-1,  each  vertex  is  generated  by  three  planes  meeting  at  one 
point.  These  three  planes  partition  the  surrounding  space  into  eight  octants. 
Notice  that  the  number  of  octants  occupied  by  solid  material  is  different  for 
each  vertex.  A  vertex  can  be  viewed  from  any  one  of  the  octants  not  occupied 
by  solid  material,  and  moving  a  viewpoint  within  a  single  octant  does  not 

result  in  a  picture  with  different  junction  types.  The  vertex  of  Figure  B4-la 
can  be  viewed  from  seven  different  octants,  giving  essentially  three  different 
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(c)  (d) 

Figure  B4-1.     The  four  vertex  types  (from  Huffman,  1971). 

appearances:  FORK,  L,  or  ARROW  (rotational  symmetry  reduces  the  seven 

possibilities  to  three).  This  is  shown  in  Figure  B4-2,  where  the  vertex  being 
viewed  is  marked  with  a  dot  and  the  lines  are  labeled  as  follows: 

1.  A  "+"  line  represents  a  convex  edge  with  both  of  its  planes  visible  from 
the  camera. 

2.  A  "— "  line  represents  a  concave  edge  with  both  of  its  planes  visible  from 
the  camera. 

3.  A  "<— "  or  "— +"  line  represents  an  occluding  edge:  a  convex  edge  with 
both  of  its  planes  on  the  same  side  of  the  edge  as  viewed  from  the  camera, 
one  occluding  the  other.  As  one  moves  in  the  direction  of  the  arrow,  the 

pair  of  planes  is  to  the  right. 

(a)  (b)  (c) 

Figure  B4  2.     The  three  views  of  the  vertex  in  Figure  B4-la. 
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Note  that,  in  Figure  B4-2b,  only  two  edges  are  visible  as  lines  in  the  picture. 
The  third  edge  is  hidden  from  the  camera  position. 

An  exhaustive  listing  of  the  different  ways  each  vertex  in  Figure  B4-1  may 

be  viewed  results  in  only  12  possibilities  (Fig.  B4-3,  parts  (a)-(l)):  six  for  the 
L  junction,  three  for  ARROW,  and  three  for  FORK.  (Each  configuration  in  Fig. 

B4-3  may  be  arbitrarily  rotated  in  a  given  picture.)  Of  these,  the  junction 
label  in  Figure  B4-3k  is  derived  from  the  vertex  in  Figure  B4-ld;  junction 
labels  in  Figures  B4-3d,  B4-3f,  and  B4-3h  are  derived  from  the  vertex  in 
Figure  B4-lc;  junction  labels  in  Figures  B4-3a,  B4-3b,  B4-3c,  B4-3i,  and 
B4-3J  are  derived  from  the  vertex  in  Figure  B4-lb;  junction  labels  in  Figures 
B4-3g,  B4-31,  and  B4-3e  are  derived  from  the  vertex  in  Figure  B4-la.  Lastly, 
four  T-junction  labels  (Fig.  B4-3,  parts  (m)-(p))  correspond  to  the  cases  in 
which  each  of  the  four  possible  types  of  edges  is  interrupted  by  another  body. 

Picture  Interpretation 

We  will  illustrate  picture  interpretation  with  the  simple  picture  in  Figure 

B4-4.  It  contains  four  junctions  labeled  A,  B,  C,  and  D  and  three  regions 
labeled  1,  2,  and  3.  Each  junction  may  have  only  the  scene-domain  inter- 

pretations shown  in  Figure  B4-5,  and  the  problem  is  to  determine  which 
junction  interpretations  are  globally  consistent,  that  is,  which  provide  a  con- 

sistent interpretation  for  the  whole  picture.  Consistency  is  forced  by  the  rule 
that  each  line  in  the  picture  must  be  assigned  one  and  only  one  label  (i.e.,  +, 

— ,  <— ,  — ►)  along  its  entire  length;  otherwise,  the  adjoining  planes  would  have 
different  orientations  in  different  parts  of  the  scene.  For  example,  if  junction  A 

(a) (b) 

+ 

(c) (d) 
(f) 

4"    -\J/-  A1A 
(g)  00  (i) 

+ 

(m)  (n)  (o)  (p) 

Figure  B4-3.     Junction  labelings  (from  Huffman,  1971). 
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Figure  B4-4.     A  simple  picture  (from  Clowes,  1971). 

is  interpreted  as  in  Figure  B4-5b,  junction  D  can  only  be  interpreted  as  in 
Figure  B4-5g  in  order  that  line  AD  in  the  picture  has  a  consistent  scene- 

domain  interpretation  (i.e.,  consistently  labeled  "— "  along  its  length).  The 
search  for  consistent  labelings  can  be  implemented  as  an  exhaustive  search  of 
the  arrangements  of  all  possible  interpretations  of  all  junctions.  Such  a  search 

results  in  the  three  scene  interpretations  shown  in  Figure  B4-6. 
One  interesting  aspect  of  this  work  is  that  it  is  able  to  determine  that 

many  polyhedra  are  impossible  objects.  For  example,  we  can  detect  that  the 

Junction  A 

(a)                                           (b)                                          (c) 

Junction  D 

>+     >    +>    ">    >    -> (d)                    (e)                      (f)                  (g)                (h)                 (i) 

Junction  C 

xl^         -xl/-        +nU+ 
(J)                                     (k)                                   (1) 

Junction  B 

+<  <  +<  -<  <  < (m)                      (n)                 (o)                  (p)                 (q)                  (r) 

Figure  B4  5.     Possible  labelings  for  the  junctions  in  Figure  B4-4. 



B4 D.  A.  Huffman  and  M.  B.  Clowes 
159 

Figure  B4-6.     The  three  possible  interpretations  for  the  picture  in 

Figure  B4-4. 

picture  in  Figure  B4-7  is  an  impossible  object.  Locally,  the  picture  is  well 
formed;  that  is,  each  junction  has  one  or  more  valid  scene-domain  interpreta- 

tions. It  is  only  when  a  globally  consistent  interpretation  is  attempted  that 
we  see  that  one  does  not  exist. 

Conclusion 

Huffman  and  Clowes  brought  systematicity  to  their  analysis  of  polyhedral 
objects.  They  methodically  worked  out  all  the  ways  that  planes  could  meet 
in  space  and  all  possible  appearances  of  these  junctions.  Recognizing  an 
object  was  then  simply  a  matter  of  finding  a  consistent  labeling  for  a  line 
drawing  of  the  object.  However,  their  search  for  consistent  interpretations 

was  exhaustive.  In  the  following  article  (Article  XIII.B5),  we  discuss  a  similar 
approach,  but  one  that  uses  a  larger  set  of  line  labels  and  a  more  efficient 
method  of  finding  consistent  interpretations. 

Figure  B4-7.     Impossible  polyhedron. 
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B5.     Constraint  Propagation  in  Interpreting  Line  Drawings: 

D.  Waltz 

WALTZ  (1972)  extended  the  research  of  Huffman  and  Clowes  (Article  XIII.B4) 

in  two  important  ways.  First  he  expanded  the  Huffman-Clowes  set  of  four 

line  labels  (+,  — ,  «— ,  — ►)  to  include  shadows,  cracks,  and  separably  concave 
edges.  Second,  he  replaced  the  simple  exhaustive  search  for  consistent  line 
labelings  by  a  clever  filtering  algorithm  that  examined  adjacent  junctions  in 
the  picture  and  discarded  incompatible  candidate  labelings. 

New  Line  Labels 

A  typical  example  of  the  kind  of  line  drawings  interpreted  by  Waltz's 
program  is  shown  in  Figure  B5-1.  Among  the  new  line  labels  is  the  crack — 
a  flat  edge  that  is  also  the  bounding  edge  of  an  object.  For  example,  line 

segments  6-3  and  6-7  in  Figure  B5-1  are  cracks.  Line  6-7  is  a  bounding  edge 
of  the  cube  6-7-9-10-11-13,  and  line  6-3  is  a  bounding  edge  of  the  supporting 
cube.  Every  crack  is  therefore  a  separable  edge;  that  is,  two  or  three  bodies 

meet  at  a  crack.  In  Figure  B5-1,  a  crack  is  represented  by  a  "c"  together 
with  an  arrow.  The  direction  of  the  arrow  is  such  that  the  obscuring  body 
lies  to  the  right  of  this  direction. 

Objects  may  also  be  bounded  by  concave  edges.  For  example,  in  Figure 

B5-1,  the  concave  edge  4-15  is  also  the  boundary  edge  of  cube  4-3-6-13-14-15. 

Figure  B5-1.     A  simple  picture  and  its  labeling  (from  Winston,  1975). 
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Figure  B5-2.     A  nonseparable  concave  edge  (line  1-2). 

These  edges  are  called  separable  concave  edges,  and  the  arrow's  direction  is 
such  that  the  obscuring  body  lies  to  the  right  of  this  direction.  A  double 

arrow  (line  13-6  in  Fig.  B5-1)  indicates  that  three  bodies  meet  along  the 
line.  However,  not  all  concave  edges  are  separable;  for  example,  line  1-2  in 
Figure  B5-2  is  a  nonseparable,  interior  concave  edge. 

Waltz  also  considered  boundaries  of  shadows.  A  shadow  boundary  is  also 

a  flat  edge,  for  example,  lines  1-2  and  1-8  in  Figure  B5-1.  A  shadow  edge  is 
represented  by  an  arrow  that  points  in  the  direction  of  the  shadowed  region. 

The  11  line  labels  we  have  described,  including  the  original  four  from 

Huffman  and  Clowes,  are  summarized  in  Figure  B5-3. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Convex  edge 

Obscuring  edges  (Obscuring  body  lies  to 

right  of  arrow's  direction.) 

Cracks  (Obscuring  body  lies  to  right  of 

arrow's  direction.) 

Shadows  (Arrows  point  to  shadowed 

region.) 

Concave  edge 

Separable  concave  edges  (Obscuring  body 

lies  to  right  of  arrow's  direction;  double 
arrow  indicates  that  three  bodies  meet 

along  the  line.) 

Figure  B5-3.     Line  labelings  (from  Winston,  1975). 
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More  on  Shadows 

One  of  Waltz's  contributions  was  to  show  that  shadow  information,  which 
was  previously  regarded  as  annoying  detail,  is  actually  useful  for  resolving  line 
interpretations.  In  addition  to  the  two  shadow  labels  mentioned  above,  Waltz 
also  labeled  regions  as  illuminated  directly  by  the  light  source,  turned  away 

from  the  light  (self-shadowed),  or  shaded  by  a  shadow  cast  by  another  surface. 
Waltz  then  added  line  labels  giving  the  illumination  status  of  the  two  regions 
appearing  at  each  edge.  This  increased  the  number  of  line  labels  from  11 
to  53. 

Junctions 

The  junction  types  used  by  Waltz  included  the  Huffman- Clowes  junc- 
tions (L,  ARROW,  FORK,  t)  plus  all  four-line  and  some  five-line  junctions. 

Examples  are  shown  in  Figure  B5-4.   To  obtain  the  possible  set  of  junction 

Approximate  number  Approximate  number 

of  combinatorially  of  physically 

possible  labelings  possible  labelings 

92 

826 

623 
10 

435 

213 

128 

160 

20 

Figure  B5-4.     Number  of  combinatorially  and  physically  possible  label- 
ings for  each  junction  type  (from  Winston,  1975). 
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labelings,  Waltz  considered  all  possible  object  configurations  viewed  and  lit 

from  all  possible  octants.  Note  that  the  number  of  physically  possible  labelings 

for  each  junction  is  much  smaller  than  the  number  of  combinatorially  possible 

labelings — only  3  to  3  X  10~6  percent  of  the  total  combinations  are  legal  for 
the  common  vertex  types. 

Labeling  Procedure 

The  procedure  used  by  Waltz  to  label  a  picture  is  based  on  the  Huffman- 
Clowes  principle  that  each  line  in  the  picture  must  be  assigned  a  single  label 

along  its  entire  length.  First,  the  complete  set  of  possible  labelings  for  each 

junction  in  the  picture  is  retrieved.  Then  a  constraint-satisfaction  algorithm 
is  used  to  determine  the  possible  labelings  for  each  junction  in  the  context  of 

the  entire  picture.  This  algorithm  compares  adjacent  pairs  of  junctions  and 
sees  if  their  constraints  can  be  satisfied. 

As  an  illustration,  we  will  apply  the  algorithm  to  Figure  B5-5;  this 

is  the  same  as  Figure  B4-4  from  the  previous  article.  Let  us  assume  for 

simplicity  that  lines  can  be  labeled  only  as  +  ,—,—►,  or  <— .  Thus,  each 

junction  in  Figure  B5-5  has  the  labeling  possibilities  shown  in  Figure  B5-6. 

The  following  procedure  shows  how  Waltz's  program  interprets  this  picture. 
The  step  numbers  refer  to  Figure  B5-7,  which  summarizes  the  label  sets 
assigned  to  each  junction. 

1.  Assume  the  procedure  starts  with  junction  A  of  Figure  B5-5.  Ini- 

tially, the  set  consisting  of  parts  (a)-(c)  of  Figure  B5-6  is  assigned  to 
junction  A;  it  can  be  labeled  in  any  of  these  three  ways. 

2.  Suppose  that  the  procedure  then  goes  to  junction  D  and  makes  an 

initial  assignment  of  six  possible  labelings  (shown  in  parts  (d)-(i)  of 

Figure  B5-5.     A  simple  picture  (from  Clowes,  1971). 
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Junction  A 

(a)                                           (b)                                          (c) 

Junction  D 

>+     }     +>    ">    >    -> (d)                    (e)                     (f)                 (g)                (h)                 (i) 

Junction  C 

(j)                                  (k)                                 (1) 

Junction  B 

+<    <  +<  -<  <   < (m)                     (n)                (o)                  (p)                (q)                 (r) 

Figure  B5-6.     Possible  labelings  for  the  junctions  in  Figure  B5-5. 

Fig.  B5-6).  Checking  the  junctions  adjacent  to  D,  the  procedure  deter- 
mines that  junction  A  has  already  been  labeled  and  is  therefore  a  source 

of  constraints  on  the  labeling  of  junction  D. 

3.  The  current  label  set  of  A  is  examined  to  see  what  restrictions,  if  any, 
it  has  placed  on  line  AD.  In  this  case,  the  restrictions  are  that  the  line 

must  be  labeled  +,  — ,  or  — ►  (the  arrow  pointing  away  from  junction  A). 
Therefore,  two  labelings  of  junction  D  may  be  eliminated,  since  they 

would  require  an  arrow  label  pointing  in  the  wrong  direction. 

4.  Suppose  that  junction  C  is  chosen  next  and  is  assigned  the  initial  junc- 

tions shown  in  parts  (j)-(l)  of  Figure  B5-6.  Since  the  adjacent  junctions 
have  already  been  labeled,  their  constraints  on  C  can  be  exploited  to 
prune  its  initial  assignment  of  junctions. 

5.  According  to  the  current  label  set  of  junction  A,  line  AC  must  be  labeled 

with  either  +  or  — .  This,  however,  does  not  eliminate  any  member  of 
the  current  label  set  of  junction  C. 

6.  According  to  the  current  label  set  of  junction  D,  line  CD  must  be  labeled 

with  — ►,  <— ,  or  — .  This  eliminates  one  labeling  from  the  label  set  of 
junction  C. 

7.  The  reasoning  from  the  previous  steps  is  now  reversed  as  the  procedure 
determines  how  the  label  set  of  C  restricts  the  label  sets  of  A  and  D. 

According  to  the  current  label  set  of  junction  C,  line  CD  must  be  labeled 

with  either  <—  or  — .  This  eliminates  one  labeling  of  junction  D. 
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Labels  Assigned  to  Junctions 

A D C 

1 +/f<7f\<fX 
2 Unchanged 

>+>>+»>- 
3 Unchanged 

>+     >"    >     >- 
4 Unchanged Unchanged v+l       • v+l       •    v~          • 

5 Unchanged Unchanged Unchanged 

6 Unchanged Unchanged 
^       ̂  

7 Unchanged >"   S    >- 
Unchanged 

8 -^  <h Unchanged 
Unchanged 

Figure  B5-7.     Label  sets  assigned  to  each  junction  during  the  steps  of  the 

constraint-satisfaction  algorithm. 

8.    Similarly,  the  current  label  set  of  junction  C  dictates  that  line  AC  must 
be  labeled  with  +.  This  eliminates  one  labeling  of  junction  A. 

This  procedure  continues  until  all  junctions  have  been  labeled  and  the  effects 

of  all  changes  have  been  allowed  to  propagate. 

This  procedure  is  called  a  Waltz  filtering  algorithm  because  it  strips  out 

inconsistent  labels  as  it  proceeds.  If  a  unique  labeling  for  each  junction  in 

the  picture  has  not  been  generated  when  the  algorithm  terminates,  a  direct 

tree  search  can  be  used  to  enumerate  possible  labelings.  The  three  labelings 

generated  in  our  example  are  shown  in  Figure  B5  8. 

Conclusion 

It  is  interesting  to  note  that  even  though  Waltz  allowed  many  more  line 

labels  than  previous  researchers  (enabling  him  to  interpret  more  realistic 

scenes),  his  procedure  usually  converges  on  a  single  interpretation.  Our  exam- 
ple was  simplified  for  the  purpose  of  explanation  and  did  not  illustrate  the 

full  power  of  Waltz  filtering;  a  more  compelling  example  is  given  by  Waltz 

(1972). 

An  interesting  outcome  of  Waltz's  research  is  that  the  inclusion  of  more 
detailed    information    does    not    complicate    interpretation    but,    rather,    it 
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Figure  B5-8.     Three  labelings  of  Figure  B5-5. 

constrains  and  facilitates  interpretation.  For  example,  vision  researchers  prior 
to  Waltz  regarded  shadows  as  an  annoying  complication,  but  Waltz  was  able 
to  show  that  the  constraints  contributed  by  shadows  make  the  algorithm 
converge  more  quickly  and  apply  to  more  pictures. 
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B6.     Obtaining  Line  Drawings:  Y.  Shirai 

THE  PROGRAMS  described  in  the  five  previous  articles  all  work  from  a  line 

drawing  of  a  scene;  Roberts'  program  (Article  XIII.Bl)  identifies  known  objects 
and  finds  their  positions,  sizes,  and  orientations;  Guzman's  SEE  (Article 
XIII. B2)  infers  association  of  regions  into  objects  from  topological,  heuristic 
considerations  of  line  junctions;  Falk  (Article  XIII. B3)  attempted  to  handle 
noisy  input;  Huffman  and  Clowes  (Article  XIII.B4)  developed  a  systematic 
method  for  finding  consistent  interpretations  of  line  drawings;  and  Waltz 
(Article  XIII.B5)  extended  this  work  to  include  other  features  as  constraints 

in  an  algorithm,  based  on  constraint  propagation.  Shirai's  research  (1973) 
is  consistent  with  these  other  approaches,  but  is  primarily  concerned  with 
the  problem  of  finding  lines.  His  program  generates  lines  directly  from  the 
intensity  array  in  a  photograph;  it  simultaneously  generates  and  interprets 

the  line  drawing,  using  the  partially  developed  interpretation  as  top-down 
information  to  search  for  lines  in  the  photograph. 

Finding  lines  in  an  intensity  array  of  picture  points  is  a  very  difficult 
problem.  Edges  often  generate  only  very  small  intensity  differences,  and 
these  may  be  masked  by  noise.  Noise  has  two  sources:  The  sensor  (e.g.,  a 
camera)  generates  noisy  and  distorted  information,  and  the  scene  itself  has 
texture,  shadows,  multiple  reflections,  and  dirt,  all  of  which  result  in  noisy 
information.  If  a  line  finder  is  too  sensitive,  it  will  interpret  noise  as  lines;  if 
it  is  not  sensitive  enough,  it  will  miss  legitimate  lines. 

Prior  to  Shirai's  research,  the  generation  and  interpretation  of  line  draw- 
ings were  treated  as  separate  tasks.  The  drawing-generation  task  suffered 

from  the  difficulty  that  a  single  set  of  sensitivity  parameters  for  the  line  finder 

would  generally  not  be  adequate  for  the  entire  picture:  Some  noise-produced 
lines  are  stronger  than  real  ones. 

Shirai's  approach  was  to  introduce  knowledge  about  polyhedral  scenes 
into  the  line-finding  process.  For  example,  by  knowing  or  hypothesizing  that 
a  particular  object  is  a  block,  the  strong  lines  can  be  used  to  guide  a  search 
for  the  weaker  ones.  Thus,  by  knowing  where  to  expect  a  line,  sensitivity 
parameters  can  be  locally  adjusted  to  find  it  if  it  exists.  Heuristics  are 
applied  during  line  finding  to  suggest  places  to  look  for  new  lines  or  for  the 
continuations  of  current  lines. 

Shirai  divides  the  lines  in  a  picture  into  three  classes: 

1.  Contour  lines,  or  lines  formed  at  the  boundary  between  the  objects  in  a 

picture  and  the  outer  background.  In  Figure  B6-1,  lines  AB,  BC,  . . . ,  ZV 
are  contour  lines. 

2.  Boundary  lines,  or  lines  on  the  borders  of  the  objects.  All  contour  lines 

are  also  boundary  lines.     In  Figure  B6-1,  the  boundary  lines  are  the 
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Figure  B6-1.     A  typical  line  drawing  (from  Shirai,  1973). 

contour  lines  plus  the  lines  on  the  boundaries  between  objects,  that  is, 

CP,  PH,  IQ,  QR,  and  RM. 

3.  Internal  lines,  or  lines  resulting  from  the  intersection  of  two  surfaces  of 

the  same  object.  In  Figure  B6-1,  lines  JS,  LS,  ...,  XV  are  internal 
lines. 

The  overall  strategy  of  Shirai 's  program  is  first  to  extract  the  contour  lines 
in  a  picture  and  then  to  search  within  each  contour  for  other  boundary  lines 

and  internal  lines.  Boundary  lines  are  sought  before  internal  lines  because 

boundaries  often  provide  good  cues  for  guessing  internal  lines.  It  is  not 

difficult  to  find  contour  lines,  because  scenes  are  always  set  up  with  high 

contrast  between  white  objects  and  their  black  background.  In  Figure  B6-1, 
for  example,  there  are  two  contours,  one  for  objects  B\,  B2,  and  B3  and 

another  for  object  B4. 

Searches  for  lines  may  be  over  large  or  small  areas  of  the  picture,  and 

Shirai 's  program  gives  higher  priority  to  searching  smaller  areas.  For  example, 
in  Figure  B6-1,  we  could  search  over  a  small  area  from  C  to  P  to  find  an 
extension  of  line  BC.  In  contrast,  to  find  the  line  IQ,  we  would  need  to  search 

all  possible  line  directions  between  IH  and  IJ.  Thus,  the  former  search  has 

priority  over  the  latter. 

Shirai  used  many  heuristics  to  propose  where  to  search  for  lines.  Some  of 
these  are: 

1.  If  two  boundary  lines  meet  at  a  concave  point,  look  for  collinear  exten- 

sions of  them.  In  Figure  B6-1,  the  boundary  lines  IH  and  GH  meet  at 
the  concave  point  H,  and  HP  is  searched  for  as  an  extension  of  IH. 

2.  If  no  extensions  of  two  concave  lines  are  found,  look  for  another  line 

that  starts  from  the  concave  point.  In  Figure  B6-1,  the  line  IQ  would 
be  sought  starting  at  the  concave  point  /. 
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3.  If  the  boundary  lines  of  an  object  are  known,  select  vertices  of  the 
boundary  that  might  have  internal  lines  starting  from  them.  At  each 
such  vertex,  look  for  an  internal  line  that  is  nearly  parallel  to  some 

boundary  line.  In  Figure  B6-1,  for  example,  internal  line  JS  is  parallel 
to  boundary  lines  KL  and  IQ. 

4.  If  two  internal  lines  meet  at  a  vertex,  look  for  another  line  starting  at  this 

vertex.  Suppose,  in  Figure  B6-1,  that  the  internal  line  JS  is  not  found 
at  vertex  J  (using  rule  3)  because  of  very  little  difference  in  brightness 
between  the  adjacent  faces  near  this  vertex.  Suppose,  also,  that  LS  and 
QS  have  already  been  found.  This  rule  will  look  for  a  line  near  vertex  S, 
where  the  contrast  may  be  high  enough  to  find  it.  Once  a  line  segment 
is  found  near  S,  this  line  may  be  tracked  all  the  way  to  /. 

5.  After  a  line  has  been  tracked  as  far  as  possible,  if  it  is  still  unconnected, 
an  extension  or  a  junction  is  sought  by  circularly  scanning  near  the 
endpoint.  If  this  process  does  not  find  a  new  line  near  the  endpoint,  the 

line  is  extended  by  a  small  length  and  tested  to  see  if  there  is  now  a 
connection  to  other  lines.  If  not,  the  circular  scan  process  is  repeated. 
This  process  can  be  continued  until  it  is  successful,  that  is,  until  the 
line  is  connected  to  other  lines  or  additional  line  segments  are  found 

by  circular  scanning.  For  example,  in  Figure  B6-2,  line  MN'  has  been 
tracked  and  left  unconnected  at  point  TV'.  A  circular  scan  near  N'  fails  to 
find  any  new  lines.  The  line  is  therefore  extended  to  P\  and  the  circular 
scan  is  again  attempted.  This  process  is  repeated  until  a  connection  to 
line  KL  is  found  at  point  N. 

These  heuristics  and  others  not  only  find  lines,  but  they  also  find  objects 

and  their  relationships.  Notice  that  when  a  complete  set  of  boundary  lines 

has  been  found,  all  the  objects  can  be  identified;  that  is,  each  enclosing  set  of 

boundary  lines  defines  a  separate  object.  In  Figure  B6-1,  for  example,  four 
enclosing  boundaries  are  found  and  four  objects  are  defined.    Also,  finding 

Figure  B6  2.     Repetitive  line  extension  (from 
Shirai,  1973). 
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boundary  lines  often  gives  clues  to  the  relationships  between  objects.  For 
example,  rule  1,  which  extends  concave  boundary  lines,  usually  results  in  a 

situation  like  that  shown  in  Figure  B6-1,  where  one  object  (object  B2)  hides 
another  (object  B3).  When  line  IH  or  line  GH  is  extended,  it  is  easy  to 

see  which  object  the  line  belongs  to  and,  thus,  to  determine  the  "hiding" 
relationship. 

Figure  B6-3  is  a  complete  example  of  Shirai's  line  finder. 

Conclusion 

Shirai's  program  used  top-down  information  (from  the  partly  developed 
line-drawing)  to  facilitate  line-finding.  Shirai  introduced  a  semantic  approach 

Figure  B6-3.     Shirai's  line  finder. 
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in  which  knowledge  of  the  task  domain  is  used  to  direct  low-level  vision 
processes.  This  topic  is  discussed  further  in  Article  XIII. C4. 

References 

See  Shirai  (1973). 



B7.     Reasoning  About  Surface  Orientations: 
A.  K.  Mackworth 

GIVEN  a  line  drawing,  the  Huffman-Clowes-Waltz  labeling  scheme  (Articles 
XIII. B4  and  XIII. B5)  can  interpret  it  as  a  three-dimensional  scene  of  trihedral 
objects  by  assigning  line  labels  to  it.  Two  important  points  should  be  noted 
about  labeling.  First,  line  labels  characterize  the  shape  only  qualitatively.  For 

example,  the  convex  label  "+"  signifies  that  two  plane  surfaces  meet  and  make 
a  convexity  along  an  edge,  but  it  does  not  specify  anything  about  the  angle 

at  which  the  planes  meet.  Thus,  the  labeling  of  Figure  B7-1  says  only  that  it 
has  a  convex  corner;  it  does  not  yet  represent  a  cube  corner  and,  in  fact,  the 

Figure  B7-1  need  not  be  a  cube. 
The  second  point  about  the  Huffman-Clowes-Waltz  labeling  scheme  is 

that  legal  labelings  obtained  by  the  method  are  sometimes  not  realizable  as 

polyhedra.  Figure  B7-2  is  an  example  of  a  legal  labeling  that  cannot  possibly 
exist;  clearly,  regions  R\  and  R^  cannot  make  convex  edges  at  both  AB  and 
CD.  Why  does  the  labeling  not  detect  this  inconsistency? 

The  problem  of  unrealizable  labelings  is  closely  related  to  the  question  of 
what  information  about  a  scene  is  represented  by  labels.  For  its  solution  we 

need  to  develop  an  approach  that  enables  us  to  represent  geometrical  relation- 

ships among  plane  surfaces  in  a  more  quantitative  way.  Huffman  (1971)  intro- 
duced the  idea  of  the  gradient  space  for  this  purpose,  and  Mackworth  used  it 

extensively  in  his  program  POLY  (1973,  1974).  Before  describing  POLY,  we 
must  define  the  gradient  space. 

Gradient  Space 

Figure  B7-3  represents  an  imaging  geometry  (see  Article  XIII.Cl):  The 
viewer  is  at  the  origin,  the  z-axis  is  taken  as  the  optical  axis  of  the  viewer, 

Figure  B7-1.     Labeling  that  represents  a  convex  corner. 
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Figure  B7-2.     Legal  labeling  for  which  the  corre- 
sponding polyhedron  cannot  exist. 

and  the  picture  plane  is  at  z 
a  surface  in  the  space  as 

0  and  parallel  to  the  x-y  plane.  Let  us  denote 

f{x,y) 

where  —z  is  the  depth  of  the  surface  point.  An  increase  in  —z  represents  an 
increase  in  the  distance  from  the  viewer. 

An  ordered  pair  of  values  (p,  q),  where 

p  =  df/dx  =  —dz/dx 

q  =  df/dy  =  -dz/dy 

is  called  the  gradient.  A  gradient  is  no  more  than  the  first  derivative  of  the 
function  /,  which  is  the  depth  of  a  surface  at  a  point  (x,  y).  In  other  words, 
the  gradient  (p,  q)  measures  the  instantaneous  change  in  the  depth  of  a  surface 
at  point  (x,  y),  or  it  measures  the  tilt  of  the  surface  at  that  point  with  respect 

to  the  2-axis.    The  gradient  space  is  simply  the  set  of  all  possible  gradients 

(p,q). 
In  general,  p  and  q  change  with  x  and  y.  A  plane  is  a  special  case  in  which 

p  and  q  remain  constant  for  all  values  of  x  and  y,  just  as  a  straight  line  is  a 
special  case  in  which  the  slope  remains  constant  for  all  values  of  x.  And 

—z 

px  +  qy  +  c 

denotes  planes  with  a  gradient  (p,  q).  The  gradient  of  a  plane  is  a  single  point 
in  gradient  space;  a  curved  surface  is  represented  by  a  set  of  points  in  gradient 

space. 

To  illustrate  the  concept  of  gradients,  imagine  viewing  Figure  B7-4  so 

that  plane  Pq  is  flat  (parallel  to  the  image  plane).  Since  depth  (—z)  does 
not  change  on  Pq,  its  gradient  is  Go  =  (0,0).  Plane  Pi  in  Figure  B7-4  tilts 

"away"   from  the  viewer  from  left  to  right  at  a  45-degree  angle.    It  has  a 
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Figure  B7-3.     Two  planes  P\  and  P<i  intersect  at  an  edge,  which  is 
projected  onto  the  image  plane  and  imaged  as  a  line. 

gradient  G\  =  (1,0).  Since  the  depth  increases  as  x  increases,  and  since  the 
tilt  of  the  plane  is  45  degrees,  p  =  df/dx  =  1/1  =  1;  and  since  the  depth 
does  not  change  with  respect  to  y,  q  =  df/dy  =  0.  Similar  reasoning  applies 
to  the  other  planes  in  Figure  B7-4;  assuming  they  all  tilt  at  45  degrees  with 

respect  to  the  x  or  y  axis,  their  gradients  are  G2  =  (—1,0),  G3  =  (0, 1),  and 

Pi  =  (0,-1). 
A  surface,  of  course,  may  be  tilted  with  respect  to  both  the  x  and  y 

axes  (neither  p  nor  q  equals  0),  and  the  angle  of  tilt  need  not  be  45  degrees 

p2 

G2  =  (-1,0) 
G,  =(1,0) 

Po 

Go  =  (0,0) 

Ac" 

/  
P3 

/ 

/45°
 

/g3  =  (o,i) 
/ 

Po 

Go  =  (0,0) 

^ 

\           ?4 

\  G4  =  ( 

*
-
^
 

Figure  B7-4.     Examples  of  surface  orientations  and  their  gradients. 
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(p  and  q  are  something  other  than  1  or  —1).  Figure  B7-5  shows  the  gradient 
space.  Note  that  the  axes  of  this  space  are  p  and  q,  not  x  and  y.  The  gradient 
of  the  surface  is  represented  by  a  point  (p,  q).  In  general,  the  direction  of  the 

vector  from  the  origin  to  (p,  q),  that  is,  tan-1  (q/p),  describes  the  direction  of 
the  steepest  change  in  the  depth  on  the  surface;  the  distance  to  the  origin, 

(p2  +  Q2)1^2,  is  the  rate  of  change  of  depth  along  the  direction  of  steepest 
change. 

Line  Labels  and  Gradients 

For  the  remainder  of  this  discussion  we  assume  an  orthographic  projection 
in  the  imaging  process  rather  than  perspective  projection  (see  Article  XIII.Cl). 

That  is,  in  Figure  B7-3,  a  point  (x,  y,  z)  in  three-dimensional  space  is  projected 
to  a  point  (x,  y)  in  the  image  plane  rather  than  being  foreshortened. 

There  is  an  important  relationship  between  line  labels  and  the  gradient 
space:  If  two  surfaces  meet  along  a  concave  or  convex  edge,  their  gradients  lie 
along  a  line  in  gradient  space  that  is  perpendicular  to  that  edge  in  the  image. 
For  example,  if  two  planes  intersect  at  an  edge  that  is  imaged  as  vertical  in 
the  image  plane,  then  the  gradients  of  the  two  planes  must  lie  on  a  horizontal 
line  in  gradient  space. 

Let  us  see  why  this  is  the  case.  Figure  B7-3  shows  a  vertical  line  parallel 
to  the  y-axis  in  the  image.  The  corresponding  edge  is  the  intersection  of  two 
planes,  Pi  and  P^.  Let  us  denote  their  gradients  as  G\  =  {pi,qi)  and  G2  = 

(P2,<72). 
Note  that  q\  =  <?2-  To  see  why  this  is  so,  recall  that  we  measure 

q  =  d(—z)/dy  by  moving  along  a  line  parallel  to  the  y-axis  and  measuring 

►  P 

Figure  B7  5.     The  gradient  space. 
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the  change  in  —z.  We  can  do  that  for  the  line  corresponding  to  the  edge  of 
the  intersection  between  P\  and  P<i  since  it  is  parallel  to  the  ?/-axis.  Since  the 
edge  includes  both  planes,  the  value  of  q  obtained  for  this  line  holds  for  both 

planes,  that  is,  q\  =  q<i- 
Since  q\  =  q2,  the  gradients  G\  and  G2  must  therefore  lie  along  a  hori- 

zontal line  in  gradient  space  and,  thus,  perpendicular  to  the  edge  in  the  image. 

We  can  generalize  this  result — that  the  gradients  of  two  surfaces  lie  along 
a  line  in  gradient  space  that  is  perpendicular  to  the  line  of  intersection  of  the 

surfaces  in  the  image — to  the  case  where  the  image  line  is  at  any  angle.  We 
simply  imagine  rotating  the  x-y  axes  (i.e.,  rotating  the  camera)  until  the  edge 
is  vertical;  then  the  observation  of  perpendicularity  can  be  made. 

Once  the  gradient-space  line  on  which  G\  and  G<z  lie  is  fixed,  the  relation- 
ship of  G\  and  G2  within  it  determines  the  property  of  the  edge.  The  situa- 
tion is  most  easily  understood  by  imagining  a  hinge  made  by  the  two  planes. 

Suppose  we  fix  G\  (i.e.,  the  orientation  of  plane  Pi  on  the  left  side  of  the  edge) 

and  rotate  only  plane  P2  around  the  hinge  axis  as  shown  in  Figure  B7-3.  The 
corresponding  movement  of  G2  in  the  gradient  space  is  shown  in  Figure  B7-6. 
If  plane  P2  is  facing  to  the  very  far  right  (i.e.,  G2  is  far  to  the  right  of  G\), 
the  edge  is  a  very  sharp  convex  edge.  As  it  rotates  back  toward  the  left, 

G2  moves  on  the  gradient-space  line  toward  the  left  and  closer  to  G\\  the 
convexity  decreases.  When  the  plane  P2  comes  to  have  the  same  orientation 

as  plane  P\  (G\  =  G2),  then  we  do  not  see  the  edge.  When  plane  P2  rotates 
further  and  faces  more  left  than  plane  Pi,  the  edge  becomes  concave.  From 

these  observations,  we  have  the  following  rule:  If  an  edge  is  convex  (+),  the P! 

^V  p* 

Pj 

I 

G2 

Concave Convex 

Figure  B7-6.     Relationships  of  gradients  with  convex  and  concave  edges. 
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gradients  of  its  planes  are  ordered  in  the  same  order  as  are  the  corresponding 
regions  in  the  picture.  If  the  edge  is  concave,  their  order  is  reversed. 

In  this  way,  the  line  labels  (+,  — )  can  be  related  with  properties  of  the 
gradients.  For  instance,  Figure  B7-7a  shows  what  the  labeling  of  Figure  B7-1 
means  in  terms  of  gradients.  Suppose  the  gradient  of  R\  is  at  G\ .  Since  Ri 
and  R2  are  connected  by  a  convex  line  AB,  the  gradient  of  R2  must  be  on 
a  line  that  passes  through  G\  and  is  perpendicular  to  AB.  Suppose  it  is  at 
G2.  Region  R$  is  connected  to  both  R\  and  R2  by  convex  lines,  BD  and  BC. 
Therefore,  its  gradient  G3  is  determined  at  the  intersection  of  lines  extending 
from  G\  and  G2  in  the  direction  perpendicular  to  BD  and  BC,  respectively. 
Thus,  G\,  G2,  and  G3  form  a  triangle  of  a  particular  shape.  From  the  way 
we  choose  G\  and  G2,  we  see  that  the  location  and  the  scale  of  the  triangle 
are  arbitrary,  but  the  shape  and  orientation  are  strictly  determined  by  the 

picture.  These  are  exactly  the  constraints  that  the  labeling  of  Figure  B7-1 
represents. 

For  Figure  B7-2,  we  can  now  easily  show  that  this  labeling  is  not  realiz- 
able. When  the  gradient  of  R\  is  fixed,  the  gradient  of  R2  cannot  satisfy  both 

constraints  imposed  by  the  convex  edges  AB  and  CD.  This  is  illustrated  in 

Figure  B7-7b. 

POLY 

Mackworth's  POLY  is  a  program  to  interpret  line  drawings  as  three- 
dimensional  scenes.  Unlike  the  labeling  schemes  of  Huffman,  Clowes,  and 
Waltz,  it  does  this  by  reasoning  about  surface  orientations  based  on  the 
properties  of  the  gradient  space. 

Given  a  line  drawing,  POLY  first  finds  a  coherent  interpretation  in  which 
the  gradients  of  planes  can  have  consistent  relationships  and  as  many  edges 
as  possible  are  connect  edges  (either  convex  or  concave).  These  connect  edges 
are  important  because  they  represent  a  physical  connection  between  surfaces, 

which  corresponds  to  the  gradient-space  constraint  described  above.  POLY 
searches  for  such  an  interpretation  in  a  binary-tree-search  manner:  First,  it 
examines  the  interpretation  in  which  all  edges  are  connect  edges;  then,  if  it  is 
incoherent,  interpretations  with  all  edges  but  one  as  connect  edges;  and  so  on. 
Next,  POLY  determines  convexity  or  concavity  of  the  connect  edges.  Finally, 
it  interprets  occluding  edges  (nonconnect  edges)  and  determines  which  surface 
of  the  line  is  in  front  of  the  other. 

Consider  how  POLY  works  for  the  example  of  Figure  B7-8.  It  first  picks 
up  the  background  surface  A  and  arbitrarily  assigns  a  gradient  of  (0,0)  (origin 
of  the  gradient  space)  to  it.  Next,  it  takes  region  B.  Surfaces  A  and  B  are 
bounded  by  lines  1  and  2.  Assume  that  line  1  is  a  connect  edge.  The  gradient 

of  B  must  be  on  a  gradient-space  line  (perpendicular  to  line  1)  that  passes 
through  the  gradient  of  A.  Let  us  choose  Gb  at  a  unit  distance  from  Ga,  as 
shown  in  Figure  B7  9a.  Notice  that  the  origin  and  the  scale  of  this  figure  are 
arbitrary. 
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Figure  B7-7. 

(b) 

(a)  Gradients  for  the  labeling  of  Figure  B7-1;  (b)  proof  that 
the  labeling  of  Figure  B7-2  is  not  realizable. 

POLY  now  proceeds  to  line  2.  It  cannot  be  a  connect  edge,  because  if  it 

were,  Gb  in  Figure  B7-9a  would  have  to  lie  on  a  line  perpendicular  to  line  2 

through  Ga',  thus,  line  2  is  occluding. 
Proceed  to  line  3,  which  bounds  between  regions  B  and  C.  If  line  3  is 

a  connect  edge,  Gc  must  be  on  a  line  perpendicular  to  line  3  through  Gb- 
Region  C  shares  lines  4  and  5  with  the  interpreted  region  A.  Obviously,  they 
both  cannot  be  connect  edges.  The  interpretation  in  which  lines  1,  3,  and 
5  are  connect  edges  and  lines  2  and  4  are  occluding  edges  is  rejected  by  the 

single  rule  that  three  noncollinear  points  in  space  (the  corners  a,  b,  and  c) 
cannot  simultaneously  lie  on  two  planes  (A  and  B).  So  a  legal  interpretation 
is  that  lines  1,  3,  and  4  are  connect  edges,  while  lines  2  and  5  are  not.  At  this 
point,  the  situation  in  the  gradient  space  is  found  to  be  either  one  of  the  two 

cases  in  Figure  B7-9b. 

Figure  B7-8.     A  simple  line  drawing. 
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Figure  B7-9.  (a)  Gradients  Ga  and  Gb  for  line  1  to  be  a  connected 
edge;  (b)  gradients  Ga,  Gb,  and  Gc  for  the  case  in  which 
lines  1,  3,  and  4  are  connected  edges. 

Next,  POLY  decides  convexity  or  concavity  of  connect  edges.  This  is  done 

by  referring  to  the  gradient-space  constraints  the  program  has  established  so 

far.  For  the  case  on  the  left  of  Figure  B7-9b,  we  can  easily  see  that  lines  1 
and  4  are  concave  and  line  3  is  convex.  For  the  case  on  the  right,  lines  1  and 
4  are  convex  and  line  3  is  concave. 

Finally,  the  program  looks  at  the  nonconnect  edges  (lines  2  and  5).  It 

uses  the  fact  that  if  two  surfaces  intersect  in  a  connect  edge  that  is  known  to 

be,  say,  convex,  then  at  any  position  in  the  picture  it  will  be  apparent  which 

surface  is  in  front.  For  the  case  in  which  connect  edges  1  and  4  are  concave 

and  3  is  convex,  on  the  right  side  of  line  1,  B  is  always  in  front  of  A.  In 

this  way,  we  know  that  occluding  edges  2  and  5  belong  to  surfaces  B  and  C, 

respectively. 

Continued  search  will  yield  one  more  interpretation  with  three  connected 

edges:  Lines  2,  3,  and  5  are  connect  edges  and  1  and  4  are  occluding.  The 

program  continues  to  generate  interpretations  with  fewer  connect  edges;  for 

example,  the  tetrahedron  separated  from  the  background  has  only  one  connect 

edge,  namely,  line  3. 
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Huffman's  </>(</>')- point  Test 

We  should  note  that  the  coherency  in  the  gradient  space  is  still  only  a 
necessary  condition  for  the  shape  to  be  realizable  by  planar  surfaces.  One  of 

the  most  illustrative  examples  is  a  truncated  pyramid;  Figure  B7-10a  is  the 
side  view  and  Figure  B7-10b  is  the  top  view.  Surfaces  A,  B,  and  C  connect 
each  other  at  convex  edges  1,  2,  and  3.  This  drawing  may  seem  perfect  to 
most  people,  but  it  is  actually  unrealizable. 

For  this  configuration  to  be  realizable,  lines  1,  2,  and  3  must  meet  at  a 
point:  Three  planes  meet  only  at  a  point.  In  the  gradient  space,  however,  the 
constraints  on  their  gradients  are  coherent  and  cannot  detect  the  inconsistency 
in  the  relationships  of  the  three  planes.  The  reason  is  obvious  from  the 

equation  —  z  =  px  +  qy  +  c:  The  gradient  takes  into  account  only  the 
orientation  (p,  q)  but  not  the  location  (c)  of  the  plane. 

Huffman  (1977)  presents  a  0(<?/)-point  test  as  the  necessary  and  sufficient 
condition  for  a  cut  set  of  lines  (equivalently,  a  set  of  regions  separated  by 
those  lines)  to  be  realizable  by  plane  surfaces.  Consider  again  the  example 

shown  in  Figure  B7-10b,  and  take  the  set  of  lines  1,  2,  and  3  cut  by  the 
dotted  loop.  First,  the  (/>((//)-point  test  gives  each  line  belonging  to  the  cut 
set  of  lines  an  orientation  shown  as  a  big  arrow  according  to  its  label,  either 

coming  into  the  loop  if  the  label  is  "+"  or  going  out  from  it  if  the  label  is 

"— "  (see  Fig.  B7-10c).  Then  the  0(<//)-point  is  a  point  that  is  to  the  right 
(left)  of  some  line  of  the  cut  set  and  that  is  not  to  the  left  (right)  of  any 

other  lines.  The  $($)- point  test  simply  checks  whether  either  a  0-point  or 
a  (//-point  exists,  and  if  either  one  exists,  then  the  cut  set  is  unrealizable. 

In  fact,  unless  1,  2,  and  3  meet  at  a  single  point,  (f>  or  </>'  points  exist,  and 
therefore  the  configuration  of  Figure  B7-10  is  unrealizable.  Unfortunately,  it 

0- point 

(b) 
(c) 

Figure  B7-10.     Impossible  truncated  pyramid:   (a)  side  view;  (b)  top  view; 

(c)  Huffman's  (/>(0')-point  test. 
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can  not  be  said  that  if  all  the  cut  sets  in  the  interpretation  pass  the  0(<//)-point 
test,  the  whole  interpretation  is  realizable  by  only  plane  surfaces.  That  is,  the 

0(0')-point  test  is  the  necessary  and  sufficient  condition  for  the  realizability 
of  a  cut  set  of  lines,  but  not  of  the  whole  interpretation. 

Conclusion 

Mackworth  used  the  gradients  of  planes  to  constrain  interpretations  of 
lines  in  an  image.  In  so  doing,  he  moved  a  step  away  from  qualitative  labeling 
schemes  to  a  quantitative  scheme.  This  approach  was  continued  by  Kanade, 
whose  research  is  discussed  in  Article  XIII. B8. 

References 

See  Mackworth  (1973)  for  the  explanation  of  POLY.  More  results  and 
details  can  be  found  in  his  thesis  (Mackworth,  1974).  Mackworth  (1977) 
presents  an  interesting  overview  of  scene  analysis. 



B8.     The  Origami  World  and  Shape  Recovery: 
T.  Kanade 

FOR  MOST  line  drawings,  the  Huffman-Clowes- Waltz  labeling  method  gives  a 
unique  interpretation  that  looks  very  natural  to  human  viewers.  However,  the 
method  exploits  no  constraints  other  than  those  implicit  in  the  assumption  of  a 
trihedral  world  and,  therefore,  there  is  no  reason  to  expect  it  to  give  a  natural 
interpretation.  Furthermore,  as  was  pointed  out  in  Article  XIII. B7,  labeling 
does  not  quantitatively  specify  the  shape  of  an  object;  as  a  matter  of  fact,  one 
cannot  generate  a  rotated  view  of  the  object  from  the  labeling.  The  work  of 

Kanade  (1979,  1980b)  sheds  light  on  the  issue  of  multiple  interpretations  and 

quantitative  shape  recovery  of  "natural"  interpretations.  Kanade  introduced 
the  Origami  world. 

Origami  World  Labeling 

The  Origami  world  is  composed  of  planar  surfaces,  rather  than  solids.  In 

this  world,  line  drawings  can  be  labeled  by  a  technique  much  like  the  Huffman- 
Clowes- Waltz  method,  but  the  Origami  world  allows  more  objects  than  are 
allowed  by  trihedral  worlds.  For  example,  although  the  box  line  drawing  in 

Figure  B8-1  looks  simple  and  perfect,  the  trihedral-world  labeling  scheme 
cannot  generate  its  interpretation,  because  the  trihedral  world  assumes  solid 

objects,  whereas  corners  like  a  in  the  figure  are  made  of  only  two  surfaces  (if 
the  object  is  a  box). 

In  the  Origami  world,  it  is  assumed  that  no  more  than  three  surfaces 

meet  at  a  vertex  (in  the  trihedral  world  exactly  three  surfaces  are  assumed). 
Specifically,  the  12  quadrant  planes  obtained  by  intersecting  three  full  planes 

are  considered  as  primitives,  as  shown  in  Figure  B8-2.  The  vertices  that 
can  be  generated  by  those  primitives  are  called  up-to-three- surface  vertices. 

Figure  B8-1.     A  line  drawing  of  a  "box. 
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Figure  B8-2.     Twelve  quadrant  planes  to  generate 
up-to-three-surface  vertices. 

All  legal  junction  labels  (i.e.,  the  possible  appearances  of  all  up-to-three- 
surface  vertices)  can  be  enumerated  by  fixing  the  eye  position  in  one  of  the 

eight  octants  bounded  by  the  quadrant  planes  and  generating  all  possible 

(212  =  4,096)  combinations  of  occupied  and  vacant  quadrants.  This  method  is 
analogous  to  the  one  that  generates  trihedral  junction  labels;  in  the  trihedral 

world,  the  primitives  were  the  eight  octant  subspaces  rather  than  the  12 

quadrants.  Table  B8-1  shows  the  number  of  legal  junctions  in  the  Origami 
world,  as  compared  with  the  trihedral  junction  world. 

Given  the  junction  dictionary,  Waltz  filtering  might  be  used  to  assign 

labels  to  line  drawings.  However,  labeling  in  the  Origami  world  cannot  rely 

only  on  the  filtering  of  junction  labels,  because  the  weaker  restrictions  at  the 

vertices  result  in  a  large  number  of  interpretations  that  are  consistent  with 

the  junction  dictionary  but  do  not  correspond  to  any  physically  realizable 

configurations.  More  thorough  and  global  constraints  concerning  surface 

orientations  are  needed  to  eliminate  this  problem. 

Table  B8-1 
Comparison  of  the  Junction  Dictionaries 

for  L,  ARROW,  FORK,  and  T  Junction  Types 

Junction      Huffman-Clowes      Origami-world 
type  dictionary  dictionary 

L 6 8 
ARROW 3 

15 

FORK 3 9 
T 4 

16 

The  Origami-world  dictionary  includes  other 
junction  types,  such  as  K,  X,  and  PSI. 
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The  junction  dictionary  for  the  Origami  world  is  augmented  by  con- 
straints in  the  gradient  space  that  must  be  satisfied  by  the  surfaces  incident 

at  the  junction.  As  shown  in  Figure  B8-3,  the  constraints  are  represented 
by  links  that  connect  a  pair  of  related  regions  and  that  include  information 
about  the  constraints  on  their  gradients.  The  relationships  between  gradients 
and  line  labels  are  used  in  generating  these  constraints. 

In  junction  labelings  such  as  those  shown  in  Figure  B8-3b,  the  line  of 
intersection  of  two  surfaces  is  hidden  from  the  viewer  (occluded)  by  one  of 
the  surfaces.  This  junction  label  is  typically  the  result  of  folding  a  sheet  of 
paper  along  BC:  Region  R\,  which  is  folded  toward  the  viewer,  occludes  a 
part  of  #2-  However,  this  junction  label  may  represent  a  more  general  case: 
Regions  R\  and  R2  might  be  separate  sheets  of  paper,  whose  intersection  line 

lies  anywhere  in  R\  (as  in  the  middle  of  Fig.  B8-3b).  That  is,  if  we  remove 
the  right-hand  part  of  R\  that  is  occluding  R2,  the  rest  of  R\  and  R<i  will 
form  a  convex  intersection  line,  and  it  can  be  anywhere  in  the  angle  ABC. 

+ 

(a) 

(b) 

Figure  B8-3.     Augmented  junction  dictionary  in  the  Origami  world. 
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The  constraint  to  be  satisfied  is,  therefore,  that  the  gradient  G<z  should  be 

inside  of  the  fan-shaped  area  whose  origin  is  at  G\  and  is  bounded  by  lines 
perpendicular  to  AB  and  BC.  This  constraint  will  be  represented  by  a  link 
attached  to  the  junction  dictionary  entry  for  this  junction  labeling.  The  line 
of  intersection  can  be  called  an  occluded  intersection  line  and  denoted  by  the 

label  "0." 

Labeling  Procedure 

The  labeling  procedure  of  the  Origami  world  uses  the  augmented  diction- 
ary described  above.  First,  Waltz  filtering  on  the  junction  labels  is  performed. 

Next,  the  procedure  begins  to  assign  a  junction  label  to  each  junction,  one 

by  one.  When  a  junction  label  is  assigned  to  a  junction,  the  gradient-space 
constraints  represented  by  the  associated  links  are  instantiated  by  using  the 
directions  of  the  lines  at  that  particular  junction. 

The  labeling  procedure  of  the  Origami  world  tests  the  consistency  of 

surface  orientations  by  using  these  instantiated  gradient-space  constraints. 
The  test  can  be  performed  systematically  with  another  iterative  operation 
that  filters  out  possible  relative  positions  for  the  gradient  of  each  surface. 
Details  are  presented  in  Kanade  (1980b). 

Interestingly,  the  labeling  of  the  Origami  world  usually  results  in  multiple 

labelings  for  a  single  line-drawing.  A  cube  scene  has  three  interpretations, 
as  shown  in  Figure  B8-4:  a  convex  corner,  a  concave  corner,  and  a  peculiar 
shape  made  as  shown  in  Figure  B8-4d.  Similarly,  the  box  line  drawing  of 
Figure  B8-1  has  eight  labelings,  two  of  which  are  shown  in  Figure  B8-5:  The 

labeling  in  Figure  B8-5a  corresponds  to  an  "ordinary"  box — the  two  front 
faces  form  a  convex  intersection  and  partially  occlude  the  rear  two  faces, 

which  form  a  concave  intersection.  The  labeling  in  Figure  B8-5b  corresponds 

to  a  "squashed  box" — the  front  two  faces,  as  well  as  the  rear  two,  form  a 
concave  intersection. 

When  we,  as  humans,  interpret  these  line  drawings,  we  do  not  usually 

think  of  such  peculiar  shapes  as  Figure  B8-4d  and  Figure  B8-5b  even  as 
possible  interpretations.  They  look  very  unnatural.  But  it  is  important  to 
note  that  all  labelings  are  equally  natural  in  terms  of  geometrical  realizability. 

(a)  (b)  (c)  (d) 

Figure  B8  4.     Interpretation  of  the  "cube"  line  drawing. 
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M  (I,) 

Figure  B8-5.     Two  interpretations  of  a  "box"  line  drawing. 

Quantitative  Shape  Recovery  and  "Natural"  Interpretations 

Labeling  a  line  drawing  only  qualitatively  characterizes  shape;  it  does 

not  give  a  specific  shape.  In  fact,  the  two  figures  in  Figure  B8-6  have  the 
same  labelings  (the  same  constraints  in  terms  of  realizability),  even  though 
they  seem  to  depict  different  shapes.  This  suggests  that  we  interpret  line 
drawings  using  other  constraints  than  those  that  concern  realizability.  Kanade 
developed  a  method  for  mapping  image  properties  into  shape  constraints  for 

recovering  three-dimensional  quantitative  shapes.  He  introduced  the  idea 
of  regularity  heuristics,  specifically,  a  parallel-line  heuristic  and  a  skewed- 
symmetry  heuristic. 

Parallel-line  heuristic.  The  parallel-line  heuristic  is: 

If  two  lines  are  parallel  in  the  picture, 
they  depict  parallel  lines  in  the  scene. 

(a) 
(b) 

Figure  B8-6.  These  have  the  same  set  of  labelings,  even  though 

usually  (a)  is  perceived  as  a  "cube"  and  (b)  as  a 
"trapezoidal  block." 
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Under  orthographic  projection,  this  is  not  always  the  case.  The  converse, 

however,  is  always  true:  Parallel  lines  in  the  scene  will  be  depicted  as  parallel 

lines  in  the  image.  (Under  perspective  projection,  substitute  "converging 

lines"  for  "parallel  lines";  see  Kender,  1979.) 
Consider  the  constraint  that  this  heuristic  puts  on  the  gradients  of  two 

planes  if  a  pair  of  their  boundary  lines  is  parallel  in  the  picture,  as  shown 

in  Figure  B8-7:  Their  gradients  should  be  on  a  gradient-space  line  that  is 
perpendicular  to  the  parallel  boundary  lines  in  the  image.  In  fact,  if  a  pair 

of  boundary  lines  is  really  parallel  in  the  three-dimensional  space,  we  can 
translate  one  of  the  planes  toward  the  other,  without  changing  its  orientation, 

and  make  the  two  planes  intersect  along  those  boundary  lines.  Therefore,  the 

gradients  of  the  two  planes  should  have  the  same  relationship  that  holds  for 

surfaces  connected  by  a  convex  or  concave  line.  (See  Article  XIII.B7  for  the 

properties  of  the  gradient  space.) 

Skewed-symmetry  heuristic.  Symmetry  in  a  two-dimensional  picture 
has  an  axis  for  which  the  opposite  sides  are  reflective:  The  symmetrical 

property  is  found  along  the  transverse  lines  perpendicular  to  the  symmetry 

axis.  The  concept  of  skewed  symmetry  relaxes  this  condition  a  little,  referring 

to  the  class  of  two-dimensional  shapes  in  which  symmetry  is  found  along 
lines  not  necessarily  perpendicular  to  the  axis,  but  at  a  fixed  angle  to  it. 

Figure  B8-8  shows  a  few  examples.  Formally,  these  shapes  are  defined  as 

two-dimensional,  linear  (affine)  transformations  of  real  symmetries.  A  skewed 

symmetry  defines  two  directions,  called  the  skewed-symmetry  axis  and  the 

skewed- transverse  axis,  as  shown  in  Figure  B8-8. 

The  skewed-symmetry  heuristic  is: 

A  skewed  symmetry  in  the  image  depicts  a  real  symmetry 

in  the  scene  viewed  from  some  (unknown)  viewing  angle. 

Figure  B8  7.     Parallel-line  heuristics. 
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We  can  transform  this  heuristic  into  constraints  in  the  gradient  space.  Let 

a  and  ft  denote  the  directional  angles  of  the  skewed-symmetry  axis  and  the 
skewed-transverse  axis,  respectively,  as  shown  in  Figure  B8-8d.  Let  G  =  (p,  q) 
be  the  gradient  of  the  plane  that  includes  the  skewed  symmetry.  The  heuristic 

demands  that  the  two  three-dimensional  space  vectors  corresponding  to  the 
skewed-symmetry  axis  and  the  skewed-transverse  axis  be  perpendicular. 

It  can  be  shown  that  the  gradient  G  =  (p,  q)  is  on  the  hyperbola  shown 
in  Figure  B8-9.  That  is,  the  skewed  symmetry  defined  by  a  and  ft  in  the 
picture  can  be  the  projection  of  a  real  symmetry  if  and  only  if  the  gradient  is 
on  this  hyperbola.  It  might  appear  that  if  we  assume  the  skewed  symmetry 
in  the  picture  to  be  a  projection  of  a  real  symmetry,  the  surface  orientation 
is  uniquely  determined;  actually,  we  have  still  an  infinite  number  of  possible 
orientations  represented  by  the  points  on  the  hyperbola  in  gradient  space. 

The  vertices  Gt  and  G't  of  the  hyperbola  represent  special  orientations 
with  interesting  properties.  Since  they  are  closest  to  the  origin  of  the  gradient 
space,  and  since  the  distance  from  the  origin  to  a  gradient  represents  the 

magnitude  of  the  surface  slant,  Gt  and  G't  correspond  to  the  least  slanted 
orientations  that  can  produce  the  skewed  symmetry  in  the  picture  from  a  real 
symmetry  in  the  scene. 

(b) 

(d) 

Figure  B8-8.     Skewed  symmetry. 
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Unique  Determination  of  Gradients 

A  "cube"  scene  has  three  labelings,  as  shown  in  Figure  B8-4;  the  first  is 
reproduced  in  Figure  B8-10a.  The  labeling  indicates  that  there  are  three  to- 

tally visible  surfaces,  Si  (=  V3V4V7V2),  S2  (=  V5V6V7V4),  and  S3 
(=  V1V2V7VQ),  and  that  their  gradients  G\,  G2,  and  G3  should  form  a  tri- 

angle as  shown  in  Figure  B8-10b.  On  the  other  hand,  Si,  S2,  and  53  have 
skewed  symmetries:  Their  skewed-symmetry  axes  and  skewed-transverse  axes 
are  shown  in  Figure  B8-10a  as  dotted  lines.  If  we  assume  these  skewed  sym- 

metries to  be  projections  of  real  symmetries,  we  can  draw  the  hyperbola  for 

each  surface  as  shown  in  Figure  B8-10c. 

Figure  B8-9.     A  hyperbola  corresponding  to  the  skewed  symmetry  defined 
by  angles  a  and  (3. 
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Now,  our  problem  is  thus  reduced  to  placing  the  triangle  of  Figure  B8-10b 
in  Figure  B8-10c  by  shrinking,  expanding,  and  translating  it  so  that  each 
vertex  of  the  triangle  is  on  the  corresponding  hyperbola.  Kanade  proved 
that  the  location  shown  in  Figure  B8-10c  is  the  only  possibility  and  that  the 
corresponding  three-dimensional  shape  is  a  cube. 

(c) 

Figure  B8-10.     Quantitative  shape  recovery  of  a  "cube"  scene. 
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Now  consider  the  line  drawing  of  the  trapezoidal-block  scene  in  Figure 

B8-11.  As  we  have  noted,  this  line  drawing  has  the  same  qualitative  inter- 

pretations (line  labelings)  as  a  cube  scene  but  it  seems  to  depict  a  quantita- 
tively different  shape.  What  makes  the  difference?  The  same  interpretation 

process  that  applied  to  the  cube  applies  to  the  trapezoidal  block,  but  with 

a  different  shape.  The  labeling  imposes  the  same  constraints  on  the  gradients 

of  the  surfaces  Si,  S2,  and  S3  as  the  convex-corner  interpretation  for  the 
cube  scene,  and  they  also  have  skewed  symmetries.  However,  the  axes  for 

the  skewed  symmetries  of  S\  and  S2  are  slightly  different  from  the  case  of 

Figure  B8-10,  so  the  shape  and  location  of  the  corresponding  hyperbolas  also 

change.  As  a  result,  the  gradient-space  triangle  must  be  placed  as  shown  in 

Figure  B8-lld.    When  we  compare  this  assignment  with  Figure  B8-10,  the 

Figure  B8   11.     Quantitative  shape  recovery  of  a  trapezoidal-block  scene. 
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location  of  G3  is  the  same,  but  G\  and  Gi  are  closer  to  G3.  In  this  assignment 

of  gradients,  the  angle  made  by  S\  and  S3  is  equal  to  that  made  by  £2  and 
53  and  is  larger  than  90  degrees. 

Kanade  also  showed  that  the  "usual"  box  shape  can  be  recovered  from 
the  labeled  line  drawing  of  Figure  B8-5a  by  similar  means. 

The  Violation  of  Regularity  Heuristics  by  "Strange "  Shapes 

The  labelings  treated  so  far  all  correspond  to  the  most  "natural"  inter- 
pretations of  the  pictures.  Recall  that  the  theory  of  the  Origami  world  yields 

other  labelings.  Kanade  showed  that  those  shapes  implied  by  the  labelings 
are  possible  but  violate  some  of  the  regularity  heuristics. 

The  labeling  of  Figure  B8-5b  represents  a  "squashed"  box  with  the  front 
two  faces  going  in.  Figure  B8-12  illustrates  the  constraints  on  the  gradient 
space  imposed  by  the  labeling:  G\  lies  right  of  G2,  and  G3  and  G\  should  be 
within  the  right  and  left  hatched  areas,  respectively.  Lines  V1V7  and  V2V3  are 

parallel.  For  the  parallel-line  heuristic  to  hold,  G\  and  G4  (the  gradients  of 
surfaces  that  include  those  lines)  must  be  on  a  line  perpendicular  to  V1V7  (or 
V2V3).  However,  the  diagram  indicates  that  this  is  not  possible. 

Of  course,  it  is  possible  to  assign  the  gradients  if  we  violate  the  heuristics. 

For  example,  Figure  B8-13a  is  a  possible  selection  of  gradients  for  a  "phony" 
box  that  corresponds  to  the  interpretation  of  Figure  B8-5b.  This  curious 
shape,  illustrated  in  Figure  B8-13b,  appears  as  an  ordinary  box  only  when 
seen  from  a  particular  position.  Notice  that  the  image  regularity  (parallelism) 

we  observed  in  the  original  view  has  disappeared.  In  contrast,  the  "ordinary" 
box  shape  conserves  these  regularities,  no  matter  from  what  direction  it  is 
seen. 

Figure  B8-12.     Constraints  imposed  by  the  labeling  of  Figure  B8-5b.    The 
parallel-line  heuristic  cannot  be  satisfied  in  this  case. 



194 Vision XIII 

(a) 
(b) 

Figure  B8-13.     A  "phony-box"  interpretation:   (a)  selection  of  gradients; 
(b)  its  view  from  the  other  direction. 

Conclusion 

Kanade  introduced  a  representation,  called  the  Origami  world,  that 
admits  more  objects  than  the  trihedral  world  does.  Because  line  labels  were 

not  enough  to  recover  the  shape,  Kanade's  junction  dictionary  was  augmented 
with  constraints  on  gradients.  He  also  tackled  the  question  of  what  makes  one 

interpretation  of  a  scene  more  "natural"  than  another;  by  introducing  two 
heuristics  that  filtered  out  unnatural  interpretations  he  showed  explicitly  how 

much  geometrical  assumption  was  necessary  to  resolve  multiple  interpreta- 
tions. 

References 

See  Kanade  (1979,  1980b)  for  details.  Kanade  and  Kender  (1980)  extend 
the  idea  of  heuristics  on  shape  constraints  into  a  more  general  form. 



C.     EARLY  PROCESSING  OF  VISUAL  DATA 

CI.     Visual  Input 

COMPUTER  VISION  SYSTEMS  must  be  able  to  sense  their  environment.  This 

sensing  is  not  limited  to  intensity  (i.e.,  brightness),  but  includes  depth,  color, 
and  texture  information  as  well.  This  article,  however,  is  mainly  concerned 

with  the  physical  means  of  intensity  imaging — with  the  geometry  of  picture- 
taking,  image-input  devices,  and  the  digitization  of  video  signals.  Depth 
sensing  is  discussed  in  Articles  XIII. D3  and  XIII.D4,  and  color  in  Article  XIII. C2. 

The  discussion  here  will  be  technical  and  a  little  removed  from  what  we 

normally  consider  Artificial  Intelligence.  Vision  systems  are  very  different 
from  other  AI  systems  in  that  some  of  the  information  they  process  is  taken 

from  a  real,  noisy,  variable,  physical  environment.  Thus,  this  article  is  con- 

cerned with  the  "eyes"  of  a  vision  system  and  with  the  issues  involved  in 
designing  and  representing  these  sensors  so  that  they  provide  high-quality 
information  for  the  rest  of  the  system. 

The  Camera  Model 

The  relationship  between  a  camera  and  a  scene  defines  the  geometry  of 

the  picture-taking  process.  We  begin  with  the  simple  pinhole-lens  model  of 
a  camera  and  derive  the  direct  perspective  transform  that  tells  how  points 
on  an  object  are  projected  onto  points  in  an  image.  We  then  represent  the 
perspective  transform  and  its  inverse  as  linear  transformations  by  expressing 
them  with  homogeneous  coordinates.  A  more  thorough  introduction  to  the 
camera  model  and  the  use  of  homogeneous  coordinates  is  found  in  Duda  and 

Hart  (1973). 
The  pinhole  camera  and  central  projection.  The  simplest  model  of 

the  picture-taking  process  is  the  pinhole-camera  model  in  which  the  lens  is 
replaced  by  a  pinhole  and  the  image  plane  lies  at  a  distance,  /,  behind  the 
pinhole.  Because  this  configuration  gives  a  mapping  from  the  scene  to  the 
image  plane  in  which  the  images  are  flipped  left  to  right  and  upside  down, 
it  is  more  convenient  to  express  this  model  as  a  central  projection.  In  the 

central-projection  model,  the  image  plane  is  located  in  front  of  the  pinhole 
by  a  distance  /,  as  shown  in  Figure  Cl-1.  For  simplicity  we  define  the  center 
of  the  image  plane  as  the  origin,  and  the  z-sxis  as  the  line  that  intersects  the 
pinhole  and  the  origin.  Thus,  the  pinhole  is  at  (0, 0,  /)  and  points  on  the  image 

plane  are  at  (xp,yp,0).  We  shall  denote  points  on  the  image  plane  with  the 
subscript  p. 
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Figure  Cl-1.     Visual  input. 

Expressing  the  camera  model  as  a  central  projection  enables  us  to  deter- 

mine the  projection  of  a  point  on  an  object  V  =  (x,  y,  z)T  onto  a  point  in  the 

image  plane  Vp  =  (xp,  yp,  0)T: 

y 

or 

r    =  -£- 

Vp  _ 

fy (i) 
Vp 

f-z 
Equivalently,  we  can  determine  the  back  projection  from  each  point  in  the 

image  plane  onto  a  line  in  three-dimensional  space: 

sP(/  ~  z) 
f 

y 
yP(f  -  z) f (2) 

These  equations  represent  the  line  passing  from  the  pinhole  through  the  image 

point  Vp,  where  z  (depth)  is  a  free  parameter.  In  other  words,  all  points 

(x,y,z)T  on  this  line  are  projected  to  an  image  point  Vp  =  {xp,yp,0)T.  We 
can  write  the  equations  with  an  auxiliary  variable,  X  =  (/  —  z)/f,  to  obtain 

X  —  XpA 

v  =  yP^ 
z  =  /(l-X) (3) 
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Equations  (1)  and  (2)  are  nonlinear.  It  is  often  useful  to  express  this 
projection  as  a  linear  transformation,  at  the  expense  of  adding  an  extra 

dimension  to  our  system.  This  representation  is  called  homogeneous  coordi- 

nates. The  vector  V  =  (x,  y,  z)T  is  expressed  as 

V  =  (wx,  wy,  wz,  w)T , (4) 

where  w  is  an  arbitrary  constant.  The  original  vector,  V,  can  be  recovered 

from  the  first  three  components  by  dividing  by  the  fourth.  Thus,  (x,  y,  z,  1) 

and  (wx,  wy,  wz,  w)  denote  the  same  three-dimensional  points.  We  will  use 

the  "  ~  "  notation  to  denote  homogeneous  coordinates. 
With  homogeneous  coordinates  we  can  now  express  the  perspective  trans- 

form as  a  linear  matrix  operation.  An  object  point  V  is  mapped  onto  an  image 

point  \p  by 

where  P  is  the  matrix 

Vn  =  PV 

(\     0      0      0\ 
0     10      0 
0     0      10 
0     0 

(5) 

(6) 

In  fact,  we  can  see  that  by  substituting  V  =  (x,  y,z,i 

(7) 

By  dividing  the  first  three  components  by  the  fourth,  we  obtain  the  vector 

(x/\,y/\,  z/\,  1)T  =  (xp,yp,z/\,l)T.  The  first  and  second  components  are 
the  coordinates  of  the  points  Vp  in  the  image.  The  third  component  deter- 

mines the  position  of  the  point  on  the  line  that  projects  from  the  pinhole 

through  the  image  point  Yp. 
Having  found  P,  we  are  ready  to  determine  the  inverse  of  the  linear 

transformation  P, 

P    l  is  found  to  be 

p'  = 

P_1V„ 

(I     0     0     0\ 
0     10     0 
0    0     10 

V°    °    7     » 

(8) 

(9) 
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However,  if  we  simply  plug  an  image  point  Vp  =  (xp,  yp,  0, 1)T  into  equation  (8) 

and  then  convert  to  Cartesian  coordinates,  we  get  a  point  V  =  (xp,yp,0)T 
when  what  we  desire  is  a  line. 

The  way  out  of  this  difficulty  is  to  allow  the  z  coordinate  of  Vp  to 

be  nonzero,  say,  (3.  Upon  evaluating  equation  (8)  and  then  converting  to 

Cartesian  coordinates,  we  get: 

/     fXp_\ 

1  f+0  x 
fVv 

f  +  P 

\   -&-    I \f+0  / 

(10) 

By  denoting  X  =  //(/  +  j3)  we  have  the  same  equation  as  equation  (3). 

It  is  often  desirable  to  denote  object  points  with  respect  to  a  "world 

coordinate,"  which  may  not  be  the  same  as  the  coordinate  system  that  is  fixed 
to  the  camera.  Consider  the  process  of  taking  a  picture.  The  camera  is  first 

located  at  a  standard  position,  whose  location  and  orientation  are  known  in 

the  world-coordinate  system.  Then  we  move  the  camera  to  a  desired  position 
and  point  it  in  the  desired  direction  by  panning,  rotation  in  the  horizontal 

plane;  tilting,  rotation  in  the  vertical  plane;  and  rolling,  rotation  around  the 

optical  axis.  Thus,  transformation  from  the  world  coordinate  to  the  image 

coordinate  can  be  accomplished  by  expressing  the  position  and  orientation  of 

the  camera  as  a  series  of  linear  transforms  in  homogeneous  coordinates. 

Let  us  use  the  following  symbols  to  denote  transformations  involved  in 

mapping  world  coordinates  into  image  coordinates: 

T:    Translation  of  the  camera  center  from  the  origin  of  the  world-coordinate 
system; 

R:    Rotation  (pan,  tilt,  and  roll)  about  the  camera  center; 

G:    Translation  of  the  lens  position  from  the  camera  center. 

Then  the  projection  of  a  point  V*  in  three-dimensional  space  that  is  expressed 
in  world  coordinates  to  an  image  point  Vp  that  is  expressed  in  image  coor- 

dinates is  accomplished  by 

VP  =  PGRTV*.  (11) 

Inversely, 

V*  =  T-^R-^G-^P-^Vp  •  (12) 

Since  we  do  not  use  this  formula  in  the  present  discussion,  the  matrices  G, 

R,  and  T  are  not  given  here;  see  Duda  and  Hart  (1973)  for  more  detail. 

Determining  the  transformation  K  =  P  G  R  T  is  called  camera  calibration, 



CI  Visual  Input  199 

or  calculating  the  camera  model.  It  is  an  important  step  in  the  interpretation 
of  aerial  photographs,  for  example,  in  stereo  vision  (see  Article  XIII.D3). 

Imaging  Devices 

There  are  two  types  of  components  in  a  visual  sensing  system:  illuminators 
and  light  sensors.  Illumination  may  be  totally  uncontrolled,  as  in  an  outdoor 
scene.  Or  illumination  may  be  controlled  and  focused,  as  a  moving  spot, 

as  a  stripe,  as  shape  of  light,  or  as  single-source  illumination  from  a  known 
reference  point  (see  Article  XIII. D4  for  more  detail).  Similiarly,  light  sensing 
may  be  general,  as  in  a  simple  photomultiplier  or  photodiode,  or  focused,  as 
in  a  TV  camera.  In  a  useful  vision  system,  either  the  illuminator  or  the  light 
sensor  must  be  an  imaging  device;  that  is,  it  must  have  the  ability  to  access 
distinct  elements  of  the  scene  separately. 

One  issue  in  choosing  between  raster- scanning  devices  like  a  TV  camera 
and  random-access  devices  is  the  time-space  trade-off.  If  computer-memory 
usage  must  be  minimized,  random- access  devices  are  advantageous,  since  com- 

plete images  need  not  be  stored.  However,  the  cost  of  memory  is  being  con- 
tinually reduced,  and  a  random-access  frame  buffer — into  which  an  imaging 

device  writes  image  data  continuously  and  from  which  the  computer  reads 

image  data  randomly — is  available,  so  that  most  vision  systems  today  use 
this  kind  of  hardware. 

Slow  random-access  devices  or  image-storage  devices  with  long  exposure 
times  are  not  useful  in  a  scene  that  contains  dynamically  changing  picture 
elements.  In  a  dynamic  world,  quick  snapshots  must  be  taken  with  the  faster 
devices.  Moving  objects  are  usually  tracked  by  taking  repeated  snapshots  and 
applying  software  techniques  (see  Article  XIII. D2). 

Noise  and  unpredictable  signal  fluctuation  are  inevitable  in  any  system 

that  measures  light-intensity  levels,  because  of  the  quantum  nature  of  light. 
The  severity  of  noise  depends  on  several  factors,  including  the  light  level, 
the  exposure  time,  the  dynamic  range,  the  architecture  of  the  sensor,  and 

the  amplification  system.  The  signal-to-noise  (S/N)  ratio  in  a  system  is  the 
ratio  between  the  level  of  signal  (or  meaningful  information)  and  the  level  of 
noise.  The  dynamic  range  is  the  ratio  between  the  brightest  and  dimmest 
light  levels.  The  gray  scale  of  a  sensor  is  the  number  of  discrete  levels  of 
light  that  it  can  represent.  If  a  large  gray  scale  is  required,  a  high  S/N  ratio 
must  be  guaranteed  to  maintain  a  given  confidence  level.  In  general,  longer 

exposure  times  are  needed  for  higher  S/N  ratios.  The  relation  between  gray- 
scale values  and  actual  light  levels  is  an  important  factor  in  sensing  systems. 

Most  typically,  the  relation  is  adjusted  to  be  either  linear  or  logarithmic.  The 
resolution  of  a  sensor  is  the  number  of  discriminate  points  in  its  field  of  view. 
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Most  imaging  sensors  exhibit  interactions  between  the  light  levels  mea- 
sured for  adjacent  picture  elements.  This  tends  to  cause  a  slight  blurring  in 

the  picture.  In  the  worst  case,  called  blooming,  very  bright  picture-elements 
cause  nearby  sensor  elements  to  give  excessive  light- level  readings. 

Vidicon  and  CCD  Cameras 

The  standard  technology  for  electronic  imaging  is  the  vidicon  camera. 

Most  vidicon  cameras  include  built-in  electronics  to  produce  a  TV  image  in 
the  standard,  composite  video  format.  They  can  be  made  to  accept  external 
horizontal  and  vertical  synchronization.  Video  sensitivity  is  typically  that  of 

a  black-body  radiator  at  2,854K.  Spectral  sensitivity  ranges  from  350  to  700 
nanometers.  Light  is  focused  onto  a  photosensitive  target,  on  which  an  image 
pattern  is  generated  as  a  charge.  The  target  is  scanned  by  an  electron  beam  to 
produce  the  video  signal.  The  electron  beam  is  generated  in  an  evacuated  glass 
bottle.  This  tends  to  make  vidicon  cameras  bulky  and  fragile.  In  addition, 

the  deflection  of  the  electron  beam  tends  to  drift  with  time.  Thus,  a  vidicon- 
based  imaging  system  must  be  calibrated  frequently.  Vidicons  also  require 
a  high  voltage  source  (approximately  900  V)  and  have  a  typical  mean  time 

between  failure  of  1,000  hours.  For  these  reasons,  solid-state  cameras  (most 
representatively,  Charge  Couple  Devices,  or  CCDs)  are  becoming  preferable 
for  most  vision  applications. 

CCD  cameras  can  be  purchased  as  linear  (one-dimensional)  arrays  (also 
known  as  Linear  Imaging  Devices,  or  LIDs)  or  as  two-dimensional  arrays  (also 
known  as  Area  Imaging  Devices,  or  AIDs).  A  CCD  array  is  composed  of  discrete 

light-sensitive  elements.  The  light  energy  falling  on  each  element  builds  up  a 
charge  proportional  to  the  integrated  light  intensity,  and  then  these  charges 

are  collected  in  capacitors  beneath  each  element.  A  two-phase  clock  transfers 
these  charge  packets  off  the  array  and  into  an  amplifier.  The  image  then 
appears  as  a  series  of  voltages  at  the  output  of  the  amplifier. 

CCD  linear  arrays  typically  come  in  sizes  of  256,  512,  1,024,  1,728,  and 

2,048  elements.  CCD  two-dimensional  cameras  typically  come  in  sizes  of  244 
by  190  cells  and  488  by  380  cells.  These  cameras  are  small,  lightweight, 

and  highly  shock  resistant.  Because  they  are  solid  state,  they  are  very  reli- 
able. Unlike  vidicons,  CCD  cameras  do  not  require  high-voltage  power  and 

can  operate  on  less  than  50  milliwatts.  They  produce  an  output  signal  of 
approximately  1  V  and  have  none  of  the  lag  or  drift  associated  with  vidicons. 
The  spectral  sensitivity  of  a  CCD  camera  ranges  from  420  to  1,100  nanometers. 
Most  manufacturers  of  CCD  cameras  also  make  available  the  electronics  for 

converting  the  image  signal  to  the  standard  TV  format. 
One  of  the  problems  with  CCDs  is  that  sensitivity  may  change  from  cell  to 

cell  by  up  to  10%.  However,  since  this  deviation  is  stable  over  time,  a  camera 
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can  be  calibrated  (see  Article  XIII. C3).  Caution  is  also  necessary  in  that  in 

most  two-dimensional  CCD  arrays,  except  those  for  industrial  applications, 
the  cells  are  not  square  but  rectangular  to  match  the  TV  standards. 

TV  Signals 

The  Electronics  Industries  Association  (EIA)  has  defined  a  standard  for- 
mat for  TV  signals.  This  standard,  which  is  used  in  the  United  States,  is 

designated  RS-170.  The  image  is  divided  into  two  fields,  each  consisting  of  240 

lines,  scanned  top  to  bottom.  The  fields  are  "interlaced"  to  define  an  image 
consisting  of  480  lines.  That  is,  one  field  contains  all  of  the  odd-numbered 
lines;  the  other,  the  even-numbered  lines. 

Between  each  interlace  field,  the  scan  has  22^  line-periods  to  return  to 
the  top  of  the  screen.  Thus  the  total  number  of  horizontal  scan-line  periods 
per  image  is  525.  Scanning  one  field  takes  1/60  of  a  second,  so  a  complete 
image  is  produced  every  1/30  of  a  second. 

The  EIA  RS-170  composite  video  signal  consists  of  luminance  information, 
a  horizontal  synchronization  period,  and  a  vertical  synchronization  period. 

Figure  Cl-2  shows  a  typical  signal  for  a  scan  line.  The  luminance  informa- 
tion is  contained  in  a  signal  that  ranges  from  .7  V  (black)  to  1.5  V  (white). 

Each  scan  line  ends  with  an  approximately  ll-//sec.  period  for  horizontal 
synchronization.  During  this  time  the  signal  is  held  at  0  V  for  approximately 
4.7  //sec.  (the  horizontal  synchronization  signal).  After  240  scan  lines,  the 
signal  is  held  at  0  V  for  approximately  68.25  //sec.  (21  scan  lines)  to  mark  the 
end  of  an  interlace  field.  This  is  the  vertical  synchronization  pulse. 

1.5V 

.7V-- 

Figure  Cl-2.     A  horizontal  line-period  of  a  video  signal  with  horizontal 
synchronization. 



202  Vision  Xm 

Digitization 

Computer  vision  systems  do  not  work  with  continuous  signals  direct  from 

a  TV  camera  but,  rather,  with  digitized  signals.  The  continuous- intensity 
signal  is  sampled  at  each  pixel  position  and  digitized  by  an  analog-to-digital 
(A-D)  converter.  The  number  of  bits  required  to  encode  the  analog  inten- 

sity depends  on  the  dynamic  range  and  the  S/N  ratio  of  the  input  device, 

but  6  to  8  bits  is  a  typical  range  for  most  applications.  For  standard  TV  sig- 
nals, 200  to  500  samples — pixels — are  taken  from  a  scan  line  in  approximately 

60  //sec.  This  means  that  sampling  and  A-D  conversion  happens  every  .12  to  .3 
//sec,  and  data  throughput  is  between  3  Mbyte/sec.  and  7.5  Mbyte/sec.  When 

fast-access  computer  memory  was  expensive,  many  methods  were  devised  to 
reduce  this  throughput.  Today,  however,  the  cost  of  memory  is  so  low  that 
it  is  common  to  have  a  buffer  memory  for  one  or  more  frames,  and  the  video 
signal  is  digitized  in  real  time.  In  fact,  a  combination  buffer  memory  and 
digitizer  is  commercially  available. 

Conclusion 

In  this  article  we  have  introduced  the  front  end  of  vision  systems:  imaging 
geometry  and  input  devices  and  their  characteristics.  There  is  no  Artificial 
Intelligence  discussed  here,  but  it  is  important  to  realize  that,  unlike  most  AI 

programs,  vision  systems  interpret  a  real,  noisy,  physical  world.  The  "eyes"  of 
a  vision  system — discussed  here — affect  what  it  sees  and  what  its  "intelligence" 
has  to  work  with. 

References 
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C2.     Color 

MOST  image-understanding  research  to  date  has  dealt  with  black-and-white 
pictures  only.  However,  there  is  an  increasing  amount  of  work  being  done  with 
color  pictures,  because  the  additional  information  provided  by  color  can  be 

exploited  in  a  number  of  ways  (see,  e.g.,  the  discussion  of  Ohlander's  algorithm 
in  Article  XIII.C5). 

Color  Features 

A  color  image  is  produced  by  digitizing  a  scene  or  picture  viewed  through 
color  filters.  Although  there  is  no  rigid  standardization  of  color  filters  for 
image  understanding,  the  most  common  filters  are  Wratten  filters  25,  47B,  and 

58,  which  resemble  the  National  Television  Standards  Committee's  (NTSC's) 
standard  filters  for  color  television.  Because  these  three  filters  transmit  pri- 

marily red,  green,  and  blue  wavelengths,  respectively,  color  pictures  digitized 

with  these  filters  are  sometimes  called  "red-green-blue"  (RGB)  images. 
Each  pixel  in  a  color  picture  digitized  through  color  filters  will  have  several 

values,  in  this  case,  a  red  value,  R,  a  green  value,  G,  and  a  blue  value,  B. 

Typically,  the  R,  G,  and  B  images  can  be  used  as  inputs  to  the  color  "guns" 
of  a  color- TV  monitor  to  produce  a  fair  reproduction  of  the  original  scene. 
Commercial  cameras  and  displays  are  available  that  allow  convenient  input 
and  output  of  RGB  images;  this  is  the  primary  reason  for  the  popularity  of 
RGB  color  images. 

Once  a  picture  is  digitized  and  its  pixel  values  are  inside  a  computer,  it 
is  possible  to  transform  the  RGB  values  into  some  other  set  of  color  features. 
This  can  be  viewed  as  the  selection  of  an  alternative  coordinate  system  and 

set  of  axes  for  the  same  three-dimensional  color  space.  Several  alternatives 
have  been  popular  in  processing  color  images. 

Hue,  saturation,  and  density  (or  intensity).  Psychologists  usually 
measure  human  color  perception  in  these  terms.  Hue  (H)  refers  to  the  color 

name  (e.g.,  blue,  red,  orange).  Saturation  (S)  indicates  the  purity  or  grayness 

of  a  color  (red  is  highly  saturated;  pink  has  the  same  hue  but  a  lower  satura- 
tion). Density  (D)  measures  the  overall  brightness  or  darkness  of  the  color. 

HSD  coordinates  form  a  cylindrical  coordinate  system  in  color  space,  where 
density  runs  along  the  axis  of  the  cylinder,  saturation  is  the  radial  distance 

from  the  axis,  and  hue  is  the  angular  displacement  from  some  standard  (such 

as  pure  red).  The  D-axis  is  sometimes  called  the  intensity  axis.  In  computer 
vision,  HSD  coordinates  are  computed  by  formulas  (see  Kender,  1977)  that 
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are  intended  to  model  roughly  the  psychological  meanings  of  the  terms  hue, 
saturation,  and  intensity. 

Normalized  colors.  These  are  computed  by  dividing  each  RGB  coor- 

dinate by  the  total  density  (usually  R  +  G  +  B):  r  =  R/(R  +  G  +  B), 
g  =  G/(R  +  G  +  B),  b  =  B/(R  +  G  +  B).  The  resulting  coordinates  describe 
the  density-independent  (i.e.,  chromatic)  aspect  of  a  color.  It  is  common  to 
specify  only  density  plus  two  normalized  coordinates,  such  as  r  and  g,  since 
the  other  color  value  is  easily  derived.  Such  a  system  might  be  called  Drg. 

YIQ:  Color- TV  features.  When  a  commercial  color- TV  signal  is 
encoded  for  transmission,  the  RGB  values  received  from  the  camera  are 

transformed  by  a  linear  transformation  into  three  features  called  Y,  I,  and  Q. 

The  feature  Y  is  very  much  like  density  and  is  the  only  signal  seen  on  a  black- 
and-white  TV  set.  The  other  features,  /  and  Q,  are  chromaticity  measures. 
Because  the  /-  and  Q-axes  point  in  different  directions  in  color  space,  the  YIQ 
system  is  sometimes  purported  to  be  a  model  of  the  opponent- color  theory  of 
human  vision.  However,  this  resemblance  is  a  superficial  one.  The  Y,  I,  and  Q 
features  were  strategically  selected  by  the  NTSC  to  model  some  overall  effects 

of  the  color-perception  performance  of  humans. 
XYZ:  Color imetric  features.  These  are  another  linear  transform 

of  RGB  and  are  standard  features  used  in  colorimetry  (the  measurement  of 
surface  colors).  They  do  not  seem  to  have  the  qualities  considered  desirable  for 
computer  vision,  such  as  orthogonality  or  correlation  with  important  features 
of  typical  images. 

UVW  (etc.):  Uniform  color  spaces.  A  Euclidean  distance  metric  in 
RGB,  YIQ,  HSD,  or  XYZ  space  does  not  correspond  well  to  the  subjective 
perceptions  of  color  difference  in  humans.  Psychologists  have  adopted  some 
sets  of  nonlinear  transformations  into  other  spaces,  such  as  UVW,  in  which 
Euclidean  distance  does  match  human  perceptions  fairly  well.  Unfortunately, 
these  coordinate  systems  do  not  appear  to  be  useful  unless  the  vision  input 
conforms  to  the  tightly  controlled  viewing  situations  in  which  psychological 
color  measurements  are  made. 

Kender  (1977)  notes  some  problems  that  arise  when  performing  any  of 
these  transformations  on  digitized  images,  due  to  the  small  number  of  bits 

per  feature  value  at  each  pixel  (typically,  6  or  8).  Nonlinear  transformations, 

which  usually  include  a  division  operation,  do  not  produce  uniform  distribu- 
tions of  transformed  values,  given  a  uniform  distribution  of  RGB  values. 

Linear  transformations  do  not  suffer  from  such  severe  problems.  (See  Article 
XIII.C5  for  a  discussion  of  linear,  but  highly  discriminating,  transforms  of  color 
features  for  use  in  region  analysis.) 

In  addition  to  RGB  input  from  a  camera,  infrared  input  has  sometimes 
been  used.  This  is  most  frequent  in  analysis  of  ground  coverage  from  aerial  or 
satellite  images;  for  example,  vegetation  reflects  green  and  infrared  radiation 
and  is  thus  relatively  easy  to  detect. 
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Conclusion 

Color-image-understanding  programs  have  used  different  color  distance 
metrics  as  well  as  different  spaces.  While  the  Euclidean  metric  is  the  most 
common,  others,  such  as  the  maximum  difference  in  any  feature  and  the  sum 
of  differences  in  all  features,  have  been  successfully  applied. 

References 

An  excellent  description  of  color  science  and  color  spaces  can  be  found  in 

Judd  and  Wyszecki  (1975). 



C3.     Preprocessing 

PREPROCESSING  is  the  first  step  of  visual  data  processing.  Its  objectives 

are  (a)  reconstruction  of  the  ideal,  high-fidelity  image  from  the  low-quality, 
distorted  input  image  and  (b)  improvement  or  enhancement  of  the  quality 
of  the  input  image  by  suppressing  noise  and  emphasizing  selected  features  to 
facilitate  later  stages  of  image  processing. 

All  preprocessing  techniques  involve  modifying  an  image  to  make  it  more 
like  an  ideal  image.  In  this  article  we  examine  three  kinds  of  modifications: 

1.  Geometrical  correction, 

2.  Gray-scale  modification, 

3.  Sharpening  and  smoothing. 

Sharpening  and  smoothing  are  especially  pertinent  to  edge  detection  (see 
Article  XIII.C4).  Most  of  the  preprocessing  associated  with  these  techniques 
can  be  done  in  either  the  spatial  domain  or  the  frequency  domain.  The  spatial 
domain  is  the  distribution  of  intensities  on  the  image  plane  that  varies  as  a 
function  of  x  and  y.  The  frequency  (Fourier)  domain  refers  to  the  spatial 
frequencies  in  the  image.  Edges  constitute  high  frequency;  homogeneous  or 
blurred  regions,  low  frequency. 

Geometrical  Correction 

An  important  image-enhancement  technique  is  the  correction  of  geometri- 
cal distortion.  The  most  common  distortion  is  the  perspective  projection  that 

depends  on  the  position  and  orientation  of  the  imaging  device  relative  to 
the  object.  Another  distortion  is  the  aberration  in  an  optical  sensor  or  an 
electronic  scanning  device. 

Geometrical  distortion  is  defined  by  a  set  of  transforming  equations  from 

ideal  coordinates  (x,  y)  to  distorted  coordinates  (x' ',  yr)\ x'  =  hi(x,y) 

y'  =  h2{x,y)  . 

Then  the  ideal  image  f(x,  y)  becomes  the  distorted  image  g(x',  yf).  As  shown 
in  Figure  C3-1,  we  have  sampled  the  distorted  image  at  a  coordinate  (x',yf), 
but  what  we  want  are  the  values  at  the  coordinate  (x,  y)  in  the  ideal  image. 

The  geometrical  correction  to  recover  f(x,  y)  from  g(x! ',  yf)  is  accomplished 
by  first  constructing  the  distortion  model  (/ii,/i2)  and  then  placing  the  pixel 

value  g(x' ',  y')  in  the  correct  position  (x,  y)  to  give  the  ideal  image  J{x,  y).  The 
latter  process  is  called  resampling.  There  are  cases  in  which  resampling  is  not 
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Figure  C3-1.     Coordinates  (x,  y)  of  the  ideal  image  and  (x',yf)  of  the  dis- 
torted image. 

necessary;  it  is  sometimes  possible  to  do  image  processing  with  the  original 
image  and  the  distortion  model,  avoiding  the  expense  of  resampling. 

Construction  of  the  distortion  model.  If  there  are  a  satisfactory 
number  of  control  points,  or  landmarks,  in  an  image,  the  distortion  model  can 
be  constructed  from  them.  A  control  point  is  a  point  that  can  be  found  in 
the  distorted  image  and  whose  location  in  the  ideal  image  is  already  known 
precisely.  This  method  of  constructing  the  distortion  model  is  called  direct 
modeling. 

The  simplest  form  of  the  distortion  equation  is  the  linear  or  affine  model: 

x'  =  a\x  +  b\y  +  c\ 

y'  =  a2x  +  b2y  +  c2  . 

A  bilinear  distortion  equation  is  also  used  frequently: 

x'  =  a\x  +  b\y  +  c\xy  +  d\ 

y'  =  a2x  +  b2y  +  c2xy  +  d2  . 

Most  local  distortions  in  an  image  are  accurately  modeled  by  linear  or  bilinear 
equations,  since  more  complex  distortions  can  be  approximated  by  linear 
distortions  within  a  small  area.  However,  for  large  areas  and  more  severe 
distortions,  higher  order  polynomials  are  necessary.  Alternately,  a  large  image 
may  be  divided  into  a  number  of  smaller  patches  to  which  a  linear  or  bilinear 
equation  is  applied. 



208  Vision  Xm 

For  all  these  models,  the  coefficients  are  estimated  by  a  least-squares  error 
method.  It  is  important  to  use  reliable  control  points  to  attain  high  accuracy 
of  modeling. 

Direct  modeling  requires  prior  knowledge  about  the  position  of  points  in 
the  ideal  image.  An  alternative  is  indirect  modeling,  in  which  a  structural 
model  of  distortion  is  derived  from  knowledge  of  the  imaging  process.  For 
example,  it  is  possible  to  infer  a  distortion  model  from  knowledge  of  the 
angle  of  regard  and  other  parameters.  The  parameters  in  the  model  may  be 
determined  by  logging  data  from  the  imaging  device,  for  example,  the  camera 
parameter  (focal  length)  and  the  vehicle  parameters  (x,  y,  and  z  coordinates  in 

three-dimensional  space,  and  roll,  pitch,  and  yaw).  This  approach  is  common 
in  interpreting  aerial  photographs. 

Resampling.  Resampling  involves  constructing  an  ideal  image  by  deter- 
mining for  each  pixel  (x,  y)  the  corresponding  pixel  in  the  distorted  image. 

The  intensity  value  of  the  pixel  in  the  distorted  image  is  then  copied  into  its 

undistorted  position  in  the  ideal  image.  Unfortunately,  a  pixel  position  (i,j) 

in  an  ideal  image  will  usually  not  map  to  an  integer  coordinate  (m,  n) — the 
exact  pixel  position  whose  value  is  sampled  in  the  distorted  image — but  to  a 

point  (x',yf)  between  pixel  locations  (see  Fig.  C3-1).  How,  then,  is  the  value 
at  {x',y') — the  value  to  be  copied  into  pixel  (i,j) — to  be  determined?  There 
are  two  common  solutions  to  this  problem.  One  is  to  copy  the  value  of  the 

nearest  neighbor  to  (x',  y')  into  the  ideal  image.  The  other  is  to  interpolate  a 
value  based  on  the  values  of  pixels  in  a  window  around  (xf,  y(). 

Gray-scale  Modification 

There  are  two  kinds  of  gray-scale  modification  with  different  purposes. 
One  is  gray-level  correction,  and  the  other  is  gray-scale  transformation. 

Gray-level  correction.  Gray-level  correction  compensates  for  the  non- 
uniformity  of  sensitivity  of  sensors  in  the  sensor  plane.  The  gray  level  sensed 
by  each  pixel  is  corrected  according  to  the  sensitivity  at  its  location.  The 
sensitivity  of  pixels  can  be  calibrated  by  illuminating  the  sensor  plane  with  a 
source  of  uniform  brightness. 

Gray-scale  transformation.  Gray-scale  transformation  is  typically 
done  to  modify  the  gray  level  (or  intensity)  of  pixels  in  an  image  in  order  to 
stretch  its  contrast,  that  is,  the  range  between  the  darkest  and  lightest  points 
in  the  image.  It  is  common  to  emphasize  an  interesting  region  of  gray  level, 

as  shown  in  Figure  C3-2.  A  relatively  small  interval  (a)  of  input  intensities  is 
stretched  to  emphasize  it. 

A  third  transformation  related  to  the  gray  scale  involves  modifying  the 
histogram  of  the  intensity  of  pixels  over  the  image.  The  histogram  is  a  plot 

of  the  relative  frequency  of  each  level  of  intensity  (Fig.  C3-3a);  a  peak  in  the 
histogram  implies  a  relatively  large  number  of  pixels  with  that  intensity  level. 
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Figure  C3-2.     Contrast  stretching. 

There  are  several  ways  to  modify  the  histogram,  depending  on  one's  purposes, 
but  most  representative  is  histogram  flattening. 

Histogram  flattening.  The  principle  of  histogram  flattening  is  to  reduce 
the  frequency  of  very  numerous  intensity  values  and  increase  the  frequency  of 
relatively  rare  values.  This  can  be  done  by  dividing  the  cumulative  frequency 

distribution  (CFD) — the  sum  of  the  histogram  values  up  to  each  intensity 
level — into  a  large  number  of  increments  for  relatively  frequent  values  and 
a  smaller  number  of  increments  for  rarer  values.  The  first  step  of  histogram 
flattening  is  to  chop  the  vertical  axis  of  the  CFD  into  equal  intervals,  as  shown 

by  the  horizontal  lines  in  Figure  C3-3b.  Each  line  is  drawn  up  to  the  CFD 
and  then  runs  vertically  down  between  two  original  intensity  values.  Thus, 

the  original  set  of  32  intensity  values  (in  Fig.  C3-3a)  is  broken  into  sets  of 
varying  intervals,  but  with  an  approximately  equal  total  number  of  pixels  in 
each.  Next,  each  interval  is  given  a  new  intensity  value,  as  shown  below  the 

original  intensity  axis  in  Figure  C3-3b.  The  histogram  of  the  new  intensity 

values  should  be  flatter  (Fig.  C3-3c). 
Histogram  flattening  involves  some  loss  of  information  when  it  is  done  dig- 

itally, since  the  number  of  intensity  values  is  reduced  (in  the  case  of  Fig.  C3-3, 
from  32  to  9).  It  has  the  effect  of  sharpening  images,  because  relatively  rare 

intensity  values,  such  as  those  at  edges,  are  emphasized  at  the  expense  of  com- 
mon intensity  values,  such  as  those  in  regions.  It  is  also  a  useful  adjustment 

before  comparing  two  images  of  similar  scenes  taken  under  different  lighting 
conditions  (i.e.,  with  different  original  intensity  scales). 

Sharpening 

Sharpening,  or  deblurring,  improves  the  quality  of  blurred  images.  The 

simplest  methods  include  spatial  differentiation  and  high- emphasis  frequency 
filtering.    However,  special  treatment  is  necessary  when  an  image  is  noisy. 
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Figure  C3-3.     Histogram  flattening:  (a)  Original  histogram;  (b)  cumulative 
frequency  distribution;  (c)  new  histogram. 
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Differentiation  and  high-emphasis  filtering  tend  to  emphasize  noise  in  addition 
to  intensifying  edges.  One  approach  to  this  problem  is  to  apply  these  operators 
only  to  the  frequency  region  in  which  the  signal  is  stronger  than  the  noise. 
Another  approach  is  first  to  remove  the  noise  by  smoothing  and  then  to 
sharpen  the  image. 

Spatial  differentiation.  The  principle  of  this  method  is  illustrated 

in  Figure  C3-4.  Intensifying  edges  can  be  accomplished  by  subtracting  the 
second  derivative  of  a  function  from  the  function  itself.  Figure  C3-4  shows 
this  for  a  one-dimensional  curve;  for  a  two-dimensional  image,  sharpening 

involves  subtracting  the  sum  of  the  second-order  derivatives  (Laplacian)  of  a 
picture  function  from  the  function  itself. 

Since  an  image  is  represented  by  discrete  pixels,  the  derivative  of  the 
picture  function  at  a  pixel  is  approximated  by  the  difference  between  the 
intensities  of  adjacent  pixels.  Thus,  the  first  differences  in  the  x  and  y 
directions  are  as  follows: 

fx(i,j)  =  f(i,j)-f(i-l,j) 

fy(hj)  =  /(«,  j)  —  /(*,  i  —  1)  i 

Figure  C3-4.     Sharpening  by  spatial  differentiation. 
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where  /  is  the  image  intensity  and  i  and  j  are  row  and  column  coordinates, 
respectively. 

The  higher  order  differences  can  be  derived  by  repeating  the  first-order 
differences.  In  particular,  the  second-order  differences  are: 

fxx(i,j)  =  fx(i  +  l,i)  -  fx(i,j) 

= /(t  +  l,j) +  /(*-!,  j)-2/(»,i) 

fyyihj)  =  f(i,j  +  1)  +  f(i,j  -  1)  "  2/(2,  j)  . 

The  discrete  version  of  the  Laplacian  operator  is,  thus,  given  as  follows: 

V2f(i,j)  =  fxxf(i,j)  +  fyy(i,j) 

=  [/(*  +  l,i)  +  /(t  -  l,i)  +  f(i,j  +  1)  +  /(t,  J  -  1)]  -  4/(i,  j) . 

Notice  that  the  second  differences,  fxx  and  /yy,  can  be  represented  by  the  one- 

dimensional  windows  shown  in  Figure  C3-5a,  and  the  Laplacian  operator  V2 
can  be  represented  by  the  window  in  Figure  C3-5b.  Each  window  has  as  many 
cells  as  there  are  terms  in  its  corresponding  equation,  and  each  cell  contains 

the  coefficient  of  one  of  the  terms.  To  derive  a  Laplacian  image — an  image 
of  the  second  derivative  of  the  original  image — the  window  is  centered  over  a 
pixel,  and  the  values  in  the  pixels  corresponding  to  the  window  positions  are 

multiplied  by  the  coefficients  in  the  window  (see  Fig.  C3-6).  The  sum  of  these 
multiplications  is  the  output  of  the  operator  at  the  picture  pixel  corresponding 
to  the  center  cell  of  the  window.  The  window  is  moved  over  the  entire  image 

to  derive  an  array  of  these  values — a  Laplacian  image.  The  original  image 
can  be  sharpened  by  subtracting  the  Laplacian  image  from  it. 

High-emphasis  filtering.  The  differentiation  of  an  image  is  grossly 
interpreted  in  the  frequency  domain  as  filtering  that  emphasizes  higher  fre- 

quency components.  Actually,  any  linear  operator  in  the  spatial  domain  (such 
as  the  discrete  version  of  the  Laplacian)  can  be  converted  into  an  equivalent 
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Figure  C3-5.     Operators  for  the  second  derivatives  (a)  and  Laplacian  (b). 
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(1-3)   +   (1-6)   4-  (1-3)    +   (-4-6)  +    (1-7)    =-5 

Figure  C3-6.     Applying  the  Laplacian  operator  to  an  image. 

transfer  function  in  the  frequency  domain.  Just  as  a  linear  operator  can  be 
designed  to  emphasize  abrupt  changes  in  intensity,  so  a  transfer  function  can 
be  designed  to  emphasize  areas  of  high  frequency  (i.e.,  areas  with  abrupt 
changes  in  intensity).  These  are  two  approaches  with  the  same  result:  Edges 

and  other  high-frequency  components  of  an  image  are  sharpened. 
Now,  we  can  also  design  transfer  functions  and  linear  operators  that 

de-emphasize  areas  with  abrupt  changes  in  intensity;  this  technique  is  called 
smoothing. 

Smoothing 

The  image  taken  by  an  imaging  device  is  often  contaminated  by  noise, 
the  simplest  kind  of  which  is  additive  noise.  The  aim  of  smoothing  is  to 
remove  the  noise  from  an  image.  Since  smoothing  techniques  tend  to  blur  the 
image,  the  main  problem  for  smoothing  methods  is  to  remove  noise  without 
introducing  undesirable  blurring  of  details  such  as  edges. 

If  the  pixels  contaminated  with  noise  can  be  distinguished  from  the  other 
pixels,  the  noise  can  be  removed  without  adverse  effects  on  the  image.  Once 
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a  noise  pixel  is  detected,  its  intensity  is  replaced  by  some  reasonable  value — 
usually  given  by  interpolating  from  neighboring  pixels.  This  technique  is 
effectively  applied  when  the  noise  appears  as  stripes  with  equal  intervals  or  as 
salt  and  pepper  (i.e.,  isolated  dots). 

Ensemble  averaging.  A  very  effective  way  to  reduce  noise  without  loss 
of  detail  is  to  obtain  multiple  independent  copies  of  the  desired  image.  Then 
the  image  detail  in  each  will  be  identical,  while  the  superimposed  noise  will 
vary  randomly.  Averaging  corresponding  pixels  across  the  multiple  copies 
cancels  the  noise  without  affecting  the  desired  image.  This  corresponds  to  the 
effect  of  longer  exposure  time. 

Local  averaging.  A  simple  method  for  optically  removing  noise  in 

an  image  is  defocusing.  This  can  be  simulated  by  replacing  the  gray-scale 
intensity  of  every  point  by  an  average  of  the  image  intensity  within  some 
window  around  the  point.  In  general,  the  average  may  be  weighted,  with 
lower  weights  assigned  to  points  farther  from  the  center  of  the  window.  This 
processing  can  be  accomplished  by  a  linear  operator  in  much  the  same  way  as 
was  illustrated  for  sharpening.  It  will  remove  noise  at  the  expense  of  blurring 
the  image.  Reducing  the  size  of  the  window  will  result  in  less  blurring,  but  it 
is  less  effective  for  removing  noise.  An  alternative  is  to  change  a  pixel  only  if 
its  value  differs  from  the  average  by  more  than  a  given  threshold.  This  is  less 

likely  to  blur  desired  detail  but  still  removes  salt-and-pepper  noise  effectively. 
We  can  also  avoid  blurring  edges  with  a  median  operator,  rather  than  an 

averaging  operator.  Since  the  median  of  a  distribution  is  the  value  between 
the  lower  half  and  the  upper  half  of  the  distribution,  it  tends  to  preserve 
edges.  For  example,  if  a  3  X  3  window  covered  an  area  with  these  intensities 

8  8  2 

8  2  2 
2     2     2, 

an  averaging  operator  would  return  a  value  of  4  for  the  middle  cell,  but  a 
median  operator  would  return  a  value  of  2,  preserving  the  edge. 

Local  averaging  is  especially  efficient  for  binary  images,  since  a  binary 

pixel  has  only  two  values  (light  and  dark),  and  a  pixel's  value  can  be  made 
consistent  with  that  of  the  immediate  neighborhood  simply  by  complementing 
it  or  by  leaving  it  unchanged.  Binary  input  and  output  values  permit  logical 
averaging,  in  which  the  averaging  function  is  defined  as  a  logical  function  of 
the  binary  pixels  in  the  neighborhood. 

Low-emphasis  filtering.  It  is  common  to  use  filters  for  noise  removal. 
A  simple  low-pass  filter  will  remove  high-frequency  noise,  that  is,  will  smooth 
the  image,  but  it  will  also  blur  high-frequency  components  of  the  image 
signal  (such  as  those  corresponding  to  edges  and  junctions).  In  some  systems 
this  will  be  acceptable,  especially  if  much  of  the  noise  energy  is  above  the 
highest  desired  frequency.  If  not,  it  may  still  be  possible  to  improve  the  image 
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by  filtering  a  selected  band  of  frequencies,  allowing  the  high-frequency  edge 
detail  to  remain.  Bandpass  filtering  is  especially  useful  if  the  noise  energy 
is  concentrated  at  a  particular  frequency  (e.g.,  if  it  is  periodic).  Restoration 
techniques  can  be  used  to  obtain  the  optimal  filter  when  the  characteristics 
of  the  frequency  domain,  such  as  the  spectrum  of  the  noise,  are  known. 

Conclusion 

We  have  presented  an  introduction  to  techniques  for  preprocessing  and 

image-enhancement.  We  discussed  three  kinds  of  modifications:  geometrical 
modifications,  gray-scale  modifications,  and  sharpening  and  smoothing. 
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C4.     Edge  Detection  and  Line  Finding 

EDGE  DETECTION  is  an  important  step  in  segmenting  an  image.  Its  pur- 
pose is  to  locate  boundaries  of  meaningful  regions  that  may  be  defined  by 

a  relatively  uniform  color,  gray  level,  or  texture.  Thus,  edges  are  detected 
by  finding  abrupt  discontinuities  of  such  image  features.  The  forms  of  the 
change  in  intensity  across  an  edge  are  called  edge  profiles,  of  which  the  step 

edge  is  an  ideal  one  (Fig.  C4-la).  In  actuality,  the  edge  profile  tends  to  be  a 
slope  (Fig.  C4-lb)  because  of  noise  and  blur. 

Edge  detection  is  basically  a  two-step  process.  First,  candidate  edge 
elements  are  found  by  a  local  operator  and,  second,  smooth  lines  or  curves 
are  extracted  and  specified  either  as  line  formulas  or  as  contiguous  elements. 
The  remainder  of  this  article  discusses  techniques  for  these  two  steps. 

Spatial  Differentiation 

Since  we  are  interested  in  places  where  the  picture  function  changes,  it 
is  reasonable  to  consider  using  a  derivative  of  the  picture  function  f(x,  y)  to 
indicate  edge  elements.  The  spatial  first  derivative  of  /  is  called  the  gradient 
and  it  is  made  of  a  pair  of  partial  first  derivatives  df/dx  and  df/dy. 

The  gradient  is  a  vector,  and  its  magnitude  G  and  orientation  0  can  be 
expressed  as: 

G(x,y)  =  {(df/dx)2  +  (df/dyf}1/2 
8(x,y)  =  tan"1  {(df/dy) / '(df/dx)}  . 

Many  operators  have  been  devised  to  approximate  this  gradient  in  digital 

images.  One  of  the  earliest  was  the  so-called  Roberts  Cross  Operator,  R{i,j) 
(Roberts,  1965).  It  computes  the  sum  of  squares  of  the  differences  between 
diagonal  pixels  in  a  2  X  2  window: 

R{i,j)  =  {(f(i,j)  -  f(i  +  1,3  +  I))2  +  (f(i  +  U)  -  f(i,j  +  l)ff2  ■ 

(a)  (b) 

Figure  C4-1.     (a)  An  ideal  step-edge  profile;  (b)  a  real  edge  profile. 
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Of  course,  we  can  use  operators  to  approximate  df/dx  and  df/dy.  The 
simplest  one  is  derived  from  the  differences  of  intensity  values  of  horizontal 
and  vertical  neighbors: 

fx(hj)  =  f(i  +  l,j)-f(i,j) 

These  operations  are  conveniently  expressed  in  the  form  of  local  operators 

with  a  window  of  weights  (see  Fig.  C3-5,  in  Article  XIII.C3).  The  3X3 
operators  shown  in  Figure  C4-2  also  compute  first  derivatives,  and  they  are 
often  referred  to  as  the  Sobel  operators.  In  these  windows,  larger  weights  are 
given  to  the  pixels  close  to  the  central  point  (i,j).  This  makes  Sobel  operators 
less  sensitive  to  noise. 

One  problem  with  many  edge  detectors  is  that  they  rely  on  computations 

based  on  fixed-sized  neighborhoods.  Figure  C4-3  shows  that  the  window  size 
is  crucial  in  detecting  slope  edges:  In  general,  the  window  size  should  be 
as  big  as  the  extent  of  the  slope  of  the  edges  to  be  detected.  Notice  that 

there  is  a  trade-off  between  large  windows  that  are  immune  to  noise  and 
small  windows  that  have  higher  resolving  power.  Rosenfeld  and  Thurston 
(1971)  have  suggested  one  operator  that  uses  windows  of  variable  size.  The 
calculation  begins  by  taking  the  difference  of  the  average  gray  levels  of  a  pair 
of  the  smallest  neighborhoods  on  opposite  sides  of  a  point.  Then  the  size 
of  the  neighborhoods  is  increased  by  powers  of  2  until  the  difference  drops 
significantly;  the  largest  opposite  neighborhoods  before  the  decrease  are  used. 

Edge  elements  are  selected  by  thresholding  the  output  of  the  edge  detec- 
tor, resulting  in  a  binary  image.  If  the  output  of  an  edge  detector  at  a 

pixel  exceeds  a  certain  threshold,  that  pixel  is  determined  to  be  an  edge- 
element  candidate  and  given  a  value  of  1;  otherwise,  it  is  given  a  value  of  0. 

However,  as  shown  in  Figure  C4-3,  the  output  of  the  first  derivatives  across 
the  slope  edge  tends  to  be  bell-shaped  or  flat  over  the  extent  of  the  slope.  As  a 
result,  the  located  edges  may  be  several  pixels  wide.  One  method  to  overcome 
this  is  to  follow  the  local  maxima  of  the  detector  output.  Alternately,  the 

second  derivatives  can  be  used.  As  shown  earlier  in  Figure  C3-4,  the  second 
-1 

0 1 -2 

0 2 -1 

0 1 

1 2 1 

0 0 0 

-1 
-2 

-1 

for  fx{i,j)  for  fv{i,j) 

Figure  C4-2.     Sobel  operators. 
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Figure  C4-3.     Output  of  first-derivative  operators  with  different 
window  sizes  applied  to  a  slope  edge. 

derivative  changes  its  sign  at  the  position  of  the  steepest  slope  in  the  edge. 

Therefore,  the  point  at  which  the  second  derivative  crosses  the  z-axis,  called 
the  zero-crossing,  unambiguously  indicates  the  position  of  the  edge.  Since  the 
picture  function  is  two-dimensional,  we  actually  use  the  zero-crossing  of  the 

Laplacian  image  (i.e.,  the  sum  of  d2f/dx2  and  d2f/dy2).  The  Laplacian  has 
long  been  useful  in  computer  vision,  but  recently  Marr  and  Hildreth  (1980) 
proposed,  as  a  model  of  psychophysical  aspects  of  edge  detection  in  human 

vision,  zero-crossing  in  the  image  obtained  by  applying  a  circularly  symmetric 
Laplacian  with  Gaussian  low-pass  filtering. 

Pattern  Matching 

Pattern  matching  for  edge  detection  assumes  a  model  of  an  edge,  and 
its  location  in  the  image  is  determined  to  be  where  its  intensity  profile  best 
matches  the  model.  A  theoretical  system  that  has  been  adapted  and  applied 

in  real  vision  systems  is  the  Hueckel  operator  (Hueckel,  1971,  1973).  Given 

a  circular  region  D  about  the  origin  of  an  x-y  coordinate  system,  Hueckel's 
ideal  edge  (Fig.  C4-4)  is  the  step  function: 

/(x,2/,c,s,p,M) 

{i 

if  ex  +  sy  <  p; 

otherwise. 

ex  +  sy  =  p 

Figure  C4-4.     Hueckel's  ideal  edge. 
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The  ideal  edge  is  a  function  of  the  background  intensity  b,  the  intensity 
difference  d  across  the  edge,  and  the  parameters  for  the  edge  orientation  and 
location  c,  s,  and  p. 

If  f(x,  y)  is  the  picture  function,  we  would  like  to  "fit"  an  ideal  edge  to 
f(x,  y)  by  minimizing 

-/. 

E(c,  a,  p,  b,d)=  /  (/(x,  y)  -  F(x,  y,  c,  s,  p,  b,  d))  dx  dy  .  (1) 
Jd 

This  is  accomplished  with  polar-coordinate  Fourier  analysis.    Let  H(i)  be  a 
basis  function  (separable  into  angular  and  radial  components)  and  define 

L a(i)=  /    H(i)(x,y)f(x,y)dxdy 
Jd 

s(i)=  /    H(i)(x,y)F(x,y,c,s,p,b,d)dxdy  . 
Jd 

Now  a(i)  is  constant  and  s(i)  is  variable,   and  the  problem  is  reduced  to 
minimizing  the  error  E: 

E(c,  s,p,  b,  d)  =  ]T)(a(zj  -  s(i)f  . 

Because  of  real  limitations  from  resolution  and  noise,  this  sum  need  only 

be  carried  out  for  the  first  eight  terms.  For  each  neighborhood,  Hueckel's 
system  returns  the  optimal  edge  and  an  indication  of  goodness  of  fit  (i.e.,  the 
value  of  E).  The  value  of  the  intensity  difference  d  can  be  used  to  determine 
whether  it  corresponds  to  a  real  edge  element. 

Color  Edge  Detection 

Whereas  each  pixel  of  a  gray-scale  image  has  a  scalar  value  of  inten- 
sity, a  pixel  from  a  color  image  has  a  three-dimensional  vector  value  [Red, 

Green,  Blue)  corresponding  to  the  three  principal  components  of  color.  More 
generally,  a  multispectral  image  can  have  an  arbitrary  number  of  components 
(see  Article  XIII.C2).  Edge  detection  in  color  images  is  very  like  its  counterpart 
in  intensity  images. 

Let  dbea  differential  operator  and  H  a  threshold  operator,  and  assume 
that  R,  G,  and  B  are  the  component  intensities  of  a  color  image.  Then  the 

operator  H(dR  +  dG  +  dB)  thresholds  the  sum  of  the  differences  of  each  fea- 
ture and  produces  a  binary  image  indicating  whether  the  total  color  difference 

was  above  the  threshold  (Yachida  and  Tsuji,  1971).  Alternately,  the  operator 

HdR  +  HdG  +  HdB  computes  the  sum  of  binary  images  given  from  differen- 
tiation and  thresholding  of  each  color.  It  gives  a  result  whose  value  can  be  0, 
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1,  2,  or  3  and  indicates  the  number  of  color  features  that  show  a  significant 
difference.  The  likelihood  of  an  edge  at  a  pixel  is  indicated  by  this  number. 

Nevatia  (1976)  extended  the  Hueckel  operator  to  the  detection  of  color 
edges.  He  assumed  that  the  ideal  edge  in  each  color  feature  must  have 
the  same  orientation  ((c,  s,  p)  in  terms  of  the  previous  model)  at  a  given 
pixel.  First,  the  ideal  edge  model  F(x,y,c,s,p,b,d)  is  matched  separately 
for  each  color  feature.  The  orientations  (c,  s,  p)  are  then  averaged  to  compute 
(co,so,po),  which  is  taken  as  the  orientation  of  the  color  edge.  Then  the 
remaining  parameters  in  the  tuple  are  determined  separately  for  each  feature 
to  minimize  the  total  error, 

E  =  ER  +  EG  +  EB  , 

where  the  components  Er,  Eg,  and  Eb  are  defined  as  in  equation  (1). 

Extraction  of  Line  Descriptions 

The  edge  detector  produces  as  output  a  set  of  edge  elements — for  example, 
the  set  of  points  where  the  gradient  of  the  picture  function  exceeds  a  certain 
threshold.  The  next  problem  is  how  to  group  edge  elements  that  form  a 
continuous  contour  and  segment  them  into  lines  and  curves. 

Tracking.  Tracking  links  edge  elements  into  a  longer  contour  by  visiting 
the  neighboring  elements  one  after  another.  A  typical  method  is  to  scan  the 

edge-element  image  left  to  right  and  top  to  bottom  and,  when  an  edge  element 
is  found,  check  whether  any  of  its  eight  neighbors  are  edge  elements.  If  one  is, 
mark  it  and  move  to  it,  and  repeat  the  process.  The  edge  elements  that  have 
been  visited  must  be  marked  as  such,  so  that  no  duplicate  tracking  occurs.  If 
two  or  more  neighbors  are  edge  elements,  remember  their  positions  in  a  stack 
as  branch  points.  If  there  is  no  neighboring  edge  element,  the  present  position 
is  the  terminal  of  a  contour,  and  processing  continues  from  the  last  branch 
point.  If  there  are  no  more  branch  points,  the  image  is  scanned  for  another 
starting  point.  This  process  will  eventually  visit  all  edge  elements. 

This  fundamental  algorithm  has  many  difficulties.  First,  it  implicitly 
assumes  that  an  edge  contour  is  just  one  pixel  wide.  A  thinning  operation 
is  usually  carried  out  to  thin  the  width  of  the  line  before  tracking.  Second, 
because  of  noise,  false  edge  elements  are  found,  as  are  gaps  in  a  continuous 
line.  The  tracking  algorithm  is  fooled,  and  it  detours  from  the  true  straight 
lines  or  smooth  curves  or  is  stranded  in  the  middle  of  them.  One  remedy  is  to 
give  the  tracking  algorithm  inertia  so  that  it  continues  its  current  direction 
of  search.  Tracking  thus  searches  for  a  continuation  of  the  last  few  edge 
elements;  when  it  encounters  a  gap,  it  continues  tracking  if  it  finds  a  line  of 
the  same  orientation  beyond  the  gap. 

A  third  problem  is  that  tracking  is  inevitably  local,  even  with  tricks  to 

bridge  gaps  and  avoid  false  edges.  To  do  a  really  good  job  of  line  finding,  cer- 
tain global  knowledge,  often  domain  knowledge,  is  introduced.  For  example, 
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Shirai's  semantic  line  finder  (see  Article  XIII.B6)  incorporates  blocks-world 
knowledge.  Another  method  is  to  use  a  figure  of  merit  to  constrain  the  shape 
of  contours  to  be  traced.  For  example,  suppose  we  are  interested  in  extracting 
a  curve  that  is  as  smooth  as  possible  and  across  which  the  intensity  difference 
is  as  large  as  possible.  Then  we  can  define 

C=  Y.         lar(i,j)2  +  c2d(i,j)2\ 
(i,j)  on  a  curve 

as  a  figure-of-merit  function  of  a  curve,  where  r(i,  j)  is  the  curvature  radius, 
d(i,j)  is  the  intensity  difference,  and  c\  and  C2  are  positive  constants.  Then 
the  tracking  problem  becomes  an  optimization  problem  of  searching  for  a  path 
in  the  image  that  maximizes  C.  It  can  be  solved  with  dynamic  programming 

(Montanari,  1971),  depth-first  search  (Chien  and  Fu,  1974),  or  heuristic  search 
(Martelli,  1976). 

Segmenting  a  contour  into  lines  and  curves.  Once  a  contour  is  iden- 
tified, it  is  sometimes  necessary  to  segment  it  into  a  sequence  of  straight  line 

segments  and  primitive  curves.  There  is  a  very  simple  algorithm  for  generat- 
ing a  multiple-line  description  from  a  given  set  of  points,  called  an  iterative 

endpoint  fit  (see  Fig.  C4-5).  It  begins  by  choosing  from  the  set  two  extreme 
points,  A  and  B,  and  approximates  the  entire  set  by  the  line  joining  these  two 
endpoints.  If  the  fit  is  good,  the  procedure  stops;  otherwise,  it  chooses  the 

point  farthest  from  the  fitted  line,  C,  and  replaces  the  one-line  description 
AB  by  a  two- line  description,  AC,  CB.  The  process  is  repeated  on  each  of 
these  segments,  and  so  on,  until  sufficiently  good  matches  are  achieved  for 
all  segments.  Unfortunately,  this  simple  algorithm  can  be  strongly  influenced 

by  a  single  noise  point.  It  is  essential  that  it  operate  in  a  virtually  noise- free 
environment,  perhaps  provided  by  an  earlier  smoothing  process. 

Another  important  idea  is  to  represent  the  contour  as  a  function  of  its 

length  s  from  its  starting  point— specifically,  to  represent  the  slope  of  the 

A^ 

Figure  C4-5.     An  iterative  endpoint  fit  method  (from  Duda  and  Hart,  1973). 
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Figure  C4-6.     A  tp-a  transform  (from  Turner,  1974). 

tangential  line,  ip,  or  curvature,  6,  as  a  function  of  s.  For  example,  as  shown 

in  Figure  C4-6,  ip  and  s  can  be  used  to  segment  a  contour  into  lines  and 
arcs.  When  we  plot  i/>  against  s,  the  linear  portion  of  the  contour  becomes 

a  horizontal  line  in  the  ip-a  graph,  and  the  arc  portion  becomes  a  line  with 

a  slope.  Then  we  can  divide  the  ip-s  graph  into  piecewise  linear  segments, 
and  use  the  position  of  break  points  to  segment  the  original  contour  into  line 

segments  and  arc  segments  depending  on  the  slope  of  the  corresponding  ifi-a 
segments. 

The  Hough  transform.  It  is  possible  to  detect  multiple  straight  lines 

from  a  set  of  edge  points  with  a  clustering  method.  To  do  so,  we  represent  a 

line  in  the  x-y  picture  plane  by 

x  cos  9  +  y  sin  9  =  p  . 

A  graphical  interpretation  of  this  equation  is  shown  in  Figure  C4-7a.  Let  us 
imagine  a  parameter  space  made  of  (p,  9).  The  previous  equation  is  then  a 

transformation  from  (x,  y)  to  (p,  9)  with  the  following  properties: 

1.    A  line  in  the  x-y  space  is  transformed  to  a  point  (p,  9)  in  the  p-9  space, 
and  vice  versa. 

2.  A  point  (x,  y)  is  transformed  to  a  sinusoidal  curve  in  the  p-9  space,  and 
vice  versa.  Notice  that  the  (p,  9)  on  this  sinusoidal  curve  mean  all  the 
lines  that  pass  the  point  (x,  y). 
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p  =  xcos9  +  ys'mO B  =  (x,y) 

(a) (b) 

Figure  C4-7.     Hough  transform. 

Suppose  we  have  a  set  of  edge-element  points  (xi,yi),  i  =  1  ~  N,  and 
transform  them  into  TV  sinusoidal  curves  in  the  p-9  space.  If  the  original 
points  are  on  a  line,  say,  xcos#o  +  ysinOo  =  po,  then  the  sinusoidal  curves 

should  intersect  at  (po,9o),  as  shown  in  Figure  C4-7b.  Therefore,  we  can  find 
a  group  of  points  in  the  x-y  space  that  form  a  line  by  detecting  a  point  in 
the  p-6  space  at  which  many  curves  intersect.  Actually,  we  represent  the  p-9 
space  as  an  array  of  accumulators,  (pm,  0m),  each  of  which  is  responsible  for 
a  short  interval  of  p  and  9.  For  an  edge  element  at  (xi,yi),  we  compute  the 
corresponding  sinusoidal  curve  and  add  1  to  the  content  of  the  accumulators 
on  which  the  curve  passes.  After  all  points  are  transformed,  the  accumulators 
that  contain  a  large  number  suggest  lines  whose  formulas  are  given  by  the 

associated  (pm,^m). 

Since  this  method  generates  N2/2  intersections  for  N  original  points, 
detecting  significant  clusters  is  not  trivial.  An  alternative  is  to  compute  the 

orientation  9{  at  an  edge  element  (x{,yi)  by  means  of  the  gradient  operators 
for  edge  detection  discussed  in  this  article.  Rather  than  transforming  an  edge 

element  to  a  sinusoidal  curve  in  the  p-9  space,  we  transform  it  into  a  point 

(pi,  9i),  where  pi  =  X{  cos9{  +  yi  sin#,-,  and  augment  the  single  corresponding 
accumulator.  This  class  of  methods,  transforming  into  a  parameter  space, 
has  the  advantage  that  the  set  of  points  that  constitute  a  line  can  be  detected 
despite  gaps  or  noise  points. 

Conclusion 

Numerous  operators  and  techniques  for  edge  detection  have  been  devel- 
oped, and  we  have  covered  only  a  fraction  of  them  in  this  article.  Some 

techniques  are  relatively  general,  while  others  are  tuned  for  particular  appli- 
cations.   Most  vision  systems  need  some  kind  of  edge  detection  to  get  line 
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descriptions  of  images.    This  requires  a  sequence  of  operations,  from  edge- 
element  detection  to  line  description. 

References 
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system  (1979). 



C5.     Region  Analysis 

AN  IMAGE  is  represented  as  a  two-dimensional  array  of  pixels  conveying 
image- feature  values.  The  task  of  region  analysis  is  to  group  together  the 
pixels  in  an  image  that  share  some  values  of  a  feature.  For  example,  an  image 
can  be  segmented  into  regions  of  similar  color,  under  the  assumption  that 
these  regions  correspond  to  surfaces  in  the  scene  that  produced  the  image. 

The  regions  produced  by  region  segmentation  typically  have  several  prop- 
erties. Such  regions  are  mutally  exclusive — that  is,  no  pixel  belongs  to  more 

than  one  region — and  they  are  usually  exhaustive — that  is,  each  pixel  belongs 
to  some  region.  Each  region  consists  of  a  single  cluster  of  contiguous  pixels; 
it  is  simply  connected.  Each  region  satisfies  some  predicate,  which  usually 
indicates  uniformity  in  the  desired  features,  and  no  two  adjacent  regions 

satisfy  the  same  set  of  predicates — that  is,  no  two  adjacent  regions  look  the 
same. 

Region- segmentation  techniques  are  attractive  for  a  number  of  reasons. 
For  one,  there  are  usually  far  fewer  regions  than  pixels,  so  region  segmenta- 

tion is  a  form  of  data  compression.  Moreover,  regions  are  groups  of  pixels 

with  (presumably)  the  same  semantic  interpretation,  so  they  are  convenient 
units  for  later  stages  of  image  understanding  (such  as  naming  objects).  The 
boundaries  of  regions  form  outlines  of  important  areas  of  the  image,  and  since 
these  outlines  are  guaranteed  to  be  connected  and  unique,  region  segmentation 

avoids  some  of  the  problems  inherent  in  edge-based  techniques  (see  Article 
XIII.C4). 

One  weakness  of  region  segmentation  is  that  it  makes  assumptions  about 
the  uniformity  of  image  features,  for  instance,  that  all  pixels  with  the  same 
color  correspond  to  the  same  surface.  Violations  of  these  assumptions  will 

produce  erroneous  results.  For  example,  highlights  will  violate  the  assumption 
above,  causing  a  single  surface  to  be  split  into  several  regions  or  producing 
tiny  noise  regions. 

There  are  two  primary  approaches  to  region  segmentation: 

1.  Region  growing.  Starting  with  many  tiny,  trivial  regions,  such  as  indi- 
vidual pixels,  merge  similar  regions  until  the  only  regions  that  remain 

are  uniform  and  no  further  merging  is  possible. 

2.  Region  splitting.  Starting  with  a  single  large  region,  such  as  the  entire 
image,  split  it  into  several  pieces.  Continue  splitting  pieces  until  only 
uniform  regions  remain. 

Region  Growing 

Region  growing  begins  with  many  tiny  atomic  regions,  often  individual 
pixels  or  collections  of  adjacent  pixels  that  have  an  identical  gray  level,  color, 
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or  the  like.  Adjacent  similar  regions  are  merged  until  no  two  adjacent  regions 
are  sufficiently  similar  to  be  merged.  Regions  are  similar  if  their  pixel  values 
do  not  vary  significantly,  for  example,  if  the  means  of  their  gray  levels  are 
approximately  the  same.  Variance  is  measured  by  standard  deviation,  range, 
or  a  similar  statistic. 

There  are  two  common  organizations  for  the  region-growing  algorithm. 
In  the  first,  processing  begins  in  any  atomic  region,  say,  the  upper  left-hand 
corner,  and  then  an  adjacent  atomic  region  is  examined.  If  it  can  be  merged 
with  the  first,  this  is  done.  The  next  atomic  region  that  is  adjacent  to  any* 
part  of  the  current  region  is  then  tested,  and  so  on.  When  no  more  adjacent 
atomic  regions  can  be  merged  with  the  current  region,  another  atomic  region 
is  selected  and  a  new  region  is  created.  Processing  continues  in  this  sequential 
manner  until  all  atomic  regions  belong  to  some  region. 

Another  organization  is  to  compute  initially,  for  each  pair  of  adjacent 
regions,  the  worth  of  merging  them.  Next,  the  pair  that  is  judged  most 
worthy  of  merging  is  merged,  and  the  worth  of  merging  this  new  region  with 
its  neighbors  is  recomputed.  Processing  continues  in  this  parallel  manner  until 
no  pair  of  regions  is  judged  worthy  of  merging. 

There  have  been  several  variations  on  the  basic  region-growing  idea.  For 
example,  the  criteria  for  merging  regions  might  be  based  on  properties  of 
the  region  shapes  as  well  as  on  their  pixel  values.  Along  these  lines,  Brice 
and  Fennema  (1970)  developed  two  heuristics  for  deciding  whether  to  merge 

adjacent  regions  with  a  weak  boundary.  (A  boundary  is  weak  if  the  gray- 
level  difference  across  it  fails  to  exceed  some  threshold.)  The  first  heuristic, 
called  the  phagocyte  heuristic,  merges  two  regions  if  the  weak  part  of  their 
common  boundary  exceeds  some  fraction  of  the  perimeter  of  one  region  or 
the  other.  This  has  the  effect  of  merging  only  if  one  region  is  contained  (or 
almost  contained)  within  the  other.  The  second  heuristic,  called  the  weakness 
heuristic,  merges  two  regions  if  the  length  of  the  weak  part  of  their  common 
boundary  exceeds  some  fraction  of  the  total  common  boundary. 

Yakimovsky  and  Feldman  (1973)  use  semantic  interpretations  of  regions 
to  guide  region  growing.  They  would  merge  regions  only  if  the  interpretation 
to  be  assigned  to  the  resulting  region  was  compatible  with  the  interpretations 
of  other  adjacent  regions.  Harlow  (1973)  allowed  the  threshold  for  merging  to 
vary,  depending  upon  the  interpretation  of  the  region  being  generated. 

Region  Splitting 

Region  splitting  is  a  recursive  procedure  in  which  a  single  region  is  ex- 
amined and  possibly  split  into  pieces  that,  as  regions  themselves,  are  then 

examined  and  split  in  exactly  the  same  way.  Initially,  the  entire  image  is 
considered  to  be  a  single  region. 

The  usual  technique  for  deciding  when  to  split  a  region  is  to  form  a  histo- 
gram of  the  pixel  values  within  the  region — a  graph  that  indicates,  for  each 
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pixel  value,  how  many  pixels  have  that  value.  Under  the  assumption  that  each 

surface  or  object  will  contain  many  pixels  of  similar  value,  peaks  in  the  histo- 
gram will  indicate  surfaces.  If  a  region  consists  of  a  single  surface  or  object, 

its  histogram  will  therefore  consist  of  a  single  peak;  if  the  histogram  contains 
several  peaks,  the  region  may  contain  several  surfaces  and  is  a  candidate  for 

splitting. 

It  is  possible  to  judge  the  uniformity  of  a  region  of  pixel  values  statis- 
tically, with  a  measure  of  variance  such  as  the  standard  deviation  of  pixel 

values,  and  to  use  this  measure — rather  than  a  histogram — to  decide  whether 
to  split  a  region.  Robertson,  Swain,  and  Fu  (1973)  proposed  dividing  a  region 
vertically  or  horizontally  into  two  regions  of  equal  size  if  the  variance  of  pixel 
values  was  large. 

If  a  histogram  is  made,  it  can  be  used  to  decide  how  to  split  a  region. 
A  valley  in  the  histogram  between  two  peaks  corresponds  to  a  pixel  value 
that  does  not  occur,  or  occurs  only  infrequently.  The  pixel  value  at  the  valley 
can  be  used  as  a  threshold,  and  the  region  can  be  split  into  two  collections  of 
pixels:  those  whose  value  is  above  the  threshold  and  those  whose  value  is  below 
the  threshold.  Groups  of  contiguous  pixels  from  either  collection  become  new 
regions.  Each  is  examined  by  the  same  technique  to  see  if  it  should  be  split 
further. 

This  technique,  developed  by  Prewitt  (1970)  and  often  referred  to  as  the 

mode  method,  is  suitable  for  pictures  with  a  single  feature,  such  as  black- 
and-white  images.  Tsuji  and  Tomita  (1973)  and  Ohlander  (1975;  Ohlander, 
Price,  and  Reddy,  1978)  extended  the  idea  to  include  multiple  histograms. 

The  resulting  technique  is  perhaps  the  most  common  region-splitting  method 
used  today.  Each  region  is  histogrammed  separately  for  each  of  the  color 

bands  (or  other  features).  Then  each  histogram  is  examined  separately,  and 
potential  thresholds  are  determined  for  each  feature.  The  histograms  and 
potential  thresholds  are  then  compared  to  determine  which  feature  appears 
most  promising.  Usually,  the  feature  that  shows  the  best  separation  of  peaks  is 
chosen.  Finally,  thresholding  of  the  image  using  the  selected  feature  proceeds 

as  described  above.  With  this  technique,  the  feature  with  the  most  discrimina- 
tive power  is  the  basis  for  segmentation. 

Other  Approaches  to  Region  Splitting 

Another  approach  to  region  splitting  involves  examining  a  distribution 

of  the  image  features  in  a  multidimensional  feature  space.  Like  peaks  in  one- 
dimensional  histograms,  clusters  of  feature  points  in  a  multidimensional  space 

are  assumed  to  correspond  to  meaningful  regions  in  the  image.  Clustering, 

the  name  given  to  techniques  for  developing  the  distribution  of  feature- values 
in  a  multidimensional  space,  is  a  common  practice  in  the  fields  of  statistical 
data  analysis  and  statistical  pattern  recognition. 
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Coleman  and  Andrews  (1979)  describe  a  region-segmentation  method, 
based  on  multidimensional  space  clustering,  that  uses  both  color  and  texture 
features.  The  idea  is  to  form  a  histogram  over  the  feature  space  and  then  to 

break  the  space  into  parts  wherever  a  cluster — a  local  maximum  over  some 

sizable  neighborhood — appears  in  the  histogram.  Since  we  do  not  usually 
know  the  number  of  meaningful  regions  in  the  image,  we  need  some  criterion 

for  selecting  clusters.  Coleman  and  Andrews  used  the  product  of  between- 
cluster  and  within-cluster  scatter  averages,  and  selected  the  number  of  clusters 
for  which  this  product  is  a  maximum.  Once  the  clusters  are  identified,  each 
pixel  is  labeled  with  the  name  of  the  cluster  it  belongs  to,  and  the  image 
is  partitioned  by  merging  adjacent  pixels  with  identical  cluster  labels  into  a 
single  region. 

The  selection  of  color  features  for  Ohlander's  algorithm  has  been  exam- 
ined in  detail  by  Ohta  (see  Ohta,  Kanade,  and  Sakai,  1980).  He  used  a 

Karhunen-Loeve  (K-L)  expansion  to  measure  the  axis  of  primary  variation 
of  pixel  values  for  each  region  undergoing  segmentation.  A  statistical  analysis 
showed  that  certain  axes  were  much  more  likely  than  all  the  rest  to  represent 
optimally  the  variation  of  pixel  values.  The  most  common  was  the  intensity 

axis,  7i  =  R+G+B  (see  Article  XIII.C2).  The  second  and  third  most  commonly 

used  axes  were  approximately  I2  =  R  —  B  and  I3  =  2G  —  R  —  B,  respectively. 
It  should  be  noted  that  these  features  are  simple  linear  transformations 

of  RGB  data  and,  thus,  are  immune  to  the  nonuniformity  of  feature- value 
distributions  that  are  introduced  by  nonlinear  transformations  as  an  artifact 

(see  Article  XIII.C2;  Kender,  1977).  Ohta  compared  segmentation  using  h, 
I2,  and  h  to  segmentation  using  RGB,  XYZ,  YIQ,  BSD,  UVW,  and  other 
similar  features.  He  concluded  that  his  features  performed  for  a  wide  variety 
of  images  at  least  as  well  as  any  of  these  other  feature  sets.  Statistically, 

it  is  optimal  to  compute  the  K-L  transform  for  each  region  to  be  split; 

using  Ohta's  features  allows  a  sort  of  precomputation  of  the  K-L  transform 

(under  the  assumption  that  one's  images  are  likely  to  be  statistically  similar 
to  Ohta's). 

Postprocessing  for  Region  Extraction 

Region  splitting  with  histograms  exploits  global  information  about  fea- 
tures of  the  image,  but  it  fails  to  exploit  the  local  spatial  information  that 

region-growing  methods  can  use.  Because  of  this,  when  an  image  is  divided 
into  collections  of  pixels  by  thresholding,  there  are  typically  some  pixels  (with 
values  close  to  the  threshold)  that  seem  to  have  the  wrong  label.  These  noise 
regions  must  be  eliminated.  Ohlander  (1975)  used  binary  smoothing  operators 
(see  Article  XIII.C3)  to  eliminate  thin  regions  or  holes.  Shafer  (1980)  eliminated 
any  region  whose  area  was  less  than  some  constant. 

There  are  a  number  of  ways  to  do  postprocessing  on  a  histogram-based 
segmentation.    One  is  a  kind  of  smoothing  (Article  XIII. C3):  If  most  of  the 
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neighbors  of  pixel  P  are  labeled  C,  then  P  is  relabeled  with  C.  This  type  of 

postprocessing  has  been  used  in  remote-sensing  applications  where  regions  are 

expected  to  be  uniform — where  a  "wheat"  pixel  is  not  expected  to  appear  in 
the  middle  of  the  "corn"  field.  A  slightly  modified  method  is  the  conservative 
threshold  (e.g.,  Nagin,  Hanson,  and  Riseman,  1977).  This  involves  delaying 
classification  of  pixels  with  feature  values  near  the  threshold  (or  near  the 
boundary  of  the  discriminant  surface).  These  pixels  are  classified  in  a  second 
pass,  according  to  the  labels  of  their  neighbors. 

Another  postprocessing  technique  is  relaxation  (Rosenfeld,  1978).  Instead 
of  assigning  a  single  label  to  each  pixel,  the  probability  pi  that  P  belongs 

to  class  Ci  is  estimated  based  on  the  distribution  of  image-feature  values. 
Then  these  probabilities  are  adjusted  by  some  relaxation  formula  so  that  pi  is 
revised  iteratively  using  the  previous  values  of  its  own  and  neighboring  pixels. 

(See  Article  XIII.E4  for  a  discussion  of  probabilistic  relaxation  algorithms.) 
Rosenfeld  reports  that,  in  his  experiments,  error  removal  by  this  method  is 
five  times  better  than  simple  postprocessing. 

Supplementary  information  can  facilitate  postprocessing  in  region  analy- 
sis. For  example,  Milgram  and  Kahl  (1979)  compared  the  boundaries  of 

proposed  regions  with  the  edges  found  by  an  edge-detecting  operator;  regions 
were  discarded  if  their  boundaries  did  not  correspond  sufficiently  well  with 
the  supplementary  edges. 

The  problem  of  threshold  detection  from  a  histogram  has  received  con- 
siderable attention.  A  survey  of  this  area  is  presented  in  Weszka  (1978). 

Conclusion 

A  region  has  been  defined  intuitively  as  a  group  of  pixels  with  certain  con- 
sistent characteristics;  region-segmentation  methods  rely  mostly  on  spectral 

and  spatial  distributions  of  the  image- feature  values.  However,  the  problem 
of  region  segmentation  requires  more  than  simply  analyzing  image-feature 
values,  because  the  ultimate  goal  of  region  segmentation  is  to  find  a  seg- 

mentation that  separates  out  meaningful  objects  or  parts  of  objects,  such  as 

"nucleus  of  cell,"  "sky,"  and  "tree."  It  is  recognized  in  vision  research  that 
region-segmentation  programs  must  have  knowledge  about  the  world  from 
which  the  images  are  taken. 
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C6.     Texture 

IMAGES  of  textiles,  terrains,  and  tree  barks  all  include  textures — fine-grained 
patterns  of  small  elements,  arranged  with  a  certain  structure.  Regions  of 

texture  appear  homogeneous.  Texture  thus  provides  important  cues  for  dis- 
tinguishing objects  and  natural  scenes.  Gradual  change  in  texture  is  a  cue  to 

depth  and  orientation;  texture  gradients  were  proposed  by  Gibson  (1950)  as 
part  of  his  model  of  human  perception.  In  computer  vision,  texture  analysis 
is  an  important  segmentation  technique.  It  is  also  used  to  recognize  types 

of  surfaces  and  their  quality  and  to  recover  three-dimensional  information 
from  images.  This  article  will  discuss  the  description  and  extraction  of  two- 
dimensional  patterns  of  textural  features;  the  problem  of  relating  texture  with 

three-dimensional  shapes  is  discussed  in  Article  XIII.D5. 

Extraction  of  Textural  Features 

There  are  many  applications  of  vision  research  that  depend  on  dis- 
criminating textures.  For  example,  quality  control  and  aerial  survey  can  both 

be  done  by  examining  the  textural  properties — or  features — of  images.  In 
quality  control,  different  mixtures  of  materials  show  up  as  different  textures 
in  microscopic  images  of  samples.  In  aerial  survey,  different  terrains  such  as 
grassland  and  forest  appear  as  different  textures.  To  exploit  these  textural 
differences,  it  is  necessary  to  define  and  extract  features  that  discriminate 
between  textures.  Various  textural  features  have  been  proposed;  some  are 
motivated  by  specific  applications  and  others  by  a  desire  to  explain  human 
texture  discrimination. 

Statistical  features.  The  simplest  textural  features  are  first-order  statis- 
tics that  describe  the  distribution  of  individual  pixel  features  such  as  intensity. 

Histograms  of  intensity  and  other  features  can  be  compared  directly  with  the 

Kolmogorov-Smirnov  test;  alternately,  the  distribution  can  be  summarized 
by  the  mean,  variance,  skewness,  and  kurtosis  (the  first,  second,  third,  and 
fourth  moments  of  the  distribution,  respectively),  and  these  can  be  used  as 
texture  features. 

Second-order,  or  dipole,  statistics  summarize  the  probability  of  the  inten- 
sity values  of  a  pair  of  pixels.  These  statistics  are  computed  for  pairs  of  pixels 

in  different  positional  relations  and  are  summarized  in  a  co-occurrence  matrix. 
Let  6  =  (r,  6)  denote  a  vector  in  the  image  that  represents  a  displacement 
by  r  in  the  orientation  of  9.  Ps(1 1^2)  denotes  a  probability  that  a  pair  of 

pixels  displaced  by  6  has  intensities  I\  and  I2'.  The  first  pixel  has  intensity  I\ 
and  the  second,  displaced  by  S  from  the  first,  has  intensity  1^-    If  intensity 
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takes  one  of  n  possible  values,  a  co-occurrence  matrix  is  an  n  X  n  matrix  and 
records  all  the  Ps(Ii,l2),  1  <  h,h  <  n,  for  one  S. 

Finding  co-occurrence  matrices  for  all  6  involves  a  prohibitive  amount  of 
computation.  Haralick,  Shanmugam,  and  Dinstein  (1973),  who  first  used  co- 

occurrence matrices  to  classify  terrains  in  aerial  photographs,  computed  just 

four  co-occurrence  matrices  for  r  =  1  and  0  =  0°,  45°,  90°,  and  135° — that 
is,  the  second-order  statistics  for  pairs  of  pixels  that  are  one  pixel  distant  in 
each  of  four  orientations.  From  each  matrix,  they  defined  14  feature  values 
for  discriminating  between  textures. 

Statistics  on  differences  of  intensities  (rather  than  combinations  of  inten- 
sities) can  be  also  used  as  textural  features.  Let  Ps{k)  be  the  probability  that 

a  pair  of  pixels  separated  by  8  has  a  difference  of  intensity  k.  P$  can  be 

derived  from  a  co-occurrence  matrix  P^ii,^),  because 

P6(k)=      Yl      ps(hJ2)- 
\h-l2\  =  k 

Ps{k)  provides  a  simpler  set  of  statistics  than  /^(/i,^);  they  have  been 
tested  for  terrain  classification  and  material  inspection  (Weszka,  Dyer,  and 
Rosenfeld,  1976). 

Various  other  statistical  texture  features  have  been  proposed,  including 

the  power  spectrum  of  an  image  (Bajcsy,  1973),  coefficients  in  an  autoregres- 
sion  or  a  linear-prediction  model,  and  autocorrelations  of  an  image.  The 
co-occurrence  matrix  and  these  features  are  interrelated:  One  feature  can  be 
mathematically  derived  from  another.  Higher  order  statistics  might  also  be 
used;  however,  they  involve  more  computation  and  do  not  necessarily  give 
better  results.  In  fact,  Julesz  (1975)  conjectured  that  two  textures  are  not 

discriminable  if  their  second-order  statistics  are  identical.  Recently,  some 
counterexamples  to  this  conjecture  have  been  found;  nonetheless,  it  is  possible 

that  second-order  statistics  are  the  most  that  need  be  computed  for  texture 
discrimination. 

Local  Features 

The  statistics  we  have  discussed  are  based  on  pixel-level  intensity  values. 
An  alternative  is  to  extract  local  features  and  take  statistics  on  them.  The 

most  representative  of  this  method  are  edge  statistics.  Edge  strength  and 

orientation  are  computed  by  edge  operators  (see  Article  XIII. C4)  and  are  sum- 
marized by  various  statistics.  For  example,  Tamura,  Mori,  and  Yamawaki 

(1978)  computed  a  directional  co-occurrence  matrix  that  summarized  statis- 
tics on  the  combinations  of  edge  orientations  for  pairs  of  edge  elements  with 

certain  geometrical  relationships. 
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Marr's  primal  sketch  is  consistent  with  this  approach.  In  his  original 
proposal  (Marr,  1976),  an  image  is  processed  with  edge  and  bar  masks  of 
various  sizes  to  detect  primitives  like  edges,  lines,  and  blobs.  Each  primitive 
has  attributes  such  as  orientation,  size,  and  contrast.  The  primal  sketch  was 

proposed  as  an  explicit,  symbolic  representation  of  this  information.  It  also 

makes  explicit  the  two-dimensional  relations  between  primitives,  including 
parallelism  between  nearby  edges  and  relative  positions  and  orientation  of 

significant  places  in  the  image.  These  places  are  marked  by  place-tokens,  and 
the  geometrical  relations  between  them  are  represented  by  inserting  virtual 

lines  between  nearby  tokens.  Figure  C6-1  is  an  example  of  the  primal  sketch. 
Statistics  derived  from  histograms  of  intensity,  contrast,  line-fragment  length, 
line-fragment  orientation,  and  so  on  are  used  for  texture  discrimination.  Marr 
argues  that  this  model  explains  experimental  evidence  on  texture  discrimina- 

tion by  humans.  In  the  line-and-point  textures  that  Schatz  (1977)  examined, 
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c. Figure  C6-1.     Primal  sketch  (from  Marr,  1976). 



C6 Texture 
233 

length  and  orientation  of  actual  lines  and  of  local  virtual  lines  between  ter- 
minators were  sufficient  for  texture  discrimination. 

Segmentation  of  Texture  Regions 

Texture  features  can  be  used  to  segment  images  into  regions,  if  the  appro- 
priate features  are  known  a  priori.  However,  since  textural  features  are  derived 

from  statistics  taken  over  a  region,  it  is  difficult  to  get  meaningful  statistics 
unless  the  region  is  delimited  a  priori. 

One  solution  to  this  problem  is  to  detect  texture  edges  (and,  thus,  regions) 
by  measuring  a  change  in  texture  over  a  small  window.  This  is  most  useful  for 
those  textures  that  can  be  discriminated  on  the  basis  of  intensity  distributions, 

such  as  random-dot  textures.  However,  if  the  window  is  too  small,  the  edge 

detector's  output  fluctuates  due  to  local  intensity  variation,  and  if  it  is  too 
large,  the  boundary  is  blurred.  Rosenfeld  and  Thurston  (1971)  used  a  variable- 
sized  edge  detector:  Several  window  sizes  were  tried  at  each  pixel  position  to 
compute  the  local  derivative,  and  the  one  that  satisfied  a  certain  criterion  was 
used  as  the  strength  of  the  texture  edge. 

A  second  approach  is  to  smooth  an  image  (Article  XIII.C3)  so  that  pixels 
in  a  single  texture  region  will  have  similar  values  in  the  smoothed  image. 
This  image  can  then  be  segmented  as  an  ordinary  intensity  image.  However, 
the  neighborhood  over  which  the  smoothing  is  performed  has  to  be  carefully 

selected  in  order  not  to  blur  the  boundaries.  Tomita  and  Tsuji  (1977)  con- 
sidered the  five  neighborhoods  for  each  pixel  position  shown  in  Figure  C6-2 

to  be  used  for  smoothing.  The  value  for  the  pixel  is  taken  to  be  the  value  of 
the  average  over  the  most  uniform  of  the  five  neighborhoods.    This  method 

Figure  C6-2.     Five  neighborhoods  of  point  (x,  y) 
(from  Tomita  and  Tsuji,  1977). 
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allows  only  one  texture  region  to  be  included  for  averaging  even  when  the  pixel 

is  on  a  boundary — in  the  case  of  Figure  C6-2,  the  neighborhood  in  the  upper 
left.  Thus,  texture  edges  are  preserved  in  the  smoothed  image.  Figures  C6-3a 
and  C6-3b  show  an  example  of  segmentation  by  this  method.  For  comparison, 
Figure  C6-3c  shows  the  result  of  smoothing  with  a  fixed  neighborhood:  We 
can  observe  in  this  case  blurring  near  the  boundaries  of  texture  regions. 

Another  approach  is  to  use  multiple  histograms  of  the  properties  of  tex- 
tural  elements  (e.g.,  histograms  derived  from  the  primal  sketch)  to  find  appro- 

priate thresholds  to  split  images.  This  is  the  same  approach  as  in  region 
splitting  (see  Article  XIII. C5).  In  fact,  one  of  the  first  applications  of  multiple 
histograms  to  recursive  region  splitting  employed  texture  features.  Tomita, 

Yachida,  and  Tsuji  (1973)  segmented  the  image  in  Figure  C6-4  with  his- 
tograms of  the  area,  perimeter,  and  moments  of  its  primitive  elements.  The 

histograms  for  Figure  C6-4  are  shown  in  Figure  C6-5a.  The  perimeter,  whose 
histogram  shows  the  most  conspicuous  bimodality,  was  first  used  for  segmen- 

tation, resulting  in  the  regions  shown  in  Figures  C6-5b  and  C6-5c.  Figure 
C6-5b  is  further  divided  with  a  moment  (Fig.  C6-5d). 

Conclusion 

Texture  provides  important  cues  in  analyzing  natural  scenes.  Recently, 

it  has  attracted  increasing  attention  in  computer-vision  research.  It  is  also 
being  studied  in  perceptual  psychology,  and  this  research  has  had  an  influence 
on  computer  vision.  Models  for  generating  textures  have  also  been  studied; 

among  them,  Markov  models,  a  statistical  model — a  noise  function  plus  a 
transfer  function  (Pratt,  Faugeras,  and  Gagalowicz,  1978),  a  random  mosaic 

model  (Schachter,  Rosenfeld,  and  Davis,  1978),  and  a  syntactic  model  (Rosen- 
feld  and  Lipkin,  1970;  Zucker,  1976b). 

(a) » 

Figure  C6-3.  Segmentation  by  local  averaging:  (a)  input  image,  (b)  variable 
neighborhood,  and  (c)  fixed  neighborhood  (from  Tomita  and 
Tsuji,  1977). 
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Figure  C6-4.     An  image  with  textural  primitive  elements  obtained  from 
a  real  image  (from  Tomita,  Yachida,  and  Tsuji,  1973). 
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Figure  C6-5.     Segmentation  of  texture  regions  by  use  of  multiple  histograms 
(from  Tomita,  Yachida,  and  Tsuji,  1973). 



C6  Texture  237 

References 

Brodatz  (1966)  contains  many  pictures  of  textures.  Rosenfeld  and  Kak 
(1976)  include  basic  techniques  for  texture  segmentation.  Haralick  (1978) 
surveys  research  on  a  statistical  and  structural  approach  to  texture. 



D.     REPRESENTATION  OF  SCENE  CHARACTERISTICS 

Dl.     Intrinsic  Images 

IMAGE  UNDERSTANDING  typically  involves  analysis  of  an  image  to  deter- 
mine some  features  and  matching  those  features  with  entries  in  a  database 

of  objects  to  determine  which  objects  are  present.  Segmentation  techniques 
attempt  to  determine  features  in  the  image,  such  as  regions  of  uniform  color 
or  intensity;  in  general,  these  can  be  matched  to  database  entries  only  if  the 
objects  are  presented  in  specific  orientations  (i.e.,  with  known  outlines  in  the 
image).  A  more  powerful  approach  is  to  determine  features  of  the  scene,  such 
as  the  orientation  of  each  surface  and  its  distance  from  the  camera.  These 

features  can  then  be  interpreted  in  terms  of  object  shapes  in  the  scene,  which 

can  probably  be  matched  with  the  database  under  a  wider  variety  of  condi- 
tions. The  distinction  is  between  determining  two-dimensional  image  features 

and  determining  three-dimensional  scene  features  from  the  image. 
The  most  basic  features  of  a  scene  include  orientation  (which  way  a  sur- 

face is  tipped),  distance  from  the  camera,  reflectance  (how  light  or  dark  it 
is),  and  the  amount  of  incident  illumination.  These  are  called  the  intrinsic 
characteristics  of  the  scene. 

We  can  represent  intrinsic  characteristics  iconically,  that  is,  as  images. 

The  various  intrinsic  values  are  computed  for  each  individual  pixel,  repre- 
senting the  intrinsic  characteristics  of  the  surface  that  is  imaged  in  that  pixel. 

In  this  representation,  there  is  an  image  for  reflectance  values,  one  for  orien- 

tations, one  for  distance,  and  one  for  incident  illumination  (see  Fig.  Dl-1). 
These  are  all  in  registration  with  the  original  image.  The  idea  of  computing 

images  of  scene  characteristics  emerged  from  Horn's  work  (1977)  with  albedo 
maps;  the  idea  was  furthered  and  aptly  named  intrinsic  images  by  Barrow 
and  Tenenbaum  (1978;  Tenenbaum,  Fischler,  and  Barrow,  1980). 

In  addition  to  the  iconic  representation,  each  intrinsic  image  contains  an 

explicit  list  of  points  at  which  there  is  a  discontinuity  in  the  value  (e.g.,  inten- 
sity) and  another  list  of  points  at  which  the  gradient  (two-dimensional  deriva- 
tive) of  the  value  is  discontinuous.  These  correspond  to  the  solid  and  dashed 

lines  in  Figure  Dl-1.  This  information  is  extremely  important,  since  discon- 
tinuities in  intrinsic  values  usually  correspond  to  surface  and  shadow  bound- 

aries in  the  scene,  and  these  lists  allow  programs  to  find  these  features  quickly. 

The  2 2  -D  sketch  of  Marr  (1978)  is  also  a  set  of  intrinsic  images.  Marr,  like 
Barrow  and  Tenenbaum,  presumes  that  the  iconic  data  will  be  supplemented 
by  explicit  lists  of  discontinuities  in  the  values  of  the  intrinsic  characteristics. 

238 
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(a)  Original  Scene 

(b)  Distance (c)  Reflectance 

(d)  Orientation  (Vector)  (e)  Illumination 

Figure  Dl-1.     Intrinsic  images  (from  Barrow  and  Tenenbaum,  1978). 
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Intrinsic  images  are  most  useful  because  they  indicate  important  physi- 
cal features  of  the  scene.  With  intrinsic  images,  it  is  possible  to  perform 

segmentation,  for  example,  to  produce  a  line  drawing  in  which  each  surface 
is  outlined.  In  contrast,  reliable  segmention  from  raw  intensity  data  cannot 
usually  be  achieved  because  the  intensity  of  each  pixel  in  the  original  image 
is  determined  by  a  combination  of  several  physical  parameters. 

Intrinsic  images  are  also  believed  to  be  good  models  for  some  aspects  of 
human  perception.  Psychological  phenomena  such  as  size  constancy,  shape 
constancy,  brightness  constancy,  and  color  constancy  may  suggest  that  humans 
compute  these  intrinsic  parameters  at  an  early  stage  in  the  visual  process. 

Calculating  Intrinsic  Images 

Barrow  and  Tenenbaum  (1979)  have  performed  experiments  with  syn- 
thetic images  of  scenes  from  a  limited  domain  to  demonstrate  that  intrin- 

sic images  can  be  calculated  from  intensity  data.  Surfaces  in  this  simplified 

domain  are  continuous — there  are  no  sharp  edges — and  they  have  uniform 
diffuse  reflectance — there  are  no  markings  or  colored  patches  on  a  surface. 
Illumination  is  assumed  to  come  from  a  distant  point  source  with  additional 
diffuse  background  light.  This  simulates  sun  and  sky.  Other  assumptions 
are  that  there  is  no  secondary  reflection  (i.e.,  surfaces  do  not  illuminate  each 
other),  the  view  is  monocular  but  free  of  spurious  coincidences  of  edges,  and 

the  camera  has  been  gamma- corrected  to  respond  linearly  with  respect  to  light 
energy  and  is  noise-free.  This  domain  is  described  as  similar  to  a  picture  of 

"Play-Doh"  objects  with  smooth  surfaces,  viewed  outdoors  by  a  perfect  TV 
camera. 

In  this  domain,  the  intrinsic  parameters  are  fairly  well-behaved.  Surface 
orientation  varies  continuously  across  a  surface;  it  is  only  discontinuous  at 
edges.  At  the  edge  of  a  surface,  the  orientation  must  be  orthogonal  to  the 
line  of  sight  (i.e.,  the  surface  has  curved  away  from  the  camera).  Surface 
reflectance  is  constant  across  a  surface  and  discontinuous  at  surface  bound- 

aries. The  distance  of  a  point  from  the  camera  varies  smoothly  across  a 
surface  and  is  discontinuous  at  surface  boundaries.  Note  that  the  distance 

is  the  integral  of  the  surface  orientation  gradient.  The  amount  of  incident 
illumination  varies  with  surface  orientation  (i.e.,  smoothly  across  a  surface), 
with  discontinuities  at  surface  and  shadow  boundaries.  Within  a  shadow,  the 
incident  illumination  is  constant. 

Also,  in  this  domain,  there  are  only  three  types  of  edges.  Occlusion 
edges  are  found  at  the  boundary  of  an  object  where  it  occludes  part  of  the 
background  or  other  objects.  Shadow  edges  are  found  where  a  shadow  from 

one  object  falls  across  another  object.  Lastly,  self-shading  edges  happen  when 
an  object  curves  away  from  the  light  source  and  the  incident  illumination 
drops  smoothly  until  the  surface  normal  is  orthogonal  to  the  incident  light; 
then,  the  illumination  will  be  constant  in  the  shadowed  area  on  the  far  side 
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of  this  point.  Note  that  all  discontinuities  in  intensity  can  be  accounted  for 

by  these  edges,  because  of  the  assumptions  made  in  this  limited  domain. 

The  above  simplifications  strongly  suggest  a  computational  approach. 

First,  the  intensity  image  is  examined  for  discontinuities.  These  are  tentatively 

called  edges.  The  result  of  this  step  is  a  line  drawing,  which  probably  contains 

imperfections.  Next,  the  behavior  of  intensity  is  examined  in  the  vicinity  of 

each  edge.  If  the  intensity  of  a  region  is  constant  near  the  edge,  it  must  be 

a  shadow  region.  If  it  varies,  the  region  must  be  illuminated.  If  it  varies 

with  a  certain  photometrically  derived  property,  the  edge  must  be  tangent 

to  the  camera,  that  is,  a  surface  boundary.  A  small  edge  table  is  consulted 

to  determine  the  properties  of  the  intrinsic  images  (distance,  orientation, 

reflectance,  and  illumination)  along  each  edge,  depending  on  the  region  types. 

The  result  of  this  step  will  be  that  each  intrinsic  image  contains  values  for 

those  pixels  that  correspond  to  intensity  edges.  The  intrinsic  image  values 

at  other  pixels  are  initialized  to  some  arbitrary  constant,  indicating  that  no 

information  is  yet  available  about  these  pixels. 

The  crucial  step  in  the  process  is  a  relaxation  step,  in  which  two  types  of 

consistency  are  enforced: 

1.  Each  pixel  value  in  each  intrinsic  image  must  be  compatible  (i.e.,  smooth) 
with  the  values  of  neighboring  pixels  in  the  same  image,  except  at  the 
edges.  While  continuity  is  easily  specified  for  reflectance,  distance,  and 
illumination,  there  are  several  kinds  of  continuity  for  surface  orientation. 

Barrow  and  Tenenbaum  (1979)  have  developed  a  method  for  performing 
relaxation  on  surface  orientation  values. 

2.  Each  pixel  value  must  be  compatible  with  the  pixel  values  of  other  in- 
trinsic images  at  this  same  position.  There  are  photometric  conditions, 

explained  in  Horn  (1977)  and  Barrow  and  Tenenbaum  (1978),  that  relate 
the  various  intrinsic  image  parameters  to  image  intensity  by  the  formula 

L  =  (h  +  [Is  cos  i])R,  where  L  is  image  intensity,  h  is  the  background 
illumination,  Is  is  the  illumination  from  the  point  source,  i  is  the  angle  of 

incidence  (i.e.,  the  angle  between  the  incident  light  and  the  surface  nor- 
mal, which  depends  on  the  surface  orientation),  and  R  is  the  reflectance 

of  the  surface.  For  a  shadowed  point,  Is  is  zero.  This  equation  must  be 
satisfied  at  each  pixel;  thus,  when  the  relaxation  suggests  that  the  value 
of  some  intrinsic  parameter  be  changed  at  a  pixel,  the  other  intrinsic 
parameters  must  change  simultaneously  to  satisfy  the  equation. 

The  entire  relaxation  process  is  carried  out  in  such  a  manner  that  the 

intrinsic  values  for  edge  pixels  are  not  changed,  since  these  were  established  by 

physical  concerns  during  the  initialization  and  their  values  are  thus  assumed 

to  be  correct.  Relaxation  fills  in  values  for  the  points  within  each  region. 

During  the  course  of  relaxation,  it  is  sometimes  necessary  to  postulate 

additional  edges  that  were  not  determined  in  the  original  segmentation.  Note 

the  crucial  difference  between  adding  these  edges  during  the  computation  of 

intrinsic  images  and  adding  them  during  edge-based  segmentation.    In  the 
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former  case,  edges  are  suggested  by  the  laws  of  physics  and  geometry  to 
which  the  scene  is  subject;  in  the  latter  case,  edges  are  suggested  only  by 

heuristics  based  on  image-intensity  variations,  which  may  result  from  any  of 
a  variety  of  physical  phenomena.  Thus,  adding  edges  during  the  computation 
of  intrinsic  images  is  a  much  sounder  practice  than  adding  edges  during 
traditional  segmentation. 

Finally,  when  the  intrinsic  images  have  been  computed,  they  may  be 
analyzed  to  determine  the  extent  of  each  surface.  Traditional  segmentation 
techniques  applied  to  intrinsic  data  perform  much  more  reliably  than  when 
applied  to  intensity  data;  for  example,  regions  of  uniform  reflectance  and 
continuous  orientation  are  almost  guaranteed  to  correspond  to  surfaces  in  the 
scene. 

The  simplicity  of  Barrow  and  Tenenbaum's  domain  gives  rise  to  some 
skepticism  about  the  generality  of  their  approach,  particularly  when  extended 
to  intrinsic  images  of  natural  scenes.  Barrow  and  Tenenbaum  (1978)  explain 
how  the  technique  might  be  extended  to  deal  with  creases  (i.e.,  polyhedral 

objects),  moderate  sensor  noise,  colored  areas  of  the  surfaces,  unknown  illu- 
mination, and  nonpoint  (extended)  light  sources. 

Other  Intrinsic  Images 

Other  intrinsic  characteristics  can  be  computed,  including  specularity,  the 
amount  of  specular  reflection,  such  as  highlights;  luminosity,  or  light  sources 
within  the  image;  transmittance,  the  amount  of  light  that  passes  through  a 

surface;  and  three-dimensional  texture.  Barrow  and  Tenenbaum  note  that,  as 
the  scene  becomes  more  complex,  there  is  more  to  be  computed  but,  at  the 
same  time,  there  are  more  constraints  by  which  to  compute  the  additional 
information. 

Several  other  researchers  have  also  computed  intrinsic  characteristics  of 

a  scene.  Texture  descriptions  have  been  produced  by  Kender  (1980).  Marr 
and  Poggio  (1976)  have  worked  with  stereo  images,  describing  disparity  by 
an  intrinsic  image.  From  disparity,  distance  can  be  calculated.  Horn  and 
Schunck  (1980)  have  analyzed  optical  flow,  producing  intrinsic  images  that 
describe  velocity.  This  can  be  analyzed  to  determine  object  location  and 
relative  motion  with  respect  to  the  camera. 

Conclusion 

The  twin  ideas  of  calculating  intrinsic  scene  characteristics  and  repre- 
senting them  with  intrinsic  images  have  recently  become  important  areas  of 

research.  The  rich  descriptions  and  convenient  representation  of  a  scene  that 
intrinsic  characteristics  provide  make  them  important  for  all  aspects  of  image 
understanding. 



Dl  Intrinsic  Images  243 

References 

Intrinsic  images  are  fully  described  in  Barrow  and  Tenenbaum  (1978)  and 
the  similar  2±-D  sketch  is  described  in  Marr  (1978).  The  photometric  basis 
for  much  of  this  work  is  provided  by  Horn  (1977). 



D2.     Motion 

VISION  RESEARCHERS  use  the  term  motion  to  denote  the  study  of  multiple 
images  over  time.  One  of  the  advantages  of  multiple  views  of  objects  is  that 

they  may  make  it  possible  to  complete  three-dimensional  structural  object 
descriptions.  Objects  or  parts  of  objects  that  are  hidden  in  some  frames  are 
frequently  revealed  in  subsequent  frames,  resolving  structural  ambiguities. 
Three-dimensional  structure  can  also  be  derived  from  movement.  While  in 

theory  there  is  no  unique  structure  consistent  with  a  given  motion  in  two- 
dimensional  space,  in  most  cases  humans  correctly  perceive  three-dimensional 
structures  from  a  two-dimensional  movie,  for  example.  This  ability,  known  as 

the  kinetic  depth  effect  (Wallach  and  O'Connell,  1953),  is  not  yet  completely 
understood. 

Another  advantage  of  studying  time-varying  information  is  the  redun- 
dancy it  provides,  especially  when  frame-to-frame  changes  are  small.  This 

redundancy  helps  to  eliminate  noise  interference. 
Motion  cues  can  also  be  used  for  segmentation  of  objects.  Objects  that 

exhibit  complex  gray-scale  patterns  or  those  that  are  partially  occluded  can  be 
perceived  correctly  if  the  parts  exhibit  consistent  motion.  The  human  visual 
system  uses  motion  to  segment  objects  from  background  information.  This  is 
especially  important  for  object  tracking  and  collision  avoidance. 

Several  problems  are  encountered  in  studying  time- varying  imagery.  First, 
adding  another  dimension  (time)  in  image  analysis  means  dealing  with  massive 
amounts  of  information,  maybe  more  than  can  be  handled  efficiently  by 
conventional  computers.  Second,  the  relation  between  changes  in  a  sequence 

of  two-dimensional  images  and  movements  in  the  three-dimensional  world  is 
not  simple.  Changes  in  brightness  in  images  may  not  be  directly  related 
to  movements  of  objects.  Apparent  changes  in  images  may  represent  object 
motion,  but  they  can  also  represent  changes  in  illumination  or  movement 
of  the  observer.  On  the  other  hand,  object  motion  does  not  always  cause 
brightness  changes.  For  example,  a  flat  surface  that  is  moving  in  its  plane 
shows  no  brightness  changes  as  long  as  the  boundaries  are  not  seen.  Again, 
a  uniform  sphere  that  is  rotated  exhibits  a  constant  brightness  pattern,  since 
the  shading  does  not  move  with  the  surface.  Thus,  tracking  objects  involves 
distinguishing  among  various  sources  of  change,  such  as  lighting,  occlusion, 
and  actual  motions,  and  dealing  with  inconsistencies  between  actual  and 
perceived  motion. 

There  are  three  basic  problems  in  analyzing  motion: 

1.  The  correspondence  problem.  To  track  objects  in  a  sequence  of  images, 
one  must  establish  which  points  on  an  object  in  one  frame  correspond  to 
points  in  a  succeeding  frame.  Determining  the  correspondence  of  points 
from  one  frame  to  the  next  is  called  the  correspondence  problem.  (It  also 
arises  when  points  in  stereo  images  are  matched  for  stereo  depth  analysis; 
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see  Article  XIII. D3.)  This  problem  may  seem  trivial  if  the  objects  have 

already  been  identified  in  each  frame;  however,  in  most  cases,  one  ana- 
lyzes motion  prior  to  object  identification. 

2.  Analyzing  motion  in  three  dimensions.  Inferring  depth  information  is  a 

problem  inherent  in  analyzing  planar  imagery.  However,  motion  informa- 
tion gives  its  own  cues  to  three-dimensional  structure.  This  is  evidenced 

by  the  ability  of  humans  to  perceive  three-dimensional  structure  and 
motion  from  sequences  of  two-dimensional  images.  Ullman  (1979)  and 
others  have  tried  to  understand  this  human  capability  and  duplicate  it 
in  a  machine. 

3.  Interpreting  image- derived  information.  The  final  step  in  all  image  analysis 
is  relating  all  of  the  image  measurements  to  the  real  world. 

The  Correspondence  Problem 

Before  attempting  to  solve  the  correspondence  problem  with  a  machine, 

it  is  helpful  to  realize  that  the  human  visual  system  does  solve  it.  Humans 

probably  perform  the  correspondence  task  at  a  low  level.  They  are  able  to 

react  very  quickly  to  motion  in  order  to  control  eye  movements  or  avoid 

collisions.  It  seems  likely  that  identification  of  objects  is  not  required  when 

humans  respond  in  this  way,  nor  is  there  time  for  identification. 

The  correspondence  problem  can  be  studied  at  three  levels: 

1.  Pixel  level.  Motion  can  be  thought  of  as  the  apparent  changes  in  gray 
scale  from  one  image  to  the  next.  At  this  level,  the  velocity  distribution 

over  the  image  is  referred  to  as  optical  flow.  Without  prior  knowledge 
about  the  structure  of  various  scene  components,  measurement  must  rely 
on  local  information  about  the  intensity  distribution  and  the  temporal 
and  spatial  gradients. 

2.  Region  or  feature  level.  Most  methods  of  determining  velocities  from  a 
sequence  of  images  are  based  on  matching  features.  A  particular  pattern, 
such  as  a  vertex,  is  identified  in  one  image  frame  and  is  searched  for  in 
succeeding  frames. 

3.  Object  level.  Objects  are  first  identified  in  each  frame  and  then  the 

changes  that  take  place  between  frames  are  analyzed.  Most  object-based 
systems  are  domain  dependent,  so  that  they  generally  handle  known 
objects  and  expected  changes. 

Pixel  level.  At  the  pixel  level,  there  is  only  one  constraint  on  the  veloc- 
ity vector  at  a  given  point:  the  change  in  gray  scale  from  one  frame  to  the 

next.  We  need  to  impose  additional  constraints  to  establish  correspondence 

of  points  in  successive  frames  so  that  the  velocity  vector  can  be  determined. 

Horn  defines  optical  flow  as  the  distribution  of  apparent  velocities  of  moving 

brightness  patterns  in  an  image  (see  Horn  and  Schunck,  1980).  He  uses  local 

gray-scale  information  and  additional  assumptions  to  measure  the  optical  flow. 
He  assumes  that  the  basic  intensity  pattern  does  not  change  over  time  and 

that  velocity  varies  smoothly  in  space.     These  constraints  are  imposed  by 
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simultaneously  minimizing  the  change  in  intensity  of  corresponding  points 
and  the  velocity  change  from  one  point  to  the  next.  In  places  where  there 
is  no  local  information,  such  as  flat  surfaces  where  the  intensity  gradient  is 
zero,  the  velocity  estimate  is  derived  from  the  surrounding  border  points. 
The  assumption  of  velocity  smoothness  does  not  hold  at  object  boundaries 

and,  as  expected,  Horn's  simulation  results  tend  to  show  larger  errors  at  the 
boundaries. 

Region  or  feature  level.  At  this  level,  the  objective  is  to  match  cor- 
responding regions  or  features  in  successive  frames  and  thereby  determine 

their  velocities.  A  common  approach  has  been  to  identify  a  localized  region 

in  one  image  and  use  a  cross-correlation  measure  to  find  the  same  region  in 
the  next  image.  This  method  has  been  applied  to  the  motions  of  clouds  seen 

in  satellite  images  (Leese,  Novak,  and  Clark,  1971).  If  the  clouds  are  not 
changing  greatly  and  form  only  one  layer,  this  sort  of  technique  works  quite 
well.  However,  overlapping  cloud  layers  are  difficult  to  distinguish,  except  on 
the  basis  of  consistent  motion:  Tracking  objects  in  a  highly  occluded  domain 
is  very  difficult. 

Aggarwal  and  Duda  (1975)  looked  at  a  simplified  version  of  the  problem  of 
tracking  overlapping  clouds.  They  represented  clouds  as  polygons  moving  in 
planes  perpendicular  to  the  viewer  and  then  attempted  to  track  the  polygons. 
They  matched  clouds  in  successive  frames  on  the  basis  of  two  types  of  vertices: 

"true"  vertices  that  corresponded  to  vertices  of  the  original  polygons  and 
"false"  vertices  that  resulted  when  two  polygons  overlapped.  It  is  easy  to 
distinguish  the  two,  since  the  angles  at  the  true  vertices  stay  constant  as 
the  polygons  move,  while  the  angles  and  edges  at  the  false  vertices  tend 
to  change.  Only  the  true  vertices  are  matched.  Once  a  polygon  has  been 
successfully  tracked  in  two  images,  a  velocity  estimate  and  a  prediction  can 
be  made  to  locate  the  polygon  in  the  next  image.  Aggarwal  and  Duda  based 
matches  between  true  vertices  on  a  criterion  function  that  is  determined  by 
the  distance  of  the  vertex  from  the  predicted  position  and  the  error  in  the 
angle  of  the  vertex.  They  were  able  to  track  objects  that  moved  in  various 
directions  and  occluded  each  other  in  fairly  complex  ways.  The  work  has  been 

extended  to  curved  planar  objects  by  Chow  and  Aggarwal  (1977). 

Object  level.  Once  three-dimensional  objects  have  been  identified  in 
each  frame,  finding  correspondences  is  usually  not  as  difficult  as  it  is  with 
pixel  or  feature  information.  One  of  the  interesting  problems  to  be  solved  at 
this  level  is  the  derivation  of  a  semantic  description  of  motions  (see  Badler, 
1975). 

Motion  in  Three  Dimensions 

Humans  are  readily  able  to  perceive  three-dimensional  structure  on  the 
basis  of  motion  information  alone.     For  example,   when  presented  with  a 
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sequence  of  binary  images  of  points  on  a  moving  object,  humans  can  usually 
perceive  the  structure  of  the  the  object,  even  if  it  is  unfamiliar  and  the 
individual  images  are  totally  unrecognizable.  Ullman  (1979)  has  tried  to 
duplicate  this  capability  in  a  machine.  Under  the  assumptions  that  the 
correspondence  problem  has  been  solved  and  that  the  objects  are  rigid  bodies, 

Ullman  has  derived  what  he  calls  the  structure -from- motion  theorem.  The 
theorem  states  that  three  separate  views  of  four  noncoplanar  points  on  a 

rigid  object  uniquely  define  the  three-dimensional  structure  and  motion  of 
the  object. 

Ullman's  implementation  of  the  structure- from-motion  theorem  involves 
the  following  steps.  The  image  is  divided  into  sets  of  four  points  and  each  set 

of  points  is  tested  to  see  whether  it  has  a  consistent  rigid-body  interpretation 
in  the  three  views.  In  many  cases,  after  this  first  pass  there  will  be  at  least 
one  consistent  set  for  each  object  in  the  image.  Each  remaining  point  can 

then  be  tested  to  see  if  it  belongs  to  one  of  the  rigid-body  sets.  In  this  way, 
the  objects  are  segmented  and  their  three-dimensional  structure  and  motion 
are  determined  at  the  same  time. 

Interpretation 

The  interpretation  of  actual  scenes  in  terms  of  motions  of  objects  is  a  very 
difficult  problem.  Most  applications  have  dealt  with  a  fairly  restricted  domain, 
such  as  cloud  motion  or  motion  of  the  internal  boundary  of  the  heart.  Jain  and 

Nagel  (1979)  have  attempted  to  interpret  actual  TV  sequences  in  two  dimen- 
sions using  as  little  domain-dependent  information  as  possible.  The  objects 

they  study  are  usually  cars  or  people  moving  along  streets.  They  track  regions 
not  by  directly  matching  features  but  by  looking  at  what  information  can  be 
derived  from  changes  between  the  first  frame  and  subsequent  frames.  They 

generate  a  first- order -difference  picture  (FODP)  based  on  whether  a  sample 
area  in  a  particular  frame  is  incompatible  with  the  first  frame.  Incompatibility 
is  tested  with  the  mean  gray  value  and  its  variance  from  the  current  and 
reference  frame. 

A  first-order-difference  picture  is  accumulated  by  counting  the  number  of 
times  sample  areas  from  the  second  and  subsequent  frames  are  incompatible 
with  the  first  frame.  After  the  first  few  frames,  an  object  moving  along  in 
a  particular  direction  should  produce  two  regions  of  incompatibility  in  the 

FODP — one  in  which  the  background  is  being  uncovered  and  another  in  which 
it  is  being  covered  over.  Once  the  object  has  moved  the  length  of  its  diameter, 

the  two  regions  should  merge.  Jain  and  Nagel  also  compute  a  second-order- 
difference  picture  that  indicates  the  areas  in  which  two  successive  FODPs 
differ.  When  an  object  has  moved  a  distance  greater  than  its  boundary,  the 

second-order-difference  picture  will  show  two  regions,  one  indicating  where  the 
object  was  originally  and  the  other  where  the  object  is  in  the  current  frame. 
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When  there  are  two  such  regions  in  the  second-order-difference  picture  that 
correspond  to  one  incompatibility  region  in  the  FODP,  an  object  is  identified. 

Each  of  the  two  regions  found  in  the  second-order-difference  picture  should 
outline  the  contour  of  the  moving  object. 

The  primary  constraint  on  this  method  is  that  in  order  to  identify  or 
track  an  object,  one  must  observe  a  displacement  by  more  than  the  object 
diameter  along  the  direction  of  displacement.  This  means  that  movement 
must  be  primarily  in  one  direction  and  primarily  in  the  plane  of  the  image. 

Conclusion 

To  date,  much  of  the  attention  in  motion  studies  has  been  directed  to 
applications,  for  example,  tracking  cloud  motions  and  detecting  geological 
changes  from  satellite  images,  as  well  as  to  analyzing  the  dynamic  shape  of 

the  heart  and  tracking  circulatory  flow  from  x-ray  data.  However,  the  study 
of  time- varying  imagery  is  becoming  more  theoretical,  and  there  are  three 
primary  research  problems.  The  first  involves  solving  the  correspondence 

problem,  the  second  concerns  deriving  three-dimensional  structural  informa- 
tion from  motion  cues,  and  the  third  is  to  apply  this  research  to  real  prob- 
lems and  relate  image-derived  motion  measurements  to  the  movements  of  real 

objects. 
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D3.     Stereo  Vision 

THE  CENTRAL  PROBLEM  of  general  image- understanding  is  to  recover  the 
three-dimensional  form  of  an  object  that  produced  a  two-dimensional  image. 
One  approach  is  to  measure  quantitatively  the  distance  from  a  camera  to  each 
point  of  interest  in  a  scene.  If  views  of  the  same  object  from  two  different 
positions  are  available,  we  can  measure  the  distance  from  camera  to  object 
by  triangulation.  This  technique  is  known  as  stereo  or  binocular  vision;  it  is 

a  primary  source  of  information  for  humans  about  three-dimensional  objects 
in  their  environment. 

A  schematic  of  a  binocular  pair  of  cameras  viewing  the  same  scene  is 

shown  in  Figure  D3-1.  The  image  of  an  object  in  a  camera  view  is  formed 
by  a  ray  of  light  originating  at  the  object  and  passing  through  the  center  of 
the  lens.  Inversely,  the  center  of  the  lens  and  a  point  in  the  image  uniquely 
determine  a  line  along  which  the  object  must  fall.  The  question  is  where  in 

space  along  this  line  the  object  is  located — how  far  away  it  is.  This  is  easily 
determined  with  a  second  image  from  another  camera.  If  we  can  find  a  point 
in  the  second  image  that  corresponds  to  a  point  in  the  first,  then  that  point 
and  the  center  of  its  lens  determine  a  second  ray  of  light.  If  the  two  points  are 
indeed  produced  by  the  same  object,  if  our  knowledge  of  the  relative  camera 
positions  is  correct,  and  if  the  cameras  are  linear,  then  the  object  must  be 
located  at  the  point  at  which  the  two  rays  are  calculated  to  intersect. 

Picture  1  Picture  2 

Figure  D3-1.     Binocular  views  of  a  scene. 
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This  model  is  very  general  in  that  it  describes  both  conventional  stereo 
and  motion  parallax.  In  conventional  stereo,  as  in  human  vision,  two  images 

are  taken  by  laterally  displaced  sensing  devices — eyes  or  cameras.  In  motion 
parallax,  a  single  camera  may  take  images  from  arbitrary  positions  and  orien- 

tations, for  example,  as  an  aerial  camera  takes  images  from  two  points  in  a 
flight. 

The  problem  of  extracting  depth  information  from  a  stereo  pair  of  images 
has,  in  principle,  four  components:  finding  features  of  an  image  that  are 
easily  recognized  in  both  images,  matching  these  features  in  the  two  images, 
determining  the  relative  camera  positions,  and  inferring  the  distances  from 
the  camera  to  the  objects  that  cast  the  features  in  the  images. 

Given  accurate  knowledge  of  the  camera  model,  the  search  for  the  match 
for  a  given  feature  in  one  image  is  restricted  to  a  line  in  the  other,  rather  than 

to  the  whole  image.  Figure  D3-1  shows  that  the  object  responsible  for  the 
feature  A  in  the  left  image  must  lie  along  a  ray  starting  at  the  origin  of  the 
left  coordinate  system,  O,  and  proceeding  through  the  feature  A.  The  image 
of  the  object  in  the  right  picture  must  lie  somewhere  along  the  projection 
of  the  ray  OA  onto  the  right  image  plane,  which  is  the  line  BC.  This  line 
is  called  an  epipolar  line.  Note  that  every  point  on  a  given  epipolar  line  in 
the  right  image  must  match  some  point  along  the  corresponding  epipolar  line 
in  the  left  image,  and  vice  versa.  Even  if  we  do  not  know  the  exact  camera 
parameters,  the  search  for  a  match  is  still  restricted  to  a  narrow  region  along 
the  epipolar  line. 

Finding  Features 

The  objective  of  feature  finding  is  to  find  features  in  one  image  that  are 
likely  to  have  an  unambiguous  match  in  the  other  image.  For  example,  an 
individual  pixel  has  little  information  content:  The  fact  that  two  pixels  in  two 
images  have  the  same  gray  level  is  little  evidence  that  they  were  produced  by 
the  same  object  in  the  scene.  Unambiguous  matches  are  more  likely  to  be 
found  in  regions  of  the  pictures  that  have  high  information  content,  or  high 

variance.  Moravec's  interest  operator  (1980)  is  a  technique  for  finding  such 
regions.  It  first  computes  the  sum  of  the  squares  of  the  differences  between 

each  pixel  in  a  window  and  the  pixel's  neighbors  in  each  of  four  directions 
(horizontal,  vertical,  and  two  diagonals).  This  results  in  four  sums,  and  the 
interest  measure  for  each  pixel  is  the  minimum  of  the  sums.  Interesting  points 
are  those  for  which  the  interest  measure  attains  a  local  maximum.  Thus, 

interesting  points  have  a  high  variance  in  all  directions  and  so  are  likely  to 
find  an  unambiguous  match  in  the  other  image.  For  example,  the  interest 
operator  tends  to  select  corners. 

Another  good  source  of  points  for  unambiguous  matches  are  edges  of 
objects,  because  they  tend  to  correspond  to  sharp  changes  in  intensity.  For 

stereo,   edges  may  be  extracted  by  the  usual  edge-detection  methods  (see 
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Article  XIII. C4).  A  computational  model  of  human  stereo  vision  (Marr  and 

Poggio,  1977;  Grimson,  1980)  uses  zero-crossings  in  the  Laplacian  image  after 
Gaussian  low-pass  filtering  (smoothing).  Zero-crossings  are  the  points  at 
which  the  second  derivatives  of  an  image  change  their  sign  (see  Article  XIII. C4). 
Two  considerations  with  regard  to  edges  should  be  noted.  First,  only  linear 
features  oriented  across  the  epipolar  lines  provide  an  accurate  match.  Second, 
since  edges  usually  represent  discontinuities  in  depth,  it  is  likely  that  what 

appears  behind  an  edge  will  be  different  in  the  two  views.  Therefore,  edge- 
based  stereo  uses  the  information  about  location  and  orientation  of  edges  but 
makes  little  use  of  intensity  across  the  edges. 

Matching 

Matching  is  a  search  process.  As  such,  it  has  two  components:  a  difference 
measure  and  a  search  strategy. 

Difference  measures.  Two  kinds  of  difference  measures  are  used  to 

evaluate  matches  between  corresponding  features  of  two  images.  One  kind 
is  appropriate  when  the  features  are  areal,  that  is,  constitute  regions,  and 
another  kind  is  used  for  lineal  features  such  as  edges. 

A  typical  measure  of  the  difference  between  two  areal  features  is  the  sum 
over  the  region  of  the  squares  of  the  differences  between  corresponding  pixels, 

called  the  L2  norm,  XX^i  —  E2)2,  where  E\  and  E^  are  the  pixel  values  of 
the  two  images,  and  the  summation  extends  over  the  region  of  interest.  This 
measure  requires  a  multiplication  for  each  pixel  in  the  regions  and,  although 

an  algorithm  can  replace  the  multiplication  by  a  table  lookup  (Moravec,  1980), 

this  may  still  be  computationally  expensive.  The  L\  norm,  ̂ 2  \{E\  —  £2)1 , 
requires  only  absolute  values. 

Both  measures  are  sensitive  to  changes  in  contrast  (gain)  and  brightness 
(bias)  between  the  images.  These  differences  occur  when  two  views  of  the 
same  object  are  processed  differently,  when  images  are  taken  separately  under 
different  lighting  conditions,  and  because  the  apparent  brightness  of  a  surface 
changes  with  the  angle  from  which  it  is  viewed  (e.g.,  specular  reflection).  A 
measure  of  the  similarity  between  two  images  that  is  insensitive  to  contrast 
and  brightness  changes  is  the  normalized  correlation: 

Lineal  features  are  similar  if  they  have  the  same  orientation  and  if  the 
intensity  gradient  across  them  is  the  same.  As  we  mentioned  earlier,  matched 
edges  may  be  adjacent  to  regions  of  dissimilar  appearance.  Thus,  one  may 
wish  to  ignore  the  appearance  of  the  image  near  an  edge  and  record  only  the 
fact  that  there  is  an  edge.  Alternately,  to  consider  two  edges  to  be  a  match, 
one  might  require  only  that  the  intensity  gradients  across  the  edges  have  the 

same  sign  (e.g.,  Marr  and  Poggio,  1977). 
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Search  strategies.  Finding  matching  points  in  two  images  is  the  most 

difficult  problem  of  stereo  image  interpretation.  The  best  feature-finding 
systems  will  still  select  features  that  match  in  appearance  more  than  one 
feature  in  the  other  image.  In  fact,  if  the  scene  has  a  repeating  pattern,  like 
windows  of  a  building,  matching  is  inevitably  ambiguous.  Moreover,  because 
of  occlusion,  there  will  be  features  in  one  image  that  are  not  visible  in  the 
other;  it  is  impossible  to  find  a  match  for  these  features. 

Matching  is  also  complicated  by  expensive  searches  of  large  areas.  Imagine 

that  we  find  TV  areal  features  in  one  image,  each  with  an  average  area  of  W2 
pixels.  In  the  worst  case,  in  which  we  have  no  idea  of  the  camera  positions, 
it  can  be  very  expensive  to  find  the  pixel  positions  in  the  other  image  that 

correspond  to  the  center  pixels  in  the  areal  features.  It  involves  a  search  of  W2 
pixels  from  each  pixel  position  in  the  other  image,  for  each  of  the  N  features. 

This  requires  NW2L2  comparisons,  where  L2  is  the  area  of  the  other  image. 
There  are  two  properties  of  matter — cohesiveness  and  opacity — that  can 

help  to  decide  between  ambiguous  matches.  Because  of  the  cohesiveness  of 
matter,  the  distance  from  the  camera  to  objects  that  appear  near  each  other 
in  the  image  tends  to  be  approximately  the  same.  Because  of  opacity  of  matter 
(in  general),  each  point  in  each  image  will  have  a  unique  depth  associated  with 
it  and,  thus,  each  point  in  each  image  will  have  at  most  one  match  in  the 

other  image.  Marr  and  Poggio  (1976)  suggest  a  cooperative  or  relaxation  algo- 
rithm that  implements  both  of  these  constraints.  The  partially  determined 

disparity  for  a  given  pixel  adjusts  the  disparity  for  nearby  pixels  in  an  iterative 
updating  procedure,  so  that  neighboring  pixels  have  similar  disparities.  This 
implements  the  constraint  of  cohesiveness.  Opacity  is  implemented  by  a 
technique  of  inhibition  between  different  disparity  detectors  for  a  given  pixel. 

Mori,  Kidode,  and  Asada  (1973)  and  Marr  and  Poggio  (1976)  used  a 

coarse-fine  approach  to  finding  matches.  A  low-resolution  depth  map  of  low- 
resolution  versions  of  the  images  provides  initial  disparity  estimates  for  higher 
resolution  matches.  This  allows  larger  disparities  to  be  tolerated  without 

ambiguity  of  match,  since  in  frequency-limited  images  a  disparity  of  up  to 
about  one-half  the  wavelength  of  the  highest  frequency  in  the  image  can  be 
tolerated  before  the  match  becomes  ambiguous. 

There  are  several  search  strategies  for  finding  a  matching  point.  For 

areal  features,  the  sequential  similarity- detection  algorithm  (SSDA;  Barnea 
and  Silverman,  1972)  is  a  kind  of  best-first  search.  This  technique  requires 
a  cumulative  measure  of  difference,  such  as  L\  or  L2.  For  a  given  feature,  a 
running  count  is  kept  of  the  best  match  thus  far,  and  each  subsequent  search 
in  another  area  of  the  image  is  abandoned  if  it  does  not  produce  a  match  that 
is  at  least  as  good  as  the  current  best.  Guidance  for  the  next  position  to  search 
can  be  provided  by  the  spatial  intensity  gradient  of  the  image,  resulting  in  an 

iterative  hill-climbing  method  for  stereo  (Lucas  and  Kanade,  1981). 
If  the  camera  parameters  are  known,  matching  can  be  facilitated  by 

taking  advantage  of  the  fact  that  the  matching  occurs  only  along  the  epipolar 
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lines.  This  is  especially  important  in  computational  models  of  human  stereo 
vision  in  which  the  search  is  limited  along  horizontal  scan  lines  of  the  same 

vertical  position  in  both  images. 

For  edge-based  stereo,  the  problem  is  to  pair  features  along  an  epipolar 
line  in  one  image  with  features  along  the  corresponding  epipolar  line  in  the 
other.  Some  features  may  not  have  matches  because  of  occlusion.  Useful 
constraints  are  that  nearby  features  in  one  image  make  pairs  with  nearby 
features  in  the  other  and  that  the  order  of  matched  features  be  preserved 
along  the  epipolar  lines.  We  can  define  a  measure  of  the  degree  of  satisfaction 
of  these  constraints  combined  with  goodness  of  the  local  match  of  individual 

features.  Then,  conventional  search  techniques,  such  as  dynamic  program- 
ming and  branch  and  bound,  can  be  used  (Baker,  1980;  Henderson,  Miller, 

and  Grosch,  1979)  to  find  the  best  pairings. 

Solving  for  the  Camera  Model 

The  information  about  the  relative  position  of  the  two  cameras  is  called 

the  camera  model.  A  priori  knowledge  or  kinds  of  log  data  (e.g.,  a  flight 
record)  often  provide  this  information,  but  it  also  can  be  derived  from  a 
given  stereo  pair  when  we  know  a  set  of  more  than  five  matching  points  in 
it.  Gennery  (1979)  discusses  an  iterative  method  to  find  camera  models.  If 
the  camera  parameters  are  known  exactly,  then  the  point  that  corresponds  to 
a  given  point  in  the  left  image  must  lie  somewhere  along  the  corresponding 
epipolar  line  in  the  right  image.  The  location  of  the  epipolar  line  depends 
on  the  camera  parameters,  and  if  they  are  not  exact,  the  matching  point  will 
lie  somewhere  off  the  epipolar  line.  The  distance  between  the  matching  point 
and  the  epipolar  line  is  thus  a  measure  of  the  error  of  the  current  camera 

parameters.  Gennery's  method  finds  camera  parameters  that  minimize  the 
sum  of  the  errors  over  the  known  matching  points.  It  will  converge  to  the 
correct  camera  model,  if  the  initial  estimate  of  the  camera  parameters  is  fairly 
accurate. 

Conclusion 

Stereo  has  been  used  as  a  primary  source  of  three-dimensional  information 
for  navigation  (Hannah,  1980),  a  robot  rover  (Moravec,  1979;  Arnold,  1978), 
and  cartographic  applications  (Mori,  Kidode,  and  Asada,  1973). 
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D4.     Range  Finders 

VISION  SYSTEMS  that  work  from  intensity  images  must  infer  three-dimensional 
structure  from  two-dimensional  data;  an  alternative  is  to  measure  depth 
directly.  There  are  several  techniques  for  measuring  depth.  In  this  article 

we  discuss  time- of- flight  and  triangulation  methods.  Time  of  flight  measures 
the  distance  from  a  source  of  light  (or  sound)  to  an  object  in  terms  of  the  time 
required  for  the  light  or  sound  to  travel  to  the  object  and  back.  Triangulation 
in  stereo  vision  is  discussed  in  Article  XIII.D3;  it  finds  corresponding  points  in 
two  images  and  infers  lines  extending  from  these  points,  through  the  centers 
of  their  respective  lenses,  and  out  into  space  to  where  the  lines  intersect.  The 
intersecting  lines  and  the  baseline  between  the  two  lenses  constitute  a  triangle. 
We  discuss  here  the  technique  of  replacing  one  of  the  cameras  in  stereo  vision 
by  an  active  projection  of  a  light  spot  or  a  light  stripe.  This  method  is  called 
active  illumination  and  has  an  advantage  over  stereo  vision  in  that  it  avoids 
the  difficult  problem  of  finding  corresponding  points  in  two  images. 

Time  of  Flight 

Time-of-flight  systems  measure  the  time  required  for  a  waveform  to  prop- 
agate to  an  object  and  reflect  back.  The  waveform  may  be  either  sound  or 

laser  light.  Given  that  the  propagation  speed  of  the  wave  form  is  V,  the 
distance  to  the  object,  d,  is  given  by  the  time  measured  between  transmission 
of  the  pulse  and  its  return  to  the  receiver,  T: 

VT d=~Y' 

Two  important  parameters  that  determine  the  accuracy  of  a  time-of-flight 
system  are  the  beam  width,  W,  and  the  smallest  measurable  unit  of  time,  St. 
The  size  of  resolution  elements  in  the  dimension  perpendicular  to  the  sensor 
in  a  depth  map  depends  on  W,  the  beam  width.  The  size  of  the  resolution 
element  in  the  depth  dimension  is  determined  by  8t  and  V. 

Sound  has  the  desirable  property  of  a  relatively  slow  propagation  velocity, 
permitting  fairly  accurate  depth  resolution.  However,  it  is  difficult  to  form  a 
narrow  beam  with  sound,  and  so  sound  systems  are  not  useful  for  producing 
a  precise  depth  map.  For  robotic  applications,  detection  systems  based  on 
sound  have  been  designed  to  warn  if  an  object  is  within  a  specified  distance 
(e.g.,  with  the  commercially  available  Polaroid  ultrasonic  transceiver  set). 

Laser  light,  on  the  other  hand,  is  ideal  for  generating  a  narrow  beam, 
but  since  the  propagation  speed  of  light  is  very  high  relative  to  the  precision 

of  instruments  that  measure  time,  some  laser  range-finders  have  poor  depth 
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D4  Range  Finders  255 

resolution — on  the  order  of  meters.  They  are  used  for  large  outdoor  scenes 
(e.g.,  for  the  Mars  Explorer  robot;  see  Johnston,  1973). 

One  solution  to  the  depth-resolution  problem  is  to  modulate  the  amplitude 
of  the  laser  beam  and  measure  the  phase  shift  of  the  reflected  beam.  Such  a 

system  was  constructed  at  SRI  International  (Nitzan,  Brain,  and  Duda,  1977) 

to  sense  a  128  X  128  depth  map  with  a  range  of  1  to  5  meters  and  a  depth 

resolution  of  1  centimeter.  It  used  a  9  MHz  oscillator  (X  =  33.3  m),  which 

meant  that  a  phase  shift  of  .0006X  corresponded  to  a  depth  change  of  1  cen- 
timeter. In  addition  to  the  depth  map,  the  intensity  of  the  reflected  beam 

was  used  to  form  a  television-quality  intensity  image,  from  which  an  intrinsic 
image  of  the  reflectance  of  the  object  points  (see  Article  XIII.Dl)  was  generated. 

Photon  noise  dominates  such  a  system.  In  general,  for  a  given  signal-to- 

noise  (S/N)  ratio  there  is  a  trade-off  between  scanning  time  and  laser  signal 
power.  The  SRI  system  uses  a  15  mW  laser  for  safety  reasons.  To  achieve  a 

high  S/N  ratio,  each  sample  is  integrated  for  500  msec.  Thus,  a  128  X  128 

image  requires  over  two  hours  to  generate.  A  more  practical  system  could 

employ  some  combination  of  a  greater  transmit  power,  a  larger  receiver  area, 

and  a  shorter  modulator  wavelength  to  reduce  this  time. 

Triangulation- based  Depth  Sensors  with  Active  Illumination 

There  are  several  different  triangulation  methods  for  measuring  depth. 

One  approach,  stereo  vision,  is  discussed  in  Article  XIII.D3.  In  the  following, 

we  describe  system  configurations  with  one  passive  element,  namely,  a  one- 

or  two-dimensional  camera,  and  one  active  element,  namely,  a  spot  or  stripe 
projector. 

A  simple,  two-dimensional,  triangulation-based  depth  sensor. 

Let  us  introduce  the  mechanics  of  triangulation-based  depth  sensing  with 

a  simple  two-dimensional  system.  After  discussing  the  parameters  of  this 
system,  we  extend  this  system  to  the  third  dimension. 

A  two-dimensional  system  is  illustrated  in  Figure  D4-1,  in  which  the 
passive  component  is  a  linear  CCD  photodetector  array  (see  Article  XIII.Cl) 

with  its  associated  optics.  (For  simplicity,  the  CCD  array  in  Fig.  D4-1  has 
only  five  elements,  although  a  practical  system  would  typically  have  256  to 

2,048  elements.)  Here,  the  x-z  coordinates  are  situated  so  that  the  x-axis 
is  the  baseline  connecting  the  lens  center  and  the  light  projector  and  the 

origin  is  at  its  middle  point.  The  lens  center  is  located  at  (—a/2,  0).  Each 
photodetector  array  element  has  a  field  of  view  that  diverges  at  an  angle  of 

7,  and  the  center  of  the  field  of  view  is  oriented  at  an  angle  4>  from  the  x-axis. 
The  active  component  of  the  illustrated  system  is  a  beam  projector,  located 

at  position  (a/2,0),  which  projects  a  beam  with  a  divergence  of  6  and  angle 
of  ij). 

The  intersection  of  the  beam  with  the  camera's  field  of  view  defines  a 
set  of  quadrilateral  resolution  cells.    Two  such  cells  are  labeled  C\  and  C^ 
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Figure  D4-1.     A  triangulation-based  depth-measurement  system  with  active 
illumination. 

in  Figure  D4-1.  The  presence  of  a  surface  in  a  cell,  C;,  will  cause  light  from 
the  beam  to  be  reflected  and  imaged  onto  the  corresponding  detector,  di,  in 

the  linear  photodetector  array.  In  the  case  of  Figure  D4-1,  C_i  interrupts  the 
light  beam,  which  is  detected  by  d_\.  If  we  define  the  depth  Zi  to  the  surface 
as  depth  to  the  center  of  the  cell,  we  can  see  from  the  figure  that 

Zi 

cot  tp  +  cot  (<j>  +  74) 
(1) 

for  -2  <  i  <  2. 

There  are  two  limitations  to  this  depth-finding  apparatus.  First,  with  a 
single  beam  angle  i\),  we  can  measure  depth  only  to  surface  points  that  are  on 

the  beam.   To  obtain  a  depth  map — in  this  case,  a  one-dimensional  array  of 
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the  depth  of  all  points  between  A  and  E — we  would  have  to  scan  over  areas  by 
changing  the  angle  of  the  beam,  ip.  Even  then,  we  are  unable  to  find  the  depth 
of  some  areas  of  the  scene:  The  area  between  C  and  D  cannot  be  illuminated 

by  the  beam,  and  the  area  between  A  and  B  is  the  "far  side"  of  the  camera 
and  is  invisible  to  it. 

Second,  because  of  the  divergence  of  the  light  beam  and  the  camera's  field 
of  view,  the  size  and  shape  of  the  quadrilateral  resolution  cells  C{  vary.  They 
also  depend  on  the  beam  angle  ip.  This  means  that  the  precision  of  depth 
measurement  varies  from  place  to  place.  In  general,  it  is  desirable  to  keep 
the  beam  as  narrow  as  possible  (small  S)  and  to  use  a  camera  with  as  many 
elements  as  possible  (small  7).  As  equation  (1)  suggests,  a  larger  baseline 
(parameter  a,  the  distance  between  the  camera  and  projector)  helps  increase 
the  precision,  but  it  also  results  in  larger  unmeasurable  areas. 

Spot  sensing.  The  simple  system  described  above  produces  only  a  one- 
dimensional  array  of  depth  measurements.  To  obtain  a  two-dimensional  array 
of  depth  measurements,  the  scene  must  be  scanned  in  both  directions  x  (within 
the  page)  and  y  (perpendicular  to  the  page).  The  simplest  way  to  scan  is 
to  reflect  a  spot  beam  with  two  rotating  mirrors  whose  axes  of  rotation  are 

orthogonal:  The  first  mirror  rotates  about  the  y-ax\s  to  orient  the  beam  within 
x-z  plane  (the  page),  and  the  second  one  orients  the  beam  perpendicular  to 
the  x-z  plane. 

A  simple  sensing  device  for  this  scheme  is  a  camera  with  a  two-dimensional 

field  of  view  (usually  a  two-dimensional  TV  camera — vidicon  or  CCD  array;  see 
Article  XIII.Cl)  for  detecting  the  spot  position.  This  involves  scanning  the  field 
of  view  and  finding  the  brightest  spot  in  it.  With  conventional  TV  cameras, 

a  spot  detection  requires  one  frame — typically  1/60  sec. — per  measurement. 
Once  the  projected  spot  is  detected,  its  three-dimensional  location  can  be 

calculated  to  be  the  intersection  of  two  lines — the  light  beam  and  the  line  of 
sight — in  three-dimensional  space. 

This  scheme  can  be  improved  in  several  ways.  First,  the  direction  of  the 
light  beam  can  be  controlled  to  trace  only  interesting  portions  of  the  scene. 

Such  a  device  is  called  a  tracker.  Second,  faster  (random-access)  sensors  such 
as  image  disectors  can  decrease  the  spot-detection  time.  Recently,  a  PIN 

diode  position-sensitive  chip  was  used  (Kanade  and  Asada,  1981)  because  it 
directly  outputs  the  x-y  position  of  the  spots  without  scanning  the  field  of 
view.  Typical  spot-based  ranging  devices  operate  at  a  speed  of  300  to  2,000 
points  per  second. 

We  should  mention  that  we  do  not  need  to  know  two  lines  in  three- 

dimensional  space  to  determine  a  three-dimensional  point:  It  suffices  to  know 

one  three-dimensional  line  and  one  plane.  This  suggests  that  the  camera  can 
actually  be  one-dimensional.  We  can  place  a  cylindrical  lens  vertically  before 
the  camera,  and  only  the  horizontal  position  of  the  spot  is  sensed  by  the 

one-dimensional  camera  (Roeker  and  Kiessling,  1975).  This  will  determine 
the  vertical  plane  that  includes  the  projected  spot  and,  therefore,  together 
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with  the  known  light  beam  (three-dimensional  space  line),  we  can  compute 
the  three-dimensional  position  of  the  surface  point. 

Light-stripe  sensing.  Another  practical  method  for  measuring  depth 
is  to  use  a  stripe  of  light  (instead  of  a  spot  beam)  and  a  two-dimensional 
television  camera.  This  is  a  simple  extension  of  the  principle  illustrated  in 

Figure  D4-1.  We  can  imagine  that  Figure  D4-1  shows  a  single  cross-section 
of  a  light-stripe  sensing  apparatus:  The  receptor  cells  are  a  single  scan  line 
of  a  two-dimensional  sensor,  and  the  light  beam  is  a  result  of  slicing  a  stripe 
perpendicular  to  the  page.  We  can  imagine  that  a  light-stripe  sensor  has  as 
many  of  these  cross-sections  as  it  has  scan  lines.  Light-stripe  sensing  was 
pioneered  by  Shirai  and  Suwa  (1971)  and  Agin  and  Binford  (1973). 

With  this  method,  one  depth  measurement  for  each  scan  line  of  the 
camera  can  be  obtained  within  one  frame.  With  a  camera  with  256  scan 

lines,  we  can  measure  the  depth  of  up  to  256  X  60  points  per  second.  To  get  a 
complete  depth  map,  the  light  stripe  has  to  be  moved  or  rotated  to  scan  the 
scene,  but  it  need  be  moved  only  in  the  direction  orthogonal  to  the  camera 
scan  lines,  that  is,  about  one  axis  instead  of  the  two  required  for  spot  sensing. 

Since  light-stripe  sensing  is  simple  and  fast,  it  is  widely  used  today  for 
robotic  applications;  for  example,  the  camera-projector  pair  can  be  mounted 
at  the  end  of  a  robot  arm  to  guide  the  arm  toward  the  object  to  be  grasped 

(Vanderbrug,  Albus,  and  Borkmeyer,  1979). 

Multiple-stripe  and  grid-coding  methods.  Instead  of  a  single  stripe, 
it  is  possible  to  use  a  grid  of  horizontal  and  vertical  stripes.  From  the  position 
of  the  camera,  the  square  grid  pattern  is  seen  as  distorted  by  the  surface 
orientation  and  curvature.  By  identifying  the  nature  of  these  distortions,  we 
can  infer  the  surface  orientations  and  curvatures.  (Notice  the  relationship 
of  this  idea  to  shape  from  texture;  Article  XIII.D5.)  However,  the  benefit  of 

obtaining  an  entire  scene  in  one  shot  is  often  offset  by  a  complicated  image- 
processing  task. 

We  can  also  employ  an  encoding  scheme.  Each  stripe  can  be  encoded  by 
color,  intensity,  width,  or  position.  When  the  positional  encoding  is  used,  a 
set  of  stripes  can  be  turned  on  and  off  in  a  binary  pattern  in  a  sequence  of 

images.  Then,  2^  stripe  positions  can  be  identified  from  a  set  of  N  images, 
rather  than  2^  images.  Each  stripe  is  assigned  a  unique  TV-bit  number  from 

0  to  2^  —  1.  Then,  when  taking  the  Kth  image  (1  <  K  <  N),  each  stripe  is 
turned  on  or  off  depending  on  whether  the  Kth  bit  of  its  assigned  number  is  1 
or  0.  Some  redundancy  can  be  added  to  this  encoding  to  increase  reliability. 

This  type  of  encoding  scheme  requires  far  fewer  images  than  the  single-stripe 
method  (Altschuler,  Altschuler,  and  Taboada,  1981). 

A  related  method  is  to  project  onto  the  scene  multiple  stripes  that  are  out 
of  alignment  with  the  TV  scan  lines.  This  produces  a  moire  pattern  in  which 
each  contour  is  a  locus  of  the  same  depth.  Thus,  the  moire  method  is  very 
useful  for  detecting  fluctuations  in  surface  depths.  However,  the  moire  pattern 
alone  does  not  provide  information  about  the  absolute  depth  of  a  contour. 
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Conclusion 

We  have  discussed  a  number  of  methods  for  measuring  depth.  First,  we 

considered  time-of-flight  systems  that  measure  the  time  required  for  sound  or 
light  to  propagate  to  an  object  and  reflect  back.  There  is  a  trade-ofT  in  these 
systems  between  light,  which  can  be  precisely  focused  but  which  travels  too 
fast  to  be  useful  in  measuring  small  distances,  and  sound,  which  cannot  be 
accurately  focused  but  which  travels  slowly  enough  for  good  depth  resolution. 

We  also  discussed  triangulation-based  systems  that  use  an  active  light 
projector  and  a  passive  sensor.  Several  variations  were  considered,  including 
spot  sensing  and  stripe  sensing. 

The  related  technique  of  stereo  analysis  is  discussed  in  Article  XIII. D3,  and 
Article  XIII. D6  explains  some  of  the  ways  that  range  data  are  used  in  scene 
analysis. 
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D5.     Shape- from  Methods 

In  the  first  article  in  this  section  (Article  XIII. Dl),  the  importance  of  recover- 
ing intrinsic  scene  characteristics  was  emphasized.  Shading,  textures,  edges, 

contours,  and  highlights  play  important  roles  in  determining  shape  from  a 

monocular  image.  However,  two-dimensional  images  provide  only  ambiguous 
shape  information;  to  recover  shape,  assumptions  that  relate  image  charac- 

teristics to  scene  characteristics  are  needed.  For  example,  in  Article  XIII. B8, 
we  described  quantitative  shape  recovery  from  line  drawings  (i.e.,  contours 
and  edges)  of  the  Origami  world.  We  used  the  assumptions  concerning  image 

properties — such  as  parallelism  and  skewed  symmetry.  Recently,  a  class  of 
methods  has  been  developed  for  recovering  shape  from  shading,  textures,  and 
contours  in  monocular  images  under  reasonable  assumptions.  They  make  it 

possible  for  us  to  represent  the  constraints  that  images  provide  and  to  aggre- 
gate them  to  recover  a  shape.  They  are  called  shape-from  methods,  after  the 

pioneering  work  in  shape-from-shading  by  Horn  (1975,  1977).  In  this  article, 
we  discuss  shape-from-shading  and  shape-from-texture  methods. 

Shape  from  Shading 

A  model  of  image  formation  and  the  reflectance  map.    To  use 
shading  to  recover  shape,  we  need  to  know  how  the  image  intensity  at  a  pixel 
is  determined:  We  need  a  model  of  image  formation.  The  model  includes  both 
the  geometry  of  image  projection  and  the  radiometry  of  intensity  formation. 

We  will  follow  the  discussion  given  by  Woodham  (1978).  Figure  D5-1  shows  a 
basic  model.  It  includes  a  light  (illumination)  source,  a  surface,  and  a  picture 

plane.  As  in  Article  XIII. B7,  we  place  a  coordinate  system  so  that  the  viewer's 
central  line  of  sight  (optical  axis)  is  the  z-axis,  and  the  picture  plane  is  the 
x-y  plane.  Imagine  a  small  surface  patch  at  (x,  y,  z).  It  is  illuminated  by  the 
light  source  and  part  of  the  reflected  light  is  recorded  at  a  corresponding  pixel 
position  in  the  image. 

In  general,  the  intensity  recorded  at  a  pixel  depends  on  the  illumination 
position,  surface  material,  surface  position,  surface  orientation,  and  viewer 
position.  However,  for  simplicity,  we  assume  that  the  incident  illumination  is 
parallel  and  constant  at  each  surface  position  and  that  the  image  projection 
is  orthographic.  This  corresponds  well  to  the  case  in  which  the  illumination 
source  and  viewer  are  both  far  from  the  object. 

The  reflectance  characteristics  of  an  object  surface  can  now  be  represented 

as  a  function  <f>(i,  e,  g)  of  the  three  angles  defined  in  Figure  D5-1:  The  incident 
angle  i  is  the  angle  between  the  incident  light  and  the  surface  normal,  the 
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z  =  f(x,y) 

Figure  D5-1.     A  model  of  image  formation. 

view  angle  e  is  the  angle  between  the  emergent  light  (which  is  also  the  line  of 
sight)  and  the  surface  normal,  and  the  phase  angle  g  is  the  angle  between  the 
incident  and  emergent  light. 

Orientation  in  three-dimensional  space  can  be  represented  by  means  of 

gradient  space  (see  Article  XIII. B7).  Assuming  that  —z  =  f(x,  y)  denotes  the 
surface,  the  gradient  (p,  q)  is  defined  as 

p  =  df/dx  =  d(-z)/dx,      q  =  df/dy  =  d(-z)/dy  , 

where  —  z  is  the  depth.  Then,  the  surface  normal  n  at  (x,  y,  z),  which  points 
to  the  viewer,  is  given  by 

n  =  (p,q,l)  . 

Thus,  we  can  regard  a  gradient  as  representing  a  three-dimensional  space 
vector  whose  x  and  y  components  are  p  and  q  and  whose  z  component 

is  1,  and  vice  versa.  Similarly,  we  can  represent  other  orientations  with  gra- 

dients. A  three-dimensional  vector  s  =  (ps,qs,l)  points  in  the  direction 
of  illumination;  that  is,  the  gradient  (ps,qs)  represents  the  orientation  of 

illumination.  Similarly,  the  viewer's  line  of  sight  can  be  represented  as  (0, 0) 
in  the  gradient  space,  because  under  orthographic  projection  it  is  parallel  to 

the  z-axis;  this  vector  is  v  =  (0, 0, 1). 
One  of  the  simplest  surface-reflectance  models  is  a  perfectly  diffuse  (1am- 

bertian)  surface,  in  which  the  reflection  is  uniform  for  all  the  view  angles,  and 
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the  amount  of  reflection  varies  as  the  cosine  of  the  incident  angle;  that  is, 

(f>(i,  e,  g)  =  pcosi , 

where  p  is  called  the  reflectivity  constant. 
Because  of  the  property  of  inner  products,  we  can  write  this  equation  in 

terms  of  gradients: 

<j>{i,e,g)  =  pcosi  =  p(s  •  n)/|s||n| 

=  piPPs  +  qqs  +  1)Mp?  +  ̂   +  1)(p2  +  <72  +  1)  (1) 
=  R(p,q). 

This  means  that,  given  a  surface  patch  at  (x,  y,  z)  with  orientation  (p,  q),  we 
can  determine  the  image  intensity  I(x,  y)  observed  at  the  corresponding  pixel 

(x,  y)  to  be 

I(x,  y)  =  R{p,  q) . 

The  function  R(p,  q)  is  called  a  reflectance  map.  This  is,  in  fact,  generally 
the  case  under  our  assumptions:  Since  we  assume  a  constant  illumination, 

the  surface-reflectance  characteristics  (f>(i,  e,  g)  solely  determine  the  image 
intensity,  and  since  we  assume  orthographic  projection,  a  pixel  at  (x,  y)  images 
the  surface  patch  at  (x,  y,  z)  and  therefore  its  pixel  value  is  equal  to  <f>(i,  e,  g). 
The  angles  i,  e,  and  g  can  be  represented  in  terms  of  the  vectors  n,  s,  and  v, 
which  are  represented  by  the  gradients. 

Figure  D5-2  shows  the  reflectance  map  of  equation  (1),  drawn  as  a  series 
of  iso-intensity  contours  for  the  case  ps  —  .7,  qs  =  .3,  and  p  =  1 .  The 
surface  orientations  on  a  single  contour  generate  the  same  image  intensity. 

Those  to  the  left  of  the  straight  lines  psp  +  qsq  +1=0  correspond  to  the 
orientations  that  face  away  from  the  illumination  and,  thus,  do  not  give  rise 
to  any  brightness. 

Reflectance  maps  have  been  calculated  for  various  cases  (Horn,  1979)  and 

used  for  automatic  generation  of  hill-shading  of  terrains.  The  synthesized 
images  can  be  matched  with  real  images  to  normalize  them. 

Shape-recovery  process.  The  reflectance  map  of  Figure  D5-2  shows 
that  under  the  assumptions  about  the  imaging  geometry  and  surface  reflectiv- 

ity, the  observed  intensity  at  a  pixel  does  constrain  the  surface  orientations  on 

the  corresponding  iso-intensity  contour  of  gradients,  and  yet  this  constraint 
is  not  strong  enough  to  determine  surface  orientations  uniquely.  Additional 
constraints  are  needed. 

The  utility  of  the  reflectance  map  is  illustrated  for  the  case  of  the  block 

scene  in  Figure  D5-3a.  Suppose  this  is  a  convex  corner.  Then  the  gradients  of 
the  three  faces  should  form  the  triangle  shown  in  Figure  D5-3b,  whose  shape 
is  determined  by  the  orientations  of  lines  in  Figure  D5-3a,  but  whose  location 
and  size  are  ambiguous.  Suppose  also  that  the  imaging  condition  is  the  same 
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0.0  0 

Figure  D5-2.  The  reflectance  map  for  a  lambertian  sur- 
face with  ps  =  .7,  qs  =  .3,  and  p  =  1  in 

equation  (1)  (from  Woodham,  1978). 

as  discussed  above:  Image  intensities  should  be  constant  over  each  planar  face 
because  it  has  a  constant  gradient.  The  observed  intensities  constrain  surface 

orientations  on  the  iso-intensity  contours.  If  we  put  together  the  two  types 
of  constraints — the  triangle  and  the  iso-intensity  contours — we  may  be  able 
to  determine  the  surface  orientations.  We  can  translate,  shrink,  and  expand 

the  gradient-space  triangle  until  each  corner  lies  on  the  iso-intensity  contour 

that  corresponds  to  the  observed  intensity  (see  Fig.  D5-3c).  In  this  way,  we 
can  determine  the  surface  orientations  of  the  three  faces. 

Intensity(A)  =  I  a 

Intensity(B)  =  IB 

Intensity(C)  =  Ic 

(a) (b) 
(c) 

Figure  D5-3.     A  simple  example  of  using  the  reflectance  map. 
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More  generally,  for  curved  objects,  we  must  find  surface  orientations 
(gradients)  for  each  point,  rather  than  for  a  whole  surface.  To  do  this,  we 
can  exploit  two  general  constraints:  Each  image  point  is  assigned  to  at  most 
one  surface  orientation,  and  orientations  vary  smoothly  almost  everywhere 
except  at  boundaries.  These  constraints  are  called  uniqueness  and  continuity, 

respectively.  Suppose  we  assign  {Pi,j,q%,j)  to  pixel  position  (i,j).  Then  we  can 
define  a  measure  of  error  of  that  assignment  as 

Eij  =  WJ)  ~  R(PiJ>  Qi,j))2 

+  \{(pi+1J  +  piJ+i  +  pi-xj  +  Pi,j-\  -  4pij)2 

+  (Vi+lj  +  Qi,j+1  +  Qi-l,j  +  Qi,j-1  -  Mi,jf}  » 

where  X  is  a  positive  constant. 
The  first  term  of  this  equation  is  the  difference  of  the  observed  intensity 

I(i,j)  from  the  expected  intensity  R{pi,j,qi,j),  and  the  second  term  is  the 
sum  of  the  squared  Laplacians  to  measure  the  smoothness  (see  Article  XIII.C3). 

Then  we  define  the  total  error  E  as  the  summation  of  E{j  over  the  image: 

£  =  £!>. 

We  minimize  this  error  to  obtain  a  shape  that  globally  satisfies  the  con- 
straints. Iterative  or  cooperative  relaxation  algorithms  (see  Article  XIII.E4)  can 

be  used  for  minimization.  Boundary  information  gives  explicit  orientations  at 
certain  points  and  provides  anchor  points  for  an  algorithm.  Ikeuchi  (1980a) 

used  occluding  contours  and  self-shadow  boundaries  to  obtain  anchor  points. 
At  an  occluding  contour,  the  line  of  sight  is  tangent  to  the  object  surface, 
and  its  surface  normal  is  uniquely  determined  as  perpendicular  to  both  the 

contour  line  and  the  line  of  sight.  A  self-shadow  boundary  is  the  place  at 
which  the  illumination  ray  is  tangent  to  the  surface.  It  corresponds  to  the 

line  psp  +  q3q  +  1  =  0  in  Figure  D5-2,  but  unfortunately  the  surface  normals 
are  not  unique.  However,  there  are  three  points  on  it  whose  orientations  are 

determined  uniquely:  One  is  the  point  at  which  the  self-shadow  boundary  is 
perpendicular  to  the  direction  of  illumination,  and  the  other  two  are  the  points 

at  which  the  self-shadow  boundary  intersects  with  an  occluding  contour.  With 
these  boundary  conditions  and  an  iterative  process  to  minimize  E,  Ikeuchi 
(1980b)  accomplished  shape  recovery  from  monocular  images,  for  example, 

from  scanning-electron-microscope  (SEM)  pictures. 

Shape  from  Texture 

Historically,  textural  change  was  known  to  be  useful  for  shape  and  pat- 
tern discrimination;  for  example,  the  term  texture  gradient  has  been  used  to 

suggest  the  change  of  density  due  to  distance  and  orientations.  However,  it  is 
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only  recently  that  texture  has  been  studied  mathematically,  so  that  computer 

vision  systems  can  directly  relate  texture  with  shape.  Notable  work  here 

includes  Kender  (1979,  1980),  Stevens  (1980),  Witkin  (1980),  Kender  and 

Kanade  (1980),  and  Ikeuchi  (1980b).  This  article  will  present  a  simple  example 

of  shape  from  texture. 

Parallels  between  shading  and  texture.  Close  parallels  can  be  drawn 

between  shape  from  shading  and  shape  from  texture.  We  can  imagine  a 

small  texture  element — called  a  texel — that  corresponds  to  a  pixel.  Just 
as  the  intensity  at  a  pixel  changes  with  surface  orientation,  so  does  the 

appearance  of  a  texel  in  the  image;  its  appearance  includes  its  shape  and 

its  local  density.  Just  as  shape  from  shading  needed  certain  assumptions,  so 

does  shape  from  texture.  One  such  assumption  is  homogeneity  of  surface 

texture;  that  is,  the  original  "print"  on  the  surface  is  homogeneous  and  any 
variation  observed  in  the  image  is  due  to  the  change  in  shape  and  view  angle. 

Under  this  assumption,  observed  textural  properties  such  as  shape  distortion 

and  density  change  constrain  the  orientations  of  the  surface  patches,  but 

they  are  not  enough  to  determine  uniquely  the  orientations.  Assumptions 

of  surface  uniqueness  and  continuity  are  required — as  they  were  for  shape 

from  shading — to  propagate  the  constraints  and  to  facilitate  the  search  for  a 
globally  correct  solution. 

In  most  vision  research,  perspective  projection  is  a  source  of  difficulty 

because  its  nonlinearity  makes  theories  less  tractable.  We  have  seen  that 

orthographic  projection  is  often  preferred  as  an  approximation  because  of  its 

simplicity.  Interestingly,  the  perspective  projection  is  one  of  the  main  sources 

of  constraints  in  the  shape- from- texture  method. 
The  case  of  parallel  lines.  Converging  lines  in  a  perspective  image 

suggest  parallel  lines  in  the  corresponding  scene.  More  than  one  set  of  con- 
verging lines  can  specify  the  orientation  of  a  surface  on  which  they  lie.  Typical 

examples  are  lines  formed  by  tiles  or  windows  on  the  wall  of  a  building.  A 

human  can  perceive  the  orientation  of  the  wall  from  such  an  image.  An  elegant 

solution  to  this  problem  was  presented  by  Kender  (1979). 

Suppose  we  have  a  set  of  converging  lines  in  an  image  (Fig.  D5-4a).  Then 
we  can  transform  each  line  as  follows: 

1.  Represent  a  line  in  the  x-y  picture  plane  as  p  =  xcosfl  +  ysinO; 

2.  Transform  the  line  into  a  point  T  in  u-v  space  where  T  =  (u,  v)  = 
((K / p)  cos  0 ,  (K / p)  sm  0)  and  K  is  a  positive  constant. 

When  we  transform  a  set  of  lines  that  converge  to  a  point  C  in  the  image, 

the  transformed  points  lie  on  a  single  line  in  the  u-v  space.  The  reason  for  this 

is  illustrated  in  Figure  D5-4b.  First,  think  of  a  point  T'  =  (pcosO,  psinO). 

T'  is  just  the  leg  of  a  perpendicular  line  from  the  origin  O  to  the  picture 

line,  such  as  T\  for  line  l\.  All  T'  for  the  converging  lines  should  be  on  a 

circle  whose  diameter  coincides  with  OC,  because  the  angle  OT'C  is  always  a 

right  angle.  Now,  notice  that  T  is  the  point  located  on  the  line  OT' ',  so  that 
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Figure  D5-4.     Obtaining  surface  orientation  from  converging  lines. 

OT  =  K/OV  =  K/p.  Let  us  define  T0  on  OC  so  that  OT0  =  AT/OC. 
Since  O  and  C  are  fixed  points,  To  is  also  a  fixed  point.  Then  it  is  easy  to 

show  that  point  T  (the  transformed  point  of  a  convergent  line)  is  always  on 
the  line  that  passes  To  and  is  perpendicular  to  OC.  For  example,  assume 

T\.  Triangles  OTqTi  and  OT\C  are  similar,  and  thus  angle  OTqT\  is  equal 
to  angle  OT\C,  which  is  equal  to  a  right  angle.  Kender  showed  that  under 

perspective  projection,  if  we  choose  K  equal  to  the  focal  length,  then  the  u-v 
plane  coincides  with  the  gradient-space  p-q  plane.  After  all,  if  we  assume  that 
the  convergent  lines  are  originally  parallel  lines  on  a  single  plane  surface,  the 
surface  orientation  should  be  such  that  its  gradient  is  on  this  line.    If  the 
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surface  includes  more  than  one  set  of  parallel  lines,  like  the  boundary  lines  of 

repetitive  windows  on  a  wall  of  a  building,  we  have  two  such  gradient-space 
lines,  and  thus  the  surface  orientation  can  be  determined  as  an  intersection 

of  the  two  gradient-space  lines.  To  do  this  involves  several  steps: 

1.  Detect  short  edge  elements  and  their  direction  0 ; 

2.  Transform  them  into  the  p-q  place  as  defined  above  (with  K  =  focal 
length); 

3.  Detect  straight  lines  in  the  p-q  plane; 

4.  Obtain  their  intersection  point  as  the  gradient  of  the  original  surface. 

Conclusion 

Not  only  are  individual  shape-from  methods  useful,  but  the  approach  that 
is  common  to  them  is  a  powerful  paradigm  in  vision  research.  Indeed,  this 
approach  is  the  theme  of  Section  XIII. D,  namely,  to  understand  the  geometrical 
and  physical  basis  of  the  imaging  process  and  to  derive  constraints  by  making 
assumptions  (such  as  uniformity  and  continuity)  explicit.  Recent  formulations 

of  other  shape-from  methods — shape  from  contours,  from  motion,  from  stereo, 
and  so  forth — have  been  strongly  influenced  by  the  approach  described  here. 
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D6.     Three-dimensional  Shape  Description  and  Recognition 

ONE  OF  THE  REASONS  that  image  understanding  is  so  difficult  is  that  the 
gray  value  of  a  point  in  a  scene  is  the  product  of  many  factors.  It  depends 

on  an  object's  reflectance  function,  the  illumination,  the  orientation  of  the 
surface  with  respect  to  the  light  and  to  the  viewer,  mutual  illumination,  and 
shadowing.  Furthermore,  spatial  information  is  lost  by  projection  in  forming 
the  image  (see  Article  XIII.D4). 

This  problem  can  be  overcome  if  range  data,  derived  from  an  active  range 
finder  (Article  XIII.D4)  or  by  stereo  (Article  XIII. D3),  are  used  to  compute  the 

three-dimensional  position  of  each  observable  point  in  a  scene.  This  is  usually 
the  most  useful  measure  of  a  scene,  because  the  size,  shape,  and  orientation 
of  objects  can  be  derived  from  it.  For  robotic  vision,  range  information  is 
essential. 

Range  information  does  have  its  limitations.  One  is  that  painted  sur- 
face markings  cannot  be  read  from  positional  data  alone  (although  some 

laser  range-finders  can  also  measure  per-point  reflectance;  see  Duda,  Nitzan, 
and  Barrett,  1979;  Kanade  and  Asada,  1981).  A  second  limitation  is  that 

triangulation-based  range  finders  can  measure  only  the  points  visible  to  both 

ends  of  the  "eye"  baseline.  (The  physical  construction  of  range  finders  is 
described  in  Article  XIII.D4.)  Third,  range  finders  are  usually  accurate  only 
over  a  small  volume. 

Despite  these  limitations,  range  data  are  very  important  for  scene  analysis. 
The  first  part  of  this  article  discusses  how  objects  in  scenes  are  represented 
in  terms  of  range  information;  the  second  part  of  the  article  presents  several 
vision  systems  that  make  use  of  range  data. 

Shape  Description 

Recognition  of  objects  in  a  scene  involves  constructing  a  shape  description 
of  objects  from  sensed  data  and  then  matching  the  description  with  stored 
object  models.  Shape  descriptions  of  models  and  objects  must  be  represented 

by  similar  terms  and,  for  range-data  analysis,  these  terms  must  describe  the 
relative  positions  of  elements  of  a  scene. 

A  few  types  of  primitives  are  used  for  shape  descriptions: 

1.  Vertex  and  edge.  Describing  the  data  in  terms  of  vertices  and  edges  is 
appropriate  when  the  world  model  contains  only  polyhedra.  Roberts 
and  Falk  (Articles  XIII. Bl  and  XIII. B3)  represented  objects  in  terms  of 
vertices. 

2.  Surface.  An  object  can  be  represented  by  a  collection  of  surfaces,  of 

which  planes  are  the  simplest.  Quadratic  (second-order)  surfaces  are 

also  popular  (see  the  discussion  of  Oshima  and  Shirai's  work  later  in 
this  article). 

268 
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3.  Volume.  A  volume  description  defines  the  space  taken  up  by  an  object. 
A  range  finder  sees  only  surfaces,  so  a  volume  description  must  be 
developed  by  fitting  its  surface  to  the  sensed  data. 

Generalized  cylinders.  The  most  popular  type  of  volume  description 

is  the  generalized  cylinder  (Agin  and  Binford,  1973).  As  the  name  suggests, 
generalized  cylinders  are  a  class  of  objects  obtained  by  extending  the  definition 

of  a  cylinder.  An  ordinary  cylinder  (Fig.  D6-la)  is  the  volume  swept  out  by 
a  circular  disc  moving  along  a  straight  line  segment  through  its  center.  The 
disc  is  kept  normal  (perpendicular)  to  the  line  segment  that  is  the  axis,  or  the 
spine,  of  the  cylinder. 

The  cylinder  can  be  generalized  by  one  or  more  extensions:  The  spine  may 

be  curved  (Fig.  D6-lb).  The  radius  of  the  disc  may  vary  as  a  function  of  its 
position  along  the  spine  (Fig.  D6-lc);  this  function  is  known  as  the  sweeping 
rule.  The  cross-section  may  be  some  planar  figure  other  than  a  circular  disc 

(Fig.  D6-ld).  The  cross-section  may  be  held  at  some  nonperpendicular  angle 
to  the  spine  (Fig.  D6-le). 

Many  complex  objects  can  be  modeled  as  clusters  of  generalized  cylinders; 

for  example,  Figure  D6-2  shows  a  model  of  a  Lockheed  TriStar  (from  Brooks, 
Greiner,  and  Binford,  1978).  It  is  composed  of  generalized  cylinders  with 

straight  spines,  circular  or  rectangular  cross-sections,  and  constant  or  linear 
sweeping  rules.  The  airfoils  and  nose  and  tail  cones  are  generated  by  cross- 
sections  held  at  nonperpendicular  angles  to  their  spines. 

Models  composed  of  generalized  cylinders  can  be  expressed  at  various 

levels  of  detail.  For  example,  Figure  D6-3  shows  levels  of  detail  for  a  model  of 
a  human  (from  Marr  and  Nishihara,  1978).  At  the  least  detailed  level,  a  single, 
vertically  oriented  cylinder  suffices.  Next,  one  cylinder  is  used  for  the  trunk 
and  one  each  for  the  head,  arms,  and  legs.  An  arm  can  be  further  refined  into 
a  forearm  and  an  upper  arm,  and  so  on.  With  a  hierarchy  of  detail,  image 
interpretation  can  begin  with  gross  features,  and  then  finer  details  can  be 

filled  in  under  the  guidance  of  the  grosser  match.  This  coarse-to-fine  strategy 
reduces  the  combinatorics  of  matching.  It  might  also  be  recognized  as  the 
strategy  that  reduces  search  in  hierarchical  planning  (see  Article  XV. C). 

The  generalized-cylinder  representation  works  best  with  objects  composed 
of  elongated  parts,  since  these  are  often  recognizable  as  stick  figures:  the 

"sticks"  are  the  spines  of  the  generalized  cylinders.  Non-elongated  shapes 
may  be  represented  as  generalized  cylinders,  but  the  choice  of  spine  is  less 
obvious.  A  cube  has  three  equally  good  choices  for  a  spine;  a  short,  squat, 
circular  cylinder  has  its  spine  parallel  to  its  shortest  dimension. 

Issues  in  Shape  Description 

In  addition  to  the  primitive  units  for  describing  surfaces  and  volumes,  a 

representation  scheme  must  specify  a  means  of  composing  them  into  object 
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(a)  Ordinary  Cylinder (b)  Curved  Spine 

(c)  Arbitrary  and  Linear  Sweeping  Rules 

(d)  Generalized  Cross-section (e)  Non-normal  Spine 

Figure  D6-1.     Generalized  cylinders. 

models.  For  example,  a  description  of  a  hammer  contains  not  just  descriptions 

of  the  handle  and  the  head,  but  also  the  fact  that  the  end  of  the  handle  is 

joined  with  the  bottom  of  the  head.  (See  Article  X3II.E3  for  a  discussion  of 

syntactic  rules  for  composing  objects.) 

Uniqueness  and  continuity  are  two  important  qualities  of  a  representation 

scheme,  especially  a  scheme  for  object  recognition.  It  is  often  desirable  to 

have  a  single,  unique  representation  for  each  shape  in  the  world;  otherwise,  a 
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Figure  D6-2.  A  Lockheed  TriStar  by  a  generalized-cylinder 
representation  (from  Brooks,  Greiner,  and  Bin- 
ford,  1978). 

program  may  be  faced  with  the  task  of  choosing  from  a  large  set  of  substan- 
tially different  representations,  and  matching  becomes  difficult.  The  criterion 

of  continuity  is  that  similar  shapes  should  have  similar  representations  and 

that  very  different  shapes  should  have  very  different  representations.  A  rep- 
resentation should  not  change  drastically  with  a  small  change  in  shape. 

A  problem  for  range-data  analysis  is  picking  an  appropriate  level  of  detail 
for  models:  A  very  detailed  description  of  a  particular  object,  say,  a  chair,  in 
a  particular  orientation  is  relatively  useless  in  that  it  will  fail  to  recognize  the 
chair  in  a  slightly  different  orientation,  just  as  it  will  fail  to  recognize  similar 
chairs.  Therefore,  a  model  of  a  chair  must  express  the  essential  features  of  the 
shape  of  a  chair.   Such  a  model  has  its  own  reference  frame,  independent  of 

HUMAN 

Figure  D6-3.     Detail  hierarchy  of  a  three-dimensional  model  of 
a  human  (from  Marr  and  Nishihara,  1978). 
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its  position  or  orientation  in  the  scene.  Thus,  it  is  said  to  be  object- centered, 
as  opposed  to  camera-centered.  (See  Articles  XIII. E2  and  XIII. E3  for  other 
discussions  of  the  problem  of  choosing  primitives  for  scene  analysis.) 

An  important  issue  of  representation  is  that,  while  there  are  advantages 

to  object-centered  representations,  the  first  description  of  an  object  extracted 
from  sensed  data  is  necessarily  camera-centered.  Consequently,  object  recog- 

nition involves  these  two  different  types  of  representations. 
Lastly,  object  recognition  involves  partial  matching,  because  a  range  finder 

can  see  only  one  side  of  an  object.  The  description  derived  from  the  sensed 
data  cannot  match  hidden  parts  of  a  stored  model,  unless  it  contains  a 

hypothesis  of  what  is  hidden. 

Shape  Recognition 

The  raw  data  from  most  range-finding  sensors  are  not  in  the  form  of  a 
depth  map  (see  Article  XIII. D4);  however,  it  is  often  used  for  scene  analysis  in 
raw  (or  nearly  raw)  form  because  it  is  a  fairly  faithful  representation  of  the 

physical  structures  of  objects  in  a  scene.  For  example,  a  light-stripe  range 
finder  produces  many  frames  of  TV  images  of  light  stripes;  other  research- 

ers reduce  their  data  to  an  array  of  displacement  values:  D{j  represents  a 

horizontal  displacement  of  the  jth  light  stripe  on  TV  frame-row  i.  Although 
the  conversion  from  these  input  forms  to  three-dimensional  surface  points 
is  straightforward,  many  researchers  examine  features  in  this  representation 

directly,  before  (or  without)  converting  to  three-dimensional  coordinates. 
Scene  analysis  on  the  raw  range-sensor  data  prior  to,  or  in  place  of,  con- 

verting to  three-dimensional  coordinates  is  done  most  often  with  triangulation 
range-finders  that  produce  light  stripes.  An  occluding  edge  is  manifest  as  a 
discontinuity  of  stripe  displacement,  either  within  a  stripe  or  between  adjacent 
stripes.  Intersection  of  two  planar  surfaces  may  be  detected  by  a  discontinuity 
in  the  direction  (bend)  of  a  light  stripe  when  tracing  along  its  length,  or  by 
a  change  in  interstripe  pitch.  If  we  assume  vertical  stripes  with  the  camera 
to  the  right  of  the  illuminator,  a  horizontal  concave  edge  will  produce  a  bend 
in  the  stripe  that  is  convex  rightward,  while  a  horizontal  convex  edge  will 
produce  a  bend  that  is  convex  leftward.  Similar  relationships  hold  for  other 
orientations. 

The  remainder  of  this  article  discusses  individual  scene-analysis  programs 
that  work  from  range  data. 

Range- data  Analysis  Systems 

Shirai  and  Suwa.  Shirai  and  Suwa  (1971)  first  used  a  light-stripe  range 
finder  to  analyze  and  recognize  polyhedra.  Their  range  finder  produced  one 
TV  picture  for  each  position  of  the  illuminating  stripe.  They  thresholded 
and  smoothed  each  image  and  tracked  the  stripes,  which  were  segmented  into 
nearly  linear  portions  and  replaced  with  straight  line  segments.  Neighboring 
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lines  were  grouped  into  planes,  according  to  their  orientation  and  their  inter- 
vals. (When  light  planes  at  equal  intervals  intersect  a  planar  surface,  the 

TV  camera  sees  a  set  of  stripes  with  common  orientation,  located  at  equal 

intervals.)  Once  a  planar  patch  was  found,  its  lines  were  projected  back  into 
three  dimensions,  and  the  equation  of  the  plane  was  found  by  least  squares. 
After  all  the  planes  were  found,  they  were  grouped  into  polyhedra. 

Agin,  Binford,  and  Nevatia.  At  Stanford  University,  the  generalized 
cylinder  representation  has  been  used  extensively  for  analyzing  range  data 
from  light  stripes.  Agin  fit  generalized  cylinders  to  range  data  (Agin  and 
Binford,  1973).  He  worked  directly  from  the  raw  data,  delaying  conversion 

to  three-dimensional  coordinates.  He  started  with  two  sets  of  light  stripes, 

obtained  by  illuminating  the  subject  with  two  sets  of  light  sheets,  one  per- 
pendicular to  the  other.  Parallel  elliptical  arcs  suggest  a  generalized  cylinder 

and  its  radius  and  axis,  as  shown  in  Figure  D6-4a.  Each  detected  stripe  was 
thinned  and  linked  into  a  chain.  Then  adjacent  chains  representing  consecu- 

tive laser  scans  were  grouped  together  if  they  were  roughly  parallel  in  the  TV 
image.  Each  such  group  was  then  modeled  as  a  generalized  cylinder.  As  an 

initial  guess  for  the  cylinder's  axis,  the  midpoints  of  a  group  of  chains  were 
converted  into  three-dimensional  coordinates.  The  diameter  of  the  cylinder 
was  gauged  from  the  length  of  the  chains  and  their  orientation  with  respect  to 
the  axis.  The  cylinder  description  was  iteratively  refined  by  marching  along 

the  cylinder's  spine,  passing  a  plane  orthogonal  to  the  spine,  and  fitting  a 
circle  to  the  surface  points  near  the  cylinder  in  that  plane.  This  refined  the 
notion  of  the  diameter  at  that  point,  as  well  as  of  the  location  of  the  spine. 

(b) 

Figure  D6-4.  (a)  Light-stripe  image  of  a  Barbie  doll  and 
(b)  generalized  cylinders  obtained  from  (a) 
(from  Agin  and  Binford,  1973). 
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Thus,  the  shape  of  a  Barbie  doll  is  represented  by  generalized  cylinders  (see 

Fig.  D6-4b). 

Nevatia  and  Binford  (1973)  extended  Agin  and  Binford's  work.  The  con- 
struction of  the  generalized  cylinders  was  much  the  same,  but  it  omitted 

conversion  to  three-dimensional  coordinates  and  generalized  the  cylinders  fur- 
ther by  removing  the  assumption  of  a  circular  cross-section.  Also,  boundary 

information  was  derived  by  linking  the  discontinuities  in  the  range  data.  They 
segmented  a  single  object  into  simpler  parts  (such  as  leg  and  torso),  each  of 

which  was  extracted  as  a  smooth  generalized  cylinder  (see  Fig.  D6-5).  The 
segmented  parts  were  connected  at  joints,  and  their  connectivity  relations 
were  represented  as  a  graph  with  joints  as  nodes  and  parts  as  arcs.  The  part 

descriptions  included  their  size  and  shape  (length  of  axis,  average  cross-section 
width,  etc.);  the  joint  descriptions  included  the  parts  connected  at  the  joints 
and  their  relations.  The  graph  descriptions  that  are  constructed  from  one 
view  were  stored  as  models,  and  a  new  scene  was  recognized  by  matching  the 
graph  description  with  stored  model  descriptions. 

Popplestone,  Brown,  Ambler,  and  Crawford.  Popplestone  and  his 

associates  (1975)  used  a  light-stripe  range  finder  to  provide  data  for  interpret- 
ing scenes  composed  of  planar  surfaces  and  walls  of  cylinders  with  circular 

cross-sections.  Because  of  this  restriction  on  the  scene  objects,  sections  of 
light  stripes  observed  in  the  TV  frames  were  known  to  be  either  straight  line 
segments  or  parts  of  ellipses.  The  stripes  were  segmented  and  fit  with  straight 

line  segments  or  were  assumed  to  be  curved.  Their  three-dimensional  coor- 
dinates were  calculated.  Groups  of  parallel  lines  arising  from  sequential  laser 

scans  were  fit  to  planes  by  means  of  least  squares.  A  poor  fit  indicated  that 
the  lines  were  not  on  planes,  but  on  the  surface  of  a  cylinder,  parallel  to  the 
axis.  Groups  of  curves  also  indicated  a  cylinder  wall. 

The  first  step  in  pursuing  a  cylinder  hypothesis  was  to  estimate  the  axis 
orientation.  This  was  trivial  for  a  cylinder  that  was  manifest  as  a  set  of 
straight  lines.  For  a  set  of  curves,  the  direction  was  estimated  by  finding  the 
direction  (in  TV  coordinates)  in  which  successive  stripes  may  be  shifted  to 
coincide  with  each  other.  Once  this  shift  was  found  in  two  dimensions,  the 
third  coordinate  was  found  for  the  axis  vector. 

The  data  points  were  then  projected  onto  a  plane  orthogonal  to  the  axis. 
This  caused  the  elliptical  stripes  to  project  onto  a  circle.  By  fitting  a  circle  to 
the  projection  by  least  squares,  the  radius  of  the  cylinder  and  a  point  on  its 
axis  were  determined. 

Once  a  plane  or  cylinder  was  determined,  the  list  of  stripes  was  scanned 
to  find  unexplained  segments  that  might  lie  on  the  surface.  If  such  segments 
were  found,  they  would  be  added  to  the  evidence  for  the  surface  and  the 
surface  would  be  refit  to  the  data. 

Sugihara.  Sugihara  (1979)  exploited  the  constraints  of  a  junction  dic- 
tionary like  those  of  Huffman,  Clowes,  and  Waltz.  Whereas  the  earlier  work 

used  the  dictionary  to  deduce  line  labels,  Sugihara  derived  those  labels  directly 
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Figure  D6-5.     Segmentation  of  range  data  into  parts  and 
joints  (from  Nevatia  and  Binford,  1973). 

from  analysis  of  the  range  image.  The  dictionary  was  used  to  suggest  edges 
that  had  originally  escaped  detection.  It  contained  not  only  physically  possible 
junctions,  but  also  impossible  junctions  that  would  become  possible  if  one 
or  more  additional  incident  edges  were  discovered.  These  junctions  were 

linked  together  in  a  directed  acyclic  graph,  in  which  an  arc  from  junction 
A  to  junction  B  denoted  an  edge  that,  if  found,  would  convert  junction  A  to 
junction  B. 

Scene  analysis  was  done  on  stripe  data  in  the  image  domain,  taking 
advantage  of  features  that  reflected  those  of  the  scene.  For  example,  occluding 
edges  are  manifest  as  range  jumps,  which  are  detected  as  sudden  changes  in 

the  x-coordinate  within  a  stripe  or  between  adjacent  stripes.  A  set  of  operators 

detected  each  type  (convex  or  concave)  of  edge  in  the  light-stripe  image.  After 
initial  edge  detection  and  linking,  the  resulting  junctions  were  examined.  As 
we  just  mentioned,  impossible  junctions  may  really  be  possible  junctions  for 
which  an  edge  has  not  yet  been  detected.  Thus,  impossible  junctions  were 

located  in  the  dictionary  and  an  additional  edge  proposed.  Figure  D6-6  shows 

an  example  of  Sugihara's  program  at  intermediate  stages  of  analysis. 
With  minimal  modification  to  the  junction  dictionary,  Sugihara  applied 

his  techniques  to  a  world  with  curved  objects.  The  dictionary  was  applied 
by  considering  the  tangents  to  curves  coming  into  a  junction.  There  was  no 
attempt  to  model  the  shapes  of  surfaces  or  the  enclosed  volumes,  but  heuristic 
rules  were  used  to  partition  groups  of  edges  into  bodies. 
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Figure  D6-6.     Analysis  of  range  data  by  means  of  a  junction  dictionary  (from 
Sugihara,  1979). 

Oshima  and  Shirai.  Oshima  and  Shirai  (1979)  developed  an  area- 
based  system  that  did  all  of  its  work  in  three  dimensions.  It  assumed  a 

world  consisting  of  planar  and  quadratic  (second-degree)  surfaces.  Processing 
started  with  partitioning  the  range  image  into  small,  overlapping  patches 
and  determining  the  orientation  of  each  patch  by  fitting  a  plane  by  least 

squares.  Next,  contiguous  patches  were  merged  into  larger,  approximately 
planar  regions.  Regions  were  classified  as  planar,  curved,  and  ambiguous, 
depending  upon  the  variation  in  orientation  of  the  region:  If  the  variation  is 
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small,  the  patch  is  planar;  if  it  is  large,  the  patch  is  curved;  otherwise,  it  is 
ambiguous.  Curved  regions  were  grown  outward  by  devouring  neighboring 
curved  or  ambiguous  regions;  larger  regions  were  favored  as  kernels  for  region 
growing.  Next,  leftover  ambiguous  regions  were  merged  into  neighboring 
regions.  When  all  regions  were  merged,  quadratic  surfaces  were  fit  to  the 
curved  regions.  Edges  between  adjoining  surfaces  were  found  by  intersecting 
the  equations  of  the  two  surfaces.  The  edges  were  classified  as  convex  or 
concave. 

An  advantage  of  this  approach  is  that,  for  ambiguous  portions  of  the 
image,  action  is  deferred  until  more  context  is  available  from  the  more  reliable 
parts.  Edge  finding  in  this  manner  is  more  reliable  than  with  an  edge  detector, 
because  it  takes  into  consideration  all  the  points  in  the  surfaces.  It  is  not 
influenced  as  much  by  noise  right  at  the  edges. 

Duda,  Nitzan,  and  Barrett.  Duda  and  his  associates  found  planar 

surfaces  by  using  registered  range  and  reflectance  images  (Duda,  Nitzan,  and 
Barrett,  1979)  .  Horizontal  planes  were  found  first.  This  was  done  by  plotting, 
in  a  histogram,  the  relative  frequency  of  the  heights  of  all  points.  A  peak  in 
the  histogram  indicates  a  horizontal  plane,  since  it  suggests  a  relatively  large 
number  of  points  of  the  same  height. 

To  pursue  a  plane  hypothesis,  the  points  that  lay  near  the  plane  were 
aggregated  into  regions.  Small  regions  were  discarded.  A  plane  was  fit  to  each 
region  and  its  orientation  was  compared  with  the  hypothesized  orientation. 
This  weeded  out  groups  of  points  that  were  on  surfaces  that  passed  through 
the  hypothesized  plane  but  were  not  in  it.  If  a  region  was  accepted,  it  would 
be  refined  by  repeating  this  process  but  using  its  measured  orientation  for 
the  plane  hypothesis.  Finally,  the  points  of  the  accepted  region  would  be 
removed  from  the  data.  This  would  allow  a  new  plane  to  become  dominant. 

(This  technique  is  similar  to  histogram-based  region-segmentation  methods; 
see  Article  XIII.C5.) 

Next,  vertical  surfaces  were  located.  The  data  points  were  projected  onto 

a  horizontal  plane,  forming  a  two-dimensional  histogram.  Vertical  surfaces 
show  up  as  straight  lines  in  this  histogram.  These  lines  were  found  by  using 
the  Hough  transform  (see  Article  XIII. C4).  The  equation  of  the  line,  coupled 
with  the  knowledge  that  the  surface  is  vertical,  yields  a  surface  hypothesis  to 
be  tested. 

Finding  slanted  planes  is  more  complicated.  The  Hough  transform  is 
computationally  unattractive,  because,  for  a  plane,  it  produces  a  histogram 

in  a  three-dimensional  parameter  space.  To  solve  the  problem,  Duda  and  his 
associates  used  the  reflectance  image  that  the  range  finder  had  produced  in 
registration  with  the  range  image.  They  assumed  that  points  on  a  planar 
surface  have  the  same  reflectance.  All  points  that  lay  on  surfaces  already 
extracted  were  deleted  from  the  reflectance  image.  The  remaining  contiguous 
areas    were    processed    by    the    histogram    method;     that    is,    the    relative 
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frequencies  of  reflectances  were  plotted  on  a  histogram  so  that  peaks  in 
the  histogram  corresponded  to  areas  in  which  many  points  have  the  same 
reflectance.  The  highest  peak  was  used  to  locate  a  contiguous  area  of  pixels 

with  constant  reflectance.  By  fitting  a  plane  to  these  pixels  (using  the  range 

data),  a  plane  hypothesis  was  obtained. 

Conclusion 

Range  (depth)  information  is  one  of  the  most  important  intrinsic  charac- 
teristics of  a  scene  (Article  XIII.Dl),  and  the  approach  discussed  here  is  to 

represent  and  recognize  three-dimensional  shapes  from  range  data.  The  most 
popular  representation  of  objects  that  is  based  on  depth  information  is  the 
generalized  cylinder.  The  raw  data  to  which  cylinders  can  be  fit  are  usually 

obtained  with  a  light-stripe  range  finder  (Article  XIII. D4).  Several  systems 
were  discussed. 
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E.    ALGORITHMS  FOR  VISION 

El.     Pyramids  and  Quad  Trees 

VISION  ALGORITHMS  sometimes  use  hierarchically  organized  images  with 
multiple  levels  of  resolution.  For  example,  Kelly  (1971)  introduced  the  idea 
of  planning  in  edge  detection  with  two  levels  of  resolution.  He  first  detected 

edges  in  a  low-resolution  image  and  used  them  to  plan  a  detailed  search  for 
the  edges  in  the  higher  resolution  image.  Since  the  gross  location  of  the 
edges  was  known,  the  tracing  program  could  cope  with  local  gaps  and  noise 
in  the  detailed  image.  Similarly,  multiple  resolution  images  are  useful  in 
region  segmentation  (see  Article  XIII.C5)  and  stereo  vision  (Article  XIII.D3). 
(Hierarchical  representations  are  popular  in  AI;  for  example,  see  Articles  XV.D1 
and  XV.D2  on  hierarchical  planning.) 

Pyramids  and  quad  trees  are  hierarchical  image  representations  that  facil- 
itate the  efficient  implementation  of  vision  algorithms  (Tanimoto  and  Pavlidis, 

1975).  They  were  motivated  partly  by  two  aspects  of  human  visual  perception. 
First,  the  eye  itself  has  multiple  levels  of  resolution;  photoreceptors  are  densely 
packed  in  the  fovea  and  more  sparsely  distributed  elsewhere.  Second,  humans 
naturally  attend  to  areas  of  high  information  and  ignore  less  interesting  areas. 
This  is  called  selective  attention. 

Pyramids 

A  pyramid  may  be  visualized  as  a  sequence  of  two-dimensional  arrays — 
like  those  in  Figure  El-1 — representing  the  same  visual  scene  in  more  and 
more  detail.  Usually  the  dimensions  of  the  arrays  double  at  each  step  in  the 
sequence.  For  example, 

p__/^lXl    ̂ 2X2   ̂ 4X4  ^512x512\ 

is  a  pyramid  of  10  levels.  The  arrays  consist  of  pixels  that  may  contain  binary, 

gray-scale,  multispectral,  or  local  feature  information.  Alternately,  a  pyramid 
may  be  described  as  the  set  P  of  cells  (based  on  the  combined  sets  of  pixel 
indices  of  all  the  arrays)  together  with  a  function  Val  that  assigns  a  value  to 
each  cell: 

P  =  {(k,ifj)  \0<k<L;0<i,j<  2k  -  1;   ValiP^R}. 
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Usually  R  is  a  real,  positive  value  and  we  insist  that  an  averaging  rule  hold: 

If  0<  k  <L,      0  <  i,j  <  2fc-l  , 

t/  uu  •   •>;       V^  V^  FQ/(fe  +  l,2z-  +  p,2y  +  g) 

That  is,  Val(k,  i,  j)  is  the  average  for  four  cells  (k  + 1,  2z,  2j),  (fc  + 1,  2z,  2j  + 1), 

(A;  +  1,  2i  +  1,  2j),  (A;  +  1,  2i  +  1,  2j  +  1),  as  is  illustrated  in  Figure  El-1.  The 
pyramid  in  the  figure  is  constructed  from  a  picture  (e.g.,  512  X  512  pixels)  by 
forming  successive  reductions  (256  X  256, 128  X  128,  . . . )  by  averaging  2X2 
blocks  of  cells,  until  the  1  X  1  or  root  level  is  reached. 

Level  1:  1  X 

2i'+  1 

2X2 

2j    2j  +  l% 

Level  10:  512  X  512 

Figure  El-1.       The  pyramid  structure. 
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A  typical  use  of  the  pyramid  is  seen  in  the  following  edge-detection 
algorithm.  A  level  s  will  be  examined  for  edges:  All  edges  found  in  the  input 

pyramid  INP  at  level  s  will  be  indicated  in  the  output  pyramid  OUTP  at  level  s. 

The  algorithm  proceeds  by  computing  edges  at  each  input  pixel  according 

to  some  function  BNDRY,  which  may  be  any  edge- detection  operator,  such  as 

Roberts'  cross  operator  (see  Article  XIII.C4).  In  the  algorithm,  GET  and  STORE 
access  pyramid  values. 

If  the  edge  strength  (the  output  of  BNDRY)  at  a  pixel  is  greater  than 

THRESHOLD,  the  edge  will  be  REFINEd  recursively.  The  four  corresponding 

pixels  will  be  examined  at  the  next  higher  level  of  resolution — level  s+1.  If  any 
have  a  strength  greater  than  THRESHOLD,  then  level  s  +  2  will  be  examined, 

and  so  on,  up  to  the  maximum  resolution  level  L  of  the  pyramids. 

This  algorithm  illustrates  both  varying  resolution  and  selective  attention. 

Varying  resolution  pinpoints  edges  precisely  and  ignores  large  areas  of  rela- 
tively uniform  intensity,  since  recursion  to  a  more  detailed  level  occurs  only 

for  edge  pixels.  Selective  attention  is  a  consequence  of  limiting  the  algorithm 

to  examining  those  parts  of  the  image  with  interesting  information,  that  is, 

edges. 

PROCEDURE  all  edges  (inp, outp:  pyramid;  s:  integer); 

VAR  i ,  j  :    integer 
BEGIN 

FOR  i  :  =0  to  2**s-l  DO  BEGIN 

FOR  j  :=0  to  2**s-l  DO  BEGIN 
store  (outp ,  s ,  i ,  j , bndry (inp , s , i , j ) ) ; 

IF  get  (outp ,  s ,  i ,  j )  >  threshold  THEN 
refine (inp , outp ,  s ,  i ,  j )  ; 

END; 

END; 

END; 

PROCEDURE  refine  (inp,  outp:  pyramid;  k,i,j:  integer); 

VAR  di , d j :  integer ;  temp :  real ; 
BEGIN 

IF  k  <  L  THEN  BEGIN 

F0Rdi:=0tolD0BEGIN 

FOR  d j  :  =0  to  1  DO  BEGIN 

temp : =bndry (inp , k+1 , 2*i+di , 2* j  +d j ) ; 
store (outp , k+1 , 2*i+di , 2* j  +dj , temp) 

IF  temp  >  threshold  THEN 

refine  (inp , outp , k+1 , 2*i+di , 2* j  +d j ) END; 

END; 

END; 

END; 
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Figure  El-2.     A  quad  tree. 

This  algorithm  is  reasonably  insensitive  to  noise,  ignoring  those  edges  in  level 

L  that  are  not  supported  in  levels  s  through  L  —  1.  The  computation  time 
it  requires  is  proportional  to  the  edge  complexity  of  the  pyramid  and  to  the 
chosen  threshold;  a  pyramid  with  no  edges  will  be  processed  very  quickly. 

Quad  Trees 

Quad  trees  are  data  structures  that  are  similar  to  pyramids.  They  have 
nodes  that  correspond  to  the  cells  of  a  pyramid,  and  each  nonterminal  node 
has  four  children  nodes  in  the  level  below.  Unlike  a  pyramid,  a  quad  tree  may 
be  pruned  so  as  to  be  unbalanced.  For  example,  when  all  nodes  in  a  subtree 
have  the  same  gray  value,  the  subtree  may  be  represented  by  its  root  without 

loss  of  information  (see  Fig.  El-2).  Properly  implemented,  a  quad  tree  may 
allow  significant  storage  savings  in  representing  many  kinds  of  images.  More 
significantly,  quad  trees  allow  some  operations  to  be  performed  efficiently  by 
recursive  procedures.  For  example,  image  superposition  and  bitmap  union 
and  intersection  are  easily  formulated  and  executed. 

References 

See  Tanimoto  and  Klinger  (1980). 



E2.     Template  Matching 

ONE  WAY  to  determine  which  patterns  exist  in  a  scene  is  to  compare  them 
with  stored  patterns  that  are  already  named.  This  approach  is  called  template 
matching.  Classically,  template  matching  has  been  applied  to  digitized  images 

directly,  using  a  pixel- by-pixel  comparison.  More  recently,  however,  higher 
level  templates  have  also  been  used. 

Pixel-level  Templates 

Low-level,  pixel  templates  come  in  four  varieties:  (a)  total  templates,  which 
are  fixed  against  a  background;  (b)  partial  templates,  which  are  free  of  the 
background;  (c)  piece  templates,  which  match  one  feature  of  a  figure;  and 
(d)  flexible  templates,  which  are  modified  to  match  possible  distortions  in  the 
scene.  Each  of  these  categories  provides  more  flexibility  than  the  previous 
one,  but  at  the  expense  of  time  and  complexity  during  the  matching  process. 

Total  templates.  These  require  an  exact  match  between  a  scene  and  a 

template.  Each  template  must  contain  as  many  picture  elements  (pixels)  as 
the  input  scene  contains.  Because  the  matching  requirements  are  so  stringent, 

any  displacement  or  orientation  error  of  the  "correct"  pattern  will  be  rejected. 
Partial  templates.  Partial  matching  frees  the  desired  pattern  from 

the  background.  This  allows  for  multiple  successful  matches  against  a  single 
scene.  Storage  requirements  are  limited  to  the  representation  of  the  desired 
pattern.  While  partial  matching  solves  the  displacement  problems  of  total 
templates,  incorrect  matches  can  occur  if  the  pattern  is  embedded  in  a  larger 

object;  for  example,  the  "F"  template  matches  against  an  "E"  scene.  Further- 
more, if  a  black  template  is  not  to  be  a  trivial  match  with  an  all-black  region, 

a  white  border  must  be  included.  The  technique  for  matching  the  template 

to  the  scene  is  known  as  cross-correlation;  it  moves  the  template  across  the 
figure  looking  for  one  or  more  points  of  maximum  coincidence. 

Piece  templates.  These  templates  break  up  a  pattern  into  its  component 

segments;  for  example,  the  pattern  "A"  could  be  recognized  with  a  combina- 
tion of  "/",  "\",  and  "-"  piece  templates.  The  order  in  which  the  templates 

are  compared  to  the  scene  is  important:  The  largest  piece  templates  must  be 
tried  first,  since  these  contain  the  most  information  and  may  also  subsume 

smaller  templates.  For  example,  if  the  "scene"  were  running  text,  the  template 
"there"  should  be  tried  before  "the"  against  the  target  "therefore."  An  advan- 

tage in  using  piece  templates  is  that  storage  requirements  are  kept  to  a  min- 
imum. Furthermore,  because  of  the  primitive  nature  of  piece  templates,  they 

can  sometimes  be  described  by  mathematical  functions  instead  of  a  point-by- 
point  picture. 
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To  use  piece  templates,  they  must  be  partially  ordered  according  to  any 
properties  that  dominate  other  templates.  When  the  templates  are  checked 
against  the  scene,  an  ordered  list  of  matches  is  generated.  To  decide  which 

combination  of  located  piece  templates  is  the  most  appropriate,  the  com- 
ponent templates  are  weighted  by  size  and  scored  against  a  prototype  list  of 

expected  features.  This  template-matching  scheme  is  less  sensitive  to  distor- 
tions in  the  original  scene  but  may  lose  information  about  the  spatial  arrange- 

ment of  the  pieces.  For  example,  "\" ,  "/" ,  and  "-"  will  match  the  "  V  "  symbol 
as  well  as  "A,"  which  may  or  may  not  be  the  intended  result.  If  we  add  a  piece 
template  that  provides  corner  orientation,  a  more  specific  decision  could  be 

made.  To  help  solve  this  problem,  piece  templates  may  also  include  position- 
ing information  relative  to  the  background. 

Positional  information  is  important  in  the  navigation  system  for  an  under- 

water robot  developed  by  Thorpe  (1981),  who  used  a  variation  of  a  tech- 
nique developed  by  Davis  (1976).  The  navigation  system,  which  works  with 

sonar  images  and  which  uses  descriptions  rather  than  raw  images  to  match, 
is  an  interesting  variant  of  template  matching,  since  the  sonar  images  are 

themselves  the  "pieces"  that  are  matched  to  a  much  larger  template  map. 
Normally,  images  are  larger  than  templates,  but  in  this  case  the  opposite  is 
true.  The  navigation  system  decides  its  exact  location  by  matching  sonar 
images  to  a  stored  map  of  the  area.  Since  individual  rocks  on  a  smooth  sea 
floor  do  not  produce  sufficiently  consistent  echoes  to  be  reliably  recognized,  the 
distances  and  angles  between  rocks  are  the  components  of  the  sonar  images. 

Each  object  in  the  sonar  image  that  produces  an  echo  is  abstracted  to  a 
point,  with  only  x  and  y  coordinates  and  approximate  echo  strength  recorded. 
The  stored  map  consists  of  a  list  of  such  points  with  known  positions.  The 
general  problem  is  to  get  the  sonar  image  of  the  area  surrounding  the  vehicle, 

produce  a  description  of  the  objects  in  that  image,  and  then  use  that  descrip- 
tion as  a  template  to  see  what  part  of  the  map  that  area  most  accurately 

matches.  From  there,  basic  geometry  gives  the  vehicle's  location  and  heading. 
Flexible  templates.  Also  called  rubber  masks,  these  templates  are 

designed  to  handle  the  problems  of  stretching,  misorientation,  and  other 

deviations  from  the  prototype.  The  flexible  template  starts  with  a  good  proto- 
type of  a  known  object.  After  each  comparison  with  the  unknown  object,  the 

rubber  mask  is  parametrically  modified  to  obtain  a  better  fit.  This  relaxation 
procedure  is  continued  until  no  more  improvement  is  obtained.  The  object  can 
now  be  encoded  as  the  template  plus  a  series  of  modifications,  which  can  be 
compared  against  the  results  with  other  starting  templates  to  determine  the 
best  match.  A  good  example  of  this  technique  is  sorting  chromosome  images 

to  get  a  karyotype.  A  standard  H-shaped  chromosome  is  picked  as  the  initial 
template  and  modified  in  length,  width,  bend,  and  curvature  of  the  H  until  the 
natural  chromosome  is  matched.  The  same  technique  has  been  used  to  locate 
peaks  in  a  chromatographic  image;  the  rubber  mask  is  the  sum  of  several 
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adjustable  Gaussian  peaks  with  parameters  of  x  position,  amplitude,  and 
narrowness. 

Some  problems  remain  with  pixel-level  templates.  Working  with  typi- 
cal two-dimensional  inputs  such  as  handwritten  characters  or  TV  pictures 

proves  difficult  for  any  simple  template  scheme.  TV  pictures  may  be  blurred, 

stretched,  and  peppered  with  noise.  Additional  problems  arise  from  rota- 
tions, shape  variations,  offsets,  and  gaps.  Handwritten  characters  are  subject 

to  differences  among  authors  and  inconsistencies  in  any  individual's  script. 
These  problems  can  be  partially  solved  by  carefully  choosing  piece  templates, 

made  more  forgiving  by  allowing  for  "don't  care"  slots  in  noncrucial  locations 
in  the  template  or  by  using  the  flexible  templates.  Also,  learning  is  difficult 
within  the  template  paradigm.  If  a  new  template  is  added  for  each  variation 
in  the  handwriting  example,  the  set  of  templates  becomes  too  large.  Deciding 
when  a  match  has  been  found  between  a  template  and  a  pattern  presents 
another  problem.  Solutions  usually  involve  a  threshold  or  difference  criterion 
to  determine  that  one  match  is  significantly  better  than  the  rest. 

High-level  Templates 

Thus  far,  template  matching  has  been  discussed  mostly  at  the  level  of  the 
digitized  image.  It  is  certainly  possible,  however,  to  do  template  matching 
at  a  higher  level,  in  which  images  and  templates  are  described  symbolically 
and  description  is  matched  to  description  rather  than  pixel  to  pixel.  Parts  of 

an  image  can  be  described  in  terms  such  as  "Area  =  28  pixels"  or  "Average 
intensity  =  40."  Relations  between  parts  of  the  image  can  also  be  represented, 
such  as  "A  is  above  B"  or  "X  is  larger  than  Y.n 

The  high-level  approach  was  taken  by  Barrow  and  Popplestone  (1971)  in 
one  of  the  earliest  uses  of  this  kind  of  template  matching.  They  broke  an 
image  into  regions  of  approximately  uniform  brightness.  For  each  region  they 

recorded  shape  information,  and  between  pairs  of  regions  they  defined  rela- 

tions such  as  "bigger  than,"  "adjacent  to,"  "above,"  and  "distance  between." 
All  further  processing  was  done  on  the  basis  of  these  descriptions,  without 
ever  referring  back  to  the  original  image.  In  training  mode,  several  views 
of  each  known  object  were  shown  to  the  system,  and  these  descriptions  and 
their  identifications  were  stored.  Next,  during  processing  mode,  an  image  of 
an  unknown  object  was  divided  into  regions  and  described  in  the  same  way 
and  then  compared  with  the  stored  descriptions.  The  object  with  the  best 
match  was,  in  almost  every  case,  the  correct  identification. 

Testing  every  possible  combination  of  matches  would  obviously  have  been 

computationally  expensive,  so  Barrow  and  Popplestone  (1971)  incorporated  a 

best-first  search  heuristic  (see  Article  II.C3a,  in  Vol.  i).  Partial  matches  were 
built  up  region  by  region,  and  only  the  best  were  candidates  for  combination 
with  matches  from  other  regions. 
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Winston's  (1975)  work  on  learning  blocks-world  structures  (see  Article 
Xin.C3c)  uses  an  expanded  piece-template  approach  for  description  matching. 
Each  component  piece,  such  as  a  block  or  a  pyramid,  is  recognized,  and  the 

relations  between  objects,  for  example,  "supported-by,"  are  used  to  match 
a  prototype  template  built  up  over  several  training  sessions.  The  matching 
process  is  governed  by  weights  associated  with  the  links  in  the  prototype. 

Conclusion 

Template  matching  involves  matching  an  image  to  a  stored  representation 
and  evaluating  the  fit  with  some  function.  Template  matching  is  a  simple  and 
relatively  old  technique  that  has  been  applied  in  many  areas  of  vision  research. 

References 
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E3.     Linguistic  Methods  for  Computer  Vision 

STATISTICAL  METHODS  for  classifying  patterns  are  well  established  in  the 

field  of  pattern  recognition  (see  Article  XIV.D2).  Patterns  in  pictures  are  recog- 
nized by  determining  whether  the  features  of  the  picture  match  a  stored  set 

of  features  sufficiently  well.  This  approach  to  computer  vision  was  criticized 

in  AI  for  its  lack  of  descriptive  power.  Pattern-recognition  programs  only 
classify  patterns;  they  do  not  describe  them.  Syntactic  methods  emerged  as 
attempts  to  generate  picture  descriptions  from  sets  of  picture  primitives  and 
formal  picture  grammars. 

Syntactic  methods  of  scene  analysis  constitute  a  language  theory  of  vision. 
Patterns  are  regarded  as  sentences  in  a  language  defined  by  a  formal  grammar. 

Just  as  a  natural-language  sentence  might  consist  of  a  noun  phrase  followed 
by  a  verb  phrase,  a  pattern  might  consist  of  a  vertical  stroke  followed  by  a 
horizontal  one.  Thus,  the  process  of  recognizing  the  structure  of  a  pattern 
or  scene  is  analogous  to  the  process  of  parsing  an  English  sentence.  The 
syntactic  approach  assumes  a  picture  grammar  and  a  parser,  for  building  a 
formal  representation  of  the  objects  and  interrelationships  in  a  scene,  and  a 
set  of  semantic  primitives,  such  as  edges  or  primitive  bodies.  These  are  the 
meaningful  units  from  which  interpretations  of  a  scene  are  constructed.  (See 
the  articles  in  Sees.  IV.C  and  IV.D,  in  Vol.  I,  for  a  discussion  of  grammars  and 

parsing.) 

Picture  Grammars  in  Syntactic  Analysis 

A  grammar  is  a  set  of  rewrite  rules,  or  productions,  of  the  form: 

<left-hand  side>    ::=  <right-hand  side> . 

Depending  on  the  grammar,  there  are  different  restrictions  on  what  can  appear 
on  either  side  of  the  rule.  These  regulate  what  atomic  elements  can  appear 
in  the  rules,  as  well  as  how  the  elements  are  to  be  combined.  For  example, 
a  web  grammar  is  one  whose  atomic  elements  are  restricted  to  pieces  of  a 

labeled  directed  graph.  Similarly,  array  grammars  and  tree  grammars  limit 
the  atomic  elements  to  arrays  and  trees,  respectively. 

Both  the  left-hand  side  and  the  right-hand  side  of  the  rules  are  made 
up  of  symbols  and  connectives,  or  operators.  Concatenation  is  usually  a 

sufficient  connective  for  one-dimensional  input;  for  example,  Sentence  ::  = 
Noun  Phrase  +  Verb  Phrase  means  that  a  verb  phrase  follows  a  noun  phrase 

in  the  time  dimension.  However,  a  problem  in  extending  a  one-dimensional 
grammar  to  analysis  of  patterns  in  two  dimensions  is  that  the  two-dimensional 
plane  has  no  natural  ordering.    For  two-dimensional  pictures,  the  relevant 
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connectives  seem  to  be  relational,  for  example,  "on  top  of,"  "below,"  "to  the 
left  of,"  and  "to  the  right  of." 

The  problem  of  defining  appropriate  connectives  between  primitives  has 
been  approached  in  several  ways.  One  is  to  analyze  a  figure  in  terms  of  its 
boundaries.  For  example,  a  quadrilateral  might  be  defined  as 

quadrilateral    ::=  line  +  line  +  line  +  line 

where  "+"  means  concatenation  and  it  is  understood  that  concatenation  must 
close  on  itself. 

Another  approach  is  to  give  every  primitive  two  distinguished  points,  a 

head  and  a  tail.  Concatenation  of  two  primitives  is  then  taken  to  mean  head- 

to-tail  concatenation  of  the  two  primitives.  (This  idea  can  be  extended  to  a 
nonprimitive  if  its  tail  is  the  tail  of  the  first  primitive  in  its  definition  and 
its  head  is  the  head  of  the  last  primitive.)  For  example,  the  line  drawing  in 

Figure  E3-1  might  be  analyzed  in  terms  of  the  primitives  shown  in  Figure 
E3-2. 

If  "+"  denotes  the  head-to-tail  concatenation  operation  and  "~"  means 
"reverse  the  head  and  tail  of  the  primitive,"  we  could  define  a  cylinder  as 

cylinder t  +  b 

We  might  also  define  an  operator  "*"  to  mean  "head  of  p  touching  head  of  q 
and  tail  of  p  touching  tail  of  q" ;  then  a  cylinder  would  be  described  by  the 
following  grammar: 

(1)  cylinder  ::=  side  *  top 

(2)  side  ::=  ~v  +  b  +  v 

(3)  top  ::=  t  *  b. 

Parsing  Strategies 

A  parser  takes  some  input  and  a  grammar  and  produces  a  representation 
of  the  input  in  terms  of  the  grammar. 

Parsing  typically  follows  a  top-down,  a  bottom-up,  or  a  hybrid  strategy. 
A  top-down  approach  is  goal- directed:  It  expects  to  find  certain  elements  in 

Figure  E3-1.     Line  drawing  of  a  cylinder. 
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side  ::=  ~  v  +  b  +  v 

top  ::=  t  *  b 

cylinder  ::  =  side  *  top 

Figure  E3-2.     A  set  of  pictorial  primitives  for  a  cylinder  drawing. 

the  input.  Consequently,  a  top-down  parser  can  erroneously  interpret  noisy 
data  as  one  of  the  patterns  it  is  looking  for.  Bottom-up  parsing,  on  the 
other  hand,  is  data-driven.  A  bottom-up  parser  identifies  each  element  in  the 
input  as  an  instance  of  one  of  the  primitives  in  the  grammar  and  then  tries 
to  combine  the  elements  according  to  the  rules  of  the  grammar  to  produce 

a  sentence  or  a  picture.  A  disadvantage  of  bottom-up  processing  is  that  one 
must  identify  all  of  the  primitives  in  the  input  before  parsing.  A  pure  bottom- 
up  approach  can  be  inefficient  if  the  primitives  cannot  be  identified  without 

the  aid  of  top-down  expectations  (e.g.,  recall  that  Shirai  used  partly  developed 
line-drawings  to  guide  the  search  for  low-contrast  lines;  see  Article  XIII.B6). 

Similarly,  a  purely  top-down  strategy  is  too  "hallucinatory,"  too  susceptible 
to  finding  what  it  is  looking  for  in  noisy  input.  Consequently,  a  hybrid  of 
these  strategies  is  often  most  efficient.  (For  a  detailed  discussion  of  this  issue, 
see  Articles  V.B  and  IV.Dl,  in  Vol.  I.) 

Consider  a  top-down  parsing  of  the  object  in  Figure  E3-1  with  the  "cylin- 
der grammar"  that  we  just  discussed.  The  question  for  a  top-down  parser  is, 

"Does  the  input  match  my  expectations  of  it?"  or,  in  this  case,  "Is  there  a 
cylinder  in  the  input?"  Productions  1  and  2  in  the  cylinder  grammar  specify 
that  a  cylinder  must  have  a  side  and  that  a  side  must  have  a  downward- 
pointing  vertical  line,  a  bottom,  and  an  upward-pointing  vertical  line.  There- 

fore, the  parser  looks  for  a  downward-pointing  vertical  line.  Having  found 
one,  the  parser  directs  its  attention  to  the  head  of  the  line  to  find  a  bottom 
primitive.  If  one  is  found,  parsing  continues;  otherwise,  the  parser  backtracks 
and  looks  for  a  different  vertical  line. 
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An  important  aspect  of  the  top-down  approach  is  that  it  directs  the 
attention  of  the  parser.  This  is  not  so  much  an  issue  when  parsing  sentences, 
because  the  next  component  of  the  sentence  is  always  contiguous,  but  it  is 
a  great  advantage  in  parsing  a  picture.  It  guarantees  that  only  certain  local 
areas  of  the  picture  must  be  scanned  and,  thus,  reduces  the  time  required  for 
scene  analysis. 

A  bottom-up  parse  of  the  drawing  in  Figure  E3-1  starts  with  identification 
of  all  the  primitives  in  the  picture.  Subsequently,  the  parser  looks  for  com- 

binations of  primitives  in  the  picture  that  match  the  right-hand  sides  of  rules 
in  the  cylinder  grammar.  For  example,  after  identifying  the  lower  half  of  the 

figure  as  two  vertical  lines  and  a  bottom,  it  matches  them  to  the  left-hand  side 
of  production  2  to  identify  the  combination  as  a  side.  If  it  can  then  find  a  top, 

it  will  have  satisfied  the  left-hand  side  of  production  1  and  will  conclude  that 
the  input  contains  a  cylinder.  Bottom-up  processing  lacks  direction:  It  does 
not  know  where  in  the  picture  to  look  for  primitives,  and,  when  it  finally  finds 
some,  it  does  not  use  the  rules  of  the  grammar  to  direct  search  for  others. 
Since  knowing  where  to  look  for  information  is  a  considerable  advantage  in 

image  understanding,  undirected  bottom-up  processing  tends  to  be  inefficient. 

Semantic  Primitives  in  Syntactic  Analysis 

A  problem  for  syntactic  analysis  is  to  define  the  appropriate  semantic 
primitives;  an  associated  problem  is  to  design  processes  or  mechanisms  capable 
of  detecting  these  primitives.  Unlike  linguistic  grammars,  for  which  natural 
primitives  are  word  stems  and  endings,  we  do  not  know  what  the  primitives 
are  in  patterns.  It  seems  that  the  choice  of  primitives  depends,  to  some  extent, 
on  the  application  of  a  vision  system  and  on  the  availability  of  mechanisms 
to  recognize  the  primitives.  For  example,  when  these  methods  are  applied  to 

low-level  vision,  the  primitives  are  usually  edge  elements.  The  edge  elements 
of  a  picture  can  be  encoded  as  a  sentence,  according  to  a  regular  or  context- 
free  grammar.  In  the  case  of  3-D  shape  recognition,  the  semantic  primitives 
could  be  generalized  cylinders  (see  Article  XIII.D6).  Of  course,  the  procedures 
for  detecting  these  primitives  are  more  complicated  than  those  used  in  edge 
detection. 

The  choice  of  primitives  is  very  important.  A  related  problem  concerns 
the  epistemological  adequacy  of  semantic  primitives;  that  is,  is  there  a  set 
of  primitives  that  are  adequate  for  representing  any  scene,  or  that  are  at 
least  very  general?  This  is  not  so  much  a  question  of  application  as  a  general 
question  for  a  theory  of  representation.  Many  primitives  have  been  suggested 
for  different  problems:  generalized  cones  (Marr  and  Nishihara,  1978)  and 

spheres  (Badler,  O'Rourke,  and  Tolzis,  1979)  for  three-dimensional  shape 
descriptions;  ribbons  (Brooks,  Greiner,  and  Binford,  1978)  for  relating  image 
features  to  generalized  cylinders;   camera  parameters  pan,   tilt,  focus,  and 
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aperture,  and  the  X  and  Y  dimensions  of  a  picture  for  camera  control  and 
recognition  (Bourne,  1981). 

Generating  Pictures 

If  pictures  can  be  parsed,  they  can  also  be  generated  by  reversing  the 
parsing  process;  for  example,  the  cylinder  grammar  above  can  be  seen  as  a 

procedure  for  generating  cylinders.  Syntactic  models  are  used  to  generate  tex- 
ture patterns  (see  Article  XIII.C6).  Gips  (1974)  proposed  a  theory  of  aesthetics 

based  on  the  restrictions  he  imposed  on  his  pattern-generating  grammars. 
Templates  can  be  generated  by  grammars,  so  that  matching  between 

actual  and  expected  images  can  be  done  in  the  image  domain,  rather  than 

by  comparing  parse  trees.  O'Rourke  (1980)  took  this  approach  in  his  analysis 
of  human  motion. 

Conclusion 

Syntactic  methods  in  the  narrowest  definition  (picture  primitives  plus 
formal  grammars)  suffer  from  a  lack  of  descriptive  power.  They  are  usually 

applicable  only  when  the  picture  is  built  up  from  a  small  set  of  well-defined, 
easily  recognized  primitives  and  when  the  relationships  between  primitives 
are  simple.  Much  effort  has  been  devoted  to  designing  more  sophisticated 

grammars,  for  example,  stochastic,  fuzzy,  and  error-correcting  grammars. 
However,  descriptive  power  and  flexible  control  seem  to  result  from  adding 

more  programmable  mechanisms,  as  was  the  case  with  ATNs  in  natural- 
language  processing  (see  Article  IV.D3,  in  Vol.  i).  For  example,  Turner  (1974) 
used  procedures  in  POPLER  to  represent  the  hierarchical  structure  of  objects. 
The  goal  statements  of  these  procedures,  which  try  to  prove  the  existence  of 

objects,  provide  top-down  control,  and  the  assertion  statements,  which  add 
objects  to  a  database  as  they  are  discovered,  provide  bottom-up  control. 
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E4.     Relaxation  Algorithms 

MANY  TASKS  in  vision  can  be  viewed  as  constraint-satisfaction  problems, 
for  which  relaxation  algorithms  are  efficient  problem-solving  methods.  A 
relaxation  algorithm  iteratively  assigns  values  to  mutually  constrained  objects 
in  such  a  way  as  to  ensure  a  consistent  set  of  values,  that  is,  a  set  for  which  no 

constraint  is  violated.  Consider,  for  example,  the  task  of  labeling  a  blocks- 
world  picture  (see  Sec.  XIII.B).  This  involves  finding  a  unique  label  for  each 
line,  such  that  each  junction  has  line  labels  allowed  by  the  junction  dictionary 
and  each  line  has  a  single  label  along  its  entire  length.  These  two  conditions 

constitute  constraints  on  the  final  solution  of  the  line-labeling  problem.  There 
are  several  search  methods  for  solving  this  type  of  problem,  including  generate 
and  test,  backtracking,  and  relaxation.  The  approach  used  by  Waltz  (called 
Waltz  filtering;  see  Article  XIII.B5)  is  a  relaxation  method. 

The  values  assigned  to  the  objects  in  relaxation  can  be  discrete  or  prob- 
abilistic. In  the  case  of  blocks-world  line  labeling,  either  a  discrete  label 

satisfies  the  constraints  or  it  does  not.  In  other  applications,  relaxation  does 

not  eliminate  inconsistent  interpretations  but,  rather,  updates  their  probabil- 
ities. Probabilistic  relaxation  methods  exploit  constraints  to  render  an  inter- 

pretation more  or  less  likely. 

A  Simple  Blocks-world  Problem 

Consider  the  problem  of  labeling  a  picture  of  a  box  with  a  rectangular 

hole  (shown  in  Fig.  E4-1).  Assume  that  the  lines  can  be  labeled  only  as  +,  — , 
<—,  and  — ►,  and  that  the  allowable  junction  labelings  for  junctions  1,2,  and  3 
are  known  to  be  in  the  small  set  in  Figure  E4-2. 

Figure  E4-1.     A  box  with  a  rectangular  hole 
(from  Duda  and  Hart,  1973). 

292 
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Junction  1 

Junction  2 

Junction  3 

(0 (g) 

Figure  E4-2.     Possible  labelings  for  junctions  1,  2,  and  3  in  Figure  E4-1. 

The  relaxation  method  for  solving  this  problem  (Waltz  filtering)  was 
presented  in  Article  XIII.B5.  For  comparison,  let  us  try  to  label  the  drawing 
by  the  method  of  search  with  backtracking. 

Search  with  backtracking  for  a  complete  labeling  of  Figure  E4-1  begins  by 
sequentially  assigning  a  single  junction  label  to  each  junction  in  the  picture. 
When  an  adjacent  pair  of  junctions  has  been  labeled,  the  line  that  connects  the 
junctions  is  checked  to  make  certain  that  it  has  a  single  label  along  its  entire 
length.  If  it  does,  labeling  continues.  Otherwise,  the  process  backtracks  to  the 
most  recently  labeled  junction  that  still  has  untried  labelings  in  the  dictionary. 
A  new  label  is  assigned  to  this  junction,  and  the  process  continues. 

To  illustrate  the  procedure,  consider  the  initial  portion  of  the  search 

tree  for  this  example,  shown  in  Figure  E4-3.  We  have  arbitrarily  decided 
to  examine  junctions  in  the  order  that  they  are  numbered  in  Figure  E4-1. 
Each  node  in  the  search  tree  is  shown  with  the  partial  solution  developed  to 
that  node.  Backtracking  happens  whenever  a  partial  solution  fails  to  satisfy 
the  constraint  that  each  line  has  a  single  label  along  its  length. 

The  order  in  which  nodes  are  searched  is  indicated  by  numbers  above  each 

node.  In  node  2,  junction  1  is  arbitrarily  assigned  the  label  of  Figure  E4-2a; 
then,  at  node  3,  junction  2  is  assigned  the  label  of  Figure  E4-2d.  But  when, 
at  node  4,  junction  3  is  assigned  the  label  of  Figure  E4-2f,  lines  1-3  and  2-3 
violate  the  constraint  of  a  single  label  for  a  line,  and  the  process  backtracks  to 

junction  3 — the  most  recently  processed  junction.  At  node  5  a  new  label,  that 
of  Figure  E4-2g,  is  assigned  to  junction  3.  But  again,  this  results  in  two  labels 
for  one  line.  Since  there  are  no  remaining  untried  labelings  for  junction  3,  the 
process  backs  up  to  junction  2.  It  still  has  untried  labelings,  so  at  node  6  it 

is  assigned  the  label  of  Figure  E4-2e.  The  process  continues  as,  once  again, 
junction  3  is  assigned  the  label  of  Figure  E4-2f,  and,  once  again,  it  fails. 
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One  reason  that  backtracking  is  inefficient  is  that  it  rediscovers  the  same 

mistakes.  For  example,  if  junction  2  is  assigned  the  labeling  of  Figure  E4-2d, 
there  is  no  possible  labeling  for  junction  3  such  that  line  3-2  has  a  single  label 
along  its  length.  In  the  search  tree,  this  causes  failure  at  nodes  4,  5,  11,  and 

12.  The  same  is  true  if  junction  2  is  given  the  labeling  of  Figure  E4-2e;  it 
causes  failure  at  nodes  7,  8,  14,  and  15.  Yet,  in  backtracking  search,  these 
failures  are  discovered  again  and  again. 

A  more  efficient  approach  to  this  problem  would  apply  the  following  rule: 
Given  two  adjacent  junctions  i  and  j,  if  junction  i  can  be  labeled  with  x 
but  there  is  no  labeling  for  junction  j  such  that  the  connecting  line  has  a 
consistent  single  label  along  its  length,  then  x  can  be  eliminated  from  the  set 
of  possible  labelings  for  junction  i.  In  this  manner,  once  a  failure  between 
adjacent  junction  labelings  is  discovered,  it  is  eliminated  as  a  possibility  and 
need  not  be  rediscovered.  This  rule  would  eliminate  the  labelings  of  Figures 

E4-2d  and  E4-2e  for  junction  2,  and  since  only  these  labelings  are  possible  (in 
this  example),  the  rule  swiftly  demonstrates  the  impossibility  of  a  consistent 

labeling  of  the  object  in  Figure  E4-1  (assuming,  of  course,  the  limited  set  of 
labels  in  Fig.  E4-2;  the  object  can  be  labeled  with  the  full  Huffman- Clowes 
set  of  labels).  Exhaustive  search  with  backtracking,  on  the  other  hand,  must 
try  all  combinations  of  labelings  before  it  can  claim  that  a  consistent  labeling 
is  impossible. 

The  rule  stated  above  may  be  generalized  by  substituting  any  objects  in 
the  problem  domain  for  junctions  and  substituting  any  constraint  for  the  one 
involving  unique  line  labels.  This  process  is  called  Waltz  filtering  after  Waltz 
and  because  labels  of  objects  are  filtered  by  constraints.  Notice  that  the  rule 
takes  explicit  advantage  of  local  constraints.  This  property  is  the  conceptual 
basis  of  relaxation  algorithms. 

Region  Interpretation 

Tenenbaum  and  Barrow  (1976b)  used  a  relaxation  algorithm  to  interpret 

a  picture  that  was  correctly  partitioned  into  regions.  Figure  E4-4a  shows  a 
picture  of  an  empty  room  partitioned  into  six  regions  corresponding  to  the 
floor,  wall,  door,  baseboard,  picture,  and  doorknob.  The  problem  is  to  interpret 
the  picture  by  assigning  the  correct  label  to  each  region.  Some  knowledge 
about  pictures  of  rooms  is  assumed;  for  example,  the  doorknob  is  surrounded 
by  the  door,  which  is  above  the  floor,  and  so  on.  This  knowledge  is  expressed  in 

the  form  of  constraints,  as  indicated  in  Figure  E4-4b.  In  terms  of  a  relaxation 
rule,  these  are  the  constraints  used  in  the  filtering  process,  while  the  picture 
regions  are  the  objects  to  be  uniquely  labeled. 

Initially,  each  region  is  assigned  all  six  possible  labels  because,  prior  to 

considering  the  knowledge  in  Figure  E4-4b,  there  is  no  reason  to  favor  one 
label  over  another.  However,  in  considering  the  constraints,  we  immediately 
notice  that  constraint  4  requires  pictures  and  doorknobs  to  be  small.    Since 
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(f)    FINAL  (CORRECT) 
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Legend:   D-Door,  W-Wall,   F-Floor,  P-Picture,  B  Baseboard,   K  Doorknob 

Figure  E4-4.     Application  of  relaxation  to  region  interpretation  (from  Tenen- 
baum  and  Barrow,  1976b). 
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regions  1,  3,  and  6  are  large  regions,  the  labels  picture  and  knob  are  dropped 

from  them.  This  stage  of  the  labeling  is  shown  in  Figure  E4-4c. 
The  constraints  are  now  applied  to  each  pair  of  adjacent  regions  in  order 

of  region  number.  Since  region  2  is  within  region  1,  constraint  1  applies,  and 
it  can  be  satisfied  if  region  2  is  a  picture  and  region  1  is  a  wall,  or  if  region  2  is 
a  doorknob  and  region  1  is  a  door.  Therefore,  all  labelings  other  than  wall  and 
door  are  deleted  from  the  set  of  possible  labels  of  region  1,  and  all  labelings 
other  than  picture  and  doorknob  are  deleted  from  the  set  of  possible  labels  of 
region  2.  Next,  regions  1  and  3  are  filtered  by  constraint  2.  The  labels  for 
region  1  are  reduced  to  wall  and  door;  the  labels  for  region  3  are  reduced  to 
wall,  door,  and  baseboard.  Finally,  regions  1  and  5  are  filtered  by  constraint  3. 
According  to  this  constraint,  region  5  may  be  labeled  only  floor  or  baseboard. 

The  stage  of  labeling  at  this  point  is  shown  in  Figure  E4-4d.  Note  that  region 
1  has  not  been  filtered  with  regions  4  and  6,  since  they  are  not  adjacent. 

Region  2  is  now  due  for  filtering  with  its  neighbor,  region  1.  However, 
because  no  labels  have  been  eliminated  from  either  region  since  the  last 
time  the  pair  was  filtered,  further  application  of  constraints  will  result  in  no 
additional  eliminations. 

We  therefore  proceed  to  region  3  and  its  neighbors.  Regions  3  and  1  are 
not  filtered  for  the  same  reason  that  regions  1  and  2  are  not  filtered.  Regions  3 
and  4  are  filtered  by  constraint  1,  which  constrains  region  3  to  be  either  a 
wall  or  door  and  region  4  to  be  either  a  picture  or  doorknob.  Regions  3  and  5 
are  filtered  next  by  constraint  2,  which  limits  the  labeling  of  region  5  to  wall, 
door,  and  baseboard.  The  previous  set  of  labels  for  region  5  contained  only 
floor  and  baseboard,  and  since  the  current  constraint  does  not  permit  floor  as 
a  label,  the  only  possible  labeling  for  region  5  is  baseboard.  Since  constraint  2 
allows  only  a  door  beside  a  baseboard,  region  3  is  uniquely  labeled  door. 

Regions  3  and  6  are  filtered  next  by  constraint  3.  Since  region  3  is  a  door, 

region  6  must  be  a  floor.  This  stage  of  labeling  is  shown  in  Figure  E4-4e. 
Region  4  is  filtered  next  with  its  single  neighbor,  region  3,  by  constraint  1. 

Since  region  3  is  a  door,  region  4  must  be  a  doorknob.  Region  5  is  then  filtered 
with  region  1  by  constraint  3;  region  1  is  labeled  as  a  wall. 

At  this  point,  all  pairs  of  adjacent  regions  have  been  filtered  once.  All  pairs 
of  regions  whose  labels  have  changed  since  the  last  time  they  were  filtered  are 
now  reconsidered.  In  particular,  constraint  1  is  reapplied  to  regions  1  and  2. 
Region  1  currently  has  the  unique  label  wall,  so  region  2  must  be  a  picture. 

The  final  interpretation  of  the  picture  is  shown  in  Figure  E4-4f. 

Probabilistic  Relaxation 

There  are  two  significant  characteristics  of  the  relaxation  algorithms  de- 
scribed above.  First,  discrete  labels  are  assigned  to  the  objects.  This  notion 

can  be  generalized  by  attaching  a  level  of  certainty  to  each  label.  For  example, 
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a  region  may  be  a  wall  with  a  certainty  of  .3  and  a  door  with  a  certainty  of  .7. 
A  second  characteristic  of  the  previous  relaxation  algorithms  is  that  they  are 
sequential.  Each  object  is  filtered  in  sequence,  using  the  label  sets  resulting 
from  previous  filterings.  An  alternative  approach  is  to  filter  the  objects  in 
parallel,  filtering  each  object  with  its  neighbors  without  reference  to  results 
of  filtering  other  objects.  For  results  to  propagate,  however,  this  procedure 
is  performed  iteratively.  During  each  iteration,  the  objects  are  filtered  in 
parallel  with  their  neighbors,  using  the  label  sets  resulting  from  the  previous 
iteration.  The  filtering  of  each  object  during  an  iteration  is  independent  of 
other  filterings  during  that  iteration. 

Relaxation  algorithms  that  attach  certainties  to  the  labels  and  that  are 

applied  in  a  parallel-iterative  manner  are  called  probabilistic,  as  opposed  to  the 
discrete  relaxation  algorithms  considered  previously.  Probabilistic  relaxation 

is  useful  in  many  low-level  vision  tasks  in  which  the  problem  is  to  convert 
the  intensity  array  into  a  vocabulary  of  low-level  symbols,  such  as  those 

representing  lines  or  edges.  Typically  a  local- feature  detector  (e.g.,  line 
detector,  edge  detector)  is  applied  to  the  intensity  array.  Such  detectors,  how- 

ever, respond  to  noise  as  well  as  to  the  presence  of  the  feature.  Probabilistic 
relaxation  can  be  used  to  draw  out  features  and  eliminate  noise  on  the  basis  of 

consistency  in  neighboring  feature  detector  responses.  For  example,  if  relaxa- 
tion is  used  in  line  detection,  the  probability  that  a  pixel  point  P  is  a  line 

point  can  depend  on  whether  or  not  P  extends  a  line  that  has  already  been 
detected  with  high  probability.  This  example  will  be  discussed  next. 

Line  and  Curve  Enhancement 

The  research  of  Zucker,  Hummel,  and  Rosenfeld  (1977)  is  an  application 
of  probabilistic  relaxation  to  the  enhancement  of  lines  and  curves.  Many 
approaches  to  locating  lines  or  curves  in  pictures  begin  by  applying  local 
line  detectors  that  find  small  line  segments  throughout  the  picture.  Another 
process  joins  these  into  more  global  lines  or  curves.  However,  noise  in  the 
picture  and  gaps  in  the  curves  often  cause  local  detectors  to  return  strong 
responses  when  no  line  segment  is  present,  or  weak  responses  when  segments 
are  present.  Relaxation  offers  a  way  to  enhance  the  local  detector  outputs, 
making  it  easier  for  a  subsequent  process  to  follow  the  lines  and  curves. 

The  goal  of  the  relaxation  process  is  therefore  to  extract  consistently 
oriented  line  segments  from  the  intensity  array.  In  the  formulation  of  Zucker 

et  al.  (1977),  each  picture  point  has  a  set  of  nine  labels.  Eight  of  these  cor- 

respond to  unit  line  segments  at  eight  orientations  between  n/2  and  —  ir/2, 
and  the  ninth  corresponds  to  the  case  in  which  no  line  is  present. 

The  initial  probability  for  each  label  is  obtained  by  evaluating  a  local 

line  detector  at  every  picture  point  in  the  eight  orientations.  If  the  detector's 
response  is  strong  for  only  one  orientation,  the  initial  probability  is  set  to  be 
high  on  that  label  and  the  probabilities  on  the  other  labels  at  that  point  are 
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set  to  be  low.  If  there  is  no  strong  response  for  any  orientation  at  some  point, 

the  "no-line"  probability  is  set  high. 
The  relaxation  process  that  applies  here  does  not  discard  labels,  as  in 

discrete  relaxation.  Instead,  the  probabilities  of  the  labels  are  updated. 
This  is  accomplished  by  compatibility  functions,  which  are  the  continuous 
counterparts  to  the  constraint  relations  of  discrete  relaxation.  For  each  pair 

of  neighboring  points  ai,a,j  and  each  pair  of  labels  X,  X',  the  compatibility 
function  rt-,(X,  X')  is  a  measure  of  the  compatibility  between  point  az  with 

label  X  and  point  ay  with  label  X'.  For  example,  let  a^aj  be  vertically  adja- 
cent points,  let  X  represent  a  vertical  line,  and  let  X'  represent  a  horizontal 

line.  Then  the  compatibility  of  both  a;  and  ctj  having  label  X  is  very  high,  but 

the  compatibility  of  a;  having  label  X  and  ay  having  label  X'  (or  vice  versa)  is 
very  low. 

Let  us  assume  that  the  compatibility  function  r  has  values  —  1  <  r  <  1, 
where  —1  is  complete  incompatibility,  +1  is  complete  compatibility,  and  0 

is  irrelevancy  (a  "don't  care"  condition).  For  the  line-enhancement  problem, 
the  compatibilities  between  lines  of  different  orientations  are  shown  in  Figure 

E4-5.  Line  segments  oriented  in  the  same  direction  support  each  other,  while 
perpendicular  line  segments  contradict  each  other.  Note,  however,  that  the 

negative  compatibility  for  perpendicular  line  segments  is  set  to  —  .25  rather 

than  —1.0,  since  it  is  possible  for  curves  to  make  right- angle  turns.  The  "no- 
line"  label  is  supported  by  neighboring  "no-line"  labels  and  by  line  segments 
not  directed  toward  or  away  from  it;  it  is  contradicted  by  line  segments 
directed  toward  it. 

The  updating  process  consists  of  adjusting  the  probabilities  at  each  point 
on  the  basis  of  the  neighboring  probabilities  and  their  associated  compatibility 

functions.  Let  p;(X)  be  the  probability  of  label  X  for  picture  point  a^.  Then 
the  updating  process  should  satisfy  the  following  properties: 

1.    If  Pj(X')  is  high  and  nj(\,  X')  is  close  to  +1,  then  pi(\)  should  be  increased. 

I    /  y 

t    t    t    t     i     • 1.0  0.5  0.05  -0.15  -0.25  0.25 

Figure  E4-5.     Compatibility  weights  between  line  labels  (from  Zucker,  Hum- 
mel, and  Rosenfeld,  1977). 

•     » 
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2.  If  Pj(X')  is  high  and  7Y,(X,  X')  is  close  to  — 1,  then  p;(X)  should  be  decreased. 

3.  If  Pj(X')  is  low,  or  rtJ(X,  X')  is  close  to  0,  then  p*(X)  should  not  change 
significantly. 

A  simple  expression  that  satisfies  these  properties  is  Pj(X')  ■  ry(X,  X').  This 
product  may  be  used,  for  all  neighboring  points  a3  and  labels  X',  to  increment 
the  probability  Pi(\)  of  point  a;  having  label  X.  An  updating  rule  that  uses 
these  products  is 

p?(X)[l+tf(X)] 
Pi +1(X)     ExrfWIi  +  9?W1 where 

«,lw  =  Ec->Er'>(^')pf(v: 
Briefly,  the  rule  states  that  the  probability  of  label  X  on  point  a;  at 

the  (A:  +  l)st  iteration  is  a  function  of  both  the  previous  estimate  for  that 

probability,  p^(X),  and  the  contribution  from  the  neighboring  points,  g*(X), 
which  represents  the  increment  due  to  the  sum  of  products  Pj(\')rij(\,  X;) 
over  the  neighbors  and  their  possible  labels.  The  denominator  in  equation  (1) 
normalizes  the  net  increment  to  p;(X)  to  ensure  that  the  updating  rule  results 
in  probabilities. 

The  rule  of  equation  (1)  has  been  successful  in  the  line-enhancement 
problem,  suppressing  noisy  line  responses  and  enhancing  long,  smooth  lines, 
after  only  5  to  10  iterations.  This  technique  has  also  been  applied  to  other 

low-level  vision  tasks  such  as  histogram  modification,  noise  cleaning,  edge 
detection,  angle  detection,  curve  thinning,  and  template  matching. 

Conclusion 

Relaxation  methods  provide  efficient  solutions  for  many  vision  tasks  by 
exploiting  local  constraints  in  the  problem  domain.  Although  discrete  methods 
preceded  continuous  ones,  it  quickly  became  apparent  that  the  multitude  of 

uncertainties  in  low-level  vision  tasks  required  a  probabilistic  approach,  thus, 
probabilistic  relaxation. 

The  main  shortcoming  of  relaxation  is  that  it  is  not  usually  effective  in 

building  global  interpretations;  its  main  utility  lies  in  reducing  local  ambi- 
guities. However,  as  a  preprocessor  for  exhaustive  search,  relaxation  greatly 

improves  efficiency. 
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F.     VISION  SYSTEMS 

Fl.     Robotic  Vision 

THE  GOAL  of  robot-vision  research  is  to  develop  a  visual-sensing  technology 
for  industrial  robots  and  anthropomorphic  manipulators  that  allows  them  to 
operate  in  an  unpredictable  physical  environment.  Robotic  vision  is  especially 
useful  in  industrial  applications,  exploration  of  hazardous  environments,  and 
medical  applications.  Currently,  most  of  the  work  in  robotic  vision  has  been 
in  industrial  applications.  This  article  examines  the  general  factors  that 

influence  the  design  of  such  systems  and  describes  two  systems  in  detail — one 
for  transistor  wire  bonding  (Kashioka,  Ejiri,  and  Sakamoto,  1976)  and  another 
for  material  handling  (Holland,  Rossol,  and  Ward,  1979). 

Industrial  Applications 

There  are  three  objectives  in  using  robots  in  industrial  applications: 

(a)  to  increase  productivity,  (b)  to  improve  quality,  and  (c)  to  eliminate  repeti- 
tive jobs.  However,  one  of  the  biggest  barriers  to  successful  robot  applications 

has  been  the  lack  of  visual  sensing. 
In  manufacturing,  visual  sensing  is  needed  for  the  assembly,  handling,  and 

inspection  of  materials  and  goods.  Assembly  and  material-handling  operations 
require  that  parts  be  identified  and  that  their  precise  position  and  orientation 
be  known.  Without  visual  sensing,  a  robot  must  find  a  part  blindly;  touch  can 
be  used  if  the  parts  are  in  approximately  the  right  position  and  orientation,  but 

vision  is  needed  if  the  parts  are  placed  randomly.  Vision  also  offers  the  advan- 
tages of  speed  and  accuracy  over  touch.  Furthermore,  vision  can  automate 

tedious  and  costly  inspection  tasks  that  are  not  accomplished  accurately  by 

humans.  Image- processing  and  pattern-recognition  techniques  can  improve 
the  quality  and  lower  the  costs  of  inspection. 

Parameters  of  Robotic  Vision  Systems 

The  most  important  factors  in  designing  a  robotic  vision  system  are 

cost,  real-time  operation,  reliability,  and  flexibility.  Since  most  robotic  vision 
systems  are  used  in  industry,  they  must  be  cost-effective;  in  particular,  they 
must  cost  less  than  human  labor  for  comparable  work.  Real-time  operation  is 
obviously  required  to  compete  with  human  workers,  and  this  usually  requires 

the  image-processing  system  to  process  an  image  in  one  second  or  less.   For 
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this  reason,  the  trade-off  between  performance  and  the  amount  of  informa- 
tion processed  is  often  resolved  by  processing  the  smallest  practical  amount 

of  information.  This  influences  the  design  of  image-input  devices,  the  choice 
between  gray-scale  and  binary  representations,  the  choice  of  resolution  and  the 
size  of  the  image,  and  the  choice  between  software  and  hardware  implemen- 

tation of  algorithms.  Using  binary  images  (just  black  or  white)  and  finding  an 
optimum  image  size  are  two  especially  important  techniques.  The  optimum 
image  size  is  one  that  achieves  a  balance  between  the  required  resolution  and 

the  real-time  operation.  For  instance,  an  automatic  system  for  transistor  wire 
bonding  uses  binary  images  of  160  X  120  pixels  (Kashioka  et  al.,  1976);  on 

the  other  hand,  an  inspection  system  for  integrated-circuit  (IC)  chips  requires 
only  50  X  50  pixels,  but  it  has  four-bit  gray-level  images  (Baird,  1978).  Some 
design  decisions  will  change  with  time  because  prices  of  memory,  solid-state 
array  sensors,  custom-designed  IC  chips,  and  microprocessors  are  decreasing. 

Reliability  is  another  important  factor  in  practical  robotic-vision  systems. 
To  achieve  reliable  performance,  careful  attention  must  be  paid  to  the  imag- 

ing device,  illumination  settings,  threshold  techniques,  selection  of  reliably 
extractable  features,  and  the  recognition  algorithm.  In  addition,  designers 
and  users  must  understand  the  limitations  of  the  system  and  the  situations 

in  which  it  fails.  Noise  and  worst-case  studies  are  important  because  the 
images  vary  according  to  the  surrounding  conditions.  These  considerations 
are  illustrated  in  the  next  section. 

Finally,  vision  systems  must  be  flexible,  especially  in  the  case  of  medium- 
and  low-volume  production  runs.  The  system  must  be  easily  adapted  to 
different  tasks;  otherwise,  it  is  uneconomical.  However,  a  flexible  system  often 

costs  more  than  a  special-purpose  one,  so  if  production  runs  are  very  large,  a 
manufacturer  will  opt  for  special-purpose  devices. 

To  date,  the  successful  vision  systems  in  production  are  those  that  were 
designed  specifically  for  a  particular  environment.  The  key  factors  in  their 
success  seem  to  have  been  a  careful  analysis  of  the  task  and  the  fact  that  the 
burden  on  the  vision  system  is  minimized. 

Case  Studies 

A  transistor  wire-bonding  system.  A  fully  automatic  system  for 
transistor  wire  bonding,  developed  by  Kashioka,  Ejiri,  and  Sakamoto  (1976) 

at  Hitachi,  was  one  of  the  first  production  robotic- vision  systems  to  use  image- 
processing  functions  extensively.  The  system  visually  locates  a  transistor  chip 
and  automatically  bonds  gold  wires  between  the  electrodes  on  the  chip  and 

the  outer  leads.  It  assembles  2,000  chips  per  hour  (1.8  sec. /chip) — twice  the 
speed  of  traditional  semiautomatic  wire-bonding  machines — with  an  accuracy 
of  more  than  99%.  One  of  the  features  of  this  system  is  that  up  to  five 
groups  of  10  bonding  machines  share  a  central  minicomputer,  and  the  bonding 
machines  in  a  group  share  an  image  hardware  processor. 
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The  task  of  the  vision  system  is  to  extract  the  precise  x-y  coordinates  of 
the  base  electrode  B  and  the  emitter  electrode  E  on  the  chip  and  to  send 

the  information  to  the  x-y  servomechanism  of  a  bonder.  To  do  this,  an 
area  of  1,100  X  800  micrometers  is  first  scanned  by  a  TV  camera  through 
a  microscope  and  the  image  is  then  binarized  into  160  X  120  pixels.  To  locate 
the  chip  position  and  orientation,  two  or  three  local  standard  patterns  are 
searched  in  the  input  image,  where  each  standard  pattern  consists  of  12  X  12 
pixels.  The  search  for  matching  patterns  is  done  by  special  hardware  that 
receives  a  frame  of  input  image  from  the  TV  camera  and  a  standard  pattern 

from  the  minicomputer.  The  matching  is  accomplished  within  a  one-frame 
scanning  time,  16.7  ms,  and  the  evaluation  of  the  position  is  done  by  the 

central  minicomputer  during  the  one-frame  blanking  time. 
Identifying  local  patterns  Pi  and  P<±  is  enough  to  identify  the  coordinates 

of  the  chip;  however,  the  following  additional  processing  increases  precision 
and  reliability.  If  the  distance  and  direction  angle  between  the  located  P\ 
and  Pq  are  not  what  was  expected,  a  third  local  pattern  P3  is  found  and  the 
distances  and  direction  angles  between  Pi  and  P3  and  between  P2  and  P3  are 

evaluated.  Because  the  matching  rate  decreases  rapidly  when  the  inclination 
of  chips  exceeds  ±7  degrees,  the  system  uses  two  other  sets  of  standard 
patterns  that  are  rotations  of  Pi,  P2,  and  P3,  by  10  degrees  right  and  left, 
respectively.  Finally,  to  achieve  high  precision,  four  repeated  measurements 
are  made  for  each  chip.  Incompatible  measurements  are  thrown  out,  and  the 

others  are  averaged  to  yield  the  final  x-y  coordinates.  Averaging  produces  a 
resolution  of  one-half  of  a  pixel,  or  3.5  micrometers.  In  a  trial,  the  average 
recognition  accuracy  was  ±9.3  micrometers  and  the  average  recognition  time 
was  .15  seconds  per  chip. 

The  system  has  the  flexibility  to  handle  various  types  of  transistors.  The 

standard  patterns  for  these  transistors  are  generated  interactively.  Special- 
purpose  hardware  displays  an  image  of  a  transistor  chip  with  a  12  X  12  pixel 
overlay  to  a  human  operator,  who  indicates  one  set  of  standard  patterns. 
These  are  then  stored  in  binary  form  in  the  computer. 

At  the  time  that  Kashioka  and  his  associates  (1976)  published  their  report, 

a  20-machine  system  was  assembling  10  million  transistors  per  month.  The 
success  of  this  system  has  led  to  similar  systems  for  integrated  circuits  (see, 

e.g.,  Mese  et  al.,  1977;  Naruse  et  al.,  1979). 

Transferring  parts  from  belt  conveyors.  CONSIGHT-I,  developed  by 
Holland,  Rossol,  and  Ward  (1979)  at  General  Motors  Research  Laboratories, 

is  a  vision-based  robot  system  that  picks  up  parts  that  have  been  randomly 
placed  on  a  moving  conveyor  belt.  Its  vision  system,  operating  in  a  visually 
noisy  environment,  determines  the  position  and  the  orientation  of  parts  on  the 
belt.  After  each  piece  is  located,  the  belt  is  stopped  and  the  robot  transfers 
the  parts  to  a  predetermined  location. 
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An  important  feature  of  the  system  is  that  it  can  obtain  a  reliable  binary 
image  of  objects  that  do  not  always  have  a  high  contrast  with  the  background 
of  a  conveyor  belt.  For  example,  foundry  castings  blend  with  the  background 
when  placed  on  a  belt.  To  overcome  this  difficulty,  the  system  projects  a 
narrow  and  intense  line  of  light  to  the  conveyor  belt  surface  by  using  two 
sets  of  long  light  tubes  and  cylindrical  lenses.  The  projected  line  is  sensed 

by  a  linear- array  camera  with  256  photocells.  When  an  object  comes  to  the 
lighted  position,  it  intercepts  the  light  before  it  reaches  the  surface,  with  the 
result  that  the  belt  surface  appears  bright  and  the  object  dark.  Two  light 
sources  are  used  to  avoid  a  shadowing  effect.  Though  some  internal  features, 
like  holes,  are  still  subject  to  distortion  or  occlusion  due  to  shadowing,  the 

system  gives  a  sharp-edged  silhouette  for  a  wide  range  of  objects. 
The  camera  scans  the  belt  at  a  constant  rate,  independent  of  the  belt 

speed.  One  scan  line  is  sampled  for  each  equal  increment  of  belt  travel  by 
measuring  the  position  and  the  speed  of  the  belt.  This  continuous  sampling 

of  scan  lines  produces  a  two-dimensional  image.  In  fact,  the  system  does  not 
store  the  entire  image  but  processes  it  line  by  line.  As  objects  pass  through 
the  slit  of  view,  statistics  on  each  component  (dark  area)  are  continuously 
updated.  When  two  components  in  a  previous  scan  line  are  connected  to  one 
component  in  a  new  line,  the  system  updates  its  statistics  on  the  object.  These 
include  position,  color  (black  or  white),  count  of  pixels,  sums  of  x  coordinates 
and  y  coordinates,  and  sums  of  products  of  x  and  y  coordinates.  When  a 
component  has  passed  completely  through  the  slit  of  view,  these  statistics  are 
used  to  calculate  numerical  shape  descriptors.  The  system  then  identifies  the 
object  and  computes  its  position  and  orientation. 

The  system  uses  run-length  coding  to  perform  the  connectivity  analysis 
effectively.  This  minimizes  the  amount  of  memory  and  processing  required. 
For  a  line  image  of  n  pixels,  a  straightforward  binary  connectivity  analysis 

requires  on  the  order  of  n2  operations,  while  the  algorithm  using  run-length 
coding  requires  on  the  order  of  n  operations.  In  general,  run-length  coding  is 
an  effective  technique  for  reducing  the  amount  of  information  processing  and 
storage. 

SRI  International  has  developed  a  leading  machine-vision  system  called 
the  SRI  Vision  Module  (Gleason  and  Agin,  1979).  The  techniques  developed 

at  SRI  include  connectivity  analysis  with  run-length  coding,  numerical  shape 

descriptors,  and  recognition  (identification)  of  parts  with  a  nearest-neighbor 
method.  The  principal  components  of  the  vision  module  are  a  solid-state  TV 
camera  with  128  X  128  resolution,  an  interface  unit  for  digitizing  the  video 

signal,  and  an  LSI-11/2  microcomputer.  The  system  is  a  package  of  useful 
programs  with  all  necessary  hardware  for  many  visual  sensing  and  inspection 
tasks. 
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Conclusion 

The  application  of  robotic-vision  technologies  in  industry  has  important 
implications,  not  only  for  industrial  manufacturing  processes,  but  also  for 

vision  technology.  Powerful  industrial-vision  systems  have  been  developed 
by  careful  attention  to  the  trade-offs  between  cost,  flexibility,  speed,  and 
reliability. 
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F2.     Organization  and  Control  of  Vision  Systems 

THIS  CHAPTER  has  thus  far  described  the  theory  and  methods  of  various 
aspects  of  vision,  but  there  has  been  little  discussion  of  integrated  vision 

systems.  In  the  previous  article  (xiII.Fl)  we  described  some  industrial  robotic- 
vision  systems.  This  article  and  the  next  survey  four  vision  systems  that 
were  developed  as  AI  projects  and  that  have  organization  and  control  schemes 
representative  of  vision  systems.  We  discuss  three  of  these  systems  here: 

a  multiband  aerial-photo  interpretation  system  from  Kyoto  University,  the 
VISIONS  system  from  the  University  of  Massachusetts,  and  a  query-oriented 
system  from  the  University  of  Rochester.  The  ACRONYM  system,  developed 
at  Stanford  University,  is  presented  in  Article  XIII.F3. 

A  key  attribute  of  an  image-understanding  system  is  the  interaction  be- 
tween high-level  knowledge — object  models — and  low-level  knowledge — image 

or  scene  features.  While  the  general  flow  of  information  is  bottom-up,  from 
pixels  to  image  features,  to  scene  features,  to  object  labeling,  many  systems 

also  have  some  top-down  information  flow  from  object  models  to  image  fea- 
tures. Kelly  (1970),  for  example,  wrote  a  program  to  recognize  human  faces 

in  which  a  model  of  the  arrangement  and  intensity  characteristics  of  typical 

faces  guided  all  of  the  low-level  processing.  After  finding  the  outline  of  the 
head,  the  program  would  estimate  the  probable  position  of  the  eyes,  and  look 
for  the  dark  spots  that  characterize  the  pupils  in  and  around  the  predicted 

locations.  This  model- driven  processing  can  be  both  efficient  and  effective. 
However,  programs  that  depend  very  much  on  high-level  control  of  low-level 
processing  tend  to  be  too  domain-dependent  and  respond  poorly  when  viewing 
conditions  change  even  slightly.  The  following  descriptions  of  vision  systems 
focus  on  mechanisms  for  achieving  cooperation  and  flow  of  control  between 

low-level  and  high-level  processing  stages.  In  fact,  we  emphasize  flow  of  con- 
trol at  the  expense  of  detailed  descriptions  of  vision  processes  in  this  article. 

Interpreting  Multiband  Aerial  Photographs 

Nagao,  Matsuyama,  and  Ikeda  (1978,  1979)  developed  a  system  that 

interpreted  a  class  of  multiband  aerial  photos  acceptably  well.  Their  image- 
interpretation  system  employs  multiple,  independent  knowledge  sources  that 
operate  on  a  common,  multilevel  database.  This  database,  or  blackboard,  is 

represented  as  shown  in  Figure  F2-1.  The  abstraction  levels  of  image  informa- 
tion are  elementary  region,  cue  region,  object,  and  object  category.  Models  are 

described  in  terms  of  two-dimensional  features  that  can  be  observed  in  images. 
In  general,  it  is  not  possible  to  do  scene  interpretation  with  two-dimensional 
models,  but  it  is  an  acceptable  technique  for  aerial  photography  because  the 

306 
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view  angle  is  so  constrained  that  object  shapes  change  little  and  occlusion  is 
not  much  of  a  problem. 

The  first  step  of  processing  is  to  smooth  the  image  (see  Article  XIII.C3). 

A  nonsemantic  segmenter  then  defines  a  set  of  elementary  regions — a  set  of 
patches  that  are  homogeneous  in  multispectral  properties. 

The  next  step  is  to  extract  cue  regions.  The  types  of  cue  regions  are  large 

homogeneous  regions,  shadow  and  shadow-causing  regions,  elongated  regions, 
vegetation  regions,  high-contrast  regions,  and  high-contrast  vegetation  regions. 
Each  type  of  cue  region  triggers  one  or  more  object  recognizers.  Different  cue 

regions  may  overlap;  for  example,  high-contrast  vegetation  regions  are  simply 
the  intersection  of  high-contrast  regions  and  vegetation  regions. 

Cue  regions  are  extracted  by  screening  elementary  regions;  for  example, 
any  patch  with  very  low  intensity,  particularly  in  red  and  infrared,  is  classified 
as  a  shadow.  An  adjacent  region  with  an  appropriate  boundary  on  the 

sunward  side  is  a  shadow-maker.  Vegetation  regions  have  a  high  ratio  of  infra- 
red to  red;  high-contrast  areas  are  aggregations  of  small  elementary  regions. 

Shadow-making  regions  trigger  the  house  detector,  while  high-contrast  vegeta- 
tion regions  are  likely  to  be  considered  forest. 
Each  elementary  region  is  represented  by  a  node  in  the  lowest  level  of  the 

blackboard.  Nodes  at  higher  levels  represent  cue  regions  and  objects;  they 
are  linked  to  the  elementary  regions  they  subsume.  Furthermore,  a  node  can 
have  a  dependency  link  to  another  node,  indicating  that  its  interpretation  was 
aided  by  the  prior  interpretation  of  the  other  node. 

The  property  table  shown  in  Figure  F2-1  stores  the  coordinate  range,  or 
bounding  rectangle,  of  a  region  and  records  whether  the  region  is  unanalyzed, 
recognized,  irregularly  shaped,  or  rejected.  Each  region  has  only  one  entry, 
which  means  that  there  can  be  only  one  object  hypothesis  for  a  region.  The 
first  interpretation  of  a  region  is  kept  until  a  contradiction  arises.  To  resolve 
contradictions,  the  system  deletes  the  conflicting  region  interpretation  for 
which  it  is  least  confident.  It  marks  the  region  as  unanalyzed,  restarting  the 
interpretation  of  the  region;  object  hypotheses  that  depend  on  the  deleted 
node  are  themselves  deleted. 

Knowledge  sources  (KSs)  are  independent,  but  they  communicate  via  the 

blackboard  and  a  message-passing  system.  A  central  executive  cycles  control 
among  the  knowledge  sources.  When  a  KS  is  invoked,  it  looks  at  the  cue  region 
in  which  it  is  interested  and,  if  it  finds  an  unclassified  elementary  region  within 
its  cue  region,  it  attempts  a  classification.  If  classification  fails,  the  region  is 
marked  rejected.  In  this  case,  the  KS  will  not  reattempt  classification  unless  it 

gains  additional  constraints  by  successfully  classifying  a  neighboring  region.  If 
a  different  knowledge  source  produces  a  constraint,  a  message  will  be  placed  in 
the  message  box.  This  could  trigger  a  reexamination  of  a  previously  rejected 
region. 
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VISIONS 

The  University  of  Massachusetts'  VISIONS  system  (Hanson  and  Riseman, 
1978b)  is  patterned  after  the  HEARS AY-II  speech-understanding  system 
(Erman  et  al.,  1980;  see  also  Article  V.Cl,  in  Vol.  i).  In  VISIONS,  hypotheses 
are  posted  and  accessed  on  a  blackboard  by  independent  procedural  knowledge 

sources:  KS  activation  and  scheduling  are  under  the  control  of  a  central  execu- 
tive. The  system  has  been  tested  with  outdoor  scenes.  Figure  F2-2  outlines 

the  structure  of  VISIONS. 

The  blackboard  in  this  system  represents  a  layered  description  of  the 
contents  of  an  image.  The  lowest  levels  represent  regions,  segments,  and 
vertices;  they  form  a  structure  called  an  RSV  graph. 

Preprocessing  stages  are  shown  in  the  left  half  of  Figure  F2-2.  There 
are  three  stages  of  information  representation.  The  first  is  the  image  itself, 

represented  by  a  resolution  pyramid  (see  Article  XIII.El).  The  second  stage 

comprises  separate  edge  and  region  analysis.  The  third  stage  is  a  merged  rep- 
resentation of  the  results  of  a  correlation  between  the  edge  analysis  and  region 

analysis.  The  representations  at  these  low  levels  are  of  image  characteristics, 
rather  than  of  scene  characteristics. 

The  next  two  levels  in  the  blackboard  work  with  surfaces  and  volumes. 

At  these  levels,  the  system  attempts  to  reconstruct  the  three-dimensional 
configuration  of  the  scene.   The  top  two  levels  work  with  representations  of 
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objects  and  schemas.  At  the  object  level,  hypotheses  are  formed  about  what 
the  objects  in  the  scene  must  have  been  to  result  in  the  observed  image.  The 
schema  level  imposes  constraints  on  the  selection  of  object  models.  There 
may  be  office  schemas,  airport  schemas,  and  so  on.  Schemas  serve  the  same 

purpose  as  Minsky's  frames  (1973;  see  also  Article  III.C7,  in  Vol.  i). 
The  blackboard  model  in  Figure  F2-2  illustrates  the  distinction  made  in 

VISIONS  between  a  priori  models  and  image-specific  models,  though  both  may 
be  represented  in  the  same  manner.  The  a  priori  models  are  stored  in  long- 

term  memory  (LTM),  while  the  image-specific  models  are  stored  in  short-term 
memory  (STM).  Recognizing  that  they  did  not  have  adequate  KSs  to  make 
surface  and  volume  hypotheses  reliably,  the  designers  of  VISIONS  compensated 

by  relying  heavily  on  top-down  hypotheses  represented  by  models  in  LTM.  By 
projecting  these  models  into  two  dimensions,  they  construct  RSV-level  models 
of  objects,  and  these  are  matched  to  the  actual  image. 

VISIONS  chooses  a  KS  by  traversing  a  decision  tree.  Its  model  builder 
decides  to  expand  or  to  develop  a  new  hypothesis  for  a  model.  To  expand  a 
model,  the  level  focuser  first  decides  which  level  of  the  blackboard  to  work 
on.  Then,  that  level  is  expanded  under  the  control  of  the  node  focuser,  the 
node  expander,  and  the  node  verifier.  The  focuser  selects  a  node  from  the 

blackboard  to  process  further,  the  expander  calls  a  KS  to  create  new  hypoth- 
eses, and  the  verifier  checks  the  results  for  satisfaction  of  constraints. 

VISIONS  incorporates  a  checker  to  follow  along  after  each  KS  activation 

to  test  each  new  hypothesis.  The  system's  confidence  in  a  hypothesis  is 
affected  by  a  number  of  factors,  including  its  confidence  in  other  competing 
or  supporting  hypotheses  and  whether  a  hypothesis  supports  a  higher  level 
hypothesis  in  which  the  system  has  confidence. 

A  Query- oriented  Vision  System 

Ballard,  Brown,  and  Feldman  (1978)  at  the  University  of  Rochester  have 

developed  a  query-oriented  vision  system.  It  abandons  the  approach  of  exhaus- 
tive processing  at  the  low  levels.  Instead,  it  processes  just  enough  information 

to  answer  a  query.  A  description  of  the  content  of  the  image  is  maintained 

and  expanded  with  each  query.  All  processing  is  done  in  the  two-dimensional 
image  domain;  no  three-dimensional  models  are  used. 

Information  is  represented  in  three  layers:  an  image  data  structure,  a 

model  layer,  and  a  sketchmap.  This  is  shown  in  Figure  F2-3.  The  image 
data  structure  contains  the  spectral  bands  of  the  raw  image  at  various  resolu- 

tions, along  with  derived  information  about  edges,  texture,  and  regions.  The 
model  is  a  semantic  network,  representing  the  appearances  of  and  relationships 
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Figure  F2-3.     Basic  layer  structure. 

between  objects  as  projected  into  two  dimensions.  An  object  node  in  the 
model  layer  is  linked  by  constraint  relations  to  other  object  nodes.  A  node 
in  the  sketchmap  represents  a  correspondence  between  a  feature  of  the  image 
and  an  object  node  in  the  semantic  network.  These  associations  are  built  up 
during  image  interpretation  and  constitute  the  answers  to  queries. 

Types  of  queries  are  precoded  as  executive  procedures  that  roughly  outline 
how  to  answer  queries.  An  executive  procedure  imposes  a  search  strategy, 
based  on  information  contained  in  mapping  procedures  that  are  associated 
with  objects  in  the  model  plane.  Mapping  procedures  encode  how  to  find 
instances  of  the  models  in  the  image  data  structure.  Each  is  specialized  to  one 
particular  object,  but  an  object  node  in  the  model  layer  may  be  associated  with 
any  number  of  mapping  procedures.  A  mapping  procedure  has  a  precondition, 
a  postcondition,  an  a  priori  reliability,  and  an  expected  cost  (in  CPU  time).  An 
executive  procedure  can  examine  these  characteristics  to  select  the  mapping 
procedure  that  best  fulfills  its  needs. 

Figure  F2-4  shows  a  sample  executive  procedure,  written  in  a  stylized 
version  of  SAIL.  It  looks  for  ribs  in  chest  radiographs.  The  Node  variable  in 

Figure  F2-4  refers  to  a  node  in  the  sketchmap. 
The  executive  can  use  (or  cause  to  be  used)  the  information  built  up  in 

answering  previous  queries  in  order  to  construct  new  sketchmap  nodes  to  be 
verified. 

Conclusion 

We  have  discussed  three  integrated  vision  systems,  concentrating  on  the 
flow  of  control  within  each.   Two  of  these  systems  use  flexible  and  powerful 
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PROCEDURE  MatchRib (Node) 
BEGIN 
if  there  is  an  INSTANCE  of  Node  then 

BEGIN 

print("rib" ,    Node,    "already  matched.  •■) ; 
return 
END 

else  BEGIN 
Find  x  such  that 

x  is  a  RIB-PROCEDURE  of  Node, 
and  RELIABILITY  of  x  is  acceptable, 
and  COST  of  x  is  no  greater  than  that  of   any  other  reliable 

RIB-PROCEDURE  of  Node; 

ApplyProc    (x,    Node); 
For  each  v  such  that 

v  is  a  RIB, 
and  v  is  a  NEIGHBOR  of  Node 

do  MatchRib (v) 
END 

END 

Figure  F2-4.     A  simplified  executive  procedure  for  ribs,  from  the  system 
of  Ballard,  Brown,  and  Feldman  (1978). 

blackboard  control  structures,  which  are  well-suited  to  processing  large  amounts 
of  information  and  developing  partial  hypotheses  incrementally  from  noisy 
data. 

Other  well-developed  computer  vision  systems  that  interpret  natural  scenes 
include  Shirai  (1978),  Rubin  (1978),  and  Ohta  (1980). 

References 

Kanade  (1977)  discusses  the  issues  of  model  representation  and  control 

structure  in  vision  systems. 



F3.     ACRONYM 

ACRONYM  (Brooks,  1981a)  is  intended  as  a  domain-independent,  model- 
driven  interpretation  system:  A  user  describes  the  objects  expected  in  an  appli- 

cation domain,  along  with  their  possible  relationships,  and  the  system  tries 
ta  interpret  images  as  specializations  of  the  domain.  ACRONYM  attempts 
to  identify  and  classify  instances  of  modeled  objects  and,  at  the  same  time, 

extract  three-dimensional  information  from  a  monocular  image  concerning 
the  shape,  structure,  and  three-dimensional  location  and  orientation  of  the 

objects.  The  major  modules  (boxes)  and  data  structures  (ellipses)  of  ACRO- 
NYM are  shown  in  Figure  F3-1. 

The  principal  domains  in  which  the  system  has  been  tested  are  aerial- 
photograph  interpretation,  specifically  of  airport  scenes,  and  low-angle  views 
of  automated  assembly  work-stations  with  a  wide  range  of  industrial  parts. 

The  ACRONYM  project  divides  model-based  vision  into  four  parts:  model- 
ing, prediction,  description,  and  interpretation.  The  user  models  both  specific 

objects  and  generic  classes  of  objects  in  terms  that  are  independent  of  images. 
The  program  automatically  predicts  which  image  features  to  expect,  how  to 
look  for  them,  how  to  coarsely  filter  candidate  features,  and  how  to  use  image 

Figure  F3-1.     The  ACRONYM  system. 
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measurements  to  deduce  three-dimensional  information  about  tentative  object 
interpretations.  Description  is  the  process  of  bottom-up  reduction  of  the  gray- 
level  image  to  a  higher  level,  model-independent  description  of  it.  Interpre- 

tation relates  the  description  of  the  image  to  the  prediction,  applying  the 

instructions  included  in  the  prediction  to  produce  a  three-dimensional  under- 
standing of  the  scene.  These  four  phases  of  image  understanding  are  discussed 

in  detail  in  the  remainder  of  the  article. 

The  ACRONYM  system  uses  two  symbolic  reasoning  systems  in  all  phases 
of  its  operation  other  than  description.  A  geometric  system  reasons  about 

complex  products  of  coordinate  transforms — typically  10  to  20  transforms 
with  10  or  more  free  parameters.  An  algebraic  reasoning  system  takes  sets  of 
nonlinear  algebraic  symbolic  inequalities  and  bounds  trigonometric  and  other 
expressions  of  the  satisfying  sets  of  those  inequalities.  This  system  is  based 
on  a  method  for  reasoning  about  linear  inequalities  over  integers  introduced 

by  Bledsoe  (1975)  for  proving  properties  of  programs. 

Modeling 

The  user  gives  ACRONYM  models  of  objects  and  their  spatial  relation- 
ships, as  well  as  classes  of  models  and  their  subclass  relationships.  The  first 

provides  a  geometric  component  of  the  representation  scheme,  stored  as  the 
object  graph.  The  second  provides  an  algebraic  component  and  is  stored 
as  the  restriction  graph.  Objects  are  modeled  by  the  volumes  they  occupy 
and  by  transforms  between  the  local  coordinate  systems  of  these  volumes. 

Classes  (and  thus  subclasses)  are  defined  by  sets  of  inequalities  (constraints) 
on  algebraic  expressions  (perhaps  nonlinear)  over  parameters  of  the  geometric 
model. 

The  nodes  of  the  object  graph  denote  objects  and  subobjects;  they  refer 
to  volume  primitives  that  are  represented  as  generalized  cones  (see  Article 
XIII. D6).  For  example,  the  body  of  an  electric  motor  (like  those  shown  in 

Fig.  F3-2)  might  be  represented  by  a  simple,  right  circular  cylinder — a  circle 
swept  along  a  straight  axis. 

There  are  two  types  of  directed  arcs  in  the  object  graph.  Subpart  arcs  rep- 
resent the  coarse-to-fine  subpart  hierarchy  of  complex  objects.  Electric  motors 

have  subparts  such  as  a  base,  attachment  flanges,  and  a  drive  shaft.  Affixment 
arcs  describe  the  spatial  relationships  between  subparts.  For  instance,  the 
drive  shaft  has  its  axis  collinear  to  the  axis  of  the  motor  body. 

Many  parameters  must  be  specified  to  describe  fully  a  generalized  cone, 
a  subpart  arc,  or  an  affixment  arc.  The  user  may  give  specific  numeric 
values  for  these  parameters  and  thus  completely  specify  particular  objects; 
alternatively,  he  (or  she)  may  also  choose  to  leave  some  parameters  as  free 
variables  and  perhaps  supply  constraints  on  the  values  allowed  for  them  as 
arbitrary  nonlinear  algebraic  inequalities. 
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Figure  F3-2.     Three  specializations  of  the  generic  class  of  small  electric 
motors. 

A  user  may  want  to  describe  a  class  of  small  electric  motors  that  vary  in 

shape  and  structure  but  have  similar  masses.  Further,  the  motors  may  have 

volumes  roughly  proportional  to  their  masses  but  constrained  to  lie  in  some 

range.  Finally,  the  motors  may  have  different  lengths  and  diameters.  Thus, 

the  user  might  leave  the  body  length  as  a  parameter  MOTOR-LENGTH  and 

body  radius  as  a  parameter  MOTOR-RADIUS  and  specify  that 

70.0  <  MOTOR-LENGTH  X  MOTOR-RADIUS  X  MOTOR-RADIUS  <  160.0 

with  additional  constraints  that 

6.0  <  MOTOR-LENGTH  <  9.0 , 

2.0  <  MOTOR-RADIUS  <  3.0 . 

This  is  how  variations  in  size  and  shape  are  represented  by  constraints  on 

parameters  of  the  nodes  of  the  object  graph. 

Similarly,  constraints  on  parameters  of  subpart  arcs  can  be  used  to  rep- 
resent variations  in  object  structure,  and  variations  in  spatial  relationships 

can  be  represented  by  constraints  on  parameters  of  the  affixment  arcs.  For 

instance,  a  parameter  for  the  number  of  attachment-flange  subparts  might  be 
allowed  either  to  be  0  or  to  lie  in  the  range  from  3  to  6.  This  constrains  the 

allowable  structures  of  electric  motors.  Parameters  in  the  affixment  arcs  relat- 

ing attachment  flanges  to  the  motor  body  may  constrain  them  to  lie  equally 

spaced  about  one  end  of  the  body. 

Sets  of  constraints  on  model  parameters  form  the  nodes  of  the  restriction 

graph.  They  are  organized  in  a  lattice  defined  by  directed  specialization  arcs. 

Thus,  there  might  be  a  node  giving  all  the  constraints  for  some  generic  class  of 

small  electric  motors.  It  may  have  two  specializations — each  a  more  restrictive 
set  of  constraints.  One  might  be  the  subclass  of  motors  with  flanges  and  no 

base,  and  the  other  the  subclass  of  motors  with  a  base  and  no  flanges.  Each  of 

these  may  have  further  specializations.  Figure  F3-2  presented  three  instances 
of  such  a  parameterized  model,  obtained  in  each  case  by  specializing  all  the 

parameters  down  to  specific  numeric  values. 
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During  modeling,  the  user  can  explictly  define  parts  of  the  restriction 

graph.  Later,  during  interpretation,  ACRONYM  adds  more  nodes,  correspond- 
ing to  hypothesized  instances  of  objects.  Starting  with  a  hypothesized 

instance  that  matches  the  geometric  description  of  an  object,  ACRONYM  tries 
to  find  the  most  specialized  restriction  node  that  is  consistent  with  algebraic 
constraints  implied  by  the  image.  Thus,  it  carries  out  subclass  identification 
of  objects. 

The  ACRONYM  modeling  system  is  also  used  for  tasks  other  than  vision. 

Soroka  (1980)  has  made  it  the  basis  of  a  real-time  simulation  system  for  off- 
line programming  of  robots.  Brooks  (1981a)  has  used  it  to  explore  techniques 

of  planning  automated  assemblies. 

Prediction 

Given  a  set  of  models  and  their  relationships,  geometric  reasoning  tech- 
niques are  used  to  predict  features  that  will  be  invariantly  observable,  that  is, 

features  that  will  be  observable  over  the  modeled  range  of  variations  in  size, 
structure,  and  spatial  relations.  Image  relations  between  those  features  are 
also  predicted.  This  requires  analysis  of  the  ranges  of  those  variations  in  the 

object-model  classes.  ACRONYM  does  not  predict  the  complete  appearance  of 
objects  from  all  possible  viewpoints  but,  rather,  it  predicts  features  that  allow 
it  to  identify  instances  of  objects,  and  also  their  orientation  and  position. 

The  major  result  of  prediction  is  the  prediction  graph.  The  nodes  of 
the  graph  are  predictions  of  image  features,  and  the  arcs  specify  relations 
expected  to  hold  between  the  features.  Predictions  have  two  functions.  First, 

they  provide  a  coarse  filter  for  hypothesizing  object-to-image  feature  matches. 
Second,  they  contain  instructions  on  how  to  use  noisy  measurements  of  an 

image  feature  to  deduce  three-dimensional  information  about  the  object  to 
which  it  has  been  hypothetically  matched. 

The  predictor  module  of  ACRONYM  is  implemented  as  a  set  of  about 

280  production  rules.  These  are  executed  according  to  a  backward-chaining 
control  strategy,  augmented  by  the  possibility  of  setting  up  subgoals  on  an 

agenda.  Meta-rules  examine  the  agenda  for  goal  conflicts,  eliminate  them, 
and  then  invoke  the  rule  mechanism  on  each  subgoal  in  the  agenda.  Rule 
selection  is  through  a  unification  pattern  match  of  rule  advertisements  to 
subgoal  specifications. 

Shape  prediction.  The  image  features  predicted  by  ACRONYM  are 

shapes,  represented  as  ribbons  (the  two-dimensional  analogue  of  generalized 
cylinders)  and  ellipses.  Ribbons  are  a  good  representation  of  the  images 
generated  by  a  generalized  cone.  Consider  a  ribbon  that  corresponds  to 
the  image  of  the  swept  surface  of  a  generalized  cone.  For  straight  spines, 
the  projection  of  the  cone  spine  into  the  image  would  closely  correspond 
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to  the  spine  of  the  ribbon.  Thus,  a  good  approximation  to  the  observed  angle 
between  the  spines  of  two  generalized  cones  is  the  angle  between  the  spines  of 
the  two  ribbons  in  the  image  corresponding  to  their  swept  surfaces.  Ellipses 
are  a  good  way  of  describing  the  shapes  generated  by  the  ends  of  generalized 

cones,  since  the  perspective  projections  of  ends  of  cones  with  circular  cross- 
sections  are  ellipses. 

Shape  prediction  involves  deciding  what  shapes  will  be  visible,  predicting 

ranges  for  shape  parameters — to  be  used  as  a  coarse  filter  during  interpreta- 
tion and  also  to  guide  the  low-level  descriptive  processes — and  deriving  in- 

structions about  how  to  invert  locally  the  perspective  transform  and  hence  use 

image  measurements  to  generate  constraints  on  the  original  three-dimensional 
models. 

The  perspective  transform  and  the  process  of  inverting  it  are  illustrated 

in  Figure  F3-3,  which  shows  a  simple  camera  geometry.  An  object  of  length  / 
is  at  distance  d  from  the  camera  focus,  and  parallel  to  the  image  plane  of 
the  camera.  The  camera  has  focal  ratio  r.  The  image  of  the  object  will 

measure  rl/d;  thus,  this  expression  can  be  used  to  make  predictions  about  the 
appearance  of  the  object  in  the  image.  Since  the  object  and  its  relation  to  the 
camera  may  be  specified  in  terms  of  many  free  parameters,  any  or  all  of  r, 
/,  and  d  may  be  symbolic  algebraic  expressions  rather  than  specific  numbers. 
The  algebraic  reasoning  system  is  able  to  find  upper  and  lower  bounds  on 

rl/d  that  give  a  range  approximation  for  possible  image  sizes  of  the  object. 

Let  that  predicted  range  be  P  =  \pi,Ph\-  Suppose  that,  later,  some  image 
feature  is  hypothesized  to  match  the  object  and  that  its  measured  length, 

with  error  estimates,  is  the  range  M  =  [m^ra^].  Then  if  P  D  M  is  empty, 
the  hypothesis  should  be  rejected,  as  the  observed  feature  cannot  possibly  fall 
in  the  predicted  range.  Otherwise,  however,  the  hypothesis  can  be  tentatively 
accepted.  Further,  if  the  hypothesis  is  correct,  it  must  be  the  case  that 

mi  <  rl/d  <  rrih  • 

Thus,  the  hypothesis  produces  algebraic  constraints,  called  back  con- 
straints, on  the  underconstrained  parameters  of  the  original  model.  When 

combined  with  other  constraints  from  such  local  inversions,  and  from  the 

user-supplied  model  constraints,  the  unknown  parameters  of  the  model's  size, 
structure,  position,  and  orientation  in  the  world  are  gradually  refined. 

Predicting  relations.  In  addition  to  shapes,  relations  between  shapes 
are  also  predicted.  Observable  relationships  predicted  between  shapes  include 

exclusivity,  collinearity,  connectivity,  relative  spine  angle,  and  distance  within 

the  image.  Many  relations  (e.g.,  angle  and  distance)  include  back  constraints, 

analogous  to  those  provided  with  shapes,  which  permit  three-dimensional 
information  to  be  extracted  from  image  measurements. 
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Figure  F3-3.     The   coordinate   system   used   for  ACRONYM   camera 
models. 

Description 

The  descriptive  modules  of  ACRONYM  try  to  describe  images  as  a  picture 
graph  in  the  same  terms  as  the  prediction  graph,  that  is,  as  ribbons  and  ellipses. 

A  line- finder,  first  developed  by  Nevatia  and  Babu  (1981),  summarizes 
a  gray-level  image  as  a  collection  of  linked  and  straightened  line  segments. 
Typically,  about  1,000  lines  are  produced.  The  line-finder  works  in  a  purely 
bottom-up  fashion.  Figure  F3-4a  shows  the  lines  found  by  the  line-finder  for 
an  aerial  image  of  an  airplane. 

The  prediction  graph  provides  general  guidelines  for  the  shapes  and  sizes 
that  can  be  expected,  and  the  edge  mapper  looks  for  these  shapes,  but  with 
no  particular  concern  for  which  shape  corresponds  to  which  prediction.  The 
result  is  the  picture  graph,  consisting  of  shape  descriptions  and  their  relative 

locations  and  orientations  in  the  two-dimensional  image.  The  picture  graph 
contains  no  explicit  three-dimensional  information.  Figure  F3-4b  shows  the 
ribbons  contained  in  a  picture  graph  produced  from  the  edges  in  Figure  F3-4a, 
when  the  system  was  looking  for  wide-bodied  jet  aircraft,  but  had  no  idea  of 
the  scale  to  expect. 

Interpretation 

ACRONYM  interprets  images  by  trying  to  find  subgraph  isomorphisms 

between  the  picture-graph  description  of  the  image  and  the  prediction-graph 
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Figure  F3-4.     (a)  Line  segments  for  the  image;  (b)  ribbon  description. 
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expectations.  Not  only  must  image  features  coarsely  match  predictions,  and 
support  observed  relations  that  match  those  predicted,  but  all  the  locally 

generated  back  constraints  must  be  consistent.  Since  ACRONYM  does  sub- 
graph matching,  partial  obscurations  or  failures  in  the  descriptive  processes 

do  not  necessarily  preclude  reliable  interpretations. 

Figure  F3-5  shows  two  specializations  of  a  modeled  generic  class  of  wide- 
bodied  passenger  jet  aircraft  used  to  interpret  the  image  of  Figure  F3-4a.  The 
subclasses  specified  by  the  user  included  Boeing-747s  and  Lockheed  L-lOlls. 
Figure  F3-5  shows  specializations  of  each  of  these  two  classes.  The  full 
geometric  model  has  approximately  30  parameters  related  by  inequalities, 

which,  for  example,  express  the  fact  that  the  wing  span  of  wide-bodied  jets 
is  roughly  proportional  to  fuselage  length.  More  specific  inequalities  are 
provided  to  specify  the  subclasses. 

Given  that  the  camera  was  somewhere  in  the  range  of  1,000  to  12,000 
meters  above  ground,  with  a  focal  ratio  of  20,  and  some  small  pitch  and 

roll,  ACRONYM  produced  the  interpretation  of  Figure  F3-4b  shown  in 
Figure  F3-6.  In  addition,  it  deduced  a  large  number  of  inequalities  on  the 
model  parameters.  These  were  consistent  with  the  constraints  for  the  generic 

model  and  for  L-lOlls,  but  not  for  Boeing-747s;  therefore,  ACRONYM 
deduced  that  the  aircraft  was  an  L-1011.  Note  that  this  deduction  was  not 
based  on  the  size  of  the  image,  but  on  relationships  between  the  subparts  of 
the  aircraft,  such  as  the  ratio  between  the  wing  span  and  the  fuselage  length 
and  the  angle  between  the  wing  and  the  fuselage. 

Conclusion 

ACRONYM  combines  geometric  matching  and  algebraic  consistency- 
checking  to  obtain  reliable  and  accurate  three-dimensional  interpretations  of 
images.  Details  of  other  image  interpretations  can  be  found  in  Brooks  (1981a). 

Figure  F3-5.     Models  of  the  Boeing-747  and  the  Lockheed  L-1011. 
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Figure  F3-6.     Interpretation  of  Figure  F3-4a. 
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A.     OVERVIEW 

LEARNING  is  a  very  general  term  denoting  the  way  in  which  people  (and 
computers)  increase  their  knowledge  and  improve  their  skills.  From  the  very 
beginnings  of  AI,  researchers  have  sought  to  understand  the  process  of  learning 
and  to  create  computer  programs  that  can  learn. 

There  are  two  fundamental  reasons  for  studying  learning.  One  is  to 
understand  the  process  itself.  By  developing  computer  models  of  learning, 
psychologists  have  attempted  to  gain  an  understanding  of  the  way  humans 
learn.  Philosophers  since  Plato  have  also  been  interested  in  learning  research, 
because  it  may  help  them  understand  what  knowledge  is  and  how  it  grows. 

The  second  reason  for  conducting  learning  research  is  to  provide  com- 
puters with  the  ability  to  learn.  It  has  long  been  a  goal  of  AI  to  develop 

computer  systems  that  could  be  taught  rather  than  programmed.  Many  other 
applications  of  computers,  such  as  intelligent  programs  for  assisting  scientists, 

involve  the  acquisition  of  new  knowledge.  Thus,  learning  research  has  poten- 
tial for  extending  the  range  of  problems  to  which  computers  can  be  applied. 
In  this  overview  article,  we  first  present  a  short  history  of  AI  research  on 

learning.  This  is  followed  by  a  review  of  AI  perspectives  on  learning,  from 
which  a  simple  model  of  learning  is  developed.  This  model  allows  us  to  discuss 
some  of  the  major  factors  affecting  the  design  of  learning  systems. 

A  Brief  History  of  AI  Research  on  Learning 

AI  research  on  learning  has  evolved  through  three  stages.  The  first, 

and  most  optimistic,  stage  of  work  centered  on  self-organizing  systems  that 
modified  themselves  to  adapt  to  their  environments  (see  Yovits,  Jacobi,  and 
Goldstein,  1962).  The  hope  was  that  if  a  system  were  given  a  set  of  stimuli, 

a  source  of  feedback,  and  enough  degrees  of  freedom  to  modify  its  own  orga- 
nization, it  would  adapt  itself  toward  an  optimum  organization.  Attempts 

were  made,  for  example,  to  simulate  evolution  in  the  hope  that  intelligent  pro- 
grams would  result  from  the  processes  of  random  mutation  and  natural  selec- 

tion (Friedberg,  1958;  Friedberg,  Dunham,  and  North,  1959;  Fogel,  Owens, 

and  Walsh,  1966).  Various  computational  analogues  of  neurons  were  devel- 
oped and  tested;  foremost  of  these  was  the  perceptron  (Rosenblatt,  1957). 

Unfortunately,  most  of  these  attempts  failed  to  produce  systems  of  any  com- 
plexity or  intelligence  (see  Article  XIV.D2  on  adaptive  learning). 

Theoretical  limitations  were  discovered  that  dampened  the  optimism  of 

these  early  AI  researchers  (see  Minsky  and  Papert,  1969).  In  the  1960s,  atten- 
tion moved  away  from  learning  toward  knowledge-based  problem  solving  and 
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natural-language  understanding  (Minsky,  1968).  Those  people  who  continued 
to  work  with  adaptive  systems  ceased  to  consider  themselves  AI  researchers; 
their  research  branched  off  to  become  a  subarea  of  linear  systems  theory. 

Adaptive-systems  techniques  are  presently  applied  to  problems  in  pattern 
recognition  and  control  theory. 

The  beginning  of  the  1970s  saw  a  renewal  of  interest  in  learning  with 

the  publication  of  Winston's  (1970)  influential  thesis.  In  this  second  stage  of 
learning  research,  workers  adopted  the  view  that  learning  is  a  complex  and 
difficult  process  and  that,  consequently,  a  learning  system  cannot  be  expected 

to  learn  high-level  concepts  by  starting  without  any  knowledge  at  all.  This 
view  has  led  researchers,  on  the  one  hand,  to  study  simple  learning  problems 
in  depth  (such  as  learning  single  concepts)  and,  on  the  other,  to  incorporate 

large  amounts  of  domain  knowledge  into  learning  systems  (such  as  the  Meta- 
DENDRAL  and  AM  programs  discussed  in  Articles  XIV.D4b  and  XIV.D4c)  so 

that  they  could  discover  high-level  concepts. 
A  third  stage  of  learning  research,  motivated  by  the  need  to  acquire 

knowledge  for  expert  systems,  is  now  under  way.  Unlike  the  first  two  phases  of 
learning  research,  which  focused  on  rote  learning  and  learning  from  examples, 

the  current  work  looks  at  all  forms  of  learning,  including  advice-taking  and 
learning  from  analogies. 

Four  Perspectives  on  Learning 

Herbert  Simon  (in  press)  defines  learning  as  any  process  by  which  a 
system  improves  its  performance.  His  definition  assumes  that  the  system  has 
a  task  that  it  is  attempting  to  perform.  It  may  improve  its  performance  by 

applying  new  methods  and  knowledge  or  by  improving  existing  methods  and 
knowledge  to  make  them  faster,  more  accurate,  or  more  robust. 

A  more  constrained  view  of  learning,  adopted  by  many  people  who  work 
on  expert  systems,  is  that  learning  is  the  acquisition  of  explicit  knowledge. 
Many  expert  systems  represent  their  expertise  as  large  collections  of  rules 
that  need  to  be  acquired,  organized,  and  extended.  This  view  emphasizes 
the  importance  of  making  the  acquired  knowledge  explicit,  so  that  it  can  be 
easily  verified,  modified,  and  explained.  Researchers  are  presently  working 

on  knowledge-acquisition  systems  that  discover  new  rules  from  examples  or 
accept  new  rules  from  experts  and  integrate  them  into  the  knowledge  base  of 
the  system. 

A  third  view  is  that  learning  is  skill  acquisition.  Psychologists  have 
pointed  out  that  long  after  people  are  told  how  to  do  a  task,  such  as  touch 
typing  or  computer  programming,  their  performance  on  that  task  continues 
to  improve  through  practice  (Norman,  1980).  It  appears  that  although  people 
can  easily  understand  verbal  instructions  on  how  to  perform  a  task,  much 
work  remains  to  be  done  to  turn  that  verbal  knowledge  into  efficient  mental  or 
muscular  operations.  Researchers  in  AI  and  cognitive  psychology  have  sought 



Overview 327 

to  understand  the  kinds  of  knowledge  that  are  needed  to  perform  skillfully. 
The  processes  by  which  people  acquire  this  knowledge  through  practice  are 
little  understood. 

The  collective  enterprise  of  science  is  usually  considered  to  be  one  of  the 
most  effective  ways  that  our  culture  learns  about  the  world.  Thus,  a  fourth 
view  of  learning  is  that  it  is  theory  formation,  hypothesis  formation,  and 
inductive  inference.  Work  on  theory  formation  has  centered  on  understanding 
how  scientists  build  theories  to  describe  and  explain  complex  phenomena.  A 

necessary  part  of  theory  formation  is  hypothesis  formation — the  activity  of 
finding  one  or  more  plausible  hypotheses  to  explain  a  particular  set  of  data 
in  the  context  of  a  more  general  theory.  Another  aspect  of  theory  formation 

is  inductive  inference — the  process  of  inferring  general  laws  from  particular 
examples. 

A  Simple  Model  of  Learning  and  Its  Implications 
for  the  Design  of  Learning  Systems 

Of  these  four  views  of  learning,  Simon's  (in  press)  is  perhaps  the  most 
encompassing.  Taking  his  definition  as  a  starting  point,  we  have  developed 

the  simple  model  of  learning  systems  shown  in  Figure  A-l.  Throughout 
this  chapter,  we  use  this  simple  model  to  organize  our  discussion  of  learning 
systems. 

In  the  model,  the  circles  denote  declarative  bodies  of  information  (e.g.,  facts 
represented  in  predicate  calculus  or  statements  made  by  an  expert),  while  the 
boxes  denote  procedures.  The  arrows  show  the  predominant  direction  of  data 

flow  through  the  learning  system.  The  environment  supplies  some  informa- 
tion to  the  learning  element,  the  learning  element  uses  this  information  to 

make  improvements  in  an  explicit  knowledge  base,  and  the  performance  ele- 
ment uses  the  knowledge  base  to  perform  its  task.  Finally,  information  gained 

during  attempts  to  perform  the  task  can  serve  as  feedback  to  the  learning 
element.  This  model  is  primitive  and  omits  many  important  functions.  It  is 
useful,  however,  in  that  it  allows  us  to  classify  learning  systems  according  to 

how  they  "fill"  these  four  functional  units.  In  any  particular  application,  the 
environment,  the  knowledge  base,  and  the  performance  task  determine  the 
nature  of  the  particular  learning  problem  and,  hence,  the  particular  functions 
that  the  learning  element  must  fulfill.    In  the  following  three  sections,  we 

Performance 
Element 

Figure  A-l.     A  simple  model  of  learning  systems. 
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examine  the  role  of  each  of  these  three  functional  units  that  surround  the 

learning  element. 

The  Environment 

The  most  important  factor  affecting  the  design  of  learning  systems  is  the 

kind  of  information  supplied  to  the  system  by  the  environment — particularly 
the  level  and  quality  of  this  information. 

The  level  of  information  refers  to  the  degree  of  generality  (or  domain 

of  applicability)  of  the  information  relative  to  the  needs  of  the  performance 

element.  High-level  information  is  abstract  information  that  is  relevant  to  a 

broad  class  of  problems.  Low-level  information  is  detailed  information  that  is 
relevant  to  a  single  problem.  The  task  of  the  learning  element  can  be  viewed 

as  the  task  of  bridging  the  gap  between  the  level  at  which  the  information  is 

provided  by  the  environment  and  the  level  at  which  the  performance  element 

can  use  the  information  to  carry  out  its  function.  Thus,  if  the  learning  system 

is  given  very  abstract  (high-level)  advice  about  its  performance  task,  it  must 
fill  in  the  missing  details,  so  that  the  performance  element  can  interpret 

the  information  in  particular  situations.  Correspondingly,  if  the  system  is 

given  very  specific  (low-level)  information  about  how  to  perform  in  particular 

situations,  the  learning  element  must  generalize  this  information — by  ignoring 

unimportant  details — into  a  rule  that  can  be  used  to  guide  the  performance 
element  in  a  broader  class  of  situations. 

Since  its  knowledge  is  imperfect,  the  learning  element  does  not  know  in 

advance  exactly  how  to  fill  in  missing  details  or  ignore  unimportant  details. 

Consequently,  it  must  guess — that  is,  form  hypotheses — about  how  the  gap 
between  the  levels  should  be  bridged.  After  guessing,  the  system  must  receive 

some  feedback  that  allows  it  to  evaluate  its  hypotheses  and  revise  them  if 

necessary.  It  is  in  this  way  that  a  learning  system  learns:  by  trial  and  error. 

The  level  of  the  information  provided  by  the  environment  determines 

the  kinds  of  hypotheses  that  the  system  must  generate.  Four  basic  learning 
situations  can  be  discerned: 

1.  Rote  learning,  in  which  the  environment  provides  information  exactly  at 
the  level  of  the  performance  task  and,  thus,  no  hypotheses  are  needed. 

2.  Learning  by  being  told,  in  which  the  information  provided  by  the  environ- 
ment is  too  abstract  or  general  and,  thus,  the  learning  element  must 

hypothesize  the  missing  details. 

3.  Learning  from  examples,  in  which  the  information  provided  by  the  envi- 
ronment is  too  specific  and  detailed  and,  thus,  the  learning  element  must 

hypothesize  more  general  rules. 

4.  Learning  by  analogy,  in  which  the  information  provided  by  the  environ- 
ment is  relevant  only  to  an  analogous  performance  task  and,  thus,  the 
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learning  system  must  discover  the  analogy  and  hypothesize  analogous 
rules  for  its  present  performance  task. 

Each  of  these  learning  situations  is  discussed  in  more  detail  below. 
The  quality  of  information  can  have  a  significant  effect  on  the  difficulty 

of  the  learning  task.  Induction  is  easiest,  for  example,  when  the  training 

instances  are  selected  by  a  cooperative  teacher  who  chooses  "clean"  exam- 
ples, classifies  them,  and  presents  them  in  good  pedagogical  order.  Learning 

by  induction  is  particularly  difficult  when  the  training  instances  are  made 

up  of  noise-ridden,  unclassified  data  that  are  "presented"  by  nature  in  an 
uncontrollable  fashion.  Similarly,  in  advice-taking  systems,  information  is 
of  little  use  if  it  is  provided  by  an  unreliable  and  inarticulate  expert;  rote 

learning  cannot  succeed  with  poor-quality,  possibly  contradictory  data;  and 
analogies  are  useless  if  they  are  cluttered  with  errors. 

The  Knowledge  Base 

The  second  factor  affecting  the  design  of  learning  systems  is  the  knowledge 

base,  its  form  and  content.  We  discuss  first  the  form,  or  representational  sys- 
tem, in  which  the  knowledge  base  is  expressed;  it  is  a  particularly  important 

design  consideration  (see  Chap.  Ill,  in  Vol.  I,  on  representation  of  knowledge). 

Most  work  in  learning  has  used  one  of  two  basic  representational  forms — 
feature  vectors  and  predicate  calculus — although  other  forms,  such  as  produc- 

tion rules,  grammars,  LISP  functions,  numerical  polynomials,  semantic  nets, 
and  frames,  have  also  been  used.  These  representational  forms  vary  along 
four  important  dimensions:  expressiveness,  ease  of  inference,  modifiability, 
and  extendability. 

Expressiveness  of  the  representation.  In  any  AI  system  it  is  impor- 
tant to  have  a  representation  in  which  the  relevant  knowledge  can  be  easily 

expressed.  Feature  vectors,  for  example,  are  useful  for  describing  objects  that 

lack  internal  structure.  They  describe  objects  in  terms  of  a  fixed  set  of  fea- 
tures (such  as  color,  shape,  and  size)  that  take  on  a  finite  set  of  values  (such 

as  red  or  green,  circle  or  square,  and  small  or  large).  Predicate  calculus,  on 
the  other  hand,  is  useful  for  describing  structured  objects  and  situations.  A 
situation  in  which  a  red  object  is  on  top  of  a  green  one,  for  example,  can  be 

expressed  as  3x,  y  :  RED(x)  A  GREEN(2/)  A  ONTOP(x,y). 
Ease  of  inference  within  the  representation.  The  computational 

cost  of  performing  inference  is  another  important  property  of  a  representa- 
tional system.  One  type  of  inference  frequently  required  in  learning  systems  is 

the  comparison  of  two  descriptions  to  determine  whether  they  are  equivalent. 

It  is  very  easy  to  test  two  feature-vectors  for  equivalence.  The  comparison  of 
two  predicate-calculus  expressions  is  more  costly.  Since  many  learning  systems 
must  search  large  spaces  of  possible  descriptions,  the  cost  of  comparisons  can 
severely  limit  the  extent  of  these  searches. 
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Modifiability  of  the  knowledge  base.  A  learning  system  must,  by  its 
very  nature,  modify  some  part  of  the  knowledge  base  to  store  the  knowledge  it 

is  gaining.  Consequently,  most  learning  systems  have  employed  explicit,  styl- 
ized representations  (such  as  feature  vectors,  predicate  calculus,  and  produc- 
tion rules)  in  which  it  is  easy  to  add  knowledge  to  the  knowledge  base.  Very 

little  attention  has  been  given  to  the  problem  of  adding  to  knowledge  bases  in 

which  substantial  revision  and  integration  must  be  performed.  These  prob- 
lems arise,  for  example,  in  systems  that  refer  to  time  or  state  information 

(e.g.,  procedural  representations)  and  in  systems  that  make  default  assump- 
tions that  may  later  need  to  be  retracted. 

Extendability  of  the  representation.  For  a  learning  program  to 

manipulate  explicitly  its  acquired  knowledge,  there  must  be  a  meta-level 
description  within  the  program  that  tells  how  the  representation  is  struc- 

tured. This  meta-level  knowledge  has  usually  been  embodied  in  procedures 
that  manipulate  the  data  structures  of  the  representation.  Of  recent  inter- 

est in  learning  research,  however,  are  representational  systems  in  which  this 

meta-knowledge  is  also  made  an  explicit  part  of  the  knowledge  base  (see  Davis, 
1976).  The  purpose  is  to  allow  the  program  to  examine  and  alter  its  own 
representation  by  adding  vocabulary  terms  and  representational  structures. 
This  ability  in  turn  provides  the  possibility  of  developing  learning  systems 

that  are  open-ended — that  is,  that  can  learn  successively  more  complex  units 
of  knowledge  without  limit.  The  outstanding  example  of  an  extendable  rep- 

resentation is  Lenat's  (1976)  AM  program  (see  Article  XIV.D4c),  which  allows 
new  concepts  to  be  defined  in  terms  of  old  ones.  Recent  work  on  RLL  (Greiner 
and  Lenat,  1980;  Greiner,  1980)  has  pushed  this  idea  much  further  toward 
allowing  a  program  to  define  new  representations  dynamically. 

Now  that  we  have  examined  issues  relating  to  the  form  of  the  knowledge 
base,  we  turn  our  attention  to  its  content  A  learning  system  does  not  gain 

knowledge  by  starting  "from  scratch,"  that  is,  without  any  knowledge  at  all. 
Some  knowledge  must  be  employed  by  every  learning  system  to  understand  the 
information  provided  by  the  environment,  to  form  hypotheses,  and  to  test  and 
refine  those  hypotheses.  Thus,  it  is  more  appropriate  to  view  a  learning  system 
as  extending  and  improving  an  existing  body  of  knowledge.  Unfortunately, 
in  most  learning  systems,  the  knowledge  employed  is  not  explicit;  it  is  built 
into  the  program  by  the  designer.  Throughout  this  chapter,  we  try  to  point 

out  the  ways  in  which  domain-specific  knowledge  has  entered  into  existing 
learning  systems. 

The  Performance  Element 

The  performance  element  is  the  focus  of  the  whole  learning  system,  since 
it  is  the  actions  of  the  performance  element  that  the  learning  element  is  trying 
to  improve.  There  are  three  important  issues  related  to  the  performance 
element:  complexity,  feedback,  and  transparency. 
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First,  the  complexity  of  the  task  is  important.  Complex  tasks  require 
more  knowledge  than  simple  tasks.  For  instance,  a  simple  task  like  binary 
classification,  in  which  objects  are  classified  into  one  of  two  groups,  requires 
only  a  single  classification  rule.  On  the  other  hand,  a  program  that  can  play  a 

reasonable  poker  game  (Waterman,  1970)  needs  about  20  rules,  and  a  medical- 
diagnosis  system  like  MYCIN  (Shortliffe,  1976)  employs  several  hundred  rules. 

In  learning  from  examples,  three  classes  of  performance  tasks  can  be 
distinguished  according  to  their  complexity.  The  simplest  performance  task 
is  classification  or  prediction  based  on  a  single  concept  or  rule.  Indeed,  the 
problem  of  learning  single  concepts  from  examples  has  received  more  study 
than  any  other  problem  in  AI  learning  research.  Slightly  more  complex  are 
tasks  involving  multiple  concepts.  An  example  is  the  problem  of  predicting 
which  bonds  of  an  organic  molecule  will  be  broken  in  the  mass  spectrometer; 
the  DENDRAL  prediction  program  employs  a  set  of  cleavage  rules  to  perform 
this  task.  The  most  complex  tasks  for  which  learning  systems  have  been 
developed  are  small  planning  tasks  in  which  a  set  of  rules  must  be  applied  in 
sequence.  Symbolic  integration,  for  example,  is  a  task  that  requires  chaining 
together  several  integration  rules  to  obtain  a  solution.  The  articles  on  learning 
from  examples  consider  these  three  classes  of  performance  tasks  and  their 
corresponding  learning  methods. 

As  the  performance  task  becomes  more  complex  and  the  knowledge  base 
grows  in  size,  the  problems  of  integrating  new  rules  and  diagnosing  incorrect 

rules  become  more  complicated.  The  integration  problem — that  is,  the  prob- 
lem of  integrating  a  new  rule  into  an  existing  set  of  rules — is  difficult,  because 

the  learning  system  must  consider  possible  interactions  between  the  new  rule 
and  the  previous  rules.  During  the  construction  of  the  MYCIN  system,  for 
example,  there  were  several  cases  in  which  a  new  rule  caused  existing  rules  to 

be  applied  incorrectly  or  to  cease  being  applied  altogether  (see  Article  VIII.Bl). 

The  problem  of  diagnosing  incorrect  rules — also  known  as  the  credit- 

assignment  problem  (Minsky,  1963) — can  be  very  difficult  in  systems  that 
perform  a  sequence  of  actions  before  receiving  any  feedback.  Consider,  for 
example,  the  problem  of  learning  to  play  chess  by  first  playing  a  complete 
game,  then  determining  who  won  and  lost,  and  finally  updating  the  knowledge 

base  accordingly.  The  credit-assignment  problem  is  the  problem  of  assigning 
credit  or  blame  to  the  individual  decisions  that  led  to  some  overall  result — in 
this  case,  the  individual  chess  moves  that  contributed  most  to  the  win  or  loss. 

The  second  important  issue  related  to  the  performance  task  is  the  role  of 
the  performance  element  in  providing  feedback  to  the  learning  element.  All 
learning  systems  must  have  some  way  of  evaluating  the  hypotheses  that  have 
been  proposed  by  the  learning  element.  Some  programs  have  a  separate  body 
of  knowledge  for  such  evaluation.  The  AM  program,  for  example,  has  many 
heuristic  rules  that  assess  the  interestingness  of  the  new  concepts  developed  by 
the  learning  element.  A  more  frequently  used  technique,  however,  is  to  have 
the  environment,  often  a  teacher,  provide  an  external  performance  standard. 
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Then,  by  observing  how  well  the  performance  element  is  doing  relative  to  this 
standard,  the  system  can  evaluate  its  current  store  of  hypotheses. 

In  systems  that  learn  a  single  concept  from  training  instances,  the  per- 
formance standard  is  the  correct  classification  of  each  training  instance  (as  to 

whether  it  is,  or  is  not,  an  instance  of  the  concept  to  be  learned).  In  most 
systems,  the  training  instances  are  preclassified  by  a  reliable  teacher.  In  the 

Meta-DENDRAL  system  (see  Article  XIV.D4b),  the  performance  standard  is 
the  actual  mass  spectrum  produced  when  a  molecule  of  known  structure  is 
placed  in  the  mass  spectrometer. 

The  third  issue  regarding  the  performance  task  is  the  transparency  of  the 
performance  element.  For  the  learning  element  to  assign  credit  or  blame  to 
individual  rules  in  the  knowledge  base,  it  is  useful  for  the  learning  element 
to  have  access  to  the  internal  actions  of  the  performance  element.  Consider 
again  the  problem  of  learning  how  to  play  chess.  If  the  learning  element 
is  given  a  trace  of  all  the  moves  that  were  considered  by  the  performance 

element  (rather  than  only  those  moves  that  were  actually  chosen),  the  credit- 
assignment  problem  is  easier  to  solve. 

Overview  of  the  Chapter 

In  the  previous  section,  we  discussed  the  interaction  between  the  infor- 
mation provided  by  the  environment  and  the  problems  that  are  presented 

to  the  learning  element.  From  this  analysis,  four  learning  situations  could 
be  discerned.  In  this  section,  we  discuss  these  four  situations  in  detail  and 
give  an  example  of  a  learning  problem  in  each  situation.  The  remainder  of 
this  chapter  is  organized  around  these  four  situations,  with  a  separate  set  of 
articles  devoted  to  each. 

Rote  learning.  The  simplest  learning  situation  is  one  in  which  the 
environment  supplies  knowledge  in  a  form  that  can  be  used  directly  by  the 
performance  element.  The  learning  system  does  not  need  to  do  any  processing 
to  understand  or  interpret  the  information  supplied  by  the  environment.  All 
it  must  do  is  memorize  the  incoming  information  for  later  use.  This  is  a  form 

of  rote  learning — if  it  is  considered  learning  at  all.  Virtually  every  computer 
system  can  be  said  to  do  rote  learning  insofar  as  it  stores  instructions  for 
performing  a  task. 

An  important  AI  study  of  rote  learning  was  undertaken  by  Samuel  (1959, 

1967).  He  developed  a  checkers-playing  program  that  was  able  to  improve 
its  performance  by  memorizing  every  board  position  that  it  evaluated.  The 

program  used  a  standard  minimax  look-ahead  search  (see  Chap.  II,  in  Vol.  I) 
that  evaluated  potential  future  board  positions.  A  simple  polynomial  evalua- 

tion function  measured  board  properties  such  as  center  control,  fork  threats, 

and  possible  exchanges.  In  terms  of  our  primitive  learning-system  model,  the 

look-ahead  search  portion  of  Samuel's  program  served  as  the  "environment." 
It  supplied  the  learning  element  with  board  positions  and  their  backed-up 
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minimax  values.  The  learning  element  simply  stored  these  board  positions 

and  indexed  them  for  rapid  retrieval.  Interestingly,  the  look- ahead  search 

portion  of  Samuel's  program  also  served  as  part  of  the  performance  element 
that  played  a  game  of  checkers  against  an  opponent.  It  used  the  previously 

memorized  board  positions  to  improve  the  speed  and  depth  of  its  look-ahead 
search  during  subsequent  games. 

Learning  by  being  told — Advice-taking.  When  a  system  is  given 
vague,  general-purpose  knowledge  or  advice,  it  must  transform  this  high-level 
knowledge  into  a  form  that  can  be  used  readily  by  the  performance  element. 
This  transformation  is  called  operationalization.  The  system  must  understand 

and  interpret  the  high-level  knowledge  and  relate  it  to  what  it  already  knows. 
Operationalization  is  an  active  process  that  can  involve  such  activities  as 
deducing  the  consequences  of  what  it  has  been  told,  making  assumptions  and 

"filling  in  the  details,"  and  deciding  when  to  ask  for  more  advice.  McCarthy's 
(1958)  proposal  for  an  "advice  taker"  was  the  first  description  of  a  system  that 
could  learn  by  being  told.  More  recent  work  in  the  area  of  learning  by  being 

told  includes  the  TEIRESIAS  program  (Davis,  1976)  and  Mostow's  program 
FOO  (Mostow  and  Hayes-Roth,  1979;  Mostow,  1981). 

FOO,  for  example,  is  told  the  rules  of  the  game  of  Hearts  and  is  given  vague 

strategic  advice  such  as  "Avoid  taking  points."  It  operationalizes  this  advice 
into  specific  strategies  such  as  "Play  lower  than  the  highest  card  so  far  in  the 
suit  led."  This  kind  of  operationalization  is  similar  to  the  kind  of  processing 
performed  by  ordinary  language  compilers  that  convert  unexecutable  high- 
level  languages  into  directly  interpretable  machine  code.  In  the  same  trivial 
sense  that  every  computer  system  can  be  said  to  do  rote  learning,  every 

system  can  also  be  said  to  learn  by  being  told:  Advice  in  the  form  of  a  high- 
level  language  program  is  compiled  and  assembled  into  an  executable  object 
program. 

Learning  from  examples — Induction.  One  way  to  teach  a  system 
how  to  perform  a  task  is  to  present  it  with  examples  of  how  it  should  behave. 
The  system  must  then  generalize  these  examples  to  find  higher  level  rules  that 
can  be  applied  to  guide  the  performance  element.  Examples  can  be  viewed  as 
being  pieces  of  very  specific  knowledge  that  cannot  be  used  efficiently  by  the 
performance  element.  These  are  transformed  into  more  general,  higher  level 
pieces  of  knowledge  that  can  be  used  effectively. 

For  example,  consider  the  problem  of  teaching  a  program  to  recognize 
poker  hands  that  contain  a  pair.  The  program  would  be  presented  with  sample 
hands  that,  it  is  told,  contain  pairs.  Here  is  such  a  training  instance: 

4  of  clubs,  4  of  spades,  5  of  diamonds,  6  of  hearts,  jack  of  diamonds. 

This  training  example  is  a  very  specific  piece  of  knowledge.  If  the  program 
merely  memorized  it  (by  rote  learning),  it  would  now  know  that  the  hand 

4  of  clubs,  4  of  spades,  5  of  diamonds,  6  of  hearts,  jack  of  diamonds 
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contains  a  pair.  It  would  not  know  that  the  hand 

4  of  clubs,  4  of  spades,  5  of  diamonds,  6  of  hearts,  8  of  diamonds 

also  contains  a  pair,  since  the  program  has  not  generalized  its  knowledge.  To 
recognize  all  possible  pair  hands,  the  program  needs  to  discover  that  the  hand 
must  contain  two  cards  of  the  same  rank  and  that  the  remaining  cards  are 
irrelevant.  The  generalization  of  knowledge  to  make  it  apply  to  a  broader 
class  of  situations  is  the  key  inference  process  in  learning  from  examples. 

Learning  by  analogy.  If  a  system  has  available  to  it  a  knowledge  base 
for  a  related  performance  task,  it  may  be  able  to  improve  its  own  performance 
by  recognizing  analogies  and  transferring  the  relevant  knowledge  from  the 
other  knowledge  base.  Thus  far,  however,  very  little  work  has  been  done 
in  this  area.  Some  of  the  open  research  questions  are:  What  exactly  is  an 
analogy?  How  are  analogies  recognized?  How  is  the  relevant  knowledge 
transferred  from  the  analogous  knowledge  base  and  applied  to  accomplish 
the  desired  tasks? 

Suppose,  for  example,  that  a  program  has  available  to  it  a  knowledge 
base  describing  how  to  diagnose  diseases  in  human  beings  and  someone  wants 

to  use  the  same  program  to  diagnose  computer-system  failures.  By  finding 
the  proper  analogies,  the  program  can  develop  classes  of  computer  failures 

("diseases")  and  possible  solutions  ("therapies").  Diagnostic  procedures  can 
be  transferred  as  the  analogy  is  developed  (e.g.,  x-rays  can  be  analogized  to 
core  dumps). 

We  do  not  include  in  this  chapter  any  articles  discussing  learning  by 
analogy,  since  this  area  has  not  received  much  attention. 

Conclusion 

This  introduction  has  surveyed  AI  research  on  learning  and  presented  a 
simple  model  of  AI  learning  systems.  The  model  has  been  used  to  discuss  the 
factors  that  bear  upon  the  design  of  the  learning  element.  These  include  the 
level  and  quality  of  the  information  provided  by  the  environment,  the  form 
and  content  of  the  knowledge  base,  and  the  complexity  and  transparency  of 
the  performance  element.  Of  these  factors,  the  most  important  is  the  level  of 
the  information  provided  by  the  environment.  This  has  been  used  to  develop 
the  simple  taxonomy  of  four  learning  situations  that  provides  an  organization 
for  the  remainder  of  this  chapter. 
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B.     ROTE  LEARNING 

Bl.     Issues 

ROTE  LEARNING  is  memorization;  it  is  saving  new  knowledge  so  that  when 
it  is  needed  again,  the  only  problem  will  be  retrieval,  rather  than  a  repeated 
computation,  inference,  or  query.  Two  extreme  perspectives  on  rote  learning 
are  possible.  One  view  says  that  memorization  is  such  a  basic  necessity  for  any 
intelligent  program  that  it  cannot  be  considered  a  separate  learning  process 
at  all.  An  alternate  view  regards  memorization  as  a  complex  subject  that 
is  vital  to  any  effective  cognitive  system  and  well  worth  study  and  modeling 
on  its  own.  This  article  takes  a  less  extreme  perspective,  partly  because  the 
former  viewpoint  leaves  nothing  to  say  about  rote  learning  and  the  latter 
would  require  more  than  is  appropriate  here.  (See  Chap.  XI  for  a  discussion 
of  AI  investigations  into  human  memory  processes.) 

Rote  memorization  can  be  seen  as  an  elementary  learning  process,  not 

powerful  enough  to  accomplish  intelligent  learning  on  its  own  (because  not 

everything  that  needs  to  be  known  in  any  nontrivial  domain  can  be  memo- 
rized), but  an  inherent  and  important  part  of  any  learning  system.  All  learning 

systems  must  remember  the  knowledge  that  they  have  acquired  so  that  it  can 

be  applied  in  the  future.  In  a  rote-learning  system,  the  knowledge  has  already 
been  gained  by  some  method  and  is  in  a  directly  usable  form.  Other,  more 
sophisticated  learning  systems  first  acquire  the  knowledge  from  examples  or 
from  advice  and  then  memorize  it.  Thus,  all  learning  systems  are  built  on 

a  rote-learning  process  that  stores,  maintains,  and  retrieves  knowledge  in  a 
knowledge  base. 

Rote  learning  works  by  taking  problems  that  the  performance  element 
has  solved  and  memorizing  the  problem  and  its  solution.  Viewed  abstractly, 
the  performance  element  can  be  thought  of  as  some  function,  /,  that  takes  an 

input  pattern  (Xi ,  . . . ,  Xn)  and  computes  an  output  value  (Yi,  . . .  ,YP).  A  rote 
memory  for  /  simply  stores  the  associated  pair  [(Xi,  . . . , Xn),  (Yi,  . . . ,  Yp)]  in 
memory.  During  subsequent  computations  of  f{X\,  . . . , Xn),  the  performance 

element  can  simply  retrieve  (Yi,  . . .  ,YP)  from  memory  rather  than  recom- 
puting it.  This  simple  model  of  rote  learning  is  depicted  in  Figure  Bl-1. 

Consider,  for  example,  an  automobile  insurance  program  that  determines 

the  cost  of  repairs  for  damaged  automobiles.  The  input  pattern  is  a  descrip- 
tion of  the  damaged  automobile,  including  make  and  year,  and  a  list  of  the 

damaged  portions  of  the  car.  The  output  value  is  the  estimated  cost  of  the 
repairs.  The  system  has  only  a  rote  memory.  To  estimate  the  cost  of  repairs, 
it  looks  in  its  memory  for  a  previous  automobile  of  the  same  make,  model, 

335 
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/  store 

(Xi,  ...,xn)         -+            (Yi,  ...,rp)  -+     [(x1,...,xn),(y1,...,yp)] 
Input            Performance  Output  value  Associated 

pattern              function  of  computation  pair 

Figure  Bl-1.     Simple  model  of  rote  learning. 

and  damage  description  and  retrieves  the  corresponding  cost.  If  it  cannot 
find  such  an  automobile,  it  uses  a  set  of  rules  (published  by  a  consortium 
of  insurance  companies)  to  guess  the  cost  of  the  repairs  and  then  saves  its 
estimate  for  future  use.  This  computed  estimate,  along  with  the  description 
of  the  damaged  automobile,  forms  the  associated  pair  that  is  memorized. 

Lenat,  Hayes-Roth,  and  Klahr  (1979)  provide  an  interesting  perspective 

on  rote  learning.  They  point  out  that  rote  learning  (or  "caching")  can  be 
viewed  as  the  lowest  level  of  a  hierarchy  of  data  reductions.  The  reductions 
are  analogous  to  computer  language  compilation:  The  purpose  is  to  refine  the 
original  information  down  to  the  essentials  for  performance.  In  rote  learning, 
we  generally  attempt  to  save  the  input/output  details  of  some  calculation  and 
so  bypass  a  future  need  for  the  intermediate  computation  process.  Thus,  a 
calculation  task,  if  valuable  and  stable  enough  to  be  remembered,  is  reduced 

to  an  access  task  (see  Fig.  Bl-2,  below). 
Just  as  calculations  can  be  reduced  to  retrievals  by  caching,  so  can  other 

inferential  processes  be  reduced  to  simpler  tasks.  For  instance,  deductions  can 
be  reduced  to  calculations.  The  first  time  we  are  asked  to  solve  a  quadratic 
equation,  for  example,  we  must  follow  lengthy  deductive  chains  to  find  the 
quadratic  formula.  Subsequently,  we  can  simply  compute  the  roots  of  a 
quadratic  equation  directly  from  the  formula.  We  have  distilled  the  results 
of  a  deductive  search  and  summarized  them  as  an  efficient  algorithm.  Going 
one  step  further,  the  process  of  induction  can  convert  a  huge  body  of  training 
instances  into  a  single  heuristic  rule.  Once  again,  the  primary  gain  is  in 
efficiency:  It  is  no  longer  necessary  to  consult  a  huge  body  of  examples  to  find 
out  how  to  behave  in  a  new  situation. 

ACCESS   ►  CALCULATE   ►  DEDUCE    ►  INDUCE 

Cache  Algorithm  Heuristic 

(Rote)  or  Theorem  Rule 

Figure  Bl-2.     Spectrum  of  data  reductions  (from  Lenat  et  al.,  1979). 
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Issues  in  the  Design  of  Rote-learning  Systems 

There  are  three  important  issues  relevant  to  rote-learning  systems:  mem- 
ory organization,  stability,  and  the  store-versus-compute  trade-off. 
Memory  organization.  Rote  learning  is  useful  only  if  it  takes  less  time 

to  retrieve  the  desired  item  than  it  does  to  recompute  it.  Retrieval  can  be 

made  very  rapid  by  properly  organizing  memory.  Consequently,  indexing, 
sorting,  and  hashing  techniques  have  been  thoroughly  studied  in  the  computer 
science  subfields  of  data  structures  (Aho,  Hopcroft,  and  Ullman,  1974)  and 
database  systems  (Wiederhold,  1977;  Date,  1977;  Ullman,  1980). 

Stability  of  the  environment  and  the  frame  problem.  Rote  learn- 
ing is  not  very  helpful  or  effective  in  a  rapidly  changing  environment.  One 

important  assumption  underlying  rote  learning  is  that  information  stored  at 

one  time  will  still  be  valid  later.  If,  however,  the  information  changes  fre- 
quently, this  assumption  can  be  violated.  Consider,  for  example,  information 

gathered  about  automobile  repair  costs  during  the  early  1950s.  Such  informa- 
tion would  be  of  little  value  for  estimating  automobile  repair  costs  in  the  1980s 

because  the  world  has  changed  in  critical  ways:  The  makes  and  models  of 
cars  presently  manufactured  did  not  exist  in  the  1950s;  furthermore,  inflation 

has  made  the  direct  comparison  of  dollar  costs  impossible.  A  rote-learning 
system  must  be  able  to  detect  when  the  world  has  changed  in  such  a  way  as 
to  make  stored  information  invalid.  This  is  an  instance  of  the  frame  problem 

(see  Chap.  Ill,  in  Vol.  i). 
Some  solutions  to  this  problem  have  been  developed.  One  approach  is  to 

monitor  every  change  to  the  world  and  keep  the  stored  information  always 
up  to  date.  Thus,  when  an  old  model  of  automobile  is  discontinued,  all 
information  about  that  model  could  be  removed  from  the  knowledge  base. 
This  approach  requires  that  the  relevant  aspects  of  the  world  be  continually 
monitored. 

A  second  approach  to  solving  the  frame  problem  is  to  check,  when  the 
information  is  retrieved  for  use,  that  it  is  still  valid.  Typically,  this  requires 
storing,  along  with  the  information  itself,  some  additional  data  about  the 
state  of  the  world  at  the  time  the  information  was  memorized.  When  the 

information  is  retrieved,  the  stored  state  can  be  compared  to  the  current 
state,  and  the  system  can  determine  whether  or  not  the  information  is  still 
valid.  This  approach  requires  that  the  relevant  aspects  of  the  world  (such  as 
the  current  value  of  the  dollar)  be  anticipated  and  stored  with  the  data. 

Many  other  approaches  are  possible.  If  the  system  can  determine  how 

the  world  has  changed  (e.g.,  by  knowing  the  inflation  rate),  it  may  be  able 
to  make  appropriate  modifications  to  restore  the  validity  of  the  memorized 
information  (e.g.,  by  converting  the  1950  prices  into  1980  equivalents). 

Store-versus-compute  trade-off.  Since  the  primary  goal  of  rote  learn- 
ing is  to  improve  the  overall  performance  of  the  system,  it  is  important  that 

the  rote-learning  process  itself  does  not  decrease  the  efficiency  of  the  system. 
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It  is  conceivable,  for  instance,  that  the  cost  of  storing  and  retrieving  the 
memorized  information  is  greater  than  the  cost  of  recomputing  it.  This  is 

certainly  the  case  with  the  multiplication  of  two  numbers;  virtually  all  com- 
puters recompute  the  product  of  two  numbers  rather  than  store  a  large  mul- 

tiplication table. 

There  are  two  basic  approaches  to  resolving  the  store-versus-compute 
trade-off.  One  is  to  decide  at  the  time  the  information  is  first  available 

whether  or  not  it  should  be  stored  for  later  use.  A  cost-benefit  analysis 
can  be  performed  that  weighs  the  amount  of  storage  space  consumed  by 
the  information  and  the  cost  of  recomputing  it  against  the  likelihood  that 
the  information  will  be  needed  in  the  future.  A  second  approach  is  to  go 
ahead  and  store  the  information  and  later  decide  whether  or  not  to  forget 
it.  This  procedure,  called  selective  forgetting,  allows  the  system  to  determine 
empirically  which  items  of  information  are  most  frequently  reused. 

One  of  the  most  common  selective-forgetting  techniques  is  called  the  least 
recently  used  (LRU)  replacement  algorithm.  Each  item  stored  in  memory 
is  tagged  with  the  time  when  it  was  last  retrieved.  Every  time  an  item 

is  retrieved,  its  "time  of  last  use"  is  updated.  When  a  new  item  is  to  be 
memorized,  the  least  recently  used  item  is  forgotten  and  replaced  by  the  new 
one.  Variations  on  this  scheme  take  into  consideration  the  amount  of  storage 
required  for  the  item,  the  cost  of  recomputing  the  item,  and  so  on. 

References 

Lenat,  Hayes-Roth,  and  Klahr  (1979)  provide  an  excellent  discussion  of 
various  learning  methods,  including  rote  learning.  Samuel  (1959)  remains  the 
best  example  of  research  into  rote  processes. 



B2.     Rote  Learning  in  Samuel's  Checkers  Player 

SAMUEL  conducted  a  series  of  studies  (1959,  1967)  on  how  to  get  a  com- 
puter to  learn  to  play  checkers.  Among  the  earliest  investigations  of  machine 

learning,  they  remain  some  of  the  most  successful  both  in  terms  of  improved 

performance  (i.e.,  demonstrated  improvements  in  the  performance  element) 

and  in  terms  of  lessons  for  AI.  His  experiments  with  three  different  learn- 

ing methods— rote  learning,  polynomial  evaluation  functions,  and  signature 
tables — showed  that  significant  improvement  in  playing  checkers  could  be 
obtained.  This  article  focuses  on  his  thorough  analysis  of  the  question  of  how 

much  rote  learning  alone  can  contribute  to  expertise  and  improved  perfor- 

mance. Other  aspects  of  Samuel's  work  are  discussed  later  in  Article  XIV.D4a. 

The  Game  of  Checkers  as  a  Performance  Task 

Checkers  is  a  difficult  game  to  play  well.  It  is  estimated  that  a  full  explo- 

ration of  all  possible  moves  in  checkers  would  require  roughly  1040  moves. 

Samuel's  program  was  provided  with  procedures  for  playing  the  game  cor- 
rectly; that  is,  the  rules  of  checkers  were  incorporated  into  the  program.  He 

sought  to  have  the  program  learn  to  play  well  by  having  it  memorize  and 
recall  board  positions  that  it  had  encountered  in  previous  games. 

At  each  turn,  Samuel's  program  chose  its  move  by  conducting  a  minimax 
game-tree  search  (see  Articles  II.B3  and  II.C5,  in  Vol.  i).  In  principle,  of  course, 
a  program  could  try  all  possible  moves  and  all  possible  consequences  of  each 

move  and  thereby  search  the  entire  checkers  game-tree.  Such  a  calculation — 
which  is  equivalent  to  playing  every  possible  game  of  checkers — is  not  feasible 
because  the  search  space  is  too  large.  Every  potential  move  by  one  player 
generally  leads  to  many  possible  counter  moves,  each  of  which  has  still  more 
possible  responses.  The  resulting  combinatorial  explosion  (see  Article  II.A,  in 
Vol.  i)  prevents  any  program  from  searching  the  whole  tree. 

Consequently,  the  standard  approach  to  conducting  a  game-tree  search  is 
to  search  only  a  few  moves  (and  countermoves)  into  the  future  and  then  apply 
a  static  evaluation  function  to  estimate  which  side  is  winning.  The  program 
then  chooses  the  move  that  leads  to  the  best  estimated  position. 

Suppose,  for  example,  that  at  some  board  position,  A,  it  is  the  program's 
turn  to  move  (see  Fig.  B2-1).  The  program  searches  ahead  three  moves 
by  considering  first  all  possible  moves  that  it  could  make,  then  all  possible 
countermoves  available  to  its  opponent,  and  finally  all  possible  replies  to  those 
countermoves.  At  this  point,  the  program  applies  a  static  evaluation  function 
to  estimate  its  net  advantage  at  each  of  the  board  positions  shown  on  the 

right  in  the  figure.    These  values  are  then  "backed  up"  by  assuming  that 
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XIV 

Figure  B2-1.     An  example  of  a  minimax  game-tree  search. 

the  opponent  will  always  take  the  move  that  is  worst  for  the  computer  (and 
vice  versa).  Thus,  the  best  move  for  the  program  is  the  one  that  leads  to 
position  B.  The  program  expects  that  the  opponent  will  countermove  to  C, 
to  which  the  program  can  reply  with  D.  The  static  evaluation  function  has 

estimated  the  value  of  D  to  be  8,  so  this  is  the  backed-up  value  of  position  A. 

Improving  the  Performance  of  the  Checkers  Player 

There  are  two  basic  ways  to  improve  the  performance  of  a  game-tree 
search.  One  method  is  to  search  farther  into  the  future  and  thus  better 

approximate  a  full  search  of  the  tree.  This  is  known  as  improving  the  look- 
ahead  power  of  the  program.     The  other  method  is  to  improve  the  static 
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evaluation  function,  so  that  the  estimated  value  of  each  board  position  is  more 

accurate.  Samuel's  rote-learning  studies  aimed  at  improving  the  look- ahead 
power  by  memorizing  the  backed-up  values  of  board  positions.  The  techniques 
discussed  in  Article  XIV.D5a  address  the  problem  of  improving  the  evaluation 
function. 

The  rote-learning  approach  employed  by  Samuel  saved  every  board  posi- 
tion encountered  during  play,  along  with  its  backed-up  value.  In  the  situation 

shown  in  Figure  B2-1,  for  instance,  Samuel's  program  would  memorize  the 
description  of  board  position  A  and  its  backed-up  value  of  8  as  an  associated 
pair,  [A,  8].  When  position  A  is  encountered  in  subsequent  games,  its  evalua- 

tion score  is  retrieved  from  memory  rather  than  recomputed.  This  makes  the 
program  more  efficient,  because  it  does  not  have  to  compute  the  value  for  A 
with  the  static  evalution  function. 

There  is  a  more  important  benefit  of  retrieving  the  backed-up  value  of 
A  from  memory,  however.  The  memorized  value  of  A  is  more  accurate  than 

the  static  value  of  A,  because  it  is  based  on  a  look- ahead  search.  Thus, 

the  look-ahead  power  of  the  program  is  improved.  Figure  B2-2  shows  an 
example  of  this  improvement.  The  program  is  considering  which  move  to 
make  at  position  E.  It  searches  ahead  three  moves  and  then  applies  the  static 
evaluation  function.  For  position  A,  however,  the  program  is  able  to  retrieve 
the  memorized  value  based  on  the  previous  search  to  position  D. 

This  approach  improves  the  effective  search  depth  for  E.  As  more  and 
more  positions  are  memorized,  the  effective  search  depth  improves  from  its 

Figure  B2-2.     Improving  look-ahead  power  by  rote  learning. 
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original  value  of  3  moves,  up  to  6,  then  to  9,  and  so  on.  Rote  learning  is  thus 

used  in  Samuel's  program  to  save  the  results  of  previous  partial  game- tree 
searches,  so  that  they  can  gradually  be  extended  and  deepened.  Rote  learning 
converts  a  computation  (tree  search)  into  a  retrieval  from  memory. 

Memory  Organization 

Samuel  employed  several  clever  techniques  to  store  the  evaluated  board 
positions,  so  that  they  took  up  little  space  and  could  be  retrieved  rapidly.  To 
store  the  positions  compactly,  Samuel  took  advantage  of  several  symmetries 

(e.g.,  positions  in  which  it  was  Red's  turn  to  move  were  converted  into  the 
corresponding  Black-to-move  positions;  king  positions  are  symmetric  in  two 
ways).  Efficient  retrieval  was  accomplished  by  indexing  the  boards  according 
to  many  different  characteristics  (including  the  number  of  pieces  on  the  board, 
presence  or  absence  of  kings,  and  piece  advantage)  and  writing  them  onto 
a  tape  in  the  order  they  would  most  likely  be  needed  during  a  game.  The 
use  of  magnetic  tape  was  necessary  because  the  program  was  running  on  a 

relatively  small  IBM-704  computer,  and  only  a  few  board  positions  could  be 

kept  in  the  computer's  core  memory.  During  rote  learning,  the  program  would 
accumulate  a  number  of  board  positions  before  reading,  sorting,  and  rewriting 
them  onto  the  memory  tape. 

Samuel  resolved  the  store-versus-compute  trade-off  with  a  variation  of 
least  recently  used  (LRU)  replacement.  Each  board  position  was  given  an  age. 
Whenever  a  position  was  retrieved  from  memory,  its  age  was  divided  by  2. 
When  the  memory  tape  was  rewritten,  the  ages  of  all  stored  positions  were 

increased  by  1,  and  very  old  positions  were  forgotten — that  is,  not  written 
back  onto  tape. 

Results 

The  program  was  trained  in  several  ways:  by  playing  against  itself,  by 
playing  against  people  (including  some  checkers  masters),  and  by  following 

published  games  between  master  players  (so-called  book  games).  After  train- 
ing, the  memory  tape  contained  roughly  53,000  positions.  As  the  program 

learned  more,  it  improved  slowly  but  steadily,  becoming,  in  Samuel's  words,  a 
"rather  better-than-average  novice,  but  definitely  not  ...  an  expert"  (Samuel, 
1959,  p.  218).  Success  in  learning  varied  markedly  depending  on  the  phase  of 
the  game.  The  program  became  capable  of  playing  a  very  good  opening  game, 
since  the  number  of  board  variations  is  relatively  small  near  the  start  of  the 
game.  Performance  during  the  midgame,  with  its  far  greater  range  of  possible 
configurations,  did  not  greatly  improve  with  rote  learning.  During  the  end 
game,  the  program  became  able  to  recognize  winning  and  losing  positions  well 
in  advance,  but  it  needed  some  improvement  before  it  was  able  to  force  the 
game  to  a  successful  conclusion  (see  below). 
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On  the  whole,  Samuel's  experiments  demonstrated  that  significant  and 
measurable  learning  can  result  from  rote  processes  alone,  but  that  on  its  own, 
rote  learning  is  limited  in  several  ways.  The  first  and  most  obvious  limitation 
is  in  storage  space  and  retrieval.  One  question  that  interested  Samuel  is  the 
following:  If  rote  learning  produces  steady  improvement  of  performance  as 
it  gathers  new  positions  (up  to  a  limit  determined  by  available  space  and 
the  efficiency  of  indexing  algorithms),  could  it  ever  reach  a  performance  level 
considered  expert  before  exceeding  the  storage  and  indexing  limits?  If  so,  how 
much  data  would  it  need  to  remember,  and  how  long  would  it  take  to  gather 
the  data? 

Samuel  estimated  that  his  program  would  need  to  memorize  about  one 
million  positions  to  approximate  a  master  level  of  checkers  play.  Unfortunately, 
even  a  system  with  sufficient  storage  capacity  and  rapid  retrieval  methods 
would  require  an  impractical  amount  of  machine  playing  in  order  to  gather  a 

million  useful  positions.  However,  Samuel  suggests  that  even  this  long  acqui- 
sition period  would  be  shorter  than  the  time  taken  by  humans  to  improve 

from  complete  beginners  to  masters. 
The  inability  of  the  program  actually  to  effect  a  win  once  it  had  a  winning 

position  was  a  curious  problem.  It  was  caused  by  the  mesa  effect  (Minsky, 

1963) — that  is,  once  the  program  has  found  a  winning  position,  all  moves 
look  equally  good,  and  the  program  tends  to  wander  aimlessly.  Samuel  solved 
the  problem  by  storing,  along  with  each  board  position  and  value,  the  length 

of  the  search  path  that  was  used  to  compute  the  board  value.  The  move- 
selection  procedure  was  modified  to  select  the  best  move  that  also  had  the 
shortest  associated  search  distance.  This  change  gave  the  program  a  sense  of 
direction,  so  that  it  was  able  to  press  forward  to  win  the  game  (or  stall  as 
much  as  possible  to  avoid  losing  a  game). 

Another  interesting  problem  arose  when  Samuel  attempted  to  combine 

rote  learning  with  learning  techniques  that  modified  the  static  evaluation  func- 
tion. Unfortunately,  changes  to  the  evaluation  function  tended  to  invalidate 

previously  memorized  positions  (see  Article  XIV.B1,  on  the  frame  problem). 

Samuel's  solution  was  to  avoid  this  problem  by  postponing  rote  learning  until 
the  evaluation  function  had  been  effectively  learned. 

Conclusion 

Besides  showing  that  real  improvement  of  performance  could  be  gained 

by  the  conceptually  simplest  form  of  learning — rote  memorization — Samuel 
identified  and  elaborated  several  issues  that  need  to  be  handled  if  rote  is 

to  offer  significant  gains.  In  general,  the  value  of  rote  learning  is  to  gain 

problem-solving  power  in  the  form  of  speed.  By  retrieving  the  stored  results 
of  extensive  computations,  the  program  can  proceed  deeper  in  its  reasoning. 
The  price  is  storage  space,  access  time,  and  effort  in  organizing  the  stored 
knowledge. 
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Samuel  found  that  for  rote  learning  to  be  effective,  knowledge  had  to 
be  carefully  organized  for  efficient  retrieval,  stabilized  to  avoid  using  values 

whose  meanings  had  changed,  augmented  with  search-depth  information,  and 
selectively  forgotten  so  that  only  the  most  useful  information  would  tend  to 

be  saved.  In  the  case  of  Samuel's  checkers  player,  rote  learning  may  have  had 
enough  power  on  its  own  to  lead  eventually  to  expert  performance,  but  the 
time  and  space  required  for  that  much  improvement  were  beyond  the  available 
resources. 
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C.     LEARNING  BY  TAKING  ADVICE 

CI.     Issues 

IN  ONE  of  the  earliest  AI  papers  on  learning,  McCarthy  (1958)  proposed  the 

creation  of  an  advice-taking  system  that  could  accept  advice  and  make  use 
of  it  to  plan  and  execute  actions  in  the  world.  Until  the  late  1970s,  however, 
there  were  very  few  attempts  to  write  programs  that  could  learn  by  taking 
advice.  The  recent  emphasis  in  AI  on  expert  systems  has  focused  new  attention 

on  the  problem  of  converting  expert  advice  into  expert  performance  (see  Barr, 
Bennett,  and  Clancey,  1979). 

Research  on  advice-taking  systems  has  followed  two  major  paths.  One 
approach  has  been  to  develop  systems  that  accept  abstract,  high-level  advice 
and  convert  it  into  rules  that  can  effectively  guide  the  performance  element. 

This  research  seeks  to  automate  all  phases  of  the  advice-taking  process.  The 
other  approach  has  been  to  develop  sophisticated  tools — such  as  knowledge- 

base editing  and  debugging  aids — that  make  it  easier  for  the  expert  to  trans- 
form his  own  abstract  expertise  into  detailed  rules.  In  this  second  approach, 

the  expert  is  an  integral  part  of  the  learning  system,  detecting  and  diagnosing 
bugs  and  repairing  and  refining  the  knowledge  base.  The  former  approach 
shows  promise  of  eventually  developing  completely  instructable  systems,  while 

the  latter  approach  has  proved  invaluable  for  creating  knowledge- based  expert 
systems.  This  article  describes  both  of  these  research  paths.  We  will  discuss 
the  more  highly  automated  approach  first  and  return  later  to  the  research  on 

knowledge-base  editing  and  debugging  aids. 

Steps  for  Automatic  Advice-taking 

Hayes-Roth,  Klahr,  and  Mostow  (1980,  1981)  provide  an  outline  of  the 
processes  required  to  convert  expert  advice  into  program  performance.  This 
outline  can  be  summarized  as  follows: 

1.  Request — request  advice  from  expert, 

2.  Interpret — assimilate  into  internal  representation, 

3.  Operationalize — convert  into  usable  form, 

4.  Integrate — integrate  into  knowledge  base, 

5.  Evaluate — evaluate  resulting  actions  of  performance  element. 

Request.  The  first  step  is  for  the  program  to  request  advice  from  the 

expert.     The  request  can  be  simple — just  asking  the  expert  to  give  some 
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general  advice — or  it  can  be  sophisticated — identifying  a  shortcoming  in  the 
knowledge  base  and  asking  the  expert  how  to  repair  it.  Some  systems  are 
completely  passive  and  simply  wait  for  the  expert  to  interrupt  them  and 
provide  advice,  while  others  are  very  careful  to  focus  the  attention  of  the 
expert  on  a  particular  problem. 

Interpret.  The  next  step  in  advice-taking  is  to  accept  the  advice  and 
represent  it  internally.  McCarthy  (1958)  points  out  that  in  order  for  a  program 

to  accept  advice,  the  program  must  have  an  epistemologically  adequate  repre- 
sentation for  the  advice  (see  Article  III.Cl,  in  Vol.  i),  that  is,  a  representation 

that  is  capable  of  expressing  the  advice  without  losing  any  information.  This 

interpretation  step  can  be  very  difficult  if  the  advice  is  given  in  a  natural  lan- 
guage. The  program  must  understand  the  natural  language  sufficiently  well 

to  convert  it  into  an  unambiguous  internal  representation.  See  Chapter  IV, 

in  Volume  I,  for  a  detailed  survey  of  AI  research  into  natural-language  under- 
standing. 

Operationalize.  Once  the  advice  has  been  accepted  and  interpreted  into 
an  unambiguous  representation,  it  still  may  not  be  directly  executable  by  the 

performance  element.  The  third  step — operationalization — seeks  to  bridge  the 
gap  between  the  level  at  which  the  advice  is  provided  and  the  level  at  which 
the  performance  element  can  apply  it. 

Mostow's  (1981)  program  FOO,  for  example,  accepts  advice  about  how  to 
play  the  card  game  of  Hearts.  English-language  advice,  such  as  "Avoid  taking 
points,"  is  interpreted  by  FOO's  human  user  and  given  to  the  program  as 
the  lambda-calculus  statement  (AVOID  (TAKE-POINTS  ME)  (CURRENT  TRICK)). 
However,  even  though  this  advice  has  been  interpreted  into  an  unambiguous 
internal  representation,  it  is  still  not  operational  since  FOO  has  no  procedures 
or  methods  to  avoid  taking  points.  FOO  does  have  methods  for  selecting  and 
playing  cards,  however.  Thus,  the  advice  must  be  converted  into  a  form,  such 

as  [ACHIEVE  (LOW  (CARD-OF  ME))]  (i.e.,  "Play  a  low  card"),  that  requires  only 
these  operations. 

FOO  accomplishes  this  task  by  applying  many  different  operationalization 

methods  (see  Article  XIV.C2).  It  tries  to  re-express  the  advice,  using  known 
relationships,  until  it  can  recognize  that  one  of  its  operationalization  methods 
is  applicable.  These  methods  then  allow  it  to  develop  a  procedure  for  carrying 

out  all  or  part  of  the  advice.  The  steps  of  reformulating  the  advice  and  apply- 
ing operationalization  methods  are  repeated  until  the  advice  is  completely 

executable. 

This  process  is  similar  to  the  approach  taken  by  automatic-programming 
systems  that  convert  high-level  program  specifications  into  efficient  implemen- 

tations (see  Chap.  X,  in  Vol.  i).  However,  unlike  those  systems,  which  seek  to 
create  provably  correct  programs,  FOO  is  not  foolproof.  The  gap  between  the 

advice  and  the  performance  element  is  usually  too  wide,  and  the  operationali- 
zation methods  are  usually  too  weak,  to  permit  error-free  operationalization. 
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For  example,  it  is  often  necessary  for  FOO  to  make  assumptions  and  approx- 
imations in  order  to  transform  the  advice.  FOO  cannot  always  successfully 

"avoid  taking  points"  in  Hearts,  since  it  is  impossible  for  the  program  to  know 
the  contents  of  its  opponents'  hands.  Instead,  FOO  applies  heuristic  methods 
to  reduce  the  likelihood  that  points  will  be  taken.  Its  strategy  of  playing  low 
cards  is,  consequently,  a  tentative  hypothesis  about  how  to  avoid  taking  points. 
The  tentative  hypotheses  developed  by  operationalization  must  be  tested  and 
debugged  before  they  can  be  accepted. 

Integrate.  When  knowledge  is  added  to  the  knowledge  base,  care  must 
be  taken  to  see  that  it  is  properly  integrated  (see  Article  XTV.A).  New  advice 
can  result  in  new  mistakes  if  it  takes  precedence  over  previous  knowledge  in 
situations  in  which  the  old  knowledge  is  still  correct.  Yet  the  new  advice  must 
take  precedence  in  the  intended  situations.  The  learning  program  must  know 
enough  about  how  the  performance  element  applies  the  knowledge  to  be  able 

to  anticipate  and  avoid  any  bad  side-effects  that  could  result  from  adding  the 
knowledge  to  the  knowledge  base. 

Two  common  problems  of  integration  are  (a)  overlapping  applicability 
and  (b)  contradictory  recommendations.  Consider  an  expert  system,  such  as 
MYCIN,  whose  knowledge  base  is  represented  as  a  set  of  production  rules. 

When  a  new  rule  is  added,  its  left-hand  side  (or  condition  part)  may  be  overly 
general,  causing  it  to  trigger  in  situations  in  which  some  other  rule  is  properly 
applicable.  One  solution  to  this  problem  is  to  specialize  the  rules,  so  that  this 

overlap  of  applicability  no  longer  occurs.  Another  approach — the  meta-rule 

approach — is  to  add  ordering  rules  (meta-rules)  that  explicitly  indicate  which 
regular  rules  should  be  applied  before  others. 

When  the  right-hand  sides  (or  action  parts)  of  two  production  rules  recom- 
mend inconsistent  actions  in  the  same  situation,  the  problem  of  contradictory 

recommendations  arises.  Again,  either  the  right-hand  sides  can  be  modified 
to  remove  the  contradiction  or  a  meta-rule  can  be  added  to  indicate  which 
action  should  take  precedence.  There  are  many  other  integration  problems 
aside  from  these  two  typical  ones. 

Evaluate.  Since  the  new  knowledge  received  from  the  expert  is  only 

tentative — that  is,  it  is  the  result  of  interpretation,  operationalization,  and 
integration — it  must  be  evaluated  somehow.  The  learning  system  may  be  able 
to  recognize  some  errors  and  inconsistencies  in  the  advice  when  it  integrates 
the  advice  into  the  knowledge  base.  More  frequently,  however,  it  is  necessary 
to  test  the  advice  empirically  by  actually  employing  it  to  perform  some  task 
and  then  assessing  whether  the  system  is  working  properly. 

Evaluation  requires  some  performance  standard  against  which  the  actual 
behavior  of  the  system  can  be  compared.  In  some  domains,  the  performance 

standard  can  be  built  into  the  program.  Game-playing  programs,  for  example, 
can  tell  if  the  system  is  doing  well  by  whether  or  not  the  system  wins  the  game. 
In  other  domains,  however,  the  system  needs  to  set  up  detailed  expectations 
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about  how  the  new  knowledge  will  affect  the  performance  of  the  system.  These 
expectations  allow  the  program  to  detect  and  locate  bugs  in  the  knowledge 

Evaluation  can  naturally  feed  back  into  the  request  step  (the  first  of 
these  five  steps).  When  the  program  detects  that  the  performance  element 
is  not  functioning  properly,  it  can  announce  this  to  the  expert  and  request 
additional  advice.  A  more  sophisticated  approach  is  for  the  program  to  do 

credit  assignment — that  is,  to  determine  which  parts  of  the  knowledge  base 
are  incorrect.  Once  the  bug  has  been  located,  the  advice-taking  system  can 
ask  the  expert  to  tell  it  how  to  repair  the  particular  piece  of  knowledge  that 
is  incorrect. 

Now  that  we  have  discussed  the  five  basic  steps  in  an  advice-taking  sys- 
tem, we  describe  some  systems  that  have  been  developed  as  aids  for  creating, 

modifying,  and  debugging  large  knowledge  bases. 

Aids  for  Knowledge-base  Maintenance 

Instead  of  fully  automating  these  five  steps,  many  researchers  working 

on  expert  systems  have  built  tools  for  assisting  in  the  development  and  main- 
tenance of  expert  knowledge  bases.  EMYCIN  (van  Melle,  1980;  Davis,  1976), 

AGE  (Nii  and  Aiello,  1979),  and  KAS  (Reboh,  1981),  for  example,  all  provide 
certain  functions  to  assist  a  domain  expert  or  knowledge  engineer  in  carrying 
out  these  five  steps.  Particular  assistance  has  been  provided  for  integrating 

new  knowledge  into  the  knowledge  base  (intelligent  editors,  flexible  repre- 
sentation languages)  and  for  evaluating  and  debugging  the  knowledge  base 

(explanation  and  tracing  facilities).  This  semiautomated  approach  to  advice- 
taking  places  the  knowledge  engineer  in  the  role  of  requesting,  interpreting, 

and  operationalizing  the  expert's  advice. 
To  assist  the  knowledge  engineer,  these  systems  must  be  able  to  com- 

municate effectively.  It  is  particularly  important  for  the  engineer  to  get  good 
feedback  from  the  system  during  testing  and  debugging.  Thus,  a  great  deal 
of  effort  has  been  expended  on  the  development  of  tracing  and  explanation 

facilities  for  expert  systems  (see  Article  VII.B,  in  Vol.  II;  Davis,  1976). 

Conclusion 

Research  on  advice-taking  systems  is  still  in  its  infancy,  although  impor- 
tant ideas  and  methods  are  available  from  the  related  areas  of  natural-language 

understanding  and  automatic  programming.  Present  research  is  advancing 
along  two  paths:  the  theoretical  path  of  automatic  operationalization  of  expert 
advice  and  the  practical  path  of  providing  aids  to  help  knowledge  engineers 
build  and  debug  expert  systems.  The  development  of  fully  automatic  systems 
remains  an  active  research  area. 
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A  few  AI  systems  have  been  developed  that  perform  some  kind  of  advice- 

taking.  Mostow's  FOO  system  is  described  in  Article  XIV.C2.  The  reader 
is  also  directed  to  the  articles  on  TEIRESIAS  (Article  VII.B,  in  Vol.  Il)  and  on 

Waterman's  poker  player  (Article  XIV.D5b)  for  other  examples  of  advice-taking 
systems. 
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C2.     Mostow's  Operationalizer 

A  GROUP  of  researchers  at  the  Rand  Corporation,  Carnegie-Mellon  University, 
and  Stanford  University  has  recently  been  developing  the  machine- aided 
heuristic  programming  methodology  in  which  a  computer  would  be  instructed 

to  perform  a  new  task  in  much  the  same  way  that  a  person  is  taught  (see  Hayes- 
Roth,  Klahr,  Burge,  and  Mostow,  1978;  Hayes-Roth,  Klahr,  and  Mostow, 
1981).  A  central  effort  in  this  project  is  understanding  the  problem  of  opera- 

tionalization  (see  Article  XIV.Cl).  Mostow's  program  FOO  (First  Operational 
Operationalizer)  is  one  of  the  first  results  of  this  work.  It  investigates  prin- 

ciples, problems,  and  methods  involved  in  converting  high-level  advice  into 
effective,  executable  procedures. 

Accepting  Advice  About  the  Game  of  Hearts 

Mostow,  in  his  research  with  FOO,  has  dealt  primarily  with  operationaliza- 
tion  problems  taken  from  the  card  game  of  Hearts.  The  game  is  played  as  a 

sequence  of  tricks.  In  each  trick,  one  player — who  is  said  to  have  the  lead — 
starts  the  trick  by  playing  a  card  and  each  of  the  other  players  continues  the 
trick  by  playing  a  card  during  his  (or  her)  turn.  If  he  can,  each  player  must 
follow  suit,  that  is,  play  a  card  of  the  same  suit  as  the  suit  led.  The  player 
who  played  the  highest  valued  card  in  the  suit  led  takes  the  trick  and  any 
point  cards  contained  in  it.  Every  heart  counts  as  one  point,  and  the  queen 
of  spades  is  worth  13  points.  The  goal  of  the  game  is  to  avoid  taking  points. 

Hayes-Roth  et  al.  (1978)  provide  a  more  complete  explanation  of  the  game. 
Hearts  is  a  game  of  partial  information,  with  no  known  algorithm  for  win- 

ning. Although  the  possible  situations  in  the  game  are  extremely  numerous, 

beginning  players  often  hear  general  advice  such  as  "Avoid  taking  points," 
"Don't  lead  a  high  card  in  a  suit  in  which  an  opponent  is  void,"  and  "If  an 
opponent  has  the  queen  of  spades,  try  to  flush  it."  The  task  of  the  FOO 
program  is  to  take  such  general  advice  and  render  it  directly  applicable  by  a 
performance  program.  This  task  can  be  viewed  as  a  kind  of  planning  task. 

A  piece  of  advice,  such  as  "Avoid  taking  points,"  can  be  viewed  as  a  goal. 
The  operationalization  program  must  develop  an  executable  plan  for  achiev- 

ing that  goal.  What  makes  this  advice  difficult  to  operationalize,  however, 

is  that  the  goal  can  be  ill-defined  and  unattainable.  It  is  impossible,  for 
example,  always  to  avoid  taking  points.  Instead,  the  program  must  develop 

approximate  strategies.  The  advice-giver  intends  the  goal  to  suggest,  but  not 
specify,  the  desired  behavior. 

FOO  is  not  able  to  accomplish  this  advice-taking  task  unaided.  First, 
it  does  not  perform  the  interpretation  step  at  all  but,  instead,  relies  on  the 
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user  to  translate  the  English  form  of  the  advice  into  an  unambiguous  lambda- 
calculus  representation.  Second,  FOO  cannot  perform  the  operationalization 
step  without  human  assistance.  Although  FOO  has  a  large  knowledge  base 
of  transformation  rules  and  an  interpreter  for  applying  those  rules,  it  must 
be  told  by  the  user  which  rules  to  apply.  The  user  must  operate  FOO  by 
repeatedly  selecting  an  appropriate  rule  and  indicating  which  expression  or 
subexpression  should  be  transformed.  Finally,  FOO  does  not  integrate  the 
operational  knowledge  it  develops  into  a  knowledge  base  that  could  drive  a 

Hearts-playing  program.  No  performance  element  has  been  developed  that 
could  provide  an  empirical  test  of  the  operationalized  knowledge.  Despite 

these  shortcomings,  Mostow's  work  on  FOO  provides  an  in-depth  analysis  of 
the  techniques  required  to  perform  operationalization. 

The  primary  way  in  which  advice  is  operationalized  in  FOO  is  by  applying 
operationalization  methods,  such  as  heuristic  search,  the  pigeonhole  principle, 
and  finding  necessary  or  sufficient  conditions.  Mostow  claims  that  this  is 
precisely  what  knowledge  engineers  and  AI  researchers  do  when  they  are 
faced  with  a  new  problem  to  solve:  They  look  in  their  bag  of  tricks  for 

a  method,  such  as  worst-case  analysis,  that  allows  them  to  construct  an 
effective,  but  inefficient,  program.  This  program  can  then  be  further  refined 

by  applying  other  knowledge  and  advice.  Mostow's  work  can  thus  be  viewed 
as  formalizing  the  knowledge  and  techniques  used  by  AI  researchers  to  do 
heuristic  programming. 

The  most  sophisticated  of  FOO's  operationalization  methods  is  the 
heuristic- search  method.  When  FOO  needs  to  evaluate  a  predicate,  such  as 
(TAKE-POINTS  ME),  over  a  sequence,  such  as  the  sequence  of  cards  in  a  trick, 
it  is  able  to  reformulate  this  problem  as  a  heuristic  search  of  the  space  of  all 

possible  tricks.  FOO  starts  with  a  basic  generate- and-test  algorithm  (discussed 
in  Article  II. A,  in  Vol.  i)  and  refines  it  into  a  heuristic  search  by  improving  the 
ways  the  algorithm  (a)  selects  the  next  node  to  expand,  (b)  selects  possible 
expansions  of  the  node  to  apply,  (c)  prunes  nodes  from  the  search  tree,  and 
(d)  prunes  possible  expansions  prior  to  applying  them.  The  overall  effect  of 
these  refinements  is  to  move  constraints  from  the  test  portion  of  the  algorithm, 
that  is,  the  step  that  checks  to  see  whether  the  goal  has  been  achieved,  into 
the  generate  portion  of  the  algorithm,  that  is,  the  step  that  chooses  which 

nodes  to  expand  and  how  they  should  be  expanded.  Some  refinements  actu- 
ally move  constraints  out  of  the  search  altogether  by  precompiling  them  into 

tables  or  by  modifying  the  algorithm  to  search  a  smaller  space. 

In  the  "Avoid  taking  points"  problem,  for  example,  FOO  starts  with  a 
simple  generate-and-test  algorithm  that  generates  all  possible  tricks  and  tests 

to  see  if  ME  (FOO's  performance  persona)  takes  any  points.  This  is  gradually 
converted  into  a  heuristic  search  in  which  the  only  tricks  considered  are  those 
in  which  ME  plays  a  card  higher  than  any  card  played  so  far  in  the  suit 
led.  Additional  heuristics,  such  as  generating  tricks  that  contain  points  first 
and  pruning  tricks  in  which  the  opponents  play  cards  higher  than  ME,  are 



352  Learning  and  Inductive  Inference  XIV 

extracted  from  the  test  and  applied  earlier  in  the  search  to  order  and  prune 
the  search  tree. 

Underlying  all  of  FOO's  operationalization  methods  is  its  basic  ability  to 
reformulate  an  expression  in  many  different  ways.  For  example,  in  order  to 
evaluate  (VOID  Pi  SI)  (i.e.,  player  Pi  is  void  in  suit  Si),  FOO  must  reformulate 
VOID  in  terms  of  observable  variables  such  as  the  number  of  cards  already 

played  in  the  suit  S\.  In  order  for  FOO  to  recognize  that  an  operationaliza- 
tion method  is  applicable,  it  must  often  do  some  reformulations.  Then,  in 

order  actually  to  apply  the  method,  FOO  may  need  to  do  some  further  refor- 
mulations. The  heuristic  search  method,  for  instance,  is  applicable  only  to 

a  problem  that  is  expressed  as  a  search  through  some  space.  Consequently, 

in  order  to  use  heuristic  search  to  operationalize  the  "Avoid  taking  points" 
advice,  FOO  must  first  reformulate  the  advice  as  a  predicate  over  the  search 
space  of  all  possible  tricks.  The  heuristic  search  can  then  search  this  space 
for  those  tricks  that  do  not  contain  points. 

The  reformulation  and  operationalization  process  is  accomplished  by  ap- 
proximately 200  transformation  rules  (Mostow,  in  press).  These  rules  employ 

analysis  techniques  and  domain  knowledge  to  successively  reformulate  the 

advice  into  an  operational  form.  In  this  article,  we  trace  a  portion  of  FOO's 
operationalization  of  the  "Avoid  taking  points"  advice  to  show  how  these 
reformulation  techniques  are  applied.  Before  doing  this,  however,  we  describe 
the  knowledge  that  FOO  has  initially  and  how  it  is  represented. 

FOO's  Initial  Knowledge  Base 

FOO's  performance  knowledge  is  made  up  of  domain  concepts,  plus  rules 
and  heuristics  that  are  composed  in  terms  of  these  concepts.  The  advice 

offered  to  the  program  likewise  consists  of  domain  concepts,  plus  composi- 
tions of  concepts.  So  as  long  as  these  compositions  of  basic  concepts  can 

be  described  in  general  ways,  both  the  performance  knowledge  and  the  ad- 
vice for  building  and  improving  it  can  be  used  and  manipulated  by  domain- 

independent  methods  (see  Hayes-Roth  et  al.,  1981,  for  further  discussion). 
For  example,  in  the  domain  of  the  card  game  Hearts,  basic  concepts 

include: 

deck,  hand,  card,  suit,  spades,  deal,  round,  trick,  avoid,  point, 
player,  play,  take,  lead,  win,  follow  suit. 

Examples  of  advice  in  the  form  of  behavioral  constraints  include: 

The  lead  of  the  first  trick  is  by  the  player  with  the  2C. 
Each  player  must  follow  suit  if  possible. 
The  player  of  the  highest  card  in  the  suit  led  wins  the  trick. 
The  winner  of  a  trick  leads  the  next  trick. 

Advice  in  the  form  of  heuristics  includes: 
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If  the  queen  of  spades  has  not  been  played,  then  flush  it  out. 
Take  all  the  points  in  a  round. 

If  you  can't  take  all  the  points  in  a  round,  then  take  as  few 
as  possible. 

If  necessary,  take  a  point  to  prevent  someone  else  from  taking 
them  all. 

A  constraint  such  as  "The  lead  of  the  first  trick  is  by  the  player  with  the  2C" 
is  represented  as  a  composition,  using  domain-independent  concepts  like  first 
and  with  and  domain-dependent  concepts  like  lead,  trick,  player,  and  2C. 

An  Example:  Operationalizing  "Avoid  Taking  Points" 

After  advice  has  been  interpreted  into  an  internal  representation  that  is 
precise  and  unambiguous,  it  might  be  in  an  operational  form,  for  example, 

"Play  a  low  card."  On  the  other  hand,  it  may  be  far  more  general:  "Avoid 
taking  points."  Experienced  Hearts  players  will  recognize  that  the  first, 
specific  piece  of  advice  is  a  possible  strategy  for  carrying  out  the  latter,  general 
advice.  But  it  is  a  rather  simplistic  strategy,  more  appropriate  for  the  later 
stages  of  a  game  than  for  the  beginning.  Furthermore,  repeated  attempts 
to  play  low  cards  will  sometimes  conflict  with  other  advice.  For  purposes  of 
illustration,  however,  operationalizing  even  a  quite  simple  goal  can  require  a 

wide  range  of  knowledge  and  methods  (see  Mostow,  1981;  Hayes-Roth  et  al., 
1981).  For  the  remainder  of  this  article,  several  of  the  methods  and  problems 
of  operationalization  will  be  illustrated  by  showing  how  advice  such  as  this 
can  be  converted  into  directly  executable  procedures. 

First,  consider  how  a  person  might  handle  advice  such  as  "Avoid  taking 
points."  He  might  apply  it  to  a  specific  situation  by  reasoning  as  follows: 

1.  To  avoid  taking  points  in  general,  I  should  avoid  taking  any  points  in  the 
current  trick  (a  single  round  in  which  one  card  is  played  by  each  player). 

2.  Thus,  if  the  trick  contains  points  (either  a  heart  or  the  queen  of  spades), 
I  should  try  not  to  win  it. 

3.  I  can  do  this  by  trying  not  to  play  the  winning  card. 

4.  That  can  be  done  by  my  playing  a  card  lower  than  some  other  card 
played  in  the  suit  led. 

Each  step  above  is  an  attempt  to  implement  the  previous  statement  as  closely 
as  possible  by  restatement  in  successively  more  specific,  operational  terms. 
Some  restatements  may  fully  preserve  the  truth  or  accuracy  of  the  previous 

one,  while  others  may  be  very  suppositional  (i.e.,  valid  given  certain  assump- 
tions) or  more  restrictive  (i.e.,  valid  only  in  certain  situations).  The  final 

statement  above  is  not  a  very  sophisticated  plan,  but  it  is  at  least  a  reasonable 
operationalization  of  the  initial  advice,  and  it  represents  a  kind  of  process 

that  seems  very  common  in  human  learning.  A  problem-reduction  strategy  is 
employed  until  the  advice  can  be  applied  directly  in  the  given  situation. 
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Now  that  we  have  a  sense  of  how  a  person  might  operationalize  "Avoid 

taking  points,"  we  trace  the  methods  applied  by  FOO  to  accomplish  this  task. 
The  following  example  is  based  on  Derivation  6  in  Mostow  (1981)  in  which 

he  guided  FOO  to  reformulate  "Avoid  taking  points"  as  "Play  a  low  card." 
This  particular  trace  shows  the  use  of  several  simple  operationalization  and 

reformulation  methods  but  does  not  show  the  application  of  the  heuristic- 
search  method  discussed  above. 

To  begin  with,  the  advice  must  be  interpreted  into  a  tractable  repre- 
sentational form,  such  as: 

(avoid  (take-points  me)  (trick)) 

That  is,  "Avoid  the  event  in  which  ME  takes  points  during  the  current  trick." 
In  FOO,  this  is  done  manually  by  the  advice-giver. 

A  useful  beginning  in  operationalization  is  to  elaborate  the  original  advice 

by  expanding  definitions  (first  of  "avoid"  and  then  of  "trick").  The  point  is  to 
unfold  high-level  terms  so  that  the  expression  can  be  more  easily  manipulated. 
The  results  are 

[achieve    (not   (during   (trick)    (take-points  me)))] 
and 

(achieve    (not   (during    [scenario 

(each  p    (players) (play-card  p) ) 
(take-trick   (trick-winner))] 

(take-points  me)))). 

The  advice  in  this  form  is  still  not  operational,  since  it  depends  on  the 

outcome  of  the  trick,  which  is  not  generally  knowable  at  the  time  ME  needs 

to  choose  an  action  in  accordance  with  the  advice.  Therefore,  a  case  analysis 

is  done  on  the  subexpression  (during . . . ) .  The  idea  is  to  reformulate  a  single 

concept  as  several  disjoint  expressions  that  can  be  evaluated  separately.  To 

this  end,  the  single  (during . . . )  expression  is  split  into  two  expressions  that 

depend  on  alternative  assumptions.  Here,  taking  points  during  the  two-part 

"scenario"  above  can  be  considered  as  either  of  two  possible  cases:  that  taking 
points  occurs  during  (a)  the  playing  of  cards  or  (b)  the  taking  of  the  trick. 
The  transformation  results  in: 

(achieve    (not   (or    [during   (each  p    (players)    (play-card  p)) 
(take-points  me)] 

[during   (take-trick   (trick-winner) ) 
(take-points  me)]))). 

The  next  transformation  eliminates  impossible  cases.  When  expressions 

cannot  be  achieved  because  of  impossible  conditions,  the  learner  should  recog- 
nize this  and  drop  them  from  consideration.  Here,  the  first  case  can  be  ignored 

because  there  is  no  way  to  take  points  during  the  play  of  the  cards  (it  is 

possible  only  after  all  players  have  played,  when  the  trick  is  taken).  FOO 

recognizes  this  by  an  intersection  search.  It  searches  through  the  knowledge 
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base  of  defined  concepts  for  a  common  subevent  of  the  two  events  (each  p 

(players)  (play-card  p))  and  (take-points  me).  Since  no  common  subevent 
is  found  for  these  two,  FOO  concludes  that  the  situation  is  an  impossible  one 

and  eliminates  it.  (For  the  second  case,  take-trick  and  take-points  have  a 

common  sub-event,  take . )  The  advice  now  is: 

(achieve    (not    [during   (take-trick   (trick-winner)) 
(take-points  me)])). 

The  advice  is  still  far  from  operational.  One  difficulty  is  that  neither 

take-trick  nor  trick-winner  is  immediately  evaluable  at  the  time  a  card  must 
be  chosen  for  play.  At  this  point,  the  problem  can  be  reduced  by  reexpressing 

different  concepts  in  common  terms.  This  is  possible  here  by  again  elaborating 

definitions  and  restructuring  the  subexpressions.  Since  take-points  occurs 

during  take-trick,  the  expression  can  be  reformulated  as: 

(achieve  (not  [exists  cl  (cards-played) 

(exists  c2  (point-cards) 

(during   (take    (trick-winner)    cl) 
(take  me  c2) ) ) ] ) ) . 

This  says,  "Make  sure  the  situation  does  not  happen  where  ME  takes  a  point 

card  (c2)  during  the  time  that  the  winner  of  the  trick  takes  the  cards  played." 
A  process  of  partial  matching  recognizes  that  the  two  events  in  the  during 

subexpression  are  closely  related  and  thus  are  candidates  for  simplification, 

depending  on  the  constraints  of  the  during  predicate.  Using  domain  knowl- 
edge of  relationships  among  the  concepts,  the  terms  can  be  combined  and  the 

subexpression  made  less  complex.  Instead  of  the  complicated  relation  during, 

the  events  become  joined  by  the  far  simpler  predicates  =  and  and.  We  now 
have: 

(achieve    (not   (exists  cl    (cards-played) 

(exists  c2    (point-cards) 
[and   (=   (trick-winner)   me) (=  cl   c2)])))). 

Further  analysis  at  this  point  shows  that  simplification  of  some  forms  is 

possible.  The  central  purpose  of  searching  for  simplifications  is  to  restructure 

expressions  to  make  them  more  amenable  to  further  analysis.  Examples  of 

simplifying  methods  are  deleting  null  clauses  from  a  disjunction,  transforming 

an  expression  into  a  constant  (by  evaluation),  applying  logical  transformations 

(such  as  De  Morgan's  laws),  or  removing  quantifiers  when  possible.  The  last 
of  these  methods  is  appropriate  here,  since  cl  and  c2  denote  the  same  object: 

a  point  card.  Thus  with  some  reformulation  employing  domain  knowledge, 

one  variable  can  be  replaced  by  the  other,  and  the  condition  that  they  be 

equal  can  be  dropped.  The  expression  is  transformed  into: 

(achieve    (not    [and   (=   (trick-winner)   me) 

(exists  cl    (cards-played) 
(in  cl    (point-cards)))])). 
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Another  kind  of  pattern-matching  can  accomplish  another  kind  of  sim- 
plification: By  looking  for  canonical  constructions,  the  operationalizer  can 

recognize  known  concepts.  If  the  form  of  a  lower  level  expression  fits  the 

definition  of  a  higher  level  concept,  the  former  can  be  replaced  by  its  simpler 

equivalent.  (Note  that  this  is  the  inverse  of  the  first  transformation  mentioned 

above:  expanding  definitions.)  In  this  case,  the  last  two  lines  of  the  above 

expression  match  the  definition  of  trick-has -points.  This  is  analogous  to  the 
psychological  process  of  chunking.  In  addition  to  all  the  analytical  advantages 

gained  by  simplification,  the  recognition  of  known  concepts  can  also  enable 

the  application  of  previously  learned  knowledge  about  them  (e.g.,  ways  to 

predict  the  likelihood  that  a  trick  will  have  points  in  it).  Our  expression  is 

now  reduced  to  not  winning  a  trick  that  has  points: 

(achieve    (not   (and   (=   (trick-winner)   me)    [trick-has-points]))) . 

The  expression  is  still  not  operational,  since  trick-winner  is  not  generally 

knowable  at  the  time  of  choosing  which  card  to  play.  The  concept  of  trick- 

winner  is  further  analyzed,  and,  in  fact,  it  takes  about  20  further  transforma- 

tions to  reformulate  the  above  expression,  "Try  not  to  win  a  trick  that  has 

points,"  into  "If  you're  following  suit  in  a  trick  with  points,  try  to  play  lower 

than  some  other  card  played  in  the  suit  led."  Symbolically,  this  looks  like: 

(achieve    (=>    [and   (in-suit-led   (card-of  me)) 

(trick-has-points) ] 
[lower    (card-of  me) 

(find-element   (cards-played-in-suit-led))])) . 

But  this  still  is  not  operational,  since  in  general  the  set  cards-played-in- 

suit-led  is  not  fully  known  at  the  time  that  ME  must  choose  a  card.  Since 
Hearts  is  a  game  of  imperfect  information,  this  set  cannot  generally  be  known, 

but  the  data  available  (cards  already  played)  can  be  used  to  approximate  the 

result.  Here,  the  binary  relation  lower  is  approximated  by  the  unary  predicate 

low.  In  other  words,  in  the  absence  of  complete  information  for  evaluating  a 

comparative  predicate  (lower  xl  x2),  use  instead  an  estimating  function  (low 

xl)  that  may  not  be  exact  but  can  produce  a  result  from  the  available  data. 

The  approximation  is: 

(achieve    (=>    (and   (in-suit-led   (card-of  me)) 

(trick-has-points) ) 
[low   (card-of  me)])). 

This  is  now  very  close  to  being  operational.  Low  is  an  imprecise  term  but 

can  be  treated  as  a  fuzzy  predicate  (see  Zadeh,  1979) — that  is,  it  could  be 

used  to  order  potential  candidates  for  the  choice  variable,  card-of  me. 

The  only  remaining  barrier  to  full  operationality  is  the  predicate  (trick- 

has-points).  This  also  is  not  always  knowable  at  the  time  of  choosing  a 
card  to  play.  However,  further  analysis  leads  to  application  of  a  rule  that 

formulates  an  assertion  as  possible  (effectively  assuming  it  to  be  true)  in  the 
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absence  of  any  knowledge  to  the  contrary.  Even  when  a  predicate  p  is  not 
evaluable,  (possible  p)  will  be. 

Thus,  the  fully  operational  (though  approximate)  reformulation  of  the 

original  "Avoid  taking  points"  is  "If  following  suit  in  a  trick  that  may  have 
points,  play  a  low  card."  Again,  the  result  may  not  always  be  the  most  effective 
action  and  may  be  in  conflict  with  other  advice.  These  are  issues  to  be  decided 
by  the  evaluating  module  of  the  learning  element  and  by  the  performance 
element  of  the  program.  The  symbolic  form  of  the  operationalized  advice  is: 

(achieve    (=>    [and   (in-suit-led   (card-of  me)) 

[possible    (trick-has-points)]] 
[low   (card-of  me) ] ) ) . 

Conclusion 

The  example  given  above  is  a  useful  one  because  of  the  diversity  of  its 
reformulations,  not  because  of  any  completeness.  Among  the  most  useful 
contributions  of  this  research  has  been  an  introduction  to  the  considerable 

complexity  of  operationalizing  advice.  Of  the  13  examples  of  operationalized 

advice  given  in  Mostow's  thesis  (1981),  a  couple  required  only  a  handful  of 
transformations  (a  minimum  of  8),  but  several  required  over  100.  About  10 

domain-independent  transformational  rules  were  mentioned  in  the  example 
above,  but  over  200  such  rules  have  been  formulated  and  included  in  the  sys- 

tem. Mostow  (1981)  gives  a  taxonomy  of  operationalization  methods  accord- 
ing to  their  purpose,  scope,  and  accuracy.  This  taxonomy  is  outlined  in 

Figure  C2-1;  each  category  is  illustrated  by  one  or  more  methods. 
The  greatest  shortcoming  of  the  work  on  FOO  is  the  lack  of  a  control 

structure  that  could  apply  these  operationalization  methods  automatically. 
The  development  of  such  a  control  regime  may  be  quite  difficult.  Mostow 

suggests  using  means-ends  analysis  (see  Article  II.D2,  in  Vol.  i)  and  describes 
how  his  execution  of  rules  often  conformed  to  the  following  pattern: 

1.  Reformulate  an  expression  until  it  is  possible  to 

2.  recognize  that  the  method  is  applicable  and  decide  to  apply  it,  so 

3.  reformulate  the  expression  to  match  the  method  problem  statement  and 

4.  fill  in  additional  information  required  by  the  method;  then 

5.  refine  the  instantiated  method  by  applying  additional  domain  knowledge. 

A  second  shortcoming  of  FOO  is  that  its  methods  are  quite  specific  to  the 

game  of  Hearts  and  similar  tasks.  The  development  of  a  general-purpose 
operationalization  program  will  require  the  explication  of  many  more  opera- 

tionalization methods.  Still,  these  first  steps  in  operationalization  should 

prove  valuable  either  for  the  overall  project  of  machine-aided  heuristic  pro- 
gramming (see  the  beginning  of  this  article)  or  for  future  efforts  at  implement- 

ing advice-taking  systems. 
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1.  Methods  for  evaluating  an  expression 

a.  Procedures  that  always  produce  a  result  (assuming  their  inputs 
are  available) 

"Pigeonhole  principle" 
"Historical  reasoning" 
"Heuristic  search" 

b.  Procedures  that  sometimes  produce  a  result 

"Check  a  necessary  or  sufficient  condition" 
"Make  a  simplifying  assumption  that  restricts  the  scope 

of  applicability" 
c.  Procedures  that  produce  an  approximate  result 

"Apply  formula  for  probability  that  randomly  chosen 

subsets  overlap" 
"Characterize  a  quantity  as  an  increasing  or  decreasing 

function  of  some  variable" 

"Use  an  untested  simplifying  assumption" 
"Predict  others'  choices  pessimistically" 

2.  Methods  for  achieving  a  goal 

a.  Sound  methods  (introduce  no  errors) — execution  of  plan  (when 
feasible)  will  achieve  goal 

"To  empty  a  set,  remove  one  element  at  a  time" 
"Find  a  sufficient  condition  and  achieve  it" 

"Restrict  a  choice  to  satisfy  the  goal" 

"Modify  a  plan  for  one  goal  to  achieve  an  additional  goal" 
"To  achieve  a  goal  with  a  future  deadline,  satisfy  it  now 

and  then  avoid  violating  it" 

b.  Heuristic  methods — execution  of  plan  may  not  always 
achieve  goal 

"Simplify  the  goal  by  arbitrarily  choosing  a  value  for 
one  of  its  variables" 

"Find  a  necessary  condition  and  achieve  it" 
"Order  choice  set  with  respect  to  goal" 

Figure  C2-1.     Taxonomy  of  operationalization  methods. 
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D.     LEARNING  FROM  EXAMPLES 

Dl.     Issues 

THE  PROSPECT  of  creating  a  program  that  can  learn  from  examples  has 
attracted  the  attention  of  AI  researchers  since  the  1950s.  McCarthy  (1958, 

p.  78)  said,  "Our  ultimate  objective  is  to  make  programs  that  learn  from  their 
experience  as  effectively  as  humans  do."  Of  course,  the  attainment  of  this  goal 
still  lies  in  the  distant  future.  The  area  of  learning  from  examples  is,  however, 
the  best  understood  aspect  of  learning. 

A  program  that  learns  from  examples  must  reason  from  specific  instances 
to  general  rules  that  can  be  used  to  guide  the  actions  of  the  performance 
element.  The  learning  element  is  presented  with  very  low  level  information, 

in  the  form  of  a  specific  situation  and  the  appropriate  behavior  for  the  per- 
formance element  in  that  situation,  and  it  is  expected  to  generalize  this  infor- 

mation to  obtain  general  rules  of  behavior. 
Consider,  for  example,  a  program  that  is  learning  to  play  checkers.  One 

way  to  train  the  program  is  to  present  it  with  particular  checkers-board 
situations  and  tell  it  what  the  best  moves  are.  The  program  must  generalize 
from  these  particular  moves  to  discover  strategies  for  good  play.  Similarly,  if 
we  are  teaching  a  program  the  concept  of  a  dog,  for  example,  we  might  present 
the  program  with  various  animals  (and  other  things)  and  tell  it  whether  or 
not  they  are  dogs.  The  program  must  develop  general  rules  for  recognizing 
dogs  and  distinguishing  them  from  everything  else  in  the  world. 

Simon  and  Lea  (1974),  in  an  important  early  paper  on  induction,  describe 
the  problem  of  learning  from  examples  as  the  problem  of  using  training 
instances,  selected  from  some  space  of  possible  instances,  to  guide  a  search  for 
general  rules.  They  call  the  space  of  possible  training  instances  the  instance 
space  and  the  space  of  possible  general  rules  the  rule  space.  Furthermore, 
Simon  and  Lea  point  out  that  an  intelligent  program  might  select  its  own 
training  instances  by  actively  searching  the  instance  space  in  order  to  resolve 
some  ambiguity  about  the  rules  in  the  rule  space.  Thus,  if  the  program  were 
unsure  whether  all  dogs  have  four  legs,  it  might  search  the  instance  space  for 
animals  with  different  numbers  of  legs  to  see  which  ones  are  dogs.  Simon  and 
Lea  view  a  learning  system  as  moving  back  and  forth  between  an  instance 
space  and  a  rule  space  until  it  has  converged  on  the  desired  rule. 

This  two-space  view  of  learning  from  examples  as  a  simultaneous,  coopera- 
tive search  of  the  instance  space  and  the  rule  space  is  a  good  perspective  for 

organizing  this  article.  We  will  use  the  terms  instance  space  and  rule  space 
even  in  situations  where  the  rule  space  does  not  contain  rules  but,  instead, 

360 
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Experiment  Planning 

Instance  Selection 

Interpretation 

Figure  Dl-1.     The  two-space  model  of  learning  from  examples. 

contains  some  other  high-level  descriptions  of  the  knowledge  needed  by  the 
performance  element. 

Figure  Dl-1  shows  a  schematic  diagram  of  the  two-space  model  of  learning 
from  examples.  In  addition  to  the  instance  space  and  the  rule  space,  the 
processes  of  interpretation  and  experiment  planning  are  depicted.  In  some 
learning  situations,  the  training  instances  are  provided  in  a  form  far  removed 
from  the  form  of  the  rules  in  the  rule  space.  As  a  result,  when  the  program 
moves  from  the  instance  space  to  the  rule  space,  special  processes  are  needed 
to  interpret  the  raw  training  instances  so  that  they  can  guide  the  search  of  the 
rule  space.  Similarly,  when  the  program  needs  to  gather  some  new  training 

instances,  special  experiment-planning  routines  are  needed  so  that  the  current 
high-level  hypotheses  can  guide  the  search  of  the  instance  space. 

As  an  example  of  the  two-space  model,  consider  the  problem  of  teaching 
a  computer  program  the  concept  of  a  flush  in  poker  (i.e.,  a  hand  in  which  all 
five  cards  have  the  same  suit).  The  instance  space  in  this  learning  problem  is 
the  space  of  all  possible  poker  hands.  We  can  represent  an  individual  point 
in  this  space  as  a  set  of  five  ordered  pairs,  for  example, 

{(2, clubs),  (3, clubs),  (5, clubs),  (jack,clubs),  (king, clubs)}. 

Each  ordered  pair  specifies  the  rank  and  suit  of  one  of  the  cards  in  the  hand. 

The  entire  instance  space  is  the  space  of  all  such  five-card  sets. 
The  rule  space  in  this  problem  could  be  the  space  of  all  predicate  calculus 

expressions  composed  of  the  predicates  SUIT  and  RANK;  the  variables  c\,  C2, 
c3>  C4,  C5  for  the  cards;  any  necessary  free  variables;  the  constant  values 
of  clubs,  diamonds,  hearts,  spades,  ace,  2,  3,  4>  5,  6>  7>  8,  9,  10,  jack, 
queen,  and  king;  the  conjunction  operator  (A);  and  the  existential  quantifier 
(3).  This  rule  space  includes  concepts  such  as  contains  at  least  three  cards  of 
the  same  rank: 
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3  ci ,  c2 ,  c3  :  RANK(ci ,  x)  A  RANK(c2 ,  x)  A  RANK(c3 ,  x) , 

and  also  the  desired  concept  of  a  flush: 

3  Ci,C2,C3,c4,c5  :  SUIT(ci,x)  A  SUIT(c2,z)  A  SUIT(c3,x)  A 

SUIT(c4,x)  A  SUIT(c5,x). 

Note  that  this  rule  space  does  not  contain  the  concept  of  a  straight. 

A  learning  program  for  searching  these  two  spaces  might  operate  as 

follows.  First,  the  program  selects  a  training  instance  from  the  instance 

space  and  asks  the  teacher  whether  it  is  an  instance  of  the  desired  concept. 

This  information  (the  instance  and  its  classification)  is  converted  by  the 

interpretation  procedures  into  a  form  that  can  help  guide  the  search  of  the 

rule  space.  When  some  plausible  candidate  concepts  are  found  in  the  rule 

space,  experiment-planning  routines  decide  which  training  instances  should 
be  examined  next.  If  the  learning  program  works  properly,  it  will  eventually 

choose,  as  its  best  candidate  concept,  the  flush  concept  shown  above. 

Learning  systems  that  employ  the  two-space  approach  are  making  use 

of  the  closed-world  assumption,  that  is,  the  assumption  that  the  rule  space 

contains  the  desired  concept.  The  closed-world  assumption  allows  programs 
to  locate  the  desired  concept  by  progressively  excluding  candidate  concepts 
that  are  known  to  be  incorrect. 

This  two-space  view  of  learning  from  examples  helps  to  elucidate  many  of 

the  design  issues  for  learning  systems.  In  this  article,  we  follow  this  two-space 
model  full  circle.  We  examine,  in  turn,  the  issues  concerning  the  instance 

space,  the  interpretation  process,  the  rule  space,  and  the  experiment-planning 

process. 

Instance  Space 

The  first  issue  involving  the  instance  space  is  the  quality  of  the  train- 

ing instances.  High-quality  training  instances  are  unambiguous  and  thus 

provide  reliable  guidance  to  the  search  of  the  rule  space.  Low-quality  train- 
ing instances  invite  multiple,  conflicting  interpretations  and,  consequently, 

provide  only  tentative  guidance  to  the  rule-space  search. 
Consider  again  the  problem  of  teaching  a  program  the  concept  of  a  flush. 

There  are  several  sources  of  ambiguity  that  could  make  it  difficult  for  the 

program  to  discover  the  concept  from  training  instances. 

First,  the  instances  may  contain  errors.  If  the  descriptions  of  the  in- 
stances are  incorrect,  for  example,  if  a  2  of  clubs  is  incorrectly  observed  to  be 

a  2  of  spades,  the  error  is  a  measurement  error.  If,  on  the  other  hand,  the 

classification  of  the  hand  (as  being  a  flush  or  not  being  a  flush)  is  incorrect, 

the  error  is  a  classification  error.  Two  kinds  of  classification  errors  can  occur. 

The  program  can  be  told  that  a  sample  hand  is  a  flush  when  in  fact  it  is 
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not — a  false  positive  instance — or  that  it  is  not  a  flush  when  in  fact  it  is — a 
false  negative  instance. 

A  second  source  of  ambiguity  arises  if  the  program  must  learn  from 

unclassified  training  instances.  In  these  so-called  unsupervised  learning  situa- 
tions, the  program  is  given  heuristic  information  that  it  must  use  to  classify 

the  training  instances  itself.  If  this  heuristic  knowledge  is  weak  and  imper- 
fect, the  rule-space  search  must  treat  the  resulting  classifications  as  being 

potentially  incorrect. 
A  third  factor  relating  to  the  quality  of  the  training  instances  is  the 

order  in  which  they  are  presented.  A  good  training  sequence  systematically 
varies  the  relevant  features  to  determine  which  features  are  important.  When 
a  program  is  selecting  training  instances,  it  attempts  to  construct  a  good 
training  sequence  for  itself.  The  task  of  learning  is  made  much  easier  if  there 
is  a  teacher  who  can  be  counted  on  to  perform  this  function.  In  such  cases, 

a  program  can  reason  about  a  puzzling  instance  by  trying  to  infer  "what  the 
teacher  was  getting  at"  in  presenting  the  example. 

The  main  point,  then,  is  that  high-quality  training  instances  are  unam- 
biguous. Under  such  favorable  conditions,  the  program  can  be  designed  to 

embody  a  whole  set  of  constraining  assumptions  about  the  examples  that 

permit  it  to  locate  rapidly  the  appropriate  high-level  rules  in  the  rule  space. 
Low-quality  instances,  again,  are  ambiguous,  because  the  program  must  con- 

sider a  much  larger  space  of  hypotheses.  Thus,  if  it  is  possible  that  the  training 
instances  contain  errors,  the  program  must  consider  the  hypothesis  that  any 
given  instance  is  incorrect  due  to  either  measurement  error  or  classification 
error.  In  general,  the  more  constraints  a  program  can  assume  about  the  data, 
the  more  easily  it  can  learn  from  them. 

The  second  design  issue  concerning  the  instance  space  is  the  question  of 
how  it  should  be  searched.  This  issue  has  not  received  much  attention  in  AI 

research,  since  most  work  has  assumed  either  that  the  instances  are  presented 
all  at  once  or  else  that  the  program  has  no  control  over  their  selection.  (See, 
however,  Rissland  and  Soloway,  1980,  for  recent  work  on  instance  selection.) 
Programs  that  can  update  their  hypotheses  as  additional  training  instances 
are  selected  (or  are  made  available  by  the  environment)  are  said  to  perform 
incremental  learning.  Programs  that  explicitly  search  the  instance  space  are 
said  to  perform  active  instance  selection. 

Most  methods  of  searching  the  instance  space  make  use  of  a  set,  H,  of 
hypotheses  in  the  rule  space  that  are  currently  believed  by  the  program  to  be 
most  plausible.  One  approach  is  to  try  to  discriminate  as  much  as  possible 
among  the  alternatives  within  H.  A  training  instance  can  be  chosen  that 

"splits  H  in  half,"  so  that  half  of  the  hypotheses  can  be  ruled  out  when 
the  new  instance  is  obtained.  Another  approach  is  to  choose  the  most  likely 
hypothesis  in  i/and  try  to  confirm  it  by  checking  additional  training  instances 
(particularly  instances  with  extreme  characteristics).  Using  a  confirmatory 
strategy,  the  learning  system  can  determine  the  limits  of  applicability  of  the 
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hypothesis  under  consideration.  A  third  approach,  called  expectation-based 
filtering,  selects  training  instances  that  contradict  the  hypotheses  in  H  (see 

Lenat,  Hayes-Roth,  and  Klahr,  1979).  The  hypotheses  in  H  are  used  to 
filter  out  those  instances  that  are  expected  to  be  true  (i.e.,  those  that  are 
consistent  with  H),  so  that  the  learning  program  can  focus  its  attention 
on  those  instances  in  which  its  current  hypotheses  break  down.  Finally,  an 
important  consideration  may  be  the  size  of  H,  or  other  computational  costs 
associated  with  the  learning  process.  In  such  cases,  new  instances  may  be 
selected  to  minimize  these  computational  costs.  For  example,  the  program 
might  try  to  rule  out  only  one  factor  at  a  time  in  order  to  reduce  the  cost  of 
comparing  a  drastically  different  training  instance  with  each  hypothesis  in  H. 

Interpretation  Processes 

Once  the  training  instances  have  been  selected,  they  may  need  to  be 
transformed  before  they  can  be  used  to  guide  the  search  of  the  rule  space.  This 
transformation  process  can  be  quite  difficult,  especially  in  perceptual  learning 
tasks.  Suppose,  for  example,  that  we  wish  to  train  a  computer  to  recognize 
the  concept  of  an  arch  constructed  from  toy  blocks.  The  program  will  be 
presented  with  a  line  drawing  of  a  scene  involving  a  structure  of  blocks  and 

told  whether  or  not  the  scene  contains  an  arch.  Winston's  (1970)  program  that 
solves  this  learning  task  (see  Article  XIV.D3a)  makes  extensive  use  of  "blocks- 
world  knowledge"  to  interpret  the  line  drawing  and  extract  a  relational  graph 
structure  that  indicates  which  blocks  are  resting  on  top  of  which  other  blocks, 
which  blocks  are  touching,  and  so  forth.  These  are  the  relations  needed  to 
express  the  concept  of  an  arch. 

Another  learning  program  that  performs  extensive  interpretation  of  the 

training  instances  is  Soloway's  (1978)  BASEBALL  system.  The  raw  training 
instances  are  roughly  2,000  noise- free  "snapshots"  of  a  baseball  game.  The 
snapshots  give  the  locations  of  the  nine  players  on  the  two  teams  (e.g.,  (AT  PI 

FIRST-BASE)),  the  location  of  the  ball,  and  the  state  of  the  scoreboard.  The 
program  is  composed  of  a  sequence  of  nine  steps  that  employ  various  kinds  of 
knowledge  to  interpret  and  generalize  the  training  instances.  The  first  three 
steps  apply  general  knowledge  about  games  to  filter  out  periods  of  inactivity 
and  focus  on  cycles  of  high  activity.  The  next  three  steps  apply  knowledge 
about  physics  and  about  competition  and  cooperation  to  interpret  these  cycles 
of  activity  as  competitive  or  cooperative  episodes.  To  identify  these  episodes, 

the  program  must  assign  goals  to  the  different  players  (e.g.,  (WANT-TO-EXECUTE 
(AT  PI  FIRST-BASE))).  It  also  guesses  that  the  overall  goal  of  an  episode  is 
that  of  the  last  action  taken  by  a  player.  The  final  three  steps  search  the 
rule  space  to  discover  generalized  episodes  and  episode  goals  such  as  hit  and 
out.  These  concepts  are  far  removed  from  the  original  training  instances, 
but  because  the  previous  steps  have  properly  interpreted  the  data  in  terms  of 

goals  and  actions,  this  rule-space  search  is  easily  accomplished. 
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The  basic  purpose  of  interpreting  the  training  instances  is  to  extract 
information  that  is  useful  for  guiding  the  search  of  the  rule  space.  This  usually 
involves  converting  the  raw  training  instances  into  a  representational  form 

that  allows  syntactic  generalization  to  be  easily  accomplished  (see  below). 

Rule  Space 

Two  main  issues  are  related  to  the  rule  space  of  high-level  knowledge: 
What  is  the  space,  and  how  can  it  be  searched?  The  rule  space  is  usually 
defined  by  specifying  the  kinds  of  operators  and  terms  that  can  be  used  to 
represent  a  rule.  The  designer  of  a  learning  system  seeks  to  choose  a  rule 
space  that  is  easy  to  search  and  that  contains  the  desired  rule  or  rules.  In  the 
sections  that  follow,  we  first  discuss  two  factors  that  influence  the  choice  of  a 
representation  language  for  the  rule  space:  the  kinds  of  inference  supported 

by  the  representation  and  the  single-representation  trick.  Then  we  survey 
the  four  methods  for  searching  the  rule  space.  We  conclude  the  discussion  of 

rule-space  issues  by  examining  problems  that  arise  when  the  representation  is 
found  to  be  inadequate  for  expressing  the  desired  rule  or  rules. 

Syntactic  rules  of  inference.  Both  the  expressiveness  of  a  repre- 
sentation and  the  ease  of  searching  the  rule  space  depend  on  the  kind  and 

complexity  of  the  inferences  supported  by  the  representation.  The  most  com- 
mon inference  process  needed  for  learning  from  examples  is  generalization. 

We  say  that  one  description,  A,  is  more  general  than  another  description,  B, 
if  A  applies  in  all  of  the  situations  in  which  B  applies  and  then  some  more. 
Thus,  the  set  of  situations  in  which  A  is  relevant  is  a  superset  of  the  set  of 
situations  in  which  B  is  relevant.  For  example,  the  rule  that  All  ravens  are 

black  is  more  general  than  the  rule  that  All  one-eyed  ravens  are  black,  since 
the  set  of  all  ravens  strictly  includes  the  set  of  one-eyed  ravens.  Often,  a 
description  A  is  more  general  than  a  description  B  because  A  places  fewer 

constraints  on  any  relevant  situations.  The  all  ravens  rule  omits  the  one-eyed 
constraint  and,  hence,  is  more  general. 

It  is  important  to  choose  a  representation  for  the  rule  space  in  which  gen- 
eralization can  be  accomplished  by  inexpensive  syntactic  operations.  Predicate 

calculus,  for  example,  is  quite  amenable  to  certain  kinds  of  syntactic  gen- 
eralization. Below  are  some  examples  of  syntactic  rules  of  inference  that 

accomplish  generalization  in  predicate  calculus.  Some  recent  work  in  learning 

(Larson,  1977;  Larson  and  Michalski,  1977;  Michalski,  1980)  has  sought  to 
identify  rules  of  inference  that  are  particularly  useful  in  learning  systems.  It 

is  important  to  note  that  these  rules  of  inference  do  not  preserve  truth — the 
rules  are  inductive. 

1.  Turning  constants  to  variables.  Suppose  we  want  a  program  to 
discover  the  concept  of  a  flush  in  poker.  We  might  give  some  training 
instances  of  the  form: 
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Instance  1.  SUIT  {a,  clubs)  A  SUIT(c2,  clubs)  A 
SUIT(c3,  clubs)  A  SUIT(c4,  clubs)  A 

SUIT(c5,  clubs)    =>    FLUSH(ci,C2,c3,C4,c5). 

Instance  2.  SUIT(ci,  spades)  A  SUIT(c2,  spades)  A 
SUIT(c3,  spades)  A  SUIT(c4,  spades)  A 

SUIT(c5,  spaces)    =»    FLUSH(ci,  c2,  c3,  c4,  c5) . 

From  these,  the  program  could  hypothesize  the  rule 

Rule  1.  SUIT(ci,  x)  A  SUIT(c2,  x)  A  SUIT(c3,  re)  A  SUIT(c4,  x)  A 

SUIT(c5,:r)    =►    FLUSH(ci,  c2,  c3,  c4,c5) . 

by  replacing  the  atomic  constants  of  clubs  and  spades  by  the  variable  x 

(where  x  stands  for  any  suit). 

2.  Dropping  conditions.  Suppose  again  that  we  are  teaching  a  program 
the  concept  of  a  flush,  but  now  we  present  instances  of  the  form: 

Instance  1.  SUITfci,  clubs)  A  RANK(ci,3)  A 
SUIT(c2,  clubs)  A  RANK(c2,  5)  A 

SUIT(c3,  clubs)  A  RANK(c3,  7)  A 
SUIT(c4,  clubs)  A  RANK(c4, 10)  A 
SUIT(c5,  clubs)  A  RANK(c5,  king) 

=>    FLUSH(ci,  c2,c3,c4,c5). 

In  order  to  discover  rule  1,  the  program  must  not  only  turn  constants 

into  variables,  but  it  must  also  "forget"  all  of  the  RANK  predicates,  since 
rank  is  irrelevant.  This  can  be  accomplished  by  dropping  conditions.  Any 
conjunction  can  be  generalized  by  dropping  one  of  its  conditions.  We  can 
view  a  conjunctive  condition  as  a  constraint  on  the  set  of  possible  instances 

that  could  satisfy  the  description.  By  dropping  a  condition,  we  are  removing 
a  constraint  and  generalizing  the  rule. 

3.  Adding  options.  A  further  way  to  generalize  a  rule  is  to  add  another 
option  to  the  rule  so  that  more  instances  may  conceivably  satisfy  it.  Suppose 

we  are  trying  to  teach  a  program  the  concept  of  a  face  card  (i.e.,  jack,  queen, 

or  king).  We  might  give  examples  of  the  form: 

Instance  1.  RANK(ci,  jack)  =»  FACE(ci). 
Instance  2.  RANK(ci,  queen)  =►  FACE(ci). 
Instance  3.  RANK(ci,A;ma)      =*    FACE(ci). 

The  program  can  discover  the  rule  by  forming  the  disjunction  of  the  pos- 
sibilities: 

Rule  2.  RANK(ci,  jack)  V  RANK(cx,  queen)  V  RANK(ci,  king) 
=>    FACE(ci). 

Notice  that  this  decision  to  add  options  is  a  less  drastic  generalization  than 

that  of  turning  the  jack,  queen,  and  king  constants  into  a  single  variable  to 

get 
Rule  3  (wrong).  RANK(ci,y)    =>    FACE(ci). 
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An  alternative  to  ordinary  disjunction  is  what  Michalski  (1980)  terms  an 

internal  disjunction.  If  we  allow  sets  and  set  membership  in  our  repre- 
sentation, we  can  express  our  instances  as 

Instance  l'.  RANK(ci)  <E  {jack}  =>  FACE(ci). 
Instance  2'.  RANK(ci)  £  {queen}  =*  FACE(ci). 
Instance  3'.  RANK(ci)  6  {king}      =»    FACE(ci). 

The  generalization  can  then  be  expressed  as 

Rule  2'.  RANK(ci)  €  {jack,  queen,  king}    =>    FACE(ci). 

This  latter  representation  is  more  compact. 

Similar  rules  of  generalization  can  be  defined  for  numerical  representa- 
tions that  use  a  linear  combination  of  features,  as  follows: 

4.  Curve  fitting.  Suppose  a  program  is  attempting  to  discover  how  the 

output,  z,  of  a  system  is  related  to  two  inputs,  x  and  y.  The  program  is 

provided  with  training  instances  in  the  form  of  (x,  y,  z)  triples  that  show 
the  output  of  the  system  for  particular  values  of  the  inputs: 

Instance  1.  (0,2,7). 

Instance  2.  (6,-1,10). 
Instance  3.  (—1,  —5,  —16) . 

By  a  curve-fitting  technique,  such  as  least-squares  regression,  the  program 
fits  the  line 

Rule  1.  z  =  2z  +  33/  +  l, 

or,  alternately,  the  ordered  triple  (x,y,2x  +  Sy  +  1),  to  these  data.  This 
generalizes  the  relationship,  so  that  it  holds  for  many  more  (x,  y,  z)  triples 
than  just  the  three  training  instances.  The  program  can  now  predict  the  z 
output  for  any  values  of  the  x  and  y  inputs.  This  process  is  analogous  to 

the  turning-constants-into-variables  generalization  rule. 

5.  Zeroing  a  coefficient.  The  program  can  further  generalize  this  relation- 
ship by  zeroing  the  y  coefficient  and  fitting  a  plane  to  the  three  training 

instances.  In  this  case,  it  obtains 

Rule  2.  z  =  2.59x  -  3.99 . 

Alternately,  the  ordered  triple  is  (x,  y,  2.59x  —  3.99).  (The  y  coordinate  can 
be  anything.)  By  giving  y  the  coefficient  of  zero,  the  program  has  dropped  it 

as  a  condition  and  reduced  the  dimensionality  of  the  function  z  =  F(x,  y)  to 

make  it  z  =  G(x).  The  program  has  decided  that  y  is  irrelevant  to  the  value 
of  z.  The  relationship  now  holds  for  an  even  larger  set  of  (x,  y,  z)  triples. 

This  rule  is  analogous  to  the  dropping-condition  rule  of  generalization. 

Notice  that  these  rules  of  inference  correspond  to  particular  features  of 

the  representation  language.   For  example,  the  method  of  turning  constants 
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into  variables  makes  use  of  free  variables,  the  method  of  adding  options  uses 

the  disjunction  operator,  and  the  coefficient- zeroing  technique  makes  use  of 
the  multiplication  operator.  To  the  extent  that  the  representation  language 

has  fewer  of  these  features,  fewer  inference  rules  will  be  applicable  and, 

consequently,  the  search  of  the  rule  space  will  be  easier  to  accomplish.  But 

since  each  of  these  language  features  contributes  to  the  expressiveness  of  the 

representation,  the  designer  of  a  learning  system  faces  a  trade-off  between  the 
increased  expressiveness  of  the  representation  and  the  increased  difficulty  of 

searching  the  rule  space. 

The  single-representation  trick.  Another  factor  relating  to  the  dif- 
ficulty of  searching  the  rule  space  (and  the  instance  space)  is  the  difference 

between  the  representation  used  for  rules  and  the  representation  used  for 

the  training  instances.  If  the  representations  for  the  rule  space  and  the 

instance  space  are  far  removed  from  each  other,  then  the  searches  of  the 

two  spaces  must  be  coordinated  by  complex  interpretation  and  experiment- 
planning  procedures.  One  trick  commonly  used  to  avoid  this  problem  is  to 

choose  the  same  representation  for  both  spaces.  Training  instances  are  viewed 

literally  as  highly  specific  pieces  of  acquired  knowledge.  Suppose,  for  example, 

that  we  are  trying  to  teach  a  program  the  concept  of  a  pair  in  poker.  We 

want  the  program  to  learn  the  rule 

Rule  4.  3  cardi,card2  :  RANK(cardi,  x)  A  RANK(card2,  x)    =>    PAIR . 

(This  is  only  an  approximate  definition  of  PAIR.  An  exact  definition  would 

require  a  more  complex  representation  involving  equality.) 

As  was  shown  above,  specific  hands  could  be  represented  "naturally"  as 
sets  of  five  ordered  pairs — the  rank  and  suit  of  each  of  the  cards.  With  such 
a  representation  for  the  hand  made  up  of  the  2  of  clubs,  3  of  diamonds,  2  of 

hearts,  6  of  spades,  and  king  of  hearts,  we  would  obtain 

Instance  1.  {(2,  clubs),  (3,  diamonds),  (2,  hearts),  (6,  spades),  (king,  hearts)} 
=>  PAIR. 

But  this  representation  makes  it  difficult  to  discover  the  concept  of  a  pair  in 

poker  with  the  syntactic  rules  of  inference  described  above.  A  less  natural,  but 

more  useful,  representation  would  describe  the  hand  in  predicate  calculus — 
the  same  representation  that  we  will  eventually  need  for  the  acquired  concept 

(rule  4).  Thus,  we  would  say  of  our  hand 

Instance  l'.    3  C\,  c2,cz,  c\,  C5  :  RANK(ci,2)  A  SUIT (ci,  clubs)  A 
RANK(c2,  3)  A  SUIT(c2,  diamonds)  A 
RANK(c3,  2)  A  SUIT(c3,  hearts)  A 
RANK(c4, 6)  A  SUIT(c4,  spades)  A 

RANK(c5 ,  K)  A  SUIT(c5 ,  hearts)        =>    PAIR . 

Now  the  process  of  generalization  merely  involves  dropping  the  SUIT  condi- 
tions and  replacing  the  constant  2  by  a  variable  x.  Of  course,  there  are  many 

other  possible  generalizations  of  instance  1',  and  the  search  of  the  rule  space 
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would  still  be  nontrivial.  The  advantage  of  using  the  single-representation 
trick  is  that  we  have  chosen  a  representation  that  allows  this  search  to  be 
accomplished  by  simple  syntactic  processes. 

The  problems  of  interpretation  and  experiment  planning  are  eased  when 

the  single-representation  trick  is  used.  Many  learning  programs  sidestep  these 
problems  completely  by  assuming  that  the  training  instances  are  provided  by 
the  environment  in  the  same  representation  as  used  for  the  rule  space.  In 

more  practical  situations,  the  interpretation  and  experiment-planning  routines 
serve  to  translate  between  the  raw  instances  (as  they  are  received  from  the 
environment)  and  the  derived  instances  (after  they  have  been  interpreted  as 
specific  points  in  the  rule  space). 

Methods  of  searching  the  rule  space.  Now  that  we  have  discussed 
the  issue  of  how  to  represent  the  rule  space,  we  can  turn  our  attention  to  the 
four  main  methods  that  have  been  used  to  search  the  rule  space.  All  of  these 
methods  maintain  a  set,  H,  of  the  currently  most  plausible  rules.  They  differ 
primarily  in  how  they  refine  the  set  H  so  that  it  eventually  includes  the  desired 
points  in  the  rule  space.  A  useful  classification  of  search  methods  distinguishes 
methods  in  which  the  presentation  of  the  training  instances  drives  the  search 

(so-called  data-driven  methods)  from  those  methods  in  which  an  a  priori  model 
guides  the  search  (so-called  model-driven  methods). 

The  first  data-driven  method  is  the  version-space  method  (and  several 
related  techniques).  This  approach  uses  the  single-representation  trick  to 
represent  training  instances  as  very  specific  points  in  the  rule  space.  The 
set  H  is  initialized  to  contain  all  hypotheses  consistent  with  the  first  positive 
training  instance.  New  training  instances  are  examined  one  at  a  time  and 

pattern-matched  against  H  to  determine  whether  the  hypotheses  in  H  should 
be  generalized  or  specialized. 

The  second  method,  also  a  data-driven  method,  does  not  use  the  single- 
representation  trick.  Instead,  special  procedures  (or  production  rules)  examine 
the  set  of  training  instances  and  decide  how  to  refine  the  current  set,  H, 

of  hypotheses.  The  program  can  be  viewed  as  having  a  set  of  hypothesis- 
refinement  operators.  In  each  cycle,  it  uses  the  data  to  choose  one  of  these 

operators  and  then  applies  it.  Lenat's  (1976)  AM  system  is  an  example  of  this 
approach. 

The  third  approach  is  model- driven  generate  and  test.  This  method 
repeatedly  generates  and  tests  hypotheses  from  the  rule  space  against  the 

training  instances.  Model-based  knowledge  is  used  to  constrain  the  hypothesis 
generator  to  generate  only  plausible  hypotheses.  The  Meta-DENDRAL  pro- 

gram is  the  best  example  of  this  approach  (see  Buchanan  and  Mitchell,  1978). 

Finally,  the  fourth  approach  is  model-driven  schema  instantiation.  It  uses 
a  set  of  rule  schemas  to  provide  general  constraints  on  the  form  of  plausible 
rules.  The  method  attempts  to  instantiate  these  schemas  from  the  current 
set  of  training  instances.  The  instantiated  schema  that  best  fits  the  training 

instances  is  considered  the  most  plausible  rule.  Dietterich's  SPARC  program 
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(Dietterich,  1979;  Dietterich  and  Michalski,  in  press),  which  discovers  secret 

rules  in  the  card  game  Eleusis,  applies  the  schema-instantiation  method. 
Data-driven  techniques  generally  have  the  advantage  of  supporting  incre- 

mental learning.  A  feature  of  the  version  space  method,  in  particular,  is 
that  the  H  set  can  easily  be  modified  to  account  for  new  training  instances 

without  any  backtracking  by  the  learning  program.  In  contrast,  model-driven 
methods,  which  test  and  reject  hypotheses  based  on  an  examination  of  the 
whole  body  of  data,  are  difficult  to  use  in  incremental  learning  situations. 

When  new  training  instances  become  available,  model-driven  methods  must 
either  backtrack  or  search  the  rule  space  again,  because  the  criteria  by  which 
hypotheses  were  originally  tested  (or  schemas  instantiated)  have  changed. 

A  strength  of  model-driven  methods,  on  the  other  hand,  is  that  they 
tend  to  have  good  noise  immunity.  When  a  set  of  hypotheses,  H,  is  tested 

against  noisy  training  instances,  the  model-driven  methods  need  not  reject  a 
hypothesis  on  the  basis  of  one  or  two  counterexamples.  Since  the  whole  set  of 
training  instances  is  available,  the  program  can  use  statistical  measures  of  how 

well  a  proposed  hypothesis  accounts  for  the  data.  In  data-driven  methods,  H  is 
revised  each  time  on  the  basis  of  the  current  training  instance.  Consequently, 
a  single  erroneous  instance  can  cause  a  large  perturbation  in  H  (from  which 

it  may  never  recover).  One  approach  that  allows  data-driven  methods  to 
handle  noise  is  to  make  very  slight,  conservative  changes  in  H  in  response  to 
each  training  instance.  This  minimizes  the  effect  of  any  erroneous  training 
instances,  but  it  causes  the  learning  system  to  learn  much  more  slowly. 

The  problem  of  new  terms.  In  some  learning  problems,  the  program 
can  assume  that  the  desired  rule  or  rules  exist  somewhere  in  the  rule  space. 

Consequently,  the  search  has  a  well-defined  goal.  In  many  situations,  however, 
there  is  no  such  guarantee,  and  the  learning  program  must  confront  the 
possibility  that  its  representation  of  the  rule  space  is  inadequate  and  should 
be  expanded.  This  is  called  the  problem  of  new  terms. 

One  approach  to  expanding  the  rule  space  is  to  add  new  terms  to  the 
representation.  Consider  again  the  problem  of  teaching  a  program  the  concept 
of  a  pair  in  poker.  In  the  section  above,  the  program  was  able  to  represent  the 

pair  concept  by  using  a  predicate-calculus  representation  with  the  suit  and 
rank  terms.  Such  a  representation  would  not  permit  the  program  to  discover 
the  concept  of  a  straight,  however.  One  way  to  represent  the  straight  concept 
would  be  to  create  a  new  term  called  SUCC(x,  y),  which  is  true  if  and  only  if 

x  =  y  +  1.  Now  the  straight  concept  can  be  represented  as: 

RANK(ci,  ri)  A  RANK(c2,  r2)  A  RANK(c3,  r3)  A  RANK(c4,  r4)  A  RANK(c5,  r5)  A 

SUCC(ri,r2)  A  SUCC(r2,r3)  A  SUCC(r3,r4)  A  SUCC(r4,r5). 

The  problem  of  defining  new  terms  is  quite  difficult  to  solve.  An  advantage 

of  the  hypothesis-refinement  operator  approach  to  searching  the  rule  space  is 
that  it  is  fairly  easy  to  incorporate  operators  that  create  new  terms.    The 
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BACON  (Langley,  1980)  and  AM  programs  both  have  operators  that  create 
new  terms  by  combining  and  refining  existing  terms. 

Experiment  Planning 

Once  the  learning  element  has  searched  the  rule  space  and  developed 
a  set,  H,  of  plausible  hypotheses,  the  program  may  need  to  gather  more 
training  instances  to  test  and  refine  them.  When  the  instance  space  and  the 
rule  space  are  represented  in  very  different  ways,  the  process  of  determining 
which  training  instances  are  needed  and  how  they  can  be  obtained  can  be 
quite  involved.  Suppose,  for  example,  that  a  genetics  learning  program  is 

attempting  to  discover  which  portions  of  DNA  are  important.  To  test  a  high- 
level  hypothesis  (or  several  hypotheses),  it  may  be  necessary  to  plan  a  very 
involved  experiment  to  synthesize  a  particular  strand  of  DNA  and  insert  it 
into  the  appropriate  bacterial  cells  to  observe  the  resulting  behavior  of  the 

cells.     - 
The  AM  program  is  an  example  of  an  AI  learning  program  that  performs 

some  experiment  planning.  After  one  of  AM's  refinement  operators  creates 
a  new  concept,  AM  must  gather  examples  of  that  concept  to  evaluate  and 
refine  it.  Several  techniques  are  used  to  generate  good  training  instances, 

for  example,  by  symbolically  instantiating  the  concept  definition  or  by  inher- 
iting examples  from  more  general  or  more  specific  concepts.  AM  has  a  spe- 

cial body  of  heuristics  for  locating  positive  and  negative  boundary  examples 

(i.e.,  examples  that  barely  succeed,  or  barely  fail,  to  be  instances  of  the  con- 
cept). 

Taxonomy  of  Work  in  Learning  from  Examples 

Now  that  we  have  described  the  two-space  model,  we  present  a  rough 
taxonomy  of  work  in  the  area  of  learning  from  examples.  Several  subareas 
of  research  have  developed  within  this  area,  ranging  from  philosophically 

oriented  inductive  learning  to  highly  engineering-oriented  pattern-classification 
work.  These  different  areas  can  be  characterized  by  two  components  of  the 

simple  learning  model  presented  in  Article  XIV.A:  the  representation  used  in 
the  knowledge  base  and  the  task  that  the  performance  element  carries  out. 
In  the  remainder  of  this  chapter,  a  separate  article  is  devoted  to  each  of  these 
subareas. 

Systems  that  use  numerical  representations.  Researchers  in  electri- 
cal engineering  and  systems  theory  have  developed  learning  methods  that 

represent  acquired  knowledge  in  the  form  of  polynomials  and  matrices.  The 

performance  elements  of  these  learning  systems,  which  are  usually  called  adap- 
tive systems,  typically  perform  tasks  such  as  pattern  classification,  adaptive 

control,  and  adaptive  filtering.  The  strengths  of  these  adaptive  methods  are 
that  they  can  be  used  in  noisy  environments,  in  environments  whose  properties 
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are  changing  rapidly,  and  in  situations  where  analytic  solutions  based  on  clas- 
sical systems  theory  are  unavailable.  We  include  an  article  on  this  subject 

because  of  its  historical  relationship  to  AI  and  because  of  the  possibility  that 

useful  hybrid  systems  may  be  constructed  in  the  future. 

Systems  that  use  symbolic  representations.  Most  AI  work  on  learn- 

ing has  used  symbolic  representations  such  as  feature  vectors,  first-order  predi- 
cate calculus,  and  production  rules  to  represent  the  knowledge  acquired  by  the 

learning  element.  It  is  useful  to  classify  this  work  according  to  the  complexity 

of  the  task  being  performed  by  the  learning  system: 

1 .  Learning  single  concepts.  The  simplest  performance  task  is  to  classify  new 
instances  according  to  whether  they  are  instances  of  a  single  concept. 
The  problem  of  learning  single  concepts  has  received  a  lot  of  attention 
and  is  probably  the  best  understood  learning  task  in  AI. 

2.  Learning  multiple  concepts.  Many  performance  tasks  involve  the  use  of 
a  set  of  concepts  that  operate  independently.  Disease  diagnosis,  for 
example,  is  a  task  in  which  the  program  seeks  to  assign  one  or  more 
disease  classes  to  a  patient.  The  problem  of  learning  a  set  of  concepts 

has  received  some  attention  in  AI.  The  Meta-DENDRAL  and  AM  systems, 
for  example,  discover  many  concepts  in  order  to  describe  their  training 
instances  and  guide  the  performance  element. 

3.  Learning  to  perform  multiple-step  tasks.  The  most  complex  performance 
tasks  for  which  learning  techniques  have  been  developed  are  relatively 

simple  planning  tasks  that  require  the  performance  element  to  apply 
a  sequence  of  operators  to  perform  the  task.  Unlike  the  multiple,  but 

independent,  concepts  used  in  Meta-DENDRAL  and  AM,  the  rules  in 
these  systems  must  be  chained  together  into  a  sequence.  Consequently, 

many  difficult  problems  of  integration  and  credit-assignment  arise. 
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D2.     Learning  in  Control  and  Pattern  Recognition  Systems 

THERE  ARE  many  applications  in  engineering  and  science  for  which  learning 
systems  have  been  developed.  These  systems,  usually  called  adaptive  systems, 
are  useful  when  classical  systems  techniques  cannot  be  applied  because  of 
insufficient  knowledge  about  the  underlying  system.  Such  situations  often 
arise  in  extremely  noisy  and  rapidly  changing  environments. 

Classical  systems  theory  addresses  itself  to  problems  in  the  design  and 
analysis  of  systems,  where  a  system  is  viewed  abstractly  as  an  operator  that 

maps  a  vector  of  inputs,  x,  to  a  vector  of  outputs,  y.  Two  important  engineer- 
ing problems  for  which  learning  systems  have  been  developed  are  control  and 

pattern  recognition. 

Consider  the  control  problem  shown  in  Figure  D2-1.  The  system  is  an 
automobile  engine.  The  inputs — in  this  case,  control  inputs — are  the  amount 
of  gasoline  and  the  setting  of  the  spark-plug  advance.  The  single  output  is 
the  speed  of  the  engine.  The  control  problem  is  to  determine  the  settings 
of  the  inputs  over  time,  so  that  the  output  follows  a  particular  curve.  We 
want  the  speed  of  the  engine  to  track  the  desired  speed  as  commanded  by  the 

driver  of  the  automobile.  If  we  have  a  mathematical  model  of  the  engine — say, 
as  a  set  of  differential  equations  relating  x\  and  £2  to  y — we  can  often  solve 
this  control  problem.  To  obtain  the  model,  we  can  usually  inspect  the  system 

directly  and  apply  the  laws  of  physics.  But  in  complex,  time-varying  systems, 
such  an  approach  may  be  impossible.  Instead,  it  may  be  necessary  to  identify 

the  system — that  is,  construct  a  model  by  observing  the  system  in  operation 
and  finding  an  empirical  relationship  between  the  inputs  and  the  outputs. 

Pattern  recognition — the  other  task  for  which  adaptive  learning  is  useful — 
also  can  be  viewed  as  a  system-identification  problem.  The  pattern-classifi- 

cation system  shown  in  Figure  D2-2  takes  an  input  object — represented  as 
a  vector,  x,  of  features — and  maps  it  into  one  of  m  pattern  classes.    The 

Desired 

Speed 
Controller 

x\  :  Gas  Flow 
Automobile 
Engine   / 

£2  :  Spark  Advance 

Actual 

Speed  of 
Engine 

f(xi,x2)  =  y 

Figure  D2-1.     A  simple  control  problem. 
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Input 
Image 

Character  Recognizer 

(person) 

Character  Class 

{A,B,  ...,£,1,2,  ...,9,  ...} 

Figure  D2-2.     A  simple  pattern-classification  problem. 

archetypal  pattern-classification  problem  is  optical  character  recognition,  in 
which  the  inputs  are  images  of  handwritten  or  printed  characters  and  the 
output  is  a  classification  of  each  image  as  one  of  the  letters,  numerals,  or 
punctuation  symbols.  Suppose  we  want  to  build  a  computer  system  that  can 

recognize  characters.  We  have  available  an  unknown  system — in  this  case,  a 
person — that  can  perform  the  task  reliably.  If  we  can  identify  the  system,  we 
will  then  have  a  computer  model  that  can  recognize  handwritten  characters. 

Figure  D2-3  illustrates  the  general  setup  for  adaptive  system  identifica- 
tion. The  unknown  system  and  the  model  are  configured  in  parallel.  Their 

outputs — the  true  output,  y,  and  the  estimated  output,  y — are  compared, 
and  the  error,  e,  is  fed  back  to  the  learning  element,  which  then  modifies  the 

model  appropriately.  In  the  terminology  of  our  simple  learning-system  model, 
the  unknown  system  is  the  environment.  It  provides  training  instances,  in  the 

form  of  (x,  y)  pairs,  to  the  learning  element.  The  learning  element  modifies 
certain  parts  of  the  model  (i.e.,  the  knowledge  base),  so  that  the  model  system 
(i.e.,  the  performance  element)  more  accurately  models  the  unknown  system. 

Conceptually,  therefore,  adaptive  system  identification,  adaptive  control, 
and  pattern  recognition  are  all  problems  of  learning  from  examples.     The 

Unknown 

System + 

t 
{  ̂  )  e 

\^J 

Model  / 
System / 

y      Y 

t 
Learning 

Element 

Figure  D2-3.     Adaptive  system  identification. 
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unknown  system  provides  the  training  instances  and  the  performance  stan- 
dard (i.e.,  the  true  y  values). 

In  this  article,  we  discuss  the  methods  that  have  been  used  to  accomplish 
this  learning.  We  have  divided  the  methods  into  four  groups  according  to  the 
representations  that  are  used  to  model  the  unknown  system: 

1.  Statistical  algorithms,  which  employ  probability  density  functions  to  create 
a  Bayesian  decision  procedure; 

2.  Parameter  learning,  which  uses  a  vector  of  parameters  and  a  linear  model; 

3.  Automata  learning,  which  uses  stochastic  and  fuzzy  automata  (discussed 
below)  to  model  the  unknown  system;  and 

4.  Structural  learning,  which  uses  pattern  grammars  and  graphs  to  represent 
classes  of  objects  for  pattern  classification. 

Statistical  Learning  Algorithms 

In  pattern  recognition  (and  sometimes  in  control),  it  is  possible  to  view 
the  unknown  system  as  making  a  decision  to  assign  the  input,  x,  to  one 
class,  y,  out  of  m  classes.  By  defining  a  loss  function  that  penalizes  incorrect 

decisions  (i.e.,  decisions  in  which  y  differs  from  y),  a  minimum- average-loss 
Bayes  classifier  can  be  used  to  model  the  unknown  system.  The  problem  of 
identifying  the  unknown  system  then  reduces  to  the  problem  of  estimating  a 
set  of  parameters  for  certain  probability  density  functions.  These  parameters, 

such  as  the  mean  vector  and  the  variance-covariance  matrix,  can  be  estimated 
from  the  training  instances  in  a  fairly  straightforward  fashion  (see  Duda  and 

Hart,  1973). 

In  the  terminology  of  Simon  and  Lea  (1974),  the  set  of  all  possible  x  vec- 
tors forms  the  instance  space,  and  the  set  of  possible  values  for  the  parameters 

of  the  probability  distributions  forms  the  rule  space.  The  rule  space  is  searched 
by  direct  calculation  from  the  training  instances.  The  instance  space  is  not 
actively  searched. 

Unfortunately,  these  methods  rely  on  assuming  a  particular  form  (e.g., 
multivariate  normal)  for  the  probability  distributions  in  the  model.  These 

assumptions  frequently  do  not  hold  in  real-world  problems.  Furthermore,  the 
computational  costs  of  the  estimation  may  be  very  high  when  there  are  many 
features. 

Parameter  Learning 

In  parameter  learning,  a  fixed  functional  form  is  assumed  for  the  unknown 
system.  This  functional  form  has  a  vector  of  parameters,  w,  that  must  be 
determined  from  the  training  instances.  Unlike  the  statistical  methods,  there 
is  little  or  no  probabilistic  interpretation  for  the  unknown  parameters  and, 
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consequently,  probability  theory  provides  no  guidance  for  estimating  them 
from  the  data.  Instead,  some  sort  of  criterion,  usually  the  squared  error 

(y  —  y)2  averaged  over  all  training  instances,  is  minimized.  The  rule  space 
is  thus  a  space  of  possible  parameter  vectors,  and  it  is  searched  by  hill- 
climbing  (also  called  gradient  descent)  to  find  the  point  that  minimizes  the 
error  between  the  model  and  the  unknown  system. 

The  most  popular  form  assumed  for  the  unknown  system  is  a  linear 
functional: 

y =  WX  =  ̂2  WiXi 

The  output  is  assumed  to  be  a  linear  combination  of  the  input  feature  vector, 
x,  with  a  weight  vector,  w.  The  elements  of  the  weight  vector  are  the  unknown 
parameters.  The  rule  space  is  thus  the  space  of  all  possible  weight  vectors, 
known  as  the  weight  space. 

An  important  special  case  arises  when  the  unknown  system  is  a  binary 
pattern  classification  system  similar  to  the  system  shown  earlier  in  Figure 

D2-2.  In  binary  pattern  classification,  the  classifier  must  indicate  in  which 
of  the  two  pattern  classes  the  input  pattern,  x,  belongs.  This  is  typically 
accomplished  by  taking  the  output,  y,  of  a  linear  functional  and  comparing 
it  to  a  threshold,  b: 

If  y  >  b,  then  x  is  in  class  1. 
If  y  <  b,  then  x  is  in  class  2. 

Usually,  the  instance  space  is  normalized,  so  that  the  threshold  b  is  zero.  This 

linear- discriminant  function  can  be  thought  of  as  a  hyperplane  that  splits  the 
instance  space  into  two  regions  (class  1  and  class  2).  For  example,  if  x  = 

(xi,X2)  is  a  two-dimensional  feature  vector  and  w  =  (—1,2),  the  instance 
space  is  split  as  shown  in  Figure  D2-4. 

The  learning  problem  of  finding  w  can  thus  be  viewed  as  the  problem 
of  finding  a  hyperplane  that  separates  training  instances  of  class  1  from 
training  instances  in  class  2.  When  it  is  possible  to  find  such  a  hyperplane, 
the  training  instances  are  said  to  be  linearly  separable.  Often,  however,  the 
training  instances  are  not  linearly  separable.  In  such  cases,  we  must  either  use 
a  more  complex  functional  form,  such  as  a  quadratic  function,  or  else  settle 
for  the  hyperplane  that  makes  the  fewest  errors  on  the  average. 

How  can  the  desired  hyperplane,  or,  equivalently,  the  desired  weight 
vector,  be  found?  We  describe  three  basic  algorithms  for  computing  the  weight 

vector.  The  first  two  algorithms  are  hill-climbing  methods  that  process  the 
training  instances  one  at  a  time.  After  each  training  instance,  x/c,  the  weight 

vector,  Wfc,  is  updated  to  give  w^+i- 

The  first  algorithm,  called  the  fixed-increment  perceptron  algorithm,  seeks 
to  minimize  the  classification  errors  made  by  the  model.  If  x^  is  an  instance 

of  class  1  and  y  =  w^x/c  is  less  than  0,  instead  of  greater  than  0,  an  error 



D2 Learning  in  Control  and  Pattern  Recognition  Systems 377 

Class  1               1  k 

+     ̂ X^
^ 

X\ 

Class  2 

4- :  Instance  of  class  1 

—  :  Instance  of  class  2 

Figure  D2-4.     An  example  of  a  linear-discriminant  function. 

has  been  made.  The  magnitude  of  this  error  is  e  =  0  —  w^x/c,  that  is,  the 
difference  between  the  desired  value  for  the  output  of  the  system  (y  =  0)  and 
the  value  computed  by  the  model  (y  =  w^Xfe).  This  is  usually  written  as  the 
perceptron  criterion, 

Jp  =  -W/cXfc  , 

and  the  goal  of  learning  is  to  minimize  Jp.  The  fixed-increment  algorithm 
updates  w^  whenever  Jp  >  0  according  to 

Wfc+i   =Wfc+Xfc. (1) 

We  can  think  of  Jp  as  a  surface  over  the  weight  space,  the  space  of  possible 

values  for  the  weight  vector  w  (see  Fig.  D2-5).  Mathematical  analysis  shows 
that  x  can  be  viewed  as  a  vector  in  this  weight  space  (as  well  as  in  instance 

space)  pointing  in  the  direction  of  steepest  descent  for  Jp.  Thus,  this  algorithm 

takes  a  fixed-size  step  in  the  direction  of  steepest  descent. 
Similarly,  if  x&  is  in  class  2  and  w^x/c  >  0,  an  error  has  been  made.  The 

solution  is  to  adjust  w  as 

Wfc+l   =  Wfc  -Xfc. 

Equivalently,  all  training  instances  in  class  2  can  be  replaced  by  their  nega- 
tives, and  all  instances  can  be  processed  as  though  they  were  in  class  1. 

Equation  (1)  can  then  be  used  to  perform  the  entire  learning  process. 

The  fixed-increment  algorithm  converges  in  a  finite  number  of  steps  if  the 
training  instances  are  linearly  separable.  It  has  been  shown  for  the  two-class 
case  that  the  number  of  training  instances  should  be  at  least  twice  the  number 

of  features  in  the  instance  space  (see  Nilsson,  1965). 
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weight  space 

Figure  D2-5.     A  schematic  diagram  of  the  perceptron  algorithm. 

Historically,  the  fixed-increment  algorithm  is  associated  with  Rosenblatt's 
(1957,  1962)  perceptron,  which  was  developed  within  the  study  of  bionics  and 

neural  mechanisms.  The  simplest  perceptron,  shown  in  Figure  D2-6,  is  a 
device  that  assigns  patterns  to  one  of  two  classes.  It  consists  of  an  array 
of  sensory  units  connected  in  a  random  way  to  an  array  of  unmodifiable 
threshold  units,  each  of  which  computes  some  desired  feature  of  the  sensory 

array  and  produces  a  +1  or  —1  output,  depending  on  whether  the  feature 
is  present  or  absent.  The  outputs  of  these  feature-extraction  units  are  then 
connected  to  a  modifiable  unit  that  weights  each  input  and  sums  the  result 

(i.e.,  computes  wx).  The  resulting  value  is  compared  with  a  threshold,  and  the 
perceptron  produces  an  output  of  +1  if  wx  is  greater  than  the  threshold  and 

—1  otherwise.  Thus,  the  simplest  perceptron  implements  a  linear-discriminant 
function.    The  original  publication  of  the  perceptron  model  sparked  a  large 

Sensory  Fixed 
Inputs  Feature 

Extractors 

Adjustable 
Linear  Threshold 

Device 

Figure  D2-6.     The  simplest  form  of  perceptron. 



D2  Learning  in  Control  and  Pattern  Recognition  Systems  379 

amount  of  research,  and  a  fair  amount  of  speculation,  concerning  the  potential 

for  building  intelligent  machines  from  perceptions.  Minsky  and  Papert  (1969) 
attempted  to  quiet  this  speculation  by  proving  several  theorems  about  the 

limits  of  perceptron-based  learning.  The  introduction  to  their  book  provides 
several  criticisms  of  AI  learning  research  that  remain  valid  today. 

The  fixed-increment  perceptron  algorithm  can  be  improved  in  several  ways 
by  choosing  how  far  in  the  direction  of  the  gradient  to  go  at  each  step.  The 

LMS  (least-mean-square)  algorithm  (Widrow  and  Hoff,  1960),  for  example, 
updates  w  according  to 

wfc+i  =  wfc  +/oefcxfc, 

where  p  is  a  positive  value  and  e^  is  the  magnitude  of  the  error,  that  is, 

— WfcXfc.  This  algorithm  tends  to  minimize  the  mean-squared  error 

J5   =  ̂2  (WfcXfc)' 

even  when  the  classes  are  not  linearly  separable.  The  algorithm  is  also  very 
easy  to  implement. 

More  robust,  but  harder  to  compute,  algorithms  are  based  on  tradi- 

tional linear-regression  and  linear-programming  techniques  (see  Duda  and 
Hart,  1973).  Given  a  set  of  training  instances,  linear  regression  can  be  used 
to  minimize  Js.  The  weight  vector  is  computed  from  the  data  as 

w  =  (XTX)-1XTy, 

where  y  is  the  true  output  of  the  unknown  system  and  X  is  a  matrix  of  train- 
ing instances,  one  instance  in  each  row.  Unfortunately,  this  method  requires 

computing  the  pseudo- inverse  (XTX)-1XT  of  X,  which  is  an  expensive  step. 
Less  costly  recursive  algorithms  have  been  developed  that  can  compute  w 

incrementally  as  the  training  instances  become  available,  rather  than  collect- 
ing all  of  the  instances  and  computing  w  once  and  for  all  (Goodwin  and  Payne, 

1977). 

Linear-programming  techniques  can  be  used  to  minimize  the  perceptron 

criterion,  Jp.  These  methods  also  conduct  a  hill-climbing  search  of  the  weight 
space.  Further  details  are  available  in  Duda  and  Hart  (1973). 

Some  of  these  linear-discriminant  algorithms  can  be  modified  slightly  to 
put  them  on  sound  statistical  foundations.  The  regression  techniques,  for 

example,  can  be  adjusted  to  converge  in  the  limit  to  an  optimum  Bayes  clas- 
sifier. Their  rate  of  convergence  is  slower  than  the  unmodified  algorithms. 

Consequently,  the  simpler,  faster  algorithms  shown  above  are  often  chosen  in 
favor  of  the  statistically  more  rigorous  methods. 

All  of  these  methods  for  finding  discriminant  functions  can  be  general- 
ized to  handle  classification  problems  for  more  than  two  classes.    Typically, 
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a  separate  discrimination  function  is  learned  for  each  of  m  classes,  and  x  is 

classified  to  that  class  i  for  which  the  value  of  the  discriminant  function  /;(x) 

is  largest.  Another  approach  to  multiple-class  problems  is  to  perform  a  multi- 
stage classification  in  which  x  is  first  classified  into  one  of  a  few  classes  and 

then  each  of  these  is  in  turn  split  into  subclasses  until  x  is  properly  classified. 
By  decomposing  the  classification  problem  into  subproblems,  other  a  priori 

knowledge  about  different  classes — and  the  features  relevant  to  those  classes — 
can  be  incorporated  into  the  system.  Most  large,  multicategory  problems  do 

not  lend  themselves  to  straightforward  general  solutions.  Instead,  the  struc- 
ture and  organization  of  the  classification  strategy  are  usually  highly  depen- 
dent on  the  particular  problem  and  domain-specific  knowledge.  Consequently, 

many  of  these  classification  problems  overlap  problems  in  AI. 

Learning  Automata 

An  alternate  representation  for  an  unknown  system  is  as  a  finite-state 

automaton  (Fu,  1970b).  The  goal  is  to  find  a  finite-state  automaton  whose 
behavior  imitates  that  of  the  unknown  system.  Two  quite  similar  approaches 

have  been  pursued.  One  models  the  unknown  system  as  a  deterministic  finite- 
state  machine  with  randomly  perturbed  inputs.  The  learning  program  is 
given  an  initial  state  transition  probability  matrix,  M,  which  tells  overall  for 

each  state,  <?;,  what  the  probability  is  that  the  next  state  will  be  qj.  From 
M,  an  equivalent  deterministic  machine  can  be  derived,  and  the  probability 
distribution  of  the  input  symbols  can  be  determined.  This  approach  requires 
that  the  internal  states  of  the  unknown  system  can  be  precisely  observed  and 
measured. 

A  second  approach  models  the  unknown  system  as  a  stochastic  machine 

with  a  random  transition  matrix  for  each  possible  input  symbol.  Reinforce- 
ment techniques  are  applied  to  adjust  the  transition  probabilities.  Unfortu- 

nately, this  requires  a  large  amount  of  training  information  in  order  to  exercise 
all  possible  transitions.  As  with  the  first  approach,  assumptions  about  the 
observability  of  all  internal  states  must  be  made. 

Fuzzy  automata  based  on  Zadeh's  fuzzy  set  concept  provide  an  alternate, 
but  similar,  approach  to  that  used  with  stochastic  automata  (Wee  and  Fu, 

1969).  Set-membership  criteria  are  applied,  rather  than  probabilistic  con- 
straints, in  the  selection  of  transitions  and  outputs.  Fuzzy  automata  are  also 

able  to  make  higher  order  transitions  than  stochastic  automata  and,  conse- 
quently, they  can  usually  learn  faster. 

The  basic  ideas  of  automata  learning  have  been  extended  to  take  into 

account  the  interactions  of  a  number  of  automata  operating  in  the  same  envi- 
ronment. Such  automata  may  interact  in  either  cooperative  or  competitive 

modes.  This  has  led  to  the  formulation  and  study  of  automata  games  (Fu, 
1970b). 
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Automata  methods  have  the  advantage  over  parameter-learning  methods 
in  that  they  do  not  require  that  there  be  a  performance  criterion  with  a  unique 

minimum  point.  Furthermore,  automata  provide  a  more  expressive  repre- 
sentation for  describing  the  unknown  system.  The  principal  disadvantage 

of  automata  learning  methods  is  that  they  are  relatively  slow  compared  to 
parameter  learning  techniques.  In  addition,  they  are  usually  suitable  only  for 

application  in  stationary  (i.e.,  non-time- varying)  environments.  Consequently, 
automata  methods  have  not  yet  seen  much  practical  application. 

Structural  Learning 

Structural  learning  techniques  have  been  used  primarily  in  situations  in 

which  the  objects  to  be  classified  have  important  substructure  (Fu,  1974).  The 

parametric  linear-discriminant  approaches  described  above  can  represent  only 
the  global  features  of  objects.  By  employing  pattern  graphs  and  grammars, 
important  substructures,  such  as  the  pen  strokes  that  make  up  a  character 
and  the  phonemes  that  make  up  a  spoken  word,  can  be  represented  along  with 
their  interrelationships.  A  first  step  in  setting  up  a  structural  learning  scheme 
involves  identifying  a  set  of  primitive  structural  elements  associated  with  the 
problem.  These  primitives  may  be  thought  of  as  the  alphabet  for  describing 
all  possible  patterns  associated  with  the  application.  They  need  to  be  higher 
level  objects  than  simple  scalar  measurements  (e.g.,  characters,  shapes,  and 
phonemes  instead  of  height,  width,  and  curvature).  Legal  and  recognizable 
patterns  are  formed  from  combinations  of  the  primitives  according  to  certain 

syntactic  rules. 

Formal  language  theory  provides  a  theoretical  framework  that  accom- 
modates the  structural  or  descriptive  formulation  of  pattern  recognition.  Here, 

the  alphabet  corresponds  to  the  set  of  structural  primitives.  A  number  of  for- 
malisms have  been  used  to  express  structural  descriptions.  In  linguistic  terms, 

a  pattern  may  be  thought  of  as  a  string  or  sentence,  and  a  grammar  may  be 
associated  with  each  pattern  class.  The  grammar  controls  the  structure  of 

the  language  in  such  a  way  that  the  sentences  (patterns)  produced  belong 
exclusively  to  a  particular  pattern  class;  a  grammar  is  therefore  needed  for 
each  pattern  class.  Parsing  techniques  can  help  determine  whether  a  sentence 
(pattern)  is  grammatically  correct  for  a  given  language.  Both  deterministic 
and  stochastic  grammars  have  been  employed  in  pattern  classification.  (See 

Article  XIII.E3  for  a  discussion  of  grammatical  approaches  to  image  under- 
standing.) 

Stochastic  grammars  (see  Article  XTV.D5e)  have  been  used  in  an  attempt 

to  accommodate  the  possibilities  of  ambiguity  and  error  in  pattern  descrip- 
tion. These  grammars  make  it  possible  for  probabilistic  assignments  to  be 

made.  Before  such  a  grammar  can  be  used  for  classification,  the  production 

probabilities  must  be  determined,  for  example,  by  "learning"  them  from  a  set 
of  training  examples. 
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There  are  still  several  difficulties  associated  with  the  structural  approach 
to  pattern  classification.  In  contrast  to  the  statistical  and  parameter  learning 
methods,  very  few  practical  structural  training  algorithms  have  presently  been 
proposed.  The  problem  of  learning  a  grammar  from  training  instances  is 
called  grammatical  inference.  Article  XIV.D5e  describes  the  current  state  of 
work  in  that  area.  In  addition  to  the  problem  of  learning  the  grammar,  the 
steps  of  segmentation  into  primitives  and  formation  of  structural  descriptions 
are  only  partly  solved. 

Relevance  for  Artificial  Intelligence 

This  survey  of  learning  systems  in  engineering  shows  that  many  of  the 
problems  addressed  are  analogous  to  those  encountered  in  the  design  of  AI 

learning  systems.  Engineering  systems  are  particularly  adept  at  handling 

noisy  training  instances — a  problem  that  few  AI  systems  have  addressed.  It 
has  also  been  possible  to  develop  detailed  analyses  of  these  learning  algo- 

rithms, including  convergence  proofs  and  investigations  of  their  statistical 
foundations. 

The  primary  drawback  of  these  methods  is  their  reliance  on  simple  feature- 
vector  representations.  Although  there  are  many  practical  applications  for 

which  these  representations  suffice,  most  problems  of  interest  to  AI  research- 
ers require  more  expressive  representations.  The  more  recent  attempts  to  use 

automata  and  pattern-grammar  representations  are  much  more  relevant  to  AI 
research. 

Some  aspects  of  the  work  in  engineering  may  be  important  for  AI  research- 
ers. In  addition  to  work  on  the  problem  of  noise,  some  progress  has  been 

made  on  solving  the  problem  of  choosing  a  good  set  of  features  with  which  to 
perform  the  learning  process.  One  approach  is  to  estimate  the  discriminatory 

ability  of  each  feature  given  choices  of  the  other  features.  Dynamic-program- 
ming techniques  can  help  determine  a  good  ordering  of  the  features  (from 

most  relevant  to  least  relevant).  A  second  interesting  approach — called  dimen- 
sionality reduction — is  to  take  a  large  set  of  features  and  compute  a  new, 

smaller  set  by  forming  linear  combinations  of  the  old  features.  The  Karhunen- 
Loeve  expansion  can  be  used  to  create  such  derived  features  (see  Fu,  1970a, 
and  Article  XIII.C5). 
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MANY  PROGRAMS  have  been  developed  that  are  able  to  learn  a  single  concept 

from  training  instances.  This  article  describes  the  single-concept  learning 
problem  and  discusses  a  few,  selected  learning  programs  that  give  a  sense  of 
the  techniques  that  have  been  applied  to  this  problem. 

What  does  it  mean  to  learn  a  concept  from  training  instances?  The  term 
concept  is  used  quite  loosely  in  the  AI  literature.  In  this  article,  we  take 
a  concept  to  be  a  predicate,  expressed  in  some  description  language,  that 
is  TRUE  when  applied  to  a  positive  instance  and  FALSE  when  applied  to  a 
negative  instance  of  the  concept.  A  concept  is  thus  a  predicate  that  partitions 
the  instance  space  into  positive  and  negative  subsets.  For  example,  the  concept 
of  straight  can  be  thought  of  as  a  predicate  that  indicates,  for  any  poker  hand, 
whether  or  not  that  hand  is  a  straight. 

The  single-concept  learning  problem  is  the  problem  of  discovering  such  a 
concept  predicate  from  training  instances — that  is,  from  a  sample  of  positive 
and  negative  instances  in  the  instance  space.  The  standard  solution  to  this 
problem  is  to  provide  the  learning  program  with  a  space  of  possible  concept 
descriptions  that  the  learning  program  searches  to  find  the  desired  concept 
description  (see  Article  XIV.Dl). 

Formally,  the  single-concept  learning  problem  can  be  stated  as  follows: 

Given:    (1)  A  representation  language  for  concepts.     This  implicitly 
defines  the  rule  space:    the  space  of  all  concepts  repre- 
sentable  in  the  language. 

(2)  A  set  of  positive  (and  usually  negative)  training  instances. 
In  most  work  to  date,  these  training  instances  are  noise  free 
and  classified  in  advance  by  the  teacher. 

Find:  The  unique  concept  in  the  rule  space  that  best  covers  all  of 
the  positive  and  none  of  the  negative  instances.  Most  work 

to  date  assumes  that  if  enough  instances  are  presented,  ex- 
actly one  concept  exists  that  is  consistent  with  the  training 

instances. 

To  gain  insight  into  the  origin  of  the  single-concept  learning  problem,  it 
is  useful  to  examine  the  performance  tasks  that  make  use  of  the  concept  once 
it  is  learned.  The  standard  performance  task  is  classification;  the  system  is 
presented  with  new  unknowns  and  is  asked  to  classify  them  as  positive  or 
negative  instances  of  a  concept.  Another  common  task  is  prediction;  if  the 
training  instances  are  successive  elements  of  a  sequence,  the  system  is  asked  to 
predict  future  elements  in  the  sequence.  A  third  task  is  data  compression;  the 

system  is  given  all  possible  instances  (the  full  instance  space)  and  is  asked  to 

383 
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find  a  concept  that  compactly  describes  them.  The  concept-classification  and 
sequence-prediction  tasks  both  arose  as  laboratory  paradigms  within  cognitive 
psychology  (see  Hunt,  Marin,  and  Stone,  1966).  Sequence  extrapolation  is  also 
a  paradigm  example  of  induction  as  discussed  by  philosophers  (Carnap,  1950). 
Data  compression  is  of  practical  value  for  storage  and  classification. 

The  two  key  assumptions  made  in  all  of  this  work  are  (a)  that  the  train- 
ing instances  are  all  examples  (or  counterexamples)  of  a  single  concept  and 

(b)  that  that  concept  can  be  represented  by  a  point  in  the  given  rule  space. 
When  the  first  assumption  is  violated,  it  is  necessary  to  find  a  set  of  concepts 
that  account  for  the  training  instances.  The  systems  described  in  the  article 
on  multiple  concepts  (Article  XIV.D4)  address  this  problem.  When  the  second 
assumption  is  violated,  it  is  necessary  to  alter  the  rule  space  so  that  it  does 

contain  the  desired  concept.  Very  little  attention  has  been  given  to  this  prob- 
lem in  single-concept  learning.  The  BACON  program  employs  some  simple 

methods  to  alter  the  rule  space  by  adding  new  terms  to  the  representation 

language  (see  Article  XTV.D3b). 

Approaches  to  Solving  the  Single-concept  Learning  Problem 

In  Article  XIV.Dl,  we  described  four  basic  techniques — version  spaces, 
refinement  operators,  generate  and  test,  and  schema  instantiation — that  are 
used  to  search  the  rule  space.  Each  of  these  search  methods  has  been  applied 

to  the  single-concept  learning  problem.  The  remainder  of  this  article  is  divided 
into  four  subarticles — one  devoted  to  each  method.  The  first  two  subarticles 

describe  data-driven  methods.  Mitchell's  version-space  method  is  discussed 
first.  It  provides  a  useful  framework  for  describing  several  related  systems 

developed  by  Hayes-Roth,  Vere,  and  Winston.  Then  two  refinement-operator 
systems,  BACON  and  CLS/ID3,  are  presented.  The  second  pair  of  subarticles 

describes  model-driven  methods:  a  generate-and-test  method  developed  by 
Dietterich  and  Michalski  (1981)  and  a  schema-instantiation  method,  SPARC, 
that  plays  the  card  game  Eleusis. 
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RECENT  WORK  by  Mitchell  (1977,  1979)  provides  a  unified  framework  for 

describing  systems  that  use  a  data-driven,  single-representation  approach  to 
concept  learning.  Mitchell  has  noted  that,  in  all  representation  languages,  the 
sentences  can  be  placed  in  a  partial  order  according  to  the  generality  of  each 

sentence.  Figure  D3a-1  illustrates  this  general-to-specific  ordering  with  a  few 
sentences  in  predicate  calculus  containing  the  predicates  RED  and  BLACK.  The 

concept  3  c\  :  RED(ci),  for  example,  describes  the  set  S  of  all  poker  hands 
that  contain  at  least  one  red  card.  This  concept  is  more  general  than  the 

concept  3  C\C2  '•  RED(ci)  A  RED(c2)  that  describes  the  set  T  of  all  poker  hands 
containing  at  least  two  red  cards,  since  the  set  S  strictly  contains  the  set  T. 

The  set  of  cards  described  by  3  c\  c2  c3  :  RED(ci)  A  RED(c2)  A  BLACK(c3) 
is  smaller  still  and,  thus,  is  even  more  specific  than  the  3  C\  c2  :  RED(ci)  A 
RED(c2)  concept. 

It  should  be  evident  that  the  syntactic  rules  of  generalization  described  in 
Article  XIV.D1  can  be  used  to  generate  this  partial  ordering.  In  this  example, 

the  dropping- conditions  rule  of  generalization  was  applied  to  the  three  most 
specific  concepts  to  generate  the  others.  In  general,  any  rule  space  can  be 

partially  ordered  according  to  the  general-to-specific  ordering. 
The  most  general  point  in  the  rule  space  is  usually  the  null  description 

(in  which  all  conditions  have  been  dropped),  which  places  no  constraints 
on  the  training  instances  and  thus  describes  anything.  The  most  specific 

points  in  the  rule  space  correspond  to  the  training  instances  themselves — 
represented  in  the  same  representation  language  as  that  used  for  the  rule  space 

(see  Fig.  D3a-2). 

3  Ci  :  RED(ci) 

3  cxc2  :  RED(ci)  A  RED(c2)  3  C|C2  :  RED(c,)  A  BLACK(c2) 

3  C1C2C3  :  RED(fi)  A  RED(c2)  A  RED(c3)    \  /      3  CiC2C3  :  RED(ci )  A  BLACK(c2)  A  BLACK(c3) 

3  c\c2cj,  :  RED(ci)  A  RED(c2)  A  BLACK(c3) 

Figure  D3a-1.     A  small  rule  space  and  its  general-to-specific  ordering. 

385 
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null  description more  general 
i a 

training  instances more  specific 

Figure  D3a-2.     A  schematic  diagram  of  the  rule  space. 

Mitchell  has  pointed  out  that  programs  can  take  advantage  of  this  partial 
ordering  to  represent  the  set  H  of  plausible  hypotheses  very  compactly.  A  set 
of  points  in  a  partially  ordered  set  can  be  represented  by  its  most  general 

and  most  specific  elements.  Thus,  as  shown  in  Figure  D3a-3,  the  set  H  of 
plausible  hypotheses  can  be  represented  by  two  subsets:  the  set  of  most  general 
elements  in  H  (called  the  G  set)  and  the  set  of  most  specific  elements  in  H 
(called  the  S  set).  Once  H  has  been  represented  in  this  manner,  the  rules  of 
generalization  must  be  used  to  fill  in  the  subspace  between  the  G  set  and  the 
S  set  whenever  the  full  H  set  is  needed. 

The  Candidate- elimination  Learning  Algorithm 

Mitchell's  learning  algorithm,  called  the  candidate- elimination  algorithm, 
takes  advantage  of  the  boundary-set  representation  for  the  set  H  of  plausible 

more  general 
i  \ 

more  specific 

Figure  D3a-3.     Using  the  boundary  sets  to  represent  a  subspace  of  the 
rule  space. 
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hypotheses.  Mitchell  defines  a  plausible  hypothesis  as  any  hypothesis  that  has 
not  yet  been  ruled  out  by  the  data.  The  set  H  of  all  plausible  hypotheses  is 
called  the  version  space.  Thus,  the  version  space,  H,  is  the  set  of  all  concept 
descriptions  that  are  consistent  with  all  of  the  training  instances  seen  so  far. 

Initially,  the  version  space  is  the  complete  rule  space  of  possible  concepts. 
Then,  as  training  instances  are  presented  to  the  program,  candidate  concepts 
are  eliminated  from  the  version  space.  When  it  contains  only  one  candidate 

concept,  the  desired  concept  has  been  found.  The  candidate-elimination 

algorithm  is  a  least- commitment  algorithm,  since  it  does  not  modify  the  set 
H  until  it  is  forced  to  do  so  by  the  training  information.  Positive  instances 

force  the  program  to  generalize — thus,  very  specific  concept  descriptions  are 
removed  from  the  H  set.  Conversely,  negative  instances  force  the  program 
to  specialize,  so  very  general  concept  descriptions  are  removed  from  the  H 
set.  The  version  space  gradually  shrinks  in  this  manner  until  only  the  desired 
concept  description  remains. 

To  see  how  training  instances  force  the  version  space  to  shrink,  consider 
once  again  the  problem  of  teaching  a  program  the  flush  concept  in  poker. 
Suppose  the  program  has  already  seen  the  positive  training  instance 

{(2,  clubs),  (5,  clubs),  (7,  clubs),  (jack,  clubs),  (queen,  clubs)}    =►    FLUSH . 

Since  the  candidate-elimination  algorithm  is  a  least-commitment  algorithm,  it 
makes  the  most  specific  possible  assumption  about  the  flush  concept.  Namely, 
it  sets  up  the  S  set  to  contain 

S  =  {suiT(ci,  clubs)  A  RANK(ci,  2)  A 

SUIT(c2,  clubs)  A  RANK(c2,  5)  A 

SUIT(c3,  clubs)  A  RANK(c3,  7)  A 

SUIT(c4,  clubs)  A  RANK(c4,  jack)  A 

SUIT(c5,  clubs)  A  RANK(c5,  queen)}  . 

This  hypothesis  is  very  specific  indeed.  It  says  that  there  is  only  one  hand 

that  could  possibly  be  a  flush.  At  the  same  time,  however,  the  candidate- 
elimination  algorithm  makes  the  most  general  possible  assumption,  namely, 
that  every  possible  hand  is  a  flush.  The  G  set  contains  the  null  description. 

This  means  that  the  version  space — the  H  set — of  all  plausible  hypotheses 
contains  S,  G,  and  every  hypothesis  in  between. 

Now,  suppose  the  positive  training  instance 

{(3,  clubs),  (8,  clubs),  (10,  clubs),  (king,  clubs),  (ace,  clubs)}    =►    FLUSH 

is  presented.  The  candidate-elimination  algorithm  realizes  that  its  initial 
assumption  for  the  S  set  was  too  specific — there  are  other  hands  that  can  be 
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flushes.  Thus,  it  is  forced  to  generalize  S  to  contain,  among  other  hypotheses, 
the  rule 

S  =  {suIT(ci,  clubs)  A   SUIT(c2,  clubs)   A   SUIT(c3,  clubs)  A 

SUIT(c4,  clubs)  A   SUIT(c5,  clubs)}  . 

The  G  set  does  not  change.  Suppose,  however,  that  a  negative  training 
instance 

{(3,  spades),  (8,  clubs),  (10,  clubs),  (king,  clubs),  (ace,  clubs)}    =>    ̂ FLUSH 

is  presented.  This  forces  the  candidate-elimination  algorithm  to  realize  that 
its  assumption  for  the  G  set,  that  any  hand  could  be  a  flush,  was  wrong.  It 

must  specialize  the  G  set  in  some  way,  so  that  it  does  not  wrongly  classify 

this  hand  as  a  flush. 

In  full  detail,  the  candidate-elimination  algorithm  proceeds  as  follows: 

Step  1.  Initialize  H  to  be  the  whole  space.  Thus,  the  G  set  contains  only 
the  null  description,  and  the  S  set  contains  all  of  the  most  specific 

concepts  in  the  space.  (In  practice,  this  is  not  actually  done  due  to 
the  huge  size  of  S.  Instead,  the  S  set  is  initialized  to  contain  only 
the  first  positive  example.  Conceptually,  however,  H  starts  out  as 
the  whole  space.) 

Step  2.  Accept  a  new  training  instance.  If  the  instance  is  a  positive  exam- 
ple, first  remove  from  G  all  concepts  that  do  not  cover  the  new 

example.  Then  update  S  to  contain  all  of  the  maximally  specific 

common  generalizations  of  the  new  instance  and  the  previous  ele- 
ments in  S.  In  other  words,  generalize  the  elements  in  S  as  little  as 

possible,  so  that  they  will  cover  this  new  positive  example.  This  is 

called  the  Update-S  routine. 

If  the  instance  is  a  negative  example,  first  remove  from  S  all  con- 
cepts that  cover  this  counterexample.  Then  update  the  G  set  to 

contain  all  of  the  maximally  general,  common  specializations  of 
the  new  instance  and  the  previous  elements  in  G.  In  other  words, 
specialize  the  elements  in  G  as  little  as  possible  so  that  they  will 

not  cover  this  new  negative  example.  This  is  called  the  Update-G 
routine. 

Step  3.  Repeat  step  2  until  G  =  S  and  this  is  a  singleton  set.  When  this 
occurs,  H  has  collapsed  to  include  only  a  single  concept. 

Step  4.    Output  H  (i.e.,  either  G  or  S). 

Here  is  an  example  of  a  complete  run  of  the  candidate-elimination  algo- 

rithm. Suppose  we  have  the  following  feature- vector  representation  language: 

The  instance  space  is  a  set  of  objects,  each  object  having  two  features — size 
and  shape.  The  size  of  an  object  can  be  small  or  large,  and  the  shape  of  an 
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(xy) 

(am.  y)      (lg.  y)      (x  square)      (x  circle)      (x  triangle) 

(sm.  square)  (lg.  square)  (sm.   circle)  (lg.   circle)  (sm.  triangle)  (lg.  triangle) 

Figure  D3a-4.     The  initial  version  space  and  the  general-to-specific 
partial  order. 

object  can  be  circle,  square,  or  triangle.  Figure  D3a-4  shows  the  entire  rule 
space  for  this  representation  language. 

Each  point  in  the  rule  space  specifies  either  a  variable  or  a  value  for  both 
of  the  features.  If  a  feature  is  specified  by  a  variable,  then  any  value  of  that 
feature  can  be  applied. 

Suppose  we  want  to  teach  the  program  the  concept  of  a  circle.  This  is 
represented  as  (x  circle)  where  x  represents  any  size.  First  we  initialize  the 
H  set  to  be  the  entire  rule  space.  This  means  that  the  G  set  is 

G  =  {(xy)}, 

representing  the  most  general  possible  concept,  and  the  S  set  is 

S  =  { (small  square)    (large  square)    (small  circle)    (large  circle) 

(small  triangle)    (large  triangle) }  . 

Now  we  present  the  first  training  instance:  a  positive  example  of  the 

concept,  a  small  circle.  The  Update-S  algorithm  is  applied  in  step  2  to  yield: 
G  =  {(xy)} 

S  =  { (small  circle) }  . 

Figure  D3a-5  shows  the  resulting  version  space.  Solid  lines  connect  con- 
cepts that  are  still  in  the  version  space.  In  practical  implementations  of  the 

candidate-elimination  algorithm,  the  version  space  is  usually  initialized  at  this 
point  rather  than  explicitly  listing  the  entire  instance  space  as  in  the  step 
above. 

The  second  training  instance  is  (large  triangle) — a  negative  example  of 
the  concept.  This  forces  the  G  set  to  be  specialized.  Update-G  is  applied  to 
produce 

G  =  { (x  circle)    (small  y) } 

S  =  {(small  circle)}. 

Figure  D3a-6  shows  the  resulting  version  space. 
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jxy) (sm.  y)  (lg.  y)  (x  square)  (x  circle)  (x  triangle) 

(sm.  square)  (lg.  square)  (sm.   circle)  (lg.  circle)  (sm.  triangle)  (lg.  triangle) 

Figure  D3a-5.     The  version  space  after  the  first  training  instance. 

Notice  how  the  (x  y)  description  was  specialized  in  two  distinct  ways,  so 
that  it  no  longer  covered  the  negative  example  (large  triangle).  A  third 
possible  specialization  (x  square)  is  not  considered,  since  it  was  removed 
from  the  version  space  during  the  previous  training  instance.  Of  course, 
further  specializations  such  as  (small  circle)  are  not  considered  because  the 

Update-G  algorithm  specializes  as  little  as  possible. 
In  this  case,  the  G  set  grew  larger  as  a  result  of  the  specialization.  The 

Update-G  and  Update-S  algorithms  often  expand  the  size  of  the  G  and  S 
sets.  It  is  the  size  of  these  sets  that  limits  the  practical  application  of  this 

algorithm. 
Finally,  we  present  the  algorithm  with  another  positive  example:  (large 

circle).  Update-S  first  prunes  G  to  eliminate  (small  y),  since  it  does  not 
cover  (large  circle) .  Then  S  is  generalized  as  necessary: 

G  =  {(x  circle)} 

S  =  { (x  circle)}  . 

Since  G  =  S,  the  algorithm  halts  and  prints  (x  circle)  as  the  concept. 
It  is  possible  to  give  intuitive  interpretations  of  the  G  and  S  sets.  The 

set  S  is  the  set  of  sufficient  conditions  for  a  new  example  to  be  an  instance 

(xy) 

(sm.  y)  (lg.  y)  (x  square)  (x  circle)  (x  triangle) 

(sm.  square)  (lg.  square)  (sm.   circle)  (lg.  circle)  (sm.  triangle)  (lg.  triangle) 

Figure  D3a-6.     The  version  space  after  two  training  instances. 
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of  the  concept.  Thus,  after  the  second  training  instance,  we  know  that  if 
the  new  example  is  a  (small  circle) ,  it  is  an  instance  of  the  concept;  (small 
circle)  is  a  sufficient  condition  for  positive  classification.  The  set  G  is  the  set 
of  necessary  conditions.  After  the  second  training  instance,  we  know  that  an 
object  either  must  be  a  circle  or  must  be  small  in  order  to  be  an  instance  of  the 
concept.  Neither  of  these  conditions  is  sufficient.  The  algorithm  terminates 

when  the  necessary  conditions  are  equal  to  the  sufficient  conditions — that  is, 
the  algorithm  has  found  a  necessary  and  sufficient  condition. 

It  is  important  to  note  that  the  candidate-elimination  algorithm  conducts 
an  exhaustive,  breadth-first  search  of  the  given  rule  space,  guided  only  by 
the  training  instances.  This  makes  the  algorithm  infeasibly  slow  for  large  rule 

spaces.  The  efficiency  of  the  algorithm  can  be  improved  (at  the  cost  of  possibly 
failing  to  find  the  desired  concept)  by  employing  heuristics  to  prune  the  S  and 
G  sets.  We  postpone  further  discussion  of  the  strengths  and  weaknesses  of 

the  candidate-elimination  algorithm  until  after  we  have  discussed  the  related 
methods  developed  by  Hayes-Roth,  Vere,  and  Winston. 

Methods  Related  to  the  Version-space  Approach 

Two  learning  methods  similar  to  the  Update-S  procedure  of  the  version- 
space  algorithm  were  developed  prior  to  it.  One  method,  termed  interference 

matching,  was  developed  by  Hayes-Roth  and  McDermott  (1977,  1978).  The 
other  method,  the  maximal  unifying  generalization  method,  was  developed  by 
Vere  (1975,  1978).  These  methods  can  both  be  viewed  as  implementations 

of  the  Update-S  procedure  with  respect  to  slightly  different  representation 
languages  in  that  they  learn  from  positive  training  instances  only. 

Interference  matching  was  developed  to  discover  concepts  expressed  in 

Hayes-Roth's  Parameterized  Structural  Representation  (PSR),  which  is  roughly 
equivalent  to  an  existentially  quantified  conjunctive  statement  in  predicate 

calculus.  Recall  that  Update-S  seeks  to  generalize  the  descriptions  in  S 
as  little  as  possible  in  order  to  cover  each  new  positive  training  instance. 
When  the  descriptions  are  represented  as  predicate  calculus  expressions,  this 
is  equivalent  to  finding  the  largest  common  subexpressions,  because  the  largest 
common  subexpression  is  that  subexpression  for  which  the  fewest  conjunctive 
conditions  need  to  be  dropped.  As  an  example,  suppose  that  the  set  S  contains 
the  description 

S  =  {BLOCK(x)  A  BLOCK(t/)  A  RECTANGLE(x)  A  ONTOP(x,  y)  A  SQUARE(?/)} 

and  the  next  positive  training  instance  (I\)  is 

h  =  BLOCK(w)  A  BLOCKS)  A  SQUARE(w)  A  ONTOP(w,  v)  A  RECTANGLE(v) . 

Update-S  will  produce  the  following  common  subexpressions: 
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where  Si  =  BLOCK(a)  A  BLOCK(fc)  A  SQUARE(a)  A  RECTANGLE(6),  and  s2  = 
BLOCK(c)  A  BLOCK(d)  A  ONTOP(c,  d) . 

The  Si  description  corresponds  to  the  hypothesis  that  the  ONTOP  rela- 
tion is  irrelevant  to  the  concept.  The  52  description,  on  the  other  hand, 

corresponds  to  the  hypothesis  that  the  shapes  of  the  objects  involved  are 

irrelevant.  Notice  that  there  is  no  consistent  way  to  match  I\  to  S  that 

preserves  a  one-to-one  correspondence  of  the  variables  x  and  y  with  w  and  v; 
either  the  rectangle  and  square  predicates  conflict  (e.g.,  when  x  is  matched 

with  w)  or  else  the  order  of  the  arguments  to  ONTOP  conflict  (e.g.,  when  x  is 

matched  to  v). 

The  interference-matching  algorithm  starts  out  as  a  breadth-first  search 
of  all  possible  matchings  of  one  PSR  with  another.  The  search  proceeds  by 

"growing"  common  subexpressions  until  a  space  limit  is  reached.  Unpromising 
matches  are  then  pruned  with  a  heuristic  utility  function,  and  the  growing 

process  continues  in  a  more  depth-first  fashion.  The  utility  of  a  partial  match 
is  equal  to  the  number  of  predicates  matched  less  the  number  of  variables 

matched.  If  the  space  limit  is  approximately  the  same  as  the  largest  com- 

mon subexpression,  the  algorithm  becomes  truly  depth-first,  since  only  one 

subexpression  "fits"  within  the  space  limit.  Thus,  the  interference-matching 
algorithm  tends  to  find  one  good  common  subexpression  rather  than  finding 

all  maximal  common  subexpressions  (as  in  the  Update-S  algorithm). 

Vere's  algorithm  for  finding  the  maximal  unifying  generalization  of  two 
first-order  predicate-calculus  descriptions  is  very  similar  to  the  interference- 
matching  algorithm.  The  representation  language  used  by  Vere,  however, 

permits  a  many- to-one  binding  of  parameters  during  the  matching  process 

(Vere,  1975).  Vere's  method  also  conducts  a  breadth-first  search  of  possible 
matchings  but  does  not  do  any  pruning  of  this  search. 

Winston's  Work  on  Learning  Structural  Descriptions  from  Examples 

Winston's  (1970)  influential  work  on  structural  learning  served  as  a  precur- 
sor to  the  other  learning  methods  described  above.  The  method  has  the 

same  basic  data-driven  approach  as  in  the  version-space  and  related  algo- 
rithms: Training  instances  are  accepted  one  at  a  time  and  matched  against 

the  concept  descriptions  in  the  set  H.  Unlike  those  breadth-first  algorithms 

(e.g.,  Update-S  and  Update-G),  however,  Winston's  system  conducts  a  depth- 
first  search  of  the  concept  space.  Instead  of  maintaining  a  set  of  plausible 

hypotheses,  Winston's  program  uses  the  training  instances  to  update  a  single 

current  concept  description.  This  description  contains  all  of  the  program's 
knowledge  about  the  concept  being  learned. 

The  task  of  the  program  is  to  learn  concept  descriptions  that  charac- 

terize simple  toy-block  constructions.  The  toy-block  assemblies  are  initially 

presented  to  the  computer  as  line  drawings.  A  knowledge-based  interpretation 

program  converts  these  line  drawings  into  a  semantic-network  description. 
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Winston  also  uses  this  semantic-network  representation  to  describe  the  cur- 
rent concept  and  some  background  knowledge  about  toy  blocks. 

Figure  D3a-7  shows  a  line  drawing  of  an  arch  and  the  corresponding 

semantic  network.  The  network  is  roughly  equivalent  to  the  predicate-calculus 
expression 

ONE-PART-IS( arch,  a)  A  ONE-PART-IS( arch,  b)  A 

ONE-PART-IS( arch,  c)  A  HAS-PROPERTY-OF(o,  lying)  A 

A-KIND-OF(a,  object)  A  MUST-BE-SUPPORTED-BY(a,  b)  A 

MUST-BE-SUPPORTED-BY(a,  c)  A  MUST-NOT-ABUT(&,  c)  A 

MUST-NOT-ABUT(c,  6)  A  LEFT-OF(6,  c)  A  RIGHT-OF(c,  b)  A 

HAS-PROPERTY-OF(6,  standing)  A  HAS-PROPERTY-OF(c,  standing)  A 

A-KIND-OF(6,  brick)  A  A-KIND-OF(c,  brick) , 

along  with  statements  of  blocks- world  knowledge  such  as 

A-KIND-OF(6n'cA:,  object) 

A-KlND-OF(standing,  property) 

and  statements  relating  different  predicates  in  the  representation  language, 
such  as 

OPPOSITES(MUST-ABUT,  MUST-NOT-ABUT) 

MUST-FORM-OF(lS-SUPPORTED-BY,  MUST-BE-SUPPORTED-BY) . 

A  distinctive  aspect  of  Winston's  concept  representation  is  that  it  allows 
necessary  conditions  to  be  represented  explicitly.  For  example,  the  condition 

that  in  an  arch  the  posts  must  not  touch  can  be  directly  represented  by  a 

MUST-NOT-ABUT  link.  This  allows  Winston's  program  to  express  necessary 
and  sufficient  conditions  in  one  combined  network  structure. 

Winston's  learning  algorithm  works  as  follows: 

Step  1.  Initialize  the  current  concept  description,  H,  to  be  the  network 
corresponding  to  the  first  positive  training  instance. 

Step  2.  Accept  a  new  line  drawing  and  convert  it  into  a  semantic-network 
representation. 

Step  3.  Match  the  training  instance  with  H  (using  a  graph-matching  algo- 
rithm) to  obtain  the  common  skeleton.  The  skeleton  is  a  maximal 

common  subgraph  of  the  two  graphs.  Annotate  the  skeleton  by 
attaching  comments  indicating  those  nodes  and  links  that  did  not 
match. 

Step  4.  Use  the  annotated  skeleton  to  decide  how  to  modify  the  current 
concept  description  H. 
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ARCH 

Figure  D3a-7.     A  training  instance  and  its  internal  representation. 
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If  the  new  instance  is  a  positive  example  of  the  concept,  then 
generalize  H  as  necessary.  The  algorithm  generalizes  either  by 

dropping  nodes  and  links  or  by  replacing  one  node  (e.g.,  cube)  by  a 
more  general  node  (e.g.,  brick).  In  some  cases,  the  algorithm  must 
choose  between  these  two  generalization  techniques.  The  program 
chooses  the  less  drastic  method  (node  replacement)  and  places  the 
other  choice  on  a  backtrack  list. 

If  the  new  instance  is  a  negative  example  of  the  concept,  a  necessary 

condition  (represented  by  a  must-link)  is  added  to  H.  If  there  are 
several  differences  between  the  negative  training  instance  and  H, 
the  algorithm  applies  some  ad  hoc  rules  to  choose  one  difference 

to  "blame"  for  causing  the  instance  to  be  a  negative  instance. 
This  difference  is  converted  into  a  necessary  condition.  The  other 
differences  are  ignored. 

Repeat  steps  2,  3,  and  4  until  the  teacher  halts  the  program. 

Since  the  algorithm  searches  in  depth-first  fashion,  it  is  possible  for  con- 
tradictions to  arise  in  step  4.  For  example,  after  seeing  a  negative  training 

instance  such  as  shown  in  Figure  D3a-8,  the  algorithm  might  assume  in  step  4 
that  the  reason  this  is  not  an  arch  is  the  triangular  lintel  rather  than  the  fact 

that  the  posts  are  touching.  Subsequently,  when  the  program  sees  the  positive 

instance  shown  in  Figure  D3a-9,  a  contradiction  arises.  When  this  happens, 
the  system  backtracks  to  the  last  point  at  which  a  choice  was  made,  and  the 

algorithm  makes  a  new  choice. 

This  learning  algorithm  is  somewhat  weak  and  ad  hoc,  since  it  does  not 

concern  itself  either  with  the  possibility  that  the  training  instance  matches 

H  in  multiple  ways  or  with  the  problem  that  there  are  multiple  ways  of 

generalizing  or  specializing  H.  Winston  makes  two  important  assumptions 

that  allow  this  algorithm  to  ignore  these  problems.  First,  it  is  assumed 

that  the  training  instances  are  presented  in  good  pedagogical  order,  so  that 

contradictions  and  choice-points  are  unlikely  to  arise;  the  teacher  is  assumed 
to  have  chosen  the  examples  so  as  to  vary  only  one  aspect  of  the  concept  in 

each  example.  The  second  assumption  is  that  the  negative  training  instances 

=>  -ARCH 

Figure  D3a-8.     A  near-miss  negative  example  of  an  ARCH. 
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ARCH 

Figure  D3a-9.     A  positive  example  of  an  ARCH. 

are  all  near  misses,  that  is,  instances  that  just  barely  fail  to  be  examples  of 
the  concept  in  question.  These  two  assumptions  permit  the  learning  system 

to  perform  fairly  well  in  the  domain  of  toy-block  concepts. 

Weaknesses  of  the  Version-space  Approach  (and  Related  Approaches) 

There  are  several  weaknesses  in  these  methods  that  limit  their  practi- 
cal application.  This  section  discusses  these  problems  and  examines  some 

proposed  solutions. 

Noisy  training  instances.  As  with  all  data-driven  algorithms,  these 
methods  have  difficulty  with  noisy  training  instances.  Since  these  algorithms 

seek  to  find  a  concept  description  that  is  consistent  with  all  of  the  train- 
ing instances,  any  single  bad  instance  (i.e.,  a  false  positive  or  false  negative 

instance)  can  have  a  big  effect.  When  the  candidate-elimination  algorithm  is 
given  a  false  positive  instance,  for  example,  the  S  set  becomes  overly  general- 

ized. Similarly,  a  false  negative  instance  causes  the  G  set  to  become  overly 
specialized.  Eventually,  noisy  training  instances  can  lead  to  a  situation  in 
which  there  are  no  concept  descriptions  that  are  consistent  with  all  of  the 

training  instances.  In  such  cases,  the  G  set  "passes"  the  S  set,  and  the  ver- 
sion space  of  consistent  concept  descriptions  becomes  empty.  The  methods 

of  Hayes-Roth,  Vere,  and  Winston  also  overgeneralize  in  the  presence  of  false 
positive  training  instances. 

In  order  to  learn  in  the  presence  of  noise,  it  is  necessary  to  relax  the 
condition  that  the  concept  descriptions  be  consistent  with  all  of  the  training 

instances.  One  solution,  proposed  by  Mitchell  (1978),  is  to  maintain  several  S 
and  G  sets  of  varying  consistency.  The  set  So,  for  example,  is  consistent  with 
all  of  the  positive  examples,  and  the  set  S\  is  consistent  with  all  but  one  of 
the  positive  examples.  In  general,  each  description  in  the  set  Si  is  consistent 
with  all  but  i  of  the  positive  training  instances.  Similarly,  each  description 
in  the  set  G{  is  consistent  with  all  but  i  of  the  negative  training  instances. 

Figure  D3a-10  gives  a  schematic  diagram  of  these  sets.  Mitchell  provides  a 
fairly  efficient  algorithm  for  updating  these  multiple  boundary  sets. 
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more  specific 

Figure  D3a-10.     The  multiple-boundary  set  technique. 

When  Go  crosses  So,  the  algorithm  can  conclude  that  no  concept  in  the 
rule  space  is  consistent  with  all  of  the  training  instances.  The  algorithm  can 
recover  and  try  to  find  a  concept  that  is  consistent  with  all  but  one  of  the 
training  instances.  If  that  fails,  it  can  look  for  a  concept  consistent  with 
all  but  two  instances,  and  so  forth.  This  approach  to  error  recovery  works 
for  learning  problems  containing  a  few  erroneous  training  instances,  but  it 
requires  a  large  amount  of  memory  to  store  all  of  the  S  and  G  boundary  sets. 

Disjunctive  concepts.  A  second,  important  weakness  of  these  data- 
driven  algorithms  is  their  inability  to  discover  disjunctive  concepts.  Many 
concepts  have  a  disjunctive  form.  For  instance,  an  uncle  is  either  the  brother 
of  a  parent  or  the  spouse  of  a  sister  of  a  parent: 

UNCLE(x)  =  BROTHER(PARENT(x))  V 

uncle(x)  =  spouse(sister(parent(x)))  . 

Parent  itself  might  be  expressed  disjunctively  as  PARENT(x)  =  FATHER(x)  V 
PARENT(x)  =  MOTHER(x).  However,  if  disjunctions  of  arbitrary  length  are 
permitted  in  the  representation  language,  the  data-driven  algorithms  described 
above  never  generalize.  In  the  candidate-elimination  algorithm,  for  example, 
the  S  set  will  always  contain  a  single  disjunction  of  all  of  the  positive  train- 

ing instances  seen  so  far.  This  is  because  the  least  generalization  of  a  new 
training  instance  and  the  current  S  set  is  simply  the  disjunction  of  the  new 
instance  with  the  S  set.  Similarly,  the  G  set  will  contain  the  disjunction  of 
the  negation  of  each  of  the  negative  training  instances.  Unlimited  disjunction 

allows  the  partially  ordered  rule  space  to  become  infinitely  "branchy." 
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The  basic  difficulty  is  that  all  of  these  algorithms  are  least-commitment 
algorithms  that  generalize  only  when  they  are  forced  to.  Disjunction  provides 

a  way  of  avoiding  any  generalization  at  all — so  the  algorithms  are  never  forced 
to  generalize.  In  order  to  develop  a  useful  technique  for  learning  disjunctive 
concepts,  some  method  must  be  found  for  controlling  the  introduction  of 
disjunctions.  The  learning  algorithms  must  be  guided  toward  generalizing  in 
certain  ways  to  exclude  the  trivial  disjunction. 

One  solution  (proposed  in  different  forms  by  Michalski,  1969,  and  by 
Mitchell,  1978)  is  to  employ  a  representation  language  that  does  not  contain 

a  disjunction  operator  and  to  perform  repeated  candidate-elimination  runs 
to  find  several  conjunctive  descriptions  that  together  cover  all  of  the  train- 

ing instances.  We  repeatedly  find  a  conjunctive  concept  description  that  is 

consistent  with  some  of  the  positive  training  instances  and  all  of  the  nega- 
tive training  instances.  The  positive  instances  that  have  been  accounted  for 

are  removed  from  further  consideration,  and  the  process  is  repeated  until  all 
positive  instances  have  been  covered: 

Step  1.  Initialize  the  S  set  to  contain  one  positive  training  instance.  G  is 

initialized  to  the  null  description — the  most  general  concept. 

Step  2.  For  each  negative  training  instance,  apply  the  Update- G  algorithm 
toG. 

Step  3.  Choose  a  description  g  from  G  as  one  conjunction  for  the  solution 
set.  Since  Update-G  has  been  applied  using  all  of  the  negative 
instances,  g  covers  no  negative  instances.  However,  g  may  cover 

several  of  the  positive  instances.  Remove  from  further  considera- 
tion all  positive  training  instances  that  are  more  specific  than  g. 

Step  4.  Repeat  steps  1  through  3  until  all  positive  training  instances  are 
covered. 

This  process  builds  a  disjunction  of  descriptions  that  covers  all  of  the  data. 
It  tends  to  find  a  disjunction  containing  only  a  few  conjunctive  terms. 

Figure  D3a-ll  is  a  schematic  diagram  of  how  this  process  works. 
The  point  s\  is  the  first  positive  training  instance  selected  in  step  1.  After 

all  of  the  negative  instances  have  been  processed  with  Update-G,  g\  is  selected 
from  the  G  set  in  step  3.  Notice  that  g\  covers  several  positive  instances  in 
addition  to  S\,  but  that  not  all  positive  instances  are  yet  covered.  The  point  52 

is  then  chosen  and  g<i  is  developed.  Similarly,  53  is  chosen  and  gs  is  developed. 
As  the  figure  shows,  the  conjunctive  concepts,  #;,  need  not  be  disjoint.  Also, 
the  set  of  concepts  gi  that  is  obtained  by  this  procedure  varies  depending  on 
the  order  in  which  the  positive  training  instances  are  selected  in  step  1. 

An  algorithm  very  similar  to  this,  called  the  Aq  algorithm,  was  developed 
by  Michalski  (1969,  1975)  for  use  with  an  extended  propositional  calculus 

representation.    The  Aq  algorithm  makes  use  of  an  additional  heuristic  in 
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Figure  D3a-ll.     Schematic  diagram  of  an  iterative  version-space  algorithm 
for  finding  disjunctive  concepts. 

step  1.  It  selects  as  a  "seed"  positive  training  instance  one  that  has  not 
been  covered  by  any  description  in  any  previous  G  set.  This  has  the  effect 

of  choosing  training  instances  that  are  "far  apart"  in  the  instance  space. 
Larson  (1977)  elaborated  Aq  to  apply  it  to  an  extended  predicate-calculus 
representation. 

The  effect  of  this  iterative  version-space  approach  is  to  find  a  description 

with  virtually  the  fewest  number  of  disjunctive  terms.  Finding  such  a  descrip- 
tion is  not  always  desirable.  Programs  searching  for  symmetrical  descriptions, 

for  example,  may  hypothesize  a  disjunctive  term  for  which  there  is,  as  yet,  no 

evidence.  Consider  how  a  program  would  learn  the  direction  of  wind  rotation 

about  a  weather  system.  After  seeing  the  following  two  training  instances 

Instance  1. 

Instance  2. 

HEMISPHERE  = 
=»    ROTATION 

HEMISPHERE  = 
=»    ROTATION 

north  A  PRESSURE  =  high 
=  clockwise 

south  A  PRESSURE  =  high 
=  counterclockwise, 

the  program  might  hypothesize  that 

HEMISPHERE  =  north  A  PRESSURE  =  high  V 

HEMISPHERE  =  south  A  PRESSURE  =  low 

=4    ROTATION  =  clockwise  , 

even  though  the  simplest  hypothesis  would  be 

HEMISPHERE  =  north ROTATION  =  clockwise . 

The  problem  of  learning  disjunctive  concepts  is  still  largely  unexamined 

by  AI  researchers. 
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D3b.     Data-driven  Rule-space  Operators 

THE  SECOND  FAMILY  of  data-driven  methods  does  not  employ  partial  match- 
ing to  search  the  rule  space.  Instead,  these  methods  develop  a  set  of  hypotheses 

in  a  rule  space  that  is  separate  from  the  instance  space  (i.e.,  the  single- 
representation  trick  is  not  used).  The  hypotheses  are  modified  by  refinement 
operators,  which  are  selected  by  heuristics  that  inspect  the  training  instances. 

The  following  is  a  general  outline  of  these  operator-based  algorithms: 

Step  1.    Gather  some  training  instances. 

Step  2.   Analyze  the  instances  to  decide  which  rule-space  operator  to  apply. 

Step  3.   Apply  the  operator  to  make  some  change  in  the  current  set,  H,  of 

hypotheses. 
Repeat  steps  1  through  3  until  satisfactory  hypotheses  are  obtained. 

In  this  article,  two  systems  are  described  that  use  this  technique:  BACON  and 
CLS. 

BACON 

BACON  is  a  set  of  concept-learning  programs  developed  by  Pat  Langley 

(1977,  1980).  These  programs  solve  a  variety  of  single-concept  learning  tasks, 

including  "rediscovering"  such  classical  scientific  laws  as  Ohm's  law,  Newton's 
law  of  universal  gravitation,  and  Kepler's  law.  The  programs  are  also  capable 
of  using  the  learned  concepts  to  predict  future  training  instances. 

The  idea  underlying  BACON  is  simple:  The  program  repeatedly  exam- 
ines the  data  and  applies  its  refinement  operators  to  create  new  terms.  This 

continues  until  it  finds  that  one  of  these  terms  is  always  constant.  A  single 

concept  is  thus  represented  in  the  form  term  =  constant  value. 
BACON  uses  a  feature-vector  representation  to  describe  each  training 

instance.  A  distinguishing  aspect  is  that  the  features  may  take  on  continuous 
real  values  as  well  as  discrete  symbolic  or  numeric  values.  For  example, 

suppose  we  want  BACON  to  discover  Kepler's  law:  The  period  of  a  planet's 
revolution  around  the  sun,  p,  is  related  to  its  distance  from  the  sun,  d,  as 

d3/p2  =  k,  for  some  constant  k.  First,  BACON  is  supplied  with  training 
instances  of  the  form: 

Features 

dance Planet P d 

h 
h 
h 

Mercury 

Venus 
Earth 

1 
8 

27 

1 
4 
9 

401 
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BACON  is  told  that  p  and  d  are  dependent  on  the  value  of  the  planet 
variable.  Once  BACON  has  gathered  a  few  training  instances,  it  examines 

them  to  see  if  any  of  its  rule-space  operators  are  triggered.  In  this  case,  since 
p  and  d  are  both  increasing  and  are  not  linearly  related,  an  operator  that 

creates  the  new  term  d/p  is  triggered.  This  rule-space  operator  is  executed, 
and  the  training  instances  are  reformulated  to  give: 

Features 
•dance 

Planet P d 

d/p 

h 
h 
h 

Mercury 

Venus 
Earth 

1 
8 27 

1 
4 
9 

1.0 .5 

.33 

Again,  BACON  checks  to  see  if  any  of  its  rule-space  operators  are  trig- 
gered. This  time,  the  product  operator  is  executed  to  create  the  term  (d/p)d, 

since  d  and  d/p  are  varying  inversely.  The  data  are  reformulated  to  give: 

Features 

Instance Planet P d 

d/p 

d2/p 

h Mercury 1 1 1.0 
1.0 

h Venus 8 4 

.5 

2.0 

h Earth 
27 

9 .33 
3.0 

On  the  third  iteration,  BACON  again  checks  to  see  if  any  operators  apply. 

The  product  operator  is  again  triggered  to  create  the  term  (d/p)(d2/p).  The 
data  are  reformulated  to  give: 

Features 

Instance Planet P d 

d/p 

d2/p 

W 
h Mercury 1 1 

1.0 1.0 1.0 

h Venus 8 4 

.5 
2.0 1.0 

h Earth 
27 

9 
.33 

3.0 
1.0 

BACON  examines  these  data,  and  its  constancy  operator  is  triggered  to 

create  the  hypothesis  that  the  d3/p2  term  is  constant.  BACON  then  gathers 
more  data  to  test  this  hypothesis  before  it  halts. 

BACON's  Rule-space  Operators 

The  various  BACON  programs  have  different  rule-space  operators.  Each 
operator  is  stored  as  a  production  rule,  of  which  the  left-hand  side  performs 
extensive  tests  to  search  for  possible  patterns  in  the  data  and  the  right-hand 
side  creates  the  new  terms.  Here  is  a  brief  survey  of  the  operators  implemented 
in  the  BACON.  1  program: 
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1.  Constancy  detection.  This  operator  is  triggered  when  some  dependent 
variable  takes  on  the  same  value,  v,  at  least  two  times.  It  creates  the 

hypothesis  that  this  variable  is  always  constant  with  value  v. 

2.  Specialization.  This  operator  is  triggered  when  a  previously  created 
hypothesis  is  contradicted  by  the  data.  It  specializes  the  hypothesis  by 
adding  a  conjunctive  condition. 

3.  Slope  and  intercept  term  creation.  This  operator  detects  that  two  variables 
are  varying  together  linearly  and  creates  new  terms  for  the  slope  and 
intercept  of  this  linear  relation. 

4.  Product  creation.  This  operator  detects  that  two  variables  are  varying 
inversely  without  a  constant  slope.  It  creates  a  new  term  that  is  the 
product  of  the  two  variables. 

5.  Quotient  creation.  This  operator  detects  that  two  variables  are  vary- 
ing monotonically  (increasing  or  decreasing)  without  constant  slope.  It 

creates  a  new  term  that  is  the  quotient  of  the  two  variables. 

6.  Modulo-n  term  creation.  This  operator  notices  that  one  variable,  v\ ,  takes 
on  a  constant  value  whenever  an  independent  variable,  t>2,  has  a  certain 

value  modulo  n.  The  new  term  v^-modulo-n  is  created.  Only  small  values 
of  n  are  considered. 

Extensions  to  BACON 

BACON. 2  is  an  extended  version  of  BACON.  1  that  includes  two  additional 

operators  for  detecting  recurring  sequences  and  for  creating  polynomial  terms 

by  calculating  repeated  differences.  BACON. 2  can  solve  a  larger  class  of 

sequence  extrapolation  tasks  as  a  result. 

BACON. 3  is  another  extension  of  BACON.  1  that  uses  hypotheses  proposed 

by  the  constancy-detection  operators  to  reformulate  the  training  instances. 
For  BACON.3  to  discover  the  ideal  gas  law  (PV/NT  is  equal  to  a  constant), 

for  example,  it  is  given  the  following  training  instances: 

Features 

tance V P T N 

h .0083200 300,000 300 1 
h .0062400 400,000 300 1 
h .0049920 500,000 300 1 
h .0085973 300,000 310 1 
h .0064480 400,000 310 1 
h .0051584 500,000 310 1 
h .0088747 300,000 320 1 
h .0066560 400,000 320 1 
h .0053248 500,000 320 1 



404  Learning  and  Inductive  Inference  XTV 

Features 

Instance  V  P  T  N 

725  .0266240       300,000       320         3 
J26  .0199680       400,000       320         3 
hi  .0159740       500,000       320         3 

By  applying  the  product-creation  operator  followed  by  the  constancy- 
detection  operator,  BACON  develops  the  hypothesis  that  PV  is  constant  for 
particular  values  of  N  and  T.  This  hypothesis,  which  BACON  must  rediscover 
for  each  particular  value  of  N  and  T,  is  used  to  recast  the  data  to  give  the 
following  derived  training  instances: 

Features 

tance PV T N 

i'i 
2,496 

300 1 

ra 

2,579.1999 310 1 I's 
2,662.3999 320 1 

Ft 

4,991.9999 300 2 

F* 

5,158.3999 310 2 

F6 

5,324.7999 320 2 

F7 

7,488 
300 3 

F8 

7,737.5999 310 3 

F9 

7,987.2 
320 3 

Each  of  these  derived  instances  results  from  collapsing  three  of  the  original 

training  instances.  Thus,  I\  is  derived  by  noticing  that  PV  takes  on  the 

constant  value  2,496  in  h,  h,  and  I3.  By  applying  the  slope-intercept  operator 
to  these  derived  instances,  BACON  develops  the  hypothesis  that  PV/T  is 
constant  for  particular  values  of  TV.  It  uses  this  hypothesis  to  recast  the 
training  instances  into  the  following  form: 

Features 

tance 
PV/T         N 

F{ 

8.32           1 

n 16.64           2 

F{ 

24.95           3 

By  applying  the  slope-intercept  operator  to  these  doubly  derived  instances, 
BACON  develops  the  hypothesis  that  PV/ NT  is  constant  and,  thus,  posits  the 
ideal  gas  law. 
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BACON's  Rule  Space 

What  is  the  rule  space  that  BACON  is  searching?  BACON  expresses 
hypotheses  as  feature  vectors,  some  of  whose  values  are  omitted  (i.e.,  turned 

to  variables).  For  example,  Kepler's  law  is  expressed  as 

Features:        Planet       p       d       d/p       d2/p       d3/p2 
Values:  1.0 

Thus,  the  rule  space  is  the  space  of  such  feature  vectors  whose  features  are 
any  terms  that  BACON  can  create  with  its  operators. 

BACON  conducts  a  sort  of  depth-first  search  through  this  space.  The 
conditions  under  which  the  operators  are  triggered  are  quite  specialized.  The 

constancy-detection  operator,  for  example,  only  checks  the  values  of  the 
most  recently  created  dependent  variable  against  the  most  recently  varied 
independent  variable.  Most  of  the  other  operators  are  invoked  under  similarly 
constrained  conditions. 

Strengths  and  Weaknesses  of  BACON 

BACON's  primary  strength  is  its  ability  to  discover  simple  laws  relating 
real-valued  variables.  Also  of  interest  is  BACON's  use  of  rule-space  operators 
to  create  new  terms  as  combinations  of  existing  terms.  Further,  the  BACON. 3 
strategy  of  reformulating  the  training  instances  when  partial  regularities  are 
discovered  may  be  important  for  future  learning  programs.  Simon  (1979)  has 

discussed  BACON  as  a  model  of  data-driven  theory  formation  in  science. 
There  are  some  difficulties  with  the  present  BACON  programs,  however. 

First,  the  fact  that  the  operators  are  evoked  only  under  highly  specialized 
conditions  causes  the  program  to  be  sensitive  to  the  order  of  the  variables  and 
to  the  particular  values  chosen  for  the  training  instances.  For  some  sets  of 

training  instances,  for  example,  BACON  is  unable  to  discover  Ohm's  law  (see 
Langley,  1980,  p.  104).  It  is  necessary  to  adjust  the  order  of  the  variables  and 
the  particular  training  instances  to  get  BACON  to  discover  concepts  efficiently. 
For  example,  when  BACON  is  discovering  the  pendulum  law,  40%  more  time 
is  required  if  the  variables  are  poorly  ordered.  Similarly,  it  cannot  handle 
irrelevant  variables  well. 

Second,  BACON  is  unable  to  handle  noisy  training  instances.  The  trig- 
gering of  the  constancy  detectors,  for  example,  is  based  on  the  near  equality 

of  the  values  seen  in  as  few  as  two  training  instances.  Such  calculations  are 
highly  sensitive  to  noise.  The  slope  detectors  are  similarly  sensitive. 

Third,  BACON  can  handle  only  relatively  simple  concept-formation  tasks 
involving  nonnumeric  variables.  The  program  cannot,  for  example,  discover 
concepts  that  involve  internal  disjunction  (such  as  the  concept  of  a  red  or 
green  cube).   It  is  also  unable  to  discover  the  simple  concept  underlying  the 
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letter  sequence  ABTCDSEFR  . . .  and  similar  sequences  appearing  in  Kotovsky 
and  Simon  (1973). 

In  summary,  BACON  is  interesting  primarily  for  its  use  of  rule-space 
operators  to  create  product,  quotient,  slope,  and  intercept  terms  and  for  its 
ability  to  recast  the  training  instances  on  the  basis  of  developed  hypotheses. 

CLS/ID8 

CLS  (Concept  Learning  System)  is  a  learning  algorithm  devised  by  Earl 

Hunt  (see  Hunt,  Marin,  and  Stone,  1966).  It  is  intended  to  solve  single- 
concept  learning  tasks  and  uses  the  learned  concepts  to  classify  new  instances. 
A  more  recent  version  of  the  CLS  algorithm,  ID3,  was  developed  by  Ross 

Quinlan  (1979,  in  press).  In  this  article,  we  discuss  the  ID3  algorithm  and  its 
application  to  data  compression  and  concept  formation. 

Like  BACON,  ID3  uses  a  feature-vector  representation  to  describe  the 
training  instances.  The  features  must  each  have  only  a  small  number  of  pos- 

sible discrete  values.  Concepts  are  represented  as  decision  trees.  For  example, 

if  the  features  of  size  (small,  large),  shape  (circle,  square,  and  triangle),  and 
color  (red,  blue)  are  used  to  represent  the  training  instances,  the  concept  of  a 

red  circle  (of  any  size)  could  be  represented  as  the  tree  shown  in  Figure  D3b-1. 
An  instance  is  classified  by  starting  at  the  root  of  the  tree  and  making 

tests  and  following  branches  until  a  node  is  arrived  at  that  indicates  the  class 
as  YES  or  NO  (see  Article  XI.D).  For  example,  the  instance  (large,  circle,  blue) 
is  classified  as  follows.  Starting  with  the  root  node  (shape),  we  follow  the 
circle  branch  to  the  color  node.  From  the  color  node  we  take  the  blue  branch 

to  a  NO  node  indicating  that  this  instance  is  not  an  instance  of  the  concept 
of  a  red  circle. 

Decision  trees  are  inherently  disjunctive,  since  each  branch  leaving  a  deci- 
sion node  corresponds  to  a  separate  disjunctive  case.  The  tree  in  Figure  D3b-1, 

blue 

YES  NO 

Figure  D3b-1.     Decision  tree  for  the  concept  of  a  red  circle. 



D3b Data-driven  Rule-space  Operators 
407 

for  example,  is  equivalent  to  the  predicate  calculus  expression: 

->SHAPE(x,  triangle)  V  ̂ SHAPE(x,  square)  V 

SHAPE(x,  circle)  A  [COLOR(x,  red)  V  ~-COLOR(x,  blue)]  . 

Consequently,  decision  trees  can  be  used  to  represent  disjunctive  concepts 

such  as  large  circle  or  small  square  (see  Fig.  D3b-2). 

A  drawback  of  decision  trees  is  that  there  are  many  possible  trees  cor- 
responding to  any  single  concept.  This  lack  of  a  unique  concept  representation 

makes  it  difficult  to  check  that  two  decision  trees  are  equivalent. 

The  CLS  Learning  Algorithm  (as  Used  in  IDS) 

The  CLS  algorithm  starts  with  an  empty  decision  tree  and  gradually 

refines  it,  by  adding  decision  nodes,  until  the  tree  correctly  classifies  all  of  the 

training  instances.  The  algorithm  operates  over  a  set  of  training  instances,  C, 
as  follows: 

Step  1.    If  all  instances  in  C  are  positive,  then  create  a  YES  node  and  halt. 
If  all  instances  in  C  are  negative,  create  a  NO  node  and  halt. 

Otherwise,  select  (using  some  heuristic  criterion)  a  feature,  F,  with 
values  vi ,  ...,vn  and  create  the  decision  node: 

Step  2.   Partition  the  training  instances  in  C  into  subsets  C\,C2,  . . . ,  Cn 
according  to  the  values  of  V. 

Step  3.   Apply  the  algorithm  recursively  to  each  of  the  sets  d. 

YES NO     NO 

small 

YES 

Figure  D3b-2.     Decision  tree  for  a  disjunctive  concept. 
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The  criterion  used  in  step  1  by  ID3  is  to  choose  the  feature  that  best  dis- 
criminates between  positive  and  negative  instances.  Hunt  et  al.  (1966)  describe 

several  methods  for  estimating  which  feature  is  the  most  discriminatory. 

Quinlan  chooses  the  feature  that  leads  to  the  greatest  reduction  in  the  esti- 
mated entropy  of  information  of  the  training  instances  in  C.  The  exact  crite- 

rion is  to  choose  the  feature  F  (with  values  V\,V2,  . . . ,  vn)  that  minimizes 

?h+iog2(v^)-Friog2(^%L 
where  Vf  is  the  number  of  positive  instances  in  C  with  F  =  V{,  and  V~  is 
the  number  of  negative  instances  in  C  with  F  =  V{. 

This  CLS  algorithm  can  be  viewed  as  a  refinement-operator  algorithm 
with  only  one  operator: 

Specialize  the  current  hypothesis  by  adding  a  new  condition  (a  new 
decision  node). 

The  CLS  algorithm  repeatedly  examines  the  data  during  step  1  to  decide 
which  new  condition  should  be  added.  The  final  decision  tree  developed  by 
CLS  is  a  generalization  of  the  training  instances,  because  in  most  cases  not 
all  features  present  in  the  training  instances  need  to  be  tested  in  the  tree. 
Thus,  CLS  begins  with  a  very  general  hypothesis  and  gradually  specializes  it, 
by  adding  conditions,  until  a  consistent  tree  is  found. 

The  IDS  Learning  Algorithm 

The  CLS  algorithm  requires  that  all  of  the  training  instances  be  available 

on  a  random-access  basis  during  step  1.  This  places  a  practical  limit  on  the  size 
of  the  learning  problems  that  it  can  solve.  The  ID3  algorithm  (Quinlan,  1979, 

in  press)  is  an  extension  to  CLS  designed  to  solve  extremely  large  concept- 
learning  problems.  It  uses  an  active  experiment-planning  approach  to  select 
a  good  subset  of  the  training  instances  and  requires  only  sequential  access  to 
the  whole  set  of  training  instances.  Here  is  an  outline  of  the  ID3  algorithm: 

Step  1.  Select  a  random  subset  of  size  W  of  the  whole  set  of  training 
instances  (W  is  called  the  window  size,  and  the  subset  is  called  the 
window). 

Step  2.    Use  the  CLS  algorithm  to  form  a  rule  to  explain  the  current  window. 

Step  3.  Scan  through  all  of  the  training  instances  serially  to  find  exceptions 
to  the  current  rule. 

Step  4.  Form  a  new  window  by  combining  some  of  the  training  instances 
from  the  current  window  with  some  of  the  exceptions  obtained  in 
step  3. 

Repeat  steps  2  through  4  until  there  are  no  exceptions  to  the  rule. 
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Quinlan  has  experimented  with  two  different  strategies  for  building  the 

new  window  in  step  4.  One  strategy  is  to  retain  all  of  the  instances  from  the 

old  window  and  add  a  user-specified  number  of  the  exceptions  obtained  from 
step  3.  This  gradually  expands  the  window.  The  second  strategy  is  to  retain 

one  training  instance  corresponding  to  each  leaf  node  in  the  current  decision 

tree.  The  remaining  training  instances  are  discarded  from  the  window  and 

replaced  by  exceptions.  Both  methods  work  quite  well,  although  the  second 

method  may  not  converge  if  the  concept  is  so  complex  that  it  cannot  be 

discovered  with  any  window  of  fixed  size  W. 

Application  of  the  IDS  Algorithm 

The  ID3  algorithm  has  been  applied  to  the  problem  of  learning  classifi- 

cation rules  for  part  of  a  chess  end-game  in  which  the  only  pieces  remaining 
are  a  white  king  and  rook  and  a  black  king  and  knight.  ID3  has  discovered 

rules  to  describe  the  concept  of  "knight's  side  lost  (in  at  most)  n  moves"  for 
n  =  2  and  n  =  3.  Table  D3b-1  shows  the  results  of  these  processes. 

The  features  describing  the  board  positions  have  been  chosen  to  capture 

patterns  believed  to  be  relevant  to  the  concept  of  lost  in  n  moves.  The  actual 

raw  data  for  the  lost  in  2  moves  concept  comprise  1.8  million  distinct  board 

positions.  By  choosing  appropriate  features,  Quinlan  was  able  to  compress 

these  into  428  distinct  feature  vectors.  This  is  an  excellent  example  of  the 

importance  to  concept  learning  of  good  representation  and  of  knowledge-based 
interpretation  of  the  raw  data.  Quinlan  (in  press)  points  out  that  an  important 

task  for  future  learning  research  is  to  develop  a  program  that  can  discover  a 

good  set  of  features. 

Strengths  and  Weaknesses  of  CLS  and  IDS 

The  ID3  and  CLS  programs  with  their  very  simple  representations  and 

straightforward  learning  algorithms  perform  impressively  on  the  single-concept 

Table  D3b-i 

The  Application  of  ID3  to  a  Chess  End-game 

Concept 
Number  of 

training  instances 

Number  of 

features 

Size  of 

decision  tree 

Solution 

time 

Lost  in  2  moves 

Lost  in  2  moves 

Lost  in  3  moves 

30,000 
428 

715 

25 
23 

39 

334  nodes 

83  nodes 

177  nodes 
144  seconds0 

3  seconds0 
34  seconds6 

° Using  PASCAL  implementation  on  a  DEC  KL-10. 

bUsing  PASCAL  implementation  on  a  CDC  CYBER  72. 
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learning  problem.  Much  of  the  power  of  the  ID3  algorithm  derives  from  its 
sophisticated  selection  of  training  instances.  This  form  of  instance  selection 

has  been  termed  expectation-based  filtering  by  Lenat,  Hayes-Roth,  and  Klahr 
(1979).  The  basic  value  of  expectation-based  filtering  is  that  it  focuses  the 
attention  of  the  program  on  those  training  instances  that  violate  its  expec- 

tations. These  are  precisely  the  training  instances  needed  to  improve  the 

program's  representation  of  the  concept  being  learned.  Even  this  simple  form 
of  experiment  planning  allows  ID3  to  solve  large  learning  problems  efficiently. 

One  of  the  chief  difficulties  of  the  CLS/ID3  method  is  that  the  repre- 
sentation for  learned  concepts  is  a  decision  tree,  and  decision  trees  are  difficult 

to  check  for  equivalence.  What  is  more  important,  it  is  difficult  for  people  to 
understand  the  learned  concept  when  it  is  expressed  as  a  large  decision  tree. 

References 

The  best  discussion  of  BACON  is  Langley  (1980).   The  ID3  algorithm  is 
well  described  in  Quinlan  (in  press). 



D3c.     Concept  Learning  by  Generating  and 

Testing  Plausible  Hypotheses 

THE  two  model-driven  approaches  discussed  in  Article  XTV.Dl  on  issues — 
generate-and-test  and  schema  instantiation — have  received  little  attention 
from  people  doing  learning  research.  This  article  describes  one  method, 
developed  by  Dietterich  and  Michalski,  that  discovers  a  single  concept  from 

examples  by  model-driven  generate  and  test.  In  spite  of  using  only  a  very 
simple  model,  this  method  exhibits  the  strengths  and  weaknesses  that  are 

typical  of  model-driven  methods:  It  is  quite  immune  to  noise  but  cannot 
incrementally  modify  its  concept  description  as  new  training  instances  become 
available. 

The  INDUCE  1.2  Algorithm 

Dietterich  and  Michalski  (1981)  address  the  problem  of  learning  a  single 
concept  from  positive  training  instances  only.  Their  program,  INDUCE  1.2, 

is  intended  to  be  applied  in  structural-learning  situations,  that  is,  situations 

in  which  each  training  instance  has  some  internal  structure.  Winston's  toy- 
block  constructions,  for  example,  are  structural  training  instances;  a  toy-block 
construction  is  represented  as  a  set  of  nodes  connected  by  structural  relations 

like  ONTOP,  TOUCH,  and  SUPPORTS  (see  Article  XIV.D3a).  Dietterich  and 

Michalski's  model,  which  guides  the  search  for  generalizations,  expects  the 
learned  concept  to  be  a  conjunction  involving  both  structural  relations  and 
ordinary  features. 

INDUCE  1.2  seeks  to  find  a  few  concepts  in  the  rule  space,  each  of  which 
covers  all  of  the  training  instances  while  remaining  as  specific  as  possible. 
This  learning  problem  is  similar  to  the  problem  of  finding  the  S  set  in  the 

candidate-elimination  algorithm.  INDUCE  1.2,  however,  applies  some  model- 
based  heuristics  to  drastically  prune  the  S  set  so  that  only  a  few  generaliza- 

tions are  discovered. 

The  program  assumes  that  the  training  instances  have  been  transformed 
so  that  they  can  be  viewed  as  very  specific  points  in  the  rule  space  (i.e.,  it  uses 

the  single-representation  trick).  A  random  sample  of  the  training  instances 
is  chosen.  These  points  in  rule  space  serve  as  the  starting  points  for  a  beam 

search  upward  through  the  rule  space,  that  is,  from  the  very  specific  train- 
ing instances  toward  more  general  concepts.  The  concept  descriptions  are 

generalized  by  dropping  conjunctive  conditions  and  adding  internal  disjunc- 
tive options  until  they  cover  all  of  the  training  instances.  By  starting  at  the 

most  specific  points  in  the  rule  space  and  stopping  as  soon  as  it  finds  concepts 
that  cover  all  of  the  training  instances,  INDUCE  1.2  is  guaranteed  to  find  the 
most  specific  concepts  that  cover  the  data. 

411 
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The  beam-search  process  has  the  following  steps: 

Step  1.  Initialize.  Set  H  to  contain  a  randomly  chosen  subset  of  size  W  of 

the  training  instances  (W  is  a  constant  called  the  beam  width). 

Step  2.  Generate.  Generalize  each  concept  in  H  by  dropping  single  condi- 
tions in  all  possible  ways.  This  produces  all  the  concept  descrip- 
tions that  are  minimally  more  general  than  those  in  H.  These  form 

the  new  H. 

Step  3.  Prune  implausible  hypotheses.  Remove  all  but  W  of  the  concept 

descriptions  from  H.  The  pruning  is  based  on  syntactic  characteris- 
tics of  the  concept  description,  such  as  the  number  of  terms  and 

the  user-defined  cost  of  the  terms.  Another  criterion  is  to  maximize 
the  number  of  training  instances  covered  by  each  element  of  H. 

Step  4.  Test.  Check  each  concept  description  in  H  to  see  if  it  covers  all  of 
the  training  instances.  (This  information  was  obtained  previously 

in  step  3.)  If  any  concept  does,  remove  it  from  H  and  place  it  in  a 
set  C  of  output  concepts. 

Repeat  steps  2,  3,  and  4  until  C  reaches  a  prespecified  size  limit  or  H 
becomes  empty. 

A  schematic  diagram  of  the  beam-search  process  is  shown  in  Figure  D3c-1. 

Extensions  to  the  Basic  Algorithm 

Structural  learning  problems  of  the  kind  INDUCE  1.2  was  designed  to 

attack  require  binary  (and  higher  order)  predicates  to  represent  the  desired 

more  general 

Pruned 

Not  Pruned 

Placed  in  C 

v 
more  specific 

Figure  D3c-1.     A  schematic  diagram  of  INDUCE  1.2's  beam  search. 
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concepts.  The  binary  predicates  are  needed  to  express  relationships  among 

the  parts  (e.g.,  toy  blocks)  that  make  up  each  training  instance.  In  Winston's 
arch  training  instances,  for  example,  binary  predicates  could  be  used  to  rep- 

resent the  fact  that  two  blocks  are  touching — TOUCH(a,  6) — or  that  one  block 
is  supporting  another — SUPPORTS(a,  6).  Unary  predicates  and  functions  are, 
of  course,  still  needed  as  well.  Typically,  they  represent  the  attributes  of 

the  parts  of  an  instance.  In  Winston's  arches,  for  example,  unary  predicates 
could  represent  the  size  and  shape  of  each  block.  The  syntactic  distinction 

between  unary  and  binary  predicates  thus  corresponds  to  a  semantic  distinc- 
tion between  feature  values  and  binary  relationships. 
Although  it  is  possible  to  represent  structural  relationships  using  only 

unary  predicates  or  functions,  such  a  representation  is  cumbersome  and  un- 
natural. Consequently,  this  distinction — by  which  binary  and  higher  order 

predicates  correspond  to  structural  relationships  and  unary  predicates  and 

functions  correspond  to  feature  values — holds  in  most  structural  learning 
situations. 

Dietterich  and  Michalski  take  advantage  of  this  dichotomy  to  improve 

the  efficiency  of  INDUCE  1.2's  rule-space  search.  Two  separate  rule  spaces 
are  used.  The  first  rule  space,  called  the  structure-only  space,  is  the  space  of 
all  concepts  expressible  using  only  the  binary  (and  higher  order)  terms  in  the 
representation  language.  The  training  instances  are  abstracted  into  this  space 

(by  dropping  all  unary  predicates  and  functions),  and  then  the  generate- and- 
test  beam  search  is  applied  to  this  abstract  rule  space. 

Once  the  set,  C,  of  candidate  structure-only  concepts  is  obtained,  each 
concept,  C{,  in  C  is  used  to  define  a  new  rule  space,  consisting  of  all  concepts 

expressible  in  terms  of  the  attributes  of  the  subobjects  (e.g.,  blocks)  referred 

to  in  C{.  This  space  can  be  represented  with  a  simple  feature- vector  repre- 
sentation. The  training  instances  are  transformed  into  very  specific  points  in 

this  space,  and  another  beam  search  is  conducted  to  find  a  set,  C,  of  plausible 
concept  descriptions.  The  descriptions  in  C  specify  the  attributes  for  the 
subobjects  referred  to  in  C{.  Taken  together,  one  concept  in  C  combined 
with  Ci  provides  a  complete  concept  description. 

As  an  example  of  this  two-space  approach,  consider  the  two  positive 
training  instances  depicted  below: 

Instance  1.      /^"*\        3  u,  v  :  LARGE(u)  A  CIRCLE(w)  A 
LARGE(v)  A  CIRCLE(v)  A  ONTOP(w,  v) . 
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Instance  2. O 3  w,  x,  y  :  SMALL(w)  A  CIRCLE(w)  A 
LARGE(z)  A  SQUARE(x)  A 
LARGEfe)  A  SQUARE^)  A 
ONTOP(w,  x)  A  ONTOP(z,  y) . 

When  these  two  training  instances  are  translated  into  the  structure-only  rule 
space,  the  following  abstract  training  instances  are  obtained: 

Instance  l'.    3  u,v  :  ONTOP(u,  v) . 

Instance  2'.    3  w,x,y  :  ONTOPfw,  x)  A  ONTOP(x,  y) . 

The  INDUCE  1.2  beam  search  discovers  that  C  =  {ONTOP(u,  v)}  is  the  only, 

least  general,  structure-only  concept  consistent  with  the  training  instances. 

Now  a  new  attribute-vector  rule  space  is  developed  with  the  features  of  u 
and  v: 

(SIZE(u),  SHAPE(u),  SIZE(v),  SHAPE(v))  . 

The  training  instances  are  translated  to  obtain: 

Instance  l" .       (large,  circle,  large,  circle) . 

Instance  2.1".    (small,  circle,  large,  square). 

Instance  2.2".    (large,  square,  large,  square). 

Notice  that  two  alternative  training  instances  are  obtained  from  instance  2', 
since  ONTOP(it,  v )  can  match  instance  2  in  two  possible  ways  (u  bound  to  w,  v 

bound  to  x;  or  u  bound  to  x,  v  bound  to  y).  During  the  beam  search,  only  one 

of  these  two  instances,  2.1"  and  2.2",  need  be  covered  by  a  concept  description 
for  that  description  to  be  consistent. 

The  second  beam  search  is  conducted  in  this  feature-vector  space,  and  the 

concepts  (large,  *,  large,  *)  and  (*,  circle,  large,  *)  are  found  to  be  the  least 

general  concepts  that  cover  all  of  the  training  instances  ("*"  indicates  that  the 
corresponding  feature  is  irrelevant).  By  combining  each  of  these  feature-only 

concepts  with  the  structure-only  concept  ONTOP(w,  v),  two  overall  consistent 
concept  descriptions  are  obtained: 

Ci :    3  u,v  :  ONTOP(w,  v)  A  LARGE(u)  A  LARGE(v) , 

C2:    3  U,  V  :  ONTOP(u,  v)  A  CIRCLE(u)  A  LARGE(v) . 

These  correspond  to  the  observations  that  in  both  instance  1  and  instance  2 

there  are  (Ci)  "always  a  large  object  on  top  of  another  large  object"  and  (C2) 

"always  a  circle  on  top  of  a  large  object." 
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Strengths  and  Weaknesses  of  the  INDUCE  1.2  Approach 

The  basic  algorithm  suffers  from  the  absence  of  a  strong  model  to  guide 
the  pruning  of  descriptions  in  step  3  and  the  termination  of  the  search  in 
step  4.  The  present  syntactic  criteria,  of  minimizing  the  number  of  terms  in 

a  proposed  concept,  minimizing  the  user-defined  cost  of  the  terms,  and  max- 
imizing the  number  of  training  instances  covered,  are  very  weak.  Dietterich 

and  Michalski  claim  that  domain-specific  information  could  easily  be  applied 
at  this  point  to  improve  the  model-based  pruning. 

A  second  weakness  is  that  step  2  involves  exhaustive  enumeration  of  all 

possible  single-step  generalizations  of  the  hypotheses  in  H.  This  can  be  very 
costly  in  a  large  rule  space.  The  method  of  plausible  generate  and  test  works 
best  if  the  generator  can  be  constrained  to  generate  only  plausible  hypotheses. 
The  generator  in  INDUCE  1.2  relies  on  a  subsequent  pruning  step,  which  is 
quite  costly. 

A  third  weakness  of  the  method  is  that,  because  it  prunes  its  search,  it  is 

incomplete  (see  Dietterich  and  Michalski,  1981).  It  does  not  find  all  minimally 
general  concepts  in  the  rule  space  that  cover  all  of  the  training  instances. 

As  with  all  model-driven  methods,  this  approach  does  not  work  well  in 
incremental  learning  situations.  All  of  the  training  instances  must  be  available 
to  the  learning  algorithm  simultaneously. 

The  advantages  of  the  algorithm  are  that  it  is  faster  and  uses  less  memory 

than  the  full  version-space  approach.  As  with  all  model-based  methods, 
INDUCE  1.2  has  good  noise  immunity.  In  particular,  if  INDUCE  1.2  is  to  be 
given  noisy  training  instances,  then  step  4  can  be  modified  to  include  in  C 
the  concepts  that  cover  most,  rather  than  all,  of  the  training  instances. 

References 

Dietterich  and  Michalski  (1981)  describe  INDUCE  1.2. 



D3d.     Schema  Instantiation 

SCHEMA-INSTANTIATION  techniques  have  been  used  in  many  AI  systems 
that  perform  comprehension  tasks  such  as  image  interpretation,  natural- 
language  understanding,  and  speech  understanding.  Few  learning  systems 

have  employed  schema-instantiation  methods,  however.  These  methods  are 
useful  when  a  system  has  a  substantial  number  of  constraints  that  can  be 
grouped  together  to  form  a  schema,  an  abstract  skeletal  rule.  The  search  of 
the  rule  space  can  then  be  guided  to  only  those  portions  of  the  space  that  fit 
one  of  the  available  schemas.  In  this  section,  we  describe  one  learning  system, 
SPARC,  that  uses  schema  instantiation  to  discover  single  concepts. 

Discovering  Rules  in  Eleusis  with  SPARC 

Dietterich's  (1979)  SPARC  system  attempts  to  solve  a  learning  problem 
that  arises  in  the  card  game  Eleusis.  Eleusis  (developed  by  Robert  Abbott, 
1977;  see  also  Gardner,  1977)  is  a  card  game  in  which  players  attempt  to 
discover  a  secret  rule  invented  by  the  dealer.  The  secret  rule  describes  a  linear 
sequence  of  cards.  In  their  turns,  the  players  attempt  to  extend  this  sequence 
by  playing  additional  cards  from  their  hands.  The  dealer  gives  no  information 
aside  from  indicating  whether  or  not  each  play  is  consistent  with  the  secret 
rule.  Players  are  penalized  for  incorrect  plays  by  having  cards  added  to  their 
hands.  The  game  ends  when  a  player  empties  his  hand. 

A  record  of  the  play  is  maintained  as  a  layout  (see  Fig.  D3d-1)  in  which  the 
top  row,  or  main  line,  contains  all  of  the  correctly  played  cards  in  sequence. 

Incorrect  cards  are  placed  in  side  lines  below  the  main-line  card  that  they 
follow.  In  the  layout  shown  in  Figure  D3d-1,  the  first  card  correctly  played 
was  the  3  of  hearts  (3H).  This  was  followed  by  another  correct  play,  the  9  of 
spades  (9S).  Following  the  9,  two  incorrect  plays  were  made  (JD  and  5D)  before 
the  next  correct  card  (4C)  was  played  successfully. 

Main  line:         3H     9S     4C     9D  2C      10D   8H     7H     2C     5H 
Side  lines:  JD  AH  AS  10H 

5D  8H  10S 

QD 

//  the  last  card  is  odd,  play  black;  if  the  last  card  is  even,  play  red. 

Figure  D3d-1.     An  Eleusis  layout  and  the  corresponding 
secret  rule. 
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The  scoring  in  Eleusis  encourages  the  dealer  to  choose  rules  of  inter- 

mediate difficulty.  The  dealer's  score  is  determined  by  the  difference  between 
the  highest  and  lowest  scores  of  the  players.  Thus,  a  good  rule  is  one  that  is 

easy  for  some  players  and  hard  for  others. 

Schemas  in  Eleusis 

In  ordinary  play  of  Eleusis,  certain  classes  of  rules  have  been  observed. 

Dietterich  has  identified  three  rule  classes  and  developed  a  parameterized 
schema  for  each: 

1.  Periodic  rules.  A  periodic  rule  describes  the  layout  as  a  sequence  of 
repeating  features.  For  example,  the  rule  Play  alternating  red  and  black 

cards  is  a  periodic  rule.  Dietterich's  rule  schema  for  this  class  can  be 
described  as  an  TV-tuple  of  conjunctive  descriptions: 

(Ci,C2,  . . .  ,Cn)  • 

The  parameter  N  is  the  length  of  the  period  (the  number  of  cards  before 

the  period  starts  to  repeat).  The  above-mentioned  periodic  rule  would 
be  represented  as  a  2-tuple: 

(RED(cardi),  BLACK(cardi)) . 

More  complex  periodic  rules  may  refer  to  the  previous  periods.  Thus, 
the  rule 

(RANK( cardi)  >  RANK(canfc_i),  RANK( cardi)  <  RANK(carcfc_i)) 

describes  a  layout  composed  of  alternating  ascending  and  descending 

sequences  of  cards. 

2.  Decomposition  rules.  A  decomposition  rule  describes  the  layout  by  a 

set  of  if-then  rules.  For  example,  the  rule  //  the  last  card  is  odd,  play  black; 
if  the  last  card  is  even,  play  red  is  a  decomposition  rule.  The  rule  schema 

for  this  class  requires  that  the  set  of  if-then  rules  have  single  conjunctions 
for  the  if  and  then  parts  of  each  rule.  The  if  parts  must  be  mutually 

exclusive,  and  they  must  span  all  possibilities.  The  above-mentioned  rule 
can  be  written  as: 

ODD(cardi-i)     =>  BLACK(cardi)  V 
EVEN(cardi-i)  =>  RED( cara\ ) . 

3.  Disjunctive  rules.  The  third  class  of  rules  includes  any  rules  that  can 

be  represented  by  a  single  disjunction  of  conjunctions  (i.e.,  an  expression 
in  disjunctive  normal  form,  or  DNF).  For  example,  the  rule  Play  a  card 
of  the  same  rank  or  the  same  suit  as  the  preceding  card  is  a  DNF  rule.  This 
is  represented  as: 

RANK(cardi)  =  RANK(cardi-i)  V  SUIT(car<£)  =  SUIT(car<fc_i) . 
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Each  schema  has  a  few  parameters  that  control  its  application.  The  N 

(length  of  period)  parameter  of  the  period  schema  has  already  been  described. 

Each  schema  also  has  a  parameter  L,  called  the  lookback  parameter,  that 

indicates  how  many  cards  back  into  the  past  the  rule  may  consider.  Thus, 

when  L  =  0,  no  preceding  cards  are  examined.  When  L  =  1,  the  features  of 
the  current  card  are  compared  with  the  previous  card,  and  expressions  such 

as  RANK(cardi)  >  RANK(carck-i)  are  permitted.  Larger  values  of  L  provide 
for  even  further  lookback. 

Searching  the  Rule  Space  Using  Schemas 

Each  schema  can  be  viewed  as  having  its  own  rule  space — the  set  of  all 
rules  that  can  be  obtained  by  instantiating  that  schema.  SPARC  uses  the 

single-representation  trick  to  reformulate  the  layout  as  a  set  of  very  specific 

rules  for  each  of  the  schema-specific  rule  spaces.  The  overall  algorithm  works 
as  follows: 

Step  1.  Parameterize  a  schema.  SPARC  chooses  a  schema  and  selects  par- 
ticular values  for  the  parameters  of  that  schema. 

Step  2.  Interpret  the  training  instances.  Transform  the  training  instances 

(i.e.,  the  cards  in  the  layout)  into  very  specific  rules  that  fit  the 
chosen  schema. 

Step  3.  Instantiate  the  schema.  Generalize  the  transformed  training  instances 

to  fit  the  schema.  SPARC  uses  a  schema-specific  algorithm  to 
accomplish  this  step. 

Step  4.  Evaluate  the  instantiated  schema.  Determine  how  well  the  schema  fits 

the  data.  Poorly  fitting  rules  are  discarded. 

SPARC  conducts  a  depth-first  search  of  the  space  of  all  parameterizations 

of  all  schemas  up  to  a  user-specified  limit  on  the  magnitudes  of  the  parameters. 
Notice  that  a  separate  interpretation  step  is  required  for  each  parameterized 
schema. 

When  these  steps  are  applied  to  the  game  shown  in  Figure  D3d-1,  for 

example,  step  1  eventually  chooses  the  decomposition  schema  with  L  =  1. 

Step  2  then  converts  the  training  instances  into  very  specific  rules  in  the  cor- 
responding rule  space.  In  this  case,  the  first  five  cards  produce  the  training 

instances  shown  below.  The  instances  are  represented  by  the  feature  vec- 
tor (RANK,  SUIT,  COLOR,  PARITY)  to  
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Step  3  produces  the  following  instantiated  schema  (with  irrelevant  features 

indicated  by  *): 

(*,*,*,  odd)    =>    (*,  *,  black,  *)  V  (*,*,*,  even)    =►    (*,  *,  red,  *) . 

Step  4  determines  that  this  rule  is  entirely  consistent  with  the  training  in- 
stances and  is  syntactically  simple.  Consequently,  the  rule  is  accepted  as  a 

hypothesis  for  the  dealer's  secret  rule. 
The  schema-instantiation  method  works  well  when  step  3,  the  schema- 

instantiation  step,  is  easy  to  accomplish.  A  good  schema  provides  many 
constraints  that  limit  the  size  of  its  rule  space.  In  SPARC,  for  example,  the 
periodic  and  decomposition  schemas  require  that  their  rules  be  made  up  of 
single  conjuncts  only.  This  is  a  strong  constraint  that  can  be  incorporated  into 

the  model-fitting  algorithm.  On  the  other  hand,  the  DNF  schema  provides 
few  constraints  and,  consequently,  an  efficient  instantiation  algorithm  could 

not  be  written.  The  general-purpose  Aq  algorithm  (see  Article  XIV.D3a)  was 
used  instead. 

Strengths  and  Weaknesses  of  SPARC 

The  schema-instantiation  method  used  in  SPARC  was  able  to  find  plausible 
Eleusis  rules  very  quickly.  This  is  the  primary  advantage  of  the  schema- 
instantiation  approach — large  rule  spaces  can  be  searched  quickly.  A  second 
advantage  of  this  approach  is  that  it  has  good  noise  immunity.  The  schema- 
instantiation  process  has  access  to  the  full  set  of  training  instances,  and,  thus, 
it  can  use  statistical  measures  to  guide  the  search  of  rule  space. 

There  are  three  important  disadvantages  of  the  schema-instantiation 
method  as  used  in  SPARC.  First,  it  is  difficult  to  isolate  a  group  of  con- 

straints and  combine  them  to  form  a  schema.  The  three  schemas  in  SPARC, 

although  they  cover  most  "secret  rules"  pretty  well,  are  known  to  miss  some 
important  rules.  The  task  of  coming  up  with  new  schemas,  however,  is  par- 

ticularly difficult.  A  second  problem  with  the  schema-instantiation  approach 
is  that  special  schema-instantiation  algorithms  must  be  developed  for  each 
schema.  This  makes  it  difficult  to  apply  the  approach  in  new  domains.  The 

third  disadvantage  is  that  separate  interpretation  methods  need  to  be  devel- 
oped for  each  schema.  This  was  less  of  a  problem  in  the  Eleusis  domain,  be- 
cause the  interpretation  processes  for  the  different  schemas  were  very  similar. 

References 

Dietterich  (1979)  is  the  original  description  of  the  SPARC  program.  Diet- 
terich  (1980)  is  a  more  accessible  source.  See  also  Dietterich  and  Michalski 

(in  press). 



D4.     Learning  Multiple  Concepts 

A  FEW  AI  learning  systems  have  been  developed  that  discover  a  set  of  con- 
cepts from  training  instances.  These  systems  perform  tasks,  such  as  disease 

diagnosis  and  mass-spectrometer  simulation,  for  which  a  single  concept  or 
classification  rule  is  not  sufficient. 

To  understand  the  problems  of  learning  multiple  concepts,  it  is  helpful 

to  review  single-concept  learning.  In  single-concept  learning  (see  Sec.  XIV.D3), 
the  learning  element  is  presented  with  positive  and  negative  instances  of  some 
concept,  and  it  must  find  a  concept  description  that  effectively  partitions  the 
space  of  all  instances  into  two  regions:  positive  and  negative.  All  instances  in 
the  positive  region  are  believed  by  the  learning  system  to  be  examples  of  the 

single  concept  (see  Fig.  D4-1). 
In  multiple-concept  learning,  the  situation  is  slightly  more  complicated. 

The  learning  element  is  presented  with  training  instances  that  are  instances 
of  several  concepts,  and  it  must  find  several  concept  descriptions.  For  each 
concept  description,  there  is  a  corresponding  region  in  the  instance  space  (see 

Fig.  D4-2).  An  important  multiple-concept  learning  problem  is  the  problem 
of  discovering  disease-diagnosis  rules  from  training  instances.  The  learning 
element  is  presented  with  training  instances  that  each  contain  a  description 

of  a  patient's  symptoms  and  the  proper  diagnosis  as  determined  by  a  doctor. 
The  program  must  discover  a  set  of  rules  of  the  form: 

(description  of  symptoms  for  disease  A)    =>    Disease  is  A , 

(description  of  symptoms  for  disease  B)    =>    Disease  is  B , 

(description  of  symptoms  for  disease  N)    =>    Disease  is  N 

Instance  Space 

Negative  Region 

Figure  D4-1.     A  single  concept  viewed  as  a  region 
of  the  instance  space. 
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Instance  Space 

Figure  D4-2.     Regions  of  the  instance  space  corre- 
sponding to  different  rules. 

The  left-hand  side  of  each  rule  is  a  concept  description  that  corresponds  to 

a  region  in  the  instance  space  of  all  possible  symptoms  (see  Fig.  D4-2).  Any 
patient  whose  symptoms  fall  in  region  A,  for  example,  will  be  diagnosed  as 
having  disease  A. 

An  important  issue  arising  in  multiple-concept  learning  is  the  problem 
of  overlapping  concept  descriptions — that  is,  overlapping  left-hand  sides  of 

diagnosis  rules.  In  Figure  D4-2,  for  example,  when  a  patient's  symptoms  fall 
in  the  area  where  regions  A  and  B  overlap,  the  system  will  diagnose  the  patient 
as  having  both  diseases  A  and  B.  This  overlap  may  be  correct,  since  there 
are  often  cases  in  which  a  patient  has  more  than  one  disease  simultaneously. 

On  the  other  hand,  it  is  often  the  case  in  multiple-concept  problems  that 
the  various  classes  are  intended  to  be  mutually  exclusive.  For  example,  if, 
instead  of  diagnosing  diseases,  the  performance  task  is  to  classify  images  of 
handwritten  characters,  it  is  important  that  the  system  arrive  at  a  unique 
classification  for  each  character. 

The  problem  of  overlap  among  multiple  concepts  can  lead  to  integration 
problems,  as  described  in  Article  XIV.A.  When  a  new  rule  or  concept  is  added 

to  the  knowledge  base  in  a  multiple-concept  system,  it  may  be  necessary  to 
modify  the  left-hand  sides  of  existing  rules,  particularly  if  the  concept  classes 
are  intended  to  be  mutually  exclusive. 

The  systems  described  in  this  section  differ  from  those  described  in  the 

Section  XIV.D5  on  multiple-step  tasks  in  that  the  performance  tasks  dis- 
cussed here  can  all  be  accomplished  in  a  single  step.  The  various  disease- 

classification  rules,  for  example,  can  be  applied  simultaneously  to  classify  a 

patient's  symptoms.  Tasks  for  which  this  is  not  the  case — like  playing  check- 
ers or  solving  symbolic  integration  problems — are  discussed  in  Section  XTV.D5. 
We  first  discuss  the  work  of  Michalski  and  his  colleagues  on  the  AQ11 

program,  which  learns  a  set  of  classification  rules  for  the  diagnosis  of  soybean 
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diseases.  Second,  we  describe  the  Meta-DENDRAL  system,  which  learns  a  set 
of  cleavage  rules  that  describe  the  operation  of  a  chemical  instrument  called 
the  mass  spectrometer.  Finally,  the  AM  system,  which  discovers  new  concepts 
in  mathematics,  is  discussed  in  some  detail.  Since  these  systems  do  not  all 
address  the  same  learning  problem,  we  begin  each  article  with  a  description  of 
the  particular  learning  problem  being  attacked  and  then  discuss  the  methods 
employed  to  accomplish  the  learning. 



D4a.     AQ11 

MlCHALSKI  and  his  colleagues  (Michalski  and  Larson,  1978;  Michalski  and 

Chilausky,  1980)  have  developed  several  techniques  for  learning  a  set  of  classi- 
fication rules.  The  performance  element  that  applies  these  rules  is  a  pattern 

classifier  that  takes  an  unknown  pattern  and  classifies  it  into  one  of  n  classes 

(see  Fig.  D4a-1).  Many  performance  tasks,  such  as  optical  character  recogni- 
tion and  disease  diagnosis,  have  this  form. 
The  classification  rules  are  learned  from  training  instances  consisting  of 

sample  patterns  and  their  correct  classifications.  For  the  classifier  to  be  as 
efficient  as  possible,  the  classification  rules  should  test  as  few  features  of  the 
input  pattern  as  necessary  to  classify  it  reliably.  This  is  particularly  relevant  in 
areas  like  medicine,  where  the  measurement  of  each  additional  feature  of  the 

input  pattern  may  be  very  costly  and  dangerous.  Consequently,  Michalski's 
learning  program  AQll  (Michalski  and  Larson,  1978)  seeks  to  find  the  most 
general  rule  in  the  rule  space  that  discriminates  training  instances  in  class  c; 

from  all  training  instances  in  all  other  classes  Cj  (i  7^  j).  Dietterich  and 
Michalski  (1981)  call  these  discriminant  descriptions  or  discrimination  rules, 
since  their  purpose  is  to  discriminate  one  class  from  a  predetermined  set  of 
other  classes. 

Using  the  Aq  Algorithm  to  Find  Discrimination  Rules 

The  representation  language  used  by  Michalski  to  represent  discrimina- 
tion rules  is  VLi ,  an  extension  of  the  propositional  calculus.  VLi  is  a  fairly  rich 

Output  Classification 
Input  Pattern   ►     Classifier        ►  {ci,  . . . ,  cn} 

Figure  D4a-1.     The  n-category  classification  task. 
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language  that  includes  conjunction,  disjunction,  and  set-membership  opera- 
tors. Consequently,  the  rule  space  of  all  possible  VLi  discrimination  rules  is 

quite  large.  To  search  this  rule  space,  AQll  uses  the  Aq  algorithm,  which 
is  nearly  equivalent  to  the  repeated  application  of  the  candidate-elimination 
algorithm  (see  Article  XIV.D3a).  AQll  converts  the  problem  of  learning  dis- 

crimination rules  into  a  series  of  single-concept  learning  problems.  To  find  a 
rule  for  class  Ci,  it  considers  all  of  the  known  instances  in  class  c;  as  positive 
instances  and  all  other  training  instances  in  all  of  the  remaining  classes  as 

negative  instances.  The  Aq  algorithm  is  then  applied  to  find  a  description 
that  covers  all  of  the  positive  instances  without  covering  any  of  the  negative 
instances.  AQll  seeks  the  most  general  such  description,  which  corresponds 

to  a  necessary  condition  for  class  membership.  Figure  D4a-2  shows  schemati- 
cally how  this  works.  The  dots  represent  known  training  instances,  and  the 

circle  represents  the  set  of  possible  training  instances  that  are  covered  by  the 
description  of  class  C\ . 

For  each  class  Cj,  such  a  "concept"  is  discovered.  The  result  is  shown 
schematically  in  Figure  D4a-3. 

Note  that  the  discrimination  rules  may  overlap  in  regions  of  the  instance 
space  that  have  not  yet  been  observed.  This  overlap  is  useful  because  it 
allows  the  performance  element  to  be  somewhat  conservative.  In  the  areas  in 

which  the  discrimination  rules  are  ambiguous  (i.e.,  overlap),  the  performance 
element  can  report  this  to  the  user  rather  than  assign  the  unknown  instance 
to  one  arbitrarily  chosen  class. 

AQll  also  has  a  method  for  finding  a  nonoverlapping  set  of  classification 

rules.  Since  the  Aq  algorithm  uses  the  single-representation  trick,  it  can  accept 
not  only  single  points  in  the  instance  space  (as  represented  by  very  specific 

points  in  the  rule  space)  but  also  generalized  "instances"  that  are  conjuncts 

Instance  Space 

Figure  D4a-2.     Learning  c\  by  treating  all  other  classes 
as  negative  instances. 
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Instance  Space 

Figure  D4a-3.     Finding  single  concepts  for  each  class. 

in  the  rule  space  corresponding  to  sets  of  training  instances.  This  allows  AQll 
to  treat  the  concept  descriptions  themselves  as  negative  examples  when  it  is 
learning  the  concept  description  for  a  subsequent  class.  Thus,  in  order  to 
obtain  a  nonoverlapping  set  of  discrimination  rules,  AQll  takes  as  its  positive 
instances  all  known  instances  in  c;  and  as  its  negative  instances  all  known 

instances  in  Cj  (j  7^  i)  plus  all  conjuncts  that  make  up  the  discrimination 
rules  for  previously  processed  classes  Ck  (k  <  i).  The  resulting  disjoint  rules 

are  shown  schematically  in  Figure  D4a-4  (assuming  the  classes  were  processed 
in  the  order  Ci,  C2,  C3). 

The  rules  that  are  developed  split  up  the  unobserved  part  of  the  instance 
space  in  such  a  way  that  c\  gets  the  largest  share,  C2  covers  any  space  not 
covered  by  ci,  C3  covers  any  space  not  covered  by  c\  or  C2,  and  so  on.  The  way 
in  which  the  space  is  divided  up  depends  on  the  order  in  which  the  classes  are 

Instance  Space 

Figure  D4a-4.     Finding  nonoverlapping  classification  rules. 
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processed.  A  performance  element  that  uses  such  a  disjoint  set  of  concepts 
will  be  reckless  in  the  sense  that  it  will  assign  an  unknown  instance  to  an 
arbitrary  class.  The  classifier  arbitrarily  prefers  C\  to  C2,  C2  to  C3,  and  so  on. 

The  discrimination  rules  developed  by  AQll  correspond  (roughly)  to  the 

set  of  most  general  descriptions  consistent  with  the  training  instances — the 
G  set  in  the  candidate-elimination  algorithm  (see  Sec.  XIV.D3).  In  many 
situations,  it  is  also  good  to  develop,  for  each  class  ct,  the  most  specific  (S-set) 
description  of  that  class.  This  permits  very  explicit  handling  of  the  unobserved 

portions  of  the  space.  Figure  D4a-5  shows  such  a  set  of  descriptions. 
When  S  and  G  sets  are  both  available,  the  performance  element  can 

choose  among  definite  classification  (the  instance  is  covered  by  the  S  set), 
probable  classification  (the  instance  is  covered  by  only  one  G  set),  and  multiple 
classification  (the  instance  is  covered  by  several  G  sets).  AQll  has  the  ability 
to  calculate  an  approximate  S  set  for  each  class.  When  the  description  of  the 
class  is  disjunctive,  the  S  set  is  also  disjunctive. 

Applications  of  AQll 

The  AQll  program  has  been  applied  to  the  problem  of  discovering  disease- 
diagnosis  rules  for  15  soybean  diseases  (Michalski  and  Chilausky,  1980).  Here 
is  an  example  of  a  classification  rule  for  the  disease  Rhizoctonia  root  rot 

obtained  by  the  overlapping-concept  approach  discussed  above: 

leaves  £  {normal}  A  stem  £  {abnormal}  A 
stem  cankers  £  {below  soil  line}  A  canker  lesion  color  £  {brown}  V 

leaf  malformation  £  {absent}  A  stem  £  {abnormal}  A 
stem  cankers  £  {below  soil  line}  A  canker  lesion  color  £  {brown} 
=»    Rhizoctonia  root  rot . 

Instance  Space 
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Figure  D4a-5.     Learning  both  the  G  and  S  set  descriptions 
for  each  class. 
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An  interesting  experiment  was  conducted  as  part  of  the  soybean  disease 
project.  The  goal  was  to  compare  the  quality  of  rules  obtained  through 
consultation  with  expert  plant  pathologists  with  rules  developed  by  learning 
from  examples.  Descriptions  of  630  diseased  soybean  plants  were  entered  into 

the  computer  (as  feature  vectors  involving  35  features)  along  with  an  expert's 
diagnosis  of  each  plant.  A  special  instance-selection  program,  ESEL,  was  used 
to  select  290  of  the  sample  plants  as  training  instances.  ESEL  attempts  to 

select  training  instances  that  are  quite  different  from  one  another — instances 

that  are  "far  apart"  in  the  instance  space.  The  remaining  340  instances 
were  set  aside  to  serve  as  a  testing  set  for  comparing  the  performance  of  the 

machine-derived  rules  with  the  performance  of  the  expert-derived  rules. 
AQ11  was  then  run  on  the  290  training  instances  to  develop  overlapping 

rules  such  as  the  rule  above.  Simultaneously,  the  researchers  consulted  with 
the  plant  pathologist  to  obtain  a  set  of  rules.  They  adopted  the  standard 

knowledge-engineering  approach  of  interviewing  the  expert  and  translating 
his  expertise  into  diagnosis  rules.  The  expert  insisted  on  using  a  description 
language  that  was  somewhat  more  expressive  than  the  language  used  by  AQ11. 

The  expert's  rules,  for  example,  listed  some  features  as  necessary  and  other 
features  as  confirmatory;  AQ11  was  unable  to  make  such  a  distinction. 

As  a  consequence  of  the  differing  description  languages,  slightly  differing 
performance  elements  had  to  be  developed  to  apply  the  two  sets  of  rules,  and 
each  performance  element  was  adjusted  to  get  the  best  performance  from  its 

classification  rules.  Surprisingly,  the  computer-generated  rules  outperformed 
the  expert-derived  rules.  Despite  the  fact  that  the  expert-derived  rules  were 
expressed  in  a  more  powerful  language,  the  machine-generated  rules  gave  the 
correct  disease  top  ranking  97.6%  of  the  time,  compared  to  only  71.8%  for  the 

expert-derived  rules.  Overall,  the  machine-generated  rules  listed  the  correct 
disease  among  the  possible  diagnoses  100%  of  the  time,  in  contrast  to  96.9% 

for  the  expert's  rules.  Furthermore,  the  computer-derived  rules  tended  to 
list  fewer  alternative  diagnoses.  The  conclusion  of  the  experiment  was  that 
automatic  rule  induction  can,  in  some  situations,  lead  to  more  reliable  and 

more  precise  diagnosis  rules  than  those  obtained  by  consultation  with  the 
expert. 

References 

Michalski  and  Larson  (1978)  describe  the  AQ11  and  ESEL  programs  in 
detail.  The  soybean  work  is  described  in  Michalski  and  Chilausky  (1980). 



D4b.     Meta-DENDRAL 

META-DENDRAL  (Buchanan  and  Mitchell,  1978)  is  a  program  that  discovers 
rules  describing  the  operation  of  a  chemical  instrument  called  a  mass  spec- 

trometer. The  mass  spectrometer  is  a  device  that  bombards  small  chemical 
samples  with  accelerated  electrons,  causing  the  molecules  of  the  sample  to 
break  apart  into  many  charged  fragments.  The  masses  of  these  fragments  can 

then  be  measured  to  produce  a  mass  spectrum— &  histogram  of  the  number 
of  fragments  (also  called  the  intensity)  plotted  against  their  mass-to-charge 
ratio  (see  Fig.  D4b-1). 

An  analytic  chemist  can  infer  the  molecular  structure  of  the  sample 
chemical  through  careful  inspection  of  the  mass  spectrum.  The  Heuristic 

DENDRAL  program  (see  Sec.  VII.C2,  in  Vol.  Il)  is  able  to  perform  this  task 
automatically.  It  is  supplied  with  the  chemical  formula  (but  not  the  structure) 
of  the  sample  and  its  mass  spectrum.  Heuristic  DENDRAL  first  examines  the 
spectrum  to  obtain  a  set  of  constraints.  These  constraints  are  then  supplied 
to  CONGEN,  a  program  that  can  generate  all  possible  chemical  structures 
satisfying  the  constraints.  Finally,  each  of  these  generated  structures  is  tested 

by  running  it  through  a  mass-spectrometer  simulator.  The  simulator  applies 
a  set  of  cleavage  rules  to  predict  which  bonds  in  the  proposed  structure  will 
be  broken.  The  result  is  a  simulated  mass  spectrum  for  each  candidate 
structure.  The  simulated  spectra  are  compared  with  the  actual  spectrum,  and 
the  structure  whose  simulated  spectrum  best  matches  the  actual  spectrum  is 
ranked  as  the  most  likely  structure  for  the  unknown  sample. 

Intensity 

I  111!    il 

I       » 

Mass-to-chargc  ratio 

Figure  D4b-1.     A  mass  spectrum. 
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The  Learning  Problem 

Meta-DENDRAL  was  designed  to  serve  as  the  learning  element  for  Heu- 
ristic DENDRAL.  (For  an  alternate  view  of  Meta-DENDRAL  as  an  expert 

system,  see  Article  VII.C2c,  in  Vol.  II.)  Its  purpose  is  to  discover  new  cleavage 

rules  for  DENDRAL 's  mass-spectrometer  simulator.  These  rules  are  grouped 
according  to  structural  families.  Chemists  have  noted  that  molecules  that 
share  the  same  structural  skeleton  behave  in  similar  ways  inside  the  mass 
spectrometer.  Conversely,  molecules  with  vastly  different  structures  behave 
in  vastly  different  ways.  Thus,  no  single  set  of  cleavage  rules  can  accurately 
describe  the  behavior  of  all  molecules  in  the  mass  spectrometer. 

Figure  D4b-2  shows  an  example  of  a  structural  skeleton  for  the  family 
of  monoketoandrostanes.  Particular  molecules  in  this  family  are  constructed 

by  attaching  keto  groups  (OH)  to  any  of  the  available  carbon  atoms  in  the 
skeleton. 

The  learning  problem  addressed  by  Meta-DENDRAL  is  to  discover  the 
cleavage  rules  for  a  particular  structural  family.  The  problem  can  be  stated 
as  follows: 

Given:    (a)   A  representation  language  for  describing  molecular  structures 
and  substructures;  and 

(b)  A  training  set  of  known  molecules,  chosen  from  a  single  struc- 
tural family,  along  with  their  structures  and  their  mass  spec- tra; 

Find:      A  set  of  cleavage  rules  that  characterize  the  behavior  of  this  struc- 
tural family  in  the  mass  spectrometer. 

This  learning  problem  is  difficult  because  it  contains  two  sources  of  ambiguity. 

First,  the  mass  spectra  of  the  training  molecules  are  noise-ridden.  There  may 
be  falsely  observed  fragments  (false  positives)  and  important  fragments  that 
may  not  have  been  observed  (false  negatives).  Second,  the  cleavage  rules  need 

Figure  D4b-2.     The  structural  skeleton  for  the  monoketo- 
androstane  family. 
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not  be  entirely  consistent  with  the  training  instances.  A  rule  that  correctly 
predicts  a  cleavage  in  more  than  half  of  the  molecules  can  be  considered  to 

be  acceptable;  the  rules  need  not  be  cautious.  It  is  safer — from  the  point  of 

view  of  DENDRAL's  simulation  task — to  predict  cleavages  that  do  not  occur 
than  it  is  to  fail  to  predict  cleavages  that  do  occur. 

Meta-DENDRAL's  representation  language  corresponds  to  the  ball-and- 
stick  models  used  by  chemists.  The  molecule  is  represented  as  an  undirected 

graph  in  which  nodes  denote  atoms  and  edges  denote  chemical  bonds.  Hydro- 
gen atoms  are  not  included  in  the  graph.  Each  atom  can  have  four  features: 

(a)  the  atom  type  (e.g.,  carbon,  nitrogen),  (b)  the  number  of  nonhydrogen 
neighbors,  (c)  the  number  of  hydrogen  atoms  that  are  bonded  to  the  atom,  and 
(d)  the  number  of  double  bonds  in  which  the  atom  participates.  A  cleavage 

rule  is  expressed  in  terms  of  a  bond  environment — a  portion  of  the  molecular 
structure  surrounding  a  particular  bond.  The  bond  environment  makes  up 
the  condition  part  of  a  cleavage  rule.  The  action  part  of  the  rule  specifies 

that  the  designated  bond  will  cleave  in  the  mass  spectrometer.  Figure  D4b-3 
shows  a  typical  cleavage  rule. 

The  performance  element  (the  simulator)  applies  the  production  rule  by 

matching  the  left-hand-side  bond  environment  to  the  molecular  structure  that 
is  undergoing  simulated  bombardment.  Whenever  the  left-hand-side  pattern 
is  matched,  the  right-hand-side  predicts  that  the  bond  designated  by  *  will 
break. 

The  Interpretation  Problem  and  the  Subprogram  INTSUM 

Meta-DENDRAL  employs  the  method  of  model-driven  generate-and-test 
to  search  the  rule  space  of  possible  cleavage  rules.  Before  it  can  carry  out 
this  search,  however,  it  must  first  interpret  the  training  instances  and  convert 

them  into  very  specific  points  in  the  rule  space  (i.e.,  into  very  specific  cleavage 
rules). 

x — y — z — w    =►  x — y  *  z — w 

Node     Atom  type     Neighbors  H-neighbors     Double  bonds 

x  carbon  3  1  0 

y  carbon  2  2  0 
z  nitrogen  2  1  0 
w  carbon  2  2  0 

Figure  D4b-3.     A  typical  cleavage  rule. 
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The  interpretation  process  is  accomplished  by  the  subprogram  INTSUM 

(INTerpretation  and  SUMmary).  Recall  that  the  training  instances  have  the 
form: 

(whole  molecular  structure)     =>     (mass  spectrum) . 

INTSUM  seeks  to  develop  a  set  of  very  specific  cleavage  rules  of  the  form: 

(whole  molecular  structure)     =>     (one  designated  broken  bond) . 

To  make  this  conversion,  INTSUM  must  hypothesize  which  bonds  were 

broken  to  produce  which  peaks  in  the  spectrum.  It  accomplishes  this  by  means 

of  a  "dumb"  version  of  the  DENDRAL  mass-spectrometer  simulator.  Since 
Meta-DENDRAL  is  attempting  to  discover  cleavage  rules  for  this  particular 

structural  class,  it  cannot  use  those  same  cleavage  rules  to  drive  the  simula- 

tion. Instead,  a  simple  half- order  theory  of  mass  spectrometry  is  adopted. 

The  half-order  theory  describes  the  action  of  the  mass  spectrometer  as 
a  sequence  of  complete  fragmentations  of  the  molecule.  One  fragmentation 

slices  the  molecule  into  two  pieces.  A  subsequent  fragmentation  may  further 

split  one  of  those  two  pieces  to  create  two  smaller  pieces,  and  so  on.  After 

each  fragmentation,  some  atoms  from  one  piece  of  the  molecule  may  migrate 

to  the  other  piece  (or  be  lost  altogether).  The  half-order  theory  places  certain 

constraints  on  this  split- and- migrate  process.  It  says  that  all  bonds  will  break 
in  the  molecule  except  the  following: 

1.  Double  and  triple  bonds  do  not  break; 

2.  Bonds  in  aromatic  rings  do  not  break; 

3.  Two  bonds  involving  the  same  atom  do  not  break  simultaneously; 

4.  No  more  than  three  bonds  break  simultaneously; 

5.  At  most,  only  two  fragmentations  occur  (one  after  the  other); 

6.  No  more  than  two  rings  can  be  split  as  the  result  of  both  of  the  frag- 
mentations. 

Constraints  are  also  placed  on  the  kinds  of  migrations  that  can  occur: 

1.  No  more  than  two  hydrogen  atoms  migrate  after  a  fragmentation; 

2.  At  most,  one  H2O  is  lost; 

3.  At  most,  one  CO  is  lost. 

The  parameters  of  the  theory  are  flexible  and  can  be  adjusted  by  the  user  of 

Meta-DENDRAL. 

Based  on  this  theory,  INTSUM  simulates  the  bombarding  and  cleaving  of 

the  molecular  structures  provided  in  the  training  instances.  The  result  is  a 

simulated  spectrum  in  which  each  simulated  peak  has  an  associated  record 

of  the  bond  cleavages  that  caused  that  peak  to  appear.  Each  simulated 

peak  is  compared  with  the  actual  observed  peaks.    If  their  masses  match, 
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then  INTSUM  infers  that  the  "cause"  of  the  simulated  peak  is  a  plausible 
explanation  of  the  observed  peak.  If  a  simulated  peak  finds  no  matching 
observed  peak,  it  is  ignored.  If  an  observed  peak  remains  unexplained,  it  is 
also  ignored.  However,  unexplained  peaks  are  reported  to  the  chemist.  A  large 

proportion  of  unexplained  peaks  would  indicate  that  the  half-order  theory  was 
inadequate  to  explain  the  operation  of  the  mass  spectrometer  in  this  training 
instance. 

The  half-order  theory  contributes  another  source  of  ambiguity  to  the 
learning  problem.  The  interpreted  set  of  training  instances  can  easily  contain 

erroneous  instances.  INTSUM's  half-order  theory  tends  to  predict  cleavages 
that  did  not,  in  fact,  occur.  It  is  also  not  unusual  for  the  half-order  theory 
to  fail  to  predict  cleavages  that  did  occur.  Thus,  the  training  instances  that 
guide  the  rule  space  search  are  very  noisy  indeed. 

The  Search  of  the  Rule  Space 

Meta-DENDRAL  searches  the  rule  space  in  two  phases.  First,  a  model- 

driven  generate-and-test  search  is  conducted  by  the  RULEGEN  subprogram. 
This  is  a  fairly  coarse  search  from  which  redundant  and  approximate  rules 
may  result.  The  second  phase  of  the  search  is  conducted  by  the  RULEMOD 
subprogram,  which  cleans  up  the  rules  developed  by  RULEGEN  to  make  them 
more  precise  and  less  redundant. 

RULEGEN.  This  subprogram  searches  the  rule  space  of  bond  environ- 
ments in  order  from  most  general  to  most  specific.  The  algorithm  repeatedly 

generates  a  new  set  of  hypotheses,  H,  and  tests  it  against  the  (positive)  train- 
ing instances  developed  by  INTSUM,  as  follows: 

Step  1.    Initialize  H  to  contain  the  most  general  bond  environment 

x*y 

Node     Atom  type     Neighbors     
H-neighbors     

Double  bonds 
x  any  

any  
any  

any 
y  any  any  any  any 

This  bond  environment  matches  every  bond  in  the  molecule  and 

thus  predicts  that  every  bond  will  break.  Since  the  most  useful 

(i.e.,  most  accurate)  bond  environment  lies  somewhere  between  this 

overly  general  environment  (a;  *  y)  and  the  overly  specific,  complete 
molecular  structure  (with  specified  bonds  breaking),  the  program 
generates  refined  environments  by  successively  specializing  the  H 
set. 

Step  2.  Generate  a  new  set  of  hypotheses.  Specialize  the  set  H  by  making 
a  change  to  all  atoms  at  a  specified  distance  (radius)  from  the 

*  bond — the  bond  designated  to  break.  The  change  can  involve 
either  adding  new  neighbor  atoms  or  specifying  an  atom  feature. 
All  possible  specializations  are  made  for  which  there  is  supporting 
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evidence.     The  technique  of  modifying  all  atoms  at  a  particular 
radius  causes  the  RULEGEN  search  to  be  coarse. 

Step  3.  Test  the  hypotheses  against  the  training  instances.  The  bond  environ- 
ments in  H  are  examined  to  determine  how  much  evidence  there 

is  for  each  environment.  An  improvement  criterion  is  computed  for 
each  environment  that  states  whether  the  environment  is  more 

plausible  than  the  parent  environment  from  which  it  was  obtained 
by  specialization.  Environments  that  are  determined  to  be  more 
plausible  than  their  parents  are  retained.  The  others  are  pruned 
from  the  H  set.  If  all  specializations  of  a  parent  environment  are 
determined  to  be  less  plausible  than  their  parent,  the  parent  is 
output  as  a  new  cleavage  rule  and  is  removed  from  H. 

Repeat  steps  2  and  3  until  H  is  empty. 

Figure  D4b-4  shows  a  portion  of  the  RULEGEN  search  tree.  Horizontal 

levels  in  the  tree  correspond  to  the  contents  of  the  H  set  after  each  itera- 

tion. Starting  with  the  root  pattern,  So,  the  number- of -neighbors  attribute 
is  specialized  (i.e.,  the  pattern  graph  is  expanded)  for  each  atom  at  distance 

zero  from  (adjacent  to)  the  break  to  give  pattern  Si.  The  atom  type  is  then 

specified  for  atoms  adjacent  to  the  break  in  S2  and  for  atoms  one  bond 

removed  from  the  break  in  S3.  At  each  step,  there  are  many  other  pos- 
sible successors  corresponding  to  assignments  of  other  values  to  these  same 

attributes  or  to  other  attributes. 

The  improvement  criterion  used  in  step  3  states  that  a  daughter  environ- 
ment graph  is  more  plausible  than  its  parent  graph  if: 

1.   It  predicts  fewer  fragmentations  per  molecule  (i.e.,  it  is  more  specific); 

X*X(S0) 

X-X*X-X  (S.) 

c*c-c(s,) 

Figure  D4b-4.     A  portion  of  the  RULEGEN  search  tree. 
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2.  It  still  predicts  fragmentations  for  at  least  half  of  all  of  the  molecules 

(i.e.,  it  is  sufficiently  general); 

3.  It  predicts  fragmentations  for  as  many  molecules  as  its  parent — unless 

the  parent  graph  was  "too  general"  in  the  sense  that  the  parent  predicts 
more  than  2  fragmentations  in  some  single  molecule  or  on  the  average 

it  predicts  more  than  1.5  fragmentations  per  molecule. 

This  algorithm  assumes  that  the  improvement  criterion  increases  mono 

tonically  to  a  single  maximum  value  (i.e.,  it  is  unimodal).  This  is  usually  true 

for  the  mass-spectrometry  learning  task.  RULEGEN  can  thus  be  viewed  as 
following  monotonically  increasing  paths  down  through  the  partial  order  of 

the  rule  space  until  the  criterion  attains  a  local  maximum  value. 

RULEMOD.  The  rules  produced  by  RULEGEN  are  very  approximate  and 

have  not  been  tested  against  negative  evidence.  RULEMOD  improves  these 

rules  by  conducting  fine  hill-climbing  searches  in  the  portions  of  the  rule  space 
near  the  rules  located  by  RULEGEN.  The  subprogram  RULEMOD  proceeds 

in  four  steps: 

Step  1 .  Select  a  subset  of  important  rules.  RULEGEN  can  produce  rules  that 
are  different  from  one  another  but  that  explain  many  of  the  same 

data  points.  RULEMOD  attempts  to  find  a  small  set  of  rules  that 
account  for  all  of  the  data.  Negative  evidence  is  gathered  for 

each  rule  by  re-invoking  the  mass-spectrometer  simulator.  Each 
candidate  rule  is  tested  to  see  how  many  incorrect  predictions  are 
made  as  well  as  how  many  correct  predictions.  The  rules  are  ranked 

according  to  a  scoring  function  (/  X  (P  +  U  —  2N),  where  J  is  the 
average  intensity  of  the  positively  predicted  peaks,  P  is  the  number 
of  correctly  predicted  peaks,  U  is  the  number  of  correct  peaks 
predicted  uniquely  by  this  rule  and  no  other,  and  N  is  the  number 

of  incorrectly  predicted  peaks).  The  top-ranked  rule  is  selected. 
All  evidence  peaks  explained  by  that  rule  are  removed,  and  the 
ranking  and  selection  process  is  repeated  until  all  positive  evidence 
is  explained  or  until  the  scores  fall  below  a  specified  threshold. 

Step  2.  Specialize  rules  to  exclude  negative  evidence.  RULEMOD  attempts  to 
specialize  the  rules  in  order  to  exclude  some  negative  evidence  while 
retaining  the  positive  evidence.  For  each  candidate  rule,  RULEMOD 
attempts  to  fill  in  additional  values  for  features  that  were  left 
unspecified  by  RULEGEN.  RULEMOD  first  examines  all  of  the 
positive  instances  predicted  by  the  candidate  rule  and  obtains  a  list 
of  all  possible  feature  values  that  are  common  to  all  of  the  positive 
instances.  Each  of  these  feature  values  could  individually  be  added 

to  the  rule  without  excluding  any  positive  instances.  RULEMOD 
attempts  to  select  a  mutually  compatible  set  of  values  that  will 
exclude  a  large  amount  of  negative  evidence. 
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The  selection  process  uses  a  hill-climbing  search.  The  feature  value 
that  excludes  the  largest  number  of  negative  instances  is  chosen 
and  added  to  the  candidate  rule.  Incompatible  feature  values  are 
pruned  from  the  list  of  possible  refinements,  and  the  process  is 
repeated  until  further  refinement  is  not  possible  or  all  negative 
evidence  has  been  excluded. 

Step  3.  Generalize  rules  to  include  positive  evidence.  RULEMOD  attempts 
to  generalize  the  rules  in  order  to  include  some  positive  evidence 
without  including  any  new  negative  evidence.  This  is  accomplished 
by  relaxing  the  legal  values  for  atom  features  that  were  specified  by 
RULEGEN.  RULEMOD  examines  each  atom  in  the  bond  environ- 

ment of  the  rule,  starting  with  the  atoms  most  distant  from  the  * 
bond.  It  first  checks  to  see  if  the  whole  atom  can  be  removed  from 

the  graph  without  introducing  any  negative  evidence.  If  it  cannot, 

then  a  hill-climbing  search  is  performed  that  iteratively  removes 
the  one  atom  feature  that  allows  the  rule  to  include  the  largest 
amount  of  new  positive  evidence  without  introducing  any  negative 
evidence.  When  the  outermost  atoms  have  been  generalized  as 
much  as  possible,  RULEGEN  examines  the  set  of  atoms  that  are 
one  bond  closer  to  the  fragmentation  site.  This  search  continues 
until  all  possible  changes  have  been  made. 

Step  4.  Select  the  final  subset  of  rules.  The  procedure  used  in  step  1  is  re- 
applied to  select  the  final  set  of  rules. 

The  key  assumption  made  by  RULEMOD  is  that  RULEGEN  has  located  rules 

that  are  approximately  correct.  RULEGEN  points  out  the  regions  of  the  rule 

space  in  which  detailed  searches  are  needed. 

Notice  that  RULEMOD  must  frequently  invoke  the  mass-spectrometer 
simulator  to  assess  the  negative  (incorrect)  predictions  of  a  proposed  rule. 

INTSUM  provides  only  positive  training  instances  to  RULEGEN.  Negative 

instances  are  not  provided  to  RULEGEN  directly  because  there  are  many 

more  negative  instances  than  there  are  positive  instances.  This  is  a  problem 

that  frequently  arises  in  systems  that  are  attempting  to  explain  why  some 

particular  set  of  events  took  place.  Negative  information  must  indicate  every- 
thing that  did  not  occur. 

All  three  of  Meta-DENDRAL's  subprograms  make  use  of  some  form  of 
the  mass-spectrometer  simulator.  These  versions  of  the  simulator  are  flexible 
and  transparent.  They  allow  the  learning  element  to  interpret  the  training 

instances  and  to  reason  about  the  performance  of  a  hypothetical  modification 

to  the  cleavage  rules.  Similar  transparent  performance  elements  are  used  in 

systems  that  learn  to  perform  multiple-step  tasks  (see  Sec.  XIV.D5). 

Experiment  planning  and  the  search  of  the  instance  space.  Meta- 
DENDRAL  does  not  conduct  a  search  of  the  instance  space.  Such  a  search 

would  require  that  Meta-DENDRAL  select  a  molecular  structure  and  ask 
the  chemists  to  synthesize  it  and  obtain  its  mass  spectrum.    To  choose  an 
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appropriate  molecule,  Meta-DENDRAL  would  need  to  invert  the  INTSUM 
process.  Given  a  set  of  possible  bond  cleavages  that  it  wanted  to  verify,  Meta- 
DENDRAL  would  need  to  determine  a  molecule  in  which  those  bonds  would 

cleave.  Once  the  molecule  was  chosen,  existing  organic-synthesis  programs 
could  be  used  to  plan  the  synthesis  process  (see  Article  VII. C4,  in  Vol.  n).  The 

chosen  molecule  might  be  difficult  or  impossible  to  synthesize.  Instance-space 
searching  was  not  incorporated  into  Meta-DENDRAL  because  of  the  complex 
and  time-consuming  nature  of  these  procedures. 

Another  View  of  the  Meta-DENDRAL  Learning  Algorithm 

In  the  previous  section,  we  discussed  the  RULEGEN/RULEMOD  pair  of 
subprograms  as  a  coarse  search  followed  by  a  fine  search.  Another  view  of 

this  process  is  that  RULEGEN  converts  a  multiple-concept  learning  problem 
into  a  set  of  single-concept  learning  problems.  This  view  regards  the  output 
of  RULEGEN  not  as  a  set  of  rules  but  as  a  clustering  of  the  training  instances. 
Once  RULEGEN  has  completed  its  search,  the  program  knows  approximately 
which  training  instances  belong  together  as  instances  of  a  single  cleavage  rule. 

At  this  point,  a  single-concept  learning  algorithm  could  be  applied  to  discover 
this  rule  directly  from  the  RULEGEN-supplied  cluster  of  training  instances 
rather  than  by  incremental  modifications  of  the  RULEGEN-supplied  rule. 

As  part  of  his  thesis  work,  Mitchell  (1978)  applied  the  candidate- 
elimination  algorithm  to  this  learning  problem.  Each  approximate  rule  devel- 

oped by  RULEGEN  was  used  to  build  a  set  of  positive  and  negative  training 

instances  that  were  then  processed  by  the  version-space  approach.  This 
technique  resulted  in  a  better  set  of  cleavage  rules  than  those  developed 

with  RULEMOD.  The  version-space  approach  has  the  advantage  of  support- 

ing incremental  learning,  so  Mitchell's  system  can  incorporate  new  training 
instances  as  they  become  available. 

Strengths  and  Weaknesses  of  the  Meta-DENDRAL  System 

Meta-DENDRAL  is  an  effective  learning  system  applied  to  a  real-world 
domain.  Meta-DENDRAL  has  discovered  cleavage  rules  for  five  structural 
families  of  molecules.  The  system  provides  solutions  to  the  problem  of  inter- 

preting training  instances  and  to  the  problem  of  learning  in  the  presence  of 
certain  kinds  of  noise.  These  solutions  are  based  on  the  incorporation  into 

the  program  of  a  large  amount  of  domain-specific  knowledge.  This  knowledge 
enters  the  system  in  the  form  of  the  half-order  theory  of  mass  spectrometry 
(to  guide  interpretation)  and  in  the  use  of  a  model-directed  search  of  rule 
space. 

The  two-phase  search  of  the  rule  space  provides  an  efficient  method  for 
searching  a  large  space  and  also  suggests  how  a  multiple-concept  learning 
problem  can  be  converted  into  a  set  of  single-concept  learning  problems. 
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Among  the  weaknesses  of  the  system  are  its  domain-specific  representation 
and  the  fact  that  much  of  the  domain  knowledge  is  buried  in  the  code  rather 
than  represented  as  an  explicit  knowledge  base. 

References 
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elimination  algorithm  to  Meta-DENDRAL. 



D4c.     AM 

AM  is  a  computer  program  written  by  Douglas  Lenat  (1976)  that  discovers 
concepts  in  elementary  mathematics  and  set  theory.  Unlike  most  of  the 
learning  systems  described  in  this  chapter,  AM  does  not  learn  concepts  for 
use  in  some  performance  task.  Instead,  it  seeks  simply  to  define  and  evaluate 
interesting  concepts  on  the  basis  of  a  knowledge  of  mathematical  aesthetics. 

It  employs  a  refinement-operator  approach  (see  Article  XIV.Dl)  to  conduct  a 
heuristic  search  of  a  space  of  mathematical  concepts. 

AM  starts  with  a  substantial  knowledge  base  of  115  concepts  selected  from 
finite  set  theory.  As  AM  runs,  it  collects  examples  of  these  concepts,  creates 
new  concepts,  and  hypothesizes  conjectures  relating  the  concepts  to  each 

other.  During  one  typical  run  of  a  few  CPU  hours'  duration,  AM  defined  about 
200  new  concepts,  half  of  which  were  quite  well  known  in  mathematics.  One 
of  the  synthesized  concepts  was  equivalent  to  the  concept  of  natural  numbers. 

AM's  knowledge  of  mathematical  aesthetics  led  it  to  pursue  this  concept  in 
depth,  and  it  spent  much  time  developing  elementary  number  theory,  includ- 

ing conjecturing  the  fundamental  theorem  of  arithmetic  (i.e.,  every  number 
has  a  unique  prime  factorization).  This  impressive  performance  can  be  traced 

to  AM's  large  body  of  knowledge  about  mathematics  and  its  ability  to  apply 
this  knowledge  to  discover  new  concepts  and  conjectures. 

In  this  article,  we  first  describe  AM's  architecture  in  terms  of  its  repre- 
sentation for  concepts  and  its  control  structure  for  deciding  what  tasks  to 

perform.  Then  we  change  our  perspective  and  show  how  AM  can  be  viewed  as 

searching  an  instance  space  and  a  concept  space  by  the  refinement-operator 

method.  Third,  we  examine  the  initial  contents  of  AM's  knowledge  base  and 
review  briefly  the  concepts  that  it  discovered.  Finally,  we  attempt  to  sum- 

marize the  strengths  and  weaknesses  of  AM's  approach  to  concept  discovery. 

AM's  Architecture 

AM  is  a  blend  of  three  powerful  methods:  frame  representation,  production 

systems,  and  heuristically  guided  best-first  search.  We  discuss  each  of  these 
in  turn. 

Frame  representation.  The  concepts  that  AM  discovers  and  manipu- 
lates are  represented  as  frames  (see  Article  III.C7,  in  Vol.  i),  each  containing 

the  same  fixed  set  of  slots.  Each  concept  has  slots  for  its  definition,  for  known 

positive  and  negative  examples,  for  links  to  other  concepts  that  are  specializa- 
tions and  generalizations  of  the  concept,  for  telling  the  worth  of  the  concept, 

and  for  several  other  things.  Figure  D4c-1  shows  the  frame  representation  of 
the  PRIMES  concept  after  it  has  been  discovered  and  filled  in  by  AM. 

438 
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NAME:  Prime  Numbers 

DEFINITIONS: 

ORIGIN:  Number-of-divisors-of (x)  =  2 

PREDICATE-CALCULUS :  Prime  (x)  ==  (Vz)  (z|x=>z  =  10z  =  x) 

ITERATIVE:  (for  x  >  1)  :  For  i  from  2  to  sqrt(x)  ,  -i(i  |  x) 

EXAMPLES:  2,  3,  5,  7,  11,  13,  17 

BOUNDARY:  2,  3 

BOUNDARY-FAILURES:  0,  1 

FAILURES:  12 

GENERALIZATIONS:  Nos . ,  Nos .  with  an  even  no.  of  divisors, 

Nos.  with  a  prime  no.  of  divisors 

SPECIALIZATIONS:  Odd  Primes,  Prime  Pairs,  Prime  Uniquely-addables 

CONJECTURES:  Unique  factorization,  Goldbach's  conjecture, 
Extremes  of  Number-of-divisors-of 

ANALOGIES : 

Maximally  divisible  numbers  are  converse  extremes  of 

Number-of-divisors-of , 

Factor  a  nonsimple  group  into  simple  groups 

INTEREST:  Conjectures  associating  Primes  with  TIMES 

and  with  Divisors-of 

WORTH:  800 

Figure  D4c-1.     AM's  frame  representation  of  the  PRIMES  concept. 

The  DEFINITIONS  slot  is  the  most  important.  It  provides  one  or  more  LISP 
predicates  that  can  be  applied  to  determine  whether  something  is  an  example 
of  the  concept.  AM  knows  a  concept  when  it  has  a  definition  for  it.  However, 
the  frame  representation  allows  AM  to  represent  more  knowledge  about  a 
concept  than  just  its  definition.  The  CONJECTURES,  SPECIALIZATIONS,  and 
GENERALIZATIONS  slots,  for  example,  all  describe  different  ways  in  which 
concepts  are  related  to  each  other.  Furthermore,  attached  to  each  slot  in  a 

concept  are  heuristic  rules  (not  shown  in  the  figure)  that  can  be  executed  to 
fill  in  the  contents  of  a  slot  or  to  check  the  contents  to  see  if  they  are  correct. 
These  heuristic  rules  form  a  production  system  that  carries  out  the  actual 
discovery  process. 
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Production  systems.  AM  operates  as  a  modified  production  system. 

Each  of  the  242  heuristic  rules  attached  to  the  concept  slots  of  AM's  knowledge 
base  is  written,  as  in  all  production  systems,  as  a  condition  part  and  an 
action  part.  The  condition  part  tells  under  what  conditions  the  rule  should 
be  executed,  and  the  action  part  carries  out  some  task  such  as  creating  a  new 

concept  or  finding  examples  of  an  existing  concept.  For  instance,  the  following 
heuristic  rule  is  attached  to  the  EXAMPLES  slot  of  the  ANY-CONCEPT  frame: 

If:  The  current  task  is  "Fill  in  examples  of  X" 
and  X  is  a  specialization  of  some  concept  Y, 

Then:     Apply  the  definition  of  X  to  each  of  the  examples  of  Y 
and  retain  those  that  satisfy  the  definition. 

The  main  difference  between  AM's  production-system  architecture  and 
the  standard  recognize- act  cycle  is  the  way  rules  are  selected  for  execution. 
Recall  that  in  an  ordinary  production  system,  the  condition  part  of  each 
rule  is  compared  to  the  contents  of  a  working  memory,  and  all  rules  that 
match  are  executed.  In  contrast,  AM  is  much  more  selective  about  which 

rules  it  executes.  It  operates  from  an  agenda  of  tasks  of  the  form  "Fill  in  (or 
check)  slot  S  of  concept  C"  Each  task  has  a  numeric  "interestingness"  rating. 
AM  repeatedly  selects  the  most  interesting  task  from  the  agenda,  gathers  all 
heuristic  rules  relevant  to  performing  that  task,  and  executes  those  rules  that 
are  actually  applicable. 

To  locate  those  heuristics  that  are  relevant  to  the  task  "Fill  in  (or  check) 
slot  S  of  concept  C,"  AM  looks  at  slot  S  of  concept  C  to  see  if  it  has  any 
attached  heuristics.  If  it  does,  those  heuristics  are  executed.  If  not,  AM 
examines  relatives  of  concept  C  to  see  if  any  of  them  have  heuristics  that  can 
be  inherited  by  C  and  applied.  For  example,  when  AM  is  looking  for  rules 

relevant  to  the  task  "Fill  in  examples  of  sets,"  it  finds  no  heuristics  attached 
to  the  EXAMPLES  slot  of  SETS.  Consequently,  it  looks  at  concepts  such  as 
ANYCONCEPT,  which  are  more  general  than  SETS.  The  EXAMPLES  slot  of 
ANYCONCEPT  has  an  attached  heuristic  that  says: 

If:  The  current  task  is  "Fill  in  examples  of  X" 
and  X  has  a  recursive  definition, 

Then:     Instantiate  the  base  step  of  the  recursion  to  get 
a  boundary  example. 

When  AM  applies  this  heuristic  rule,  it  creates  the  null  set  as  a  boundary 
EXAMPLE  of  SETS.  Heuristics  that  are  closely  related  to  C  are  executed  before 
heuristics  of  distant  relatives. 

A  heuristic  rule  can  do  one  or  more  of  the  following: 

1 .  Fill  in  slot  S  of  some  concept  C.  This  covers  many  activities,  including 
finding  new  examples  for  a  concept,  proposing  conjectures,  and  providing 
guidance  for  the  search  by  modifying  the  WORTH  slot  of  a  concept. 
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2.  Check  slot  S  of  concept  C.  The  process  of  checking  a  slot  involves  verifying 
that  the  contents  of  the  slot  are  correct  and  noticing  interesting  facts 
about  a  slot.  Often,  a  rule  will  check  a  slot  and  notice  that  some  new 

task  should  be  performed  as  a  result.  For  example,  one  rule  notices  that 
all  of  the  examples  of  one  concept,  X,  are  also  examples  of  a  more  specific 
concept,  Y.  It  conjectures  that  X  and  Y  are  equivalent  and  proposes 

the  task  "Check  examples  of  Yn  to  see  if  Y  is  actually  equivalent  to  an 
even  more  specific  concept,  Z. 

3.  Create  new  concepts.  New  concepts  are  created  by  adding  a  new  frame 
to  the  knowledge  base  and  filling  in  the  DEFINITIONS  slot  of  the  frame. 
Usually  the  WORTH  slot  is  filled  in  as  well. 

4.  Add  new  tasks  to  the  agenda.  Often,  a  rule  will  propose  that  a  new  task 
be  added  to  the  agenda.  For  example,  a  rule  that  creates  a  new  concept, 

X,  will  propose  the  new  task  "Fill  in  examples  of  X."  Most  rules  that 
generate  examples  of  X  will  propose  the  task  "Check  examples  of  X." 

5.  Modify  the  interestingness  of  a  task  on  the  agenda.  The  numerical  interest- 

ingness  of  a  task  is  computed  from  a  list  of  "reasons"  for  performing 
the  task.  Thus,  a  rule  can  add  a  new  reason  to  an  existing  task.  This 
is  another  way  of  providing  guidance  in  the  search  for  concepts  and 

conjectures. 

Best- first  search.  The  procedure  of  always  choosing  the  most  interest- 

ing task  from  the  agenda  gives  AM  the  flavor  of  best-first  search.  This  search  is 
well  guided  by  heuristics  that  modify  the  INTERESTINGNESS  and  WORTH  slots 

of  concepts  and  that  propose  and  justify  agenda  tasks.  AM  has  59  heuristics 

for  assessing  the  interestingness  of  concepts  and  tasks.  One  rule,  for  example, 

says  that  a  concept  is  interesting  if  each  of  its  examples  accidentally  satisfies 

an  otherwise  rarely  satisfied  predicate  P.  (The  satisfaction  is  accidental  if  the 

concept  was  not  deliberately  defined  as  the  set  of  things  satisfying  P.) 

Without  heuristic  guidance  and  the  agenda  mechanism,  AM  would  be 

swamped  by  a  combinatorial  explosion  of  new  concepts.  However,  the  fact 

that  it  creates  only  200  new  concepts  and  that  half  of  them  are  acceptable  to 

a  mathematician  shows  that  its  search  is  quite  restrained.  AM  is  an  excellent 

example  of  the  power  of  well-informed  best-first  search. 

AM  and  the  Two-space  View  of  Learning 

Thus  far,  we  have  discussed  the  architecture  of  AM.  We  now  turn  our 

attention  to  how  this  architecture  is  used  to  accomplish  learning.  Although 

its  242  heuristic  rules  are  extremely  varied  and  can  perform  many  diverse 

functions,  AM  tends  to  behave  as  if  it  were  executing  the  following  loop: 

Repeat- 

Step  1.    Select  a  concept  to  evaluate  and  generate  examples  of  it. 
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Step  2.    Check  these  examples  looking  for  regularities.  Based  on  the  regu- 
larities, 

(a)  update  the  assessment  of  the  interestingness  of  the  concept, 

(b)  create  new  concepts,  and 

(c)  create  new  conjectures. 

Step  3.    Propagate  the  knowledge  gained  (especially  from  new  conjectures) 
to  other  concepts  in  the  system. 

In  terms  of  the  two-space  view  of  learning,  step  1  searches  a  space  of  instances, 
step  2  examines  these  instances  and  searches  the  space  of  concepts  (the  rule 

space)  and  conjectures,  and  step  3  performs  bookkeeping  to  maintain  the 

consistency  and  integration  of  the  knowledge  base.  We  examine  each  of  these 

steps  in  more  detail. 

Searching  the  instance  space.  When  a  concept  is  created,  AM  knows 

very  little  about  that  concept  aside  from  its  LISP  definition.  In  fact,  when 

AM  is  first  started  up,  none  of  its  115  initial  concept  frames  has  any  examples 

filled  in.  Thus,  one  of  the  first  tasks  it  must  perform — in  order  to  assess  the 

value  of  the  concepts  and  develop  conjectures — is  to  gather  examples  (and 
negative  examples)  of  its  concepts.  AM  has  more  than  30  heuristic  rules  to 

guide  this  example-generating  process.  Here  are  some  of  the  techniques  they 
use: 

1 .  Symbolic  instantiation  of  definitions.  Symbolic  instantiation  converts  the 

definition  of  a  concept  into  an  example.  Typically,  each  concept  has, 
as  one  of  its  definitions,  a  recursive  LISP  predicate.  The  base  step  of 
this  recursion  can  be  instantiated  to  give  an  instance  that  satisfies  the 
definition.  For  example,  one  of  the  definitions  of  the  SET  concept  is: 

(lambda   (s) 

(or    (=  s   {}) 

(set. definition  (remove  (any-member  s)  s))))  . 

Since  the  first  thing  this  definition  checks  is  to  see  if  s  is  the  null  set, 
we  can  conclude  that  the  null  set  is  an  example  of  a  set.  Similarly,  AM 

knows  that  removing  is  the  opposite  of  inserting,  so  it  can  deduce  that 

{{}}  is  also  a  set  by  inserting  {}  into  itself. 

2.  Generate  and  test.  Another  approach  used  by  the  program  is  to  generate 
examples  and  test  them  against  the  concept  definition.  In  order  to 

generate  examples  of  some  concept  C,  the  program  looks  at  "nearby" 
concepts  in  the  knowledge  base.  For  example,  AM  may  look  at  generaliza- 

tions of  C  (concepts  more  general  than  C),  operations  that  have  C  in 
their  range,  cousins  of  C  (concepts  that  share  a  common  generalization 
or  specialization  with  C),  and  even  random  LISP  atoms  from  various 
internal  lists  inside  AM  (such  as  the  list  of  users  of  the  system). 

3.  Inheritance  of  examples.  If  concept  C  has  other  concepts  that  are  more 
specialized  than  it,  any  example  satisfying  these  more  specialized  concept 

definitions  will  satisfy  C.    Examples  can  thus  be  inherited   "up"   the 
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generalization  hierarchy.   Similarly,  negative  examples  can  be  inherited 

"down"  the  generalization  hierarchy. 

4.  Applying  the  algorithm  of  the  concept.  So-called  active  concepts  (i.e.,  opera- 
tors such  as  SET-UNION)  have  algorithms  that  compute  an  element  in 

the  range  of  the  concept  when  given  valid  arguments  from  the  domain. 

Thus,  by  randomly  selecting  domain  items  and  applying  these  algo- 
rithms, AM  can  produce  new  examples.  For  instance,  if  {A}  and  {B} 

are  sets,  then  SET-UNION. ALGORITHMS  produces  {A,B},  and  the  list 
({A},  {B},  {A,B})  forms  a  positive  example  of  SET-UNION. 

5.  Reasoning  by  views  or  by  analogy.  The  VIEWS  slot  of  a  concept  provides 
an  algorithm  for  converting  instances  of  one  concept  into  instances  of 
another.  The  ANALOGY  slot  gives  less  precise  information  about  how 
instances  of  one  concept  are  related  to  instances  of  another  concept.  AM 
can  use  these  two  slots  to  map  existing  examples  into  examples  of  the 
concept  under  construction. 

When  AM  needs  to  fill  in  examples  of  a  concept,  it  attempts  to  apply  these 

methods  until  it  has  developed  26  examples  of  the  concept  (or  until  it  has 

exhausted  its  time  or  space  quota  for  the  current  task). 

A  particularly  interesting  feature  of  AM  is  its  ability  to  locate  the  bound- 
ary of  a  concept.  Examples  of  a  concept  are  classified  according  to  whether 

they  are: 

1.  Normal  positive  examples, 

2.  Boundary  positive  examples, 

3.  Boundary  negative  examples  (i.e.,  what  Winston,  1970,  calls  near  misses), 

4.  Normal  negative  examples,  or 

5.  Just  plain  weird  (i.e.,  have  the  wrong  data  structure). 

Most  examples  produced  by  the  above-mentioned  techniques  will  turn  out  to 
be  normal  positive  examples  (or  normal  negative  examples,  if  they  do  not 

satisfy  the  concept  definition).  Some  of  the  example-generation  techniques, 
however,  are  faulty.  They  can  accidentally  generate  negative  examples.  A 

particular  case  is  the  VIEW  slot  of  SETS  that  tells  AM  that  it  can  view  a  bag 

as  a  set  by  changing  the  [  ]  brackets  (that  represent  a  bag)  to  {  }  braces.  This 

does  not  always  work  (e.g.,  when  the  bag  [a,  b,  a]  is  viewed  as  that  set  {a,  b,  a} 

which  contains  an  impermissible  duplicate  element).  When  AM  checks  these 

examples  against  the  definition  of  a  set,  it  discovers  that  they  fail.  Such 

negative  examples  are  classified  as  boundary  negative  examples. 

Boundary  positive  examples  can  be  found  by  such  techniques  as  instan- 
tiating the  base  case  of  a  recursion  (which  almost  always  produces  a  boundary 

case)  or  by  taking  boundary  non-examples  of  more  specialized  concepts  and 
determining  that  they  satisfy  the  concept  definition.  Another  technique  is  to 

take  a  normal  positive  example  and  progressively  modify  it  until  it  fails  to 

satisfy  the  definition.  This  isolates  the  boundary  of  the  concept  quite  well. 
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By  applying  all  of  these  techniques,  AM  is  able  to  gather  a  good  set 
of  examples  that  can  be  used  for  analysis  and  generalization.  AM  can  also 
assess  how  much  effort  was  expended  to  obtain  these  examples.  Thus,  it  can 

conclude  that  a  predicate  is  "rarely  satisfied"  or  "easily  satisfied."  All  of  these 
empirical  data  are  used  to  drive  the  search  of  the  rule  space  and  the  search 
for  interesting  conjectures. 

Searching  the  rule  space.  The  rule  space  for  AM  is  the  space  of 
all  possible  instantiations  of  its  concept  frame.  This  is  indeed  an  immense 

space.  To  search  it,  AM  applies  a  refinement-operator  method  similar  to  the 
techniques  employed  by  BACON  and  ID3  (see  Article  XIV.D3b).  The  current 

set  of  concept  frames  can  be  thought  of  as  AM's  current  set  of  hypotheses. 
These  hypotheses  are  repeatedly  refined  and  extended  by  applying  operators 
(i.e.,  heuristics)  that  create  new  concepts  and  conjectures. 

AM  has  roughly  40  heuristics  that  create  new  concepts.  These  can  be 
broken  into  two  sets.  One  set  of  heuristics  is  general  and  can  be  applied  to 
virtually  any  concept  in  AM.  The  second  set  is  applicable  only  to  functions 

and  relations — active  concepts  that  can  be  viewed  as  mapping  elements  from 
some  domain  set  into  some  range  set.  The  general  methods  are: 

1.  Generalization.  AM  implements,  in  some  form,  virtually  all  rules  of 

generalization  that  have  appeared  in  other  AI  programs.  The  dropping- 

condition,  adding-option,  and  turning-constants-to-variables  rules  are 
all  used.  Also  implemented  is  the  technique  of  specializing  a  negative 

conjunct  (e.g.,  A  A  ->B  is  generalized  to  A  A  ->Bf,  where  B'  is  more 
specific  than  B).  AM  can  generalize  expressions  involving  quantification, 

for  example,  converting  3x  £  S  :  P(x)  to  3x  G  S'  :  P(x),  where  S' 
is  a  larger  set  than  S.  Since  the  definitions  of  concepts  are  typically 
recursive  LISP  functions,  AM  contains  many  rules  of  generalization  that 
are  applicable  to  recursion.  For  instance,  a  definition  can  be  generalized 
by  eliminating  one  of  a  conjoined  pair  of  recursive  calls  or  by  disjoining 
a  new  recursive  call.  In  particular,  AM  knows  that  if  one  recursive  call 

involves  CAR  (or  CDR),  the  other  recursive  call  should  use  CDR  (or  CAR, 
respectively). 

2.  Specialization.  AM  also  implements  a  wide  variety  of  rules  of  specializa- 
tion. These  are  the  reversals  of  the  rules  of  generalization  mentioned 

above. 

3.  Handling  exceptions.  When  a  concept  has  a  lot  of  exceptions  (negative 

boundary  examples),  a  new  concept  can  be  created  whose  instances 
are  these  negative  examples.  Also,  AM  can  create  the  concept  whose 
instances  are  those  positive  examples,  but  not  boundary  examples,  of 
the  original  concept.  This  allows  AM  to  represent  the  conjecture  that 

all  prime  numbers  are  odd — except  the  number  2. 

4.    Reasoning  by  analogy.  If  J  is  a  conjecture  and  J'  is  an  analogous  conjec- 
ture, then  AM  can  create  the  concept  {bf  |  J'(b')}  and  also  the  concept 
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{&'  |  -*J'(bf)},  that  is,  the  set  of  objects  for  which  J'  is  true  and  the  set 
of  objects  for  which  J'  is  false. 

AM's  concept-creation  methods  that  apply  to  active  concepts  (mappings) 
usually  produce  new  active  concepts.  New  concepts  can  be  created  by  the 

following: 

1.  Generalization.  The  domain  and  range  of  an  existing  concept  can  be 
expanded. 

2.  Specialization.  The  domain  and  range  of  an  existing  concept  can  be 
contracted  (restricted). 

3.  Inversion.  The  inverse  of  an  existing  relation  can  be  created.  AM  can  also 

create  interesting  concepts  such  as  the  inverse  image  of  an  interesting 
subset  of  the  range  and  the  inverse  image  of  an  interesting  value  in  the 
range. 

4.  Composition.  Two  functions  F(x)  and  G(y)  can  be  composed  to  obtain 
the  new  functions  F(G(y))  and  G(F(x)). 

5.  Projection.  An  existing  multiple-argument  function  F  can  be  projected 
onto  a  subset  of  its  arguments.  For  example,  Proj2(F(z,  y))  is  just  y. 

6.  Coalesce.  The  arguments  of  F(x,  y)  can  be  coalesced  to  produce  a  new 

function,  G(x)  =  F(x,  x). 

7.  Canonization.  This  method  takes  two  predicates,  P\  and  P2,  and 

defines  a  function,  F,  and  a  set,  the  range  of  F,  such  that  Pi(x,y)  = 
P2(F(x),  F(y)).  If  x  and  y  are  instances  of  concept  C,  then  F  maps  C  to 
the  set  of  canonical  C.  Thus,  P2  applied  to  canonical  C  is  the  same  as 

Pi  applied  to  C.  AM  uses  this  operation  to  invent  NUMBERS  by  taking 

SAME-SIZE(z,  y)  as  Pi,  and  EQUAL(x,  y)  as  P2,  and  applying  them  to 
bags  to  create  the  canonizing  function  SIZE-OF(x)  and  the  concept  of 
CANONICAL-BAGS  (i.e.,  bags  that  contain  only  T).  CANONICAL-BAGS 
can  be  interpreted  as  numbers. 

8.  Parallel-replace  and  parallel- join.  These  concept-creation  operators  come 
in  many  varieties  and  are  used  to  create  new  concepts  by  repeated 
application  of  old  concepts.  Multiplication,  for  example,  can  be  created 

by  repeated  addition  (with  the  parallel-replace  method). 

9.  Permutation.  The  arguments  of  a  function  or  relation  can  be  permuted 
to  give  a  new  function  or  relation. 

10.    Cartesian  product  A  new  concept  can  be  obtained  by  taking  the  Cartesian 
product  of  existing  concepts. 

Many  of  the  refinement  operators  in  this  group  (e.g.,  COALESCE,  COMPOSI- 
TION) are  also  concepts  defined  in  AM.  It  is  perhaps  only  in  mathematics  that 

the  means  of  study  are  also  the  objects  of  study. 
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Representing  and  proposing  conjectures.  Roughly  30  of  AM's  rules 
also  propose  conjectures  based  upon  examination  of  the  empirical  data.  Con- 

jectures take  one  of  the  following  forms: 

1 .  Ci  is  an  example  of  Ci ; 

2.  C\  is  a  specialization  (generalization)  of  Ci; 

3.  Ci  is  equivalent  to  Ci; 

4.  Ci  is  related  by  X  to  Ci  (where  X  is  some  predicate); 

5.  Operation  C\  has  domain  D  or  range  R. 

Most  of  these  conjectures  are  discovered  by  performing  rough  statistical 
comparisons  of  examples.  If  all  of  the  examples  of  C\  are  also  examples  of 
C2,  then  AM  conjectures  that  C\  is  a  specialization  of  C2.  If  AM  is  unable 
to  find  negative  examples  of  C\,  it  conjectures  that  C\  is  trivially  true.  If 
all  examples  of  elements  in  the  range  of  C\  seem  to  be  numbers,  then  AM 
conjectures  that  C\  has  numbers  as  its  range.  If  all  of  the  range  elements  of 
C\  are  equal  to  corresponding  domain  elements,  then  perhaps  C\  is  the  same 
as  the  identity  function. 

Conjectures,  once  proposed,  are  believed  completely  by  AM.  The  relevant 
slots  are  changed,  and  the  changes  are  propagated  throughout  the  knowledge 
base.  If  two  concepts  are  conjectured  to  be  equivalent,  they  are  merged  and 
the  space  occupied  by  one  is  released.  AM  can  also  modify  the  LISP  definitions 
to  take  advantage  of  new  conjectures. 

Propagating  acquired  knowledge.  Several  heuristics  (including  those 

that  locate  and  generate  examples)  serve  to  propagate  new  information  through- 

out the  network  of  frames  that  constitutes  AM's  knowledge  base.  These  are 
fairly  straightforward  and  make  heavy  use  of  the  three  sets  of  inheritance 

links  (IS-AN-EXAMPLE-OF/EXAMPLES,  SPECIALIZATIONS/GENERALIZATIONS, 
DOMAIN/RANGE). 

To  complete  our  review  of  AM  from  the  perspective  of  the  two-space 
view  of  learning,  we  note  that,  although  the  example-generation  tech- 

niques discussed  above  perform  sophisticated  instance  selection,  there  is  no 
corresponding  need  for  complex  interpretation  routines  like  those  found  in 

Meta-DENDRAL.  On  the  contrary,  since  mathematical  objects  are  easily  rep- 
resented and  manipulated  in  LISP,  there  is  no  need  to  convert  them  to  some 

alternate  representation.  More  sophisticated  instance  selection  and  inter- 
pretation routines  would  probably  be  needed  for  nonmathematical  domains. 

AM's  Initial  Knowledge  Base 

We  now  turn  our  attention  to  AM's  actual  performance.  First  we  describe 
the  knowledge  that  it  started  with,  and  then  we  give  a  summary  of  the 
concepts  and  conjectures  it  found. 
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AM's  initial  knowledge  base  contains  the  basic  concept  hierarchy  shown 
in  Figure  D4c-2.  In  addition,  beneath  the  concept  of  STRUCTURE  are  many 
important  data  structures:  SETS,  ORDERED  SETS,  BAGS,  LISTS  (i.e.,  ordered 
BAGS),  and  ORDERED  PAIRS.  Under  the  ACTIVITY  concept  are  many  opera- 

tions such  as  SET-INTERSECT,  SET-UNION,  SET-DIFFERENCE,  and  SET- 
DELETION  (and  analogous  operations  for  BAGS,  ORDERED  SETS,  and  LISTS). 
Also,  several  of  the  concept-creation  operators  such  as  PARALLEL- JOIN, 
RESTRICT,  PROJECTION,  and  so  forth,  are  included  here.  Under  PREDICATES 

are  the  constant  predicates  TRUE  and  FALSE,  as  well  as  the  concept  of  EQUAL- 
ITY. Finally,  the  most  important  part  of  the  initial  knowledge  base  is  the  body 

of  242  heuristic  rules  attached  to  various  concepts  in  this  tree.  Most  of  these 
were  summarized  above. 

Results:  AM  as  a  Mathematician 

Now  we  review  the  mathematics  that  AM  explored.  Throughout,  AM 
acted  alone,  with  a  human  user  watching  it  and  occasionally  renaming  some 
concepts  for  his  (or  her)  own  benefit.  Like  a  contemporary  historian  sum- 

marizing the  work  of  the  Babylonian  mathematicians,  we  will  use  present-day 

terms  to  describe  AM's  concepts,  and  we  will  criticize  its  behavior  in  light  of 
our  current  knowledge  of  mathematics. 

ANYTHING 

OPERATION     PREDICATE     RELATION  ATOM        CONJECTURE    STRUCTURE 

Figure  D4c-2.     AM's  initial  concept  tree  (partially  shown). 
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AM  began  its  investigations  with  scanty  knowledge  of  a  few  set-theoretic 

concepts.  Most  of  the  obvious  set-theoretical  relations  (e.g.,  de  Morgan's 
laws)  were  eventually  uncovered;  since  AM  never  fully  understood  abstract 
algebra,  the  statement  and  verification  of  each  of  these  was  quite  obscure.  AM 
never  derived  a  formal  notion  of  infinity,  but  it  naively  established  conjectures 

like  "A  set  can  never  be  a  member  of  itself"  and  procedures  for  making 
chains  of  new  sets  ("Insert  a  set  into  itself").  No  sophisticated  set  theory 
(e.g.,  diagonalization)  was  ever  done. 

After  this  initial  period  of  exploration,  AM  decided  that  "equality"  was 
worth  generalizing  and  thereby  discovered  the  relation  "same  size  as."  Natural 
numbers  were  based  on  this  discovery,  and,  soon  after,  most  simple  arithmetic 
operations  were  defined. 

Since  addition  arose  as  an  analogue  to  union,  and  multiplication  as  a 
repeated  substitution,  it  came  as  quite  a  surprise  when  AM  noticed  that  they 

were  related  (namely,  N  +  N  =  2  X  N).  AM  later  rediscovered  multiplication 
in  three  other  ways:  as  repeated  addition,  as  the  numeric  analogue  of  the 
Cartesian  product  of  sets,  and  using  the  cardinality  of  the  power  set  of  the 
union  of  two  sets. 

Raising  to  fourth-powers  and  taking  fourth-roots  were  discovered  at  this 
time.  Perfect  squares  and  perfect  fourth- powers  were  isolated.  Many  other 
numeric  operations  and  kinds  of  numbers  were  found  to  be  of  interest:  odds, 
evens,  doubling,  halving,  integer  square  root,  and  so  on.  Although  it  isolated 
the  set  of  numbers  that  had  no  square  roots,  AM  was  never  close  to  discovering 

rationals,  let  alone  irrationals.  No  notion  of  "closure"  was  provided  to — or 
discovered  by — AM. 

The  associativity  and  commutativity  of  multiplication  indicated  to  AM 
that  it  could  accept  a  bag  of  numbers  as  its  argument.  When  AM  defined 

the  inverse  operation  corresponding  to  "times,"  this  property  allowed  the 
definition  to  be:  "any  bag  of  numbers  greater  than  1  whose  product  is  x."  This 
was  just  the  notion  of  factoring  a  number  x.  Minimally  factorable  numbers 
turned  out  to  be  what  we  call  primes.  (Maximally  factorable  numbers  were 
also  thought  to  be  interesting.) 

Prime  pairs  were  discovered  in  a  bizarre  way:  by  restricting  the  domain 

and  range  of  addition  to  primes  (i.e.,  solutions  of  p  +  q  =  r  in  primes). 
AM  conjectured  the  fundamental  theorem  of  arithmetic  (unique  factoriza- 

tion into  primes)  and  Goldbach's  conjecture  (every  even  number  greater  than 
2  is  the  sum  of  two  primes)  in  a  surprisingly  symmetric  way.  The  unary 
representation  of  numbers  gave  way  to  a  representation  as  a  bag  of  primes 

(based  on  unique  factorization),  but  AM  never  came  up  with  exponential  nota- 
tion. Since  the  key  concepts  of  remainder,  greater  than,  greatest  common 

denominator,  and  exponentiation  were  never  mastered,  progress  in  number 
theory  was  arrested. 

When  a  new  base  of  geometric  concepts  was  added,  AM  began  finding 
some  more  general  associations.     In  place  of  the  strict  definitions  for  the 
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equality  of  lines,  angles,  and  triangles  came  new  definitions  of  concepts  com- 
parable to  parallel,  equal  measure,  similar,  congruent,  translation,  and  rota- 

tion, together  with  many  that  have  no  common  name  (e.g.,  the  relationship 
of  two  triangles  sharing  a  common  angle).  A  clever  geometric  interpreta- 

tion of  Goldbach's  conjecture  was  found:  Given  all  angles  of  a  prime  num- 
ber of  degrees  (0°,  1°,  2°,  3°,  5°,  7°,  11°,  ...,179°),  any  angle  between  0  and 

180  degrees  can  be  approximated  (to  within  1°)  as  the  sum  of  two  of  those 
angles.  Lacking  a  geometry  "model"  (an  analogical  representation  like  the 
one  Gelernter,  1963,  employed;  see  Article  II.D3,  in  Vol.  i),  AM  was  doomed  to 
propose  many  implausible  geometric  conjectures  (see  Article  III.C5,  in  Vol.  I). 

Perhaps  a  full  appreciation  for  the  depth  of  AM's  search  of  the  concept 
space  can  be  gained  by  examining  Figure  D4c-3,  which  shows  the  derivation 
path  for  prime  numbers.  It  is  eight  levels  deep  and  requires  14  concept- 
creation  operations.  This  derivation  is  quite  impressive,  both  because  of  its 
depth,  and  because  the  final  concept  is  so  far  removed  semantically  from 
the  initial  concepts.  Note,  in  particular,  the  fascinating  way  in  which  a  new 
concept,  SELF-COMPOSE,  is  used  as  a  new  operator  to  derive  TIMES21  and 
TIMES22.  AM  is  able  to  search  in  a  highly  directed,  rational  fashion. 

Evaluating  AM 

It  is  important  to  ask  how  general  the  AM  program  is:  Is  the  knowledge 

base  "just  right"  (i.e.,  finely  tuned  to  elicit  this  one  chain  of  behaviors)? The  answer  is  no:  The  whole  point  of  this  project  was  to  show  that  a  rela- 
tively small  set  of  general  heuristics  can  guide  a  nontrivial  discovery  process. 

Keeping  the  program  general  and  not  finely  tuned  was  a  key  objective.  Each 

activity  or  task  was  proposed  by  some  heuristic  rule  (like  "Look  for  extreme 
cases  of  X" )  that  was  used  time  and  time  again,  in  many  situations.  It  was 
not  considered  fair  to  insert  heuristics  that  provide  guidance  in  only  a  single 
situation.  For  example,  the  same  heuristics  that  lead  AM  to  decompose  num- 

bers (using  TIMES-inverse)  and  thereby  discover  unique  factorization,  also  lead 
to  decomposing  numbers  (using  ADD-inverse)  and  the  discovery  of  Goldbach's 
conjecture. 

AM  does,  however,  have  some  weaknesses.  Although  AM  was  able  to 
discover  and  refine  many  interesting  new  concepts,  it  had  no  way  of  improving 
its  stock  of  heuristic  rules.  Consequently,  as  AM  ran  longer  and  longer,  the 
concepts  it  defined  were  further  and  further  from  the  primitives  it  began 
with,  and  the  efficacy  of  its  fixed  set  of  heuristics  gradually  declined.  Lenat 
(1980)  has  proposed  a  solution  to  this  problem.  He  advocates  turning  each 
heuristic  rule  into  a  concept  and  developing  additional  operators  for  creating 
new  heuristics.  The  EURISKO  project  is  presently  pursuing  this  research. 

A  deeper  problem  has  to  do  with  some  of  the  characteristics  of  the  domain 

of  mathematics  that  may  not  hold  in  other  domains.  One  important  fact 
about  elementary  mathematics  is  that  the  density  of  interesting  concepts 
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is  quite  high.  AM  relies  on  the  ability  to  build  up  complex  concepts  from 

more  primitive  concepts  in  a  step-by-step  fashion.  At  each  step,  the  partial 
concepts  must  appear  to  AM  to  be  interesting.  In  many  domains,  however, 
it  is  not  possible  to  assess  the  interestingness  of  partial  solutions.  Consider, 
for  example,  the  problem  of  credit  assignment  in  a  game  such  as  chess.  For  a 

novice  chess  player,  it  is  necessary  to  play  an  entire  game  before  receiving  any 
feedback  on  the  quality  of  individual  moves.  Even  as  a  player  becomes  expert, 
it  is  still  necessary  to  search  several  moves  in  advance  in  order  to  evaluate  a 

particular  choice.  Future  efforts  to  develop  AM-style  discovery  systems  in 
other  domains  may  face  difficulties  in  evaluating  the  worth  of  concepts.  More 
sophisticated  interestingness  heuristics  may  need  to  be  developed.  Work  on 
the  EURISKO  project  may  provide  some  answers  to  these  questions. 

Conclusion 

AM  is  a  powerful  discovery  system  that  investigates  and  refines  concepts 
in  elementary  set  and  number  theory.  It  begins  with  a  large  body  of  knowledge 
about  what  kinds  of  concepts  are  mathematically  interesting  and  how  they 
can  be  synthesized  from  existing  concepts.  This  knowledge  can  then  carry 
AM  far  beyond  its  initial  store  of  concepts  to  discover  prime  numbers  and  the 
fundamental  theorem  of  arithmetic. 
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MOST  of  the  learning  programs  discussed  so  far  in  this  chapter  were  designed 

to  learn  how  to  perform  single-step  tasks — that  is,  tasks  in  which  one  rule,  or  a 
set  of  independent  rules,  can  be  applied  in  one  step  to  accomplish  the  perfor- 

mance task.  In  pattern  classification  (Article  XTV.D2)  and  single-concept  learn- 
ing (Sec.  XTV.D3),  the  performance  element  takes  an  unknown  object  or  pattern 

and  assigns  it  to  one  of  two  classes  (e.g.,  an  arch  or  a  "nonarch").  These  sys- 
tems apply  a  single  classification  rule,  or  concept,  to  perform  the  classification. 

Even  the  sequence-extrapolation  problems  addressed  by  BACON  (Article 
XIV.D3b)  and  SPARC  (Article  XTV.D3d)  involve  applying  a  single  rule  to  predict 
the  next  item  in  the  sequence  from  the  previous  items.  Similarly,  in  the 

multiple-rule  tasks  of  soybean- disease  diagnosis  (Article  XIV.D4a)  and  mass- 
spectrometry  simulation  (Article  XIV.D4b),  several  rules  are  applied  in  parallel 
to  determine  the  unknown  disease  or  to  predict  how  the  unknown  molecule 
will  break  apart. 

Multiple- step  Tasks 

In  contrast,  this  section  surveys  a  few  learning  systems  that  learn  how 

to  perform  multiple- step  tasks — that  is,  tasks  in  which  several  rules  must  be 
chained  together  into  a  sequence.  Examples  of  multiple-step  tasks  include 
the  game  of  checkers,  in  which  rules  for  making  individual  moves  must  be 
chained  together  to  play  a  whole  game,  and  symbolic  integration,  in  which 
several  rules  of  integration  must  be  applied  sequentially  to  solve  each  integral. 
The  goal  of  the  learning  system  is  to  acquire  a  good  set  of  rules  for  performing 
these  tasks. 

Multiple-step  tasks  are  essentially  planning  tasks  in  which  the  perfor- 
mance element  must  find  a  sequence  of  operators  to  get  from  some  starting 

state  (e.g.,  the  opening  position  in  checkers)  to  some  goal  state  (e.g.,  a  won 
game).  The  chapters  on  search  (Chap.  II,  in  Vol.  i)  and  planning  (Chap.  XV) 

describe  various  methods  that  have  been  used  to  accomplish  this  state-space 

search  (see  Article  II.C3,  in  Vol.  I).  So  far,  AI  learning  systems  have  been  devel- 
oped only  for  simple,  forward-chaining  planning  programs.  No  attempts  have 

been  made  to  learn  how  to  perform  hierarchical  or  constraint-based  planning. 

Viewing  the  Performance  Element  as  a  Production  System 

The  first  four  systems  described  in  this  section — Samuel's  (1959)  checkers 
player,  Waterman's  (1970)  poker  player,  Sussman's  (1975)  HACKER  planning 
system,  and  Mitchell's  LEX  system  for  symbolic  integration  (Mitchell,  Utgoff, 
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and  Banerji,  in  press) — are  all  simple,  forward-chaining  problem  solvers  and, 

thus,  can  be  viewed  as  simple  production  systems.  The  grammatical-inference 

systems  discussed  in  the  fifth  article  (Article  XIV.D5e)  employ  context-free 
grammars,  which  can  also  be  considered  production  systems.  The  knowledge 

base  for  each  of  these  systems  contains  a  set  of  production  rules  of  the  form: 

(situation  i)     =>     (action  i) 

(situation)    =>    (action) 

(situationn)    =►    (actionn) . 

The  performance  element  repeatedly  selects  a  rule  whose  situation  part  (left- 
hand  side)  matches  the  current  state  and  applies  the  rule  by  performing  the 

action  indicated  (right-hand  side).  The  action  usually  has  the  effect  of  moving 
the  performance  element  to  a  new  state,  closer  to  the  goal. 

For  most  of  the  programs  discussed  in  this  section,  the  possible  actions 

are  provided  in  advance.  The  problem  addressed  by  the  learning  element  is  to 

determine  under  what  situations  the  actions  should  be  applied.  This  learning 

problem  is  similar  in  many  ways  to  the  problems  addressed  in  Section  XTV.D4 

on  learning  multiple  concepts. 

However,  two  factors  make  this  learning  problem  more  difficult.  First, 

because  the  rules  must  be  chained  together,  the  learning  element  has  to 

consider  possible  interactions  among  the  rules  when  it  modifies  the  knowledge 

base.  In  LEX,  for  example,  the  learning  element  might  decide  that  in  any 

integral  of  the  form 

/ cf(x)  dx 

the  constant  c  should  always  be  factored  out.  This  is  expressed  in  LEX  as  the 

production  rule 

If  the  integral  has  the  form  J  cf(x)  dx,  then  apply  OP03 , 

where  OP03  converts  /  cf(x)  dx  to  c  f  f(x)  dx.  Unfortunately,  if  the  constant 

c  is  0  or  1,  this  is  not  an  advisable  step.  Instead,  OP08  (convert  1  •  f(x)  to  f{x)) 

or  OP  15  (convert  0  •  f(x)  to  0)  should  be  applied.  When  LEX  is  learning  the 
production  rule  for  OP03,  it  must  take  into  account  these  possible  interactions 

with  OP08  and  OP  15.  In  fact,  LEX's  goal  is  to  discover  the  best  operator  to 
apply  in  every  situation.  Thus,  any  time  more  than  one  operator  is  applicable 

because  of  overlapping  left-hand  sides,  LEX  must  eliminate  the  overlap.  In 
this  case,  the  appropriate  rule  for  OP03  is: 

If  the  integral  has  the  form  J  cf(x)  (ii  A  c  7^  0  A  c  ̂   1,  then  apply  OP03 . 

This  is  a  particular  instance  of  the  general  problem  of  incorporating  new 

knowledge  into  the  knowledge  base  (see  Article  XIV. A). 
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The  second  difficult  aspect  of  multiple-step  tasks  is  the  problem  of  credit 
assignment.  In  single-step  tasks,  the  system  has  available  a  performance 
standard  that  can  be  employed  immediately  after  a  rule  is  applied  to  deter- 

mine whether  or  not  the  rule  is  correct.  In  disease  diagnosis,  for  example, 
the  learning  element  receives  the  correct  disease  classification  along  with  each 
training  instance.  The  performance  element  can  apply  its  diagnosis  rules  and 

receive  immediate  feedback  on  the  correctness  of  those  rules.  The  perfor- 
mance standard  can  even  be  incorporated  directly  into  the  learning  process 

as  in  the  version-space  method,  in  which  the  correct  classification  determines 
how  the  version  space  is  updated. 

In  multiple-step  tasks,  however,  feedback  from  the  performance  standard 
is  not  usually  available  until  the  game  is  completed  or  the  problem  is  solved. 
The  program  can  determine  only  whether  the  entire  sequence  of  rules  was 

good  or  bad.  The  credit-assignment  problem  is  the  problem  of  converting  this 
overall  performance  standard  into  a  performance  standard  for  each  rule.  The 
overall  credit  or  blame  must  be  parceled  out  somehow  among  the  individual 
rules  that  were  applied. 

The  Importance  of  a  Transparent  Performance  Element 

To  solve  these  problems  of  integration  and  credit  assignment,  it  is  criti- 
cally important  for  the  performance  element  to  be  transparent.  A  transparent 

performance  element  can  provide  the  learning  element  with  a  trace  of  all 
actions  that  it  considered,  as  well  as  those  it  actually  performed.  This  allows 

the  learning  element  to  determine  all  of  the  rules  that  might  have  been  appli- 
cable at  each  step  of  the  problem-solving  process.  Such  information  makes  it 

easier  to  solve  the  problem  of  integrating  new  rules  into  the  knowledge  base. 

A  complete  performance  trace  also  aids  the  credit- assignment  task.  During 
credit  assignment,  it  is  very  useful  to  know  why  the  performance  element 

chose  the  rules  that  it  did  and  what  it  expected  those  rules  to  do.  By  compar- 
ing the  goals  and  expectations  of  the  performance  element  with  what  really 

transpired,  credit  and  blame  can  be  assigned  to  individual  decisions. 

Extracting  Local  Training  Instances  from  the  Performance  Trace 

When  the  learning  system  for  a  multiple-step  task  is  presented  with  a 
training  instance — such  as  a  board  position  in  checkers  and  knowledge  of 
which  side  can  win  from  that  position — it  cannot  immediately  learn  from  the 
training  instance.  Instead,  it  must  actually  perform  the  task — that  is,  play 
out  the  checkers  game — and  compare  the  result  with  the  information  supplied 
by  the  performance  standard — that  is,  which  side  should  have  won.  During 
credit  assignment,  it  can  actually  decide  which  individual  decisions  were  good 
and  which  bad,  and  these  evaluated  decisions  can  serve  as  training  instances 

for  learning  the  left-hand  sides  of  the  production  rules  in  the  knowledge  base. 
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By  performing  the  task  and  assigning  credit  and  blame,  the  "global"  training 
instances  can  be  converted  into  "local"  training  instances. 

For  example,  in  LEX,  a  global  training  instance  consists  of  an  integral 
such  as 

/ 
2x2dx 

along  with  knowledge  of  whether  or  not  the  integral  can  be  solved.  The 

solution  trace  (see  Fig.  D5-1)  shows  that  OP  12  should  not  have  been  applied, 
since  it  leads  to  a  complicated  expression  that  requires  several  more  steps  to 
solve,  but  that  OP03  and  OP02  were  used  correctly. 

Thus,  three  local  training  instances  can  be  extracted: 

2x2  dx    =►    OP  12  (negative) / 

/  2x2  dx    =>    OP03  (positive). 

2  /  x2  dx    =>    OP02  (positive). 

Once  local  training  instances  have  been  extracted,  the  techniques  for 
doing  concept  learning  discussed  in  Sections  XTV.D3  and  XIV.D4  can  be  applied 

to  learn  the  left-hand  sides  of  the  production  rules  in  the  knowledge  base. 
Figure  D5-2  shows  a  slight  perturbation  of  the  simple  learning-system  model 
presented  in  Article  XTV.A.  The  model  now  contains  a  loop  in  which  the 
performance  trace  is  analyzed  by  the  learning  element  to  extract  local  training 
instances.  Global  training  instances  are  still  supplied  by  the  environment. 

f2x2dx 
OP12    ̂ ^^    \v    OP03 

2x4-f42dx  2fx2dx 

Figure  D5-1.     A  sample  performance  trace. 
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Figure  D5-2.     A  modified  model  of  learning  systems. 

Outline  of  This  Section 

The  five  systems  presented  in  this  section  all  perform  multiple-step  tasks 
and,  consequently,  must  address  problems  of  integrating  new  rules  and  assign- 

ing credit  and  blame.  Waterman,  and  to  some  extent  Samuel,  simplifies 

the  credit-assignment  problem  by  obtaining  a  move-by-move  performance 
standard  from  the  environment.  Furthermore,  all  of  the  systems,  except 

Waterman's  poker  system,  ignore  the  problem  of  integrating  new  rules  into  the 
knowledge  base.  Work  in  this  area  is  still  in  its  infancy,  and  more  sophisticated 

learning  systems  for  multiple-step  tasks  can  be  expected  in  the  future. 
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D5a.     Samuel's  Checkers  Player 

FROM  1947  to  1967,  Arthur  Samuel  conducted  a  continuing  research  project 

aimed  at  developing  a  checkers-playing  program  that  was  able  to  learn  from 
experience.  Samuel  investigated  three  different  representations  for  checkers 

knowledge — memorized  moves,  polynomial  evaluation  functions,  and  signa- 
ture tables — and  two  different  training  methods— self-play  and  book-move 

learning.  The  work  on  rote  learning  of  checkers  moves  is  discussed  in  Article 

XTV.B2.  The  present  article  discusses  two  specific  learning  situations:  (a)  self- 
play  as  it  was  used  to  learn  a  polynomial  evaluation  function  and  (b)  book- 
move  training  as  it  was  used  to  learn  a  set  of  signature  tables.  Samuel 

experimented  with  several  other  combinations  of  training  methods  and  repre- 
sentations (for  more  details,  see  Samuel,  1959,  1967). 

Tne  performance  element  in  all  of  Samuel's  systems  employs  a  look-ahead, 
game-tree  search  to  determine  which  moves  to  make  (see  Articles  II.B3  and 
n.C5,  in  Vol.  I).  The  performance  element  uses  a  static  evaluation  function 
(Article  II.C5)  to  evaluate  possible  future  positions  in  the  game  and  applies 

alpha-beta  minimaxing  to  determine  the  best  move  to  make.  The  goal  of  the 
learning  process  is  to  establish  and  improve  this  static  evaluation  function 
through  experience. 

Learning  a  Polynomial  Evaluation  Function  Through  Self-play 

The  first  static  evaluation  function  investigated  by  Samuel  was  a  poly- 
nomial of  the  form 

value  =  y^Wjfj, 

where  fa  are  board  features  and  W{  are  real- valued  weights  (coefficients).  For 

most  of  Samuel's  experiments,  a  polynomial  with  16  features  was  employed. 
Each  board  feature  provides  a  numerical  measure  of  some  aspect  of  the  board 
position  under  evaluation.  For  example,  the  EXCH  feature  measures  the 

relative  exchange  advantage  of  the  player  whose  turn  it  is  to  move.  EXCH 
is  computed  by  taking  Tcurrent,  the  total  number  of  squares  into  which  the 
player  to  move  may  advance  a  piece,  and  in  so  doing  force  an  exchange,  and 

subtracting  Tprevjous,  the  corresponding  quantity  for  the  previous  move  by  the 
opposing  player. 

Samuel's  program  faced  two  tasks  in  attempting  to  learn  such  a  poly- 
nomial evaluation  function:  (a)  discovering  which  features  to  use  in  the  func- 

tion and  (b)  developing  appropriate  weights  for  combining  the  various  features 

to  obtain  a  value  for  the  board  position.  We  describe  the  weight-learning  task 
first  and  later  return  to  the  problem  of  discovering  which  features  to  use. 
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In  the  self-play  mode  of  training,  the  checkers  program  learns  by  playing 
a  copy  of  itself.  The  version  of  the  program  that  is  doing  the  learning  is 

referred  to  as  Alpha,  while  the  copy  that  serves  as  an  opponent  is  called 

Beta.  The  learning  procedure  employed  by  Alpha  is  to  compare  at  each  turn 

its  estimate  of  the  value  for  the  current  board  position  with  a  performance 

standard  that  provides  a  more  accurate  estimate  of  that  value.  The  difference 

between  these  two  estimates  controls  the  adjustment  of  the  weights  in  the 

evaluation  function.  Alpha's  estimate  is  developed  by  conducting  a  shallow 
minimax  search  applying  the  evaluation  polynomial  to  tip  board  positions 

and  backing  up  these  values  (see  Article  II.C5a,  in  Vol.  i).  The  performance 

standard  is  obtained  by  conducting  a  deeper  minimax  search  into  future  board 

positions  using  the  same  evaluation  function  as  in  the  shallow  search.  Samuel 

takes  advantage  of  the  fact  that  a  deep  search  is  usually  more  accurate  than 
a  shallow  one. 

How  does  Alpha  use  this  move-by-move  performance  standard  to  guide 
its  search  for  proper  weighting  coefficients?  First,  the  difference,  A,  between 

the  performance  standard  and  Alpha's  estimate  is  computed.  If  A  is  negative, 

Alpha's  polynomial  is  overestimating  the  value  of  the  position.  If  A  is  positive, 
Alpha  is  underestimating  it.  For  each  board  feature,  a  count  is  kept  of  the 

times  that  the  sign  of  that  feature  agrees  or  disagrees  with  the  sign  of  A.  From 

these  tallies,  a  correlation  coefficient  is  developed  that  indicates  the  degree 

to  which  that  feature  predicts  A.  The  goal  of  the  learning  procedure  is  to 

minimize  A  (so  that  Alpha  is  duplicating  the  evaluations  of  the  performance 

standard).  The  weights  of  the  polynomial  are  determined  by  scaling  the 

correlation  coefficients  onto  the  range  — 218  to  218.  Large  positive  coefficients 
are  given  to  features  that  strongly  predict  positive  values  of  A  and  vice  versa, 

so  that  the  polynomial  will  tend  to  "follow"  A  and  thus  reduce  it. 
The  overall  effect  of  this  scheme  is  to  independently  assign  blame  for 

Alpha's  estimation  errors  to  the  individual  features.  This  is  sensible,  since 
the  features  are  combined  independently  (i.e.,  by  addition,  without  any  inter- 

action terms)  to  form  the  polynomial. 

Alpha  can  be  viewed  as  conducting  a  hill-climbing  search  through  the 

"rule  space" — the  space  of  possible  weights.  Each  move  in  the  checkers 
game  serves  as  a  training  instance  to  guide  this  search.  The  correlation 

coefficients  summarize  the  entire  body  of  training  instances  and  indicate  in 
which  direction  the  search  must  move  in  order  to  minimize  A. 

Hill-climbing  is  known  to  have  many  drawbacks,  including  convergence 
to  local  maxima.  Samuel  addresses  this  problem  as  follows.  When  Alpha  and 

Beta  commence  play,  they  are  identical.  However,  while  Alpha  proceeds  to 

search  the  rule  space,  Beta  does  not  change.  As  Alpha  improves,  it  begins  to 

defeat  Beta  regularly.  When  Alpha  has  won  a  majority  of  the  games  played, 

Beta  adopts  Alpha's  improved  evaluation  function,  and  the  count  of  games 

won  and  lost  is  started  again  from  zero.  Beta  is  thus  used  to  "remember"  a 
good  point  in  the  rule  space.    If  Alpha  is  at  a  local  maximum,  however,  its 
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performance  will  tend  to  worsen  whenever  it  makes  a  minor  modification  to  its 

polynomial.  To  prevent  a  local  maximum  from  halting  Alpha's  improvement, 
an  arbitrary  change  is  made  to  Alpha's  scoring  polynomial  whenever  Alpha 
loses  three  games  to  Beta.  The  largest  weight  in  Alpha's  polynomial  is  set  at 
zero  to  jump  Alpha  to  some  new  point  in  the  rule  space. 

Now  that  we  have  seen  how  Samuel's  program  determines  the  weights 
for  the  evaluation  polynomial,  we  turn  our  attention  to  the  first  learning 

problem — determining  what  features  should  be  used  to  evaluate  a  board  posi- 
tion. This  is  a  variant  of  the  problem  of  new  terms  (see  Article  XIV.Dl):  How 

can  a  learning  program  discover  the  appropriate  terms  for  representing  its 
acquired  knowledge?  Samuel  offers  a  partial  solution  to  this  problem,  namely, 
term  selection.  The  learning  program  is  provided  with  a  list  of  38  possible 
terms.  Its  learning  task  is  to  select  a  subset  of  16  of  these  terms  to  include  in 
the  evaluation  polynomial. 

The  selection  process  is  quite  straightforward.  The  program  starts  with 
a  random  sample  of  16  features.  For  each  feature  in  the  polynomial,  a  count 
is  kept  of  how  many  times  that  feature  has  had  the  lowest  weight  (i.e.,  the 
weight  nearest  zero).  This  count  is  incremented  after  each  move  by  Alpha. 
When  the  count  for  some  feature  exceeds  32,  that  feature  is  removed  from  the 
polynomial  and  replaced  by  a  new  term.  At  all  times,  16  features  are  included 
in  the  polynomial,  and  the  remaining  22  features  form  a  reserve  queue.  New 
features  are  selected  from  the  top  of  the  queue,  while  features  removed  from 
the  polynomial  are  placed  at  the  end  of  the  queue.  Viewed  in  the  context  of 

credit  assignment,  Samuel's  program  assigns  blame  to  features  whose  weights 
have  values  near  zero,  since  those  features  are  making  no  contribution  to  the 
evaluation  function. 

Samuel  (1959)  was  dissatisfied  with  this  term-selection  approach  to  the 
new-term  problem.  He  writes: 

It  might  be  argued  that  this  procedure  of  having  the  program  select  new 
terms  for  the  evaluation  polynomial  from  a  supplied  list  is  much  too  simple 
and  that  the  program  should  generate  terms  for  itself.  Unfortunately,  no 
satisfactory  scheme  for  doing  this  has  yet  been  devised,  (p.  220) 

The  feature-selection  and  weight- adjustment  learning  processes  take  place 

concurrently.  In  Samuel's  experiment  with  these  learning  methods,  the  set  of 
selected  features  and  their  weights  started  to  stabilize  after  roughly  32  games 

of  self-play.  The  resulting  program  was  able  to  play  a  "better-than-average" 
game  of  checkers  (Samuel,  1959,  p.  222). 

Learning  a  Signature  Table  by  Book  Training 

The  second  kind  of  static  evaluation  function  investigated  by  Samuel  was 

a  system  of  signature  tables.  A  signature  table  is  an  n-dimensional  array.  Each 
dimension  of  the  array  corresponds  to  one  of  the  measured  board  features. 
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To  obtain  the  estimated  value  of  a  board  position,  we  measure  each  of  the 

board  features  and  index  these  values  into  the  signature-table  array.  The 
contents  of  each  cell  in  the  table  is  a  number  that  gives  the  value  of  the 
corresponding  board  position.  In  a  sense,  the  signature  table  maps  all  possible 

board  positions  into  a  small  n-dimensional  feature  space.  Every  point  in  that 
feature  space  is  represented  as  a  cell  in  the  signature  table  that  gives  the  value 
of  all  board  positions  mapped  to  that  point. 

Suppose,  for  example,  that  we  had  only  three  features:  KCENT  (king 

center  control),  MOB  (total  mobility),  and  GUARD  (back-row  control).  The 
cube  shown  in  Figure  D5a-1  is  a  schematic  diagram  of  the  resulting  signature 
table.  Notice  that  KCENT  and  GUARD  take  on  only  the  values  —1,  0,  and  1, 
while  MOB  is  allowed  to  take  on  values  from  —2  to  4-2.  If  we  have  a  board 
position  for  which  KCENT  =  1,  GUARD  =  0,  and  MOB  =  2,  then  we  look  into 
the  signature  table  at  the  cell  addressed  by  (1,0,  2)  to  obtain  the  value:  .8. 

It  is  possible  to  view  this  signature  table  as  a  set  of  3  X  3  X  5  = 
45  production  rules.  There  is  one  rule  for  every  possible  combination  of 

features — every  cell — in  the  table.  The  rule  for  the  situation  illustrated  in 
Figure  D5a-1  could  be  stated  as 

If:  KCENT  =  1  A  GUARD 

Then:     Value  of  position  =  .8  . 

0  A  MOB 

Signature  tables  are  more  expressive  than  linear  polynomials  because  they 
can  capture  interactions  among  all  of  the  features.  Their  main  drawbacks, 
however,  are  their  large  size  and  related  problems  with  learnability.  A  full 
signature  table  for  the  entire  set  of  24  terms  used  by  Samuel  would  contain 

roughly  6  X  1012  cells — far  too  large  to  be  stored  or  effectively  learned.  Two 
techniques  were  applied  to  overcome  these  problems.  First,  the  number  of 
possible  values  for  each  feature  was  substantially  reduced.  Most  features  were 

restricted  to  three  values:  +1  (if  the  position  is  good  for  the  program),  0  (if 

the  position  is  even),  and  —1  (if  the  position  is  bad  for  the  program).  Second, 

KCENT  n   V  /  /  /   / 
V//// 

-l  X  X  /  /  /  j 

GUARD 

-1 

0 

1 

1     0      1 
MOB 

Figure  D5a-1.     A  three-dimensional  signature  table. 
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Figure  D5a-2.     Three-level  hierarchy  of  signature  tables 
(from  Samuel,  1967). 

instead  of  one  giant  signature  table,  Samuel  adopted  the  three-level  hierarchy 
shown  in  Figure  D5a-2. 

The  24  board  features  are  partitioned  into  six  important  subgroups,  and 
a  separate  signature  table  is  developed  for  each  group.  The  outputs  of  the 

six  first- level  signature  tables  are  values  between  —2  and  +2  that  are  used  as 
indexes  to  two  second-level  signature  tables.  The  second-level  tables  produce 
values  between  —7  and  +7  that  are  used  as  indexes  to  the  final  signature 
table  to  obtain  the  estimated  value  of  the  board  position.  This  hierarchical 
system  was  found  to  be  expressive  enough  to  support  excellent  checkers  play 
and  small  enough  to  be  learnable. 

The  program  learns  the  values  for  the  cells  in  these  tables  by  following 

"book  games"  played  between  two  master  checkers-players.  Approximately 
250,000  board  situations  of  master  play  were  presented  to  the  program.  Most 
of  these  moves  were  selected  from  games  ending  in  a  draw.  The  program 
operates  as  follows.  Each  cell  in  the  signature  table  is  associated  with  two 

counts,  called  A  (agree)  and  D  (differ).  Initially,  A  and  D  are  zero  for  each 
cell.  At  each  move,  the  program  is  faced  with  a  set  of  alternative  moves,  one 
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of  which  is  the  book-designated  move.  Each  of  these  possible  moves  can  be 
mapped  into  one  cell  in  each  signature  table.  The  program  adds  a  one  to  the 

D  count  of  each  cell  whose  corresponding  move  was  not  the  book-preferred 
move.  A  total  of  n  (where  n  is  the  number  of  nonbook  moves)  is  added  to  the 

A  count  of  each  cell  corresponding  to  the  book-preferred  move.  Periodically, 

the  contents  of  the  signature-table  cells  themselves  are  updated  to  reflect  the 
A  and  D  counts.  Each  cell  is  given  the  value 

r_(A-D) 

C-(A  +  D)' 

which  is  a  rough  correlation  coefficient  indicating  the  extent  to  which  the 

board  positions  mapped  to  that  cell  are  the  book-preferred  moves.  The 

correlation  coefficients  are  then  scaled  into  the  —2  to  4-2  (or  —7  to  +7)  range. 
This  learning  process  can  be  viewed  as  a  technique  of  learning  from 

examples.  Each  move  provides  a  training  instance  that  is  used  to  update 

several  signature-table  entries.  Credit  assignment  is  easy,  because  the  book 
provides  a  fairly  reliable  performance  standard  on  a  move-by-move  basis. 
Credit  is  assigned  to  the  signature-table  cell  corresponding  to  the  book  move, 
and  blame  is  allotted  to  all  cells  corresponding  to  rejected  alternative  moves. 

It  is  the  learning-by-doing  approach  that  allows  the  program  to  determine 
which  moves  are  the  alternative  moves. 

The  second-  and  third-level  tables  are  trained  at  the  same  time,  and  by 
the  same  techniques,  as  the  first-level  tables.  The  current  contents  of  the 
signature  tables  are  used  to  determine  which  second-  and  third-level  cells 
correspond  to  the  alternative  moves  under  consideration,  and  their  A  and  D 
totals  are  updated  during  each  move.  The  learning  process  is  quite  erratic 

at  the  start,  since  most  of  the  first-level  signature-table  cells  contain  zeros 
initially.  Thus,  incorrect  second-  and  third-level  cells  are  selected  during  the 
early  stages  of  learning.  As  learning  progresses,  these  errors  are  overcome. 

To  make  the  tables  more  reliable  during  the  early  stages  of  training, 
some  smoothing  is  done  to  fill  in  cells  for  which  the  A  and  D  counts  are  still 
near  zero.  Smoothing  is  a  form  of  generalization  involving  interpolating  and 
extrapolating  from  surrounding  cells  in  the  table.  The  smoothing  has  no  effect 

on  the  A  and  D  counts — these  are  used  later  to  replace  the  interpolated  values 
with  more  accurate,  induced  values. 

One  other  refinement  of  the  signature-table  system  is  to  break  the  game 
of  checkers  into  seven  chronological  phases  and  to  use  a  different  signature 
table  for  each  phase.  Samuel  reasoned  that  the  board  features  relevant  to 
determining  good  moves  during  the  opening  of  the  game  are  unlikely  to  be  the 

same  as  those  used  during  the  ends  of  games.  The  seven-phase  approach  leads 
to  an  increase  in  the  number  of  cells,  thus  making  the  tables  more  difficult  to 
learn.  However,  Samuel  was  able  to  fill  in  empty  cells  by  smoothing  from  the 
tables  of  adjacent  phases. 
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Results 

Samuel's  signature- table  system  was  much  more  effective  as  a  checkers 
player  than  any  of  the  other  configurations  he  tested.  To  assess  the  goodness  of 
play,  Samuel  tested  the  program  on  895  book  moves  that  were  not  used  during 
the  training.  A  count  was  made  of  the  number  of  times  that  the  program 

rated  0,  1,  2,  etc.,  moves  as  equal  to  or  better  than  the  book-recommended 
move.  After  training  on  173,989  book  moves,  the  test  gave  the  results  shown 

in  Table  D5a-1.  By  summing  the  first  two  columns,  we  see  that  the  program 
chooses  the  best  move  or  the  second-best  move,  as  defined  by  the  book, 
64%  of  the  time.  These  ratings  are  made  without  employing  any  forward 

search.  Minimax  look-ahead  search  improves  the  performance  of  the  program 
substantially. 

Despite  this  impressive  level  of  performance,  champion  checkers  players 
are  still  able  to  beat  the  program.  In  1965,  the  world  champion,  W.  F.  Hellman 
won  all  four  correspondence  games  played  against  the  program.  He  drew  with 

the  program  during  one  "hurriedly  played  cross-board  game"  (Samuel,  1967, 
p.  601,  n.  2). 

Comparison  of  the  Signature-table  and  Polynomial  Methods 

The  signature-table  method  substantially  outperformed  the  polynomial- 
evaluation- function  approach.  Even  when  both  methods  were  trained  by 
following  book  moves,  the  moves  chosen  by  the  polynomial  evaluation  function 

correlated  with  the  book-indicated  moves  only  half  as  well  as  the  moves  chosen 
by  the  signature  tables.  This  difference  is  due  to  the  improved  representational 
power  of  the  signature  tables.  The  signature  table  can  represent  nonlinear 
relationships  among  the  various  terms,  since  there  is  a  different  table  cell 
for  each  possible  combination  of  terms.  In  the  polynomial  representation, 
only  linear  relationships  are  possible.  Such  a  representation  assumes  that 
each  term  contributes  independently  to  the  value  of  a  board  position.  This 
assumption  is  evidently  incorrect  for  checkers. 

Conclusion 

Samuel  developed  and  tested  several  different  representations  and  training 
techniques  for  teaching  a  program  to  play  checkers.  Among  the  contributions 

Table  D5a-i 
Evaluation  of  Signature-table  Performance 

Number  of  moves  rated 
as  better  than  or 

equal  to  book  move 0          1          2 3         4        5 6 

Relative  proportion 38%    26%    16% 10%    6%    3% 

1% 
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of  this  work  are  (a)  the  demonstration  that  machine-learning  techniques  can 
be  highly  successful,  (b)  the  technique  of  using  a  deeper  search  and  book- 
supplied  moves  to  solve  the  credit-assignment  problem,  (c)  the  term-selection 
methods  for  determining  which  features  to  include  in  the  polynomial  evalua- 

tion function,  and  (d)  the  demonstration  that  signature  tables  provide  a  much 

more  effective  representation  for  checkers  knowledge  than  either  the  linear- 

polynomial  or  the  rote-learning  techniques. 
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As  PART  of  his  thesis  project,  Donald  Waterman  (1968)  developed  a  computer 
program  that  learns  to  play  draw  poker.  Draw  poker  is  a  game  of  imperfect 

information  in  which  psychological  factors,  such  as  how  easily  one's  opponent 
is  bluffed,  become  important.  Minimax  look-ahead  search  is  not  possible 
because  the  overall  state  of  the  game  (i.e.,  the  contents  of  all  the  hands) 
is  not  completely  known.  Instead,  approximate  heuristic  methods  must  be 
used.  Waterman  developed  a  production  system  (see  Article  III.C4,  in  Vol.  i)  to 
encode  a  set  of  heuristics  for  poker,  and  he  sought  to  have  his  program  discover 
these  production  rules  through  experience.  In  this  article,  we  first  describe 

Waterman's  production-rule  knowledge  representation  and  its  application  in 
the  poker-playing  performance  element;  we  then  discuss  in  detail  the  methods 
used  in  the  learning  element  to  acquire  and  refine  these  production  rules. 

Waterman 's  Performance  Element  for  Draw  Poker 

Each  game  of  draw  poker  is  divided  into  five  stages.  First,  each  player 
is  dealt  five  cards.  This  is  followed  by  a  betting  stage  in  which  the  players 

alternately  choose  to  place  a  bet  larger  than  the  opponent's  bet  (RAISE),  place 
a  bet  equal  to  the  opponent's  bet  (CALL),  or  give  up  (DROP)  the  hand;  a  CALL 
or  DROP  action  ends  this  stage.  In  the  third  stage,  each  player  has  the  option 
of  replacing  up  to  three  of  his  (or  her)  cards  with  new  cards  drawn  from  the 
deck.  This  is  followed  by  another  betting  stage  like  the  first.  Finally,  the 

hands  are  compared  (except  in  a  DROP),  and  the  player  with  the  best  hand 
wins  the  game. 

Waterman's  performance  element  has  built-in  routines  for  carrying  out 
the  deal,  the  draw,  and  the  final  comparison  of  hands.  The  two  betting 
stages,  however,  are  performed  by  a  modifiable  production  system.  It  is  the 
production  rules  making  up  this  production  system  that  the  program  attempts 
to  learn  and  improve. 

The  production  system  developed  by  Waterman  contains  two  basic  kinds 
of  rules:  interpretation  rules  that  compute  important  features  of  the  game 
situation  and  action  rules  that  decide  which  action  (CALL,  DROP,  or  RAISE) 
to  take. 

The  action  rules  make  their  decisions  based  on  the  values  of  seven  key 

variables  that  make  up  the  so-called  dynamic  state  vector: 

(VDHAND,  POT,  LASTBET,  BLUFFO,  POTBET,  ORP,  0 STYLE) . 

VDHAND,  for  example,  is  a  measure  of  the  value  of  the  program's  hand,  POT  is 
the  current  amount  of  money  in  the  pot,  and  BLUFFO  is  an  estimate  of  the 

opponent's  "bluffability." 

465 
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The  interpretation  rules  compute  the  values  of  these  seven  variables  from 
directly  observable  quantities.  To  compute  the  value  of  BLUFFO,  for  example, 
features  such  as  OBLUFFS  (the  number  of  times  the  opponent  has  been  caught 

bluffing)  and  OCORREL  (the  correlation  between  the  opponent's  hands  and  his 
bets)  are  examined.  Once  numeric  values  for  the  seven  variables  have  been 
computed,  they  are  converted  into  symbolic  values  that  describe  important 
subranges  of  values.  For  example,  the  rule 

If  POT  >  50,    then  POT  =  BIGPOT . 

gives  POT  the  symbolic  value  BIGPOT  whenever  POT  is  larger  than  50. 
The  action  rules  are  stated  solely  in  terms  of  these  symbolic  values.  A 

typical  action  rule  is 

(SUREWIN,  BIGPOT,  POSITIVEBET,  *,  *,  *,  *) 

=>  (*,  POT  +  (2XLASTBET),  0,  *,  *,  *,  *)  CALL, 

which  can  be  paraphrased  as 

If:      VDHAND  =  SUREWIN 

and       POT  =  BIGPOT 

and    LASTBET  =  POSITIVEBET, 

Then:      POT  :=  POT  +  (2  X  LASTBET) 

LASTBET  :=  0 

CALL. 

The  condition  and  action  parts  of  the  rule  have  the  same  form  as  the  state 

vector.  The  left-hand  side  of  the  rule  is  a  pattern  that  is  matched  against 
the  state  vector  to  determine  whether  the  rule  should  be  executed.  The  right- 
hand  side  of  the  rule  indicates  which  action  to  take  and  provides  instructions 
for  modifying  the  value  of  the  state  vector. 

These  production  rules  are  applied  by  the  performance  element  as  follows. 
First,  all  of  the  interpretation  rules  are  used  to  analyze  the  current  game 
situation  in  order  to  develop  the  dynamic  state  vector.  Next,  the  action 
rules  are  examined  one  by  one  in  a  fixed  order  until  a  rule  is  found  whose 
condition  pattern  matches  the  state  vector.  That  rule  is  executed  to  make 

the  program's  move.  This  fixed  ordering  for  the  production  rules  serves  as 
a  conflict-resolution  technique  (see  Article  III.C4,  in  Vol.  i).  If  more  than  one 
rule  is  applicable  in  a  given  situation,  only  the  first  rule  in  the  list  is  executed. 
Hence,  when  new  rules  are  acquired  or  old  rules  are  modified,  the  order  of  the 
rules  must  be  carefully  considered. 

There  are  two  basic  ways  to  generalize  the  left-hand  side  of  an  action  rule. 
One  method  is  to  drop  a  condition  by  replacing  one  of  the  symbolic  values 

on  the  left-hand  side  (e.g.,  BIGPOT)  by  *,  which  matches  any  value.  The  other 
method  is  to  modify  the  interpretation  rule  that  defines  a  symbolic  value  so 
that  it  includes  a  larger  set  of  underlying  numeric  values  (e.g.,  changing  BIGPOT 
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to  be  any  POT  >  40).  This  is  the  same  as  Michalski's  method  of  generalizing 
by  internal  disjunction  (see  Article  XIV.Di).  We  will  see  below  how  Waterman 
makes  use  of  these  two  generalization  methods. 

Learning  to  Play  Poker 

Waterman  sought  to  have  the  program  learn  the  interpretation  rules,  the 
action  rules,  and  the  ordering  of  the  action  rules  by  playing  poker  games 
against  an  expert  opponent.  As  the  poker  games  proceed,  the  learning  element 

analyzes  each  of  the  decisions  of  the  performance  element  and  extracts  train- 
ing instances.  Each  training  instance  is  in  the  form  of  a  training  rule,  that  is, 

a  specific  production  rule  that  would  have  made  the  correct  decision  had  it 
been  chosen  and  executed.  The  training  rules  guide  the  learning  element  as 
it  determines  which  production  rules  to  generalize  and  specialize. 

The  task  of  extracting  a  training  rule  is  quite  difficult,  because  the  envi- 
ronment provides  very  little  information  that  could  serve  as  a  performance 

standard.  Unlike  deterministic  games  such  as  checkers  or  chess  that  have 
no  chance  element,  poker  is  probabilistic.  Even  an  expert  player  will  lose 
from  time  to  time.  Thus,  the  program  must  play  several  hands  before  it  can 
assess  the  quality  of  the  production  rules  in  its  knowledge  base.  As  discussed 
in  the  introduction  to  this  section  (Article  XIV.D5),  however,  even  when  a 

reliable  performance  standard  is  available  on  a  full-game  basis,  the  problem 
of  assigning  credit  or  blame  to  individual  moves  in  that  game  is  still  very 
difficult.  Consequently,  Waterman  sought  to  provide  the  program  with  some 

form  of  move- by-move  performance  standard.  Three  different  techniques  were 
developed:  advice-taking,  automatic  training,  and  analytic  training. 

In  advice-taking,  the  program  plays  a  series  of  poker  games  against  a 
human  expert.  After  each  turn  by  the  performance  element,  the  learning  ele- 

ment asks  the  expert  whether  the  performance-element  action  is  correct.  The 
expert  responds  either  with  (OK)  or  with  some  advice  such  as  (CALL  BECAUSE 

YOUR  HAND  IS  FAIR,  THE  POT  IS  LARGE,  AND  THE  LASTBET  IS  LARGE).  This  ad- 
vice provides  the  training  rule  directly. 

In  the  automatic- training  approach,  an  expert  program  serves  as  the 
opponent  and  advice-giver.  The  expert  program  uses  a  knowledge  base  of 
production  rules  developed  by  Waterman  himself  to  determine,  at  each  move, 
what  action  to  take.  During  play  against  the  learning  program,  the  expert 
program  compares  each  move  made  by  the  learning  program  with  the  move 
it  would  have  made  and  provides  advice  exactly  as  a  human  expert  would. 

Finally,  the  most  interesting  method  of  instruction,  the  analytic  method, 

involves  no  advice-taking  whatsoever.  After  each  full  round  of  play  (i.e.,  each 

single  hand),  the  learning  element  analyzes  the  moves  made  by  the  perfor- 
mance element  and  attempts  to  deduce  which  moves  were  incorrect.  In 

place  of  an  externally  supplied  performance  standard,  the  learning  element  is 

provided  with  a  predicate-calculus  axiomatization  of  the  rules  of  poker.  From 
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these  axioms,  the  program  is  able  to  deduce,  after  the  hand  is  over,  what  the 

correct  decisions  would  have  been,  thus  providing  the  learning  element  with 

a  performance  standard. 

Once  the  learning  element  has  a  move- by- move  performance  standard,  it 
can  extract  a  training  rule  and  modify  the  production  system.  The  modifica- 

tion process  works  by  first  locating  the  production  rule  that  made  the  incorrect 

decision  and  then  examining  the  list  of  production  rules  for  a  rule  before  or 

after  the  error-causing  rule  that  could  have  made  the  correct  decision.  If 
such  a  rule  is  found,  generalization  and  specialization  techniques  are  applied 

to  modify  the  production  rules  so  that  the  proper  rule  would  have  been  exe- 
cuted. If  no  such  rule  is  found,  the  training  rule  itself  is  inserted  into  the 

production-rule  list  immediately  in  front  of  the  error-causing  rule. 
In  the  remainder  of  this  article,  we  discuss  how  each  of  these  three  training 

techniques  allows  the  learning  element  to  develop  a  training  rule.  For  the 

advice-taking  and  automatic-training  methods,  this  is  straightforward.  In  the 

analytic  approach,  however,  a  series  of  credit- assignment  problems  must  be 

solved.  We  describe  Waterman's  solutions  in  detail.  Finally,  we  describe  how 
the  training  rule  acquired  by  any  one  of  these  methods  is  used  to  modify  the 

current  set  of  production  rules  in  the  knowledge  base. 

Advice-taking  and  Automatic  Training 

In  the  advice-taking  and  automatic-training  methods,  the  program  is 
supplied  after  each  move  with  advice  such  as: 

(CALL  BECAUSE  YOUR  HAND  IS  FAIR,  THE  POT  IS  LARGE, 

AND  THE  LASTBET  IS  LARGE)  . 

This  advice  provides  the  training  rule  directly.  The  proper  action  (i.e.,  the 

right-hand  side  of  the  training  rule),  CALL,  is  indicated  along  with  the  relevant 
variables  and  their  values.  This  advice  is  equivalent  to  the  production  rule: 

(FAIR,    LARGE,    LARGE,    *,    *,    *,    *) 

=►     (*,    POT  +    (2  X  LASTBET),    0,    *,    *,    *,    *)    CALL. 

The  details  of  the  right-hand  side  of  the  rule  can  be  filled  in  automatically 
for  each  action  from  knowledge  of  the  rules  of  the  game.  In  this  case,  for 

example,  CALL  requires  the  program  to  match  its  opponent's  bet,  and  thus  the 
POT  must  increase  by  twice  LASTBET,  once  for  the  opponent's  bet  and  again 

for  the  program's  reply.  The  other  possibilities,  DROP  and  RAISE,  are  handled 
similarly. 

It  is  interesting  to  note  that  Waterman's  program  accepts  fairly  low-level 
advice.  The  expert's  advice  can  easily  be  interpreted  in  terms  of  the  present 
game  situation,  so  there  is  no  need  to  interpret  or  operationalize  the  advice 

(see  Article  XJV.Ci).  Waterman's  advice-taking  research  concentrates,  instead, 
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on  the  problem  of  integrating  this  advice  into  the  current  knowledge  base. 
We  describe  how  this  happens  after  we  discuss  the  methods  employed  during 
analytic  training  to  obtain  the  training  rule. 

Learning  by  the  Analytic  Technique 

The  main  difficulty  facing  Waterman's  program  during  analytic  training 
is  credit  assignment.  The  learning  element  has  to  deal  with  a  pair  of  credit- 
assignment  problems.  The  first  problem  is  determining  the  quality  of  a  round 
of  play.  As  we  mentioned  above,  the  probabilistic  nature  of  draw  poker  makes 
this  difficult,  since  the  loss  of  a  single  hand  does  not  necessarily  indicate  that 
the  program  is  playing  poorly.  Furthermore,  the  fact  that  poker  is  a  game 
of  imperfect  information  leads  to  difficulties.  If,  for  example,  the  program 

"drops"  its  bid  (i.e.,  folds  its  hand  and  gives  in  to  the  other  player),  the 
contents  of  the  opponent's  hand  are  never  known.  The  program  solves  this 
first  credit- assignment  problem  by  always  "calling"  the  bid  (i.e.,  meeting  the 
opponent's  bet  and  requesting  to  see  his  hand),  instead  of  dropping,  and  by 
applying  its  knowledge  of  the  rules  of  poker  to  deduce  whether  the  program 
could  have  improved  its  play  within  the  round. 

If  the  program  could  have  done  better,  it  turns  its  attention  to  the  second 

credit- assignment  problem — determining  which  individual  moves  were  poor. 
During  the  round  of  play,  a  complete  trace  of  the  actions  of  the  performance 

element  is  kept.  To  solve  the  second  credit-assignment  problem,  the  learning 
element  applies  its  axiomatization  of  the  rules  of  poker  to  evaluate  each  move 
in  detail.  The  rules  of  poker  are  axiomatized  in  predicate  calculus  as  a  set  of 
implications  such  as: 

ACTION (CALL)  A  HIGHER (YOURHAND,    OPPHAND) 

D  ADDCLASTBET,    POT)  A  ADD (POT ,    YOURSCORE) . 

These  statements  define  the  effects  of  each  of  four  possible  actions:  BET  HIGH, 
BET  LOW,  CALL,  and  DROP.  To  evaluate  a  particular  move  in  the  game,  the 
learning  element  takes  the  value  of  the  dynamic  state  vector  at  that  point  and 
uses  it  to  determine  the  truth  value  of  certain  predicates  in  this  axiom  system 

(e.g.,  GOOD(OPPHAND) ,  HIGHER  (OPPHAND,  YOURHAND)).  Then  it  tries  to  prove  the 
statement 

MAXIMIZE (YOURSCORE) 

by  backward-chaining  through  the  axiom  system  (see  Article  III.C4,  in  Vol.  i). 
The  resulting  proof  indicates  the  action  that  should  have  been  performed  and 

provides  the  move-by-move  performance  standard.  When  the  performance 
standard  differs  from  the  move  made  by  the  program,  blame  is  assigned  to 
that  move,  and  the  learning  element  builds  a  training  rule. 

The  correct  decision,  obtained  from  the  performance  standard,  forms  the 

right-hand  side  (action  part)  of  the  training  rule.  Waterman  axiomatized  the 
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RAISE  action  as  two  possible  subactions,  BET  HIGH  and  BET  LOW,  so  that  the 

program  would  not  have  to  learn  how  big  a  bet  to  make.  For  BET  HIGH,  the 

performance  element  chooses  a  random  bet  between  10  and  20.  Similarly,  a 
BET  LOW  action  leads  to  a  random  bet  between  1  and  9.  Thus,  the  performance 

standard  provides  the  complete  right-hand  side  of  the  training  rule. 
The  left-hand  side  of  the  training  rule  is  obtained  by  examining  a  table 

called  the  decision  matrix.  The  decision  matrix  contains  four  abstract  rules, 

one  for  each  possible  action.  These  rules  tell  which  values  of  the  seven 
state  variables  are  relevant  for  the  indicated  action.  The  exact  values  of  the 

variables  are  not  given — only  a  general  indication  of  whether  the  values  should 
be  large  or  small.  For  instance,  the  abstract  rule  for  the  DROP  action  is 

(CURRENT,    LARGE,    LARGE,    SMALL,    SMALL,    CURRENT,    LARGE)     =►    DROP, 

or  more  clearly, 

If: VDHAND  =  (current  symbolic  value  of  VDHAND) 
and POT  =  LARGE 

and LASTBET  —  LARGE 
and BLUFFO  =  SMALL 
and POTBET  =  SMALL 
and ORP  =  (current  symbolic  value  of  ORP) 
and OSTYLE  =  LARGE , 
Then: DROP. 

Once  the  learning  element  has  deduced  from  the  axioms  that  the  proper 
action  would  have  been  DROP,  it  takes  the  corresponding  rule  from  the  decision 
matrix  and  uses  it  as  the  training  rule.  Notice  that  the  level  of  abstraction  of 
the  rules  in  the  decision  matrix  is  the  same  as  the  level  of  abstraction  of  the 

advice  supplied  by  the  human  expert  or  expert  program. 
It  could  be  argued  that  the  use  of  the  decision  matrix  is  improper,  since 

it  provides  the  learning  element  with  essential  information  that  a  person  who 

was  learning  to  play  poker  would  have  to  discover  himself.  Waterman  (1968) 
suggests  some  methods  by  which  the  decision  matrix  could  be  learned  from 
experience,  but  none  of  these  was  implemented. 

Using  the  Training  Rule  to  Modify  the  Knowledge  Base 

Once  the  training  rule  is  obtained,  whether  by  advice  from  a  person,  by 
advice  from  the  expert  program,  or  by  analysis,  it  must  be  used  to  modify 
t  he  production  rules  in  the  knowledge  base.  The  training  rule  is  first  used 

to  modify  the  interpretation  rules.  The  left-hand  side  of  the  training  rule  is 
compared  with  the  state  vector  computed  by  the  interpretation  rules.  LARGE 
matches  symbolic  values  that  correspond  to  large  values  of  the  underlying 
variable.  Similarly,  SMALL  matches  small  values.  If  a  symbol  does  not  match, 



D5b  Waterman's  Poker  Player  471 

the  interpretation  rules  that  computed  that  symbol  are  assigned  blame.  They 
are  then  either  modified  or  augmented  to  include  a  new  interpretation  rule. 

Suppose,  for  example,  that  the  state  vector  listed  POT  as  having  the  value 
P3,  where  P3  is  derived  by  the  interpretation  rule: 

If  POT  >  20,  then  POT  =  P3 . 

Furthermore,  suppose  that  the  value  of  POT  in  the  game  situation  being  ana- 
lyzed is  45.  By  comparing  P3  with  LARGE,  the  learning  element  determines  that 

this  interpretation  rule  is  incorrect  (since  P3  can  refer  to  very  small  values  of 
POT).  The  learning  element  can  either  modify  the  rule  (by  substituting  44  for 

20)  or  create  a  new  rule.  A  user-supplied  parameter,  KK,  specifies  the  largest 
allowable  change  that  can  be  made  to  a  numeric  value  in  an  interpretation 
rule.  In  this  case,  we  will  assume  that  the  learning  element  creates  the  new 
rule 

If  POT  >  44,  then  POT  =  P4 . 

and  modifies  the  state  vector  so  that  POT  has  the  value  P4. 

Once  the  interpretation  rules  have  been  checked  and  modified,  the  up- 
dated state  vector  is  matched  against  the  action  rules  to  find  the  rule  that 

made  the  incorrect  decision.  This  rule  is  called  the  error- causing  rule.  The 
training  rule  is  then  used  to  locate  a  production  rule  that  could  have  made 
the  correct  decision  had  it  been  executed.  This  is  accomplished  by  comparing 

the  right-hand  side  of  the  training  rule  with  each  production  rule  in  the  rule 
base. 

Waterman's  program  classifies  action  rules  as  either  recently  hypothesized 
or  accepted.  A  recently  hypothesized  rule  is  one  that  was  recently  added  to  the 
knowledge  base,  whereas  an  accepted  rule  is  one  that  the  program  believes  to 
be  nearly  correct.  The  learning  element  follows  a  strategy  of  first  attempting 
to  make  minor  changes  in  accepted  rules  and  then,  if  minor  changes  do  not 
suffice,  attempting  to  make  major  changes  in  recently  hypothesized  rules. 
Finally,  if  a  suitable  recently  hypothesized  rule  cannot  be  found,  the  training 
rule  is  added  to  the  rule  base  and  is  labeled  as  recently  hypothesized. 

The  learning  element  searches  upward  ahead  of  the  error-causing  rule 
for  an  accepted  rule  that  would  have  made  the  correct  decision.  If  such  a 

rule  is  found,  it  is  checked  to  see  if  the  pattern  of  its  left-hand  side  can  be 
generalized  to  match  the  current  state  vector.  Only  minor  generalizations — 
that  is,  changes  to  the  interpretation  rules — are  considered.  No  conditions 
are  dropped  (i.e.,  replaced  by  *). 

If  no  accepted  rule  can  be  found,  the  learning  element  again  searches 

upward  before  the  error-causing  rule,  this  time  looking  for  a  recently  hypothe- 
sized rule  that  would  have  made  the  correct  decision.  If  such  a  rule  is 

found,  major  changes — including  both  dropping  conditions  and  modifying 
interpretation  rules — are  made  in  the  left-hand-side  pattern  so  that  it  matches 
the  state  vector. 
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If  no  suitable  rules  can  be  found  before  the  error-causing  rule,  the  learning 
element  searches  for  an  accepted  rule  after  the  error-causing  rule.  If  an 

appropriate  rule  is  found  there,  the  error-causing  rule  and  all  intervening 
rules  must  be  specialized  so  that  they  will  not  match  the  state  vector,  and 

the  target  rule  must  be  generalized — by  changing  the  interpretation  rules — so 
that  it  will  match  the  state  vector. 

Finally,  if  no  rules  can  be  found  that  could  be  generalized  to  make  the 
correct  decision,  the  training  rule  is  inserted  into  the  ordered  list  of  production 

rules  immediately  in  front  of  the  error-causing  rule.  The  training  rule  is 
marked  as  being  recently  hypothesized.  Figure  D5b-1  depicts  this  four-step 
process  of  modifying  the  rule  base. 

This  four-step  process  combines  the  task  of  integrating  new  knowledge 
into  the  knowledge  base  with  the  task  of  generalizing  the  training  rule.  Notice 
that  the  integration  process  must  have  knowledge  about  how  the  performance 
element  chooses  which  rule  to  execute,  so  that  it  can  decide  how  to  update  the 
rule  base.  The  generalization  process  is  fairly  ad  hoc.  For  example,  recently 
hypothesized  rules  become  accepted  when  enough  conditions  are  dropped  from 

the  left-hand  side  so  that  only  N  conditions  remain  (N  is  a  parameter  given 
to  the  program).  This  is  a  very  weak  technique  for  preventing  rules  from 
becoming  overgeneralized. 

Results 

Waterman's  poker  program  learned  to  play  a  fairly  good  game  of  poker. 
Separate  tests  were  conducted  with  each  of  the  three  training  techniques.  In 

each  case,  the  program  started  with  only  one  rule:  "In  all  situations,  make  a 
random  decision."   For  advice- taking  from  a  human  expert  and  for  learning 

Ri      flj  Search  for  "accepted  rule" 

#2 

(2)  Search  for  "recently-hypothesized"  rule 

t  ©- 
Re        error-causing  rule 

Insert  training  rule 

Rn    (3)  Search  for  "accepted  rule" 

Figure  D5b-1.     The  four  steps  to  modifying  the  production-rule  base. 
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from  the  expert  program,  training  was  continued  until  the  program  played 
one  complete  game  of  five  hands  without  once  making  an  incorrect  decision 

(as  judged  by  the  expert).  For  the  analytic  method,  the  program  continued  to 

play  games  until  the  original  "random  decision"  production  rule  was  executed 
only  b%  of  the  time.  The  results  are  shown  in  Table  D5b-1. 

The  rightmost  column  shows  the  results  of  a  proficiency  test  in  which  the 
program  and  a  human  expert  played  two  sets  of  25  hands.  During  the  first 
set  of  25  hands,  the  cards  were  drawn  at  random  from  a  shuffled  deck  as  in 

ordinary  play.  However,  during  the  second  set  of  25  hands,  the  same  hands 
were  used  as  in  the  first  set,  except  that  the  program  received  the  hands 
originally  dealt  to  the  person  and  vice  versa.  At  the  end,  the  cumulative 
winnings  of  the  program  and  person  were  compared. 

The  results  show  that  in  all  three  training  methods,  performance  improved 

markedly.  The  automatic  training  provided  the  best  performance  improve- 
ment, perhaps  because  the  automated  expert  played  more  consistently  than 

the  human  expert.  Although  the  analytic  method  performed  the  poorest,  the 
results  are  not  strictly  comparable,  since  the  axiom  set  provided  it  with  only 

four  possible  actions,  whereas  the  advice-based  methods  were  given  eight  pos- 
sible actions.  Consequently,  the  analytic  method  may  not  actually  be  inferior 

to  the  two  advice-taking  methods. 

Conclusion 

Waterman's  poker-playing  program  faces  a  very  difficult  learning  problem. 
Poker  is  a  multiple-step  task  that  provides  very  little  feedback  to  the  learning 
program.  For  the  two  advice-taking  methods,  this  problem  is  sidestepped 
by  allowing  the  program  to  accept  a  training  rule  directly  from  an  expert. 

However,  for  the  analytic  method,  two  credit-assignment  problems  must  be 
solved:  evaluating  a  round  of  play  and  evaluating  a  particular  move.  To  solve 
these  problems,  the  program  modifies  its  betting  strategy  (to  call  instead 

Table  D5b-i 
Comparison  of  Three  Training  Methods  (from  Waterman,  1970) 

™    .  ,,     ,  Number  of         Final  number      Percent  difference 
Training  method  .   .  .  ,  r      ,  .  a 

training  trials  oi  rules  in  winnings 

Before  training 0 1 

-71.0 

Advice- taking 38 
26 

-6.8 

Automatic  training 
29 19 

-1.9 

Analytic  method 57 14 

-13.0 

a  These  percentages  are  computed  by  subtracting  the  amount  of  money  won 
by  the  opponent  from  the  amount  of  money  won  by  the  program  and  dividing  by 
the  amount  of  money  won  by  the  opponent.  In  all  cases,  the  program  won  less 

than  the  opponent  and,  hence,  the  percentages  are  all  negative. 
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of  dropping)  and  applies  knowledge  available  from  the  axiom  set  and  from 

the  decision  matrix.  This  permits  the  credit-assignment  process  to  extract  a 
training  rule  from  the  trace  of  decisions  taken  by  the  performance  element. 

Once  the  training  rule  is  acquired  by  any  of  these  three  methods,  it  is  used 

to  guide  the  generalization  and  specialization  of  the  production  rules  in  the 

knowledge  base.  Since  only  positive  training  instances  are  available,  the 

program  must  make  use  of  arbitrary  constraints  to  prevent  overgeneralization. 

References 

Waterman  (1970)  describes  this  work  in  detail. 



D5c.     HACKER 

HACKER  is  a  learning  system  developed  by  Gerald  Sussman  (1975)  to  model 
the  process  of  acquiring  programming  skills.  HACKER's  performance  task  is 
to  plan  the  actions  of  a  hypothetical  one-armed  robot  that  manipulates  stacks 
of  toy  blocks.  This  planning  task  is  described  in  detail  in  Article  XV.C. 

HACKER  learns  by  doing.  It  develops  plans  and  simulates  their  execution. 
The  plan  and  the  trace  of  the  execution  are  examined  by  HACKER  to  acquire 
two  kinds  of  knowledge:  generalized  subroutines  and  generalized  bugs.  A  gen- 

eralized subroutine  is  similar  to  a  STRIPS  macro  operator  (see  Article  II.D5,  in 
Vol.  I),  in  that  it  provides  a  sequence  of  actions  for  achieving  a  general  goal. 
A  generalized  bug  is  a  demon  that  inspects  new  plans  to  see  if  they  contain 
an  instance  of  the  bug  and  provides  an  appropriate  bug  fix. 

An  example  of  a  generalized  subroutine  is  the  following  procedure  for 
stacking  one  block  on  top  of  another: 

(TO    (MAKE    (ON  a  b)) 
(HPROG 

(UNTIL  (y)  (CANNOT  (ASSIGN  (y)  (ON  y  a))) 
(MAKE  (NOT  (ON  y  a))) 

(PUTON  a  b))) . 

The  goal  of  this  procedure  is  (MAKE  (ON  a  b)):  The  procedure  changes  the 
world  so  that  (ON  a  b)  is  true.  This  subroutine  is  general  and  works  for  any 
two  blocks  a  and  b  (a  and  b  are  variables  that  are  bound  to  particular  blocks — 
denoted  by  capital  letters — when  the  subroutine  is  invoked).  The  procedure 
removes  everything  that  is  on  a  and  then  picks  up  a  and  puts  it  on  b. 

Viewed  as  a  production  rule,  this  procedure  could  be  written  as: 

(MAKE    (ON  a  b))     =>     (HPROG 
(UNTIL  (y)  (CANNOT  (ASSIGN  (y)  (ON  y  a))) 

(MAKE  (NOT  (ON  y  a))) 
(PUTON  a  b))  . 

From  this  perspective,  we  see  that  when  HACKER  learns  a  generalized  sub- 
routine, it  is  learning  both  a  generalized  left-hand  side,  the  goal,  and  a  general- 

ized right-hand  side,  the  plan.  As  we  will  see  below,  the  left-hand  sides  of  the 
production  rules  are  generalized  by  turning  constants  into  variables,  while  the 
right-hand  sides  are  developed  by  concatenating  subplans  and  ordering  them 
properly  to  form  macro  operators. 

An  example  of  the  other  kind  of  knowledge  gained  by  HACKER— a  general- 
ized bug — is  the  demon: 

(WATCH-FOR   (ORDER  (PURPOSE  lline  (ACHIEVE  (ON  a  b))) 
(PURPOSE  21ine  (ACHIEVE  (ON  b  c)))) 

(PREREQUISITE-CLOBBERS-BROTHER-GOAL 
current-prog  lline  21ine 
(CLEARTOP  b))) . 

475 
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It  tells  HACKER  to  watch  for  plans  in  which  one  step,  lline,  has  the  goal 

of  achieving  (ON  a  b)  and  a  subsequent  step,  21ine,  has  the  goal  of  achieving 

(ON  be).  In  such  cases,  the  prerequisite  of  the  second  step — that  b  have 

a  clear  top — requires  undoing  the  goal  of  the  first  step.  When  this  demon 

detects  such  bugs,  it  invokes  the  PREREQUISITE-CLOBBERS-BROTHER-GOAL  repair 
procedure  to  fix  them. 

Generalized  bugs  can  also  be  viewed  as  production  rules.  This  particular 

bug  demon  could  be  written  as: 

(ORDER      (PURPOSE  lline    (ACHIEVE    (ON  a  b))) 
(PURPOSE  21ine    (ACHIEVE    (ON  b  c))))     => 

(PREREQUISITE-CLOBBERS-BROTHER-GOAL 

current-prog  lline  21ine 
(CLEARTOP  b)) . 

HACKER  learns  both  the  left-  and  the  right-hand  sides  of  these  bug  demons. 

HACKER's  Architecture 

HACKER  is  a  complex  program  that  contains  several  interleaved  com- 

ponents (see  Fig.  D5c-1).  These  include: 

1.  The  planner,  which  develops  plans  by  pattern-directed  expansion  of  plan- 
ning operators; 

2.  The  critics'  gallery,  which  inspects  the  plans  for  known  generalized  bugs; 

3.  The  simulator,  which  simulates  the  execution  of  the  plans  and  checks  for 
errors; 

4.  The  debugger  and  generalizer,  which  locate  and  repair  bugs  in  the  plans 

for  later  use  by  the  critics'  gallery;  and 

5.  The  generalizer  and  subroutinizer,  which  generalize  plans  and  install  them 

in  HACKER's  knowledge  base. 

The  first  two  components  comprise  the  performance  element,  which  develops 

block-stacking  plans.  The  simulator  creates  a  performance  trace  of  the  simu- 
lated execution  of  the  plan.  The  last  two  components  perform  the  actual 

process  of  learning  generalized  subroutines  and  generalized  bugs. 

These  components  interact  continually.  As  the  planner  is  developing  the 

plan,  for  example,  the  critics'  gallery  is  interrupting  to  repair  known  bugs 
and  the  simulator  is  symbolically  executing  the  evolving  plan.  The  debugger 

may  step  in  to  fix  a  new  bug  and  then  resume  the  planning  process.  In  this 

article,  however,  we  describe  each  of  these  components  separately  and  pretend 

that  the  plan  is  first  developed  in  its  entirety  and  then  successively  criticized, 

simulated,  debugged,  and  generalized.  This  false  architecture  corresponds 

fairly  closely  to  our  simple  model  of  learning  multiple-step  tasks.  There  are 

two  learning  elements,  however:  one  for  developing  generalized  subroutines 
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and  one  for  developing  generalized  bugs.  Figure  D5c-1  summarizes  this  false 
architecture.  We  will  explain  the  operation  of  HACKER  by  following  the  flow 
through  this  model. 

HACKER 's  Performance  Element: 

The  Planner  and  the  Critics '  Gallery 

HACKER  employs  a  simple  problem-reduction  planner  (Chap.  XV;  see  also 
Article  II.B2,  in  Vol.  i),  which  is  presented  with  an  initial  situation  and  a  goal 
block-structure  to  create.  Figure  D5c-2  shows  a  sample  situation  and  goal. 

The  goal  is  matched  against  HACKER 's  knowledge  base  of  known  plans, 
subroutines,  and  refinement  rules.  If  a  known  plan  or  subroutine  is  found  that 

Performance  Element 

Critics' Gallery 

Bug  Learning  Element 

Figure  D5c-1.     A  simplified  architecture  for  HACKER. 
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Goal:  (ACHIEVE    (AND    (ON  A  B)    (ON  C  A))) 

Figure  D5c-2.     A  sample  situation  and  goal. 

can  accomplish  the  goal,  it  is  used.  Otherwise,  a  refinement  rule  is  applied 
to  reformulate  the  goal  as  a  set  of  subgoals.  These  subgoals,  in  turn,  are 
matched  against  the  knowledge  base  to  locate  known  methods  for  achieving 
them.  The  expansion  into  subgoals  proceeds  until  HACKER  finds  existing 
plans  or  primitive  operators  that  can  achieve  each  of  the  subgoals. 

HACKER  is  noted  for  its  linearity  assumption.  Whenever  the  planner  is 
faced  with  the  problem  of  achieving  a  pair  of  conjunctive  subgoals,  it  assumes 
that  they  can  be  achieved  independently.  This  assumption  is  represented  in 
the  AND  rule  for  refining  a  conjunctive  goal: 

(TO   (ACHIEVE  (AND  a  b)) 
(AND   (ACHIEVE  a) 

(ACHIEVE  b) ) )  . 

This  says  "To  achieve  goals  a  and  b,  first  achieve  a  and  then  achieve  6."  As 
a  result  of  this  linearity  assumption,  the  plan  developed  by  the  planner  is  a 
naive  plan  that  may  not  work  (see  Article  XV.C). 

The  naive  plan  is  criticized  by  the  critics  in  the  critics'  gallery,  which 
attempt  to  find  instances  of  the  generalized  bugs  kept  in  the  bug  library. 

When  a  bug  is  found,  the  associated  bug  fix  is  applied  to  improve  the  plan — 
usually  by  rearranging  plan  steps.  The  result  of  this  criticism  is  a  plan  that 

reflects  all  of  HACKER's  past  experience  but  still  may  not  be  correct. 

HACKER's  Performance  Trace: 
Plans  and  Simulation 

HACKER's  plans  contain  a  large  amount  of  information  about  the  plan- 
ning process  itself.  Each  step  of  a  plan  is  justified  by  giving  the  purpose  of  the 

step — the  subgoal  it  is  intended  to  achieve.  There  are  two  fundamental  kinds 
of  steps:  main  steps  and  prerequisite  steps.  Main  steps  are  directed  at  goals 
relating  to  the  goals  of  the  overall  plan.  Prerequisite  steps  are  computations 
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needed  to  establish  preconditions  for  the  main  steps.  For  example,  the  plan 

for  the  problem  of  Figure  D5c-2  contains  three  steps: 

Step  1.    (PUTON  C  TABLE)    [purpose:    (CLEARTOP  A)    span:    step  2]  . 

Step  2.    (PUTON  A  B)    [purpose:    (ON  A  B)    span:    full  plan]  . 

Step  3.    (PUTON  C  A)    [purpose:    (ON  C  A)    span:    full  plan]  . 

Steps  2  and  3  are  main  steps,  while  step  1  is  a  prerequisite  step  needed  to 
clear  off  the  top  of  A  so  that  the  robot  can  move  A.  As  HACKER  simulates  the 
execution  of  the  plan,  it  verifies  that  the  goal  of  each  step  has  been  attained. 

Each  step  in  the  plan  also  includes  an  indication  of  the  time  span  of  the 

goal  it  is  attaining.  The  purpose  of  a  step  may  be  to  accomplish  something 
that  will  remain  true  for  only  a  short  time.  In  this  example,  (CLEARTOP  A)  will 
be  true  only  until  step  3.  For  HACKER  to  know  that  this  is  not  a  bug,  step  1 

includes  a  time-span  indication  that  its  goal  is  intended  to  be  true  only  until 
the  end  of  step  2. 

The  criticized  plan  is  simulated  to  verify  that  it  works  properly.  The 
simulator  detects  bugs  in  three  forms:  illegal  operations,  failed  steps,  and 
unaesthetic  actions.  An  illegal  operation  is  one  that  is  considered  impossible 
in  the  hypothetical  blocks  world.  For  instance,  it  is  illegal  to  pick  up  a 
block  unless  it  has  a  clear  top.  A  failed  step  is  one  that  does  not  achieve  its 
goal  for  the  designated  time  span.  The  simulator  uses  the  goal  information 
attached  to  each  plan  step  to  verify  that  at  all  times  the  goals  intended  by  the 
planner  have  actually  been  met.  Lastly,  an  unaesthetic  action  is  a  situation 
in  which  the  robot  moves  the  same  block  two  times  in  succession  without 

any  intervening  actions.  These  three  methods  for  detecting  bugs  provide  a 
performance  standard  for  HACKER,  which  states  that  a  plan  must  execute 
legally,  achieve  all  intended  goals  and  subgoals,  and  also  be  aesthetically 
correct.  The  simulation  halts  whenever  one  of  these  problems  is  identified, 
and  a  trace  of  the  simulation  is  provided  to  the  bug  learning  element. 

HACKER's  Learning  Elements: 
The  Subroutine  Learning  Element  and  the  Bug  Learning  Element 

As  mentioned  above,  there  are  two  learning  elements  in  HACKER.  One, 
the  subroutine  learning  element,  inspects  the  criticized  plan  and  simulation 
trace  to  identify  possible  subroutines.  The  other,  the  bug  learning  element, 
examines  the  performance  trace  to  diagnose  and  correct  bugs  uncovered  by 
the  simulation. 

The  subroutine  learning  element  attempts  to  detect  when  two  subgoals 
in  the  plan  are  sufficiently  similar  to  allow  a  single  subroutine  to  accomplish 
both.  The  trace  of  the  planning  and  simulation  processes  indicates  which 

constants  in  a  goal  or  subgoal — for  example,  the  constants  A  and  B  in  the 
goal  (ON  A  B) — can  be  generalized.   A  constant  cannot  be  generalized  if  the 
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plan  somehow  refers  to  that  constant  explicitly  (e.g.,  the  constant  TABLE  has 
special  status).  HACKER  generalizes  each  subgoal  in  the  plan  by  turning 
all  generalizable  constants  into  variables.  The  generalized  subgoal  is  then 
compared  with  all  other  goals  in  the  program.  Any  two  subgoals  found  to  have 
an  allowable  common  generalization  are  replaced  by  calls  to  a  parameterized 
procedure.  This  generalization  process  is  similar  to  the  technique  used  in 
STRIPS  to  generalize  macro  operators. 

As  an  example,  consider  the  block-stacking  task  of  Figure  D5c-2.  The  ini- 
tial plan  involves  separate  steps  for  achieving  (ON  A  B)  and  (ON  C  A) .  However, 

traces  of  the  planning  and  simulation  processes  indicate  that  the  code  for 
(ON  A  B)  will  work  for  any  variables  u  and  v.  The  generalized  goal  (ON  u  v) 

is  checked  against  other  goals  in  the  plan  and  found  to  match  the  sub- 
goal  (ON  C  A).  As  a  result,  HACKER  formulates  a  generalized  subroutine, 

(MAKE-ON  u  v) ,  and  replaces  the  subplans  for  steps  2  and  3  with  calls  to  MAKE- 
ON.  The  MAKE-ON  subroutine  is  placed  in  the  knowledge  base  for  use  in  future 
plans  as  well. 

The  subroutine  learning  element  can  be  regarded  as  learning  from  exam- 
ples. The  goals  and  subgoals  in  a  particular  plan  form  the  training  instances, 

which  are  generalized  by  turning  constants  into  variables.  The  distinctive 

aspect  of  the  HACKER  approach  is  that  the  search  of  the  rule  space  is  accom- 
plished very  directly.  HACKER  (and  its  predecessor,  STRIPS)  is  able  to  reason 

about  how  the  different  steps  in  the  plan  depend  on  particular  values  for  the 
arguments  of  the  goal  statement.  From  this  dependency  analysis,  the  correct 
generalization  can  be  deduced  directly.  HACKER  thus  differs  from  most  of 
the  other  learning  methods  described  in  this  chapter  in  that  it  is  able  to  use 
the  meanings  of  its  operators  to  guide  the  generalization  process. 

The  bug  learning  element  faces  a  much  more  difficult  learning  task.  It 
must  determine  why  the  plan  failed  and  repair  the  plan.  Then  it  must  attempt 
to  generalize  the  discovered  bug  and  create  a  bug  critic  that  will  prevent 

the  bug  from  reappearing  in  future  plans.  The  first  task — determining  why 
the  plan  failed — is  the  problem  of  credit  assignment.  The  traditional  credit- 
assignment  problem  is  to  determine  which  rule,  used  in  the  performance 

element,  led  to  the  mistake.  In  HACKER's  case,  there  is  one  fundamental 
source  of  error:  the  linearity  assumption  as  implemented  by  the  AND  rule. 

HACKER's  credit  assignment,  instead,  involves  determining  how  the  current 
planning  task  violates  this  linearity  assumption — that  is,  how  do  the  subplans 
in  this  problem  interact? 

HACKER's  solution  to  the  credit-assignment  problem  is  to  compare  the 
intentions  and  expectations  of  the  performance  element  with  what  actually 
happened.  This  approach  again  relies  on  knowledge  of  the  semantics  of  the 
operators  to  assign  blame  to  individual  steps.  This  is  more  direct  than  the 
weaker,  more  empirical  approach  of  comparing  many  possible  plans  obtained 

through  a  more  widespread  search,  as  in  Samuel's  checkers  program  and  the 
LEX  system. 
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Figure  D5c-3.      The  PREREQUISITE-CLOBBERS-BROTHER-GOAL 
bug  schema. 

HACKER  has  a  small  library  of  schemas  that  describe  possible  subgoal 
interactions.  Credit  assignment  is  accomplished  by  matching  these  schemas 
to  the  goal  structure  of  the  current  plan  and  performance  trace.  For  example, 

one  class  of  interactions,  the  PREREQUISITE-CLOBBERS-BROTHER-GOAL,  involves 
the  goal  structure  depicted  in  Figure  D5c-3. 

The  prerequisite  step  of  goal  2  somehow  makes  goal  1  no  longer  true.  For 
example,  if  the  overall  goal  is  (ACHIEVE  (AND  (ON  A  B)  (ON  B  C))),  we  have 

the  subgoal  structure  shown  in  Figure  D5c-4. 

(AND    (ON  A  B)    (ON  B  O) 

(ON  A  B) (ON  B  C) 

(CLEARTOP  B) 

Figure  D5c-4.     A  subgoal  structure  that  matches  the  bug  schema 

of  Figure  D5c-3. 
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HACKER  simulates  this  plan  by  first  placing  block  A  on  block  B,  then 

clearing  off  B  so  that  it  can  place  B  on  C.  The  clearing-off  process  makes 

(ON  A  B)  false — the  prerequisite  of  goal  2  has  clobbered  goal  1.  (This  is 
detected  by  the  simulator  when  it  checks  the  time  span  of  each  subgoal.) 

Each  of  HACKER's  bug  schemas  describes  some  general  goal  structure 
that  can  be  matched  to  the  goal  structure  of  the  current  plan.  The  matching 

process  is  implemented  in  an  ad  hoc  fashion  as  a  series  of  six  questions  that  the 

debugger  asks  of  the  performance  trace.  As  a  result  of  the  matching  process, 

the  bug  is  ignored  as  innocuous,  is  properly  classified,  or  is  found  to  be  too 

difficult  to  repair. 

The  process  of  repairing  the  plan  is  straightforward.  Each  bug  schema 

contains  instructions  on  how  to  repair  the  bug.  These  can  involve  reorder- 
ing plan  steps,  creating  new  subplans  that  establish  prerequisite  conditions, 

and  even  removing  unnecessary  plan  steps.  The  resulting  repaired  plan  is 

simulated  again  to  detect  further  bugs. 

The  process  of  generalizing  the  bug  is  also  easily  accomplished.  Each  bug 

schema  contains  instructions  regarding  which  components  of  the  goal  struc- 
ture can  be  generalized  by  turning  constants  into  variables.  For  instance,  the 

bug  schema  for  PREREQUISITE-CLOBBERS-BROTHER-GOAL  contains  the  instructions 

(CSETQ  goall  (VARIABLIZE  (GOAL  linel)) 
goal2  (VARIABLIZE  (GOAL  line2)) 
prereq  (VARIABLIZE  pre))  , 

where  linel  refers  to  the  first  goal  (whose  prerequisite  was  clobbered),  line2 
refers  to  the  search  goal,  and  prereq  refers  to  the  prerequisite  that  did  the 
clobbering.  These  instuctions  tell  HACKER  to  analyze  the  dependencies  in 
the  performance  trace  and  generalize  all  three  of  these  goal  expressions.  The 

resulting  generalized  goal  structure  shown  in  Figure  D5c-5  is  compiled  into  a 
demon  and  added  to  the  bug  library  for  use  in  subsequent  criticism  of  naive 

plans. 

The  bug  learning  element  can  be  regarded  as  learning  by  schema  instan- 
tiation. Over  time,  HACKER  discovers  new  situations  in  which  particular 

kinds  of  subgoal  interactions  occur,  generalizes  these  situations,  and  watches 
for  them  in  future  plans.  It  does  not  tackle  the  problem  of  discovering  these 
classes  of  bugs  in  the  first  place,  nor  does  it  address  the  problem  of  discovering 
techniques  for  fixing  bugs. 

Conclusion 

HACKER  is  a  system  that  learns  to  develop  plans  for  manipulating  toy 

blocks.  It  acquires  two  kinds  of  knowledge — generalized  subroutines  and 

generalized  bugs.  Both  of  HACKER's  learning  elements  make  extensive  use  of 
the  performance  trace,  which  consists  of  the  plan  (annotated  with  goal  infor- 

mation) and  a  trace  of  the  simulated  execution  of  the  plan.   The  subroutine 
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(AND    (ON  x  y)     (ON  y   z)) 

(CLEARTOP  y) 

Figure  D5c-5.     A  generalized  goal  structure. 

learning  element  generalizes  by  analyzing  the  goal  structure  in  the  perfor- 
mance trace  to  determine  which  constants  can  be  turned  into  variables.  The 

bug  learning  element  accomplishes  credit  assignment  by  instantiating  schemas 

that  describe  bug-inducing  goal  structures.  The  schemas  provide  guidance 

for  bug  repair  and  generalization.  Much  of  HACKER's  impressive  behavior 
derives  from  its  ability  to  reason  about  the  semantics  of  its  task.  The  value  of 
a  transparent  performance  element  for  credit  assignment  and  generalization 
is  very  evident  in  HACKER. 

References 

HACKER  is  described  in  Sussman's  (1973)  thesis.  Doyle  (1980)  describes 
a  formalization  of  the  concepts  of  goal  and  intention  as  used  by  HACKER.  An 
alternative  to  the  linearity  assumption  is  described  in  Article  XV.Dl. 
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LEX,  a  system  designed  by  Thomas  Mitchell  (see  Mitchell,  Utgoff,  and  Banerji, 
in  press;  Mitchell,  Utgoff,  Nudel,  and  Banerji,  1981),  learns  to  solve  simple 
symbolic  integration  problems  from  experience.  LEX  is  provided  with  an 
initial  knowledge  base  of  roughly  50  integration  and  simplification  operators, 

some  of  which  are  shown  in  Table  D5d-1.  The  goal  of  LEX  is  to  discover 
heuristics  for  when  to  apply  these  operators.  That  is,  LEX  seeks  to  develop 
production  rules  of  the  form 

(situation)    =►    Apply  operator  OPi, 

where  (situation)  is  a  pattern  that  is  matched  against  the  current  integration 
problem.  The  situations  are  expressed  in  a  generalization  language  of  possible 
patterns.  For  instance,  a  heuristic  rule  for  operator  OP  12  might  be: 

/ f(x)  transc  (x)  dx    =>•    Apply  OP12  with  u  =  f(x)  and  dv  =  transc  (x)  dx  . 

This  tells  the  LEX  performance  element  that  if  it  sees  any  problem  whose 

integrand  is  the  product  of  any  function,  f(x),  with  a  transcendental  function, 
transc  (x),  then  it  should  apply  OP  12  with  u  bound  to  f(x)  and  dv  bound  to 
transc  (x)  dx.  The  concepts  of  f(x)  and  transc  (x)  are  part  of  the  generalization 

language  (illustrated  later  in  Fig.  D5d-4). 
Mitchell  calls  these  production  rules  heuristics  because  they  provide  heuris- 

tic guidance  to  LEX's  performance  element,  which  is  a  simple,  forward-chaining 
production  system  (see  Sec.  II.B,  in  Vol.  i).  Without  any  heuristic  rules,  the 

performance  element  conducts  a  blind  uniform-cost  search  (see  Article  II.Cl,  in 
Vol.  I)  of  the  space  of  all  legal  sequences  of  operator  applications.  Consider  the 
problem  of  integrating  /  3x  cos  x  dx.  Without  any  heuristics,  LEX  produces 

the  rather  large  search  tree  shown  in  Figure  D5d-1.    It  is  no  surprise  that 

TABLE  D5d-1 

Selected  Integration  Operators  in  LEX 

OP02  convert  /  xr  dx  to  xr+l/(r  +  l] 
OP03  convert  frf(x)dx  to  r  f  f(x) 

OP06  convert  fsinxdx  to  —  cosz 
OP08  convert  1  ■  f(x)  to  f(x) 
OP10  convert  Jcosxdx  to  sin  x 

OP  12  convert  Judv  to  uv  —  fvdu 
OP15  convert  0  •  f(x)  to  0 

(power  rule) 
(factor  out  a  real  constant) 

(integration  by  parts) 

484 
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/  3x  cos  x  dx 

OP03 OP12 

3  /  x  cos  x  dx  •  •  •  3x  sin  x  —  f  3  sin  x  dx 

\  OP  12  OP03 

T 
S(x sin x  —  f  sin x  dx)         3[(^-  cos x)  —  /(—%■  sin x)  dx]         3xsinx  —  3/sinx  dx 

OP06 OP06 

3(xsinx  —  (— cosx))  "•  3xsinx  —  3(— cosx) 

Figure  D5d-1.     Partial  search  tree  for  f  3xcosxdx  without  heuristics. 

when  LEX  has  no  heuristics,  it  often  cannot  solve  integration  problems  before 

exhausting  the  time  and  space  available  to  it. 

The  task  of  learning  the  left-hand  sides  of  heuristic  rules  can  be  thought 

of  as  a  set  of  concept-learning  tasks.  LEX  tries  to  discover,  for  each  operator 
OPi,  the  definition  of  the  concept  situations  in  which  OPi  should  be  used.  It 

accomplishes  this  by  gathering  positive  and  negative  training  instances  of  the 

use  of  the  operator.  By  analyzing  a  trace  of  the  actions  taken  by  the  perfor- 
mance element,  LEX  is  able  to  find  cases  of  appropriate  and  inappropriate 

application  of  the  operators.  These  training  instances  guide  the  search  of 

a  rule  space  of  possible  left-hand-side  patterns.  The  candidate-elimination 

algorithm  (see  Article  XTV.D3a)  is  employed  to  search  the  rule  space,  and  par- 

tially learned  heuristics,  for  which  the  candidate-elimination  algorithm  has 

not  found  a  unique  left-hand-side  pattern,  are  stored  as  version  spaces  of 
possible  patterns.  Thus,  the  general  form  of  a  heuristic  rule  in  LEX  is: 

(version  space  represented  as  £  and  G  sets)    =>•    Apply  OPz. 

For  example,  after  a  few  training  instances,  LEX  might  have  the  following 

partially  learned  heuristic  for  the  integration- by-parts  heuristic,  OP12: 

Version  space  for  OP12: 

G  =  Jf(x)g(x)dx 

S  =  J  3x  cos  x  dx 

OP12,  with  u  =  f(x)  and  dv  =  g(x)  dx ; 

OP12,  with  u  =  3x  and  dv  =  cosxdx . 
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This  heuristic  tells  LEX  to  apply  OP  12  in  any  situation  in  which  the  integral 

has  the  form  /  f(x)g(x)dx.  It  also  indicates  that  the  correct  left-hand-side 
pattern  lies  somewhere  between  the  overly  specific  S  pattern,  /  Sxcosxdx, 

and  the  overly  general  G  pattern,  /  f(x)g(x)dx.  Below,  we  show  how  this 
partially  learned  heuristic  was  discovered  by  LEX. 

LEX's  Architecture 

LEX  is  organized  as  a  system  of  four  interacting  programs  (see  Fig.  D5d-2) 
that  correspond  closely  to  our  modified  model  of  learning  for  multiple-step 
tasks.  The  problem  solver  is  the  performance  element.  It  solves  symbolic  inte- 

gration problems  by  applying  the  current  set  of  operators  and  their  heuristics. 
When  the  problem  solver  succeeds  in  solving  an  integral,  a  detailed  trace  of 
its  performance  is  provided  to  the  critic,  which  examines  the  trace  to  assign 
credit  and  blame  to  the  individual  decisions  made  by  the  problem  solver. 

Once  credit  assignment  is  completed,  the  critic  extracts  positive  (and  negative) 
instances  of  the  proper  (and  improper)  application  of  particular  operators. 
These  training  instances  are  used  by  the  generalizer  to  guide  the  search  for 
proper  heuristics  for  the  operators  involved.  Finally,  the  problem  generator 
inspects  the  current  contents  of  the  knowledge  base  (i.e.,  the  operators  and 
their  heuristics)  and  chooses  a  new  problem  to  present  to  the  problem  solver. 

LEX  thus  incorporates  all  four  components  of  our  simple  model:  the 
knowledge  base  (of  operators  and  heuristics),  the  performance  element,  the 
performance  trace,  and  the  learning  element  (composed  of  the  critic  and  the 
generalizer).  Furthermore,  LEX  is  one  of  the  few  AI  learning  systems  to  include 

an  experiment  planner — the  problem  generator. 
In  this  article,  we  first  present  an  example  of  how  LEX  solves  problems 

and  refines  the  version  spaces  of  its  heuristics.  Then  we  describe  each  of  LEX's 
components  in  detail  and  discuss  some  open  research  problems. 

Problem 

Solver 

r~ 

*                 N 

' f 

Critic 
Problem 
Generator 

i i 

V Generalizer _J 

Figure  D5d-2.     LEX's  architecture. 
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An  Example 

To  show  how  LEX  works,  suppose  that  the  problem  generator  has  chosen 
the  problem  /  3x  cos  x  dx  and  the  problem  solver  has  produced  the  trace  shown 

earlier  in  Figure  D5d-1.  The  critic  analyzes  the  trace  and  extracts  several 
training  instances,  including: 

/ 3x  cos  xdx    =>    OP12,  with  u  =  3x  and  dv  =  cosxdx  (positive) . 

Ssinxdx    =4    OP03,  with  r  =  3  and  f(x)  =  sin  x        (positive) . 

/  sin  x  dx    =>    OP06  (positive) . 

We  will  watch  how  the  generalizer  handles  the  training  instance  for  OP  12. 
Let  us  assume  that  this  is  the  first  training  instance  that  has  been  found  for 
this  operator,  so  the  knowledge  base  does  not  yet  contain  any  heuristics  for 
when  to  use  it.  Consequently,  the  generalizer  will  create  and  initialize  a  new 

OP  12  heuristic.  The  left-hand  side  of  the  heuristic  is  a  version  space  of  the 
form: 

Version  space  for  OP  12: 

G  =  J  f(x)g(x)  dx    =>    OP12,  with  u  =  f(x)  and  dv  =  g(x)  dx  ; 

S  =  J  Sx  cos  x  dx    =»    OP12,  with  u  =  3x  and  dv  =  cos  x  dx  . 

Notice  that  S  is  a  copy  of  the  training  instance  and  G  is  the  most  general 
pattern  for  which  OP  12  is  legal.  This  heuristic  will  recommend  that  OP  12 

be  applied  in  any  problem  whose  integrand  is  less  general  than  /  f(x)g(x)  dx. 
This  is  not  a  highly  refined  heuristic. 

To  see  how  LEX  refines  this  heuristic,  let  us  assume  that  the  other  training 
instances  shown  above  have  been  processed.  At  this  point,  the  problem 

generator  chooses  the  problem  /  5x  sin  x  dx  to  solve.  The  problem  solver  will 
apply  OP  12,  since  the  G  set  of  the  heuristic  matches  the  integrand.  Figure 

D5d-3  shows  a  portion  of  the  solution  tree. 
Some  of  the  training  instances  extracted  by  the  critic  are: 

/ 

/ 

/ 

Sx  sin  x  dx  =*  OP12,  with  u  =  5x  and  dv  =  sin  x  dx  (positive) . 

5  cos  xdx  =$  OP03,  with  r  =  5  and  f(x)  =  cos  x       (positive) . 

cos  xdx  =►  OP  10  (positive) . 

5x  sin  x  dx  =>  OP  12,  with  u  =  sin  x  and  dv  =  bx  dx  (negative) . 

/ 
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/  5x  sin  x  dx 

0P12      ̂ ^^^-^     0P12 

|  x2  sin  x  —  f  |  x2  cos  x  dx  — 5x  cos  x  +  /  5  cos  x  dx 

OP03 1 
5x cos x  +  5/ cos x  dx 

OP10 I 
— 5xcosx  4-  5sinx 

Figure  D5d-3.     The  solution  tree  for  /5xsinxdx. 

The  generalizer  updates  the  version  space  for  OP  12  to  contain: 

G  =  {0i,02>,  where 
<7i :  J  polynom  (x)0(x)  dx    =>    OP12, 

with  u  =  polynom  (x)  and  dv  =  g(x)  dx ; 

02:  J  /(x) transc (x) dx    =►    OP12, 
with  u  =  /(x)  and  dv  =  transc(x)  dx ; 

5  =  {si},  where 
81:  / /ex  trig  (x)  dx    =»    OP12, 

with  u  =  kx  and  dv  =  trig  (x)  dx . 

The  positive  training  instance  forces  the  constants  3  and  5  to  be  general- 

ized to  k,  which  represents  any  integer  constant,  and  "sin"  and  "cos"  to  be 
generalized  to  "trig,"  which  represents  any  trigonometric  function,  as  shown  in 
3 1 .  Similarly,  the  negative  training  instance  leads  to  two  alternative  specializa- 

tions. In  01,  /  was  specialized  to  "polynom"  to  avoid  u  =  sinx,  and  in  02, 
0  was  specialized  to  "transc"  to  avoid  dv  =  bxdx.  These  two  specializations 
no  longer  cover  the  negative  training  instance.  With  a  few  more  training 
instances,  the  heuristic  for  OP  12  converges  to  the  form  shown  at  the  start  of 

this  article,  that  is,  /  f(x)  transc  (x)  dx.  The  concepts  "fc,"  "trig,"  "polynom," 
and  so  on,  are  all  part  of  the  generalization  language  known  to  LEX  from  the 

start  (see  Fig.  D5d-4,  shown  later). 
Now  that  we  have  seen  an  example  of  LEX  in  action,  we  describe  each  of 

the  four  components  of  LEX  in  turn. 
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The  Problem  Solver 

As  discussed  above,  the  problem  solver  conducts  a  forward  search  of 
possible  operator  applications  in  an  attempt  to  solve  the  given  integration 
problem.  Initially,  this  search  is  blind.  However,  as  the  heuristics  for  the 
operators  are  refined,  the  search  becomes  more  focused. 

The  problem  solver  conducts  a  uniform- cost  search.  At  each  step,  it 
chooses  the  one  expansion  of  the  search  tree  that  has  the  smallest  estimated 

cost.  The  search  tree  is  maintained  as  a  list  of  open  nodes — that  is,  nodes 
to  which  not  all  legal  integration  operators  have  been  applied.  The  cost  of 
an  open  node  is  measured  by  summing  the  cost  of  each  search  step  (for  both 
time  and  space)  back  to  the  root  of  the  search  tree.  In  addition,  the  cost  of  a 
proposed  expansion  is  weighted  to  reflect  the  strength  of  the  heuristic  advice 
available.  In  detail,  the  problem  solver  chooses  an  expansion  as  follows: 

Step  1.    For  each  open  node  and  each  legal  operator,  compute  the  "degree 
of  match"  according  to  the  formula: 

0  if  no  heuristic  recommends  this  operator  for  this  node; 

m/n  if  there  is  a  heuristic,  and  m  out  of  the  n  patterns  in  the 
boundary  sets  of  the  version  space  (i.e.,  the  S  and  G  sets) 
match  the  current  situation. 

Step  2.    Choose  the  expansion  that  has  the  lowest  weighted  cost,  computed 
as: 

(1.5  —  degree  of  match)  X  (cost  so  far  +  estimated  expansion  cost) . 

The  effect  of  the  (1.5  —  degree  of  match)  weight  on  the  cost  is  to  emphasize 
the  cost  of  the  path  when  little  heuristic  guidance  is  available  but  to  ignore 
cost  considerations  as  the  heuristic  recommendation  becomes  stronger. 

The  problem  solver  continues  to  select  nodes  and  apply  operators  until 
the  integral  is  solved.  Notice  that,  in  LEX,  a  simple  performance  standard 
is  available:  solution  of  the  integral.  This  is  a  substantially  simpler  situation 

than  that  faced  by  Waterman's  poker  player,  which  needs  to  play  several 
hands  to  evaluate  how  well  it  is  doing.  LEX  knows  when  it  is  doing  well. 
LEX  also  knows  when  it  is  doing  poorly.  For  each  integration  problem,  the 
problem  solver  is  given  a  time  and  space  limit.  If  it  runs  out  of  time  or  space 
before  solving  the  problem,  it  gives  up  and  the  problem  generator  selects  a 
new  problem  to  solve. 

The  Critic 

The  problem  solver  provides  the  critic  with  a  detailed  trace  of  each  suc- 

cessfully solved  problem.  The  critic's  task  is  to  extract  positive  and  negative 
training  instances  from  this  trace  by  assigning  credit  and  blame  to  individual 
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decisions  made  by  the  problem  solver.  The  critic  solves  the  credit- assignment 
problem  as  follows: 

1.  Every  search  step  along  the  minimum-cost  solution  path  found  by  the 
problem  solver  is  a  positive  instance; 

2.  Every  step  that  (a)  leads  from  a  node  on  the  minimum-cost  path  to  a 
node  not  on  this  path  and  (b)  leads  to  a  solution  path  whose  length  is 

greater  than  or  equal  to  1.15  times  the  length  of  the  minimum-cost  path 
is  a  negative  instance. 

These  criteria  are  intended  to  produce  applicability  heuristics  that  guide 

the  performance  element  to  minimum- cost  solutions.  To  evaluate  these  criteria 

(especially  2b),  the  critic  must  re-invoke  the  problem  solver  to  follow  out 
paths  that  appear  to  be  bad.  This  deeper  search  is  in  some  ways  analogous 

to  the  deep  search  Samuel  used  in  his  checkers-playing  program  for  solving 
the  credit-assignment  problem.  The  criterion  of  minimum-cost  solution  is 
convenient  because  it  can  be  measured  by  the  computer  itself — by  its  own 
experience  in  attempting  to  solve  the  problem. 

The  critic  is  fairly  conservative.  It  provides  the  generalizer  only  with  the 
training  instances  that  can  be  most  reliably  credited  or  blamed.  However, 
the  critic  is  not  infallible.  It  can  produce  false  positive  and  false  negative 
training  instances  when  the  knowledge  base  contains  incorrect  heuristics. 
Since  the  problem  solver  follows  the  guidance  provided  by  the  heuristics  in 
the  knowledge  base,  it  may  believe  it  has  found  the  lowest  cost  solution  when 
in  fact,  the  heuristics  have  led  it  astray.  Since  LEX  does  not  conduct  an 
exhaustive  search  of  the  space,  it  will  not  always  detect  this  fact.  As  a  result, 
the  critic  may  create  false  positive  and  false  negative  instances.  Its  reliability 

can  be  improved  by  increasing  the  safety  factor  (normally  1.15)  when  the 

problem  solver  is  re-invoked  by  the  critic.  This  causes  the  problem  solver 
to  search  more  deeply  along  alternative  paths  and  improves  the  chances  of 

finding  the  true  minimum-cost  path. 

The  Generalizer 

The  generalizer  simply  applies  the  candidate-elimination  algorithm  to 
process  each  of  the  training  instances  provided  by  the  critic  and  to  refine  the 

version  spaces  of  each  of  the  operators.  The  multiple-boundary-set  form  of 
the  algorithm  (see  Article  XTV.D3a)  was  adopted  to  handle  erroneous  training 
instances. 

The  generalizer  is  able  to  learn  disjunctions  in  certain  cases.  During 
generalization  based  on  a  positive  training  instance,  for  example,  if  the  version 
space  would  normally  be  forced  to  collapse  because  no  consistent  rule  exists, 
a  second  version  space  is  created  instead.  This  second  version  space  contains 
the  patterns  that  are  consistent  with  all  of  the  negative  instances  and  the 
single  new  positive  instance.    As  additional  positive  instances  are  received, 
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they  are  processed  against  any  version  space  whose  G  set  covers  them.  When 
more  than  one  heuristic  rule  is  created  for  a  single  operator,  the  effect  is  the 
same  as  if  a  single  disjunctive  heuristic  had  been  developed. 

The  generalization  language  (and,  thus,  the  rule  space)  in  LEX  is  based 

on  the  tree  of  functions  shown  in  Figure  D5d-4.  The  most  general  pattern 
is  f(x),  that  is,  any  real  function.  The  most  specific  functions  are  integer 
and  real  constants,  sine,  cosine,  tangent,  and  so  on.  This  language  is  known 
to  have  shortcomings  (e.g.,  it  cannot  describe  the  class  of  twice  continuously 

differentiable  functions),  but  it  is  adequate  for  expressing  some  of  the  heuris- 
tics useful  in  the  domain  of  symbolic  integration. 
LEX  relies  entirely  on  syntactic  generalization  methods.  It  cannot,  for 

example,  analyze  the  solution  of  fSxcosxdx  and  realize  that,  since  OP03 
requires  only  a  real  constant  r,  the  particular  constant  3  can  be  generalized 
to  any  real  constant.  This  kind  of  analysis,  based  on  the  semantics  of  the 

operators,  is  done  in  STRIPS  and  HACKER.  The  advantage  of  LEX's  syntactic 
approach  is  that  it  is  general — it  can  be  applied  to  any  generalization  language. 

The  Problem  Generator 

The  purpose  of  the  problem  generator  is  to  select  a  set  of  integration 
problems  that  form  a  good  teaching  sequence  (see  Article  XIV.  A).  This  portion 
of  LEX  is  still  under  development,  so  only  some  strategies  that  have  been 
proposed  for  the  design  of  the  problem  generator  are  discussed  here. 

One  strategy  for  selecting  a  new  problem  is  to  find  an  operator  whose 

version  space  is  still  unrefined  and  select  a  problem  that  "splits"  the  version 
space — that  is,  an  integral  that  matches  only  half  of  the  patterns  in  the  S 
and  G  sets.  If  the  problem  solver  can  solve  such  a  problem,  LEX  will  be  able 
to  refine  the  version  space  for  that  operator. 

TRIG  EXPON  MONOM  [+  MONOM,  MONOM2       MONOMt 

EXP  LN  ID        R 

•  R     •  IDK)) 

Figure  D5d-4.     Function  hierarchy  used  in  LEX's  generalization  language. 
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A  second,  related  strategy  is  to  take  a  problem  that  LEX  has  already 

solved  and  modify  it  in  some  way.  For  instance,  having  solved  the  integral 

/  Sxsinxdx,  LEX  could  consider  attempting  the  integral  /  bxsinxdx.  This 
would  force  it  to  generalize  its  version  space  to  indicate  that  any  constant 

could  appear  (not  just  5  or  3).  The  generalization  hierarchy  in  Figure  D5d-4 
can  be  used  to  create  such  training  problems. 

A  third  strategy  is  to  look  for  overlaps  in  the  knowledge  base.  If  there 
are  two  operators  whose  version  spaces  overlap,  the  problem  generator  can 
choose  a  problem  for  which  both  operators  are  believed  to  be  applicable. 
The  resulting  attempt  to  solve  the  problem  may  show  that  only  one  of  the 
operators  should  be  used  in  such  situations. 

Finally,  when  LEX  is  just  beginning  to  learn,  it  may  be  necessary  to  apply 
the  inverses  of  the  integration  operators  to  create  problems  of  known  difficulty 
for  the  problem  solver  to  solve.  This  is  analogous  to  the  technique  of  providing 

students  in  chemistry  courses  with  an  "unknown"  that  is,  in  fact,  deliberately 
synthesized  by  the  professor.  LEX  must  learn  how  to  control  its  search  so  that 
it  can  solve  the  training  problem  without  being  overwhelmed  by  combinatorial 

explosion. 
The  problem  generator,  more  than  any  other  component  of  the  LEX 

system,  must  have  meta-knowledge  of  what  LEX  already  knows  and  where  its 
weaknesses  are.  It  must  keep  a  history  of  previous  problem-solving  attempts, 
so  that  it  does  not  repeatedly  propose  unsolvable  or  uninformative  problems. 
The  design  of  the  problem  generator  is,  in  fact,  the  most  difficult  part  of  the 
LEX  project. 

Conclusion 

LEX  learns  when  to  apply  the  standard  operators  of  symbolic  integra- 
tion. For  each  integration  operator,  the  system  learns  a  heuristic  pattern. 

The  problem  solver  matches  these  patterns  against  the  expression  being  inte- 
grated to  determine  which  operators  should  be  applied.  LEX  obtains  train- 

ing instances  by  observing  its  own  attempts  to  solve  integration  problems. 
Similarly,  LEX  obtains  its  performance  standard  by  computing  the  cost  of 
the  shortest  solution  path  that  it  found  when  it  tried  to  solve  the  problem. 

The  credit-assignment  problem  is  solved  by  conducting  a  deeper  search  and 
crediting  those  decisions  that  led  to  the  minimum-cost  solution.  Decisions  that 

caused  the  problem  solver  to  depart  from  the  minimum-cost  path  are  blamed. 
Positive  and  negative  training  instances  are  thus  extracted  and  processed  by 
the  generalizer  to  update  the  version  spaces  of  the  integration  operators. 

Experiment  planning  is  implemented  in  LEX  by  the  problem  generator, 
which  employs  a  variety  of  strategies  to  select  problems  that  will  help  the 
other  components  of  the  system  refine  the  knowledge  base. 

The  primary  weakness  of  LEX,  and  a  source  of  its  generality,  is  that 
it  employs  only  syntactic  methods  of  generalization.    It  is  unable  to  reason 
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about  the  meanings  of  its  operators,  and  thus  it  cannot  use  knowledge  about 
dependencies  among  operators  to  determine  how  the  heuristics  should  be 
generalized. 

LEX  does  not  attack  the  problems  of  learning  new  operators  (i.e.,  right- 
hand  sides  of  heuristic  rules)  or  learning  operator  sequences  (i.e.,  macros). 
To  learn  a  new  integration  operator,  LEX  would  need  much  more  knowledge 
about  mathematics  and  the  goals  of  integration.  This  is  a  very  difficult 
learning  problem.  The  problem  of  learning  macro  operators  (i.e.,  useful 
sequences  of  operators)  and  their  applicability  conditions  has  been  addressed 
in  HACKER  and  STRIPS.  Further  work  on  LEX  may  include  the  learning  of 
such  operators. 

References 

Mitchell,  Utgoff,  and  Banerji  (in  press)  and  Mitchell,  Utgoff,  Nudel,  and 
Banerji  (1981)  provide  descriptions  of  LEX. 



D5e.     Grammatical  Inference 

MOST  AI  RESEARCHERS  employ  numerical  or  logical  representations  in  their 

learning  systems.  In  work  on  adaptive  systems,  for  example,  the  concept  to  be 
learned  is  often  represented  as  a  vector  of  numerical  weights.  Most  of  the  other 

systems  described  in  this  chapter  represent  their  knowledge  in  logic-based 
description  languages  (e.g.,  predicate  calculus,  semantic  nets,  feature  vectors). 
A  number  of  researchers,  however,  have  developed  systems  that  employ  formal 
grammars  to  represent  the  learned  concepts.  This  article  discusses  the  body 
of  work,  known  as  grammatical  inference,  that  seeks  to  learn  a  grammar  from 
a  set  of  training  instances. 

The  primary  interest  in  grammar  learning  can  be  traced  to  the  use  of  for- 
mal grammars  for  modeling  the  structure  of  natural  language  (see  Chomsky, 

1957,  1965).  The  question  of  how  people  learn  to  speak  and  understand  lan- 
guage led  to  studies  of  language  acquisition;  interest  in  modeling  the  lan- 

guages of  other  cultures  encouraged  the  development  of  computer  programs 
to  help  field  researchers  construct  grammars  for  unfamiliar  languages  (Klein 
and  Kuppin,  1970);  and  recent  attempts  by  pattern  recognition  researchers  to 

use  grammars  to  describe  handwritten  characters,  visual  scenes,  and  cloud- 
chamber  tracks  have  created  a  need  for  grammatical-inference  techniques. 
Thus,  all  of  these  researchers  are  interested  in  methods  for  learning  a  gram- 

mar from  a  set  of  training  instances. 
A  grammar  is  a  system  of  rules  describing  a  language  and  telling  which 

sentences  are  allowed  in  the  language  (see  Article  rv.Cl,  in  Vol.  i).  Grammars 

can  describe  natural  languages — that  is,  languages  spoken  by  people — and  for- 
mal languages — that  is,  simple  languages  amenable  to  mathematical  analysis. 

In  natural  languages,  grammar  rules  indicate  the  generally  accepted  ways  of 
constructing  sentences.  In  formal  languages,  however,  grammars  are  applied 
much  more  strictly.  A  formal  grammar  for  a  language,  L,  can  be  viewed  as  a 

predicate  that  tells,  for  any  sentence,  whether  it  is  grammatical,  that  is,  "in" 
the  language  L,  or  ungrammatical,  that  is,  not  a  legal  sentence  in  L.  From 
this  formal  perspective,  a  language  is  simply  a  potentially  infinite  set  of  all 
legal  sentences,  and  a  grammar  is  simply  a  description  of  that  set. 

One  might  expect  the  task  of  learning  a  grammar  to  be  the  same  as  the 
task  of  learning  a  single  concept  (see  Sec.  XIV.D3),  since  a  single  concept  can 
also  be  viewed  as  a  predicate  describing  some  set  of  objects.  Usually,  however, 
this  is  not  the  case.  Most  formal  languages  are  too  complex  to  be  described 
by  a  single  concept  or  rule.  Instead,  a  grammar  is  usually  written  as  a  set 
of  rules  that  describe  the  phrase  structure  of  the  language.  For  example,  we 
might  have  one  rule  that  says:  A  sentence  is  an  article  followed  by  a  noun 
phrase  followed  by  a  verb  phrase.  This  could  be  written  as  the  grammar  rule: 

494 
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(sentence)  — ►  (article)  (noun  phrase)  (verb  phase) . 

This  rule  describes  the  overall  structure  of  a  sentence.  Of  course,  there  are 
many  different  kinds  of  noun  and  verb  phrases.  These  can  also  be  described 

by  phrase-structure  rules.  We  might,  for  example,  write  another  rule 

(verb  phrase)  — >  (verb) 

for  the  simplest  case  in  which  the  verb  phrase  is  just  a  single  word,  as  in  The 
boy  cried.  A  more  complex  verb  phrase  could  be  written  as 

(verb  phrase)  — ►  (verb)  (article)  (noun  phrase) 

for  sentences  like  The  program  learned  the  grammar. 

A  grammar  can  thus  be  built  out  of  a  set  of  phrase-structure  rules  (also 
called  productions).  These  rules  break  the  problem  of  determining  whether 
a  sentence  is  grammatical  into  the  subproblems  of  determining  whether  it  is 
composed,  for  example,  of  a  grammatical  article  followed  by  a  grammatical 
noun  phrase  followed  by  a  grammatical  verb  phrase.  In  this  way,  the  single 
concept  grammatical  sentence  is  broken  into  the  subconcepts  of  noun  phrase 
and  verb  phrase.  Moreover,  such  subconcepts  are  not  independent  but  interact 
according  to  the  grammar  rules.  Thus,  determining  whether  a  sentence  is 

grammatical  is  a  multiple-step  task  involving  the  sequential  application  of 
phrase-structure  rules.  It  is  for  this  reason  that  we  include  grammatical 
inference  in  our  survey  of  systems  that  learn  to  perform  multiple-step  tasks. 

In  this  article,  we  first  introduce  formal  grammars  and  their  uses  and 
then  discuss  the  theoretical  limits  of  grammatical  inference.  The  problem 
of  learning  a  grammar  from  training  instances  has  received  a  fair  amount  of 
mathematical  analysis.  We  describe  the  principal  results  of  this  work  along 
with  their  relevance  for  practical  learning  systems.  Finally,  we  present  the 
four  major  methods  that  have  been  developed  for  learning  grammars. 

Grammars  and  Their  Uses 

In  the  theory  of  formal  languages,  a  language  is  defined  as  a  set  of  strings, 
where  each  string  is  a  finite  sequence  of  symbols  chosen  from  some  finite 
vocabulary.  In  natural  languages,  the  strings  are  sentences,  and  the  sentences 
are  sequences  of  words  chosen  from  some  vocabulary  of  possible  words.  To 

describe  languages,  Chomsky  (1957,  1965)  introduced  a  hierarchy  of  classes 
of  languages  based  on  the  complexity  of  their  underlying  grammars.  We  will 

focus  primarily  on  the  context-free  languages  (and  grammars). 
A  context-free  language  is  defined  by  the  following: 

1.  A  terminal  vocabulary  of  symbols — the  words  of  the  language; 

2.  A  nonterminal  vocabulary  of  symbols — the  syntactic  categories  (e.g.,  "noun," 
"verb" )  of  the  language; 
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3.  A  set  of  productions — the  phrase-structure  rules  of  the  language;  and 

4.  The  start  symbol. 

The  best  way  to  understand  these  definitions  is  by  considering  an  example. 

Examine  the  following  context-free  grammar,  G,  with 

(a)  the  terminal  vocabulary  {a,  the,  boy,  girl,  petted,  held,  puppy,  kitten, 
wall,  hill,  by,  on,  with} ; 

(b)  the  nonterminal  vocabulary  {Z,  S,  V,  A,  P,  W,  O,  X}  ; 

(c)  the  productions 
Z  ->  ASV, 

v— jr,    v^xao,    v-+vp, 
P  —  WAS,     P  -*  WAO, 
A  — ►  a,     A—*  the, 

S  -*  boy,      S  -»  girl, 

W  ->  by,      W  -►  on,      W  -►  with, 
0  — ►  puppy,      0  — ►  kitten,      0  — ►  hill,      0  — ►  wall, 
X— ►  petted,      X— ►  held;  and 

(d)  the  start  symbol,  Z. 

This  grammar,  G,  describes  a  language  of  simple  sentences  such  as  The  boy 

held  the  puppy  and  The  girl  on  the  hill  held  a  kitten.  It  describes  a  sentence 

by  deriving  it  from  the  start  symbol.  We  start  with  the  symbol  Z  and 

choose  a  production  that  has  Z  as  the  left-hand  side.  There  is  only  one 

such  rule  in  G:  Z  — ►  ASV.  We  apply  this  rule  by  rewriting  Z  as  the  string 
ASV.  Now  we  choose  one  of  the  nonterminals,  A,  S,  or  V,  and  find  a  rule 

that  can  be  used  to  rewrite  it.  If  we  choose  the  rule  V  — ►  XAO,  our  current 
sentence  becomes  ASXAO.  We  continue  rewriting  nonterminals  (according  to 

the  production  rules)  until  the  sentence  contains  only  terminal  symbols.  A 

complete  derivation  for  the  sentence  The  boy  held  the  puppy  is  as  follows: 

Current  sentence 

Z 

ASV 

ASXAO 

the  5X40 

the  boy  XAO 

the  boy  held  AO 

the  boy  held  the  0 

The  boy  held  the  puppy 

Chosen  production  rule 

(Z->ASV) 

(V^XAO) 

(A  -►  the) 

(S-  boy) 

(JT-+  held) 

(A  -►  the) 

(0-+  puppy) 
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the  boy  held  the  puppy 

Figure  D5e-1.     Derivation  tree  for  the  sentence  The  boy  held  the  puppy. 

This  is  usually  depicted  as  a  derivation  tree  (see  Fig.  D5e-1). 
Depending  on  which  rules  we  choose  during  the  rewriting  process,  we  get 

different  sentences.  If  we  choose  "0  — ►  kitten"  instead  of  "O  — ►  puppy,"  we 
get  the  sentence  The  boy  held  the  kitten.  The  context-free  language  described 
by  G  is  the  set  of  all  possible  sentences  that  can  be  derived  from  Z  by  the 
rewrite  rules  in  G.  Notice  that  we  can  also  start  our  derivation  with  some 

symbol  other  than  Z.  If  we  start  with  the  nonterminal  V,  for  example,  we 
generate  the  sublanguage  of  all  verb  phrases  in  G.  Each  nonterminal  has  a 
sublanguage.  Thus,  each  nonterminal  represents  a  subconcept,  such  as  noun 
phrase  (S)  or  verb  phrase  (V),  of  the  overall  concept  of  grammatical  sentence 

(Z). 
In  pattern  recognition  and  language  understanding,  the  performance  task 

facing  a  computer  program  is  not  the  generation  of  grammatical  sentences  but 
their  recognition.  Given  a  sentence,  the  problem  of  determining  whether  it 

is  grammatical — that  is,  of  finding  a  derivation  for  the  sentence — is  called 
parsing.  Many  efficient  algorithms  have  been  developed  for  parsing  sentences 

in  context-free  languages  (see  Article  IV.D,  in  Vol.  I;  Hopcroft  and  Ullman, 
1969). 

Extensions  to  Context-free  Grammars 

Context-free  grammars  are  able  to  capture  much  of  the  structure  of 
natural  and  artificial  languages,  especially  computer  programming  languages. 

However,  many  problems  require  extensions  to  the  basic  context-free  grammar 
framework. 

Transformational  grammars.  Some  characteristics  of  natural  lan- 
guage cannot  be  modeled  with  context-free  grammars.  One  example  that  is 

frequently  cited  is  the  "respectively"  construction  in  sentences  such  as  The 
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boy  and  the  girl  held  the  puppy  and  the  kitten,  respectively.  Other  examples 
include  the  conversion  of  sentences  from  active  to  passive  voice  and  discon- 

tinuous constituents  like  throw  out  in  the  sentence  He  threw  the  junk  out  In 

response  to  these  shortcomings  of  context-free  grammars,  Chomsky  (1965)  de- 
veloped the  theory  of  transformational  grammar  (see  Article  IV.C2,  in  Vol.  i), 

in  which  a  sentence  is  first  derived  as  a  so-called  deep  structure,  then  manipu- 
lated by  transformation  rules,  and  finally  converted  into  surface  form  by 

phonological  rules.  The  deep  structure,  which  corresponds  to  the  basic  de- 
clarative meaning  of  the  sentence,  is  derived  by  a  context-free  grammar.  The 

transformation  rules  can  modify  the  structure — but  not  the  meaning — by  al- 
tering the  derivation  tree.  For  example,  a  transformation  rule  can  convert  a 

declarative  sentence  into  a  question  by  flipping  branches  of  the  tree  to  change 

the  word  order.  Under  such  a  transformation,  the  sentence  The  boy  is  hold- 
ing the  dog  becomes  the  question  Is  the  boy  holding  the  dog?  Some  methods 

have  been  developed  for  learning  transformation  rules,  as  well  as  context-free 
grammars,  from  examples.  Particular  attention  has  been  given  to  learning 
these  rules  under  conditions  believed  to  be  similar  to  those  under  which  a 

child  learns  a  language. 

Stochastic  grammars.  Although  context-free  grammars  (and  transfor- 
mational grammars)  can  represent  the  phrase  structure  of  a  language,  they 

tell  nothing  about  the  relative  frequency  or  likelihood  of  appearance  of  a  given 

sentence.  It  is  common,  for  instance,  in  context-free  grammars  to  use  recur- 
sive productions  to  represent  repetition.  In  our  sample  grammar  above,  the 

production  V  — ►  VP  is  recursive.  If  we  apply  it  over  and  over  again,  we  can 
generate  sentences  like  The  boy  held  the  puppy  on  the  wall  by  the  hill  with  the 
kitten . . .  Although  the  sentence  is  technically  grammatical,  it  would  be  nice 
to  represent  the  degree  of  acceptability  of  such  a  sentence. 

Stochastic  grammars  provide  one  approach  to  this  problem.  Each  produc- 
tion in  a  stochastic  grammar  is  assigned  a  probability  of  selection — that  is,  a 

number  between  zero  and  one.  During  the  derivation  process,  productions  are 
selected  for  rewriting  according  to  their  assigned  probabilities.  Consequently, 
each  string  in  the  language  has  a  probability  of  occurrence  computed  as  the 
product  of  the  probabilities  of  the  rules  in  its  derivation.  If  we  took  our 
sample  grammar,  for  instance,  and  assigned  probabilities  of  .5  to  all  of  the 

rules  except  X  — ►  ASV  (probability  1.0)  and  V  — ►  XAO  (probability  .33),  the 

string  "The  boy  held  the  puppy"  has  probability  1(.33)(.5)(.5)(.5)(.5)(.5)  = 
.01,  while  the  string  "The  boy  held  the  puppy  on  the  wall  by  the  hill  with  the 

kitten"  has  probability  1.58944  X  10-7.  This  expresses  the  intuition  that  the 
second  sentence  is  very  unlikely  to  be  considered  acceptable. 

Stochastic  grammars  have  been  employed  by  pattern  recognition  research- 
ers in  noisy  and  uncertain  environments  where  it  is  better  to  have  an  in- 

dication of  the  degree  of  grammaticality  of  a  sentence  than  a  single  yes-no 
decision.  Stochastic  grammars  also  allow  grammatical-inference  programs  to 
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represent  uncertainty  about  the  true  language  when  noisy  and  unreliable 
training  instances  are  presented. 

Graph  grammars.  In  syntactic  pattern-recognition  problems,  it  is  often 

important  to  represent  the  two-  or  three-dimensional  structure  of  "sentences" 
in  the  language.  Traditional  context-free  grammars,  however,  generate  only 
one-dimensional  strings.  Context-free  graph  grammars  have  been  developed 
that  construct  a  graph  of  terminal  nodes  instead  of  a  string  of  terminal  symbols 
(see  Article  XIII. E3).  Rewrite  rules  in  the  grammar  describe  how  a  nonterminal 
node  can  be  replaced  by  a  subgraph.  Evans  (1971)  employs  a  set  of  graph 
grammars  to  describe  visual  scenes.  Other  researchers  have  applied  graph 

grammars  to  the  pattern  recognition  of  handwritten  characters  and  cloud- 
chamber  tracks.  This  latter  use  of  grammars  is  especially  appropriate  in 
that  the  rewrite  rules  in  the  grammar  directly  correspond  to  properties  of 
the  pattern.  For  example,  subatomic  particles  decay  into  other  particles 
only  in  certain  ways,  and  these  decay  events  can  be  modeled  naturally  with 

productions  whose  left-hand  sides  have  the  decaying  particles  and  whose  right- 
hand  sides  state  the  corresponding  particles  into  which  they  decay. 

Theoretical  Limitations  of  Grammatical  Inference 

Now  that  we  have  reviewed  some  of  the  important  kinds  of  formal  lan- 
guages and  grammars,  we  turn  our  attention  to  the  problem  of  learning  these 

formal  languages  from  examples.  As  with  other  forms  of  learning  from  exam- 
ples, it  is  profitable  to  view  grammatical  inference  as  a  search  through  a 

rule  space  of  all  possible  context-free  grammars  for  a  grammar  that  is  consis- 
tent with  the  training  instances  chosen  from  an  instance  space.  In  language 

learning,  the  training  instances  are  usually  sample  sentences  that  have  been 
classified  by  a  teacher  to  indicate  whether  or  not  they  are  grammatical.  The 

goal  of  the  grammatical-inference  program  is  to  find  a  grammar  for  the  "true" 
language  that  underlies  the  training  instances. 

Under  what  conditions  is  it  possible  to  learn  the  correct  context-free 
language  from  a  set  of  training  instances?  This  question  has  received  a  fair 
amount  of  study,  and  several  results  have  been  obtained.  The  most  important 

result  is  that  it  is  impossible  to  learn  the  correct  language  (or  the  correct  single 
concept)  from  positive  examples  alone.  Gold  (1967)  proved  that  if  a  program 

is  given  an  infinite  sequence  of  positive  examples — that  is,  sentences  known 

to  be  "in"  the  language — the  program  cannot  determine  a  grammar  for  the 
correct  context-free  language  in  any  finite  time.  To  see  why  this  is  so,  consider 
that  at  some  point  the  program  has  received  k  strings  {si,  S2,  . . . ,  Sfc}-  There 
are  many  possible  languages  that  are  consistent  with  these  examples.  The 
most  general,  universal  language,  which  contains  all  possible  strings  of  the 
terminal  symbols,  certainly  contains  all  of  the  strings  in  the  sample.  Similarly, 

the  trivial  language  L  =  {s\,  S2,  . .  • ,  Sfc}  is  the  most  specific  language  that 
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contains  all  of  the  strings  in  the  sample.  There  are  many  possible  languages 
between  these  two  extremes.  No  finite  sample  will  allow  the  learning  program 
to  choose  the  correct  language  from  these  various  possibilities. 

Fortunately,  in  most  learning  situations,  additional  information  is  avail- 
able that  can  help  constrain  the  choices  of  the  learning  program  so  that  a 

reasonable  language,  and  its  grammar,  can  be  found.  Let  us  examine  possible 
sources  of  this  additional  information. 

Negative  examples.  Negative  training  instances  allow  the  program  to 

eliminate  grammars  that  are  too  general  (see  Article  XIV.D3a,  on  the  candidate- 
elimination  algorithm).  Gold  (1967)  showed  that  if  the  learning  program  could 
pose  questions  to  an  informant,  that  is,  ask  a  person  whether  or  not  a  given 
string  was  grammatical,  the  true  language  could  be  learned.  The  informant 
could  be  used  to  obtain  complete  positive  and  negative  examples  and  thus 

determine  exactly  the  true  language.  Gold  called  this  learning  situation  infor- 
mant presentation. 

Stochastic  presentation.  When  a  program  is  trying  to  learn  a  stochas- 
tic context-free  grammar,  learning  is  also  possible  if  the  training  instances  are 

presented  to  the  program  repeatedly,  with  a  frequency  proportional  to  their 

probability  of  being  in  the  language.  In  this  stochastic-presentation  method, 
the  program  can  estimate  the  probability  of  a  given  string  by  measuring  its 

frequency  of  occurrence  in  the  finite  sample.  In  the  limit,  stochastic  presen- 
tation gives  as  much  information  as  informant  presentation  of  positive  and 

negative  examples:  Ungrammatical  strings  have  zero  probability,  and  gram- 
matical strings  have  positive  probability. 

Prior  distributions.  As  we  have  seen  above,  even  after  a  set  of  positive 
instances  has  been  processed,  there  are  still  many  possible  languages,  and 
hence  many  possible  grammars,  for  the  learning  program  to  choose  from. 
Furthermore,  even  when  a  unique  language  has  been  determined,  as  with 
informant  presentation,  there  may  be  several  different  grammars  that  all 
generate  the  same  language.  One  way  to  tell  a  program  how  to  choose  the  right 
grammar  is  to  define  a  prior  probability  (or  desirability)  distribution  over  all 
possible  grammars.  The  program  can  then  choose  the  most  probable  grammar 

that  is  consistent  with  the  training  instances.  Horning  (1969)  employs  a 
prior  distribution  that  makes  simple  grammars  more  likely  than  complex 
ones,  where  simple  grammars  are  those  that  have  fewer  nonterminals,  fewer 

productions,  shorter  right-hand  sides,  and  so  on. 
Semantics.  According  to  cognitive  psychologists,  children  receive  little 

negative  feedback  when  they  are  learning  a  language.  Consequently,  we 
are  faced  with  the  puzzle  of  how  people  are  able  to  learn  natural  language 
almost  entirely  from  positive  training  instances.  One  important  source  of 
information  for  children  may  be  the  meaning  of  the  sentences  they  hear.  A  few 

psychological  theories,  and  some  computer  programs  (see  below),  have  been 
developed  that  incorporate  semantic  constraints  as  a  source  of  information. 
These  theories  basically  claim  that  the  grammatical  structure  of  a  language 
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parallels  the  semantic  structure  of  the  internal  representation  that  people 
employ. 

Structural  presentation.  One  technique  employed  by  pattern  recog- 
nition researchers  to  aid  grammatical  inference  is  structural  presentation,  in 

which  the  program  is  given  some  information  about  the  derivation  tree  of 

the  sample  sentences.  This  is  similar  to  the  use  of  book  training  in  Samuel's 
checkers  program.  The  derivation  tree  provides  a  move-by-move  (or,  in  this 
case,  a  rule-by-rule)  performance  standard  along  with  each  training  instance. 

Grammar  restriction.  One  final  way  to  get  around  Gold's  results  is 
to  learn  only  special  subclasses  of  the  context-free  languages.  In  particular, 
grammatical  inference  is  much  easier  for  regular  and  delimited  languages, 

which,  though  not  as  powerful  as  the  context-free  languages,  have  important 
practical  applications. 

In  summary,  then,  although  Gold's  theorems  show  that  the  formal  prob- 
lem of  learning  a  context-free  grammar  from  positive  instances  alone  is  impos- 

sible, there  are  many  alternative  sources  of  information  that  allow  programs, 
and  presumably  people,  to  learn  language. 

Methods  of  Grammatical  Inference 

In  this  section,  we  survey  four  basic  techniques  that  have  been  used  to 

learn  context-free  grammars  from  training  instances.  The  various  methods, 
some  of  which  parallel  the  basic  learning  methods  discussed  in  Article  XIV.Dl, 
differ  primarily  in  the  way  that  they  search  the  rule  space  and  the  kinds  of 
information  that  they  use  to  guide  that  search. 

The  first  approach  we  discuss  is  enumeration.  Enumerative,  or  generate- 
and-test,  methods  propose  possible  grammars  and  then  test  them  against 
the  data.  The  second  basic  grammatical-inference  technique  is  construction. 
Constructive  methods  usually  learn  from  positive  examples  only.  They  collect 
information  about  the  structure  of  the  sample  strings  and  use  it  to  build  a 

grammar  reflecting  that  structure.  Refinement  methods  form  a  third  impor- 
tant class  of  grammatical-inference  techniques.  They  start  with  a  hypothesis 

grammar  and  gradually  improve  it  by  means  of  various  heuristics  based  on 

additional  training  instances.  Finally,  semantics-based  methods  employ  knowl- 
edge of  the  meanings  of  the  sample  sentences  to  decide  how  to  search  the 

rule  space.  Most  semantics-based  methods  have  been  developed  to  model  how 
children  learn  natural  languages. 

Rules  of  generalization  and  specialization  for  grammars.  Before 

describing  these  learning  methods  in  more  detail,  we  first  discuss  three  meth- 
ods for  the  syntactic  generalization  and  specialization  of  grammars: 

1.    Merging.    A  context-free  grammar  can  be  generalized  by  an  operation 
called  merging.    Suppose  the  grammar  G  contains  two  nonterminals,  A 
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and  B.  We  can  modify  G  to  obtain  a  more  general  grammar  by  merg- 

ing A  and  B — that  is,  by  creating  a  new  nonterminal,  Q,  and  replacing 
all  occurrences  of  A  and  B  by  Q.  This  has  the  effect  of  pooling  the 

sublanguages  of  A  and  B  to  create  a  new  sublanguage,  Q,  whose  strings 
may  appear  anywhere  that  either  the  strings  of  A  or  the  strings  of  B 
could  have  appeared.  Suppose,  for  example,  that  in  our  sample  grammar 
discussed  above,  we  merged  S  (subjects)  and  O  (objects)  to  obtain  Q.  The 

productions  of  the  grammar  G  become: 

Z-+AQV 

V-+X,      V-^XAQ,      V-+VP, 
P^  WAQ, 

A  — >  a,     A—*  the, 
W^by,      W^on,      W^with, 

Q  -►  puppy,      Q  -+  kitten,      Q  -»  hill,      Q  -+  wall, 
Q  -*  boy,      Q  ->  girl, 

X^  petted,      X->held. 

Previously  ungrammatical  sentences  like  77ie  puppy  petted  the  boy  are  now 
allowed.  The  language  is  thus  larger  and,  consequently,  more  general. 

2.  Splitting.  The  inverse  of  merging  is  a  specialization  process  called  split- 
ting. We  can  specialize  a  grammar  by  splitting  the  sublanguage  of  one 

nonterminal,  N,  into  two  smaller  sublanguages,  N\  and  N2.  This  is 

accomplished  by  replacing  some  occurrences  of  N  in  the  grammar  by  7V*i 
and  others  by  N2.  In  the  grammar  above,  for  instance,  we  could  split 
the  A  (article)  nonterminal  into  Ai  and  A2  to  obtain  the  grammar: 

Z-^AxQV, 

V-+X,      V-+XA2Q,      V^VP, 
p^  WA2Q, 

Ai  — ►  a,     A2  — ►  the, 
tt^by,      W-on,      W^with, 

Q  -►  puppy,      Q  -+  kitten,      Q  ->  hill,      Q  -*  wall, 
Q  -»-  boy,      Q  -»  girl, 

X— >•  petted,      X— >•  held  . 

Now  all  sentences  must  begin  with  "a,"  and  all  prepositional  phrases  and 
object  phrases  must  use  "the."  The  previously  grammatical  sentence 
The  boy  petted  the  puppy  is  now  illegal.  This  language  is  therefore  more 
specialized. 

3.  Disjunction.  One  operation  that  is  similar  to  merging  is  called  disjunc- 
tion. In  disjunction,  we  choose  two  strings,  si  and  S2,  and  create  a  new 

nonterminal,  D,  whereby  the  rules  D  — ►  si  and  D  — ►  32  are  added  to  the 
grammar.  Every  occurrence  of  the  strings  s\  and  82  in  existing  produc- 

tions is  replaced  by  D.  For  example,  we  could  disjoin  AO  and  AS  in  our 

sample  grammar  to  create  the  new  nonterminal,  iV  (noun  phrase).  The 
grammar  then  becomes: 
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Z-+NV, 

V->X,      V^XN,      V^VP, 
P^  WN, 

N-+AS,     N^AO, 
A  — ►  a,      A  — >  the, 
S  ->  boy,      S  -  girl, 
W-^by,      W-^on,      W  ->  with, 
0  — >  puppy,      0  — ►  kitten,      0  — ►  hill,      0  — >  wall, 
X^  petted,      X^held. 

This  operation  is  similar  to  merging,  except  that  it  can  be  applied  to 
strings  of  terminals  and  nonterminals.  If  both  of  Si  and  S2  are  simple 
nonterminal  symbols,  disjunction  has  the  same  effect  as  merging.  If  only 
one  of  si  or  «2  is  a  nonterminal,  the  operation  is  called  substitution. 

These  rules  of  generalization  can  be  applied  to  move  from  one  point  in 
the  rule  space  (i.e.,  one  grammar)  to  another.  We  now  turn  our  attention  to 
the  four  basic  methods  of  grammatical  inference  and  show  how  they  apply 

these  operations  to  search  the  space  of  possible  context-free  grammars. 

Enumerative  Methods 

Enumerative  methods  generate  grammars  one  by  one  and  test  each  to 

determine  how  well  it  accounts  for  the  training  instances.  The  first  enumera- 
tive method  we  consider  is  that  of  Horning  (1969),  who  developed  a  procedure 

for  finding  the  most  plausible  stochastic  grammar  consistent  with  a  set  of 

stochastically  presented  training  instances.  The  general  idea  behind  Homing's 
method  is  to  enumerate  all  possible  grammars  in  order  of  simplicity  and  choose 

the  first  grammar  that  is  consistent  with  the  training  data.  The  actual  algo- 
rithm is  somewhat  more  complicated,  however,  since  Horning  seeks  the  most 

likely  stochastic  grammar,  that  is,  the  grammar  G  that  is  most  likely  to  have 
generated  the  observed  set  S  of  sample  strings.  This  is  expressed  formally  as 

the  grammar  G  that  maximizes  P(G  |  S),  that  is,  the  probability  of  G  given  S. 
Unfortunately,  it  is  difficult  to  compute  P(G  \  S)  directly  from  the  training 

instances.  Bayes'  theorem,  however,  provides  a  way  of  computing  P(G  |  S) 
from  three  other  quantities,  P{G),  P(S  |  G),  and  P(S): 

p(r  ,  Q*       P(G)  X  P(S  1  G) 

where  P(G)  is  the  a  priori  probability  that  G  is  the  "true"  grammar,  P(S) 
is  the  a  priori  probability  of  observing  the  particular  sample  S,  and  P(S  \  G) 

is  the  probability  of  observing  S  given  the  grammar  G.  Since  P{S)  is  inde- 
pendent of  G,  we  can  maximize  P(G  \  S)  by  just  maximizing  the  numerator 

P'(G  |  S)  =  P{G)  X  P{S  |  G).  The  probabilities  P(G)  and  P(S  |  G)  can  be 
computed  for  any  particular  grammar  G 
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The  probability  P(S  \  G)  that  the  training  instances  S  will  be  generated 
by  the  stochastic  grammar  G  can  be  computed  directly  from  G  by  parsing 
each  sentence  in  S.  The  problem  of  computing  P{G)  is  more  difficult,  however. 
Horning  sought  to  have  the  a  priori  probability  of  G  reflect  the  complexity 
of  the  grammar  G  Simple  grammars  should  be  highly  probable;  complex 
grammars  should  be  improbable.  Consequently,  he  developed  the  idea  of  a 

grammar-grammar,  that  is,  a  stochastic  grammar  that  generates  a  stochastic 
grammar  as  its  terminal  string.  Such  a  grammar-grammar  can  be  constructed 
from  a  terminal  vocabulary  of  symbols  such  as  A,  B,  C,  Z,  — ►,  etc.  Since,  as 
we  have  seen  above,  a  stochastic  grammar  generates  short  strings  with  a  much 

higher  probability  than  it  does  long  strings,  the  grammar-grammar  generates 
simple  grammars  with  a  much  higher  probability  than  it  does  complex  ones.  In 

particular,  the  probability  P(G)  is  the  probability  that  the  grammar-grammar 
would  generate  G. 

Since  we  can  compute  P{G)  and  P(S  \  G),  we  can  use  Bayes'  theorem 
to  compute  P'(G  \  S).  Therefore,  if  we  compute  P'{G  \  S)  for  all  possible 
grammars,  G,  we  can  find  the  grammar  that  most  likely  generated  5.  Such 
a  procedure  is  impossibly  inefficient,  however.  Instead,  Horning  used  the 
following  technique.  First,  he  developed  a  procedure  that  could  enumerate 
all  possible  stochastic  grammars  starting  with  the  most  likely  grammar,  G\, 
and  continuing  on  in  order  of  decreasing  probability  P(Gi).  Next,  he  noticed 

that  P'(Gi  |  S)  did  not  have  to  be  computed  for  all  grammars  but  only  for 
those  grammars  whose  probability  P{G{)  was  greater  than  P'{G\  \  S).  This 
is  because  once  P(G{)  falls  below  P'{G\  \  S),  there  is  no  way  that  multiplying 
by  P(S  |  Gi)  will  ever  exceed  P'{G\  \  S),  since  P(S  |  Gi)  is  always  less  than 
or  equal  to  1. 

Consequently,  Homing's  method  enumerates  all  grammars  G{  starting 
with  Gi  and  continuing  until  P(Gt)  <  P*(Gi  \  S).  The  probability  P'(G;  |  S) 
is  computed  for  each  grammar  Gi,  and  the  grammar  that  maximizes  P'(G{  \  S) 
is  output  as  the  grammar  most  likely  to  have  produced  the  set  of  examples,  S. 

The  algorithm  is  theoretically  correct — it  always  finds  the  best  grammar — 
but  it  is  still  too  inefficient  for  all  but  the  smallest  grammars.  Therefore, 
Horning  modified  the  grammar  generator  to  generate  only  grammars  that 
were  deductively  acceptable  (DA).  A  grammar  is  deductively  acceptable  if  it 
generates  every  string  in  the  sample,  S,  and  if  every  production  in  G  is  used 
to  derive  at  least  one  of  the  training  instances.  In  other  words,  a  DA  grammar 
must  be  consistent  with  the  training  instances  and  must  not  be  overly  specific 
or  cluttered  by  useless  productions.  It  can  be  shown  that  all  DA  grammars 
with  k  +  1  nonterminals  can  be  obtained  by  splitting  DA  grammars  with  k 

nonterminals.  Furthermore,  once  a  grammar  ceases  to  be  deductively  accept- 
able, no  further  splits  will  make  it  deductively  acceptable,  since  it  is  already 

overly  specific. 

These  facts  were  used  by  Horning  to  organize  the  rule-space  search. 
Starting  with  the  most  general  (and  most  likely)  DA  grammars,  repeated  splits 
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are  made  until  either  the  grammars  cease  to  be  deductively  acceptable  or  their 

a  priori  probability  P{G{)  falls  below  the  bound  P'(G\  \  S).  The  probability 
P'(Gi  |  S)  is  computed  for  all  of  the  generated  grammars,  and  the  grammar 
that  maximizes  Pf{Gi  \  S)  is  selected.  This  procedure,  although  more  efficient 
than  the  first  one,  is  still  of  theoretical  interest  only. 

A  second  enumerative  method  makes  use  of  training  instances  to  guide 
the  enumeration  of  plausible  grammars.  Pao  (1969)  describes  an  approach  to 

grammatical  inference  that  resembles  the  plan-generate-test  paradigm  of  the 
DENDRAL  program  (see  Sec.  VII.C2,  in  Vol.  II).  In  the  initial  planning  phase, 

Pao's  algorithm  analyzes  the  (positive)  training  instances  and  constructs  a 
trivial  grammar — that  is,  a  very  specific  grammar  that  generates  only  the 
training  examples.  A  partially  ordered  set  (actually,  a  lattice)  of  plausible 

grammars  can  be  generated  by  merging  nonterminals  from  this  trivial  gram- 

mar. During  the  generate-and-test  phase,  Pao's  algorithm  enumerates  all  of 
these  grammars  in  order,  from  most  specific  to  most  general,  and  tests  them 
by  consulting  an  informant. 

Pao's  algorithm  generates  two  grammars  at  a  time,  G  and  H,  and  uses 
an  informant  to  eliminate  one  of  the  two.  The  informant  is  presented  with 
a  new  sentence,  s,  that  is  generated  by  G  but  not  by  H.  If  the  informant 

says  s  is  in  the  "true"  language,  then  H  and  all  grammars  more  specific  than 
H  are  removed  from  further  consideration.  Also,  the  set  of  grammars  more 
general  than  H  (but  not  more  general  than  G)  is  searched  in  order  from 
general  to  specific,  and  grammars  that  do  not  generate  s  are  discarded.  If, 

on  the  other  hand,  the  informant  says  that  5  is  not  in  the  "true"  language, 
then  G  and  all  grammars  more  general  than  G  are  removed  from  further 
consideration.  The  generating  and  testing  of  possible  grammars  continues 
until  only  one  possible  grammar  remains.  This  search  through  the  partially 

ordered  set  of  all  possible  grammars  is  similar  to  Mitchell's  (1978)  candidate- 
elimination  algorithm  (see  Article  XIY.D3a).  In  Pao's  program,  though,  an 
active  experimentation  approach  is  employed  to  search  the  space  rather  than 
waiting  for  new  training  instances  to  drive  the  search. 

Unfortunately,  this  method  does  not  work  for  general  context-free  gram- 
mars. The  basic  algorithm  works  only  for  regular  grammars — that  is,  gram- 

mars whose  productions  all  have  the  form  N  — ►  tM  or  TV  — ►  t  for  t,  a  single 
terminal  symbol,  and  M,  a  single  nonterminal  symbol.  In  regular  languages, 

there  is  no  difficulty  finding  a  test  sentence  s  to  distinguish  between  two  gram- 
mars G  and  H.  Unfortunately,  this  cannot  be  done  for  general  context-free 

languages.  Pao  has  extended  the  method  to  handle  delimited  grammars — 
a  somewhat  larger  class  of  grammars  than  the  regular  grammars. 

Constructive  Methods 

Constructive  methods  attempt  to  build  a  plausible  grammar  using  only 

the  information  from  a  positive  sample  with  no  informant.     From  Gold's 
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theorems,  it  is  clear  that  this  problem  is  ill-formed,  since  no  unique  language 
is  determined  by  a  set  of  positive  instances.  However,  various  heuristics  have 
been  developed  for  constructing  simple,  fairly  general  grammars  from  positive 
instances  only. 

One  important  set  of  heuristics  is  based  on  the  idea  of  the  distribution 

of  substrings  in  the  language.  In  context-free  languages,  certain  classes  of 
strings,  such  as  noun  phrases  and  prepositional  phrases,  tend  to  appear  in 
the  same  contexts  in  different  sentences.  This  suggests  that  we  might  be  able 
to  discover  interesting  classes  of  strings  by  looking  at  their  surroundings  in 
the  set  of  sample  sentences.  For  instance,  the  words  a  and  the  both  tend 
to  occur  at  the  beginnings  of  sentences,  so  perhaps  they  should  be  grouped 
together  to  form  the  class  of  articles.  This  is  done  by  creating  a  nonterminal 

A  and  inventing  the  production  rules  "A  — ►  a"  and  "A  — *  the."  Distributional 
analysis  has  been  employed  by  Harris  (1964),  Fu  (1975),  Kelley  (1967),  and 
Klein  and  Kuppin  (1970). 

For  regular  grammars,  Fu  (1975)  has  applied  a  particular  kind  of  distribu- 
tional analysis  based  on  the  idea  of  the  formal  derivative  of  a  string.  The 

formal  derivative  of  a  string  s  is  the  set  of  strings 

D3L=  {t  |  the  string  st  is  in  the  language  L} , 

that  is,  all  of  the  strings  t  that  follow  s  in  the  given  language  L  in  sentences 
where  5  is  at  the  beginning  of  the  sentence. 

Formal  derivatives  can  be  employed  to  construct  regular  grammars  in  a 
straightforward  way.  Imagine  that  we  have  a  grammar  G,  and  we  are  in  the 
process  of  generating  a  sentence.  Suppose  that,  so  far,  we  have  generated  the 
string  s  U,  where  U  is  a  nonterminal  and  s  is  a  terminal  string.  If  we  take 
formal  derivatives  for  every  string  sa  that  appears  in  the  sample  (where  a  is 
a  single  terminal  symbol),  we  can  create  new  nonterminals  for  each  distinct 
formal  derivative.  We  can  add  the  productions 

U->aVi 

U^bV2 

U-+mVk 

to  the  grammar,  G,  where  V\,  V2,  . . . ,  Vk  correspond  to  the  formal  derivatives 
of  sa,  sb,  . . . ,  sm .  The  effect  of  this  construction  is  to  group  together  all  of 
the  strings  in  the  formal  derivative  of  sa,  for  example,  and  place  them  in 
the  sublanguage  for  V\.  We  can  construct  the  entire  grammar  G  by  initially 
taking  s  to  be  the  null  string  and  f/to  be  the  start  symbol. 

The  chief  difficulty  of  distributional  methods  is  that  some  definition  of 
similar  contexts  is  needed  so  that  strings  that  appear  in  similar  contexts  can 
be  grouped  into  the  sublanguage  for  a  new  nonterminal  symbol.    Problems 
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can  also  arise  when  one  string  is  in  two  different  sublanguages  and  therefore 
appears  in  different  contexts.  The  word  program,  for  example,  can  be  both  a 
noun  and  a  verb. 

Another  approach  to  constructive  inference  of  grammars  is  to  look  for 
repetition  in  the  sample  and  model  it  as  a  recursive  production.  This  method 
is  rarely  sufficient  in  itself  to  construct  the  whole  grammar,  but  it  can  be  used 
in  combination  with  other  methods.  Consider,  for  example,  the  set  of  training 
instances  {a,  aaa,  aaaa}.  A  reasonable  grammar  to  infer  has  the  productions 

S  — ►  a  and  S  — ►  Sa  and  generates  all  possible  strings  of  repeated  as. 
To  employ  this  repetition  heuristic,  it  is  helpful  to  know  the  properties  of 

repetition  for  different  kinds  of  grammars.  For  regular  grammars,  iteration 
always  takes  the  form  of  repeated  choice  of  a  string  without  reference  to 

any  other  strings.  However,  for  context-free  languages,  repetition  can  be 
more  complicated.  One  important  theorem  about  context-free  languages 
(called  the  uvxyz  theorem)  states  that  if  a  sufficiently  long  string  uvxyz 

is  in  the  language,  then  so  is  the  string  uvkxykz  as  well;  that  is,  v  and 
y  are  repeated  an  equal  number  of  times.  This  can  be  represented  by  a 

self- embedding  production  of  the  form  X  — ►  VXY.  Solomonoff  (1964)  and 
Maryanski  (1974)  describe  inference  methods  based  on  searching  for  double 

cycles  of  the  uvkxykz  variety.  Once  a  possible  cycle  is  found,  it  can  be  tested 
by  consulting  an  informant. 

Refinement  Methods 

Refinement  methods  formulate  a  hypothesis  grammar  and  then  refine  it 
by  applying  simplification  heuristics  or  by  gathering  new  training  instances. 
Knobe  and  Knobe  (1977),  for  example,  present  an  algorithm  that  creates 
an  initial  hypothesis  grammar,  G,  and  then  enters  a  refinement  cycle  in 
which  it  repeatedly  accepts  a  new  grammatical  string,  refines  G  to  include 
the  string,  and  generalizes  and  simplifies  G  The  initial  grammar  includes  a 
distinct  nonterminal  for  each  of  the  terminal  symbols.  In  the  course  of  the 

algorithm,  these  nonterminals  are  generalized  by  merging.  The  basic  learning 
cycle  proceeds  as  follows: 

Step  1.  Accept  a  grammatical  string  (i.e.,  a  positive  training  instance)  and 
attempt  to  parse  the  string  with  the  current  grammar,  G.  If  the 
parse  succeeds,  repeat  step  1;  otherwise,  go  to  step  2. 

Step  2.  Compute  a  list  of  partial  parses  and  sort  it  according  to  generality. 
(A  partial  parse  is  a  string  of  terminals  and  nonterminals  in  which 
parts  of  the  original  training  string  have  been  partly  parsed  into 
nonterminals;  the  more  general  partial  parses  are  shorter,  since 
most  of  the  sentence  has  been  successfully  parsed.)  Hypothesize 

the  production  S  — ►  P,  where  S  is  the  start  symbol  and  P  is  the 
most  general  partial  parse.  (This  allows  the  training  instance  to  be 
parsed  successfully.)  Use  the  modified  grammar  to  generate  a  test 
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sentence,  and  ask  the  informant  if  the  test  sentence  is  grammatical. 

If  it  is,  go  to  step  3;  otherwise,  try  the  next  most  general  partial 
parse,  and  repeat  until  a  sufficiently  specific  production  has  been 
found. 

Step  3.    Generalize  and  simplify  the  grammar  by  applying  some  of  the 
merging  and  substitution  heuristics  described  below. 

The  third  step  of  generalization  and  simplification  is  important,  because 

it  is  in  this  step  that  the  new  production  S  — ►  P  is  integrated  into  the  grammar 
and  connected  to  existing  production  rules.  Many  different  simplification  and 

generalization  techniques  have  been  developed  by  various  researchers.  We 

survey  a  number  of  these  here. 

Generalization  by  disjunction.  One  important  simplification  tech- 
nique is  to  apply  disjunction  (see  above)  to  replace  two  similar  strings  s  and  t, 

which  appear  on  the  right-hand  sides  of  productions,  by  a  single  nonterminal. 

There  are  two  basic  heuristics  for  deciding  whether  s  and  t  are  similar:  inter- 

nal similarity  and  external  similarity.  The  internal-similarity  heuristic  com- 
pares the  sublanguages  generated  by  s  and  t.  If  the  sublanguages  are  similar, 

the  heuristic  proposes  that  s  and  t  are  similar  and  should  be  disjoined.  The 

external-similarity  heuristic,  on  the  other  hand,  compares  the  contexts  in 
which  s  and  t  appear.  As  in  the  constructive  technique  of  distributional 

analysis,  if  5  and  t  appear  in  similar  contexts,  the  heuristic  recommends  that 

they  be  disjoined.  There  are  many  important  special  cases  of  these  heuristics: 

1 .  Heuristics  based  on  internal  similarity.  The  first  internal-similarity  heuris- 
tic is  subsumption.  If  the  language  generated  by  s  is  a  superset  of  the 

language  generated  by  t,  then  s  and  t  should  be  disjoined.  This  often 

occurs  when  s  is  a  single  nonterminal,  X,  and  the  rule  X  — ►  t  is  among 
the  productions  for  X  in  the  grammar. 

If  s  and  t  are  both  single  nonterminals,  X  and  Y,  a  second  internal 

heuristic  can  be  applied.  This  heuristic  compares  the  right-hand  sides, 

u  and  v,  of  production  rules  of  the  form  X  — ►  u  and  Y  — >  v,  to  see  if 
they  are  similar.  If  they  are,  Xand  Fcan  be  merged. 

A  third  internal-similarity  heuristic  is  k-tail  equivalence.  Two  strings  s 
and  t  are  k-tail  equivalent,  for  some  nonnegative  integer  k,  if  the  sets  of 
strings  of  length  k  or  less  that  they  generate  are  the  same.  Thus,  s  and 

t  are  judged  similar  if  the  short  strings  that  they  generate  are  the  same. 
This  heuristic  can  be  applied  by  choosing  a  value  for  k  and  merging 

groups  of  nonterminals  that  are  /c-tail  equivalent.  As  k  gets  small,  this 
heuristic  causes  more  generalization. 

2.  Heuristics  based  on  external  similarity.  The  one  heuristic  for  external 

similarity  is  to  look  at  productions  in  which  s  and  t  appear  on  the  right- 
hand  side  of  productions.  If  s  and  t  appear  in  similar  contexts  within 

the  productions,  they  can  be  disjoined.  Various  special  cases  of  this 
heuristic  have  been  used,  including  the  case  in  which  s  and  t  are  both 
single  nonterminals. 
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Hypothesizing  iteration.  As  with  constructive  methods,  if  productions 

such  as  X  — ►  a  and  X  — >  aa  are  present,  a  recursive  production  X  — ►  Xa  can 
be  introduced. 

Shorthand  substitution.  When  a  string  s  appears  many  times  on  the 

right-hand  side  of  productions,  it  is  often  good  to  create  a  new  nonterminal, 
A,  replace  all  occurrences  of  s  by  A,  and  add  the  production  A  — ►  s  to  the 
grammar.  This  simplifies  the  grammar  without  modifying  the  language  that 
it  generates.  The  advantage  of  the  simplification  is  that  it  is  easier  to  apply 
the  various  merging  heuristics  to  a  simplified  grammar. 

The  A:- tail  heuristic  was  employed  by  Biermann  and  Feldman  (1970)  in  the 
inference  of  regular  grammars.  Various  of  the  other  heuristics  are  employed 

by  Klein  and  Kuppin  (1970),  Evans  (1971),  Knobe  and  Knobe  (1977),  and 
Cook  and  Rosenfeld  (1976).  Cook  and  Rosenfeld  are  concerned  with  stochastic 

grammars  and  use  their  heuristics  to  simplify  grammars  with  a  hill-climbing 
procedure  based  on  a  numerical-complexity  measure. 

Semantics-based  Methods 

The  fourth  basic  approach  to  grammatical  inference  employs  semantic 
constraints  to  guide  the  search  for  plausible  grammars.  Most  of  this  work 
has  centered  on  language  acquisition  by  children.  The  child  is  given  positive 
examples  of  sentences  and  is  assumed  to  know  the  meanings  of  individual 
words  in  isolation.  Furthermore,  the  situation  in  which  the  sentence  was 
uttered,  and,  thus,  some  idea  about  its  overall  meaning,  is  assumed  to  be 
known  by  the  child.  In  most  work,  no  negative  examples  are  provided, 
nor  is  an  informant  available.  This  is  because  most  research  in  psychology 

(e.g.,  Brown  and  Hanlon,  1970)  has  found  that  children  receive  little  or  no 
feedback  concerning  the  grammaticality  of  the  sentences  they  utter.  Pinker 
(1979)  discusses  the  work  of  several  researchers  who  have  studied  grammatical 
inference  under  these  assumptions,  including  Anderson  (1977)  and  Hamburger 
and  Wexler  (1975). 

Anderson's  Language  Acquisition  System  (LAS)  attempts  to  learn  a  context- 
free  grammar  for  English  from  training  instances  that  include  a  representation 
of  the  meaning  of  each  sentence.  The  Human  Associative  Memory  (HAM; 
Article  XI.E2)  network  notation  is  used  to  represent  these  sentence  meanings. 
Learning  proceeds  in  a  cycle  similar  to  that  of  Knobe  and  Knobe  (1977):  A 
sentence  and  its  meaning  are  input,  and  LAS  attempts  to  parse  the  sentence. 
If  the  parse  fails,  the  grammar  is  extended  according  to  some  refinement 
heuristics  so  that  the  training  sentence  can  be  parsed  and  assigned  the  correct 

meaning.  One  such  heuristic  adds  a  word  to  a  sublanguage — for  example,  it 
adds  chair  to  the  sublanguage  for  (noun) — when  the  word  is  located  at  a  place 
in  the  HAM  net  similar  to  the  place  of  other  words  in  the  sublanguage.  This 
is  a  special  case  of  the  general  heuristic  that  the  structure  of  the  semantic 
representation  is  reflected  in  the  structure  of  the  syntax  of  the  language.  A 
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more  sophisticated  version  of  this  heuristic  is  the  graph  deformation  condition, 
which  states  that  branches  in  the  HAM  represention  of  the  sample  sentence 
are  not  allowed  to  cross.  This  heuristic  rules  out  certain  parses  that  would 

result  in  an  ill-formed  HAM  structure.  Anderson  also  employs  one  syntactic 
heuristic:  Two  nonterminals  are  merged  if  they  have  similar  sublanguages. 

The  work  of  Hamburger  and  Wexler  (1975)  is  more  theoretical  in  nature 
and  is  concerned  with  showing  that  transformational  grammars  (see  Chomsky, 
1965)  are  learnable.  In  their  model,  the  learner  is  repeatedly  given  a  sentence 

and  its  meaning,  where  the  meaning  is  represented  as  a  deep-structure  parse 
tree  (based  on  a  deep-structure  context-free  grammar).  The  learner  must 
find  a  set  of  transformation  rules  that  succeed,  for  each  sample  sentence, 
in  converting  the  deep  structure  into  the  given  sentence.  Hamburger  and 

Wexler  are  proponents  of  Chomsky's  nativist  theory  of  language  acquisition, 
which  asserts  that  people  have  built-in  limits  and  biases  that  provide  essential 
constraints  for  the  language-learning  process.  Consequently,  their  model  of 
language  learning  includes  several  factors  that  limit  the  complexity  of  possible 
transformations. 

Given  these  limits,  Hamburger  and  Wexler  show  that  the  desired  set  of 
transformations  can  be  learned  by  a  program  as  follows.  As  each  training 
instance  (a  sentence  and  its  deep  structure)  is  received,  the  learner  tries  to 
transform  the  deep  structure  into  the  surface  sentence  by  applying  its  current 
set  of  transformations.  If  this  succeeds,  the  learner  goes  on  to  the  next  input 
example.  If  not,  the  learner  randomly  adds,  deletes,  or  alters  a  transformation 
and  goes  on.  This  method  will  work  as  long  as  the  learner  does  not  repeat 
transformation  rules  known  to  be  incorrect.  Plainly,  this  learning  procedure 
is  not  practical,  but  it  does  demonstrate  that  learning  transformation  rules 
under  these  assumptions  is  possible. 

Conclusion 

The  expressiveness  of  grammars  for  use  in  AI  knowledge  representation 

is  somewhat  limited,  so  interest  in  the  difficult  problem  of  grammatical  infer- 
ence is  also  correspondingly  limited  in  the  AI  community.  This  is  especially 

so  because  of  the  impractical  nature  of  many  of  the  grammatical-inference 
systems  developed  thus  far.  However,  future  work  on  the  problem  may  yield 
more  powerful  inference  systems,  and  an  understanding  of  past  work  may  well 
be  helpful  in  research  on  related  learning  problems. 
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A.     OVERVIEW 

PROBLEM  SOLVING  is  the  process  of  developing  a  sequence  of  actions  to 

achieve  a  goal.  This  broad  definition  admits  all  goal-directed  AI  programs 
to  the  ranks  of  problem  solvers;  for  example,  MYCIN  (see  Article  VIII. Bl, 
in  Vol.  Il)  solves  the  problem  of  determining  a  bacteremia  infection,  HARPY 
(Article  V.C2,  in  Vol.  i)  solves  the  problem  of  understanding  speech  signals,  and 
AM  (Article  XIV.D4c)  solves  the  problem  of  filling  in  slots  in  its  representations 

of  concepts.  It  follows  that  this  chapter  is  not  about  problem  solvers — the 
entire  Handbook  is  about  problem  solvers.  This  chapter,  like  the  chapter  on 

search  (Chap.  II,  in  Vol.  i),  is  about  problem-solving  techniques.  In  particular, 
it  is  about  planning. 

In  everyday  terms,  planning  means  deciding  on  a  course  of  action  before 
acting.  This  definition  accurately  describes  the  planning  systems  of  this 
chapter,  so  we  will  adopt  it.  A  plan  is,  thus,  a  representation  of  a  course 
of  action.  It  can  be  an  unordered  list  of  goals,  such  as  a  grocery  list,  but 
usually  a  plan  has  an  implicit  ordering  of  its  goals;  for  example,  most  people 
plan  to  get  dressed  to  go  to  the  theater,  not  the  other  way  around.  Many 
plans  include  steps  that  are  vague  and  require  further  specification.  These 
serve  as  placeholders  in  a  plan;  for  example,  a  daily  plan  includes  the  goal 

eat-lunch,  although  the  details — where  to  eat,  what  to  eat,  when  to  leave — are 
not  specified.  The  detailed  plan  associated  with  eating  lunch  is  a  subplan  of 
the  overall  daily  plan.  Most  plans  have  a  rich  subplan  structure;  each  goal  in 
a  plan  can  be  replaced  by  a  more  detailed  subplan  to  achieve  it.  Although 

a  finished  plan  is  a  linear  or  partial  ordering  of  problem-solving  operators, 
the  goals  achieved  by  the  operators  often  have  a  hierarchical  structure  (see 

Fig.  A-l).  This  aspect  of  plans  prompted  one  of  the  earliest  definitions: 

A  Plan  is  any  hierarchical  process  in  the  organism  that  can  control  the  order 
in  which  a  sequence  of  operations  is  to  be  performed.  (Miller,  Galanter,  and 
Pribram,  1960,  p.  16) 

Planning  and  Problem  Solving 

Failure  to  plan  can  result  in  less  than  optimal  problem  solving;  one  may 
go  to  the  library  twice,  for  example,  having  failed  to  plan  to  borrow  a  book 
and  return  another  at  the  same  time.  Moreover,  in  cases  where  goals  are  not 
independent,  failing  to  plan  before  acting  may  actually  preclude  a  solution  to 
the  problem.  For  example,  the  goal  of  building  a  house  includes  the  subgoals 
of  installing  a  dry  wall  and  installing  electrical  wiring,  but  these  goals  are  not 
independent.  The  wiring  must  be  installed  first;  otherwise,  the  dry  wall  will 
be  in  the  way. 

515 
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Plans  can  be  used  to  monitor  progress  during  problem  solving  and  to 

catch  errors  before  they  do  too  much  harm.  This  is  especially  important  if  the 

problem  solver  is  not  the  only  actor  in  the  problem  solver's  environment  and 
if  the  environment  can  change  in  unpredictable  ways.  Consider  the  example 

of  a  roving  vehicle  on  a  distant  planet:  It  must  be  able  to  plan  a  route 

and  then  replan  if  it  finds  that  the  state  of  the  world  is  not  as  it  expected. 

Feedback  about  the  state  of  the  world  is  compared  with  what  is  predicted  by 

the  plan,  which  can  then  be  modified  in  the  event  of  discrepancies.  This  topic 

is  discussed  more  fully  in  Sacerdoti  (1975).  The  benefits  of  planning  can  be 

summarized  as  reducing  search,  resolving  goal  conflicts,  and  providing  a  basis 

for  error  recovery.  These  will  be  discussed  in  detail  in  the  remainder  of  this 

chapter. 

Approaches  to  Planning 

Four  distinct  approaches  to  planning  are  discussed  in  this  volume.  They 

are  nonhierarchical  planning,  hierarchical  planning,  script-based  planning, 
and  opportunistic  planning.  Here  we  must  resolve  a  confusing  ambiguity 

in  the  word  hierarchical.  The  vast  majority  of  plans  have  nested  subgoal 

structures — hierarchical  structures — as  shown  in  Figure  A-l.  However,  the 

word  has  another  interpretation,  one  that  provides  the  basis  for  distinguish- 

ing hierarchical  from  nonhierarchical  planning.  The  distinction  is  that  hierar- 
chical planners  generate  a  hierarchy  of  representations  of  a  plan  in  which 

the  highest  is  a  simplification,  or  abstraction,  of  the  plan  and  the  lowest 

Plan  for  the  day 

morning  subplan     lunch  subplan     afternoon  subplan 

go  to  work   read  article    eat  sandwich    read    write    go  home 

buy 

gas 

drive find  quiet 

place  to  work 

buy  sandwich 

get 
paper 

find 
a  free 

terminal 

drive 

get  cash 

go  to  bank 

Figure  A-l.     Plan  for  a  day,  illustrating  the  hierarchical  structure  of  sub- 

plans. 
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is  a  detailed  plan,  sufficient  to  solve  the  problem.  In  contrast,  nonhierar- 
chical  planners  have  only  one  representation  of  a  plan.  Both  kinds  of  plan- 

ners generate  plans  with  hierarchical  subgoal  structures,  but  only  hierarchical 
planners  utilize  a  hierarchy  of  representations  of  the  plan.  This  distinction  is 

discussed  further  in  Article  XV.B,  in  which  STRIPS  (a  nonhierarchical  planner) 
and  ABSTRIPS  (the  hierarchical  extension  of  STRIPS)  are  compared. 

Nonhierarchical  planning  corresponds  roughly  to  the  colloquial  meaning 

of  planning;  that  is,  a  nonhierarchical  planner  develops  a  sequence  of  problem- 
solving  actions  to  achieve  each  of  its  goals.  It  may  reduce  goals  to  simpler 

ones,  or  it  may  use  means-ends  analysis  to  reduce  the  differences  between 
the  current  state  of  the  world  and  that  would  hold  after  the  problem  has 

been  solved.  Examples  of  nonhierarchical  planners  are  STRIPS  (Article  XV.B), 
HACKER  (Article  XV.C),  and  INTERPLAN  (also  in  Article  XV.C). 

The  major  disadvantage  of  nonhierarchical  planning  is  that  it  does  not 

distinguish  between  problem-solving  actions  that  are  critical  to  the  success 
of  a  plan  and  those  that  are  simply  details.  As  a  result,  plans  developed  by 
nonhierarchical  planners  get  bogged  down  in  unimportant  details.  In  any  plan 
there  are  levels  of  detail  that  are  too  picky  or  too  vague  and  a  level  of  detail 

that  is  appropriate  for  the  problem;  for  example,  a  too-detailed  plan  for  dinner 
starts  with  Go  to  the  table,  sit  down,  unfold  the  napkin,  pour  a  glass  of  water, 

find  matches,  light  the  candles ...  A  too- vague  plan  is  Sit  down  somewhere, 
have  food.  Planning  with  too  many  details  is  a  waste  of  effort,  but  plans  that 

are  too  vague  do  not  specify  which  problem-solving  operators  should  be  used; 
a  balance  between  these  extremes  is  necessary  for  efficient  planning. 

To  this  end,  the  method  of  hierarchical  planning  has  been  implemented 
in  a  number  of  planning  systems.  The  method  is  first  to  sketch  a  plan 
that  is  complete  but  too  vague  and  then  to  refine  the  vague  parts  of  the 
plan  into  more  detailed  subplans  until  finally  the  plan  has  been  refined  to  a 

complete  sequence  of  detailed  problem-solving  operators.  The  advantage  of 
this  approach  is  that  the  plan  is  first  developed  at  a  level  at  which  the  details 
are  not  computationally  overwhelming. 

Hierarchical  planning  also  takes  several  forms  in  these  systems.  One 

approach,  typified  by  the  ABSTRIPS  program  (Article  II.D6,  in  Vol.  I),  is  to 
determine  which  subgoals  are  critical  to  the  success  of  the  plan  and  to  ignore, 
at  least  initially,  all  others.  (In  ABSTRIPS,  a  detail  is  a  subgoal  for  which  a 
subplan  can  be  found  if  plans  have  been  found  to  accomplish  goals  that  are 
not  details.)  For  example,  the  problem  of  buying  a  piano  cannot  be  solved 
unless  two  subgoals  are  accomplished,  namely,  Locate  piano  and  Get  money. 
Thus,  an  initial  plan  for  buying  a  piano  might  simply  be  Locate  piano,  get 
money,  buy  piano.  Subsequently,  this  plan  can  be  refined  with  inessential 
details,  such  as  Drive  to  the  store  and  Select  piano.  ABSTRIPS  plans  in  a 
hierarchy  of  abstraction  spaces,  the  highest  of  which  contains  a  plan  devoid 
of  all  unimportant  details  and  the  lowest  of  which  contains  a  complete  and 

detailed  sequence  of  problem-solving  operators.  The  advantage  of  considering 
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the  critical  subgoals  before  the  details  is  that  it  reduces  search:  By  ignoring 
details,  one  effectively  reduces  the  number  of  subgoals  to  be  accomplished  in 
any  given  abstraction  space. 

Hierarchical  planning  was  implemented  in  its  earliest  form  by  Newell  and 

Simon  (1972,  pp.  429-435)  in  their  GPS  model  of  theorem  proving  in  logic.  The 
GPS  approach  was  slightly  different  from  that  of  ABSTRIPS.  In  ABSTRIPS, 
a  hierarchy  of  abstraction  spaces  is  defined  by  treating  some  goals  as  more 
important  than  others,  while  in  GPS  there  was  a  single  abstraction  space 
defined  by  treating  one  representation  of  the  problem  as  more  general  than 
others.  GPS  planned  in  an  abstraction  space  defined  by  replacing  all  logical 
connectives  by  a  single  abstract  symbol.  The  original  problem  space  defined 

four  logical  connectives,  but  many  problem-solving  operators  were  applicable 
to  any  connective.  Thus,  it  could  be  treated  as  a  detail  and  abstracted  out  of 
the  formulation  of  the  problem.  A  problem  could  be  solved  in  the  abstraction 

space,  the  space  with  only  one  connective,  and  the  solution  could  be  mapped 

back  into  the  original  four-connective  space. 
Subsequent  implementations  of  the  hierarchical  planning  approach  such 

as  NOAH  (Article  XV.Dl)  and  MOLGEN  (Article  XV.D2)  are,  again,  slightly 
different  from  either  ABSTRIPS  or  GPS.  ABSTRIPS  abstracted  critical  goals, 

and  GPS  abstracted  a  more  general  representation  of  an  aspect  of  its  prob- 

lem space.  NOAH  abstracts  problem-solving  operators;  it  plans  initially  with 
generalized  operators  that  it  later  refines  to  problem-solving  operators  given 
in  its  problem  space.  MOLGEN  goes  one  step  further,  abstracting  both  the 

operators  and  the  objects  in  its  problem  space.  In  all  cases,  however,  hierar- 
chical planning  involves  defining  and  planning  in  one  or  more  abstraction 

spaces.  A  plan  is  first  generated  in  the  highest,  most  abstract  space.  This 
constitutes  the  skeleton  onto  which  details  are  fleshed  out  in  lower  abstraction 

spaces.  Hierarchical  planning  provides  a  means  of  ignoring  the  details  that 
obscure  or  complicate  a  solution  to  a  problem. 

A  third  approach  to  planning  also  makes  use  of  skeleton  plans  but,  un- 
like hierarchical  planning,  these  skeletons  are  recalled  from  a  store  of  plans 

instead  of  generated.  This  approach  was  adopted  in  one  of  the  MOLGEN  sys- 
tems (Article  XV.E).  The  stored  plans  contain  the  outlines  for  solving  many 

different  kinds  of  problems.  They  range  in  detail  from  extremely  specific  plans 
for  common  problems  to  very  general  plans  for  broad  classes  of  problems. 
The  planning  process  proceeds  in  two  steps:  First  a  skeleton  plan  is  found 
that  is  applicable  to  the  given  problem  and  then  the  abstract  steps  in  the 

plan  are  filled  in  with  problem-solving  operators  from  the  particular  problem 
context.  This  instantiation  process  involves  large  amounts  of  domain-specific 

knowledge,  often  working  through  several  levels  of  generality  until  a  problem- 
solving  operator  is  found  to  accomplish  each  skeleton-plan  step.  If  a  suitable 
instantiation  is  found  for  each  abstracted  step,  the  plan  as  a  whole  will  be 
successful. 
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This  approach  has  much  in  common  with  that  of  Schank  and  his  col- 

leagues (see  Article  IV.F6,  in  Vol.  i).  Their  approach  to  natural-language 
understanding  is  to  use  stored  scripts  (and  other,  more  sophisticated  struc- 

tures) to  provide  top-down  expectations  about  the  course  of  a  story. 
A  fourth  approach  to  planning  has  been  found  by  Hayes-Roth  and  Hayes- 

Roth  in  human  planning  (see  Article  XI.C).  It  is  described  as  opportunistic 
and  is  characterized  by  a  more  flexible  control  strategy  than  is  found  in 

the  other  approaches.  The  Hayes-Roths  have  adopted  a  blackboard  control 

structure  to  model  human  planning.  The  blackboard  is  a  "clearinghouse" 
for  suggestions  about  plan  steps,  suggestions  that  are  made  by  planning 
specialists.  Each  specialist  is  designed  to  make  a  particular  kind  of  planning 
decision.  Specialists  do  not  operate  in  any  particular  order;  the  asynchrony 
of  planning  decisions  that  are  made  only  when  there  is  reason  to  do  so  gives 

rise  to  the  term  opportunistic.  In  the  Hayes-Roths'  model,  and  apparently 
in  human  planning,  the  ordering  of  operators  that  characterizes  a  plan  is 

developed  piecewise — the  plan  "grows  out"  from  concrete  clusters  of  problem- 
solving  operators. 

Opportunistic  planning  includes  a  bottom-up  component,  since  it  is  driven 
by  opportunities  to  include  detailed  problem-solving  actions  in  the  develop- 

ing plan.  It  contrasts  with  the  top-down  refinement  process  characteristic 
of  hierarchical  planning,  in  which  detailed  problem-solving  actions  are  not 
decided  until  the  last  possible  moment  in  developing  the  plan.  Another 
difference  between  opportunistic  planning  and  other  forms  is  that  it  can 

develop  islands  of  planning  actions — parts  of  a  plan — independently,  while 
hierarchical  planners  try  to  develop  an  entire  plan  at  each  level  of  abstrac- 

tion. (See  Chap.  V,  in  Vol.  I,  for  a  discussion  of  island  driving  in  speech 
understanding.) 

The  Hayes-Roths'  model  is  discussed  in  Chapter  XI,  on  models  of  cogni- 
tion, since  it  is  intended  as  a  model  of  human  planning  abilities. 

Search  and  the  Problem  of  Interacting  Subproblems 

Two  major,  interrelated  issues  will  keep  reappearing  in  this  chapter.  They 
are  the  problem  of  limiting  search  and  the  problem  of  interacting  subproblems. 

The  problem  of  search  is  to  find  an  ordering  of  problem-solving  actions  that 
will  achieve  a  goal  when  there  are  a  huge  number  of  orderings  possible,  most 
of  which  will  not  achieve  the  goal.  This  problem  has  been  called  combinatorial 

explosion,  since  the  number  of  combinations  of  problem-solving  operators 
increases  exponentially  with  the  number  of  operators  (see  Chap.  II,  in  Vol.  i). 
The  problem  of  interacting  subproblems  arises  whenever  a  problem  has  a 
conjunctive  goal,  that  is,  more  than  one  condition  to  be  satisfied.  The  order 
in  which  conjunctive  goals  are  to  be  achieved  is  sometimes  not  specified  in  the 
problem,  but  it  can  be  critical  to  finding  a  solution.  Sometimes  interactions 
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of  this  sort  prevent  any  solution;  for  example,  if  a  conjunctive  goal  is  to  paint 
a  ladder  and  paint  a  ceiling,  the  second  goal  must  be  achieved  before  the 

first,  because  one  cannot  stand  on  a  freshly  painted  ladder  to  paint  a  ceiling. 
Unfortunately,  this  information  is  sometimes  not  given  in  the  problem  but 
must  be  inferred. 

The  problem  of  search  is  related  to  the  problem  of  interacting  subproblems 

because  additional  search  results  from  premature  commitment  to  an  arbitrary 

ordering  of  interacting  subgoals.  In  the  ladder  example,  a  planner  that  arbi- 
trarily decided  to  paint  the  ladder  first  would  need  to  backtrack  and  change  its 

plan  when  it  discovered  it  could  not  paint  the  ceiling.  Backtracking  involves 
replanning  from  the  choice  point  that  failed,  in  this  case,  the  choice  between 

painting  the  ceiling  and  painting  the  ladder.  Backtracking  can  be  very  costly. 
Interactions  between  subgoals  have  been  called  constraints  (Stefik,  1980; 

see  also  Article  XV.D2).  They  can  be  inferred  from  the  preconditions  of 
operators  if  the  preconditions  are  explicit.  For  example,  if  the  operator  Paint 
ceiling  has  several  preconditions  such  as  Have  paint,  Have  brush,  and  Have 
ladder,  an  intelligent  planner  will  infer  from  these  that  painting  the  ladder 
cannot  precede  painting  the  ceiling.  A  less  intelligent  planner  may  construct 
a  plan  to  paint  the  ladder  first  and  then  realize  that  it  cannot  continue;  it 
may  then  attempt  to  reorder  its  actions. 

Some  of  the  earliest  planners  generated  initial  plans  that  violated  ordering 
constraints  and  then  tried  to  go  back  and  fix  the  plan.  They  include  HACKER, 

INTERPLAN,  and  Waldinger's  system,  all  discussed  in  Article  XV. C.  These 
systems  applied  a  powerful  heuristic  called  the  linear  assumption,  namely, 
that 

subgoals  are  independent  and  thus  can  be  sequentially  achieved  in  an  arbi- 
trary order.  (Sussman,  1973,  p.  59) 

In  a  historical  perspective,  this  can  be  seen  to  be  an  important  heuristic. 

The  number  of  orderings  of  problem-solving  operators  is  the  factorial  of  the 
number  of  operators,  so  it  is  obvious  that  a  problem  solver  cannot  successfully 
examine  all  orderings  in  the  hope  of  finding  one  that  does  not  fail  because  of 
interacting  operators.  The  linear  assumption  says  that  in  the  absence  of  any 
knowledge  about  orderings  of  operators,  assume  that  one  ordering  is  as  good 
as  any  other  and  then  fix  any  interactions  that  emerge.  The  three  programs 
mentioned  above  all  fix  plans  by  reordering  the  component  operators. 

The  linear  assumption  is  used  in  cases  where  there  is  no  a  priori  reason  to 
order  one  operator  ahead  of  another.  An  alternative  assumption  is  that  it  is 
better  not  to  order  operators  than  to  order  them  arbitrarily.  This  assumption 

arises  in  slightly  different  forms  in  the  NOAH  planning  system  (Article  XV.Dl) 
and  one  of  the  MOLGEN  systems  (Article  XV.D2).  NOAH  establishes  partial 

orders  of  problem-solving  operators  by  considering  their  preconditions.  For 
example,  it  may  know  that  the  goal  of  buying  coffee  beans  has  the  subgoals 
Go  to  coffee  store  and  Get  money,  but  initially  it  does  not  commit  itself  to  an 
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ordering  of  these  operators.  However,  when  it  expands  each  of  these  goals,  it 
notices  that  a  precondition  of  getting  money,  Be  at  bank,  interferes  with  the 
goal  of  being  at  the  coffee  store;  thus,  it  decides  to  get  money  before  it  goes 
to  the  coffee  store.  NOAH  orders  operators  only  to  eliminate  problems  that 
might  arise  from  picking  an  arbitrary  ordering.  MOLGEN  also  will  not  order 
operators  until  constraints  are  available  to  guide  it;  furthermore,  MOLGEN 
avoids  committing  itself  to  using  operators  or  objects  without  constraints 
because  premature  commitment  may  conflict  with  other  parts  of  its  plan. 

The  least- commitment  approach  of  NOAH  and  MOLGEN  contrasts  with 
the  linear  assumption,  which  says,  Commit  yourself  to  any  order  of  operators 
and  then  fix  it.  This  approach  works  because  NOAH  and  MOLGEN  are  able 
to  infer  constraints  that  hold  between  operators.  An  important  aspect  of  the 

approach  is  that  it  is  constructive;  since  planning  decisions  are  made  only 
when  the  planner  is  sure  they  will  not  interfere  with  past  or  future  decisions, 
the  planner  need  never  backtrack  and  undo  a  bad  decision.  In  fact,  both 
of  these  planners  do  make  bad  decisions  and  can  backtrack,  but  the  major 
research  effort  has  been  to  avoid  backtracking. 

Interestingly,  human  planners  do  not  always  use  the  least-commitment 
strategy  and,  consequently,  they  must  sometimes  backtrack.  Humans  oppor- 

tunistically plan  to  execute  an  operator  when  it  is  convenient  to  do  so.  For 
example,  a  human  may  plan  to  pick  up  groceries  on  the  way  to  a  football 
game  because  it  is  convenient  to  do  so.  Later  he  (or  she)  will  realize  that  the 
groceries  will  wilt  during  the  game  and  he  will  have  to  replan  to  avoid  this. 

Conclusion 

We  have  discussed  the  structure  of  plans,  concentrating  especially  on 
the  hierarchical  relation  between  goals  and  subgoals.  When  problem  solving 
is  discussed  in  terms  of  search,  it  becomes  evident  that,  although  finished 

plans  are  usually  linear  or  partial  orders  of  problem- solving  operators,  the 
search  spaces  in  which  the  plans  are  developed  are  hierarchical.  This  is 

because  problem-solving  operators  have  preconditions  that  are  subproblems 
with  preconditions  of  their  own,  and  so  on.  The  term  hierarchical  was  shown 
to  refer  to  two  related  concepts:  Most  plans  have  a  hierarchical  structure,  but 

only  hierarchical  planners  use  a  hierarchy  of  abstraction  spaces  to  develop  a 

plan. 

We  have  introduced  four  approaches  to  planning:  nonhierarchical  plan- 
ning as  practiced  by  STRIPS  and  HACKER;  hierarchical  planning  of  the  sort 

done  by  ABSTRIPS,  NOAH,  and  MOLGEN;  script-based  planning;  and  oppor- 
tunistic planning.  Most  will  be  discussed  in  subsequent  articles,  although 

opportunistic  planning  is  covered  in  Chapter  XI,  on  models  of  cognition. 
Nonhierarchical  planners  are  discussed  in  Article  XV.C  after  a  comparison 
of  hierarchical  and  nonhierarchical  planning  illustrated  by  ABSTRIPS  and 
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STRIPS  in  Article  XV.B;  NOAH  is  discussed  in  Article  XV.D1;  and  the  last  two 

articles  are  devoted  to  the  MOLGEN  systems  (Articles  XV.D2  and  XV.E). 
The  major  issue  for  any  planning  system  is  reducing  search;  instrumental 

in  this  are  methods  for  minimizing  the  effects  of  interacting  subproblems. 

In  particular,  the  least-commitment  approach  that  derives  from  hierarchical 
planning  is  constructive,  that  is,  it  requires  little  or  no  backtracking. 
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B.     STRIPS  AND  ABSTRIPS 

HIERARCHICAL  PLANNING  in  the  context  of  the  STRIPS  and  ABSTRIPS 

planners  is  the  subject  of  this  article  (see  also  Fikes  and  Nilsson,  1971;  Fikes, 
Hart,  and  Nilsson,  1972;  Sacerdoti,  1974;  Articles  II.D5  and  II.D6,  in  Vol.  i). 
The  two  systems  are  virtually  identical  except  that  STRIPS  plans  in  a  single 
abstraction  space  while  ABSTRIPS  plans  in  a  hierarchy  of  them.  We  present 

here  a  single  problem — getting  a  cup  of  coffee — and  show  how  each  of  the 
systems  would  solve  it. 

Let  us  first  characterize  a  problem  solver  as  a  program  that  explores 

the  states  that  arise  from  the  application  of  problem-solving  operators  in 
search  of  one  that  qualifies  as  a  solution  to  the  problem.  (Other  characteriza- 

tions of  search  in  problem  solving  are  possible;  see  Articles  II.Bl  and  II.B2,  in 

Vol.  I,  for  a  discussion  of  state-space  and  problem-reduction  search.)  The  first 
state  examined  by  a  problem  solver  is  the  starting  state,  and  if  the  problem 
solver  is  successful,  the  last  state  examined  will  be  the  goal  state. 

Problem  solvers  have  available  a  set  of  problem-solving  operators  and 
objects.  When  problem-solving  operators  are  executed,  they  bring  about 
changes  in  the  state  of  the  world.  Consider  now  the  problem  of  getting  a 
cup  of  coffee.  You  go  to  the  kitchen  and  if  coffee  is  made,  you  pour  some.  If 
not,  you  make  some  or  go  out  to  buy  some.  If  you  decide  to  make  some,  but 
there  are  no  coffee  beans  or  ground  coffee,  you  go  to  the  store  to  get  some. 
If  you  have  no  money,  you  go  to  the  bank  first.  The  relevant  operators  and 
objects  are: 

Operator  Object 

Boil  water  boiling  water 
Pour  X  kitchen 

Buy  X  coffee-bean  store 
Make  coffee  coffee  beans 

Go  to  X  brewed-coffee  store 
Get  money  bank money 

Each  operator  has  preconditions  that  must  be  true  before  that  operator  can 

be  executed — for  example,  if  there  is  no  coffee  to  pour,  you  must  make  some. 

Making  a  precondition  true  is  a  subproblem.  Because  problem- solving  oper- 
ators usually  have  preconditions,  a  developing  plan  usually  has  a  hierarchical 

structure. 

The  operators  for  this  problem  can  be  represented  in  such  a  way  that 
their  preconditions  and  effects  are  explicit: 
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Operator 

Pour  coffee 

Make  coffee 

Buy  something 

Go  someplace 

Get  money 

Boil  water 

Precondition 

Have  brewed  coffee 

Have  beans 

Have  grinder 
Have  boiling  water 
Be  in  the  kitchen 

Be  at  store 
Have  money 

Place  exists 

Be  at  bank 

Be  in  the  kitchen 

Effect Problem  solved 

Have  brewed  coffee 

Have  something 

Be  at  place 
Not  at  any  other  place 
Have  money 

Have  boiling  water 

The  starting  state  and  goal  state  of  the  problem  can  be  expressed  in  these 
terms  also: 

Starting  state 

Not  have  brewed  coffee 
In  kitchen 

Have  grinder 
Have  money 

Have  boiling  water 

Goal  state 

Have  brewed  coffee 
In  kitchen 

Have  grinder 
Have  money 

Have  boiling  water 

If  a  problem  solver  knows  how  each  problem-solving  operator  changes  the 
state  of  the  world  and  knows  the  preconditions  for  an  operator  to  be  executed, 

it  can  apply  a  technique  called  means- ends  analysis  to  solve  problems  (see 
Article  II.D2,  in  Vol.  I,  and  Article  XI.B).  Briefly,  this  technique  involves  looking 

for  a  difference  between  the  current  state  of  the  world  and  a  desired  state  and 

trying  to  find  a  problem-solving  operator  that  will  reduce  the  difference.  This 
continues  recursively  until  the  desired  state  of  the  world  has  been  achieved. 

STRIPS  and  ABSTRIPS,  and  most  other  planners,  use  means-ends  analysis. 
The  next  few  paragraphs  illustrate  how  STRIPS  might  solve  the  problem 

of  getting  a  cup  of  coffee.  First,  it  compares  the  starting  state  and  the  goal 

state  and  immediately  finds  a  difference:  Have  brewed  coffee.  So  it  looks  for 

an  operator  that  has  Have  brewed  coffee  in  its  list  of  effects.  It  finds  two:  Make 

coffee  and  Buy  something,  where  something  is  instantiated  with  brewed  coffee. 

STRIPS  must  choose  one  of  them;  choosing  the  first  makes  the  example  more 

interesting,  so  we  will  assume  it  does  that. 

To  make  coffee,  the  four  preconditions  of  the  Make  coffee  operator  must 

be  fulfilled.  STRIPS  compares  the  current  state  of  the  world  (the  starting 

state)  with  the  first  precondition  and  immediately  finds  a  difference,  Have 

beans.  Consequently,  it  goes  back  and  tries  to  eliminate  this  difference  by 

searching  for  an  operator  that  has  as  its  effect  Has  beans.  Only  one  operator 
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applies,  namely,  Buy  something,  where  something  is  instantiated  with  beans. 

Once  again,  STRIPS  compares  the  preconditions  of  the  proposed  operator 
with  the  current  state  of  the  world.  It  notes  that  the  condition  Be  at  store  is 

not  satisfied,  so  it  must  repeat  the  search  once  again  and  find  an  operator  that 
will  get  it  to  the  store.  There  is  such  an  operator,  Go  to  someplace,  with  the 
single  precondition  that  the  place  exist;  since  the  store  is  one  of  the  objects 
available  to  STRIPS,  the  operator  can  be  executed. 

At  this  point,  a  plan  for  solving  the  problem  would  have  the  following 
hierarchical  structure: 

(Pour  coffee) 

Preconditions : 

Have  brewed  coffee 

or 

(Make  coffee) 

Preconditions : 

Have  beans ,  . . . 

(Buy  beans) 
Preconditions : 

Be  at  store,  . . . 

(Go  to  store) 

Preconditions : 

Store  exists 

True  in  world  model 

(Buy  brewed  coffee) 
Preconditions : 

Note  that  executing  the  operator  Go  to  store  changes  one  aspect  of  the  state 
of  the  world.  The  starting  state  is  In  the  kitchen,  but  Go  to  store  changes 
this  to  At  the  store.  This  change  satisfies  one  of  the  preconditions  of  the  Buy 
beans  operator;  STRIPS  checks  the  other  precondition,  Have  money.  Since  this 
precondition  is  true  in  the  current  state  of  the  world,  STRIPS  is  free  to  execute 

the  Buy  beans  operator.  Its  execution  fulfills  the  first  precondition  of  the 
Make  coffee  operator.  Furthermore,  STRIPS  finds  the  next  two  preconditions, 
Have  grinder  and  Have  boiling  water,  true  in  the  current  state  of  the  world. 
However,  the  last  precondition,  Be  in  kitchen,  has  been  made  false  by  going 
to  the  store,  so  before  making  coffee,  STRIPS  must  find  an  operator  with 
the  effect  of  making  Be  in  kitchen  true  again.   This  is  simply  Go  to  kitchen, 
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and  since  it  has  no  preconditions  it  is  immediately  applicable.  Its  execution 
fulfills  all  the  preconditions  of  Make  coffee;  consequently,  that  operator  can 
be  executed,  fulfilling  the  single  precondition  of  Pour  coffee  and  solving  the 

problem. 
The  final  plan  for  getting  coffee  is,  thus,  Go  to  the  store,  buy  beans,  go  to 

the  kitchen,  make  coffee,  pour  coffee. 

Means-ends  analysis  is  a  powerful  problem-solving  method  because  it 
reduces  the  amount  of  search  done  by  a  problem  solver.  At  any  point  prior  to 

solving  a  problem,  one  or  more  goals  must  be  satisfied.  Means-ends  analysis 
recognizes  only  one  type  of  goal,  namely,  to  reduce  a  difference  between 

two  states.  Moreover,  an  assumption  of  the  method  is  that  problem- solving 
operators  can  be  classified  according  to  the  kinds  of  differences  they  reduce. 
Consequently,  only  a  fraction  of  the  available  operators  will  be  applicable  to 
any  given  goal,  and  search  among  the  operators  for  an  applicable  one  will  be 
reduced. 

Search  and  Backtracking 

One  difficulty  with  means-ends  analysis  is  that  it  can  still  develop  large 
search  spaces.  Although  it  restricts  the  number  of  operators  that  apply  to  a 
goal,  there  may  still  be  several  applicable  operators  and  no  a  priori  basis  for 
selecting  one.  Moreover,  there  is  no  way  of  knowing  whether  the  subgoals  of 
an  operator  can  be  satisfied  or  whether  their  evaluation  may  eventually  lead 
to  a  dead  end,  that  is,  to  a  subgoal  that  cannot  be  satisfied.  For  example,  if 
the  Go  to  someplace  operator  had  a  precondition  Have  car  but  no  car  existed, 
all  of  the  processing  that  led  to  that  operator  would  have  been  in  vain  and 
the  problem  solver  would  have  had  to  backtrack  to  find  an  alternate  path.  In 
the  example  above,  the  only  other  path  involves  trying  to  Buy  brewed  coffee, 
and  it,  too,  will  fail  for  the  same  reason.  In  more  complicated  problems,  one 
might  expect  to  find  several  alternative  paths  that  might  accomplish  a  given 
subgoal,  and  a  substantial  amount  of  backtracking  may  be  needed  to  solve 
the  problem.  Backtracking  can  be  very  expensive,  so  recent  planners  have 
been  designed  to  avoid  it  as  much  as  possible. 

Backtracking  arises  from  premature  commitment  to  a  problem-solving 
path.  As  an  illustration,  consider  again  the  problem  of  getting  coffee.  Assume 
for  a  moment  that  the  objects  that  are  available  to  STRIPS  are  kitchen,  bank, 

coffee-bean  store,  brewed- coffee  store.  The  grinder  and  the  grinder  store  are 
missing.  To  solve  the  problem,  STRIPS  builds  a  search  tree,  as  shown  in 

Figure  B-l. 
Briefly,  STRIPS  would  reason  that  to  pour  coffee,  it  must  make  some  or 

buy  some.  It  opts  to  make  some.  To  do  so,  it  needs  beans,  for  which  it  needs 
money  and  a  bean  store.  To  get  money,  it  must  get  to  a  bank,  for  which  a 
bank  must  exist.  Since  a  bank  does  exist,  STRIPS  plans  to  go  there  and  get 
money.    It  then  explores  the  possibility  of  going  to  a  bean  store;  since  such 
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(Pour  coffee) 

Preconditions : 

Have  brewed  coffee 

or 

(Make  coffee) 

Preconditions : 

Have  beans,  Have  grinder, 

(Buy  brewed  coffee) 
Preconditions : 

(Buy  beans) 

Preconditions : 

Have  money,  At  bean  store 

(Buy  grinder) 
Preconditions : 

Have  money,  At  grinder  store 

(Get  money) 

Preconditions : 

At  bank 

(Go  to  store) 

Preconditions 

Store  exists 

TRUE (Go  to  store) 

Preconditions 

Store  exists 

(Go  to  bank) 

Preconditions 

Bank  exists 

TRUE FALSE 

TRUE 

Figure  B-l.     A  search  tree  for  the  problem  of  pouring  coffee. 

a  store  exists,  STRIPS  can  go  there.  Both  preconditions  for  buying  beans 
are  fulfilled,  so  it  plans  to  buy  them  and  then  goes  on  to  consider  the  next 
precondition  of  making  coffee,  which  is  having  a  grinder.    Since  it  does  not 

!  have  one,  it  decides  to  buy  one,  for  which  the  preconditions  are  having  money 
and  being  at  a  grinder  store.  It  has  money  from  its  previous  visit  to  the  bank, 

I  so  it  plans  to  go  to  the  grinder  store.  Unfortunately,  no  such  store  exists. 

All  of  this  processing  has  been  in  vain — STRIPS  cannot  possibly  make  coffee. 
Its  only  option  is  to  backtrack  to  a  choice  point  in  the  plan  and  try  another 
path.  In  this  case,  it  can  try  to  buy  some  brewed  coffee.  This  part  of  the  plan 

is  not  illustrated,  but  it  will  succeed  since  a  brewed-coffee  store  exists. 
Part  of  the  expense  of  backtracking  in  the  previous  example  derives  from 

planning  several  operations  that  are  actually  unimportant  details.  Intuitively, 
one  would  expect  STRIPS  to  have  checked  much  earlier  in  the  plan  to  see 
whether  a  grinder  store  existed.  Similarly,  if  STRIPS  knew  that  certain  stores 
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existed,  it  should  not  have  worried  about  how  to  get  to  them  until  later  in 
the  plan;  getting  to  places  seems  like  a  detail.  One  would  expect  a  planner 
first  to  plan  to  do  all  the  important  steps  in  a  plan  and  then  to  fill  in  the 
less  important  ones  after  it  has  sketched  out  the  others.  In  fact,  this  method 
is  called  hierarchical  planning;  the  first  planner  to  use  it  was  an  extension  of 
STRIPS  called  ABSTRIPS.  We  will  now  briefly  describe  how  it  works. 

ABSTRIPS  plans  in  a  hierarchy  of  abstraction  spaces.  An  ABSTRIPS 
abstraction  space  contains  all  of  the  objects  and  operators  given  in  the  initial 

specification  of  the  problem  (called  the  ground  space),  but  some  preconditions 
of  some  operators  are  judged  to  be  more  important  than  others.  For  example, 
Have  boiling  water  seems  like  an  unimportant  precondition  of  making  coffee 
because  it  is  so  easy  to  accomplish.  Other  preconditions  such  as  Grinder 
store  exists  seem  very  important,  because  if  they  are  not  true  in  the  ground 
space,  there  is  no  operator  that  the  problem  solver  can  execute  to  make  them 
true.  Preconditions  are  assigned  importance  levels,  called  criticalities.  When 
ABSTRIPS  starts  planning,  it  plans  to  achieve  only  those  preconditions  that 

have  the  maximum  criticality — just  those  preconditions  that  are  critical  to 
the  success  of  the  plan.  It  plans  in  the  highest  abstraction  space.  Next,  it 

plans  to  achieve  the  preconditions  of  the  steps  in  its  high-level  plan  that  have 
the  next  criticality  level,  and  so  on,  until  all  the  preconditions  in  a  plan  have 
been  achieved. 

The  first  step  in  this  process  is  assigning  criticalities.  The  method  used 
in  ABSTRIPS  is  for  a  human  to  draw  up  a  partial  ordering  of  preconditions 

by  intuitively  judging  their  importance;  then  ABSTRIPS  follows  an  algorithm 
to  adjust  the  criticalities  further.  One  might  guess  that  the  most  important 
precondition  is  that  a  place  exist,  since  if  it  does  not,  operators  that  depend 
on  its  existence  cannot  be  used  in  a  plan.  One  might  judge  having  something 
as  the  next  most  important  precondition  and  being  somewhere  the  least 
important: 

Precondition        Intuitive  criticality 

Place  exists  3 
Have  something  2 
Be  somewhere  1 

ABSTRIPS  adjusts  these  criticalities  as  follows:  All  preconditions  whose 

truth  values  cannot  be  changed  by  any  operator  are  given  a  maximum  criti- 
cality. For  each  of  the  other  preconditions,  if  a  short  plan  can  be  found  to 

achieve  it — assuming  the  previous  preconditions  are  true — it  is  assumed  to  be 
a  detail  and  is  given  a  criticality  equal  to  that  specified  in  the  partial  ordering. 
If  no  such  plan  can  be  found,  it  is  given  a  criticality  greater  than  the  highest 
one  in  the  partial  order. 

The  preconditions  Bank  exists,  Bean  store  exists,  and  Brewed-coffee  store 
exists  are  all  assigned  a  maximum  value,  say,  5,  because  their  truth  cannot  be 
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changed  by  any  operator.  The  four  Have  something  preconditions  are  Have 
beans,  Have  grinder,  Have  boiling  water,  and  Have  money;  three  of  them 
can  be  achieved  by  a  short  plan,  given  that  the  previous  preconditions  are 
true.  For  example,  given  that  the  bank  exists,  a  short  plan  can  be  found  to 
achieve  the  precondition  Have  money.  These  three  preconditions  are  therefore 

assigned  their  partial-order  rank  of  2,  and  the  fourth,  Have  grinder,  which 
cannot  be  achieved  by  a  simple  plan  because  no  grinder  store  exists,  is  given 

the  rank  of  4,  higher  than  any  partial-order  rank.  Lastly,  the  Be  somewhere 
preconditions  are  ranked,  and  since  they  can  all  be  achieved  by  simple  plans, 

they  are  assigned  their  partial-order  rank  of  1: 

Precondition  Criticality 

Bean  store  exists  5 
Brewed- coffee  store  exists  5 
Bank  exists  5 
Have  grinder  4 
Have  beans,  boiling  water,  money  2 
Be  at  brewed-coffee  store,  bean  store,  bank  1 

ABSTRIPS  now  formulates  a  plan  in  an  abstraction  space  of  critical- 
ity 5.  This  means  that  at  this  level,  any  precondition  of  an  operator  that  has 

a  smaller  criticality  value  is  assumed  to  be  true.  At  this  level,  ABSTRIPS  finds 
two  plans  to  get  coffee:  Make  coffee  and  Buy  brewed  coffee.  It  then  expands 
the  Make  coffee  plan  in  an  abstraction  space  of  criticality  4,  since  the  Have 
grinder  precondition  emerges  at  this  level.  ABSTRIPS  tries  to  find  a  subplan 
for  getting  a  grinder  but  cannot.  Consequently,  it  recognizes  immediately 
that  its  level  5  plan  to  make  coffee  will  fail.  It  backs  up  to  level  5  again,  picks 

the  alternative  plan  to  buy  brewed  coffee,  and  pursues  it.  Figure  B-2  shows 
a  trace  of  its  operation  in  the  five  abstraction  spaces. 

In  this  trace,  ABSTRIPS  first  plans  to  make  coffee,  but  this  plan  fails  in 
the  abstraction  space  of  level  4.  Thus,  it  backtracks  to  level  5  and  plans  to 
buy  brewed  coffee.  This  plan  is  not  expanded  further  until  level  2,  when  the 
precondition  of  having  money  becomes  apparent.  At  level  1,  a  precondition 
of  getting  money  is  found,  namely,  Be  at  bank,  and  a  precondition  of  buying 
coffee  is  found,  namely,  Be  at  store.  ABSTRIPS  plans  to  go  to  these  places; 
its  final  plan  is  Go  to  bank,  get  money,  go  to  coffee  store,  buy  brewed  coffee. 

ABSTRIPS  solves  problems  with  much  less  searching  and  backtracking 
than  STRIPS  because  it  is  a  hierarchical  planner.  It  generates  a  hierarchy 

of  plans  in  which  the  highest  level  plans  are  very  sketchy  and  the  lowest 
level  plans  are  detailed.  Since  a  complete  plan  is  formulated  at  each  level 
of  abstraction  before  the  next  level  is  considered,  ABSTRIPS  can  find  dead 

ends  early,  as  it  did  with  the  problem  of  finding  a  coffee  grinder.  The  details 
of  the  other  parts  of  the  plan  to  make  coffee,  for  example,  boiling  water  and 
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Level  5: 

Level  4: 

Level  3: 

Level  2: 

Level  1: 

(Make  coffee) 

No  preconditions 
of  criticality  5 

Preconditions : 

Have  grinder 

(Buy  grinder) 
Preconditions : 

Be  at  grinder  store 

(Go  to  grinder  store) 
Preconditions : 

Grinder  store  exists 

FALSE:  return  to  level  5 

(Get  money) 

Preconditions 

Be  at  bank 

(Go  to  bank) 

(Buy  brewed  coffee) 

No  preconditions 
of  criticality  5 

No  preconditions 
of  criticality  4 

No  preconditions 
of  criticality  3 

Preconditions : 
Have  money. 

Be  at  coffee  store 

(Go  to  store) 

Figure  B-2.     A  trace  of  ABSTRIPS  in  five  abstraction  spaces. 

buying  beans,  were  never  considered  because  ABSTRIPS  quickly  detected  that 
an  important  precondition  of  making  coffee  could  not  be  satisfied. 
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C.     NONHIERARCHICAL  PLANNING 

NONHIERARCHICAL  approaches  to  planning  order  operations  at  a  single  level 
of  abstraction,  in  contrast  to  hierarchical  planners,  which  develop  entire  plans 
at  multiple  levels  of  abstraction.  A  nonhierarchical  planner  typically  develops 
a  hierarchy  of  subgoals,  but  they  are  all  at  the  same  level  of  abstraction. 

The  systems  discussed  in  this  article  are  HACKER,  INTERPLAN,  and 
the  planner  developed  by  Waldinger.  They  are  three  attempts  to  solve  the 

difficult  planning  task  of  achieving  conjunctive  subgoals  that  are  not  indepen- 
dent. Many  problems  are  formulated  as  a  conjunction  of  goals;  for  example, 

spring  cleaning  may  involve  sweeping,  washing  the  floor,  washing  the  windows, 
beating  the  rug,  and  so  on.  However,  these  goals  are  not  independent;  they 
cannot  be  achieved  in  an  arbitrary  order.  Washing  the  floor  before  sweeping 
is  a  doomed  and  grubby  operation;  a  precondition  of  washing  the  floor  is  that 
it  be  swept  clean  of  loose  dirt.  Similarly,  one  should  not  beat  the  rug  after 
sweeping,  because  dragging  a  dusty  rug  outside  will  make  the  floor  dirty  and 
ruin  the  effect  of  sweeping.  In  the  terminology  of  this  chapter,  beating  the  rug 
after  sweeping  would  constitute  a  violation  of  a  protected  goal,  the  goal  being 
a  freshly  swept  house.  Similarly,  achieving  some  goals  can  actually  prevent 
the  accomplishment  of  others,  as  when  washing  the  floor  prevents  one  from 
walking  across  it  or  using  it  for  any  other  purpose  until  it  is  dry.  To  any 
person  with  minimal  housecleaning  experience,  it  will  be  obvious  how  and 

why  spring-cleaning  tasks  must  be  ordered  to  avoid  their  mutual  interference, 
but  simple  planning  programs  do  not  have  a  priori  knowledge  about  the  order 
in  which  goals  should  be  accomplished.  The  problem  for  these  planners  is 
to  construct,  in  the  absence  of  this  knowledge,  an  efficient  plan  for  achieving 
conjunctive  goals  that  are  not  independent. 

The  approach  taken  by  HACKER  and  INTERPLAN  is  to  formulate  plans 
that  are  flawed  by  interferences  between  subgoals  and  then  to  fix  them  by 

reordering  problem-solving  operations  in  the  plan.  Waldinger 's  system  is  more 
constructive:  Instead  of  reordering  operations  in  a  flawed  plan,  it  develops 
the  plan  by  inserting  operations  one  by  one,  checking  each  for  potential 
interference  with  established  operations. 

HACKER  and  INTERPLAN  apply  a  simplifying  heuristic  called  the  linear 
assumption  to  restrict  the  number  of  goal  orderings  that  it  considers.  It  was 
originally  formulated  by  Sussman  (1973)  in  these  terms: 

Subgoals  are  independent  and  thus  can  be  sequentially  achieved  in  an  arbi- 
trary order,  (p.  59) 

531 
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Of  course,  this  assumption  is  false  for  many  problems,  but  it  does  avoid 
the  problem  of  searching  for  an  ordering  of  subgoals  in  which  none  interferes. 

The  search  space  of  orderings  can  be  enormous,  since  it  grows  with  the  fac- 
torial of  the  number  of  subgoals  in  a  plan;  for  example,  there  are  over  3  million 

distinct  orders  in  which  10  conjunctive  subgoals  can  be  achieved.  The  linear 
assumption  commits  the  planner  to  an  arbitrary  ordering  of  subgoals  rather 

than  searching  for  an  optimal  one  and,  in  the  event  that  the  ordering  is  sub- 

optimal,  the  planner  tries  to  fix  it.  (For  an  alternative,  least- commitment, 
approach,  see  the  following  two  articles.) 

HACKER 

HACKER  was  developed  as  a  model  of  skill  acquisition  by  Gerald  Sussman 
at  M.I.T.  Sussman  defines  skill  as  a  set  of  procedures,  each  of  which  solves 
a  certain  kind  of  problem  from  the  domain  of  the  skill.  If  a  skill  does  not 
include  a  procedure  to  solve  a  problem,  a  new  procedure  must  be  designed. 
Typically,  it  implements  old  procedures  as  a  means  of  achieving  subgoals  of 

the  new  problem.  New  procedures  can  turn  out  to  have  "bugs"  and  not  work 
in  all  the  situations  for  which  they  are  designed,  in  which  case  they  can  be 
patched  to  make  them  work.  Often,  bugs  can  be  abstracted;  that  is,  within 
the  domain  of  a  skill  there  are  common  bugs  that  show  up  in  many  procedures. 
One  very  general  bug,  the  one  addressed  by  all  the  systems  in  this  article,  is 
found  in  cases  in  which  conjunctive  subgoals  are  to  be  achieved:  Achieving  one 
subgoal  may  prevent  the  accomplishment  of  another.  Sussman  reasons  that 
this  bug  (and  others)  is  so  common  that  a  model  of  skill  acquisition  should 
know  how  to  debug  the  procedures  it  designs.  HACKER  is  able  to  do  so  in 
many  cases. 

Although  HACKER  was  designed  as  a  model  of  skill  acquisition,  it  is 
interesting  in  the  context  of  planning  because  the  procedures  it  develops  for 
solving  problems  are  plans  and  because  the  debugging  of  plans  was  considered 

a  useful  problem-solving  technique.  For  the  purposes  of  this  chapter,  we  will 
ignore  what  HACKER  contributes  to  the  subject  of  learning  (for  this,  see 
Article  XTV\D5c)  and  concentrate  on  those  aspects  of  skill  acquisition  that  are 
relevant  to  planning. 

HACKER  was  written  at  a  time  when  procedural  representations  of  knowl- 
edge were  popular  (see  Chap.  Ill,  in  Vol.  I,  on  knowledge  representation).  One 

result  of  this  is  that  HACKER's  various  functions  are  difficult  to  separate. 
Rather  than  explain  their  extensive  interactions,  the  functions  and  the  knowl- 

edge that  supports  them  are  described  here  in  general  terms.  Those  of 

immediate  interest  are  the  answer  library,  which  contains  problem-solving 
procedures;  the  knowledge  library,  which  contains  facts  about  the  domain; 

the  programming-techniques  library,  which  is  used  to  propose  problem-solving 
procedures  when  appropriate  ones  are  not  found  in  the  answer  library;  and 
several  libraries  of  bugs  and  appropriate  patches. 
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Problem  solving  in  HACKER  would  be  much  like  that  in  PLANNER  (see 
Article  VIA,  in  Vol.  Il)  were  it  not  for  the  need  to  debug  plans.  PLANNER  had 
only  one  mechanism  for  recovering  from  a  flawed  plan,  namely,  backtracking. 
This  was  very  expensive  in  terms  of  search  time.  In  contrast,  HACKER 
proposes  a  plan  and  then  corrects  errors  in  it  with  programs  that  are  experts 
in  debugging,  rather  than  by  backtracking  to  the  point  of  failure  in  a  plan 

and  blindly  trying  another  problem-solving  operation. 
The  bug  that  concerns  us  here  is  called  prerequisite-clobbers-brother-goal 

by  Sussman;  it  arises  from  the  linearity  assumption.  There  are  often  interac- 
tions between  goals  such  that  achieving  the  prerequisites  for  one  goal  prevents 

the  accomplishment  of  another.  HACKER  can  solve  some  of  these  interaction 

problems,  but  sometimes  the  solution  is  not  optimal.  A  popular  problem  for 

planners  is  shown  in  Figure  C-l. 
HACKER  attempts  to  solve  this  problem  by  finding  a  procedure  in  its 

answer  library  that  matches  the  pattern  of  the  goal:  (MAKE  (ON  B  C) ) .  It  finds 
a  procedure  that  says, 

(TO    (MAKE    (ON  X  Y)) 
(PUTON   (X  Y)))  ; 

that  is,  to  get  block  B  on  block  C,  execute  the  simple  procedure  PUTON  with 
B  and  C  as  arguments.  When  it  simulates  the  execution  of  this  program,  it 
discovers  that  it  fails,  because  A  is  on  B.  A  bug  in  the  proposed  plan  has  been 
found;  HACKER  now  attempts  to  patch  it  up.  First,  a  library  of  types  of  bugs 

is  consulted,  from  which  HACKER  concludes  that  the  bug  is  a  PREREQUISITE- 
MISSING  type.  We  will  not  go  into  the  details  of  this  classification.  HACKER 
knows  that  a  prerequisite  to  one  of  its  planned  actions  is  missing,  but  it 
does  not  know  which  prerequisite.  In  its  knowledge  library  it  finds  several 
potentially  pertinent  facts.  One  is 

(FACT  (PREREQUISITE  (PUTON  (X  Y)  (PLACE-FOR  X  Y))))  . 

B 

B 

C 

Figure  C-l.     A  planning  problem:  Get  block  B  from  under  A 
and  put  it  on  block  C. 
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That  is,  to  put  X  on  Y  there  must  be  a  place  on  Y  for  X  to  rest.  It 
checks  to  see  whether  there  is  a  place  on  C  for  B;  since  there  is,  this  is  not 
the  missing  prerequisite.  The  next  fact  is  more  enlightening: 

(FACT    (PREREQUISITE    (EXPRESSION    (CLEARTOP  OBJECT)) 
(HAVE    0    (MOVES  EXPRESSION  OBJECT))))   . 

It  says  that  a  prerequisite  for  moving  an  object  is  that  the  object  have  a  clear 
top.  Since  A  is  stacked  on  B,  this  prerequisite  is  not  met  for  B. 

HACKER  has  discovered  the  identity  of  the  bug  that  spoiled  its  initial 
plan  for  getting  B  on  C.  It  now  uses  this  information  to  modify  the  plan, 
applying  general  methods  for  fixing  bugs  that  it  has  encountered  before.  One 

such  method  says  that,  to  patch  a  PREREQUISITE-MISSING  bug,  a  procedure 
for  attaining  the  prerequisite  should  be  inserted  into  the  plan  before  the  pre- 

requisite is  needed.  The  prerequisite  to  be  achieved  is  (CLEARTOP  B).  HACKER 

treats  this  as  a  subgoal  and  returns  to  the  beginning  of  its  problem-solving 
cycle;  it  looks  in  the  answer  library  for  a  procedure  that  will  achieve  the  pre- 

requisite. We  will  assume  that  this  procedure  exists;  if  it  did  not,  HACKER 

would  construct  it  with  the  help  of  its  programming-techniques  library. 
To  summarize,  HACKER  solves  problems  by  searching  for  a  procedure 

known  to  be  appropriate  for  such  problems.  If  it  finds  one  but  the  procedure 
does  not  achieve  the  goal  as  expected,  the  reasons  for  the  failure  are  formalized 
as  bugs.  Efforts  are  then  initiated  to  debug  the  procedure.  At  any  time  during 
problem  solving,  HACKER  may  be  required  to  write  procedures  to  achieve 
certain  goals.  These  are  then  tested  and  debugged  exactly  like  procedures 
found  in  the  answer  library. 

There  are  problems  for  which  HACKER  cannot  generate  an  optimal  plan. 

One  such  problem  is  shown  in  Figure  C-2  and  is  discussed  in  the  "Anomalous 
Situations"  chapter  of  Sussman's  thesis  (1973). 

B 

Figure  C-2.  A  problem  for  which  HACKER  cannot  provide 
an  optimal  solution.  The  proper  goal  sequence  is 
(CLEAR  A) ,   (ON  B  C) ,   (ON  A  B)  . 
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HACKER  knows  from  previous  experience  that  it  is  wise  to  build  from  the 

ground  up;  therefore,  for  the  problem  in  Figure  C-2,  it  constructs  a  plan  to 

((ACHIEVE    (ON  B  O) 
(ACHIEVE    (ON  A  B))) 

But  when  it  simulates  execution  of  this  plan,  it  notices  that,  after  putting 
B  on  C,  it  must  take  it  off  again,  and  take  C  off  A,  in  order  to  clear  A  for 
putting  A  on  B.  This  constitutes  a  protection  violation  of  the  previously 
achieved  goal,  namely,  (ON  B  C).  HACKER  treats  protection  violations  as 
bugs;  unfortunately,  this  one  cannot  be  fixed  simply  by  reordering  its  goals.  If 
HACKER  tries  to  solve  the  problem  by  achieving  (ON  A  B)  and  then  (ON  B  C) , 
it  finds  that,  after  achieving  (ON  A  B),  another  protection  violation  results 
from  trying  to  (CLEAR  B)  to  put  it  on  C.  Regardless  of  the  order  in  which 
HACKER  attempts  to  achieve  the  goals  of  the  problem,  a  protection  violation 

occurs.  The  only  alternative  is  suboptimal — to  permit  the  violation  and  then 
to  achieve  the  violated  goal  again  at  a  later  time,  for  example,  by  putting 
B  on  C,  then  taking  it  off  again,  taking  C  off  A,  putting  B  back  on  C,  and 

finally  putting  A  on  top. 
When  HACKER  discovers  a  protection  violation,  it  tries  to  reorder  the 

operations  in  its  plan.  However,  it  is  limited  to  reordering  operations  at 
one  particular  level  of  the  plan;  in  the  previous  example  it  tried  to  reorder 
the  initial  goals.  To  solve  the  problem,  it  is  necessary  to  reorder  goals  at 
different  levels  of  the  plan.  HACKER  need  not  reorder  the  goals  (ON  B  C)  and 

(ON  A  B) ,  but  it  must  achieve  a  subgoal  of  (ON  A  B) ,  namely,  (CLEAR  A) ,  before 
it  achieves  (ON  A  B) .  This  kind  of  reordering  of  levels  of  goals  is  too  subtle 
for  HACKER.  However,  another  program  called  INTERPLAN  does  consider 
these  more  complex  reorderings. 

INTERPLAN 

INTERPLAN  was  developed  by  Austin  Tate  at  the  University  of  Edinburgh 
in  1974.  It  employs  a  convenient  declarative  representation  called  a  tick  list 
to  allow  protection  violations  to  be  detected  easily  and  to  give  the  system  the 
relevant  information  for  recovery  (Tate,  1975a).  In  the  event  of  a  protection 
violation,  INTERPLAN  first  tries  the  same  reorderings  as  HACKER;  namely, 
goals  are  reordered  at  a  single  level  of  the  subgoal  hierarchy.  But  if  this  fails, 
it  considers  more  general  reorderings.  In  particular,  the  subgoal  at  which 
failure  occurred  is  promoted,  that  is,  moved  before  its  superordinate  goal,  and 
possibly  before  other  goals  as  well. 

The  space  of  goal  orderings  considered  by  INTERPLAN  is  thus  larger  than 
that  considered  by  HACKER,  but  for  this  added  effort  it  gains  the  ability  to 
optimize  plans  that  HACKER  could  not  optimize. 
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Consider  the  problem  from  Figure  C-2.   INTERPLAN  initially  proceeds 
like  HACKER: 

Goal  or  action State 

1. 

2. 

3. 

4. 
with  st 

1. 

5. 

6. 

C 

ACHIEVE  (ON  A  B) 
A B 

ACHIEVE  (CL  A) 

APPLY  (Clear  A) 
C A B 

A 

APPLY  (Puton  A  B) 
C B 

ACHIEVE  (ON  B  C) 

ACHIEVE  (CL  B) 

APPLY  (Clear  B) 
A B C 

*  (1)  Protection  violation ,ate 3 :  Reorder 

c 

ACHIEVE  (ON  B  C) 
A B 

B 

C 

APPLY  (Puton  B  C) 
A 

ACHIEVE  (ON  A  B) 

ACHIEVE  (CL  A) 

APPLY  (Clear  A) 
A B C 

*  (2)  Protection  violation  with  state  5: 

At  this  point  in  the  problem,  HACKER  resigns  itself  to  a  suboptimal  plan. 
It  has  tried  the  two  possible  orderings  of  the  goals  (ON  A  B)  and  (ON  B  C), 
and  neither  of  them  produces  plans  free  of  protection  violations.  In  order  to 
solve  the  problem,  a  subgoal  of  one  of  the  main  goals  must  be  achieved  before 
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either  of  the  main  goals.  HACKER  is  not  capable  of  reordering  goals  between 
levels,  but  INTERPLAN  is.  It  decides  to  promote  the  subgoal  that  caused 
the  protection  violation;  it  returns  to  the  starting  state  of  the  problem  and 
immediately  tries  to  achieve  (CL  A) : 

Goal  or  action State 

PROMOTE    (CL  A) 

ACHIEVE    (CL  A) 1. 
B 

APPLY  (Clear  A) 
A B C 

ACHIEVE  (ON  B  C) 

APPLY  (Puton  B  C) 

B 

ACHIEVE  (ON  A  B) 

APPLY  (Puton  A  B) 

*  (3)  Goal  achieved 

Subgoal  promotion  is  thus  a  useful  method  for  reordering  goals  when  they 
interfere  with  each  other.  The  method  and  the  tick-list  data-structure  that 

facilitates  it  are  discussed  in  detail  in  Tate  (1975b). 

Goal  Regression 

HACKER  and  INTERPLAN  backtrack  when  they  find  a  protection  viola- 
tion; they  reorder  a  couple  of  goals  and  then  start  planning  to  achieve  them 

in  the  new  order.  For  simple  problems  like  the  previous  example,  this  method 
will  suffice,  but  if  there  are  several  conjunctive  goals,  and  many  or  most 
goal  orderings  produce  subgoal  interactions,  the  method  is  very  inefficient. 
Moreover,  when  these  planners  reorder  their  goals,  all  goals  affected  by  the 
reordering  must  be  achieved  again.  This  can  lead  to  the  same  solution  being 

achieved  for  a  subgoal  a  number  of  times  because  superordinate  goals  inter- 
acted with  each  other. 
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An  alternative  approach  is  to  construct  a  plan  by  solving  one  conjunctive 
subgoal  at  a  time,  checking  that  each  solution  does  not  interfere  with  other 
goals  that  have  already  been  achieved  and  moving  the  offending  goal  to  a 
different  place  in  the  plan  if  it  does.  A  planner  that  works  this  way  was 
developed  by  Richard  Waldinger  (1977).  He  introduced  the  concept  of  goal 
regression  to  handle  interference  between  goals. 

At  any  point  in  a  plan  a  goal  may  have  been  achieved,  but  after  another 
step  it  may  have  been  violated.  This  was  illustrated  earlier  in  the  problem 

in  Figure  C-2;  after  (ON  B  C)  had  been  achieved,  it  was  violated  to  achieve 
(CLEAR  A) .  Waldinger  noted  that  for  any  goal  G  and  operation  0,  there  is  no 

guarantee  that  G  will  be  true  after  0,  but  that  a  new  goal  G'  can  be  found 
such  that  if  G'  holds  before  0,  G  will  hold  after  O.  Finding  this  new  goal  G' 
is  goal  regression,  or  passing  the  goal  back  over  the  operator.  Goal  regression 
can  be  used  to  guarantee  that  goals  that  have  been  achieved  are  not  violated 
by  subsequent  operations.  The  basic  planning  algorithm  is  to  achieve  the 
first  of  the  conjunctive  subgoals  of  the  problem  and  then  expand  the  plan  by 
regressing  subsequent  subgoals  from  the  end  of  the  plan  to  a  point  in  the  plan 
where  their  accomplishment  will  not  violate  those  previously  achieved. 

Consider  again  the  three-blocks  problem.  Waldinger's  system  can  solve 
the  problem  regardless  of  the  order  in  which  it  approaches  the  subgoals,  but 
we  will  illustrate  it  planning  to  achieve  (ON  A  B)  before  (ON  B  C) .  First,  the 
system  removes  block  C  from  atop  A  in  order  to  clear  A.  The  plan  looks  like 
this: 

Goal  or  action State 

1. 
A B 

ACHIEVE    (ON  A  B) 

(Clear  A) 2. 
c A B 

Now  the  system  puts  A  on  B: 

(Put  A  on  B) 

3. 

C B 

The  plan  consists  of  two  actions,  (Clear  A) ,  (Put  A  on  B) .  The  system 
now  attempts  its  second  goal,  appending  it  to  the  end  of  the  plan.  However,  it 
finds  that  achieving  one  of  its  preconditions,  (Clear  B) ,  violates  the  protected 
relation  A  is  on  B.  Rather  than  reordering  the  conjunctive  goals  of  the  plan, 
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as  HACKER  and  INTERPLAN  do,  the  system  simply  passes  the  offending  goal 
back  over  previously  achieved  subgoals  until  it  finds  a  place  in  the  plan  where 
the  goal  will  not  interfere  with  any  others.  In  this  case,  the  goal  (ON  B  C)  is 
moved  in  front  of  the  action  (Put  A  on  B) .  The  plan  now  looks  like  this: 

Goal  or  action State 

ACHIEVE    (ON  A  B) 

(Clear  A) 

ACHIEVE    (ON  B  C) 

(Put  B  on  C) 

1. 

2. 

3. 

c 

A B 

C A B 

B 

C A 

A 

B 

C 
(Put  A  on  B) 

When  a  proposed  operator  causes  a  protection  violation,  an  attempt  is 
made  to  insert  it  at  earlier  points  in  the  plan,  checking  to  see  whether  the 
interaction  is  avoided  and  to  see  that  no  new  protection  violations  occur. 

However,  the  choice  of  where  to  insert  the  new  operator  is  not  guided  by 
any  information.  It  involves  simply  searching  back  in  the  plan  and  checking 

at  each  position  to  see  if  it  is  suitable.  Waldinger's  system  does  not  check 
whether  a  later  step  is  made  redundant  by  the  insertion  of  the  operator,  so  a 
less  than  optimal  plan  may  be  produced. 

The  main  advantage  of  Waldinger's  approach  is  that  it  is  constructive: 
Plan  steps  are  added  one  by  one,  and  the  only  difficulty  is  finding  out  where 
they  should  go  in  the  plan.  This  can  involve  a  considerable  amount  of 
searching,  but  it  avoids  the  inefficient  repeated  achieving  of  subgoals  that 
HACKER  and  INTERPLAN  must  do  after  reordering. 

Conclusion 

We  have  discussed  here  three  nonhierarchical  approaches  to  planning: 

HACKER,  INTERPLAN,  and  Waldinger's  system.  Each  suffers  from  interacting 
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subproblems;  the  first  two  systems  are  forced  to  backtrack  and  reorder  sub- 

goals,  and  Waldinger's  system,  though  it  avoids  backtracking  by  constructive 
goal  regression,  must  evaluate  the  consequences  of  putting  a  subgoal  at  a 
proposed  place  in  a  plan.  In  the  remaining  articles  of  this  chapter,  we  will 

consider  hierarchical  and  script-based  planning  as  alternatives  to  nonhierar- 
chical  planning. 

References 

HACKER  is  discussed  in  Sussman's  doctoral  thesis  (1973;  also  Sussman, 
1975).  INTERPLAN  is  discussed  in  Tate's  thesis  (1975b),  although  his  IJCAI 
article  (1975a)  is  more  accessible.  See  Waldinger  (1977)  for  a  presentation  of 
his  system. 



D.     HIERARCHICAL  PLANNERS 

Dl.     NOAH 

IN  NOAH,  Earl  Sacerdoti  made  some  significant  advances  in  problem  solving 
and  planning.  NOAH  (Nets  of  Action  Hierarchies)  was  designed  as  part  of  the 

Computer-based  Consultant  project  at  SRI  International,  Inc.,  around  1975 
(see  Article  VII.D2,  in  Vol.  II).  It  uses  a  representation  for  plans  called  the 
procedural  net,  which  has  a  richer  structure  than  previous  problem  solvers.  In 
contrast  to  these  earlier  efforts,  the  procedural  net  represents  both  procedural 
and  declarative  knowledge  about  problem  solving.  The  procedural  knowledge 
(also  called  domain  knowledge)  includes  functions  that  expand  statements  of 
goals  into  subgoals  and  that  simulate  the  actions  of  operators  that  transform 
one  state  into  another.  Declarative,  or  plan,  knowledge  represents  the  effects 
of  executing  these  functions;  for  example,  if  a  procedure  is  executed  that  puts 
one  block  on  top  of  another,  NOAH  records  that  the  supporting  block  no 
longer  has  a  clear  top  surface.  Because  the  effects  of  actions  are  represented 
explicitly,  NOAH  can  reason  about  them.  In  fact,  NOAH  employs  a  set  of 
procedures  called  critics  that  are  sensitive  to  those  effects  of  actions  that 
would  jeopardize  the  success  of  the  plan.  Critics  are  used  to  detect  and  correct 
interactions,  eliminate  redundant  operations,  and  so  forth. 

Problem  solving  in  NOAH  is  accomplished  by  developing  the  procedural 
net.  From  a  single  node  that  represents  the  goal  to  be  achieved,  a  hierarchy 
of  nodes  is  developed  that  represents  levels  of  subgoals  to  be  achieved  before 
the  original  goal  can  be  accomplished.  The  original  goal  node  contains  a 
pointer  to  a  set  of  functions  that  expand  goals  into  subgoals.  When  one 
or  more  of  these  functions  are  executed,  subgoal  nodes  are  added  to  the 

procedural  net.  They  are  linked  to  the  original  goal — their  parent — and  to 
each  other,  and,  like  their  parent,  they  contain  pointers  to  functions  that 
expand  goals  to  subgoals.  In  addition,  the  nodes  representing  the  subgoals 
include  a  declarative  representation  of  the  effects,  if  any,  of  executing  the 
functions. 

After  the  original  goal  node  has  been  expanded,  there  are  two  levels  of 
representation  of  the  problem,  the  first  of  which  is  the  goal  node.  The  second 
is  a  series  of  subgoals  that,  when  achieved,  will  have  the  effect  of  achieving 
the  original  goal.  These  nodes  are  themselves  expanded  as  their  parent  was. 
NOAH  continues  to  add  nodes  to  the  procedural  net  that  are  more  specific 
versions  of  the  goals  represented  by  their  parents.  Eventually,  the  original  goal 
of  the  problem  is  replaced  by  several  levels  of  more  detailed  goals  and,  finally, 

541 
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by  a  level  of  goals  that  can  be  immediately  attained  by  simple  problem-solving 
operators. 

Thus,  NOAH  plans  by  developing  a  hierarchy  of  subgoals.  These  will 

sometimes  be  called  abstract  operators.  A  distinction  is  made  here,  as  else- 

where in  this  chapter,  between  the  simple  problem-solving  operators  specified 
in  the  problem  space  and  abstract  operators  that  will  eventually  be  expanded 

to  problem-solving  operators.  Abstract  operators  are  goals,  and  their  expan- 
sions are  subgoals,  in  the  sense  that  such  operators  specify  abstract  actions 

that  the  planner  would  like  to  execute  but  that  it  cannot  execute  until  they 

are  expanded  to  subgoals  attainable  by  problem-solving  operators. 
In  addition  to  abstract  and  problem-solving  operators,  NOAH  has  plan- 
ning actions.  These  include  the  functions  that  expand  goals  into  subgoals  and 

the  actions  of  various  critics.  They  are  not  part  of  the  emerging  plan  but, 
rather,  are  the  actions  by  which  NOAH  develops  the  plan. 

Note  that  whenever  NOAH  expands  a  goal  to  subgoals,  it  runs  the  risk 
of  creating  interacting  subproblems  (see  Article  XV.C).  This  problem  arises 
when  a  planner  commits  itself  to  an  arbitrary  order  for  achieving  conjunctive 
goals.  NOAH  avoids  the  problem  in  two  ways:  first,  by  not  ordering  subgoals 
until  there  is  some  reason  to  do  so  and,  second,  by  continually  examining 
the  developing  plan  for  potential  subgoal  interactions  and  correcting  them 

before  they  arise.  This  allows  NOAH  to  solve  interaction  problems  construc- 
tively: Operators  are  not  ordered  until  a  potential  interaction  is  detected,  and 

then  they  are  ordered  to  avoid  the  interaction.  This  contrasts  with  the  plan- 
ners in  the  previous  article;  those  planners  ordered  operators  arbitrarily,  and, 

if  an  interaction  emerged,  they  backtracked  and  replanned  to  try  to  avoid 

the  interaction.  These  planners  are  said  to  overconstrain  a  plan  by  commit- 
ting themselves  to  orderings  arbitrarily;  NOAH  is  said  to  under  constrain  a 

developing  plan  by  not  committing  itself  to  any  orderings  except  to  avoid  an 
interaction. 

Application 

NOAH  was  applied  in  the  domain  of  assembly  tasks,  and  it  proved  useful 
and  powerful.  It  provided  instructions  to  a  human  apprentice,  who  then 

carried  out  NOAH's  plan.  The  procedural  net  was  well  suited  to  this  task, 
because  it  allowed  a  plan  to  be  specified  at  any  of  several  levels  of  detail; 
for  example,  NOAH  could  instruct  a  trained  engineer  to  bolt  the  mounting 

bracket  to  the  frame — a  high-level  instruction — but  it  could  tell  a  novice  how 
to  accomplish  this  goal  in  detail  if  necessary.  The  procedural  net  also  made  it 
easier  to  monitor  the  execution  of  the  plan.  If  an  unexpected  situation  arose, 
NOAH  could  replan  by  patching  the  procedural  net.  The  building  of  the  plan 
was  kept  distinct  from  its  execution,  but  control  could  pass  from  the  planner 
to  the  execution  monitor  at  any  stage. 
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The  Structure  of  the  Procedural  Net 

The  procedural  net  contains  several  levels  of  representation  of  a  plan,  each 
level  more  detailed  than  the  previous  one.  Each  consists  of  a  partially  ordered 
sequence  of  nodes  that  represent  goals  at  some  level  of  abstraction.  To  avoid 
overconstraining  the  order  in  which  goals  are  achieved,  NOAH  assumes  they 
can  be  attained  in  parallel  until  it  has  some  reason  to  put  one  before  or  after 
another. 

Each  node  in  the  procedural  net  is  attached  to  its  more  detailed  expansion 
in  the  next  level;  for  example,  the  node  representing  the  abstract  goal  Make 
coffee  may  be  expanded  to  a  handful  of  more  detailed  goals,  such  as  Grind 
coffee,  Boil  water,  Put  the  coffee  in  a  filter,  Pour  the  water  through  it  NOAH 
will  not  commit  itself  to  any  particular  ordering  of  these  operators  until  it 
has  reason  to  do  so. 

The  statement  of  the  problem  goal  is  the  top-level  node,  representing  a 
plan  at  a  very  high  level.  A  simple  example  of  the  structure  of  the  net  with 

two  levels  is  given  in  Figure  Dl-1.  The  S  and  J  nodes  represent  split  and  join, 
respectively;  they  are  dummy  nodes  that  bound  actions  that  are  assumed  to 
be  executable  in  parallel.  NOAH  uses  this  formalism  to  represent  operations 
for  which  it  has  not  chosen  an  ordering. 

NOAH  expands  a  single  goal  node  in  the  procedural  net  into  a  hierarchy 
of  plans  at  various  levels  of  abstraction.  To  do  this,  it  uses  procedures  that 
expand  abstract  operators  into  more  detailed  ones.  Much  domain  knowledge 
is  implicit  in  these  procedures;  for  example,  one  such  procedure  might  be: 

//  the  abstract  operator  is  (MAKE  COFFEE) , 
then  expand  it  to  the  operators  (BOIL  WATER) ,  (GRIND  COFFEE) , 

(PUT  COFFEE  IN  FILTER),  (POUR  WATER  THROUGH). 

The  problem  that  NOAH  is  to  solve  determines  what  knowledge  will  be 
represented  in  these  procedures;  the  preceding  procedure  may  be  appropriate 

Level  1: Achieve  (ON  A  B) 

(CLEAR  A) 

1       L 
Level  2: 

A   T 
Put  A  on  B 

(CLEAR  B) 

Figure  Dl-1.     An  action  hierarchy  (in  a  blocks  world). 
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for  the  coffee  domain  but  not  for  any  other.  Since  these  procedures  contain  so 
much  knowledge  about  the  problem  domain,  they  are  called  SOUP  functions, 
for  Semantics  of  User  Problem.  They  are  written  in  an  extension  of  QLISP. 

Expanding  the  Procedural  Net  with  SOUP  Functions 

Consider  again  the  simple  blocks- world  action  hierarchy  in  Figure  Dl-1. 
To  achieve  it,  and  to  solve  simple  blocks  problems,  two  SOUP  functions  are 

required.  One,  shown  in  Figure  Dl-2,  expands  any  goal  of  the  form  (ACHIEVE 
(ON  X  Y) ) ,  and  the  other  expands  any  goal  of  the  form  (CLEAR  X)  (these  are 
the  only  functions  required).  The  main  goal  of  the  problem  is  associated  with 
both  functions,  since  at  the  outset  of  the  problem  it  is  not  known  which  will 
apply.  However,  only  (PUTON  X  Y)  matches  the  pattern  of  the  main  goal,  so 

only  it  is  applied.  (See  Article  VI.A,  in  Vol.  II,  for  a  discussion  of  pattern- 
directed  invocation  of  procedures  in  PLANNER.) 

Applying  (PUTON  X  Y)  to  the  main  goal  of  the  problem  generates  three 
subgoals.  The  PGOAL  forms  the  basis  for  constructing  subgoals;  when  a  PGOAL 
is  activated,  a  new  node  is  generated  at  the  next  level  in  the  net  whose  name 

is  the  PGOAL's  first  argument,  for  example,  (CLEAR  X).  The  three  PGOALs  in 
PUTON  create  the  nodes  (CLEAR  A) ,  (CLEAR  B) ,  and  (Put  A  on  B) .  The  first  two 

are  conjunctive,  as  is  specified  by  the  "AND"  in  the  function.  NOAH  does  not 
choose  an  order  to  attain  them  but  assumes  they  may  be  attained  in  parallel 
and  thus  surrounds  them  with  split  and  join  nodes. 

The  function  (PUTON  X  Y)  also  specifies  the  effects  of  achieving  these  sub- 
goals.    The  effects  of  applying  CLEAR  to  X  or  Y  is  to  assert  CLEARTOP  for  that 

(PUTON 

(QLAMBDA  (ON  <-X  <-Y) 

(PAND 
(PGOAL  (Clear  X) 

(CLEARTOP  X) 
APPLY 
(CLEAR) ) 

(PGOAL  (Clear  Y) 

(CLEARTOP  Y) 
APPLY 
(CLEAR))) 

(PGOAL  (Put  X  on  top  of  Y) 
(ON  X  Y) 
APPLY  NIL) 

(PDENY  (CLEARTOP  Y)))) 

Figure  Dl-2.     SOUP  code  for  the  blocks  problem. 
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block,  and  the  effect  of  putting  X  on  Y  is  to  DENY  the  assertion  of  (CLEARTOP  Y) . 
These  effects  are  represented  declaratively  in  the  add  list  and  delete  list  of  a 

node.  The  add  list  is  a  list  of  propositions  that  become  true  after  the  goal 
is  achieved,  and  the  delete  list  represents  the  propositions  that  are  no  longer 
true  after  the  goal  is  achieved. 

Finally,  the  SOUP  function  specifies  which  other  SOUP  functions  should 

be  applied  to  expand  the  subgoals  it  has  just  created.  It  suggests  that  the 
appropriate  function  for  the  subgoal  of  clearing  A  or  B  is  CLEAR.  It  makes  no 
such  suggestion  for  the  third  subgoal,  Put  A  on  B,  because  this  goal  can  be 

accomplished  by  a  single  problem-solving  operator  and  need  not  be  further 
expanded.  This  mechanism  increases  the  efficiency  of  problem  solving  and 
helps  to  avoid  backtracking.  Several  SOUP  functions  might  apply  to  a  node 
in  the  procedural  net,  but  the  parent  of  the  node  can  specify,  at  the  time 
the  node  is  created,  which  function  is  to  be  used  to  expand  it.  This  reduces 
search.  (However,  the  user  may  explicitly  cause  NOAH  to  consider  alternatives 
by  using  a  POR  function  inside  a  SOUP  procedure.  In  this  case,  alternative 
expansions  are  generated  in  parallel  until  one  is  seen  to  be  simpler  than  the 
other.) 

The  Concept  of  "State"  in  NOAH 

Problem  solvers  are  typically  regarded  as  searching  through  a  space  of 
states  for  one  that  qualifies  as  a  solution.  One  conception  of  a  state  in  problem 
solvers  like  STRIPS  and  GPS  is  that  a  state  is  a  collection  of  propositions.  New 
states  are  generated  from  old  ones  by  the  application  of  operators;  that  is, 
operators  make  some  old  propositions  false  and  add  new  true  propositions. 
Eventually,  and  depending  on  the  power  of  the  problem  solver,  a  state  will  be 
generated  that  includes  just  the  propositions  required  for  the  problem  to  be 
solved. 

NOAH  can  also  be  characterized  in  this  way,  but  the  knowledge  that  makes 

up  a  state  in  NOAH  is  quite  distributed.  Some  knowledge — that  which  will 
never  have  its  truth  value  changed — is  represented  in  a  world  model.  This 
includes  the  state  of  the  world  that  holds  when  problem  solving  starts.  When 
some  aspect  of  that  state  is  changed,  the  proposition  describing  it  is  removed 
from  the  world  model.  The  changed  state  of  the  world  is  represented  by  the 
propositions  added  to  the  add  list  or  delete  list  of  the  operator  that  changed 

the  state.  Thus,  NOAH  knows  which  aspects  of  its  world  have  not  changed — 
they  are  represented  in  the  world  model — and  it  distributes  its  records  of 
changes  throughout  the  procedural  net. 

Changes  are  summarized  at  each  level  in  the  net  by  a  table  of  multiple 

effects  (TOME),  which  contains  an  entry  for  every  proposition  that  was  asserted 
or  denied  by  more  than  one  node  at  that  level  in  the  net.  TOMEs  are  used 
to  check  for  interactions  between  goals;  if  a  single  proposition  has  its  value 
changed  by  more  than  one  action  in  a  plan,  there  is  a  possibility  of  interference 
between  the  actions. 
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NOAH  uses  programs  called  critics  to  check  for  interferences.  A  critic 
simply  checks  a  TOME  for  the  kinds  of  conflicts  it  is  designed  to  correct. 

When  a  conflict  is  found,  the  critic  has  a  limited  number  (usually  only  one) 
of  corrective  actions  it  can  take.  If  all  of  the  critics  can  successfully  eliminate 
any  conflicts  found,  the  next  level  is  expanded.  There  is  presently  only  a 
limited  ability  to  backtrack  on  failure.  Three  critics  are  described  here. 

The  RESOLVE-CONFLICTS  critic.  This  examines  conjunctive  goals 
that  are  to  be  achieved  in  parallel.  If  an  action  taken  to  achieve  one  goal 
removes  a  precondition  of  an  action  in  the  other,  the  critic  attempts  to  order 
the  actions  so  that  neither  violates  a  precondition  of  the  other.  This  critic 

is  similar  to  the  debugging  procedure  in  HACKER  for  reordering  conflicting 
goals.  The  important  difference  is  that  HACKER  backtracks  and  reorders 
arbitrarily  ordered  operations,  while  this  critic  constructively  orders  goals 
that  were  previously  unordered. 

The  ELIMINATE-REDUNDANT-PRECONDITIONS  critic.  Sometimes 
during  planning,  the  same  operation  gets  specified  twice  when  it  need  be  done 
only  once.  This  critic  fixes  the  problem. 

The  USE-EXISTING-OBJECTS  critic.  Formal  objects,  essentially  place- 
holders, are  used  whenever  there  is  not  a  clear  choice  of  what  value  to  give 

a  variable.  This  critic  will  substitute  a  value  when  a  clear  choice  becomes 

possible  at  a  lower  level  of  planning. 
There  are  other  critics  in  the  system;  some  have  a  general  purpose  like 

those  above,  while  others  are  specifically  designed  for  a  given  domain.  More 
can  be  added  at  any  time.  The  critics  described  here  are  sufficient  for  the 
following  example. 

Planning  in  NOAH 

The  planning  algorithm  of  NOAH  operates  repeatedly  on  the  current 
lowest  level  of  the  procedural  net.  Initially,  a  node  is  constructed  for  the 
goal  NOAH  is  given  as  its  task.  All  SOUP  procedures  are  available  to  expand 
this  node;  expanded  nodes  are  associated  with  a  much  smaller  set  of  SOUP 
procedures  by  the  procedure  that  generated  them.  Once  all  the  nodes  in  the 
current  level  have  been  expanded  to  produce  a  new  level,  critics  check  for 
interactions  before  another  level  of  expansion  is  tried. 

An  Example 

This  example  shows  NOAH  solving  the  three-blocks  problem  that  was  so 
difficult  for  the  planners  in  the  previous  article. 

NOAH's  world  model  contains  the  propositions: 
(ON  C  A) 

(CLEARTOP  B) 

(CLEARTOP  C) 
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This  constitutes  the  starting  state  of  the  problem.  The  goal  is  also  written  as 
a  proposition: 

(AND    (ON  A  B)  (ON  B  C))  . 

Graphically,  the  starting  state  and  the  goal  look  like  this: 

C 

B 

The  PUTON  and  CLEAR  functions  discussed  earlier  are  used  in  this  problem. 
The  first  node  in  the  procedural  net  is: 

Level   1 : Achieve (AND (ON  A  B) (ON  B  C)) 

This  is  expanded  to  two  parallel  actions  by  merit  of  NOAH's  policy  about 
conjunctive  goals:  They  are  not  ordered  until  there  is  some  reason  to  do  so. 

Level  2: 

Achieve  (ON  A  B) 

Achieve  (ON  B  C) 

This  is  a  simple  expansion;  the  critics  can  find  nothing  to  criticize  about  it. 
The  PUTON  function  is  now  used  to  expand  each  of  the  nodes  at  level  2.  (Refer 

back  to  Figs.  Dl-1  and  Dl-2  for  an  explanation  of  how  this  works.)  The 
result  is  shown  in  Figure  Dl-3. 

The  RESOLVE-CONFLICTS  critic  notices  that  node  3  will  delete  a  precon- 
dition of  node  6,  namely,  that  B  is  clear  (node  4),  because  node  3  adds  a 

statement  to  its  delete  list  that  DENYs  (CLEARTOP  B) .  When  a  table  of  multiple 
effects  is  compiled  for  this  level,  NOAH  notices  that  (CLEARTOP  B)  is  implicated 
in  the  effects  of  both  nodes  4  and  6.  Since  NOAH  has  not  committed  itself 

to  achieving  any  of  its  goals  in  a  particular  order,  it  need  not  backtrack  to 
modify  its  plan  in  any  destructive  way.  Instead,  it  uses  this  conflict  as  an 
opportunity  to  introduce  constructively  a  partial  ordering  of  goals:  It  decides 
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1       (CLEAR  A) 

2      (CLEAR  B) 

(CLEAR  B) 

(CLEAR  C) 

Put  A  on  B 

3 

J Put  B  on  C 

Figure  Dl-3.     Level  3  before  criticism,  with  nodes  numbered  for  reference. 

to  accomplish  node  3  after  it  has  done  everything  else.  Figure  Dl-4  shows 
this  reordering. 

Next,  the  REDUNDANT-PRECONDITIONS  critic  observes  that  nodes  2  and 
4  are  redundant  and  eliminates  node  2.  This  step  is  shown  in  Figure  Dl-5. 

NOAH  next  expands  the  (CLEAR  A)  goal  at  level  3.  Actually,  that  is  the 
only  goal  that  remains  to  be  expanded,  since  B  and  C  have  been  clear  from 
the  start  of  the  problem,  and  the  (Put  X  on  Y)  goals  are  achieved  by  simple 

problem-solving  operators.  To  achieve  (CLEAR  A),  NOAH  needs  to  move  C 
off  of  it  and  put  C  someplace;  it  does  not  know  where,  so  it  makes  up  a 
placeholder.  Block  C  cannot  be  moved  unless  it  is  clear,  so  the  final  sequence 

1       (CLEAR  A) 

(CLEAR  B) 

4      (CLEAR  B) 

5       (CLEAR  C) 

Put  A  on  B 

Put  B  on  C 

Figure  Dl-4.     Level  3  after  the  RESOLVE-CONFLICTS  criticism. 
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Figure  Dl-5.     Level  3  after  all  criticism. 

that  NOAH  plans  in  order  to  clear  A  is  (CLEAR  C),  (Put  C  on  Objectl).  This 

is  illustrated  in  Figure  Dl-6. 
NOAH  notices  that  node  6  may  interfere  with  its  latest  goal,  so  the 

RESOLVE-CONFLICTS  critic  decides  to  order  node  6  after  it  has  achieved 

(Put  C  on  Objectl).  See  Figure  Dl-7. 
Finally,  the  ELIMINATE-REDUNDANT-PRECONDITIONS  critic  notices  that 

(CLEAR  C)  is  mentioned  twice  in  the  plan.  It  eliminates  one  of  the  nodes.  The 

final  plan  is  shown  in  Figure  Dl-8. 

Figure  Dl-6.     Level  4  before  criticism. 
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Figure  Dl-7.     Level  4  after  the  RESOLVE-CONFLICTS  criticism. 

Conclusion 

NOAH  plans  with  a  combination  of  procedural  and  declarative  knowledge. 

Initially,  all  NOAH's  knowledge  is  in  procedural  form — local  domain  knowl- 
edge in  the  SOUP  code  and  global  knowledge  in  the  critics.  At  the  outset  of 

planning,  NOAH  is  given  a  world  model  and  a  goal  that  it  develops  into  a 

hierarchical  procedural  net.  As  it  plans,  it  records  in  a  declarative  form — in 
add  lists  and  delete  lists — knowledge  to  help  it  avoid  interaction  problems. 
To  reason  about  interactions  and  possible  orderings  of  goals,  this  information 
is  summarized  in  a  table  of  multiple  effects.  Critics  consult  these  tables  after 
each  level  has  been  expanded;  they  order  and  alter  the  plan  constructively. 

References 

NOAH  is  discussed  in  detail  in  Sacerdoti's  doctoral  dissertation  (printed 
as  an  SRI  technical  note,  1975).  NOAH  has  been  extended  by  Tate  (1976),  and 
a  distributed  implementation  is  discussed  by  Corkill  (1979). 

(CLEAR  C) 
Put  C  on 

Objectl 

s J Put  B  on  C Put  Aon  B 

(CLEAR  B) 

Figure  Dl-8.     Level  4,  final  plan. 
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THE  PREVIOUS  articles  have  demonstrated  the  utility  of  problem-reduction 

in  planning — dividing  a  problem  into  subproblems  that  are  more  easily  solved. 
But  problem  reduction  has  an  associated  liability,  namely,  that  subproblems 
are  rarely  independent.  Solving  one  may  prevent  solving  another.  A  number 
of  approaches  to  this  problem  have  been  presented  in  the  previous  articles. 

HACKER  and  INTERPLAN  used  destructive  reordering  of  subgoals;  Walding- 

er's  system  employed  a  more  constructive  goal-regression  method  (see  Article 
XV.C).  In  NOAH  (Article  XV.Di),  the  conceptual  leap  was  to  avoid  linear 
orderings  of  subproblems  as  long  as  possible  and  to  plan  initially  with  abstract 
goals  that  were  refined  in  such  a  way  as  to  avoid  subproblem  interactions. 

In  this  article,  we  discuss  the  MOLGEN  system — a  knowledge- based  pro- 
gram that  assists  molecular  geneticists  in  planning  experiments.  There  are 

actually  two  MOLGEN  planners,  one  developed  by  Friedland  (1979;  see  also 

Article  XV.E)  and  another,  the  one  this  article  is  about,  by  Stefik  (1980). 

MOLGEN  extends  the  work  on  hierarchical  planning  to  include  a  layered  con- 
trol structure  for  meta- planning.  Plans  are  constructed  in  one  layer,  deci- 

sions about  the  design  of  the  plan  are  made  in  a  higher  layer,  and  strategies 
that  dictate  the  design  decisions  are  made  at  a  still  higher  level.  A  key  idea 
in  MOLGEN  is  to  represent  the  interactions  between  subproblems  explicitly 
and  declaratively,  so  that  MOLGEN  can  reason  about  them  and  use  them  to 
guide  its  planning.  The  structure  that  represents  an  interaction  is  called  a 
constraint. 

Levels  of  Planning 

Control  of  planning  in  MOLGEN  switches  between  three  layers,  or  spaces. 
The  lowest  layer,  called  the  planning  space,  contains  a  hierarchy  of  operations 

and  objects  typical  in  a  gene-splicing  experiment.  At  the  lowest  level  of  this 
layer  are  bacteria,  drugs,  and  laboratory  operations,  which  are  represented 
by  knowledge  structures  called  units  (Stefik,  1979);  generalizations  of  these 
include  the  general  objects  gene,  organism,  and  plasmid  and  the  general 
laboratory  operations  merging,  amplifying,  reacting,  and  sorting.  Initially, 
MOLGEN  plans  experiments  with  these  abstract  objects  and  operators.  As  it 
chooses  specific  operators  or  objects  to  replace  the  abstract  ones,  it  introduces 
constraints  into  its  plan.  For  example,  it  plans  at  an  abstract  level  to  sort 
two  kinds  of  bacteria.  At  a  later  time,  sort  is  replaced  by  screen,  which  sorts 

bacteria  by  killing  one  group  of  them  with  an  antibiotic.  This  decision  results 
in  the  constraint  that  the  antibiotic  be  potent  against  one  kind  of  bacterium 
but  not  the  other. 

551 
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The  utility  of  hierarchical  planning  is  illustrated  by  the  preceding  exam- 
ple. It  shows  that  although  a  planning  decision  to  use  a  particular  operation 

affects  later  decisions  about  the  kinds  of  objects  to  use,  this  interaction  is 
absent  as  long  as  the  plan  is  formulated  at  an  abstract  level.  Using  hierarchical 
planning,  a  complete,  abstract  plan  is  constructed  without  attention  to  these 
interactions.  Then,  as  steps  in  the  plan  are  refined,  the  interactions  that 
arise  are  explicitly  represented  as  constraints  and  are  resolved.  The  act  of 
refining  plan  steps  involves  replacing  an  abstract  operator  with  a  more  specific 
one  or  replacing  an  abstract  object  with  a  more  specific  one.  If  hierarchical 
planning  were  not  used,  every  planning  decision  would  introduce  interactions; 
each  decision  would  affect  the  decisions  following  it.  Early  planners  like 
those  discussed  in  Article  XV.C  produced  initial  plans  that  were  crippled 
by  interactions  and  then  attempted  to  reorder  planning  steps  to  alleviate 
them.  These  planners  were  said  to  overconstrain  their  plans;  in  contrast, 
MOLGEN  and  NOAH  (see  Article  XV.Dl)  produce  under  constrained  plans  and 
add  constraints  constructively. 

The  middle  layer  at  which  MOLGEN  plans  is  called  the  design  space.  At 
this  level,  MOLGEN  makes  decisions  about  how  its  plan  is  to  develop.  The 
operators  of  the  design  space  dictate  steps  taken  in  the  design  of  a  plan,  for 
example,  proposing  a  goal  or  refining  an  operator.  The  objects  in  this  space 
include  goals  and  constraints.  MOLGEN  reasons  about  plans  with  the  objects 
and  operators  in  the  design  space,  just  as  it  reasons  about  molecular  genetics 
with  the  objects  and  operators  in  the  planning  space. 

The  top  layer  of  planning  for  MOLGEN,  the  strategy  space,  includes  four 
very  general  operators  that  dictate  planning  strategy.  These  are  FOCUS  and 
RESUME,  which  together  propose  new  planning  steps  and  reactivate  old  ones 

that  have  been  "put  on  hold,"  and  GUESS  and  UNDO,  which  make  planning 
decisions  heuristically  when  there  is  not  sufficient  information  to  focus  or  to 
resume.  UNDO  is  a  backtracking  operator  that  undoes  decisions  that  have 
over  constrained  a  plan.  Much  of  the  research  effort  in  MOLGEN  has  gone 
into  avoiding  backtracking  by  developing  underconstrained  plans,  but  in  the 
rare  cases  where  a  guess  must  be  made  about  a  plan  step  (e.g.,  choosing  the 
identity  of  a  bacterium),  the  unforeseen  constraints  introduced  by  the  choice 
may  force  backtracking  and  a  different  choice. 

Of  the  three  layers  of  planning  in  MOLGEN,  only  the  planning  space  is 
unique  to  a  domain,  in  this  case,  molecular  genetics.  The  design  and  strategy 
spaces  contain  objects  and  operators  that  apply  to  planning  in  any  domain. 

Control  of  Planning  in  MOLGEN 

The  three  layers  discussed  above  constitute  a  hierarchically  organized  con- 
trol structure  for  MOLGEN.  At  the  highest  level,  the  strategy  space,  decisions 

are  made  about  the  style  of  planning.  Two  styles  are  available,  least  com- 
mitment and  heuristic.   During  the  least-commitment  cycle,  MOLGEN  sends 
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a  message  to  the  design  operators  in  the  design  space  asking  whether  they 
can  suggest  any  tasks  to  do.  Tasks  include  proposing  a  goal  (after  noticing 
a  difference  between  the  current  state  and  the  goal  state),  refining  an  object 
or  an  operator,  and  formulating  a  constraint.  MOLGEN  may  fail  to  find  a 
task  for  which  it  has  the  constraints  to  proceed  successfully;  for  example,  it 

may  propose  to  refine  an  object — a  bacterium — to  a  particular  species  of  bac- 
terium, but  it  may  lack  the  guarantee  that  this  refinement  will  not  interfere 

with  later  steps  in  the  plan.  In  this  case,  it  will  suspend  this  step  and  look  for 
another.  If  MOLGEN  cannot  find  any  design  steps  to  execute  immediately,  it 
checks  whether  any  previously  suspended  steps  can  be  executed;  information 

may  have  become  available  since  their  suspension  that  justifies  their  reactiva- 

tion. The  least-commitment  cycle  oscillates  between  finding  a  planning  step 
to  execute  and  reactivating  suspended  steps  in  the  light  of  new  information. 
It  is  called  least  commitment  because  it  will  not  commit  itself  to  a  plan  step 
that  might  have  to  be  abandoned  at  some  later  point  in  the  development  of 
the  plan.  If  MOLGEN  cannot  find  a  plan  step  that  satisfies  the  requirements 

of  the  least-commitment  cycle,  it  switches  to  the  heuristic  cycle  in  which  it 
guesses  a  plan  step. 

MOLGEN  uses  three  kinds  of  operations  on  constraints.  The  first,  called 
constraint  formulation,  involves  identifying  interactions  between  solutions  for 
goals.  Often  the  goals  are  to  refine  abstract  objects  or  operators;  for  example, 
the  goal  of  sorting  two  kinds  of  bacteria  is  achieved  by  screening  one  of  them 
with  an  antibiotic.  When  this  solution  is  proposed,  a  constraint  is  formulated, 
saying  that  the  choice  of  bacterium  and  antibiotic  is  now  constrained  by  the 
requirement  that  one  kind  of  bacterium  should  be  susceptible  to  the  antibiotic. 

The  second  operation  with  constraints  is  called  constraint  propagation. 
This  is  the  creation  of  new  constraints  from  old  ones,  which  helps  refine 
abstract  parts  of  a  plan.  For  example,  the  single  constraint  described  above 
reduces  the  number  of  bacteria  or  antibiotics  that  MOLGEN  is  considering, 

because  not  all  bacteria  are  susceptible  to  all  antibiotics.  Constraint  propaga- 
tion collects  other  constraints  on  the  bacterium  and  antibiotic,  formulated 

perhaps  in  other  parts  of  the  plan.  As  a  result  of  constraint  propagation, 

abstract  plan  steps  that  might  have  been  refined  in  dozens  of  ways  are  con- 
strained to  have  a  relatively  small  number  of  potential  refinements.  Often, 

individual  subproblems  are  constrained  to  some  extent,  but  not  enough  to  nar- 
row down  the  space  of  solutions  significantly.  However,  when  the  individual 

constraints  on  individual  subproblems  are  propagated,  the  sum  of  the  con- 
straints often  eliminates  one  or  more  solutions.  For  example,  during  a  day, 

a  person  may  have  two  goals:  to  get  some  exercise  and  to  get  to  school  in  a 
short  time  for  a  class.  The  first  problem,  to  get  exercise,  is  constrained  only 
by  the  requirement  that  it  is  energetic;  the  second  problem,  to  get  to  school, 
is  constrained  only  by  the  requirement  that  it  take  a  short  time.  Propagating 
these  constraints  leads  to  the  obvious  solution  that  one  should  run  or  ride  a 
bike  to  school. 
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Following  constraint  formulation  and  propagation,  MOLGEN  seeks  to 
satisfy  constraints.  In  the  domain  of  molecular  genetics,  this  often  involves 
replacing  an  abstract  object  with  a  particular  one  that  satisfies  the  constraints 
put  on  it.  For  example,  it  may  involve  replacing  the  object  bacterium  with 
e.  coli  and  replacing  the  object  antibiotic  with  tetracycline.  Whatever  the 
results  of  constraint  satisfaction,  it  is  facilitated  by  constraint  formulation 
and  propagation,  which  together  narrow  down  the  space  of  refinements  that 
is  considered  for  each  subproblem. 

The  formulation-propagation-satisfaction  cycle  is  a  constructive  process; 
abstract  parts  of  plans  usually  are  refined  only  when  there  are  constraints 
specifying  the  refinement.  The  antithesis  of  this  constructive  cycle  is  found 
in  rare  cases  in  which  MOLGEN  lacks  the  constraints  needed  to  refine  a  plan 
step.  It  guesses  a  refinement  that  may  be  shown  at  a  later  time  to  interfere 
with  other  parts  of  the  plan,  in  which  case  the  refinement  is  abandoned  for 
another.  This  process  is  destructive,  since  it  may  involve  throwing  away  old 
planning  decisions. 

An  Example 

MOLGEN  has  been  used  to  find  plans  for  the  rat-insulin  experiment 
(Stefik,  1980).  Many  organisms  produce  insulin  that  is  biologically  active 
in  humans  but  can  sometimes  cause  allergic  reactions.  An  alternative  to 
extracting  insulin  from  the  pancreas  of  animals  is  to  design  a  bacterium  that 
produces  insulin.  No  bacteria  are  known  to  produce  insulin  naturally,  so  one 
must  be  created.  To  do  this,  the  gene  coding  for  insulin  production  in  rats  was 
spliced  into  bacteria,  altering  the  genetic  makeup  of  the  bacteria  and  causing 
them  to  produce  insulin.  This  experiment  was  done  in  1977;  it  was  selected 
as  a  test  case  for  MOLGEN,  which  successfully  designed  four  different  plans 
for  the  experiment. 

The  major  steps  in  the  experiment  involved  finding  a  medium  in  which  to 
embed  the  insulin  gene,  allowing  some  bacteria  to  absorb  this  medium,  killing 
off  the  bacteria  that  did  not  absorb  the  medium,  and  growing  the  culture  of 

those  that  did.  The  plan  is  simple  at  this  abstract  level — that  is  the  advantage 
of  hierarchical  planning.  The  complete  plan  is  actually  quite  complicated  and 
involves  many  constraints. 

MOLGEN  represents  the  goal  of  the  experiment  using  the  most  abstract 
objects  it  knows  of.  The  goal  is  to  obtain  a  culture  with 

ORGANISMS  =  (A  Bacterium  with 

EX0S0MES  =  (A  Vector  with 

GENES  =  (RAT-INSULIN))). 

Planning  in  MOLGEN  is  driven  by  means-ends  analysis,  which  is  to  say 
that,  at  each  step  of  the  planning  process,  MOLGEN  seeks  operators  that  will 
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reduce  the  differences  between  the  current  state  of  the  plan  and  its  goal. 
In  this  case,  MOLGEN  makes  a  very  abstract  plan  to  build,  from  available 
objects,  the  organism  specified  in  the  goal.  It  plans  two  merges  of  objects 

to  achieve  its  goal.  The  first  merge  involves  the  insulin  gene  and  a  vector  (a 
medium  for  carrying  the  gene  into  the  body  of  a  bacterium),  and  the  second 
merge  involves  the  results  of  the  first  merge  and  the  bacterium: 

Plasmid  (a  Vector)         Rat-Insulin  Gene 

Merge 

Bacterium         (Object  1) 

Merge 

(Goal) 

Next,  MOLGEN  refines  the  two  abstract  merges  to  more  specific  operations. 
The  second  merge,  by  which  a  bacterium  absorbs  a  plasmid  carrying  new 
genes,  corresponds  to  a  laboratory  step  called  a  transformation.  But  MOLGEN 
knows  that  not  all  plasmids  are  absorbed  by  all  bacteria,  so  it  formulates  the 
constraint  that  they  be  compatible.  MOLGEN  also  knows  that  transformation 
operators  work  by  mixing  plasmids  and  bacteria  together  in  a  solution  and 
that  some  bacteria  will  not  absorb  the  plasmid.  This  leads  to  a  difference 
between  the  goal  of  the  experiment  and  the  state  resulting  from  the  plan:  The 
goal  is  to  have  a  single  culture  of  bacteria  carrying  a  particular  gene,  but  the 
plan  results  in  a  culture  of  bacteria  in  which  some  bacteria  do  not  carry  the 

gene. 
Since  planning  is  driven  by  differences  between  the  current  state  and  the 

goal,  MOLGEN  tries  to  solve  the  problem  of  getting  rid  of  the  unwanted 
bacteria.  To  do  this,  it  proposes  to  sort  the  culture.  Sort  is  an  abstract 
operator  that  is  next  refined  to  screening  the  bacteria  with  an  antibiotic.  Note 
that  the  antibiotic  is  not  specified  because  the  bacterium  is  not.  However,  the 
refinement  of  sort  to  screen  results  in  two  constraints:  that  the  bacteria  that 

absorb  the  plasmid  should  resist  the  antibiotic  and  that  the  bacteria  that  do 
not  absorb  the  plasmid  should  perish  from  the  antibiotic. 

At  this  point,  MOLGEN  propagates  the  constraints  about  antibiotic  resis- 
tance. The  result  of  the  propagation  is  that  both  constraints  on  the  bacteria 

are  replaced  by  a  single  constraint  on  the  plasmid  itself.  The  reasoning  is 
that,  since  the  only  difference  between  the  two  kinds  of  bacteria  is  that  one 
carries  the  plasmid,  the  plasmid  itself  must  confer  immunity  to  the  antibiotic. 
Notice  that  this  reasoning  does  not  change  any  of  the  plan  steps  that  have 
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already  taken  place,  but  it  does  constrain  MOLGEN  to  include  a  resistance 
gene  for  an  antibiotic  in  the  plasmid. 

So  far,  MOLGEN  has  done  a  little  bit  of  planning  at  an  abstract  level 
and  a  lot  of  reasoning  about  how  to  refine  the  abstract  plan  into  a  detailed 
one.  It  has  proposed  a  merge  of  a  gene  and  a  plasmid,  a  transformation 
of  that  result  into  two  bacteria,  and  a  screening  of  the  bacteria  to  obtain 
the  desired  one.  The  identities  of  the  bacteria,  the  screening  agent,  the 
resistance  gene,  and  the  plasmid  that  will  carry  the  genes  are  unknown,  but 
MOLGEN  knows  some  things  about  these  objects  in  the  form  of  constraints. 
For  example,  the  resistance  gene  and  the  antibiotic  must  be  compatible,  and 
the  plasmid  must  be  compatible  with  the  bacterium.  As  MOLGEN  continues 
to  plan,  particularly  to  plan  how  to  insert  the  desired  genes  in  a  plasmid, 
other  constraints  will  be  formulated. 

Eventually,  MOLGEN  will  be  able  to  satisfy  constraints.  By  then,  it  will 
have  refined  the  plan  to  a  point  where  the  only  bacterium  that  it  knows 
will  satisfy  all  the  constraints  is  e.  coli.  Similarly,  it  will  have  found  just 
one  method  of  inserting  genes  into  a  plasmid  (though  this  was  not  done 
through  constraint  propagation  but  because  MOLGEN  knows  of  only  one  such 

method).  It  will  have  found  two  antibiotics — tetracycline  and  ampicillin — and 
four  plasmids  that  satisfy  the  constraints.  Thus,  it  finds  four  solutions  to  the 

rat-insulin  problem. 

MOLGEN's  solution  to  the  rat-insulin  experiment  was  more  complex  than 
the  abbreviated  version  presented  here.  In  all,  a  dozen  constraints  emerged 
during  the  planning  process.  The  development  of  the  plan  was  complex, 
requiring  about  30  pages  of  printout  to  document. 

Conclusion 

We  have  seen  that  MOLGEN  can  develop  a  complex  plan  without  ever 

undoing  a  planning  decision.  Its  least- commitment  strategy  dictates  that  it 
defer  decisions  for  which  it  lacks  constraints,  and,  thus,  it  rarely  commits 
itself  to  a  decision  that  it  must  later  undo. 

MOLGEN  plans  at  different  levels  of  abstraction,  and  it  also  works  at 

three  levels  of  planning  actions  to  accomplish  meta- planning:  At  the  highest 
level  it  makes  strategy  decisions,  at  the  middle  level  it  makes  design  decisions, 
and  at  the  lowest  level  it  decides  how  to  instantiate  its  design. 
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E.     REFINEMENT  OF  SKELETAL  PLANS 

ONE  WAY  to  develop  methods  for  AI  systems  is  to  observe  the  methods 
that  humans  use.  Such  an  approach  is  typically  taken  by  cognitive  scien- 

tists (see  Chap.  Xl)  to  develop  models  of  cognition.  This  article  describes  a 
molecular  genetics  (MOLGEN)  planning  system  developed  by  Peter  Friedland 

after  studying  human  experiment-planning  behavior.  The  major  observation 
of  the  study  was  that  scientists  rarely  invent  from  scratch  the  plan  for  an 
experiment.  Most  often,  they  begin  with  an  abstract,  or  skeletal,  plan  that 
contains  the  basic  steps.  Then  they  instantiate  each  of  the  plan  steps  by 
a  method  that  will  work  within  the  environment  of  the  particular  problem. 
Skeletal  plans  range  from  general  to  specific,  depending  on  the  experimenter 
and  the  problem.  This  MOLGEN  system  is  one  of  two  such  systems  devel- 

oped at  Stanford  University;  the  other,  by  Mark  Stefik,  is  discussed  in  Article 
XV.D2. 

This  article  gives  an  example  of  skeletal  plans  in  the  laboratory  and 
discusses  the  implementation  of  the  method  in  the  MOLGEN  system  for  the 
design  of  experiments  in  molecular  biology. 

Two  Examples  of  Analysis  Experiments 

As  an  introduction  to  the  skeletal-plan  method,  two  simplified  and  related 
examples  of  analysis  experiments  in  molecular  biology  are  presented,  namely, 

DNA  sequencing  and  restriction-site  mapping.  Both  experiments  involve  simi- 
lar sequences  of  actions;  consequently,  they  are  discussed  as  variants  of  a  single 

skeletal  plan. 

DNA  sequencing:  The  problem.  DNA  is  composed  of  a  linear  string 
of  molecules  called  bases.  There  are  four  possible  bases,  adenine,  cytosine, 
guanine,  and  thymine,  usually  abbreviated  A,  C,  G,  and  T.  The  goal  of  a 
sequencing  experiment  is  to  determine  which  of  the  four  bases  is  present  at 
each  position  on  the  molecule.  The  base  sequence  is  extremely  important  in 
determining  both  the  biological  function  and  the  physical  structure  of  the 
entire  DNA  molecule. 

DNA  sequencing:  The  solution.  One  of  the  best  current  experimental 

plans  for  DNA  sequencing,  known  as  Maxam-Gilbert  sequencing  (Maxam  and 
Gilbert,  1974),  is  as  follows: 

1.  Label  one  end  of  the  molecule  with  radioactive  phosphorus.  This  gives 

the  experimenter  a  "handle"  for  later  locating  pieces  of  the  molecule 
attached  to  the  radioactive  end.  Radioactive-phosphorus  labeling  is  the 
current  method  of  choice  for  end-labeling  of  DNA. 

557 
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2.  Divide  the  sample  into  four  portions.  For  each  portion,  apply  a  hydrazine- 
based  chemical  reaction  that  cuts  the  molecule  at  a  particular  base. 
Control  the  reaction  so  that,  on  the  average,  one  base  is  cut  per  molecule. 
Each  of  the  four  samples  will  then  contain  a  population  of  molecules  of 
lengths  determined  by  the  base  that  was  cut  in  that  sample. 

3.  Determine  the  lengths  of  the  molecules  in  each  population  with  a  labeled 

end.  This  is  done  by  a  technique  called  acrylamide  gel  electrophoresis, 

which  is  currently  the  most  accurate  method  for  the  separation  of  mole- 
cules by  length. 

For  example,  suppose  the  starting  sequence  was  AGTTCGA.  The  sample 
for  which  the  molecule  was  cut  at  the  A  base  would  show  labeled  molecules 

of  lengths  0  and  6,  the  C  sample  would  show  molecules  of  length  4,  the  G 

sample  would  show  molecules  of  lengths  1  and  5,  and  the  T  sample  would 

show  molecules  of  lengths  2  and  3.  The  sequence  can  now  be  "read"  directly 
from  these  lengths. 

Restriction-site  mapping:  The  problem.  Restriction  enzymes  are 
used  to  cut  DNA  molecules  at  specific  locations.  The  locations  are  specified 

by  a  pattern  of  four,  five,  or  six  bases  called  a  restriction  site.  The  goal  of  a 

mapping  experiment  is  to  find  all  of  the  restriction  sites  for  common  enzymes 

on  a  molecule.  This  information  tells  the  molecular  geneticist  which  enzymes 

to  use  or  not  to  use  in  a  future  experiment  that  requires  restriction  cutting. 

Restriction- site  mapping:  The  solution.  One  of  the  best  current 
methods  (Smith  and  Birnsteil,  1976)  is  as  follows: 

1.  Label  the  end  with  radioactive  phosphorus  as  above. 

2.  Divide  the  sample  into  as  many  new  samples  as  restriction  enzymes  for 

which  a  map  is  desired.  Then,  for  each  sample,  do  a  "partial  digest"  with 
one  restriction  enzyme.  This  means  to  control  the  laboratory  conditions 

(temperature,  pH,  time  of  application)  so  that  only  one  or  two  sites  are 
cut  on  the  average  molecule.  As  above,  a  population  of  molecules  will 
exist  in  each  sample. 

3.  Determine  the  length  of  the  labeled  molecules  by  means  of  electrophore- 
sis, as  above.  The  length  measurements  will  locate  each  of  the  restriction 

sites  for  each  enzyme  tested. 

The  Skeletal  Plan  Refinement  Method 

Clearly,  the  two  experiments  described  above  are  closely  related.  Each 

had  the  goal  of  locating  the  position  of  a  specific  site — either  a  single  base  or 

a  string  of  bases — on  the  molecule.  Each  had  the  same  design;  they  differed 
only  in  the  middle,  cutting  step.  Both  experiments  sprang  from  the  same 
basic  idea: 
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1.  Label  one  end  of  the  molecule; 

2.  Cut  with  an  agent  that  makes  an  average  of  one  cut  per  molecule  at  the 
sites  that  are  being  mapped; 

3.  Determine  the  length  of  the  labeled  fragments. 

This  is  an  abstracted  or  skeletal  plan  that  is  useful  for  locating  any  type  of 
site  for  which  there  is  a  suitable  cutting  agent. 

The  plan  is  transformed  into  an  actual  design  for  an  experiment  by 

refining  each  step  in  the  plan — by  instantiating  it  with  a  method  that  will 
actually  work  in  the  laboratory.  The  first  and  third  steps  of  the  experiments — 

phosphorus  labeling  and  gel  electrophoresis — were  chosen  because  they  were 
the  best  methods  available.  The  choice  of  the  second  step  was  directed  by  the 
specific  choice  of  site  to  be  mapped. 

The  idea  here,  again,  is  that  scientists  rarely  invent  an  experimental 
design  from  scratch.  They  find  a  strategy,  a  skeletal  plan,  that  was  useful 
for  some  related  experimental  goal  and  then  instantiate  it  with  the  proper 
laboratory  methods  for  their  specific  goal  and  laboratory  conditions.  The 
skeletal  plan  may  be  very  specific  if  the  goal  is  similar  to  one  for  which  a  very 
good  experiment  has  already  been  designed.  It  may  also  be  extremely  general, 
as  was  the  plan  in  the  example  above. 

Implementation  in  MOLGEN 

The  skeletal  plan  method  is  used  successfully  in  the  MOLGEN  system. 

Since  the  method  depends  heavily  on  domain  knowledge,  a  well-organized, 
expert  knowledge  base  is  the  central  part  of  the  system.  The  Unit  package 

(Stefik,  1979)  is  used  by  domain  experts  to  construct  a  knowledge  base  con- 
taining both  a  selection  of  skeletal  plans  and  the  objective  and  procedural 

knowledge  necessary  to  instantiate  the  plans  competently.  The  Unit  package 
permits  the  domain  experts  to  describe  such  information  in  a  language  natural 
to  them  as  molecular  biologists. 

The  two  major  steps  in  planning  by  incremental  refinement  of  skele- 
tal plans — plan  selection  and  plan-step  refinement — are  described  separately 

below. 

Choosing  a  skeletal  plan.  Skeletal  plans  are  specified  at  many  levels  of 
generality.  At  the  most  general  level,  there  are  only  a  few  basic  plans.  These 
are  used  as  fallbacks  when  plans  that  are  easier  to  refine  and  that  are  more 
specific  cannot  be  found.  The  problem  is  not  just  one  of  finding  a  plan  that 
might  provide  a  satisfactory  solution,  but  of  finding  a  plan  that  will  require 
the  least  refinement  work.  Skeletal  plan  finding  reduces  to  a  simple  lookup 
when  exactly  the  same  problem  has  been  solved  before  (even  if  this  were  done 
with  a  completely  different  set  of  laboratory  and  molecular  conditions),  but 
it  becomes  more  difficult  when  only  related  problems  have  been  solved.  Then 
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the  task  may  be  to  decide  whether  to  choose  a  detailed  plan  for  a  related 
problem  or  to  choose  a  more  general  plan  for  a  class  of  problems. 

The  MOLGEN  work  has  only  begun  to  treat  these  problems  of  plan 
selection.  Plans  are  classified  according  to  their  perceived  utility  by  molecular 
geneticists.  The  specificity  of  the  utilities  (any  given  skeletal  plan  could  have 
many)  is  totally  up  to  the  experts.  The  knowledge  base  contains  also  a 
taxonomy  of  goals  in  molecular  biology.  When  a  problem  is  described  to  the 

planning  system,  a  search  is  made  of  the  skeletal-plan  utilities  to  see  if  any 
exactly  match  the  experimental  design  goal.  If  several  do,  all  are  tried;  if 
none  does,  a  more  general  goal  is  chosen  from  the  taxonomy  and  the  process 
is  repeated. 

Refining  the  skeletal  plan.  Refinement  of  the  skeletal  plan  is  the 

process  of  selecting  an  appropriate  ground-level  instantiation  for  each  step 
in  the  abstract  plan.  In  the  example  above,  the  ground-level  instantiation 
of  labeling  was  radioactive  phosphorus.  This  refinement  process  is  usually 
hierarchical;  a  scientist  might  decide  first  on  the  method  of  cutting,  then  on 
a  cutting  enzyme,  and  finally  on  a  specific  enzyme. 

Knowledge  about  laboratory  techniques  is  organized  hierarchically  in 
MOLGEN.  There  were  several  broad  classes  of  techniques,  with  as  many 
subclasses  as  are  deemed  natural  by  the  domain  experts.  In  all,  about  400 
different  techniques  are  described  in  the  knowledge  base. 

The  MOLGEN  system  proceeds  linearly  through  the  steps  of  a  selected 
skeletal  plan.  The  steps  are  matched  to  the  techniques  in  the  knowledge  base 

by  name,  synonym,  or  function  of  the  step.  A  specific  technique — as  specific 
as  can  be  directly  determined  from  the  plan  step — is  chosen,  and  then  the 
instantiation  process  begins. 

The  knowledge  to  do  the  instantiation  is  stored  in  the  form  of  an  English- 
like procedural  language  within  the  knowledge  base.  This  knowledge  repre- 

sents three  major  criteria  for  plan-step  instantiation.  In  order  of  priority  of 
application  they  are: 

1.  Will  the  technique,  if  successfully  applied,  carry  out  the  specific  goal  of 
the  step;  for  example,  will  a  separatory  method  not  just  do  some  sort  of 
separation,  but  also  separate  all  circular  DNA  from  all  linear  DNA? 

2.  If  the  technique  satisfies  the  first  criterion,  can  it  be  successfully  applied 
to  the  given  molecule  under  the  given  laboratory  conditions? 

3.  Is  the  technique  the  "best"  of  those  that  passed  the  first  two  tests? 
This  choice  point,  while  in  some  sense  the  least  important  (since  all 
techniques  that  make  it  to  this  point  will  work),  seems  to  be  the  hardest 
for  scientists  to  define.  All  the  scientists  studied  gave  somewhat  different 

metrics  involving  reliability,  convenience,  accuracy,  cost,  and  time  to 
carry  out  the  technique.  The  heuristic  chosen  as  most  representative 

gave  greatest  weight  to  four-point  scales  of  convenience  and  reliability 
as  an  initial  filter. 
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This  knowledge  is  used  to  proceed  down  a  level  in  the  technique  hierarchy; 
the  process  is  repeated  until  an  actual  instance  of  a  technique  is  chosen.  At 
higher  levels  of  the  hierarchy  (i.e.,  with  less  refined  plans),  a  premium  is  set 
on  achieving  goals;  but  at  lower  levels  of  the  hierarchy,  a  premium  is  set  on 
making  plans  efficient  and  elegant. 

This  strategy-finding  process  is  common  to  many  disciplines.  In  his 

book  How  to  Solve  It,  Polya  (1957)  describes  "mobilizing"  problem-solving 
knowledge: 

Many  of  these  questions  and  suggestions  aim  directly  at  mobilization  of  our 
formerly  acquired  knowledge:  Have  you  seen  it  before?  Or  have  you  seen  the 
same  problem  in  a  slightly  different  form?  Do  you  know  a  related  problem?  Do 

you  know  a  theorem  that  could  be  useful?  (p.  159;  italics  in  original) 

The  idea  is  to  avoid  reinventing  general  strategies  and  to  use  plan  outlines 
that  have  worked  in  the  past  on  related  problems. 

Related  Work 

The  concept  of  a  skeletal  plan  for  experimental  design  has  a  direct  prece- 

dent in  Schank  and  Abelson's  work  in  natural-language  understanding  (see 
Article  IV.F6,  in  Vol.  i).  They  introduce  scripts,  declarative  representations 
of  ordered  sequences  of  events.  The  detailed  knowledge  contained  in  scripts 
is  used  to  understand,  predict,  and  participate  in  events  one  has  encountered 
previously. 

Schank  and  Abelson  also  introduce  generalized  scripts,  called  plans,  that 
explain  events  related  to,  but  not  exactly  like,  those  the  user  has  seen  before. 

"Plans  are  where  scripts  come  from. . . .  The  difference  is  that  scripts  are 

specific  and  plans  are  general"  (Schank  and  Abelson,  1977,  p.  72).  In  fact, 
there  is  a  continuum  between  scripts  and  plans  in  Schank  and  Abelson's 
work:    "There  is  a  fine  line  between  the  point  where  scripts  leave  off  and 
plans  begin   When  a  script  is  available  for  satisfying  a  goal,  it  is  chosen. 

Otherwise  a  plan  is  chosen"  (p.  77;  see  also  Article  IV.F6,  in  Vol.  i). 
The  idea  of  abstracted  plans  is  found  also  in  the  STRIPS  planner  (Fikes, 

Hart,  and  Nilsson,  1972;  see  also  Article  II.D5,  in  Vol.  i).  This  system  param- 
eterized successful  plans  in  order  to  generalize  them.  The  generalized  plans 

were  called  MACROPs  (for  macro-operators). 
There  are  several  distinctions  between  skeletal  plan  refinement  and  some 

of  the  other  methods  discussed  in  this  chapter — for  example,  Stefik's  parallel 
work  on  planning  in  molecular  biology  (see  Article  XV.D2).  Other  methods 
emphasize  building  the  initial  abstract  plan;  this  method  assumes  the  initial 
plan  is  already  known  and  emphasizes  the  plan  selection  and  instantiation 
process.  Other  methods  concentrate  on  the  interaction  of  plan  steps;  this 

method,  in  large  part,  considers  plan  steps  to  be  sufficiently  independent 
that  conflicts  can  be  resolved  by  relatively  minor  subplans.    Finally,  other 
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methods  place  relatively  little  emphasis  on  domain-specific  expertise,  whereas 
such  expertise  is  the  heart  of  this  planning  method. 

Conclusion 

The  reader  may  be  surprised  by  the  simplicity  of  the  method  of  skeletal 

plan  refinement  but  should  remember  that  it  attempts  to  produce  competent — 

rather  than  wildly  innovative — plans.  It  is  based  on  the  observation  that 
human  scientists  who  know  a  lot  about  their  domains,  and  who  have  flexible 

cross-associations  for  choosing  steps  in  an  experiment,  are  usually  good  at 
experimental  design.  There  are  very  few  totally  new  plan  outlines  discovered, 
but  many  new  plan  instantiations. 
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II:  101,  108,  109,  110,  115,  120, 

182,  183,  192,  386,  388,  389,  394, 

399;  III:  334,  369,  372,  428-437, 
464,  568,  575 

Buchs,  A.,  II:  109,  115,  386,  398 

Bullwinkle,  C.,  I:  221,  367 

Burge,  J.,  Ill:  350,  359,  572 

Burger,  J.  F.,  I:  228,  384 
Burstall,  R.  M.,  II:  7,  310,  314,  315,  325, 

388;  III:  102,  568 
Burton,  R.  R.,  I:  818,  367,  368;  II:  227, 

229,  231,  238,  234,  235,  247-253, 
260,  279-282,  385,  386,  390 

-260, 

376; 123, 

398, 

456, 

386, 

254- 
Cadiou,  J.  M.,  II:  167,  387 

Cain,  R.  A.,  Ill:  259,  567 

Campbell,  A.  B.,  II:  180,  398 
Carbonell,  J.  R.,  I:  186,  368;  II:  226,  227, 

229,  286-241,  386,  387 
Carhart,  R.  E.,  II:  109,  110,  111,  112,  114, 

115,  387,  395,  399,  401 

Carnap,  R.,  Ill:  384,  568 

Carr,  B.  P.,  II:  281,  288-284,  261-266,  387, 400 

Carson,  D.  F.,  Ill:  93,  585 

Chafe,  W.  L.,  I:  368 

Chang,  C.  L.,  I:  80,  81,  83,  368;  II:  167,  173, 
387;  III:  91,  93,  568 

Charness,  N.,  I:  95,  108,  368 

Charniak,  E.,  I:  15,  222,  232,  248,  255,  262, 

291,  299,  368,  385;  II:  10,  14,  387,  400 
Cherry,  C,  III:  5,  9,  568 
Chien,  Y.  P.,  Ill:  221,  568 

Chilausky,  R.  L.,  Ill:  428,  426-427,  577 
Chomsky,  C,  I:  282,  372 

Chomsky,  N.,  I:  227,  229,  287,  289,  243,  244, 

245,  247,  248,  368;   III:  494-498,  510, 
568 

Choplin,  J.  M.,  II:  138,  142,  402 
Chow,  W.  K.,  Ill:  246,  568 

Church,  A.,  II:  21,  387 

Clancey,  W.  J.,  II:  191,  228,  229,  235,  267- 
278,  387;  III:  345,  566 

Clark,  B.  B.,  Ill:  246,  575 

Clark,  K.,  II:  138,  312,  325,  387 
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Clippinger,  J.  H.,  Jr.,  I:  279,  368 
Clocksin,  W.  F.,  II:  13,  387 

Clowes,  M.  B.,  Ill:  132-133,  146,  155-161, 
164,  568 

Codd,  E.  F.,  I:  292,  369;  II:  167,  387 

Cohen,  P.  R.,  I:  186,  232,  280,  369,  378 
Cohen,  P.  S.,  I:  329,  365 

Colby,  K.  M,  I:  15,  257,  369,  383;  III:  70-74, 
568,  570 

Cole,  A,  G.,  I:  329,  365 

Cole,  R.  A.,  I:  331,  369 

Coleman,  G.  B.,  Ill:  228,  568 

Collins,  A.  M,  I:  15,  147,  152,  186,  232,  367, 

368,  372;  II:  7,  227,  229-230,  231,  233, 

234,  235,  236-241,  242-246,  274,  386, 
387,  388,  400;  III:  9,  38,  39,  40,  119, 
567,  568 

Collins,  J.  S.,  II:  7,  386 

Colmerauer,  A.,  Ill:  123,  568 

Conrad,  C,  III:  40,  41,  568 

Conway,  M.  E.,  I:  267,  369 

Cook,  C.  M.,  Ill:  509,  568 

Corey,  E.  J.,  II:  134-138,  142,  388 
Corkill,  D.  D.,  Ill:  550,  568 

Crawford,  G.  F.,  Ill:  274,  580 
Creary,  L.  A.,  II:  84,  384 

Crocker,  S.  D.,  I:  95,  100,  101,  104,  108,  372 
Croft,  J.,  II:  179,  388 

Crowder,  N.  A.,  II:  226,  388 

Crowder,  R.  G.,  Ill:  10,  51,  568 

Culicover,  P.  W.,  I:  248,  369 

Dacey,  R.,  Ill:  118,  119,  568 

Damerau,  F.  J.,  II:  165,  388 

Darlington,  J.,  II:  310,  314,  315,  325,  386, 
388 

Date,  C.  J.,  Ill:  337,  568 

Davies,  A.,  II:  12,  53,  388 

Davies,  D.  J.  M.,  I:  176,  369 

Davis,  L.  S.,  Ill:  224,  234,  284,  569,  582 

Davis,  R.,  I:  16,  147,  151,  194,  195,  197,  198, 

199,  369;  II:  46,  57,  87-101,  115,  130, 
182,  192,  388;  III:  330,  333,  348,  349, 
569 

de  Champeaux,  D.,  I:  73,  369 

de  Kleer,  J.,  II:  76,  253,  385,  388;  III:  82,  569 

Delfino,  A.  B.,  II:  109,  115,  386,  398 

Deo,  N.,  I:  64,  66,  381 

Derkson,  J.  A.,  I:  176,  382;  II:  11-12,  397 
Desforges,  J.,  II:  180,  398 

Dietterich,  T.  G.,  Ill:  334,  370,  372,  384,  400, 

411-415,  416-419,  423,  569 
Dijkstra,  E.  W.,  I:  64,  66,  369 

Dinstein,  I.,  Ill:  231,  572 

diSessa,  A.,  II:  225,  291,  294,  383 

Dixon,  J.  K.,  I:  91,  93,  98,  102,  108,  384 

Djerassi,  C,  II:  109,  110,  111,  114-115,  386, 
387,  389,  398,  399,  401 

Dodd,  G.  G.,  Ill:  138,  569 

Donskoy,  M.  V.,  I:  96,  99,  102-104,  108,  365 
Doran,  J.  E.,  I:  60,  63,  67,  71,  369,  370 

Doyle,  J.,  I:  178,  377;  II:  74,  75,  76,  388; 
III:  78,  117,  119,  483,  569,  577 

Dreyfus,  H.  L.,  I:  370 
Druffel,  L.,  Ill:  135,  569 

Duda,  R.  O.,  I:  196,  197,  370;  II:  86,  155-162, 
389;  III:  138,  195,  198,  202,  215,  221, 

225,  246,  253,  255,  259,  268,  277-278, 
286,  292,  375,  379,  382,  565,  569,  579 

Duffield,  A.  M.,  II:  109,  110,  115,  389,  398, 
399 

Dugdale,  S.,  II:  255,  389 
Dunham,  B.,  Ill:  325,  570 

Dyer,  C.  R.,  Ill:  231,  585 

Eastlake,  D.  E.,  I:  95,   100,  101,  104,   108, 

372 
Eastman,  C.  M,  I:  202,  370 

Ebbinghaus,  H.,  Ill:  28 
Edwards,  D.  J.,  II:  33,  395 

Ejiri,  M.,  Ill:  301,  302-303,  305,  569,  574, 
577,  584 

Elcock,  E.  W.,  I:  122,  370 

Elschlager,  R.,  II:  307,  391 

Engelman,  E.,  I:  127,  377 

Engelmore,  R.  S.,  II:  84,  110,  124,  126,  133, 

389,  399 

Engleman,  C,  II:  143-149 
Erman,  L.  D.,  I:  196,  197,  331,  336,  342,  343, 

345,  348,  370,  381;  III:  309,  570 
Ernst,  G.  W.,  I:  30,  63,  113,  117,  118,  370, 

379;  III:  98,  570 

Evans,  T.  G.,  Ill:  499,  509,  570 

Fagan,  L.,  II:  180,  182,  192,  206,  389 
Fahlman,  S.  E.,  I:  204,  222,  370;  II:  146,  389 

Fain,  J.,  II:  84,  389 

Falk,  G.,  Ill:  131,  147-154,  570 
Fateman,  R.  J.,  II:  144,  389 

Faugeras,  O.  D.,  Ill:  234,  580 

Faught,  W.  S.,  Ill:  66,  74,  570 
Feigenbaum,  E.  A.,  I:  14,  16,  29,  30,  63,  198, 

232,  287,  336,  343,  370,  376,  380;  II:  5, 

84,  86,  108,  109,  110,  115,  120,  122,  123, 
124,  126,  133,  183,  389,  394,  398,  399; 

III:  8,  25,  28-35,  437,  570,  575,  579,  582 
Feinstein,  A.,  II:  178,  389 

Feitelson,  J.,  Ill:  522,  570 



592 Name  Index  for  Volumes  I,  II,  and  DI 

Feldman,  J.  A.,  I:  14,  29,  30,  232,  287,  370; 

A.,  II:  5,  11,  41,  52,  818,  325,  384,  389, 

390;   III:   132,   226,  310-312,  509,  511, 
566,  585 

Fennell,  R.  D.,  I:  336,  343,  345,  370,  381 

Fennema,  C.  L.,  Ill:  130,  226,  567 

Fikes,  R.  E.,  I:  42,  128,  134,  169,  176,  188, 

370,   381;   II:  5,  64,  69,    73,  390,  398; 
III:  522,  523,  530,  561,  570 

Fillmore,  C,  I:  252,  255,  371 

Filman,  R.  E.,  I:  169,  170,  205,  371 

Findler,  N.  V.,  I:  16,  152,  189,  371 

Fischler,  M.  A.,  Ill:  238,  253,  566,  583 

Fisher,  G.,  II:  254,  390 

Flanagan,  J.,  I:  325,  371 
Flavell,  J.  H.,  I:  145,  147,  371 

Fletcher,  J.  D.,  II:  226,  390 

Floyd,  R.  W.,  II:  811,  390 

Fogel,  L.  J.,  Ill:  325,  570 

Forgie,  J.,  I:  327,  379 

Forgy,  C,  I:  197,  371,  377;  II:  84,  390 
Fox,  M.,  I:  348,  371 

Fraser,  B.,  I:  267,  367 

Frege,  G.,  I:  200 
Frey,  P.  W.,  I:  95,  102,  104,  108,  371 

Friedberg,  R.  M.,  Ill:  325,  570 

Friedland,  P.  E.,  Ill:  522,  551,  551-562,  570 
Friedman,  D.  P.,  II:  29,  390 

Friedman,  J.,  I:  268,  273,  371 

Fu,  K.  S.,  Ill:  221,  227,  291,  380,  381,  382, 

506,  511,  568,  570,  581,  585 

Fuller,  S.  H.,  I:  91,  93,  371 

Funt,  B.  V.,  I:  203,  205,  206,  371 

Furakawa,  K.,  II:  170,  173,  390 

Furbach,  U.,  II:  310,  398 

Gabriel,  R.  P.,  II:  329,  335,  390 

Gagalowicz,  A.,  Ill:  234,  580 

Gaines,  B.  R.,  II:  13,  392 

Galanter,  E.,  Ill:  515,  577 

Galen,  R.  S.,  II:  222,  402 
Gardner,  M,  III:  416,  571 

Garvey,  T.  D.,  I:  129,  134,  318,  321,  366, 
372 

Gaschnig,  J.  G.,  I:  59,  63,  91,  93,  371,  372; 
II:  86,  162,  155,  389 

Gelernter,    H.    L.,    I:    119,    122,    201,    372; 

II:  135-136,  189-142,  390;  III:  77,  100, 
449,  571 

Gelperin,  D.,  I:  65,  66,  372 

Genesereth,  M.  R.,  II:  146,  147,  232,  390 

Gennery,  D.  B.,  Ill:  253,  571 

Gentner,  D.  R.,  I:  147,  372;  II:  234,  396 
Gerberich,  C.  L.,  I:  122,  372 

Gibson,  J.  J.,  Ill:  230,  571 

Gilbert,  W.,  Ill:  557-558,  576 
Gillman,  R.,  I:  333,  358,  366 

Gillogly,  J.  J.,  I:  91,  93,  97,  98,  99,  102,  103, 

108,  371,  372 
Gilmore,  P.  C.,  I:  122,  372 

Ginsparg,  J.  M,  II:  827,  829,  390 

Gips,  J.,  II:  318,  325,  390;  III:  291,  571 
Gleason,  G.  J.,  Ill:  304,  571 

Gold,  E.,  Ill:  499-500,  501,  505-506,  571 
Goldberg,  A.,  II:  228,  293,  390,  393 

Goldin,  S.,  II:  234,  242,  246,  400 

Goldman,  N.,  I:  278,  279,  304,  305,  372,  383; 
II:  336-342,  383 

Goldstein,  G.  D.,  Ill:  325,  586 

Goldstein,  I.  P.,  I:  217,   221,  372;   II:  228, 

229-234,  235,  254,  260,  261-266,  288, 
293,  385,  386,  387,  390,  391,  395,  400 

Gonzalez,  R.  C.,  Ill:  511,  571 

Good,  I.  J.,  I:  27,  30,  372 

Goodwin,  G.  C.,  Ill:  379,  571 

Gorlin,  D.,  II:  84,  389,  392 

Gorry,  G.  A.,  II:  202,  205,  206-211,  391,  396 
Gosper,  R.  W.,  II:  144,  391 
Gould,  L.,  II:  286,  241,  391 

Graves,  W.  H.,  II:  284,  290,  399 

Gray,  N.,  II:  114 
Green,  B.  F.,  I:  Jr.,  282,  372 

Green,  C.  C„  I:  155,  168,  170,  327,  372,  379; 

II:  11,  305,  307,  311,  312,  313,  816,  319, 

325,  326-385,  350,  391;  III:  78,  85,  102, 

571 
Greenblatt,  R.  D.,  I:  95,  100,  101,  104,  108, 

372 
Greiner,  R.,  Ill:  269,  271,  290,  330,  567,  571 
Griffith,  A.  K.,  I:  97,  108,  372 

Grignetti,  M.  C.,  II:  236,  241,  391 
Grimson,  W.  E.  L.,  Ill:  135,  251,  571 

Grishman,  R.,  I:  262,  372 

Gritter,  R.  J.,  II:  122,  386 

Grosch,  C.  B.,  Ill:  253,  572 
Grossman,  R.,  II:  146,  391 

Grosz,  B.  J.,  I:  232,  373,  381 

Gumb,  R.  D.,  Ill:  119,  571 

Gund,  P.,  II:  142,  391 

Gupta,  M.  M.,  II:  IS,  392 

Guzman,  A.,  Ill:  180-131,  143-146,  149,  571 

Haas,  N.,  II:  169,  392 

Hall,  P.  A.  V.,  I:  64,  66,  373 

Halliday,  M.  A.  K.,  I:  249,  251,  373,  378 
Hamada,  T.,  Ill:  303,  305,  577 

Hamburger,  H.,  Ill:  509,  510,  571 
Hammer,  M.,  II:  172,  298,  305,  369,  392 
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Hanlon,  C,  III:  509,  567 

Hannah,  M.  J.,  Ill:  253,  571 

Hansen,  J.  R.,  I:  122,  372 

Hanson,  A.  R.,  I:  16,  336,  343,  373;  III:  138, 

229,  309-810,  571,  572,  578 
Haralick,  R.  M.,  Ill:  231,  237,  572 

Hardy,  S.,  II:  319,  325,  392 
Harlow,  C.  A.,  Ill:  226,  572 

Harman,  G.,  I:  248,  373 

Harris,  G.,  II:  234,  385 

Harris,  L.  R.,  I:  69,  71,   97,  100,  102,  108, 

232,  373;  II:  164,  392 

Harris,  Z.,  Ill:  506,  572 

Hart,  P.  E.,  I:  61  66,   134,  169,  196,  197, 

370,   373;    II:   152,    153-154,    155,    160, 
162,  389,  392;  III:  138,  195,  198,  202, 
215,  221,  253,  286,  292,  375,  379,  382, 

522,  530,  561,  569,  570 

Hart,  T.  P.,  II:  33,  395 

Hausmann,  C.  L.,  II:  236,  241,  279,  282,  386, 
391 

Hawkinson,  L.  B.,  I:  217,  220,  385 

Hayes,  P.  J.,  I:  148,  170-171,  172,  175,  177, 
179,  186,  200,  201,  373,  374,  377;  II:  73, 

392;  III:  82,  572 

Hayes,  S.  P.,  II:  222,  394 

Hayes-Roth,  B.,  I:  336,  343,  374;  III:  7,  22- 
27,  519,  522,  572 

Hayes-Roth,  F.,  I:  16,   199,  331,  336,  343, 
345,  348,  370,  374,  385;  II:  9,  57,  84,  86, 

389,  392,  401;  III:  7,  22-27,  309,  333, 

334,  886,  338,  345-348,  349,  350,  353, 

359,  364,  391-892,  400,  410,  519,  570, 
572,  575,  578 

Hays,  D.  G.,  I:  238,  374;  II:  146,  392 
Hearst,  E.,  I:  96,  108,  374 

Heathcock,  C.  H.,  II:  138,  391 

Hedrick,  C,  I:  195,  374 

Heidorn,  G.  E.,  I:  374;  II:  298,  305,  311,  870- 
374,  392 

Heiser,  J.  F.,  II:  84,  180,  392 

Hellman,  W.  F,  III:  463 

Hemphill,  L.,  II:  284,  402 

Henderson,  R.  L.,  Ill:  253,  572 

Hendrix,  G.  G.,  I:  184,  186,  188,  232,  816, 

318,  321,  370,  374,  381;  II:  166,  169, 
173,  390,  392 

Heny,  F.,  I:  248,  365 

Herrik,  H.,  II:  297,  383 

Herskovits,  A.,  I:  289,  291,  387 

Hewitt,  C,  I:  172,  175,  176,  178,  179,  374; 

II:  9-10,  85,  46,  393;  III:  78,  99,  572 
Hildreth,  E.,  Ill:  135,  218,  576 

Hilf,  F.,  I:  257,  369 

Hillier,  F.  S.,  I:  64,  66,  374 

Hintikka,  J.,  Ill:  84,  572 

Hintzman,  D.  L.,  Ill:  84,  572 

Hjelmeland,  L.,  II:  115,  385 
Hoff,  M.  E.,  Ill:  879,  585 

Hofstadter,  D.,  I:  4,  15,  374 

Holland,  S.  W.,  Ill:  301,  303-304,  305,  573 
Holt,  J.,  II:  291,  393 

Hopcroft,  J.  E.,  I:  68,  71,  241,  244,  365,  374; 
III:  337,  497,  565,  573 

Horn,  B.  K.  P.,  Ill:  184,  238,  241,  242,  243, 
245,  260,  262,  267,  573 

Horn,  P.  K.  F.,  II:  14,  29,  402 

Horning,  J.  J.,  II:  318,  325,  390;  III:  503-505, 

573 
Howe,  J.  A.  M.,  II:  225,  293,  393 

Huang,  T.  S.,  Ill:  248,  573 
Hudson,  R.  A.,  I:  251,  374 

Hueckel,  A.,  Ill:  218,  573 

Huet,  G.,  Ill:  83,  100,  573 

Huffman,  D.  A.,  Ill:  132-183,  146,  155-161, 
178,  181,  573 

Huggins,  B.,  II:  282,  386 

Hummel,  R.,  Ill:  298-800,  586 
Hunt,  E.  B.,  II:  228,  393 

Hunt,  E.,  Ill:  384,  406-408,  573 

Igarashi,  K.,  Ill:  303,  578 
Ikeda,  S.,  Ill:  305,  569,  584 

Ikeda,  Y.,  Ill:  305,  306-808,  578 
Ikeuchi,  K.,  Ill:  264,  265,  573 

Illich,  I.,  II:  291-292,  393 
Inhelder,  B.,  II:  291,  397 

Jackendoff,  R.,  I:  207,  374,  375 

Jackson,  P.  C.,  I:  15,  30,  42,  375 

Jacobi,  G.  T.,  Ill:  325,  586 

Jacobs,  C.  D.,  II:  180,  398 

Jacquez,  J.  A.,  II:  177,  393 
Jain,  R.,  Ill:  247,  573 

Jakobovits,  L.,  I:  248,  384 

Jelinek,  F.,  I:  329,  365 

Jelliffe,  R.  W.,  II:  206,  393 

Johnson,  C.  K.,  II:  124,  133,  389 

Johnson,  C.  R.,  Jr.,  IE:  334,  372,  456,  464, 

568 
Johnson-Laird,  P.  N.,  I:  207,  378;  III:  119, 

585 

Johnston,  A.  R.,  in:  255,  573 

Josselson,  H.  H.,  I:  238,  375 

Judd,  D.  B.,  Ill:  205,  573 

Julesz,  B.,  Ill:  281,  573 

Jurs,  P.  C.,  II:  118,  393 



594 Name  Index  for  Volumes  I,  II,  and  IH 

Kadane,  J.  B.,  I:  59,  63,  68,  71,  384 

Kahl,  D.  J.,  Ill:  229,  577 

Kahn,  K.,  II:  62,  293,  393 

Kahneman,  D.,  Ill:  67,  584 

Kak,  A.  C,  III:  138,  215,  224,  237,  581 

Kameny,  I.,  I:  333,  358,  366 

Kanade,  T.,  Ill:  133,  134,  136,  138,  183-194, 
228,  229,  252,  257,  265,  268,  312,  574, 
576,  577,  579 

Kanoui,  H.,  Ill:  123,  568 

Kant,  E.,  II:  330,  335,  351,  354,  375-379,  383, 
393 

Kaplan,  R.  M,  I:  219,  221,  232,  260,  261, 

267,  268,  272,  293,  294,  367,  375,  388 

Kaplan,  S.  J.,  I:  232,  375;  II:  167,  393 

Karp,  R.  M.,  I:  69,  71,  375 

Kashioka,  S.,  Ill:  301,  302-303,  305,  574,  577 
Kassirer,  A.,  II:  202,  205,  396 

Katz,  J.,  I:  248,  375 

Kay,  A.,  II:  293,  393 

Kay,  M.,  I:  219,  221,  232,  268,  272,  367,  375 
Kedzierski,  B.,  II:  335,  393 

Kelley,  K.,  Ill:  279,  506,  574 

Kellogg,  C,  I:  228,  375;  II:  173,  393 

Kelly,  M.  D.,  Ill:  279,  306,  574 
Kender,  J.  R.,  Ill:  133,  134,  188,  194,  203, 

204,  228,  242,  264,  265,  267,  574 
Kibbey,  D.,  II:  255,  389 

Kidode,  M.,  Ill:  252,  253,  578 

Kiessling,  A.,  Ill:  257,  581 

Kimball,  R.  B.,  II:  226,  393 

King,  J.  J.,  I:  194,  197,  199,  369;  II:  170,  171, 
173,  394 

Kingsland,  L.  C,  II:  222,  394 

Kister,  J.,  I:  99,  103,  108,  375 

Klahr,  P.,  II:   173,  393;  III:  334,   336,  338, 

345-348,  349,  350,  352,  353,  359,  364, 
410,  572,  575 

Klatt,  D.  H.,  I:  326,  327,  330,  375,  379 

Klein,  S.,  I:  274,  275,  375,  384;  III:  494,  506, 

509,  574 

Kline,  P.,  I:  195,  365 

Kling,  R.,  I:  129,  134,  372;  III:  112,  574 
Klinger,  A.,  Ill:  112,  282,  583 
Klotz,  I.  M,  III:  66,  574 

Knobe,  B.,  Ill:  507-508,  509,  574 

Knobe,  K.,  Ill:  507-508,  509,  574 
Knuth,  D.  E.,  I:  86,  87,  89,  90,  91,  93,  269, 

375;  III:  98,  99,  100,  574 

Koffman,  E.  B.,  II:  227,  230,  233,  394 

Konolige,  K.,  II:  155,  162,  389 

Kopec,  D.,  I:  95,  107,  108,  367 
Kornfeld,  W.  A.,  II:  46,  394 

Kotok,  A.,  I:  104,  108,  375 

Kotovsky,  K.,  Ill:  406,  574 

Kowalski,  R.,  I:  25,  30,  73,  74,  81,  83,  175, 
375;  II:  312,  325,  394;  III:  78,  81,  82,  93, 
112,  123,  574 

Kremers,  J.  H.,  I:  318,  321,  366;  III:  259,  567 

Kripke,  S.  A.,  Ill:  84,  574 

Krishnaswamy,  R.,  II:  318-319,  384 
Kuchner,  D.,  Ill:  93,  574 

Kuipers,  B.,  I:  222,  376 

Kulikowski,  C.  A.,  II:  179,  180,  193-196,  212- 
216,  217-222,  396,  401,  402 

Kulikowski,  C.  W.,  II:  179,  396 

Kunz,  J.,  II:  180,  394 

Kuppin,  M,  III:  494,  506,  509,  574 

Landsbergen,  S.  P.  J.,  I:  232,  376 

Langley,  P.  W.,  Ill:  371,  401-406,  410,  575 
Lankford,  D.  S.,  Ill:  98,  99,  100,  566,  575 

Lantz,  K.,  I:  318,  321,  366 

Larkin,  K.  M.,  II:  279-282,  385 
Larsen,  D.  L.,  II:  139,  140,  142,  390 

Larson,  J.  B.,  Ill:  365-367,  398,  423-426,  427, 
575,  577 

Laubsch,  J.  H.,  H:  227,  229,  231,  394 

Laughery,  K.,  I:  282,  372 
Lawler,  E.  W.,  I:  64,  66,  376 

Le  Faivre,  R.,  II:  13,  394 

Lea,  G.,  Ill:  860-361,  372,  375,  582 

Lea,  W.,  I:  16,  232,  325,  326,  329-331,  335, 
344,  348,  376 

Lederberg,  J.,  I:  16,  376;  II:  103,  106-110, 
120,  122,  123,  386,  389,  394,  398,  399; 
III:  437,  575 

Ledley,  R.,  II:  177,  394 
Lee,  R.  C,  III:  91,  93,  568 

Leese,  J.  A.,  Ill:  246,  575 

Lehnert,  W.  C,  I:  16,  212,  376 

Lenat,  D.  B.,  I:  16,  194,  195,  196,  197,  369, 

376;  II:  86,  307,  316,  318,  325,  391,  392, 
394;  III:  101,  330,  334,  336,  338,  364, 

369,  410,  438-451,  571,  575 
Lesser,  V.  R.,  I:  196,  197,  331,  336,  342,  845, 

348,  370,  376;  III:  309,  570 

Letsinger,  R.,  II:  228,  277,  278,  387 
Levi,  G.,  I:  81,  83,  376 

Levin,  M.  I.,  II:  33,  395 

Levine,  M.  D.,  I:  336,  343,  376 

Levinson,  S.,  I:  325,  371 

Levitt,  K.,  II:  812,  325,  401 

Levy,  D.,  I:  101,  108,  376 
Lewis,  B.  L.,  I:  329,  365 

Lewis,  V.  E.,  II:  147,  394 

Lewis,  W.  H.,  II:  147,  166,  392 

Licklider,  J.  C.  R.,  I:  327,  379 
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Lieberman,  G.  J.,  I:  64,  66,  374 

Lindberg,  D.  A.  B.,  II:  222,  394 

Lindsay,  P.  H.,  Ill:  8,  56-64,  581 
Lindsay,  R.  K.,  I:  16,  281,  282,  376;  II:  110, 

123,  394;  III:  437,  575 

Lipkin,  B.  S.,  Ill:  217,  234,  581 

Liskov,  B.  H.,  II:  848-844,  394 
Locke,  W.  N.,  I:  238,  376 

London,  P.  E,  II:  74,  76,  389,  394;  III:  119, 
569 

Long,  R.  E.,  I:  228,  384 

Long,  W.,  II:  207-211,  395 
Loveland,  D.  W.,  I:  122,  372;  III:  93,  97,  575 

Low,  J.  R.,  II:  11,  41,  52,  317,  325,  390,  395 

Lowerre,  B.,  I:  342,  849,  352,  377 

Lucas,  B.  D.,  Ill:  252,  576 

Lusted,  L.,  II:  177,  394 

Lyons,  J.,  I:  243,  244,  248,  377 

Mackworth,  A.  K.,  Ill:  183,  138,  173-182, 
300,  576 

Mandler,  G.,  Ill:  74,  576 

Mann,  W.,  I:  280,  377 

Manna,  Z.,  I:  171,  377;  II:  308,  355-368,  395 
Manove,  M.,  I:  127,  377 

Marcus,  M.  P.,  I:  16,  230,  262,  377 

Marin,  J.,  Ill:  384,  406,  408,  573 

Marinov,  V.  V.,  II:  284,  290,  399 

Marr,  D.,  Ill:  134-135,   138,  218,  231,  232, 
238,  242,  243,  251-252,  269,  271,  290, 
576 

Martelli,  A.,  I:  66,  74,  83,  377;  in:  221,  576 

Martin,  W.  A.,  I:  217,  220,  385;  II:  143-149, 

316,  325,  864-369,  395 
Maryanski,  F.  J.,  Ill:  507,  576 

Masinter,  L.,  II:  67,  103,  111,  115,  385,  390, 
400 

Mathias,  J.,  I:  238,  374 

Matsuyama,  T.,  Ill:  306-808,  578 
Matuzceck,  D.,  I:  267,  377 

Maxam,  A.,  Ill:  557-558,  576 
McCarthy,   J.,   I:   148,    170,   177,   201,   377; 

II:  5,  6,  7,  15,  29,  33,  395;  III:  78,  85, 
118,  122,  332,  345,  346,  860,  576 

McConlogue,  K.,  I:  384 

McCord,  M.,  I:  251,  377 

McCorduck,  P.,  I:  5,  14,  15,  377;  HI:  77,  576 

McCune,  B.,  II:  800,  307,  829-380,  335,  391, 
395 

McDermott,  D.  V.,  I:  15,  175,  176,  178,  368, 

377,  384;  II:  10,  14,  29,  35,  56,  387,  395, 
400;  III:  78,  82,  117,  119,  576,  577 

McDermott,  J.,  I:  194,  197,  371,  376,  377; 

II:  84,  390;  III:  391-392,  400,  572 

McDonald,  D.,  I:  280,  378 

Mcintosh,  A.,  I:  251,  378 

McKeown,  D.  M.,  Ill:  136,  577 

McKeown,  K.,  I:  280,  378 

McLeod,  D.,  II:  172,  392 

Mellish,  C.  S.,  II:  13,  387 

Melosh,  R.  E.,  II:  84,  384 

Mercer,  R.  L.,  I:  329,  365 

Mese,  M.,  Ill:  303,  305,  569,  577 

Michalski,  R.  S.,  Ill:  334,  365-367,  370,  372, 

384,  398-899,  400,  411-415,  419,  423- 
427,  569,  575,  577 

Michie,  D.,  I:  59,  63,  67,  71,  95,  103,  107- 
108,  367,  370,  378 

Milgram,  D.  L.,  Ill:  229,  hll 

Miller,  G.  A.,  I:  207,  378;  III:  5,  6,  515,  577 

Miller,  L.,  Ill:  6,  577 

Miller,  M.  L.,  II:  229,  232-233,  282,  293,  386, 

395 
Miller,  W.  J.,  Ill:  253,  572 

Minker,  J.,  I:  31,  385;  II:  173,  395 

Minsky,  M.,  L.,  I:  14,  29,  30,  159,  216,  217, 
220,  222,  231,  232,  287,  307,  315,  378; 

III:  6,  41,  77,  78,  84,  310,  325,  326,  331, 

343,  57.9,  577 
Mitchell,  T.  M.,  II:  110,  120,  121,  123,  395, 

396;  III:  334,  369,  372,  384,   385-891, 
896-398,  400,  428,  484-436,  437,  452- 

458,  456,  464,  484-493,  505,  568,  577, 
578 

Mittman,  B.,  I:  96,  108,  378 

Miyatake,  T.,  Ill:  303,  305,  577 

Miyazaki,  S.,  Ill:  303,  578 

Mont-Reynaud,  B.,  II:  335,  391 
Montanari,  U.,  I:  74,  83,  377;  III:  221,  578 
Moore,  E.  F.,  I:  64,  66,  378 

Moore,  J.  S.,  I:  197,  280,  377;  III:  102-103, 
108,  111,  113,  567 

Moore,  R.  C.,  I:  178-179,  378;  III:  78,  81,  84, 
578 

Moore,  R.  W.,  I:  86,  87,  89,  90,  91,  93,  375 

Moravec,  H.  P.,  Ill:  250-251,  253,  578 

Morgenstern,  M.,  II:  364-369,  395,  396 
Mori,  K.,  Ill:  252,  253,  578 

Mori,  S.,  Ill:  231,  583 

Moses,  J.,  I:  125,  127,  378;  II:  143-149,  396 

Mostow,  D.  J.,  Ill:  333,  345-848,  349,  850- 
859,  572,  578 

Munson,  J.,  I:  327,  379 

Musser,  D.  R.,  II:  144,  396 

Myers,  J.,  II:  197-201 
Mylopolous,  J.,  II:  172,  396 

Myopolous,  J.,  I:  186,  378 
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Nagao,  M.,  Ill:  306-308,  578 
Nagel,  H.  H.,  Ill:  247,  573 

Nagin,  P.  A.,  Ill:  229,  578 

Naruse,  M.,  Ill:  303,  578 

Nash-Webber,  B.  L.,  I:  293,  294,  326,  378, 
379,  388 

Neely,  R.,  I:  343,  381 
Neisser,  U.,  Ill:  6,  578 

Nelson,  C.  G.,  Ill:  100,  579 

Nevatia,  R,  III:  220,  224,  274,  275,  318,  579 

Nevins,  A.  J.,  Ill:  98,  99,  579 

Newborn,  M,  I:  91,  93,  96,  101,  108,  379 

Newell,  A.,  I:  4,  14,  29-31,  63,  98,  100,  105, 
106,  108,  109,  111,  112,  113,  117,  118, 
121,  157,  169,  193,  197,  327,  331,  335, 

351,  370,  377,  379;  II:  4,  396;  III:  3,  5, 

6,  9,  11-21,  11,  518,  579 
Nievergelt,  J.,  I:  64,  66,  381 

Nii,  H.  P.,  I:  336,  343,  380;  II:  84,  126,  133, 

389,  396;  III:  25,  348,  579 

Nilsson,  N.  J.,  I:  7,  15,  SO,  31,  35,  38,  42,  45, 

51,  53,  56,  57,  58,  60,  63,  64,  65,  66,  71, 

75,  78,  83,  87,  93,  102,  108,  128,  134, 
169,  171,  197,  370,  373,  380;  II:  102, 
154,  160,  389,  396;  III:  78,  85,  87,  91, 

93,  377,  382,  522,  523,  530,  561,  570, 
579 

Nishihara,  H.  K.,  Ill:  135,  269,  271,  290,  576 

Nitzan,  D.,  Ill:  255,  259,  268,  277-278,  569, 
579 

Nordyke,  R.,  II:  179,  396 

Norman,  A.  C,  II:  144,  396 

Norman,  D.  A.,  I:  15,  149,  180,  185,  189, 

207,  215,  219,  221,  232,  255,  367,  380; 

II:  234,  396;  III:  8,  10,  56-64,  326,  579, 
581 

North,  J.  H.,  Ill:  325,  570 

Nourse,  J.,  II:  113 

Novak,  C.  S.,  Ill:  246,  575 

Novak,  G.  S.,  I:  221,  380 

Nudel,  B.,  Ill:  484,  493,  578 

O'Connell,  D.  N,  III:  244,  584 
Oettinger,  A.  G.,  I:  235,  238,  380 

Ohlander,  R.  B.,  Ill:  227,  228,  579 

Ohta,  Y.,  Ill:  228,  312,  579 

Oppen,  D.,  Ill:  100,  579 

O'Rourke,  J.,  Ill:  290,  291,  565,  580 

O'Shea,  T.,  II:  293,  393 
Oshima,  M,  III:  276-277,  580 
Owens,  A.  J.,  Ill:  325,  570 

Paige,  J.  M,  I:  285,  380 
Pao,  T.  W.,  Ill:  505,  580 

Papert,  S.,  II:  225,  291-294,  396,  399;  III:  325, 
379,  511 

Parkinson,  R.,  Ill:  74,  570 

Pasero,  R.,  Ill:  123,  568 
Passafiume,  J.  J.,  II:  237,  388 

Pauker,  S.  G.,  II:  180,  202-205,  206-211,  391, 
396,  400 

Pavlidis,  T.,  Ill:  279,  291,  580,  583 

Paxton,  W.  H.,  I:  361,  380 

Payne,  R.  L.,  Ill:  379,  571 
Pereira,  F.,  II:  IS,  401;  III:  82,  123,  585 

Pereira,  L.  M.,  II:  13,  401;  III:  82,  123,  585 

Perrault,  C.  R.,  I:  232,  369 

Peterson,  G.  E.,  Ill:  99,  100,  580 

Petrick,  S.  R.,  I:  260,  380 

Petry,  F.  E.,  II:  322,  325,  396 
Phillips,  J.,  II:  319,  822,  324,  325,  329,  335, 

391,  397 

Piaget,  J.,  II:  291,  397 
Pinker,  S.,  Ill:  509,  510,  580 

Pitrat,  J.,  I:  107,  108,  380 

Plath,  W.,  I:  380 

Poggio,  T.,  Ill:  135,  242,  251-252,  576 
Pohl,  I.,  I:  24,  51,  52,  53,  59,  63,  67,  69,  71, 

72,  73,  380 
Polya,  G.,  I:  29,  31,  381;  II:  294,  397;  III:  561, 

580 

Pople,  H.,  II:  180,  197-201,  397 
Popplestone,  P.  J.,  Ill:  285,  566 

Popplestone,  R.  J.,  II:  7,  12,  397;  III:  274, 

285,  580 
Post,  E.,  I:  190,  381 

Postal,  P.,  I:  243-244,  248,  375,  381 
Pratt,  V.  R.,  II:  29,  397 

Pratt,  W.  K.,  Ill:  234,  580 

Prawitz,  D.,  I:  169,  381 

Presburger,  M.,  Ill:  100,  580 

Pressburger,  T.,  II:  385,  391 

Preston,  K.,  II:  177,  397 

Prewitt,  J.  W.  S.,  Ill:  227,  580 
Pribram,  K.  H.,  Ill:  515,  511 

Price,  K.,  Ill:  227,  579 

Propp,  V.,  I:  307,  315,  381 

Pylyshyn,  Z.,  I:  201,  206,  381 

Quillian,  M.  R.,  I:  156,  180,  185,  228,  230, 

275,  276,  381;  II:  5;  III:  8,  36-41,  568, 
580 

Quine,  W.  V.,  Ill:  119,  580 

Quinlan,  J.  R.,  Ill:  406,  408-410,  580 

Rabiner,  L.,  I:  325,  371 

Raphael,  B.,  I:  15,  27,  31,  64,  66,  178,  185, 

228,  283,  373,  381;  II:  11;  III:  522,  567 
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Reboh,  R.,  I:  176,  381;  II:  64,  69,  155,  160, 

162,  389,  398;  III:  348,  580 

Reddy,  D.  R.,  I:  327,   331,  336,  342,   343, 
345,  348,  349,  352,  370,  377,  379,  381; 
III:  227,  309,  570,  579 

Reder,  S.,  II:  318,  325,  390 

Reeker,  L.  H.,  Ill:  510,  580 

Reich,  C.  M.,  Ill:  68,  565 

Reiner,  E.,  I:  235 

Reingold,  E.  M,  I:  64,  66,  381 
Reiser,  J.  F.,  II:  11,  70,  397 

Reiter,  R.,  I:  176,  381;  II:  172,  173,  239,  397; 
III:  98,  100,  117,  580 

Rhodes,  J.  B.,  II:  142,  391 

Rich,  C,  II:  343-349,  397 
Richens,  R.  H.,  I:  234 

Rieger,  C,  I:  SOS,  305,  381,  383;  II:  14,  397 

Riesbeck,  C.  K.,  I:  15,  196,  261,  262,  303, 

305,  306,  315,  368,  381,  383;  II:  14,  29, 
33,  387,  398 

Rinehart,  A.  R.,  II:  141 

Risch,  R.,  II:  82,  144,  397;  III:  100,  580 

Riseman,  E.  M,  I:  16,  336,  343,  373;  III:  138, 

229,  309-810,  571,  572,  578,  580 
Rissland,  E.  L.,  Ill:  363,  581 

Roberts,  L.  G.,  HI:  129-130,  139-148,  147, 
150,  216,  581 

Roberts,  M.  de  V.,  I:  99,  105,  108,  366 

Roberts,  R.  B.,  I:  217,  221,  372 

Robertson,  A.  V.,  II:  109,  389 

Robertson,  T.  V.,  Ill:  227,  581 

Robinson,  A.  E.,  I:  232,  381 

Robinson,  G.  A.,  Ill:  93,  581,  585 

Robinson,  J.  A.,  Ill:  77-78,  86,  91,  93,  121, 
123,  581 

Robinson,  J.  J.,  I:  232,  359,  381,  382 
Rochester,  N.,  I:  122,  372 

Roecker,  F.,  Ill:  257,  581 

Rosenberg,  A.,  I:  325,  371 

Rosenberg,  L.,  II:  14,  397 

Rosenberg,  R.  S.,  I:  254,  255,  385 

Rosenblatt,  F.,  Ill:  325,  878-379,  581 
Rosenfeld,  A.,  Ill:  138,  215,  217,  224,  229, 

231,  233,  234,  237,  291,  298-800,  509, 
568,  581,  582,  585,  586 

Rosenschein,  S.,  II:  84,  389,  392 
Ross,  R.,  I:  59,  63,  378 

Rossol,  L.,  Ill:  138,  301,  803-804,  305,  569, 
573 

Rothschild,  L.,  II:  144,  401 

Rothstein,  M.,  II:  144,  397 

Roussel,  P.,  Ill:  123,  568 

Roussopoulos,  N.  D.,  II:  167,  171-172,  387, 
397 

Rovner,  P.  D.,  II:  11,  381 

Rowe,  N.,  II:  293,  397 

Rubensteinr  R.,  II:  247,  248,  252,  253,  385 

Rubin,  S.,  Ill:  312,  581 

Rulifson,  J.  F.,  I:  176,  382;  II:  11-12,  397 
Rumelhart,  D.  E.,  I:  15,  149,  180,  185,  189, 

207,  215,  255,  306,  307,  315,  336,  343, 

380,  382;  III:  8,  10,  56-64,  579,  581 
Russell,  B.,  I:  111,  112,  386 

Russell,  S.  W.,  I:  212,  382.  See  also  S.  Weber. 
Rustin,  R.,  I:  232,  382 

Ruth,  G.,  II:  298,  305,  364-369,  392,  397 
Rychener,  M.  D.,  I:  193,  195,  196,  382 

Sacerdoti,  E.  D.,  I:  185,  139,  176,  318,  321, 

374,  381,  382;  II:  64,  69,  164,  173,  280, 

392,  398;  III:  516,  522,  523,  530,  541- 
550,  581 

Safir,  A.,  II:  180,  198-196,  222,  402 
Safrans,  C.,  II:  180,  397 

Sagalowicz,  D.,  I:  176,  318,  321,  374,  381; 
II:  64,  69,  398 

Sakai,  T.,  Ill:  228,  579 

Sakamoto,  Y.,  Ill:  301,  302-303,  305,  574 
Samet,  H.,  II:  14,  397 

Samlowski,  W.,  I:  255,  382 

Samuel,  A.  L.,  I:  27,  31,  45,  95,  97,  102,  104, 

108,  382;  HI:  382,  338,  839-344,  452, 

457-464,  582 
Sanders,  A.  F.,  II:  139,  140,  142,  390 

Sandewall,  E.  J.,  I:  63,  382;  II:  65-66,  67,  398 
Saridis,  G.  N.,  II:  IS,  392 

Scha,  R.  J.  H.,  I:  382 
Schachter,  G.  J.,  Ill:  234,  582 

Schaffert,  C.,  II:  344,  394 

Schank,  R.  C.,  I:  14,  15,  149,  211,  212-215, 
216,  217,  219,  220,  221,  222,  231,  232, 

237,  238,  254,  255,  278,  291,  300,  301- 
303,  305,  306,  309,  310,  313-315,  382, 
383;  II:  14,  29,  33,  398;  III:  10,  70,  74, 

519,  522,  561,  582 
Schatz,  B.  R.,  Ill:  232,  582 
Schmidt,  C.  F.,  II:  IS,  398 

Schreiber,  J.  F.,  II:  310,  398;  III:  98,  566 

Schroll,  G.,  II:  109,  398 

Schubert,  L.  K.,  I:  383 

Schunck,  B.  G.,  Ill:  242,  245,  573 

Schwarcz,  R.  M.,  I:  384 

Schwartz,  W.,  II:  202,  205,  396 
Schwenzer,  G.  M,  II:  110,  121,  396 

Scott,  A.  C.,  II:  180,  398 

Searle,  J.  R.,  I:  7,  383 

Searleman,  J.  E.,  II:  139,  140,  142,  390 

Self,  J.  A.,  I:  251,  383;  II:  229,  235,  398 
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Shafer,  S.  A.,  Ill:  228,  582 

Shanmugam,  K.,  Ill:  231,  231,  572 

Shannon,  C.  E.,  I:  27,  31,  94-99,  103,  108, 
383;  III:  5,  582 

Sharp,  G.  C,  II:  222,  394 
Shaw,  D.  E.,  II:  172,  307,  319,  325,  391,  398 

Shaw,  J.  C,  I:  29,  30,  98,  105,  108,  109,  111, 

112,  113,  118,  379;  II:  4,  396;  III:  6 

Sheikh,  Y.  M,  II:  115,  398 

Shirai,  Y.,  Ill:  132,  168-172,  221,  258,  272- 

273,  276-277,  312,  580,  582 
Shortliffe,  E.  H.,  I:  195,  197,  369,  383;  II:  180, 

183,  184-192,  398;  III:  331,  582 
Shostak,  R.  S.,  Ill:  97,  100,  567,  582 

Shoup,  J.,  I:  329,  330,  333,  344,  376,  383 

Shrobe,  H.  E.,  II:  343-349,  387,  398 
Sibel,  W.,  II:  310,  398 

Sibert,  E.  E.,  Ill:  123,  581 

Sickel,  S.,  II:  312,  325,  387 

Sieber,  W.,  II:  138,  142,  402 

Siklossy,  L.,  I:  16,  383;  II:  29,  319,  325,  398, 
399 

Silverman,  H.  F.,  II:  180,  206-211,  391,  398; 
III:  252,  566 

Simmons,  R.  F.,  I:  182,  186,  189,  228,  254, 

256,  274,  277,  287,  375,  383,  384,  387 

Simon,  H.  A.,  I:  4,  14,  15,  29-30,  31,  59,  63, 
68,  71,  98,  100,  105,  106,  108,  109,  111, 

112,  113,  118,  121,  149,  157,  169,  285, 

379,  380,  384;  II:  4,  317,  325,  396,  399; 

III:  3,  5,  6,  9,  11-21,  26,  28-29,  35,  77, 

326,  327,  360-361,  372,  375,  405,  518, 
570,  574,  579,  582 

Sint,  L.,  I:  73,  369 

Sirovich,  F.,  I:  81,  83,  376 

Skinner,  B.  F.,  Ill:  4,  582 

Skolem,  T.,  Ill:  102,  582 

Slagle,  J.  R.,  I:  80,  81,  83,  87,  91,  93,  98, 
102,  108,  123,  127,  368,  384 

Slate,  D.  J.,  I:  95,  96,  99,  100,  102,  103,  108, 
384 

Sleeman,  D.,  II:  228,  399 

Slocum,  J.,  I:  182,  186,  277,  318,  321,  374, 
384;  II:  155,  160,  162,  389 

Sloman,  A.,  I:  200,  205,  206,  384 

Smirnov-Troyansky,  P.  P.,  I:  233 
Smith,  B.  C,  I:  152,  367 

Smith,  D.  H.,  II:  109,  110,  111,  112,  114-115, 
387,  398,  399,  401 

Smith,  G.,  II:  138,  142,  402 

Smith,  R.  G.,  II:  46,  399;  III:  334,  372,  456, 
464,  568 

Smith,  R.  L.,  II:  228,  284,  290,  384,  399 

Smith,  W.,  Ill:  558,  582 

Snape,  K.,  II:  125,  399 

Snyder,  A.,  II:  344,  394 
Solomon,  C,  II:  293,  399 

Solomonoff,  R.,  Ill:  507,  583 

Soloway,  E.,  Ill:  363,  364,  581,  583 

Soroka,  B.  I.,  Ill:  316,  583 

Sowa,  J.  F.,  II:  171-172,  399 
Sowizral,  H.,  II:  84,  389,  392 

Sridharan,  N.  S.,  II:  13,  86,  111,  115,  UO, 

183,  395,  399 

Stallman,  R.  M.,  II:  75-7^,  400 
Stansfield,  J.  L.,  II:  261,  266,  400 

Steel,  J.,  II:  76,  388 

Stefik,  M.  J.,  I:  184,  217,  221,  384;  II:  84, 

400;   III:  520,   522,   551-557,   559,   561, 
570,  583 

Stein,  P.,  I:  99,  103,  108,  375 

Steinberg,  L.,  II:  307,  329,  391,  400 

Steinberg,  S.,  I:  248,  384 

Sternberg,  S.,  Ill:  50,  583 

Stevens,  A.,  II:  229-230,  234,  242-246,  274, 
396,  400 

Stevens,  K.,  Ill:  242,  265,  583 

Stickel,  M.,  Ill:  97,  99,  100,  575,  580 

Stone,  P.  J.,  Ill:  384,  406,  408,  573 

Sugar,  L.,  I:  186,  378 

Sugihara,  K.,  Ill:  274-275,  276,  583 
Summers,  P.  D.,  II:  325,  400 

Suppes,  P.,  I:  171,  384;  II:  227,  283-290,  400 
Sussman,  G.  J.,  I:  175,  176,  299,  384,  385; 

II:  10,  56,  73-74,  76,  316,  317-318,  325, 

361,   388,   400;   III:  452,   475-483,   520, 
531-535,  540,  583 

Sutherland,  G.  L.,  I:  197,  370;  II:  108,  109, 

110,  115,  160,  162,  389,  398 

Suwa,  M,  III:  258,  272-273,  582 
Swain,  P.  H.,  Ill:  227,  581 

Swartout,  W.,  II:  91,  180,  182,  206-211,  319, 
325,  398,  400 

Swinehart,  D.  C,  II:  11,  41,  52,  390 

Sykes,  D.,  II:  319,  325,  399 

Szolovits,  P.,  II:  180,  183,  202-205,  206,  400 
Szolovitz,  P.,  I:  217,  229,  385 

Taboada,  J.,  Ill:  258,  565 

Tamura,  H.,  Ill:  231,  583 

Tanimoto,  S.,  Ill:  279,  282,  583 

Tappel,  S.,  II:  335,  391 

Tate,  A.,  Ill:  535-537,  540,  550,  583 
Taylor,  B.,  I:  254,  255,  385 

Taylor,  R.  H.,  II:  11,  41,  52,  390 
Teitelman,  W.,  II:  8,  400 

Tenenbaum,  J.  M.,  I:  318,  321,  366;  III:  182, 

134,  238-242,  243,  295-297,  566,  583 
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Terry,  A.,  II:  133,  389,  401 

Thompson,  C,  I:  374 

Thompson,  F.  B.,  I:  228,  385 

Thompson,  H.,  I:  219,  221,  232,  367 

Thompson,  M.  G.,  Ill:  511,  571 

Thompson,  W.  B.,  Ill:  305,  583 

Thorndyke,  P.  W.,  I:  306,  315,  385 

Thorp,  E.,  I:  103,  108,  385 

Thorpe,  C.  E.,  Ill:  284,  583 

Thurston,  M.,  IE:  217,  233,  581 

Tokunaga,  T.,  Ill:  305,  584 
Tolzis,  H.,  Ill:  290,  565 

Tomita,  F.,  Ill:  227,  283-234,  235,  236,  584 
Trager,  B.  M.,  II:  144,  401 

Traub,  J.  F.,  II:  144,  385 

Travis,  L.,  II:  173,  393 

Trigoboff,  M.,  II:  180,  212-216,  401 
Tsichlis,  P.,  II:  180,  398 

Tsuji,  S.,  ffi:  219,  227,  233-234,  235,  236, 
584,  585 

Tsypkin,  Y.  Z.,  Ill:  382,  584 

Tukey,  J.  W.,  Ill:  119,  584 

Turing,  A.  M.,  I:  4,  99,  103,  108,  385 

Turner,  K.  J.,  Ill:  222,  291,  584 

Tversky,  A.,  Ill:  67,  584 

Tyson,  M.,  Ill:  101,  567 

Ueda,  H.,  Ill:  305,  584 

Ulam,  S.,  I:  99,  103,  108,  375 

Ullian,  J.  S.,  Ill:  119,  580 

Ullman,  J.  D.,  I:  68,  71,  241,  244,  365,  374; 
III:  135,  245,  247,  337,  565,  573,  584 

Ullman,  S.,  Ill:  247,  497,  584 

Uno,  T.,  Ill:  305,  569,  584 

Utgoff,  P.  E.,  Ill:  452-453,  484~498,  578 

VanLehn,  K.,  II:  282,  386 

Vanderbrug,  G.  J.,  I:  31,  385;  III:  258,  584 

van  Melle,  W.,  II:   84,   180,  276,  398,  401; 
III:  348,  584 

Varkony,  T.  H.,  II:  109,  110,  114-115,  401 
Vere,  S.  A.,  I:  195,  385;  III:  391,  892,  400, 

584 

Vincens,  P.,  I:  325,  385 

von  Neumann,  J.,  II:  6 

Wahlster,  W.,  II:  18,  401 

Walden,  W.  E.,  I:  99,  103,  108,  375,  385 

Waldinger,  R.  J.,  I:  176,  381,  382;  II:  11,  12, 

64,  69,  307,  808,  312,  325,  355-868,  391, 
395,  398,  401;  III:  587-540,  584 

Walker,  D.  E.,  I:  186,  361,  385 

Wallach,  H.,  Ill:  244,  584 

Walsh,  M.  J.,  Ill:  325,  570 

Waltz,  D.  L.,  I:  232,  385;  II:  164,  401;  III:  138, 

146,  161-167,  292,  295,  300,  584 
Wang,  H.,  Ill:  77,  584 

Wang,  P.,  II:  144,  401 

Ward,  M.  R.,  Ill:  301,  803-804,  305,  573 
Warnock,  E.  H.,  II:  237,  388 

Warren,  D.  H.  D.,  II:  13,  401;  III:  82,  123, 
584,  585 

Wason,  P.  C,  III:  119,  585 

Wasow,  T.,  I:  248,  369 

Waterman,  D.  A.,  I:  16,  195,  199,  385;  II:  9, 

57,  84,  86,  389,  392,  401;  III:  331,  452, 

465-474,  585 
Waters,  R.  C,  II:  848-349,  401 
Weaver,  W.,  I:  226,  284,  237,  238,  288,  304, 

385;  III:  5,  582 

Weber,  S.,  I:  257,  369;  See  also  S.  W.  Russell. 

Wee,  W.  G.,  Ill:  880,  585 

Wegbreit,  B.,  II:  45,  315,  325,  384,  401 

Weiss,  S.  M.,  II:  180,  193-196,  217-222,  394, 
402 

Weissmann,  C,  II:  29,  402 

Weizenbaum,  J.,  I:  228,  285,  286,  386 

Welin,  C.  W.,  I:  255,  386 

Wells,  M,  I:  99,  103,  108,  375 
Wescourt,  K.,  II:  284,  402 

Westfold,  S.,  II:  335,  391 

Weszka,  J.  S.,  Ill:  229,  231,  585 

Wexler,  J.  D.,  II:  227,  402 

Wexler,  K.,  Ill:  55,  509,  510,  571,  585 

Weyhrauch,   R.   W.,   I:   169-171,   371,   386; 
II:  13,  402;  III:  82,  119,  585 

White,  W.  C,  II:  122,  386 

Whitehead,  A.  N.,  I:  111,  112,  386 

Widrow,  B.,  Ill:  379,  585 

Wiederhold,  G.,  II:  303-307,  384;  III:  337, 

585 
Wilber,  M.,  I:  176,  381;  II:  64,  69,  398,  402 

Wile,  D.,  II:  836-342,  383 
Wilensky,  R.,  I:  232,  813,  314,  315,  386 

Wilkins,  D.,  I:  95,  107,  108,  386 

Wilks,  Y.,  I:  149,  207,  209,  210,  215,  232, 

287,  238,  248,  254,  255,  262,  279,  288, 
289,  291,  299,  368,  386,  387 

Williams,  C,  II:  386-342 
Wilson,  H.  A.,  II:  226,  383 

Winograd,  T.,  I:  9,  14,  31,  147,  150-152,  156, 
158,  159,  173,  176,  177,  179,  189,  199, 

207,  215,  217,  219,  221,  222,  227,  230- 
232,  244,  251,  260,  261,  262,  267,  276, 

287,  291,  295,  296,  298,  299,  319,  367, 

385,  387;  II:  10,  64,  383,  400 
Winston,  P.  H.,  I:  15,   16,  87,  90,  93,  199, 

387;  II:  14,  29,  86,  380-382,  402;  III:  138, 
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Winston,  P.  H.  (continued) 
160,  161,  162,  163,  167,  286,  326,  364, 

892-396,  400,  443,  585 

Wipke,  W.  T.,  II:  134-139,  142,  388,  402 
Witkin,  A.  P.,  Ill:  265,  585 

Wolf,  A.  K.,  I:  282,  372 

Wolf,  H.  C,  I:  318,  321,  366 

Wolf,  J.,  I:  329,  342,  353,  354,  356,  357,  387 

Wong,  H.  K.,  I:  278,  387;  II:  172,  396 

Wood,  D.  E.,  I:  64,  66,  376 

Woodham,  R.  J.,  Ill:  260,  263,  585 

Woods,  W.,  I:  173,  184,  186,  230,  260,  261, 

263,  266,  267,  292,  293,  294,  327,  329, 

342,  353,  354,  356,  357,  379,  387,  388 

Wos,  L.,  ni:  93,  581,  585 

Wyszecki,  G.,  Ill:  205,  573 

Yachida,  M.,  Ill:  219,  234,  235,  236,  584, 
585 

Yakimovsky,  Y.,  Ill:  132,  226,  585 

Yamada,  T.,  Ill:  303,  578 
Yamawaki,  T.,  Ill:  231,  583 

Yamazaki,  I.,  Ill:  303,  305,  577 

Yeo,  A.,  II:  110,  399 

Yngve,  V.,  I:  233,  273,  275,  388 

Yob,  G.,  II:  261,  402 
Yovits,  M.  C,  III:  325,  586 

Yu,  V.,  II:  182,  192,  267,  402 

Yun,  D.  Y.,  II:  144,  396 

Zadeh,  L.,  II:  IS,  402;  III:  356,  586 

Ziles,  L.  A.,  II:  343-344,  402 

Zippel,  R.,  II:  144,  402 
Zucker,  S.  W.,  Ill:  229,  234,  298-300,  586 
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Ablation  studies  of  HARPY,  I:  335 

Abstract  operators  in  NOAH,  III:  542 

Abstraction  space,  III:  516-518 

in  ABSTRIPS,  I:  136;  III:  528-530 

ABSTRIPS,  I:  22,  28,  134,  135-139,  169; 
III:  517-518,  523-530 

Acceptance  of  expert  systems,  II:  89 

Acoustics,  I:  343.  See  also  Speech  signal. 

Acquisition  of  knowledge.     See  Knowledge 

acquisition;   Learning;   Transfer  of  ex- 

pertise. 

ACRONYM,  III:  132,  137,  313-321 

generalized  cylinders  in,  III:  314-316 

interpretation  in,  III:  319-320 

modeling  classes  of  objects  in,  III:  314-316 
predicting  relations  in,  III:  317 

predicting  shapes  in,  III:  316-317 
ACT,  I:  195;  III:  9,  50-54 
Action  clause  of  production  rule,  II:  188 

Actional  predicates,  III:  58 

Active  instance  selection,  III:  363.    See  also 

Instance  space,  search  of. 

Active  structural  network,  I:  185;  III:  56-64. 
See  also  Semantic  network. 

Acyclic  molecular  structures,  II:  106,  111 

Ad  hoc  knowledge  representation,  I:  227 
Ad  hoc  parsers,  I:  287 

Adaptive  learning.  See  Adaptive  systems. 

Adaptive  production  system,  I:  195 

Adaptive  systems,  III:  325,  371,  373-382 
ADD  list,  II:  73 

in  ABSTRIPS,  I:  135 

in  NOAH,  III:  544-545,  550 

in  STRIPS,  I:  128-134 
Admissibility 

of  A*,  I:  65 
of  ordered  search,  I:  80,  83 

of  shortfall  density  strategy,  I:  341,  356 
Admissibility  condition,  I:  65,  67,  73 

Advice  Taker,  III:  78 

Advice-taking,  III:  328,  333,  345-359,  427, 
467-468.  See  also  Learning  situations. 

Advisor  in  MACSYMA,  II:  147 

Aerial  photograph  interpretation,  III:  306- 
308,  319-320 

AGE,  II:  84;  III:  348 

use  of,  in  CRYSALIS,  II:  126 

Agenda,  I:  338,  356,  360.    See  also  Control 
structures  and  strategies, 

in  AM,  III:  440 
in  SCHOLAR,  II:  239 

Agreement  in  natural  language,  I:  263 

Agricultural  pest-management  systems, 
II:  154 

AI  programming,  II:  30-32 
AI  programming  languages,  I:  10,  172,  175; 

II:  3-76.  See  also  Knowledge  representa- 
tion languages. 

ALGOL,  I:  237;  II:  6,  11 

CONNrS^ER,  I:  175,  176;  II:  4,  8-10,  38- 

39,  50-51,  56,  60-61,  68,  146,  202 
context  mechanisms  in,  II:  10,  35-37,  39, 

44,  46,  73 

control  structures  in,  II:  31-32,  45-57 

data  structures  in,  II:  30-31,  34-44 
database  facilities  in,  II:  44 

features  of,  II:  30-71 
FOL,  II:  13 

FUZZY,  II:  13,  43,  53-55,  63-64 
INTERLISP,  I:  320;  II:  8,  67-68,  70-71, 

212,  362 

IPL,  II:  4 
IPL-V,  I:  281-282;  III:  29 
LEAP,  II:  11,  41,  317 

list  processing  in,  I:  227,  281-287 
LISP,  I:  15,  173,  237,  283,  295,  303;  II:  4, 

5-9,  15-29,  37,  46-47,  59,  66-68,  187, 

298,  300,  312-314,  355;  III:  103,  120- 123 

MACLISP,  II:  8,  202,  206,  369 

MICRO-PLANNER,  I:  295-297;  II:  10 

pattern  matching  in,  II:  32,  58-64 
PLANNER,   I:    151,    155,    171,    175-178, 

295-297;  II:  8-10,  38,  47-50,  56,  60,  68, 
74,  79;  III:  82,  121,  533 

POP-2,  II:  7,  12,  42,  53,  63,  70 
POPLER,  I:  176;  II:  12 

programming  environment  of,  II:  3-4,  7-9, 

32,  65-71 
PROLOG,  II:  13;  III:  82,  123-124 
QA3,  I:  129,  168,  169;  III:  78 

QA4,  I:  176;  II:  11,  79 

601 
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AI  programming  languages  (continued) 

QLISP,  I:  176;  II:  12,  39-41,  51-52,  61-62, 
69,  362;  III:  543 

SAIL,  II:  11,  41-42,  52-53,  62-63,  69-70, 
317 

SLIP,  I:  286 

AIMDS/BELIEVER,  II:  13 
Albedo  map,  III:  238 

ALCHEM  in  SECS,  II:  137 

Algebraic  manipulation,   II:    143.      See  also 
MACSYMA. 

ALGOL,  I:  237;  II:  6,  11 

A*  algorithm,  I:  64-73,  80 
Aliphatic  amines,  II:  117 

Allocation  of  storage.  See  Variable  scoping. 

Allophone,  I:  333,  337,  349.  See  also  Speech 

pattern. 

Alpha-beta  pruning  of  game  trees,  I:  88-93, 
94,  101 

Alternative  dialogues  in  GUIDON,  II:  272. 

AM,  I:  157,  195-197;  III:  100,  326,  330,  370, 

371,  372,  422,  438-451 
best-first  search  in,  III:  438,  441 

performance  of,  III:  447-451 
reasoning  about  boundary  examples  in, 

III:  443-444 

refinement  operators  in,  III:  444-445 
representation  of  mathematical  concepts 

in,  III:  438 

searching  instance  space  in,  III:  442-444 

searching  rule  space  in,  III:  444-445 
Ambiguity 

in  natural  language,  I:  208-211 

in  program  specification,  II:  336-337 

in  speech,  I:  325-327 
Analogical  knowledge  representation.      See 

Direct  (analogical)  knowledge  represen- 
tation. 

Analogical  reasoning,  I:  146 

as  a  method  of  learning,  III:  328,  334,  443- 
445 

Analytic  chemistry,  II:  102-133;  III:  428 
Anaphoric  reference,  I:  293,  358;  II:  250 

AND/OR  graph,  I:  26,  38-40,  43,  74,  113, 
119,  124.   See  also  Problem  representa- 
tion, 

generalized,  I:  82 

search  of,  I:  54-57,  74-83 
AND/OR  tree,  I:  39,  56,  94,  268;  II:  90,  95, 

134,   190,  270,  375.     See  also  Problem 

representation, 
context  tree,  I:  197 

degree  of,  I:  91 

game  tree,  I:  25,  43-45,  84 

solution  tree,  I:  40,  75,  77-79 

transition  tree,  I:  316-317 
Androstanes,  II:  122 

Antecedent  reasoning.    See  Bottom-up  rea- 
soning; Control  structures  and  strate- 

gies; Reasoning. 
Antecedent  theorem 

in  logic  programming,  III:  120-123 
in  PLANNER,  II:  38,  48,  73 

Antimicrobial  therapy,  II:  184 

AP2  in  SAFE,  II:  337 

APL,  II:  6 

Application  language  in  LIFER,  I:  316 

Applications  of  AI.  See  also  Expert  systems; 

Games;  Puzzles, 
document  retrieval,  I:  328,  351 

industrial  vision  systems,  III:  301-305 
information  retrieval,  I:  22,  282,  283,  292, 

316,  318 

machine  translation,  I:  207-213,  225,  226, 

233-238,  273,  274,  279,  281,  288-291 

paraphrasing,  I:  149,  211,  255,  274,  302- 
304,  321 

question  answering,  I:  168-169,  173,  185- 
186,  281,  295,  302;  III:  63,  78 

space  planning,  I:  202 
story  understanding,  I:  231,  300,  306 

travel  budget  manager,  I:  353 
voice  chess,  I:  328,  334,  344 

Applicative  style  of  programming,  II:  6-7, 
15,  17 

Apprentice  for  MACSYMA,  II:  148 

A?  algorithm,  III:  398,  419,  423-427 

AQ11,  III:  421,  423-427 
Areal  features,  III:  251 

Arithmetic  skills,  II:  279-282 
ARPA  speech  understanding  research  (SUR), 

I:  327,  353 

Articulate  expert.  See  also  Explanation, 

in  ICAI  systems,  II:  230 
in  SOPHIE,  II:  252 

Askable  vs.  unaskable  hypotheses,  II:  161 

Assembly,  III:  542 

automation  of,  in  SRI  computer-based 

consultant,  II:  150-154 
Assertion,  II:  38 

Assignment  statement,  II:  19 

Associated  pair,  III:  335.     See  also  Paired- 
associate  learning. 

Associations.  See  also  LEAP;  Property  lists, 
in  AI  programming  languages,  II:  4 
in  LISP,  II:  7 

in  SAIL,  II:  41 
Associative  triple 
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in  MYCIN,  II:  188 

in  SAIL,  II:  41 

Atom  in  LISP,  II:  7,  16 

Atom  migration  in  mass  spectroscopy, 

II:  117;  III:  430-434 

Attribute-object-value  triple.     See  Associa- 
tive triple. 

Augmented  links  in  IRIS,  II:  212 

Augmented  transition  network  (ATN), 

I:  186,  230,  261,  263-267;  III:  56.  See 
also  Grammar;  Parsing, 

in  GSP,  I:  268,  271 

in  LIFER,  I:  316 

in  LUNAR,  I:  292-294 
in  MARGIE,  I:  303,  304 

in  MEMOD,  III:  56 

in  speech-understanding  systems,  I:  350, 
355 

in  text-generation  systems,  I:  277-279 

Automata  as  objects  of  learning,  III:  380- 
381 

Automatic  backtracking.  See  Backtracking. 

Automatic  coding,  II:  299.     See  also  Auto- 
matic programming. 

Automatic  deduction,  III:  76-123.    See  also 
Logic;  Theorem  proving. 

Boyer- Moore  theorem  prover,  III:  102-113 
circumscription  in,  III:  116 

and  commonsense  reasoning,  III:  78 

control  strategies  in,  III:  80-82 

decision  procedures  in,  III:  99-100 
deduction  contrasted  with  evaluation  in, 

III:  79 

default  reasoning  in,  I:  176-177;  II:  239; 
III:  115-116,  119 

with  examples,  III:  100 

heuristics  for,  III:  91-92,  98-100 

IMPLY,  III:  95-96,  98 

and  induction,  III:  109-110 

logic  programming,  II:  13;  III:  77,  82,  120- 
121,  123 

Logic  Theorist  (LT),  I:  24,  109-112,  113, 
116,  119;  II:  4,  79;  III:  3,  77 

and  natural  deduction,  I:   163-164,    169, 

175;  II:  283,  285-286;  III:  94-95,  101 

and  nonmonotonic  logic,  II:  74-75; 
III:  114-119 

and  nonresolution  theorem  proving, 

III:  94-102 

and  reduction,  III:  98-99 
resolution  method  in,  I:  168,  175;  II:  11, 

313;  III:  77-78,  86-87,  91-94,  97 

and  unification,  II:  61-62;  III:  89-90,  91, 
96,  120,  121 

Automatic  derivation  of  NL  front  end, 
II:  166 

Automatic  programming  (AP),  I:  9;  II:  297- 
379.  See  also  Program  specification, 

approaches  to,  II:  301,  312-325 
automatic  data-structure  selection, 

II:  316-317 

of  data-processing  systems,  II:  364-369 
definition  of,  II:  297-298 

efficiency  of  synthesized  code  in,  II:  302- 

303,  317,  327,  365,  375-379 
issues  in,  II:  301-303 
and  learning,  II:  297-298,  318 
and  LISP,  II:  27 

planning  in,  II:  339-340 
in  PECOS,  II:  350-354 

program-specification  methods  for,  II:  297, 
299-300,  306-311,  336-337 

program  synthesis,  II:  313 
program  understanding,  II:  303,  305,  343, 

364-369 

in  PSI,  II:  330 

representation  of  knowledge  in.  II:  315- 
316 

representation   of  programs   in,    II:    319, 

327,  329-330,  343-348,  375 
and  self-reflective  programs,  II:  297-298, 

318 

of  simulation  programs  in  NLPQ,  II:  370- 

374 
symbolic  execution  in,  II:  323,  336,  339- 

340 

systems- design  issues  in,  II:  327-328 
target  language  in,  II:  28,  300,  355,  370 
verification  of  synthesized  code,  II:  320, 

344-347,  355 

Automatic  programming  approaches,  II:  301, 

312-325 

induction,  II:  319-325 
knowledge  engineering,  II:  301,  315-316, 

350-354,  375-379 

problem  solving,  II:  301,  317-318,  321, 
324-325 

program  transformation,  II:  301,  302,  304, 

309,  314-315,  350-354,  355-363,  370- 

374,  375-379 
program  understanding,  II:  303,  305,  343, 

364-369 

theorem  proving,  II:  301,  308-309,  312- 

314 
Automatic  theory  formation,   II:   116.     See 

also  Hypothesis,   formation  of;   Learn- ing. 

Average  branching  factor.     See  Branching 
factor. 
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Axiomatic  system,  I:  165;  See  also  Automatic 
deduction. 

Axiomatization  of  operations,  II:  319 

BABEL,  I:  278 

Backed-up  values,  in  game  trees,  I:  87.    See 
also  Minimax. 

Backgammon,  I:  103 

Backtracking,  I:  23,  138,  203,  258,  266,  271, 
298,  339,  341,  351;  II:  121,  336,  339; 

III:    24,    120,    121,    293-295,    520-521, 

526-530,  537,  542,  545,  547,  552.    See 
also  Planning, 

automatic,  II:  9 

chronological,  II:  50,  72 

in  CONN1YER,  II:  50 

dependency-directed,  II:  73 
in  the  General  Space  Planner,  I:  203 

in  the  General  Syntactic  Processor,  I:  271 

in  HARPY,  I:  341 

in  logic  programming,  III:  120-121 
and  parallel  processing,  I:  258,  266 
in  PROGRAMMAR,  I:  298 

after  protection  violation,  III:  531-537 

and  relaxation,  III:  293-295 
in  STRIPS  and  ABSTRIPS,  I:  138; 

III:  526-530 

Backward  chaining,  I:  23-25,  36,  51,  56,  74, 
110,  111,  196,  198;  II:  83,  87,  93,  136; 

III:  80,  95,  97.    See  also  Control  struc- 

tures and  strategies;  Reasoning;   Top- 
down  processing, 

as  depth-first  search,  II:  189 
in  IMPLY,  III:  95,  97 

in  MYCIN,  I:  196,  198;  II:  189-191 

in  PROSPECTOR,  II:  156,  160-161 

BACON,  III:  370,  384,  401-406,  444,  452 

refinement  operators  in,  III:  401-403 
BADLIST,  II:  107 

Bag  in  QLISP,  II:  34,  39-41 
BAIL  in  SAIL,  II:  70 

Bandpass  filtering,  III:  212-215 
Bandwidth  condition,  I:  69 

Bandwidth  search,  I:  60,  69-71 
Bare  template,  I:  288,  290 
BASEBALL 

Green's  program,  I:  227,  237,  282 

Soloway's  program,  III:  364 
Bayes  theorem,  See  also  Probabilistic  reason- 

ing, 

in  grammatical  inference,  III:  503 

in  medical  diagnosis,  II:  179,  267 

Beam  search,  I:  337,  341,  350,  356;  III:  411- 
415 

Behavioral  specification  of  programs,  II:  336- 

338,  343 

Belief  revision,  II:  72-76 

Belief  systems,  III:  9,  65-74 
Beliefs  contrasted  with  facts,  III:  65-68 

Best-first  search,  I:  59,  60,  102,  360;  II:  141; 
III:  252,  438,  441 

Bidirectional  search,  I:  24,  51-53,  72-73,  74 
Binary  images,  III:  214 

Binocular  vision,  III:  249-253,  254.   .See  also 
Stereo  vision. 

BIP,  II:  230,  234 

Blackboard,  I:  197,  331,  336,  343-346;  II:  31, 

104,  126,  342;  III:  519.    See  also  Con- 
trol structures  and  strategies;  Knowl- 

edge source, 

in  CRYSALIS,  II:  126-127 
in  HEARSAY,  I:  343-346;  II:  31 

in  integrated  vision  systems,  III:  306-310 

as  a  model  of  planning,  III:  25-27,  519 

Blind  search,  I:  21,  29-30,  46-57.    See  also 
Combinatorial  explosion, 

bidirectional,  I:  72 

and  heuristic  search,  I:  58 

in  Logic  Theorist,  I:  111 

and  ordered  search,  I:  61-62 

Blocks  world,  I:  276;  III:  136,  139-194 
Bond  environment,  III:  430 

Bottom-up  processing,  I:  23-24,  51,  56,  74, 
198,  220,  259,  270,  326,  334,  338,  358; 

II:  129,  196,  199-201,  214,  257;  III:  129, 

288-290,  306.     See  also  Control  struc- 
tures and  strategies;  Forward  chaining, 

in  CASNET,  II:  196 

definition  of,  I:  23-24 
in  grammatical  approaches  to  vision, 

III:  288-290 

in  INTERNIST,  II:  199-200,  201 
in  IRIS,  II:  214 

in  natural-language  parsing,  I:  259,  270 
in  production  systems,  I:  198 

in  speech  understanding,  I:  326,  334,  338, 
358 

in  vision  systems,  III:  129,  306 

Boyer-Moore  theorem  prover,  III:  100,  102- 113 

Branch-and-bound,  I:  64 
Branching  factor 

average,  in  speech-system  grammars, 
I:  328-329 

of  a  search  tree,  I:  91,  98 

Breadth-first  search,  I:  47-48,  56-57,  61,  68, 
73,  111;  III:  39.  See  also  Search. 

British  Museum  Algorithm,  II:  35 
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BUGGY,  II:  231,  279-282,  292 
evaluation  of,  II:  280 

sample  protocol  from,  II:  281-282 
Bugs.  See  Generalized  bugs. 

Caching,  III:  336 

Calling  hierarchy,  II:  31 

Camera-centered  representation,  III:  272 

Camera  model,  III:  195-199 
for  stereo  vision,  III:  253 

Camera.  See  also  Imaging  devices, 

calibration,  III:  198 

CCD,  III:  200,  255 

pinhole,  III:  195 
Vidicon,  III:  200 

Candidate-elimination  algorithm,  III:  386- 

391y  396-399,  436,  484,  487-488,  490, 
505 

G  set  (of  most  general  hypotheses)  in, 
III:  386,  424,  426 

learning  disjunctions  using,  III:  490-491 

multiple  boundary-set  extension,  III:  396, 
490 

S  set  (of  most  specific  hypotheses)  in, 
III:  386,  411,  426 

Update-G  routine,  III:  388-391 

Update-S  routine,  III:  388-392 
version  space  (set  of  plausible  hypotheses) 

in,  II:  121;  III:  387 

CAPS,  I:  106,  196 

CAR  in  LISP,  II:  16 

Case  ambiguity,  I:  291 

Case  analysis,  III:  354 

Case  frame,  I:  182,  186,  231,  253;  III:  59,  63 

Case  grammar,  I:  229,  249,  252-255,  277; 
II:  238 

Case-method  tutor,  II:  235,  242 

CASNET,  II:  160,  180,  181,  182,  193-196, 
215,  221 

Categorical  reasoning,  II:  205 

Category-size  effect,  III:  8 
Causal  chain,  I:  301 

Causal  disease  model  in  CASNET,  II:  180- 

181,  193-195 
Causality,  III:  44,  60 

Causative  predicates,  III:  58 

CDR  in  LISP,  II:  16 

Cell  in  LISP,  II:  4,  16-17 
CENTAUR,  II:  182 

Central  projection,  III:  195 

Certainty  in  probabilistic  relaxation, 

III:  297-298.  See  also  Uncertainty. 

Certainty  factor  (CF),  II:  13,  271,  277. 
See  also  Uncertainty. 

in  CASNET,  II:  193,  195-196 
in  CRYSALIS,  II:  131 
in  EXPERT,  II:  221 

in  IRIS,  II:  215 

in  MYCIN,  II:  180,  188-191;  III:  67 
Chain  rule,  III:  86 

Change  predicates,  III:  57 

Chart,  I:  260,  268-271,  354 

Checkers,  I:  26,  43,  44,  95,  97;  III:  332-333, 

339-344,  457-464 
Chemistry,  I:  168 

analysis  in,  II:  102-133;  III:  428 

synthesis  in,  II:  102,  134-142 
Chess,  I:  6,  22,  23,  26,  43,  94-108,  205,  334, 

351;  II:  4,  72;  III:  11 

CHI,  II:  326,  333-335 
Chief  complaint,  II:  202 

Chronological  backtracking,   II:   9,   50,   72. 
See  also  Backtracking. 

Chunk,  III:  5 

Circumscription,  III:  115-116,  118,  119.  See 
also  Default  reasoning. 

Classification 

for  multiple  classes,  III:  423-427 
of  patterns,  III:  127 
as  a  performance  task,  III:  331,  383 

Classification  systems,  II:  217 

Classification  tables  in  CASNET,  II:  194- 196 

Clause  form,  III:  87,  89-91,  92,  94 
Cleavage  rules,  III:  428,  430 

Clinical  reasoning.    See  Diagnosis;  Medical 

diagnosis. 
CLISP  in  INTERLISP,  II:  8,  68 

Closed-world  assumption,  III:  115,  360 
in  SCHOLAR,  II:  240 

CLS,  III:  384,  406-408 
refinement  operator,  III:  408 

Clustering,   III:  227-228.     See  also  Region 
splitting. 

Co-occurrence  matrix,  III:  230 

Co- routining,  I:  271.  See  also  Control  struc- 
tures and  strategies;   Parallel  process- ing. 

COBOL,  II:  3 

Code  generation  in  automatic  programming. 

See  Program  synthesis. 
Codification  of  programming  knowledge.  See 

Representation  of  programming  knowl- 
edge. 

Cognitive  science,  HI:  4.    See  also  Memory 
models;  Psychology. 

Cohesiveness,  III:  252 

Cold  war  ideologue,  III:  68,  69 
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Color,  III:  203-205 

in  edge  detection,  III:  219-220 

features,  III:  203-205 

spaces,  III:  203-205 
Combinatorial  explosion,  I:  27,  28,  58,  98, 

99,  154,  155,  168,  260,  339,  356;  II:  79, 

134,   136,   140,  303,  313,  368;   III:  78, 
519.  See  also  Search. 

Commonsense  reasoning,  III:  84 

Competence  vs.  performance,  I:  245 

Compiled  knowledge,  I:  336-337,  349 
Compiler,  II:  3,  297 

compared  to  AP  system,  II:  302 

Completeness,   of  a  knowledge  representa- 
tion, I:  178;  III:  79 

in  logic,  III:  91 

Completeness  of  program  specification, 
II:  300,  308 

Composition  of  substitutions,  III:  96 

Computational  linguistics,  I:  226,  229,  233, 
304 

Computer- assisted  instruction  (CAI), 
I:  186;  II:  225-294.  See  also  Intelligent 

computer-assisted  instruction, 

environmental  approach  in,  II:  291-294 
learning  by  doing,  II:  291 

learning  resources  in,  II:  292-293 

nontutorial,  II:  291-294 
teacherless  learning,  II:  293 

Computer-based  consultant  (CBC),  II:  177; 
III:  541.  See  also  Expert  systems. 

Advisor  for  MACSYMA,  II:  147 

for  air-compressor  assembly  system  (SRI), 
II:  150-154;  III:  541 

communication  skills  of,  II:  150 

definition  of,  II:  150 

Computer  coach  in  ICAI  systems,  II:  231, 

234,  254-255,   257-259,  261-266.     See 
also  Tutoring  strategies  in  ICAI. 

Computer  games  in  ICAI  systems,  II:  234, 

252,  254,  261-266 

Concavity  and  gradients,  III:  176-178,  185- 
186 

in  the  Origami  world,  III:  188-194 

Concept  formation.   See  Hypothesis,  forma- 
tion of;  Learning,  multiple  concepts; 

Learning,  single  concepts. 

Conceptual  analyzer  in  MARGIE,  I:  303 

Conceptual  bugs,  II:  279-280.  See  also  Diag- 
nosis of  student  misconceptions. 

Conceptual  dependency  theory  (CD),  III:  69 

in  MARGIE,  I:  300-303 
in  SAM  and  PAM,  I:  306 

and  semantic  primitives,  I:  211-215,  231 

and  text  generation,  I:  278-279 
Conceptualization,  I:  213 
Concordance,  I:  226 

Conditional-formation  principle,  II:  357 
Conditional  statements,  II:  31 

Confidence  measure.  See  Certainty  factor. 
Conflict  resolution 

in  PECOS,  II:  350 

in  production  systems,  I:  192,  197 

Conflicting  subgoals.  See  Subgoals,  interact- ing. 

CONGEN,  II:  106,   111-115;   III:  429.     See 
also  DENDRAL. 

status  of,  II:  110,  113-115 
use  of  constraints  in,  II:  112 
user  interface  in,  II:  112 

Conjunctive  subgoals.     See  Subgoals,  con- 

junctive. 
CONNIVER,  I:   175-176;   II:  4,   8-10,   146, 

202 

backtracking  in,  II:  50 

control  structures  in,  II:  50-51 

data  structures  in,  II:  38-39 

CONS  cell  in  LISP,  II:  4,  16-17 
Consequent  reasoning.     See  also  Backward 

chaining. 

in  logic  programming,  III:  120 
in  PLANNER,  II:  9,  12,  48 

in  PROSPECTOR,  II:  156,  160-161 

CONSIGHT-I,  III:  303-305 

Consistency.     See  also  Constraint  satisfac- 
tion; Relaxation. 

of  a  knowledge  representation,  I:  178 
in  nonmonotonic  logics,  III:  116 

in  picture  interpretation,  III:  157 

of  program  specifications,  II:  302 
Consistency  assumption  in  search  algorithms, 

I:  66,  69,  73 

Constancy  in  visual  perception,  III:  240 

Constraint,  I:  344;  II:  146;  III:  133,  292-300, 
520-521 

on  bond  fragmentations,  II:  106,  111 

continuity,  III:  264,  271 

formulation,  III:  553-556 

generator,  II:  106 
local,  III:  300 

in  MOLGEN,  III:  551-556 

on  operator  ordering,  III:  520-521 

propagation,  II:  146;  III:  553-556 
semantic,  II:  118 

in  shape-from  methods,  III:  262-267 
in  structure  elucidation,  II:  103 

uniqueness,  III:  264,  270-271 
Constraint  satisfaction,  II:  102;  III:  292-300, 

553-556.  See  also  Relaxation. 
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in  CONGEN,  II:  112 

continuous,  III:  292,  297-300 
in  CRYSALIS,  II:  124,  128 

in  DENDRAL,  II:  107-108 

discrete,  III:  292-297 

in  Meta-DENDRAL,  II:  118 

in  program  specification,  II:  302,  336,  338- 
340 

in  the  Waltz  algorithm,  III:  164 

Constraint-structured  planning,  I:  203 
Constrictor  relation  in  INTERNIST,  II:  200 

Construction  in  geometry,  I:  121 

Constructive  bugs,   II:   234,   254.      See  also 

Tutoring  strategies  in  ICAI. 

Consultation,  II:  81,  82,  177.  See  also 

Computer-based  consultant;  Expert 
systems, 

in  medical  diagnosis,  II:  178 

model  in  EXPERT,  II:  218 

Content  addressing,  II:  58 
Context 

in  dialogue,  II:  270 

in  production  systems,  I:  190,  197 

in  speech  understanding,  I:  333 

Context-free  grammar.  See  also  Phrase- 
structure  grammar, 

definition  of,  I:  242-243 
in  grammatical  inference,  III:  495 

in  parsing,  I:  260,  263 

in  text  generation,  I:  273-274 
in  transformational  grammar,  I:  247 

Context  mechanisms,  II:  10,  35-37,  39,  44, 
46,  73 

Context-sensitive  grammar,  I:  241-242.   See 

also  Phrase-structure  grammar. 
Context  tree  in  MYCIN,  I:  197 

Contrast  in  vision,  III:  304.  See  also  Prepro- 
cessing. 

Control 

of  deductive  inference,  III:  80-82 

in  integrated  vision  systems,  III:  306-312 
of  physical  systems,  III:  373 

Control  structures  and  strategies.    See  also 

Problem  solving;  Reasoning;  Search  al- 
gorithms, 

agenda,  I:  338,  356,  360;  II:  239;  III:  440 

of  AI  programming  languages,  II:  9,  31- 
32,  45-57 

backtracking,  I:  23,  138,  203,  258,  266, 
271,  298,  339,  341,  351;  II:  121,  336, 

339;  III:  24,  120,  121,  293-295,  520-521, 
526-530,  537,  542,  545,  547,  552 

backward  chaining,  I:  196,  198;  II:  83,  87, 
93,  136;  ffl:  80,  95,  97 

blackboard,  I:  197,  331,  336,  343-346; 

II:  31,    104,    126-127,   342;   III:  25-27, 
306-310,  519 

bottom-up,  I:  23-24,  51,  56,  74,  198,  220, 
259,  270,  326,  334,  338,  358;  II:  129, 

196,  199-201,  214,  257;  III:  129,  288- 
290,  306 

coroutining,  I:  271 

consequent  reasoning,  II:  156,  160-161 
conflict  resolution,  I:  192,  197 

definition  of,  I:  22 

demons,  I:  303;  II:  38,  46,  52;  III:  99 

dependency-directed  backtracking,  II:  73 
event  queue,  I:  356 

focus  of  attention,  I:  190,  197,  338,  340, 

347,  356,  360;  II:  351,  376  III:  53,  279 

forward  chaining,  I:  23-25,  51,  56,  74,  198, 

220;  II:  214  II:  129,  257;  III:  19,  80,  99- 
100,  129,  306,  452. 

generate-and-test,  I:  30;  II:  106-109; 

III:  351,  369,  411-415,  430 

hill  climbing,  II:  145,  317;  III:  252,  375- 
380,  434,  458 

hybrid,  I:  340,  356 

hypothesis  posting,  I:  336,  338,  354 
island  driving,  I:  259,  337,  339,  346,  356, 

361;  III:  23,  519 

means-ends  analysis,  I:  24,  59,  113,  117, 
126,  129,  135,  169;  II:  139,  317;  III:  3, 

7,  14-15,  517,  524-530,  554-556 

opportunism,  II:  129;  III:  7,  22-27,  516- 
519,  521 

parallel  processing,  I:  179,  230,  258-259, 
265,  271,  298,  336;  II:  146;  III:  48 

procedural  attachment,  I:  156,  158,  179, 

218-221 
and  procedural  knowledge  representation, 

I:  174 

in  production  systems,  I:  194,  197-198 
relaxation,  III:  292-300 
scheduler,  I:  347,  356 

in  speech  systems,  I:  336-342,  347,  350- 

351,  355-357,  359-360 
top-down,  I:  24,  183,  198,  216-218,  232, 

259,  326,  334,  336,  338,  344,  355,  358, 

359;  II:  201;  III:  129,  131-133,  168,  169, 

269-278,  283-286,  288-290,  306,  314- 
316 

Conversational  LISP  (CLISP),  II:  8,  68 

CONVERSE,  I:  228 
Convexity 

and  gradients,  III:  176-178,  185-186 

in  the  Origami  world,  III:  188-194 
COOP,  II:  167 
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Cooperative  responses  in  DBMS,  II:  167 

Coroutining,  II:  45.    See  also  Control  struc- 

tures and  strategies,   parallel  process- 
ing; Multiprocessing. 

in  CONNIVER,  II:  51 

in  SAIL,  II:  53 

Correspondence  problem 

finding  features,  III:  250-251 

matching  features,  III:  251-253 

in  motion,  III:  244-246 

in  stereo  vision,  III:  249-253 
Cost 

in  search,  I:  75-77;  II:  140 

of  tests  in  diagnosis,  II:  193-194,  199 

Counterexamples,  III:  100-101.  See  also 
Examples. 

Courseware,  II:  226,  240.  See  also  Computer- 
assisted  instruction. 

CPM  in  MACSYMA,  II:  146 

Cracks,  III:  161.  See  also  Lines. 

Credit  assignment,  II:  72,  88,  121 

in  ICAI  student  models,  II:  232 

Credit-assignment  problem,  III:  331,  348, 
454-456,  459 

solved  by  analysis  of  goals  and  intentions, 
III:  480 

solved  by  asking  expert,  III:  467 

solved  by  deeper  search,  III:  457 

solved  by  post-game  analysis,  III:  467-470 
solved  by  wider  search,  III:  489 

Critical  node,  in  a  game  tree,  I:  91 

Criticality  value,  in  ABSTRIPS,  I:  136; 

III:  528-530 

Critics,  III:  541,  546-550 

in  HACKER,  III:  477-478 
in  ICAI  student  models,  II:  233 

in  NOAH,  III:  546-550 

Cross-correlation,  III:  283 
Cryptarithmetic,  III:  11,  13 

CRYSALIS,  I:  336,  II:  104,  124-133 

sample  protocol  from,  II:  130-133 
status  of,  II:  133 

Cumulative  frequency  distribution  (CFD), 
III:  209 

Cut  set  of  lines,  III:  181 

Cybernetics,  I:  4,  233;  III:  6 

Cyclic  molecules,  II:  111 

Data  abstraction,  II:  172,  344 

Data-driven  processing.  See  Bottom-up  pro- 
cessing; Forward  chaining. 

Data-manipulation  language,  II:  163 

Data-processing  systems,  synthesis  of, 
II:  364-369 

Data-reduction  task,  III:  383 

Data  structure,  II:  30-31,  34-44,  308,  350 
automatic  selection  of,  in  AP,  II:  316-317 

Data  types,  II:  34,  39-41,  43-44 
Database,  I:  22,  328.    See  also  Information 

retrieval, 

facilities  in  AI  programming  languages, 
II:  44 

relational,  in  MACSYMA,  II:  146 

schema,  II:  163,  171-172 
Database  management  systems  (DBMS), 

II:  163-173 
cooperative  responses  in,  II:  167 
data  independence  II:  163,  164 

data  model,  II:  171-172 
incremental  query  formulation,  II:  167 

logic  in,  II:  172-173 
NL  front  ends,  II:  164-170 

query  optimization  in,  II:  170-171 
DEACON,  I:  228 

Dead  position  in  a  game,  I:  87,  99 

Debugging.     See  also  Diagnosis  of  student 
misconceptions, 

in  Programmer's  Apprentice,  II:  344-347 
in  TEIRESIAS,  II:  192 

Decision 

criteria  in  PIP,  II:  203 

procedures  in  theorem  proving,  III:  99-100 
rules  in  EXPERT,  II:  218-220 

tables  in  IRIS,  II:  214-215 

tree  representation  of  concepts,  III:  406- 
407 

Declarative  knowledge  representation  vs. 

procedural  knowledge  representation, 

I:  151,  172,  219,  230;  III:  120 
in  MEMOD,  III:  56 

DEDALUS,  II:  12,  302,  304,  355-363 
Deduction,  natural.  See  Natural  deduction. 

Deductive  inference,    I:    146,    205;    III:   76- 
123.  See  also  Automatic  deduction;  In- 

ference; Reasoning, 

control,  III:  80-82 
search,  III:  80 

Deep  structure  in  language,  I:  247,  266 

Default  reasoning,  I:  176-177;  II:  239; 

III:  115-116,  119.  See  also  Circumscrip- 
tion; Nonmonotonic  reasoning. 

Default  values,  I:  183,  216-220 
Degree  of  a  tree,  I:  91;  See  also  Branching 

factor. 

Delete  list,  II:  73 

in  ABSTRIPS,  I:  135 

in  STRIPS,  I:  128 

in  NOAH,  III:  544-545,  550 
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Delimited  languages,  III:  501,  505 

Demon,  I:  303;  II:  46;  III:  99.   See  also  Con- 
trol structures  and  strategies. 

as  antecedent  theorems  in  PLANNER, 
II:  38 

in  SAIL,  II:  52 

DENDRAL,  I:  60,  157,  198;  II:  79,  82,  103, 

104,  106-123;  III:  331,  429 

plan-generate-test  cycle  in,  II:  106-109 

status  of,  II:  109-110 

use  of  constraints  in,  II:  107-108 
Denotative  knowledge  representation,  I:  200 

Dependencies  and  assumptions,  II:  72-76 

Dependency-directed  backtracking,  II:  73 
Dependency  grammar,  I:  274 

Depth  bound,  I:  49,  57,  99,  115 

Depth-first  search,  I:  49-51,  57,  60,  61,  101, 

113,  138,  203;  II:  50,  189-190 
Depth  map,  III:  254,  256,  258 

Depth  measurement,  III:  141,  268-278.    See 
also  Range  data  analysis;  Range  finders; 

Support  hypothesis. 

with  laser  light,  III:  254-255 
with  light  spot,  III:  257 

with  light  stripe,  III:  258 

with  multiple  stripes,  III:  257 

resolution,  III:  254-255 
with  sound,  III:  254 

by  stereo  vision,  III:  249-253 

by  time  of  flight,  III:  254-255 

by  triangulation,  III:  255-259 
Depth  of  a  node,  I:  49 

Derivation  tree,  I:  229,  242,  246,  256,  266, 

273,  281,  293,  296,  302;  III:  497 

Design  notebook  in  Programmer's  Appren- 
tice, II:  348 

Design  space,  ill:  552 

Diagnosis,  II:  177-179,  274.  See  also  Medical 
diagnosis  systems. 

cost  of  tests  in,  II:  193-194,  199 

decision-theoretic  approaches  to,  II:  179 
differential,  II:  204 

errors  in,  II:  177 

hypothesis  confirmation  in,  II:  204-205 

as  hypothesis  formation,  II:  179-180 

in  INTERNIST,  II:  197,  199-201 

in  PIP,  II:  202,  204-205 

propagation  in,  in  IRIS,  II:  212-215 
as  search,  II:  179 

sequential,  II:  179 

statistical  approaches  to,  II:  179 

teaching  strategies  for,  II:  247-253,  267- 
278 

thresholding  in,  II:  181 

Diagnosis  of  student  misconceptions,  II:  226, 

254.       See   also   Intelligent    computer- 
assisted  instruction;  Plan  recognition; 
Student  model, 

conceptual  bugs,  II:  279-280 
diagnostic  model  for,  II:  233,  279-280 

differential  modeling  in,  II:  255-256 
partial  solutions  in,  II:  273 
in  SCHOLAR,  II:  239 

in  WHY,  II:  245 

Diagram,  reasoning  from,  I:  201 
Dialectical  argumentation,  II:  74 

Dialogue.  See  Discourse. 

Dialogue   management,    II:    259.      See  also 

Mixed-initiative  dialogue;  Natural  lan- 
guage; Tutoring  strategies  in  ICAI. 

agenda  in  SCHOLAR,  II:  239 

alternative  dialogues,  II:  272 

askable  vs.  unaskable  hypotheses  in  PROS- 
PECTOR, II:  161 

context,  II:  270 

dialectical  argumentation,  II:  74 
discourse  model,  II:  150,  238,  259,  263,  266 

discourse  procedure,  II:  272-273 

explicating  in  GUIDON,  II:  235,  267,  272- 273 

focus  of  attention,  II:  351,  376 

in  PSI,  II:  329 

rules,  II:  268 

Socratic  tutoring  method,  II:  242-246 
via  tutorial  goals,  II:  244 

in  WUSOR,  II:  263 

Dictionary,  for  machine  translation,  I:  234 

Difference.  See  also  Means-ends  analysis, 
in  GPS,  I:  113;  III:  116 

in  means-ends  anaylsis,  I:  24 
in  STRIPS,  I:  129 

Difference  measures,  II:  320 

Differential  diagnosis,  II:  204 

Differential  modeling,  II:  255-256.    See  also 
Diagnosis   of  student   misconceptions; 
Student  model. 

Digitalis  Therapy  Advisor,  II:  206-211 

sample  protocol  from,  II:  208-211 
status  of,  II:  211 

validation  of,  II:  211 

Digitization,  III:  202 

Direct  (analogical)  knowledge  representation, 

I:  158,  177,  200-206 
and  parallel  processing,  I:  204 

vs.    propositional   knowledge   representa- 
tion, I:  200 

Direct  modeling  of  distortion,  III:  207-208. 
See  also  Preprocessing. 
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Directedness  of  reasoning,  I:  151,  174-177, 
185,  188,  193,  219 

Direction  of  reasoning.  See  Backward  chain- 
ing; Forward  chaining;  Reasoning. 

DIRECTOR,  II:  293 

Discourse,  I:  339,  358 

dialogue,  I:  220 
extended,  I:  279 

pragmatics,  I:  249,  327,  332,  334,  359 
Discourse  model,  II:  150,  238,  259,  263,  266, 

272-273.      See  also  Dialogue  manage- 
ment. 

Discovery  by  AM,  I:  196,  III:  438-451 

Discovery  learning.     See  Learning,   by  dis- 
covery. 

Discrimination 

in  ACT,  III:  54 

network,  I:  158,  278,  304;  III:  29-35 

rules,  III:  423-427 
Discussion  agenda  in  SCHOLAR,  II:  239 

Disease  area  in  INTERNIST,  II:  198,  200 

Disease  category  in  CAS  NET,  II:  193 

Disease  hypothesis  in  INTERNIST,  II:  197 
Disease  model  in  INTERNIST,  II:  199 

Disease  process.     See  Monitoring  dynamic 

processes. 
Disease  tree  in  INTERNIST,  II:  198 

Distortion  model,  III:  206-208 
direct  modeling,  III:  207 

indirect  modeling,  III:  208 

linear  and  bilinear  models,  III:  207 

Distributed    processing,    I:    336.       See   also 

Coroutining;  Multiprocessing;  Parallel 

processing, 
in  PUP,  II:  318 

Distributional  analysis,  III:  506 

Divide-and-conquer.       See   Problem   reduc- 
tion. 

DNA  sequencing,  III:  557 

Document  retrieval  task,  I:  328,  351 

Domain  independence,  II:  276.  See  also  Tools 

for  building  expert  systems. 

and  constraint  propagation,  II:  146 
and  rules,  II:  84 

Domain  model  in  SAFE,  II:  339 

Domain-specific  knowledge,  I:  151,  176,  220; 

II:  79,  129;  III:  541,  543-545.    See  also 
Heuristic;  Knowledge. 

Dotted  pair,  II:  312 

DRAGON,  I:  328-329,  337 

Drug-preference  categories  in  MYCIN, 
II:  191 

DWIM  in  INTERLISP,  II:  68 

Dynamic 

allocation,  II:  33.    See  also  Variable  scop- ing. 

lists,  II:  53 

ordering,  I:  102 

weighting,  I:  69 
Dynamic  processes.  See  Monitoring  dynamic 

processes. 
Dynamic  programming,  I:  351 

in  Protosystem  I,  II:  368 

Dynamic  range,  III:  199.    See  also  Imaging 
devices. 

Dynamic  scoping,  II:  18,  33.    See  also  Vari- 
able scoping. 

Early  processing,  III:  128,  130.  See  also  Pre- 
processing. 

Economy  principle,  III:  39-41 Edge 

bounding,  III:  161 

concave,  III:  161 

connect,  III:  178-180 

Hueckel's,  III:  218 
ideal,  III:  216 

noise-contaminated,  III:  216 

in  the  "Play-Doh"  domain,  III:  240 
separable,  III:  161 

Edge  detection,  III:  130-131,  216-224,  250. 
See  also  Line  finding. 

color  in,  III:  219 

noise  in,  III:  130 

pattern-matching  in,  III:  218 

and  pyramids,  III:  281-282 
segmentation  in,  III:  221-223 
spatial  differentiation  in,  III:  216-218 

EDITSTRUC  in  CONGEN,  II:  112 

Education.     See  also  Computer-assisted  in- 

struction; Intelligent  computer- assisted 
instruction;  Tutoring  strategies  in  ICAI. 

applications  of  AI  in,  I:  186;  II:  225-294 
environmental  approach  to,  II:  225,  291- 

294 

learning  by  discovery,  II:  254 

learning  by  doing,  II:  291 

learning  environment  in,  II:  292 

learning  resources  in,  II:  292-293 
LOGO  lab,  II:  225 

nontutorial  CAI,  II:  291-294 

pedagogical  style  in,  II:  275-276 
Efficiency  of  synthesized  programs,  II:  327 

in  automatic  programming  systems, 

II:  302-303,  317 

by  eliminating  redundant  computations, 
II:  314 

estimation  of,  II:  375-378 
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in  LIBRA,  II:  330,  351,  375-379 
in  Protosystem  I,  II:  368 

8-puzzle,  I:  32,  51,  62,  67,  68 
Electron  density  map  interpretation,  II:  124 
Electron  trees,  II:  115 

Elementary  information  processes  (EIP), 
in.- 12-13 

Eleusis,  III:  416-419 
Elimination  rule  in  logic,  I:  163,  164,  169 

ELIZA,  I:  227,  257,  260,  285-287 
Ellipsis  in  natural  language,  I:  320,  358; 

II:  165,  250 

Embedding  in  natural  language,  I:  263 

Emotion,  III:  67,  72-74 
EMYCIN,  II:  84,  183,  276;  III:  348 

English.  See  Natural  language. 

Enhancement,    III:   206.      See  also  Prepro- 
cessing, 

of  lines  and  curves,  III:  298-300 
Ensemble  averaging,  III:  214 

Environment,  III:  327 

errors  in  training  instances,  III:  362-363, 
370,  396-397,  429,  432,  490 

programming,  II:  3-4,   7,   28,   32,  65-71, 
230,  232,  234 

providing  the  performance  standard, 
III:  331,  454 

providing  the  training  instances,  III:  328- 

329,  455-456 

role  of,  in  learning,  III:  328-329 
runtime,  II:  3,  9 

stability  of,  over  time,  III:  337 

Environmental  approach  to  CAI,  II:  291-294 

EPAM,  I:  158,  196;  II:  5;  III:  8,  28-35 

Epipolar  line,   III:   250,   252-253.     See  also 
Stereo  vision. 

Episodes,  in  memory,  III:  60 

Epistemological  adequacy,  III:  290,  346 

Epistemology,  I:  151,  153,  170 

Equality  in  logic,  III:  93 

Errors  in  training  instances,   III:  362-363, 
370,  396-397,  429,  432,  490 

ESEL,  III:  427 

Etiology  of  a  disease,  II:  179 
EURISKO,  III:  449 

Evaluation  of  expert  systems.     See  Valida- 
tion, of  expert  systems. 

Evaluation  of  ICAI  systems.  See  Validation, 
of  ICAI  systems. 

Evaluation  function,  I:  60,  61-62,  64,  67-73, 
77,  78,  80,  83,  97;  II:  3,  27.    See  also 

Interpreter;  Static  evaluation  function. 
EVAL  in  LISP,  II:  15,  17,  28 
in  search,  II:  141 

Evaluation,  as  opposed  to  deduction,  III:  79- 
80 

Event-driven    processing.       See   Bottom-up 
processing;  Forward  chaining. 

Event  list  in  CRYSALIS,  II:  128 

Event  queue,  I:  356 
Evidence,  II:  120 
Examples 

in  automatic  deduction,  III:  100-101 

in  learning,  III:  328,  333-334,  360-511 

generic,  II:  307 

program  specification  from,  II:  300,  306- 

308,  318-325 
in  PSI,  II:  329 

traces,  II:  307-308,  321-325 

EXCHECK,  II:  227,  283-290 
explanation  in,  II:  97 

sample  protocol  from,  II:  284-285 
Exhaustive  search,  III:  14 

Existential  quantification,  III:  88-89,  91 
Expanding  procedure  calls,  II:  315 
Expansion  of  a  node,  I:  46,  55 

Expectation-based  filtering,  III:  364.  See  also 
Top-down  processing. 

Expectation-driven  processing.      See  Back- 
ward chaining;  Top-down  processing. 

Experiment  planning.  See  also  Instance 

space,  search  of. 
in  MOLGEN,  551-562 

EXPERT,  II:  180,  217-222 
status  of,  II:  222 

Expert  systems,  I:  9;  II:  9,  79-294;  III:  345, 
348,  427.  See  also  Knowledge  engineer- ing, 

acceptance  of,  II:  89 

for  agricultural  pest  management,  II:  154 

chemical  analysis,  II:  102-133;  III:  428 

chemical  synthesis,  II:  102,  134-142 
in  chemistry,  I:  168 

for  classification,  II:  217 

as  consultation  system,  II:  81-82 

for  database  management,  II:  163-173 
debugging  of,  in  TEIRESIAS,  II:  192 

for  digitalis  administration,  II:  206-211 
in  education,  I:  186;  H:  225-294 
for  electromechanical  assembly,  II:   150- 

154 
exhaustive  solutions  in,  II:  177,  190 

explanation  by,  I:  9,  195,  198-199 

for  glaucoma,  II:  193-196,  215-216 

history  of,  II:  79-80 
in  internal  medicine,  II:  197-201 
knowledge- based  system  in,  I:  227,  229 

for  mathematics,  I:  195;  II:  143-154 
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Expert  systems  (continued) 

for  medical  diagnosis,  II:  177-222 

for  mineral  exploration,  II:  154,  155-162 

for  renal  disease,  II:  202-205 
in  rheumatology,  II:  222 
size  of,  II:  85,  159 

sociological  considerations  concerning, 
II:  177 

status  of,  II:  83-85 
in  stereochemistry,  II:  113 

tools  for  building,  II:  84,   126,  183,  212- 
216,  217-222,  267-278 

for  treatment  regimen,  II:  206-211 

tutorial,  II:  267-278 
validation  of,  II:  182,  192,  211,  267 

Expert-systems-building  tools.  See  Tools  for 
building  expert  systems. 

Expertise,  II:  80.  See  also  Knowledge 

acquisition. 
in  automatic  programming,  II:  315 

interactive  transfer  of,  I:  199;  II:  72,  80- 

83,  88-89,  116 

Expertise  module  of  ICAI  systems,  II:  229- 
231 

and  simulation,  II:  229-230,  245-246,  251 
in  WEST,  II:  256 

in  WUSOR,  II:  263-264 
Experts  in  PSI,  II:  326.   See  also  Knowledge 

sources. 

Explanation,  II:  6,  72,  81-83,  89-91,  120 
and  acceptance  of  expert  systems,  II:  89 

by  articulate  expert,  II:  252 

by  computer  coaches,  II:  257-259 
for  debugging,  II:  89,  192 

in  Digitalis  Therapy  Advisor,  II:  206,  211 

in  EXCHECK,  II:  97,  287-289 

by  expert  systems,  I:  9,  195,  198-199 
in  ICAI  systems,  II:  97,  228,  229 

for  justification  of  conclusions,  II:  89 

in  medical  consultation  systems,  II:  182 

in  production  systems,  II:  187-188 

in  Programmer's  Apprentice,  II:  348 
in  PROSPECTOR,  II:  155 

in  PSI,  II:  329 

and  self-reflective  programs,  II:  6-7,  89 
in  TEIRESIAS,  II:  95-97 
of  therapy  selection  in  MYCIN,  II:  191 

in  WUSOR,  II:  263,  266 

Explicit  vs.  implicit  knowledge  representa- 
tion, I:  150,  172 

Extended  discourse,  I:  279 

Extended  grammar,  I:  245-255 
parsers,  I:  260 

Extended  inference,  I:  176 

Extensibility,  II:  69 

Fan  effect,  III:  48,  50-53 
Fan-out,  III:  48,  50-53 

Features  of  images,  III:  250-253 
areal,  III:  251 
difference  measures,  III:  251 

lineal,  III:  251 

matching,  III:  251-253 
Feedback   in   learning,    III:    331.      See   also 

Performance  standard. 

15-puzzle,  I:  68,  73 Filtering 

high-pass,  III:  212-213 
low-pass,  III:  214-215 

Finding  in  medical  diagnosis,  II:  178 

in  EXPERT,  II:  218-220 
in  PIP,  II:  202 

Finite-state  automata,  III:  380 

Finite-state  grammar,  I:  337.    See  also  Reg- 
ular grammar. 

Finite-state  transition  diagram  (FSTD), 

I:  263-264 
Finite  termination  property,  III:  99 

First-order  logic.  See  Logic,  first  order. 
Fixed  ordering  of  nodes  in  search,  I:  90,  101 

Flexibility.  See  also  Self-reflective  programs. 
of  knowledge  representation,  II:  130 

and  meta-knowledge,  II:  89,  267 
of  a  model,  II:  118 

of  production  rules,  II:  228 

Focus  of  attention.  See  also  Selective  atten- 
tion; Control  structures  and  strategies. 

in  ACT,  III:  53 
in  LIBRA,  II:  376 

in  PECOS,  II:  351 

FOL,  I:  169,  171,  205;  II:  13 

FOO,  III:  333,  346-347,  349,  350-359 

Forgetting,  III:  33-34,  44,  48,  49,  338,  342 
Formal  derivatives,  III:  506 

Formal  language,  I:  239-244,  263.    See  also 

Context-free  languages;  Delimited  lan- 

guages; Regular  grammar. 

in  automatic  programming,  II:  301,  312- 

314 

in  grammatical  inference,  III:  494-497 
in  structural  learning,  III:  381-382 

Formal  program  specifications.    See  also  In- 
formality; Program  specification; 

Very  high  level  language. 
in  DEDALUS,  II:  355 

definition  of,  II:  300 

vs.  informal,  II:  326,  336 

Formal  reasoning,  I:  146 
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Formula  in  preference  semantics,  I:  288-289 
FORTRAN,  II:  3,  5,  217,  297,  299 

Forward  chaining,  I:  23-25,  51,  56,  74,  198, 
220;  II:  129,  136,  214,  257;  III:  19,  80, 

99-100,  129,  306,  452.    See  also  Back- 

ward chaining;  Bottom-up  processing; 
Control  structures  and  strategies. 

Forward  pruning  of  game  trees,  I:  104 

Fragmentation  in  mass  spectrometry,  II:  104, 

106,  111,  116-117;  III:  430-434 
Frame  knowledge  representation,  I:  149,  156, 

158-159,   216-222,   334-335.     See  also 
Script  knowledge  representation, 

in  automatic  programming  systems, 
II:  316 

and  case  frames,  I:  183,  254 

for  concepts,  III:  438-439 

in  IRIS,  II:  212-213 
matching  in,  I:  159 

in  PIP,  II:  181,  202-204 

for  plans,  III:  557-562 
and  preference  semantics,  I:  208,  229,  231 

and  semantic  networks,  I:  183,  186,  189 

Frame-oriented  CAI,  II:  226,  231 
Frame  problem,  I:  177,  201,  III:  337,  343 

Fregean  knowledge  representation.  See 

Propositional  knowledge  representation. 

Frequency  domain  contrasted  with  the  spa- 
tial domain,  III:  206 

FRL-0,  I:  221 

Full-width  search,  I:  103 
FUNARG,  II:  46 

Function,  I:  165;  II:  34 

in  the  Boyer-Moore  Theorem  Prover, 
III:  104 

in  logic,  I:  165;  III:  88-89,  91 
Functional  Description  Compiler,  II:  317 

Functional  relationships,  II:  245-246 
FUZZY,  II:  13 

control  structures  in,  II:  53-55 
data  structures  in,  II:  43 

pattern  matching  in,  II:  63-64 
Fuzzy  automata,  III:  380 

Fuzzy  set,  II:  13 

G  set  (of  most  general  hypotheses),  III:  386, 
424,  426 

Game  tree,  I:  25,  43-45,  84 
random,  I:  92 

totally  dependent,  I:  92 

uniform,  I:  91-93 

Game-tree  search,  I:  84-108;   III:  339-342. 
See  also  Search  algorithms;  AND/OR 
tree. 

alpha-beta,  I:  88-93,  94,  101 
backed-up  values,  I:  87 
dead  position,  I:  87,  99 

forward,  I:  104 
horizon  effect,  I:  99 

killer  heuristic,  I:  102 

live  position,  I:  87 

method  of  analogies,  I:  104 

minimax,  I:  84-87,  88,  90,  91,  94,  98; 
III:  339-342,  465 

negmax,  I:  86-87,  89 
plausible-move  generation,  I:  104 

quiescence,  I:  99-100,  103 
refutation  move,  I:  102 

secondary  search,  I:  100 

static  evaluation  function,   I:  87,   96-97, 100 

tapered  forward,  I:  104 

Games,  I:  153.  See  also  Puzzles, 

backgammon,  I:  103 

checkers,  I:  26,  43,  44,  95,  97;  III:  332-333, 

339-344,  457-464 

chess,  I:  6,  22,  23,  26,  43,  94-108,  205, 
334,  351;  II:  4,  72;  III:  11 

Eleusis,  III:  416-419 
Go,  I:  103 
Hearts,  III:  350 

poker,  III:  331,  465-474 
tic-tac-toe,  I:  43,  94 

voice  chess,  I:  328,  334,  344 

Garbage  collection,  II:  4,  18 

General  Problem  Solver  (GPS),  I:  113-118, 
129,  135,  169,  196;  II:  4,  47,  79,  III:  3, 

7,  11-21.  See  also  Means-ends  analysis. 

General  Space  Planner,  I:  202-203 
General-to-specific  ordering,  III:  385 

General  Syntactic  Processor  (GSP),  I:  268- 
272 

Generality  of  rules  for  molecular  processes, 
II:  120 

Generality  vs.  power,  I:  335 
Generalization 

in  ACT,  III:  54 

in  the  Boyer-Moore  Theorem  Prover, 
III:  108 

in  learning  programs,  III:  360,   365-368, 
385 

response,  III:  28-35 
stimulus,  III:  28-35 

Generalization  methods 

by  adding  options,  III:  366,  411,  444,  502 

by  climbing  concept  tree,  III:  395,  487,  491 

by  curve-fitting,  III:  367,  376-380,  401- 
405,  457 
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Generalization  methods  (continued) 

by  dependency  analysis,  III:  480,  492 

by  disjunction,  III:  366-367,  397 
by  dropping  conditions,  III:  366,  385,  391, 

393,  411,  435,  444,  466 

by  internal  disjunction,  III:  367,  411,  466- 
467 

by  merging  nonterminals,  III:  501 

by  partial  matching,  III:  487 

by  turning  constants  to  variables,  III:  365- 
366,  387,  388-390,  391,  414,  444,  482 

by  zeroing  a  coefficient,  III:  367 

Generalization  principle  in  DEDALUS, 

II:  360-361 

Generalized    bugs,    III:    475-476,    480-482, 
532-535 

Generalized  cylinders, 411:  132-133,  137,  269, 
273-274,  290 

Generalized  AND/OR  graph,  I:  82 

Generalized  subroutines,  III:  475,  479-480 

Generate-and-test,  I:  30.  See  Plan-generate- 
test. 

operationalization  method,  III:  351 

for  searching  rule  space,  III:  369,  411-415, 
430 

Generative  CAI,  II:  227,  229 

Generative  grammar,  I:  229,  245,  247 

Generative  semantics,  I:  248 

Generator,  II:  4,  45 

Generic  examples  for  program  specification, 
II:  307 

Generic  traces  for  program  specification, 
II:  307 

Geography  tutor,  II:  236-241 
Geological  data  models,  II:  155 

Geometrical  correction,   III:   206-208.      See 
also  Preprocessing. 

Geometry  and  physics  in  vision,  III:  133-134 

Geometry  Theorem  Prover,  I:  119-122,  201- 
202 

Glaucoma  consultation  system,  II:  193-196, 
215-216 

Go,  I:  103 

Goal,  I:  22,  33,  36,  105,  114,  306,  308,  310- 
311;  II:  90,  95;  III:  12,  523,  541.     See 

also  Problem  reduction;  Problem  solv- 
ing; Subgoal. 

Goal-directed  reasoning.  See  Backward 
chaining;  Control  strategy; 

Expectation-driven  processing; 
Top-down  reasoning. 

Goal-directed  theorem  proving.  See  Natural 
deduction. 

Goal  reduction.  See  Problem  reduction. 

Goal  regression,  III:  537-540 

Gold's  theorems,  III:  499 
GOLUX,  I:  171,  175 

GOODLIST,  II:  107,  113 

Goodness  of  fit  in  PIP,  II:  202 
GPS.  See  General  Problem  Solver. 

GPSS,  II:  303,  370-374 
Graceful  degradation,  I:  336 

Gradient-descent,  III:  375-380.  See  also  Hill- 
climbing.  , 

Gradient  space,  III:  133,  173-182,  185-194, 

216,  238,  261-267 
unique  determination  of  gradients  in, 

III:  190-194 
Gradual  refinement,  II:  350 

Grain  size  of  a  knowledge  representation, 
I:  147 

Grammar.  See  also  Natural  language  under- 
standing, 

array,  III:  287 
augmented  transition  network  (ATN)  for, 

I:   186,    230,    261,    263-267,    268,   271, 
277-279,  292-294,  303,  304,  316;  III:  56. 

automatic  derivation  of,  in  TED,  II:  166 

average  branching  factor  of,  I:  328,  329 

case,  I:  229,  249,  252-255,  277;  II:  238; 
III:  59,  63 

context-free,   I:   242-243,    245,    247,    260, 
263,  273,  274 

context-sensitive,  I:  241-242,  245 

in  DBMS,  II:  164-165 
definition  of,  I:  225,  229 

dependency,  I:  274 

extended,  I:  260-261 
finite-state,  I:  337 

formal,  I:  239-244 
generative,  I:  229,  245,  247 

graph,  III:  499 
habitability  of,  I:  328 

mood  system  of,  I:  249 

obligatory   and  optional   transformations 

in,  I:  246-247 
parsing,  I:  225,  229,  239-240,  256-272; 

II:  293;  III:  497 

performance,  I:  245,  261,  335,  355,  359 

phrase-structure,  I:  240-246,  260,  262 

regular,  I:  243,  245,  263;  III:  501,  505-507, 
509 

semantic,  I:  229,  261,  318,  320,  335,  355, 

359;  II:  160,  250-251 
in  speech  systems,  I:  326,  332,  349 

story,  I:  221,  231,  300,  306 

systemic,  I:  229,  249-251,  297 
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transformational,  I:  229,  233,  237,  245- 

248,  249,  251,  252;  III:  497-498,  510 

transition  tree  in  LIFER,  I:  316-317, 
II:  165-166 

transitivity  system  of,  I:  249 

tree,  HI:  287 

in  vision  systems,  III:  287 

web,  III:  287 

Grammar  less  parsers,  I:  260-261 
Grammatical  inference,  II:  116,  318;  III:  381, 

453,  494-510 

by  construction,  III:  505-507 

by  enumeration,  III:  503-505 

by  generate-and-test,  III:  503-505 

guided  by  semantics,  III:  509-510 

by  refinement,  III:  507-509 

refinement  operators,  III:  508-509 
Graph  deformation  condition,  III:  510 

Graph  grammars,  III:  499 

Graph  Traverser,  I:  67 

Graphics,  II:  293 

Gray  scale,  III:  199 

histogram  flattening,  III:  209 

modification,  III:  208-209 
Ground  restriction,  III:  99 

Ground  space,  III:  528-530 
in  ABSTRIPS,  I:  135 

GSP.  See  General  Syntactic  Processor. 

GUIDON,  II:  6,  228,  230,  235,  243,  267-278, 
292 

alternative  dialogues  in,  II:  272 

domain  independence  in,  II:  276 

sample  protocol  from,  II:  268-270 

status  of,  II:  276-278 
GUS,  I:  220,  231 

Habitability  of  a  language,  I:  328 

HACKER,  II:  10,  315,  317-318,  361;  III:  452, 

475-483,  491,  493,  531-535,  546 
performance  element,  III:  477 

Half-order  theory  of  mass  spectrometry, 

II:  118-119;  III:  428,  431-432,  436 
HAM.  See  Human  Associative  Memory. 

HAM-RPM,  II:  13 
HARPY,  I:  328,  329,  335,  337,  339,  344,  346, 

349-352,  356 
HAWKEYE,  I:  318 

HEADMED,  II:  180 

HEARSAY,  I:  196-197,  336,  338,  343-348; 
II:  31-32,  126,  342 

HEARSAY-I,  I:  328,  334,  335,  343 

HEARSAY-n,  I:  328,  345 
Hearts,  III:  350 

Heuristic,  I:  21,  64,  66,  74,  78,  94,  119,  151, 
168,  174,  177,  188,  201,  220,  228,  258, 
277,  282,  284,  293,  296,  298,  299,  335; 

II:  81,  140,  313;  III:  11.  -See  also  Exper- 
tise; Heuristic  search;  Knowledge, 

definitions  of,  I:  28-30,  58,  109 
killer,  in  game  playing,  I:  102 

phagocyte,  III:  226 
weakness,  III:  226 

Heuristic  Compiler,  II:  317 
Heuristic  DENDRAL.  See  DENDRAL. 

Heuristic  Path  Algorithm,  I:  67 

Heuristic  problem  solving.    See  Expert  sys- 
tems; Problem  solving. 

Heuristic  search,  I:  28,  29-30,  46,  58-83,  94- 
108,  117,  350,  356 

operationalization  method,  III:  351 
Hierarchical 

memory,  III:  39-41.  See  also  Fan  effect, 

planning,   I:   135,   III:   516-518,   528-530, 
541-556 

search,  I:  135 

Hierarchical  representations 

of  image  data,  III:  269,  279-282 
of  knowledge  in  SCHOLAR,  II:  237 

Hierarchy.  See  also  Inheritance, 

of  abstraction  spaces,  III:  528-530 
of  procedural  knowledge,  II:  151 

High-emphasis  frequency  filtering,  III:  212- 213 

Hill  climbing,  II:  145,  317;  HI:  252,  375-380, 
434,  458 

Histogram 

in  contrast  adjustments,  III:  209 

in  region  splitting,  III:  226-227,  234-235 
HODGKINS,  II:  180 

Homogeneous  coordinates,  III:  197-199 
Horizon  effect,  in  game-tree  search,  I:  99 
Horn  clause,  III:  121 

Hough  transform,  III:  222-223,  277 
How  the  West  Was  Won,  H:  254,  255 

Hueckel  operator,  HI:  218-220 

Huffman's  0(0)' -point  test,  ELI:  181 
Human  Associative  Memory  (HAM),  I:  185, 

m:  9,  42-49,  509-510 
Human  engineering,  I:  319;  II:  84.    See  also 

User  interface. 

Human  memory.    See  also  Memory,  models 

of. 
associative,  III:  8,  9,  36 

episodic,  III:  8,  60 

long-term,  III:  42-49,  50,  52,  56-64 
recall,  III:  36 

recognition,  III:  36 
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Human  memory  (continued) 

semantic,  III:  8,  9,  36-37,  41-42 
short-term,  III:  28 

strategy-free,  III:  9,  42-49 

working,  III:  50-54 
Human  problem  solving,  I:  6-7,  14,  285; 

III:  11-21.  See  also  Problem  solving. 

Humiliation  theory,  III:  71-74 

HWIM,  I:  267,  292,  328,  337,  339,  353-357 
Hybrid  control  strategy,  I:  340,  356 

Hypothesis.  See  also  Control  structures  and 
strategies. 

askable  vs.  unaskable,  II:  161 

confirmation,  II:  202,  204-205 

in  EXPERT,  II:  218-220 

formation  of,  II:  84,  116,  124-125 
in  INTERNIST,  II:  197 

in  medical  reasoning,  II:  179-180 
posting,  I:  336,  338,  354 

propagation  in  PROSPECTOR,  II:  160 

scoring,  I:  340-341,  346,  347,  351,  355,  356 
status  of,  in  CAS  NET,  II:  195 

Hypothesize-and-test.       See   Generate-and- 
test. 

Hypothetical  worlds,  I:  360 

Iconic  representation,  III:  238 

ID3,  III:  384,  407-410 
Ideational  function  of  language,  I:  249 

Image  domain.  See  Picture  domain. 

Image  enhancement.  See  Enhancement;  Pre- 
processing. 

Image  features,  III:  132 

contrasted  with  scene  features,  III:  134- 
137,  155,  238 

Image  understanding,  III:  127-138.   See  also 
Shape  recovery. 

The  Image  Understanding  Program,  III:  135 

Imaging  devices,  III:  199-201.  See  also  Cam- 
era. 

Imaging  geometry,   III:   173-176.     See  also 
Projections. 

Imbedding  algorithm,  II:  111 

Implicational  molecules,  III:  68-69 
Implicit  knowledge,  I:  150,  172;  II:  277 

IMPLY,   III:   95-96,    98.      See  also  Natural 
deduction. 

IMPORT  property  in  INTERNIST,  II:  199 
Importance  tags  in  SCHOLAR,  II:  237 

Impossible  objects,  III:  158 

Incomplete  knowledge,  II:  240.  See  also  Un- 
certainty. 

Incremental  compiler,  II:  70,  300 

Incremental  query  formulation,  II:  167 

Incremental  simulation,  in  HWIM,  I:  341 

Indeterminacy  of  knowledge  representations, 
I:  148 

Individualization  of  instruction,  II:  226 

INDUCE  1.2,  III:  411-415 
attribute-only  rule  space,  III:  413 

structure-only  rule  space,  III:  413 

Induction,  III:  100,  112,  327,  333-334.    See 
also  Learning  situations,  from  examples, 

in  the  Boyer-Moore  Theorem  Prover, 

III:  102,  109-110 
Induction  axioms,  II:  313 

Induction/inference  in  mass-spectral  pro- 
cesses, II:  116 

Induction  of  programs.    See  also  Automatic 

programming;  Examples,  program  spec- 
ification from;  Traces, 

as  approach  to  AP,  II:  318-325 
axiomatization  of  operations  in,  II:  319 

from  examples,  II:  318-325 
and  grammatical  inference,  II:  318 

program  schemas  in,  II:  319 

from  protocols,  II:  322-325 

traces,  II:  321-325 
Induction  templates,  III:  109-110,  111 

Industrial  vision  systems,  III:  301-305 

Inexact  knowledge,  II:  79,  81.    See  also  Un- 
certainty, 

in  medical  reasoning,  II:  179 

Inexact  reasoning,  I:  195 

Infectious-disease  consultant  system.      See 
MYCIN 

Inference,  I:  146,  154,  155,  160,  162-165, 

168,  175,  188,  213,  228,  231,  236-237, 

255,  276,  303-304;  II:  90,  146,  158,  188- 
189,  239,  251-252;  III:  39,  41.  See  also 
Control  structures  and  strategies;  Rea- soning. 

Informality 

human,  studies  of,  II:  337 

in  mathematical  reasoning,  II:  283-290 

of  program  specifications,  II:  326,  336-338 
Informant  presentation,  III:  500 

Information-processing  psychology,    III:   3- 
74.  See  also  Psychology. 

Information- processing  system  (IPS),  III:  11- 
21 

Information  retrieval,  I:  22,   145,  282-283, 

292,  316,  318.    See  Database  manage- 
ment systems. 

Informedness  of  an  algorithm,  I:  65 

Infrared  image,  III:  204 
Inheritance 

hierarchy,  I:  156,  181,  218 
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of  properties,  I:  156,  181-184,  216,  218 
Initial  states,  I:  33 

Instance,  in  semantic  networks,  I:  182 

Instance  selection.  See  Instance  space, 
search  of. 

Instance  space,  III:  360-365 
presentation  order  of  instances,  III:  363 

quality  of  training  instances,  III:  362-363, 

370,  396-397,  429,  432,  490 

search  of,  III:  363,  371,  408,  435-436,  441- 

444,  491-492 
Instructional  programming  environment 

BIP,  II:  230,  234 

SPADE,  II:  232 

Instructional  strategy.   See  Tutoring  strate- 
gies in  ICAI. 

Insulin,  III:  554 

Integration.  See  Symbolic  integration. 

Integration  problem,  III:  331,  347,  421,  453, 
456 

Intelligent  computer-assisted  instruction 

(ICAI),  II:  225-294.  See  also  Computer- 
assisted  instruction, 

in  arithmetic  skills,  II:  279-282 

case-method  tutor,  II:  235,  242 

computer  coach,    II:   231,    234,    254-255, 
257-259,  261-266 

computer  games,  II:  234,  252,  254,  261- 
266 

diagnosis  of  student  misconceptions  in, 

II:  226,  233,  239,  245,  254,  273,  279-280 

in  electronics  troubleshooting,  II:  247-253 

geography  tutor,  II:  236-241 
in  informal  mathematical  reasoning, 

II:  283-290 

in  logic,  II:  283-290 

in  medical  diagnosis,  II:  267-278 
pedagogical  style  in,  II:  275 

in  proof  theory,  II:  283-290 

in  set  theory,  II:  283-290 
Socratic  method  in,  II:  234 

survey  of,  II:  225-228 

tutoring  module,  II:  233-235 
tutoring  strategies  in,  II:  228,  233,  237 

Intensional  operators,  III:  84 

Interacting  subgoals.  See  Subgoals,  interact- 
ing. 

Interactive  dialogue.  See  Mixed-initiative 
dialogue. 

Interactive  knowledge  acquisition.  See 

Knowledge  acquisition;  Transfer  of  ex- 
pertise. 

Interactive  LISP.  See  INTERLISP. 

Interactive  program  specification,    II:   300, 

302,    303,    310-311.      See  also  Mixed- 
initiative  dialogue;    Natural  language; 

Program  specification, 

in  NLPQ,  II:  370-374 

in  Programmer's  Apprentice,  II:  345,  348 
in  PSI,  II:  327,  330-332 

in  SAFE,  II:  337-338 
Interactive  transfer  of  expertise.  See  Knowl- 

edge acquisition;  Transfer  of  expertise. 

Interdependent  subproblems,  I:  56,   81-83. 

See  also  Planning;   Subgoals,  interact- ing. 

Interest  operator,  III:  250 

Interestingness,  II:  119,  134,  135 

Interference  matching,  III:  391-392 

Interlingua,  I:  234-235,  237,  288,  300,  303, 
304 

INTERLISP,  I:  320;  II:  8,  212,  362 

CLISP,  II:  68 
DWIM,  II:  68 

programmer's  assistant  for,  II:  68 
programming  environment  of,  II:  67-68, 

70-71 
Intermediate  OR  node,  I:  39,  56,  57 

Internal  medicine,  II:  197-201 
Internal  Problem  Description  (IPD)  in  NLPQ, 

II:  372-373 

INTERNIST,  II:  83,  180,  181,  182,  197-201, 
205,  215 

Interpersonal  function,  of  language,  I:  249. 
280 

INTERPLAN,  III:  535-537 

INTERPRET,  III:  147-154 
Interpretation 

in  advice-taking,  III:  354 

of  training  instances,  III:  364-365 

Interpreter,  II:  3.    See  also  Evaluation  func- 
tion. 

EVAL  in  LISP,  II:  15,  17,  28 

of  a  production  system,  I:  190-192 
Interpretive  semantics,  I:  248 
Intersection  search  in  SCHOLAR, 

II:  239-240 
Intonation  in  speech  signal,  I:  333 

Intrinsic  images,  HI:  134,  137,  238-242 
Introduction  rule,  in  logic,  I:  163,  164,  169 

Introspection,  III:  4 
Intrusions,  III:  34 

INTSUM,  III:  430-432 
in  Meta-DENDRAL,  II:  119 

IPL,  II:  4 
IPL-V,  I:  281-282;  III:  29 

IRIS,  II:  84,  160,  180,  181,  212-216 



618 Subject  Index  for  Volumes  I,  II,  and  HI 

Island-driving  control  strategy,  I:  259,  337, 
339,  346,  356,  361;  III:  23,  519.  See  also 
Control  structures  and  strategies. 

Iso-intensity  contours,  III:  262-264 
Isolated-word  recognition  of  speech,  I:  325, 

333,  349 
Isomers,  II:  108 

ISPEC  in  IRIS,  II:  212-214 
Issues-and-examples  tutoring  strategy, 

II:  256 

issue  evaluators  in,  II:  257 

issue  recognizers  in,  II:  257 

Items  in  SAIL,  II:  41 

Iterative  deepening  search,  I:  100-101 
Iterative  endpoint  fit,  III:  221 

JCL,  II:  365 

Judgmental  knowledge,  II:  277.  See  also  Un- 
certainty. 

Junction  types,  III:  163-164 
impossible,  III:  275 

in  the  Origami  world,  III:  184-186 

in  SEE,  III:  144-147 
Juncture  rules,  in  speech  understanding, 

I:  330,  350,  354 

Justification.  See  also  Explanation. 

for  beliefs,  II:  74;  III:  65-68 
in  medical  consultation  systems,  II:  182 

KAS,  III:  348 

Killer  heuristic,  I:  102 

Kinetic  depth  effect,  III:  244 

Kinship  relations,  I:  281 
Kitchenworld,  III:  63 

KLAUS,  II:  169-170 

sample  protocol  from,  II:  169-170 
KLONE,  I:  221 

Knowledge,  I:  144.  See  also  Heuristic;  Repre- 
sentation of  knowledge, 

compiled,  I:  336,  337,  349 

constraining,  I:  344 

domain-specific,  I:  151,  176,  220 
explicit  vs.  implicit,  I:  150,  172 

world,  I:  226,  230 

Knowledge  acquisition,  I:  145,  194,  195,  198; 

II:  79,  80-83,  87,  91-92,  116;  III:  326. 
See  also  Expert  systems;  Learning; 
Transfer  of  expertise, 

by  automatic  theory  formation,  II:  116 

interactive,  in  SECS,  II:  137 

in  medical  consultation  systems,  II:  182 

in  Meta-DENDRAL,  II:  116-123 

REACT,  in  CONGEN,  II:  114-115 
in  TEIRESIAS,  II:  97-101,  191-192 

transfer  of  expertise,  I:  199;  II:  72,  80,  81- 

83,  88-89,  116;  III:  345-348 
Knowledge  base,  II:  34,  80 

Knowledge-based  system,  I:  227,  229; 
II:  326.  See  also  Expert  systems. 

Knowledge  engineering,  I:  9,  198;  II:  326; 

III:  427.  See  also  Expert  systems;  Knowl- 

edge acquisition, 

as  approach  to  AP,  II:  301,  315-316,  350- 

354,  375-379 
definition  of,  II:  84 

in  PECOS,  II:  350-354 
Knowledge  needed  for  learning,  III:  326,  330, 

446-447 

Knowledge,  opacity  of,  II:  82,  89-90 
Knowledge  representation.  See  AI  program- 

ming languages;  Knowledge  representa- 
tion languages;  Representation  of 

knowledge. 

Knowledge-representation   languages.      See 
also  AI  programming  languages. 

FRL-0,  I:  221 

KLONE,  I:  221 

KRL,  I:  158,  221,  231 

UNITS,  I:  221 
Knowledge  source,    I:   257,    298,    326,   336, 

343-348,  353;  II:  125,  126;  III:  25-27. 
See  also  Blackboard, 

ablation  studies  of,  I:  335 

experts  in  PSI,  II:  326 

in  Programmer's  Apprentice,  II:  348 
response  frame  of,  I:  345,  347 

in  SAFE,  II:  342 

stimulus  frame  of,  I:  345 

KRL,  I:  158,  221,  231 

LADDER,  I:  318;  II:  164-166 

sample  protocol  from,  II:  165-166 
Language  definition  system,  I:  316,  359 

Language,  formal.  See  Formal  language. 

Language  understanding.    See  Natural  lan- 
guage understanding. 

Laplacian  image,  III:  212,  250 

Laplacian  operator,  III:  211-212,  218,  264 

LAS,  III:  509-510 
Laser  pointer  for  a  computer-based  consul- 

tant, II:  150 
LEAP  in  SAIL,  II:  11,  41,  317 

Learning,  I:  9,  97,  128,  145,  157,  193,  195; 

II:  6-7,  72,  88,  116,  293,  317;  III:  325- 
512.      See  also  Education;    Knowledge 

acquisition, 
in  ACT,  III:  53 

by  debugging,  II:  318 
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by  discovery,  II:  254 

by  doing,  II:  291 

environment,  II:  292;  III:  328-329 

in  HACKER,  II:  318;   III:  452,  475-483, 
491,  493 

history  of,  III:  325-326 
incremental,  III:  363,  370 

Meta-DENDRAL,  II:   119;   III:  326,   332, 
369,  372,  422,  428-436 

multiple-concepts  in,  III:  331,  420-451 

paired-associate,  III:  28-35 

resources,  II:  292-293 

role  of  the  environment  in,  III:  328-329 
role  of  knowledge  representation  in, 

IU:  329-330 

role  of  performance  task  in,  III:  330-332 

rules  for  multiple-step  tasks  in,  III:  331, 
421,  452-511 

and  self-reflective  programs,  II:  6-7,  89, 
318 

single  concepts  in,  III:  331,  383-419,  420- 
422,  436 

statistical,  in  DENDRAL,  II:  118 

training  instances  for,  in  DENDRAL, 
II:  117 

unsupervised,  III:  363 

verbal,  III:  28,  33-35 

Learning  element,  III:  327-328.  See  also 
Learning. 

Learning  methods.     See  Operationalization 

methods;  Rule-space  search. 

Learning,  object  of,  III:  371-372 
automata,  III:  380,  381 

cleavage  rules,  III:  428,  430 

context-free  grammars,  III:  453,  495 

decision  trees,  III:  406-407 
delimited  languages,  III:  501,  505 

discrimination  rules,  III:  423-427 

finite-state  automata,   III:  380.     See  also 
Regular  grammars. 

frames,  III:  438-439 
fuzzy  automata,  III:  380 

generalized  bugs,  III:  475-476,  480-482 

generalized  subroutines,  III:  475,  479-480 
graph  grammars,  III:  499 

linear-discriminant  functions,  III:  376-380 

macro-operators,  III:  475,  493 

parameters,  III:  375-380 

polynomial  evaluation  functions,  III:  457- 
459,  463 

production  rules,  III:  452-455,  465-474 
regular  grammars,  III:  501,  505,  506,  507, 

509 

signature  tables,  III:  459-464 

stochastic  automata,  III:  380 

stochastic  grammars,  III:  381,  498-499 

structural  descriptions,  III:  381-382,  392- 
396,  411,  412 

transformational  grammars,  III:  497-498, 
510 

Learning  problems 

closed-world  assumption,  III:  362.  See  also 
New-term  problem, 

credit-assignment  problem,  III:  331,  348, 
454-456,  459,  467-468,  480,  489 

disjunctive  concepts,   III:   397-399,   406- 
407,  490 

errors  in  training  instances,  III:  362-363, 
370,  396-397,  429,  432,  490 

frame  problem,  III:  337,  343 

integrating  new  knowledge,  III:  331,  347, 
421,  453,  456 

interpretation  of  training  instances, 

ni:  354,  364-365 
new  terms,  III:  370-371,  405,  459 

Learning  situations 

by  analogy,  III:  328,  334,  443-445 

by    being   told,    III:    345-359.       See   also 
Advice-taking, 

from  examples,  III:  328,  333-334,  360-511 

by  rote,  HI:  328,  332-333,  335-344 
by  taking  advice,  III:  328,  333,  345-359, 

427,  467-468 
Learning  systems.   See  also  individual  entries 

for  each  system  named. 

AGE,  III:  348 

AM,  III:  326,  330,  370-372,  422,  438-451 

AQ11,  III:  421,  423-427 
BACON,  III:  370,  384,  401-406,  444,  452 
BASEBALL,  III:  364 

CLS,  III:  384,  406-408 
EMYCIN,  III:  348 
EURISKO,  ni:  449 

FOO,  III:  333,  346-347,  349,  350-359 
HACKER,  III:  452,  475-483,  491,  493 

ID3,  ni:  384,  407-410 
INDUCE  1.2,  ffl:  411-415 
KAS,  III:  348 

LAS,  III:  509-510 
LEX,  HI:  452-453,  455,  484-493 
Meta-DENDRAL,  III:  326,  332,  369,  372, 

422,  428-436 
model  of,  III:  327 

modified  model  for  multiple-step  tasks, 
III:  455-456,  476-477,  486 

Samuel's   checkers    player,    III:    332-333, 
339-344,  452,  457-464 

simple  model  of,  III:  327 
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Learning  systems  (continued) 

SPARC,  III:  369-370,  384,  416-419,  452 
STRIPS,  III:  475,  491,  493 

TEIRESIAS,  III:  333,  348,  349 

Waterman's  poker  player,   III:  331,   349, 
452,  456,  465-474,  489 

Least- commitment  algorithms,  III:  387 

Least-commitment  planning,  III:  24-25,  552- 
556 

Least  recently  used  (LRU)  algorithm, 
III:  338,  342 

Legal-move  generator,  I:  153,  334,  344 

Length- first  search,  I:  138 

LEX,  in:  452,  453,  455,  484-493 
Lexicon,  I:  247,  333,  346,  354 

LHASA,  II:  104,  134-142 

LIBRA,  II:  302,  304,  305,  330,  351,  375-379 

LIFER,  I:  231,  232,  261,  316-321,  360; 
II:  165-166 

interface  for  PROSPECTOR,  II:  160 

Light  spot,  III:  254,  257-259 

Light  stripe,  HI:  254,  258-259,  272-278 
Limited  inference  algorithm  (CPM)  in 

MACSYMA,  II:  146 

Limited-logic  natural  language  systems, 
I:  228 

Line  completion,  III:  152 

Line  finding,  III:  130-131,  216-224.  See  also 
Edge  detection, 

heuristics  for,  III:  169-171 

Hough  transform,  III:  222-223. 

in  Shirai's  Semantic  Line  Finder,  III:  168- 
172 

tracking  in,  III:  220-223 
Line  junctions.  See  Junction  types. 
Lineal  features,  III:  251 

Linear-discriminant  functions,  III:  376-380 
Linear  input  form,  III:  91 

Linear  programming,  III:  379 
Linear  regression,  III:  379 

Linear  separability,  III:  376 

Linear  systems  theory,  III:  325 

Linearity  assumption,  III:  478,  520-521,  531, 
533 

Lines 

boundary,  III:  168-172 
contour,  III:  168-172 

internal,  III:  168-172 

Linguistics,  computational.     See  Computa- 
tional linguistics. 

Link  types,  II:  212 

LISP,  I:  15,  173,  237,  283,  295,  303,  II:  5-9, 

15-29,  187,  III:  103,  120,  121,  122-123 
and  automatic  programming,  II:  27 

cell,  II:  4 

control  structures,  II:  46-47 
data  structures,  II:  37 

disadvantages  of,  II:  28-29 
dotted  pair,  II:  312 

formal  axioms  for,  II:  312-314 
INTERLISP,  II:  8 

language  primitives,  II:  19-21 
machines,  II:  9 

MACLISP,  II:  8 

pattern  matching,  II:  59 

programming  environment,  II:  66-67 

programs  as  data,  II:  26-28,  298 
self-reflective  programs  in,  II:  6-7,  27,  298 

syntax  of,  II:  18 
as  target  language,  II:  28,  300,  355 

List  processing,  I:  227,  281-287;  II:  15.    See 
also  LISP. 

List  structure,  II:  4,  15-17 
Live  position  in  a  game,  I:  87 

LMS  (least-mean-square)  algorithm,  III:  379 
Local  averaging,  III:  214 

Logic,  I:  4,  8,  146,  148,  151,  154-155,  160- 
171,  172,  174;  II:  283-290,  312;  III:  15, 
77-122 

completeness  and  consistency  of,  I:  178 

in  DBMS,  II:  172 

extensional,  III:  84 

first-order,  I:  165;  III:  80,  88-89,  91 
functions  in,  I:  165 

higher  order,  III:  82-84 
intensional,  III:  84 

introduction  rule  in,  I:  163-164,  169 
natural  deduction  in,  I:  163,  164,  169,  175 

nonmonotonic,  III:  84,  114-119 

nonstandard,  III:  77,  82-84 

predicate,  III:  88-89,  91 
predicate  calculus,  I:  128,  163,  200,  292, 

297,  299 

predicates  in,  I:  163,  182 

propositional,  III:  77,  88 

propositional  calculus,   I:   109,    116,    118, 
160-163 

quantification  in,  I:  151,  164,  360 

resolution  method  in,  I:  168,  175 

Logic  programming,  II:  13;  III:  77,  82,  120- 
121,  123 

Logic  Theorist  (LT),   I:   24,    109-112,    113, 
116,  119,  III:  3,  77;  II:  4,  79 

Logical  decision  criteria  in  PIP,  II:  203 

LOGO,  II:  225,  232,  291-294 
Look-ahead  power,   III:  340.     See  Minimax 

look-ahead  search. 
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Low-emphasis  filtering,    III:   214-215.      See 
also  Preprocessing. 

LRU,  III:  338,  342 

LUNAR,  I:  230,  267,  292-294,  353 

Machine-aided  heuristic  programming, 
III:  350,  357 

Machine  translation 

current  status  of,  I:  237-238 

early  AI  work  in,  I:  226,  233-237 

and  semantic  primitives,  I:  207-213 

and  text  generation,  I:  273-274,  279,  289, 
291 

Wilks's  system,  I:  288-291 
Machinese.  See  Interlingua. 

MACLISP,  II:  8,  202,  206,  369 

Macro-operators,  I:  28;  III:  475,  493 
MACROP,  I:  133 

MACSYMA,  II:  8,  29,  79,  82,  85,  143-154; 
III:  99 

Advisor,  II:  232 

Apprentice,  II:  148 

current  status  of,  II:  147-149 
Man-machine  interaction.     See  User  inter- 

face. 

Manageability  of  production  systems,  I:  193, 
198 

Manifestations 

in  INTERNIST,  II:  197-198 
in  medical  diagnosis,  II:  178 

MARGIE,  I:   149,  211,   231,   278,  300-305, 
306,  334 

Marr's  theory  of  vision,  III:  134-135 
Mars  Explorer  robot,  III:  254 

Mass  spectrometry,  II:  104,  106,  111,  116 

half-order  theory  of,  II:  118-119;  III:  428, 
431-436 

zero-order  theory  of,  II:  118 
Master  script,  III:  68,  70,  73 

Masterscope  in  INTERLISP,  II:  8 

Matching.    See  also  Control  structures  and 

strategies;  Pattern  matching. 
of  frames,  I:  159 

goodness  of  fit  in,  II:  202 

in  HAM,  III:  48-49 
in  PIP,  D:  202 

programs  to  schemas,  II:  319-320 
of  semantic  network  fragments,  I:  187; 

III:  48-49 

Mathematics,  I:  195;  II:  143 

Mathlab  68,  II:  143 

Max  cost.  See  Cost,  in  search  algorithms. 

Maxam-Gilbert  sequencing,  III:  557 

Maximally  general  common  specialization, 
III:  388.  See  also  G  Set;  S  Set. 

Means-ends  analysis,  I:  24,  59,  113,  117,  126, 
129,  135,  169;  II:  139,  317;  III:  517. 

in  the  General  Problem  Solver,  III:  3,  7, 
14-15 

in  MOLGEN,  III:  554-556 

in  STRIPS  and  ABSTRIPS,  III:  524-530 
Mechanical  translation.  See  Machine  trans- 

lation. 

Medical  diagnosis.  See  Diagnosis. 

Medical  diagnosis  systems,  I:  195,  220;  II:  80, 

81,  177-222.  See  also  Expert  systems, 
exhaustive  solutions  in,  II:  177,  190 

history  of,  II:  179-180 

status  of,  II:  180-183 

x-ray  and  ultrasound  image  analysis, 
U:  177 

Memo  function  in  POP-2,  II:  53 

MEMOD,  I:  215,  III:  8,  56-64 

Memory  models,  III:  8-9,  28-56.     See  also 
Psychology;  Semantic  network. 

ACT,  I:  195;  HI:  9,  50-54 
associative,  I:  230 

EPAM,  HI:  28-36 

HAM,  in:  42-50 
MEMOD,  UI:  8,  56-65 

Quillian's  spreading  activation  system, 
III:  36-42 

Memory  organization,  in:  337,  342 

Memory  scanning  task,  HI:  50-53 
Mesa  effect,  III:  343,  458 

Meta-DENDRAL,  n:  84,  104,  106,  116-123; 

m:  326,  332,  369,  372,  422,  428-436 

learning  multiple  concepts,  III:  428-436 
learning  a  set  of  single  concepts,  III:  436 

searching  instance  space,  III:  435 

searching  rule  space,  III:  432-435 

status  of,  II:  121-122 
Meta-evaluation  in  SAFE,  II:  340 

Meta-knowledge,  I:  144,  147;  H:  85,  89,  91, 
240-241,  267;  EI:  330 

for  control  of  inference,  HI:  82 

Meta-planning,  IH:  551 

Meta-rules,  II:  88,  92,  130;  HI:  347 

Method  of  analogies,  in  game-tree  search, 

I:  104;  H:  50.    See  also  Analogical  rea- soning, 

pattern  matching  in,  II:  60-61 
programming  environment  of,  n:  68 
vs.  PLANNER,  n:  56 

Methods  in  CONNIVER,  H:  50 

MICRO-PLANNER,  I:  295-297;  II:  10 
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Middle-out    search    strategy.       See   Island- 
driving  control  strategy. 

Migration,  II:  104 
MIND,  I:  268,  272 

Mineral-exploration  systems,   II:   154,    155- 
162 

Minimax  look-ahead  search  in  game  trees, 

I:  84-87,  88,  90,  91,  94,  98;  III:  339-342, 
465 

Missionaries  and  Cannibals  puzzle,  II:  79 

Mixed-initiative  dialogue,  II:  160,  234,  236- 
238,  247,  259,  272,  368.  See  also  Natural 

language, 

in  GUIDON,  II:  267 

in  NLPQ,  II:  370-374 
for  program  specification,  II:  311 

in  PSI,  II:  326,  329-332 
Socratic,  II:  242 

Mnemonics,  III:  42 

Mode  method  of  region  splitting,  III:  227. 

See  also  Region  splitting. 

Model  building 

in  PROSPECTOR,  II:  155,  161 

in  SECS,  II:  139 

Model  of  learning  systems,  III:  327 

modified  for  multiple-step  tasks,  III:  455- 

456,  476-477,  486 

two-space  view,  III:  360-372,  383,  411 

Models  of  cognition,  III:  4-74 

Models  in  vision  systems,  III:  129,  131-133, 

168,  139,  269-278,  283-286,  306,  314- 
316.  See  also  Top-down  processing, 

in  INTERPRET,  III:  147-154 
Modularity 

in  CRYSALIS,  II:  125 

in  knowledge  representation,  I:  149,  157, 
170,  178,  193,  198,  336,  343;  II:  83,  155, 
263 

of  productions,  II:  376 

in  programs,  II:  65 

Modus  ponens,  I:  162,  III:  86 

Moire  patterns  in  vision,  III:  258 

Molecular  fragmentation,  II:  111,  116 

Molecular  structures,   analysis  of,   II:   102- 
133 

MOLGEN,  III:  24-25,  518,  551-556,  557-562 
Monitoring  dynamic  processes 

in  CASNET,  II:  193-194,  196 
in  Digitalis  Therapy  Advisor  and  VM, 

II:  206 

Mood  system,  of  a  grammar,  I:  249 

Morphemics 

in  speech  understanding,  I:  332-333 
in  transformational  grammar,  I:  246 

Motion,  III:  244-248 
parallax,  III:  250 

Multiple  representations  of  knowledge, 
II:  229 

Multiple  sources  of  knowledge.    See  Knowl- 

edge source. 
Multiple-step  tasks,  III:  452-456,  495 
Multiprocessing,  II:  45.    See  also  Coroutin- 

ing; Parallel  processing, 
in  SAIL,  II:  52 

Mutilated  chessboard  problem,  I:  27 

MYCIN,  I:  151,  157,  195-199;  II:  82-83,  84, 

87,  90,  92,  180,  181,  182,  184-192,  205, 
215,  235,  267-278,  288;  III:  331,  347 

NEOMYCIN,  II:  205,  228,  277 

reasoning  in,  II:  189-191 

sample  protocol  from,  II:  184-187 
validation  of,  II:  267 

Named  plan  in  PAM,  I:  313 

Natural  deduction,  I:  163-164,  169,  175; 

II:  283,  285-286;  III:  94-95,  101 
Natural  interpretation  of  images,  III:  183, 

187-194 
Natural  language  (NL) 

agreement  in,  I:  263 

ambiguity  of,  I:  208-211 
anaphoric  reference  in,  I:  293,  358;  II:  250 

ellipsis  in,  I:  230,  358;  II:  165,  250 

embedding  in,  I:  263 
in  EXCHECK,  II:  283 

front  end,  automatic  derivation  of,  II:  166 
habitability,  I:  328 

in  ICAI  systems,  II:  227 
interface,  II:  150 

LIFER,  II:  165-166 
mixed-initiative  dialogue,  II:  311 
in  MYCIN,  II:  192 

in  NLPQ,  II:  370-374 
program  specification,  II:  300,  302,  303, 

310-311,  337-338 

in  Programmer's  Apprentice,  II:  345,  348 
in  PSI,  II:  327,  330-332 
in  SCHOLAR,  II:  238-239 
semantic  grammar,  I:  229,  261,  318,  320, 

335,  355,  359;  II:  250-251 
in  SOPHIE,  II:  250-251 
speech  acts,  I:  280 

in  TED,  II:  166-167 
Natural-language    understanding,    I:    3,    8, 

225-321,  358-359.   See  also  Speech  un- 
derstanding. 

competence  vs.  performance  in,  I:  245 

early  research,  I:  227-229,  237,  257,  260, 
281-287 
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information  retrieval,  I:  22,  145,  282,  283, 

292,  316,  318 

machine  translation,  I:  207-213,  225,  226, 

233-238,  273,  274,  279,  281,  288-291 

paraphrasing,  I:  149,  211,  255,  274,  302- 
304,  321 

question  answering,  I:  168-169,  173,  185- 
186,  281,  295,  302 

and  semantic  primitives,  I:  149,  207-214 
story  understanding,  I:  221,  231,  300,  306 

Near-miss  training  instance,  III:  395 
Negative  evidence,  II:  120 

Negmax  formalism  for  game- tree  search, 
I:  86-87,  89 

NEOMYCIN,  II:  205,  228,  277 

Network   representation.      See   also  Repre- 

sentation of  knowledge;  Semantic  net- 
work, 

active  structural  network,  I:  185;  III:  56- 
64. 

ATN,  I:  186,  230,  233,  261,  263-267,  268, 
271,  277-279,  292-294,  303,  304,  316; 
III:  56 

discrimination  network,  I:  158,  278,  304; 

in:  29-35 

Finite-state  transition   diagram,    I:   263- 
264 

partitioning,  I:  186 

procedural,  III:  541-550 
pronunciation  graphs,  I:  330 

RTN,  I:  264-266 
segmented  lattice,  I:  330,  337,  353,  356 

in  speech  systems,  I:  330,  337 

spelling  graph,  I:  330,  337,  346 

transition  tree,  I:  316-317 

New- term  problem,  HI:  370-371,  405,  459 

NLPQ,  II:  301,  302,  303,  311,  370-374 

sample  protocol  from,  II:  370-372 
status  of,  II:  374 

NLS-SCHOLAR,  II:  236 

NOAH,  II:  12;  HI:  24-25,  518,  541-550 
Node 

critical,  I:  91 

depth  of,  I:  49 

expansion  of,  I:  46,  55 

intermediate,  I:  39,  56,  57 

solvable,  I:  40 

successor,  I:  26,  33,  46 
terminal,  I:  38,  43 

tip,  I:  80,  87 
unsolvable,  I:  40,  55 

Noise.  See  also  Preprocessing, 

additive,  IE:  213 

in  edge  detection,  III:  130 

effects  on  line  tracking,  III:  220-221 

in  line  finding,  III:  168-172 

reduction  by  smoothing,  III:  213-215 

in  region  segmentation,  III:  147-154,  225 
in  speech  signal,  I:  343 
in  student  model,  II:  260 

in  training  instances,   III:  362-363,   370, 
396-397,  429,  432,  490. 

Nonterminal  symbols  of  a  grammar, 
HI:  495 

Nonalgorithmic  procedures,  II:  144 
Nondeterminism.  See  Parsing. 

Nonmonotonic  reasoning,  II:  74-75;  III:  114- 119 

Nonresolution  theorem  proving,  III:  94-102. 
See  also  Natural  deduction. 

Nonsense  syllables,  III:  28 

Nonterminal  symbols  of  a  grammar,  I:  239 

Nontutorial  CAI,  II:  291-294 
NP-complete  problems,  I:  68,  69 

Nuclear-magnetic   resonance    (NMR)   spec- 
troscopy, II:  122 

NUDGE,  I:  221 

Numerical  problems,  II:  143 

Object-centered  representation,  III:  272 
Obligatory  transformation  in  a  grammar, 

I:  247 

ONCOCIN,  II:  180 

Opacity,  III:  252 

of  knowledge,  II:  82,  89-90 
of  reasoning,  II:  230 

Open  sets,  II:  240 

Open  world,  II:  240 
Operationalization  methods   III:    333,    346, 

350-359 

approximation,  III:  355 
case  analysis,  III:  354 

expanding  definitions,  III:  354 

expressing  in  common  terms,  III:  355 
finding  necessary  and  sufficient  conditions, 

HI:  351 

generate- and- test,  III:  351 
heuristic  search,  III:  351 

intersection  search,  III:  354 

partial  matching,  III:  355 

pigeonhole  principle,  III:  351 
recognizing  known  concepts,  III:  355 

simplification,  III:  355 
taxonomy  of,  III:  358 

Operator  schemata,  I:  33 

Operators 
Hueckel,  III:  218-220 
interest,  HI:  250 
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Operators  (continued) 

Laplacian,  III:  211-212,  218,  264 
noise  immunity  of,  III:  214,  217 

in  problem  solving,  I:  22,  32,  36,  74,  110, 

113,  119,  123,  128,  135 
Roberts  cross,  III:  216 

Sobel,  III:  217 
windows,  III:  217 

Opportunistic  problem  solving,  II:  129 

Opportunistic  tutoring  in  GUIDON,  II:  275 

OPS,  II:  84 

Optimal  solution  in  search,  I:  28,  62,  74 

Optimality  of  search  algorithm,  I:  65-67,  80, 
83 

Optimization  of  code.  See  Efficiency  of  syn- 
thesized programs. 

Optional  transformation  in  a  grammar, 
I:  247 

Ordered  search,  I:  59-62,  64,  72,  77-81,  82, 
102,  124 

Organic  synthesis,  II:  105,  134-142 
Organization  of  knowledge,  I:  336 

Origami  World,  III:  183-194 
Orthographic  projection,  III:  176 

Oscillation,  III:  28-35 
Overlapping  concept  descriptions,  III:  421, 

434 

Overlay  model,  II:  231,  256,  261,  270,  282 

OWL,  II:  182 

Paired- associate  learning,  III:  28-35 

PAM,  I:  300,  306,  313-314 
Pan,  III:  198.  See  also  Camera  model. 

Parallel-line  heuristic,  III:  187-194 
Parallel  processing,  I:  258,  265,  298;  II:  146 

coroutining,  I:  271 

and  direct  knowledge  representation, 
I:  204 

distributed,  I:  336 

Parallel  search,  III:  48 

Parameter  learning,  III:  375-380 

Paranoia,  III:  71-74 

Paraphrasing,  I:  149,  211,  255,  274,  302-304, 
321 

Paraplate  in  preference  semantics,   I:   279, 
291 

PARRY,  I:  257;  III:  70-74 
Parse  tree,  III:  497 

PARSIFAL,  I:  230 

Parsing,  I:  225,  229,  239-240,  256-272; 
II:   293;    III:  497.     See  also  Grammar; 

Natural  language  understanding, 
ad  hoc,  I:  287 

with  an  ATN,  I:  263-267,  293,  349,  355 

with  charts,  I:  260,  268-271,  354 

control  strategies,  I:  230,  258-259 

in  DBMS,  II:  164-165 
derivation  tree,  I:  229,  242,  246,  256,  266, 

273,  281,  293,  296,  302 

with  extended  grammars,  I:  260 

grammarless  parsers,  I:  260,  261 

images,  III:  287-291 
in  LIFER,  I:  316-318 

by  MARGIE's  conceptual  analyzer,  I:  302- 
303 

nondeterminism,  I:  265 

in  SAFE,  II:  339 

by  SHRDLU's  PROGRAMMAR,  I:  297- 298 

in  speech  understanding,  I:  327,  359 

template  matching,  I:  260 

with  a  transformational  grammar,  I:  260 

Partial  development  in  search,  I:  59,  114 

Partial  functions,  operators  viewed  as,  I:  33 
Partial  match 

to  an  image,  III:  283 

to  an  input  sentence,  III:  47 

Partial  program  specification,  II:  301,  307, 

313,  348-349 
by  humans,  II:  337 

in  NLPQ,  II:  370-374 
in  PSI,  II:  326 

in  SAFE,  II:  337-338,  341 
Partial  solutions,  II:  273 

Partitioned  semantic  network,  I:  186,  360; 
II:  159 

Pathogenesis  of  a  disease,  II:  178 

Pathway  in  CASNET,  H:  196 

Patient  management.     See  Monitoring  dy- 
namic processes. 

Patient-specific  model,  II:  208-211 
Pattern-directed  invocation,  II:  9,  11,  32,  46, 

58 

Pattern  matching,  I:  123,  256,  260,  283-287; 
II:  32,   58-64,   286;   in:   121.     See  also 
Matching;  Template  matching, 

in  ICAI,  II:  231 

network  matching,  II:  160 

in  PROSPECTOR,  II:  155,  160 

in  SECS,  II:  137 

semantic,  II:  144-145 
Pattern  recognition,  III:  127,  283-291,  373- 

382,  497.  See  also  Template  matching. 
Pattern  variables,  II:  58 

PECOS,  II:  302,  304,  305,  330,  350-354,  375, 
379 

status  of,  II:  353-354 
Pedagogy.  See  Education. 
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Perceptron  algorithms,  III:  376-380 

Perceptrons,  III:  325,  376-380 
Perceptual  primitives  in  WHISPER,  I:  204 

Perceptual  skills  of  a  computer-based  con- 
sultant, II:  150 

Performance  element  of  learning  systems, 

III:  327,  452-453.  See  also  Performance 
tasks;  Performance  trace, 

implications  for  the  learning  system, 

III:  330-332,  372 
importance  of  transparency,  III:  435,  454, 

482 

role  in  providing  feedback,  III:  333,  374, 
454-455 

Performance  evaluation  of  speech  systems, 
I:  329 

Performance  grammar,  I:  261,  335,  349,  355, 

359;  II:  160,  250-251.  See  also  Semantic 
grammar. 

Performance  standard,   III:   331,   347,   454, 

457,  458,  462,  467-468,  479,  492,  501 
Performance  tasks  for  learning  systems.  See 

also  Performance  element  of  learning 

systems, 

classification,  III:  331,  383,  423-427 
control  of  physical  systems,  III:  373 

data  reduction,  III:  383 

diagnosing  soybean  diseases,  III:  426-427 
expert  systems,  III:  345,  348,  427 

mass  spectrometry,  III:  428 

multiple-step  tasks,  III:  452-456,  495 
parsing,  III:  497 

pattern  recognition,  III:  373-382,  497 

planning,  III:  452,  475-479 

playing  Eleusis,  III:  416-419 
playing  Hearts,  III:  350 

playing  poker,  III:  331,  465-474 
prediction,  III:  383 

single-step  tasks,  III:  452 

Performance  trace,  III:  454-455,  469,  475- 

477,  478-479,  482-483,  486-487,  489 

Perspective   projection,    III:    139,    197-199, 
206,  265 

Perspective  transform,  III:  197-199 
PHLIQA1,  I:  232 
Phonemics 

in  speech  understanding,  I:  327,  332-333 
in  transformational  grammar,  I:  246 

Phonetics,  I:  327,  332-333,  343 

Phonological  component  of  a  transforma- 
tional grammar,  I:  248 

Photometric  stereo,  III:  134 

Photometry,  HI:  241,  242 

Phrase  marker  in  a  transformational  gram- 
mar, I:  246,  273 

Phrase-structure  grammar,  I:  240-246 
compared  with  transformation  grammar, 

I:  245 

definition  of,  I:  243 

in  parsing,  I:  260,  262 
Picture  domain  contrasted  with  scene  do- 

main, III:  131-135 
Picture  grammar,  III:  287-291 

Picture  interpretation.    See  also  Image  un- 
derstanding; Shape  recovery. 

natural  interpretations,  III:  187-194 
Pixel,  III:  127 

PL/1,  II:  365 
Plan-generate-test,  II:  131 

in  DENDRAL,  II:  106-109 
in  Meta-DENDRAL,  II:  120 

Plan  in  Programmer's  Apprentice,  II:  303, 
305,  343,  344,  348 

Plan  recognition,  II:  147,  149,  232 

for  cooperative  responses,  II:  167 

in  Programmer's  Apprentice,  II:  303 
Plane,  in  semantic  memory,  III:  36-39 
PLANES,  II:  164 

Planes  of  knowledge  in  CASNET,  II:  193 

PLANNER,  I:  151,  155,  171,  175-178,  295- 
297;  II:  8-10,  74,  79;  III:  82,  121,  533 

antecedent  theorems  in,  II:  38,  48,  73 

chronological  backtracking  in,  II:  50 

consequent  theorems  in,  II:  48 

control  structures  in,  II:  47-50 
data  structures  in,  II:  38 

MICRO-PLANNER,  II:  10 

pattern  matching  in,  II:  60 

programming  environment  of,  II:  68 
vs.  CONNIVER,  II:  56 

Planning,  I:  22,  28,  169;  III:  69,  70,  350,  452, 

475-479.  See  also  Means-ends  analysis; 
Problem  solving;  Reasoning. 

constraint-structured,  I:  203 

constructive,  III:  522,  539,  552-556 

generalized,  in  STRIPS,  I:  131-134 
in  GPS,  ffi:  518 

hierarchical,  III:  24-25,  516-518,  523-530, 
541-556 

hierarchical,  in  ABSTRIPS,  I:  135 

least-commitment,  III:  24-25,  520-521, 
552-556 

meta-planning,  III:  551 

multidirectional,  III:  22-27 

nonhierarchical,  m:  26,  516-517,  531-540 

opportunistic,  III:  7,  22-27,  516-519,  521 
over  constrained,  III:  542,  552 
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Planning  (continued) 

in  problem  solving,  I:  107,  128,  131,  137 

of  program  synthesis  in  SAFE,  II:  339-340 

script-based,  III:  516-519 

by  skeletal  plan  refinement,  III:  557-562 
in  the  SRI  computer-based  consultant, 

II:  151-152 
in  story  understanding,  I:  306,  309,  310 
underconstrained,  III:  542,  552 

Planning  space,  III:  551 

Planning  systems.  See  also  individual  entries 

for  each  system. 

ABSTRIPS,  III:  523-530 

HACKER,   III:   452,    475-483,    491,    493, 
531-535,  546 

INTERPLAN,  III:  535-537 

MOLGEN,  III:  551-562 

NOAH,  III:  24-25,  541-550 

STRIPS,  III:  475,  491,  493,  523-530 
PLATO  Project,  II:  255 

Plausible-move  generation,  in  game-tree 
search,  I:  104 

Plausible  reasoning,  I:  177;  II:  158,  179,  199, 

201,  236,  239,  241 

Ply  in  game  trees,  I:  99 

Poker,  III:  331,  465-474 

POLY,  III:  133,  178-182 
Polynomial  evaluation  function,  III:  457,  463. 

See  also  Static  evaluation  function. 

POP-2,  II:  7,  12 
control  structures,  II:  53 

data  structures,  II:  42 

dynamic  lists,  II:  53 

pattern  matching,  II:  63 

programming  environment,  II:  70 
POPLER,  I:  176,  II:  12 

Positive  evidence,  II:  120 

Possibility  list  in  CONNIVER,  II:  38 

Possible-world  semantics,  III:  84 
Postprocessing 

to  eliminate  noise  regions,  III:  228-229 
with  relaxation  algorithm,  III:  229 

by  thresholding,  III:  229 

Potential  solution,  in  heuristic  search,  I:  77- 
79,  80,  82 

Pragmatics,  in  discourse,  I:  249,  327,  332, 
334,  359 

Preconditions  of  an  operator,  III:  523.    See 

also  Means-ends  analysis. 

in  ABSTRIPS,  I:  136;  III:  523-530 

in  NOAH,  III:  546-550 

prerequisites  in  HACKER,  III:  533-534 
in  STRIPS,  I:  128,  131,  135;  III:  523-530 

Predicate  abstraction,  III:  83 

Predicate  calculus,  I:  128,  163,  200,  292,  297, 

299;  II:  301;  III:  77,  88-89,  121-122.  See 
also  Logic. 

Predicate  function,  II:  188 

Predicate  in  logic,  I:  163,  182,  III:  88-89,  91 
Prediction  task,  III:  383 

Preference  semantics,  I:  208,  279,  288-291 
Premise  clause  of  a  production  rule,  II:  188 

Preprocessing,  III:  137,  206-215 
distortion  model,  III:  206 

ensemble  averaging,  III:  214 

geometrical  correction,  III:  206 

gray-scale  transformation,  III:  208-209 
resampling,  III:  208 

sharpening,  III:  209-213 
smoothing,  III:  214 

Prerequisite-clobbers-brother-goal,  III:  533 
Presburger  arithmetic,  III:  99 

Present  Illness  Program  (PIP),  II:  83,  180, 

181,  202-205 
Primal  sketch,  III:  135,  232.  See  also  Intrin- 

sic image. 

Primitive  problem,  I:  36,  38,  74,  121 
Primitives 

perceptual,  in  WHISPER,  I:  204 

semantic,  I:  148-149,  183,  198,  207-215, 

231,  237,  278,  288-291,  300-303,  306 
Proactive  inhibition,  III:  34 

Probabilistic  reasoning.  See  Certainty;  Cer- 
tainty factor;  Uncertainty. 

Probes  of  memory,  III:  46,  51 

Problem  area  in  automatic  programming, 

II:  300-301 
Problem-behavior  graph,  III:  18 

Problem  reduction,  I:  7,  25,  36-42,  54,  74, 
113,  114,  119,  201;  II:  317;  HI:  477,  551. 

See  also  Subgoals;  Means-ends  analysis. 

Problem   representation,    I:    8,    22-28,    32- 
45.    See  also  Problem  reduction;  State 

space, game  tree,  I:  25,  43-45,  84 
AND/OR  graph,  I:  26,  38-40,  43,  74,  113, 

119,  124 

for  robots,  I:  122,  128-139 
theorem-proving,  I:  25 

Problem  solving,  I:  7,  21,  58,  74,  109,  113, 

119,  123,  128,  135,  153,  284,  296; 

II:  9,  79;  III:  7,  8,  11-21.  See  also  Con- 
trol structures  and  strategies;   Expert 

system;  Planning;  Reasoning;  Theorem 

proving, 
approach  to  automatic  programming, 

II:  301,  317-318,  321,  324-325 

automatic,  III:  77-78 
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generate-and-test,  I:  30;  II:  131 

human,  I:  285;  III:  7,  8,  11-21 

interdependent  subproblems,  I:  56,  81-83; 

III:  520,  542,  531-540 
means-ends  analysis,  I:  24,  59,  113,  117, 

126,  129,  135,  169;  II:  139,  317;  III:  3, 

7,  14-15,  517,  524-530,  554-556 
operators,  I:  22,  32,  36,  74,  110,  113,  119, 

123,  128,  135 

optimal  solution,  I:  28,  62,  74 

plan-generate-test  strategy  in,  II:  131 
primitive  problem,  I:  36,  38,  74,  121 

problem  reduction,  I:  7,  114,  119,  201; 
III:  477,  551 

state-space  search,  I:  30,   35,   46-53,   55, 
58-73,  77,  80,  111,  153,  195 

Problem-solving  expertise,  II:  247,  256,  263. 
See  also  Expertise. 

Problem-solving  grammar,  II:  229,  232 

Problem  space,  II:  140;  III:  13-14,  15-17.  See 
also  State  space. 

Procedural   attachment,    I:    156,    158,    179, 

218-221;  II:  59 

Procedural-declarative  controversy,   I:   151, 
230 

Procedural  knowledge  representation,  I:  146, 

149-150,  155-156,  172-179,  193,  198, 

219-220,  230,  289,  295-297;  II:  9,  73, 

151-152,  229,  261;  III:  63,  532.  See  also 
Declarative  representation  of  knowledge. 

Procedural  network  in  NOAH,  II:  151,  280; 

III:  541-550 

Procedural  semantics,  I:  229-230 

Procedure-formation  principle,  II:  359 
Process.  See  Coroutining;  Multiprocessing. 
Process  control.  See  Control  structures  and 

strategies. 

Production  rule,  I:  157,  190,  239,  303;  II:  83, 

87,   128,  129-130,  136,  212,  228,  235, 
261-263;  III:  452-455,  465-474 

in  EXPERT,  II:  218-220 
flexibility,  II:  228,  267 

in  ICAI  systems,  II:  229 

in  mass  spectrometry,  II:  106,  116,  117— 
118 

Production  systems,  I:  157,  190-199,  III:  50- 
54,  438,  452-455.  See  also  Program 

transformation   as   approach  to  auto- 
matic programming, 

adaptive,  I:  195 
conflict  resolution  in,  I:  192,  197 

context,  I:  190,  197 

conflict  resolution  in,  II:  350 

focus  of  attention  in,  II:  351 

interpreter,  I:  190-192 

IRIS,  II:  212-213 
LIBRA,  II:  375-379 
manageability  of,  I:  193,  198 

modularity  of,  in  LIBRA,  II:  376 

MYCIN,  II:  187-188 
in  NLPQ,  II:  370 

PECOS,  II:  350 

refinement  rules  in,  II:  350-351 
in  SAFE,  II:  339 

Program  model 
in  LIBRA,  II:  375 

in  PSI,  II:  327,  329-330,  333 
Program  net  in  PSI,  II:  327,  329,  330,  332 

Program  representation.  See  Representation 

of  programs  in  AP  systems. 
Program  schemas,  II:  319 

Program  specification,  II:  297,  299-300,  306- 
311.  See  also  Automatic  programming, 

ambiguity  of,  II:  336-337 
AP2  in  SAFE,  II:  337 

behavioral,  II:  336-338,  343 
completeness  of,  II:  300 
consistency  of,  II:  302 

constraints  in,  II:  302,  336,  338-340 
efficiency  of,  II:  336 

by  example,  II:  300,  306-308,  318-325,  329 
executability  of,  II:  336 

formal,  II:  300,  308-310,  355 

by  generic  examples,  II:  307 
human,  studies  of,  II:  337 
informality  of,  II:  326,  336 

interactive,  II:  300 

methods  of,  II:  306-311 
mixed-initiative  dialogue  in,  II:  311,  326, 

329-333,  370-374 

natural-language,   II:  300,   302,   310-311, 
327,  330-332,  337-338,  341,  345,  348, 

370-374 

partial,  II:  301,  307,  313,  326,  337-338, 

341,  348-349,  370-374 
protocols  for,  II:  308 

in  PSI,  II:  326-332 
SSL  in  Protosystem  I,  II:  364-369 

by  traces,  II:  300,  307-308,  321-325,  329 
unambiguous,  in  DEDALUS,  II:  355 
V  in  CHI,  II:  334 

very  high  level  language,  II:  309,  315,  326, 

355-363,  364-369 
vocabulary  of,  II:  336 

Program  synthesis,  II:  313.    See  also  Auto- 
matic programming, 

in  PECOS,  II:  350-354 
in  PSI,  II:  330 
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Program  transformation  as  approach  to  AP, 
II:  301,  302,  304,  309 

conditional-formation  principle,  II:  357 

in  DEDALUS,  II:  355-363 
by  eliminating  redundant  computations, 

II:  314 

by  expanding  procedure  calls,  II:  315 

generalization  principle,  II:  360-361 
by  gradual  refinement,  II:  350 

in  LIBRA,  II:  375-379 

in  NLPQ,  II:  370-374 
in  PECOS,  II:  330,  350-354 

procedure-formation  principle,  II:  359-360 

recursion-formation  principle,  II:  358 
by  recursion  removal,  II:  314 
refinement  rules  in,  II:  316 

refinement  tree  in,  II:  375 

simultaneous  goals  in,  II:  361-362 
Program  understanding,  II:  303,  305,  343, 

364-369 

PROGRAMMAR,  I:  297,  319 

Programmer's  Apprentice,  II:  303,  305,  343- 
349 

sample  protocol  from,  II:  344-347 
status  of,  II:  349 

Programmer's  assistant  in  INTERLISP, 
II:  8,  68 

Programming  environment,  II:  3-4,  32,  65- 
71,  299 

BIP,  II:  230 

CHI,  II:  326,  333-335 
for  instruction,  II:  230,  232,  234 
interactive,  II:  28 

LISP,  II:  7 

Programmer's  Apprentice,  II:  343-349 
SPADE,  II:  232 

Programming.  See  also  Automatic  program- 

ming; Programming  environment;  Pro- 
gramming   languages;    Representation 

of  programming  knowledge. 

applicative  style  of,  II:  6-7 
codification  of  programming  knowledge  in 

PECOS,  II:  350-354 
current  problems  in,  and  AP,  II:  299 

debugging  in  Programmer's  Apprentice, 
II:  344-347 

definition  of,  II:  297 

documentation  in  Programmer's  Appren- 
tice, II:  344-347 

in  logic,  II:  13;  III:  77,  82,  120-123 

modification  management  in  Program- 

mer's Apprentice,  II:  344-347 
pattern-directed  invocation  in,  II:  9 
recursion  in,  II:  6 

verification  in  Programmer's  Apprentice, 
II:  344-347 

Programming  knowledge.     See  Representa- 
tion of  programming  knowledge. 

Programming  languages.     See  also  AI  pro- 
gramming languages. 

ALGOL,  II:  6 

APL,  II:  6 

COBOL,  II:  3 
FORTRAN,  II:  3,  5 

very  high  level,  II:  309,  315,  326,  355-363, 
364-369 

Programs  as  data,  II:  7,  15,  26-28.   See  also 
Self-reflective  programs, 

for  explanation,  II:  6 

for  learning,  II:  6-7 

Projections 
central,  III:  195 

orthographic,  III:  176 

perspective,  III:  139,  197-199,  206,  265 

PROLOG,  II:  13,  III:  82,  123-124 
Pronunciation  graph,  I:  330 

Proof  checking,  II:  283 

Proof  by  contradiction,  III:  86-87,  93.    See 
also  Resolution  rule  of  inference. 

Proof  procedure 

natural  deduction,  III:  94-95,  101 

resolution,  III:  86-87,  93 
Proof  summarization  in  EXCHECK,  II:  283, 

287-289 

Proof  theory,  II:  283-290 
Propagation,  II:  212 

of  constraints,  III:  553,  556 

in  IRIS,  II:  213-215 
of  probabilistic  hypotheses,  II:  160 

Property  inheritance.  See  Inheritance. 

Property  lists,  II:  7,  31 

Propositional  calculus,  I:  109,  116,  118,  160- 
163;  III:  77,  88.  See  also  Logic. 

Propositional  (Fregean)  knowledge  represen- 
tation, I:  200 

Prosodies  in  speech  understanding,  I:  327, 
332-334,  359 

PROSPECTOR,  I:  157,  181,  196,  198;  II:  82, 

85,  155-162 
natural-language  interface,  II:  160 

sample  protocol  from,  II:  155-158 

status  of,  II:  161-162 
Protection  mechanism  for  simultaneous  sub- 

goals,  II:  361 
Protection  violation  in  HACKER,  III:  535 

Protein  x-ray  crystallography,  II:  124 



Subject  Index  for  Volumes  I,  n,  and  EI 
629 

Protocol  analysis,  II:  237;  III:  18,  22.  See  also 

General  Problem  Solver  (GPS);  Human 

problem  solving. 

Protocols  for  program  specification.  See 
Traces. 

PROTOSYNTHEX,  I:  228 

Protosystem  I,  II:  302,  304,  364-369 
status  of,  II:  369 

Provability  in  nonmonotonic  logics,  III:  116 

Pruning,  I:  59,  60,  121,  129,  201;  II:  114.  See 
also  Game- tree  search. 

Pseudo-language,  I:  233 

PSI,  II:  301,  302,  303-304,  311,  319,  326- 
335,  350,  375 

PECOS  and  LIBRA,  II:  375,  379 

sample  protocol  from,  II:  330-331 

Psychology,  I:  157,  180,  193,  201;  III:  3-74. 
See  also  Human  memory;  Information- 
processing  psychology;  Memory  models, 

behaviorist,  III:  4 

cognitive,  III:  4 

human  problem-solving,  I:  6-7,   14,  285; 
III:  11-21 

memory,  I:  180,  187,  201,  230 

PUFF,  II:  180,  182-183 
PUP,  II:  318 
Puzzles.  See  also  Games, 

blocks  world,  I:  276 

8-puzzle,  I:  32,  51,  62,  67,  68 

15-puzzle,  I:  68,  73 
mutilated  chessboard,  I:  27 

Tower  of  Hanoi,  I:  36-38,  42,  160,  165 
traveling-salesman  problem,  I:  21,  34,  48, 

62,  69,  70-71 
Pyramid,  III:  137,  279-282,  309 

QA3,  I:  129,  168-169;  III:  78 
QA4,  I:  176;  II:  11,  79 

QLISP,  I:  176,  II:  12,  362;  III:  543 

control  structures  in,  II:  51-52 

data  structures  in,  II:  39-41 

pattern  matching  in,  II:  61-62 
programming  environment  of,  II:  69 
segment  variables  in,  II:  61 

unification  in,  II:  61-62 
Quad  tree,  III:  137,  279,  282 

Quantification,  I:  151,  164,  360 

existential,  III:  88-89,  91 
in  higher  order  logics,  III:  83 

universal,  III:  88-89,  91 
Quantitative  shape  recovery,  III:  133,  173, 

187-194 

Query  language,  I:  292 

Query  optimization  in  QUIST,  II:  170-171 

Question  answering,  I:  168-169,  173,  185- 
186,  281,  295,  302;  III:  63,  78 

Quiescence  in  game-tree  search,  I:  99-100, 
103 

QUIST,  H:  170-171 

Random- access  devices,  III:  199.  See  also 

Imaging  devices. 
Random  text  generation,  I:  233,  273 

Range  data  analysis.  See  Depth  measure- 
ment; Range  finders. 

Range  finders,  III:  254-259,  268,  272-278 
Raster-scan  devices,  III:  199.  See  also  Imag- 

ing devices. 
Rat-insulin  experiment,  III:  554 

REACT  in  CONGEN,  II:  114-115 
Reaction  time,  III:  40 

Reactive  learning  environment,  II:  227,  247, 
283 

Reasoning.    See  also  Control  structures  and 

strategies;  Planning;  Problem  solving, 

about  programs  in  automatic  program- 

ming, II:  298 
analogical,  I:  146;  III:  328,  334,  443-445 
backward,  I:  23-25,  36,  51,  56,  74,  110, 

111,  196,  198;  II:  83,  87,  93,  136; 
III:  80,  95,  97 

bottom-up,  I:  23-24,  51,  56,  74,  198,  220, 
259,  270,  326,  334,  338,  358;  II:  129, 

196,  199-201,  214,  257;  III:  129,  288- 
290,  306 

in  CASNET,  II:  195-196 
categorical,  II:  205 

consequent,  II:  156,  160-161 
data-  or  event-driven  processing.  See  also 

Bottom-up  processing, 

deductive  inference,  I:  146,  205;  III:  76- 123 

default,  I:  176-177;  II:  239;  III:  115-116, 119 

dependency-directed  backtracking,  II:  73 
from  a  diagram,  I:  201 

directedness  of,  I:  151,  174-177,  185,  188, 

193,  219 

direction  of,  I:  23-24,  198 

expectation-  or  goal-driven,  I:  23-24,  183, 
197,  216-218,  232,  326,  334,  336,  344  . 
See  also  top-down  processing. 

in  EXPERT,  II:  220-222 
extended  inference  in,  I:  176 

formal,  I:  146 

forward  chaining,  I:  23-25,  51,  56,  74,  198, 

220;  II:  129,  214,  257;  III:  19,  80,  99- 
100,  129,  306,  452. 
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Reasoning  (continued) 
heuristic,  I:  21,  64,  66,  74,  78,  94,   119, 

151,  168,  174,  177,  188,  201,  220,  228, 

258,  277,  282,  284,  293,  296,  298,  299, 

335;  II:  81,  140,  313;  III:  11 

hill-climbing,  II:  145,  317;  III:  252,  375- 
380,  434,  458 

from  incomplete  knowledge,  II:  236,  240 
inexact,  I:  195;  II:  79,  81 

informal,  II:  283-290 
in  INTERNIST,  II:  199-201 

intersection  search,  II:  239-240 
means-ends  analysis,  I:  24,  59,  113,  117, 

126,  129,  135,  169;  II:  139,  317;  III:  517 

in  MYCIN,  II:  189-191 
plausible,  I:   177;   II:   158,   179,   199,  201, 

236,  239,  241 

probabilistic,  II:  155,  158-160,  205 
spreading  activation,  I:  185,  187,  189 

schema  matching,  II:  319-320 
in  SCHOLAR,  II:  239-241 

top-down,  I:  24,  183,   198,  216-218,  232, 
259,  326,  334,  336,  338,  344,  355,  358, 

359;  II:  201;  III:  129,  131-133,  168,  139, 

269-278,  283-286,  288-290,  306,  314- 
316 

Recency  effect,  III:  48 
Record,  II:  34 

Recursion,  II:  6,  15,  18 

Recursion-formation  principle,  II:  358 
Recursion  removal,  II:  314 

Recursive  function  theory,  III:  102 

Recursive  pattern  matcher,  I:  256 

Recursive  transition  networks  (RTN),  I:  264- 
266 

REDUCE,  II:  146 

Reducers,  III:  98-99 
complete  set,  III:  99 
immediate  reduction,  III:  98 

REF-ARF,  II:  5,  79 
Referencing  problem,  III:  112 

Refinement-operator  method  for  searching 

rule  space,  III:  369,  401-410,  440,  507- 
509 

Refinement  of  plan  steps,  III:  552,  555-556, 
558-562 

Refinement  of  program  specification, 

II:  350.    See  also  Program  transforma- 
tion as  approach  to  AP. 

in  PECOS,  II:  350-351 
rules  for,  II:  375 

Reflectance  map,  III:  262 

Refutation  move  in  game  playing,  I:  102 

Region  analysis,  III:  130-131,  143-147,  150, 
225-229 

Region  boundary,  III:  226 

Region  growing,  III:  225-226.    See  also  Seg- 
mentation. 

phagocyte  heuristic,  III:  226 

with  texture,  III:  233-236 

thresholding,  III:  225-226 
weakness  heuristic,  III:  226 

Region  splitting,  III:  225,  226-229.   See  also 

Segmentation. 
with  clustering,  III:  227-228 
with  color  features,  III:  228 

with  histograms,  III:  226-227,  234-235 
intensity  measures,  III:  228 

Regions 
atomic,  III:  225-226 
noise,  III:  225,  228 

Regular  grammars,  I:  243,  245,  263;  III:  501, 

505,  506,  507,  509.  See  also  Finite-state 

grammar. Reinforcement  in  ACT,  III:  54 

Relational  database  in  MACSYMA,  II:  146 

Relations,  III:  38,  44 

Relaxation  algorithms,  III:  292-300 
compatibility  functions,  III:  299 

probabilistic,  III:  297-300 

sequential,  III:  292-297 
Relaxation.  See  also  Consistency;  Constraint 

satisfaction. 

for  intensity  measures,  III:  264 

on  intrinsic  characteristics,  III:  241-242 

for  region  interpretation,  III:  295-297 
for  region  postprocessing,  III:  229 
in  stereo  vision,  III:  252 

RENDEZVOUS,  II:  167-169 
Representation  of  algebraic  expressions, 

II:  147 

Representation   of  knowledge,    I:    143-222, 
226,  229-232;  II:  7,  9,  79 

about  disease  progression,  II:  196 

about  functional  relationships,  II:  245-246 

about  mass  spectrometry,  II:  116-117 
ad  hoc,  I:  227 

articulate  expert,  II:  230 

associative  triple,  II:  188 

in  automatic  programming,  II:  315-316 
blackboard  architecture,  II:  126 

causal  model,  II:  193-195 
closed-world  assumption,  II:  240;  III:  36, 

115 

completeness  of,  I:  178;  III:  79 
consistency  of,  I:  178 

in  DBMS,  II:  171-173 
decision  rules,  II:  218-220 

decision  tables,  II:  214-215 
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declarative,  I:  151,  172,  219,  230;  III:  56, 
120 

denotative,  I:  200 

direct  (analogical),  I:  158,  177,  200-206 
disease  model,  II:  199 

in  EXPERT,  II:  218-220 
expertise,  II:  80 

explicit  vs.  implicit,  I:  150,  172 

facts,  algorithms,  and  heuristics,  II:  128 

findings,  II:  219 

flexibility  of,  II:  89,  130,  228,  267 
formal  vs.  informal,  II:  128 

frame.    See  Frame  knowledge  representa- 
tion, 

hierarchical,  II:  237 

homomorphic,  I:  200 

of  hypotheses,  II:  220 

in  ICAI  systems,  II:  227,  229 

indeterminacy  of,  I:  148 

with  inexact  knowledge,  II:  180 

inference  network,  II:  158 

inference  rules,  II:  159 

in  INTERNIST,  II:  198-199,  200-201 

in  IRIS,  H:  212-213 

ISPEC,  II:  212-214 
issues  in,  I:  145,  152 

knowledge  sources  in,   I:   257,   298,   326, 

336,  343-348,   353;   II:   125,   126,  326, 
342,  348 

logic  in  DBMS,  II:  172-173 

in  logic  programming,  III:  121-122 

in  medical  diagnosis  systems,  II:  177,  180- 
181,  212,  216 

meta-knowledge  in,  I:  144,  147;  II:  85,  89, 

91,  240-241,  267,  269;  III:  82,  330 
modularity  of,  I:  149,  157,  170,  178,  193, 

198,  336,  343;  II:  83,  125-129,  155,  263 
multiple,  II:  229 

organization  of,  I:  336 

partitioned  semantic  net,  I:  186,  360; 
II:  159 

problem-solving  grammars,  II:  229,  232 

procedural,  1:  146,  149-150,  155-156,  172- 

179,  219-220,  230,  289,  295-297;  II:  9, 
151-152,  229,  261;  m:  532 

procedural  vs.  declarative  controversy, 

I:  151,  230;  III:  120 

procedural  net,  II:  151,  280 

production  rules,   I:   157,    190,   239,   303; 

II:  83,  87,  128,  187-188,  212-213,  229, 
261-263;  III:  452-455,  465-474 

program  schema,  II:  319 

propositional  (Fregean),  I:  200 

in  PROSPECTOR,  II:  158-160 

in  SCHOLAR,  II:  236-237 
scope  of,  I:  147 

script,  I:  216-222,  231,  300-309,  311,  334; 
II:  243 

semantic  network.  See  Semantic  network, 

semantic  primitive  in  MYCIN,  II:  187 

spaces  in  partitioned  semantic  nets,  I:  186, 

360;  II:  159 

for  synthetic  chemistry,  II:  134-138 
taxonomic  network,  II:  159 

uncertainty  in,  II:  180-181,  188-189,  193, 
215,  221 

Representation  of  programming  knowledge. 
See  also  Knowledge  engineering, 

conditional-formation  principle,  II:  357 

in  DEDALUS,  II:  355-363 

design  notebook  in  Programmer's  Appren- 
tice, II:  348 

generalization  principle,  II:  360-361 
Internal  problem  description  (IPD)  in 

NLPQ,  II:  372-373 
in  LIBRA,  II:  376-378 

in  PECOS,  II:  350-353 

plan  library  in  Programmer's  Apprentice, 
II:  343,  344,  348 

procedure-formation  principle,  II  359-360 
recursion-formation  principle,  II:  358 

Representation  of  programs  in  AP  systems. 
See  also  Program  specification, 

program  model,  II:  327,  329-330,  333,  375 
program  net,  II:  327,  329,  330,  332 

program  schema,  II:  319 
in  PSI,  II:  327 

Resampling,  HI:  206,  208 
Resolution 

of  depth,  III:  254-255 
in  depth  maps,  III:  252 

levels  of,  in  vision,  III:  279-282 

of  visual  sensor,  III:  199-200 
Resolution  rule  of  inference,  I:  168,  175; 

III:  86-87,  93,  94,  97 

Resolution  theorem  proving,  II:  11,  313; 

HI:  77-78.    See  also  Nonresolution  the- 
orem proving, 

strategies  to  improve  efficiency,  III:  91-92 
Resolvents,  III:  86,  87-88,  93 
Response  frame  of  a  knowledge  source, 

I:  345,  347 

Response  generalization,  III:  28-35 
Restriction-site  mapping,  III:  558 

Retroactive  inhibition,  III:  28-35 
Reverse  chemical  reactions,  II:  136 

Revision  procedure,  II:  74 
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Rewrite  rules,   I:  239,   261,   316.     See  also 

Grammar;  Production  rule. 

Rheumatology  consultation  system,  II:  222 

Risch  algorithm,  II:  82 

RLL,  III:  330 

Roberts  Cross  Operator,  III:  216 

ROBOT,  I:  232,  II:  164 

Robot  problem  solving,  I:  22,  128-139;  II:  73 
Robot  vision,  III:  132,  137-138,  301-305 
Robotics,  I:  10 

Roll,  III:  198 
Root  structure  in  INTERNIST,  II:  201 

ROSIE,  II:  84 
Rule 

of  inference,  I:   146,   154-155,   160,   162- 
165,  168,  175 

production,  I:  157,  190,  239,  303 
rewrite,  I:  239,  261,  316 

Rule  base,  of  a  production  system,  I:  190 

Rule-based  system.  See  Production  system. 

Rule  model,  II:  91,  97-101 

Rule  space,  III:  360,  365-371.  See  also  Gram- 
matical inference;  Specialization, 

representation  of,  III:  365-369 
rules  of  inference,  III:  365.  See  also  Gener- 

alization, 

search  of,  III:  369-370.  See  also  Rule-space 
search  algorithms. 

Rule-space  search  algorithms.  See  also  Gen- 
eralization; Grammatical  inference; 

Specialization. 

A<*  algorithm,  III:  398,  419,  423-427 
beam  search,  III:  411-415 
best-first  search,  III:  438,  441 

candidate-elimination  algorithm,  III:  386- 
391,  396-399,  436,  484,  487-488,  490, 
505 

distributional  analysis,  III:  506 
formal  derivatives,  III:  506 

generate- and- test,  III:  369,  411-415,  430 

hill-climbing,  III:  375-380,  434,  458 

interference  matching,  III:  391-392 
linear  programming,  III:  379 
linear  regression,  III:  379 

LMS  (least-mean-square)  algorithm, 
III:  379 

perceptron  algorithms,  III:  376-380 

refinement  operators,   III:   369,   401-410, 

440,  507-509 
schema-instantiation,    III:    369,    416-419, 

481 

version-space  method,  III:  369,  385-400 

RULEGEN,  III:  432-435 
in  Meta-DENDRAL,  II:  120 

RULEMOD,  III:  434-435 
in  Meta-DENDRAL,  II:  120 

Rules  of  generalization.  See  Generalization. 

Rules  of  inference.  See  Generalization; 
Grammatical  inference; 

Specialization. 
Run-length  coding,  III:  304 
Run-time  environment,  II:  3,  9 

RX,  II:  180 

S  set  (set  of  most  specific  hypotheses), 
III:  386,  411,  426 

SAD-SAM,  I:  158,  227,  237,  260,  281-282; 
II:  4 

SAFE,  II:  301,  302,  304,  310,  336-342 

status  of,  II:  341-342 
SAIL,  II:  11,  317 

associations  in,  II:  41 

BAIL,  II:  70 

control  structures  in,  II:  52-53 
coroutining  in,  II:  53 

data  structures  in,  II:  41-42 
demons  in,  II:  52 

items  in,  II:  41 

multiprocessing  in,  II:  52 

pattern  matching  in,  II:  62-63 

programming  environment  of,  II:  69-70 

SAINT,  I:  123-127 
SAL,  III:  34 

SAM,  I:  211,  216,  220,  231,  300,  306,  311- 
313,  334 

Samuel's  checkers  player,  III:  332-333,  339- 

344,  452,  457-464 
rule-space  search,  III:  458,  461-462 

Satisficing,  III:  26 

Scene  analysis,  III:  127-138 
Scene  domain,  III:  155 

contrasted  with  picture  domain,  III:  131— 
135 

Scene  features,  III:  131,  132,  133.    See  also 
Intrinsic  images, 

contrasted  with  image  features,  III:  134- 
137,  155,  238 

distance,  III:  238 
incident  illumination,  III:  238 
orientation,  III:  238 

reflectance,  III:  238 

Scheduler,  I:  347,  356 

Schema-instantiation  method  for  searching 

rule  space,  III:  369,  416-419,  481 
Schema,  II:  91,  319.    See  Frame  knowledge 

representation. 

SCHOLAR,  I:  186;  II:  227,  229,  232,  236- 
241,  242,  246,  267,  292 
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NLS-SCHOLAR,  II:  236 
sample  protocol,  II:  238 

Scientific  applications  of  AI,  I:  221 

Scope  of  knowledge  representation,  I:  147 

Scope  of  variables.  See  Variable  scoping. 

Scoring  of  hypotheses,  II:  200 

Script  knowledge  representation,  I:  216-222, 
231,  300,  306,  307-309,  311,  334; 
III:  69-70,  561.    See  also  Frame  knowl- 

edge representation, 
and  skeletal  plan  refinement,  III:  561 

in  WHY,  II:  243 

SCSIMP,  II:  145 

SDC  speech  system,  I:  337 
SDM,  II:  172 

Search,  I:  6,  7,  21,  25,  330,  337,  338,  339, 

343,  344;  II:  72.  See  also  Combinatorial 

explosion;  Control  structures  and  strat- 
egies; Pruning;  Reasoning, 

best-first,  II:  141 

breadth-first,  III:  39 

depth-first,  II:  50,  189-190 
heuristics  to  limit,  II:  313 

methods,  II:  39 

in  SYNCHEM,  II:  141 

Search  algorithms.  See  also  Game-tree 
search. 

A*  algorithm,  I:  64-73,  80 
alpha-beta  pruning,  I:  88-93,  94,  101 
bandwidth,  I:  60,  69-71 
beam,  I:  337,  341,  350,  356 

best-first,  I:  59,  60,  102,  360 

bidirectional,  I:  24,  51-53,  72-73,  74 

blind,  I:  21,  29-30,  46-57,  58,  61-62,  72, 
111 

breadth-first,  I:  47-48,  56-57,  61,  68,  73, 
111 

depth-first,  I:  49-51,  57,  60,  61,  101,  113, 
138,  203 

fixed-ordering,  I:  90,  101 
full-width,  I:  103 

generate-and-test,  I:  30 

AND/OR  graph  search,  I:  54-57,  74-83 
heuristic,  I:  21,  28,  29-30,  46,  58-83,  117, 

119,  350 

Heuristic  Path  Algorithm,  I:  67 
hierarchical,  I:  135 

intersection,  II:  239-240 

iterative  deepening,  I:  100-101 
length-first,  I:  138 
minimax,  I:  84-87,  88,  90,  91,  94,  98 

negmax,  I:  86-87,  89 
optimality,  I:  65,  66,  67,  80,  83 

ordered,  I:  59-62,  64,  72,  77-81,  82,  124 

ordered  depth-first,  I:  60,  102 

in  speech  systems,  I:  339-340 
uniform-cost,  I:  48-49,  51,  61,  65,  73 

Search  graph,  I:  26 

Search  space,  I:  26-28,  58,  94,  339,  343 
Secondary  search  in  game  trees,  I:  100 

SECS,  II:  105,  134-142 
SEE,  III:  143-147,  149 
Segment  variable,  II:  61 

Segmentation,   III:   128,    149-150,   238-242. 
See  also  Region  analysis;   Region  seg- 
mentation, 

by  texture,  III:  233-236 
Segmented  lattice,  I:  330,  337,  353,  356 

Selection  sort,  II:  352 

Selective  attention,  III:  279 

Selective  forgetting,  III:  338,  342 

Self-description  of  CHI,  II:  334-335 
Self-organizing  systems,  III:  325 
Self- reflective   programs,    II:    27.      See   also 

Flexibility   of  production    rules;    Pro- 

grams as  data, 
and  automatic  programming,  II:  297-298, 

318 

and  explanation,  II:  6-7,  89 
FOL,  II:  13 
HACKER,  II:  318 

and  learning,  II:  6-7,  89,  318 

in  LISP,  II:  6-7,  298 

and   meta-knowledge  in  production  sys- 
tems, II:  89,  267 

in  TEIRESIAS,  II:  89 

Semantic  ambiguity,  III:  38 

Semantic  analysis  in  natural  language  un- 
derstanding, I:  228,  230 

Semantic  component,  of  a  transformational 

grammar,  I:  248 
Semantic  data  model  (SDM),  II:  172 

Semantic  decomposition.  See  Semantic  prim- 
itives. 

Semantic  density  in  preference  semantics, 
I:  290 

Semantic  grammar,  I:  229,  261,   318,  320, 

335,  355,  359;  II:  160,  250-251.  See  also 
Performance  grammar. 

Semantic  interpretation  function  in  knowl- 
edge representation,  I:  200 

Semantic  marker,  I:  297 

Semantic  memory,  III:  36-37,   41-42.     See 
also  Human  memory;  Memory  models. 

Semantic  model,  II:  118 

in  FOL,  I:  205 

Semantic  network,  I:  156,  172,  180-189,  193, 
197,  208,  218,  229,  230,  254,  276,  277, 



634 Subject  Index  for  Volumes  I,  II,  and  III 

Semantic  network  (continued) 

303,  330,  355,  360;  II:  30,  32,  146,  212- 
213,  229,  231,  238,  316,  323,  372; 

III:  36-41,  42-49,  50-54,  56-64 
active  structural  network,  I:  185 

fragment  matching  in,  I:  187 

intersection  search  in,  II:  239-240 
partitioning  of,  I:  186,  360 

partitioned,  in  PROSPECTOR,  II:  159 

in  SCHOLAR,  II:  236-237 
spreading  activation  in,  I:  185,  187,  189 

Semantic  pattern  matching,  II:  144-145 
Semantic  primitives,  I:  148,  149,  183,  198, 

207-215,  231,  237,  254,  278,  288,  300, 
306 

in  MEMOD,  III:  57-59,  63 
in  MYCIN,  II:  187 

in  syntactic  approaches  to  vision,  III:  287, 
290 

Semantic  query  optimization,  II:  171 

Semantics,  I:  184,  186,  189,  225,  235,  287, 

316,  326,  327,  332,  334,  344 

generative,  I:  248 

interpretive,  I:  248 

preference,  I:  208 

procedural,  I:  229,  230 

Sensing,  III:  301 

Sentential  connectives,  in  logic,  I:  161 

Sequence  extrapolation,  II:  116 

Sequential  diagnosis,  II:  179 

Sequential  processing,  II:  200 

Serial  scanning  model,  III:  51 

Set,  II:  34 

Set  theory,  II:  283-290 
Set  of  support,  III:  91 

Shading,  III:  134 

Shadow,  III:  162-163,  304 

Shape  description,  III:  268-272 
by  generalized  cylinder,  III:  269 

by  surface,  III:  268 

by  vertex  and  edge,  III:  268 

by  volume,  III:  269 

Shape-from  methods,  III:  260-267 
Shape  recovery 

from  light-stripe  information,  III:  272-278 

quantitative,  III:  133,  173,  187-194 

from  shading  information,  III:  262-264 
from  texture  information,  III:  264-267 

Shape  from  shading,  III:  260-264 

Shape  from  texture,  III:  264-267 

Sharpening,  III:  209-213.  See  also  Preproces- 
sing. 

by  high-emphasis  frequency  filtering, 
III:  212-213 

by  spatial  differentiation,  III:  211-212 
Shelf  in  INTERNIST,  II:  199 

Shell  mechanism,  III:  104-105,  110 

Short-term  memory  buffer,    in  production 
systems.  See  Context. 

Shortfall  density  strategy  for  hypothesis 

scoring  in  HWIM,  I:  341,  356 

SHRDLU,  I:  151,   176,   196,  230,  251,  257, 

260,  276,  295-299,  319;  II:  10,  60 

Signal-to-noise  (S/N)  ratio,  III:  199 
Signal  processing,  III:  127 

Signature  tables,  III:  459-464 
Simplex  algorithm,  III:  99 

Simplification 

in  the  Boyer-Moore  Theorem  Prover, 
III:  106 

of  expressions,  II:  144 

Simulation,  III:  63.  See  also  Expertise  module 

of  ICAI  systems. 

in  ICAI,  II:  229-230,  245-246,  251 
of  laboratory  reactions,  II:  114 

Simulation  programs,  automated  synthesis 

of,  in  NLPQ,  II:  370-374 
Simulation  structure,  in  FOL,  I:  205 

Simultaneous  goals,  II:  361.    See  also  Sub- 
goals,  interacting. 

SIN,  I:  125-127,  II:  143 

Single-concept  learning,  III:  331,   383-419, 
420-422,  436 

Single-representation  trick,  III:  368-369,  411, 

418,  424-425 
Single-step  tasks,  III:  452 

SIR,  I:  158,  173,  185,  228,  237,  260,  283-284; 
II:  11 

Skeletal  plans,  III:  558-562.  See  also  Scripts. 

Skewed-symmetry  heuristic,  III:  187-194 
Skill  acquisition,  III:  326,  532.  See  also 

HACKER;  Learning. 

Skolem  function,  III:  89-91.  See  also  Clause 
form. 

Skolemization,  III:  95 

SLIP,  I:  286 
Slot  of  a  frame,  I:  158,  216 

SMALLTALK,  II:  293 

Smoothing,  III:  213-215.  See  also  Preprocess- ing, 

by  ensemble  averaging,  III:  214 

by  local  averaging,  III:  214 

to  reduce  noise,  III:  213-215 
of  texture  edges,  III:  233 

SNIFFER,  I:  188 

Sobel  Operators,  III:  217 

Socratic  tutoring  method,  II:  237,  242-246 
tutorial  goals  of,  II:  244 
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in  WHY,  II:  234,  242-243 
Software,  II:  299.  See  also  Programming. 

SOLDIER,  I:  125 
Solution 

graph,  I:  40,  55 
in  problem  solving,  I:  33 

tree,  I:  40,  75,  77-79 
Solvable  node,  I:  40 

SOPHIE,  I:  257,  261,  II:  227,  230,  231,  247- 

253,  292-293 

sample  dialogue  of,  II:  248-250 
SOPHIE-I,  II:  230,  247-250 

SOPHIE-II,  II:  252 
Sort  in  logic,  I:  163,  166 
Soundness  in  logic,  III:  91 

SOUP  functions,  III:  543-550 

Soybean  diseases,  III:  426-427 

Space-planning  task,  I:  202 
Spaces  in  partitioned  semantic  nets,  II:  159 
SPADE,  II:  232 

Spaghetti  stack 
in  CONNIVER,  II:  10 

in  QLISP,  II:  12 

SPARC,  III:  369-370,  384,  416-419,  452 

searching  rule  space,  III:  418-419 

Spatial  differ entation,  III:  211-212,  216-217 
Spatial  domain  contrasted  with  frequency 

domain,  III:  206 

Specialization,  III:  444 

by  adding  conditions,  III:  408,  432,  434 

by  splitting  nonterminals,  III:  502 

Specialization  of  fragmentation  rules,  II:  120 

Specification   of  programs.       See   Program 

specification. 

Spectroscopy,  II:  104 

Speech  acts,  I:  280 

Speech  recognition,  I:  325,  326,  333,  349 
Speech  signal,  I:  332 

acoustics,  I:  343 

allophone,  I:  333,  337,  349 
intonation,  I:  333 

noise,  I:  343 

stress,  I:  333 

syllable,  I:  333,  343 

Speech  understanding,  I:  158,  186,  226,  231, 

257,  259,  267,  292,  325-361;  II:  31,  150 
connected  speech,  I:  326 

evaluation  of  system  performance,  I:  329 

isolated-word  recognition,  I:  325,  333,  349 
juncture  rules,  I:  330,  350,  354 

morphemics,  I:  332-333 
network  representations  in,  I:  330,  337 

phonemics,  I:  327,  332-333 

prosodies,  I:  327,  332-334,  359 

vs.  speech  recognition,  I:  326 
SPEECHLIS,  I:  328,  353 

Spelling  correction,  I:  320;  II:  164 

Spelling  graph,  I:  330,  337,  346 
Spreading  activation, 

in  semantic  networks,  I:  185,  187,  189 

in  ACT,  III:  50-54 
SRI  computer-based  consultant  (CBC), 

II:  150-154 

sample  dialogue  from,  II:  153-154 

SRI  speech  system,  I:  339,  358-361 
SRI  Vision  Module,  III:  304 

SSL  in  Protosystem  I,  II:  364-369 
Stability  in  the  learning  environment, 

III:  337 

Stack  frames,  II:  45 

Start  symbol,  III:  496 

of  a  grammar,  I:  240 
Starting  state,  III:  12,  523 

State  Description  Compiler,  II:  317 

State  space,  I:  26,  33,  195 

graph,  I:  25,  33-34,  43,  46,  61,  64,  74 
representation,  I:  24,  32-35,  36,  40-42,  46, 

74,  113,  129;  III:  12-21 
search,  I:  30,  35,  46-53,  55,  58-73,  77,  80, 

111,  153,  195;  III:  452 
Static   evaluation   function,    III:    339,    457, 

459-464 

in  game-tree  search,  I:  87,  96-97,  100 
Statistical  learning  algorithms,  II:  118; 

ni:  375 

Stative  predicates,  III:  57 

Status  of  hypothesis  in  CASNET,  II:  195 

Stereo  vision,   III:  249-253,   254.     See  also 
Binocular  vision. 

Stereochemistry,  II:  113,  140 

Stereotypes  in  preference  semantics,  I:  289 
Stimulus  frame  of  a  knowledge  source, 

I:  345 

Stimulus  generalization,  III:  28-35 
Stochastic  automata,  III:  380 

Stochastic  grammars,  ID:  381,  498-499 
Stochastic  learning  models,  II:  231 

Stochastic  presentation,  III:  500 

Storage  allocation,  II:  18.    See  also  Variable 
scoping. 

Store- versus-compute  trade-off,  III:  337-338, 
342 

Story  understanding,  I:  231,  300, 

grammar,  I:  306 
Strategy  for  control.  See  Control  structures 

and  strategies;  Reasoning. 

Strategy-free  memory,  III:  42-49 
Strategy  space,  III:  552 
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Strengthening  in  ACT,  III:  54 

Stress  in  speech  understanding,  I:  333 

STRIPS,  I:  22,  28,  42,  82,  128-134,  135,  138- 
139,  169;  H:  11,  73;  III:  475,  491,  493, 
523-530 

STRIPS  assumption,  III:  115.  See  also 

Closed- world  assumption. 
Structural  descriptions.  See  Structural 

Learning. 

Structural  family  of  molecules,  III:  429 

Structural  learning,  III:  381-382,  392-396, 
411,  412 

Structural  presentation,  III:  501 
Structure 

determination,  II:  102 

elucidation,  II:  102,  111 

Structure-generation  algorithm,  II:  106,  111 

Structure-from-motion   theorem,    III:    246- 
247 

Structured  growth  as  programming  regimen, 
II:  65 

Structured  programming,  II:  66 

STUDENT,  I:  196,  227,  237,  260,  284-285 
Student  model,  II:  225,  229,  235,  265.    See 

also  Diagnosis  of  student   misconcep- 
tions, 

as  bugs,  II:  231-233 

conceptual  bug  in,  II:  279-280 
constructive  bug  in,  II:  234 

critic  in,  II:  233 
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Systems  architecture,  for  speech  understand- 

ing, I:  332-342,  353 

Table  of  Connections  in  GPS,  I:  115 

Tags  in  CONNIVER,  II:  38 

Tapered  forward  pruning,  I:  104 

Target  language  for  automatic 

programming,  II:  300 
GPSS,  in  NLPQ,  II:  370 
LISP,  II:  28,  355 

Target  structure  of  synthesis  process,  II:  134, 
136 

Tautology,  I:  162;  III:  92 
TAXIS,  II:  172 

Taxonomic  net,  II:  159 

Taxonomy,  I:  181.  See  also  Inheritance. 

Teachable  Language  Comprehender  (TLC), 
I:  185,  228 

Teacherless  learning,  II:  293 

Team  of  procedures  in  QLISP,  II:  12 

TED,  II:  166-167,  170 

TEIRESIAS,  I:  145,  195-199;  II:  57,  84,  85, 

87-101,  130,  182,  191-192;  III:  333,  348, 
349 

sample  protocol  from,  II:  92-101 
Template 

bare,  I:  288,  290 

in  case  grammars,  I:  253 

flexible,  III:  283-285 

high-level,  III:  285-286 
low-level,  III:  283-285 

matching,  I:  260;  III:  283-286 

partial,  III:  283-285 

piece,  III:  283-285 
in  preference  semantics,  I:  279,  288-291 
in  speech  recognition,  I:  333,  337,  340,  349 

total,  in:  283-285 
word,  I:  349 

Term  selection,  III:  459 

Terminal  node  of  an  AND/OR  graph,  I:  38, 
43 

Terminal  symbol,  III:  495 

in  a  grammar,  I:  239 
Texel,  III:  265 

Text-based  NL  systems,  I:  228 

Text  generation,  I:  273-280,  II:  239 
and  machine  translation,  I:  273-274,  279, 

289,  291 
in  MARGIE,  I:  304 

random,  I:  233,  273 

Textual  function  of  language,  I:  249 

Texture,  III:  134,  230-237,  264-267. 
edges,  ffl:  233 

features,  III:  230-233 

gradient,  III:  264 

regions,  III:  233-236 
Theme,  III:  69-70 

in  story  understanding,  I:  306,  310-311, 
313 

Theorem  in  PLANNER,  II:  9,  38,  48,  73 

Theorem  proving,  I:  22,  23,  26,  62,  74,  109, 

116,  118,  119,  129,  151,  155,  168,  171, 

175,  188,  297;  II:  62;  III:  76-123  See  also 
Automatic  deduction, 

as  approach  to  AP,  II:  301,  308-309,  312- 
314 

goal-directed,  III:  94-95 
natural-deduction,  III:  94-95,  101 

nonresolution,  III:  94-95,  101 
representation,  I:  25 

resolution,  II:  313;  III:  86-94 
Theory  of  computation,  II:  15 

Theory  of  conclusions,  III:  118-119 
Theory  formation,  II:  84;  III:  327  See  also 

Hypothesis;  Learning. 
Therapy  selection 

drug-preference  categories,  II:  191 
in  MYCIN,  II:  184,  191 

THINGLAB,  II:  293 

THNOT,  I:  176;  II:  74 

3-D  sketch,  III:  135 
Thresholding, 

in  medical  decision  making,  II:  181 

in  vision,  III:  217-218 
Tic-tac-toe,  I:  43,  94 

Tick  list,  III:  535 

Tilt,  III:  174,  198.  See  also  Camera  model. 

Time  of  flight,  III:  254-255.   See  also  Range 
finders. 

Tip  node  of  an  AND/OR  graph,  I:  80,  87 

TOME  (Table  of  Multiple  Effects),  III:  545- 
550 

Tools  for  building  expert  systems,  II:  84 

AGE,  II:  84,  126 

EMYCIN,  II:  84,  183,  276 

EXPERT,  H:  217-222 
GUIDON,  II:  267-278 

IRIS,  II:  212-216 
Top-down  processing,  I:  24,  183,  198,  216- 

218,  232,  259,  326,  334,  336,  338,  344, 

355,  358,  359;  II:  91-92,  97-101,  201; 
III:   129,    131-133,   168,    139,   269-278, 
283-286,  288-290,  306,  314-316.     See 
also  Backward  chaining;  Consequent 

reasoning;  Control  structures  and  strat- 
egies; Reasoning. 

Top-down  vs.  bottom-up  reasoning,  I:  198. 
TORUS,  I:  186 
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Totally  dependent  game  tree,  I:  92 

Tower  of  Hanoi  puzzle,  I:  36-38,   42,   160, 

165;  II:  22-24,  79 
TQA,  II:  165 
Traces 

completeness  of,  II:  308 

generic,  II:  308 

problem-solver  generated,  II:  324-325 

protocols  from,  II:  308,  322-325 

in  PSI,  II:  329,  330-334 
Tracking 

in  edge  detection,  III:  220-221 

moving  objects,  III:  246-248 

Training  instances,  III:  454,  328-329,  362- 
364.  See  also  Instance  space, 

in  DENDRAL,  II:  117 

global,  III:  454-455 

local,  III:  454-455 
Transfer   of  expertise,    I:    199;    II:    72,    80, 

81-83,  88-89,   116;  III:  345,  348.     See 

also   Expert   systems;    Knowledge   ac- 
quisition; Knowledge  engineering. 

Transfer  function,  III:  213 

Transformation  of  programs.  See  Automatic 

programming;  Production  systems; 
Program  transformation   as  approach 
to  AP. 

Transformational  grammar,  I:  229,  237,  245- 

248,  249,  251,  252;  III:  497-498,  510 
parsers,  I:  260 

Transformations,  obligatory  and  optional, 

I:  246-247 
Transforms  in  synthetic  chemistry,  II:  136 

Transition  operator.     See  Legal-move  gen- 
erator. 

Transition-tree  grammar  in  LIFER,  I:  316- 
317 

Transitivity  system  of  a  grammar,  I:  249 

Transparency  of  reasoning,  II:  89.    See  also 

Opacity. 
Travel  budget  manager  task,  I:  353 

Traveling-salesman  problem,  I:  21,  34,  48, 

62,  69,  70-71 
Treatment-regimen  system,  II:  206 

Tree.    See  Grammar;  Parsing;  Problem  rep- 
resentation. 

Triangle  table  in  STRIPS,  I:  131-132 

Triangulation,  III:  255-259.    See  also  Range 
finders. 

Trigger.  See  Procedural  attachment. 

Trihedral  world,  III:  136,  155-182.    See  also 
Blocks  world. 

Trivial  disjunction,  III:  398 

Trivial  grammar,  III:  499 

Troubleshooting,  II:  247-253.  See  also  Diag- 
nosis. 

Truth  maintenance,  II:  72-76 

Truth  values,  in  logic,  I:  161-162 

Tuple  in  QLISP,  II:  34,  39-41 
Turing  machine,  I:  4,  241,  266 

Turtle  geometry,  II:  291-292 
Tutor  module  of  ICAI  system,  II:  263,  266 

Tutorial  dialogue.      See  Dialogue  manage- 

ment; Intelligent  computer-assisted  in- 
struction; Tutoring  strategies  in 

ICAI. 

Tutorial  goals,  II:  244 

Tutorial  programs,  II:  225-294 
Tutorial  rule,  II:  267,  272 

Tutoring  module  of  ICAI  systems,  II:  233- 235 

Tutoring  strategies  in  ICAI,  II:  227-228,  233, 

237.  See  also  Diagnosis  of  student  mis- 
conceptions; Dialogue  management, 

case-method  tutor,  II:  235,  242 

computer  coach,    II:   231,    234,    254-255, 
257-259,  261-266 

computer  gaming,  II:  234,  252,  254,  261- 266 

constructive  bug,  II:  234,  254 

in  GUIDON,  II:  272-273 
issues  and  examples,  II:  256 

opportunistic,  II:  275-276 

pedagogical  style  in,  II:  275-276 
principles  of,  II:  259 

in  SCHOLAR,  II:  237-238 
Socratic  method,  II:  234 

tutorial  goals  in,  II:  244 

TV  signals,  III:  201.  See  also  Imaging  devices. 

2  1/2  -  D  sketch,  III:  135,  239,  243 

Two-space  model  of  learning,  III:  360-372, 

383,  441 
TYPE  property,  II:  199 

Type- token  distinction,  III:  37 

Ultrasound  image  analysis,  II:  177 

Uncertainty,  II:  188-191,  215,  271,  277,  195- 
196,  221,  131.  See  also  Certainty, 

in  CASNET,  II:  193 

in  FUZZY,  II:  13 

in  INTERNIST,  II:  197 

representation  of,  II:  180 

Understandability  of  knowledge  representa- 
tions, I:  150,  156-157,  174,  193 

Unification,  II:  61-62;  III:  89-90,  91,  96,  120, 
121 

Uniform-cost  search,  I:  48-49,  51,  61,  65,  73; 
III:  484,  489 
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Uniform  game  tree,  I:  91-93 
Uniform  scoring  policy  of  hypotheses  in 

HWIM,  I:  340 

Unique  termination  property,  III:  99 
Unit  Package,  I:  221;  EI:  551,  559 

Unity  path  in  MYCIN,  II:  191 
Universal  grammar,  III:  499 

Universal  quantification,  III:  88-89,  91 
Universal  specialization  in  logic,  I:  164 

Unsolvable  node  of  an  AND/OR  graph, 
I:  40,  55 

Update~G  routine,    III:   388-391.      See  also 
Candidate-elimination  algorithm. 

Update-S  routine,  III:  388-392.  See  also 
Candidate-elimination  algorithm. 

User  education  in  MACSYMA,  II:  144,  146- 
14S 

User  interface,  II:  81.  See  also  Dialogue  man- 
agement, 

computer-generated  speech  in  EXCHECK, 
II:  283 

in  CONGEN,  II:  112 

cooperative  responses  in  COOP,  II:  167 

User  model,  II:  150.    See  also  Plan  recogni- 
tion; Student  model. 

V  in  CHI,  II:  334 
Validation 

of  AP  systems.     See  Verification  of  syn- 
thesized code. 

of  expert  systems,  II:  182,  192,  211,  267 
of  ICAI  systems,  II:  280 

Variable  domain  array  in  the  General  Space 
Planner,  I:  202 

Variable  in  logic,  I:  164,  III:  88-89,  91 

Variable  scoping,  II:  18,  32-33 
Verbal  learning,  III:  8,  28,  33-35 
Verification  of  synthesized  code 

in  DEDALUS,  II:  355 

in  Programmer's  Apprentice,  II:  344-347 
of  synthesized  program  in  AP,  II:  320 

Verification  trees  in  EXCHECK,  II:  289 

Version  space,  II:  121;  III:  387.  See  also 

Candidate-elimination  algorithm. 

Version-space  method  for  searching  rule 

space,  III:  369,  385-400 
Vertex  types,  III:  155-157.  See  also  Junction 

types. 
Very  high  level  language,  II:  315 

AP2,  II:  337 

in  DEDALUS,  II:  355 

for  program  specification,  II:  300,  309 
in  PSI,  II:  326 

SSL  in  Protosystem  I,  II:  364-369 

Viewpoints,  III:  141-142 
Vision,  I:  10,  330,  334;  III:  125-322 

in  industry,  III:  301-305 
real-time,  III:  301-303 

in  the  SRI  computer-based  consultant, 
II:  153 

VISIONS,  III:  309-310 

VLi,  III:  423 
VM,  II:  180,  206 
Voice  chess,  I:  328,  334,  344 

Waltz  filtering,  III:  137,  164-167,  184,  186, 

292,  295.    See  also  Constraint  satisfac- 
tion; Relaxation. 

Waterman's  poker  player,  III:  331,  349,  452, 
456,  465-474,  489 

Weight  space,  III:  376 

Well-formed  formula  in  logic,  I:  164 

Well-formed  programs  in  SAFE,  II:  338-340 
Well-founded  relation,  III:  104,  109 

WEST,  II:  232,  234,  254-260,  261,  267,  292 
evaluation  of,  II:  260 

WEST-I,  II:  230,  231 
WHISPER,  I:  203 

WHY,  II:  229,  234,  235,  241,  242-246,  267 

sample  dialogue  from,  II:  243-244 
Windows 

fixed  and  variable-sized,  III:  217 

representing  operators,  III:  217 

Winston's  ARCH  program,    III:    326,    364, 

384,  392-396 
Word  island  in  HWIM,  I:  353 

Word  senses,  III:  36,  38-39 
Word  template,  I:  349 

World  coordinates,  III:  198-199 
World   knowledge,    I:    226,    230.       See   also 

Domain-specific  knowledge;  Heuristic. 
World  model,  I:  22,  128,  135 

WUMPUS,  II:  230,  234,  261-266,  267,  288, 
292 

WUSOR,  II:  261-266,  292 

sample  protocol  from,  II:  264-265 

X-ray  image  analysis,  II:  177 

Zero  crossing,  III:  218,  250 

Zero-order  theory  of  mass  spectrometry, 
II:  118 
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"As  to  artificial  intelligence,  we  have  hardly  begun  to  under- 
stand what  this  abundant  and  cheap  intellectual  power  will  do  to 

our  lives.  It  has  already  started  to  change  physically  the  research 
laboratories  and  the  manufacturing  plants.  It  is  difficult  for  the 
mind  to  grasp  the  ultimate  consequences  for  man  and 

society  .  .  . " —Jean  Riboud,  Chairman  and  President 
Schlumberger  Limited 

What  is  a  "heuristic  problem-solving  program?"  How  do  com- 
puters understand  English?  What  are  "semantic  nets"  or 

"frames?"  Can  computer  programs  outperform  human  ex- 
perts? Such  questions — asked  by  scientists,  engineers,  students, 

and  hobbyists  encountering  Artificial  Intelligence  for  the  first 
time — can  now  be  readily  answered  by  The  Handbook  of 
Artificial  Intelligence,  a  work  which  makes  the  full  scope  of  im- 

portant techniques  and  concepts  of  AI  available  for  the  first 
time  to  the  rapidly  expanding  world  of  computer  technologists 
and  users. 

The  scope  of  this  handbook  is  broad:  over  two  hundred  short  ar- 
ticles covering  all  of  the  important  ideas,  techniques,  and 

systems  developed  during  twenty-five  years  of  research  in  the  AI 
field.  The  articles  are  written  for  people  with  no  background  in 
AI.  Some  articles  serve  as  overviews,  discussing  the  various 
approaches  within  a  subfield,  the  issues,  and  the  problems.  The 

handbook  is  a  reference  work,  a  textbook,  a  guide  to  program- 
ming techniques  and  to  the  extensive  literature  of  the  field,  and  a 

book  for  intellectual  browsing.  Jargon  has  been  eliminated  in 
each  of  the  short,  penetrating  articles,  and  the  hierarchical 
organization  of  the  book  allows  readers  to  choose  how  deeply 
they  wish  to  delve  into  a  particular  subject. 

Conceived  and  produced  at  Stanford  University's  Department 
of  Computer  Science,  with  contributions  from  universities  and 
laboratories  across  the  nation,  The  Handbook  of  Artificial 
Intelligence  promises  to  become  the  standard  reference  work  in 
the  rapidly  growing  AI  field. 
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