
Paul R.
Cohen &
Edward A.
Feigenbaum

VOLUME 3

/k

II

• •00 The.HaL..
OTArtifidaI

Intelligence
Paul R.
Cohen &
Edward A.
Feigenbaum

Volume HI contains five chapters on

models of cognition, automatic deduction, vi-
sion, learning, and planning, as well as an in-

dex, bibliography, and cumulative index for all
three volumes of The Handbook. Chapter XI
discusses AI models of human memory, belief,

and planning and problem solving. These pro-
grams were among the earliest developed in

AI, and give some insight into the powerful in-
fluence of the computer in the development of

AI and cognitive psychology.
Automatic deduction, also called automatic

theorem proving, is the subject of Chapter

XII. There has been a recent resurgence of in-

terest in forms of predicate logic as a represen-
tation language for AI, and in deduction as a

mode of reasoning. The chapter describes

resolution and natural deduction theorem pro-

ving, the Boyer-Moore theorem prover, non-
monotonic logic, and logic programming.

Chapters XIII and XIV are comprehensive
discussions of vision and learning research,

respectively. The vision chapter describes all
aspects of computer vision, from the design
and calibration of cameras to preprocessing

and edge detection, to the extraction of image

features, to the inference of scene character-
istics. It also includes several articles on

blocks-world vision research, a section on
algorithms for vision systems, and a section on
applications of vision research. Chapter XIV,
on learning, discusses virtually all the learning
systems developed to date in AI, and organizes
the discussion around a model of learning

developed especially for this chapter. It in-
cludes sections on rote learning, learning from

advice, and learning from examples, as well as
several articles on the issues involved in

developing learning systems.
The last chapter in Volume III is about

planning. It is intended as an extension of
Chapter II in Volume I on search. That
chapter took the discussion of search up to
hierarchical planning, while Chapter XV

reviews nonhierarchical planning and con-
tinues on to discuss hierarchical and least-

commitment planning and the refinement of
skeletal plans.

\RTIFICIAL INTELLIC

Barr and Edward A. Ft ̂ nbaum

len and Edward A. Feigenbaum

3. The General Syntactic Processor
E. Text generation
F. Natural language processing systems

1. Early natural language systems

2. Wilks's machine translation system
3. LUNAR
4. SHRDLU

5. MARGIE

6. SAM and PAM
7. LIFER

V. Understanding Spoken Language
A. Overview

B. Systems architecture
C. The ARPA SUR projects

1. HEARSAY
2. HARPY

3. HWIM

4. The SRI/SDC speech systems

VOLUME n

VI. Programming Languages for AI Research
A. Overview
B. LISP

C. AI programming-language features
1. Overview

2. Data structures
3. Control structures
4. Pattern matching

5. Programming environment
D. Dependencies and assumptions

VTI. Applications-oriented AI Research: Science
A. Overview
B. TEIRESIAS

C. Applications in chemistry
1. Chemical analysis
2. The DENDRAL programs

a. Heuristic DENDRAL

b. CONGEN and its extensions
c. Meta-DENDRAL

3. CRYSALIS

4. Applications in organic synthesis
D. Other scientific applications

1. MACSYMA

2. The SRI Computer-based Consultant
3. PROSPECTOR

4. Artificial Intelligence in database management

Vm. Applications-oriented AI Research: Medicine
A. Overview
H Medical systems

I MYCIN

2. CAS NET

3. INTER MSI'

To

Allen Newell,

First President of the
American Association

for Artificial Intelligence

and

Arthur Samuel,

Pioneer in the study

of machine learning

Digitized by the Internet Archive
in 2012

http://archive.org/details/handbookofartific03cohe

CONTENTS OF VOLUME III

List of Contributors / xi

Preface / xiii

XI. Models of Cognition / 1

A. Overview / 3

B. General Problem Solver / 11

C. Opportunistic problem solving / 22

D. EPAM / 28

E. Semantic network models of memory / 36

1. Quillian's semantic memory system / 36
2. HAM / 42

3. ACT / 50

4. MEMOD / 56

F. Belief systems / 65

XH. Automatic Deduction / 75

A. Overview / 77

B. The resolution rule of inference / 86

C. Nonresolution theorem proving / 94

D. The Boyer-Moore theorem prover / 102
E. Nonmonotonic logics / 114

F. Logic programming / 120

Xm. Vision / 125

A. Overview / 127

B. Blocks-world understanding / 139
1. Roberts / 139

2. Guzman /143

3. Falk /147

4. Huffman-Clowes / 155
5. Waltz / 161

6. Shirai / 168

7. Mackworth / 173

8. Kanade / 183

vn

viii Contents

C. Early processing of visual data / 195

1. Visual input / 195

2. Color / 203

3. Preprocessing / 206

4. Edge detection and line finding / 216

5. Region analysis / 225

6. Texture / 230

D. Representation of scene characteristics / 238

1. Intrinsic images / 238

2. Motion / 244

3. Stereo vision / 249

4. Range finders / 254

5. Shape-from methods / 260

6. Three-dimensional shape description and recognition / 268
E. Algorithms for vision / 279

1. Pyramids and quad trees / 279

2. Template matching / 283

3. Linguistic methods for computer vision / 287

4. Relaxation algorithms / 292

F. Vision systems / 301

1. Robotic vision / 301

2. Organization and control of vision systems / 306

3. ACRONYM / 313

XIV. Learning and Inductive Inference / 323

A. Overview / 325

B. Rote learning / 335

1. Issues / 335

2. Rote learning in Samuel's Checkers Player / 339
C. Learning by taking advice / 345

1. Issues / 345

2. Mostow's operationalizer / 350
D. Learning from examples / 360

1. Issues / 360

2. Learning in control and pattern recognition systems / 373

3. Learning single concepts / 383

a. Version space / 385

b. Data-driven rule-space operators / 401
c. Concept learning by generating and testing plausible hypotheses / 411

d. Schema instantiation / 416

4. Learning multiple concepts / 420

a. AQ11 / 423

b. Meta-DENDRAL / 428
c. AM / 438

Contents ix

5. Learning to perform multiple-step tasks / 452

a. Samuel's Checkers Player / 457

b. Waterman's Poker Player / 465
c. HACKER / 475

d. LEX / 484

e. Grammatical inference / 494

XV. Planning and Problem Solving / 513

A. Overview / 515

B. STRIPS and ABSTRIPS / 523

C. Nonhierarchical planning / 531

D. Hierarchical planners / 541

1. NOAH / 541

2. MOLGEN / 551

E. Refinement of skeletal plans / 557

Bibliography for Volume EI / 563

Cumulative Indexes for Volumes I, II, and HI / 587

LIST OF CONTRIBUTORS

Non- Stanford affiliations indicated if known.

Chapter Editors

Janice Aikins (Hewlett-Packard)
James S. Bennett

Victor Ciesielski (Rutgers U)
William J. Clancey
Paul R. Cohen
James E. Davidson
Thomas G. Dietterich

Bob Elschlager (Tymshare)
Lawrence Fagan
Anne v.d.L. Gardner
Takeo Kanade (CMU)

Jorge Phillips (Kestrel)
Steve Tappel

Stephen Westfold (Kestrel)

Contributors

Robert Anderson (Rand)
Douglas Appelt (SRI)
David Arnold

Michael Ballantyne (U Texas)

David Barstow (Schlumberger)
Peter Biesel (Rutgers U)
Lee Blaine (Lockheed)

W. W. Bledsoe (U Texas)
David A. Bourne (CMU)

Rodney Brooks (MIT)
Bruce G. Buchanan
Richard Chestek
Kenneth Clarkson

Nancy H. Cornelius (CMU)
James L. Crowley (CMU)
Randall Davis (MIT)
Gerard Dechen

Johan de Kleer (Xerox)
Jon Doyle (CMU)

R. Geoff Dromey (U Wollongong)
Richard Duda (Fairchild)

Ramez El-Masri (Honeywell)
Robert S. Engelmore (Teknowledge)
Susan Epstein (Rutgers U)

Robert E. Filman (Hewlett-Packard)
Fritz Fisher (Ramtek)

Christian Freksa (Max Plank, Munich)
Peter Friedland

Hiromichi Fujisawa (CMU)
Richard P. Gabriel
Michael R. Genesereth
Neil Goldman (ISI)

Ira Goldstein (Hewlett-Packard)
George Heidorn (IBM)
Martin Herman (CMU)
Annette Herskovits

Douglas Hofstadter (Indiana U)
Elaine Kant (CMU)

Fuminobu Komura (CMU)
William Laaser (Xerox)

Douglas B. Lenat
Bob London
William J. Long (MIT)

Bruce D. Lucas (CMU)
Pamela McCorduck

Mark L. Miller (Computer Thought)
Robert C. Moore (SRI)
Richard Pattis

Stanley J. Rosenschein (SRI)
Neil C. Rowe

Gregory R. Ruth (MIT)
Daniel Sagalowicz (SRI)

XI

Xll List of Contributors

Contributors (continued)

Behrokh Samadi (UCLA)

William Scherlis (CMU)

Steven A. Shafer (CMU)
Andrew Silverman

David R. Smith (CMU)

Donald Smith (Rutgers U)

Phillip Smith (U Waterloo)

Reid G. Smith (Schlumberger)

William R. Swartout (ISI)

Steven L. Tanimoto (U Washington)

Charles E. Thorpe (CMU)

William van Melle (Xerox)

Richard J. Waldinger (SRI)

Richard C. Waters (MIT)

Sholom Weiss (Rutgers U)

David Wilkins (SRI)

Terry Winograd

Reviewers

Harold Abelson (MIT)

Saul Amarel (Rutgers U)

Robert Balzer (ISI)

Harry Barrow (Fairchild)
Thomas Binford

Daniel Bobrow (Xerox)

John Seely Brown (Xerox)

Richard Burton (Xerox)

Lewis Creary

Andrea diSessa (MIT)

Daniel Dolata (UC Santa Cruz)

Lee Erman (ISI)

Adele Goldberg (Xerox)

Cordell Green (Kestrel)

Norman Haas (Symantec)

Kenneth Kahn (MIT)

Jonathan J. King (Hewlett-Packard)
Casimir Kulikowski (Rutgers U)
John Kunz

Brian P. McCune (AI&DS)

Jock Mackinlay

Ryszard S. Michalski (U Illinois)

Donald Michie (U Edinburgh)

Thomas M. Mitchell (Rutgers U)

D. Jack Mostow (ISI)

Nils Nilsson (SRI)

Glen Ouchi (UC Santa Cruz)

Ira Pohl (UC Santa Cruz)
Arthur L. Samuel

David Shur

Herbert A. Simon (CMU)

David E. Smith

Dennis H. Smith (Lederle)

Mark Stefik (Xerox)

Albert L. Stevens (BBN)
Allan Terry

Perry W. Thorndyke (Perceptronics)

Paul E. Utgoff (Rutgers U)

Donald Walker (SRI)

Harald Wertz (U Paris)

Keith Wescourt (Rand)

Production

Robert Bruce Buchanan

Max Diaz

David Eppstein

Janet Feigenbaum
David Fuchs

Jose L. Gonzalez

Marion Hazen

Dianne G. Kanerva

Jonni M. Kanerva

Pentti Kanerva

Dikran Karagueuzian
Arthur M. Keller

Barbara R. Laddaga

Roy Nordblom
Thomas C. Rindfleisch

Ellen Smith

Helen Tognetti

Christopher Tucci

PREFACE

Intelligence . . .is the faculty of making artificial objects,
especially tools to make tools.

— Henri Bergson

L 'Evolution Creatice (1907)

Artificial Intelligence is a relatively young branch of science, new
enough that we can still trace the development of the field from its inception
in 1956 to the present. About six years ago, when we were planning the
Handbook of Artificial Intelligence, we thought it would be possible to present
AI comprehensively in three volumes. In retrospect, that seems to have been

a good guess, although, inevitably, the outline has been changed many times
to reflect changes in the emphasis and methods of AI. Some chapters are very
much larger than we had anticipated, some are smaller, and one was deleted
altogether; many of the original articles have been deleted or rewritten. Such
is the price (and the excitement) associated with the task of researching and
reporting on a flourishing, rapidly developing field.

Although the contents of the Handbook have changed, our intentions
as to its format and style have not. From the outset, we have wanted a
comprehensive survey of AI that stripped away jargon, filled out assumptions,
presented essential problems, and simply described solutions. From the outset,
we have assumed that, in most instances, a piece of writing that fulfilled these
criteria could present a program, project, or doctoral dissertation in six or
seven pages. We do not discuss the fine points of individual pieces of research
but encourage the reader to discover them in the references we provide with

each article. On the other hand, we do attempt to make explicit (in the form

of cross-references) some of the subtler relationships among the areas of AI
research.

Thus, guided by the discoveries and developments in AI, and constrained
by a constant set of editorial goals, the Handbook has grown to about 1,500
pages, divided among three volumes. The distribution of chapters in the
volumes reflects, to some extent, the recent history of AI. In the first volume,
we discuss search, knowledge representation, understanding natural language,
and understanding spoken language. These were among the most topical areas

of AI when the first volume was drafted. We postponed discussion of "areas
in transition" to later volumes. For example, automatic deduction was not
a popular subject of AI research when Volume I was planned, and we left
it until this volume. In the interim, it has seen several new developments

xin

XIV Preface

and has regained some of the prominence it had in the earliest days of AI.
Similarly, to reflect more recent perspectives, two chapters of the second
volume (on automatic programming and AI programming languages) were
completed just within the last year. The other chapters of Volume II, which
deal with scientific, medical, and educational applications of AI, were drafted
earlier. The chapters in the present volume (with the exception of Chap. XI
on models of cognition) deal with topics that we did not understand very
well when the Handbook was planned. By deferring these discussions, we

have had an opportunity to "wait and see" what happened in vision, learning,
planning, and automatic deduction. We also deferred a chapter on robotics
to this volume but decided finally, for reasons discussed later, not to write it.

If there is a unifying theme to this volume, it is that intelligence — artificial
or natural — involves a great many hierarchically organized, interacting infor-

mation processes. We discuss here some of the basic processes that are pre-
requisite for a computer to function intelligently (by human standards) in the

world. A computer must be able to sense its environment, it must have a

memory and must learn, it should construct rudimentary plans to solve prob-
lems, and it should be able to reason deductively and inductively. If, as is

common in AI, the computer does not interact with a physical world but with
a symbolic world that represents selected aspects of its physical counterpart,
then the computer need not sense its environment. Or if a program has been
constructed to solve a related set of problems and it has all of the information
it needs at the outset, then it need not learn. But if a computer program is

to behave with even a fraction of the intelligence of a two- year-old baby — to
learn, for example, that the family cat is like the family dog in appearance,
but not in personality, and to use this information to plan its interactions

with each animal — then that program will need the skills discussed in this
volume.

Chapter XI, on models of cognition, is an introduction to cognitive science —
a field at the intersection of AI and cognitive psychology. From the earliest

days of AI, researchers have designed artificial systems to improve their under-
standing of human thought. The overview of Chapter XI discusses the early

history (1956-1970) of these ideas, and the early and profitable interaction
between computer scientists and psychologists. In fact, we emphasize the

history of information-processing psychology at the expense of more recent
work in cognitive science because it is a fascinating history and because the
field is developing so rapidly that we can see it best from a distance. More
recent work is discussed elsewhere in the Handbook.

Chapter XII, on automatic deduction, describes modes of reasoning. For-
mal analyses of natural deduction, resolution-based deduction, induction, and

nonmonotonic reasoning are presented. Modern symbolic logic, a discipline

at least a century old, originated as an attempt to formalize rules of mathe-
matical reasoning and it has been used by many philosophers as a competence

Preface xv

theory, or even a normative theory, of human reasoning. Automatic deduc-
tion is the computational side of logic; it seeks to discover procedures that

can deduce the logical consequences of facts with some degree of efficiency.
Automatic deduction touches AI in at least two ways. First, machines that

reason about the real world almost certainly need to perform symbolic deduc-
tion in some form, and, second, heuristic methods can be applied to the task

of deduction itself, as in the case of mathematical theorem proving. Both
concerns are evident in this chapter.

Chapter XIII surveys vision research. Vision systems work with raw
data from a real, noisy environment. While most AI programs reason about

preselected aspects of the world that are cleanly represented in some repre-
sentation language, the task of vision research is to develop representations

of the physical world and procedures for reasoning from one representation
to another. Successive levels of representation are less noisy and better suited
to particular tasks. This chapter was planned by Professor Takeo Kanade

of Carnegie- Mellon University. It is a large chapter, about 200 pages, but a
comprehensive one. All aspects of vision, from cameras and range finders to
the highest level inferences about the contents of a scene, are discussed. A

few articles about technical problems — articles with very little AI content —
are included for the completeness they bring to the presentation of vision
research.

Vision and robotics are closely related fields and, initially, a robotics
chapter was planned for the Handbook. We discovered, however, that the
points of intersection between robotics and AI had been covered in other

chapters — those on vision and planning — and that other aspects of industrial
and research robotics, such as dynamics and control, and sensor and arm
design, were well beyond the scope of this book. Thus, we decided to forgo
the chapter rather than present an incomplete view of the field.

Chapter XIV describes attempts by AI researchers to create computer
programs that learn. The reader of these volumes will have noted a recurring
theme: The power of an AI program is directly proportional to what it
knows. For this reason, much effort has been devoted to making programs
more knowledgeable and, in particular, to creating programs that can acquire
knowledge by taking advice, by rote learning, and by learning from examples.
The author of this chapter, Thomas G. Dietterich, has developed a theoretical
framework in which he compares and contrasts these and other approaches to
learning. An interesting conclusion is that learning programs are themselves
subject to the theme just mentioned: The performance of learning programs
is directly proportional to what they know.

The last chapter in Volume in discusses planning and problem-solving.
It can be regarded as an extension to Chapter II on search. These chap-

ters might have been merged, but some important developments in planning
research postdate the writing of the search chapter. Among those discussed in

XVI Preface

Chapter XV are hierarchical planning — representing a single plan at several
levels of abstraction — and least-commitment planning methods that avoid
backtracking.

Acknowledgments

The reader will note that a great many people have been involved with

the three volumes of the Handbook; their names are listed on pages xi-xii.
Here, we acknowledge those who have helped with Volume III.

Chapter XIII was organized and partly written by Professor Takeo Kanade

of Carnegie-Mellon University. We are very grateful for his thorough and
persevering work at all stages of the chapter: He decided on its contents;

supervised its writing; and wrote the overview, the articles on Mackworth's
research and his own, and the articles on texture and "shape- from" methods.
He also rewrote many articles and checked all of them, and the figures, at
every stage of their progress, ensuring a comprehensive, authoritative, and
accurate chapter.

The other authors of the vision chapter are the following: Martin Herman
wrote the bulk of the blocks-world articles and the article on relaxation
algorithms. Steven A. Shafer wrote the articles on color, region analysis,
and intrinsic images; in addition, he volunteered for several days of intensive
editing, for which we are grateful. James L. Crowley wrote the articles on

visual input and range finders; Fuminobu Komura, on preprocessing and edge-
detection; David R. Smith, on shape analysis and vision systems; David A.
Bourne, on syntactic methods; Rodney Brooks, a contributor of several articles
to the Handbook, on ACRONYM; Nancy H. Cornelius, on motion; Hiromichi

Fujisawa, on robot vision; Bruce D. Lucas, on stereo vision; Steven L. Tani-
moto, on pyramids in vision research; and Charles E. Thorpe, on template
matching.

Chapter XIV was organized, and largely written and edited, by Thomas
G. Dietterich. Typically, the organization of a chapter reflects the extant

theoretical distinctions in a field, but, in this case, it was necessary to syn-
thesize an organization, actually, a general model of learning systems. Individ-

ual systems are discussed in terms of the components of this model, and four
classes of learning systems are discriminated by the kinds of processing they
perform on training instances. Bob London wrote the articles on rote learning

and advice-taking, Kenneth Clarkson contributed the article on grammatical
inference, and Geoffrey Dromey wrote the article on adaptive learning. The
chapter was reviewed by James S. Bennett, Bruce G. Buchanan, Ryszard S.
Michalski, Thomas M. Mitchell, Jack Mostow, David Shur, and Paul Utgoff.

Chapter XII, on automatic deduction, was written by several people.

Janice Aikins organized the chapter and edited most of the articles. The over-
view was written by Robert C. Moore at SRI International; we are especially

Preface xvii

grateful to him for also reviewing the other articles. W. W. Bledsoe, from

the University of Texas, provided the article on resolution theorem-proving
and edited the article on natural deduction, which was prepared by Michael
Ballantyne, also of the University of Texas. Stanley J. Rosenschein, of SRI
International, wrote and edited the article on logic programming. Richard

Pattis wrote the article on the Boyer- Moore theorem prover. Jon Doyle
rewrote his perfectly adequate article on nonmonotonic logic to provide us
with a new, crisp, and readable account of this rather recent and complex

topic.
Chapter XI, on models of cognition, was written by Paul Cohen, as was

most of Chapter XV, on planning. Steve Westfold wrote an early version of
the NOAH article, and Peter Friedland wrote the article on the refinement of
skeletal plans.

We thank Avron Barr for his work on Volumes I and II of the Handbook.

Volume I was undoubtedly the most difficult of the three volumes to produce
since it involved many decisions that we have not had to repeat for subsequent
volumes. His dedication and foresight have made Volume III a relatively easy
book to produce.

The Handbook is unusual in that it has been drafted, edited, and typeset
on several computers. After an article or a book is drafted, there is a great
deal of production work before it is ready to print. Usually, an author leaves a
manuscript with a publisher, and some months or years later a book emerges.
In the case of the Handbook, we wanted a continual interplay between writing,
editing, and producing, so that the contents of each book would remain
current right up until the time it is published. This involved maintaining

each book — its articles, references, indexes — in computer files.
Dianne Kanerva has been responsible for the production of the three

volumes of the Handbook. She has edited the books for style and managed
their typesetting, the construction of the indexes and bibliographies, and the
production of the figures. She has produced three volumes, 1,500 pages, in
18 months, and when she started, the text of Volume II was not finished
and only one chapter of Volume III existed. We are very grateful for her
contribution. Jose L. Gonzalez has done the final typesetting on every article
in Volumes II and III. He tailored and implemented a set of TgjX macros that

ensured the consistency and quality of the Handbook's appearance as well as
assisting Kanerva in the final editing of the manuscript. Dikran Karagueuzian
prepared and typeset the bibliographies and name indexes for Volumes II and
III and, with Christopher Tucci, operated the Alphatype CRS phototypesetter.
Pentti Kanerva wrote the index program that made it possible to prepare the
extensive name and subject indexes. Janet Feigenbaum and Barbara Laddaga
assisted with formatting the text of the book during the spring and summer of
1981, as have David Eppstein and Jonni Kanerva in the months since. Robert
Bruce Buchanan did much preliminary work with the bibliographies.

xviii Preface

We thank the staff of the publisher, William Kaufmann, Inc. Mike
Hamilton was in charge of production. Sunny Olds coordinated the production
of Volumes II and III between Stanford and the publisher; she also did much
of the proofreading, with the assistance of Vicki Woodruff. Catherine Drees,

Beverly Kennon-Kelley, and Spectra Media prepared the extensive artwork.
The Advanced Research Projects Agency of the Department of Defense

and the Biotechnology Resources Program of the National Institutes of Health

supported the Handbook project as part of their long-standing and continuing
efforts to develop and disseminate the science and technology of AI. The

electronic text-preparation facilities available to Stanford computer scien-
tists on the SAIL, SCORE, and SUMEX computers were used throughout the

project.

Chapter XI

Models of Cognition

CHAPTER XI: MODELS OF COGNITION

A. Overview / 3
B. General Problem Solver / 11
C. Opportunistic problem solving / 22
D. EPAM / 28
E. Semantic network models of memory / 36

1. Quillian's semantic memory system / 36
2. HAM / 42

3. ACT / 50

4. MEMOD / 56
F. Belief systems / 65

A. OVERVIEW

ANTHROPOMORPHISM is a powerful tendency in human thinking — we
ascribe personalities and emotions to all kinds of animate and inanimate
objects. Thus, it is not surprising that we should do the same with computers,

or even that we should reverse the terms of the equation and describe our-

selves in terms reserved for the machine. This is not a new trend — it certainly
predates the electronic computer (e.g., the Futurists around 1910 extolled the

virtues of the machine in their manifestos) — but the comparison between man
and machine is particularly compelling in the case of the computer.

However, there is no science and no subtlety in the broad, unqualified
claim that we behave like computers or vice versa; the trick is to know enough
about how humans and computers think to say exactly what they have in
common, and, when we lack this knowledge, to use the comparison to suggest
theories of human thinking or computer thinking. Thus, psychology and
AI have a reciprocal, piggyback relationship: What we learn about human
intelligence suggests extensions to the theory of machine intelligence, and vice
versa.

This reciprocal relationship was most evident during the early years of
AI. For example, in 1956, Allen Newell and Herbert Simon developed a theory

of problem solving called LT (for Logic Theorist), which they implemented as
a computer program. Because the theory was formalized, Newell and Simon

could specify exactly the problem-solving behaviors they expected to find in
human problem- solvers. But when they tested their theory, they found that it
failed in one respect: Humans did not use the same control process (working
backward from theorem to axioms) as the program. Thus, they revised the
theory, and wrote a new program, to incorporate what they had learned
about human control processes during problem solving. They called the new
program the General Problem Solver (GPS), and the new control process

means- ends analysis, and found that this process was much more efficient (in
terms of computer time) than its predecessor. Means-ends analysis is now an
established problem-solving technique in AI.

This example illustrates how, by exploiting the comparison between

human and machine problem-solving, it is possible to develop theories of both
from relative ignorance of either. The first step was LT, a preliminary theory.

The next step was to test LT against human problem-solvers. The third step
was to derive a new theory, GPS, from differences between the old one and
the experimental data. This theory was tested again and was more successful,

both as a theory of human problem-solving and as a technique for AI. Note,
however, that this development succeeded not by simply asserting that human

problem-solving is like machine problem-solving but, rather, by describing

4 Models of Cognition XI

with precision their similarities and, more importantly for the development of
the theory, their differences. Computer programs are precise descriptions of
behavior and so are the results of experiments with humans; by using each to

complement the other, a theory of behavior develops quickly.

This approach to psychological research is called information-processing
psychology and, more recently, cognitive science. The theories that are devel-

oped— computer models of human thinking — are called models of cognition.
The central idea of information-processing psychology is to bring precision to
the seductive comparison between human and artificial intelligence, to benefit
our understanding of human cognition. In the next section, we present a

historical background to information-processing psychology.

A History of AI and Information Processing

Information-processing psychology has played an important part in the
development of American psychology since 1950. It has helped to reinstate
the concept of mind, which had been abolished by behavioral psychologists

because it was unobservable except by introspection. Methodological behav-
iorism condemned introspection as a psychological method because there was

no guarantee that the words used by one person to describe his (or her) mental
events would mean the same thing to another person. For example, if a person

says, "I can't quite think of the word — it is on the tip of my tongue," you
may think you know what he is thinking and feeling, but, in fact, regardless
of the detail with which he describes his state, you cannot guarantee that
your knowledge of his state is completely accurate. A stronger position on
introspection is taken by radical behaviorism, which holds that knowledge
obtained by introspection not only cannot be accurately communicated, but

is not even accurately perceived by the introspector: "An organism behaves as
it does because of its current structure, but most of this is out of the reach of

introspection" (Skinner, 1976, p. 19). Mental events are viewed as side effects
of the interaction between an organism and its environment, not causes and
thus not explanations of behavior.

These positions — radical and methodological behaviorism — were objective
but resulted in a psychology that did not admit the mind. Theoretically, it

was possible to explain behavior in terms of stimulus-response pairs, denying
any mediating mental structures or processes:

A person is changed by the contingencies of reinforcement under which he
behaves; he does not store the contingencies. In particular, he does not store
copies of the stimuli which have played a part in the contingencies. There

are no "iconic representations" in his mind; there are no "data structures
stored in his memory"; he has no "cognitive map" of the world in which
he has lived. He has simply been changed in such a way that stimuli now
control particular kinds of perceptual behavior. (Skinner, 1976, pp. 93-94)

A Overview 5

In contrast, all the research described in the Handbook is concerned

with structures and processes that mediate intelligent responses to stimuli.

This fundamental change in theoretical positions took place between 1950

and 1960, during which time behaviorism was largely displaced by cognitive

psychology. The key to the change was the concept of information. Following

the publication, in 1949, of Shannon and Weaver's "The Mathematical Theory

of Communication," information became a concrete, measurable quantity (see
Shannon and Weaver, 1963). Initially, the strict mathematical conception of

information was explored; theorists tried to fit many aspects of human com-
munication into the general model proposed by Shannon and Weaver (see, e.g.,

Cherry, 1970). But the model was best suited to communication over electrical

channels, and so, by the mid-1950s, a more relaxed, and more appropriate,
conception of information was emerging.

An influential paper was "The Magical Number Seven ..." in which Miller
(1956) proposed that the information capacity of mental processes, particularly

short-term memory, is best measured in terms of semantic chunks — meaningful

units of information — not abstract bits. For example, words from a sentence
and nonsense syllables are considered to be chunks of information and put

approximately equal demands on memory, despite the fact that the words

contain more information, in the mathematical sense, than the syllables. In

the years following Miller's paper, information structures such as discrimina-
tion nets, associative semantic nets, and frames were developed to represent

the information used in cognition. The original, mathematical formulation of

information has been largely abandoned:

The problem was that the bit gave a very poorly articulated characterization
of the information. ... As descriptions of the information have become more

articulated, the theories composed out of them have become more successful.

(Anderson and Bower, 1973, p. 136)

The increasing sophistication of computers and computer science was the

most important factor in the development of information-processing ideas.

During the late 1950s, there was the realization in information-processing
psychology that the computer was not simply a device for shifting bits or

"crunching numbers," but was more generally capable of any kind of symbol
manipulation, of any kind of information process:

An entirely different use of computers in psychology . . . has emerged. This . . .
stems from the fact that a computer is a device for manipulating symbols
of any kind, not just numerical symbols. Thus a computer becomes a way
of specifying arbitrary symbolic processes. Theories of this type, which can
be called information processing theories, are essentially nonquantitative

(they may involve no numbers at all), although neither less precise nor less
rigorous than classical mathematical theories. (Newell and Simon, 1963,
p. 366)

6 Models of Cognition XI

And in cognitive psychology, the computer and the emergence of programs

like LT had a profound effect, even though cognitive psychology does not share

the enthusiasm of information-processing psychology for computer models:

The activities of the computer itself seemed in some ways akin to cognitive

processes. Computers accept information, manipulate symbols, store items

in "memory" and retrieve them again, classify inputs, recognize patterns,
and so on. Whether they do these things just like people was less important
than that they do them at all. The coming of the computer provided a

much-needed reassurance that cognitive processes were real. . . . Some the-
orists even maintained that all psychological theories should be explicitly

written in the form of computer programs. (Neisser, 1976, pp. 5-6)

These theorists were Newell, Simon, and J. C. Shaw. Their position that

computer programs can be psychological theories is the point at which cog-

nitive psychology and information-processing psychology part company. For
most cognitive psychologists, information processing is a metaphor for human

thought, a means of focusing attention on new and interesting questions about

the mind. Very few cognitive psychologists have implemented information-

processing models — programs — of their theories. Even among those who have,
the strong position that the program is itself a theory is not universally

accepted; for example, Anderson and Bower (1973) explicitly limit the sense

in which their model of human associative memory is a theory (Article XI.E2):

It is important to be clear about the relationship between the theory and

this simulation program. We make no claim that there is any careful cor-
respondence between the step-by-step information processing in the simula-

tion program and in the psychological theory. . . . The claim is sometimes
made . . . that the program is the theory. This is not the case for HAM, and
we wish to make this denial explicit. HAM represents a very complicated

set of speculations about human memory. Only some of these are repre-
sented in the simulation program. Moreover, the simulation program does

not serve as an embodiment of this subset of the theory; rather, it is but

one test of the adequacy of that subset, (pp. 142-143)

(The relationship between cognitive psychology and information-processing
psychology is discussed in more detail in Newell, 1970, and Miller, 1978.)

To complete this historical overview, we should note the relationship

between AI and information-processing psychology. It was summed up nicely
by Minsky (1968) in his own historical discussion in which he identified three

extensions to early work in cybernetics:

The first was the continuation of the search for simple basic principles. . . .
The second important avenue was an attempt to build working models of

human behavior incorporating, or developing as needed, specific psychologi-
cal theories. . . . The third approach, the one we call Artificial Intelligence,

was an attempt to build intelligent machines without any prejudice toward

making the system simple, biological, or humanoid. (p. 9)

A Overview 7

In other words, AI does not require that an intelligent program demonstrate

human intelligence, but information-processing psychologists insist that the
correspondence be proved.

This overview is almost current; we have discussed the common roots of

AI, information-processing psychology, and cognitive psychology, and we have
discussed the points at which they part company. However, we should note

that we have presented the strongest version of the information-processing
approach, that advocated by Newell and Simon. Their position is so strong

that it defines information-processing psychology almost by exclusion: It is
the field that uses methods alien to cognitive psychology to explore questions
alien to AI. This is an exaggeration, but it serves to illustrate why there
are thousands of cognitive psychologists, and hundreds of AI researchers, and

very few information-processing psychologists. Recently, the strong position
has been relaxed to admit research that does not necessarily prove the cor-

respondence between programs and human behavior but that has some avowed
concern for understanding human behavior. This research is called cognitive
science by its practitioners.

The articles in this chapter discuss models of cognition that have, for
the most part, been the historical shoulders on which cognitive science now
stands. Of the eight articles, five are devoted to models of human memory,

two to problem-solving, and one to belief systems. The emphasis on memory
has two causes, one historical and one artifactual. Historically, cognitive
psychology has concerned itself almost exclusively with memory, so it is not

surprising that it should be a major topic in information-processing psychol-
ogy. However, the proportion of articles would have been different had we

included discussions of other cognitive science research in this chapter, rather

than elsewhere in the Handbook — for example, research on speech under-

standing (Chap. V); on natural-language understanding, especially the work
of Schank and his colleagues (Chap. IV); on planning (Chap. XV); and on
learning (Chap. XTV).

The first model discussed in this chapter is, appropriately, Newell and

Simon's General Problem Solver program (GPS; Article XI. B). It is some
of the earliest research in information-processing psychology. The program
introduced means- ends analysis, which constrains a problem solver to the task
of reducing the differences between the current state of a problem and the
goal state, or solution. The problem solver often cannot derive a solution
immediately from the problem, so it is necessary to transform the problem
into some intermediate state, from which the solution might be derived. GPS

was tested extensively as a theory of human problem-solving.
The next article (Article XI.C) is also about problem solving; it discusses

a model of opportunistic planning designed by Hayes-Roth and Hayes-Roth
(1978). Their model is an interesting contrast to those discussed in Chapter XV
on planning. Opportunistic processing involves a flexible control strategy
(implemented with a blackboard control structure) that permits planning

8 Models of Cognition XI

decisions to be made when the opportunity arises, rather than in a strict order.

Hayes-Roth and Hayes-Roth suggest that opportunistic processing is neces-
sary for complex problem solving. Their model was developed specifically as

a model of human planning abilities; thus, it is discussed in the context of this
chapter on models of cognition.

About the time that GPS was being implemented, Feigenbaum was design-
ing his Elementary Perceiver and Memorizer (EPAM) program, the first of the

memory models considered in this chapter (Article XI.D). It learns paired-
associate nonsense syllables, which, since the end of the 19th century, have
been used in experiments to reduce the effect on memory of the meaning of
the material being remembered. Paired associates allow probing: One of a
pair of syllables serves as a cue to invoke the memory of the other syllable.

Many things can be learned about memory by varying the speed at which syl-
lables are presented, the number that must be remembered, or the similarity

between the syllables. Feigenbaum modeled learning of the syllables as a
process of storing just enough information about a syllable to distinguish it
from the other syllables in memory at the time it was stored. Often, this
did not require storing the whole syllable, which results in performance on a
recall test that is less than perfect and strikingly similar to that of humans
on similar tests.

In 1968, Quillian developed a model of semantic memory that provided
the basis for the work described in the next three articles in this chapter

(Articles XI. El, XI.E2, and XI.E3). Conceptually, semantic memory models are
very simple. They can be thought of as graphs, where the points (called nodes)
represent concepts and the lines represent relations between the points. The
meaning of a concept in a semantic net is represented by its connections (or
associations) with other concepts.

Quillian 's model was not developed as a psychological theory originally,
but it was the first information-processing model that looked like it might
explain recently discovered and curious effects of meaning on memory, for

example, the category-size effect, whereby it takes longer to classify objects
that are members of large classes than those that are members of small classes.

The MEMOD model developed by Lindsay, Norman, and Rumelhart (LNR;

see Article XI.E4) is much more ambitious than Quillian's model. In the first
place, it is intended to be a model of human memory that captures some
of the richness of language. This requires three types of nodes, instead of

just the one "concept" node of Quillian. Nodes represent concepts, but also
episodes and events. Episode nodes can be the superordinate nodes of complex

events like stories; moreover, MEMOD 's interpreter can "run" these events to
simulate them. Episode nodes can designate arbitrary procedures that the
interpreter can execute. The MEMOD model also permits a large number of
relations between nodes, where Quillian had only about half a dozen. Further,
relations in this model have a case structure similar to that of Fillmore (see

Article iv. CM, in Vol. I). Another improvement over Quillian's model was

A Overview 9

the introduction of more powerful interpretive procedures, since semantic-net
models do not actually do anything except represent information. Interpretive
procedures are required to manipulate this information.

The HAM model of Anderson and Bower (Article XI.E2) is also a model

of human long-term memory (Human Associative Memory; thus, HAM), but
it differs in a number of important respects from MEMOD. Although it has a
network knowledge base, relations in the network are much simpler than those

in MEMOD. They are based on the syntactic categories of a simplified gram-
mar of English that is used to interact with the system. Another difference

between the two systems is that, in HAM, arbitrary procedures cannot be

written and the simple procedures that are used reside outside of the net-
work. Anderson and Bower take the position that experimental data from

the memory literature can be explained by a relatively simple strategy-free
process.

Later work by Anderson on his ACT system is discussed in Article XI.E3.

The ACT model uses a propositional semantic-network knowledge base, similar
to that of HAM. It has, in addition, a procedural component to operate on the
knowledge base. Procedures, represented by a production system, are written
by the user of ACT. This feature makes ACT rather like the MEMOD system
in that both provide a language for their users to build computer models of
psychological processes. The major differences between the systems arise from
the way procedures are represented and from the interpreter, which controls
the flow of computation in the systems.

The last article in this chapter (Article XI.F) discusses belief systems, in
particular, the models of ideological oversimplification designed by Abelson
and the PARRY model of paranoia built by Colby and his associates. These
models have in common a representation of beliefs that affect interpretations

of sentences. For example, a "typical liberal" would interpret a national event,
like Congress appropriating money for urban redevelopment, in a different

way than would a "typical conservative." The article reviews a recent paper
by Abelson, in which he discusses some differences between belief systems and

the knowledge-based expert systems that are current in AI.

References

A concise, personal history of the first years of information-processing

psychology is given in Newell and Simon (1972, pp. 873-889). Cherry (1970)
is a comprehensive and readable account of the very early work in psychology,
telecommunications, cybernetics, and computer science; it is a good resource
for readers who want to know about the intellectual background that gave rise
to AI and its related disciplines. Anderson and Bower (1973) present a detailed
review of the history of associationism in memory research, as well as a review
and criticism of several memory models. Several books by cognitive scientists
give their perspective on the new field: Bobrow and Collins (1975) contains

10 Models of Cognition XI

several interesting papers on the developing topic of knowledge representation.

Norman and Rumelhart (1975) discuss their MEMOD system in detail — it is

interesting to contrast this book with a "standard" text on memory
(e.g., Crowder, 1976) to see what a difference the information-processing per-

spective can make. Schank and Abelson (1977) discuss their theory of knowl-

edge representation — a theory that is currently very popular. Finally, there
is a journal called Cognitive Science that publishes current research.

B. GENERAL PROBLEM SOLVER

HUMAN PROBLEM-SOLVING has received intensive examination by Allen
Newell, Herbert A. Simon, and their colleagues and students at Carnegie-
Mellon University. In their book Human Problem Solving (1972), Newell and

Simon present thorough analyses of problem solving in three task domains —
cryptarithmetic, logic, and chess — and they present and evaluate information-
processing systems that accurately simulate human thought in these domains.

There is not the space here to summarize all the work in human problem-
solving. In fact, the only system we examine is the General Problem Solver

program (GPS); and the only task domain, logic problems. However, the

information-processing system that Newell and Simon develop is certainly
general enough to provide a framework for problem solving in several other

task domains. GPS is not just a logic problem-solver.
Problem solving, and most other intellectual activity, involves general

knowledge that applies to many problems and very specific knowledge that
is special to a particular problem. For example, a general rule, or heuristic,

is "If you can't solve the whole problem, try to solve part of it." A specific
piece of knowledge that may be useful for solving some word problems is,
for example, that a mile is 1,760 yards. The distinction between general and

task-specific knowledge is made in GPS, and it was for just this reason that
it was called GPS:

GPS obtained the name "general problem solver" because it was the first
problem solving program to separate in a clean way a task-independent part
of the system containing general problem solving mechanisms from a part
of the system containing knowledge of the task environment. (Newell and
Simon, 1972, p. 414)

Accordingly, our discussion of GPS moves from general to specific: First is

a simplified discussion of the information-processing system on which GPS
is constructed, then a presentation of general problem-solving methods, and
finally consideration of methods specific to the task demands of logic problems.

The Information-processing System

Everything that takes place in GPS is an information process, and the

environment in which GPS solves problems is called an information-processing
system (IPS). A central concept is that of a state — a momentary snapshot
containing what the IPS knows at the time. The knowledge implicit in a state
is represented by symbol structures.

11

12 Models of Cognition XI

More formally:

1. There is a set of elements called symbols; a symbol structure is a set of

instances of symbols connected by relations.

2. An information process is a process that has symbol structures for all or
some of its inputs or outputs.

3. An object is a symbol structure, or a program that the IPS is capable of
executing, or an external environment of readable stimuli.

States are derived from other states by the application of information

processes, often called operators. Two important states are the starting state,

which represents everything that the IPS knows at the beginning of the

problem, and the goal state, which represents the knowledge of the IPS when

it has solved the problem. There may be many goal states, corresponding

to various solutions to a problem. For example, the starting state in a game

of chess is the familiar double ranks of opposing black and white pieces.

From this single starting state an enormous number of goal states representing

checkmate can be derived. Each new position is derived from its predecessor

by an operator, a legal move of one or two chessmen. A final point about this

state-space representation is that symbol structures may be nested in an IPS;
within the structure that corresponds to a whole board position, there are a

number of smaller structures corresponding to parts of it.

Since an object is defined as a symbol structure, a program to be executed,

or external data, no distinction is made between data and programs. This is

an important aspect of GPS and of many other AI programs, but for the

sake of simplicity we will ignore the possibility that objects can be programs.

From here on, object refers to symbol structures, and operator or information

process denotes the programs that the IPS executes. As an example of this

more restrictive definition, configurations of chess boards are objects and the

moves of the chess pieces are operators. Note that an object may represent

an entire chess board or just a part of it. A state, then, is composed of one

or more objects, and it is transformed by operators.

Elementary Information Processes

Newell and Simon suggest some elementary information processes (EIPs)

from which all the other operations of an IPS can be constructed. They are:

1. Discrimination. The IPS must be able to invoke operators appropriate to
the symbol structure it is currently processing.

2. Tests and comparisons. The IPS must be able to compare symbol struc-
tures.

3. Symbol creation. It must be possible to create symbols and allow them to
designate other symbol structures.

B General Problem Solver 13

4. Designation of symbol structures. It must be possible to designate various
parts of any symbol structure and obtain the designation of any part of

any symbol structure.

5. Input and output. The IPS must be able to read and write symbol struc-
tures internally and externally.

6. Storing of symbol structures. It must be possible to store a symbol structure
and retrieve it by means of another symbol structure that designates it.

The Problem Space

Newell and Simon define the task environment, or problem space, of GPS

to be the formal specification of the set of symbol structures through which

GPS searches for a solution. This may suggest that GPS has a collection of

states available to search for a goal state. In fact, search in GPS means that

GPS generates states by applying operators, first to the starting state (which

it is given), then to states it derives from the starting state, and so on. GPS

generates states in its problem space as it solves a problem.

The problem space used by GPS varies with the problem. It is a formal

specification of the knowledge needed to solve a problem. Consider, for

example, the famous cryptarithmetic problem

DONALD

+ GERALD

ROBERT Given D = 5

where the object is to assign digits to letters so that the sum of the numbers

denoted by DONALD and GERALD equals the number denoted by ROBERT.

A problem space for this example is:

(letter)

(digit)

(expression)

(knowledge state)

(operator)

== A|B|D|E|G|L|N|0|R|T

= 0|1|2|3|4|5|6|7|8|9

= (letter) has-value (digit)

= (expression) | (expression) & (knowledge state)

= Assert((expression)) .

All knowledge about this problem is made up of expressions of the form

letter has-value digit. The initial knowledge state is the single expression D

has-value 5. Subsequent knowledge states are conjunctions of expressions.
The single operator required to solve the problem is to assert that a letter

has a particular value, that is, to assign it the value. This problem space is

complete in the sense that application of the operator is enough to generate

all the expressions needed for a solution.

In addition to the problem space, the IPS needs a program, or set of

instructions, to dictate how digits are to be assigned to letters and to test if

14 Models of Cognition XI

a solution has been found. This will be discussed further for the domain of

logic problems.
A distinction must be made between search in the problem space and the

search space. The former refers to all the solutions and paths leading to them

that the problem solver actually generates, while the latter refers to all the

solutions and paths that exist. For problems of any complexity, it is necessary

to keep the problem space smaller than the search space. To rephrase a

point made in Chapter II: Search in the problem space involves generating

just enough of the search space to find a solution to the problem. In GPS,

two methods are used to accomplish this. One is a general heuristic called

means- ends analysis, and the other is a form of planning. We will not consider

planning here; the interested reader should see pages 429-435 of Newell and
Simon (1972) and Article XV.A in the Handbook.

General Problem-solving Methods: Means-ends Analysis

Problem solving in GPS is a matter of transforming the start state into a

goal state. Thus, at any point during problem solving, GPS has two goals:

1. Transform state 1 to state 2 by the application of operators.

2. Apply some operator to state 1 (or some intermediate state).

These goals do not specify which operator should be applied to any object.

There are numerous strategies for deciding this. One is to apply all legal

operators to the first object, then apply all legal operators to all the results

of the first application, and so on. This method, called exhaustive search,

generates the entire search space. It is guaranteed to find a solution eventually

but is much too costly to be used for problems of any complexity. Means-ends
analysis is a powerful heuristic that constrains search by anchoring paths in

the search space to the current state and the desired state; it implies a third

problem-solving goal for GPS:

3. Reduce the difference between state 1 and state 2 by modifying state 1.

This rules out directionless expansion of possible solutions:

By taking account of the characteristics of the goal object it is seeking to
reach, the problem solver extracts from the situation an enormous amount
of information about the direction in which it should explore, and almost

immediately rules out of bounds all but a tiny portion of the problem space.
(Newell and Simon, 1972, p. 428)

Means-ends analysis is incorporated into GPS as follows:

1 . If the current state is not the desired one, differences between it and the
desired state will be detected.

B General Problem Solver 15

2. Operators can be classified according to the differences they eliminate.

3. It may be necessary to modify the current state to make it compatible
with a desired operator.

4. "Difficult" differences between states might be simplified by transforming
the current state, even if this results in more, though simpler, differences.

The IPS, problem space, search, and means-ends analysis are domain-
independent ideas. The GPS program was designed to separate them from

any given problem- solving task. In the next section, we look at an example

of GPS in the task-domain of logic problems.

Task Demands of Logic in GPS

Symbolic logic problems provide an ideal situation to study problem

solving because one can describe the task environment of these problems in

great detail. One such problem is:

Translate the expression R & (-«P -> Q) into (P V Q) & R .

It is unimportant what the connective symbols (— ►, -i, &, V) mean. (In fact,
the human problem-solvers who provided data for Newell and Simon were
told nothing about them except that they were a set of transformations for

turning one expression into another.) Each transformation reduces a difference

between two expressions. The problem is to use these transformations to turn

the first expression, R & (->P — ► Q), into the second one, (P V Q) & R. The

available transformations were the following (in which " : " means "translates

to" and A and B are arbitrary expressions):

—A : A ASlA : A

A&B : A A&B : B

A\J A : A A and P : A & B

A&B : BSlA A\l B : B V A

A V B : -(-A & -.5) A -> B : -A V B

A -> B : -*B -> ̂ A A -► B and A : B

A V (B V C) : (A V B) V C A & (B & C) : (A & B) & C

A V (B & C) : (A V B) & (A V C) A & (B V C) : (A & B) V (A & C)

A — ► P and P — ► C : A — ► C A : A V X (X is any expression)

Consider how these rules can be used to translate from the original to the

goal expression:

16 Models of Cognition XI

Expression Transformation

R & (-.P — Q) A&B : B&A
yields (-.P -> Q) & R

(-.p -> Q) & P (A-^B):(Mv P)
applied to left part yields
(--.P \J Q)8iR

(-.--P V Q) & P —A : A
applied to left part yields

(P V Q) <fc P

(P V Q) & P is the goal expression. Q.E.D.

One can now see how GPS works in the task environment of logic prob-
lems. Exhaustive search would eventually generate the goal state but is

wasteful here because it ignores the information provided by the goal state.

Means-ends analysis directs GPS to reduce the difference between the starting
state and the goal state. For example, comparing the start state to the goal
state, it is immediately obvious that the former needs to be turned around:
R must appear on the right of the parentheses instead of on the left. This is
a difference between the two states; it can be reduced by the transformation
A & B : B & A. Instead of applying all applicable transformations to the
starting state, GPS might simply apply this one, which will yield the state

(-P ̂ Q)&R.
Continuing this reasoning, one might try to reduce the differences between

(-iP — > Q) and (P V Q). There are two differences: P has a "-■" prefix in
one case but not the other, and the connective between P and Q is "— ►" in
one case and "V" in the other. One transformation will reduce the latter
difference, namely, A — > B : ->A V B. Application of this transformation

yields (-1-. P V Q) & P.

The final problem is to get rid of the "^^" prefixing P. One transforma-
tion is available to do this, -i-iA : A, which yields the goal state (P V Q) & R

when it is applied.

(The reader who wants a "real life" example of problem solving with
means-ends analysis is encouraged to read Article XV.B on the STRIPS planner,
in the Handbook.)

The reasoning of the last paragraphs is a simplified version of the opera-
tion of GPS. Means-ends analysis is demonstrated here in its simplest form:

At each step in solving the problem, a transformation is chosen that will
reduce one difference between the current state and the goal state. GPS is
able to do this because each of the transformations it uses in a task domain

is classified according to the differences it reduces. For the logic task domain,
there are six differences that can be reduced by transformations. In GPS these
are summarized in a difference table. Three of the reducible differences are:

B General Problem Solver 17

1. A difference in position of components of the expression. Several trans-
formations will eliminate this difference:

AW B : BV A, A & B : B & A, A -> B : ̂ B -+ -.A, etc.

2. A difference in the symbol that appears between letters. Transformations
to eliminate this difference are:

A V B : -(-A & -.£), A -+ £ : -A V B,

A V (B & C) : (A V B) & (A V C), etc.

3. A difference in the number of "->" prefixes of a letter. Several transfor-
mations change the number of prefixes:

-.-iA : A, A -> £ : -A V B, A -+ £ : ~^B -* -iA, etc.

To solve the problem above, GPS determines the differences between the
starting state and the goal state and then applies transformations that reduce
them. However, the problems solved by GPS are rarely so simple; several

complications must be considered. First, if several transformations are appli-
cable to a state, GPS must choose between them. To do so, it consults a

ranking of differences that tells it which differences to reduce first.
Another complication arises when GPS cannot find an operator to reduce

a particular difference. In this case, it must transform the current state into
an intermediate state from which it can reduce the difference. For example,

consider adding the transformation rule A * B : A V ->B and solving the

problem defined by the starting state R * (~>P — ► Q) and the goal state

(-iP & ->Q) V R. In this case, GPS sets up the goal of moving R to the
other side of the expression, as it did in the last problem, but it has no
transformations available to accomplish this. Instead, it must defer this goal
and transform the starting state into a state from which it can accomplish the

goal. To do this, it transforms R * (->P — ► Q) into R V ~,(~,P — ► Q) and then
into -i(-iP — ► Q) V R- Thus, GPS has the ability to set up nested subgoals.

The design of GPS is dictated by the heuristic of means-ends analysis and
by the task demands. The general part of GPS is means-ends analysis and
the information-processing system in which it operates. The remainder of the
system follows from the task of solving logic problems. There are a limited
number of differences possible and a limited number of operations to reduce
them.

Empirical Tests of GPS

GPS was proposed as a psychological theory of human problem-solving.
In this section we give evidence for the theory. Recall that the most general

aspect of GPS is means-ends analysis, which is used to guide the generation
of states in the problem space. Some general behaviors are a natural conse-

quence of means-ends analysis; for example, GPS works forward from the

18 Models of Cognition XI

current state to the goal state, as opposed to working backward from the
goal. Another general characteristic of GPS is the repeated application of
transformations to states. This refers to the situation in which GPS finds a

transformation it wants to use, but the current state is not in a form that will

accept the transformation; the state must be altered and the transformation

reapplied.

If GPS is a theory of human problem-solving, one would expect humans
to use means-ends analysis and exhibit the behaviors that derive from it in
situations where GPS exhibits these behaviors. In the case of logic problems,
this is easily tested. Task demands are equated by ensuring that GPS and the
human subjects have the same transformations to work with and the same
problems to solve. GPS is programmed to print out its goals as it tries to
solve the problem, and the humans are instructed to talk out loud as they

solve the problem. The subjects' comments are recorded and the resulting
record is called a protocol, which is broken down into phrases:

"I'm looking at reversing these two things now."

"Then I'd have a similar group at the beginning ..."

"I could easily leave something like that 'til the end."

These are classified as evidence of goals and applications of transformations.
Breaking down the protocols is a painstaking process, but it is expedited

by a structure called the problem behavior graph, a graphic display of the

problem solver's progress. The nodes of the graph represent the knowledge
of the problem solver at a given point in time, and the arcs represent the
transformations that lead to new nodes (states). There is also provision for
returning to parts of the problem that were left dormant while a particular
line of reasoning was being explored. The protocol of each subject is mapped
onto a problem behavior graph. Newell and Simon do not expect that any
problem behavior graph will precisely match the output of GPS on a problem.
Their claim is, rather, that patterns of behavior will be common to GPS and
all their subjects. The problem behavior graph provides an explicit record of
the behavior, from which patterns can be abstracted if they exist.

The following is a summary of an analysis of the problem-solving behavior
of seven human subjects on a single problem. Newell and Simon classify the
behavior of both GPS and their subjects into patterns and compare them for

overlap. (This analysis is taken from pp. 489-502 of Newell and Simon, 1972.)
Mnemonics for these patterns and the percentage of their occurrence in the

protocols of each subject are shown in Table B-l. Total percentages are shown
for the pooled sum of utterances in all seven protocols. Table B-l has three
horizontal divisions, or tiers, representing (a) patterns exhibited by both GPS
and the subjects, (b) patterns exhibited by the subjects and not by GPS, and
(c) uninterpretable behavior on the part of the subjects.

General Problem Solver

19

Table B-i

Percentages of Particular Problem-solving Patterns
in Protocols of Individual Subjects

Subject

B D TOTALS

Tier 1. Behavior exhibited by subjects and by GPS

Means-ends analysis 37
47 48

38
52

50
45

39

(toward goal object;

operator applicability)

Working forward
17 0

13
14 2 1 9 7

Repeated application
46 44 37 39 39 44 42 38

(after subgoal;

implementation)
Subtotal 84

Tier 2. Behavior exhibited by subjects and absent in GPS

Means-ends analysis

(consequence avoidance)

Working backward

Repeated application

0

0

0

0

2

0

0

0

5

<1
0

15
<1 0

6

5

0

8

7

0

9

(review)

>3

<1

7

Subtotal 11

Tier 3. Uninterpretable behavior

0 3 2 9 7 5 4 5

TOTAL 100

In the first tier of the table, means-ends analysis has two manifestations in
which states are transformed to achieve the goal expression or are transformed

into a form compatible with a desired transformation. A second pattern of

behavior is working forward, that is, searching through transformations for

one that will apply to the current state. A third pattern is repeated application

of a transformation on the same state. This event arises mostly when a desired

transformation is incompatible with a state. A goal is set up to transform the

state, and the original transformation is then successfully reapplied. Another

type of reapplication found here is to try out consequences of a transformation

before committing the system to it. Table B-l shows clearly that the great

20 Models of Cognition XI

majority of the utterances of the seven subjects conform to these patterns of

behavior — 84%, in fact.
Tier 2 represents human behaviors that were not implemented in GPS

at the time. The greatest percentages were obtained for the reapplication
of transformations for the sake of review (refreshing the memory). Working
backward from the goal was another behavior that had not been implemented
in GPS. A third is a complex behavior in which a transformation is applied
before the application of the desired transformation, because the latter has
undesirable consequences (as well as the desired ones) if applied before the
intermediate transformation. These behaviors constitute 7%, 1%, and 3% of

the protocols, respectively.

Tier 3 of the table accounts for 5% of the subjects' protocols and rep-
resents uninterpretable behavior that could not be assigned to any pattern.

These behaviors include grunts and yawns, and unfinished and ambiguous
phrases such as Well, this looks like, uh . . . / dunno.

Conclusion

From this and other analyses, Newell and Simon conclude that GPS

is an explicit, operational, and sufficient model of some human problem-
solving. In GPS, a separation is maintained between general components,

such as the information-processing system and means-ends analysis, and task-
specific components, such as details of the problem space. Newell and Simon
claim that the general components apply in a wide range of task domains.
Chess and cryptarithmetic were examined in addition to logic problems, and

these analyses certainly support Newell and Simon's argument of generality.
Moreover, since GPS, means-ends analysis has been used in several other

problem-solving programs (see Article XV. A).
Some problems are not solved efficiently with means-ends analysis. For

example, the heuristic can lead one down a long path of problem-solving
operators that dead-ends, forcing the problem solver to back up to a previous
decision point and try a different path. Also, means-ends analysis may con-

struct a series of problem-solving operators that will, in fact, solve the prob-
lem, but that is much longer than necessary. Lastly, means-ends analysis can

be inefficient when there are interacting subgoals to be achieved; if accom-
plishing one subgoal prevents accomplishing another, the problem-solver can

do no more than return to the beginning of the problem to try the subgoals in
a different order (see Article XV.A for a detailed discussion of this problem).

However, the efficiency of problem-solving is a big concern for computers,
but perhaps not a serious concern for humans. The fact that means-ends
analysis can be inefficient does not detract from the empirical fact of its

generality in human problem-solving. This is not to say that means-ends
analysis is the only problem-solving strategy used by humans; the following

B General Problem Solver 21

article (Article XI. C) will discuss a planning problem that is best solved by a
process called opportunistic planning.

References

The most comprehensive and exhaustive information-processing analysis
of human problem-solving is Newell and Simon (1972).

C. OPPORTUNISTIC PROBLEM SOLVING

THIS ARTICLE discusses a theory of planning developed by Barbara Hayes-

Roth and Frederick Hayes-Roth (1978; B. Hayes-Roth, 1980). The theory is
specifically of human planning, and the authors and their colleagues have run
several experiments to test it. For this reason, the theory is discussed here
rather than in Chapter XV, on planning.

Hayes-Roth and Hayes-Roth have implemented their theory in a model
that, due to its complexity, will be sketched later in this article but not
presented in detail. The first part of the article discusses an exploratory
experiment with human planners in which subjects were required to think out
loud while planning. This technique is familiar from the work of Newell and
Simon (Article XI. B). A transcript, or protocol, is broken down into phrases

that are interpreted as evidence of particular planning or problem-solving
operations.

In the planning experiment (Hayes-Roth and Hayes-Roth, 1978), subjects
were given a map of a small town marked with points of interest such as movie
theaters, the veterinarian, stores, and restaurants. They were asked to plan

a day's activity that included 10 errands, such as Get medicine from the vet
and Buy fresh vegetables at the grocery. A couple of errands included explicit
constraints, such as the showtimes of movies. Constraints about other errands

were implied; for example, fresh vegetables should probably be purchased in
the evening, rather than leaving them in a car all day.

With the map and list of errands in hand, subjects talked about their
developing plans for the day. What they said was recorded and transcribed;

Table C-l shows samples of one subject's comments as he planned his activi-
ties. These paragraphs are excerpted from a longer protocol of 47 such para-

graphs; the numbers in parentheses indicate the position of each paragraph in
the protocol. The paragraphs illustrate a number of important characteristics
of human planning. In the first, the subject uses his knowledge to assign
importance to each errand and, thus, to order them. World knowledge is also
used to order plan steps in the later paragraphs, in which the subject tries to
schedule the purchase of groceries to avoid spoilage.

The second and third paragraphs illustrate two styles of control of plan-
ning. In the second paragraph the subject is motivated by a number of indi-

vidual goals; his thinking is bottom-up, or driven by what he perceives to
be the immediately attainable goals of the problem. In the third paragraph,
however, he starts planning at a different level of abstraction. From the goals

previously articulated, he abstracts a higher level goal, to do the errands in the
southeast corner. For three more paragraphs in the protocol (not excerpted
here), the subject tries to fit errands into the general plan of heading southeast.

22

Opportunistic Problem Solving 23

Table C-i

Excerpts from a Planning Protocol (from Hayes-Roth and Hayes-Roth, 1978)

1. (1) Let's go back down the errand list. Pick up medicine for the dog
at the veterinary supplies. That's definitely a primary, anything taking
care of health Buy a toy for the dog at the store. If you pass it, sure.
If not, the dog can play with something else.

2. (7) The appliance store is a few blocks away. The medicine for the

dog . . . isn't too far away. Movie theaters — let's hold off on that for a
little while. Pick up the watch. That's all the way across town. Special-
order a book at the bookstore.

3. (8) Probably it would be best if we started in a southeasterly direc-
tion. ... I can see later on there are a million things I want to do in that

part of town.

4. (23) Third item will be the newsstand since we are heading in that
direction. Often I like to do that. I know buying a gardening magazine

is hardly a primary thing to do, but since I'm heading that way, it's only
going to take a second . . .

5. (31) I would like to plan it so I can see the movie, pick up the vegetables,
pick up my car, and then go home. Vegetables would rot.

6. (38) Now we do have a problem. It's 2:00 and all we have left to do is
see a movie and get the vegetables. And that's where I think I've blown
this plan. I've got an hour left there before the movie . . .

7. (40) If I go get the groceries now, it's not really going to be consistent
with the plans throughout the day because I've been holding off on the
groceries for rotting. If I take them to the movie . . . vegetables don't
really perish like ice cream.

When immediately attainable errands are pointed out to the subject, he says,

/ can still do that and still head in the general direction. In contrast to

the earlier mode of planning, driven bottom-up by immediate goals, he now
attempts to incorporate these goals into an abstract plan. This illustrates the

ability of human planners to reason at many levels of abstraction and to move

freely between them. Hayes-Roth and Hayes-Roth call this multidirectional
processing.

The fourth paragraph illustrates one of the most interesting and fun-
damental characteristics of planning, and indeed of other aspects of cognition:

It is opportunistic. The subject realized that he could fulfill one of his obliga-

tions "for free," and promptly did so. Goals that fit into a developing plan are
integrated, and goals that belong together are clustered into subplans, often

without regard for how the subplans will integrate with the overall plan. For

example, early on in the protocol (not shown above), the subject plans to

24 Models of Cognition XI

end his day at the movie and then walk to a parking lot where his car is
parked. This subplan is constructed when the subject notices the proximity
of the movie and parking lot. There is a strong parallel between this process
and island driving, in which a problem solver finds part of a solution that he

thinks is correct — an island — and extends the solution from there, possibly
toward another island. Subplans can be regarded as islands that are linked

by sequences of planning actions. (For a detailed discussion of island driving
in speech understanding, see Article V.Cl, in Vol. I.)

The fifth and sixth paragraphs of the protocol show the subject sum-
marizing his current state and realizing that the plan is flawed because he has

too much time for what he has to do. At this point, he relaxes one of his
requirements, that he purchase vegetables after the movie, to fill in the hour
before the movie.

Opportunistic, multidirectional planning is very different from that prac-
ticed by the planners discussed in Chapter XV; human planning can be sig-

nificantly more complex than that of current AI planners. Before we discuss

the Hayes-Roths' model, we consider some of these differences.
Opportunistic processing has a bottom-up component; planning processes

are instigated by something the problem solver notices about the state of
the world. In human planning, steps are introduced into a plan whenever

the opportunity arises to do so. This contrasts with the least- commitment
strategies in NOAH and MOLGEN (see Articles XV.Dl and XV.D2), in which
planning steps are refined only when there is evidence that they will not
have to be abandoned later. In human planning, the carefully controlled
introduction of plan steps implicit in NOAH and MOLGEN is abandoned for
the advantage of introducing steps in a plan wherever they are convenient.

A closely related issue is that human planning is multidirectional; that is,
it takes place at several levels of abstraction simultaneously. This contrasts
with the hierarchical planners (discussed in Articles XV.B, XV.Dl, and XV.D2),

which develop detailed plans from abstract plans in a purely top-down fashion.
NOAH and MOLGEN do not include detailed steps in a plan unless they have
been refined from more abstract ones. This strategy helped them to avoid

interactions between plan steps; MOLGEN would post constraints summa-
rizing the implications of refining an abstract plan step for other parts of the

plan, and NOAH used critics to check for interactions between plan steps as

its plan developed. Both approaches rely on developing abstract plans into

detailed ones in a top-down manner.
The major advantage of the least-commitment strategy of hierarchical

planning is that it allows the planner to avoid subgoal interactions and,
thus, plan constructively with a minimum of backtracking. Opportunistic
planning leaves the planner susceptible to these interactions; an opportunistic,
multidirectional planner is more likely to need to rewrite parts of its plan or

change its goals than is a hierarchical planner. In fact, Table C-l showed the
planner committing himself to a plan that does not fulfill all his goals — he is

C Opportunistic Problem Solving 25

left with too much free time. However, instead of backtracking to a previous
point in the plan and replanning, the planner instead relaxes one of his goals
and decides to buy groceries before the movie.

Hayes-Roth and Hayes-Roth argue that opportunistic, multidirectional
planning is more efficient than hierarchical planning when the problem to
be solved is very complex. They say that hierarchical planning restricts
the problem solver and does not permit organizing parts of a plan around

interesting possibilities that emerge bottom-up (as can be done in island
driving).

The relative efficiencies and advantages of hierarchical, least-commitment
planning and multidirectional, opportunistic planning are issues for AI. How-

ever, our chief concern in this article is not with efficiency but, rather, with
how human planners plan. The remainder of the article summarizes the

Hayes-Roths' model.

The Control of Planning

Hayes-Roth and Hayes-Roth propose a blackboard model to represent
the complex control structure of human planning. Blackboards have been
used primarily to facilitate interpretation of noisy signals such as speech (see
discussion in Article V.Cl, in Vol. i) and data from sensors (see Article VII.C3,
in Vol. II, on CRYSALIS; also, Nii and Feigenbaum, 1978). A blackboard
model for signal interpretation typically has a number of specialist programs

that produce hypotheses about aspects of the signal. For example, a speech-
understanding program has specialists for dividing the speech signal into
phonetic units, for guessing the syntax of the spoken message, for predicting
the next word given those that have been spoken already, and so on. The
hypotheses produced by each specialist are accessible to all, since they are
posted on a central blackboard. Hypotheses posted by one specialist are data
for others; for example, if the syntactic specialist posts the hypothesis that the
next word is a verb, the lexical specialist can use this information to narrow
the search for the exact word.

Theoretically, the control of processing in a blackboard model is asyn-
chronous and opportunistic: Specialists post hypotheses in no particular order,

and they use hypotheses posted by other specialists whenever they appear
helpful. Although human planning involves generating behavior rather than
interpreting it, it does seem to be an asynchronous, opportunistic process.
Plans are not developed all of a piece, but, instead, clusters or islands of
planning actions are constructed, and they are linked to other clusters when
an opportunity arises.

The Hayes-Roths' planning model involves a blackboard with five planes
of planning decisions and many specialists that generate tentative decisions

and record them on the blackboard. Planes are organized to reflect charac-
teristic processes in planning. One is the plan plane, a plane of operations.

26 Models of Cognition XI

Decisions to execute the processes discussed in the protocol — going to the
veterinarian, seeing a movie, and so on — are recorded in the plan plane. More
general goals and general plans to accomplish them are also recorded in the

plan plane.

At the level of the meta-plan plane, the planner makes decisions about
how to solve the problem at hand. As we note in the discussion of MOLGEN

(Article XV.D2), a planner can do a lot of reasoning about a problem before
proposing so much as a single action to solve it. Decisions recorded on the

meta-plan plane capture some of this reasoning. For example, the planner
must represent the problem to itself and decide what type of problem it is, so

that it can pick out a problem-solving model, or strategy. The way a problem
is represented by the problem solver can affect the ease with which it is solved

(Amarel, 1968); thus, identifying a problem and finding an approach to solving
it are two very important decisions. Most planning programs have a single
representation of a problem and a single, implicit strategy for solving it; for
example, some nonhierarchical planners (discussed in Article XV.C) represent
problems as a collection of propositions to be made true, and they solve the

problems by pattern-directed invocation of procedures with backtracking. It
is possible, even likely, that a human planner might adopt means-ends analysis
with backtracking as a method; the choice between this and other possibilities

is recorded on the meta-plan plane.
Another kind of planning decision represented at the meta-plan level

involves the policies followed by the problem solver: What constitutes a good
solution? Is it to be quick and dirty or painstaking and elegant? Again,
most AI planning programs do not make such decisions, which obviously lend

power and flexibility to human problem-solving. We can usually decide when
a solution is good enough (what Simon, 1969, calls satisficing); those who are

never satisfied and those who are too easily satisfied — the compulsive and the
slob — are often inefficient problem solvers.

The meta-plan plane records global decisions about how to approach a
problem; between this level and that of individual planning operations, the

Hayes-Roths place the plan- abstraction plane. Decisions recorded at this plane
motivate operations recorded on the plan plane. For example, the decision to

do all of the "primary" errands first is a formulation of an abstract plan; it
motivates the decision — recorded on the plan plane — to divide errands into

"primary" and "secondary" groups.
A fourth plane in the Hayes-Roths' model contains world knowledge.

For the errand-planning task, the knowledge-base plane includes a list of the
errands and a representation of the map. A point made earlier — that the
representation of the problem affects the efficiency with which it is solved —
holds also for the representation of knowledge pertinent to the problem. The

Hayes- Roths represent the map in several ways to enhance problem-solving
efficiency. At one level, the map is represented as sectors, for example, the
southeast corner; at another level, neighbors are recorded, for example, a

C Opportunistic Problem Solving 27

movie house neighbors on a parking lot. A third level of information about
the map represents routes between points of interest. This knowledge base
would, of course, change for another kind of problem.

The fifth plane, the executive plane, schedules the planning decisions
made by specialists that are recorded on other planes of the blackboard. We
have characterized the kinds of decisions that are found in human planning,
for example, decisions about specific planning actions, about approaches to
a problem, and about abstractions of planning actions. The decisions are
tentatively proposed and recorded on the appropriate plane of the blackboard
by specialist programs that are sensitive to particular kinds of decisions.
For example, a proximity detector specialist would note when two points of
interest are nearby on the map; it would record pairs of neighbors on the

knowledge-base plane of the blackboard. Specialists operate independently
and asynchronously, as mentioned above. Consequently, a scheduler is needed

to decide on a sequential order (since most present-day computers are sequen-
tial machines) for all the actions of specialists. Scheduling might be queue

oriented, that is, first come first served, but, in general, humans do not
schedule actions this way. Instead they schedule them according to their
perceived efficiency, productivity, and the like.

Conclusion

Hayes-Roth and Hayes-Roth present a detailed example explaining how

their model accounts for the protocol of a subject planning a day's activities
(excerpted above). Rather than discuss the model in detail, we have presented
its planes and specialists in quite general terms, attempting to characterize the

types and levels of decisions that are necessary for planning. One general con-
clusion of this article is that human planners are much more sophisticated than

any of the programs discussed in Chapter XV on planning. Multidirectional,

asynchronous, and opportunistic processing is proposed to model this sophis-
tication.

References

Hayes-Roth and Hayes-Roth (1978; B. Hayes-Roth, 1980) give accounts of
their experiments and the model developed from them.

D. EPAM

EPAM (Elementary Perceiver and Memorizer) was developed in the period

1956-1964 by Edward Feigenbaum and Herbert Simon. This program was
the first information-processing model of a number of well-known human
verbal-learning behaviors. Though it sounds simple, rote learning of nonsense
material has provided much evidence about the characteristics of short-term
and long-term memory. Nonsense material is useful in that it avoids the
effect of the meaning of a stimulus on how well it is learned; for example,

familiar stimuli or stimuli that "fit in" with previously learned material are
relatively easy to learn. When Ebbinghaus first used nonsense syllables in the
1870s, these factors were not understood. His method limited their effects,
which, he felt, obscured the fundamental characteristics of memory. (An
interesting sidelight on the topic of nonsense syllables is that Anderson and
Bower, whose work is discussed in Article XI.E2, used meaningful sentences for

their experiments on strategy-free memory because they felt that their subjects
were likely to employ mnemonic strategies to remember nonsense stimuli.)
EPAM provides an explanation of some of these characteristics, among them
oscillation and retroactive inhibition, forgetting, and stimulus and response
generalization.

Verbal Learning Behavior

To simplify the study of human verbal learning, psychologists have devel-
oped a number of experimental techniques (for a survey, see Baddeley, 1976).

Most are based on the following procedure: The subject (whether human or
EPAM) is required to memorize nonsense syllables in serial lists or associate
pairs. The syllables are typically comprised of three letters, beginning and

ending with a consonant, and are supposed to be meaningless for most sub-
jects (e.g., XUM, JUR, FAZ). In paired-associate learning experiments, the first

syllable of a pair is called the stimulus and the second is called the response.

EPAM was designed for paired-associate and serial learning, but in this
article we will consider only the former. In a typical experiment, a set of
nonsense syllable pairs is used. For each pair in the set, the stimulus syllable
is displayed to a subject, who then attempts to say the associated response.
Any errors made by the subject are recorded. The response syllable is then
shown, so that both stimulus and response are in view, and the subject is able
to refresh his (or her) memory of the association (or learn it, if this is the first
presentation). After a few seconds, the next pair of syllables is displayed. This
continues until all of the pairs have been displayed. The entire sequence is

28

D EPAM 29

called a trial. Trials are repeated until the subject is able to give the correct
response for each stimulus. This is called learning to criterion. There is a
relatively short period of time between trials, and the sequence of pairs is
randomized from trial to trial.

A number of behaviors are typical in a paired-associate verbal-learning
experiment:

1. Stimulus and response generalization. Overt errors in recall are often attrib-
utable to confusion by the subject between similar stimuli or similar

responses. When similar stimuli are confused, their responses may become
interchanged; when two responses are similar, the wrong one may be
given to a stimulus.

2. Oscillation. Associations that are recalled correctly over several trials are
sometimes forgotten only to reappear and then later disappear again.

3. Retroactive inhibition. When the paired-associate task is modified to
include an intervening learning task, so that one list of syllables is learned
and then another, and the retention of the original list is tested, the

subject's ability to give correct responses is reduced by the intervening
learning. Moreover, overt errors in recall are usually intrusions from
the second list. The phenomenon disappears rapidly, however, and the

subject's memory of the first list is refreshed during the next trial.

The EPAM Model

The EPAM program was written in IPL-V, one of the first list-processing
languages. EPAM is a two-part system, with performance and learning com-

ponents. In the performance mode, EPAM attempts to produce responses to
stimulus syllables. In the learning mode, EPAM learns to discriminate and
associate stimuli and responses. The model is easier to understand if the
performance mode is discussed first.

The Performance System

After EPAM has learned a set of stimulus-response pairs, it is tested in
a standard paired-associate task. The test, which is identical to that given
to a human, involves presenting stimulus syllables to EPAM, which then must
produce the associated response syllables. The performance system proceeds
as follows. A stimulus syllable is encoded into an input code that directs the

search of EPAM's memory, called a discrimination net. This search leads to
a node in the net that contains a cue. Cues are information with which to

search for a response syllable. Using the cue, EPAM searches the net again
for a node containing the response, called a response image. The cue does not
always hold enough information to find the response syllable. If it does, the
response is given; otherwise, EPAM makes an error.

30 Models of Cognition
XI

EPAM codes each stimulus syllable into an internal representation called
the input code. This is based on certain features of the input characters, such

as the "openness" of a letter (e.g., C versus O) and whether the letter contains
crossed straight lines (e.g., X). Different sets of features have been used, but
in all cases they must satisfy two criteria: They must be related in some way
to features of letters, and they must be highly redundant (having many more
features than are required to distinguish letters).

For the remainder of this discussion, to simplify the examples, we will
assume that letters themselves and not features of letters are used as input
codes. Thus, when EPAM is tested with the stimulus MUR, features of the
letters M, U, and R are actually used as the input code, but for simplicity we
assume here that the input code is MUR.

The primary memory structure of EPAM is the discrimination net. It is

constructed during EPAM's learning mode and searched during the response
mode. The input code is used to traverse the discrimination net, which
normally contains a dozen or more pairs. The net is simply a binary search
tree, with internal nodes representing tests of features of stimuli. The leaf
nodes represent either cues or response images. A diagram of a discrimination

net that has been constructed in response to the associate pairs DAX-JIR,
PIB-JUK is shown in Figure D-l.

An example. Imagine that the input code to EPAM is the syllable PIB.
EPAM will sort down the tree until it gets to the node representing PIB. It
does this by going left or right at each internal node contingent on the results

of the test at that node. At the PIB node it will find a cue, J-K, which will
be used to traverse the tree again, from the root node down the right branch
to the next node, then down the left branch to the JUK node. At this point,
it will respond with the syllable JUK. Note that it is only necessary to store

<JUKcue:J-K> <JIR cue:J-->

Figure D-l. A discrimination net for the associate pairs
DAX-JIR, PIB-JUK.

D EPAM 31

enough features of the cue to direct EPAM to the response syllable at the time
the cue is created. The method of constructing cues will be discussed later.

We have seen how EPAM performs when it gives correct responses to

stimuli in the paired-associate task. To understand how EPAM fails at the
task in ways that are characteristic of human memory, we will consider how
it learns.

The Learning System

The discrimination learning system operates by constructing a discrimina-
tion net from a set of stimulus-response pairs. Initially the net is empty, and

only a set of simple processes for growing nets and storing images at leaf nodes
is available.

Suppose that the first stimulus-response pair is DAX-JIR and has already
been learned. The discrimination net at this point is shown in Figure D-2.

The full response image must be stored in order to produce the response,

but only partial stimulus-image information need be stored to recognize the
stimulus. In this simple net, a single letter is enough to discriminate between
the two syllables; therefore, the test at the root node is on a single letter and
no other tests are necessary. Moreover, the cue to find the response need be
only a single letter. The amount of information that needs to be stored at
internal and leaf nodes is determined by the program as the net grows.

Suppose the second syllable pair to be learned is PIB-JUK; see Figure D-3.
The net, as it stands, does not know about PIB; therefore, another test must
be added to discriminate between the input codes for DAX and PIB. This new
test is placed at the point in the net where there is a failure to discriminate.

Let us assume that the test is placed so as to discriminate between PIB and

DAX, as shown earlier in Figure D-2. (The test could have been between PIB
and JIR; EPAM is able to determine where the failure to discriminate occurs.)

Figure D-3 does not include a response image for the second syllable, JUK,
or a cue at the leaf of the PIB branch to help EPAM find JUK later. The input
code JUK is used to traverse the net until a discrimination failure occurs. In

Figure D-2. Discrimination net for the associate

pair DAX-JIR.

32 Models of Cognition XI

<JIR cue: J— >

Figure D-3. Discrimination net for the associate pair DAX-
JIR, which also discriminates PIB from DAX but
does not include a cue or response image for the
PIB-JUK association.

this case, the D: J test takes the J-branch and again a new discrimination must
be added to distinguish JUK and JIR. Human subjects generally consider final
letters before middle letters and EPAM does the same: It notes that the last

letters of JUK and JIR differ, and a test is added to reflect this.
A cue to lead from the end of the PIB branch to the JUK response image

is still lacking. It is constructed by trial and error. Each time a letter is added

to the potential cue, it is used to traverse the net; see Figure D-4. Information
is added to the cue as necessary until it leads to the correct response image.
This method ensures that a cue contains the minimum information required

to find the appropriate response image at the time of memorization.

It is now possible to see EPAM's source of errors on the paired-associate
task: Cues are constructed to guarantee correct retrieval of the appropriate
response image at the time the association is formed. If at some later time the
net incorporates other images and cues, the cue might no longer be sufficient to
perform that task. Thus, responses are forgotten temporarily. No information
is destroyed, but some becomes inaccessible. This can be seen by comparing

Figures D-2 and D-4. When the DAX- JIR association was first constructed

(Fig. D-2), the cue for JIR, J--, was sufficient to find the response to DAX.
However, when JUK was added to the net (Fig. D-4), J-- became inadequate
to discriminate between JIR and JUK.

The DAX- JIR association is not necessarily lost forever. If the association
is repeated (typically during a later trial), it will be reconstructed in the net
with the information necessary to maintain the association at that time.

There is another aspect of the cue-construction method that results in
inadequate cues. This has nothing to do with the discriminability of a cue
changing due to the expansion of the net; rather, it derives from a single

EPAM 33

<JUKcue:J-K> <JIR cue:J— >

Figure D-4. Final discrimination net for the associate
pairs DAX-JIR, PIB-JUK.

random decision made by EPAM while it is constructing a cue. For example,

if J-- is proposed as a cue for JUK, when the cue is tested, it will lead to a
branch in the tree that has JUK on its left branch and JIR on its right. At
this point, EPAM chooses one of the branches at random. If it goes left, it
will find JUK and conclude that the cue is sufficient to find JUK in future,
when in fact, this is not so.

EPAM's Verbal-learning Behavior

EPAM behaved very much like a human subject in classical rote-learning
experiments. It provided a parsimonious explanation of rote-learning behav-

ior, since retroactive inhibition, oscillation, stimulus and response general-
ization, and forgetting can all be seen to stem from a single mechanism.

As items are learned, the discrimination net grows to accommodate new

stimulus-response pairs. However, the cues that associate the stimuli with
their responses guarantee correct response retrieval just at the time of the
association. A cue that leads to the appropriate response image can fail to do
so at a later time.

The oscillatory behavior exhibited by EPAM serves as a basis for an alter-
native explanation of forgetting. The usual explanation is that the informa-

tion is destroyed over time, typically by overwriting or decay. Forgetting
in EPAM occurs not because the information is physically destroyed but
because it becomes inaccessible in the growing network of new associations.
Furthermore, forgetting in EPAM is only temporary: Lost associations can
be recovered by updating the appropriate cue with more information during
another trial.

This process accounts for the fact that more than one trial is usually

required to learn to criterion, that is, to give the correct response to each

34 Models of Cognition XI

stimulus. During the first trial, each cue is constructed with enough infor-
mation to find the correct response at the time it is stored; a subsequent

stimulus-response pair may be added such that the original cue can now no
longer discriminate between its correct response and the new one. This was

shown in Figure D-4: The J-- cue was sufficient to produce a response when
DAX-JIR were the only elements in the net, but as soon as PIB-JUK were
added, J-- was ambiguous with respect to JIR and JUK. Thus, on the next
trial, EPAM might respond to DAX with JUK; this would be incorrect and an
example of response generalization. However, the correct association is always

shown after a stimulus-response test, so EPAM has the opportunity to update
the J-- cue to make it discriminate JIR and JUK. On the next trial, it will not
confuse the two. Thus, in the course of a number of trials, EPAM gradually
learns to discriminate all stimuli and their responses.

If stimuli and their responses were initially very discriminable, EPAM
would require less time to learn them. This is because there is less chance

of response generalization. Operationally, this means that when EPAM con-
structs a cue with the minimum information needed to find a response image,

it is less likely that a subsequent stimulus-response pair will render the original
cue ambiguous.

If the same discrimination net is used for two trials, that is, two different

sets of stimulus-response pairs, the discrimination net that was sufficient to
respond correctly to all stimuli during the first trial may now be unable to
discriminate between responses for trial 1 and responses for trial 2. This
produces the phenomenon of retroactive inhibition, which is the deleterious
effect of learning an intermediate list on recall of the original list. It also
predicts the result that errors are likely to be intrusions from the second list,
rather than confusions between responses in the first list.

One problem with EPAM was that it had no mechanism to model proactive
inhibition, the situation in which learning one list of stimuli interferes with the
learning of the next list. Typically, when a subject is tested on the second list,
intrusions from the first result. Both proactive and retroactive inhibition are

evident in verbal-learning experiments, but EPAM exhibited only the latter.
EPAM has since been extended to deal with proactive inhibition by Hintzman

(1968) in his SAL (Stimulus and Association Learner) program. This was

accomplished by having a push-down stack at each leaf node in the discrimina-
tion net. Instead of a single image and cue at a leaf node during an experi-

ment, the associations from multiple experiments were allowed to accumulate
by being pushed onto the appropriate stacks. Thus, the most recently learned

association would be on the top of each of the stacks. If the stacks were ran-

domly disrupted, the responses that "spontaneously rise" to the top of the
stacks might be responses from previous experiments. Another accounting

of proactive inhibition given by Anderson and Bower (1973, pp. 74-75) in
their review of EPAM is that instead of a stacklike structure, a list of cues is

D EPAM 35

kept, and the ordering of elements in the lists gets reshuffled, possibly as a
consequence of the subject thinking about the material he has learned.

References

Feigenbaum (1963) and Simon and Feigenbaum (1964) are interesting
treatments of EPAM and the empirical studies done with it. Feigenbaum and

Simon (1962) is a discussion of an important verbal-learning effect — the serial-
position effect. Anderson and Bower (1973, pp. 69-76) review and criticize the
EPAM theory, and Simon (1979, pp. 99-100) provides a rebuttal to each of
their criticisms.

E. SEMANTIC NETWORK MODELS OF MEMORY

El. Quillian's Semantic Memory System

THERE are numerous intelligent behaviors of computers that depend on

knowing the meanings of words, for example, machine translation, summa-
rizing text, and speech understanding. The semantic net formalism developed

by Ross Quillian was the first attempt to provide an operational representation

of word meaning. The basis for Quillian's model is remarkably simple, namely,
that the meaning of a word can be expressed by relating it to other words.

This leads to the concept of word senses — a word may have many meanings
that depend on the context in which it is used.

Quillian found that to recognize the meanings of words it is adequate to
find the relations between them. However, for another task this conception

of meaning might be less appropriate. For example, in the game "Twenty
Questions" one may know many things about a word— that it denotes a
common household item, the item is wooden, and so on. One may know
everything about a word that would go into defining its meaning but still be
unable to guess what it is, that is, to recall it. Quillian makes the distinction
between recognition memory and recall memory for the meaning of words.
His model is concerned with the former; recall memory is not considered.

The tasks Quillian chose to implement using semantic memory were com-
parison of word meanings and expression of the comparisons in English. Both

were motivated by linguistic theory contemporary with Quillian's research,
which subordinated meaning to syntax in search of rules to produce "all and

only" grammatical sentences. In contrast, Quillian regarded semantic memory
as primary to language production and syntax as secondary. Thus, he chose
tasks to show that this new conception of language production could, in fact,
both produce language and understand it.

The Associative Structure of Quillian's Semantic Network

Quillian's model is an associative network of nodes that represent concepts
and arcs that represent relations between the concepts. When one is asked
to say all one knows about a concept, for example, machine, a string of
associations often results: A machine does work, has moving parts, is used to
convert energy, and so on. Machine is associated with energy via the concept
convert.

Word definitions have an associative structure. The set of associations

and concepts that make up a definition is called a plane (see Fig. El-1). The

36

El Quillian's Semantic Memory System
37

'machine

(STEAM-SHOVEL) / i \

/

• •

(CONVERT)

(ENERGY)
energy

*work

move

Figure El-1. Illustration of planes for Machine, Steam-shovel,
Convert, and Energy, showing type-token links.

concept being defined, called the type node, appears at the top, and the starred
words beneath it are called token nodes. They are instances of the type nodes

of other planes that are connected to their type nodes by arcs. (In Fig. El-1,
these arcs are not filled in for all token nodes; steam shovel is a subclass of

machine, * machine is an instance of machine, and * convert and * energy are
instances of their associated type nodes.) Every plane contains only a single
type node and enough token nodes to define the concept it names. Every
plane represents a new concept defined by associations to those previously
defined. Planes are linked together, type node to token node, throughout the
associative memory.

The utility of the type-token distinction is that it saves space in computer
memory. Imagine the size of a memory in which every definition of a particular
machine included the entire plane for machine, and the planes of its other
defining concepts, within its own. A more efficient organization is to have a
single plane define machine and to connect it to token nodes in all the planes
that include machine as part of their definition.

Quillian believes that semantic memory should have a large enough selec-
tion of arcs to represent the richness of relations between concepts in English,

but not so many that the mechanisms required to process the arcs are very
complicated. Six kinds of arcs were used, representing the following relations:

38 Models of Cognition XI

1. Subclass/superclass,

2. Modification (adverb, adjective),

3. Conjunctive (a and b and c),

4. Disjunctive (a or b or c),

5. 6. Two other relations representing unspecified binary predicates.

Other, more complex schemes for associating nodes have been proposed

(see Article XI. E4). In a later publication, Collins and Quillian (1972) describe

several other kinds of arcs, representing proximity (or adjacence), conse-
quence, precedence, and similarity.

Meaning- dependent Tasks in the Model

One important contribution of Quillian's work was providing a simple
model of semantic ambiguity. There are two sources of semantic ambiguity:

A word may have different meanings (e.g., the noun and the verb forms of

plant), and it may have different senses depending on context (e.g., animal in

the context of species or animal in the context of untamed). Quillian's model
is able to find many of the senses of words.

When the model is presented with two words to compare, it starts to

search outward from the planes representing the words in its memory. The

type nodes of the planes are called the patriarch nodes. The program alter-
nately examines nodes emanating from each patriarch. Each node is tagged

with a double label, one part containing the name of the patriarch and the

other the name of the last node examined (the immediate ancestor). Searching

continues until the path from one patriarch "bumps into" a node labeled with
the name of the other patriarch. At that point, a path from one patriarch

to the other has been completed. Its nodes represent the concepts that relate

the two patriarch concepts, the raw material of a comparison. A program

that expresses this conceptual pathway in English is summoned and produces

a crudely expressed comparison.

It is likely that there is more than one path between two words. In fact,

Quillian estimates that in a network of the 850 words of basic English, at least

10 nontrivial paths could be found relating any pair. Each of these constitutes

a sense in which one word is used in the context of another. For example, the

pair man, business yields the following comparison:

Man3 is person, and

Business can be activity which person must do work.

Also, the program discovers the generic sense of man:

Man2 is man as9 group, and

Business is question for attention of group.

El Quillian's Semantic Memory System 39

Thus, man used in the context of business has two meanings. In the context
of live, another sense emerges:

Man is animal, and

To live is to have existence as7 animal.

Also:

Man is a live+being2.

Although this version of the model contains less than 60 definitions, it still
produces interesting comparisons.

Quillian notes that the breadth-first search (Article II. Cl, in Vol. I) between
nodes is a form of inference. The relations between nodes within a plane are
entered by the coder who defines it. In constructing a definition, the coder

makes pairwise associations between a plane and (through type-token links)
the other planes that define it. Any path between planes that encompasses

more than a single type-token pair is a novel conceptual link discovered by
the model:

While a path lying completely within one plane (except for its terminal
points) amounts only to a representation of some piece of the information

put into memory, a "plane-hopping" path represents an idea that was
implied by, but by no means directly expressed in, the data that were input.
(Quillian, 1968, p. 240)

Empirical Tests of Quillian 's Model

Inference was an important concept to Collins and Quillian (1969) in their
research on the psychological validity of the semantic network model. They
sought to prove that human memory, like their semantic memory, obeyed the

organizational principles of hierarchy and economy. Figure El-2 represents
a hierarchical tree of information about animals. The lower nodes constitute

proper subsets of upper nodes; this is the principle of hierarchy. Note that
properties of nodes are not repeated at each node at which they apply, but at
the highest possible node above all the subsets to which the property applies.
The properties of subsets are then inferred from the superordinate nodes at
which they are stored. This is the principle of economy.

For example, although a canary is feathered, this information is stored
with the ancestor of the set of feathered things, the concept bird. Higher still,
stored with the concept animal, is the information that a canary is ambulatory.
The knowledge that a canary is ambulatory is achieved by inference: A canary
is a bird; a bird is an animal; animals are ambulatory; thus, by inference,
canaries are ambulatory.

Collins and Quillian reasoned that predictions can be made to test whether
the principles of hierarchy and economy hold for human memory. The first of

40 Models of Cognition XI

i ► Has Skin

// ► Can Move Around Animal »► Eats

Can Fly \ > — ► Has Fins

Has Wings \ /^-^ Can Swim
- Feathered Fisln — ► Has Gills

/ ► Has Long Legs / \ / — ► is Pink

Canary — ► Sings Ostrich — ► Tall Shark -► Bites Salmon-^ Is Edible

N — ► Is Yellow ^ — ► Can't Fly N — ► Dangerous ̂ — ► Swims Upstream

Figure El-2. A hierarchical memory structure (from Collins and
Quillian, 1969).

these concerns the hierarchy principle: Since it requires more inferential steps
to confirm a proposition like A canary is an animal than a tautology like A
canary is a canary, humans should require more time to confirm the former
than the latter. They should need intermediate amounts of time to confirm

propositions requiring intermediate-length chains of reasoning, such as A bird
is an animal or A salmon is a fish. In fact, reaction-time data support this
prediction:

Proposition Time to confirm (in seconds)

A canary is a canary. 1.0
A canary is a bird. 1.17
A canary is an animal. 1.25

These reaction times have been replicated for similar tasks (Conrad, 1972)

and support the hypothesis that semantic memory is organized hierarchically.

Collins and Quillian used a similar experiment to test the economy prin-
ciple. They predicted that A canary can sing should require less time to verify

than A canary has skin, with intermediate propositions requiring intermediate
time. They found:

Proposition Time to confirm (in seconds)

A canary can sing. 1.31

A canary can fly.
1.38

A canary has skin. 1.47

El Quillian's Semantic Memory System 41

They presented this evidence in support of the economy principle. The alter-
nate hypothesis, that a property common to a superset is stored with each

member of each subset, is ruled out by the reaction-time data: If a super-
ordinate property, like having skin, is stored with each subordinate node, for
example, canary, it should take no longer to verify that a canary has skin
than that it can sing.

Although Collins and Quillian's data support the economy principle, there
is evidence that the increasing reaction times can be explained in other ways.

Conrad (1972) found that the time required to verify a property was propor-
tional to its familiarity, not to the hierarchical distance between a property

and the noun it is associated with in a proposition. An alternative to the

economy principle is that "properties are stored in memory with every word
which they define and can be retrieved directly rather than through a process

of inference" (p. 154). Conrad explains the differences in reaction time as a
function of the familiarity of the words. When familiarity was controlled, and
the experiment run again, no differences in reaction time as a function of the
presumed hierarchical placement of the property could be found. However,

the effect of position in hierarchy for superset-subset sentences was replicated.
The status of the economy principle is unsure. The hierarchy principle has

more support, but Collins and Quillian's model of sentence verification leaves
a number of phenomena unexplained. For example, it does not account for
how false sentences (Fish can play hopscotch) are discontinued. Unfortunately,
the reaction times obtained for discontinuing negative sentences are difficult
to interpret. It is difficult to tell whether this is because of a failing in the
model or because reaction time is an inappropriate tool for examining this
kind of model.

Conclusion

Since Quillian's pioneering work, semantic nets and other associative rep-
resentations (e.g., frames) have become part of the language of AI. Although

Quillian developed his model as a representation of linguistic knowledge and

was motivated largely by issues in linguistics, semantic nets have been general-
ized to representations of many other kinds of knowledge. Several issues

raised by Quillian have been examined in detail in AI. The issues of modes
of inference, inheritance of properties, and the numerosity and semantics of
arcs are discussed in the domain of knowledge representation (see Chap. Ill,
in Vol. I; also, Brachman, 1978). In psychology, the model was subjected to
empirical analysis and several other associative models were developed. Three
will be discussed in the succeeding articles.

References

The best paper on Quillian's model is his own in Minsky (1968).

E2. HAM

In THEIR BOOK Human Associative Memory (1973), psychologists John

Anderson and Gordon Bower present an associationist theory of human

long-term memory (LTM). Aspects of their theory have been implemented in
a computer simulation called HAM that parses simple propositional sentences

and stores the parsed sentences in its memory. HAM also answers simple

questions. Its abilities are limited, but intentionally so, in that Anderson and

Bower have eliminated the mnemonic strategies and tricks that result in smart

memory performance in humans. Their goal was to model the strategy-free

component of human long-term memory and to explain the vast experimental
data on the subject. With respect to this goal they write:

Why not add some more inferential routines to increase the intelligence

with which it (HAM) answers questions? We started down this enticing,
seductive path; but we slowly came to the realization that this was no way
for experimental psychologists to proceed. . . . The end product of such an
enterprise would appear to be thousands of lines of program that described
the countless heuristics, procedures, tricks, and rules that the human has
learned in his lifetime. We would have translated one incomprehensible
mass of particulars, the human mind, into another incomprehensible mass,
a computer program. But the task of science is surely to reduce particulars
to general laws rather than translate particulars from one idiom to another,

(p. 145)

Anderson and Bower assume that long-term memory is strategy invariant;
the strategies that are obviously used to remember things are, they assume,

imposed by an executive component of cognition. LTM is thought to be

much simpler than the experimental literature suggests, because much of

the literature does not separate out the effects of mnemonic strategies on

memory performance. Memory experiments that use single words or nonsense

material as stimuli are considered especially likely to have their results compli-

cated by mnemonic strategies, because these materials are more easily remem-
bered with some strategy than without. Consequently, most of Anderson and

Bower's research concerns memory for sentences or phrases that are appar-
ently less likely to evoke mnemonic strategies.

Anderson and Bower chose question-answering as the task environment
for HAM. This may be the simplest task on which to examine a memory model,

since it requires only storage, retrieval, and rudimentary parsing functions.

HAM accepts two kinds of inputs, facts and questions, which it parses

into input structures (described below). To facilitate parsing, inputs are made

only in a natural subset of English. We will not consider HAM's parser in this
article other than to say that it is a top-down, left-to-right, predictive parser;

42

E2 HAM 43

we refer the reader to Chapter 8 of Anderson and Bower's book (1973) for
more details.

The parameters of memory that interest Anderson and Bower are:

1. The set of possible memory structures,

2. The set of possible inputs to memory,

3. The set of possible outputs from memory in response to probes,

4. The set of possible probes,

5. The encoding process by which the structure of memory is modified to
record new information,

6. The decoding function by which the structure of memory is probed to
determine what is recorded there.

Some assumptions are made about these parameters. First, the only

allowable input structures are facts and questions. The latter are called

probes. It is assumed that probes are always parsed into the same input

structure, that the encoding function always matches the input structure to

memory in the same way, and that the same output will be generated to a

probe.

Representation of Knowledge in HAM

All knowledge in HAM is represented as propositions, encoded in binary

trees. For example, the structure of In a park a hippie touched a debutante is

shown in Figure E2-1. The numbers identify nodes in memory; the labels are
interpreted as follows:

■abel
Interpretation

C Context in which Fact is true

F Fact

L Location

T Time

S Subject
P Predicate

R Relation

0 Object
E Set membership

A proposition tree may also consist of a fact without a context. In this

case, it always has the subject-predicate form; sometimes the predicate is just

a single concept (see Fig. E2-2).

The relation-object pair is used to express implicit or explicit causality,

among other things. Cause is illustrated as a relation in Figure E2-3. This

44 Models of Cognition XI

PARK

33 34

HIPPIE TOUCH DEBUTANTE

Figure E2-1. HAM structure for In a park a hippie touched
a debutante.

structure represents the sentence John opened the door with the key. It

includes an implicit cause, namely, turning the key caused the door to open.

This tree is more abstract than the one shown in Figure E2-1, because it does
not show the terminal quantifiers leading to the terminal nodes of the tree. Set

membership, labeled "E" above, is one of three terminal quantifiers. It is used
when the terminal concept is a member of a set, such as the set of debutantes.

A generic link is used when the terminal node denotes all members of a set,

for example, the entire class of dogs in All dogs chase some cats. A subset link
is used to indicate that the terminal node denotes neither an entire class nor

a single member, but a subset of a class. Cats in the previous sentence takes

a subset link. These links give HAM the representational power of second-

order predicate calculus (Anderson and Bower, 1973, pp. 167-169; however,

the reader is referred to Anderson, 1976, pp. 165-169, for a criticism and
reworking of the terminal quantifications of HAM).

Properties of HAM 's Knowledge Representation

Anderson and Bower (1973) specify the properties of their memory struc-
ture as a set of postulates:

Symmetry: If an associative link exists between two nodes, then an inverse

link also exists. Concretely, if one knows a relation between two objects,
one also knows the inverse of that relation.

No- forgetting: Once a structure is incorporated into memory, it cannot dis-
appear from memory. Therefore, forgetting must occur by losing access to

the information in the structure, not the information itself. (For more on
this view, see Article XI. D.)

E2 HAM 45

The debutante is tall

debutante tall

Figure E2-2. Simple subject-predicate structure.

First Empiricist Postulate: There is no innate knowledge in the form of asso-
ciations between memory nodes. All associations are formed in response to

inputs.

Second Empiricist Postulate: Concepts (nodes) similarly are acquired only
through inputs. However, this can lead to the idea that HAM is initially
empty, which Anderson and Bower explicitly reject. They postulate a base
set of simple ideas that are present in HAM at its birth and upon which more
complex ideas are built.

An Example of HAM in Operation

HAM accepts input sentences (indicated by ** below), builds associative
structures of them in memory, and answers questions about them:

** In a park a hippie touched a debutante.

HAM responds by building and printing the structure (shown in Fig. E2-4)
that corresponds to this assertion. It is the same structure as shown in

Figure E2-1.

** Who was touched by the tall hippie?

The tall hippie — which one?

8/ \P DOOR OPEN

Figure E2-3. Implicit cause in the sentence John opened
the door with the key.

46 Models of Cognition XI

HAM does not know of any tall hippies. It is told that the current hippie
is tall.

** The hippie was tall.

HAM incorporates this new knowledge and prints out its structure. The

new knowledge structure is illustrated in Figure E2-5; for clarity, we have
shown it connected to the structure from Figure E2-4, although HAM
would not print all these nodes, but only the new nodes— 45, 46, 4% 4$>
and 32 — and the associative links between them.

** Who was touched by the tall hippie?

HAM can now answer the question.

The debutante.

This example illustrates HAM's operation. When input sentences are
typed in, they are parsed into tree structures. If the input material is an

assertion like The hippie was tall, HAM incorporates it into memory by finding

and merging common nodes in memory and in the input. In this case, part of

the input structure matches node 32 of HAM's memory, corresponding to the
hippie concept. HAM incorporates the input structure into memory by joining

it to node 32, as shown in Figure E2-5. Thus, HAM learns by associating new
knowledge in the form of input trees with old knowledge already in memory.

If the input sentence is a question, the parser generates an input tree that

may be missing a part. This kind of tree is called a probe. For example, the

question Who was touched by the tall hippie? is parsed into a probe of the

form The [blank] was touched by the tall hippie; see Figure E2-6. To answer
questions, HAM quite literally fills in the blanks. It searches its memory for a

structure like the probe that has a node instead of a blank. This node is the

answer to the question. In this case, the probe in Figure E2-6 matches the

memory structure in Figure E2-5, and the node corresponding to the blank
is debutante.

37

>/\

38
36

v / T S V /

31

E/

PARK

PAST 32 35

HIPPIE /R

\°

33
A

TOUCH
34
DEBUTANTE

igure E2-4. H AN \ stru< :ture for In a par
touched a debutante.

E2 HAM
47

TOUCH DEBUTANTE

Figure E2-5. Illustration of how HAM incorporates the fact The
hippie was tall into its memory.

HAM matches input trees to extant memory structures to associate new
information with old and to answer questions. Its operation becomes more
complicated when partial matches are involved. The 1973 version of HAM

was run in two modes. The mode illustrated in Figures E2-4 and E2-5 has
HAM not accepting a partial match in the case of the tall hippie. The pro-

gram wants to be told explicitly that the tall hippie in the input tree and the

hippie in memory are the same hippie. In the other mode, HAM accepts par-
tial matches. For example, it would answer the question Who was touched by

the tall hippie? by matching the probe tree in Figure E2-6 to the memory

TOUCH BLANK

Figure E2-6. Probe tree for Who was touched by
the tall hippie?

48 Models of Cognition XI

structure in Figure E2-4. It would not be necessary to spell out that the
hippie was tall, as in Figure E2-5. (Partial matching is discussed further in
Anderson and Bower, 1973, pp. 242-246.)

From these examples, one can see that the matching process, MATCH, is

fundamental to HAM's operation. MATCH is simple in conception. First it
finds nodes in memory that correspond to the terminal nodes of an input
structure, and then it attempts to find links in memory that correspond to
the links in the input structure. In other words, MATCH finds paths between
input terminal nodes that correspond to paths in memory. A memory path
and an input structure path are considered equivalent if they have the same
number of links and the same sequence of relations labeling the links.

HAM searches for paths in memory from all of the input terminal nodes
in parallel. For example, after matching the terminal nodes of the probe

(Fig. E2-6) to nodes in the memory structure (Fig. E2-5), MATCH would
search from each of the nodes (past, touch, hippie, past, tall), in parallel, to
determine whether the paths that connect them are identical in memory and
in the probe. However, if a node has more than one path emanating from

it (hippie has two), they are searched sequentially. Consequently, the time
required to establish that a node falls on a path is proportional to the number

of associations it has — the number of paths it belongs to. This is called the
fan effect.

HAM knows many facts, and a given terminal node like hippie is likely
to be part of several trees. In this case, hippie is associated to nodes 36 and
47 in memory by means of a subject link. The nodes associated with each

node by a link are stored in a GET-list for the node and link. The hippie
node in Figure E2-5 would have a single GET-list with two members for the
subject relation. One can imagine other associations made with other links

(e.g., object) resulting in other GET-lists. To reduce search, MATCH follows
only the links from a node in memory that have the same label as the links
from the corresponding node in the input tree. If the hippie node in memory
were connected to other structures by an object link, MATCH would not search
them, since the input structure it is matching to memory has only subject
links emanating from hippie.

Search is further speeded by using recency information. The members of

the GET-list are examined in the order of most recent mention. Moreover,
HAM will not necessarily search all members of a GET-list; it may be too long.
This leads to the sole mechanism of forgetting in HAM: An association between
two nodes that has not been mentioned in a long time will drop farther and

farther down the GET-lists for both nodes, thereby increasing the probability
that HAM terminates its search from one of the nodes without finding the
association with the other.

Search can be speeded to some extent by these methods, but a node may
still be a member of many paths. Hippie could be the subject of dozens of
sentences, and MATCH would have to check each, serially, to see if an input

E2 HAM 49

structure corresponds to one of them. The number of associations a node has

is called its fan- out; since fanning nodes are searched sequentially, the fan-
out contributes to the amount of time required to answer a question. This

property is the basis for reaction-time experiments with human subjects. HAM
predicts that it should take humans longer to process memory concepts with

a high fan-out than those with a low one. See the following article on ACT
for an explanation of the Sternberg effect in terms of the fan effect.

To summarize, MATCH associates terminal nodes in the input structure
with corresponding nodes in memory and then starts a parallel search from
these nodes for paths between them that are equivalent to the paths between
the terminal nodes of the input structure. To do this, it examines the label
of each link emanating from a node in the input structure and searches the

appropriate GET-list associated with the corresponding node in memory. The
GET-list may not be searched completely and thus associations between nodes
may appear to be lost, which accounts for forgetting in HAM. The position of

a node on the GET-list is a function of how recently it was mentioned, so that
old associations are more likely to appear to be forgotten than recent ones.

Lastly, the nodes on a GET-list are searched serially, so that a large GET-list
can take a long time to search.

Conclusion

Anderson and Bower have a strong commitment to empirical data about

human memory. The HAM model was designed as a parsimonious and opera-
tional explanation of a wide range of results. It also made a number of predic-

tions that were tested with the standard experimental methods of cognitive
psychology. The individual results are voluminous and of interest primarily
to cognitive psychologists; none of the particulars is presented here. However,
the general result is especially important: A wide range of memory tasks

can be modeled by a strategy-free process. Although humans use sophisti-
cated strategies to remember difficult (often meaningless) material, the study

of long-term memory is simplified by assuming that the strategies overlay
a relatively simple mechanism common to all memory performance. The
MATCH process is such a mechanism, and in experiments in which the utility of
mnemonic strategies is reduced, it predicts many interesting empirical results.

References

Anderson and Bower's 1973 book Human Associative Memory provides
a detailed account of the HAM model and of empirical tests of the model.
The first four chapters of the book are interesting reading, although they are

background to HAM, not a discussion of HAM itself. They discuss philosophi-
cal approaches to the study of memory, linguistic theory, and other models of

memory.

E3. ACT

THE ACT system was built by John Anderson following his work on HAM

(see Article XI.E2). There are many points of overlap between HAM and ACT,
but there are also fundamental differences. Most significantly, ACT is intended
as a general model of cognition, while HAM is a model of human memory. HAM
answers questions and learns new information; ACT does more, in that it can
be programmed to perform a wide variety of cognitive tasks. In addition to its

long-term memory, ACT has a short-term working memory of active concepts
and a programmable production system that brings about changes in working

and long-term memories. Common to HAM and ACT are certain features
of long-term memory; for example, strategy invar iance has been carried over
to ACT, and so has the propositional representation of knowledge, although
modified in some details.

Overview of ACT

ACT has a long-term memory component and a user-programmable pro-
cedural component. The memory is a propositional associative network made

up of nodes representing concepts and arcs representing relations between

the concepts. ACT's memory is not very different from HAM's (discussed in
Article XI.E2), so it will not be described in detail here.

An important feature of ACT's memory is that only parts of it are active
at any time. Activation can spread through the network as nodes activate
adjacent nodes. The time required to activate the neighbors of an active node

depends on its fan-out, that is, the number of nodes connected to it. ACT
attends to a limited number of active nodes. Those that are not marked for

attention are eventually made inactive; those that are marked for attention

are put in a first-in, first-out buffer called the ALIST. They may displace older
nodes, because the ALIST has a capacity of just 10 items. In this article, the
ALIST will be called the working memory.

The programmable, procedural component of ACT is a production system.
Each production has a condition part as well as an action part that is invoked
if the condition is true. In ACT, all conditions test for a conjunction of features
of memory, and all action parts specify a change to be made to memory. The
conditions of productions can examine only the active part of memory. A
number of productions may be activated by the state of memory, in which
case each of them has a probability of being executed.

An Example of ACT

Anderson shows how ACT can be programmed to perform the Sternberg

memory- scanning task (Sternberg, 1969). In this task, subjects are presented

50

E3 ACT
51

with a list of numbers, for example, 4 9 13, and a probe number, which may

or may not be on the list. Sternberg's result is that, if the probe number
is in the list, then the amount of time required to confirm it increases, by
.038 seconds, for each number on the list. Curiously, the serial position of
the matching digit is irrelevant; the time required to confirm the presence of
a probe in a list of numbers is independent of where the probe occurs in the
list. Sternberg originally explained this effect in terms of a serial exhaustive
scanning model, in which the list is kept in working memory and a comparator
compares the probe digit to each list element. The comparison process was
thought to be exhaustive, meaning that all list elements are scanned, even if
a match to the probe has already been found. (This paradigm is discussed in

detail in Crowder, 1976, pp. 354-366.)
Anderson offers a different explanation in terms of ACT. When the list of

numbers is presented, a structure is built in memory to represent it. In the
case of the list 4 9 1 3, a node called LIST is connected to four nodes, 4, 9, 1,

and 3, by the relation CONTAINS, as shown in Figure E3-1. In ACT's memory,
the LIST node is connected to four others and ultimately to four numbers by

the relation CONTAINS. The LIST node has a fan-out of four, since four links
emanate from it.

The first production for the Sternberg task is:

PI. State = Ready — ► State and List.

It says that if ACT is in the ready state, the next step is to rehearse the state
and the list. In the context of memory, rehearsal means repeating something
over and over to keep it in memory, much as we do with telephone numbers.

Production PI brings about rehearsal behavior by the simple device of put-
ting on the ALIST the condition to satisfy PI again. Production PI is satisfied

whenever state = ready; when it is executed, it sets the state to ready and

LIST'
 s

/A — *\

t

' CONTAINS

\A

-■/

\

\»_
-3

KEY:

S: Subject
P: Predicate
R: Relation
A: Attribute

Figure E3-1. ACT memory structure for a list of numbers.

52 Models of Cognition XI

puts the LIST node on the ALIST again. This potentially infinite iteration
continues until another production is satisfied.

The second production, P2, tests whether a probe digit has been given. If
it has not, then P2 cannot have any effect and ACT will continue to rehearse.
If it has, then P2 changes the value of the state variable from ready to test
and puts the probe digit on the ALIST with the state variable:

P2. State = Ready and Probe given
— ► State = Test and Probe digit.

The third and fourth productions check for the presence of the probe
digit in the list and signal their findings. They then reset the state variable
to ready for the next problem:

P3. State = Test and List contains Probe

— ► Signal "Found it" and State = Ready.
P4. State = Test and List does not contain Probe

— ► Signal "Not there" and State = Ready.

This simple production system and the idea of spreading activation in
memory account for the Sternberg result that reaction time to identify a digit
increases with the number of digits in the list. At the beginning of a trial, ACT
has encoded the list in memory as described above, and the LIST node is put

into working memory (see Fig. E3-2). It is active, but the nodes emanating
from it are not; they must be activated by following links from the LIST node

in working memory into long-term memory.
With working memory in the state shown in Figure E3-2, production PI

applies. It will rehearse the contents of working memory until a probe digit is
given. When this happens, the value of the state variable is changed to test,

ALIST or

working memory

State = Ready

List Node

Long-term memory

Memory Structure

from Figure E3-1.
A A A A

Figure E3-2. Illustration of working memory, showing links
into long-term memory.

E3 ACT 53

the state necessary for P3 or P4 to apply. The other condition for P3 is that

the list contains the probe digit. Since the numbers on the list reside in long-
term memory, they must be activated for P3 to check them. The fan of the
LIST node determines how long it will take to activate the nodes connected to
it; as the number of links from the LIST node increases, it takes ACT longer
to search them. This is a slightly different explanation of the Sternberg effect.

Instead of serially scanning a list of numbers in working memory, ACT
activates the memory structure representing the numbers; the amount of time

required to do this depends on the fan-out of the LIST node. This determines
the reaction time in the Sternberg task.

Performance in ACT

ACT is a highly dynamic system. Its focus of attention changes as nodes in

long-term memory are activated and put in working memory, as other nodes
are pushed out of working memory, and as nodes are damped in long-term
memory and become inactive. There is a constant fluctuation of activity that
is complex and nondeterministic due to the probabilistic nature of spreading
activation.

Limitations were imposed on ACT to make it resemble human cognition
more closely. Some of these are:

1 . The parameters that affect spread of activation are extremely important
to the operation of the system because nodes must be active to get to
working memory, where productions operate on them. The fan of a node
is one such parameter. Others include how far activation must travel in
the memory network, how frequently nodes in memory are damped, and
how strong the links are between nodes.

2. The ALIST, or working memory, is of limited size, so ACT attends to
just a few concepts at a time.

3. Only some productions in ACT are applicable at any given time. There
are strategies for determining which are applicable and for deciding
among them. The strategies affect the amount of time ACT takes to
perform a task.

4. When new information is added to ACT, it has only a probability of
being remembered.

Learning in ACT

There are four methods for learning in ACT. Designation refers to telling

ACT something, for example, a proposition or a production rule. Generaliza-
tion and discrimination are two methods for automatically generating new

production rules. The fourth learning method, strengthening, is a reinforce-
ment procedure.

54 Models of Cognition XI

The first method, designation, is the simplest means of adding informa-
tion to ACT. It is the method that was used in HAM. The second method,

generalization of productions, works by replacing constant terms in the con-
ditions of two productions by variables. To avoid creating terms that are too

general to be interesting, ACT will not replace more than one-half of the con-
stants of the smallest condition. Discrimination, the third learning method,

produces two or more productions from one with too many variables in its
condition. It does so by instantiating the variables. Discrimination applies
whenever ACT gets feedback that a production is too general.

Generalizations and discriminations of productions do not replace the

original rules; rather, they exist with them. A generalization will apply
whenever either of its original productions applies but will have the same effect

as both. However, ACT has a conflict-resolution strategy that favors executing
specific rules before more general ones, so discriminations of general rules, or
the rules from which a generalization has been formed, have precedence over

generalizations.
Associated with each production is a strength that is used to resolve

conflicts when several productions are applicable. Strengthening, the last of

the four learning methods, reinforces productions by increasing or decreas-
ing their strength. If a production is found to be applicable, its strength is

increased by a constant number. However, its strength is decreased by 25%
if its execution leads to a mistaken conclusion. Negative strengthening is

therefore more effective than positive. Strengthening also applies to produc-
tions that are consistent with other applicable or misapplied productions. (A

production is consistent with another if its condition is more or less general
but its action is the same.)

Conclusion

ACT is a general framework in which cognitive performance is simu-
lated. It is not custom-built to perform a particular task, unlike most of the

systems discussed in this chapter. (MEMOD, another general system, is dis-

cussed in Article XI.E4.) Anderson considers ACT's design to be psycholog-
ically plausible; he goes to lengths to present the "predisposing biases" that

motivated design decisions in terms of the psychological literature. Moreover,
ACT makes reasonable predictions about human behavior in experimental

situations. ACT can be considered a theory, in the sense that it makes predic-
tions, and a programming language, or package, in the sense that it provides

an environment for building psychological models.

References

Anderson has published a lengthy book on the ACT system (1976) that
includes chapters on the structure and behavior of ACT, spreading activation

E3 ACT 55

in memory, learning, and language comprehension. It is an exhaustive treat-
ment, in which Anderson presents not only the ACT system but also the

theoretical motivations for it. The book is reviewed by Wexler (1978), and a
reply to the review can be found in Anderson (1980). The review and reply
are worthwhile reading for those interested in cognitive science, since they are
two different positions on how a science of mind should proceed.

E4. MEMOD

THE LNR research group, named for Peter Lindsay, Donald Norman, and
David Rumelhart, is engaged in the ongoing development of a general model

of human long-term memory called MEMOD. Of the five memory models
discussed in this chapter, MEMOD may be the most ambitious (ACT, discussed
in Article XI.E3, is the other candidate) because of its scope and because of

LNR's basic tenet that a single system accounts for cognition:

One system has to be capable of handling the representation and processing
issues in syntactic and semantic analysis of language, in memory, perception,
problem solving, reasoning, question answering, and in the acquisition of
knowledge. (Norman, Rumelhart, and the LNR Research Group, 1975,
p. 160)

It is a major goal of the LNR group that the MEMOD system should be a

general knowledge-representation system, that is, one that can represent any
kind of knowledge. Until quite recently, however, it was used primarily to
represent linguistic knowledge. Accordingly, the MEMOD system has three

main components: a parser, which is based on an augmented transition net-
work (ATN; see Article IV.D2, in Vol. i); a node space, which is a semantic-net

representation of world knowledge; and an interpreter, which performs opera-
tions on the node space. The node space represents both declarative and

procedural knowledge; node-space structures represent facts about the world
and also specifications of operations to be performed in the node space by the
interpreter. Because it is not a passive repository of knowledge but contains
procedures that manipulate knowledge, the node space is called the active
structural network, or ASN.

In this article, the design of the active structural network is sketched
briefly, followed by a more formal discussion of how concepts and events are
represented. Here, the role of the interpreter will be more obvious. We will
not consider the parser at all, since ATN parsers and case grammars are dealt
with in Chapter IV (in Vol. i) on understanding natural language.

The Active Structural Network

The design of the active structural network was constrained by a number

of goals arising directly from the natural-language applications intended for
the MEMOD model. Briefly, these were:

1. Completeness. The model must be able to represent any knowledge of
any type, including nonlinguistic knowledge.

56

E4 MEMOD 57

2. Extendability. The model must be extendable whenever new information
is available. If, for example, the model learns that to saunter is not
merely to walk but is to exhibit some degree of indolence, it must be
able to incorporate this information.

3. Invariance under paraphrase. Expressions that have the same meaning
should have the same underlying representation in the ASN regardless
of how they are stated at a surface level.

4. Preservation of overlap in meaning. The representation of words and larger
units of meaning in the ASN should reflect the possibilities of synonymy,
partial overlap, and no overlap in meaning. Meanings that overlap,
such as stroll and saunter, should have common components in their
representations. Unrelated words should not.

5. Continuity. In a psychological model of knowledge, words with similar

meanings should have similar structures, and a small change in mean-
ing should not cause a major change in its representation. Similarly,

concepts that have very different meanings should have very different
representations.

Semantic Decomposition and Case Structure of Predicates

The technique employed by the LNR group to satisfy these goals is seman-
tic decomposition of words (or more generally, concepts) into primitive

elements called predicates (see Article III.C6, in Vol. I, for a detailed discus-
sion of semantic decomposition). For example, they identify four classes of

predicates — stative, change, causative, and actional — that can be combined to
yield different verb meanings.

Stative predicates. The stative component of a verb indicates that a

state of the world holds over some time period. One of the stative predicates

in the MEMOD system is LOC. It takes four arguments, the last two of which

are optional:

LOC [object, at-loc, (from- time) , (to-time)] .

A semantic-net representation of the LOC predicate shows the LOC node

linked to four argument nodes, as shown in Figure E4-1. Here, a network
structure is shown to represent the sentence A stadium was located in the

park from 1 956 to 1 963. In addition to the LOC node, this figure also shows

nodes representing the concepts of stadium, park, 1956, and 1963. A point

of notation is that the angle brackets and parentheses in this diagram denote

tokens — or copies — of concepts and predicates, respectively. A token repre-
sents a concept in some context; a dictionary of type, or original, nodes is

also maintained, and token nodes are linked to them; see Article XI.El for a

discussion of the type- token distinction.
Change predicates. A verb like move can be represented as a CHANGE

predicate taking two LOC predicates as arguments, as shown in Figure E4-2,

58 Models of Cognition
XI

object at-loc
<stadium> ^ (|_0C)

from-time

<1956>

to-time

<1963>

<park>

Figure E4-1. The LOC component of the verb located in
the sentence A stadium was located in the

park from 1956 to 1963.

which represents the sentence The team moved from the stadium to the train-
ing camp in May.
Causative predicates. One can imagine how another verb, say, push,

might be represented by a structure like the one shown in Figure E4-2, but
predicated with a causative; that is, to push is to CAUSE to move from one

location to another. Figure E4-3 represents the concept of a person causing
an unspecified object to move from one unspecified place to another at an

unspecified time. It is the skeleton of a cause-to- change-location verb; the
reader can think of numerous verbs that have this general structure.

Actional predicates. Consider this example in the context of the design
goals discussed earlier. Semantic decomposition is a representational tool
that guarantees that similar meanings have similar structures. The structure
above is common to several verbs with overlapping meanings: push, shove,
carry, pull, transport, and so on. The actional predicate is instrumental in
making finer distinctions in meaning; however, LNR has done little work with
actionals, and generally the primitive predicate DO is used.

<stadium>-

(CHANGE)

from-state

at-

time\ to-state

at-loc
(LOC)

<May>
(LOC)

from-
time

to-

time

-►<team>

at-loc
-►<training camp>

object object

Figure E4-2. Move consists of CHANGE and LOC predicates; it is a CHANGE
in Location — as in The team moved from the stadium to the
training camp in May.

E4 MEMOD 59

(CAUSE)

event / \ result

< person > ̂ (DO) (CHANGE)

agent

from-
state

 (LOG) (LOC)

/ I \ / I \

Figure E4-3. Skeleton of a verb with CAUSE, CHANGE, and
LOC predicates organized to represent the
concept of causing a change in location, as

in push, pull, and carry.

Once a word is defined, it is stored in MEMOD 's dictionary as a type node
and can be used in more complex structures, as in:

<lion> «■ (CARRIED) ■♦ <antelope>

A final point, before proceeding to a more formal description of knowledge
representation in MEMOD, is that predicates have a case structure (discussed
in Article IV. C4, in Vol. i). For example, LOC has two necessary and two
optional arguments:

LOC [object, at-loc, (f rom-time) , (to-time)] .

This facilitates parsing. When the parser recognizes a predicate or a verb, it
can make predictions about what kinds of words to expect next on the basis

of knowing the verb's arguments.

Encoding Concepts, Events, and Episodes

In a 1972 paper, Rumelhart, Lindsay, and Norman specified four catego-
ries of rules for constructing complex knowledge structures from the simple

ones we have already considered:

1. Rules of formation for concepts,

2. Rules of formation for relations,

3. Rules of formation for propositions,

4. Rules of formation for operators.

Concepts are objects, for example, lion and stadium. Relations are the

names of associations that may hold among concepts, for example, HIT [actor,
object, instrument]. Propositions are instantiations of relations, for example,
HIT[John, ball, bat]. Operators, the last group, are of two varieties,

60 Models of Cognition XI

prepositional and relational. The former modifies concepts of time or location
to generate new concepts:

before (noon) or under (water) .

The latter modifies relations:

slowly (walk) or very (big) .

LNR gives five rules for forming concepts. First, an existing concept
can be qualified. This corresponds most closely to the action of adjectives.
A qualified concept has a node of its own; for example, the node lamb is
defined as young(sheep). Second, quantification of concepts can yield new
concepts, as when crowd is defined to be many (per sons). Third, new concepts
of location and time can be derived from prepositional operators. Fourth,

concepts can be conjoined to form new concepts; for example, and(dog, cat)
denotes the concept of the class of dogs and cats. Finally, concepts can denote

propositions. For example, in the proposition HIT(John, ball, bat), there is a
concept hit, which corresponds to an instance of the general relation HIT in
the context of John and his ball and bat.

There are three ways to generate new relations from old. The first is
to modify the relation, as with an adverb. For example, the relation stroll
is defined as slowly(walk). Another method is to modify one or more of the
arguments of the relation. For example, if the relation of walking is defined
as:

WALK [actor, path, time] ,

then a new relation, CLIMB, could be derived by specifying that the path
should be uphill. Finally, new relations can be generated by conjoining old
ones with special conjunctions. BECAUSE is one such conjunction:

FLEE [actor, object, time] is defined as
quickly (GO (actor, from (object) , time))

BECAUSE

FEAR (actor, object, time) .

Propositions are formed by instantiating a relation with concepts. For

example, the arguments of FLEE might be (Dorothy, lions, always). The other
method for obtaining propositions is to conjoin them with conjunctions like
BECAUSE and AND.

Operators are constructed in some of the same ways. New qualifiers are
generated from old by applying relational operators to them; for example, tiny
is very(small). Relational operators also apply to each other; for example,
partly is not(completely).

Sentences that describe events, such as The lion chased Mary, can be
encoded in MEMOD. Conjoining events by using conjunctions like BECAUSE,
AND, THEN, and WHILE allows one to represent complex episodes. Graphically,

E4 MEMOD
61

(growl)
A

act

< >

(hear)

act

(raise)

A

act

< >

actor

< >

object

->► <rifle>

< lion >

actor

< big-game hunter >

Figure E4-4. A representation of the episode The big-game
hunter heard the lion growl and raised his gun.

an episode is simply a sequence of event nodes connected by conjunctions. An

example of a graphical representation of an episode in which a big-game hunter

hears a lion growl and raises his gun is shown in Figure E4-4. (The empty
nodes represent tokens of the three events, hearing, growling, and raising.)

A simple propositional sentence can be broken down into a relation and a

set of concept arguments. A relation can be broken down further into primi-
tive predicates by semantic decomposition. Rules were discussed here that

conjoin and modify concepts, relations, propositions, and operators and that
create more complex structures such as episodes. These rules give MEMOD the
power to represent episodes of varying complexity. The next section outlines
the interactions between these representations and the interpreter.

The Interpreter

Knowledge is supplied to MEMOD in the form of sentences. After these
are parsed, the interpreter makes the appropriate changes to the ASN by
executing the program associated with each relation in the input sentence.
For example, a basic relation built into MEMOD is CONNECT. There is a type
node for CONNECT that is linked to a computer program that joins nodes

together in the ASN, as shown in Figure E4-5.
If the interpreter encounters a parsed version of the sentence Connect dog

to animal with is a, it will look up the word connect; find that it denotes a

built-in program that takes three arguments; bind the arguments dog, animal,
and isa to the variables X, Y, and Z; and execute the program. The result
is a network structure:

dog

isa
animal

62 Models of Cognition XI

(the computer program
connect — = ► that links nodes

variable (— -Y- —I together in the ASN)

isa with

Figure E4-5. Representation of the relation CONNECT.

The CONNECT program was built into MEMOD from the outset. However,

it is possible to define words by associating programs with them. For example,

the LNR group gives the following definition for the word son.

Define son as predicate.

the definition frame for son is: X is son of Y

the definition is:

Connect X to male with sex.

If age of X is less than 18, then
connect X to child with isa.

connect Y to X with parent-of.

(This represents an interaction with the MEMOD system. The text in ordinary

type is entered by the user; MEMOD's replies are in italics.)
The relation DEFINE is itself a built-in procedure that builds structures

in the ASN. For example, defining son yields a structure that is something

like the one shown in Figure E4-6 (which is not exact, since all of the arrows
pointing to the node CONNECT would be pointing to the same type node in

the ASN).

iswhen then then
(son) ►() ►() ►()

(connect) (conditional) (connect)

/ I \ / \ / I \
X male sex age then Y X parent-of

less 18

(connect)

/ I \
X child isa

Figure E4-6. Representation of the definition of son.

E4 MEMOD 63

The important thing about this structure is that it invokes changes to the

ASN when interpreted. Although its representation is uniform with declar-
ative network structures, it is a representation of a procedure. When the

interpreter is given the sentence Oedipus is the son of Jocasta, it will create
a structure in the ASN representing the facts that Jocasta is the parent of
Oedipus and that Oedipus is male. The distinction between procedural and
declarative knowledge in MEMOD is obscured by the uniform representation
used for both. It appears that there are two kinds of procedural knowledge,

built-in programs like CONNECT and definitions that are formally very similar
to episodes except for an IS WHEN link. IS WHEN links a node with its definition,
and interpreting the definition results in changes to the ASN.

A word like son, when defined in MEMOD, carries with it the procedures
necessary to make inferences about what it means to be a son; for example,
one can infer that a son is male because part of the definition of son is a
procedure that makes that connection in the ASN. Because definitions carry
implicit inferences about what it means to be something, MEMOD can answer
many questions. For example, given an appropriate definition, it can say
what it means to be a sandwich. Here is one definition from the Kitchenworld

implementation of MEMOD:

Define sandwich as recipe.
the definition frame for sandwich is: (subject)sandwich X.
the definition is:

Place a slice of bread on the counter.

Spread preferred spread of X on the bread.
Place each ingredient of X on the bread.
Place a second piece of bread on the bread.

This definition has a network structure similar to those shown above.

It is composed of nodes representing simple actions like place, which are
composed of simpler predicates like CONNECT. To answer questions such as

"What containers would be left on the counter after I made a sandwich?" the
interpreter executes the sandwich recipe in the ASN. This results in changes
to the ASN. For example, containers that were previously associated with
refrigerator by an IN link may subsequently be linked to counter by ON.

Conclusion

MEMOD implements a number of powerful ideas, which were reviewed
here. Semantic decomposition, for one, ensures that concepts with similar
meanings have similar structures. This was illustrated by a general structure
for verbs that mean to cause a change in location. In MEMOD, the meaning
of a concept is reflected in its structure, its composition of simpler units of
meaning.

64 Models of Cognition XI

Verbs and other structures in MEMOD have a case structure, which means
that MEMOD knows how many arguments a verb takes and what kinds of
arguments they are. There is a grammar for building structures in MEMOD,
and rules for building concepts, relations, propositions, and operators were
discussed.

Events in MEMOD can be linked by conjunctions. The THEN conjunction
is particularly important because it orders events of an episode in time and
for the interpreter. Another important link is IS WHEN. It links words to their

definitions, which are episode-like procedures for building structures in the
ASN.

References

The LNR research group wrote a book called Explorations in Cognition

(1975). It is a collection of articles by Norman, Rumelhart, and their graduate
students on experiments with the MEMOD system and is the most complete
and recent review of MEMOD.

F. BELIEF SYSTEMS

IMAGINE a conversation with a person who speaks only facts, the kind of
conversation you might have with an official who refuses to give a personal
opinion or make a prediction about the future or guess at an explanation for
a past event. Or consider the testimony of police officers; they say things like

"We were called to the scene at 12:07 A.M. and found the suspect holding two
hostages. We succeeded in disarming the suspect without injury. The suspect

is now undergoing psychological evaluation." What they do not say is that
they believe the suspect is guilty, that they believe he is a doped-up crazy,
that tljey were scared stiff while disarming him, that they sincerely hope he
gets the maximum sentence, that holding an old lady hostage is a miserable
act of terrorism, and so on. Police officers rightly stick to the facts. At least,
they do while on duty. Afterwards, we assume they are as full of opinion,
belief, innuendo, prejudice, and emotion as the rest of us.

In this example, the distinction between fact and belief has been amplified

to emphasize that much human discourse is in beliefs, speculations, predic-
tions, desires, and so on. The research discussed in this article is concerned

with the structure of beliefs, how we reason with beliefs, how beliefs function
as prejudices to influence interpretation, and how emotions affect reasoning.
These questions, and the computational systems that have been implemented
to explore them, fall in the domain of belief systems.

Abelson (1979) has outlined a number of peculiarities that set beliefs apart
from facts and that distinguish belief systems from other systems in AI:

1. Belief systems are not consensual. Different beliefs may result in different
interpretations of the same phenomena. For example, depending on

one's beliefs, the "generation gap" results from insensitive and restric-
tive parents or from ungrateful and immoral children. One's beliefs

can influence interpretation of relatively sure facts; for example, some
smokers refuse to believe that smoking causes cancer, and some people
insist that concentration camps never existed but are the creation of

propagandists.

2. Beliefs deal with conceptual entities such as the generation gap, the
supernatural, and extrasensory perception. Thus, an entity that exists
in one belief system may be absent in another.

3. Sometimes belief systems represent alternative "worlds," typically, "the
world as it should be." Ideologies often have implicit alternative worlds.

4. Beliefs have an evaluative or affective component. Events tend to be good
or bad, to evoke pleasure or displeasure. Abelson distinguishes between
two aspects of affect. One involves the world divided up into good and

65

66 Models of Cognition XI

bad things (or into as many categories as there are affects). From this
categorization one can infer the goodness or badness of events or objects.
For example, if X is bad, and Y helps X, then Y must be bad also.

Much of Abelson's early research was devoted to this kind of reasoning.
A second aspect of affect is how it influences the operation of a system;

for example, Faught (1975) characterizes emotions as leading to motives,
and Bower (1981) discusses the effects of emotion on memory.

5. Beliefs may be based on subjective experiences or episodes. Logical,
rational deductions may be based on a subjective event. For example, an
elaborate theory may be constructed around an event that was believed
to occur but that actually did not. An interesting historical example

is the mass hallucination of French physicists in the "N-Ray Affair"
(Klotz, 1980). It was believed that N-rays could be detected by their
effects on the brightness of an electric light-bulb, and for many years,
French physicists published reports of the curious properties of N-rays.
This research continued (though at a lesser pace) even after it was
demonstrated that perceived fluctuations in brightness were entirely

illusory. N-rays do not exist and the physics that had been developed
to explain them was founded on a hallucination.

6. One does not know, a priori, what knowledge is relevant to a belief.
The knowledge pertinent to diagnosis of glaucoma, for example, can be
circumscribed relatively easily. It is less easy to decide what is irrelevant

to conceptual entities such as the sexual promiscuity of today 's youth.

7. Credibility and emotion interact in evaluation. One may believe some-
thing is true, passionately; or there may be no emotional investment in a

belief. For example, it may be true that one brand of pain reliever con-
tains more aspirin than another, but it is hard to achieve the enthusiasm

necessary to value one more highly.

These characteristics of belief and belief systems make reasoning from

belief more complicated than reasoning from facts or measurable uncertainties.

This is for several reasons, all related to what the belief system knows. First,

the nonconsensuality argument is that different belief systems house different

bodies of knowledge; thus, it may be difficult for one system to explain or

predict the behavior of another. For example, it is a difficult task for the

BUGGY system (see Article DC.C7, in Vol. Il) to derive the inference rules

applied by its students in working arithmetic problems. The students make

assumptions about arithmetic that are not consensual with the assumptions

of the adult community; consequently, they make errors. BUGGY's task is to

explain the errors by inferring the students' mistaken assumptions. Another
example from the ICAI literature (see Chap. IX, in Vol. n) illustrates the power

of assuming consensuality: Several ICAI systems maintain a student model — a

representation of what the student knows — to facilitate teaching.
Just as nonconsensuality is a problem, so are existence and openness,

and for much the same reason. The existence problem is that reasoning in

F Belief Systems 67

one system may be predicated on premises that do not exist in another; for
example, one can do little to mollify a person who believes that his (or her) bad
fortune is preordained. The belief in preordination is so central to his belief

system (though alien to one's own) that he accepts misfortune with resignation
and will do nothing to improve his lot. The openness problem is concerned
with the relevance of the knowledge used for reasoning; in one system a fact
may be central to an argument, while in another it is tangential. For example,
one person may attribute the decline of our society to the availability of drugs,
while another may believe the cause is inflation and a third may insist that
impiety is responsible. The first person constructs the causal argument that
society is being destroyed by drugs. He holds this argument with a conviction
that is lacking in the second person, who views drugs as a symptom of an

inflated economy, not as a symptom of impiety or as a cause of society's ills.
Two other aspects of belief make reasoning difficult. One is the role of

affect, or emotion, and the other is the role of confidence, or certitude. It is
tempting to make a dichotomy between rational and irrational thought and
to assign emotion to the latter category and ignore it. But there is strong
evidence that emotion has powerful effects on human cognition. In a recent
and extensive series of experiments, Bower (1981) and his colleagues have
shown that emotion influences what we learn, what we remember, and how we
make a variety of judgments. Our evaluations of ourselves and others and of

events are subtly but strongly biased by what we are feeling. Bower's results
suggest that emotion cannot be ignored as a factor in human cognition and

that it is at least one factor that argues against a strong rational-irrational
dichotomy.

The problem of confidence, or certitude, is that much of the information

used in reasoning is not true or false, but somewhere in between, and that one's
confidence in the information affects one's reasoning. One attempt to capture
this aspect of reasoning is found in MYCIN (see Article VIII.Bl, in Vol. Il),
which attaches certainty (or confidence) factors (CFs) to its conclusions. The
initial CFs are supplied to the MYCIN system with its heuristic rules by expert
diagnosticians. Then, as MYCIN reasons, it combines the CFs associated
with the rules to produce a CF for its conclusion. The CF mechanism is
quite crude, however, and very ad hoc. Clearly, MYCIN does not embody a
theory of human reasoning under uncertainty. More successful are Tversky
and Kahneman (1974), who have identified a number of factors that influence
judgments under uncertainty.

Even though reasoning with beliefs involves certain sophistications over
reasoning with facts, the two have been modeled in much the same way.

Belief systems are formally similar to some of the knowledge-based systems
in the Handbook. For example, the belief that // A likes B, then A will help
B can be phrased as a production from which the conclusion A will help
B follows logically from the premise A likes B. This deduction is logically
and psychologically valid. Other conclusions may maintain a formal logical

68 Models of Cognition XI

validity but be psychologically odd; for example, If you are suffering, then
you have found true happiness. It is useful to distinguish the formal logical
structure of a belief system from the psychological conclusions that arise from
it. The remainder of this article is concerned with both of these factors — with
formal representations that facilitate psychological, not necessarily logical,
behavior.

Implicational Molecules

Abelson and Reich (1969) described a system based on implicational mole-
cules, that is, sets of clauses related by psychological implication. For example:

[A does X, X causes Y, A wants Y] ,

or

[A likes B, A helps B] .

Just as a premise implies a conclusion, so does one part of an implicational
molecule imply another. Thus, implicational molecules can predict or explain
events:

If A wants Y, it is plausible to predict A does X. A does X because X causes
Y and A wants Y.

Abelson and Reich used implicational molecules in a system that simu-
lated the extreme right-wing viewpoint of a cold- war ideologue. The system

used stereotyped concepts such as Western- governments, situations- help ful-
to-the- Communists, and prevent, promote, and control. These were com-

bined to form generic sentences such as Liberals control Western-governments.
Generic sentences were then combined into implicational molecules that define
the conclusions that are reasonable in the system:

[Western-governments promote
situations-helpful-to-the-Communists,

Standing-up-to-Communists prevents
situations-helpful-to-the-Communists,

Liberals control Western-governments,
Liberals fear standing-up-to-Communists] .

A higher order structure was the master script, which spelled out several
general contingencies for the fate of the free world. Part of the script says
that the Communists want to dominate the world and will do so unless the

free world exercises its power, in which case the free world will surely prevail.

Generic events were considered instances of very general master-script events.
The system could judge the credibility of events; bad events were attrib-

uted to the Communists, good to the free world, and never the other way
around. It could also predict events and say what should be done if and

F Belief Systems 69

when they happened. This was accomplished by associating an event with
one on the master script and following it to a conclusion. For example, an
event interpreted as Communist domination was predicted to result in world
takeover unless the free world flexed its muscles.

The system answered specific questions about real people, not just abstract

questions about generic sentences. It did so by instantiating generic sen-
tences with more concrete concepts. For example, Liberals control Western-

governments might be instantiated in the belief that LB J controls the United
States.

One characteristic of belief systems in general is that they perform well

with stereotyped beliefs. They reflect what we suspect to be true — that little
knowledge is required to hold an oversimplified, dogmatic opinion. (Why let

facts interfere with what one knows is right?) Abelson's Cold War Ideologue
was not very knowledgeable; it could easily conclude that the Berlin Wall was
built by the Red Chinese, since it is just the sort of miserable thing that

Communists do. Ideological oversimplification seems to provide a counter-
example to the pervasive idea that knowledge is power. To achieve strong

dogma, one must ignore the evidence, counterexamples, and qualifications
that compromise a position.

The Structure of Belief Systems

Abelson (1973) later developed a hierarchical formalism for beliefs, based
on conceptual dependency analysis (see Articles IILC6 and IV.F5, in Vol. i).
Abelson starts his analysis with three kinds of atoms: purposes, actions, and
states. Purposes encode the wants or desires of actors; for example, Mary
wants John to do his share of housework. Actions are the things that the
actors want to do, and states are the situations that they want to bring about.

The next level of Abelson's hierarchy combines these atoms into molecules;
these are similar to the implicational molecules described earlier.

Molecules represent actions undertaken by actors to produce outcome
states. In their simplest form they are (Purpose, Action, State) triples, but
larger chains and networks are also possible. Among the larger structures

are plans, themes, and scripts. Plans represent action-state sequences, where
each state enables a subsequent action until a final goal state is obtained. The
structure of plans reflects that a set of sequential or parallel actions is usually
required to achieve a goal. By assumption, plans are always related directly
to the purposes of a main actor. If other actors are involved, they are simple
agents or instruments with no autonomy; they cannot enhance or frustrate
the plans of the main actor.

While plans represent the purposes of a single actor, interactions of the
purposes and plans of autonomous actors are represented in themes. Abelson
formed a taxonomy of themes based on the possible interactions of two actors

(see Table F-l).

70 Models of Cognition XI

Table F-i
A Taxonomy of Themes (from Abelson, 1973)

Influence of Actors

Sentiments Neither One Both

toward Other influences Other influences Other influence Other

Some positive, Admiration Devotion Cooperation
no negative Appreciation

Love

One actor Alienation Betrayal Rebellion

negative (also Freedom)
Victory

Dominance

Both actors Mutual Antagonism
Oppression

Conflict

negative (also Law and

Order)

Mutual antagonism, for example, refers to agents who are negative to
each other, but powerless to inflict harm. When one actor is able to harm the
other, oppression results; when each can influence the other, conflict results.

Scripts are sequences of themes that follow each other in some psychologi-
cally plausible fashion. (The reader should be aware that this is an earlier

and different interpretation of the roles of themes and scripts than is found

in Abelson's research with Schank, 1977; see Schank and Abelson, 1977, and
Article IV.F6, in Vol. I.) Simple scripts involving two actors are, for example,
blossoming relationships, wherein a Love theme develops from the themes

of Admiration, Cooperation, Devotion, or Appreciation, and souring relation-
ships, which happen when Love is complicated by Rebellion and, subsequently,

Mutual Conflict.

Differences between individual belief systems are manifest primarily at
the theme and script levels. These constructs provide for alternative views
of the same events; for example, a relationship might be viewed as alienation
by one actor and as mutual antagonism by the other. One may feel he is
not at fault for a deteriorating relationship; the other may feel that hostility
is involved. The greatest idiosyncrasy of belief is found at the script level,
where the repertoire of scripts maintained by an individual defines his ideology

(recall the master-script that defined the beliefs of the cold- war ideologue).

We now turn from Abelson's designs for general belief systems to a specific
kind of belief, namely, paranoid belief.

PARRY

PARRY was one of the earliest and most ambitious simulations of the role

of beliefs and affects in cognition. It is a model of what its designers call

F Belief Systems 71

the paranoid mode, a pattern of behavior motivated by paranoid beliefs and

intentions. PARRY's original designer, Kenneth Colby, is a psychiatrist, and
PARRY embodies his theory of paranoid behavior. We will discuss this theory
shortly, but first we consider the characteristics of paranoia.

Paranoids are suspicious; they think that other people intend to harm
them. They believe they are the target of conspiracies. They have a great

concern with "evidence," and are likely to treat a random event as significant
and intentional (the intentions are held by "them" — those malevolent others).
Paranoids are also hypersensitive to criticism:

References to the self are misconstrued as slurs, snubs, slights, or unfair
judgements. He may feel he is being watched or stared at. He is excessively
concerned about his visibility to eyes that threaten to see concealed inade-

quacies, expose and censure them. Cameras, telescopes, etc. that may be
directed his way unnerve him. He may feel mysteriously influenced through
electricity, radio waves, or (more contemporaneously) by emanations from
computers. He is hypersensitive to criticism. In crowds he believes he is
intentionally bumped. Driving on the highway he feels repeatedly followed
too closely by the car behind. Badgered and bombarded without relief by

this stream of wrongs, he becomes hyperirritable, querulous, and quarrel-
some. (Colby, 1975, p. 4).

Two other characteristics of paranoia are fearfulness and hostility. One
can see how both might arise from the conviction that the self is in a hostile
and intentionally malevolent world. A last characteristic, which Colby says
makes paranoia very difficult to treat, is rigidity and absolute conviction.
Once a paranoid is convinced, for example, that his doctor is in collaboration

with "them," it becomes extremely difficult to reestablish rapport because the
patient will not compromise his beliefs.

The characteristics of paranoia are so clear-cut that it is possible to
simulate the paranoid mode. PARRY was and is an ambitious project because

it involves integrating beliefs, intentions, and affects with more "rational"
cognition. The manner in which these components interact is dictated by

Colby's theory of paranoia.
Paranoid behavior arises, according to Colby, from attempts to avoid

humiliation. In the PARRY simulation, humiliation arises, and is intently

avoided, during an interview with a doctor. (PARRY has a natural-language
front-end, but it is not very sophisticated and we will not be concerned
with it here.) Briefly, the paranoid (and PARRY) is hypersensitive to any
comment that can be interpreted as reflecting his own inadequacy. Any
such comment increases shame and humiliation. (Intense paranoia involves
interpreting virtually all interactions in this way.) The paranoid seeks to avoid
humiliation and shame, since it is intensely painful, so whenever he detects
a situation in which the doctor might be making a humiliating comment,
he takes three defensive actions: One is to change his opinion of the doctor

(e.g., Anyone who thinks I'm crazy must be really incompetent); another is to

72 Models of Cognition XI

decrease his level of shame, since he has concluded that the doctor, and not
he himself, is at fault; and the third is to take some action, which may be
hostile.

To achieve this behavior, PARRY has a number of beliefs, a number of
common inferences, and several processes that we will describe briefly. Beliefs
include The doctor is crazy or The doctor is friendly. PARRY also has four
beliefs that reflect humiliation: PARRY is stupid, PARRY is dishonest, PARRY
is crazy, and PARRY is worthless. PARRY must avoid concluding that any of
these are true, since these conclusions cause pain. Unfortunately, PARRY is
always trying to find evidence for them in its interactions with the doctor.
This is the problem: To avoid humiliation, the paranoid must constantly
search for it; he must catch the insult and deflect it before it harms him.

PARRY has a set of inferences that alert it to insults, and its hypersen-

sitivity arises from these inferences. For example, if the doctor says, "You
didn't answer my question," PARRY infers that the doctor thinks he is stupid;
this statement can also be taken as evidence that the doctor thinks PARRY

is not telling the truth — is dishonest. Whenever the doctor says anything,
PARRY makes whatever inferences it can, and if the inferences support any
of the four humiliation beliefs that we just mentioned, then PARRY increases
its level of shame.

Thus, one of PARRY's processes is to search for evidence of humiliation in
the doctor's communications. When this process finds evidence, another affect
process increases PARRY's shame; if the level of shame crosses a threshold,
PARRY launches into characteristic hostile paranoid behavior. This involves a

third process dealing with intentions. PARRY has three emotions — fear, anger,

and shame — each of which plays a role in PARRY's intentions. When anger is
high, PARRY intends to attack the doctor; when fear is high, PARRY intends
to alter the interview situation so that the outcome it fears — humiliation — is
less likely. And when shame is high, PARRY does three things: It defends
itself by throwing out the belief that led to humiliation and replacing it with
another one, usually a revised and uncomplimentary belief about the doctor
(e.g., The doctor is crazy); it reduces its shame, since the belief that caused
shame has been exorcised; and it intends a strong action, usually based on its
new belief about the doctor. It may intend to attack, lie, or withdraw.

We have discussed how PARRY integrates inferences with affects and
intentions to produce paranoid behavior; we conclude with the following brief
example of a dialogue with PARRY. Initially, the doctor asks a lot of innocuous
questions, from which PARRY concludes that the doctor is friendly, wants to
help, and can help. For example:

Doctor: What do you do for a living?

PARRY: I work at Sears.

Hut the doctor is sure to stumble onto a topic that PARRY finds sensitive, at
which point PARRY will experience an increase in shame:

F Belief Systems 73

Doctor: How much do you get paid an hour?

PARRY: My salary is none of your business.

In this interaction, PARRY concluded that the doctor was implying that

PARRY had no money — was worthless. Although shame was not elevated to
the point that PARRY enters paranoid mode, it does provoke an angry attack.

PARRY can be mollified if the doctor goes back to asking innocuous questions,

or compliments PARRY, or apologizes.

At a later point in the interview, PARRY introduces its main concern —
that bookies and the Mafia are out to get him. At this point, the doctor

must tread very carefully. If the doctor expresses any skepticism about

PARRY's delusions, shame will increase markedly, and PARRY will become
uncooperative. As long as the doctor asks simple questions, PARRY will
answer them:

Doctor: What about bookies?

PARRY: A bookie didn't pay me off once.
Doctor: And then what happened?

PARRY: I had an argument with the bookie who did not pay off.
Later on I remembered he had friends in the underworld

and I thought he would use them to get even with me.

Incidentally, PARRY has an elaborate story about the bookies, rather like

Abelson's master-script. One of PARRY's goals for the interview is to tell the
whole story. The last interchange was, therefore, quite successful. However,

telling the whole story makes PARRY vulnerable and sensitive, so that when

the doctor says:

Doctor: I find you interesting.

PARRY thinks it is an insult and responds angrily:

PARRY: Are you trying to say something?

The doctor then asks several questions that are inflammatory and that elevate

PARRY's affects. The doctor finally says:

Doctor: You appear to be very sick.

This is intolerable to PARRY. It increases his fear, anger, and shame markedly.

From this point on, the interview deteriorates. PARRY lies:

Doctor: How do you feel right now?

PARRY: I am perfectly fine.

And withdraws:

Doctor: Do you need to have psychiatric treatment?

PARRY: I don't want to talk about it.

74 Models of Cognition XI

PARRY substitutes uncomplimentary beliefs about the doctor for shame-
ful beliefs about himself, concluding that all doctors are bad and that this one

is abnormal. These beliefs allow PARRY to reduce shame and drop out of the

paranoid mode into being merely angry, so that when the doctor concludes
the interview and thanks PARRY for his cooperation, PARRY bluntly tells him
not to come back.

Conclusion

The study of belief systems is challenging because, unlike "facts," beliefs
are nonconsensual, have associated affects, and have associated confidences
or credibilities. Even the basic problem of how confidences in beliefs are
adjusted by evidence has no general solution, and the more difficult problems
(e.g., the effects of emotion on cognition) are barely formulated, much less
solved. Despite these difficulties, the researchers surveyed here are convinced
of the importance of belief systems, since humans clearly do not reason entirely
from facts with consistent inference rules, but instead, prejudices, biases,
episodic memory, confidences, and emotional states are neatly integrated into

"rational" reasoning.

References

Abelson (1973) provides a readable account of his research prior to his
collaboration with Schank. Schank and Abelson (1977) is a very readable

account of their collaborative work, although it is more concerned with natural-
language understanding than with belief systems. For those who are interested

in emotion, Mandler (1975) presents a complete cognitive theory, with histori-
cal information, and Bower (1981) is a survey of some surprisingly powerful

effects of mood on memory and cognition.

Colby (1975) has written a short monograph that details the PARRY pro-
gram; Faught, Colby, and Parkinson (1974) provide another good discussion,

though it lacks the psychiatric background.

Chapter XII

Automatic Deduction

CHAPTER XII: AUTOMATIC DEDUCTION

A. Overview / 11
B. The resolution rule of inference / 86
C. Nonresolution theorem proving / 94

D. The Boyer-Moore theorem prover / 102
E. Nonmonotonic logics / 114
F. Logic programming / 120

A. OVERVIEW

A CENTRAL PROBLEM in AI research is how to make it possible for com-
puters to draw conclusions automatically from bodies of facts. Any attempt

to address this problem requires choosing an application, a representation for
bodies of facts, and methods for deriving conclusions. This article provides an
overview of the issues involved in drawing conclusions by means of deductive

inference from bodies of commonsense knowledge represented by logical for-

mulas. We first review briefly the history of automatic deduction — its origins,
its fall into disfavor, and its recent revival. We show why deductive methods

are necessary to solve problems that involve certain types of incomplete infor-
mation and how supplying domain-specific control information offers a solu-

tion to the difficulties that previously led to disillusionment with automatic
deduction. We discuss the relationship of automatic deduction to the new
field of logic programming. Finally, we survey some of the issues that arise in

extending automatic-deduction techniques to nonstandard logics.

Historical Background

Automatic deduction, or mechanical theorem-proving, has been a major
concern of AI since its earliest days. At the first formal conference on AI, held

at Dartmouth College in the summer of 1956, Newell and Simon (1956) dis-
cussed the Logic Theorist, a deduction system for propositional logic. Minsky

was concurrently developing the ideas that were later embodied in Gelernter's
theorem prover for elementary geometry (see McCorduck, 1979, p. 106; Gelern-
ter, 1963). Shortly after this, Wang (1960) produced the first implementation

of a reasonably efficient, complete algorithm for proving theorems in proposi-
tional logic.

Following these early efforts, the next important step in the development

of automatic-deduction techniques was Robinson's (1965b) description of a
relatively simple, logically complete method for proving theorems in first-order

predicate calculus (see Article III. CI, in Vol. i). Robinson's procedure and those
derived from it are usually referred to as resolution procedures (Article XII.B),
because the basic rule of inference they use is the resolution principle:

From (A V B) and (-.A V C), infer (B V C) .

Robinson's work had a major influence on two somewhat distinct lines
of research. One of these was mathematical theorem-proving, which aims at
providing practical tools for discovering new results in mathematics. (That
line of research is not the main focus of this chapter, although Article XII. C

is oriented in that direction.) But Robinson's work also had a major impact

77

78 Automatic Deduction XII

on research into commonsense reasoning and problem solving. His ideas in

this area brought about a rather dramatic shift in attitudes toward automatic

deduction. The early attempts at automatic theorem-proving were generally
thought of as exercises in expert problem solving: the Logic Theorist was

regarded as an expert in propositional logic and Gelernter's program was
considered an expert in geometry. However, the resolution method seemed

powerful enough to make it possible to build a completely general problem-
solver by describing problems in first-order logic and deducing solutions by a
general proof procedure.

The idea of using formal logic as a representation scheme and deductive
inference as a reasoning method was apparently first suggested as an approach
to commonsense reasoning and problem solving by McCarthy in 1959, in his

"Advice Taker" proposal (see McCarthy, 1968). Black (1968) made the first
serious attempt to implement McCarthy's idea in 1964. Robinson's work
provided encouragement for this approach, and a few years later Green (1969)

carried out extensive experiments with a question-answering and problem-
solving system based on resolution (see Article III.Cl, in Vol. I, on the QA3

program).

The results of Green's experiments and several similar projects were dis-
appointing, however. The difficulty was that, in the general case, the search

space generated by the resolution method grows exponentially with the num-
ber of formulas used to describe a problem, so that problems of even moderate

complexity cannot be solved in a reasonable time. Several domain-independent
heuristics (e.g., set of support; see Article XII. B) were proposed to deal with
this issue, but they proved too weak to produce satisfactory results.

It appears that these failures resulted principally from two constraints
the researchers had imposed upon themselves: They attempted to use only

uniform, domain-independent proof procedures, and they tried to force all
reasoning and problem-solving behavior into the framework of logical deduc-

tion. Like a number of earlier ideas such as self-organizing systems and
heuristic search, automatic theorem-proving turned out not to be the magic
formula that would solve all AI problems at once. In the reaction that fol-

lowed, however, not only was there a turning away from attempts to use

deduction to create general problem-solvers, but there was also widespread
condemnation of any use of logic or deduction in commonsense reasoning or
problem solving. Arguments made by Minsky (1980, Appendix) and Hewitt
(1975; Hewitt et al., 1973) seem to have been particularly influential in this
regard.

Despite the disappointments of the late 1960s and early 1970s, there has

recently been a revival of interest in deduction-based approaches to common-
sense reasoning. This is apparent in the work of McDermott (1978), Doyle
(1979, 1980), and Moore (1980a, 1980b); in the current work on nonmonotonic
reasoning (Bobrow, 1980); and in recent textbooks by Nilsson (1980) and
Kowalski (1979). To a large extent, this renewed interest seems to stem from

A Overview 79

the recognition of an important class of problems that resist solution by any
other method.

Why the Deduction Problem Will Not Go Away

If a description of a problem situation is complete in terms of the objects,
properties, and relations relevant to the problem, we can answer any question

by evaluation — deduction is unnecessary. To illustrate, suppose we have a
knowledge base of personnel information for a company and we want to know

whether there is any programmer who earns more than a vice-president earns.
We could express this question in first-order logic as:

SOME (X,Y) ((TITLE (X) = PROGRAMMER) AND

(TITLE (Y) = VICE-PRESIDENT) AND
(SALARY (X) > SALARY (Y))) .

If w$ have recorded in our knowledge base the job title and salary of every
employee, we can simply find the salary of each programmer and compare

it with the salary of every vice-president. No deduction is involved in this
process. On the other hand, we may not have specific salary information for
each employee. Instead, we may have general information about classes of
employees, such as:

All vice-presidents are managers.

ALL (X) ((TITLE (X) = VICE-PRESIDENT) -►
(CATEGORY (X) = MANAGER))

All programmers are professionals.

ALL (X) ((TITLE (X) = PROGRAMMER) -►
(CATEGORY (X) = PROFESSIONAL))

All professionals earn less than all managers.

ALL (X,Y) (((CATEGORY (X) = PROFESSIONAL) AND

(CATEGORY (Y) = MANAGER)) -►
(SALARY (X) < SALARY (Y))) .

From this information we can deduce that no programmer earns more than

any vice-president, although we have no information about the exact salary
of any employee.

A representation formalism based on logic gives us the ability to express

many kinds of generalizations, even when we do not have a complete descrip-
tion of the problem situation. Using deduction to manipulate expressions

in the representation formalism allows us to make logically complex queries
of a knowledge base containing such generalizations, even when we cannot
evaluate a query directly. On the other hand, AI inference systems that are

not based on automatic-deduction techniques either do not permit logically
complex queries to be made or they answer such queries by methods that
depend on the presence of complete information. For an AI system to handle

80 Automatic Deduction XII

the kinds of incomplete information people can understand, it must at least

be able to do the following:

1. Say that something has a certain property without saying which thing
has that property:

3(X)P(X);

2. Say that everything in a certain class has a certain property without

saying what everything in that class is:

V(X)(P(X)-Q(X));

3. Say that at least one of two statements is true without saying which
statement is true:

P\/Q\

4. Say explicitly that a statement is false, as distinguished from simply not

saying that it is true:

Any representation formalism that has these capabilities will be, at the very

least, an extension of classical first-order logic (see Article III.C1, in Vol. i), and

any inference system that can deal adequately with these kinds of generaliza-

tions will have to have at least the capabilities of an automatic-deduction
system. Thus, although Al rejected logic as a representation method and

deduction as a reasoning method, AI systems that reason with incomplete

information are actually equivalent to automatic-deduction systems.

The Need for Specific Control Information

As we remarked above, the fundamental difficulty with attempting to

base a general, domain-independent problem-solver on automatic-deduction
techniques is that there are too many possible inferences that can be drawn

at any one time. Finding the inferences that are relevant to a particular

problem can be an impossible task, unless domain-specific guidance is supplied
to control the deductive process.

One kind of guidance that is often critical to efficient system performance

is information about whether to use facts in a forward- chaining or backward-
chaining manner. The deductive process can be thought of as a bidirectional

search process (see Article II.C3d, in Vol. i), partly working forward from

known facts to new ones, partly working backward from goals to subgoals, and

meeting somewhere in between. Thus, if we have a fact of the form (P — ► Q),
we can use it either to generate Q as a fact, given P as a fact, or to generate

P as a goal, given Q as a goal. Early theorem-proving systems used every fact
both ways, leading to highly redundant searches. More sophisticated methods

A Overview 81

that eliminate these redundancies were gradually devised. Eliminating redun-
dancies, however, creates choices as to which way facts are to be used. In the

systems that attempted to apply only domain-independent control heuristics,
a uniform strategy had to be imposed. Often the strategy was to use all facts

in a backward-chaining manner only, on the grounds that this would at least
guarantee that all the inferences drawn would be relevant to the problem at
hand.

The difficulty with this approach is that the question of whether it is
more efficient to use a fact for forward than for backward chaining depends
on the specific content of that fact. For instance, according to the Talmud,
the primary criterion for determining whether someone is Jewish is:

V(X) (Jewish(mother(X)) -> Jewish(X)) .

That is, a person is Jewish if his or her mother is Jewish. Suppose we were to
try to use this rule for backward chaining, as most uniform proof procedures
would. It would apply to any goal of the form JEWISH (X), producing the
subgoal JEWISH (MOTHER (X)). This expression, however, is also of the form

JEWISH (X), so the process would be repeated, resulting in an infinite descend-
ing chain of subgoals:

GOAL

GOAL
GOAL
GOAL

JEWISH (MORRIS)
JEWISH (MOTHER (MORRIS))
JEWISH (MOTHER (MOTHER (MORRIS)))
JEWISH (MOTHER (MOTHER (MOTHER (MORRIS))))

If, on the other hand, we use the rule for forward chaining, the number of
applications is limited by the complexity of the fact that originally triggers
the inference:

FACT
FACT

FACT

JEWISH (MOTHER (MOTHER (MORRIS)))
JEWISH (MOTHER (MORRIS))
JEWISH (MORRIS) .

It turns out, then, that the efficient use of a particular fact often depends
on exactly what that fact is and also on the context of other facts in which
it is embedded. Many examples illustrating this point are given by Kowalski

(1979) and Moore (1980a), involving not only the distinction between forward
and backward chaining but other control decisions as well.

Since specific control information needs to be associated with particular
facts, the question arises as to how to provide it. The simplest way is to embed
it in the facts themselves. For instance, the distinction between forward and

backward chaining can be encoded by having two versions of implication,

for example, (P — ► Q) to indicate forward chaining and (Q <— P) to indi-
cate backward chaining. This approach originated in the distinction made in

82 Automatic Deduction XII

the programming language PLANNER (see Article VI.A, in Vol. Il) between

antecedent and consequent theorems. A more sophisticated approach is to

make certain decisions (such as whether to use a fact in the forward or

backward direction) themselves questions for the deduction system to reason

about, by using "meta-level" knowledge. The first detailed proposal along
these lines appears to have been made by Hayes (1973), while experimental

systems have been built by McDermott (1978) and de Kleer et al. (1979),

among others. Weyhrauch (1980) has perhaps done the most to explore the

kind of system architecture in which this sort of reasoning would be possible.

Theory Formation and Logic Programming

Another factor that can greatly affect the efficiency of deductive reasoning

is the way in which a body of knowledge is formalized. That is, logically

equivalent formalizations can have radically different behavior when used with

standard deduction techniques. For example, we could define the relation

ABOVE as the transitive closure of ON in at least three ways:

V(X,Y) (ABOVE (X,Y) <-*
(0N(X,Y) OR 3 (Z) (AB0VE(X,Z) AND 0N(Z,Y)))) ,

V(X.Y) (ABOVE (X,Y) <->
(0N(X,Y) OR 3 (Z) (0N(X,Z) AND ABOVE(Z.Y)))) ,

V(X,Y) (ABOVE (X,Y) <-►
(0N(X,Y) OR 3 (Z) (AB0VE(X,Z) AND ABOVE(Z.Y)))) .

(These formalizations are not quite equivalent, as they allow for different pos-
sible interpretations of ABOVE if infinitely many objects are involved. They

are equivalent, however, if only finitely many objects are being considered.)

Each of these formalizations will produce different behavior in a standard

deduction system, no matter how we make local control decisions of the

kind discussed in the previous section. Kowalski (1974) noted that choosing

among such alternatives involves decisions similar to those made when writing

programs in a conventional programming language. In fact, he observed that

there are ways to formalize many functions and relations so that applying

standard deduction methods will have the effect of executing them as computer

programs. These observations have led to the development of the field of logic

programming (Kowalski, 1979) and the creation of new computer languages

such as PROLOG (Warren, Pereira, and Pereira, 1977). Such developments
are discussed in Article XII. F.

Automatic Deduction in Nonstandard Logics

So far, we have discussed automatic deduction for classical first-order

logic only. Many commonsense concepts, however, are most naturally treated

A Overview 83

in either higher order or nonclassical logics. This presents a problem, because

classical first-order logic is the most general logic for which the techniques of
automatic deduction are at all well developed. It turns out, though, that there
are a number of techniques for reformulating representations in nonstandard

logics in terms of logically equivalent representations in classical first-order
logic.

Higher order logic differs from first-order logic in that it allows quantifi-
cation over properties and relations as well as individuals. That is, if we have

a first-order logic that allows us to make statements about all physical objects,
the corresponding second-order logic would allow us to make statements about
all properties of and relations among physical objects; a third-order logic
would allow us to make statements about properties of and relations among
these properties and relations; and so forth.

In some cases, the transition from first-order to higher order logic presents
fewer difficulties than might at first appear. In fact, the standard deductive

procedures for first-order logic also work for higher order logic, except that
general predicate abstraction is not performed; that is, these procedures will
not construct predicates out of arbitrary complex formulas. If John is a man
is represented as MAN (JOHN) , the predicate MAN can be retrieved when we ask

the second-order question, What properties does John have? All the deduction
system has to do is match X(JOHN) against MAN (JOHN) and return MAN as the
value of the variable X. But from the assertion that John is either a butcher

or a baker, represented as

BUTCHER (JOHN) OR BAKER (JOHN) ,

the system could not infer, without using predicate abstraction, that John

has the disjunctive property of being a butcher-or-baker. The system would
have to recognize that this complex expression could be reformulated as a

one-place predicate applied to JOHN,

(LAMBDA (Y) (BUTCHER (Y) OR BAKER (Y))) (JOHN) ,

which is of the right form to match X(JOHN) .

If this sort of predicate abstraction is not required, standard first-order
deduction techniques are sufficient. There has been some work extending the
standard techniques to handle the more general case (e.g., Huet, 1975), but
this makes the deduction problem much harder because of the combinatorics
of all the different ways predicate abstraction may be performed.

Another problem commonly encountered is how to do automatic deduc-
tion in logics that allow intensional operators. These are operators, such as

BELIEVE and KNOW, that produce sentences whose truth values depend fully
on the meanings, not just the truth values, of their arguments. Classical logic
is purely extensional, because the truth value of a complex formula depends

only on the extensions (denotations, referents) of its subexpressions. The
extension of a formula is considered to be its truth value, so the operator OR

84 Automatic Deduction XII

is extensional because the truth of (P or Q) depends only on the truth of P
and the truth of Q; no other properties of P and Q matter. The operator
BELIEVE, on the other hand, is intensional because the truth of A believes that
P depends generally on the meaning of P, not just on its truth value.

Many of the rules of classical logic, such as substitution of equals for
equals, do not apply within the scope of an intensional operator. To use a
classic example, since the morning star and the evening star refer to the same
object, it must be the case that The morning star is Venus is true if and only
if The evening star is Venus is true. However, it might be that John believes
the morning star is Venus is true, but that John believes the evening star is
Venus is false because, although the two embedded sentences have the same

truth value, they differ in meaning.
Fortunately, many of the difficulties presented by intensional operators

can be overcome by reformulating the statements in which they occur. There
are a number of methods for doing this, but one that is particularly elegant is

to reformulate intensional operators in terms of their possible-world semantics
(Kripke, 1971; Hintikka, 1971). The idea is that, rather than talking about
what statements a person believes, we talk instead about what states of
affairs, or possible worlds, are compatible with what he believes. Essentially,
A believes that P is paraphrased as P is true in every world that is compatible

with what A believes. This can be expressed in ordinary first-order logic
by making all predicates and functions depend explicitly on the particular
possible world they are evaluated in. The failure of equality substitution in
the preceding example is then accounted for by noting that what John believes
depends on what is true in all possible worlds that are compatible with what
he believes, but an assertion that the morning star and the evening star are
the same is a statement only about the actual world. Application of this idea
to reasoning about intensional operators in AI systems has been explored in

depth by Moore (1980b).

Finally, a type of nonstandard logic that has received much recent atten-
tion is nonmonotonic logic. Minsky (1980, Appendix) has noted that the treat-

ment of commonsense reasoning as purely deductive ignores one of its crucial

aspects — the ability to retract a conclusion in the face of further evidence.
A frequently cited example is that, if we know something is a bird, we nor-

mally assume it can fly. If we find out that it is an ostrich, however, we
will withdraw that conclusion. This sort of reasoning is called nonmonotonic
because the set of inferable conclusions does not increase monotonically with
the set of premises as in conventional deductive logics. The addition of the
premise that something is an ostrich results in removing the conclusion that
it can fly. While many procedures have been implemented that support this
type of reasoning, their theoretical foundations are questionable. Most of the
recent work on nonmonotonic logic (Bobrow, 1980; see Article XII.E) has thus
been directed at developing a coherent logical basis for this kind of reasoning.

A Overview 85

References

McCarthy (1968), Black (1968), and Green (1969) discuss formal logic as
a representation scheme and deductive inference as a reasoning method for
commonsense reasoning and problem solving. This theme is amplified in two
readable texts by Nilsson (1971, 1980). For references on some of the other
topics discussed in the overview, see the reference sections of the subsequent
articles.

B. THE RESOLUTION RULE OF INFERENCE

ONE of the best known methods of automatic theorem-proving is the reso-
lution procedure introduced by J. A. Robinson (1965b). In this article, we

describe the method, present some examples, and discuss extensions to it.

Derivation of the Resolution Rule

The resolution method shows whether a theorem logically follows from

its axioms. If a theorem does follow from its axioms, then the axioms and

the negation of the theorem cannot all be true — the axioms and the negated
theorem must lead to a contradiction. The resolution method is a form of

proof by contradiction that involves producing new clauses, called resolvents,

from the union of the axioms and the negated theorem. These resolvents

are then added to the set of clauses from which they were derived, and new

resolvents are derived. This process continues, recursively, until it produces

a contradiction. Resolution is guaranteed to produce a contradiction if the

theorem follows from the axioms. The simple resolution rule that produces

resolvents is derived in the following paragraphs.

By the expression (P — > Q) we mean If P is true, then Q is true; for

example, John is a boy — > John is male. A central rule of inference in logic is
modus ponens:

(((P - Q) and P) f- Q),

which means that if (P — ► Q) is true and if P is true, then we can conclude
that Q is true. An extension of this is the chain rule:

((P - Q) and (Q - R) \- (P-+R)).

When the implications in the chain rule are rewritten in their logically equiv-

alent form (-«P V Q), the chain rule becomes

(-P V Q) and (-.Q V R) \- (-P V R) ,

which can be written as:

(-P V Q)

hQ V R)

(-P V R) .

86

B The Resolution Rule of Inference 87

There is an apparent cancellation of the Q and ̂ Q. The disjunctions

(->P V Q), (->(? V P), and (iP V P) are called clauses, and (--P V R) is called

the resolvent of (-.P V Q) and (-.Q V P).
Implications in this simple form, called clause form, can be resolved

against each other; two clauses can be resolved to a single one. The heart

of the resolution proof method is to negate the theorem to be proved and

then to simplify and resolve clauses until a contradiction is found.

An Example

As an example of resolution, consider proving that (D V E) follows from

(A -+ C V D) A (A V D V E) A (A -> ->C). The first step is to negate the

theorem: (->(D V E)). This is logically equivalent to (->D A ->E). The next
step is to convert the axioms and theorem to clauses. The procedures for

this are explained in the last section of this article and in several texts

(e.g., Nilsson, 1980); all we need to know here is that the implication (A — ► B)

can be rewritten as the equivalent clause (->A V B).
The axioms are:

(A-+CV D)A

(A V D V E) A

They are rewritten as the clauses, and the theorem is added to the list:

(-.A V C V D) A

(A V £ V £) A

(iA V -.C)
(-.£> A -.£7) .

The A conjunctions are dropped, leaving five clauses:

1. MVCVD)

2. (AVDVE)

3. (-AV-C)

4. (-,!>)

5. (^).

If the theorem follows from its axioms, the axioms and the negation of the

theorem cannot all be true. Consequently, a contradiction must be implicit

in the five clauses just derived; they cannot all be true simultaneously. The

purpose of resolution is to find the contradiction. We will resolve clauses

against each other until a contradiction "drops out" :

88 Automatic Deduction xn

Resolution I

1. (-A V C V D)
2. (A\f Dy E)

(CV DW E)
^A and A

cancel each other.

Resolution 2:

2. (AV DV E)

3. (-.A V -.C)

(DV EV -.C)

^A and A

cancel each other.

Resolution 3:

Resolution 1. (CvDvS)

Resolution 2. (D V E V -iC)

(DVS)

->Cand C

cancel each other.

Resolution 4:

Resolution 3. (D V E)

(£)
-»Z) and £>

cancel each other.

Resolution 4. (£)

5- hE)
CONTRADICTION

This illustrates the process by which we determine that clauses and their

resolvents cannot all be true simultaneously.

The example just presented is from propositional logic. Now let us con-

sider first-order predicate calculus, where variables, predicates, quantifiers, and
functions are permitted (see Article III. CI, in Vol. I, for a discussion of logics).

The expression P(x) means P is true for x. For example, P(x) might mean

x is a positive number, so that P(2) is true, whereas P(— 3) is false. Or P(x)
might mean that x is a boy, in which case we would expect P(John) to be true

and P(Peggy) to be false.
We will use the notation Vi P(x) and 3x P(x) to mean For all x P(x)

and For some x P(x), respectively. The first form is called a universal quan-
tification, since it conveys the meaning that the clause is true for all objects;

the second is called an existential quantification, since it says that the clause
is true for at least one object. For example,

Vz(7V(x) -* x2 > 0), and
3x(N(x) A x < 0)

are true formulas. The first says that if x is a number, then the square of all

x is either positive or zero, whereas the second says that there is at least one

B The Resolution Rule of Inference 89

object that is a number and is negative. Notice that ->Vx P{x) is equivalent
to 3x -<P(x), and ~^3x P(x) is equivalent to Vi ->P(x).

It is also possible to have function symbols such as / and g. For example,
}{x) can mean father of x. Thus, if M(x) means x is a male, then M{f(x)) is
always true.

Two complications arise when proving theorems with variables, quanti-
fiers, predicates, and functions. One is getting them into clause form; the

other is the process of unification. Converting predicate logic to clause form
is formally straightforward (see the last section of this article). However, it
is important to understand the conceptual operations as well as the formal
ones, especially those associated with eliminating quantifiers. To eliminate

existential quantifiers, we simply choose a constant; for example, 3 x P(x) is
replaced by P(a). We instantiate the claim that an x exists by choosing a
particular a to take its place. However, if an existential quantifier is within
the scope of a universal quantifier, there is the possibility that the x that exists
somehow depends on the identity of the universally quantified variable. Thus,
we cannot replace it with an arbitrary constant. To account for this, whenever
an existential quantifier occurs within the scope of a universal quantifier, its
variable is replaced with a function of the universally quantified variable.

For example, Vx3y P(x,y) is rewritten as Vx P(x, /(x)), denoting that the
second argument of the predicate P is a function of the first. In this example,

/ is called a skolem function, and f(x) is called a skolem expression.
We have discussed the rationales for eliminating existential quantifiers.

Universal quantifiers are simply dropped from clause form, because after exis-
tentially quantified variables have been replaced by constants or skolem func-

tions, we may assume that the remaining variables are universally quantified.
In the previous example, y was replaced by a skolem function and x is assumed
to be universally quantified; thus, the quantifier V is deleted, resulting in the
clause P(x, f(x)).

The other complication in proving theorems in predicate calculus arises
during resolution itself. Recall that during resolution we would have constants

"canceling" each other out; for example, -A V B and A\J C would resolve
to B V C after canceling A and ->A. But how are resolvents to be produced
when there are variables and skolem functions? For example, does P(a) cancel

~>P{x) in the following resolution?

-nP(x) V Q(x) and
P(a) V R(z)

Q(a) V R(z)

In this case, the answer is yes: P(a) cancels ->P(x), because the expression
-<P(x) is claiming that there is no x for which P(x) is true (recall that x is
universally quantified), and P(a) is claiming that there is an object a for which
P(a) is true. This is an example of unification, the process of deciding whether

90 Automatic Deduction XII

the arguments of predicates are comparable for the purpose of resolution, and,

if they are comparable, what common substitution instance should be used.

In this case, the substitution instance was a; it replaces all instances of x,

including that in the predicate Q. The process of unification is analogous

to that of finding a common denominator for fractions: In order to make

comparisons between numbers expressed as x/3 and numbers expressed as

x/17, each is re-expressed as x/51. Similarly, there is a unification algorithm
that finds a common substitution instance for the arguments of predicates.

With these preliminaries over, we can now proceed to examples of resolu-
tion theorem proving in the predicate calculus.
The first step is, again, to negate the theorem and then put the axioms

and the theorem in clause form:

(-.P(a) A V x (P{x) V Q(f{x)))) (Axioms)

3 z Q(z) (Theorem)

V z ̂ Q(z) (Negated Theorem)

In this case, a is a constant symbol, and there are no existential quantifiers

and so no need for skolemization. Universal quantifiers are simply dropped.

The A connectives are also dropped to yield three clauses:

1. -P(a)

2. P(x)vQ(f(x))

3. ̂ Q(z).

These are resolved against each other as follows:

1. Clause 1 and clause 2 are resolved to produce Q(f(a)); the substitution
is a for x, or a/x.

2. Q(f(a)) is resolved against clause 3 to yield a contradiction; the sub-
stitution is f(a) for z, or f(a)/z.

Since a contradiction is produced, we can conclude that the theorem followed
from its axioms.

Another example is proving that there is always a number greater than
another number from the axiom that a number is less than its successor. (In
this case, infix arithmetic functions are used in the clauses; they could equally

well be written in prefix notation; e.g., Vt < (t, PLUS(£, 1)).)

V* (t < t + 1) (Axiom)

Vx3y (x < y) (Theorem)

First we negate the theorem:

3xVy ̂ {x < y).

Then, since x is an existentially quantified variable that is not within the scope

of a universal quantifier, we replace it with a constant. This eliminates the

B The Resolution Rule of Inference 91

existential quantifier; universal quantifiers are simply dropped as before. The
resulting clauses are:

1. t < t+ 1

2. -(a < y).

But this immediately results in a contradiction when a is substituted for t
and a + 1 is substituted for y.

A final example illustrates skolemization:

V x3y P(x,y) (Axiom)

3 z P(a, z) (Theorem)

where a is a constant. First, we negate the theorem, yielding V ' z ->P(a, 2).
Next, we eliminate quantifiers. Since 3 y is within the scope of the universal
quantifier Vx, the variable y is replaced, not with a constant, but, instead,
with a skolem function. Universal quantifiers are dropped as usual:

1. P{x,g(x))

2. -iP(a,z).

These clauses obviously resolve to a contradiction under the substitution

a/x, g(a)/z.
It can be shown that resolution is complete for (i.e., can prove all theorems

in) first-order predicate logic (Robinson, 1965b) and is sound (i.e., will not
indicate that nontheorems are true).

Strategies

Although resolution is complete, it can be extremely time-consuming. As
brought out in the overview (Article XII. A), resolution-based approaches to
problem solving fell into disfavor for just this reason.

Several strategies have been proposed to minimize the branching factor

of resolution proof trees. Several are discussed in detail in Nilsson (1980) and
in Chang and Lee (1973), and, thus, only two are briefly discussed here.

Set-of-support strategy. When at least one parent of each resolvent is
chosen from the negation of the theorem or from the set of clauses that are

derived from it, a set-of-support strategy is being used. This strategy clearly
restricts the number of clauses that can be resolved at any given time. It is

usually more efficient than breadth-first search.
Linear-input-form strategy. This strategy involves choosing resol-

vents so that one resolvent is always from the base set (the set of original
clauses). It is more efficient than the previous strategy, but it is not complete,

which is to say that there are cases in which it will not find a contradic-
tion when one exists. Nonetheless, the strategy is often used because of its

simplicity and efficiency.

92 Automatic Deduction XII

In addition to strategies designed to reduce the combinatorial explosion

involved in resolution, other simplifications can be made. One is to eliminate

tautologies from the set of clauses. A tautology is a trivially true clause

containing the subexpression A V ->A

Converting a Formula to Clausal Form

A formula, F, to be proved by resolution must first be negated and

converted to clausal form. It is assumed that F is a first-order formula that

is fully quantified. Conversion to clausal form is done by a series of steps:

1. Negate F: Replace F by ->F.

2. Remove — ► and «-► by replacing (A — ► B) by (-A V B) and (A <-► B) by

((-A VS)A (-.fl V A)).

3. Move -i inward, using the rules:

-(A A B) = -A V -»# ,

-(A v5) = ̂ AA-iB,

^Vx A(x) = 3 x ->A(x) ,

-i3 x A(x) = Vx -iA(i) .

4. Move V and 3 inward (optional).

5. Rename variables so that no two quantifiers quantify the same variables.

6. Exchange 3 for skolem functions and then drop V's (see below).

7. Convert to CNF (conjective normal form) by repeatedly applying

De Morgan's Laws:

--(A AB) = MV-B

-.(A V B) = ̂ AA^B.

m In step 6, if 3 y P(y) is within the scope of universal quantifiers V X\ V X2 . . . V x

and not within the scope of any existential quantifier, then replace 3 y P{y)

by P{fixi, •••>£n))) where / is a new function symbol (a skolem-function
symbol). All universal quantifiers are then dropped from the formula. Thus,

V x3y\f z3w P(x, y, z, w)

is replaced successively by

V x V z3w P(x, f\ (x), z, w)

VxVzP(x,fl(x),z,f2(x,z))

P(x,fl(x),z,f2(x,z)).

If n = 0, then y is replaced by a skolem constant yo (i.e., a function of
0 arguments).

B The Resolution Rule of Inference 93

It is usually faster to replace ->(P — ► Q) by (P A ->Q) before converting

(P — > Q) to (-iP V Q), when P is a large formula.

References

The resolution rule of inference was first described by Robinson (1965b).
Resolution has been extended to handle the equality relation; this is discussed

in Robinson and Wos (1969). This extension permits one to prove theorems

such as P{a) A a = b — > P(b).
Strategies for speeding up resolution theorem proving have been discussed

in several places. Wos, Robinson, and Carson (1965) discussed set of support;

hyper-resolution was considered by Robinson (1965a); locking was the subject

of Boyer's thesis (1971); and SL-resolution was discussed by Kowalski and
Kuchner (1971). Model elimination was introduced by Loveland (1978). Gen-

eral texts on theorem proving are Loveland (1978) and Chang and Lee (1973).

Nilsson's two textbooks (1971, 1980) are clearly written introductions to,
among other things, theorem proving as a problem-solving tool for AI systems.

C. NONRESOLUTION THEOREM PROVING

In nonresolution or natural- deduction theorem-proving systems, a proof is
derived in a goal-directed manner that is natural for the humans using the
theorem prover. Natural-deduction systems represent proofs in a way that
maintains a distinction between goals and antecedents, and they use inference

rules that mimic the reasoning of human theorem-provers.
In resolution theorem-provers, no distinction is made between goals and

antecedents. But in natural-deduction systems, the distinction is carefully
maintained for the clarity that it brings to the proof process. For example,

a natural-deduction system might display the following "worksheet" during a
proof:

Hi. P
H2. (P-Q)

H3. (RAQ-^S)
Ci. Q

C2. (R-+S)

It indicates that Hi, H2, and H$ are three hypotheses and C\ and C2 are
goals. A resolution system would represent the same situation uniformly with
a set of clauses:

1. P

2. -PvQ

3. -ftvfrQvs)
4. ̂ QvR

5. -.QvS.

Although these representations are logically equivalent, we have lost all infor-
mation in the second one about goals — about what we want to prove.

The representation of proofs in natural-deduction systems is especially
advantageous for man-machine interactive theorem-proving, in which a human
is required to intervene occasionally to help with the proof. It also facilitates

the implementation of semantic or domain-specific heuristics that help to
guide the search.

However, the clausal representation has one powerful advantage: A proof

can be derived with a single inference rule — the resolution rule. In contrast,

natural-deduction systems have relatively complex inference rules that simu-
late the kinds of reasoning steps that humans use to develop proofs. For

example, suppose we want to prove that Fred has a hot tub, and we know

94

C Nonresolution Theorem Proving 95

that everyone who lives in California has a hot tub and that Fred lives in
California:

Antecedents: (Live- Calif ornia(Fred)) A (Live- Calif ornia(X) — ► Hottub(X))
Goal: -> Hottub(Fred) .

To prove Hottub(Fred), we scan the antecedents for anything that will

enable us to conclude Hottub(Fred), and, if we find such a hypothesis, we set

up the subgoal of proving it. In this case, we can conclude Hottub(Fred) if

we can prove (Live- Calif ornia(X) — ► Hottub(X) and (Live- Calif ornia(Fred)).

So we set up the subgoal of proving Live- Calif ornia(Fred). Formally, we can
derive a back- chain rule of inference:

To prove [H A (A — B) -> C]:
If (£ -> C), then prove (H -> A) .

In the next section, we present several of the proof rules from the IMPLY

system, developed at the University of Texas (Bledsoe and Tyson, 1975).

IMPLY

IMPLY views a conjecture to be proved as a conjunction of goals to be
achieved, and it considers a goal achieved when it finds a substitution under
which the goal is valid. A substitution is simply an assignment of terms to
each variable in the conjecture. In other words, IMPLY considers a conjecture
proved when it finds some object or objects for which the conjecture is valid.
For example, the conjecture

(P(x) -> Q(x)) A P(a) -> Q(a)

is valid for the substitution a/x; that is, if every x in the formula were replaced

by a, then the statement would be a valid inference.

Let C be a conjecture we wish to prove and let H be the conjunction of
hypotheses that, hopefully, imply C. IMPLY will attempt to find a substitution

(9) such that (H — ► C)(6) is a propositionally valid formula. For example,
if //is

P(a) A (P(x) - Q(x))

and C is

Q(a),

then the substitution (9) = a/x will make (H — > C)(0) valid.
In the following discussion, we assume that all formulas are quantifier

free. That is, before the proof process starts, all universal and existen-
tial quantifiers, V and 3, are removed by skolemization (see Article XII.B).

Skolemization for both resolution and natural deduction is done in much the

same way, except that the roles of V and 3 in natural deduction are the

96 Automatic Deduction XII

opposite of their roles in resolution, because resolution is a refutation pro-
cedure and natural deduction is not. For example, for natural deduction,

[VzP(x)->Q(a)] skolemizes to [P(x) -+ Q(a)\ and [H -> 3zVy P(x,y)}
skolemizes to [H — > P(x, g(x))].

Formulas are submitted to IMPLY, which attempts to prove them by

application of the rules discussed below. If F is a formula, [F] denotes the
value of IMPLY applied to F.

IMPLY rules. Some of the IMPLY proof rules are shown below.

1. MATCH: [H -> C]

If H(6) = C(0) ,
then (0)

(the empty substitution is T) .

This is the simplest of IMPLY's rules. The goal C is matched to the hypoth-
esis H and, if a substitution can be found, that substitution is returned. For

example, (P(x) — ► P{a)) is MATCH because a substitution a/x makes H and
C equal. The substitution is found by unification (see Article XII.B). MATCH

would fail for the clause (Q(x) — ► P(a)) because the predicates P and Q are
different.

2. AND-SPLIT: [H -> A A B]

If [H -> A] is (0)
and [H -> B(6)\ is (X) ,
then (0)(X) .

If we want to prove that H implies A and B, we first prove that (H — ► A)
for some substitution, and then, using that substitution in B, we prove that

(H — ► B). For example, to prove [P(x) — ► P(a) A (Q(x) -> P(a))], we obtain

the substitution a/x when we prove [P(x) — ► P(a)], and that substitution is

carried into the second step, namely, to prove [P(x) -> (Q(o) — ► P(o))]. If, in
proving this, we obtain another substitution, X, then 6 and X are composed

to produce a substitution under which the entire expression [P(x) — > P(a) A

(Q(x) -» P(a))] is valid.

3. CASES: [Hi V #2 -► C]

If [Hi -H- C] is (^)

and [/J2(0) -» C] is (X) ,
then (0)(\) .

To prove that either of H\ or Hi implies C, we must prove that they both

do. Thus, we attempt first to prove [Hi -> C] for some substitution, then

[H2 —> C] under the previous substitution, and, if this second proof produces
a substitution, the two are composed.

C Nonresolution Theorem Proving 97

4. OR-FORK: [A A B -t- C]

If [A — C] is (5) ,
then (0) ;

else [£ — C] .

To show that A and P imply C, we must prove that A implies C or that P

implies C. For example, [Q(x) A P(a) — ► P(x)] is valid if either [Q(x) — ► P(x)]
or [P(a) -> P(x)] is valid.

5. PROMOTE: [# — (A -► P)]

[P A A — B] .

This rule says simply that in trying to prove an implication (A — > B) we can
use A as an additional hypothesis.

6. BACK-CHAIN: [H A (A -► B) -> C]

If [P -> C] is (0)
and [P -> A(^)] is (X) ,
then (0)(\) .

This rule applies when a term that implies the goal has an antecedent that

must be proved. It says that if C can be implied from B, and (A — ► P), then

we must try to prove A. For example, we can prove Q in [P A (P — ► Q) — > Q]
if we are able to prove P. If we instantiate H, A, P, and C in the BACK-CHAIN
rule with P and Q, we obtain

If [Q -> Q] is (0)
and [P -> P(0)] is (X) ,
then (0)(X) .

Obviously, [Q —* Q] and [P — > P] follow from the MATCH rule. In this example
we have not considered substitutions.

Consider what these inference rules do and how they differ from the

resolution rule. Each, with the exception of MATCH, reduces a goal to sub-
goals. Most of these subgoals are easily tested by MATCH; it simply tests
whether there is a substitution instance for the expression. The resolution

rule, by contrast, reduces clauses but does not propagate goals from one infer-
ence to the next.

IMPLY's rules are incomplete, but in most cases this does not prevent
it from finding proofs of theorems. In fact, in many areas of mathematics,
the great majority of proofs can be found without the extra inference rules

required to make IMPLY complete. However, it can be made complete (Love-
land and Stickel, 1973) and, in fact, one application warranted this (Bledsoe,
Bruell, and Shostak, 1979).

98 Automatic Deduction XII

Some proof procedures similar to IMPLY are described in Reiter (1976),
Bibel and Schreiber (1974), Ernst (1971, 1973), and Nevins (1974, 1975).

Incorporating Heuristics into Theorem Provers

Most of the advantages derived from the use of natural-deduction theorem
provers are not due to any decrease in the theoretical complexity of proofs
but, rather, to the ease with which the proofs and the heuristic information

incorporated into the prover can be understood. Most domain-dependent
heuristics are discovered only after much analysis of attempted proofs, and
the more intelligible proof structure of natural systems facilitates this analysis.

The next paragraphs describe kinds of heuristic knowledge that are typi-
cally grouped together under the heading of nonresolution theorem proving.

Reduction. The term reduction is used in two distinct but analogous
ways. One interpretation is that reduction is the replacement of one logical
expression by an equivalent, simpler expression. Alternately, reduction refers
to the replacement of a term denoting an object by a simpler term. In both
cases, the expression

stands for a reducer. The reducer L — ► R is applied to a formula or term F
by replacing an expression of the form L{6) (where (6) is a substitution) by
the expression R(6). The resulting formula or term is called an immediate
reduction. Reductions are simpler in that they have fewer symbols or are
smaller; formal requirements for simpler relations are discussed by Knuth and
Bendix (1970) and Lankford (1975).

From elementary set theory, IMPLY uses (among others) the following
reducers:

te{AnB)-+t€ A A t£B

te (AuB) -^teAyteB

t<Z(AC\B)-^t(ZA/\t<ZB.

Examples of reducers from algebra include:

x + 0 — ► x

X • 1 — *■ X

x + (-x) -► 0

-(x + y)^>(-x) + (-y).

IMPLY maintains a list of reducers that are applied to a newly created expres-
sion until it cannot be reduced further; the resulting expression is called the

irreducible form of the original expression relative to the list of reducers.
There are two very important properties of certain sets of reducers. A set

of reducers (£) is said to have the following:

C Nonresolution Theorem Proving 99

1. The finite termination property (FTP), if there is no sequence of expressions
to, ti, . . . , where ti+i is an immediate reduction of U.

2. The unique termination property (UTP), if, for every expression t, all irre-
ducible forms of t are identical.

Any set of reducers that has both the FTP and the UTP is called a complete set

of reducers. There are algorithms for deciding whether a set of reducers with

the FTP has the UTP (see Knuth and Bendix, 1970; Lankford 1975; Peterson

and Stickel, 1977). In fact, the same algorithm can be used to extend a set
of reducers that fails to have the UTP to one that does. Much research is

currently being done on extending these algorithms.

Forward chaining. In addition to the rules mentioned earlier, IMPLY's
set of rules includes:

FORWARD-CHAINING: [{A A (A! -» B)) -*■ C]

If A is ground (i.e., has no variables) and A = A{9) ,

then [(B{0) A A A {A! -+ B)) -* C] .

This rule differs from backward chaining in that it adds a new term to the

set of hypotheses: From (A A {A! — ► B)), this rule adds B(9) to the set of
hypotheses when A! = A(6), that is, when a substitution instance can be
found for A and A! . Note that this rule does not produce smaller subgoals,

as do the other rules we described, but, rather, it is used to infer auxiliary
terms.

The rule contains an explicit ground restriction that A should have no

variables. An intuitive justification for the ground restriction is that, since

A is an assertion made by the hypothesis about specific objects (the ground

terms) in the world, immediate consequences (B(9)) should be explored.

Many theorem provers have carried this forward-chaining rule a step

further and have incorporated domain-specific knowledge into a set of demons
that scan the hypotheses for sets of assertions. Upon finding the assertion it

is looking for, a demon makes its own assertions. For example, a theorem

prover might contain the following demon from elementary set theory:

Scan the hypothesis for sets A, B, and C. If the assertions AC. B and
CCB are present, and if the set AuC is mentioned somewhere, then
assert A\jC C B.

Provers using variations of this technique are described by Ballantyne and

Bennett (1973), Ballantyne and Bledsoe (1977), Nevins (1975), and Hewitt

(1971).
Decision procedures. Certain theories, unlike number theory, have the

property that there are algorithms to decide whether a sentence is true or

false in the theory. Significantly, these algorithms are often direct and can

make such decisions very quickly. For example, sets of linear inequalities over

the real numbers can be decided very quickly by the simplex algorithm. The

100 Automatic Deduction XII

theory of arithmetic restricted to addition and multiplication by constants can
be decided (Presburger, 1930), and, in fact, if one restricts the quantification
on sentences in prenex form to universal quantification, that theory can be
decided quickly (Bledsoe, 1974; Shostak, 1975). Decision procedures dealing
with integration (Risch, 1969) are a main component of MACSYMA. Many

fragments of theories useful in program verification have fast decision proce-
dures (Nelson and Oppen, 1978).

A particularly interesting extension of this idea is to let the theorem

prover "grow" its own decision procedures for classes of equational theories
using the concept of complete sets of reducers (see Knuth and Bendix, 1970;
Lankford, 1975; Huet, 1972; Lankford and Ballantyne, 1977; Ballantyne and
Lankford, 1979; Peterson and Stickel, 1977).

Induction. Induction is another area in which the addition of heuris-
tics can improve the performance of a prover. Since the development of a

sophisticated set of such heuristics is one of the major achievements of the

Boyer-Moore theorem prover, we refer the reader to Article XII. D.
Examples and counterexamples. Examples and counterexamples play

an important but poorly understood role in automatic theorem proving. Spe-
cifically, if T is a set of axioms for a theory and if H — ► C is an attempted

theorem, then an example is an interpretation of the predicate, function, and
constant symbols that satisfies H and the axioms.

For example, let T be the axioms for the real numbers, and let H be
[/(a) < 0 A f(b) > 0 A CONTINUOUS(/, a, 6)], where /, a, and b are constants
and CONTINUOUS(/, a, b) means that the function / is continuous on the closed
interval [a, b]. Then the assignment

a«-0

b+- 1

/<-((X)z)(2s-l)

is an example.
To see how this example might be useful in controlling the search for

a proof, suppose that the theorem prover is asked to prove the conclusion

C = (SOME x)(f(x) = 0), given the above axioms and hypotheses. Suppose
that, in the course of proving C, the prover encounters the subgoal f(t) < 0,

where Hsa term that evaluates to 3/4 in the example. Since f(t) = /(3/4) =

2 • 3/4 — 1 = 1/2 and since 1/2 is not less than or equal to 0, the prover is
allowed to discard this subgoal. Several theorem provers have incorporated

examples as a subgoal filter (Gelernter, 1959; Reiter, 1976; Bledsoe and Ballan-
tyne, 1979). In all these provers, the examples must be generated by the

user. However, Bledsoe and Ballantyne describe a program that, when given
an example, extends the interpretation to include the skolem functions and
constants that result from quantifier elimination.

It seems likely that mathematicians use examples much more often as sub-
goal proposers than as subgoal rejectors. Mathematicians often use examples

C Nonresolution Theorem Proving 101

to guide the search for a proof from beginning to end. Since they usually
discover theorems by building and inspecting examples, it seems likely that
the same examples would be useful in proving these theorems. Constructing
good examples is a very difficult task but one that must be understood if

reasonably competent theorem proving is to be done by computer. Lenat's
AM system (1976; Article XIV.D4c) constructed and used examples to help
make conjectures.

Conclusion

Nonresolution, or natural-deduction, proof procedures are designed to
develop proofs in a goal-directed manner that is easy for humans to under-

stand. Unlike resolution methods, natural deduction uses many proof rules to

reduce goals to subgoals. In addition, natural-deduction systems often include
domain-specific heuristics to speed up parts of a proof.

Any proof that can be derived by natural deduction can also be derived
by resolution, given enough time. The advantage of natural deduction is
chiefly that the proofs it produces are relatively easy to understand. This is
very important whenever there is interaction between an automatic theorem
prover and a human.

References

The IMPLY system is discussed in Bledsoe and Tyson (1975).

D. THE BOYER-MOORE THEOREM PROVER

THE Boyer-Moore Theorem Prover (BMTP; Boyer and Moore, 1979) embod-
ies an extensible mathematical theory (recursive function theory) in which

theorems can be stated and automatically proved. The system is designed
to prove theorems by continuously rewriting the current formula (Bledsoe,
1971, 1977) without ever having to backtrack and alter a decision. While
each rewriting rule is sound, formal equivalence is not necessarily preserved;
thus, the system is not complete. But heuristics are employed to guide the

rewriting process, applying rules that the system believes will allow reten-

tion of the "theoremness" of a formula. The theory can be extended by
new function definitions and new data types. Novel features include the

automatic use of structural induction (Burstall, 1969) and recursive quantifi-
cation (Skolem, 1967). The relations between recursion, termination, and the

inductively defined data objects allow the BMTP to produce induction proofs
automatically. Recursive functions, used as an alternative to quantification,
offer a powerful form of expression when dealing with finitely constructed
objects such as the discrete mathematical structures employed by computer

programs.
Rather than operate in the predicate calculus (see Article III.Cl, in Vol. i),

the Boyer-Moore Theorem Prover treats axioms and theorems as functions.

Axioms have the values non-F (true) or F (false). A theorem is proved by
showing that the value of its function is non-F. For example, a statement
that multiplication is distributive over addition would have appeared in QA3

(Green, 1969; see also Article III.Cl, in Vol. i) as:

FORALL x FORALL y FORALL z SUM(y,z,al) AND PRODUCT (x, al , a) AND
PRODUCT(x,y,bl) AND PRODUCT (x,z,b2) AND SUM(bl,b2,b) AND
EQUAL (a, b)

(where x, y, z, a, a\, b, b\, &2 are all variables). In the BMTP, the theorem
becomes:

(EQUAL (TIMES x (ADD y z)) (ADD (TIMES x y) (TIMES x z))) .

The Boyer-Moore Theorem Prover automatically proves the theorems it
is presented with, possibly using rewrite lemmas that have been retained
from the proofs of previous theorems or axioms that have been added by the
introduction of new data types. Most theorems cannot be proved from first

principles, so the user must structure the proof by determining intuitively
which lemmas will be necessary. These are then proved as theorems in their
own right and saved. Since lemmas must be proved before they can be

102

D The Boyer- Moore Theorem Prover 103

automatically used, the BMTP is assured of the validity of the proof of the

final theorem. Even theorems that can be proved without lemmas can have

their proofs speeded up by the use of lemmas. If the BMTP fails to prove the

desired result, the proof attempt helps the user determine where the proof

went awry and formulate new lemmas. Thus, the BMTP is an automatic

theorem prover in the sense that the user specifies only what to prove, not

how to prove it. But if a proof fails, the user provides a bit of the "how" by
formulating an appropriate lemma.

The system is experimental and is continually being tested and improved.

It has proved approximately 400 theorems, including the soundness and com-
pleteness of a tautology checker for propositional calculus, the equivalence of

interpreted and optimized compiled code for a simple arithmetic language,

the correctness of the Boyer-Moore fast string-searching algorithm, and the

prime-factorization theorem.

The Theory

The syntax of the theory is closely related to the prefix notation in LISP.

Terms are variables or are specified by (/ x\ . . . xn), where / is an n-ary

function symbol and all xz are terms. Constants are represented as 0-ary
functions (e.g., (TRUE), (FALSE), (ZERO)). The variables in any formula are

implicitly universally quantified.

Functions are introduced by adding the equality axiom:

(/ x\ . . . xn) = (function body) .

To retain consistency, the BMTP requires that each newly defined function be

either nonrecursive or recursive but provably total. The proof of totality is

based on the notion of measure functions and well-founded relations. This is
discussed in detail later in this article in the section on induction.

In making function definitions it is often necessary to include tests that
allow the returned value of a function to be one of a set of terms. The usual

treatment of logic does not allow for the embedding of propositions within

terms, so the BMTP recreates the effects of propositions at the term level.

Boyer and Moore create four axioms to define the functions EQUAL and IF;

these form the core of the BMTP. We abbreviate (TRUE) as T and (FALSE) as

F, and add the axiom that T and F are distinct:

1. T * F

2. X = Y => (EQUAL X Y) = T

3. X^Y* (EQUAL X Y) = F

4. X = F => (IF X Y Z) = Z

5. X t F => (IF X Y Z) = Y

104 Automatic Deduction XII

(For those readers who are not familiar with LISP notation, (IF X Y Z) means
// X, then Y; else Z.) Thus, the term (IF X Y Z) has the value Z if the

proposition X = F is true and it has the value Y if X = F is false.
Boyer and Moore do not define predicates but, instead, deal within a

theory of functions. Proving that the value of a function is not F is the
way the BMTP proves that a function is a theorem. Functional versions of
common logical connectives are defined with IF. These definitions capture the
semantics of the common logical connectives:

1. (NOT P) = (IF P F T)

2. (AND P Q) = (IF P (IF Q T F) F)

3. (OR P Q) = (IF P T (IF Q T F))

4. (IMPLIES P Q) = (IF P (IF Q T F) T)

In addition to these and other functions, the BMTP allows the creation

of arbitrary data types. These are typically defined inductively and made
known to the system by the Shell mechanism (discussed below), which adds
axioms that are guaranteed to leave the theory consistent. Data objects are
considered to be finitely constructed. Data types are mutually exclusive yet
not assumed to be exhaustive. This guarantees that the subsequent addition
of new data types will not invalidate previously proved theorems.

Proofs within the BMTP are accomplished by absorption, idempotency,

the law of excluded middle (e.g., T V X ̂ T, F\J X -+ X, XV^X-^T,
and their commutative counterparts), and induction principles. Recursion as a

control structure is analogous to inductively defined data types as a data struc-
ture. The proof-theoretic counterpart of these two is the Generalized Principle

of Induction, or Noetherian Induction. A consistent induction mechanism is

presented within the theory. It allows a base case as well as k remaining
induction steps, each of which can contain several induction hypotheses. It

requires a relation that is well-founded on a measured set of variables over
all substitutions required to instantiate the k + 1 cases. Heuristic methods
are employed in the BMTP to formulate this schema; they are discussed later
in this article in the section on induction. A well-founded relation r is one
that admits no infinitely decreasing sequences. That is, there cannot exist an

infinite sequence 1,2, ... such that (rX;+iX;). A simple well-founded relation
is < on the nonnegative integers, since for any X\ we cannot find an infinite
sequence of X{ such that

•••Xi+i <Xi < Xi-i < < Xi.

The Shell mechanism. The Shell mechanism is used to introduce new

data types. It is just a syntactic form from which consistent and complete

type-axioms are created. As an illustration, the definition of lists by the Shell
mechanism is as follows:

D The Boyer-Moore Theorem Prover 105

add the shell CONS, of 2 arguments

recognizer LISTP
accessors CAR, CDR

default values "NIL", "NIL" .

A few of the important axioms that were added (with symmetric CDR

axioms) are the following:

(LISTP (CONS x y)) — a CONS of two things is always
a list

(EQUAL (CAR (CONS x y) x)) - definition of the CAR accessing
function

(IMPLIES (LISTP x) (LESSP (CAR x) x)) - a measure property used in

proving termination
(EQUAL (EQUAL (CONS a b) (CONS x y)) - two CONSes are equal if their

(AND (EQUAL a x) (EQUAL by))) parts are equal

(IMPLIES (LISTP x) — the system can trade CARs
(EQUAL (CONS (CAR x) (CDR x)) and CDRs for CONSes
x))

Overview of the Theorem Prover

The BMTP proves that a formula is a theorem by continually rewriting the

formula until it is reduced to T. The BMTP operates in a strictly linear manner

without backtracking. This strategy leads to a stratification of the classes of

rewrite rules, so that the more conservative transformations (i.e., those which

guarantee equivalence) are attempted first. Induction rewrite rules are applied

last, since they are the least conservative transformations and it is important

that induction be applied to the simplest and most general form of a formula.

As a consequence, many of the rewrite rules have been designed to produce a

formula that is more amenable to inductive arguments. We will now discuss

these rule classes. Rules at level 2 + 1 are tried only when all rules at level

i fail to be applicable. If a rewrite rule applies at any level of the hierarchy,

the formula is rewritten and the entire theorem prover is recursively invoked
on the new formula.

Simplification

The formula is rewritten by the logical proof rules, the initial axioms,

the axioms added by function and data-type definitions, and retained lemmas
that were previously proved as theorems. (The formula is also rewritten to

conjunctive normal form, or clause form; see Article XJI.B.) All these rewriting

rules retain truth- value equivalence. The Simplifier is a small theorem-prover
in its own right. Examples of the information known to the Simplifier are:

1. Logical Proof Rule:

X V T = T

106 Automatic Deduction XII

2. Initial Axiom:

x = y => (IF x y z) = y

3. Function Axiom:

(APPEND x y) = (IF (LISTP x)
(CONS (CAR x) (APPEND (CDR x) y)) y)

4. Data-type Axiom:
(CDR (CONS x y)) = y

5. Lemma:

(APPEND (APPEND x y) z) = (APPEND x (APPEND y z))

Simplification is sufficient to prove the following formula (which is the

base case of the induction needed to prove that APPEND is associative):

(IMPLIES (NOT (LISTP A))
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C)))) .

Knowing that A is not a list allows the APPEND functions to open up and

return their second arguments; see the functional definition of APPEND above.

The formula simplifies to:

(IMPLIES (NOT (LISTP A))

(EQUAL (APPEND B C)
(APPEND B C))) .

Since the two APPEND terms are identical, this simplifies to:

(IMPLIES (NOT (LISTP A)) T) .

This in turn simplifies to T, since the formula is equivalent to the clause

(LISTP A) V T, which by the above proof rule is rewritten to T.

If simplification cannot determine the truth value of a formula, it will

probably be necessary to apply the induction rewriting rules. The next four

cases illustrate how the formula is prepared for induction.

Elimination of Undesirable Concepts

The BMTP restates a formula, trading some functions for others when

the substituted formulas are easier to rewrite or have more lemmas involving

them. This type of rule is a special subclass of the general simplification rules

and is handled separately since it requires special processing. An example of
this kind of rule is:

(p x) = (p (CONS A B)) , if x is known to be a list.

An example of its application is found in the proof of the theorem that
the function REVERSE is its own inverse:

D The Boyer-Moore Theorem Prover 107

(IMPLIES
(AND (LISTP X)

(EQUAL (REVERSE (REVERSE (CDR X))) (CDR X))
(PLISTP (CDR X)))

(EQUAL (REVERSE (APPEND (REVERSE (CDR X))

(CONS (CAR X) "NIL"))) X))

= (IMPLIES
(AND (LISTP (CONS A B))

(EQUAL (REVERSE (REVERSE (CDR (CONS A B)))) (CDR (CONS A B)))
(PLISTP (CDR (CONS A B))))

(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A "NIL")))
(CONS A B))) .

Here we have traded a CAR and CDR for a CONS. Note that this transformation

was applicable since X was known to be a list from the hypothesis of the
implication. A and B are new variable names.

This fairly complicated formula is passed back to the Simplifier, which
rewrites it as:

(IMPLIES
(AND (EQUAL (REVERSE (REVERSE B)) B)

(PLISTP B))

(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A "NIL")))
(CONS A B))) .

Use of Equalities

The BMTP uses equalities by substituting equals for equals, and then it
usually removes the equality term from the formula. This is not guaranteed to
be complete, but the heuristic decision procedure in BMTP that decides which

terms to substitute performs excellently. The equality term is removed to
simplify the statement of the formula (which hopefully is still a theorem). Two
distinct classes of substitutions — uniform substitution and cross- fertilization —
are performed.

Uniform substitution. If the term (EQUAL x ev) is found, where x is a
term and ev is an explicit value, then ev is uniformly substituted for x within
the rest of the formula. The symmetric case applies.

Cross-fertilization. If the term (EQUAL x y) is found, where both x and

y are not explicit values, and another term of the form " (p (any term) (term
that contains y))" is found, then x is substituted for y only in the right-hand
side of p, and the equality is removed from the formula. The symmetric case
applies. This heuristic is closely related to the way induction is performed; it is

108 Automatic Deduction XII

designed to allow maximum use of the induction hypothesis. The connection is

a bit subtle and the reader is referred to Boyer and Moore's (1979) description.
Continuing the above example, the antecedent has an equality of the

form " (EQUAL x B) " and the consequent term is of the form " (p (term) (term
with B)) ," so we cross-fertilize. This results in:

(IMPLIES
(PLISTP B)

(EQUAL (REVERSE (APPEND (REVERSE B)

(CONS A "NIL")))
(CONS A (REVERSE (REVERSE B))))) .

Generalization

A further simplification can be accomplished by replacing a term in the
formula by a variable, thus generalizing the formula and allowing an induction
on the new variable position in the formula. Hopefully, by the time we reach
this point, the internal structure of the term has already contributed its
significance to the proof and can be ignored. To prevent the formula from

becoming overgeneralized, the BMTP can add certain type-restrictions to the
variable introduced. The REVERSE example that we have been following does
not adequately illustrate generalization, so we move temporarily to a different
example:

(EQUAL (APPEND (FLATTEN Z)
(APPEND (FLATTEN V) ANS))

(APPEND (APPEND (FLATTEN Z) (FLATTEN V)) ANS))

= (IMPLIES (AND (LISTP A) (LISTP B))
(EQUAL (APPEND A (APPEND B ANS))

(APPEND (APPEND A B) ANS))) .

Here, (FLATTEN Z) and (FLATTEN V) have been generalized to A and B,
respectively. Type information has been added showing that both A and B are
list data types, since the system is aware of a theorem stating that FLATTEN
always produces a list. The formula now is just the statement that APPEND
is associative.

Elimination of Irrelevant Terms

In performing the above transformations, it is often the case that irrele-
vant terms are left in a formula. Removing these terms cleans up the formula.

While these terms are difficult to spot in general, there are two special cases,
shown as rules 1 and 2 below, that frequently occur. In both cases, all the

D The Boyer- Moore Theorem Prover 109

terms of a formula are first partitioned into equivalence classes with term 1

in the same class as term 2 if they share a common variable.

Rule 1. If a class contains only nonrecursive functions, then all terms in
the class are removed from the formula. If these formulas were

always non-F, the Simplifier should have been able to prove this
fact. Passing these terms on to the Induction mechanism will not
help, since the terms are not recursively defined.

Rule 2. If a class contains a single recursive function, it is removed. A

single function that cannot be shown to be always non-F by the
Simplifier probably can assume non-F values.

Continuing our example of the proof (EQUAL (REVERSE (REVERSE X)) X),

the theorem is generalized to:

(IMPLIES
(PLISTP B)

(EQUAL (REVERSE (APPEND X (CONS A "NIL")))
(CONS A (REVERSE X))))

by replacing all occurrences of (REVERSE B) with X. No extra type information

is added during generalization. The antecedent is eliminated by rule 2, leaving
the formula:

(EQUAL (REVERSE (APPEND X (CONS A "NIL")))
(CONS A (REVERSE X))) ,

which is a statement asserting that reversing the concatenation of X and A is

equivalent to concatenating A with the reverse of X.

Performing an Induction

If, in the course of these rewrites, the theorem has still not been reduced

to T, the BMTP automatically formulates a valid induction argument to try

to prove the theorem. The heuristics employed here represent the heart of

the BMTP. Inductions are formulated by using information collected at the
time the function is defined and at the time the actual induction is needed.

Function- definition time. When a function is defined, the system must
prove that the function terminates before allowing the definition. Termination

is proved by finding a well-founded function that decreases when applied to

a subset (measured set) of the arguments used in all recursive calls. The sys-

tem exhaustively searches through all lexicographic orders of all well-founded
functions (LESSP is initially the only one, but others are added by the Shell

mechanism) applied to all subsets and permutations of a function's arguments.
These are all collected in a set of induction templates that are associated with

110 Automatic Deduction XII

the newly defined function. These templates include the form of the induc-
tion to be performed and all of the variable substitutions that will need to be

made.

The following illustrates the creation of induction templates at function-
definition time for REVERSE, which is defined as:

(REVERSE X) = (IF (LISTP X)

(APPEND (REVERSE (CDR X)) (CONS (CAR X) "NIL"))
(CONS X "NIL")) .

The proof of termination is fairly simple, since REVERSE is monadic and there
is only one recursive function call within its body. The BMTP utilizes the
information that the recursive function call is executed only if X is known
to be a list. Thus, to prove that REVERSE terminates, it tries to prove the
theorem:

(IMPLIES (LISTP X) (LESSP (CDR X) X)) .

The system proves this theorem (it recursively calls itself) by noticing that
this formula is equivalent to an axiom added by the Shell mechanism during
the definition of lists. This is the only way the system can prove termination,
so the only induction template produced is:

(AND (IMPLIES (NOT (LISTP x)) (p x))
(IMPLIES (AND (LISTP x)

(p (CDR x)))

(p x))) .

This states that, to prove the formula (p x) where p involves the REVERSE
function, it is sufficient for the BMTP to prove that:

1. If x is not a list (the base case), then (p x) can be proved.

2. If x is a list and (p (CDR x)) is assumed to be true (the induction
hypothesis), then (p x) can be proved.

Typically, the formula p will also involve other recursive functions that have
their own induction templates. The problem of which induction template to

use cannot be handled at function-definition time (since the BMTP has no
way to determine how a newly defined function will be used) and is handled
when the induction rewrite rules are trying to rewrite the formula.

Instantiation time. When an induction rewrite rule is attempted, the
induction templates for all recursive functions in the formula are retrieved.
These templates are then sifted by the following rules:

1. Only legal templates (with valid substitution instances) are retained.
Substitutions may be invalid for many reasons, the most common that

D The Boyer-Moore Theorem Prover 111

the template requires that a nonvariable argument be used as an induc-
tion variable. The REVERSE induction template could not be used if

the formula p involved only terms like (REVERSE (f x)) ; hopefully, the
generalization heuristics will substitute a variable for the function (f x) .

2. Induction schemata are obtained when the legal templates are instan-
tiated by performing the required substitutions. All subsumed induction

schemata are discarded. This means that the system will discard weaker

induction arguments for ones with a richer case structure (duplicates are
removed by this method also).

3. The remaining templates are then merged. Two templates are merged if

they contain a common induction variable, allowing for the final induc-
tion scheme to contain induction hypotheses for every relevant induction

variable. Thus, if one induction scheme requires induction on the vari-
ables x and y and another requires induction on the variables y and

z, it seems plausible to require simultaneous induction on all of x, y,
and z.

4. If more than one scheme still exists and there is one "unflawed" scheme,
then all "flawed" schemes are discarded. An induction scheme is unflawed
if every occurrence of an induction variable is in a position where it is
decomposed.

5. Finally, if more than one scheme still exists, a scoring function deter-
mines which one to use.

6. The final scheme is then instantiated for the specific formula to be

proved.

Boyer and Moore (1979) report that 90% of all inductions' arguments yield
only one unflawed scheme and, of the remaining 10%, half have no unique

correct scheme (i.e., the theorems are symmetric in some variables).

Continuing the REVERSE example, the BMTP is about to create an induc-
tion argument for proving:

(EQUAL (REVERSE (APPEND X (CONS A "NIL")))
(CONS A (REVERSE X))) .

It determines the induction schemata for REVERSE and APPEND, and since

both functions perform CDR recursions on X, their schemata are merged to

create the unique induction schema, which is finally used:

(AND (IMPLIES (NOT (LISTP X)) (p X A)) (IMPLIES (NOT
(LISTP X))

(P

(IMPLIES
(AND

(LISTP X)

(p (CDR X)

A))

(p X A))) .

112 Automatic Deduction XII

Themes of the Boyer-Moore Theorem Prover

Proof by induction. The outstanding feature of the BMTP is that it

automates induction proofs. Since most common data-types (integers, lists,
trees, formulas) are defined inductively, it is imperative that theorem provers
that prove properties of programs have the capability of performing inductive
arguments (automatically or manually). The excellent performance of the
BMTP is in a large part due to the heuristic methods employed in constructing
induction proofs. These heuristics form the core contribution the BMTP has
made to AI research.

Referencing problem. A key problem in current theorem-proving sys-
tems is the performance degradation due to increased knowledge. While

increased knowledge should improve a system's performance, it typically just
expands the possible solution space, causing excess searching. This has been

named the referencing problem by Bledsoe (1974). Resolution theorem-provers
suffer greatly from this problem. Such methods as proof by analogy (Kling,
1971) have been used to restrict the reference set, but they have met with little
success. The BMTP does not address this issue with any more sophistication
than trying the rewrite rules in reverse chronological order (with complex
results first). This simple strategy has proved effective even when operating
within an environment that contains approximately 400 theorems.

The language of the theorem prover. Since the main application

of the BMTP has been to prove properties of programs, a possible misconcep-
tion should be avoided. There is a difference between the language used to

express formal statements whose validity is being proved and the language

used to express a program. The theory is just a mathematical tool for mak-
ing precise assertions about the properties of discrete mathematical objects.

The language used to express the theory is closely related to the pure LISP
programming language and should be considered as an alternative to the use
of the predicate calculus. Frequently, programs can be written as functions

within the theory (since the semantics of a LISP-like program can be easily
captured within the language of the theory) just as it is possible to use predi-

cate calculus as a programming language (Kowalski, 1974). But a distinction

should be made between the language used to express theorems and the pro-
gramming language used to describe an algorithm about which the BMTP is

proving theorems. When proving properties about programs, the user applies
a relevant theory of program semantics to derive formal statements whose
validity implies that the program has the desired properties. These statements
are then translated into the theory on which the BMTP operates. The BMTP
can then be instructed to try to establish the validity of these statements. To
illustrate this fact, the proof of the correctness of the compiler is expressed by

McCarthy's functional method, while the correctness of the string-searching
algorithm is expressed by Floyd's method of inductive assertions.

D The Boyer- Moore Theorem Prover 113

Performance. Two performance measures are relevant to theorem prov-

ers. The first is the system's ability to represent typical facts and theorems in
the domain of interest (epistemological adequacy). The second is the ability
to prove theorems within a reasonable amount of time. Both performance

measures contain ambiguity (e.g., "typical," "reasonable"). But in the BMTP,
many interesting facts and theorems can be represented, and proof times are

commensurate with a user's patience when debugging proofs interactively.
The BMTP has been applied to a large number of theorem-proving tasks, some
of which are very difficult by human standards. Most theorems are proved
in well under a minute, although most proofs require lemmas to be proved
previously. Nevertheless, this is one of the most powerful theorem provers
available.

References

Boyer and Moore discuss their theorem prover in their 1979 article.

E. NONMONOTONIC LOGICS

SEVERAL FORMS of nondeductive reasoning have attracted careful scrutiny.

Purely deductive reasoning techniques have long been recognized as inade-
quate for capturing all intelligent thought. Statistical and inductive reasoning,

which concern inexact and generalizing reasoning, have received much study
as possible extensions or alternatives to deductive reasoning. Nonmonotonic
reasoning, recently formalized in nonmonotonic logics, is the latest extension
to deductive reasoning. This article sketches the nature of, reasons for, and
approaches to nonmonotonic logics.

The Task of Logic

The task of logic is the judgment of arguments. Historically, logic has
been the science of argumentation, the study of which arguments are good and
which are not good. Different purposes engendered different conceptions of
good. Arguments to convince capricious, distracted, and sometimes irrational
humans were judged by the standards of effective rhetoric, which concern,
among other things, the size, structure, motivation, and emotional impact
of arguments and their steps. Inductive logics judged arguments that made
generalizations; statistical logics judged arguments that dealt with frequencies

and probabilities; and deductive logics judged arguments that made restate-
ments, that is, truth-preserving inferences.

While important insights were gained into the philosophical and practical
questions underlying rhetorical, statistical, and inductive reasoning, perhaps
the philosophically most striking advances were made in connection with
deductive reasoning. Philosophers, logicians, and mathematicians explored

the powerful ideas of formal languages, truth-theoretic semantics, set theory,
and the mathematics of formal systems, model theory, and proof theory.
These ideas proved so fruitful that logic for the most part came to be identified

with deductive logic, the study of truth-preserving inferences. This identifi-
cation grew so strong that many of the proposed nondeductive logics have

been attacked as false logics. But logic is a science of thought and argument,

not merely a science of truth-preserving inferences.

The Task of Nonmonotonic Logic

The task of nonmonotonic logics is to judge cases of nonmonotonic reason-
ing, that is, reasoning that involves adopting assumptions that may have to be

abandoned in light of new information. For example, a scheduling secretary

114

E Nonmonotonic Logics 115

may employ the inference rule that he (or she) should schedule each new
meeting on the closest future Wednesday unless and until he finds reasons for

scheduling the meeting otherwise. While working out the week's schedule, the
secretary may tentatively schedule the first meeting on the next Wednesday,
only to reschedule it later, thereby abandoning his initial assumption, when he

learns that a meeting is requested for that Wednesday specifically to accom-
modate a visitor.

This reasoning is called nonmonotonic in contrast to the monotonicity of
the set of theorems of a set of axioms in deductive logic. In deductive logic,
the addition of new axioms to a set of axioms can never decrease the set of

theorems. At most, the new axioms can give rise to new theorems, so that the
set of theorems grows monotonically with the set of axioms. In nonmonotonic
logics, the set of theorems may lose members as well as gain members when
new axioms are added.

Reasoning by Default

Two cases of nonmonotonic reasoning have been studied: reasoning by
default and reasoning by circumscription.

The defaults of reasoning by default are statements or rules according to
which (as in the scheduling example above) some statement is to be believed,
unless and until otherwise demonstrated. Defaults can be found in many
places in standard AI techniques. They are used in stating generalities to
which exceptions may be acknowledged without catastrophe. For example, a
default might be that all birds can fly; penguins and ostriches are exceptions.

In structured knowledge-representation systems (see Article III.C7, in Vol. i),
such defaults often take the form of default fillers of frame slots. For exam-

ple, an airline reservation system might describe each customer with a pas-
senger frame in which the class slot has the default value coach. Defaults also

enter into many knowledge-representation systems implicitly through what is
known as the closed-world assumption. The closed-world assumption is that
all relationships not explicitly stated to hold do not hold. For example, typical
procedures for inheriting statements in one frame from more general frames
by way of generalization links assume that a frame is generalized only by those
frames explicitly listed as generalizations or, in turn, by their generalizations.
Thus, if the elephant frame has a sole generalization link to the mammal
frame, the inheritance procedures will search only mammal and not any
other frames, in spite of the possibility that new generalization links may be
attached to elephant later and would then be searched as well. Yet another use
of defaults is in the typical STRIPS assumption that performed actions change

none of the program's beliefs about the world except those explicitly listed in
the description of the action (see Article XV.B). For example, a description of a

robot's action of moving from one location to another would list only changes

116 Automatic Deduction XII

in beliefs about the robot's position. When the robot moves, the STRIPS
assumption default would leave its belief about world geography intact.

Reasoning by Circumscription

Another case of nonmonotonic reasoning, which may well overlap defaults

in some (or even all) cases, is that of parsimonious reasoning, or reasoning by
circumscription. In reasoning about some problem, one often assumes that
the problem involves only those objects and relationships that it mentions,
and no others. The inheritance procedures mentioned above made such an

assumption (the closed-world assumption) about the nonexistence of unlisted
generalization links and generalizing frames. As another example, in the well-
known missionaries- an d-cannibals problem of traversing a river uneaten, one
typically does not think of solutions involving bridges, rocket ships, handcuffs,
murder of the cannibals, or holes in the boat. Another way of viewing
the circumscription principle is the assumption that all qualifications to the
problem have been stated explicitly.

Formal Characterizations of Defaults

Two sorts of detailed formalizations of nonmonotonic defaults have been

proposed, namely, Reiter's logic of defaults and McDermott and Doyle's non-
monotonic logics.

Both logics roughly interpret Default S as S is provable unless and until S
can be disproved. The difficulty with this interpretation is its circularity, that
what can be inferred depends on what inference rules are applicable, while,
at the same time, what inference rules are applicable depends on what can
be inferred. For example, suppose that we decide to use only the ordinary
logical rules of inference in attempting to disprove statements and that the
information to be captured consists of three statements: Default A, Default B,

and -i(A A B). Here, neither A nor B can be disproved using the ordinary
logical rules of inference, so we declare both A and B to be provable by means
of the default statements. These two new conclusions are inconsistent with

->(A A B). Instead of declaring the initial three statements to be inconsistent,
the nonmonotonic logics try to refine the notions of provability to say that
there are two coherent interpretations of these axioms, namely, one in which

A and ̂ B are provable and one in which B and -vl are provable. This is a
big departure from ordinary logic, in which a single set of axioms has exactly
one set of conclusions that can be drawn from it. The key problem addressed

by the nonmonotonic logics is that of providing some well-defined semantics
for defaults that allows a single set of axioms and defaults to have several
coherent interpretations.

In all the nonmonotonic logics, the meanings of provable and consistent for
a statement and a set of axioms are defined nonconstructively by a

E Nonmonotonic Logics 117

mathematical definition of what coherent sets of conclusions are, relative to
a given set of axioms and defaults. These definitions are nonconstructive
primarily because the coherent interpretations supplied by the logics are in
general not even recursively enumerable. Roughly put, the logics declare that
interpretations are found by adding in as many statements (assumptions) as

possible, in accordance with the defaults, but at the same time avoiding add-
ing in so many assumptions as to produce an ordinary logical inconsistency.

In the above example, for instance, the two coherent interpretations of the
three statements are produced by adding in just one of the assumptions, A or
B. By the time one assumption is added in, the negation of the other can be
deduced by ordinary logical rules of inference, so that the other assumption
is ruled out, as it would lead to an inconsistency. This rough description of
the semantics provided by the logics does not do them justice. For the precise
definitions involved, the reader is referred to the original papers (Reiter, 1980;
McDermott and Doyle, 1980).

While Reiter's and McDermott and Doyle's approaches to formalizing
defaults have much in common in the way they interpret defaults and in

their major theoretical properties, they differ in logical form, as one approach
formalizes defaults as inference rules and the other as modal formulas. Unless

one is vitally interested in logic for its own sake, or in pursuing the future
development of better nonmonotonic logics, these differences in logical form
can be passed over as small differences in notation for capturing the same
ideas.

Reiter (1980) formalizes defaults by adjoining a new sort of inference
rule called a default to an ordinary logic of statements and inference rules.
Default inference rules are of the form // P, and it is consistent to assume

Q, then infer R, written P : Q/R, where P, Q, and R are ordinary formulas.
Given condition P, a default allows the inference of R providing that Q is not
disprovable. With this notation, the simplest sort of default, that of Assume

A if it cannot be disproved, is written simply as " : A/ A' ; that is, P is empty
and Q = R = A.

Instead of stating defaults as inference rules, McDermott and Doyle (1980;
McDermott, 1980) state defaults as modal formulas. They use an ordinary

logical language extended by the unary modal operator not- disprovable. The
analogue in nonmonotonic logic of a default inference rule P : Q/R of the logic

of defaults is P A not- disprovable Q — ► R. Thus the simplest sort of default is
stated in these nonmonotonic logics as not- disprovable A — ► A. Although we
said earlier that nonmonotonic logics and the logic of defaults are for many
purposes syntactic variants, that is not really true. The modal nonmonotonic
logic formulations are, for better or worse, actually more expressive than the
nonmodal logic of defaults. This is because one can make statements about
defaults; for example

not- disprovable{not- disprovable A — ► A) — ► {not- disprovable A — ► A) ,

118 Automatic Deduction XII

in nonmonotonic logics, whereas in the logic of defaults no means exists for

referring to the default inference rules.

The Genesis of Practical Nonmonotonic Inference Rules

Neither of these approaches says anything about which nonmonotonic

statements or rules should be used in representing information about a par-
ticular domain. The logics all leave that decision to the AI system designer.

However, McCarthy (1980) and Dacey (1978) have each developed theories

that appear to bear on the problem of formulating defaults. McCarthy for-
malizes reasoning by circumscription as an explicitly nonmonotonic rule of

inference. Dacey, on the other hand, formalizes his theory of conclusions

in terms of classical decision theory, rather than in terms of nonmonotonic

reasoning.

The idea of circumscription, in McCarthy's (1980) treatment, becomes an
inference rule for formulating sets of assumptions on the basis of the available

information. The circumscription inference rule computes axiom schemata

from sets of axioms, schemata that can be applied to make a variety of assump-
tions. To circumscribe a set of axioms A with respect to some predicate P

mentioned in A, one constructs a sentence schema stating that the only objects

satisfying P are those whose doing so follows from the axioms A. All state-
ments following via ordinary deductive rules of inference from that sentence

schema are said to be the conclusions reached by circumscriptive inference

with respect to P from the original axioms A. For example, suppose we know

only one red-haired person, our friend Jane. If we see someone looking like

Jane in the crude sense of merely being red-haired, we might, by circumscrip-
tion, assume that that person is Jane, because Jane is the only person we know

fitting that description. This inference is nonmonotonic, of course, since if we

now learn that Jane has an identical twin sister Joan, we can no longer con-
clude that anyone who looks like Jane is Jane. Expressed formally in terms of

McCarthy's circumscription, this example might be translated as follows. We
start with the set of axioms A = (red-haired(Jane)) and circumscribe on the

predicate red-haired. The circumscription of this predicate in A is the axiom
schema

<P(Jane) AVx($(i)-> red-haired(x)) — ► Vx (red- hair ed(x) — ► <P(x)) .

If we now substitute our only known instance of a red-haired person into this

schema, that is, if we substitute the formula x = Jane for <P(x), we get

Jane = Jane A Vx (x = Jane — ► red-haired(x)) — ► Vx (red-haired(x) — ► x = Jane) .

The first two parts of this formula are true, and simplifying it leaves the

resulting assumption, or default, V x (red- hair ed(x) — ► x = Jane), which we

can apply to any new person who looks like Jane (i.e., is red-haired). Yet this

inference is nonmonotonic in that, if we add the new axiom red- hair ed(Joan)

E Nonmonotonic Logics 119

to A, we can no longer draw any such identifying conclusion. At best, we can
infer by another application of circumscription the less specific conclusion

\f x (red- hair ed(x) — > x = Jane Vx= Joan).
Another approach to forming and rejecting tentative hypotheses, the

theory of conclusions developed by Dacey (1978) after a suggestion of Tukey
(1960), can be viewed as proposing a general rule about when to adopt and
when to abandon defaults. Dacey formulates conclusion theory in terms

of classical decision theory rather than in the proof-theoretic terms of the
preceding approaches. Classical decision theory analyzes how the strength of

each of one's hypotheses about the world should be revised with each new
evidential fact. The intent of conclusion theory is to avoid the continual
reevaluation of all hypotheses, to instead accept certain strong hypotheses as
conclusions, and to hold these conclusions unless and until the introduction

of very strong contrary evidence. Although Dacey apparently intends that
the set of conclusions be the set of beliefs of the reasoner, his reasoner is
isolated and unreflective, in that the rules of adoption and abandonment are
used in developing scientific laws de novo. Once communication or summaries
of conclusions are desired, as in writing an initially substantive AI program,
the form of each conclusion seems to approximate that of a default. Thus,

conclusion theory might be adapted to the role of judging the propriety of
adopting or abandoning defaults.

The Mathematics of Theory Evolution

Each of the approaches above treats in detail primarily the atoms of
reasoning, either individual inference steps or the sets of beliefs preceding and
following the inference step. So far, much less attention has been devoted to
classifying the larger, more complex ways in which nondeductive inferences
can change the current set of beliefs of a reasoner. The beginnings of a larger
analysis of theory evolution are touched on by McDermott and Doyle (1980),

Doyle (1979, 1980), Gumb (1978, 1979), Weyhrauch (1980), and, less formally,
in the philosophy of science literature in general (e.g., Quine and Ullian, 1978).

References

The area of nonmonotonic reasoning has to date supplied more questions

than definitive answers, but the questions it raises are vital. For further infor-
mation, peruse the papers collected in the special issue of Artificial Intelligence

on nonmonotonic logic (such as those cited above) and the papers indexed in
the bibliography by Doyle and London (1980). Further fruitful formalizations
of nondeductive reasoning techniques may well be awaiting discovery. For

example, Collins (1978) and, less directly, Wason and Johnson-Laird (1972)
investigate patterns of human nondeductive reasoning. Which of these may
now succumb to formal analysis?

F. LOGIC PROGRAMMING

LOGIC PROGRAMMING refers to a family of higher level languages and an
associated programming style based on writing programs as sets of assertions.
These assertions are viewed as having declarative meaning as descriptive
statements about entities and relations. In addition, the assertions derive

a procedural meaning by virtue of being executable by an interpreter. Indeed,
executing a logic program is much like performing a deduction on a set of
facts.

A logic program consists of a set of clauses, where the general form of a
clause is:

(consequent) :- (antecedent!), (antecedent2), . . . , (antecedent^

and each item in a clause is a positive literal, that is, an atomic formula

P(termi, . . . , termn) for some predicate P. Not all clauses have antecedents.
A simple logic program for reversing a list is given by the following set of

clauses:

APPEND (NIL, X,X)

APPEND (CONS (X , Y) , Z , CONS (X , U)) : - APPEND (Y , Z , U)
REVERSE (NIL, NIL)

REVERSE (CONS (X,Y),Z) :- REVERSE (Y , R) , APPEND (R, CONS (X, NIL) ,Z) .

Two observations must be made about this program: First, the terms involving
CONS are not evaluated as they would be in LISP; rather, they are treated as

symbolic objects. Second, both APPEND and REVERSE take one more argu-
ment than the corresponding LISP function. This is because APPEND(X,Y,Z)

does not name a function but, rather, names the relation Z is the result

of appending X and Y. Similarly, REVERSE(X,Y) means Y is the result of
reversing X. One consequence of this is that a logic program, unlike its LISP
counterpart, can often be run backwards. For example, the APPEND program
could be used to find pairs of lists that, when concatenated, yield a given list.

To execute a logic program, we supply a goal, for example, REVERSE
(CONS(A,CONS(B,CONS(C,NIL))),X). The interpreter finds substitutions for X
that make the formula a consequence of the clauses in the program. This is
done by cycling through the clauses, matching the goal against the consequent

(by unification; see Article XII. B), recursively setting up antecedents as sub-
goals, and backtracking in case of failure. If all the subgoals can be satisfied,
the goal is proved, and the substitutions found during matching constitute
an answer. Forced backtracking can be used to produce systematically all
substitutions that make the goal provable. For the goal above, the interpreter
would find the substitution CONS(C,CONS(B,CONS(A,NIL))) for X.

120

F Logic Programming 121

One feature that distinguishes logic programming from ordinary theorem-
proving is that, while the declarative semantics allow the clauses — and the
antecedents within a clause — to appear in any order, the procedural interpre-

tation is sensitive to the order. Thus, the programmer can rely on assertions
being searched in sequence, top to bottom and left to right, and can structure
a program for maximum efficiency.

Another difference between logic programming and general theorem-
proving has to do with the restrictions on the form of the assertions them-

selves. In theorem-proving terminology, logic programs consist of sets of Horn
clauses — disjunctive formulas with at most one positive literal. It is easy to
see that the clauses of a logic program are Horn clauses: Any disjunction

of the form ̂ A V ->B V • • • V ̂ C V D can be rewritten as an equivalent
implicational formula, A & B & • • - & C — > D, which is a notational variant
of the form of clauses in logic programs.

By enforcing this restriction to Horn clauses, logic programming ensures

relative tractability of deductions. It should be noted that, as with most very-
high-level programming languages, it is not hard to write extremely inefficient

logic programs — especially since the interpreter's basic strategy is exhaustive
backtracking. Many implementations give the programmer some control over
backtracking and allow the insertion of a special symbol (typically a slash,

"/") between antecedents in a clause to prevent backtracking past that literal.
This often improves efficiency, but at the expense of semantic purity, since
some deductive consequences of the clauses may be underivable while other

formulas, not logical consequences of the clauses, may be "deduced" from
failure to derive a fact. (This latter case corresponds to the THNOT construct
in the PLANNER languages.)

Logic Programming and AI

Although logic programming has been applied to diverse problems, some
of which can hardly be considered exclusively AI problems (e.g., database

management), there are at least two reasons why logic programming has spe-
cial importance for AI. First, logic programming offers an alternative to LISP

as a powerful language for symbol manipulation, apart from the semantic con-
tent of the symbols qua representations. The interpreters that drive logic pro-

grams do unification (Robinson, 1965b, and Article XII. B) and, thus, already

incorporate the pattern-matching machinery that many applications require
and that is programmed explicitly in LISP.

The second, and more important, reason why logic programming is of
interest to AI has to do with its usefulness for knowledge representation.
Predicate logic is a formalism considered by many to be a natural and powerful

representation language marred only by its perceived computational inef-
ficiency (see Article III.Cl, in Vol. I). Any approach based on logic that can

122 Automatic Deduction XII

demonstrate efficient execution (which logic programming does, in fact, claim)
would be a serious candidate as a representation language.

To see how a logic program could be used to represent real-world knowl-
edge, consider the following simple set of clauses:

SEES(X.Y) :- PERSON (X) , PHYSOBJ(Y), OPEN (EYES (X)) , IN-FR0NT-0F(X,Y)

SEES(X.Y) :- PERSON (X) , EVENT(Y), WATCHING(X, FILM-OF(Y))
PERSON (MOTHER (John))

EVENT (BIRTHDAY (Henry))

EVENT (GRADUATION (John))

WATCHING (MOTHER (John) , FILM-OF (GRADUATION (John))) .

Consider the following three goals:

1. SEES (MOTHER (John) , GRADUATION (John))

2. SEES (MOTHER (U) , GRADUATION (U))

3. SEES(U,V)

These goals can be viewed as queries to a deductive question- answering system.

The first can be paraphrased Did John's mother see his graduation? — ayes/no
question. The second and third goals resemble "Wh-questions" — the free
variables U and V indicating that the answer is to be the individual or indi-

viduals satisfying the condition. In particular, the second goal corresponds
to the question Who is it whose mother saw his graduation? The third asks

simply, Who saw what?

The logic-program interpreter would cycle through the asserted facts,
matching the goal against the consequent and solving the antecedents as
subgoals. If the subgoals can be satisfied, the goal is proved and the answer to
the yes/no question will be YES. If, after exhaustively trying alternative facts,
the goal still cannot be proved, the answer is NO. For goals with variables, the
system can produce all substitutions that make the goal provable. With the
clauses given above, the answer for goal 1 would be YES; the answer for goal

2 would be U = John; and the answer for goal 3 would be U = MOTHER (John) ,
V = GRADUATION (John).

Development of Logic Programming and Current Status

The parallels between computation and logical proof have long been recog-
nized, especially in the theory of computation. An interesting discussion of

the many connections between logic and computation can be found in an

early work of McCarthy (1963). In a sense, executing an applicative program,

for example, a program in "pure" LISP, can be thought of as calculating the

proof of an identity "/(arg^ arg2, . . .) = result" by applying various axioms
of identity according to a fixed control regime, much as the assertions of a
logic program are applied.

F Logic Programming 123

Ordinarily, logic programming is understood to refer more narrowly to

the style of programming introduced and advocated by Kowalski (1974, 1979),

which was eventually incorporated into PROLOG, the best-known of the logic
programming languages. PROLOG has several dialects and is supported in
numerous installations in the United States, in Britain, and on the Continent.

Especially active groups are in Edinburgh, London, Marseilles, and Budapest.

Diverse applications have been programmed in PROLOG, including natural-
language processing (Colmerauer et al., 1973), database retrieval (Warren,
1981), and program synthesis and planning (Warren, 1974).

PROLOG, and logic programming in general, has increased in popularity
in recent years. In Europe, especially, PROLOG is a serious contender as
the major AI implementation language. Much effort has been devoted to
developing PROLOG compilers that compete favorably with LISP in efficiency
of generated code (Warren, Pereira, and Pereira, 1977). In the United States,

also, there has been interest in PROLOG, as well as in LOGLISP, a LISP-based

logic-programming system developed at Syracuse University (Robinson and
Sibert, 1980).

Conclusion

To a certain extent, the development of logic programming has followed
the pattern of LISP. Both languages are founded on clear, mathematically

motivated formalisms. Both languages have a side-effect-free kernel and a
procedural interpretation that can be defined in a simple and elegant fashion.
Yet both language families have yielded to the practical needs of their user
communities and have incorporated numerous features that detract from
their underlying elegance in favor of improved convenience and efficiency.
In a sense, the fact that logic programming has progressed to the point of
incorporating such features attests to its practicality and growing popularity.

References

Kowalski (1974, 1979) discusses logic programming and Warren, Pereira,
and Pereira (1977) discuss the PROLOG language.

Chapter XIII

Vision

CHAPTER XIII: VISION

A. Overview / 127

B. Blocks-world understanding / 139
1. Roberts / 139
2. Guzman / 143
3. Falk / 147

4. Huffman- Clowes / 155
5. Waltz / 161
6. Shir ai / 168
7. Mackworth / 173
8. Kanade / 183

C. Early processing of visual data / 195
1. Visual input / 195
2. Color / 203
3. Preprocessing / 206
4- Edge detection and line finding / 216
5. Region analysis / 225
6. Texture / 230

D. Representation of scene characteristics / 238
1. Intrinsic images / 238
2. Motion / 244

3. Stereo vision / 249

4- Range finders / 254

5. Shape-from methods / 260
6. Three-dimensional shape description and recognition / 268

E. Algorithms for vision / 279
1. Pyramids and quad trees / 279
2. Template matching / 283
3. Linguistic methods for computer vision / 287
4. Relaxation algorithms / 292

F. Vision systems / 301
1. Robotic vision / 301

2. Organization and control of vision systems / 306
3. ACRONYM / 313

A. OVERVIEW

VISION is the information-processing task of understanding a scene from its

projected images. An image is a two-dimensional function f(x, y), obtained
with a sensing device (see Article XIII.Cl), that records the value of an image

feature at all points (x, y). Values might be binary for black-or-white images,
gray level (i.e., intensity) for half-tone images, or vectors of color measures
for color images. Images are converted into a digital form for processing with

a computer. An array {fij} of small picture-elements called pixels represents
the image by recording the values of measurements at each pixel position

(Article XIII.Cl).

The task of a computer-vision system is to understand the scene that

an image — an array of pixels — depicts. However, many fields claim similar
tasks as their goal, among them, picture processing, image processing, pattern
recognition, scene analysis, image interpretation, optical processing, video
processing, and image understanding. These fields overlap to some extent,
though each has its own history and character. For the purpose of clarifying
the goals and methods of vision research, we categorize these fields into signal
processing, classification, and understanding.

Signal processing. Signal processors transform an input image into
another image that has desirable properties. For example, the output image

may have a better signal- to- noise ratio or may be enhanced by emphasizing
the details to facilitate human inspection. The content of the image is often
irrelevant. Image processing and picture processing are the most common
terms for this class of processing. As well as digital techniques, optical

techniques and electric video-signal techniques can often provide a very fast
throughput.

Classification. Classification techniques classify images into predeter-
mined categories. Character recognition is a typical example. Often, a

predetermined set of feature values is extracted from images, and the deci-

sion of how closely an image "fits" a class is made on the basis of statistical
decision methods applied to the multidimensional feature space. There is a
large body of theory for designing optimal decision rules. These methods are
usually called pattern recognition or pattern classification, although the word
recognition is used only for historical reasons.

Understanding. Given an image, an image-understanding program
builds a description not only of the image itself but also of the scene it
depicts. In the early years of AI vision research, the term scene analysis was

often used to emphasize the distinction between processing two-dimensional
images (as in pattern classification) and three-dimensional scenes. Image

127

128 Vision XIE

understanding requires knowledge about the task world, as well as sophisti-
cated image-processing techniques.

In this chapter, we emphasize image-understanding research and say
very little about signal-processing and pattern-recognition operations such as
image enhancement, frequency-domain techniques, and statistical pattern-
recognition methods. These techniques are covered only briefly in Articles
XIII.Cl, XIII.C3, and XIII.C4.

There are a few levels of information processing in computer vision. The
lowest level of vision systems that we will discuss extracts primitive features,
such as change of intensity and orientation of edge elements, from the original

intensity array. This is often called low-level vision, or early processing; it is
covered in Section XIII.C. After early processing, the higher level features, such
as lines and regions, and shape information, such as surface orientation and

occlusion, are extracted. This level of processing is sometimes called inter-
mediate processing, or segmentation in the context of extracting meaningful

lines and regions. High-level vision processes (also called later processing) deal
with objects and rely on domain-specific knowledge to construct descriptions
of scenes.

Problems for Vision Research

Vision is easy for humans, but it is very difficult to construct a comparable

computer-vision system. There are several reasons for this. First of all, an
image underconstrains a scene: It does not provide enough information, by
itself, to recover the scene. Among others, the depth dimension is collapsed

by the projection of a three-dimensional scene to a two-dimensional picture.
Additional constraints are needed to resolve such ambiguities. These can be
based on reasonable assumptions or on measurements, but without them the
vision task cannot be accomplished.

Another reason that vision is difficult is that many factors are confounded
in an image. The appearance of an object is influenced by its surface material,
the atmospheric conditions, the angle of the light source, the ambient light,
the camera angle and characteristics, and so on. All of these factors contribute
to a single measurement, say, intensity of a pixel. It is difficult to determine
the contribution of each factor to a pixel value.

Third, understanding an image (and understanding in general) requires
a priori knowledge of the task domain. For most interpretive tasks, features
observable in the image can be very weak, but one knows what one is looking

for; image understanding is impossible without such expectations. Image-

understanding systems are often "blind" to objects that cannot be matched
to stored representations.

A fourth difficulty with vision research is that humans are vision experts,
but it is very difficult to introspect about how they see. It is difficult to

A Overview 129

perform a protocol analysis of vision as one would with a process like problem
solving (see Article DC.B).

A final problem for vision is practical — an engineering problem: A com-
puter vision system must process an enormous amount of information, even

for a simple task. For example, an aerial photo is typically digitized into
3,000 X 3,000 pixels with 8 bits per pixel, or 9 Mbytes per image. A simple

edge-detection process that performs, say, 10 operations per pixel requires 90
million operations for an image!

Delineating these problems was itself a result of years of vision research.

Computer vision systems have become more capable as these and other prob-
lems have become better understood. In the next section, we review some of

the important issues in computer vision, in the context of a history of vision
research.

Issues in the History of Computer Vision

Early research: Bottom-up approach. There was computer image-
processing prior to computer vision. This work included character recog-

nition, processing images of chromosomes to classify their shapes and to
obtain karyotypes, and manipulating line figures. Most such research involved

processing and classifying two-dimensional patterns.
The pioneering work in computer vision was no doubt that of Roberts

(1965; Article XIII. Bl). His program understood polyhedral block scenes. The
image of a scene was first preprocessed to reduce noise, and then the first
spatial derivatives of intensity were computed at each pixel in the image.
Pixels having high derivative values were selected as edge elements (since they
correspond to places where intensity changes rapidly) and then grouped into

lines with a least-squares method. The input image was converted into a line
drawing in this way.

Roberts' program had access to three-dimensional models of objects: a
cube, a rectangular solid, a wedge, and a hexagonal prism. They were repre-

sented by the coordinates (x, y, z) of their vertices. The program recognized
these objects in the line drawing of the scene. A candidate model was selected
on the basis of simple features such as the number of vertices. Then the
selected model was rotated, scaled, projected, and matched with the input line

drawing. If the match was good, the object was recognized, as were its posi-

tion and size. Roberts' program could handle even a composite object made
of multiple primitive shapes; it subtracted parts of a line drawing from the
drawing as they were recognized, and the remaining portions were analyzed
further.

Most of the components of today's vision programs — preprocessing, edge
detection, construction of line drawings, modeling objects, and matching —

appeared in Roberts' program. However, his recognition process proceeded

130 Vision Xm

sequentially from low to high levels and from image to object. Most of the

early work on computer vision took this sequential bottom-up approach.
Segmentation: Lines and regions. The success of any bottom-up ap-

proach to interpretation depends on the fidelity of low-level and intermediate-
level processes. Thus, in the early years of vision research, numerous
techniques were developed for extracting lines and edges from images. All were

similar to Roberts' original method: At each pixel position, a computation is
made over a small local area around it to see whether or not the pixel is on an
edge. This typically involves computing a derivative, or a correlation of the
actual edge with a template of an ideal edge. These local computations are
usually represented as operators that see the image through a small window
(between 2X2 and 15 X 15 pixels). The operator is moved over the image

pixel by pixel and yields high output for edge-element candidates. Usually,
the output is thresholded to produce a binary image with a value of 1 at edge
pixels and 0 elsewhere. Several edge operators are presented in Article XIII.C4.

After edge elements are detected, they are grouped into meaningful lines.
This can be done by tracing the edge elements according to a rule. The goal
of tracing is to connect edge elements, but gaps, sudden curves, and false edge
elements (caused by noise) complicate the process; thus, the tracing rule needs
to be quite sophisticated.

Regions are another important primitive image element. Segmenting
an image into regions became a popular technique following the work of
Brice and Fennema (1970). Region segmentation is exactly complementary
to edge detection; instead of finding areas of contrasting intensities, region
segmentation finds areas of pixels with similar intensities. The properties
of and relations between regions were used to match regions with models of
objects. This approach is called region analysis (see Article XIII.C5).

The objective of the segmentation process — either by edge detection or
region analysis — is to obtain a description of an image in terms of meaningful
lines or regions, so that it can be compared with the models. Despite con-

siderable effort in edge detection and region analysis, it turned out that seg-
mentation was very difficult. In edge detection, for example, a low threshold

allows one to detect low-contrast edges but also detects fraud edges due to
smear or surface variation; a higher threshold is less sensitive, both to noise
and to true edges. In tracing lines, two distinct lines may be identified as

one. In region analysis, regions may be overdivided or underdivided — a region
may correspond to more than one surface, or surface variations may split a

whole surface into several regions. These problems can be minimized by set-
ting up the environment carefully and tuning various threshold parameters.

But obtaining meaningful elements cannot be solved without some external,

top-down, and possibly heuristic knowledge.
Heuristics. The first extensive use of heuristics for image understanding

was due to Guzman (1968a; Article XIII. B2). His program, SEE, could segment

a line drawing into three-dimensional bodies. Guzman classified types of

A Overview 131

junctions that appear in line drawings and made the important observation
that a junction type makes a local suggestion about plausible associations of

regions into objects. For instance, the psi junction type (junction which looks
like ip) is often seen in an aligned pillar of blocks. Thus, it suggests that
the upper two regions belong to a single body and the lower two to another.
Guzman represented this heuristic rule of region association with links that
connect the regions that possibly belong to the same object.

The SEE program links regions according to these heuristic rules about
junctions. Regions that are associated by many links probably constitute a
single object, while regions of different objects will have none or a few links
between them. Still, the linking heuristics do not say conclusively which
regions belong to which objects, so Guzman designed another set of heuristics
for partitioning regions into objects according to the number, strength, and
topology of links between regions. He developed the SEE program by adding
and revising heuristics as he found cases for which the current version did not
work. Eventually, SEE could correctly segment very complicated line drawings
into objects.

Guzman's work was one of the distinguished successes in the early period
of heuristic approaches to vision. It demonstrated that line drawings could be
interpreted by symbolic processes instead of numerical matching procedures

such as least-squares fit of lines. The research also focused attention on
the blocks world, showing it to be an abstract problem domain, free from
uncontrolled noise and artifacts that obscure essential issues.

But Guzman's approach also had fundamental difficulties. Although
SEE recognized three-dimensional objects, its heuristics were tied to the two-
dimensional picture domain. There was no explicit treatment of three-
dimensional scene features. Second, his heuristics were very ad hoc and there
was little physical basis for them. This was especially true of the heuristics
that grouped regions into objects by manipulating the graph made by regions

(as nodes) and links (as arcs). But these problems — reasoning only with

picture-domain features and ad hoc features — were not unique to Guzman's
approach; they recur throughout vision research.

Higher level knowledge. The sequential, bottom-up approach has
difficulty segmenting images in a meaningful way. Even in a simple blocks
world, it seems almost impossible to extract a perfect line drawing. In fact,

there is a dilemma; a drawing is "perfect" only after it is interpreted, but
a successful interpretation depends on a perfect line drawing. One solution

to this circularity was to give programs knowledge of their task domain —

top-down models of the objects in their worlds. Falk's (1972) INTERPRET
used models to aid interpretation of imperfect line drawings. It analyzed a
drawing and hypothesized objects and their orientations, then predicted the
line drawing of the hypothesized scene, and finally tried to verify it.

The active use of models became very popular, as did terms like model-
based, top-down, semantic, and goal-driven. In some systems, models simply

132 Vision XIH

verified results, but, in others, the models totally controlled what to see where.

Representative programs are Shirai's semantic line finder (Shirai, 1973; Article
XIII.B6), Yakimovsky and Feldman's (1973) semantic-based region analyzer,
and Tenenbaum and Barrow's (1976a) interpretation-guided segmentation.
Shirai's program guessed where lines would be found by extending lines it had
already found. It worked from easier lines (such as lines between white blocks
and black background) to difficult lines (such as internal lines). Yakimovsky

and Feldman took a decision-theoretic approach to region growing: Regions
were merged so that a certain probability of correct interpretation was max-

imized. Tenenbaum and Barrow used a table of constraints on object-object

relations (e.g., A adjacent to B) and object-property relations (e.g., A is
bright), as well as a filtering procedure and relaxation method that repeatedly
eliminated inconsistent labels from a set of possible labels for each region (see
Article XIII.E4 for a discussion of this program).

These systems are, for the most part, subject to the same criticism that

was leveled against the bottom-up systems: They do not distinguish between
image characteristics and scene characteristics. For example, the knowledge in

the scene domain (e.g., object A is "on" object B) is used in such a degenerated
sense that region A is "above" region B in the image. More recent model-
based systems show a sharp contrast in this respect; for example, ACRONYM
(Brooks, 1981b; Article XIII. F3) makes a clear distinction between observable

image features, object-class models, and the specific object model.
Applications. While a basic understanding of the vision process seemed

to be very difficult, many important applications of computer vision technol-
ogy were found in a number of fields. One area is the processing and inter-

pretation of two-dimensional images. This includes medical applications such
as screening cancer examinations by tissue image analysis, remote-sensing
applications such as satellite image analysis for monitoring natural resources,

and industrial applications such as inspecting printed circuit boards. Com-
puter tomography (CT) is a notable success in the area of generating and

analyzing images. Advances in computer technology and reductions in hard-
ware costs have made these applications practically feasible.

Visual sensing for robots is another important application of computer

vision. Early research was done in the Hand-Eye projects of the early 1970s,
and today the field has an urgent mandate to make robots more versatile and

flexible and, thus, to increase productivity in industry. Three-dimensional
information is important for robots, so range-finding methods have been devel-

oped to measure depth directly. (Range finders are discussed in Article XIII. D4,

and robot systems in Article XIII. Fl.) The generalized cylinder — an important
representational tool for three-dimensional shape — emerged from the research
of range-data analysis (Agin and Binford, 1973; see Article XIII. D6). The
generalized cylinder represents a volume as the volume swept by a cross section

along a three-dimensional space axis. The axis can be an arbitrary three-
dimensional curve. The shape of the cross section can be arbitrary and it can

A Overview 133

even change shape by a certain rule as it moves along the axis. A usual cylinder
is obtained by sweeping a disk along a line, and if the disk size shrinks linearly
a cone is obtained. This representation provides a good means for describing
complex objects by part/whole segmentation with natural semantics.

Geometry and physics. In 1971, Huffman and Clowes (see Article
XIII.B4) independently made the crucial observation that lines in a drawing can

mean (or depict) different three-dimensional entities, even though they look
the same as two-dimensional entities, and that they must be distinguished on
the basis of the physical role of their corresponding three-dimensional edges.
For example, a line in a drawing can depict a boundary or a connect edge.
Boundary edges are found when an object occludes another or occludes the
background; connect edges are found when two surfaces meet along their
edges. Connect edges are further divided into convex and concave edges.

Huffman gave distinct labels to these kinds of edges: "+" for convex, "— " for
concave, and "|" for an occluding boundary. Interpreting a line drawing as a
three-dimensional scene involves assigning these labels to the lines.

The advantage of interpreting images in terms of physical features is that
the interpretive process can utilize the constraints imposed by the physical
world: A line can have only one interpretation at a time, and, what is more
important, certain combinations of line labels at a junction are not physically
possible. Waltz (1972; Article XIII. B5) extended this idea to a larger set of
line classifications, including shadows and cracks. Interestingly, and contrary
to intuition, increasing the number of line types constrains more on possible
labelings, because a smaller percentage of the combinatorially possible line
junctions are physically realizable.

Of all scene features, shape information is most important. Thus, theoreti-
cal and systematic study of geometrical representations for vision began.

Huffman (1971) and Mackworth (1973; Article XIII.B7) popularized the gradient

space as a powerful tool for reasoning about surface orientation. It repre-
sents surfaces in a parametric space, specifically, in a two-dimensional gradient

space in which the axes represent the amount of tilt of a surface with respect

to the optical axis of the viewer. Scene properties such as convexity, con-
cavity, perpendicularity, and smoothness can be conveniently represented in

it. (Recently, the Gaussian sphere has proved a more general and preferable
tool for vision; see Kender, 1980)

Mackworth's POLY (1973; Article XIII.B7) interpreted line drawings by
reasoning about the gradients (orientations) of surfaces. Prior to this work,

line labeling represented only a qualitative interpretation of lines. Conse-
quently, objects with the same qualitative labeling but different quantitative

parameters could not be distinguished; for example, a trapezoidal block differs
from a cube in its angle measurements, not in its qualitative labeling. Using
gradients, Kanade (1979; Article XIII.B8) demonstrated quantitative shape
recovery from line drawings; with this more complete specification of the
scene, he was able to predict how the scene would look from different angles of

134 Vision XEI

view. Similarly, a formal approach was taken by Kender (1980) in developing

a theory of how texture could be used to make inferences about the three-
dimensional structure of a scene. The approach common to these researchers

is to map image features, such as length and angles in the image, into three-
dimensional shape constraints, by explicitly assigning assumptions and repre-

senting the constraints in an appropriate space. In this way, the heuristics

can be used in a well-understood (rather than ad hoc) manner (Kanade and
Kender, 1980).

Physics, especially photometries, also came into play. Shading is known
to give important cues for shape, especially for smooth, curved surfaces.

Horn (1975, 1977) initiated a pioneering work on shape-from-shading theory,
which gave a deep insight into the low-level vision process. It was first for-

mulated as simultaneous partial differential equations and then reformulated

taking advantage of the gradient-space representation. Under certain assump-
tions, the image intensity value (/) at a point in the image can be related

to the surface orientation (p, q) at the corresponding three-dimensional scene

point. Thus, we have a mapping / : (p, q) — > I. The task of shape from shad-
ing is to find the inverse of this mapping. In general, the inverse function

/_1 : / — ► (p, q) alone does not give a unique orientation for the point. Other
constraints, for example, assuming a smooth surface, are needed. Or there
may be another image taken in different lighting conditions, from which to

generate another mapping /2 : (p, q) —► /; then both /_1 and f^1 may yield
a unique solution. This method is called photometric stereo.

Barrow and Tenenbaum (1978; Article XIII. Dl) discuss the problem of
recovering intrinsic characteristics (distance, orientation, reflectance, etc.)

from images. They propose an iconic representation of these scene charac-
teristics in the form of images that are registered with the original image.

These are aptly called intrinsic images. Once we have intrinsic images, opera-
tions like segmentation become fairly simple.

Thus, in effect, recent vision research has begun to go back to the geometry

and physics that govern vision processes and to represent them in a computa-
tionally tractable form. This has turned out to be a powerful approach to the

problems of motion, texture, shading, and stereo.

Marr's theory of vision. Marr presented a theory of vision that empha-
sized the importance of choosing appropriate representations for different

levels of the vision process. His approach, as well as his results and those of
his students, had a great deal of influence in vision research. (It is unfortunate
that Marr died in 1980 before he saw his theory of vision fully developed and
implemented.)

Marr (1978) pointed out that it is important to understand vision at
two levels: the first level that specifies what is being computed and why
(competence theories) and the second level of particular algorithms to carry
out the computation (performance theories). For example, the theory of the
Fourier transform is at level 1, and algorithms like the Fast Fourier Transform

A Overview 135

or the parallel algorithms of coherent optics are at level 2. Marr then argued
that the theory of computation (level 1) must precede the design of algorithms
(level 2) and that vision researchers must not confuse the two.

The role of a representation is to make certain information explicit at

an appropriate point in the analysis of an image. Thus, the choice or inven-
tion of a representation affects the success of analysis. Marr discussed the

vision process in terms of three levels of representation: Starting from images,

the framework consists of primal sketch, 2-q-D sketch, and 3-D model rep-
resentation. The primal sketch makes information about intensity change

explicit, the 2^-D sketch makes information about the surface explicit, and
the 3-D model makes information about object shape explicit.

Based on this framework, Marr and his colleagues studied methods to
obtain one representation from another. Obtaining the primal sketch from

raw image data involves edge detection and zero-crossings (Marr and Hildreth,
1980), and stereo disparity (Marr and Poggio, 1977; Grimson, 1980) and mo-

tion (Ullman, 1979) are used to obtain the 2^-D sketch. Marr and Nishihara
(1978) discuss the problem of computing the 3-D model from a 2^-D sketch.
They represented three-dimensional model shapes of stick figures (such as
humans) hierarchically from overall description to detailed elaboration of its
components.

The approaches discussed earlier that emphasize geometry and physics

and Marr's theory of vision are both prone to the bottom-up processing
from image to object. As we mentioned in the discussion of segmentation,

image interpretation is difficult without top-down models. However, these

new approaches differ critically from the older (ad hoc) bottom-up methods
in that they are based on physical properties of the world. Once appropriate

representations are selected — be they intrinsic images, primal sketches, or

2^-D sketches — the constraints that the world provides can be systematically
exploited.

The Image Understanding Program. The ARPA-sponsored Image
Understanding Program started in 1975. Its purpose is

to investigate application of a priori knowledge to facilitate an understand-
ing of the relationship among objects in a scene. The appropriate focus

is on the world understanding. . . . [The Image Understanding Program] is a
catalyst which attempts an integration of many sciences [image processing,
pattern recognition, computer science, artificial intelligence, neurophysiol-

ogy, and physics] in search of methods for automatic extraction of informa-
tion from imagery. (Druffel, 1981, pp. 2-3)

Efforts within the program range from the development of a cohesive theory
of vision to the hardware issues of processing systems. For example, several

knowledge-based systems for photo-interpretation tasks were developed, in-
cluding ACRONYM (Brooks, 1981a), Interactive Aids for Cartography and

Photo Interpretation (Barrow et al., 1977), Road Expert (Bolles et al., 1978),

136 Vision XEI

and Integrated Image and Map Database for Photo Interpretation (McKeown
and Kanade, 1981). Photo interpretation is discussed in this chapter as the
most obvious application of image understanding.

Organization of This Chapter

The remaining five sections of this chapter discuss aspects of vision
research ranging from the blocks world to applications in robotics. Section

XIII. B presents a chronological survey of blocks-world research. Section XIII.C
discusses techniques for early processing of image features. Section XIII.D
raises some issues involved in reasoning about scene features and presents
some useful representational tools and techniques. Section XIII.E discusses

algorithmic tools for matching and reasoning about features — often image-

level features. Sections XIII.C and XIII.E are related by Marr's distinction
between the theory of computation and the design of algorithms. Finally,
Section XIII. F offers a glimpse of how various vision methods are integrated
into a whole vision system.

Blocks worlds. Many important issues for vision research have been
first proposed and explored in the context of blocks worlds, because they are
simplified by explicit assumptions about the physical structure of the world.
Usually, these assumptions limit the kinds of vertices at which surfaces meet
and, thus, the kinds of objects that can exist. For example, the trihedral
world is constituted of objects that have exactly three surfaces meeting at

any vertex.

One of the advantages of blocks-world research is that observed features
correspond to real physical features: A line corresponds to an edge, and a
region of homogeneous intensity corresponds to a surface. This situation is
more tractable than one in which image features may not correspond to scene
features; for example, a cylinder appears to have two parallel edges where the
surface of the cylinder disappears from view, but these image features do not
directly correspond to any features of the cylinder itself.

The main disadvantage of blocks worlds is that they are so constrained

that associated image-understanding methods do not generalize to the real
world. One consequence is that it is hard to test the adequacy of blocks-
world representations. This is a valid criticism of individual blocks-world
techniques, but maybe not of the blocks-world approach. All vision systems
constrain their environments by assumptions; the advantage of the blocks-
world approach is that it makes the assumptions explicit.

Early processing of image features. Section XIII.C covers several
techniques for early processing of image features. Some articles in the section
deal with representations of image features, and some discuss methods for
improving and changing the representations of images. The first articles
present the lowest level operations on image data, starting with taking a

A Overview 137

picture of a scene (Article XIII. Cl). Once a picture is obtained, preprocessing
techniques suppress unwanted details such as noise and enhance aspects such

as lines (Article XIII.C3). In fact, line-finding is a fundamental operation in
vision research; it is discussed in Article XIII.C4. Regions of homogeneous
intensity, color, or texture are also important image features; methods for
finding regions are discussed in Article XIII.C5, and color and texture are
discussed separately in Articles XIII.C2 and XIII. C6, respectively.

All of the techniques in Section XIII.C deal with image features. No
attempt is made to infer anything about the scene with these techniques.

Scene characteristics. The main problem of vision research is deciding

what the three-dimensional world looks like from two-dimensional images
(Sec. XIII.D). This involves inferring scene features from image features. Scene
characteristics, sometimes called intrinsic characteristics, include the tilt,
reflectivity, and smoothness of surfaces, as well as the arrangement of texture.
These features are discussed in Article XIII.D l.

The problems for research on scene characteristics include determining
useful intrinsic characteristics, figuring out how to represent them and how
to reason with them. A few representational tools have been developed

that facilitate reasoning, including generalized cylinders (Article XIII.D6) and
gradient space (Article XIII. B7). Methods of obtaining scene features from
various sources of information are discussed: motion (Article XIII.D2), stereo

(Article XIII. D3), range finders (Article XIII. D4), and shape-from methods
(Article XIII. D5; specifically, shape from shading and shape from texture).

Algorithms for vision. Section XIII. E discusses algorithmic tools used
in computer vision to perform matching and interpretation. Historically,

these techniques have been applied most often to pixel-level and image-level
features. (The theory for extracting these features is discussed in Section
XIII.C.)

The first article in Section XIII. E discusses hierarchical representations
of image features called pyramids and quad trees (Article XIII.El). These
representations improve the efficiency of reasoning about image features. The
most basic method for matching and recognition is template matching (Article
XIII.E2). Syntactic methods are related to template matching, but they involve

"parsing" pictures, as if they were sentences made up of primitives (Article
XIII. E3). A more sophisticated procedure is relaxation (Article XIII. E4), first
encountered as Waltz filtering in Article XIII. B5. Relaxation requires that there
be constraints among primitives and a method for propagating the constraints.

Systems. The last section of the chapter (Sec. XIII. F) is devoted to
practical vision systems, rather than vision methods. In the ACRONYM

system (Article XIII.F3), the user specifies parametric models of objects in the
world to aid image understanding. The same is true of the systems discussed
in Article XIII. F2. Robot vision (Article XIII.Fl) is an interesting case because
it is usually found in applications where there is detailed knowledge of the

138 Vision Xm

environment; in these cases, the deficits in data — poor-quality, low-resolution
images — can be compensated by strong top-down models.

References

There are several good textbooks and survey papers on vision. Duda and
Hart (1973) deal with techniques for pattern recognition. Rosenfeld (1969)

and Rosenfeld and Kak (1976) present image-processing techniques. Winston
(1977) includes vision from a general AI point of view. Ballard and Brown
(1982) describe recent computer vision work. Interesting collections of papers
from seminars are found in Hanson and Riseman (1978a) and Dodd and Rossel

(1979). Ballard (1981) discusses low-level vision from a parallel-computation
point of view. Marr (1978) presents his theory of vision together with the
results of his group. Kanade (1980a) argues for his model of vision systems
by emphasizing the importance of the distinction between image and scene.

Mackworth (1977) reviews the history of blocks- world understanding.

B. BLOCKS-WORLD UNDERSTANDING

Bl. Recognition of Three-dimensional Objects:
L. G. Roberts

ONE of the first researchers to be concerned with the recognition of three-
dimensional objects was L. G. Roberts (1965). Previous research in vision

had dealt primarily with the recognition of two-dimensional forms such as
alphabetic characters. Roberts noted that the problem of recognizing and
describing the solid objects in a picture requires a different approach from that

of processing two-dimensional forms. A two-dimensional representation of a
two-dimensional object is substantially like the object, but a two-dimensional
representation of a three-dimensional object introduces a perspective projec-

tion that makes the representation ambiguous with respect to the object.

Thus, Roberts' approach involved describing the three-dimensional environ-
ment that generated the picture, rather than describing the picture itself; that

is, he examined the picture-taking process by which a perspective projection
is obtained from a three-dimensional scene. A discussion of the picture-taking
process is found in Article XIII. Cl; we will not duplicate it here.

Roberts chose a simple domain consisting of cubes, rectangular solids,
wedges, and hexagonal prisms. He studied scenes of these objects in arbitrary
spatial configurations. The program he developed analyzed a photograph of a
scene and identified all the visible objects. Furthermore, it determined their

orientations and positions in three-dimensional space.

Models

Roberts represented each possible type of object (cube, wedge, hexagonal

prism) in a three-dimensional coordinate system; this representation is called a
model. Figure Bl-1 depicts the model of a cube. An object in a scene may
differ from its model, because it may occupy a different position and orien-

tation in three-dimensional space and because it may have a different length
in its dimension. A transformation matrix, R, can be obtained that transforms
a model into a scene object by means of rotation, translation, and size change
(R is represented by homogeneous coordinates; see Article XIII.Cl).

Roberts' Program

The first step that Roberts' program takes is to make a line drawing of
a photograph; this step will not be described here (see Article XIII. C4). Given

the line drawing (Fig. Bl-2), the next step is to find the model (cube, wedge,

139

140 Vision XIH

y*u

J- f *
Figure Bl-1. The cube model in the three-dimensional world system.

or hexagonal prism) that best matches the picture. A list of two-dimensional
features is associated with each model; when these are found in a picture,

they are used to index the appropriate models.

The interior polygons A, B, and C in Figure Bl-2 correspond to surfaces
of the object. The point, P, at which all the polygons come together is used

as a reference point. This point and its three surrounding polygons constitute

a feature; a search of the models finds that a cube and perhaps other models

have three quadrilaterals about one point. A point in the cube model with

the proper polygons around it is then selected, and topologically equivalent

point-pairs are listed, resulting in seven three-dimensional points from the

model and seven corresponding two-dimensional points from the picture. This
procedure is repeated for any other models that pass the initial topology test.

Once a set of potential models has been found, the best fitting model is

determined. The point pairs obtained above are used in this step. Recall that

matrix R transforms the model into the object. In addition, the perspective

transform, which maps from scene points to image points, can be represented

as a matrix P (see Article XIII. Cl). Then,

H = PR (1)

transforms the model points into picture points.

The best transform, H, that takes the seven model points into the seven

corresponding picture points is found. A mean-square error that indicates how
well the model fits the picture is also obtained for each model. The model
with the least error is chosen.

The next step is to determine the position and orientation of the object

in three-dimensional space. From equation (1), we derive

R

P *H
The transform H has just been calculated, and P is the perspective transfor-

mation, which is also known. Thus, we can calculate R, the transformation of

Bl L. G. Roberts 141

Figure Bl-2. Line drawing of a picture of a rectangular solid.

the model into the object. This gives us the precise orientation and position
of the object and also the dimensions of the object relative to its total size.
We lack only the depth variable that represents the distance of the object
from the picture plane. This must be found some other way.

To calculate depth, the assumption is made that each object must be
supported in some way, either by another object or by the ground. (This is

called the support hypothesis.) By simulating the effect of moving each object
away from the camera and expanding it (so as to maintain the same image on
the picture plane) until it hits the ground plane or another object, the final
position and actual size of each object may be calculated.

Now that the precise position and size of the object in the scene are

known, it may be viewed from another point using a three-dimensional display

program. This illustrates the crucial difference between Roberts' recognition
program and the approach to pattern recognition followed in most previous
programs. The earlier programs could classify the objects in a scene, but they

could not determine the precise three-dimensional positions and sizes of the
objects. Therefore, the appearance of the scene from another viewpoint could

not be predicted. Roberts' program was able to predict other views of the
scene and, thus, showed a sophistication of image understanding beyond pre-

vious programs and more like human three-dimensional spatial understanding
of pictures.

Conclusion

Roberts made three assumptions in developing his program:

1. The picture is a perspective view of the real world;

2. The objects in the picture can be described by transformations of known
models;

3. All objects are supported by other objects or by the ground plane.

142 Vision XIII

(a)

Figure Bl-3. (a) A scene with a compound object partially occluding a simple
object (a rectangular solid); (b) the compound object consist-

ing of two rectangular solids and a wedge.

Under these assumptions, the program analyzed scenes consisting of single
simple objects, and also scenes with several objects and compound objects.

Figure Bl-3a shows a picture processed by the program. It consists of a
compound object partially occluding a simple object. A compound object is a
single object that is not the transformation of a single model. It is the result

of piecing together several models. Figure Bl-3b shows how the compound
object was formed by piecing together the transformations of two cube models

and a wedge model. Precise three-dimensional descriptions of the objects
in the picture were generated, allowing the scene to be displayed from any
viewpoint.

References

See Roberts (1965).

B2. Partition of Line Drawings into Objects:

A. Guzman

In CONTRAST to Roberts' work, which involved scenes of known objects
(e.g., cubes and wedges), Guzman (1968b) developed a program to analyze
scenes without prestored models of objects. His program, called SEE, starts
with a line drawing and identifies all the separate objects in it, even if they are

not completely visible. For example, SEE finds three bodies in Figure B2-1:
the first consists of regions 6, 2, and 1; the second, of regions 11, 12, and 10;
and the third, of regions 3, 4, 5, 7, 8, 9, and 13.

Another contrast between SEE and Roberts' program is that SEE does
not provide a three-dimensional description. It is intended only to partition

the scene into bodies and to provide this as input to a recognizer like Roberts'
program, which might recognize the bodies as instances of models and thus

derive three-dimensional descriptions. Finally, Roberts' program uses numeri-
cal methods, while SEE adopts a heuristic and symbolic (i.e., nonnumerical)

approach.

Figure B2-1. Example of scene analysis by SEE
(from Guzman, 1968b).

143

144 Vision XIII

Overview of SEE

The main part of SEE analyzes the picture in terms of junctions and

regions, in search of clues that indicate that two regions form part of the

same body.

Guzman defines a set of junctions that he considers significant for analysis.

A junction is a point where two or more lines meet. Junctions are classified

into junction types depending on the geometrical configuration of their inci-

dent lines. Figure B2-2 shows the classification. An analysis of the regions
around junctions suggests heuristics for assigning regions to one body or

another. We discuss five of these junction types briefly (see Fig. B2-3):

1. FORK. If three regions meet at a FORK junction and none of them is

the background, links are formed between the regions (Fig. B2-3a). A
link between two regions suggests that they belong to the same object.

In Figure B2-4a, this rule links regions 1 and 2, 2 and 3, and 3 and 1
around junction A.

2. ARROW. Two of its regions are linked, as shown in Figure B2-3b. In
Figure B2-4a, this rule links regions 1 and 2 at junction B, 1 and 3 at
junction C, and 4 and 5 at junction D.

3. T. Two Ts are said to match if their stems are collinear and they "face

each other" (Fig. B2-3c). Regions 1 and 2 (Fig. B2 3c) are linked, as are
regions 3 and 4, but only if a link is not created between background
and nonbackground regions.

FORK ARROW

PEAK MULTI

Figure B2 2. Classification of junctions in pictures of polyhedral scenes

(from Guzman, 1968b).

B2 A. Guzman 145

Figure B2-3. Evidence used to link regions together.

4. X. Two links are established (Fig. B2-3d), one between regions 1 and 2
and the other between regions 3 and 4. In Figure B2-4a, this rule links
regions 2 and 3 and regions 4 and 5 around junction E.

5. PEAK. All of its regions, except the one containing the obtuse angle, are

linked to each other (Fig. B2-3e).

Thus, each link is a piece of evidence suggesting that two or more regions
belong to the same object. SEE contains many more heuristics like those
described above.

The program uses all the available evidence to determine which regions
should be merged to form a single object. The evidence is summarized in a
graph that represents the relationships of regions and the links established

by the junction-heuristic rules. For example, the graph in Figure B2-4b
represents the structure in Figure B2-4a; each node corresponds to a region,
and each arc to a link.

®o

(b)

Figure B2-4. (a) Example of planting links among regions;
(b) the graph of the links.

146 Vision XIII

Let us define a nucleus as either a single region or a set of regions that

have already been merged — a nucleus represents a set of regions that belong
to the same object. The program now expands the object according to the
following rule: If two nuclei are connected by two or more links, they are
merged into a larger nucleus. That is, all the members of both sets of regions

belong to a single object. For example, in Figure B2-4a, regions 1 and 2 are
connected by two links and are therefore merged into nucleus 1-2. There are
four links between the regions in nucleus 1-2 and region 3; they are therefore
merged into nucleus 1-2-3. Similarly, regions 4 and 5 are merged into nucleus
4-5. Since there are no links between nuclei 1-2-3 and 4-5, regions 1, 2, and 3
are combined to form one object and regions 4 and 5 form another.

This simple rule does not work for more complicated cases. Guzman

added many more heuristic rules for region merging, as well as more heuris-
tics for junction types, as they became necessary to handle more and more

difficult cases. As a result, the SEE program could successfully segment very
complicated line drawings into objects.

Conclusion

Guzman's SEE was the first program to make use of vertices and junctions
in recognizing three-dimensional objects. As the next articles will show, this

has become a powerful and popular approach. However, where Guzman's
analysis of junctions was heuristic and intuitive, those of Huffman and Clowes

(Article XIII. B4) and Waltz (Article XIII. B5) were successively more systematic
and powerful.

References

For a detailed description of SEE, see Guzman (1968a, 1968b).

B3. Interpreting Imperfect Line Drawings: G. Falk

FALK (1972), like Roberts (Article XIII.Bl), worked on the problem of iden-
tifying the visible objects in a photograph of a scene and determining their

orientations and positions in three-dimensional space. However, Falk allowed
several kinds of imperfect input: Line drawings generated from the photograph

might not follow exactly the edges in the image, there might be degenerate

views of objects, or some edges may be totally missing due to poor lighting.

Falk used fixed models of the objects that could appear in the scene;

nine models represented simple objects such as rectangular solids and wedges.

Unlike Roberts' models, which were generic (a cube could represent any right

parallelepiped), Falk's models specified precise shapes and sizes. With the

models and a large set of heuristics, Falk's program (called INTERPRET)
followed a hypothesize- and- test strategy to identify and locate objects in a
scene.

An Example

We illustrate here the steps taken by INTERPRET to analyze the picture

in Figure B3-la. In the next section, we will discuss INTERPRET in more
detail.

The scene that produced Figure B3-la consists of a rectangular solid with
a cube in front of it. Because of lighting conditions, the top face of the cube

and left face of the rectangular solid appear to have the same brightness, as

do the right faces of both blocks. Three visible edges are therefore missing

from the input: two in the corner connecting P2 and Pi , and the edge between

P4 and P3.

INTERPRET proceeds as follows:

1. Segmentation. The picture is partitioned into pieces corresponding to

individual bodies, as in Figure B3-lb. Some of the lines in the original
picture may not appear in any of these pieces (e.g., the line from Pi
to P3).

2. Completion. It is easy to add lines to complete, or partially complete,

some of the bodies. The completed version of the bodies in Figure B3-lb
is shown in Figure B3-lc. One of the body descriptions is complete,
while the other is not.

3. Recognition. Each body is identified as an instance of a model and is

located in three-dimensional space. This constitutes an interpretation
of the scene. Although this step does not require that the bodies in the
picture be complete, it is more likely to succeed if there are no missing
lines.

147

148 Vision XIII

K

R
>P2 PI

?P3

[ST

(a)

(c)

(b)

(d)

(e)

Figure B3-1. Analysis of a line drawing (from Falk, 1972).

B3 G. Falk 149

4. Prediction. To check that the interpretation of the scene is consistent

with the original picture, the three-dimensional locations and identities
of the models are used to generate a predicted line drawing. Figure B3-ld
is the predicted line drawing resulting from the recognition of the bodies

in Figure B3-lc.

5. Verification. The prediction and the original picture are compared to see

how closely they align. If, as in Figure B3-le, the two are approximately the
same, the scene interpretation is assumed to be correct. Otherwise, part
of the scene is reanalyzed to produce a more consistent interpretation.

The following sections describe some of these steps in more detail.

Segmentation

The first step in the interpretation procedure is to segment the line

drawing into bodies. Guzman addressed this problem (Article XIII. B2). He

classified junctions and developed heuristics to decide whether regions meeting

at junctions belonged to the same body. However, this approach cannot work

if lines are missing from the picture. To see why, consider again Figure B3-la,
in which, due to lighting conditions, two faces of different rectangular solids

are identified as a single region R. It is useless to assign this region to one

or the other of the bodies, because it corresponds to two separate surfaces of

separate bodies. Yet, this is exactly what Guzman's program tried to do.
To get around this problem, Falk developed heuristics to determine which

lines, rather than regions, meeting at each junction are likely to belong to the

same body. Falk's junction classifications are the same as Guzman's, but each
junction type is additionally classified as either GOOD or BAD. For the most

part, GOOD junctions contain lines of only one body, while BAD junctions

contain lines of more than one body. For example:

1. Arrow junctions. If one of the inner regions of an arrow junction is the

background, it is labeled BADARROW (Fig. B3-2b). Figure B3-3a shows
why the three lines of this junction cannot be assumed to belong to
the same body. If the middle line of an arrow junction is the top of a

K junction (Fig. B3-2c), it is also labeled BADARROW. Figure B3-3b
shows that, when this occurs, the two side lines of the arrow belong
to different bodies, while the middle line is shared by the two bodies.

Otherwise, the arrow junction is labeled GOODARROW (Fig. B3-2a). In
Figure B3-3c, we see that the three lines of the GOODARROW belong
to a single body.

2. Y (Fork) junctions. A Y junction is labeled GOODY if at least one of its

lines is also the middle line of a GOODARROW (Fig. B3-2d). Figure
B3-3c shows that all the lines of a GOODY belong to a single body.
Otherwise, the Y junction is labeled BADY.

Falk similarly classified L, T, K, X, and MULTI junctions.

150 Vision
xin

Figure B3-2. Some junction types (from Falk, 1972)

Once the junctions in a line drawing have been classified, the lines belong-
ing to each body must be grouped together. This is done by constructing a

graph whose nodes consist of lines that are known to be in the same body
because of the junction type that connects them. Two nodes in the graph are
connected if they share a common line. A procedure merges all nodes sharing
lines, and, ideally, when the merging stops, each remaining node corresponds
to a separate body in the picture. Regions in the picture are then assigned to
bodies based on this line segmentation and some other heuristics for splitting

regions (such as R in Fig. B3-la) that correspond to more than one body.

Support Relations

To recognize bodies in the picture as instances of three-dimensional models,
the program first infers the three-dimensional coordinates of some of the ver-

tices of each body. Falk's method of deriving three-dimensional coordinates of
picture points is illustrated in Figure B3-4. For each picture point P', the cor-

responding point P in 3-space must lie along a ray extending from the camera

center through P'. However, it is not possible to determine where on this ray
P lies unless external constraints are introduced (see Articles XIII. D3, XIII. D4,

and XIII. D6). Falk's external constraints are the same as Roberts' support
hypothesis. Objects in a scene are not suspended in space but are supported

BAD ARROW

BADARROW GOODARROW

(a) (b) (c)

Figure B3- 3. Examples of junction types (from Falk, 1972).

B3 G. Falk 151

either by the table or by other objects. In Figure B3-4, if we can determine
that the corner P\ of the block lies on the table, then the three-dimensional
coordinates of P\ can be determined as the intersection of the table plane and

the ray associated with the picture point P[. In fact, any picture point may

be located in three-dimensional space if a plane in which it lies is known.
Two important steps are taken by INTERPRET to determine three-

dimensional features from the picture. The first is finding the base edges
for each body; the second is determining which bodies support other bodies.
INTERPRET uses a number of heuristics (not described here) to determine

base edges. These would identify P1-P2, P2-P3, P4-P5, and P^-P& in Figure
B3-5 as base edges. INTERPRET also has heuristics for deciding whether one

body supports another. For example, in Figure B3-5, a necessary (but not
sufficient) condition for BODY2 to support BODYi is that they be adjacent.

That is, a line corresponding to a base edge of BODYi (such as P^-Pq) must
bound both a region of BODYi, Ri, and a region of BODY2, R<i-

CAMERA
CENTER C

IMAGE PLANE

BLOCK RESTING
ON TABLE

P2T /TABLE PLANE /

Figure B3-4. Deriving three-dimensional locations of picture points (from
Falk, 1972).

152 Vision xm

BODY1

Figure B3-5. BODY2 supports BODYi (from Falk, 1972).

Many object corners can be located in three-dimensional space once sup-

port relations and base edges have been identified. In Figure B3-5, since
BODY2 is supported by no other body, it is assumed to be supported by the

table. Points Pi, P2, and P3 are then identified as base points (because they

are endpoints of base edges) and their position in 3-space is determined by
intersecting their rays with the (known) plane of the table. The base points

P4, P5, and Pq, on the other hand, cannot be located until BODY2 is com-
pletely recognized, that is, until the plane of R2 is known. The location of

these base points can then be determined by intersecting their rays with the

plane of face R2. Using support relations in this way, the program analyzes

scenes from the ground (i.e., table) up.

Completion

It is easier to recognize objects if they are complete. Falk has three

methods for completion:

1. If, as in Figure B3-6a, a face F is incomplete because of two dangling
collinear lines, replace the two lines (L\ and L2) by a single line.

2. If a face F is incomplete because of two dangling lines that can be

extended to form a corner (Fig. B3-6b), complete the face by extending
the lines.

3. If, as in Figure B3-6c, there is a pair of L-type junctions with parallel
sides at points P\ and P2, add a line between these two points and split
the face F into two faces.

Recognition

Since INTERPRET recognizes objects from the table up, an object is not

recognized until all its potential supporting objects have been recognized, after

B3 G. Falk
153

LI

(b)

Figure B3-6. Examples of incomplete body descriptions (from Falk, 1972).

which an object's actual support is assumed to be the potential supporting
object with the highest horizontal surface. The three-dimensional coordinates
of the corners of base edges of an object can be inferred once its supporting
plane is known.

An object is recognized as an instance of a model by matching features
of its line drawing against stored properties of the models. These features

include the number of visible faces and vertices, the shape of the faces (e.g., tri-
angular, rectangular), the lengths of base edges, and the angles between base

edges.

Although the three-dimensional coordinates of the corners of an object
have been established, the position and orientation of the object in 3-space
must still be determined. This is done by matching the known corners of the

object to the model and inferring the three-dimensional positions of the other
corners.

Prediction and Verification

After all objects in the picture have been recognized, a line drawing of
the interpretation of the scene is predicted and matched with the original line
drawing. Matching proceeds by checking each line in the original drawing for
a line in the predicted drawing. If a body has more than three lines in the
interpretation that do not appear in the original line drawing, a new attempt
is made to recognize the body. The methods used by Falk for revising decisions
are rudimentary and will not be discussed here.

Conclusion

In addition to the prediction- verification method that Falk developed for

interpreting imperfect line drawings, Falk's research touched on several other
useful techniques: line and edge detection (Article XIII. C4), region segmenta-

tion (Article XIII. C5), and determining the three-dimensional coordinates of
objects in a scene (Articles XIII.D3, XIII.D4, and XIII.D6).

154 Vision Xm

References

See Falk (1972) for a detailed description of INTERPRET.

B4. Labeling Line Drawings in the Trihedral World:

D. A. Huffman and M. B. Clowes

In CONTRAST to the highly heuristic nature of the work of Guzman and Falk,

Huffman (1971) and Clowes (1971) independently attempted a more systematic
approach to polyhedral scene analysis. To begin with, they emphasized the
important distinction between the scene domain and the image domain. The

scene domain involves physical, three-dimensional aspects of a scene, such as
occlusion of one surface by another or the concavity or convexity of edges.

The image domain involves the projection of scene-domain properties onto
the two-dimensional picture plane. There is a definite correspondence between
image-domain and scene-domain elements for the polyhedral world: Junctions,
lines, and regions in the picture correspond to vertices, edges, and surfaces,
respectively, in the scene. The distinction between image and scene features
is important enough that, henceforth, the terms junction, line, and region
will refer to image features, and vertex, edge, and surface will refer to scene
features. In these terms, the goal of picture interpretation is to interpret
elements in the image domain as properties in the scene domain. In this
article, the method of labeling a line drawing will be explained based mostly
on the work of Huffman (1971). Clowes (1971) presented essentially the same
theory using a different representation.

Vertex Labeling

Huffman and Clowes limited their analysis to trihedral polyhedra — objects
in which exactly three plane surfaces come together at each vertex. They
made an exhaustive listing of all the different vertex types and the different
ways they could be viewed. There are only four ways in which three plane

surfaces can come together at a vertex. These are illustrated in Figure B4-1.
Notice that convex and concave edges are found in the vertices of Figure

B4-1. Combinations of these types of edges produce the four vertices in the
figure. The edges associated with the vertex in Figure B4-la are all convex;
those associated with Figure B4-ld are all concave. In Figure B4-lb, two
edges are convex and one is concave. In Figure B4-lc, two edges are concave
and one is convex.

In Figure B4-1, each vertex is generated by three planes meeting at one
point. These three planes partition the surrounding space into eight octants.
Notice that the number of octants occupied by solid material is different for
each vertex. A vertex can be viewed from any one of the octants not occupied
by solid material, and moving a viewpoint within a single octant does not

result in a picture with different junction types. The vertex of Figure B4-la
can be viewed from seven different octants, giving essentially three different

155

156 Vision xm

(c) (d)

Figure B4-1. The four vertex types (from Huffman, 1971).

appearances: FORK, L, or ARROW (rotational symmetry reduces the seven

possibilities to three). This is shown in Figure B4-2, where the vertex being
viewed is marked with a dot and the lines are labeled as follows:

1. A "+" line represents a convex edge with both of its planes visible from
the camera.

2. A "— " line represents a concave edge with both of its planes visible from
the camera.

3. A "<— " or "— +" line represents an occluding edge: a convex edge with
both of its planes on the same side of the edge as viewed from the camera,
one occluding the other. As one moves in the direction of the arrow, the

pair of planes is to the right.

(a) (b) (c)

Figure B4 2. The three views of the vertex in Figure B4-la.

B4 D. A. Huffman and M. B. Clowes
157

Note that, in Figure B4-2b, only two edges are visible as lines in the picture.
The third edge is hidden from the camera position.

An exhaustive listing of the different ways each vertex in Figure B4-1 may

be viewed results in only 12 possibilities (Fig. B4-3, parts (a)-(l)): six for the
L junction, three for ARROW, and three for FORK. (Each configuration in Fig.

B4-3 may be arbitrarily rotated in a given picture.) Of these, the junction
label in Figure B4-3k is derived from the vertex in Figure B4-ld; junction
labels in Figures B4-3d, B4-3f, and B4-3h are derived from the vertex in
Figure B4-lc; junction labels in Figures B4-3a, B4-3b, B4-3c, B4-3i, and
B4-3J are derived from the vertex in Figure B4-lb; junction labels in Figures
B4-3g, B4-31, and B4-3e are derived from the vertex in Figure B4-la. Lastly,
four T-junction labels (Fig. B4-3, parts (m)-(p)) correspond to the cases in
which each of the four possible types of edges is interrupted by another body.

Picture Interpretation

We will illustrate picture interpretation with the simple picture in Figure

B4-4. It contains four junctions labeled A, B, C, and D and three regions
labeled 1, 2, and 3. Each junction may have only the scene-domain inter-

pretations shown in Figure B4-5, and the problem is to determine which
junction interpretations are globally consistent, that is, which provide a con-

sistent interpretation for the whole picture. Consistency is forced by the rule
that each line in the picture must be assigned one and only one label (i.e., +,

— , <— , — ►) along its entire length; otherwise, the adjoining planes would have
different orientations in different parts of the scene. For example, if junction A

(a) (b)

+

(c) (d)
(f)

4" -\J/- A1A
(g) 00 (i)

+

(m) (n) (o) (p)

Figure B4-3. Junction labelings (from Huffman, 1971).

158 Vision xin

Figure B4-4. A simple picture (from Clowes, 1971).

is interpreted as in Figure B4-5b, junction D can only be interpreted as in
Figure B4-5g in order that line AD in the picture has a consistent scene-

domain interpretation (i.e., consistently labeled "— " along its length). The
search for consistent labelings can be implemented as an exhaustive search of
the arrangements of all possible interpretations of all junctions. Such a search

results in the three scene interpretations shown in Figure B4-6.
One interesting aspect of this work is that it is able to determine that

many polyhedra are impossible objects. For example, we can detect that the

Junction A

(a) (b) (c)

Junction D

>+ > +> "> > -> (d) (e) (f) (g) (h) (i)

Junction C

xl^ -xl/- +nU+
(J) (k) (1)

Junction B

+< < +< -< < < (m) (n) (o) (p) (q) (r)

Figure B4 5. Possible labelings for the junctions in Figure B4-4.

B4 D. A. Huffman and M. B. Clowes
159

Figure B4-6. The three possible interpretations for the picture in

Figure B4-4.

picture in Figure B4-7 is an impossible object. Locally, the picture is well
formed; that is, each junction has one or more valid scene-domain interpreta-

tions. It is only when a globally consistent interpretation is attempted that
we see that one does not exist.

Conclusion

Huffman and Clowes brought systematicity to their analysis of polyhedral
objects. They methodically worked out all the ways that planes could meet
in space and all possible appearances of these junctions. Recognizing an
object was then simply a matter of finding a consistent labeling for a line
drawing of the object. However, their search for consistent interpretations

was exhaustive. In the following article (Article XIII.B5), we discuss a similar
approach, but one that uses a larger set of line labels and a more efficient
method of finding consistent interpretations.

Figure B4-7. Impossible polyhedron.

160 Vision XIII

References

See Huffman (1971) and Clowes (1971). Winston (1977) provides an
instructive presentation of the method.

B5. Constraint Propagation in Interpreting Line Drawings:

D. Waltz

WALTZ (1972) extended the research of Huffman and Clowes (Article XIII.B4)

in two important ways. First he expanded the Huffman-Clowes set of four

line labels (+, — , «— , — ►) to include shadows, cracks, and separably concave
edges. Second, he replaced the simple exhaustive search for consistent line
labelings by a clever filtering algorithm that examined adjacent junctions in
the picture and discarded incompatible candidate labelings.

New Line Labels

A typical example of the kind of line drawings interpreted by Waltz's
program is shown in Figure B5-1. Among the new line labels is the crack —
a flat edge that is also the bounding edge of an object. For example, line

segments 6-3 and 6-7 in Figure B5-1 are cracks. Line 6-7 is a bounding edge
of the cube 6-7-9-10-11-13, and line 6-3 is a bounding edge of the supporting
cube. Every crack is therefore a separable edge; that is, two or three bodies

meet at a crack. In Figure B5-1, a crack is represented by a "c" together
with an arrow. The direction of the arrow is such that the obscuring body
lies to the right of this direction.

Objects may also be bounded by concave edges. For example, in Figure

B5-1, the concave edge 4-15 is also the boundary edge of cube 4-3-6-13-14-15.

Figure B5-1. A simple picture and its labeling (from Winston, 1975).

161

162 Vision xin

Figure B5-2. A nonseparable concave edge (line 1-2).

These edges are called separable concave edges, and the arrow's direction is
such that the obscuring body lies to the right of this direction. A double

arrow (line 13-6 in Fig. B5-1) indicates that three bodies meet along the
line. However, not all concave edges are separable; for example, line 1-2 in
Figure B5-2 is a nonseparable, interior concave edge.

Waltz also considered boundaries of shadows. A shadow boundary is also

a flat edge, for example, lines 1-2 and 1-8 in Figure B5-1. A shadow edge is
represented by an arrow that points in the direction of the shadowed region.

The 11 line labels we have described, including the original four from

Huffman and Clowes, are summarized in Figure B5-3.

1

2

3

4

5

6

7

8

9

10

11

Convex edge

Obscuring edges (Obscuring body lies to

right of arrow's direction.)

Cracks (Obscuring body lies to right of

arrow's direction.)

Shadows (Arrows point to shadowed

region.)

Concave edge

Separable concave edges (Obscuring body

lies to right of arrow's direction; double
arrow indicates that three bodies meet

along the line.)

Figure B5-3. Line labelings (from Winston, 1975).

B5 D. Waltz 163

More on Shadows

One of Waltz's contributions was to show that shadow information, which
was previously regarded as annoying detail, is actually useful for resolving line
interpretations. In addition to the two shadow labels mentioned above, Waltz
also labeled regions as illuminated directly by the light source, turned away

from the light (self-shadowed), or shaded by a shadow cast by another surface.
Waltz then added line labels giving the illumination status of the two regions
appearing at each edge. This increased the number of line labels from 11
to 53.

Junctions

The junction types used by Waltz included the Huffman- Clowes junc-
tions (L, ARROW, FORK, t) plus all four-line and some five-line junctions.

Examples are shown in Figure B5-4. To obtain the possible set of junction

Approximate number Approximate number

of combinatorially of physically

possible labelings possible labelings

92

826

623
10

435

213

128

160

20

Figure B5-4. Number of combinatorially and physically possible label-
ings for each junction type (from Winston, 1975).

V 3,249

-
>

185,000

-
<

185,000

V 185,000

sfc
11 X 106 2k
11 x io*

A^
11 X 10*

X
11 x 10*

K 11 X 106
-^

600 X 106

164 Vision XIII

labelings, Waltz considered all possible object configurations viewed and lit

from all possible octants. Note that the number of physically possible labelings

for each junction is much smaller than the number of combinatorially possible

labelings — only 3 to 3 X 10~6 percent of the total combinations are legal for
the common vertex types.

Labeling Procedure

The procedure used by Waltz to label a picture is based on the Huffman-
Clowes principle that each line in the picture must be assigned a single label

along its entire length. First, the complete set of possible labelings for each

junction in the picture is retrieved. Then a constraint-satisfaction algorithm
is used to determine the possible labelings for each junction in the context of

the entire picture. This algorithm compares adjacent pairs of junctions and
sees if their constraints can be satisfied.

As an illustration, we will apply the algorithm to Figure B5-5; this

is the same as Figure B4-4 from the previous article. Let us assume for

simplicity that lines can be labeled only as + ,—,—►, or <— . Thus, each

junction in Figure B5-5 has the labeling possibilities shown in Figure B5-6.

The following procedure shows how Waltz's program interprets this picture.
The step numbers refer to Figure B5-7, which summarizes the label sets
assigned to each junction.

1. Assume the procedure starts with junction A of Figure B5-5. Ini-

tially, the set consisting of parts (a)-(c) of Figure B5-6 is assigned to
junction A; it can be labeled in any of these three ways.

2. Suppose that the procedure then goes to junction D and makes an

initial assignment of six possible labelings (shown in parts (d)-(i) of

Figure B5-5. A simple picture (from Clowes, 1971).

B5 D. Waltz 165

Junction A

(a) (b) (c)

Junction D

>+ } +> "> > -> (d) (e) (f) (g) (h) (i)

Junction C

(j) (k) (1)

Junction B

+< < +< -< < < (m) (n) (o) (p) (q) (r)

Figure B5-6. Possible labelings for the junctions in Figure B5-5.

Fig. B5-6). Checking the junctions adjacent to D, the procedure deter-
mines that junction A has already been labeled and is therefore a source

of constraints on the labeling of junction D.

3. The current label set of A is examined to see what restrictions, if any,
it has placed on line AD. In this case, the restrictions are that the line

must be labeled +, — , or — ► (the arrow pointing away from junction A).
Therefore, two labelings of junction D may be eliminated, since they

would require an arrow label pointing in the wrong direction.

4. Suppose that junction C is chosen next and is assigned the initial junc-

tions shown in parts (j)-(l) of Figure B5-6. Since the adjacent junctions
have already been labeled, their constraints on C can be exploited to
prune its initial assignment of junctions.

5. According to the current label set of junction A, line AC must be labeled

with either + or — . This, however, does not eliminate any member of
the current label set of junction C.

6. According to the current label set of junction D, line CD must be labeled

with — ►, <— , or — . This eliminates one labeling from the label set of
junction C.

7. The reasoning from the previous steps is now reversed as the procedure
determines how the label set of C restricts the label sets of A and D.

According to the current label set of junction C, line CD must be labeled

with either <— or — . This eliminates one labeling of junction D.

166 Vision
Xffl

Labels Assigned to Junctions

A D C

1 +/f<7f\<fX
2 Unchanged

>+>>+»>-
3 Unchanged

>+ >" > >-
4 Unchanged Unchanged v+l • v+l • v~ •

5 Unchanged Unchanged Unchanged

6 Unchanged Unchanged
^ ̂

7 Unchanged >" S >-
Unchanged

8 -^ <h Unchanged
Unchanged

Figure B5-7. Label sets assigned to each junction during the steps of the

constraint-satisfaction algorithm.

8. Similarly, the current label set of junction C dictates that line AC must
be labeled with +. This eliminates one labeling of junction A.

This procedure continues until all junctions have been labeled and the effects

of all changes have been allowed to propagate.

This procedure is called a Waltz filtering algorithm because it strips out

inconsistent labels as it proceeds. If a unique labeling for each junction in

the picture has not been generated when the algorithm terminates, a direct

tree search can be used to enumerate possible labelings. The three labelings

generated in our example are shown in Figure B5 8.

Conclusion

It is interesting to note that even though Waltz allowed many more line

labels than previous researchers (enabling him to interpret more realistic

scenes), his procedure usually converges on a single interpretation. Our exam-
ple was simplified for the purpose of explanation and did not illustrate the

full power of Waltz filtering; a more compelling example is given by Waltz

(1972).

An interesting outcome of Waltz's research is that the inclusion of more
detailed information does not complicate interpretation but, rather, it

B5 D. Waltz 167

Figure B5-8. Three labelings of Figure B5-5.

constrains and facilitates interpretation. For example, vision researchers prior
to Waltz regarded shadows as an annoying complication, but Waltz was able
to show that the constraints contributed by shadows make the algorithm
converge more quickly and apply to more pictures.

References

Waltz's research is described in his paper in The Psychology of Computer
Vision (Winston, 1975).

B6. Obtaining Line Drawings: Y. Shirai

THE PROGRAMS described in the five previous articles all work from a line

drawing of a scene; Roberts' program (Article XIII.Bl) identifies known objects
and finds their positions, sizes, and orientations; Guzman's SEE (Article
XIII. B2) infers association of regions into objects from topological, heuristic
considerations of line junctions; Falk (Article XIII. B3) attempted to handle
noisy input; Huffman and Clowes (Article XIII.B4) developed a systematic
method for finding consistent interpretations of line drawings; and Waltz
(Article XIII.B5) extended this work to include other features as constraints

in an algorithm, based on constraint propagation. Shirai's research (1973)
is consistent with these other approaches, but is primarily concerned with
the problem of finding lines. His program generates lines directly from the
intensity array in a photograph; it simultaneously generates and interprets

the line drawing, using the partially developed interpretation as top-down
information to search for lines in the photograph.

Finding lines in an intensity array of picture points is a very difficult
problem. Edges often generate only very small intensity differences, and
these may be masked by noise. Noise has two sources: The sensor (e.g., a
camera) generates noisy and distorted information, and the scene itself has
texture, shadows, multiple reflections, and dirt, all of which result in noisy
information. If a line finder is too sensitive, it will interpret noise as lines; if
it is not sensitive enough, it will miss legitimate lines.

Prior to Shirai's research, the generation and interpretation of line draw-
ings were treated as separate tasks. The drawing-generation task suffered

from the difficulty that a single set of sensitivity parameters for the line finder

would generally not be adequate for the entire picture: Some noise-produced
lines are stronger than real ones.

Shirai's approach was to introduce knowledge about polyhedral scenes
into the line-finding process. For example, by knowing or hypothesizing that
a particular object is a block, the strong lines can be used to guide a search
for the weaker ones. Thus, by knowing where to expect a line, sensitivity
parameters can be locally adjusted to find it if it exists. Heuristics are
applied during line finding to suggest places to look for new lines or for the
continuations of current lines.

Shirai divides the lines in a picture into three classes:

1. Contour lines, or lines formed at the boundary between the objects in a

picture and the outer background. In Figure B6-1, lines AB, BC, . . . , ZV
are contour lines.

2. Boundary lines, or lines on the borders of the objects. All contour lines

are also boundary lines. In Figure B6-1, the boundary lines are the

168

B6 Y. Shirai
169

Figure B6-1. A typical line drawing (from Shirai, 1973).

contour lines plus the lines on the boundaries between objects, that is,

CP, PH, IQ, QR, and RM.

3. Internal lines, or lines resulting from the intersection of two surfaces of

the same object. In Figure B6-1, lines JS, LS, ..., XV are internal
lines.

The overall strategy of Shirai 's program is first to extract the contour lines
in a picture and then to search within each contour for other boundary lines

and internal lines. Boundary lines are sought before internal lines because

boundaries often provide good cues for guessing internal lines. It is not

difficult to find contour lines, because scenes are always set up with high

contrast between white objects and their black background. In Figure B6-1,
for example, there are two contours, one for objects B\, B2, and B3 and

another for object B4.

Searches for lines may be over large or small areas of the picture, and

Shirai 's program gives higher priority to searching smaller areas. For example,
in Figure B6-1, we could search over a small area from C to P to find an
extension of line BC. In contrast, to find the line IQ, we would need to search

all possible line directions between IH and IJ. Thus, the former search has

priority over the latter.

Shirai used many heuristics to propose where to search for lines. Some of
these are:

1. If two boundary lines meet at a concave point, look for collinear exten-

sions of them. In Figure B6-1, the boundary lines IH and GH meet at
the concave point H, and HP is searched for as an extension of IH.

2. If no extensions of two concave lines are found, look for another line

that starts from the concave point. In Figure B6-1, the line IQ would
be sought starting at the concave point /.

170 Vision Xm

3. If the boundary lines of an object are known, select vertices of the
boundary that might have internal lines starting from them. At each
such vertex, look for an internal line that is nearly parallel to some

boundary line. In Figure B6-1, for example, internal line JS is parallel
to boundary lines KL and IQ.

4. If two internal lines meet at a vertex, look for another line starting at this

vertex. Suppose, in Figure B6-1, that the internal line JS is not found
at vertex J (using rule 3) because of very little difference in brightness
between the adjacent faces near this vertex. Suppose, also, that LS and
QS have already been found. This rule will look for a line near vertex S,
where the contrast may be high enough to find it. Once a line segment
is found near S, this line may be tracked all the way to /.

5. After a line has been tracked as far as possible, if it is still unconnected,
an extension or a junction is sought by circularly scanning near the
endpoint. If this process does not find a new line near the endpoint, the

line is extended by a small length and tested to see if there is now a
connection to other lines. If not, the circular scan process is repeated.
This process can be continued until it is successful, that is, until the
line is connected to other lines or additional line segments are found

by circular scanning. For example, in Figure B6-2, line MN' has been
tracked and left unconnected at point TV'. A circular scan near N' fails to
find any new lines. The line is therefore extended to P\ and the circular
scan is again attempted. This process is repeated until a connection to
line KL is found at point N.

These heuristics and others not only find lines, but they also find objects

and their relationships. Notice that when a complete set of boundary lines

has been found, all the objects can be identified; that is, each enclosing set of

boundary lines defines a separate object. In Figure B6-1, for example, four
enclosing boundaries are found and four objects are defined. Also, finding

Figure B6 2. Repetitive line extension (from
Shirai, 1973).

B6 Y. Shirai 171

boundary lines often gives clues to the relationships between objects. For
example, rule 1, which extends concave boundary lines, usually results in a

situation like that shown in Figure B6-1, where one object (object B2) hides
another (object B3). When line IH or line GH is extended, it is easy to

see which object the line belongs to and, thus, to determine the "hiding"
relationship.

Figure B6-3 is a complete example of Shirai's line finder.

Conclusion

Shirai's program used top-down information (from the partly developed
line-drawing) to facilitate line-finding. Shirai introduced a semantic approach

Figure B6-3. Shirai's line finder.

172 Vision Xm

in which knowledge of the task domain is used to direct low-level vision
processes. This topic is discussed further in Article XIII. C4.

References

See Shirai (1973).

B7. Reasoning About Surface Orientations:
A. K. Mackworth

GIVEN a line drawing, the Huffman-Clowes-Waltz labeling scheme (Articles
XIII. B4 and XIII. B5) can interpret it as a three-dimensional scene of trihedral
objects by assigning line labels to it. Two important points should be noted
about labeling. First, line labels characterize the shape only qualitatively. For

example, the convex label "+" signifies that two plane surfaces meet and make
a convexity along an edge, but it does not specify anything about the angle

at which the planes meet. Thus, the labeling of Figure B7-1 says only that it
has a convex corner; it does not yet represent a cube corner and, in fact, the

Figure B7-1 need not be a cube.
The second point about the Huffman-Clowes-Waltz labeling scheme is

that legal labelings obtained by the method are sometimes not realizable as

polyhedra. Figure B7-2 is an example of a legal labeling that cannot possibly
exist; clearly, regions R\ and R^ cannot make convex edges at both AB and
CD. Why does the labeling not detect this inconsistency?

The problem of unrealizable labelings is closely related to the question of
what information about a scene is represented by labels. For its solution we

need to develop an approach that enables us to represent geometrical relation-

ships among plane surfaces in a more quantitative way. Huffman (1971) intro-
duced the idea of the gradient space for this purpose, and Mackworth used it

extensively in his program POLY (1973, 1974). Before describing POLY, we
must define the gradient space.

Gradient Space

Figure B7-3 represents an imaging geometry (see Article XIII.Cl): The
viewer is at the origin, the z-axis is taken as the optical axis of the viewer,

Figure B7-1. Labeling that represents a convex corner.

173

174 Vision XIII

Figure B7-2. Legal labeling for which the corre-
sponding polyhedron cannot exist.

and the picture plane is at z
a surface in the space as

0 and parallel to the x-y plane. Let us denote

f{x,y)

where —z is the depth of the surface point. An increase in —z represents an
increase in the distance from the viewer.

An ordered pair of values (p, q), where

p = df/dx = —dz/dx

q = df/dy = -dz/dy

is called the gradient. A gradient is no more than the first derivative of the
function /, which is the depth of a surface at a point (x, y). In other words,
the gradient (p, q) measures the instantaneous change in the depth of a surface
at point (x, y), or it measures the tilt of the surface at that point with respect

to the 2-axis. The gradient space is simply the set of all possible gradients

(p,q).
In general, p and q change with x and y. A plane is a special case in which

p and q remain constant for all values of x and y, just as a straight line is a
special case in which the slope remains constant for all values of x. And

—z

px + qy + c

denotes planes with a gradient (p, q). The gradient of a plane is a single point
in gradient space; a curved surface is represented by a set of points in gradient

space.

To illustrate the concept of gradients, imagine viewing Figure B7-4 so

that plane Pq is flat (parallel to the image plane). Since depth (—z) does
not change on Pq, its gradient is Go = (0,0). Plane Pi in Figure B7-4 tilts

"away" from the viewer from left to right at a 45-degree angle. It has a

B7 A. K. Mackworth
175

Figure B7-3. Two planes P\ and P<i intersect at an edge, which is
projected onto the image plane and imaged as a line.

gradient G\ = (1,0). Since the depth increases as x increases, and since the
tilt of the plane is 45 degrees, p = df/dx = 1/1 = 1; and since the depth
does not change with respect to y, q = df/dy = 0. Similar reasoning applies
to the other planes in Figure B7-4; assuming they all tilt at 45 degrees with

respect to the x or y axis, their gradients are G2 = (—1,0), G3 = (0, 1), and

Pi = (0,-1).
A surface, of course, may be tilted with respect to both the x and y

axes (neither p nor q equals 0), and the angle of tilt need not be 45 degrees

p2

G2 = (-1,0)
G, =(1,0)

Po

Go = (0,0)

Ac"

/
P3

/

/45°

/g3 = (o,i)
/

Po

Go = (0,0)

^

\ ?4

\ G4 = (

*
-
^

Figure B7-4. Examples of surface orientations and their gradients.

176 Vision XIII

(p and q are something other than 1 or —1). Figure B7-5 shows the gradient
space. Note that the axes of this space are p and q, not x and y. The gradient
of the surface is represented by a point (p, q). In general, the direction of the

vector from the origin to (p, q), that is, tan-1 (q/p), describes the direction of
the steepest change in the depth on the surface; the distance to the origin,

(p2 + Q2)1^2, is the rate of change of depth along the direction of steepest
change.

Line Labels and Gradients

For the remainder of this discussion we assume an orthographic projection
in the imaging process rather than perspective projection (see Article XIII.Cl).

That is, in Figure B7-3, a point (x, y, z) in three-dimensional space is projected
to a point (x, y) in the image plane rather than being foreshortened.

There is an important relationship between line labels and the gradient
space: If two surfaces meet along a concave or convex edge, their gradients lie
along a line in gradient space that is perpendicular to that edge in the image.
For example, if two planes intersect at an edge that is imaged as vertical in
the image plane, then the gradients of the two planes must lie on a horizontal
line in gradient space.

Let us see why this is the case. Figure B7-3 shows a vertical line parallel
to the y-axis in the image. The corresponding edge is the intersection of two
planes, Pi and P^. Let us denote their gradients as G\ = {pi,qi) and G2 =

(P2,<72).
Note that q\ = <?2- To see why this is so, recall that we measure

q = d(—z)/dy by moving along a line parallel to the y-axis and measuring

► P

Figure B7 5. The gradient space.

B7 A. K. Mackworth
177

the change in —z. We can do that for the line corresponding to the edge of
the intersection between P\ and P<i since it is parallel to the ?/-axis. Since the
edge includes both planes, the value of q obtained for this line holds for both

planes, that is, q\ = q<i-
Since q\ = q2, the gradients G\ and G2 must therefore lie along a hori-

zontal line in gradient space and, thus, perpendicular to the edge in the image.

We can generalize this result — that the gradients of two surfaces lie along
a line in gradient space that is perpendicular to the line of intersection of the

surfaces in the image — to the case where the image line is at any angle. We
simply imagine rotating the x-y axes (i.e., rotating the camera) until the edge
is vertical; then the observation of perpendicularity can be made.

Once the gradient-space line on which G\ and G<z lie is fixed, the relation-
ship of G\ and G2 within it determines the property of the edge. The situa-
tion is most easily understood by imagining a hinge made by the two planes.

Suppose we fix G\ (i.e., the orientation of plane Pi on the left side of the edge)

and rotate only plane P2 around the hinge axis as shown in Figure B7-3. The
corresponding movement of G2 in the gradient space is shown in Figure B7-6.
If plane P2 is facing to the very far right (i.e., G2 is far to the right of G\),
the edge is a very sharp convex edge. As it rotates back toward the left,

G2 moves on the gradient-space line toward the left and closer to G\\ the
convexity decreases. When the plane P2 comes to have the same orientation

as plane P\ (G\ = G2), then we do not see the edge. When plane P2 rotates
further and faces more left than plane Pi, the edge becomes concave. From

these observations, we have the following rule: If an edge is convex (+), the P!

^V p*

Pj

I

G2

Concave Convex

Figure B7-6. Relationships of gradients with convex and concave edges.

178 Vision Xin

gradients of its planes are ordered in the same order as are the corresponding
regions in the picture. If the edge is concave, their order is reversed.

In this way, the line labels (+, —) can be related with properties of the
gradients. For instance, Figure B7-7a shows what the labeling of Figure B7-1
means in terms of gradients. Suppose the gradient of R\ is at G\ . Since Ri
and R2 are connected by a convex line AB, the gradient of R2 must be on
a line that passes through G\ and is perpendicular to AB. Suppose it is at
G2. Region R$ is connected to both R\ and R2 by convex lines, BD and BC.
Therefore, its gradient G3 is determined at the intersection of lines extending
from G\ and G2 in the direction perpendicular to BD and BC, respectively.
Thus, G\, G2, and G3 form a triangle of a particular shape. From the way
we choose G\ and G2, we see that the location and the scale of the triangle
are arbitrary, but the shape and orientation are strictly determined by the

picture. These are exactly the constraints that the labeling of Figure B7-1
represents.

For Figure B7-2, we can now easily show that this labeling is not realiz-
able. When the gradient of R\ is fixed, the gradient of R2 cannot satisfy both

constraints imposed by the convex edges AB and CD. This is illustrated in

Figure B7-7b.

POLY

Mackworth's POLY is a program to interpret line drawings as three-
dimensional scenes. Unlike the labeling schemes of Huffman, Clowes, and
Waltz, it does this by reasoning about surface orientations based on the
properties of the gradient space.

Given a line drawing, POLY first finds a coherent interpretation in which
the gradients of planes can have consistent relationships and as many edges
as possible are connect edges (either convex or concave). These connect edges
are important because they represent a physical connection between surfaces,

which corresponds to the gradient-space constraint described above. POLY
searches for such an interpretation in a binary-tree-search manner: First, it
examines the interpretation in which all edges are connect edges; then, if it is
incoherent, interpretations with all edges but one as connect edges; and so on.
Next, POLY determines convexity or concavity of the connect edges. Finally,
it interprets occluding edges (nonconnect edges) and determines which surface
of the line is in front of the other.

Consider how POLY works for the example of Figure B7-8. It first picks
up the background surface A and arbitrarily assigns a gradient of (0,0) (origin
of the gradient space) to it. Next, it takes region B. Surfaces A and B are
bounded by lines 1 and 2. Assume that line 1 is a connect edge. The gradient

of B must be on a gradient-space line (perpendicular to line 1) that passes
through the gradient of A. Let us choose Gb at a unit distance from Ga, as
shown in Figure B7 9a. Notice that the origin and the scale of this figure are
arbitrary.

A. K. Mackworth

D

179

Figure B7-7.

(b)

(a) Gradients for the labeling of Figure B7-1; (b) proof that
the labeling of Figure B7-2 is not realizable.

POLY now proceeds to line 2. It cannot be a connect edge, because if it

were, Gb in Figure B7-9a would have to lie on a line perpendicular to line 2

through Ga', thus, line 2 is occluding.
Proceed to line 3, which bounds between regions B and C. If line 3 is

a connect edge, Gc must be on a line perpendicular to line 3 through Gb-
Region C shares lines 4 and 5 with the interpreted region A. Obviously, they
both cannot be connect edges. The interpretation in which lines 1, 3, and
5 are connect edges and lines 2 and 4 are occluding edges is rejected by the

single rule that three noncollinear points in space (the corners a, b, and c)
cannot simultaneously lie on two planes (A and B). So a legal interpretation
is that lines 1, 3, and 4 are connect edges, while lines 2 and 5 are not. At this
point, the situation in the gradient space is found to be either one of the two

cases in Figure B7-9b.

Figure B7-8. A simple line drawing.

180 Vision XIII

Figure B7-9. (a) Gradients Ga and Gb for line 1 to be a connected
edge; (b) gradients Ga, Gb, and Gc for the case in which
lines 1, 3, and 4 are connected edges.

Next, POLY decides convexity or concavity of connect edges. This is done

by referring to the gradient-space constraints the program has established so

far. For the case on the left of Figure B7-9b, we can easily see that lines 1
and 4 are concave and line 3 is convex. For the case on the right, lines 1 and
4 are convex and line 3 is concave.

Finally, the program looks at the nonconnect edges (lines 2 and 5). It

uses the fact that if two surfaces intersect in a connect edge that is known to

be, say, convex, then at any position in the picture it will be apparent which

surface is in front. For the case in which connect edges 1 and 4 are concave

and 3 is convex, on the right side of line 1, B is always in front of A. In

this way, we know that occluding edges 2 and 5 belong to surfaces B and C,

respectively.

Continued search will yield one more interpretation with three connected

edges: Lines 2, 3, and 5 are connect edges and 1 and 4 are occluding. The

program continues to generate interpretations with fewer connect edges; for

example, the tetrahedron separated from the background has only one connect

edge, namely, line 3.

B7 A. K. Mackworth 181

Huffman's </>(</>')- point Test

We should note that the coherency in the gradient space is still only a
necessary condition for the shape to be realizable by planar surfaces. One of

the most illustrative examples is a truncated pyramid; Figure B7-10a is the
side view and Figure B7-10b is the top view. Surfaces A, B, and C connect
each other at convex edges 1, 2, and 3. This drawing may seem perfect to
most people, but it is actually unrealizable.

For this configuration to be realizable, lines 1, 2, and 3 must meet at a
point: Three planes meet only at a point. In the gradient space, however, the
constraints on their gradients are coherent and cannot detect the inconsistency
in the relationships of the three planes. The reason is obvious from the

equation — z = px + qy + c: The gradient takes into account only the
orientation (p, q) but not the location (c) of the plane.

Huffman (1977) presents a 0(<?/)-point test as the necessary and sufficient
condition for a cut set of lines (equivalently, a set of regions separated by
those lines) to be realizable by plane surfaces. Consider again the example

shown in Figure B7-10b, and take the set of lines 1, 2, and 3 cut by the
dotted loop. First, the (/>((//)-point test gives each line belonging to the cut
set of lines an orientation shown as a big arrow according to its label, either

coming into the loop if the label is "+" or going out from it if the label is

"— " (see Fig. B7-10c). Then the 0(<//)-point is a point that is to the right
(left) of some line of the cut set and that is not to the left (right) of any

other lines. The $($)- point test simply checks whether either a 0-point or
a (//-point exists, and if either one exists, then the cut set is unrealizable.

In fact, unless 1, 2, and 3 meet at a single point, (f> or </>' points exist, and
therefore the configuration of Figure B7-10 is unrealizable. Unfortunately, it

0- point

(b)
(c)

Figure B7-10. Impossible truncated pyramid: (a) side view; (b) top view;

(c) Huffman's (/>(0')-point test.

182 Vision Xffl

can not be said that if all the cut sets in the interpretation pass the 0(<//)-point
test, the whole interpretation is realizable by only plane surfaces. That is, the

0(0')-point test is the necessary and sufficient condition for the realizability
of a cut set of lines, but not of the whole interpretation.

Conclusion

Mackworth used the gradients of planes to constrain interpretations of
lines in an image. In so doing, he moved a step away from qualitative labeling
schemes to a quantitative scheme. This approach was continued by Kanade,
whose research is discussed in Article XIII. B8.

References

See Mackworth (1973) for the explanation of POLY. More results and
details can be found in his thesis (Mackworth, 1974). Mackworth (1977)
presents an interesting overview of scene analysis.

B8. The Origami World and Shape Recovery:
T. Kanade

FOR MOST line drawings, the Huffman-Clowes- Waltz labeling method gives a
unique interpretation that looks very natural to human viewers. However, the
method exploits no constraints other than those implicit in the assumption of a
trihedral world and, therefore, there is no reason to expect it to give a natural
interpretation. Furthermore, as was pointed out in Article XIII. B7, labeling
does not quantitatively specify the shape of an object; as a matter of fact, one
cannot generate a rotated view of the object from the labeling. The work of

Kanade (1979, 1980b) sheds light on the issue of multiple interpretations and

quantitative shape recovery of "natural" interpretations. Kanade introduced
the Origami world.

Origami World Labeling

The Origami world is composed of planar surfaces, rather than solids. In

this world, line drawings can be labeled by a technique much like the Huffman-
Clowes- Waltz method, but the Origami world allows more objects than are
allowed by trihedral worlds. For example, although the box line drawing in

Figure B8-1 looks simple and perfect, the trihedral-world labeling scheme
cannot generate its interpretation, because the trihedral world assumes solid

objects, whereas corners like a in the figure are made of only two surfaces (if
the object is a box).

In the Origami world, it is assumed that no more than three surfaces

meet at a vertex (in the trihedral world exactly three surfaces are assumed).
Specifically, the 12 quadrant planes obtained by intersecting three full planes

are considered as primitives, as shown in Figure B8-2. The vertices that
can be generated by those primitives are called up-to-three- surface vertices.

Figure B8-1. A line drawing of a "box.

183

184 Vision xin

Figure B8-2. Twelve quadrant planes to generate
up-to-three-surface vertices.

All legal junction labels (i.e., the possible appearances of all up-to-three-
surface vertices) can be enumerated by fixing the eye position in one of the

eight octants bounded by the quadrant planes and generating all possible

(212 = 4,096) combinations of occupied and vacant quadrants. This method is
analogous to the one that generates trihedral junction labels; in the trihedral

world, the primitives were the eight octant subspaces rather than the 12

quadrants. Table B8-1 shows the number of legal junctions in the Origami
world, as compared with the trihedral junction world.

Given the junction dictionary, Waltz filtering might be used to assign

labels to line drawings. However, labeling in the Origami world cannot rely

only on the filtering of junction labels, because the weaker restrictions at the

vertices result in a large number of interpretations that are consistent with

the junction dictionary but do not correspond to any physically realizable

configurations. More thorough and global constraints concerning surface

orientations are needed to eliminate this problem.

Table B8-1
Comparison of the Junction Dictionaries

for L, ARROW, FORK, and T Junction Types

Junction Huffman-Clowes Origami-world
type dictionary dictionary

L 6 8
ARROW 3

15

FORK 3 9
T 4

16

The Origami-world dictionary includes other
junction types, such as K, X, and PSI.

B8 T. Kanade 185

The junction dictionary for the Origami world is augmented by con-
straints in the gradient space that must be satisfied by the surfaces incident

at the junction. As shown in Figure B8-3, the constraints are represented
by links that connect a pair of related regions and that include information
about the constraints on their gradients. The relationships between gradients
and line labels are used in generating these constraints.

In junction labelings such as those shown in Figure B8-3b, the line of
intersection of two surfaces is hidden from the viewer (occluded) by one of
the surfaces. This junction label is typically the result of folding a sheet of
paper along BC: Region R\, which is folded toward the viewer, occludes a
part of #2- However, this junction label may represent a more general case:
Regions R\ and R2 might be separate sheets of paper, whose intersection line

lies anywhere in R\ (as in the middle of Fig. B8-3b). That is, if we remove
the right-hand part of R\ that is occluding R2, the rest of R\ and R<i will
form a convex intersection line, and it can be anywhere in the angle ABC.

+

(a)

(b)

Figure B8-3. Augmented junction dictionary in the Origami world.

186 Vision
XIII

The constraint to be satisfied is, therefore, that the gradient G<z should be

inside of the fan-shaped area whose origin is at G\ and is bounded by lines
perpendicular to AB and BC. This constraint will be represented by a link
attached to the junction dictionary entry for this junction labeling. The line
of intersection can be called an occluded intersection line and denoted by the

label "0."

Labeling Procedure

The labeling procedure of the Origami world uses the augmented diction-
ary described above. First, Waltz filtering on the junction labels is performed.

Next, the procedure begins to assign a junction label to each junction, one

by one. When a junction label is assigned to a junction, the gradient-space
constraints represented by the associated links are instantiated by using the
directions of the lines at that particular junction.

The labeling procedure of the Origami world tests the consistency of

surface orientations by using these instantiated gradient-space constraints.
The test can be performed systematically with another iterative operation
that filters out possible relative positions for the gradient of each surface.
Details are presented in Kanade (1980b).

Interestingly, the labeling of the Origami world usually results in multiple

labelings for a single line-drawing. A cube scene has three interpretations,
as shown in Figure B8-4: a convex corner, a concave corner, and a peculiar
shape made as shown in Figure B8-4d. Similarly, the box line drawing of
Figure B8-1 has eight labelings, two of which are shown in Figure B8-5: The

labeling in Figure B8-5a corresponds to an "ordinary" box — the two front
faces form a convex intersection and partially occlude the rear two faces,

which form a concave intersection. The labeling in Figure B8-5b corresponds

to a "squashed box" — the front two faces, as well as the rear two, form a
concave intersection.

When we, as humans, interpret these line drawings, we do not usually

think of such peculiar shapes as Figure B8-4d and Figure B8-5b even as
possible interpretations. They look very unnatural. But it is important to
note that all labelings are equally natural in terms of geometrical realizability.

(a) (b) (c) (d)

Figure B8 4. Interpretation of the "cube" line drawing.

B8 T. Kanade 187

M (I,)

Figure B8-5. Two interpretations of a "box" line drawing.

Quantitative Shape Recovery and "Natural" Interpretations

Labeling a line drawing only qualitatively characterizes shape; it does

not give a specific shape. In fact, the two figures in Figure B8-6 have the
same labelings (the same constraints in terms of realizability), even though
they seem to depict different shapes. This suggests that we interpret line
drawings using other constraints than those that concern realizability. Kanade
developed a method for mapping image properties into shape constraints for

recovering three-dimensional quantitative shapes. He introduced the idea
of regularity heuristics, specifically, a parallel-line heuristic and a skewed-
symmetry heuristic.

Parallel-line heuristic. The parallel-line heuristic is:

If two lines are parallel in the picture,
they depict parallel lines in the scene.

(a)
(b)

Figure B8-6. These have the same set of labelings, even though

usually (a) is perceived as a "cube" and (b) as a
"trapezoidal block."

188 Vision XIII

Under orthographic projection, this is not always the case. The converse,

however, is always true: Parallel lines in the scene will be depicted as parallel

lines in the image. (Under perspective projection, substitute "converging

lines" for "parallel lines"; see Kender, 1979.)
Consider the constraint that this heuristic puts on the gradients of two

planes if a pair of their boundary lines is parallel in the picture, as shown

in Figure B8-7: Their gradients should be on a gradient-space line that is
perpendicular to the parallel boundary lines in the image. In fact, if a pair

of boundary lines is really parallel in the three-dimensional space, we can
translate one of the planes toward the other, without changing its orientation,

and make the two planes intersect along those boundary lines. Therefore, the

gradients of the two planes should have the same relationship that holds for

surfaces connected by a convex or concave line. (See Article XIII.B7 for the

properties of the gradient space.)

Skewed-symmetry heuristic. Symmetry in a two-dimensional picture
has an axis for which the opposite sides are reflective: The symmetrical

property is found along the transverse lines perpendicular to the symmetry

axis. The concept of skewed symmetry relaxes this condition a little, referring

to the class of two-dimensional shapes in which symmetry is found along
lines not necessarily perpendicular to the axis, but at a fixed angle to it.

Figure B8-8 shows a few examples. Formally, these shapes are defined as

two-dimensional, linear (affine) transformations of real symmetries. A skewed

symmetry defines two directions, called the skewed-symmetry axis and the

skewed- transverse axis, as shown in Figure B8-8.

The skewed-symmetry heuristic is:

A skewed symmetry in the image depicts a real symmetry

in the scene viewed from some (unknown) viewing angle.

Figure B8 7. Parallel-line heuristics.

B8 T. Kanade 189

We can transform this heuristic into constraints in the gradient space. Let

a and ft denote the directional angles of the skewed-symmetry axis and the
skewed-transverse axis, respectively, as shown in Figure B8-8d. Let G = (p, q)
be the gradient of the plane that includes the skewed symmetry. The heuristic

demands that the two three-dimensional space vectors corresponding to the
skewed-symmetry axis and the skewed-transverse axis be perpendicular.

It can be shown that the gradient G = (p, q) is on the hyperbola shown
in Figure B8-9. That is, the skewed symmetry defined by a and ft in the
picture can be the projection of a real symmetry if and only if the gradient is
on this hyperbola. It might appear that if we assume the skewed symmetry
in the picture to be a projection of a real symmetry, the surface orientation
is uniquely determined; actually, we have still an infinite number of possible
orientations represented by the points on the hyperbola in gradient space.

The vertices Gt and G't of the hyperbola represent special orientations
with interesting properties. Since they are closest to the origin of the gradient
space, and since the distance from the origin to a gradient represents the

magnitude of the surface slant, Gt and G't correspond to the least slanted
orientations that can produce the skewed symmetry in the picture from a real
symmetry in the scene.

(b)

(d)

Figure B8-8. Skewed symmetry.

190 Vision XIII

Unique Determination of Gradients

A "cube" scene has three labelings, as shown in Figure B8-4; the first is
reproduced in Figure B8-10a. The labeling indicates that there are three to-

tally visible surfaces, Si (= V3V4V7V2), S2 (= V5V6V7V4), and S3
(= V1V2V7VQ), and that their gradients G\, G2, and G3 should form a tri-

angle as shown in Figure B8-10b. On the other hand, Si, S2, and 53 have
skewed symmetries: Their skewed-symmetry axes and skewed-transverse axes
are shown in Figure B8-10a as dotted lines. If we assume these skewed sym-

metries to be projections of real symmetries, we can draw the hyperbola for

each surface as shown in Figure B8-10c.

Figure B8-9. A hyperbola corresponding to the skewed symmetry defined
by angles a and (3.

B8 T. Kanade
191

Now, our problem is thus reduced to placing the triangle of Figure B8-10b
in Figure B8-10c by shrinking, expanding, and translating it so that each
vertex of the triangle is on the corresponding hyperbola. Kanade proved
that the location shown in Figure B8-10c is the only possibility and that the
corresponding three-dimensional shape is a cube.

(c)

Figure B8-10. Quantitative shape recovery of a "cube" scene.

192 Vision XIII

Now consider the line drawing of the trapezoidal-block scene in Figure

B8-11. As we have noted, this line drawing has the same qualitative inter-

pretations (line labelings) as a cube scene but it seems to depict a quantita-
tively different shape. What makes the difference? The same interpretation

process that applied to the cube applies to the trapezoidal block, but with

a different shape. The labeling imposes the same constraints on the gradients

of the surfaces Si, S2, and S3 as the convex-corner interpretation for the
cube scene, and they also have skewed symmetries. However, the axes for

the skewed symmetries of S\ and S2 are slightly different from the case of

Figure B8-10, so the shape and location of the corresponding hyperbolas also

change. As a result, the gradient-space triangle must be placed as shown in

Figure B8-lld. When we compare this assignment with Figure B8-10, the

Figure B8 11. Quantitative shape recovery of a trapezoidal-block scene.

B8 T. Kanade
193

location of G3 is the same, but G\ and Gi are closer to G3. In this assignment

of gradients, the angle made by S\ and S3 is equal to that made by £2 and
53 and is larger than 90 degrees.

Kanade also showed that the "usual" box shape can be recovered from
the labeled line drawing of Figure B8-5a by similar means.

The Violation of Regularity Heuristics by "Strange " Shapes

The labelings treated so far all correspond to the most "natural" inter-
pretations of the pictures. Recall that the theory of the Origami world yields

other labelings. Kanade showed that those shapes implied by the labelings
are possible but violate some of the regularity heuristics.

The labeling of Figure B8-5b represents a "squashed" box with the front
two faces going in. Figure B8-12 illustrates the constraints on the gradient
space imposed by the labeling: G\ lies right of G2, and G3 and G\ should be
within the right and left hatched areas, respectively. Lines V1V7 and V2V3 are

parallel. For the parallel-line heuristic to hold, G\ and G4 (the gradients of
surfaces that include those lines) must be on a line perpendicular to V1V7 (or
V2V3). However, the diagram indicates that this is not possible.

Of course, it is possible to assign the gradients if we violate the heuristics.

For example, Figure B8-13a is a possible selection of gradients for a "phony"
box that corresponds to the interpretation of Figure B8-5b. This curious
shape, illustrated in Figure B8-13b, appears as an ordinary box only when
seen from a particular position. Notice that the image regularity (parallelism)

we observed in the original view has disappeared. In contrast, the "ordinary"
box shape conserves these regularities, no matter from what direction it is
seen.

Figure B8-12. Constraints imposed by the labeling of Figure B8-5b. The
parallel-line heuristic cannot be satisfied in this case.

194 Vision XIII

(a)
(b)

Figure B8-13. A "phony-box" interpretation: (a) selection of gradients;
(b) its view from the other direction.

Conclusion

Kanade introduced a representation, called the Origami world, that
admits more objects than the trihedral world does. Because line labels were

not enough to recover the shape, Kanade's junction dictionary was augmented
with constraints on gradients. He also tackled the question of what makes one

interpretation of a scene more "natural" than another; by introducing two
heuristics that filtered out unnatural interpretations he showed explicitly how

much geometrical assumption was necessary to resolve multiple interpreta-
tions.

References

See Kanade (1979, 1980b) for details. Kanade and Kender (1980) extend
the idea of heuristics on shape constraints into a more general form.

C. EARLY PROCESSING OF VISUAL DATA

CI. Visual Input

COMPUTER VISION SYSTEMS must be able to sense their environment. This

sensing is not limited to intensity (i.e., brightness), but includes depth, color,
and texture information as well. This article, however, is mainly concerned

with the physical means of intensity imaging — with the geometry of picture-
taking, image-input devices, and the digitization of video signals. Depth
sensing is discussed in Articles XIII. D3 and XIII.D4, and color in Article XIII. C2.

The discussion here will be technical and a little removed from what we

normally consider Artificial Intelligence. Vision systems are very different
from other AI systems in that some of the information they process is taken

from a real, noisy, variable, physical environment. Thus, this article is con-

cerned with the "eyes" of a vision system and with the issues involved in
designing and representing these sensors so that they provide high-quality
information for the rest of the system.

The Camera Model

The relationship between a camera and a scene defines the geometry of

the picture-taking process. We begin with the simple pinhole-lens model of
a camera and derive the direct perspective transform that tells how points
on an object are projected onto points in an image. We then represent the
perspective transform and its inverse as linear transformations by expressing
them with homogeneous coordinates. A more thorough introduction to the
camera model and the use of homogeneous coordinates is found in Duda and

Hart (1973).
The pinhole camera and central projection. The simplest model of

the picture-taking process is the pinhole-camera model in which the lens is
replaced by a pinhole and the image plane lies at a distance, /, behind the
pinhole. Because this configuration gives a mapping from the scene to the
image plane in which the images are flipped left to right and upside down,
it is more convenient to express this model as a central projection. In the

central-projection model, the image plane is located in front of the pinhole
by a distance /, as shown in Figure Cl-1. For simplicity we define the center
of the image plane as the origin, and the z-sxis as the line that intersects the
pinhole and the origin. Thus, the pinhole is at (0, 0, /) and points on the image

plane are at (xp,yp,0). We shall denote points on the image plane with the
subscript p.

195

196 Vision xm

Pinhole

V = (x,y,z)

Image

Plane

Object

Figure Cl-1. Visual input.

Expressing the camera model as a central projection enables us to deter-

mine the projection of a point on an object V = (x, y, z)T onto a point in the

image plane Vp = (xp, yp, 0)T:

y

or

r = -£-

Vp _

fy (i)
Vp

f-z
Equivalently, we can determine the back projection from each point in the

image plane onto a line in three-dimensional space:

sP(/ ~ z)
f

y
yP(f - z) f (2)

These equations represent the line passing from the pinhole through the image

point Vp, where z (depth) is a free parameter. In other words, all points

(x,y,z)T on this line are projected to an image point Vp = {xp,yp,0)T. We
can write the equations with an auxiliary variable, X = (/ — z)/f, to obtain

X — XpA

v = yP^
z = /(l-X) (3)

CI Visual Input 197

Equations (1) and (2) are nonlinear. It is often useful to express this
projection as a linear transformation, at the expense of adding an extra

dimension to our system. This representation is called homogeneous coordi-

nates. The vector V = (x, y, z)T is expressed as

V = (wx, wy, wz, w)T , (4)

where w is an arbitrary constant. The original vector, V, can be recovered

from the first three components by dividing by the fourth. Thus, (x, y, z, 1)

and (wx, wy, wz, w) denote the same three-dimensional points. We will use

the " ~ " notation to denote homogeneous coordinates.
With homogeneous coordinates we can now express the perspective trans-

form as a linear matrix operation. An object point V is mapped onto an image

point \p by

where P is the matrix

Vn = PV

(\ 0 0 0\
0 10 0
0 0 10
0 0

(5)

(6)

In fact, we can see that by substituting V = (x, y,z,i

(7)

By dividing the first three components by the fourth, we obtain the vector

(x/\,y/\, z/\, 1)T = (xp,yp,z/\,l)T. The first and second components are
the coordinates of the points Vp in the image. The third component deter-

mines the position of the point on the line that projects from the pinhole

through the image point Yp.
Having found P, we are ready to determine the inverse of the linear

transformation P,

P l is found to be

p' =

P_1V„

(I 0 0 0\
0 10 0
0 0 10

V° ° 7 »

(8)

(9)

198 Vision XEI

However, if we simply plug an image point Vp = (xp, yp, 0, 1)T into equation (8)

and then convert to Cartesian coordinates, we get a point V = (xp,yp,0)T
when what we desire is a line.

The way out of this difficulty is to allow the z coordinate of Vp to

be nonzero, say, (3. Upon evaluating equation (8) and then converting to

Cartesian coordinates, we get:

/ fXp_\

1 f+0 x
fVv

f + P

\ -&- I \f+0 /

(10)

By denoting X = //(/ + j3) we have the same equation as equation (3).

It is often desirable to denote object points with respect to a "world

coordinate," which may not be the same as the coordinate system that is fixed
to the camera. Consider the process of taking a picture. The camera is first

located at a standard position, whose location and orientation are known in

the world-coordinate system. Then we move the camera to a desired position
and point it in the desired direction by panning, rotation in the horizontal

plane; tilting, rotation in the vertical plane; and rolling, rotation around the

optical axis. Thus, transformation from the world coordinate to the image

coordinate can be accomplished by expressing the position and orientation of

the camera as a series of linear transforms in homogeneous coordinates.

Let us use the following symbols to denote transformations involved in

mapping world coordinates into image coordinates:

T: Translation of the camera center from the origin of the world-coordinate
system;

R: Rotation (pan, tilt, and roll) about the camera center;

G: Translation of the lens position from the camera center.

Then the projection of a point V* in three-dimensional space that is expressed
in world coordinates to an image point Vp that is expressed in image coor-

dinates is accomplished by

VP = PGRTV*. (11)

Inversely,

V* = T-^R-^G-^P-^Vp • (12)

Since we do not use this formula in the present discussion, the matrices G,

R, and T are not given here; see Duda and Hart (1973) for more detail.

Determining the transformation K = P G R T is called camera calibration,

CI Visual Input 199

or calculating the camera model. It is an important step in the interpretation
of aerial photographs, for example, in stereo vision (see Article XIII.D3).

Imaging Devices

There are two types of components in a visual sensing system: illuminators
and light sensors. Illumination may be totally uncontrolled, as in an outdoor
scene. Or illumination may be controlled and focused, as a moving spot,

as a stripe, as shape of light, or as single-source illumination from a known
reference point (see Article XIII. D4 for more detail). Similiarly, light sensing
may be general, as in a simple photomultiplier or photodiode, or focused, as
in a TV camera. In a useful vision system, either the illuminator or the light
sensor must be an imaging device; that is, it must have the ability to access
distinct elements of the scene separately.

One issue in choosing between raster- scanning devices like a TV camera
and random-access devices is the time-space trade-off. If computer-memory
usage must be minimized, random- access devices are advantageous, since com-

plete images need not be stored. However, the cost of memory is being con-
tinually reduced, and a random-access frame buffer — into which an imaging

device writes image data continuously and from which the computer reads

image data randomly — is available, so that most vision systems today use
this kind of hardware.

Slow random-access devices or image-storage devices with long exposure
times are not useful in a scene that contains dynamically changing picture
elements. In a dynamic world, quick snapshots must be taken with the faster
devices. Moving objects are usually tracked by taking repeated snapshots and
applying software techniques (see Article XIII. D2).

Noise and unpredictable signal fluctuation are inevitable in any system

that measures light-intensity levels, because of the quantum nature of light.
The severity of noise depends on several factors, including the light level,
the exposure time, the dynamic range, the architecture of the sensor, and

the amplification system. The signal-to-noise (S/N) ratio in a system is the
ratio between the level of signal (or meaningful information) and the level of
noise. The dynamic range is the ratio between the brightest and dimmest
light levels. The gray scale of a sensor is the number of discrete levels of
light that it can represent. If a large gray scale is required, a high S/N ratio
must be guaranteed to maintain a given confidence level. In general, longer

exposure times are needed for higher S/N ratios. The relation between gray-
scale values and actual light levels is an important factor in sensing systems.

Most typically, the relation is adjusted to be either linear or logarithmic. The
resolution of a sensor is the number of discriminate points in its field of view.

200 Vision XIE

Most imaging sensors exhibit interactions between the light levels mea-
sured for adjacent picture elements. This tends to cause a slight blurring in

the picture. In the worst case, called blooming, very bright picture-elements
cause nearby sensor elements to give excessive light- level readings.

Vidicon and CCD Cameras

The standard technology for electronic imaging is the vidicon camera.

Most vidicon cameras include built-in electronics to produce a TV image in
the standard, composite video format. They can be made to accept external
horizontal and vertical synchronization. Video sensitivity is typically that of

a black-body radiator at 2,854K. Spectral sensitivity ranges from 350 to 700
nanometers. Light is focused onto a photosensitive target, on which an image
pattern is generated as a charge. The target is scanned by an electron beam to
produce the video signal. The electron beam is generated in an evacuated glass
bottle. This tends to make vidicon cameras bulky and fragile. In addition,

the deflection of the electron beam tends to drift with time. Thus, a vidicon-
based imaging system must be calibrated frequently. Vidicons also require
a high voltage source (approximately 900 V) and have a typical mean time

between failure of 1,000 hours. For these reasons, solid-state cameras (most
representatively, Charge Couple Devices, or CCDs) are becoming preferable
for most vision applications.

CCD cameras can be purchased as linear (one-dimensional) arrays (also
known as Linear Imaging Devices, or LIDs) or as two-dimensional arrays (also
known as Area Imaging Devices, or AIDs). A CCD array is composed of discrete

light-sensitive elements. The light energy falling on each element builds up a
charge proportional to the integrated light intensity, and then these charges

are collected in capacitors beneath each element. A two-phase clock transfers
these charge packets off the array and into an amplifier. The image then
appears as a series of voltages at the output of the amplifier.

CCD linear arrays typically come in sizes of 256, 512, 1,024, 1,728, and

2,048 elements. CCD two-dimensional cameras typically come in sizes of 244
by 190 cells and 488 by 380 cells. These cameras are small, lightweight,

and highly shock resistant. Because they are solid state, they are very reli-
able. Unlike vidicons, CCD cameras do not require high-voltage power and

can operate on less than 50 milliwatts. They produce an output signal of
approximately 1 V and have none of the lag or drift associated with vidicons.
The spectral sensitivity of a CCD camera ranges from 420 to 1,100 nanometers.
Most manufacturers of CCD cameras also make available the electronics for

converting the image signal to the standard TV format.
One of the problems with CCDs is that sensitivity may change from cell to

cell by up to 10%. However, since this deviation is stable over time, a camera

CI Visual Input 201

can be calibrated (see Article XIII. C3). Caution is also necessary in that in

most two-dimensional CCD arrays, except those for industrial applications,
the cells are not square but rectangular to match the TV standards.

TV Signals

The Electronics Industries Association (EIA) has defined a standard for-
mat for TV signals. This standard, which is used in the United States, is

designated RS-170. The image is divided into two fields, each consisting of 240

lines, scanned top to bottom. The fields are "interlaced" to define an image
consisting of 480 lines. That is, one field contains all of the odd-numbered
lines; the other, the even-numbered lines.

Between each interlace field, the scan has 22^ line-periods to return to
the top of the screen. Thus the total number of horizontal scan-line periods
per image is 525. Scanning one field takes 1/60 of a second, so a complete
image is produced every 1/30 of a second.

The EIA RS-170 composite video signal consists of luminance information,
a horizontal synchronization period, and a vertical synchronization period.

Figure Cl-2 shows a typical signal for a scan line. The luminance informa-
tion is contained in a signal that ranges from .7 V (black) to 1.5 V (white).

Each scan line ends with an approximately ll-//sec. period for horizontal
synchronization. During this time the signal is held at 0 V for approximately
4.7 //sec. (the horizontal synchronization signal). After 240 scan lines, the
signal is held at 0 V for approximately 68.25 //sec. (21 scan lines) to mark the
end of an interlace field. This is the vertical synchronization pulse.

1.5V

.7V--

Figure Cl-2. A horizontal line-period of a video signal with horizontal
synchronization.

202 Vision Xm

Digitization

Computer vision systems do not work with continuous signals direct from

a TV camera but, rather, with digitized signals. The continuous- intensity
signal is sampled at each pixel position and digitized by an analog-to-digital
(A-D) converter. The number of bits required to encode the analog inten-

sity depends on the dynamic range and the S/N ratio of the input device,

but 6 to 8 bits is a typical range for most applications. For standard TV sig-
nals, 200 to 500 samples — pixels — are taken from a scan line in approximately

60 //sec. This means that sampling and A-D conversion happens every .12 to .3
//sec, and data throughput is between 3 Mbyte/sec. and 7.5 Mbyte/sec. When

fast-access computer memory was expensive, many methods were devised to
reduce this throughput. Today, however, the cost of memory is so low that
it is common to have a buffer memory for one or more frames, and the video
signal is digitized in real time. In fact, a combination buffer memory and
digitizer is commercially available.

Conclusion

In this article we have introduced the front end of vision systems: imaging
geometry and input devices and their characteristics. There is no Artificial
Intelligence discussed here, but it is important to realize that, unlike most AI

programs, vision systems interpret a real, noisy, physical world. The "eyes" of
a vision system — discussed here — affect what it sees and what its "intelligence"
has to work with.

References

See Duda and Hart (1973) for further discussion of the camera model.

C2. Color

MOST image-understanding research to date has dealt with black-and-white
pictures only. However, there is an increasing amount of work being done with
color pictures, because the additional information provided by color can be

exploited in a number of ways (see, e.g., the discussion of Ohlander's algorithm
in Article XIII.C5).

Color Features

A color image is produced by digitizing a scene or picture viewed through
color filters. Although there is no rigid standardization of color filters for
image understanding, the most common filters are Wratten filters 25, 47B, and

58, which resemble the National Television Standards Committee's (NTSC's)
standard filters for color television. Because these three filters transmit pri-

marily red, green, and blue wavelengths, respectively, color pictures digitized

with these filters are sometimes called "red-green-blue" (RGB) images.
Each pixel in a color picture digitized through color filters will have several

values, in this case, a red value, R, a green value, G, and a blue value, B.

Typically, the R, G, and B images can be used as inputs to the color "guns"
of a color- TV monitor to produce a fair reproduction of the original scene.
Commercial cameras and displays are available that allow convenient input
and output of RGB images; this is the primary reason for the popularity of
RGB color images.

Once a picture is digitized and its pixel values are inside a computer, it
is possible to transform the RGB values into some other set of color features.
This can be viewed as the selection of an alternative coordinate system and

set of axes for the same three-dimensional color space. Several alternatives
have been popular in processing color images.

Hue, saturation, and density (or intensity). Psychologists usually
measure human color perception in these terms. Hue (H) refers to the color

name (e.g., blue, red, orange). Saturation (S) indicates the purity or grayness

of a color (red is highly saturated; pink has the same hue but a lower satura-
tion). Density (D) measures the overall brightness or darkness of the color.

HSD coordinates form a cylindrical coordinate system in color space, where
density runs along the axis of the cylinder, saturation is the radial distance

from the axis, and hue is the angular displacement from some standard (such

as pure red). The D-axis is sometimes called the intensity axis. In computer
vision, HSD coordinates are computed by formulas (see Kender, 1977) that

203

204 Vision Xffl

are intended to model roughly the psychological meanings of the terms hue,
saturation, and intensity.

Normalized colors. These are computed by dividing each RGB coor-

dinate by the total density (usually R + G + B): r = R/(R + G + B),
g = G/(R + G + B), b = B/(R + G + B). The resulting coordinates describe
the density-independent (i.e., chromatic) aspect of a color. It is common to
specify only density plus two normalized coordinates, such as r and g, since
the other color value is easily derived. Such a system might be called Drg.

YIQ: Color- TV features. When a commercial color- TV signal is
encoded for transmission, the RGB values received from the camera are

transformed by a linear transformation into three features called Y, I, and Q.

The feature Y is very much like density and is the only signal seen on a black-
and-white TV set. The other features, / and Q, are chromaticity measures.
Because the /- and Q-axes point in different directions in color space, the YIQ
system is sometimes purported to be a model of the opponent- color theory of
human vision. However, this resemblance is a superficial one. The Y, I, and Q
features were strategically selected by the NTSC to model some overall effects

of the color-perception performance of humans.
XYZ: Color imetric features. These are another linear transform

of RGB and are standard features used in colorimetry (the measurement of
surface colors). They do not seem to have the qualities considered desirable for
computer vision, such as orthogonality or correlation with important features
of typical images.

UVW (etc.): Uniform color spaces. A Euclidean distance metric in
RGB, YIQ, HSD, or XYZ space does not correspond well to the subjective
perceptions of color difference in humans. Psychologists have adopted some
sets of nonlinear transformations into other spaces, such as UVW, in which
Euclidean distance does match human perceptions fairly well. Unfortunately,
these coordinate systems do not appear to be useful unless the vision input
conforms to the tightly controlled viewing situations in which psychological
color measurements are made.

Kender (1977) notes some problems that arise when performing any of
these transformations on digitized images, due to the small number of bits

per feature value at each pixel (typically, 6 or 8). Nonlinear transformations,

which usually include a division operation, do not produce uniform distribu-
tions of transformed values, given a uniform distribution of RGB values.

Linear transformations do not suffer from such severe problems. (See Article
XIII.C5 for a discussion of linear, but highly discriminating, transforms of color
features for use in region analysis.)

In addition to RGB input from a camera, infrared input has sometimes
been used. This is most frequent in analysis of ground coverage from aerial or
satellite images; for example, vegetation reflects green and infrared radiation
and is thus relatively easy to detect.

C2 Color 205

Conclusion

Color-image-understanding programs have used different color distance
metrics as well as different spaces. While the Euclidean metric is the most
common, others, such as the maximum difference in any feature and the sum
of differences in all features, have been successfully applied.

References

An excellent description of color science and color spaces can be found in

Judd and Wyszecki (1975).

C3. Preprocessing

PREPROCESSING is the first step of visual data processing. Its objectives

are (a) reconstruction of the ideal, high-fidelity image from the low-quality,
distorted input image and (b) improvement or enhancement of the quality
of the input image by suppressing noise and emphasizing selected features to
facilitate later stages of image processing.

All preprocessing techniques involve modifying an image to make it more
like an ideal image. In this article we examine three kinds of modifications:

1. Geometrical correction,

2. Gray-scale modification,

3. Sharpening and smoothing.

Sharpening and smoothing are especially pertinent to edge detection (see
Article XIII.C4). Most of the preprocessing associated with these techniques
can be done in either the spatial domain or the frequency domain. The spatial
domain is the distribution of intensities on the image plane that varies as a
function of x and y. The frequency (Fourier) domain refers to the spatial
frequencies in the image. Edges constitute high frequency; homogeneous or
blurred regions, low frequency.

Geometrical Correction

An important image-enhancement technique is the correction of geometri-
cal distortion. The most common distortion is the perspective projection that

depends on the position and orientation of the imaging device relative to
the object. Another distortion is the aberration in an optical sensor or an
electronic scanning device.

Geometrical distortion is defined by a set of transforming equations from

ideal coordinates (x, y) to distorted coordinates (x' ', yr)\ x' = hi(x,y)

y' = h2{x,y) .

Then the ideal image f(x, y) becomes the distorted image g(x', yf). As shown
in Figure C3-1, we have sampled the distorted image at a coordinate (x',yf),
but what we want are the values at the coordinate (x, y) in the ideal image.

The geometrical correction to recover f(x, y) from g(x! ', yf) is accomplished
by first constructing the distortion model (/ii,/i2) and then placing the pixel

value g(x' ', y') in the correct position (x, y) to give the ideal image J{x, y). The
latter process is called resampling. There are cases in which resampling is not

206

C3 Preprocessing
207

■► x

Figure C3-1. Coordinates (x, y) of the ideal image and (x',yf) of the dis-
torted image.

necessary; it is sometimes possible to do image processing with the original
image and the distortion model, avoiding the expense of resampling.

Construction of the distortion model. If there are a satisfactory
number of control points, or landmarks, in an image, the distortion model can
be constructed from them. A control point is a point that can be found in
the distorted image and whose location in the ideal image is already known
precisely. This method of constructing the distortion model is called direct
modeling.

The simplest form of the distortion equation is the linear or affine model:

x' = a\x + b\y + c\

y' = a2x + b2y + c2 .

A bilinear distortion equation is also used frequently:

x' = a\x + b\y + c\xy + d\

y' = a2x + b2y + c2xy + d2 .

Most local distortions in an image are accurately modeled by linear or bilinear
equations, since more complex distortions can be approximated by linear
distortions within a small area. However, for large areas and more severe
distortions, higher order polynomials are necessary. Alternately, a large image
may be divided into a number of smaller patches to which a linear or bilinear
equation is applied.

208 Vision Xm

For all these models, the coefficients are estimated by a least-squares error
method. It is important to use reliable control points to attain high accuracy
of modeling.

Direct modeling requires prior knowledge about the position of points in
the ideal image. An alternative is indirect modeling, in which a structural
model of distortion is derived from knowledge of the imaging process. For
example, it is possible to infer a distortion model from knowledge of the
angle of regard and other parameters. The parameters in the model may be
determined by logging data from the imaging device, for example, the camera
parameter (focal length) and the vehicle parameters (x, y, and z coordinates in

three-dimensional space, and roll, pitch, and yaw). This approach is common
in interpreting aerial photographs.

Resampling. Resampling involves constructing an ideal image by deter-
mining for each pixel (x, y) the corresponding pixel in the distorted image.

The intensity value of the pixel in the distorted image is then copied into its

undistorted position in the ideal image. Unfortunately, a pixel position (i,j)

in an ideal image will usually not map to an integer coordinate (m, n) — the
exact pixel position whose value is sampled in the distorted image — but to a

point (x',yf) between pixel locations (see Fig. C3-1). How, then, is the value
at {x',y') — the value to be copied into pixel (i,j) — to be determined? There
are two common solutions to this problem. One is to copy the value of the

nearest neighbor to (x', y') into the ideal image. The other is to interpolate a
value based on the values of pixels in a window around (xf, y().

Gray-scale Modification

There are two kinds of gray-scale modification with different purposes.
One is gray-level correction, and the other is gray-scale transformation.

Gray-level correction. Gray-level correction compensates for the non-
uniformity of sensitivity of sensors in the sensor plane. The gray level sensed
by each pixel is corrected according to the sensitivity at its location. The
sensitivity of pixels can be calibrated by illuminating the sensor plane with a
source of uniform brightness.

Gray-scale transformation. Gray-scale transformation is typically
done to modify the gray level (or intensity) of pixels in an image in order to
stretch its contrast, that is, the range between the darkest and lightest points
in the image. It is common to emphasize an interesting region of gray level,

as shown in Figure C3-2. A relatively small interval (a) of input intensities is
stretched to emphasize it.

A third transformation related to the gray scale involves modifying the
histogram of the intensity of pixels over the image. The histogram is a plot

of the relative frequency of each level of intensity (Fig. C3-3a); a peak in the
histogram implies a relatively large number of pixels with that intensity level.

C3 Preprocessing
209

Output
Gray

Level

Input Gray Level

Figure C3-2. Contrast stretching.

There are several ways to modify the histogram, depending on one's purposes,
but most representative is histogram flattening.

Histogram flattening. The principle of histogram flattening is to reduce
the frequency of very numerous intensity values and increase the frequency of
relatively rare values. This can be done by dividing the cumulative frequency

distribution (CFD) — the sum of the histogram values up to each intensity
level — into a large number of increments for relatively frequent values and
a smaller number of increments for rarer values. The first step of histogram
flattening is to chop the vertical axis of the CFD into equal intervals, as shown

by the horizontal lines in Figure C3-3b. Each line is drawn up to the CFD
and then runs vertically down between two original intensity values. Thus,

the original set of 32 intensity values (in Fig. C3-3a) is broken into sets of
varying intervals, but with an approximately equal total number of pixels in
each. Next, each interval is given a new intensity value, as shown below the

original intensity axis in Figure C3-3b. The histogram of the new intensity

values should be flatter (Fig. C3-3c).
Histogram flattening involves some loss of information when it is done dig-

itally, since the number of intensity values is reduced (in the case of Fig. C3-3,
from 32 to 9). It has the effect of sharpening images, because relatively rare

intensity values, such as those at edges, are emphasized at the expense of com-
mon intensity values, such as those in regions. It is also a useful adjustment

before comparing two images of similar scenes taken under different lighting
conditions (i.e., with different original intensity scales).

Sharpening

Sharpening, or deblurring, improves the quality of blurred images. The

simplest methods include spatial differentiation and high- emphasis frequency
filtering. However, special treatment is necessary when an image is noisy.

210 Vision
xm

of
3

Pixels 2 •

2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Original Intensity
(a)

New Intensity

(b)

Num.
of

Pixels

Intensity

(c)

Figure C3-3. Histogram flattening: (a) Original histogram; (b) cumulative
frequency distribution; (c) new histogram.

C3 Preprocessing 211

Differentiation and high-emphasis filtering tend to emphasize noise in addition
to intensifying edges. One approach to this problem is to apply these operators
only to the frequency region in which the signal is stronger than the noise.
Another approach is first to remove the noise by smoothing and then to
sharpen the image.

Spatial differentiation. The principle of this method is illustrated

in Figure C3-4. Intensifying edges can be accomplished by subtracting the
second derivative of a function from the function itself. Figure C3-4 shows
this for a one-dimensional curve; for a two-dimensional image, sharpening

involves subtracting the sum of the second-order derivatives (Laplacian) of a
picture function from the function itself.

Since an image is represented by discrete pixels, the derivative of the
picture function at a pixel is approximated by the difference between the
intensities of adjacent pixels. Thus, the first differences in the x and y
directions are as follows:

fx(i,j) = f(i,j)-f(i-l,j)

fy(hj) = /(«, j) — /(*, i — 1) i

Figure C3-4. Sharpening by spatial differentiation.

212 Vision
xm

where / is the image intensity and i and j are row and column coordinates,
respectively.

The higher order differences can be derived by repeating the first-order
differences. In particular, the second-order differences are:

fxx(i,j) = fx(i + l,i) - fx(i,j)

= /(t + l,j) + /(*-!, j)-2/(»,i)

fyyihj) = f(i,j + 1) + f(i,j - 1) " 2/(2, j) .

The discrete version of the Laplacian operator is, thus, given as follows:

V2f(i,j) = fxxf(i,j) + fyy(i,j)

= [/(* + l,i) + /(t - l,i) + f(i,j + 1) + /(t, J - 1)] - 4/(i, j) .

Notice that the second differences, fxx and /yy, can be represented by the one-

dimensional windows shown in Figure C3-5a, and the Laplacian operator V2
can be represented by the window in Figure C3-5b. Each window has as many
cells as there are terms in its corresponding equation, and each cell contains

the coefficient of one of the terms. To derive a Laplacian image — an image
of the second derivative of the original image — the window is centered over a
pixel, and the values in the pixels corresponding to the window positions are

multiplied by the coefficients in the window (see Fig. C3-6). The sum of these
multiplications is the output of the operator at the picture pixel corresponding
to the center cell of the window. The window is moved over the entire image

to derive an array of these values — a Laplacian image. The original image
can be sharpened by subtracting the Laplacian image from it.

High-emphasis filtering. The differentiation of an image is grossly
interpreted in the frequency domain as filtering that emphasizes higher fre-

quency components. Actually, any linear operator in the spatial domain (such
as the discrete version of the Laplacian) can be converted into an equivalent

1 1

1

-2

1

-2

1

-4

1

/

Jxx

fal
1 1

fyy

U
iplacia

(b)

n

Figure C3-5. Operators for the second derivatives (a) and Laplacian (b).

C3 Preprocessing 213

(1-3) + (1-6) 4- (1-3) + (-4-6) + (1-7) =-5

Figure C3-6. Applying the Laplacian operator to an image.

transfer function in the frequency domain. Just as a linear operator can be
designed to emphasize abrupt changes in intensity, so a transfer function can
be designed to emphasize areas of high frequency (i.e., areas with abrupt
changes in intensity). These are two approaches with the same result: Edges

and other high-frequency components of an image are sharpened.
Now, we can also design transfer functions and linear operators that

de-emphasize areas with abrupt changes in intensity; this technique is called
smoothing.

Smoothing

The image taken by an imaging device is often contaminated by noise,
the simplest kind of which is additive noise. The aim of smoothing is to
remove the noise from an image. Since smoothing techniques tend to blur the
image, the main problem for smoothing methods is to remove noise without
introducing undesirable blurring of details such as edges.

If the pixels contaminated with noise can be distinguished from the other
pixels, the noise can be removed without adverse effects on the image. Once

214 Vision XIH

a noise pixel is detected, its intensity is replaced by some reasonable value —
usually given by interpolating from neighboring pixels. This technique is
effectively applied when the noise appears as stripes with equal intervals or as
salt and pepper (i.e., isolated dots).

Ensemble averaging. A very effective way to reduce noise without loss
of detail is to obtain multiple independent copies of the desired image. Then
the image detail in each will be identical, while the superimposed noise will
vary randomly. Averaging corresponding pixels across the multiple copies
cancels the noise without affecting the desired image. This corresponds to the
effect of longer exposure time.

Local averaging. A simple method for optically removing noise in

an image is defocusing. This can be simulated by replacing the gray-scale
intensity of every point by an average of the image intensity within some
window around the point. In general, the average may be weighted, with
lower weights assigned to points farther from the center of the window. This
processing can be accomplished by a linear operator in much the same way as
was illustrated for sharpening. It will remove noise at the expense of blurring
the image. Reducing the size of the window will result in less blurring, but it
is less effective for removing noise. An alternative is to change a pixel only if
its value differs from the average by more than a given threshold. This is less

likely to blur desired detail but still removes salt-and-pepper noise effectively.
We can also avoid blurring edges with a median operator, rather than an

averaging operator. Since the median of a distribution is the value between
the lower half and the upper half of the distribution, it tends to preserve
edges. For example, if a 3 X 3 window covered an area with these intensities

8 8 2

8 2 2
2 2 2,

an averaging operator would return a value of 4 for the middle cell, but a
median operator would return a value of 2, preserving the edge.

Local averaging is especially efficient for binary images, since a binary

pixel has only two values (light and dark), and a pixel's value can be made
consistent with that of the immediate neighborhood simply by complementing
it or by leaving it unchanged. Binary input and output values permit logical
averaging, in which the averaging function is defined as a logical function of
the binary pixels in the neighborhood.

Low-emphasis filtering. It is common to use filters for noise removal.
A simple low-pass filter will remove high-frequency noise, that is, will smooth
the image, but it will also blur high-frequency components of the image
signal (such as those corresponding to edges and junctions). In some systems
this will be acceptable, especially if much of the noise energy is above the
highest desired frequency. If not, it may still be possible to improve the image

C3 Preprocessing 215

by filtering a selected band of frequencies, allowing the high-frequency edge
detail to remain. Bandpass filtering is especially useful if the noise energy
is concentrated at a particular frequency (e.g., if it is periodic). Restoration
techniques can be used to obtain the optimal filter when the characteristics
of the frequency domain, such as the spectrum of the noise, are known.

Conclusion

We have presented an introduction to techniques for preprocessing and

image-enhancement. We discussed three kinds of modifications: geometrical
modifications, gray-scale modifications, and sharpening and smoothing.

References

The primary introductory textbooks on preprocessing are Rosenfeld and

Kak (.1976) and Duda and Hart (1973).

C4. Edge Detection and Line Finding

EDGE DETECTION is an important step in segmenting an image. Its pur-
pose is to locate boundaries of meaningful regions that may be defined by

a relatively uniform color, gray level, or texture. Thus, edges are detected
by finding abrupt discontinuities of such image features. The forms of the
change in intensity across an edge are called edge profiles, of which the step

edge is an ideal one (Fig. C4-la). In actuality, the edge profile tends to be a
slope (Fig. C4-lb) because of noise and blur.

Edge detection is basically a two-step process. First, candidate edge
elements are found by a local operator and, second, smooth lines or curves
are extracted and specified either as line formulas or as contiguous elements.
The remainder of this article discusses techniques for these two steps.

Spatial Differentiation

Since we are interested in places where the picture function changes, it
is reasonable to consider using a derivative of the picture function f(x, y) to
indicate edge elements. The spatial first derivative of / is called the gradient
and it is made of a pair of partial first derivatives df/dx and df/dy.

The gradient is a vector, and its magnitude G and orientation 0 can be
expressed as:

G(x,y) = {(df/dx)2 + (df/dyf}1/2
8(x,y) = tan"1 {(df/dy) / '(df/dx)} .

Many operators have been devised to approximate this gradient in digital

images. One of the earliest was the so-called Roberts Cross Operator, R{i,j)
(Roberts, 1965). It computes the sum of squares of the differences between
diagonal pixels in a 2 X 2 window:

R{i,j) = {(f(i,j) - f(i + 1,3 + I))2 + (f(i + U) - f(i,j + l)ff2 ■

(a) (b)

Figure C4-1. (a) An ideal step-edge profile; (b) a real edge profile.

216

C4 Edge Detection and Line Finding
217

Of course, we can use operators to approximate df/dx and df/dy. The
simplest one is derived from the differences of intensity values of horizontal
and vertical neighbors:

fx(hj) = f(i + l,j)-f(i,j)

These operations are conveniently expressed in the form of local operators

with a window of weights (see Fig. C3-5, in Article XIII.C3). The 3X3
operators shown in Figure C4-2 also compute first derivatives, and they are
often referred to as the Sobel operators. In these windows, larger weights are
given to the pixels close to the central point (i,j). This makes Sobel operators
less sensitive to noise.

One problem with many edge detectors is that they rely on computations

based on fixed-sized neighborhoods. Figure C4-3 shows that the window size
is crucial in detecting slope edges: In general, the window size should be
as big as the extent of the slope of the edges to be detected. Notice that

there is a trade-off between large windows that are immune to noise and
small windows that have higher resolving power. Rosenfeld and Thurston
(1971) have suggested one operator that uses windows of variable size. The
calculation begins by taking the difference of the average gray levels of a pair
of the smallest neighborhoods on opposite sides of a point. Then the size
of the neighborhoods is increased by powers of 2 until the difference drops
significantly; the largest opposite neighborhoods before the decrease are used.

Edge elements are selected by thresholding the output of the edge detec-
tor, resulting in a binary image. If the output of an edge detector at a

pixel exceeds a certain threshold, that pixel is determined to be an edge-
element candidate and given a value of 1; otherwise, it is given a value of 0.

However, as shown in Figure C4-3, the output of the first derivatives across
the slope edge tends to be bell-shaped or flat over the extent of the slope. As a
result, the located edges may be several pixels wide. One method to overcome
this is to follow the local maxima of the detector output. Alternately, the

second derivatives can be used. As shown earlier in Figure C3-4, the second
-1

0 1 -2

0 2 -1

0 1

1 2 1

0 0 0

-1
-2

-1

for fx{i,j) for fv{i,j)

Figure C4-2. Sobel operators.

218 Vision
xm

r^
- +

- +

Figure C4-3. Output of first-derivative operators with different
window sizes applied to a slope edge.

derivative changes its sign at the position of the steepest slope in the edge.

Therefore, the point at which the second derivative crosses the z-axis, called
the zero-crossing, unambiguously indicates the position of the edge. Since the
picture function is two-dimensional, we actually use the zero-crossing of the

Laplacian image (i.e., the sum of d2f/dx2 and d2f/dy2). The Laplacian has
long been useful in computer vision, but recently Marr and Hildreth (1980)
proposed, as a model of psychophysical aspects of edge detection in human

vision, zero-crossing in the image obtained by applying a circularly symmetric
Laplacian with Gaussian low-pass filtering.

Pattern Matching

Pattern matching for edge detection assumes a model of an edge, and
its location in the image is determined to be where its intensity profile best
matches the model. A theoretical system that has been adapted and applied

in real vision systems is the Hueckel operator (Hueckel, 1971, 1973). Given

a circular region D about the origin of an x-y coordinate system, Hueckel's
ideal edge (Fig. C4-4) is the step function:

/(x,2/,c,s,p,M)

{i

if ex + sy < p;

otherwise.

ex + sy = p

Figure C4-4. Hueckel's ideal edge.

C4 Edge Detection and Line Finding 219

The ideal edge is a function of the background intensity b, the intensity
difference d across the edge, and the parameters for the edge orientation and
location c, s, and p.

If f(x, y) is the picture function, we would like to "fit" an ideal edge to
f(x, y) by minimizing

-/.

E(c, a, p, b,d)= / (/(x, y) - F(x, y, c, s, p, b, d)) dx dy . (1)
Jd

This is accomplished with polar-coordinate Fourier analysis. Let H(i) be a
basis function (separable into angular and radial components) and define

L a(i)= / H(i)(x,y)f(x,y)dxdy
Jd

s(i)= / H(i)(x,y)F(x,y,c,s,p,b,d)dxdy .
Jd

Now a(i) is constant and s(i) is variable, and the problem is reduced to
minimizing the error E:

E(c, s,p, b, d) =]T)(a(zj - s(i)f .

Because of real limitations from resolution and noise, this sum need only

be carried out for the first eight terms. For each neighborhood, Hueckel's
system returns the optimal edge and an indication of goodness of fit (i.e., the
value of E). The value of the intensity difference d can be used to determine
whether it corresponds to a real edge element.

Color Edge Detection

Whereas each pixel of a gray-scale image has a scalar value of inten-
sity, a pixel from a color image has a three-dimensional vector value [Red,

Green, Blue) corresponding to the three principal components of color. More
generally, a multispectral image can have an arbitrary number of components
(see Article XIII.C2). Edge detection in color images is very like its counterpart
in intensity images.

Let dbea differential operator and H a threshold operator, and assume
that R, G, and B are the component intensities of a color image. Then the

operator H(dR + dG + dB) thresholds the sum of the differences of each fea-
ture and produces a binary image indicating whether the total color difference

was above the threshold (Yachida and Tsuji, 1971). Alternately, the operator

HdR + HdG + HdB computes the sum of binary images given from differen-
tiation and thresholding of each color. It gives a result whose value can be 0,

220 Vision Xm

1, 2, or 3 and indicates the number of color features that show a significant
difference. The likelihood of an edge at a pixel is indicated by this number.

Nevatia (1976) extended the Hueckel operator to the detection of color
edges. He assumed that the ideal edge in each color feature must have
the same orientation ((c, s, p) in terms of the previous model) at a given
pixel. First, the ideal edge model F(x,y,c,s,p,b,d) is matched separately
for each color feature. The orientations (c, s, p) are then averaged to compute
(co,so,po), which is taken as the orientation of the color edge. Then the
remaining parameters in the tuple are determined separately for each feature
to minimize the total error,

E = ER + EG + EB ,

where the components Er, Eg, and Eb are defined as in equation (1).

Extraction of Line Descriptions

The edge detector produces as output a set of edge elements — for example,
the set of points where the gradient of the picture function exceeds a certain
threshold. The next problem is how to group edge elements that form a
continuous contour and segment them into lines and curves.

Tracking. Tracking links edge elements into a longer contour by visiting
the neighboring elements one after another. A typical method is to scan the

edge-element image left to right and top to bottom and, when an edge element
is found, check whether any of its eight neighbors are edge elements. If one is,
mark it and move to it, and repeat the process. The edge elements that have
been visited must be marked as such, so that no duplicate tracking occurs. If
two or more neighbors are edge elements, remember their positions in a stack
as branch points. If there is no neighboring edge element, the present position
is the terminal of a contour, and processing continues from the last branch
point. If there are no more branch points, the image is scanned for another
starting point. This process will eventually visit all edge elements.

This fundamental algorithm has many difficulties. First, it implicitly
assumes that an edge contour is just one pixel wide. A thinning operation
is usually carried out to thin the width of the line before tracking. Second,
because of noise, false edge elements are found, as are gaps in a continuous
line. The tracking algorithm is fooled, and it detours from the true straight
lines or smooth curves or is stranded in the middle of them. One remedy is to
give the tracking algorithm inertia so that it continues its current direction
of search. Tracking thus searches for a continuation of the last few edge
elements; when it encounters a gap, it continues tracking if it finds a line of
the same orientation beyond the gap.

A third problem is that tracking is inevitably local, even with tricks to

bridge gaps and avoid false edges. To do a really good job of line finding, cer-
tain global knowledge, often domain knowledge, is introduced. For example,

C4 Edge Detection and Line Finding 221

Shirai's semantic line finder (see Article XIII.B6) incorporates blocks-world
knowledge. Another method is to use a figure of merit to constrain the shape
of contours to be traced. For example, suppose we are interested in extracting
a curve that is as smooth as possible and across which the intensity difference
is as large as possible. Then we can define

C= Y. lar(i,j)2 + c2d(i,j)2\
(i,j) on a curve

as a figure-of-merit function of a curve, where r(i, j) is the curvature radius,
d(i,j) is the intensity difference, and c\ and C2 are positive constants. Then
the tracking problem becomes an optimization problem of searching for a path
in the image that maximizes C. It can be solved with dynamic programming

(Montanari, 1971), depth-first search (Chien and Fu, 1974), or heuristic search
(Martelli, 1976).

Segmenting a contour into lines and curves. Once a contour is iden-
tified, it is sometimes necessary to segment it into a sequence of straight line

segments and primitive curves. There is a very simple algorithm for generat-
ing a multiple-line description from a given set of points, called an iterative

endpoint fit (see Fig. C4-5). It begins by choosing from the set two extreme
points, A and B, and approximates the entire set by the line joining these two
endpoints. If the fit is good, the procedure stops; otherwise, it chooses the

point farthest from the fitted line, C, and replaces the one-line description
AB by a two- line description, AC, CB. The process is repeated on each of
these segments, and so on, until sufficiently good matches are achieved for
all segments. Unfortunately, this simple algorithm can be strongly influenced

by a single noise point. It is essential that it operate in a virtually noise- free
environment, perhaps provided by an earlier smoothing process.

Another important idea is to represent the contour as a function of its

length s from its starting point— specifically, to represent the slope of the

A^

Figure C4-5. An iterative endpoint fit method (from Duda and Hart, 1973).

222 Vision xm

► s

Figure C4-6. A tp-a transform (from Turner, 1974).

tangential line, ip, or curvature, 6, as a function of s. For example, as shown

in Figure C4-6, ip and s can be used to segment a contour into lines and
arcs. When we plot i/> against s, the linear portion of the contour becomes

a horizontal line in the ip-a graph, and the arc portion becomes a line with

a slope. Then we can divide the ip-s graph into piecewise linear segments,
and use the position of break points to segment the original contour into line

segments and arc segments depending on the slope of the corresponding ifi-a
segments.

The Hough transform. It is possible to detect multiple straight lines

from a set of edge points with a clustering method. To do so, we represent a

line in the x-y picture plane by

x cos 9 + y sin 9 = p .

A graphical interpretation of this equation is shown in Figure C4-7a. Let us
imagine a parameter space made of (p, 9). The previous equation is then a

transformation from (x, y) to (p, 9) with the following properties:

1. A line in the x-y space is transformed to a point (p, 9) in the p-9 space,
and vice versa.

2. A point (x, y) is transformed to a sinusoidal curve in the p-9 space, and
vice versa. Notice that the (p, 9) on this sinusoidal curve mean all the
lines that pass the point (x, y).

C4 Edge Detection and Line Finding
223

p = xcos9 + ys'mO B = (x,y)

(a) (b)

Figure C4-7. Hough transform.

Suppose we have a set of edge-element points (xi,yi), i = 1 ~ N, and
transform them into TV sinusoidal curves in the p-9 space. If the original
points are on a line, say, xcos#o + ysinOo = po, then the sinusoidal curves

should intersect at (po,9o), as shown in Figure C4-7b. Therefore, we can find
a group of points in the x-y space that form a line by detecting a point in
the p-6 space at which many curves intersect. Actually, we represent the p-9
space as an array of accumulators, (pm, 0m), each of which is responsible for
a short interval of p and 9. For an edge element at (xi,yi), we compute the
corresponding sinusoidal curve and add 1 to the content of the accumulators
on which the curve passes. After all points are transformed, the accumulators
that contain a large number suggest lines whose formulas are given by the

associated (pm,^m).

Since this method generates N2/2 intersections for N original points,
detecting significant clusters is not trivial. An alternative is to compute the

orientation 9{ at an edge element (x{,yi) by means of the gradient operators
for edge detection discussed in this article. Rather than transforming an edge

element to a sinusoidal curve in the p-9 space, we transform it into a point

(pi, 9i), where pi = X{ cos9{ + yi sin#,-, and augment the single corresponding
accumulator. This class of methods, transforming into a parameter space,
has the advantage that the set of points that constitute a line can be detected
despite gaps or noise points.

Conclusion

Numerous operators and techniques for edge detection have been devel-
oped, and we have covered only a fraction of them in this article. Some

techniques are relatively general, while others are tuned for particular appli-
cations. Most vision systems need some kind of edge detection to get line

224 Vision Xm

descriptions of images. This requires a sequence of operations, from edge-
element detection to line description.

References

For a standard book of edge-detection techniques, see Rosenfeld and Kak
(1976); for a survey, see Davis (1975). One example of a complete line finder

that starts with an image and generates line descriptions is Nevatia and Babu's
system (1979).

C5. Region Analysis

AN IMAGE is represented as a two-dimensional array of pixels conveying
image- feature values. The task of region analysis is to group together the
pixels in an image that share some values of a feature. For example, an image
can be segmented into regions of similar color, under the assumption that
these regions correspond to surfaces in the scene that produced the image.

The regions produced by region segmentation typically have several prop-
erties. Such regions are mutally exclusive — that is, no pixel belongs to more

than one region — and they are usually exhaustive — that is, each pixel belongs
to some region. Each region consists of a single cluster of contiguous pixels;
it is simply connected. Each region satisfies some predicate, which usually
indicates uniformity in the desired features, and no two adjacent regions

satisfy the same set of predicates — that is, no two adjacent regions look the
same.

Region- segmentation techniques are attractive for a number of reasons.
For one, there are usually far fewer regions than pixels, so region segmenta-

tion is a form of data compression. Moreover, regions are groups of pixels

with (presumably) the same semantic interpretation, so they are convenient
units for later stages of image understanding (such as naming objects). The
boundaries of regions form outlines of important areas of the image, and since
these outlines are guaranteed to be connected and unique, region segmentation

avoids some of the problems inherent in edge-based techniques (see Article
XIII.C4).

One weakness of region segmentation is that it makes assumptions about
the uniformity of image features, for instance, that all pixels with the same
color correspond to the same surface. Violations of these assumptions will

produce erroneous results. For example, highlights will violate the assumption
above, causing a single surface to be split into several regions or producing
tiny noise regions.

There are two primary approaches to region segmentation:

1. Region growing. Starting with many tiny, trivial regions, such as indi-
vidual pixels, merge similar regions until the only regions that remain

are uniform and no further merging is possible.

2. Region splitting. Starting with a single large region, such as the entire
image, split it into several pieces. Continue splitting pieces until only
uniform regions remain.

Region Growing

Region growing begins with many tiny atomic regions, often individual
pixels or collections of adjacent pixels that have an identical gray level, color,

225

226 Vision XIE

or the like. Adjacent similar regions are merged until no two adjacent regions
are sufficiently similar to be merged. Regions are similar if their pixel values
do not vary significantly, for example, if the means of their gray levels are
approximately the same. Variance is measured by standard deviation, range,
or a similar statistic.

There are two common organizations for the region-growing algorithm.
In the first, processing begins in any atomic region, say, the upper left-hand
corner, and then an adjacent atomic region is examined. If it can be merged
with the first, this is done. The next atomic region that is adjacent to any*
part of the current region is then tested, and so on. When no more adjacent
atomic regions can be merged with the current region, another atomic region
is selected and a new region is created. Processing continues in this sequential
manner until all atomic regions belong to some region.

Another organization is to compute initially, for each pair of adjacent
regions, the worth of merging them. Next, the pair that is judged most
worthy of merging is merged, and the worth of merging this new region with
its neighbors is recomputed. Processing continues in this parallel manner until
no pair of regions is judged worthy of merging.

There have been several variations on the basic region-growing idea. For
example, the criteria for merging regions might be based on properties of
the region shapes as well as on their pixel values. Along these lines, Brice
and Fennema (1970) developed two heuristics for deciding whether to merge

adjacent regions with a weak boundary. (A boundary is weak if the gray-
level difference across it fails to exceed some threshold.) The first heuristic,
called the phagocyte heuristic, merges two regions if the weak part of their
common boundary exceeds some fraction of the perimeter of one region or
the other. This has the effect of merging only if one region is contained (or
almost contained) within the other. The second heuristic, called the weakness
heuristic, merges two regions if the length of the weak part of their common
boundary exceeds some fraction of the total common boundary.

Yakimovsky and Feldman (1973) use semantic interpretations of regions
to guide region growing. They would merge regions only if the interpretation
to be assigned to the resulting region was compatible with the interpretations
of other adjacent regions. Harlow (1973) allowed the threshold for merging to
vary, depending upon the interpretation of the region being generated.

Region Splitting

Region splitting is a recursive procedure in which a single region is ex-
amined and possibly split into pieces that, as regions themselves, are then

examined and split in exactly the same way. Initially, the entire image is
considered to be a single region.

The usual technique for deciding when to split a region is to form a histo-
gram of the pixel values within the region — a graph that indicates, for each

C5 Region Analysis 227

pixel value, how many pixels have that value. Under the assumption that each

surface or object will contain many pixels of similar value, peaks in the histo-
gram will indicate surfaces. If a region consists of a single surface or object,

its histogram will therefore consist of a single peak; if the histogram contains
several peaks, the region may contain several surfaces and is a candidate for

splitting.

It is possible to judge the uniformity of a region of pixel values statis-
tically, with a measure of variance such as the standard deviation of pixel

values, and to use this measure — rather than a histogram — to decide whether
to split a region. Robertson, Swain, and Fu (1973) proposed dividing a region
vertically or horizontally into two regions of equal size if the variance of pixel
values was large.

If a histogram is made, it can be used to decide how to split a region.
A valley in the histogram between two peaks corresponds to a pixel value
that does not occur, or occurs only infrequently. The pixel value at the valley
can be used as a threshold, and the region can be split into two collections of
pixels: those whose value is above the threshold and those whose value is below
the threshold. Groups of contiguous pixels from either collection become new
regions. Each is examined by the same technique to see if it should be split
further.

This technique, developed by Prewitt (1970) and often referred to as the

mode method, is suitable for pictures with a single feature, such as black-
and-white images. Tsuji and Tomita (1973) and Ohlander (1975; Ohlander,
Price, and Reddy, 1978) extended the idea to include multiple histograms.

The resulting technique is perhaps the most common region-splitting method
used today. Each region is histogrammed separately for each of the color

bands (or other features). Then each histogram is examined separately, and
potential thresholds are determined for each feature. The histograms and
potential thresholds are then compared to determine which feature appears
most promising. Usually, the feature that shows the best separation of peaks is
chosen. Finally, thresholding of the image using the selected feature proceeds

as described above. With this technique, the feature with the most discrimina-
tive power is the basis for segmentation.

Other Approaches to Region Splitting

Another approach to region splitting involves examining a distribution

of the image features in a multidimensional feature space. Like peaks in one-
dimensional histograms, clusters of feature points in a multidimensional space

are assumed to correspond to meaningful regions in the image. Clustering,

the name given to techniques for developing the distribution of feature- values
in a multidimensional space, is a common practice in the fields of statistical
data analysis and statistical pattern recognition.

228 Vision XHI

Coleman and Andrews (1979) describe a region-segmentation method,
based on multidimensional space clustering, that uses both color and texture
features. The idea is to form a histogram over the feature space and then to

break the space into parts wherever a cluster — a local maximum over some

sizable neighborhood — appears in the histogram. Since we do not usually
know the number of meaningful regions in the image, we need some criterion

for selecting clusters. Coleman and Andrews used the product of between-
cluster and within-cluster scatter averages, and selected the number of clusters
for which this product is a maximum. Once the clusters are identified, each
pixel is labeled with the name of the cluster it belongs to, and the image
is partitioned by merging adjacent pixels with identical cluster labels into a
single region.

The selection of color features for Ohlander's algorithm has been exam-
ined in detail by Ohta (see Ohta, Kanade, and Sakai, 1980). He used a

Karhunen-Loeve (K-L) expansion to measure the axis of primary variation
of pixel values for each region undergoing segmentation. A statistical analysis
showed that certain axes were much more likely than all the rest to represent
optimally the variation of pixel values. The most common was the intensity

axis, 7i = R+G+B (see Article XIII.C2). The second and third most commonly

used axes were approximately I2 = R — B and I3 = 2G — R — B, respectively.
It should be noted that these features are simple linear transformations

of RGB data and, thus, are immune to the nonuniformity of feature- value
distributions that are introduced by nonlinear transformations as an artifact

(see Article XIII.C2; Kender, 1977). Ohta compared segmentation using h,
I2, and h to segmentation using RGB, XYZ, YIQ, BSD, UVW, and other
similar features. He concluded that his features performed for a wide variety
of images at least as well as any of these other feature sets. Statistically,

it is optimal to compute the K-L transform for each region to be split;

using Ohta's features allows a sort of precomputation of the K-L transform

(under the assumption that one's images are likely to be statistically similar
to Ohta's).

Postprocessing for Region Extraction

Region splitting with histograms exploits global information about fea-
tures of the image, but it fails to exploit the local spatial information that

region-growing methods can use. Because of this, when an image is divided
into collections of pixels by thresholding, there are typically some pixels (with
values close to the threshold) that seem to have the wrong label. These noise
regions must be eliminated. Ohlander (1975) used binary smoothing operators
(see Article XIII.C3) to eliminate thin regions or holes. Shafer (1980) eliminated
any region whose area was less than some constant.

There are a number of ways to do postprocessing on a histogram-based
segmentation. One is a kind of smoothing (Article XIII. C3): If most of the

C5 Region Analysis 229

neighbors of pixel P are labeled C, then P is relabeled with C. This type of

postprocessing has been used in remote-sensing applications where regions are

expected to be uniform — where a "wheat" pixel is not expected to appear in
the middle of the "corn" field. A slightly modified method is the conservative
threshold (e.g., Nagin, Hanson, and Riseman, 1977). This involves delaying
classification of pixels with feature values near the threshold (or near the
boundary of the discriminant surface). These pixels are classified in a second
pass, according to the labels of their neighbors.

Another postprocessing technique is relaxation (Rosenfeld, 1978). Instead
of assigning a single label to each pixel, the probability pi that P belongs

to class Ci is estimated based on the distribution of image-feature values.
Then these probabilities are adjusted by some relaxation formula so that pi is
revised iteratively using the previous values of its own and neighboring pixels.

(See Article XIII.E4 for a discussion of probabilistic relaxation algorithms.)
Rosenfeld reports that, in his experiments, error removal by this method is
five times better than simple postprocessing.

Supplementary information can facilitate postprocessing in region analy-
sis. For example, Milgram and Kahl (1979) compared the boundaries of

proposed regions with the edges found by an edge-detecting operator; regions
were discarded if their boundaries did not correspond sufficiently well with
the supplementary edges.

The problem of threshold detection from a histogram has received con-
siderable attention. A survey of this area is presented in Weszka (1978).

Conclusion

A region has been defined intuitively as a group of pixels with certain con-
sistent characteristics; region-segmentation methods rely mostly on spectral

and spatial distributions of the image- feature values. However, the problem
of region segmentation requires more than simply analyzing image-feature
values, because the ultimate goal of region segmentation is to find a seg-

mentation that separates out meaningful objects or parts of objects, such as

"nucleus of cell," "sky," and "tree." It is recognized in vision research that
region-segmentation programs must have knowledge about the world from
which the images are taken.

References

For a survey of region- analysis techniques and issues, see Zucker (1976a),
Riseman and Arbib (1977), and Kanade (1980a); the last reference also dis-

cusses the issue of incorporating knowledge into region-segmentation pro-
grams.

C6. Texture

IMAGES of textiles, terrains, and tree barks all include textures — fine-grained
patterns of small elements, arranged with a certain structure. Regions of

texture appear homogeneous. Texture thus provides important cues for dis-
tinguishing objects and natural scenes. Gradual change in texture is a cue to

depth and orientation; texture gradients were proposed by Gibson (1950) as
part of his model of human perception. In computer vision, texture analysis
is an important segmentation technique. It is also used to recognize types

of surfaces and their quality and to recover three-dimensional information
from images. This article will discuss the description and extraction of two-
dimensional patterns of textural features; the problem of relating texture with

three-dimensional shapes is discussed in Article XIII.D5.

Extraction of Textural Features

There are many applications of vision research that depend on dis-
criminating textures. For example, quality control and aerial survey can both

be done by examining the textural properties — or features — of images. In
quality control, different mixtures of materials show up as different textures
in microscopic images of samples. In aerial survey, different terrains such as
grassland and forest appear as different textures. To exploit these textural
differences, it is necessary to define and extract features that discriminate
between textures. Various textural features have been proposed; some are
motivated by specific applications and others by a desire to explain human
texture discrimination.

Statistical features. The simplest textural features are first-order statis-
tics that describe the distribution of individual pixel features such as intensity.

Histograms of intensity and other features can be compared directly with the

Kolmogorov-Smirnov test; alternately, the distribution can be summarized
by the mean, variance, skewness, and kurtosis (the first, second, third, and
fourth moments of the distribution, respectively), and these can be used as
texture features.

Second-order, or dipole, statistics summarize the probability of the inten-
sity values of a pair of pixels. These statistics are computed for pairs of pixels

in different positional relations and are summarized in a co-occurrence matrix.
Let 6 = (r, 6) denote a vector in the image that represents a displacement
by r in the orientation of 9. Ps(1 1^2) denotes a probability that a pair of

pixels displaced by 6 has intensities I\ and I2'. The first pixel has intensity I\
and the second, displaced by S from the first, has intensity 1^- If intensity

230

C6 Texture 231

takes one of n possible values, a co-occurrence matrix is an n X n matrix and
records all the Ps(Ii,l2), 1 < h,h < n, for one S.

Finding co-occurrence matrices for all 6 involves a prohibitive amount of
computation. Haralick, Shanmugam, and Dinstein (1973), who first used co-

occurrence matrices to classify terrains in aerial photographs, computed just

four co-occurrence matrices for r = 1 and 0 = 0°, 45°, 90°, and 135° — that
is, the second-order statistics for pairs of pixels that are one pixel distant in
each of four orientations. From each matrix, they defined 14 feature values
for discriminating between textures.

Statistics on differences of intensities (rather than combinations of inten-
sities) can be also used as textural features. Let Ps{k) be the probability that

a pair of pixels separated by 8 has a difference of intensity k. P$ can be

derived from a co-occurrence matrix P^ii,^), because

P6(k)= Yl ps(hJ2)-
\h-l2\ = k

Ps{k) provides a simpler set of statistics than /^(/i,^); they have been
tested for terrain classification and material inspection (Weszka, Dyer, and
Rosenfeld, 1976).

Various other statistical texture features have been proposed, including

the power spectrum of an image (Bajcsy, 1973), coefficients in an autoregres-
sion or a linear-prediction model, and autocorrelations of an image. The
co-occurrence matrix and these features are interrelated: One feature can be
mathematically derived from another. Higher order statistics might also be
used; however, they involve more computation and do not necessarily give
better results. In fact, Julesz (1975) conjectured that two textures are not

discriminable if their second-order statistics are identical. Recently, some
counterexamples to this conjecture have been found; nonetheless, it is possible

that second-order statistics are the most that need be computed for texture
discrimination.

Local Features

The statistics we have discussed are based on pixel-level intensity values.
An alternative is to extract local features and take statistics on them. The

most representative of this method are edge statistics. Edge strength and

orientation are computed by edge operators (see Article XIII. C4) and are sum-
marized by various statistics. For example, Tamura, Mori, and Yamawaki

(1978) computed a directional co-occurrence matrix that summarized statis-
tics on the combinations of edge orientations for pairs of edge elements with

certain geometrical relationships.

232 Vision xm

Marr's primal sketch is consistent with this approach. In his original
proposal (Marr, 1976), an image is processed with edge and bar masks of
various sizes to detect primitives like edges, lines, and blobs. Each primitive
has attributes such as orientation, size, and contrast. The primal sketch was

proposed as an explicit, symbolic representation of this information. It also

makes explicit the two-dimensional relations between primitives, including
parallelism between nearby edges and relative positions and orientation of

significant places in the image. These places are marked by place-tokens, and
the geometrical relations between them are represented by inserting virtual

lines between nearby tokens. Figure C6-1 is an example of the primal sketch.
Statistics derived from histograms of intensity, contrast, line-fragment length,
line-fragment orientation, and so on are used for texture discrimination. Marr
argues that this model explains experimental evidence on texture discrimina-

tion by humans. In the line-and-point textures that Schatz (1977) examined,

''i ii

100

50

.)' .1:

■%\

'■■■■ :i:\: :, "::

\%\

:;A. V !' ,V ,: :5 U-i. ;L fo. " J •« .W'M %%.'!«

v:

50

/ / /

100
\\\

c. Figure C6-1. Primal sketch (from Marr, 1976).

C6 Texture
233

length and orientation of actual lines and of local virtual lines between ter-
minators were sufficient for texture discrimination.

Segmentation of Texture Regions

Texture features can be used to segment images into regions, if the appro-
priate features are known a priori. However, since textural features are derived

from statistics taken over a region, it is difficult to get meaningful statistics
unless the region is delimited a priori.

One solution to this problem is to detect texture edges (and, thus, regions)
by measuring a change in texture over a small window. This is most useful for
those textures that can be discriminated on the basis of intensity distributions,

such as random-dot textures. However, if the window is too small, the edge

detector's output fluctuates due to local intensity variation, and if it is too
large, the boundary is blurred. Rosenfeld and Thurston (1971) used a variable-
sized edge detector: Several window sizes were tried at each pixel position to
compute the local derivative, and the one that satisfied a certain criterion was
used as the strength of the texture edge.

A second approach is to smooth an image (Article XIII.C3) so that pixels
in a single texture region will have similar values in the smoothed image.
This image can then be segmented as an ordinary intensity image. However,
the neighborhood over which the smoothing is performed has to be carefully

selected in order not to blur the boundaries. Tomita and Tsuji (1977) con-
sidered the five neighborhoods for each pixel position shown in Figure C6-2

to be used for smoothing. The value for the pixel is taken to be the value of
the average over the most uniform of the five neighborhoods. This method

Figure C6-2. Five neighborhoods of point (x, y)
(from Tomita and Tsuji, 1977).

234 Vision xm

allows only one texture region to be included for averaging even when the pixel

is on a boundary — in the case of Figure C6-2, the neighborhood in the upper
left. Thus, texture edges are preserved in the smoothed image. Figures C6-3a
and C6-3b show an example of segmentation by this method. For comparison,
Figure C6-3c shows the result of smoothing with a fixed neighborhood: We
can observe in this case blurring near the boundaries of texture regions.

Another approach is to use multiple histograms of the properties of tex-
tural elements (e.g., histograms derived from the primal sketch) to find appro-

priate thresholds to split images. This is the same approach as in region
splitting (see Article XIII. C5). In fact, one of the first applications of multiple
histograms to recursive region splitting employed texture features. Tomita,

Yachida, and Tsuji (1973) segmented the image in Figure C6-4 with his-
tograms of the area, perimeter, and moments of its primitive elements. The

histograms for Figure C6-4 are shown in Figure C6-5a. The perimeter, whose
histogram shows the most conspicuous bimodality, was first used for segmen-

tation, resulting in the regions shown in Figures C6-5b and C6-5c. Figure
C6-5b is further divided with a moment (Fig. C6-5d).

Conclusion

Texture provides important cues in analyzing natural scenes. Recently,

it has attracted increasing attention in computer-vision research. It is also
being studied in perceptual psychology, and this research has had an influence
on computer vision. Models for generating textures have also been studied;

among them, Markov models, a statistical model — a noise function plus a
transfer function (Pratt, Faugeras, and Gagalowicz, 1978), a random mosaic

model (Schachter, Rosenfeld, and Davis, 1978), and a syntactic model (Rosen-
feld and Lipkin, 1970; Zucker, 1976b).

(a) »

Figure C6-3. Segmentation by local averaging: (a) input image, (b) variable
neighborhood, and (c) fixed neighborhood (from Tomita and
Tsuji, 1977).

C6 Texture
235

Figure C6-4. An image with textural primitive elements obtained from
a real image (from Tomita, Yachida, and Tsuji, 1973).

236 Vision
xm

I i

i- I i

IZE(PERIMETER)

"::.::. '.. r:: :'.■.:: .

I I

(a)

i I

i I !
i I i

1 I

i i

Figure C6-5. Segmentation of texture regions by use of multiple histograms
(from Tomita, Yachida, and Tsuji, 1973).

C6 Texture 237

References

Brodatz (1966) contains many pictures of textures. Rosenfeld and Kak
(1976) include basic techniques for texture segmentation. Haralick (1978)
surveys research on a statistical and structural approach to texture.

D. REPRESENTATION OF SCENE CHARACTERISTICS

Dl. Intrinsic Images

IMAGE UNDERSTANDING typically involves analysis of an image to deter-
mine some features and matching those features with entries in a database

of objects to determine which objects are present. Segmentation techniques
attempt to determine features in the image, such as regions of uniform color
or intensity; in general, these can be matched to database entries only if the
objects are presented in specific orientations (i.e., with known outlines in the
image). A more powerful approach is to determine features of the scene, such
as the orientation of each surface and its distance from the camera. These

features can then be interpreted in terms of object shapes in the scene, which

can probably be matched with the database under a wider variety of condi-
tions. The distinction is between determining two-dimensional image features

and determining three-dimensional scene features from the image.
The most basic features of a scene include orientation (which way a sur-

face is tipped), distance from the camera, reflectance (how light or dark it
is), and the amount of incident illumination. These are called the intrinsic
characteristics of the scene.

We can represent intrinsic characteristics iconically, that is, as images.

The various intrinsic values are computed for each individual pixel, repre-
senting the intrinsic characteristics of the surface that is imaged in that pixel.

In this representation, there is an image for reflectance values, one for orien-

tations, one for distance, and one for incident illumination (see Fig. Dl-1).
These are all in registration with the original image. The idea of computing

images of scene characteristics emerged from Horn's work (1977) with albedo
maps; the idea was furthered and aptly named intrinsic images by Barrow
and Tenenbaum (1978; Tenenbaum, Fischler, and Barrow, 1980).

In addition to the iconic representation, each intrinsic image contains an

explicit list of points at which there is a discontinuity in the value (e.g., inten-
sity) and another list of points at which the gradient (two-dimensional deriva-
tive) of the value is discontinuous. These correspond to the solid and dashed

lines in Figure Dl-1. This information is extremely important, since discon-
tinuities in intrinsic values usually correspond to surface and shadow bound-

aries in the scene, and these lists allow programs to find these features quickly.

The 2 2 -D sketch of Marr (1978) is also a set of intrinsic images. Marr, like
Barrow and Tenenbaum, presumes that the iconic data will be supplemented
by explicit lists of discontinuities in the values of the intrinsic characteristics.

238

Dl Intrinsic Images
239

(a) Original Scene

(b) Distance (c) Reflectance

(d) Orientation (Vector) (e) Illumination

Figure Dl-1. Intrinsic images (from Barrow and Tenenbaum, 1978).

240 Vision XIII

Intrinsic images are most useful because they indicate important physi-
cal features of the scene. With intrinsic images, it is possible to perform

segmentation, for example, to produce a line drawing in which each surface
is outlined. In contrast, reliable segmention from raw intensity data cannot
usually be achieved because the intensity of each pixel in the original image
is determined by a combination of several physical parameters.

Intrinsic images are also believed to be good models for some aspects of
human perception. Psychological phenomena such as size constancy, shape
constancy, brightness constancy, and color constancy may suggest that humans
compute these intrinsic parameters at an early stage in the visual process.

Calculating Intrinsic Images

Barrow and Tenenbaum (1979) have performed experiments with syn-
thetic images of scenes from a limited domain to demonstrate that intrin-

sic images can be calculated from intensity data. Surfaces in this simplified

domain are continuous — there are no sharp edges — and they have uniform
diffuse reflectance — there are no markings or colored patches on a surface.
Illumination is assumed to come from a distant point source with additional
diffuse background light. This simulates sun and sky. Other assumptions
are that there is no secondary reflection (i.e., surfaces do not illuminate each
other), the view is monocular but free of spurious coincidences of edges, and

the camera has been gamma- corrected to respond linearly with respect to light
energy and is noise-free. This domain is described as similar to a picture of

"Play-Doh" objects with smooth surfaces, viewed outdoors by a perfect TV
camera.

In this domain, the intrinsic parameters are fairly well-behaved. Surface
orientation varies continuously across a surface; it is only discontinuous at
edges. At the edge of a surface, the orientation must be orthogonal to the
line of sight (i.e., the surface has curved away from the camera). Surface
reflectance is constant across a surface and discontinuous at surface bound-

aries. The distance of a point from the camera varies smoothly across a
surface and is discontinuous at surface boundaries. Note that the distance

is the integral of the surface orientation gradient. The amount of incident
illumination varies with surface orientation (i.e., smoothly across a surface),
with discontinuities at surface and shadow boundaries. Within a shadow, the
incident illumination is constant.

Also, in this domain, there are only three types of edges. Occlusion
edges are found at the boundary of an object where it occludes part of the
background or other objects. Shadow edges are found where a shadow from

one object falls across another object. Lastly, self-shading edges happen when
an object curves away from the light source and the incident illumination
drops smoothly until the surface normal is orthogonal to the incident light;
then, the illumination will be constant in the shadowed area on the far side

Dl Intrinsic Images 241

of this point. Note that all discontinuities in intensity can be accounted for

by these edges, because of the assumptions made in this limited domain.

The above simplifications strongly suggest a computational approach.

First, the intensity image is examined for discontinuities. These are tentatively

called edges. The result of this step is a line drawing, which probably contains

imperfections. Next, the behavior of intensity is examined in the vicinity of

each edge. If the intensity of a region is constant near the edge, it must be

a shadow region. If it varies, the region must be illuminated. If it varies

with a certain photometrically derived property, the edge must be tangent

to the camera, that is, a surface boundary. A small edge table is consulted

to determine the properties of the intrinsic images (distance, orientation,

reflectance, and illumination) along each edge, depending on the region types.

The result of this step will be that each intrinsic image contains values for

those pixels that correspond to intensity edges. The intrinsic image values

at other pixels are initialized to some arbitrary constant, indicating that no

information is yet available about these pixels.

The crucial step in the process is a relaxation step, in which two types of

consistency are enforced:

1. Each pixel value in each intrinsic image must be compatible (i.e., smooth)
with the values of neighboring pixels in the same image, except at the
edges. While continuity is easily specified for reflectance, distance, and
illumination, there are several kinds of continuity for surface orientation.

Barrow and Tenenbaum (1979) have developed a method for performing
relaxation on surface orientation values.

2. Each pixel value must be compatible with the pixel values of other in-
trinsic images at this same position. There are photometric conditions,

explained in Horn (1977) and Barrow and Tenenbaum (1978), that relate
the various intrinsic image parameters to image intensity by the formula

L = (h + [Is cos i])R, where L is image intensity, h is the background
illumination, Is is the illumination from the point source, i is the angle of

incidence (i.e., the angle between the incident light and the surface nor-
mal, which depends on the surface orientation), and R is the reflectance

of the surface. For a shadowed point, Is is zero. This equation must be
satisfied at each pixel; thus, when the relaxation suggests that the value
of some intrinsic parameter be changed at a pixel, the other intrinsic
parameters must change simultaneously to satisfy the equation.

The entire relaxation process is carried out in such a manner that the

intrinsic values for edge pixels are not changed, since these were established by

physical concerns during the initialization and their values are thus assumed

to be correct. Relaxation fills in values for the points within each region.

During the course of relaxation, it is sometimes necessary to postulate

additional edges that were not determined in the original segmentation. Note

the crucial difference between adding these edges during the computation of

intrinsic images and adding them during edge-based segmentation. In the

242 Vision XIII

former case, edges are suggested by the laws of physics and geometry to
which the scene is subject; in the latter case, edges are suggested only by

heuristics based on image-intensity variations, which may result from any of
a variety of physical phenomena. Thus, adding edges during the computation
of intrinsic images is a much sounder practice than adding edges during
traditional segmentation.

Finally, when the intrinsic images have been computed, they may be
analyzed to determine the extent of each surface. Traditional segmentation
techniques applied to intrinsic data perform much more reliably than when
applied to intensity data; for example, regions of uniform reflectance and
continuous orientation are almost guaranteed to correspond to surfaces in the
scene.

The simplicity of Barrow and Tenenbaum's domain gives rise to some
skepticism about the generality of their approach, particularly when extended
to intrinsic images of natural scenes. Barrow and Tenenbaum (1978) explain
how the technique might be extended to deal with creases (i.e., polyhedral

objects), moderate sensor noise, colored areas of the surfaces, unknown illu-
mination, and nonpoint (extended) light sources.

Other Intrinsic Images

Other intrinsic characteristics can be computed, including specularity, the
amount of specular reflection, such as highlights; luminosity, or light sources
within the image; transmittance, the amount of light that passes through a

surface; and three-dimensional texture. Barrow and Tenenbaum note that, as
the scene becomes more complex, there is more to be computed but, at the
same time, there are more constraints by which to compute the additional
information.

Several other researchers have also computed intrinsic characteristics of

a scene. Texture descriptions have been produced by Kender (1980). Marr
and Poggio (1976) have worked with stereo images, describing disparity by
an intrinsic image. From disparity, distance can be calculated. Horn and
Schunck (1980) have analyzed optical flow, producing intrinsic images that
describe velocity. This can be analyzed to determine object location and
relative motion with respect to the camera.

Conclusion

The twin ideas of calculating intrinsic scene characteristics and repre-
senting them with intrinsic images have recently become important areas of

research. The rich descriptions and convenient representation of a scene that
intrinsic characteristics provide make them important for all aspects of image
understanding.

Dl Intrinsic Images 243

References

Intrinsic images are fully described in Barrow and Tenenbaum (1978) and
the similar 2±-D sketch is described in Marr (1978). The photometric basis
for much of this work is provided by Horn (1977).

D2. Motion

VISION RESEARCHERS use the term motion to denote the study of multiple
images over time. One of the advantages of multiple views of objects is that

they may make it possible to complete three-dimensional structural object
descriptions. Objects or parts of objects that are hidden in some frames are
frequently revealed in subsequent frames, resolving structural ambiguities.
Three-dimensional structure can also be derived from movement. While in

theory there is no unique structure consistent with a given motion in two-
dimensional space, in most cases humans correctly perceive three-dimensional
structures from a two-dimensional movie, for example. This ability, known as

the kinetic depth effect (Wallach and O'Connell, 1953), is not yet completely
understood.

Another advantage of studying time-varying information is the redun-
dancy it provides, especially when frame-to-frame changes are small. This

redundancy helps to eliminate noise interference.
Motion cues can also be used for segmentation of objects. Objects that

exhibit complex gray-scale patterns or those that are partially occluded can be
perceived correctly if the parts exhibit consistent motion. The human visual
system uses motion to segment objects from background information. This is
especially important for object tracking and collision avoidance.

Several problems are encountered in studying time- varying imagery. First,
adding another dimension (time) in image analysis means dealing with massive
amounts of information, maybe more than can be handled efficiently by
conventional computers. Second, the relation between changes in a sequence

of two-dimensional images and movements in the three-dimensional world is
not simple. Changes in brightness in images may not be directly related
to movements of objects. Apparent changes in images may represent object
motion, but they can also represent changes in illumination or movement
of the observer. On the other hand, object motion does not always cause
brightness changes. For example, a flat surface that is moving in its plane
shows no brightness changes as long as the boundaries are not seen. Again,
a uniform sphere that is rotated exhibits a constant brightness pattern, since
the shading does not move with the surface. Thus, tracking objects involves
distinguishing among various sources of change, such as lighting, occlusion,
and actual motions, and dealing with inconsistencies between actual and
perceived motion.

There are three basic problems in analyzing motion:

1. The correspondence problem. To track objects in a sequence of images,
one must establish which points on an object in one frame correspond to
points in a succeeding frame. Determining the correspondence of points
from one frame to the next is called the correspondence problem. (It also
arises when points in stereo images are matched for stereo depth analysis;

244

D2 Motion 245

see Article XIII. D3.) This problem may seem trivial if the objects have

already been identified in each frame; however, in most cases, one ana-
lyzes motion prior to object identification.

2. Analyzing motion in three dimensions. Inferring depth information is a

problem inherent in analyzing planar imagery. However, motion informa-
tion gives its own cues to three-dimensional structure. This is evidenced

by the ability of humans to perceive three-dimensional structure and
motion from sequences of two-dimensional images. Ullman (1979) and
others have tried to understand this human capability and duplicate it
in a machine.

3. Interpreting image- derived information. The final step in all image analysis
is relating all of the image measurements to the real world.

The Correspondence Problem

Before attempting to solve the correspondence problem with a machine,

it is helpful to realize that the human visual system does solve it. Humans

probably perform the correspondence task at a low level. They are able to

react very quickly to motion in order to control eye movements or avoid

collisions. It seems likely that identification of objects is not required when

humans respond in this way, nor is there time for identification.

The correspondence problem can be studied at three levels:

1. Pixel level. Motion can be thought of as the apparent changes in gray
scale from one image to the next. At this level, the velocity distribution

over the image is referred to as optical flow. Without prior knowledge
about the structure of various scene components, measurement must rely
on local information about the intensity distribution and the temporal
and spatial gradients.

2. Region or feature level. Most methods of determining velocities from a
sequence of images are based on matching features. A particular pattern,
such as a vertex, is identified in one image frame and is searched for in
succeeding frames.

3. Object level. Objects are first identified in each frame and then the

changes that take place between frames are analyzed. Most object-based
systems are domain dependent, so that they generally handle known
objects and expected changes.

Pixel level. At the pixel level, there is only one constraint on the veloc-
ity vector at a given point: the change in gray scale from one frame to the

next. We need to impose additional constraints to establish correspondence

of points in successive frames so that the velocity vector can be determined.

Horn defines optical flow as the distribution of apparent velocities of moving

brightness patterns in an image (see Horn and Schunck, 1980). He uses local

gray-scale information and additional assumptions to measure the optical flow.
He assumes that the basic intensity pattern does not change over time and

that velocity varies smoothly in space. These constraints are imposed by

246 Vision XIII

simultaneously minimizing the change in intensity of corresponding points
and the velocity change from one point to the next. In places where there
is no local information, such as flat surfaces where the intensity gradient is
zero, the velocity estimate is derived from the surrounding border points.
The assumption of velocity smoothness does not hold at object boundaries

and, as expected, Horn's simulation results tend to show larger errors at the
boundaries.

Region or feature level. At this level, the objective is to match cor-
responding regions or features in successive frames and thereby determine

their velocities. A common approach has been to identify a localized region

in one image and use a cross-correlation measure to find the same region in
the next image. This method has been applied to the motions of clouds seen

in satellite images (Leese, Novak, and Clark, 1971). If the clouds are not
changing greatly and form only one layer, this sort of technique works quite
well. However, overlapping cloud layers are difficult to distinguish, except on
the basis of consistent motion: Tracking objects in a highly occluded domain
is very difficult.

Aggarwal and Duda (1975) looked at a simplified version of the problem of
tracking overlapping clouds. They represented clouds as polygons moving in
planes perpendicular to the viewer and then attempted to track the polygons.
They matched clouds in successive frames on the basis of two types of vertices:

"true" vertices that corresponded to vertices of the original polygons and
"false" vertices that resulted when two polygons overlapped. It is easy to
distinguish the two, since the angles at the true vertices stay constant as
the polygons move, while the angles and edges at the false vertices tend
to change. Only the true vertices are matched. Once a polygon has been
successfully tracked in two images, a velocity estimate and a prediction can
be made to locate the polygon in the next image. Aggarwal and Duda based
matches between true vertices on a criterion function that is determined by
the distance of the vertex from the predicted position and the error in the
angle of the vertex. They were able to track objects that moved in various
directions and occluded each other in fairly complex ways. The work has been

extended to curved planar objects by Chow and Aggarwal (1977).

Object level. Once three-dimensional objects have been identified in
each frame, finding correspondences is usually not as difficult as it is with
pixel or feature information. One of the interesting problems to be solved at
this level is the derivation of a semantic description of motions (see Badler,
1975).

Motion in Three Dimensions

Humans are readily able to perceive three-dimensional structure on the
basis of motion information alone. For example, when presented with a

D2 Motion 247

sequence of binary images of points on a moving object, humans can usually
perceive the structure of the the object, even if it is unfamiliar and the
individual images are totally unrecognizable. Ullman (1979) has tried to
duplicate this capability in a machine. Under the assumptions that the
correspondence problem has been solved and that the objects are rigid bodies,

Ullman has derived what he calls the structure -from- motion theorem. The
theorem states that three separate views of four noncoplanar points on a

rigid object uniquely define the three-dimensional structure and motion of
the object.

Ullman's implementation of the structure- from-motion theorem involves
the following steps. The image is divided into sets of four points and each set

of points is tested to see whether it has a consistent rigid-body interpretation
in the three views. In many cases, after this first pass there will be at least
one consistent set for each object in the image. Each remaining point can

then be tested to see if it belongs to one of the rigid-body sets. In this way,
the objects are segmented and their three-dimensional structure and motion
are determined at the same time.

Interpretation

The interpretation of actual scenes in terms of motions of objects is a very
difficult problem. Most applications have dealt with a fairly restricted domain,
such as cloud motion or motion of the internal boundary of the heart. Jain and

Nagel (1979) have attempted to interpret actual TV sequences in two dimen-
sions using as little domain-dependent information as possible. The objects

they study are usually cars or people moving along streets. They track regions
not by directly matching features but by looking at what information can be
derived from changes between the first frame and subsequent frames. They

generate a first- order -difference picture (FODP) based on whether a sample
area in a particular frame is incompatible with the first frame. Incompatibility
is tested with the mean gray value and its variance from the current and
reference frame.

A first-order-difference picture is accumulated by counting the number of
times sample areas from the second and subsequent frames are incompatible
with the first frame. After the first few frames, an object moving along in
a particular direction should produce two regions of incompatibility in the

FODP — one in which the background is being uncovered and another in which
it is being covered over. Once the object has moved the length of its diameter,

the two regions should merge. Jain and Nagel also compute a second-order-
difference picture that indicates the areas in which two successive FODPs
differ. When an object has moved a distance greater than its boundary, the

second-order-difference picture will show two regions, one indicating where the
object was originally and the other where the object is in the current frame.

248 Vision Xm

When there are two such regions in the second-order-difference picture that
correspond to one incompatibility region in the FODP, an object is identified.

Each of the two regions found in the second-order-difference picture should
outline the contour of the moving object.

The primary constraint on this method is that in order to identify or
track an object, one must observe a displacement by more than the object
diameter along the direction of displacement. This means that movement
must be primarily in one direction and primarily in the plane of the image.

Conclusion

To date, much of the attention in motion studies has been directed to
applications, for example, tracking cloud motions and detecting geological
changes from satellite images, as well as to analyzing the dynamic shape of

the heart and tracking circulatory flow from x-ray data. However, the study
of time- varying imagery is becoming more theoretical, and there are three
primary research problems. The first involves solving the correspondence

problem, the second concerns deriving three-dimensional structural informa-
tion from motion cues, and the third is to apply this research to real prob-
lems and relate image-derived motion measurements to the movements of real

objects.

References

See Huang (1981) and Aggarwal and Badler (1980), which include recent

work on motion and image-sequence analysis.

D3. Stereo Vision

THE CENTRAL PROBLEM of general image- understanding is to recover the
three-dimensional form of an object that produced a two-dimensional image.
One approach is to measure quantitatively the distance from a camera to each
point of interest in a scene. If views of the same object from two different
positions are available, we can measure the distance from camera to object
by triangulation. This technique is known as stereo or binocular vision; it is

a primary source of information for humans about three-dimensional objects
in their environment.

A schematic of a binocular pair of cameras viewing the same scene is

shown in Figure D3-1. The image of an object in a camera view is formed
by a ray of light originating at the object and passing through the center of
the lens. Inversely, the center of the lens and a point in the image uniquely
determine a line along which the object must fall. The question is where in

space along this line the object is located — how far away it is. This is easily
determined with a second image from another camera. If we can find a point
in the second image that corresponds to a point in the first, then that point
and the center of its lens determine a second ray of light. If the two points are
indeed produced by the same object, if our knowledge of the relative camera
positions is correct, and if the cameras are linear, then the object must be
located at the point at which the two rays are calculated to intersect.

Picture 1 Picture 2

Figure D3-1. Binocular views of a scene.

249

250 Vision Xffl

This model is very general in that it describes both conventional stereo
and motion parallax. In conventional stereo, as in human vision, two images

are taken by laterally displaced sensing devices — eyes or cameras. In motion
parallax, a single camera may take images from arbitrary positions and orien-

tations, for example, as an aerial camera takes images from two points in a
flight.

The problem of extracting depth information from a stereo pair of images
has, in principle, four components: finding features of an image that are
easily recognized in both images, matching these features in the two images,
determining the relative camera positions, and inferring the distances from
the camera to the objects that cast the features in the images.

Given accurate knowledge of the camera model, the search for the match
for a given feature in one image is restricted to a line in the other, rather than

to the whole image. Figure D3-1 shows that the object responsible for the
feature A in the left image must lie along a ray starting at the origin of the
left coordinate system, O, and proceeding through the feature A. The image
of the object in the right picture must lie somewhere along the projection
of the ray OA onto the right image plane, which is the line BC. This line
is called an epipolar line. Note that every point on a given epipolar line in
the right image must match some point along the corresponding epipolar line
in the left image, and vice versa. Even if we do not know the exact camera
parameters, the search for a match is still restricted to a narrow region along
the epipolar line.

Finding Features

The objective of feature finding is to find features in one image that are
likely to have an unambiguous match in the other image. For example, an
individual pixel has little information content: The fact that two pixels in two
images have the same gray level is little evidence that they were produced by
the same object in the scene. Unambiguous matches are more likely to be
found in regions of the pictures that have high information content, or high

variance. Moravec's interest operator (1980) is a technique for finding such
regions. It first computes the sum of the squares of the differences between

each pixel in a window and the pixel's neighbors in each of four directions
(horizontal, vertical, and two diagonals). This results in four sums, and the
interest measure for each pixel is the minimum of the sums. Interesting points
are those for which the interest measure attains a local maximum. Thus,

interesting points have a high variance in all directions and so are likely to
find an unambiguous match in the other image. For example, the interest
operator tends to select corners.

Another good source of points for unambiguous matches are edges of
objects, because they tend to correspond to sharp changes in intensity. For

stereo, edges may be extracted by the usual edge-detection methods (see

D3 Stereo Vision 251

Article XIII. C4). A computational model of human stereo vision (Marr and

Poggio, 1977; Grimson, 1980) uses zero-crossings in the Laplacian image after
Gaussian low-pass filtering (smoothing). Zero-crossings are the points at
which the second derivatives of an image change their sign (see Article XIII. C4).
Two considerations with regard to edges should be noted. First, only linear
features oriented across the epipolar lines provide an accurate match. Second,
since edges usually represent discontinuities in depth, it is likely that what

appears behind an edge will be different in the two views. Therefore, edge-
based stereo uses the information about location and orientation of edges but
makes little use of intensity across the edges.

Matching

Matching is a search process. As such, it has two components: a difference
measure and a search strategy.

Difference measures. Two kinds of difference measures are used to

evaluate matches between corresponding features of two images. One kind
is appropriate when the features are areal, that is, constitute regions, and
another kind is used for lineal features such as edges.

A typical measure of the difference between two areal features is the sum
over the region of the squares of the differences between corresponding pixels,

called the L2 norm, XX^i — E2)2, where E\ and E^ are the pixel values of
the two images, and the summation extends over the region of interest. This
measure requires a multiplication for each pixel in the regions and, although

an algorithm can replace the multiplication by a table lookup (Moravec, 1980),

this may still be computationally expensive. The L\ norm, ̂ 2 \{E\ — £2)1 ,
requires only absolute values.

Both measures are sensitive to changes in contrast (gain) and brightness
(bias) between the images. These differences occur when two views of the
same object are processed differently, when images are taken separately under
different lighting conditions, and because the apparent brightness of a surface
changes with the angle from which it is viewed (e.g., specular reflection). A
measure of the similarity between two images that is insensitive to contrast
and brightness changes is the normalized correlation:

Lineal features are similar if they have the same orientation and if the
intensity gradient across them is the same. As we mentioned earlier, matched
edges may be adjacent to regions of dissimilar appearance. Thus, one may
wish to ignore the appearance of the image near an edge and record only the
fact that there is an edge. Alternately, to consider two edges to be a match,
one might require only that the intensity gradients across the edges have the

same sign (e.g., Marr and Poggio, 1977).

252 Vision XIE

Search strategies. Finding matching points in two images is the most

difficult problem of stereo image interpretation. The best feature-finding
systems will still select features that match in appearance more than one
feature in the other image. In fact, if the scene has a repeating pattern, like
windows of a building, matching is inevitably ambiguous. Moreover, because
of occlusion, there will be features in one image that are not visible in the
other; it is impossible to find a match for these features.

Matching is also complicated by expensive searches of large areas. Imagine

that we find TV areal features in one image, each with an average area of W2
pixels. In the worst case, in which we have no idea of the camera positions,
it can be very expensive to find the pixel positions in the other image that

correspond to the center pixels in the areal features. It involves a search of W2
pixels from each pixel position in the other image, for each of the N features.

This requires NW2L2 comparisons, where L2 is the area of the other image.
There are two properties of matter — cohesiveness and opacity — that can

help to decide between ambiguous matches. Because of the cohesiveness of
matter, the distance from the camera to objects that appear near each other
in the image tends to be approximately the same. Because of opacity of matter
(in general), each point in each image will have a unique depth associated with
it and, thus, each point in each image will have at most one match in the

other image. Marr and Poggio (1976) suggest a cooperative or relaxation algo-
rithm that implements both of these constraints. The partially determined

disparity for a given pixel adjusts the disparity for nearby pixels in an iterative
updating procedure, so that neighboring pixels have similar disparities. This
implements the constraint of cohesiveness. Opacity is implemented by a
technique of inhibition between different disparity detectors for a given pixel.

Mori, Kidode, and Asada (1973) and Marr and Poggio (1976) used a

coarse-fine approach to finding matches. A low-resolution depth map of low-
resolution versions of the images provides initial disparity estimates for higher
resolution matches. This allows larger disparities to be tolerated without

ambiguity of match, since in frequency-limited images a disparity of up to
about one-half the wavelength of the highest frequency in the image can be
tolerated before the match becomes ambiguous.

There are several search strategies for finding a matching point. For

areal features, the sequential similarity- detection algorithm (SSDA; Barnea
and Silverman, 1972) is a kind of best-first search. This technique requires
a cumulative measure of difference, such as L\ or L2. For a given feature, a
running count is kept of the best match thus far, and each subsequent search
in another area of the image is abandoned if it does not produce a match that
is at least as good as the current best. Guidance for the next position to search
can be provided by the spatial intensity gradient of the image, resulting in an

iterative hill-climbing method for stereo (Lucas and Kanade, 1981).
If the camera parameters are known, matching can be facilitated by

taking advantage of the fact that the matching occurs only along the epipolar

D3 Stereo Vision 253

lines. This is especially important in computational models of human stereo
vision in which the search is limited along horizontal scan lines of the same

vertical position in both images.

For edge-based stereo, the problem is to pair features along an epipolar
line in one image with features along the corresponding epipolar line in the
other. Some features may not have matches because of occlusion. Useful
constraints are that nearby features in one image make pairs with nearby
features in the other and that the order of matched features be preserved
along the epipolar lines. We can define a measure of the degree of satisfaction
of these constraints combined with goodness of the local match of individual

features. Then, conventional search techniques, such as dynamic program-
ming and branch and bound, can be used (Baker, 1980; Henderson, Miller,

and Grosch, 1979) to find the best pairings.

Solving for the Camera Model

The information about the relative position of the two cameras is called

the camera model. A priori knowledge or kinds of log data (e.g., a flight
record) often provide this information, but it also can be derived from a
given stereo pair when we know a set of more than five matching points in
it. Gennery (1979) discusses an iterative method to find camera models. If
the camera parameters are known exactly, then the point that corresponds to
a given point in the left image must lie somewhere along the corresponding
epipolar line in the right image. The location of the epipolar line depends
on the camera parameters, and if they are not exact, the matching point will
lie somewhere off the epipolar line. The distance between the matching point
and the epipolar line is thus a measure of the error of the current camera

parameters. Gennery's method finds camera parameters that minimize the
sum of the errors over the known matching points. It will converge to the
correct camera model, if the initial estimate of the camera parameters is fairly
accurate.

Conclusion

Stereo has been used as a primary source of three-dimensional information
for navigation (Hannah, 1980), a robot rover (Moravec, 1979; Arnold, 1978),
and cartographic applications (Mori, Kidode, and Asada, 1973).

References

For a basic discussion of the geometry of stereo vision, see Duda and Hart

(1973). Barnard and Fischler (1981) present a survey and discussion of stereo.

D4. Range Finders

VISION SYSTEMS that work from intensity images must infer three-dimensional
structure from two-dimensional data; an alternative is to measure depth
directly. There are several techniques for measuring depth. In this article

we discuss time- of- flight and triangulation methods. Time of flight measures
the distance from a source of light (or sound) to an object in terms of the time
required for the light or sound to travel to the object and back. Triangulation
in stereo vision is discussed in Article XIII.D3; it finds corresponding points in
two images and infers lines extending from these points, through the centers
of their respective lenses, and out into space to where the lines intersect. The
intersecting lines and the baseline between the two lenses constitute a triangle.
We discuss here the technique of replacing one of the cameras in stereo vision
by an active projection of a light spot or a light stripe. This method is called
active illumination and has an advantage over stereo vision in that it avoids
the difficult problem of finding corresponding points in two images.

Time of Flight

Time-of-flight systems measure the time required for a waveform to prop-
agate to an object and reflect back. The waveform may be either sound or

laser light. Given that the propagation speed of the wave form is V, the
distance to the object, d, is given by the time measured between transmission
of the pulse and its return to the receiver, T:

VT d=~Y'

Two important parameters that determine the accuracy of a time-of-flight
system are the beam width, W, and the smallest measurable unit of time, St.
The size of resolution elements in the dimension perpendicular to the sensor
in a depth map depends on W, the beam width. The size of the resolution
element in the depth dimension is determined by 8t and V.

Sound has the desirable property of a relatively slow propagation velocity,
permitting fairly accurate depth resolution. However, it is difficult to form a
narrow beam with sound, and so sound systems are not useful for producing
a precise depth map. For robotic applications, detection systems based on
sound have been designed to warn if an object is within a specified distance
(e.g., with the commercially available Polaroid ultrasonic transceiver set).

Laser light, on the other hand, is ideal for generating a narrow beam,
but since the propagation speed of light is very high relative to the precision

of instruments that measure time, some laser range-finders have poor depth

254

D4 Range Finders 255

resolution — on the order of meters. They are used for large outdoor scenes
(e.g., for the Mars Explorer robot; see Johnston, 1973).

One solution to the depth-resolution problem is to modulate the amplitude
of the laser beam and measure the phase shift of the reflected beam. Such a

system was constructed at SRI International (Nitzan, Brain, and Duda, 1977)

to sense a 128 X 128 depth map with a range of 1 to 5 meters and a depth

resolution of 1 centimeter. It used a 9 MHz oscillator (X = 33.3 m), which

meant that a phase shift of .0006X corresponded to a depth change of 1 cen-
timeter. In addition to the depth map, the intensity of the reflected beam

was used to form a television-quality intensity image, from which an intrinsic
image of the reflectance of the object points (see Article XIII.Dl) was generated.

Photon noise dominates such a system. In general, for a given signal-to-

noise (S/N) ratio there is a trade-off between scanning time and laser signal
power. The SRI system uses a 15 mW laser for safety reasons. To achieve a

high S/N ratio, each sample is integrated for 500 msec. Thus, a 128 X 128

image requires over two hours to generate. A more practical system could

employ some combination of a greater transmit power, a larger receiver area,

and a shorter modulator wavelength to reduce this time.

Triangulation- based Depth Sensors with Active Illumination

There are several different triangulation methods for measuring depth.

One approach, stereo vision, is discussed in Article XIII.D3. In the following,

we describe system configurations with one passive element, namely, a one-

or two-dimensional camera, and one active element, namely, a spot or stripe
projector.

A simple, two-dimensional, triangulation-based depth sensor.

Let us introduce the mechanics of triangulation-based depth sensing with

a simple two-dimensional system. After discussing the parameters of this
system, we extend this system to the third dimension.

A two-dimensional system is illustrated in Figure D4-1, in which the
passive component is a linear CCD photodetector array (see Article XIII.Cl)

with its associated optics. (For simplicity, the CCD array in Fig. D4-1 has
only five elements, although a practical system would typically have 256 to

2,048 elements.) Here, the x-z coordinates are situated so that the x-axis
is the baseline connecting the lens center and the light projector and the

origin is at its middle point. The lens center is located at (—a/2, 0). Each
photodetector array element has a field of view that diverges at an angle of

7, and the center of the field of view is oriented at an angle 4> from the x-axis.
The active component of the illustrated system is a beam projector, located

at position (a/2,0), which projects a beam with a divergence of 6 and angle
of ij).

The intersection of the beam with the camera's field of view defines a
set of quadrilateral resolution cells. Two such cells are labeled C\ and C^

256 Vision
xm

Jy\ One-dimensional Camera

b»y

&\
*\

Lens <F

-y

c2

Ci

' y<

Co

/
/

/

Light Beam Projector

Figure D4-1. A triangulation-based depth-measurement system with active
illumination.

in Figure D4-1. The presence of a surface in a cell, C;, will cause light from
the beam to be reflected and imaged onto the corresponding detector, di, in

the linear photodetector array. In the case of Figure D4-1, C_i interrupts the
light beam, which is detected by d_\. If we define the depth Zi to the surface
as depth to the center of the cell, we can see from the figure that

Zi

cot tp + cot (<j> + 74)
(1)

for -2 < i < 2.

There are two limitations to this depth-finding apparatus. First, with a
single beam angle i\), we can measure depth only to surface points that are on

the beam. To obtain a depth map — in this case, a one-dimensional array of

D4 Range Finders 257

the depth of all points between A and E — we would have to scan over areas by
changing the angle of the beam, ip. Even then, we are unable to find the depth
of some areas of the scene: The area between C and D cannot be illuminated

by the beam, and the area between A and B is the "far side" of the camera
and is invisible to it.

Second, because of the divergence of the light beam and the camera's field
of view, the size and shape of the quadrilateral resolution cells C{ vary. They
also depend on the beam angle ip. This means that the precision of depth
measurement varies from place to place. In general, it is desirable to keep
the beam as narrow as possible (small S) and to use a camera with as many
elements as possible (small 7). As equation (1) suggests, a larger baseline
(parameter a, the distance between the camera and projector) helps increase
the precision, but it also results in larger unmeasurable areas.

Spot sensing. The simple system described above produces only a one-
dimensional array of depth measurements. To obtain a two-dimensional array
of depth measurements, the scene must be scanned in both directions x (within
the page) and y (perpendicular to the page). The simplest way to scan is
to reflect a spot beam with two rotating mirrors whose axes of rotation are

orthogonal: The first mirror rotates about the y-ax\s to orient the beam within
x-z plane (the page), and the second one orients the beam perpendicular to
the x-z plane.

A simple sensing device for this scheme is a camera with a two-dimensional

field of view (usually a two-dimensional TV camera — vidicon or CCD array; see
Article XIII.Cl) for detecting the spot position. This involves scanning the field
of view and finding the brightest spot in it. With conventional TV cameras,

a spot detection requires one frame — typically 1/60 sec. — per measurement.
Once the projected spot is detected, its three-dimensional location can be

calculated to be the intersection of two lines — the light beam and the line of
sight — in three-dimensional space.

This scheme can be improved in several ways. First, the direction of the
light beam can be controlled to trace only interesting portions of the scene.

Such a device is called a tracker. Second, faster (random-access) sensors such
as image disectors can decrease the spot-detection time. Recently, a PIN

diode position-sensitive chip was used (Kanade and Asada, 1981) because it
directly outputs the x-y position of the spots without scanning the field of
view. Typical spot-based ranging devices operate at a speed of 300 to 2,000
points per second.

We should mention that we do not need to know two lines in three-

dimensional space to determine a three-dimensional point: It suffices to know

one three-dimensional line and one plane. This suggests that the camera can
actually be one-dimensional. We can place a cylindrical lens vertically before
the camera, and only the horizontal position of the spot is sensed by the

one-dimensional camera (Roeker and Kiessling, 1975). This will determine
the vertical plane that includes the projected spot and, therefore, together

258 Vision XIII

with the known light beam (three-dimensional space line), we can compute
the three-dimensional position of the surface point.

Light-stripe sensing. Another practical method for measuring depth
is to use a stripe of light (instead of a spot beam) and a two-dimensional
television camera. This is a simple extension of the principle illustrated in

Figure D4-1. We can imagine that Figure D4-1 shows a single cross-section
of a light-stripe sensing apparatus: The receptor cells are a single scan line
of a two-dimensional sensor, and the light beam is a result of slicing a stripe
perpendicular to the page. We can imagine that a light-stripe sensor has as
many of these cross-sections as it has scan lines. Light-stripe sensing was
pioneered by Shirai and Suwa (1971) and Agin and Binford (1973).

With this method, one depth measurement for each scan line of the
camera can be obtained within one frame. With a camera with 256 scan

lines, we can measure the depth of up to 256 X 60 points per second. To get a
complete depth map, the light stripe has to be moved or rotated to scan the
scene, but it need be moved only in the direction orthogonal to the camera
scan lines, that is, about one axis instead of the two required for spot sensing.

Since light-stripe sensing is simple and fast, it is widely used today for
robotic applications; for example, the camera-projector pair can be mounted
at the end of a robot arm to guide the arm toward the object to be grasped

(Vanderbrug, Albus, and Borkmeyer, 1979).

Multiple-stripe and grid-coding methods. Instead of a single stripe,
it is possible to use a grid of horizontal and vertical stripes. From the position
of the camera, the square grid pattern is seen as distorted by the surface
orientation and curvature. By identifying the nature of these distortions, we
can infer the surface orientations and curvatures. (Notice the relationship
of this idea to shape from texture; Article XIII.D5.) However, the benefit of

obtaining an entire scene in one shot is often offset by a complicated image-
processing task.

We can also employ an encoding scheme. Each stripe can be encoded by
color, intensity, width, or position. When the positional encoding is used, a
set of stripes can be turned on and off in a binary pattern in a sequence of

images. Then, 2^ stripe positions can be identified from a set of N images,
rather than 2^ images. Each stripe is assigned a unique TV-bit number from

0 to 2^ — 1. Then, when taking the Kth image (1 < K < N), each stripe is
turned on or off depending on whether the Kth bit of its assigned number is 1
or 0. Some redundancy can be added to this encoding to increase reliability.

This type of encoding scheme requires far fewer images than the single-stripe
method (Altschuler, Altschuler, and Taboada, 1981).

A related method is to project onto the scene multiple stripes that are out
of alignment with the TV scan lines. This produces a moire pattern in which
each contour is a locus of the same depth. Thus, the moire method is very
useful for detecting fluctuations in surface depths. However, the moire pattern
alone does not provide information about the absolute depth of a contour.

D4 Range Finders 259

Conclusion

We have discussed a number of methods for measuring depth. First, we

considered time-of-flight systems that measure the time required for sound or
light to propagate to an object and reflect back. There is a trade-ofT in these
systems between light, which can be precisely focused but which travels too
fast to be useful in measuring small distances, and sound, which cannot be
accurately focused but which travels slowly enough for good depth resolution.

We also discussed triangulation-based systems that use an active light
projector and a passive sensor. Several variations were considered, including
spot sensing and stripe sensing.

The related technique of stereo analysis is discussed in Article XIII. D3, and
Article XIII. D6 explains some of the ways that range data are used in scene
analysis.

References

Nitzan, Brain, and Duda (1977) give a basic discussion of depth measure-
ment by time of flight. Bolles, Kremers, and Cain (1981) treat the light-

striping method concisely and clearly.

D5. Shape- from Methods

In the first article in this section (Article XIII. Dl), the importance of recover-
ing intrinsic scene characteristics was emphasized. Shading, textures, edges,

contours, and highlights play important roles in determining shape from a

monocular image. However, two-dimensional images provide only ambiguous
shape information; to recover shape, assumptions that relate image charac-

teristics to scene characteristics are needed. For example, in Article XIII. B8,
we described quantitative shape recovery from line drawings (i.e., contours
and edges) of the Origami world. We used the assumptions concerning image

properties — such as parallelism and skewed symmetry. Recently, a class of
methods has been developed for recovering shape from shading, textures, and
contours in monocular images under reasonable assumptions. They make it

possible for us to represent the constraints that images provide and to aggre-
gate them to recover a shape. They are called shape-from methods, after the

pioneering work in shape-from-shading by Horn (1975, 1977). In this article,
we discuss shape-from-shading and shape-from-texture methods.

Shape from Shading

A model of image formation and the reflectance map. To use
shading to recover shape, we need to know how the image intensity at a pixel
is determined: We need a model of image formation. The model includes both
the geometry of image projection and the radiometry of intensity formation.

We will follow the discussion given by Woodham (1978). Figure D5-1 shows a
basic model. It includes a light (illumination) source, a surface, and a picture

plane. As in Article XIII. B7, we place a coordinate system so that the viewer's
central line of sight (optical axis) is the z-axis, and the picture plane is the
x-y plane. Imagine a small surface patch at (x, y, z). It is illuminated by the
light source and part of the reflected light is recorded at a corresponding pixel
position in the image.

In general, the intensity recorded at a pixel depends on the illumination
position, surface material, surface position, surface orientation, and viewer
position. However, for simplicity, we assume that the incident illumination is
parallel and constant at each surface position and that the image projection
is orthographic. This corresponds well to the case in which the illumination
source and viewer are both far from the object.

The reflectance characteristics of an object surface can now be represented

as a function <f>(i, e, g) of the three angles defined in Figure D5-1: The incident
angle i is the angle between the incident light and the surface normal, the

260

D5 Shape-from Methods 261

z = f(x,y)

Figure D5-1. A model of image formation.

view angle e is the angle between the emergent light (which is also the line of
sight) and the surface normal, and the phase angle g is the angle between the
incident and emergent light.

Orientation in three-dimensional space can be represented by means of

gradient space (see Article XIII. B7). Assuming that —z = f(x, y) denotes the
surface, the gradient (p, q) is defined as

p = df/dx = d(-z)/dx, q = df/dy = d(-z)/dy ,

where — z is the depth. Then, the surface normal n at (x, y, z), which points
to the viewer, is given by

n = (p,q,l) .

Thus, we can regard a gradient as representing a three-dimensional space
vector whose x and y components are p and q and whose z component

is 1, and vice versa. Similarly, we can represent other orientations with gra-

dients. A three-dimensional vector s = (ps,qs,l) points in the direction
of illumination; that is, the gradient (ps,qs) represents the orientation of

illumination. Similarly, the viewer's line of sight can be represented as (0, 0)
in the gradient space, because under orthographic projection it is parallel to

the z-axis; this vector is v = (0, 0, 1).
One of the simplest surface-reflectance models is a perfectly diffuse (1am-

bertian) surface, in which the reflection is uniform for all the view angles, and

262 Vision XEI

the amount of reflection varies as the cosine of the incident angle; that is,

(f>(i, e, g) = pcosi ,

where p is called the reflectivity constant.
Because of the property of inner products, we can write this equation in

terms of gradients:

<j>{i,e,g) = pcosi = p(s • n)/|s||n|

= piPPs + qqs + 1)Mp? + ̂ + 1)(p2 + <72 + 1) (1)
= R(p,q).

This means that, given a surface patch at (x, y, z) with orientation (p, q), we
can determine the image intensity I(x, y) observed at the corresponding pixel

(x, y) to be

I(x, y) = R{p, q) .

The function R(p, q) is called a reflectance map. This is, in fact, generally
the case under our assumptions: Since we assume a constant illumination,

the surface-reflectance characteristics (f>(i, e, g) solely determine the image
intensity, and since we assume orthographic projection, a pixel at (x, y) images
the surface patch at (x, y, z) and therefore its pixel value is equal to <f>(i, e, g).
The angles i, e, and g can be represented in terms of the vectors n, s, and v,
which are represented by the gradients.

Figure D5-2 shows the reflectance map of equation (1), drawn as a series
of iso-intensity contours for the case ps — .7, qs = .3, and p = 1 . The
surface orientations on a single contour generate the same image intensity.

Those to the left of the straight lines psp + qsq +1=0 correspond to the
orientations that face away from the illumination and, thus, do not give rise
to any brightness.

Reflectance maps have been calculated for various cases (Horn, 1979) and

used for automatic generation of hill-shading of terrains. The synthesized
images can be matched with real images to normalize them.

Shape-recovery process. The reflectance map of Figure D5-2 shows
that under the assumptions about the imaging geometry and surface reflectiv-

ity, the observed intensity at a pixel does constrain the surface orientations on

the corresponding iso-intensity contour of gradients, and yet this constraint
is not strong enough to determine surface orientations uniquely. Additional
constraints are needed.

The utility of the reflectance map is illustrated for the case of the block

scene in Figure D5-3a. Suppose this is a convex corner. Then the gradients of
the three faces should form the triangle shown in Figure D5-3b, whose shape
is determined by the orientations of lines in Figure D5-3a, but whose location
and size are ambiguous. Suppose also that the imaging condition is the same

D5 Shape-from Methods
263

0.0 0

Figure D5-2. The reflectance map for a lambertian sur-
face with ps = .7, qs = .3, and p = 1 in

equation (1) (from Woodham, 1978).

as discussed above: Image intensities should be constant over each planar face
because it has a constant gradient. The observed intensities constrain surface

orientations on the iso-intensity contours. If we put together the two types
of constraints — the triangle and the iso-intensity contours — we may be able
to determine the surface orientations. We can translate, shrink, and expand

the gradient-space triangle until each corner lies on the iso-intensity contour

that corresponds to the observed intensity (see Fig. D5-3c). In this way, we
can determine the surface orientations of the three faces.

Intensity(A) = I a

Intensity(B) = IB

Intensity(C) = Ic

(a) (b)
(c)

Figure D5-3. A simple example of using the reflectance map.

264 Vision Xm

More generally, for curved objects, we must find surface orientations
(gradients) for each point, rather than for a whole surface. To do this, we
can exploit two general constraints: Each image point is assigned to at most
one surface orientation, and orientations vary smoothly almost everywhere
except at boundaries. These constraints are called uniqueness and continuity,

respectively. Suppose we assign {Pi,j,q%,j) to pixel position (i,j). Then we can
define a measure of error of that assignment as

Eij = WJ) ~ R(PiJ> Qi,j))2

+ \{(pi+1J + piJ+i + pi-xj + Pi,j-\ - 4pij)2

+ (Vi+lj + Qi,j+1 + Qi-l,j + Qi,j-1 - Mi,jf} »

where X is a positive constant.
The first term of this equation is the difference of the observed intensity

I(i,j) from the expected intensity R{pi,j,qi,j), and the second term is the
sum of the squared Laplacians to measure the smoothness (see Article XIII.C3).

Then we define the total error E as the summation of E{j over the image:

£ = £!>.

We minimize this error to obtain a shape that globally satisfies the con-
straints. Iterative or cooperative relaxation algorithms (see Article XIII.E4) can

be used for minimization. Boundary information gives explicit orientations at
certain points and provides anchor points for an algorithm. Ikeuchi (1980a)

used occluding contours and self-shadow boundaries to obtain anchor points.
At an occluding contour, the line of sight is tangent to the object surface,
and its surface normal is uniquely determined as perpendicular to both the

contour line and the line of sight. A self-shadow boundary is the place at
which the illumination ray is tangent to the surface. It corresponds to the

line psp + q3q + 1 = 0 in Figure D5-2, but unfortunately the surface normals
are not unique. However, there are three points on it whose orientations are

determined uniquely: One is the point at which the self-shadow boundary is
perpendicular to the direction of illumination, and the other two are the points

at which the self-shadow boundary intersects with an occluding contour. With
these boundary conditions and an iterative process to minimize E, Ikeuchi
(1980b) accomplished shape recovery from monocular images, for example,

from scanning-electron-microscope (SEM) pictures.

Shape from Texture

Historically, textural change was known to be useful for shape and pat-
tern discrimination; for example, the term texture gradient has been used to

suggest the change of density due to distance and orientations. However, it is

D5 Shape-from Methods 265

only recently that texture has been studied mathematically, so that computer

vision systems can directly relate texture with shape. Notable work here

includes Kender (1979, 1980), Stevens (1980), Witkin (1980), Kender and

Kanade (1980), and Ikeuchi (1980b). This article will present a simple example

of shape from texture.

Parallels between shading and texture. Close parallels can be drawn

between shape from shading and shape from texture. We can imagine a

small texture element — called a texel — that corresponds to a pixel. Just
as the intensity at a pixel changes with surface orientation, so does the

appearance of a texel in the image; its appearance includes its shape and

its local density. Just as shape from shading needed certain assumptions, so

does shape from texture. One such assumption is homogeneity of surface

texture; that is, the original "print" on the surface is homogeneous and any
variation observed in the image is due to the change in shape and view angle.

Under this assumption, observed textural properties such as shape distortion

and density change constrain the orientations of the surface patches, but

they are not enough to determine uniquely the orientations. Assumptions

of surface uniqueness and continuity are required — as they were for shape

from shading — to propagate the constraints and to facilitate the search for a
globally correct solution.

In most vision research, perspective projection is a source of difficulty

because its nonlinearity makes theories less tractable. We have seen that

orthographic projection is often preferred as an approximation because of its

simplicity. Interestingly, the perspective projection is one of the main sources

of constraints in the shape- from- texture method.
The case of parallel lines. Converging lines in a perspective image

suggest parallel lines in the corresponding scene. More than one set of con-
verging lines can specify the orientation of a surface on which they lie. Typical

examples are lines formed by tiles or windows on the wall of a building. A

human can perceive the orientation of the wall from such an image. An elegant

solution to this problem was presented by Kender (1979).

Suppose we have a set of converging lines in an image (Fig. D5-4a). Then
we can transform each line as follows:

1. Represent a line in the x-y picture plane as p = xcosfl + ysinO;

2. Transform the line into a point T in u-v space where T = (u, v) =
((K / p) cos 0 , (K / p) sm 0) and K is a positive constant.

When we transform a set of lines that converge to a point C in the image,

the transformed points lie on a single line in the u-v space. The reason for this

is illustrated in Figure D5-4b. First, think of a point T' = (pcosO, psinO).

T' is just the leg of a perpendicular line from the origin O to the picture

line, such as T\ for line l\. All T' for the converging lines should be on a

circle whose diameter coincides with OC, because the angle OT'C is always a

right angle. Now, notice that T is the point located on the line OT' ', so that

266 Vision
xm

r2 = (r2.v2)

a\.\\)
K/px

 -" //

\\

\ \ \ \

\ i

\ /

j /

1£-~~~~^~^^*\
/ \

^.—^

*3 \

W

Figure D5-4. Obtaining surface orientation from converging lines.

OT = K/OV = K/p. Let us define T0 on OC so that OT0 = AT/OC.
Since O and C are fixed points, To is also a fixed point. Then it is easy to

show that point T (the transformed point of a convergent line) is always on
the line that passes To and is perpendicular to OC. For example, assume

T\. Triangles OTqTi and OT\C are similar, and thus angle OTqT\ is equal
to angle OT\C, which is equal to a right angle. Kender showed that under

perspective projection, if we choose K equal to the focal length, then the u-v
plane coincides with the gradient-space p-q plane. After all, if we assume that
the convergent lines are originally parallel lines on a single plane surface, the
surface orientation should be such that its gradient is on this line. If the

D5 Shape-from Methods 267

surface includes more than one set of parallel lines, like the boundary lines of

repetitive windows on a wall of a building, we have two such gradient-space
lines, and thus the surface orientation can be determined as an intersection

of the two gradient-space lines. To do this involves several steps:

1. Detect short edge elements and their direction 0 ;

2. Transform them into the p-q place as defined above (with K = focal
length);

3. Detect straight lines in the p-q plane;

4. Obtain their intersection point as the gradient of the original surface.

Conclusion

Not only are individual shape-from methods useful, but the approach that
is common to them is a powerful paradigm in vision research. Indeed, this
approach is the theme of Section XIII. D, namely, to understand the geometrical
and physical basis of the imaging process and to derive constraints by making
assumptions (such as uniformity and continuity) explicit. Recent formulations

of other shape-from methods — shape from contours, from motion, from stereo,
and so forth — have been strongly influenced by the approach described here.

References

Horn (1975) did the first work on shape from shading. Render (1980)

presents basic tools for shape-from methods as well as his results on shape
from texture.

D6. Three-dimensional Shape Description and Recognition

ONE OF THE REASONS that image understanding is so difficult is that the
gray value of a point in a scene is the product of many factors. It depends

on an object's reflectance function, the illumination, the orientation of the
surface with respect to the light and to the viewer, mutual illumination, and
shadowing. Furthermore, spatial information is lost by projection in forming
the image (see Article XIII.D4).

This problem can be overcome if range data, derived from an active range
finder (Article XIII.D4) or by stereo (Article XIII. D3), are used to compute the

three-dimensional position of each observable point in a scene. This is usually
the most useful measure of a scene, because the size, shape, and orientation
of objects can be derived from it. For robotic vision, range information is
essential.

Range information does have its limitations. One is that painted sur-
face markings cannot be read from positional data alone (although some

laser range-finders can also measure per-point reflectance; see Duda, Nitzan,
and Barrett, 1979; Kanade and Asada, 1981). A second limitation is that

triangulation-based range finders can measure only the points visible to both

ends of the "eye" baseline. (The physical construction of range finders is
described in Article XIII.D4.) Third, range finders are usually accurate only
over a small volume.

Despite these limitations, range data are very important for scene analysis.
The first part of this article discusses how objects in scenes are represented
in terms of range information; the second part of the article presents several
vision systems that make use of range data.

Shape Description

Recognition of objects in a scene involves constructing a shape description
of objects from sensed data and then matching the description with stored
object models. Shape descriptions of models and objects must be represented

by similar terms and, for range-data analysis, these terms must describe the
relative positions of elements of a scene.

A few types of primitives are used for shape descriptions:

1. Vertex and edge. Describing the data in terms of vertices and edges is
appropriate when the world model contains only polyhedra. Roberts
and Falk (Articles XIII. Bl and XIII. B3) represented objects in terms of
vertices.

2. Surface. An object can be represented by a collection of surfaces, of

which planes are the simplest. Quadratic (second-order) surfaces are

also popular (see the discussion of Oshima and Shirai's work later in
this article).

268

D6 Three-dimensional Shape Description and Recognition 269

3. Volume. A volume description defines the space taken up by an object.
A range finder sees only surfaces, so a volume description must be
developed by fitting its surface to the sensed data.

Generalized cylinders. The most popular type of volume description

is the generalized cylinder (Agin and Binford, 1973). As the name suggests,
generalized cylinders are a class of objects obtained by extending the definition

of a cylinder. An ordinary cylinder (Fig. D6-la) is the volume swept out by
a circular disc moving along a straight line segment through its center. The
disc is kept normal (perpendicular) to the line segment that is the axis, or the
spine, of the cylinder.

The cylinder can be generalized by one or more extensions: The spine may

be curved (Fig. D6-lb). The radius of the disc may vary as a function of its
position along the spine (Fig. D6-lc); this function is known as the sweeping
rule. The cross-section may be some planar figure other than a circular disc

(Fig. D6-ld). The cross-section may be held at some nonperpendicular angle
to the spine (Fig. D6-le).

Many complex objects can be modeled as clusters of generalized cylinders;

for example, Figure D6-2 shows a model of a Lockheed TriStar (from Brooks,
Greiner, and Binford, 1978). It is composed of generalized cylinders with

straight spines, circular or rectangular cross-sections, and constant or linear
sweeping rules. The airfoils and nose and tail cones are generated by cross-
sections held at nonperpendicular angles to their spines.

Models composed of generalized cylinders can be expressed at various

levels of detail. For example, Figure D6-3 shows levels of detail for a model of
a human (from Marr and Nishihara, 1978). At the least detailed level, a single,
vertically oriented cylinder suffices. Next, one cylinder is used for the trunk
and one each for the head, arms, and legs. An arm can be further refined into
a forearm and an upper arm, and so on. With a hierarchy of detail, image
interpretation can begin with gross features, and then finer details can be

filled in under the guidance of the grosser match. This coarse-to-fine strategy
reduces the combinatorics of matching. It might also be recognized as the
strategy that reduces search in hierarchical planning (see Article XV. C).

The generalized-cylinder representation works best with objects composed
of elongated parts, since these are often recognizable as stick figures: the

"sticks" are the spines of the generalized cylinders. Non-elongated shapes
may be represented as generalized cylinders, but the choice of spine is less
obvious. A cube has three equally good choices for a spine; a short, squat,
circular cylinder has its spine parallel to its shortest dimension.

Issues in Shape Description

In addition to the primitive units for describing surfaces and volumes, a

representation scheme must specify a means of composing them into object

270 Vision
xin

(a) Ordinary Cylinder (b) Curved Spine

(c) Arbitrary and Linear Sweeping Rules

(d) Generalized Cross-section (e) Non-normal Spine

Figure D6-1. Generalized cylinders.

models. For example, a description of a hammer contains not just descriptions

of the handle and the head, but also the fact that the end of the handle is

joined with the bottom of the head. (See Article X3II.E3 for a discussion of

syntactic rules for composing objects.)

Uniqueness and continuity are two important qualities of a representation

scheme, especially a scheme for object recognition. It is often desirable to

have a single, unique representation for each shape in the world; otherwise, a

D6 Three-dimensional Shape Description and Recognition 271

Figure D6-2. A Lockheed TriStar by a generalized-cylinder
representation (from Brooks, Greiner, and Bin-
ford, 1978).

program may be faced with the task of choosing from a large set of substan-
tially different representations, and matching becomes difficult. The criterion

of continuity is that similar shapes should have similar representations and

that very different shapes should have very different representations. A rep-
resentation should not change drastically with a small change in shape.

A problem for range-data analysis is picking an appropriate level of detail
for models: A very detailed description of a particular object, say, a chair, in
a particular orientation is relatively useless in that it will fail to recognize the
chair in a slightly different orientation, just as it will fail to recognize similar
chairs. Therefore, a model of a chair must express the essential features of the
shape of a chair. Such a model has its own reference frame, independent of

HUMAN

Figure D6-3. Detail hierarchy of a three-dimensional model of
a human (from Marr and Nishihara, 1978).

272 Vision XIII

its position or orientation in the scene. Thus, it is said to be object- centered,
as opposed to camera-centered. (See Articles XIII. E2 and XIII. E3 for other
discussions of the problem of choosing primitives for scene analysis.)

An important issue of representation is that, while there are advantages

to object-centered representations, the first description of an object extracted
from sensed data is necessarily camera-centered. Consequently, object recog-

nition involves these two different types of representations.
Lastly, object recognition involves partial matching, because a range finder

can see only one side of an object. The description derived from the sensed
data cannot match hidden parts of a stored model, unless it contains a

hypothesis of what is hidden.

Shape Recognition

The raw data from most range-finding sensors are not in the form of a
depth map (see Article XIII. D4); however, it is often used for scene analysis in
raw (or nearly raw) form because it is a fairly faithful representation of the

physical structures of objects in a scene. For example, a light-stripe range
finder produces many frames of TV images of light stripes; other research-

ers reduce their data to an array of displacement values: D{j represents a

horizontal displacement of the jth light stripe on TV frame-row i. Although
the conversion from these input forms to three-dimensional surface points
is straightforward, many researchers examine features in this representation

directly, before (or without) converting to three-dimensional coordinates.
Scene analysis on the raw range-sensor data prior to, or in place of, con-

verting to three-dimensional coordinates is done most often with triangulation
range-finders that produce light stripes. An occluding edge is manifest as a
discontinuity of stripe displacement, either within a stripe or between adjacent
stripes. Intersection of two planar surfaces may be detected by a discontinuity
in the direction (bend) of a light stripe when tracing along its length, or by
a change in interstripe pitch. If we assume vertical stripes with the camera
to the right of the illuminator, a horizontal concave edge will produce a bend
in the stripe that is convex rightward, while a horizontal convex edge will
produce a bend that is convex leftward. Similar relationships hold for other
orientations.

The remainder of this article discusses individual scene-analysis programs
that work from range data.

Range- data Analysis Systems

Shirai and Suwa. Shirai and Suwa (1971) first used a light-stripe range
finder to analyze and recognize polyhedra. Their range finder produced one
TV picture for each position of the illuminating stripe. They thresholded
and smoothed each image and tracked the stripes, which were segmented into
nearly linear portions and replaced with straight line segments. Neighboring

D6 Three-dimensional Shape Description and Recognition
273

lines were grouped into planes, according to their orientation and their inter-
vals. (When light planes at equal intervals intersect a planar surface, the

TV camera sees a set of stripes with common orientation, located at equal

intervals.) Once a planar patch was found, its lines were projected back into
three dimensions, and the equation of the plane was found by least squares.
After all the planes were found, they were grouped into polyhedra.

Agin, Binford, and Nevatia. At Stanford University, the generalized
cylinder representation has been used extensively for analyzing range data
from light stripes. Agin fit generalized cylinders to range data (Agin and
Binford, 1973). He worked directly from the raw data, delaying conversion

to three-dimensional coordinates. He started with two sets of light stripes,

obtained by illuminating the subject with two sets of light sheets, one per-
pendicular to the other. Parallel elliptical arcs suggest a generalized cylinder

and its radius and axis, as shown in Figure D6-4a. Each detected stripe was
thinned and linked into a chain. Then adjacent chains representing consecu-

tive laser scans were grouped together if they were roughly parallel in the TV
image. Each such group was then modeled as a generalized cylinder. As an

initial guess for the cylinder's axis, the midpoints of a group of chains were
converted into three-dimensional coordinates. The diameter of the cylinder
was gauged from the length of the chains and their orientation with respect to
the axis. The cylinder description was iteratively refined by marching along

the cylinder's spine, passing a plane orthogonal to the spine, and fitting a
circle to the surface points near the cylinder in that plane. This refined the
notion of the diameter at that point, as well as of the location of the spine.

(b)

Figure D6-4. (a) Light-stripe image of a Barbie doll and
(b) generalized cylinders obtained from (a)
(from Agin and Binford, 1973).

274 Vision XIII

Thus, the shape of a Barbie doll is represented by generalized cylinders (see

Fig. D6-4b).

Nevatia and Binford (1973) extended Agin and Binford's work. The con-
struction of the generalized cylinders was much the same, but it omitted

conversion to three-dimensional coordinates and generalized the cylinders fur-
ther by removing the assumption of a circular cross-section. Also, boundary

information was derived by linking the discontinuities in the range data. They
segmented a single object into simpler parts (such as leg and torso), each of

which was extracted as a smooth generalized cylinder (see Fig. D6-5). The
segmented parts were connected at joints, and their connectivity relations
were represented as a graph with joints as nodes and parts as arcs. The part

descriptions included their size and shape (length of axis, average cross-section
width, etc.); the joint descriptions included the parts connected at the joints
and their relations. The graph descriptions that are constructed from one
view were stored as models, and a new scene was recognized by matching the
graph description with stored model descriptions.

Popplestone, Brown, Ambler, and Crawford. Popplestone and his

associates (1975) used a light-stripe range finder to provide data for interpret-
ing scenes composed of planar surfaces and walls of cylinders with circular

cross-sections. Because of this restriction on the scene objects, sections of
light stripes observed in the TV frames were known to be either straight line
segments or parts of ellipses. The stripes were segmented and fit with straight

line segments or were assumed to be curved. Their three-dimensional coor-
dinates were calculated. Groups of parallel lines arising from sequential laser

scans were fit to planes by means of least squares. A poor fit indicated that
the lines were not on planes, but on the surface of a cylinder, parallel to the
axis. Groups of curves also indicated a cylinder wall.

The first step in pursuing a cylinder hypothesis was to estimate the axis
orientation. This was trivial for a cylinder that was manifest as a set of
straight lines. For a set of curves, the direction was estimated by finding the
direction (in TV coordinates) in which successive stripes may be shifted to
coincide with each other. Once this shift was found in two dimensions, the
third coordinate was found for the axis vector.

The data points were then projected onto a plane orthogonal to the axis.
This caused the elliptical stripes to project onto a circle. By fitting a circle to
the projection by least squares, the radius of the cylinder and a point on its
axis were determined.

Once a plane or cylinder was determined, the list of stripes was scanned
to find unexplained segments that might lie on the surface. If such segments
were found, they would be added to the evidence for the surface and the
surface would be refit to the data.

Sugihara. Sugihara (1979) exploited the constraints of a junction dic-
tionary like those of Huffman, Clowes, and Waltz. Whereas the earlier work

used the dictionary to deduce line labels, Sugihara derived those labels directly

D6 Three-dimensional Shape Description and Recognition 275

Figure D6-5. Segmentation of range data into parts and
joints (from Nevatia and Binford, 1973).

from analysis of the range image. The dictionary was used to suggest edges
that had originally escaped detection. It contained not only physically possible
junctions, but also impossible junctions that would become possible if one
or more additional incident edges were discovered. These junctions were

linked together in a directed acyclic graph, in which an arc from junction
A to junction B denoted an edge that, if found, would convert junction A to
junction B.

Scene analysis was done on stripe data in the image domain, taking
advantage of features that reflected those of the scene. For example, occluding
edges are manifest as range jumps, which are detected as sudden changes in

the x-coordinate within a stripe or between adjacent stripes. A set of operators

detected each type (convex or concave) of edge in the light-stripe image. After
initial edge detection and linking, the resulting junctions were examined. As
we just mentioned, impossible junctions may really be possible junctions for
which an edge has not yet been detected. Thus, impossible junctions were

located in the dictionary and an additional edge proposed. Figure D6-6 shows

an example of Sugihara's program at intermediate stages of analysis.
With minimal modification to the junction dictionary, Sugihara applied

his techniques to a world with curved objects. The dictionary was applied
by considering the tangents to curves coming into a junction. There was no
attempt to model the shapes of surfaces or the enclosed volumes, but heuristic
rules were used to partition groups of edges into bodies.

276 Vision
XIII

Figure D6-6. Analysis of range data by means of a junction dictionary (from
Sugihara, 1979).

Oshima and Shirai. Oshima and Shirai (1979) developed an area-
based system that did all of its work in three dimensions. It assumed a

world consisting of planar and quadratic (second-degree) surfaces. Processing
started with partitioning the range image into small, overlapping patches
and determining the orientation of each patch by fitting a plane by least

squares. Next, contiguous patches were merged into larger, approximately
planar regions. Regions were classified as planar, curved, and ambiguous,
depending upon the variation in orientation of the region: If the variation is

D6 Three-dimensional Shape Description and Recognition 277

small, the patch is planar; if it is large, the patch is curved; otherwise, it is
ambiguous. Curved regions were grown outward by devouring neighboring
curved or ambiguous regions; larger regions were favored as kernels for region
growing. Next, leftover ambiguous regions were merged into neighboring
regions. When all regions were merged, quadratic surfaces were fit to the
curved regions. Edges between adjoining surfaces were found by intersecting
the equations of the two surfaces. The edges were classified as convex or
concave.

An advantage of this approach is that, for ambiguous portions of the
image, action is deferred until more context is available from the more reliable
parts. Edge finding in this manner is more reliable than with an edge detector,
because it takes into consideration all the points in the surfaces. It is not
influenced as much by noise right at the edges.

Duda, Nitzan, and Barrett. Duda and his associates found planar

surfaces by using registered range and reflectance images (Duda, Nitzan, and
Barrett, 1979) . Horizontal planes were found first. This was done by plotting,
in a histogram, the relative frequency of the heights of all points. A peak in
the histogram indicates a horizontal plane, since it suggests a relatively large
number of points of the same height.

To pursue a plane hypothesis, the points that lay near the plane were
aggregated into regions. Small regions were discarded. A plane was fit to each
region and its orientation was compared with the hypothesized orientation.
This weeded out groups of points that were on surfaces that passed through
the hypothesized plane but were not in it. If a region was accepted, it would
be refined by repeating this process but using its measured orientation for
the plane hypothesis. Finally, the points of the accepted region would be
removed from the data. This would allow a new plane to become dominant.

(This technique is similar to histogram-based region-segmentation methods;
see Article XIII.C5.)

Next, vertical surfaces were located. The data points were projected onto

a horizontal plane, forming a two-dimensional histogram. Vertical surfaces
show up as straight lines in this histogram. These lines were found by using
the Hough transform (see Article XIII. C4). The equation of the line, coupled
with the knowledge that the surface is vertical, yields a surface hypothesis to
be tested.

Finding slanted planes is more complicated. The Hough transform is
computationally unattractive, because, for a plane, it produces a histogram

in a three-dimensional parameter space. To solve the problem, Duda and his
associates used the reflectance image that the range finder had produced in
registration with the range image. They assumed that points on a planar
surface have the same reflectance. All points that lay on surfaces already
extracted were deleted from the reflectance image. The remaining contiguous
areas were processed by the histogram method; that is, the relative

278 Vision XIII

frequencies of reflectances were plotted on a histogram so that peaks in
the histogram corresponded to areas in which many points have the same
reflectance. The highest peak was used to locate a contiguous area of pixels

with constant reflectance. By fitting a plane to these pixels (using the range

data), a plane hypothesis was obtained.

Conclusion

Range (depth) information is one of the most important intrinsic charac-
teristics of a scene (Article XIII.Dl), and the approach discussed here is to

represent and recognize three-dimensional shapes from range data. The most
popular representation of objects that is based on depth information is the
generalized cylinder. The raw data to which cylinders can be fit are usually

obtained with a light-stripe range finder (Article XIII. D4). Several systems
were discussed.

References

Badler and Bajcsy (1978) present a survey and discussion of 3-D repre-
sentation.

E. ALGORITHMS FOR VISION

El. Pyramids and Quad Trees

VISION ALGORITHMS sometimes use hierarchically organized images with
multiple levels of resolution. For example, Kelly (1971) introduced the idea
of planning in edge detection with two levels of resolution. He first detected

edges in a low-resolution image and used them to plan a detailed search for
the edges in the higher resolution image. Since the gross location of the
edges was known, the tracing program could cope with local gaps and noise
in the detailed image. Similarly, multiple resolution images are useful in
region segmentation (see Article XIII.C5) and stereo vision (Article XIII.D3).
(Hierarchical representations are popular in AI; for example, see Articles XV.D1
and XV.D2 on hierarchical planning.)

Pyramids and quad trees are hierarchical image representations that facil-
itate the efficient implementation of vision algorithms (Tanimoto and Pavlidis,

1975). They were motivated partly by two aspects of human visual perception.
First, the eye itself has multiple levels of resolution; photoreceptors are densely
packed in the fovea and more sparsely distributed elsewhere. Second, humans
naturally attend to areas of high information and ignore less interesting areas.
This is called selective attention.

Pyramids

A pyramid may be visualized as a sequence of two-dimensional arrays —
like those in Figure El-1 — representing the same visual scene in more and
more detail. Usually the dimensions of the arrays double at each step in the
sequence. For example,

p__/^lXl ̂ 2X2 ̂ 4X4 ^512x512\

is a pyramid of 10 levels. The arrays consist of pixels that may contain binary,

gray-scale, multispectral, or local feature information. Alternately, a pyramid
may be described as the set P of cells (based on the combined sets of pixel
indices of all the arrays) together with a function Val that assigns a value to
each cell:

P = {(k,ifj) \0<k<L;0<i,j< 2k - 1; ValiP^R}.

279

280 Vision
xm

Usually R is a real, positive value and we insist that an averaging rule hold:

If 0< k <L, 0 < i,j < 2fc-l ,

t/ uu • •>; V^ V^ FQ/(fe + l,2z- + p,2y + g)

That is, Val(k, i, j) is the average for four cells (k + 1, 2z, 2j), (fc + 1, 2z, 2j + 1),

(A; + 1, 2i + 1, 2j), (A; + 1, 2i + 1, 2j + 1), as is illustrated in Figure El-1. The
pyramid in the figure is constructed from a picture (e.g., 512 X 512 pixels) by
forming successive reductions (256 X 256, 128 X 128, . . .) by averaging 2X2
blocks of cells, until the 1 X 1 or root level is reached.

Level 1: 1 X

2i'+ 1

2X2

2j 2j + l%

Level 10: 512 X 512

Figure El-1. The pyramid structure.

El Pyramids and Quad Trees 281

A typical use of the pyramid is seen in the following edge-detection
algorithm. A level s will be examined for edges: All edges found in the input

pyramid INP at level s will be indicated in the output pyramid OUTP at level s.

The algorithm proceeds by computing edges at each input pixel according

to some function BNDRY, which may be any edge- detection operator, such as

Roberts' cross operator (see Article XIII.C4). In the algorithm, GET and STORE
access pyramid values.

If the edge strength (the output of BNDRY) at a pixel is greater than

THRESHOLD, the edge will be REFINEd recursively. The four corresponding

pixels will be examined at the next higher level of resolution — level s+1. If any
have a strength greater than THRESHOLD, then level s + 2 will be examined,

and so on, up to the maximum resolution level L of the pyramids.

This algorithm illustrates both varying resolution and selective attention.

Varying resolution pinpoints edges precisely and ignores large areas of rela-
tively uniform intensity, since recursion to a more detailed level occurs only

for edge pixels. Selective attention is a consequence of limiting the algorithm

to examining those parts of the image with interesting information, that is,

edges.

PROCEDURE all edges (inp, outp: pyramid; s: integer);

VAR i , j : integer
BEGIN

FOR i : =0 to 2**s-l DO BEGIN

FOR j :=0 to 2**s-l DO BEGIN
store (outp , s , i , j , bndry (inp , s , i , j)) ;

IF get (outp , s , i , j) > threshold THEN
refine (inp , outp , s , i , j) ;

END;

END;

END;

PROCEDURE refine (inp, outp: pyramid; k,i,j: integer);

VAR di , d j : integer ; temp : real ;
BEGIN

IF k < L THEN BEGIN

F0Rdi:=0tolD0BEGIN

FOR d j : =0 to 1 DO BEGIN

temp : =bndry (inp , k+1 , 2*i+di , 2* j +d j) ;
store (outp , k+1 , 2*i+di , 2* j +dj , temp)

IF temp > threshold THEN

refine (inp , outp , k+1 , 2*i+di , 2* j +d j) END;

END;

END;

END;

282 Vision
Xffl

Figure El-2. A quad tree.

This algorithm is reasonably insensitive to noise, ignoring those edges in level

L that are not supported in levels s through L — 1. The computation time
it requires is proportional to the edge complexity of the pyramid and to the
chosen threshold; a pyramid with no edges will be processed very quickly.

Quad Trees

Quad trees are data structures that are similar to pyramids. They have
nodes that correspond to the cells of a pyramid, and each nonterminal node
has four children nodes in the level below. Unlike a pyramid, a quad tree may
be pruned so as to be unbalanced. For example, when all nodes in a subtree
have the same gray value, the subtree may be represented by its root without

loss of information (see Fig. El-2). Properly implemented, a quad tree may
allow significant storage savings in representing many kinds of images. More
significantly, quad trees allow some operations to be performed efficiently by
recursive procedures. For example, image superposition and bitmap union
and intersection are easily formulated and executed.

References

See Tanimoto and Klinger (1980).

E2. Template Matching

ONE WAY to determine which patterns exist in a scene is to compare them
with stored patterns that are already named. This approach is called template
matching. Classically, template matching has been applied to digitized images

directly, using a pixel- by-pixel comparison. More recently, however, higher
level templates have also been used.

Pixel-level Templates

Low-level, pixel templates come in four varieties: (a) total templates, which
are fixed against a background; (b) partial templates, which are free of the
background; (c) piece templates, which match one feature of a figure; and
(d) flexible templates, which are modified to match possible distortions in the
scene. Each of these categories provides more flexibility than the previous
one, but at the expense of time and complexity during the matching process.

Total templates. These require an exact match between a scene and a

template. Each template must contain as many picture elements (pixels) as
the input scene contains. Because the matching requirements are so stringent,

any displacement or orientation error of the "correct" pattern will be rejected.
Partial templates. Partial matching frees the desired pattern from

the background. This allows for multiple successful matches against a single
scene. Storage requirements are limited to the representation of the desired
pattern. While partial matching solves the displacement problems of total
templates, incorrect matches can occur if the pattern is embedded in a larger

object; for example, the "F" template matches against an "E" scene. Further-
more, if a black template is not to be a trivial match with an all-black region,

a white border must be included. The technique for matching the template

to the scene is known as cross-correlation; it moves the template across the
figure looking for one or more points of maximum coincidence.

Piece templates. These templates break up a pattern into its component

segments; for example, the pattern "A" could be recognized with a combina-
tion of "/", "\", and "-" piece templates. The order in which the templates

are compared to the scene is important: The largest piece templates must be
tried first, since these contain the most information and may also subsume

smaller templates. For example, if the "scene" were running text, the template
"there" should be tried before "the" against the target "therefore." An advan-

tage in using piece templates is that storage requirements are kept to a min-
imum. Furthermore, because of the primitive nature of piece templates, they

can sometimes be described by mathematical functions instead of a point-by-
point picture.

283

284 Vision XIE

To use piece templates, they must be partially ordered according to any
properties that dominate other templates. When the templates are checked
against the scene, an ordered list of matches is generated. To decide which

combination of located piece templates is the most appropriate, the com-
ponent templates are weighted by size and scored against a prototype list of

expected features. This template-matching scheme is less sensitive to distor-
tions in the original scene but may lose information about the spatial arrange-

ment of the pieces. For example, "\" , "/" , and "-" will match the " V " symbol
as well as "A," which may or may not be the intended result. If we add a piece
template that provides corner orientation, a more specific decision could be

made. To help solve this problem, piece templates may also include position-
ing information relative to the background.

Positional information is important in the navigation system for an under-

water robot developed by Thorpe (1981), who used a variation of a tech-
nique developed by Davis (1976). The navigation system, which works with

sonar images and which uses descriptions rather than raw images to match,
is an interesting variant of template matching, since the sonar images are

themselves the "pieces" that are matched to a much larger template map.
Normally, images are larger than templates, but in this case the opposite is
true. The navigation system decides its exact location by matching sonar
images to a stored map of the area. Since individual rocks on a smooth sea
floor do not produce sufficiently consistent echoes to be reliably recognized, the
distances and angles between rocks are the components of the sonar images.

Each object in the sonar image that produces an echo is abstracted to a
point, with only x and y coordinates and approximate echo strength recorded.
The stored map consists of a list of such points with known positions. The
general problem is to get the sonar image of the area surrounding the vehicle,

produce a description of the objects in that image, and then use that descrip-
tion as a template to see what part of the map that area most accurately

matches. From there, basic geometry gives the vehicle's location and heading.
Flexible templates. Also called rubber masks, these templates are

designed to handle the problems of stretching, misorientation, and other

deviations from the prototype. The flexible template starts with a good proto-
type of a known object. After each comparison with the unknown object, the

rubber mask is parametrically modified to obtain a better fit. This relaxation
procedure is continued until no more improvement is obtained. The object can
now be encoded as the template plus a series of modifications, which can be
compared against the results with other starting templates to determine the
best match. A good example of this technique is sorting chromosome images

to get a karyotype. A standard H-shaped chromosome is picked as the initial
template and modified in length, width, bend, and curvature of the H until the
natural chromosome is matched. The same technique has been used to locate
peaks in a chromatographic image; the rubber mask is the sum of several

E2 Template Matching 285

adjustable Gaussian peaks with parameters of x position, amplitude, and
narrowness.

Some problems remain with pixel-level templates. Working with typi-
cal two-dimensional inputs such as handwritten characters or TV pictures

proves difficult for any simple template scheme. TV pictures may be blurred,

stretched, and peppered with noise. Additional problems arise from rota-
tions, shape variations, offsets, and gaps. Handwritten characters are subject

to differences among authors and inconsistencies in any individual's script.
These problems can be partially solved by carefully choosing piece templates,

made more forgiving by allowing for "don't care" slots in noncrucial locations
in the template or by using the flexible templates. Also, learning is difficult
within the template paradigm. If a new template is added for each variation
in the handwriting example, the set of templates becomes too large. Deciding
when a match has been found between a template and a pattern presents
another problem. Solutions usually involve a threshold or difference criterion
to determine that one match is significantly better than the rest.

High-level Templates

Thus far, template matching has been discussed mostly at the level of the
digitized image. It is certainly possible, however, to do template matching
at a higher level, in which images and templates are described symbolically
and description is matched to description rather than pixel to pixel. Parts of

an image can be described in terms such as "Area = 28 pixels" or "Average
intensity = 40." Relations between parts of the image can also be represented,
such as "A is above B" or "X is larger than Y.n

The high-level approach was taken by Barrow and Popplestone (1971) in
one of the earliest uses of this kind of template matching. They broke an
image into regions of approximately uniform brightness. For each region they

recorded shape information, and between pairs of regions they defined rela-

tions such as "bigger than," "adjacent to," "above," and "distance between."
All further processing was done on the basis of these descriptions, without
ever referring back to the original image. In training mode, several views
of each known object were shown to the system, and these descriptions and
their identifications were stored. Next, during processing mode, an image of
an unknown object was divided into regions and described in the same way
and then compared with the stored descriptions. The object with the best
match was, in almost every case, the correct identification.

Testing every possible combination of matches would obviously have been

computationally expensive, so Barrow and Popplestone (1971) incorporated a

best-first search heuristic (see Article II.C3a, in Vol. i). Partial matches were
built up region by region, and only the best were candidates for combination
with matches from other regions.

286 Vision Xm

Winston's (1975) work on learning blocks-world structures (see Article
Xin.C3c) uses an expanded piece-template approach for description matching.
Each component piece, such as a block or a pyramid, is recognized, and the

relations between objects, for example, "supported-by," are used to match
a prototype template built up over several training sessions. The matching
process is governed by weights associated with the links in the prototype.

Conclusion

Template matching involves matching an image to a stored representation
and evaluating the fit with some function. Template matching is a simple and
relatively old technique that has been applied in many areas of vision research.

References

For basic techniques of template matching, see Duda and Hart (1973).

E3. Linguistic Methods for Computer Vision

STATISTICAL METHODS for classifying patterns are well established in the

field of pattern recognition (see Article XIV.D2). Patterns in pictures are recog-
nized by determining whether the features of the picture match a stored set

of features sufficiently well. This approach to computer vision was criticized

in AI for its lack of descriptive power. Pattern-recognition programs only
classify patterns; they do not describe them. Syntactic methods emerged as
attempts to generate picture descriptions from sets of picture primitives and
formal picture grammars.

Syntactic methods of scene analysis constitute a language theory of vision.
Patterns are regarded as sentences in a language defined by a formal grammar.

Just as a natural-language sentence might consist of a noun phrase followed
by a verb phrase, a pattern might consist of a vertical stroke followed by a
horizontal one. Thus, the process of recognizing the structure of a pattern
or scene is analogous to the process of parsing an English sentence. The
syntactic approach assumes a picture grammar and a parser, for building a
formal representation of the objects and interrelationships in a scene, and a
set of semantic primitives, such as edges or primitive bodies. These are the
meaningful units from which interpretations of a scene are constructed. (See
the articles in Sees. IV.C and IV.D, in Vol. I, for a discussion of grammars and

parsing.)

Picture Grammars in Syntactic Analysis

A grammar is a set of rewrite rules, or productions, of the form:

<left-hand side> ::= <right-hand side> .

Depending on the grammar, there are different restrictions on what can appear
on either side of the rule. These regulate what atomic elements can appear
in the rules, as well as how the elements are to be combined. For example,
a web grammar is one whose atomic elements are restricted to pieces of a

labeled directed graph. Similarly, array grammars and tree grammars limit
the atomic elements to arrays and trees, respectively.

Both the left-hand side and the right-hand side of the rules are made
up of symbols and connectives, or operators. Concatenation is usually a

sufficient connective for one-dimensional input; for example, Sentence :: =
Noun Phrase + Verb Phrase means that a verb phrase follows a noun phrase

in the time dimension. However, a problem in extending a one-dimensional
grammar to analysis of patterns in two dimensions is that the two-dimensional
plane has no natural ordering. For two-dimensional pictures, the relevant

287

288 Vision Xffl

connectives seem to be relational, for example, "on top of," "below," "to the
left of," and "to the right of."

The problem of defining appropriate connectives between primitives has
been approached in several ways. One is to analyze a figure in terms of its
boundaries. For example, a quadrilateral might be defined as

quadrilateral ::= line + line + line + line

where "+" means concatenation and it is understood that concatenation must
close on itself.

Another approach is to give every primitive two distinguished points, a

head and a tail. Concatenation of two primitives is then taken to mean head-

to-tail concatenation of the two primitives. (This idea can be extended to a
nonprimitive if its tail is the tail of the first primitive in its definition and
its head is the head of the last primitive.) For example, the line drawing in

Figure E3-1 might be analyzed in terms of the primitives shown in Figure
E3-2.

If "+" denotes the head-to-tail concatenation operation and "~" means
"reverse the head and tail of the primitive," we could define a cylinder as

cylinder t + b

We might also define an operator "*" to mean "head of p touching head of q
and tail of p touching tail of q" ; then a cylinder would be described by the
following grammar:

(1) cylinder ::= side * top

(2) side ::= ~v + b + v

(3) top ::= t * b.

Parsing Strategies

A parser takes some input and a grammar and produces a representation
of the input in terms of the grammar.

Parsing typically follows a top-down, a bottom-up, or a hybrid strategy.
A top-down approach is goal- directed: It expects to find certain elements in

Figure E3-1. Line drawing of a cylinder.

E3 Linguistic Methods for Computer Vision
289

side ::= ~ v + b + v

top ::= t * b

cylinder :: = side * top

Figure E3-2. A set of pictorial primitives for a cylinder drawing.

the input. Consequently, a top-down parser can erroneously interpret noisy
data as one of the patterns it is looking for. Bottom-up parsing, on the
other hand, is data-driven. A bottom-up parser identifies each element in the
input as an instance of one of the primitives in the grammar and then tries
to combine the elements according to the rules of the grammar to produce

a sentence or a picture. A disadvantage of bottom-up processing is that one
must identify all of the primitives in the input before parsing. A pure bottom-
up approach can be inefficient if the primitives cannot be identified without

the aid of top-down expectations (e.g., recall that Shirai used partly developed
line-drawings to guide the search for low-contrast lines; see Article XIII.B6).

Similarly, a purely top-down strategy is too "hallucinatory," too susceptible
to finding what it is looking for in noisy input. Consequently, a hybrid of
these strategies is often most efficient. (For a detailed discussion of this issue,
see Articles V.B and IV.Dl, in Vol. I.)

Consider a top-down parsing of the object in Figure E3-1 with the "cylin-
der grammar" that we just discussed. The question for a top-down parser is,

"Does the input match my expectations of it?" or, in this case, "Is there a
cylinder in the input?" Productions 1 and 2 in the cylinder grammar specify
that a cylinder must have a side and that a side must have a downward-
pointing vertical line, a bottom, and an upward-pointing vertical line. There-

fore, the parser looks for a downward-pointing vertical line. Having found
one, the parser directs its attention to the head of the line to find a bottom
primitive. If one is found, parsing continues; otherwise, the parser backtracks
and looks for a different vertical line.

290 Vision Xm

An important aspect of the top-down approach is that it directs the
attention of the parser. This is not so much an issue when parsing sentences,
because the next component of the sentence is always contiguous, but it is
a great advantage in parsing a picture. It guarantees that only certain local
areas of the picture must be scanned and, thus, reduces the time required for
scene analysis.

A bottom-up parse of the drawing in Figure E3-1 starts with identification
of all the primitives in the picture. Subsequently, the parser looks for com-

binations of primitives in the picture that match the right-hand sides of rules
in the cylinder grammar. For example, after identifying the lower half of the

figure as two vertical lines and a bottom, it matches them to the left-hand side
of production 2 to identify the combination as a side. If it can then find a top,

it will have satisfied the left-hand side of production 1 and will conclude that
the input contains a cylinder. Bottom-up processing lacks direction: It does
not know where in the picture to look for primitives, and, when it finally finds
some, it does not use the rules of the grammar to direct search for others.
Since knowing where to look for information is a considerable advantage in

image understanding, undirected bottom-up processing tends to be inefficient.

Semantic Primitives in Syntactic Analysis

A problem for syntactic analysis is to define the appropriate semantic
primitives; an associated problem is to design processes or mechanisms capable
of detecting these primitives. Unlike linguistic grammars, for which natural
primitives are word stems and endings, we do not know what the primitives
are in patterns. It seems that the choice of primitives depends, to some extent,
on the application of a vision system and on the availability of mechanisms
to recognize the primitives. For example, when these methods are applied to

low-level vision, the primitives are usually edge elements. The edge elements
of a picture can be encoded as a sentence, according to a regular or context-
free grammar. In the case of 3-D shape recognition, the semantic primitives
could be generalized cylinders (see Article XIII.D6). Of course, the procedures
for detecting these primitives are more complicated than those used in edge
detection.

The choice of primitives is very important. A related problem concerns
the epistemological adequacy of semantic primitives; that is, is there a set
of primitives that are adequate for representing any scene, or that are at
least very general? This is not so much a question of application as a general
question for a theory of representation. Many primitives have been suggested
for different problems: generalized cones (Marr and Nishihara, 1978) and

spheres (Badler, O'Rourke, and Tolzis, 1979) for three-dimensional shape
descriptions; ribbons (Brooks, Greiner, and Binford, 1978) for relating image
features to generalized cylinders; camera parameters pan, tilt, focus, and

E3 Linguistic Methods for Computer Vision 291

aperture, and the X and Y dimensions of a picture for camera control and
recognition (Bourne, 1981).

Generating Pictures

If pictures can be parsed, they can also be generated by reversing the
parsing process; for example, the cylinder grammar above can be seen as a

procedure for generating cylinders. Syntactic models are used to generate tex-
ture patterns (see Article XIII.C6). Gips (1974) proposed a theory of aesthetics

based on the restrictions he imposed on his pattern-generating grammars.
Templates can be generated by grammars, so that matching between

actual and expected images can be done in the image domain, rather than

by comparing parse trees. O'Rourke (1980) took this approach in his analysis
of human motion.

Conclusion

Syntactic methods in the narrowest definition (picture primitives plus
formal grammars) suffer from a lack of descriptive power. They are usually

applicable only when the picture is built up from a small set of well-defined,
easily recognized primitives and when the relationships between primitives
are simple. Much effort has been devoted to designing more sophisticated

grammars, for example, stochastic, fuzzy, and error-correcting grammars.
However, descriptive power and flexible control seem to result from adding

more programmable mechanisms, as was the case with ATNs in natural-
language processing (see Article IV.D3, in Vol. i). For example, Turner (1974)
used procedures in POPLER to represent the hierarchical structure of objects.
The goal statements of these procedures, which try to prove the existence of

objects, provide top-down control, and the assertion statements, which add
objects to a database as they are discovered, provide bottom-up control.

References

Rosenfeld (1979) discusses a wide variety of picture languages and their
formal properties. Fu (1974) and Pavlidis (1977) include syntactic methods in
pattern analysis.

E4. Relaxation Algorithms

MANY TASKS in vision can be viewed as constraint-satisfaction problems,
for which relaxation algorithms are efficient problem-solving methods. A
relaxation algorithm iteratively assigns values to mutually constrained objects
in such a way as to ensure a consistent set of values, that is, a set for which no

constraint is violated. Consider, for example, the task of labeling a blocks-
world picture (see Sec. XIII.B). This involves finding a unique label for each
line, such that each junction has line labels allowed by the junction dictionary
and each line has a single label along its entire length. These two conditions

constitute constraints on the final solution of the line-labeling problem. There
are several search methods for solving this type of problem, including generate
and test, backtracking, and relaxation. The approach used by Waltz (called
Waltz filtering; see Article XIII.B5) is a relaxation method.

The values assigned to the objects in relaxation can be discrete or prob-
abilistic. In the case of blocks-world line labeling, either a discrete label

satisfies the constraints or it does not. In other applications, relaxation does

not eliminate inconsistent interpretations but, rather, updates their probabil-
ities. Probabilistic relaxation methods exploit constraints to render an inter-

pretation more or less likely.

A Simple Blocks-world Problem

Consider the problem of labeling a picture of a box with a rectangular

hole (shown in Fig. E4-1). Assume that the lines can be labeled only as +, — ,
<—, and — ►, and that the allowable junction labelings for junctions 1,2, and 3
are known to be in the small set in Figure E4-2.

Figure E4-1. A box with a rectangular hole
(from Duda and Hart, 1973).

292

E4 Relaxation Algorithms
293

Junction 1

Junction 2

Junction 3

(0 (g)

Figure E4-2. Possible labelings for junctions 1, 2, and 3 in Figure E4-1.

The relaxation method for solving this problem (Waltz filtering) was
presented in Article XIII.B5. For comparison, let us try to label the drawing
by the method of search with backtracking.

Search with backtracking for a complete labeling of Figure E4-1 begins by
sequentially assigning a single junction label to each junction in the picture.
When an adjacent pair of junctions has been labeled, the line that connects the
junctions is checked to make certain that it has a single label along its entire
length. If it does, labeling continues. Otherwise, the process backtracks to the
most recently labeled junction that still has untried labelings in the dictionary.
A new label is assigned to this junction, and the process continues.

To illustrate the procedure, consider the initial portion of the search

tree for this example, shown in Figure E4-3. We have arbitrarily decided
to examine junctions in the order that they are numbered in Figure E4-1.
Each node in the search tree is shown with the partial solution developed to
that node. Backtracking happens whenever a partial solution fails to satisfy
the constraint that each line has a single label along its length.

The order in which nodes are searched is indicated by numbers above each

node. In node 2, junction 1 is arbitrarily assigned the label of Figure E4-2a;
then, at node 3, junction 2 is assigned the label of Figure E4-2d. But when,
at node 4, junction 3 is assigned the label of Figure E4-2f, lines 1-3 and 2-3
violate the constraint of a single label for a line, and the process backtracks to

junction 3 — the most recently processed junction. At node 5 a new label, that
of Figure E4-2g, is assigned to junction 3. But again, this results in two labels
for one line. Since there are no remaining untried labelings for junction 3, the
process backs up to junction 2. It still has untried labelings, so at node 6 it

is assigned the label of Figure E4-2e. The process continues as, once again,
junction 3 is assigned the label of Figure E4-2f, and, once again, it fails.

294 Vision
xm

E4 Relaxation Algorithms 295

One reason that backtracking is inefficient is that it rediscovers the same

mistakes. For example, if junction 2 is assigned the labeling of Figure E4-2d,
there is no possible labeling for junction 3 such that line 3-2 has a single label
along its length. In the search tree, this causes failure at nodes 4, 5, 11, and

12. The same is true if junction 2 is given the labeling of Figure E4-2e; it
causes failure at nodes 7, 8, 14, and 15. Yet, in backtracking search, these
failures are discovered again and again.

A more efficient approach to this problem would apply the following rule:
Given two adjacent junctions i and j, if junction i can be labeled with x
but there is no labeling for junction j such that the connecting line has a
consistent single label along its length, then x can be eliminated from the set
of possible labelings for junction i. In this manner, once a failure between
adjacent junction labelings is discovered, it is eliminated as a possibility and
need not be rediscovered. This rule would eliminate the labelings of Figures

E4-2d and E4-2e for junction 2, and since only these labelings are possible (in
this example), the rule swiftly demonstrates the impossibility of a consistent

labeling of the object in Figure E4-1 (assuming, of course, the limited set of
labels in Fig. E4-2; the object can be labeled with the full Huffman- Clowes
set of labels). Exhaustive search with backtracking, on the other hand, must
try all combinations of labelings before it can claim that a consistent labeling
is impossible.

The rule stated above may be generalized by substituting any objects in
the problem domain for junctions and substituting any constraint for the one
involving unique line labels. This process is called Waltz filtering after Waltz
and because labels of objects are filtered by constraints. Notice that the rule
takes explicit advantage of local constraints. This property is the conceptual
basis of relaxation algorithms.

Region Interpretation

Tenenbaum and Barrow (1976b) used a relaxation algorithm to interpret

a picture that was correctly partitioned into regions. Figure E4-4a shows a
picture of an empty room partitioned into six regions corresponding to the
floor, wall, door, baseboard, picture, and doorknob. The problem is to interpret
the picture by assigning the correct label to each region. Some knowledge
about pictures of rooms is assumed; for example, the doorknob is surrounded
by the door, which is above the floor, and so on. This knowledge is expressed in

the form of constraints, as indicated in Figure E4-4b. In terms of a relaxation
rule, these are the constraints used in the filtering process, while the picture
regions are the objects to be uniquely labeled.

Initially, each region is assigned all six possible labels because, prior to

considering the knowledge in Figure E4-4b, there is no reason to favor one
label over another. However, in considering the constraints, we immediately
notice that constraint 4 requires pictures and doorknobs to be small. Since

296 Vision xm

□

(a)

(Picture within wall)
(Doorknob within door)

IB—board above floor)
(Door above floor)

(Wall betide door)

(BeNboard betide door)

4. Sire
(Small doorknob)

(Small pic-jre)

APPLICABLE CONSTRAINTS BETWEEN ADJACENT REGIONS REGION

12 3 4 5 6

03 5

(b)

X W B X A X

W X X X X X

B X X W B A

X X W X X X

A X B X X A

X X A X A X

W Within/Containt
A - Above/Below

B Betide

1 W, D. F, B 3

2 W, D, B,

F. P, K

w.

4

D. F. B

5 W, D, F, P, B. K

W, D, F, B

(c) POSSIBLE REGION
INTERPRETATIONS*
BASED ON REGION
SIZE CONSTRAINTS

W, 0, F.

B, P, K

1

W. D

3

W. D, B 2

P, K

5
F. B

W. D. F,

B, P, K

r° W, D, F. B

(d) INTERPRETATIONS SURVIVING
AFTER REGION 1 HAS BEEN
FILTERED AGAINST ALL
ADJACENT REGIONS

P. K

(e) INTERPRETATIONS REMAINING
AFTER FILTERING REGION 3

1
W

3
D

2
P

4-

5 B

(f) FINAL (CORRECT)
REGION INTERPRETATIONS

Legend: D-Door, W-Wall, F-Floor, P-Picture, B Baseboard, K Doorknob

Figure E4-4. Application of relaxation to region interpretation (from Tenen-
baum and Barrow, 1976b).

E4 Relaxation Algorithms 297

regions 1, 3, and 6 are large regions, the labels picture and knob are dropped

from them. This stage of the labeling is shown in Figure E4-4c.
The constraints are now applied to each pair of adjacent regions in order

of region number. Since region 2 is within region 1, constraint 1 applies, and
it can be satisfied if region 2 is a picture and region 1 is a wall, or if region 2 is
a doorknob and region 1 is a door. Therefore, all labelings other than wall and
door are deleted from the set of possible labels of region 1, and all labelings
other than picture and doorknob are deleted from the set of possible labels of
region 2. Next, regions 1 and 3 are filtered by constraint 2. The labels for
region 1 are reduced to wall and door; the labels for region 3 are reduced to
wall, door, and baseboard. Finally, regions 1 and 5 are filtered by constraint 3.
According to this constraint, region 5 may be labeled only floor or baseboard.

The stage of labeling at this point is shown in Figure E4-4d. Note that region
1 has not been filtered with regions 4 and 6, since they are not adjacent.

Region 2 is now due for filtering with its neighbor, region 1. However,
because no labels have been eliminated from either region since the last
time the pair was filtered, further application of constraints will result in no
additional eliminations.

We therefore proceed to region 3 and its neighbors. Regions 3 and 1 are
not filtered for the same reason that regions 1 and 2 are not filtered. Regions 3
and 4 are filtered by constraint 1, which constrains region 3 to be either a
wall or door and region 4 to be either a picture or doorknob. Regions 3 and 5
are filtered next by constraint 2, which limits the labeling of region 5 to wall,
door, and baseboard. The previous set of labels for region 5 contained only
floor and baseboard, and since the current constraint does not permit floor as
a label, the only possible labeling for region 5 is baseboard. Since constraint 2
allows only a door beside a baseboard, region 3 is uniquely labeled door.

Regions 3 and 6 are filtered next by constraint 3. Since region 3 is a door,

region 6 must be a floor. This stage of labeling is shown in Figure E4-4e.
Region 4 is filtered next with its single neighbor, region 3, by constraint 1.

Since region 3 is a door, region 4 must be a doorknob. Region 5 is then filtered
with region 1 by constraint 3; region 1 is labeled as a wall.

At this point, all pairs of adjacent regions have been filtered once. All pairs
of regions whose labels have changed since the last time they were filtered are
now reconsidered. In particular, constraint 1 is reapplied to regions 1 and 2.
Region 1 currently has the unique label wall, so region 2 must be a picture.

The final interpretation of the picture is shown in Figure E4-4f.

Probabilistic Relaxation

There are two significant characteristics of the relaxation algorithms de-
scribed above. First, discrete labels are assigned to the objects. This notion

can be generalized by attaching a level of certainty to each label. For example,

298 Vision Xm

a region may be a wall with a certainty of .3 and a door with a certainty of .7.
A second characteristic of the previous relaxation algorithms is that they are
sequential. Each object is filtered in sequence, using the label sets resulting
from previous filterings. An alternative approach is to filter the objects in
parallel, filtering each object with its neighbors without reference to results
of filtering other objects. For results to propagate, however, this procedure
is performed iteratively. During each iteration, the objects are filtered in
parallel with their neighbors, using the label sets resulting from the previous
iteration. The filtering of each object during an iteration is independent of
other filterings during that iteration.

Relaxation algorithms that attach certainties to the labels and that are

applied in a parallel-iterative manner are called probabilistic, as opposed to the
discrete relaxation algorithms considered previously. Probabilistic relaxation

is useful in many low-level vision tasks in which the problem is to convert
the intensity array into a vocabulary of low-level symbols, such as those

representing lines or edges. Typically a local- feature detector (e.g., line
detector, edge detector) is applied to the intensity array. Such detectors, how-

ever, respond to noise as well as to the presence of the feature. Probabilistic
relaxation can be used to draw out features and eliminate noise on the basis of

consistency in neighboring feature detector responses. For example, if relaxa-
tion is used in line detection, the probability that a pixel point P is a line

point can depend on whether or not P extends a line that has already been
detected with high probability. This example will be discussed next.

Line and Curve Enhancement

The research of Zucker, Hummel, and Rosenfeld (1977) is an application
of probabilistic relaxation to the enhancement of lines and curves. Many
approaches to locating lines or curves in pictures begin by applying local
line detectors that find small line segments throughout the picture. Another
process joins these into more global lines or curves. However, noise in the
picture and gaps in the curves often cause local detectors to return strong
responses when no line segment is present, or weak responses when segments
are present. Relaxation offers a way to enhance the local detector outputs,
making it easier for a subsequent process to follow the lines and curves.

The goal of the relaxation process is therefore to extract consistently
oriented line segments from the intensity array. In the formulation of Zucker

et al. (1977), each picture point has a set of nine labels. Eight of these cor-

respond to unit line segments at eight orientations between n/2 and — ir/2,
and the ninth corresponds to the case in which no line is present.

The initial probability for each label is obtained by evaluating a local

line detector at every picture point in the eight orientations. If the detector's
response is strong for only one orientation, the initial probability is set to be
high on that label and the probabilities on the other labels at that point are

E4 Relaxation Algorithms 299

set to be low. If there is no strong response for any orientation at some point,

the "no-line" probability is set high.
The relaxation process that applies here does not discard labels, as in

discrete relaxation. Instead, the probabilities of the labels are updated.
This is accomplished by compatibility functions, which are the continuous
counterparts to the constraint relations of discrete relaxation. For each pair

of neighboring points ai,a,j and each pair of labels X, X', the compatibility
function rt-,(X, X') is a measure of the compatibility between point az with

label X and point ay with label X'. For example, let a^aj be vertically adja-
cent points, let X represent a vertical line, and let X' represent a horizontal

line. Then the compatibility of both a; and ctj having label X is very high, but

the compatibility of a; having label X and ay having label X' (or vice versa) is
very low.

Let us assume that the compatibility function r has values — 1 < r < 1,
where —1 is complete incompatibility, +1 is complete compatibility, and 0

is irrelevancy (a "don't care" condition). For the line-enhancement problem,
the compatibilities between lines of different orientations are shown in Figure

E4-5. Line segments oriented in the same direction support each other, while
perpendicular line segments contradict each other. Note, however, that the

negative compatibility for perpendicular line segments is set to — .25 rather

than —1.0, since it is possible for curves to make right- angle turns. The "no-
line" label is supported by neighboring "no-line" labels and by line segments
not directed toward or away from it; it is contradicted by line segments
directed toward it.

The updating process consists of adjusting the probabilities at each point
on the basis of the neighboring probabilities and their associated compatibility

functions. Let p;(X) be the probability of label X for picture point a^. Then
the updating process should satisfy the following properties:

1. If Pj(X') is high and nj(\, X') is close to +1, then pi(\) should be increased.

I / y

t t t t i • 1.0 0.5 0.05 -0.15 -0.25 0.25

Figure E4-5. Compatibility weights between line labels (from Zucker, Hum-
mel, and Rosenfeld, 1977).

• »

300 Vision M

2. If Pj(X') is high and 7Y,(X, X') is close to — 1, then p;(X) should be decreased.

3. If Pj(X') is low, or rtJ(X, X') is close to 0, then p*(X) should not change
significantly.

A simple expression that satisfies these properties is Pj(X') ■ ry(X, X'). This
product may be used, for all neighboring points a3 and labels X', to increment
the probability Pi(\) of point a; having label X. An updating rule that uses
these products is

p?(X)[l+tf(X)]
Pi +1(X) ExrfWIi + 9?W1 where

«,lw = Ec->Er'>(^')pf(v:
Briefly, the rule states that the probability of label X on point a; at

the (A: + l)st iteration is a function of both the previous estimate for that

probability, p^(X), and the contribution from the neighboring points, g*(X),
which represents the increment due to the sum of products Pj(\')rij(\, X;)
over the neighbors and their possible labels. The denominator in equation (1)
normalizes the net increment to p;(X) to ensure that the updating rule results
in probabilities.

The rule of equation (1) has been successful in the line-enhancement
problem, suppressing noisy line responses and enhancing long, smooth lines,
after only 5 to 10 iterations. This technique has also been applied to other

low-level vision tasks such as histogram modification, noise cleaning, edge
detection, angle detection, curve thinning, and template matching.

Conclusion

Relaxation methods provide efficient solutions for many vision tasks by
exploiting local constraints in the problem domain. Although discrete methods
preceded continuous ones, it quickly became apparent that the multitude of

uncertainties in low-level vision tasks required a probabilistic approach, thus,
probabilistic relaxation.

The main shortcoming of relaxation is that it is not usually effective in

building global interpretations; its main utility lies in reducing local ambi-
guities. However, as a preprocessor for exhaustive search, relaxation greatly

improves efficiency.

References

Waltz (1972) introduced relaxation in vision. One of the first applications

of probabilistic relaxation for low-level vision is found in Zucker, Hummel,
and Rosenfeld (1977). Mackworth (1977a) presents a good discussion on the
problem of consistency in networks of constraints.

F. VISION SYSTEMS

Fl. Robotic Vision

THE GOAL of robot-vision research is to develop a visual-sensing technology
for industrial robots and anthropomorphic manipulators that allows them to
operate in an unpredictable physical environment. Robotic vision is especially
useful in industrial applications, exploration of hazardous environments, and
medical applications. Currently, most of the work in robotic vision has been
in industrial applications. This article examines the general factors that

influence the design of such systems and describes two systems in detail — one
for transistor wire bonding (Kashioka, Ejiri, and Sakamoto, 1976) and another
for material handling (Holland, Rossol, and Ward, 1979).

Industrial Applications

There are three objectives in using robots in industrial applications:

(a) to increase productivity, (b) to improve quality, and (c) to eliminate repeti-
tive jobs. However, one of the biggest barriers to successful robot applications

has been the lack of visual sensing.
In manufacturing, visual sensing is needed for the assembly, handling, and

inspection of materials and goods. Assembly and material-handling operations
require that parts be identified and that their precise position and orientation
be known. Without visual sensing, a robot must find a part blindly; touch can
be used if the parts are in approximately the right position and orientation, but

vision is needed if the parts are placed randomly. Vision also offers the advan-
tages of speed and accuracy over touch. Furthermore, vision can automate

tedious and costly inspection tasks that are not accomplished accurately by

humans. Image- processing and pattern-recognition techniques can improve
the quality and lower the costs of inspection.

Parameters of Robotic Vision Systems

The most important factors in designing a robotic vision system are

cost, real-time operation, reliability, and flexibility. Since most robotic vision
systems are used in industry, they must be cost-effective; in particular, they
must cost less than human labor for comparable work. Real-time operation is
obviously required to compete with human workers, and this usually requires

the image-processing system to process an image in one second or less. For

301

302 Vision XEI

this reason, the trade-off between performance and the amount of informa-
tion processed is often resolved by processing the smallest practical amount

of information. This influences the design of image-input devices, the choice
between gray-scale and binary representations, the choice of resolution and the
size of the image, and the choice between software and hardware implemen-

tation of algorithms. Using binary images (just black or white) and finding an
optimum image size are two especially important techniques. The optimum
image size is one that achieves a balance between the required resolution and

the real-time operation. For instance, an automatic system for transistor wire
bonding uses binary images of 160 X 120 pixels (Kashioka et al., 1976); on

the other hand, an inspection system for integrated-circuit (IC) chips requires
only 50 X 50 pixels, but it has four-bit gray-level images (Baird, 1978). Some
design decisions will change with time because prices of memory, solid-state
array sensors, custom-designed IC chips, and microprocessors are decreasing.

Reliability is another important factor in practical robotic-vision systems.
To achieve reliable performance, careful attention must be paid to the imag-

ing device, illumination settings, threshold techniques, selection of reliably
extractable features, and the recognition algorithm. In addition, designers
and users must understand the limitations of the system and the situations

in which it fails. Noise and worst-case studies are important because the
images vary according to the surrounding conditions. These considerations
are illustrated in the next section.

Finally, vision systems must be flexible, especially in the case of medium-
and low-volume production runs. The system must be easily adapted to
different tasks; otherwise, it is uneconomical. However, a flexible system often

costs more than a special-purpose one, so if production runs are very large, a
manufacturer will opt for special-purpose devices.

To date, the successful vision systems in production are those that were
designed specifically for a particular environment. The key factors in their
success seem to have been a careful analysis of the task and the fact that the
burden on the vision system is minimized.

Case Studies

A transistor wire-bonding system. A fully automatic system for
transistor wire bonding, developed by Kashioka, Ejiri, and Sakamoto (1976)

at Hitachi, was one of the first production robotic- vision systems to use image-
processing functions extensively. The system visually locates a transistor chip
and automatically bonds gold wires between the electrodes on the chip and

the outer leads. It assembles 2,000 chips per hour (1.8 sec. /chip) — twice the
speed of traditional semiautomatic wire-bonding machines — with an accuracy
of more than 99%. One of the features of this system is that up to five
groups of 10 bonding machines share a central minicomputer, and the bonding
machines in a group share an image hardware processor.

Fl Robotic Vision 303

The task of the vision system is to extract the precise x-y coordinates of
the base electrode B and the emitter electrode E on the chip and to send

the information to the x-y servomechanism of a bonder. To do this, an
area of 1,100 X 800 micrometers is first scanned by a TV camera through
a microscope and the image is then binarized into 160 X 120 pixels. To locate
the chip position and orientation, two or three local standard patterns are
searched in the input image, where each standard pattern consists of 12 X 12
pixels. The search for matching patterns is done by special hardware that
receives a frame of input image from the TV camera and a standard pattern

from the minicomputer. The matching is accomplished within a one-frame
scanning time, 16.7 ms, and the evaluation of the position is done by the

central minicomputer during the one-frame blanking time.
Identifying local patterns Pi and P<± is enough to identify the coordinates

of the chip; however, the following additional processing increases precision
and reliability. If the distance and direction angle between the located P\
and Pq are not what was expected, a third local pattern P3 is found and the
distances and direction angles between Pi and P3 and between P2 and P3 are

evaluated. Because the matching rate decreases rapidly when the inclination
of chips exceeds ±7 degrees, the system uses two other sets of standard
patterns that are rotations of Pi, P2, and P3, by 10 degrees right and left,
respectively. Finally, to achieve high precision, four repeated measurements
are made for each chip. Incompatible measurements are thrown out, and the

others are averaged to yield the final x-y coordinates. Averaging produces a
resolution of one-half of a pixel, or 3.5 micrometers. In a trial, the average
recognition accuracy was ±9.3 micrometers and the average recognition time
was .15 seconds per chip.

The system has the flexibility to handle various types of transistors. The

standard patterns for these transistors are generated interactively. Special-
purpose hardware displays an image of a transistor chip with a 12 X 12 pixel
overlay to a human operator, who indicates one set of standard patterns.
These are then stored in binary form in the computer.

At the time that Kashioka and his associates (1976) published their report,

a 20-machine system was assembling 10 million transistors per month. The
success of this system has led to similar systems for integrated circuits (see,

e.g., Mese et al., 1977; Naruse et al., 1979).

Transferring parts from belt conveyors. CONSIGHT-I, developed by
Holland, Rossol, and Ward (1979) at General Motors Research Laboratories,

is a vision-based robot system that picks up parts that have been randomly
placed on a moving conveyor belt. Its vision system, operating in a visually
noisy environment, determines the position and the orientation of parts on the
belt. After each piece is located, the belt is stopped and the robot transfers
the parts to a predetermined location.

304 Vision Xm

An important feature of the system is that it can obtain a reliable binary
image of objects that do not always have a high contrast with the background
of a conveyor belt. For example, foundry castings blend with the background
when placed on a belt. To overcome this difficulty, the system projects a
narrow and intense line of light to the conveyor belt surface by using two
sets of long light tubes and cylindrical lenses. The projected line is sensed

by a linear- array camera with 256 photocells. When an object comes to the
lighted position, it intercepts the light before it reaches the surface, with the
result that the belt surface appears bright and the object dark. Two light
sources are used to avoid a shadowing effect. Though some internal features,
like holes, are still subject to distortion or occlusion due to shadowing, the

system gives a sharp-edged silhouette for a wide range of objects.
The camera scans the belt at a constant rate, independent of the belt

speed. One scan line is sampled for each equal increment of belt travel by
measuring the position and the speed of the belt. This continuous sampling

of scan lines produces a two-dimensional image. In fact, the system does not
store the entire image but processes it line by line. As objects pass through
the slit of view, statistics on each component (dark area) are continuously
updated. When two components in a previous scan line are connected to one
component in a new line, the system updates its statistics on the object. These
include position, color (black or white), count of pixels, sums of x coordinates
and y coordinates, and sums of products of x and y coordinates. When a
component has passed completely through the slit of view, these statistics are
used to calculate numerical shape descriptors. The system then identifies the
object and computes its position and orientation.

The system uses run-length coding to perform the connectivity analysis
effectively. This minimizes the amount of memory and processing required.
For a line image of n pixels, a straightforward binary connectivity analysis

requires on the order of n2 operations, while the algorithm using run-length
coding requires on the order of n operations. In general, run-length coding is
an effective technique for reducing the amount of information processing and
storage.

SRI International has developed a leading machine-vision system called
the SRI Vision Module (Gleason and Agin, 1979). The techniques developed

at SRI include connectivity analysis with run-length coding, numerical shape

descriptors, and recognition (identification) of parts with a nearest-neighbor
method. The principal components of the vision module are a solid-state TV
camera with 128 X 128 resolution, an interface unit for digitizing the video

signal, and an LSI-11/2 microcomputer. The system is a package of useful
programs with all necessary hardware for many visual sensing and inspection
tasks.

Fl Robotic Vision 305

Conclusion

The application of robotic-vision technologies in industry has important
implications, not only for industrial manufacturing processes, but also for

vision technology. Powerful industrial-vision systems have been developed
by careful attention to the trade-offs between cost, flexibility, speed, and
reliability.

References

Operating industrial vision systems are discussed in Ejiri et al. (1973);
Kashioka, Ejiri, and Sakamoto (1976); Uno, Ejiri, and Tokunaga (1976);
Mese et al. (1977); Baird (1978); Holland, Rossol, and Ward (1979); and Uno
et al. (1979). Thompson (1980) includes several survey papers on industrial
applications of vision.

F2. Organization and Control of Vision Systems

THIS CHAPTER has thus far described the theory and methods of various
aspects of vision, but there has been little discussion of integrated vision

systems. In the previous article (xiII.Fl) we described some industrial robotic-
vision systems. This article and the next survey four vision systems that
were developed as AI projects and that have organization and control schemes
representative of vision systems. We discuss three of these systems here:

a multiband aerial-photo interpretation system from Kyoto University, the
VISIONS system from the University of Massachusetts, and a query-oriented
system from the University of Rochester. The ACRONYM system, developed
at Stanford University, is presented in Article XIII.F3.

A key attribute of an image-understanding system is the interaction be-
tween high-level knowledge — object models — and low-level knowledge — image

or scene features. While the general flow of information is bottom-up, from
pixels to image features, to scene features, to object labeling, many systems

also have some top-down information flow from object models to image fea-
tures. Kelly (1970), for example, wrote a program to recognize human faces

in which a model of the arrangement and intensity characteristics of typical

faces guided all of the low-level processing. After finding the outline of the
head, the program would estimate the probable position of the eyes, and look
for the dark spots that characterize the pupils in and around the predicted

locations. This model- driven processing can be both efficient and effective.
However, programs that depend very much on high-level control of low-level
processing tend to be too domain-dependent and respond poorly when viewing
conditions change even slightly. The following descriptions of vision systems
focus on mechanisms for achieving cooperation and flow of control between

low-level and high-level processing stages. In fact, we emphasize flow of con-
trol at the expense of detailed descriptions of vision processes in this article.

Interpreting Multiband Aerial Photographs

Nagao, Matsuyama, and Ikeda (1978, 1979) developed a system that

interpreted a class of multiband aerial photos acceptably well. Their image-
interpretation system employs multiple, independent knowledge sources that
operate on a common, multilevel database. This database, or blackboard, is

represented as shown in Figure F2-1. The abstraction levels of image informa-
tion are elementary region, cue region, object, and object category. Models are

described in terms of two-dimensional features that can be observed in images.
In general, it is not possible to do scene interpretation with two-dimensional
models, but it is an acceptable technique for aerial photography because the

306

F2 Organization and Control of Vision Systems 307

£ —

OS

 I

O

u

o

308 Vision Xm

view angle is so constrained that object shapes change little and occlusion is
not much of a problem.

The first step of processing is to smooth the image (see Article XIII.C3).

A nonsemantic segmenter then defines a set of elementary regions — a set of
patches that are homogeneous in multispectral properties.

The next step is to extract cue regions. The types of cue regions are large

homogeneous regions, shadow and shadow-causing regions, elongated regions,
vegetation regions, high-contrast regions, and high-contrast vegetation regions.
Each type of cue region triggers one or more object recognizers. Different cue

regions may overlap; for example, high-contrast vegetation regions are simply
the intersection of high-contrast regions and vegetation regions.

Cue regions are extracted by screening elementary regions; for example,
any patch with very low intensity, particularly in red and infrared, is classified
as a shadow. An adjacent region with an appropriate boundary on the

sunward side is a shadow-maker. Vegetation regions have a high ratio of infra-
red to red; high-contrast areas are aggregations of small elementary regions.

Shadow-making regions trigger the house detector, while high-contrast vegeta-
tion regions are likely to be considered forest.
Each elementary region is represented by a node in the lowest level of the

blackboard. Nodes at higher levels represent cue regions and objects; they
are linked to the elementary regions they subsume. Furthermore, a node can
have a dependency link to another node, indicating that its interpretation was
aided by the prior interpretation of the other node.

The property table shown in Figure F2-1 stores the coordinate range, or
bounding rectangle, of a region and records whether the region is unanalyzed,
recognized, irregularly shaped, or rejected. Each region has only one entry,
which means that there can be only one object hypothesis for a region. The
first interpretation of a region is kept until a contradiction arises. To resolve
contradictions, the system deletes the conflicting region interpretation for
which it is least confident. It marks the region as unanalyzed, restarting the
interpretation of the region; object hypotheses that depend on the deleted
node are themselves deleted.

Knowledge sources (KSs) are independent, but they communicate via the

blackboard and a message-passing system. A central executive cycles control
among the knowledge sources. When a KS is invoked, it looks at the cue region
in which it is interested and, if it finds an unclassified elementary region within
its cue region, it attempts a classification. If classification fails, the region is
marked rejected. In this case, the KS will not reattempt classification unless it

gains additional constraints by successfully classifying a neighboring region. If
a different knowledge source produces a constraint, a message will be placed in
the message box. This could trigger a reexamination of a previously rejected
region.

F2 Organization and Control of Vision Systems 309

VISIONS

The University of Massachusetts' VISIONS system (Hanson and Riseman,
1978b) is patterned after the HEARS AY-II speech-understanding system
(Erman et al., 1980; see also Article V.Cl, in Vol. i). In VISIONS, hypotheses
are posted and accessed on a blackboard by independent procedural knowledge

sources: KS activation and scheduling are under the control of a central execu-
tive. The system has been tested with outdoor scenes. Figure F2-2 outlines

the structure of VISIONS.

The blackboard in this system represents a layered description of the
contents of an image. The lowest levels represent regions, segments, and
vertices; they form a structure called an RSV graph.

Preprocessing stages are shown in the left half of Figure F2-2. There
are three stages of information representation. The first is the image itself,

represented by a resolution pyramid (see Article XIII.El). The second stage

comprises separate edge and region analysis. The third stage is a merged rep-
resentation of the results of a correlation between the edge analysis and region

analysis. The representations at these low levels are of image characteristics,
rather than of scene characteristics.

The next two levels in the blackboard work with surfaces and volumes.

At these levels, the system attempts to reconstruct the three-dimensional
configuration of the scene. The top two levels work with representations of

MODEL SEARCH SPACE

BOUNDARY
ANALYSIS [curve smoothing and fitting

\

\ X"

MERCED

representation;

/ / \ V
REGION

ANALYSIS

FEATURE

EXTRACTION

REPRESENTATION

CONTROL

| MODEL

IUILDER |

1 mss.e"]

[msT]

[ME | [m"

7] \m v | LTQ 2

n its

fiTT La

I] [53

/
4

\
ATTRIIUTE I

MATCHING

1 3D SHAPE
MANIPULATION j

j SHADOW |

[PERSPECTIVE

[OCCLUSION]

KNOWLEDGE SOURCES

Figure F2-2. Overview of the VISIONS system.

310 Vision M

objects and schemas. At the object level, hypotheses are formed about what
the objects in the scene must have been to result in the observed image. The
schema level imposes constraints on the selection of object models. There
may be office schemas, airport schemas, and so on. Schemas serve the same

purpose as Minsky's frames (1973; see also Article III.C7, in Vol. i).
The blackboard model in Figure F2-2 illustrates the distinction made in

VISIONS between a priori models and image-specific models, though both may
be represented in the same manner. The a priori models are stored in long-

term memory (LTM), while the image-specific models are stored in short-term
memory (STM). Recognizing that they did not have adequate KSs to make
surface and volume hypotheses reliably, the designers of VISIONS compensated

by relying heavily on top-down hypotheses represented by models in LTM. By
projecting these models into two dimensions, they construct RSV-level models
of objects, and these are matched to the actual image.

VISIONS chooses a KS by traversing a decision tree. Its model builder
decides to expand or to develop a new hypothesis for a model. To expand a
model, the level focuser first decides which level of the blackboard to work
on. Then, that level is expanded under the control of the node focuser, the
node expander, and the node verifier. The focuser selects a node from the

blackboard to process further, the expander calls a KS to create new hypoth-
eses, and the verifier checks the results for satisfaction of constraints.

VISIONS incorporates a checker to follow along after each KS activation

to test each new hypothesis. The system's confidence in a hypothesis is
affected by a number of factors, including its confidence in other competing
or supporting hypotheses and whether a hypothesis supports a higher level
hypothesis in which the system has confidence.

A Query- oriented Vision System

Ballard, Brown, and Feldman (1978) at the University of Rochester have

developed a query-oriented vision system. It abandons the approach of exhaus-
tive processing at the low levels. Instead, it processes just enough information

to answer a query. A description of the content of the image is maintained

and expanded with each query. All processing is done in the two-dimensional
image domain; no three-dimensional models are used.

Information is represented in three layers: an image data structure, a

model layer, and a sketchmap. This is shown in Figure F2-3. The image
data structure contains the spectral bands of the raw image at various resolu-

tions, along with derived information about edges, texture, and regions. The
model is a semantic network, representing the appearances of and relationships

F2 Organization and Control of Vision Systems 311

Image Data Sketchmap Model
Structures

Figure F2-3. Basic layer structure.

between objects as projected into two dimensions. An object node in the
model layer is linked by constraint relations to other object nodes. A node
in the sketchmap represents a correspondence between a feature of the image
and an object node in the semantic network. These associations are built up
during image interpretation and constitute the answers to queries.

Types of queries are precoded as executive procedures that roughly outline
how to answer queries. An executive procedure imposes a search strategy,
based on information contained in mapping procedures that are associated
with objects in the model plane. Mapping procedures encode how to find
instances of the models in the image data structure. Each is specialized to one
particular object, but an object node in the model layer may be associated with
any number of mapping procedures. A mapping procedure has a precondition,
a postcondition, an a priori reliability, and an expected cost (in CPU time). An
executive procedure can examine these characteristics to select the mapping
procedure that best fulfills its needs.

Figure F2-4 shows a sample executive procedure, written in a stylized
version of SAIL. It looks for ribs in chest radiographs. The Node variable in

Figure F2-4 refers to a node in the sketchmap.
The executive can use (or cause to be used) the information built up in

answering previous queries in order to construct new sketchmap nodes to be
verified.

Conclusion

We have discussed three integrated vision systems, concentrating on the
flow of control within each. Two of these systems use flexible and powerful

312 Vision Xffl

PROCEDURE MatchRib (Node)
BEGIN
if there is an INSTANCE of Node then

BEGIN

print("rib" , Node, "already matched. •■) ;
return
END

else BEGIN
Find x such that

x is a RIB-PROCEDURE of Node,
and RELIABILITY of x is acceptable,
and COST of x is no greater than that of any other reliable

RIB-PROCEDURE of Node;

ApplyProc (x, Node);
For each v such that

v is a RIB,
and v is a NEIGHBOR of Node

do MatchRib (v)
END

END

Figure F2-4. A simplified executive procedure for ribs, from the system
of Ballard, Brown, and Feldman (1978).

blackboard control structures, which are well-suited to processing large amounts
of information and developing partial hypotheses incrementally from noisy
data.

Other well-developed computer vision systems that interpret natural scenes
include Shirai (1978), Rubin (1978), and Ohta (1980).

References

Kanade (1977) discusses the issues of model representation and control

structure in vision systems.

F3. ACRONYM

ACRONYM (Brooks, 1981a) is intended as a domain-independent, model-
driven interpretation system: A user describes the objects expected in an appli-

cation domain, along with their possible relationships, and the system tries
ta interpret images as specializations of the domain. ACRONYM attempts
to identify and classify instances of modeled objects and, at the same time,

extract three-dimensional information from a monocular image concerning
the shape, structure, and three-dimensional location and orientation of the

objects. The major modules (boxes) and data structures (ellipses) of ACRO-
NYM are shown in Figure F3-1.

The principal domains in which the system has been tested are aerial-
photograph interpretation, specifically of airport scenes, and low-angle views
of automated assembly work-stations with a wide range of industrial parts.

The ACRONYM project divides model-based vision into four parts: model-
ing, prediction, description, and interpretation. The user models both specific

objects and generic classes of objects in terms that are independent of images.
The program automatically predicts which image features to expect, how to
look for them, how to coarsely filter candidate features, and how to use image

Figure F3-1. The ACRONYM system.

313

314 Vision Xm

measurements to deduce three-dimensional information about tentative object
interpretations. Description is the process of bottom-up reduction of the gray-
level image to a higher level, model-independent description of it. Interpre-

tation relates the description of the image to the prediction, applying the

instructions included in the prediction to produce a three-dimensional under-
standing of the scene. These four phases of image understanding are discussed

in detail in the remainder of the article.

The ACRONYM system uses two symbolic reasoning systems in all phases
of its operation other than description. A geometric system reasons about

complex products of coordinate transforms — typically 10 to 20 transforms
with 10 or more free parameters. An algebraic reasoning system takes sets of
nonlinear algebraic symbolic inequalities and bounds trigonometric and other
expressions of the satisfying sets of those inequalities. This system is based
on a method for reasoning about linear inequalities over integers introduced

by Bledsoe (1975) for proving properties of programs.

Modeling

The user gives ACRONYM models of objects and their spatial relation-
ships, as well as classes of models and their subclass relationships. The first

provides a geometric component of the representation scheme, stored as the
object graph. The second provides an algebraic component and is stored
as the restriction graph. Objects are modeled by the volumes they occupy
and by transforms between the local coordinate systems of these volumes.

Classes (and thus subclasses) are defined by sets of inequalities (constraints)
on algebraic expressions (perhaps nonlinear) over parameters of the geometric
model.

The nodes of the object graph denote objects and subobjects; they refer
to volume primitives that are represented as generalized cones (see Article
XIII. D6). For example, the body of an electric motor (like those shown in

Fig. F3-2) might be represented by a simple, right circular cylinder — a circle
swept along a straight axis.

There are two types of directed arcs in the object graph. Subpart arcs rep-
resent the coarse-to-fine subpart hierarchy of complex objects. Electric motors

have subparts such as a base, attachment flanges, and a drive shaft. Affixment
arcs describe the spatial relationships between subparts. For instance, the
drive shaft has its axis collinear to the axis of the motor body.

Many parameters must be specified to describe fully a generalized cone,
a subpart arc, or an affixment arc. The user may give specific numeric
values for these parameters and thus completely specify particular objects;
alternatively, he (or she) may also choose to leave some parameters as free
variables and perhaps supply constraints on the values allowed for them as
arbitrary nonlinear algebraic inequalities.

F3 ACRONYM 315

Figure F3-2. Three specializations of the generic class of small electric
motors.

A user may want to describe a class of small electric motors that vary in

shape and structure but have similar masses. Further, the motors may have

volumes roughly proportional to their masses but constrained to lie in some

range. Finally, the motors may have different lengths and diameters. Thus,

the user might leave the body length as a parameter MOTOR-LENGTH and

body radius as a parameter MOTOR-RADIUS and specify that

70.0 < MOTOR-LENGTH X MOTOR-RADIUS X MOTOR-RADIUS < 160.0

with additional constraints that

6.0 < MOTOR-LENGTH < 9.0 ,

2.0 < MOTOR-RADIUS < 3.0 .

This is how variations in size and shape are represented by constraints on

parameters of the nodes of the object graph.

Similarly, constraints on parameters of subpart arcs can be used to rep-
resent variations in object structure, and variations in spatial relationships

can be represented by constraints on parameters of the affixment arcs. For

instance, a parameter for the number of attachment-flange subparts might be
allowed either to be 0 or to lie in the range from 3 to 6. This constrains the

allowable structures of electric motors. Parameters in the affixment arcs relat-

ing attachment flanges to the motor body may constrain them to lie equally

spaced about one end of the body.

Sets of constraints on model parameters form the nodes of the restriction

graph. They are organized in a lattice defined by directed specialization arcs.

Thus, there might be a node giving all the constraints for some generic class of

small electric motors. It may have two specializations — each a more restrictive
set of constraints. One might be the subclass of motors with flanges and no

base, and the other the subclass of motors with a base and no flanges. Each of

these may have further specializations. Figure F3-2 presented three instances
of such a parameterized model, obtained in each case by specializing all the

parameters down to specific numeric values.

316 Vision XIH

During modeling, the user can explictly define parts of the restriction

graph. Later, during interpretation, ACRONYM adds more nodes, correspond-
ing to hypothesized instances of objects. Starting with a hypothesized

instance that matches the geometric description of an object, ACRONYM tries
to find the most specialized restriction node that is consistent with algebraic
constraints implied by the image. Thus, it carries out subclass identification
of objects.

The ACRONYM modeling system is also used for tasks other than vision.

Soroka (1980) has made it the basis of a real-time simulation system for off-
line programming of robots. Brooks (1981a) has used it to explore techniques

of planning automated assemblies.

Prediction

Given a set of models and their relationships, geometric reasoning tech-
niques are used to predict features that will be invariantly observable, that is,

features that will be observable over the modeled range of variations in size,
structure, and spatial relations. Image relations between those features are
also predicted. This requires analysis of the ranges of those variations in the

object-model classes. ACRONYM does not predict the complete appearance of
objects from all possible viewpoints but, rather, it predicts features that allow
it to identify instances of objects, and also their orientation and position.

The major result of prediction is the prediction graph. The nodes of
the graph are predictions of image features, and the arcs specify relations
expected to hold between the features. Predictions have two functions. First,

they provide a coarse filter for hypothesizing object-to-image feature matches.
Second, they contain instructions on how to use noisy measurements of an

image feature to deduce three-dimensional information about the object to
which it has been hypothetically matched.

The predictor module of ACRONYM is implemented as a set of about

280 production rules. These are executed according to a backward-chaining
control strategy, augmented by the possibility of setting up subgoals on an

agenda. Meta-rules examine the agenda for goal conflicts, eliminate them,
and then invoke the rule mechanism on each subgoal in the agenda. Rule
selection is through a unification pattern match of rule advertisements to
subgoal specifications.

Shape prediction. The image features predicted by ACRONYM are

shapes, represented as ribbons (the two-dimensional analogue of generalized
cylinders) and ellipses. Ribbons are a good representation of the images
generated by a generalized cone. Consider a ribbon that corresponds to
the image of the swept surface of a generalized cone. For straight spines,
the projection of the cone spine into the image would closely correspond

F3 ACRONYM 317

to the spine of the ribbon. Thus, a good approximation to the observed angle
between the spines of two generalized cones is the angle between the spines of
the two ribbons in the image corresponding to their swept surfaces. Ellipses
are a good way of describing the shapes generated by the ends of generalized

cones, since the perspective projections of ends of cones with circular cross-
sections are ellipses.

Shape prediction involves deciding what shapes will be visible, predicting

ranges for shape parameters — to be used as a coarse filter during interpreta-
tion and also to guide the low-level descriptive processes — and deriving in-

structions about how to invert locally the perspective transform and hence use

image measurements to generate constraints on the original three-dimensional
models.

The perspective transform and the process of inverting it are illustrated

in Figure F3-3, which shows a simple camera geometry. An object of length /
is at distance d from the camera focus, and parallel to the image plane of
the camera. The camera has focal ratio r. The image of the object will

measure rl/d; thus, this expression can be used to make predictions about the
appearance of the object in the image. Since the object and its relation to the
camera may be specified in terms of many free parameters, any or all of r,
/, and d may be symbolic algebraic expressions rather than specific numbers.
The algebraic reasoning system is able to find upper and lower bounds on

rl/d that give a range approximation for possible image sizes of the object.

Let that predicted range be P = \pi,Ph\- Suppose that, later, some image
feature is hypothesized to match the object and that its measured length,

with error estimates, is the range M = [m^ra^]. Then if P D M is empty,
the hypothesis should be rejected, as the observed feature cannot possibly fall
in the predicted range. Otherwise, however, the hypothesis can be tentatively
accepted. Further, if the hypothesis is correct, it must be the case that

mi < rl/d < rrih •

Thus, the hypothesis produces algebraic constraints, called back con-
straints, on the underconstrained parameters of the original model. When

combined with other constraints from such local inversions, and from the

user-supplied model constraints, the unknown parameters of the model's size,
structure, position, and orientation in the world are gradually refined.

Predicting relations. In addition to shapes, relations between shapes
are also predicted. Observable relationships predicted between shapes include

exclusivity, collinearity, connectivity, relative spine angle, and distance within

the image. Many relations (e.g., angle and distance) include back constraints,

analogous to those provided with shapes, which permit three-dimensional
information to be extracted from image measurements.

318 Vision
xm

Image P I arte

Object (length = I)

I mage

I ength =

Figure F3-3. The coordinate system used for ACRONYM camera
models.

Description

The descriptive modules of ACRONYM try to describe images as a picture
graph in the same terms as the prediction graph, that is, as ribbons and ellipses.

A line- finder, first developed by Nevatia and Babu (1981), summarizes
a gray-level image as a collection of linked and straightened line segments.
Typically, about 1,000 lines are produced. The line-finder works in a purely
bottom-up fashion. Figure F3-4a shows the lines found by the line-finder for
an aerial image of an airplane.

The prediction graph provides general guidelines for the shapes and sizes
that can be expected, and the edge mapper looks for these shapes, but with
no particular concern for which shape corresponds to which prediction. The
result is the picture graph, consisting of shape descriptions and their relative

locations and orientations in the two-dimensional image. The picture graph
contains no explicit three-dimensional information. Figure F3-4b shows the
ribbons contained in a picture graph produced from the edges in Figure F3-4a,
when the system was looking for wide-bodied jet aircraft, but had no idea of
the scale to expect.

Interpretation

ACRONYM interprets images by trying to find subgraph isomorphisms

between the picture-graph description of the image and the prediction-graph

F3 ACRONYM 319

V_-

'j - -" -Ji ̂ ~~kr=

Figure F3-4. (a) Line segments for the image; (b) ribbon description.

320 Vision XIH

expectations. Not only must image features coarsely match predictions, and
support observed relations that match those predicted, but all the locally

generated back constraints must be consistent. Since ACRONYM does sub-
graph matching, partial obscurations or failures in the descriptive processes

do not necessarily preclude reliable interpretations.

Figure F3-5 shows two specializations of a modeled generic class of wide-
bodied passenger jet aircraft used to interpret the image of Figure F3-4a. The
subclasses specified by the user included Boeing-747s and Lockheed L-lOlls.
Figure F3-5 shows specializations of each of these two classes. The full
geometric model has approximately 30 parameters related by inequalities,

which, for example, express the fact that the wing span of wide-bodied jets
is roughly proportional to fuselage length. More specific inequalities are
provided to specify the subclasses.

Given that the camera was somewhere in the range of 1,000 to 12,000
meters above ground, with a focal ratio of 20, and some small pitch and

roll, ACRONYM produced the interpretation of Figure F3-4b shown in
Figure F3-6. In addition, it deduced a large number of inequalities on the
model parameters. These were consistent with the constraints for the generic

model and for L-lOlls, but not for Boeing-747s; therefore, ACRONYM
deduced that the aircraft was an L-1011. Note that this deduction was not
based on the size of the image, but on relationships between the subparts of
the aircraft, such as the ratio between the wing span and the fuselage length
and the angle between the wing and the fuselage.

Conclusion

ACRONYM combines geometric matching and algebraic consistency-
checking to obtain reliable and accurate three-dimensional interpretations of
images. Details of other image interpretations can be found in Brooks (1981a).

Figure F3-5. Models of the Boeing-747 and the Lockheed L-1011.

F3 ACRONYM
321

f?T-HIMC <1>

L.ACE: <1>

Figure F3-6. Interpretation of Figure F3-4a.

References

The ACRONYM system is discussed in Brooks' doctoral dissertation
(1981a) and in his AI Journal paper in the special issue devoted to vision

(1981b).

Chapter XIV

Learning and Inductive Inference

CHAPTER XIV: LEARNING AND

INDUCTIVE INFERENCE

A. Overview / 325
B. Rote learning / 385

1. Issues / 335

2. Rote learning in Samuel's Checkers Player / 339
C. Learning by taking advice / 345

1. Issues / 345

2. Mostow 's operationalizer / 350
D. Learning from examples / 860

1. Issues / 360
2. Learning in control and pattern recognition systems / 373
3. Learning single concepts / 383

a. Version space / 385

b. Data-driven rule-space operators / 401
c. Concept learning by generating and

testing plausible hypotheses / 411
d. Schema instantiation / 416

4. Learning multiple concepts / 420
a. AQ11 / 428

b. Meta-DENDRAL / 428
c. AM / 488

5. Learning to perform multiple- step tasks / 452

a. Samuel's Checkers Player / 457
b. Waterman's Poker Player / 465
c. HACKER / 475
d. LEX / 484
e. Grammatical inference / 494

A. OVERVIEW

LEARNING is a very general term denoting the way in which people (and
computers) increase their knowledge and improve their skills. From the very
beginnings of AI, researchers have sought to understand the process of learning
and to create computer programs that can learn.

There are two fundamental reasons for studying learning. One is to
understand the process itself. By developing computer models of learning,
psychologists have attempted to gain an understanding of the way humans
learn. Philosophers since Plato have also been interested in learning research,
because it may help them understand what knowledge is and how it grows.

The second reason for conducting learning research is to provide com-
puters with the ability to learn. It has long been a goal of AI to develop

computer systems that could be taught rather than programmed. Many other
applications of computers, such as intelligent programs for assisting scientists,

involve the acquisition of new knowledge. Thus, learning research has poten-
tial for extending the range of problems to which computers can be applied.
In this overview article, we first present a short history of AI research on

learning. This is followed by a review of AI perspectives on learning, from
which a simple model of learning is developed. This model allows us to discuss
some of the major factors affecting the design of learning systems.

A Brief History of AI Research on Learning

AI research on learning has evolved through three stages. The first,

and most optimistic, stage of work centered on self-organizing systems that
modified themselves to adapt to their environments (see Yovits, Jacobi, and
Goldstein, 1962). The hope was that if a system were given a set of stimuli,

a source of feedback, and enough degrees of freedom to modify its own orga-
nization, it would adapt itself toward an optimum organization. Attempts

were made, for example, to simulate evolution in the hope that intelligent pro-
grams would result from the processes of random mutation and natural selec-

tion (Friedberg, 1958; Friedberg, Dunham, and North, 1959; Fogel, Owens,

and Walsh, 1966). Various computational analogues of neurons were devel-
oped and tested; foremost of these was the perceptron (Rosenblatt, 1957).

Unfortunately, most of these attempts failed to produce systems of any com-
plexity or intelligence (see Article XIV.D2 on adaptive learning).

Theoretical limitations were discovered that dampened the optimism of

these early AI researchers (see Minsky and Papert, 1969). In the 1960s, atten-
tion moved away from learning toward knowledge-based problem solving and

325

326 Learning and Inductive Inference XTV

natural-language understanding (Minsky, 1968). Those people who continued
to work with adaptive systems ceased to consider themselves AI researchers;
their research branched off to become a subarea of linear systems theory.

Adaptive-systems techniques are presently applied to problems in pattern
recognition and control theory.

The beginning of the 1970s saw a renewal of interest in learning with

the publication of Winston's (1970) influential thesis. In this second stage of
learning research, workers adopted the view that learning is a complex and
difficult process and that, consequently, a learning system cannot be expected

to learn high-level concepts by starting without any knowledge at all. This
view has led researchers, on the one hand, to study simple learning problems
in depth (such as learning single concepts) and, on the other, to incorporate

large amounts of domain knowledge into learning systems (such as the Meta-
DENDRAL and AM programs discussed in Articles XIV.D4b and XIV.D4c) so

that they could discover high-level concepts.
A third stage of learning research, motivated by the need to acquire

knowledge for expert systems, is now under way. Unlike the first two phases of
learning research, which focused on rote learning and learning from examples,

the current work looks at all forms of learning, including advice-taking and
learning from analogies.

Four Perspectives on Learning

Herbert Simon (in press) defines learning as any process by which a
system improves its performance. His definition assumes that the system has
a task that it is attempting to perform. It may improve its performance by

applying new methods and knowledge or by improving existing methods and
knowledge to make them faster, more accurate, or more robust.

A more constrained view of learning, adopted by many people who work
on expert systems, is that learning is the acquisition of explicit knowledge.
Many expert systems represent their expertise as large collections of rules
that need to be acquired, organized, and extended. This view emphasizes
the importance of making the acquired knowledge explicit, so that it can be
easily verified, modified, and explained. Researchers are presently working

on knowledge-acquisition systems that discover new rules from examples or
accept new rules from experts and integrate them into the knowledge base of
the system.

A third view is that learning is skill acquisition. Psychologists have
pointed out that long after people are told how to do a task, such as touch
typing or computer programming, their performance on that task continues
to improve through practice (Norman, 1980). It appears that although people
can easily understand verbal instructions on how to perform a task, much
work remains to be done to turn that verbal knowledge into efficient mental or
muscular operations. Researchers in AI and cognitive psychology have sought

Overview 327

to understand the kinds of knowledge that are needed to perform skillfully.
The processes by which people acquire this knowledge through practice are
little understood.

The collective enterprise of science is usually considered to be one of the
most effective ways that our culture learns about the world. Thus, a fourth
view of learning is that it is theory formation, hypothesis formation, and
inductive inference. Work on theory formation has centered on understanding
how scientists build theories to describe and explain complex phenomena. A

necessary part of theory formation is hypothesis formation — the activity of
finding one or more plausible hypotheses to explain a particular set of data
in the context of a more general theory. Another aspect of theory formation

is inductive inference — the process of inferring general laws from particular
examples.

A Simple Model of Learning and Its Implications
for the Design of Learning Systems

Of these four views of learning, Simon's (in press) is perhaps the most
encompassing. Taking his definition as a starting point, we have developed

the simple model of learning systems shown in Figure A-l. Throughout
this chapter, we use this simple model to organize our discussion of learning
systems.

In the model, the circles denote declarative bodies of information (e.g., facts
represented in predicate calculus or statements made by an expert), while the
boxes denote procedures. The arrows show the predominant direction of data

flow through the learning system. The environment supplies some informa-
tion to the learning element, the learning element uses this information to

make improvements in an explicit knowledge base, and the performance ele-
ment uses the knowledge base to perform its task. Finally, information gained

during attempts to perform the task can serve as feedback to the learning
element. This model is primitive and omits many important functions. It is
useful, however, in that it allows us to classify learning systems according to

how they "fill" these four functional units. In any particular application, the
environment, the knowledge base, and the performance task determine the
nature of the particular learning problem and, hence, the particular functions
that the learning element must fulfill. In the following three sections, we

Performance
Element

Figure A-l. A simple model of learning systems.

328 Learning and Inductive Inference XTV

examine the role of each of these three functional units that surround the

learning element.

The Environment

The most important factor affecting the design of learning systems is the

kind of information supplied to the system by the environment — particularly
the level and quality of this information.

The level of information refers to the degree of generality (or domain

of applicability) of the information relative to the needs of the performance

element. High-level information is abstract information that is relevant to a

broad class of problems. Low-level information is detailed information that is
relevant to a single problem. The task of the learning element can be viewed

as the task of bridging the gap between the level at which the information is

provided by the environment and the level at which the performance element

can use the information to carry out its function. Thus, if the learning system

is given very abstract (high-level) advice about its performance task, it must
fill in the missing details, so that the performance element can interpret

the information in particular situations. Correspondingly, if the system is

given very specific (low-level) information about how to perform in particular

situations, the learning element must generalize this information — by ignoring

unimportant details — into a rule that can be used to guide the performance
element in a broader class of situations.

Since its knowledge is imperfect, the learning element does not know in

advance exactly how to fill in missing details or ignore unimportant details.

Consequently, it must guess — that is, form hypotheses — about how the gap
between the levels should be bridged. After guessing, the system must receive

some feedback that allows it to evaluate its hypotheses and revise them if

necessary. It is in this way that a learning system learns: by trial and error.

The level of the information provided by the environment determines

the kinds of hypotheses that the system must generate. Four basic learning
situations can be discerned:

1. Rote learning, in which the environment provides information exactly at
the level of the performance task and, thus, no hypotheses are needed.

2. Learning by being told, in which the information provided by the environ-
ment is too abstract or general and, thus, the learning element must

hypothesize the missing details.

3. Learning from examples, in which the information provided by the envi-
ronment is too specific and detailed and, thus, the learning element must

hypothesize more general rules.

4. Learning by analogy, in which the information provided by the environ-
ment is relevant only to an analogous performance task and, thus, the

A Overview 329

learning system must discover the analogy and hypothesize analogous
rules for its present performance task.

Each of these learning situations is discussed in more detail below.
The quality of information can have a significant effect on the difficulty

of the learning task. Induction is easiest, for example, when the training

instances are selected by a cooperative teacher who chooses "clean" exam-
ples, classifies them, and presents them in good pedagogical order. Learning

by induction is particularly difficult when the training instances are made

up of noise-ridden, unclassified data that are "presented" by nature in an
uncontrollable fashion. Similarly, in advice-taking systems, information is
of little use if it is provided by an unreliable and inarticulate expert; rote

learning cannot succeed with poor-quality, possibly contradictory data; and
analogies are useless if they are cluttered with errors.

The Knowledge Base

The second factor affecting the design of learning systems is the knowledge

base, its form and content. We discuss first the form, or representational sys-
tem, in which the knowledge base is expressed; it is a particularly important

design consideration (see Chap. Ill, in Vol. I, on representation of knowledge).

Most work in learning has used one of two basic representational forms —
feature vectors and predicate calculus — although other forms, such as produc-

tion rules, grammars, LISP functions, numerical polynomials, semantic nets,
and frames, have also been used. These representational forms vary along
four important dimensions: expressiveness, ease of inference, modifiability,
and extendability.

Expressiveness of the representation. In any AI system it is impor-
tant to have a representation in which the relevant knowledge can be easily

expressed. Feature vectors, for example, are useful for describing objects that

lack internal structure. They describe objects in terms of a fixed set of fea-
tures (such as color, shape, and size) that take on a finite set of values (such

as red or green, circle or square, and small or large). Predicate calculus, on
the other hand, is useful for describing structured objects and situations. A
situation in which a red object is on top of a green one, for example, can be

expressed as 3x, y : RED(x) A GREEN(2/) A ONTOP(x,y).
Ease of inference within the representation. The computational

cost of performing inference is another important property of a representa-
tional system. One type of inference frequently required in learning systems is

the comparison of two descriptions to determine whether they are equivalent.

It is very easy to test two feature-vectors for equivalence. The comparison of
two predicate-calculus expressions is more costly. Since many learning systems
must search large spaces of possible descriptions, the cost of comparisons can
severely limit the extent of these searches.

330 Learning and Inductive Inference XTV

Modifiability of the knowledge base. A learning system must, by its
very nature, modify some part of the knowledge base to store the knowledge it

is gaining. Consequently, most learning systems have employed explicit, styl-
ized representations (such as feature vectors, predicate calculus, and produc-
tion rules) in which it is easy to add knowledge to the knowledge base. Very

little attention has been given to the problem of adding to knowledge bases in

which substantial revision and integration must be performed. These prob-
lems arise, for example, in systems that refer to time or state information

(e.g., procedural representations) and in systems that make default assump-
tions that may later need to be retracted.

Extendability of the representation. For a learning program to

manipulate explicitly its acquired knowledge, there must be a meta-level
description within the program that tells how the representation is struc-

tured. This meta-level knowledge has usually been embodied in procedures
that manipulate the data structures of the representation. Of recent inter-

est in learning research, however, are representational systems in which this

meta-knowledge is also made an explicit part of the knowledge base (see Davis,
1976). The purpose is to allow the program to examine and alter its own
representation by adding vocabulary terms and representational structures.
This ability in turn provides the possibility of developing learning systems

that are open-ended — that is, that can learn successively more complex units
of knowledge without limit. The outstanding example of an extendable rep-

resentation is Lenat's (1976) AM program (see Article XIV.D4c), which allows
new concepts to be defined in terms of old ones. Recent work on RLL (Greiner
and Lenat, 1980; Greiner, 1980) has pushed this idea much further toward
allowing a program to define new representations dynamically.

Now that we have examined issues relating to the form of the knowledge
base, we turn our attention to its content A learning system does not gain

knowledge by starting "from scratch," that is, without any knowledge at all.
Some knowledge must be employed by every learning system to understand the
information provided by the environment, to form hypotheses, and to test and
refine those hypotheses. Thus, it is more appropriate to view a learning system
as extending and improving an existing body of knowledge. Unfortunately,
in most learning systems, the knowledge employed is not explicit; it is built
into the program by the designer. Throughout this chapter, we try to point

out the ways in which domain-specific knowledge has entered into existing
learning systems.

The Performance Element

The performance element is the focus of the whole learning system, since
it is the actions of the performance element that the learning element is trying
to improve. There are three important issues related to the performance
element: complexity, feedback, and transparency.

A Overview 331

First, the complexity of the task is important. Complex tasks require
more knowledge than simple tasks. For instance, a simple task like binary
classification, in which objects are classified into one of two groups, requires
only a single classification rule. On the other hand, a program that can play a

reasonable poker game (Waterman, 1970) needs about 20 rules, and a medical-
diagnosis system like MYCIN (Shortliffe, 1976) employs several hundred rules.

In learning from examples, three classes of performance tasks can be
distinguished according to their complexity. The simplest performance task
is classification or prediction based on a single concept or rule. Indeed, the
problem of learning single concepts from examples has received more study
than any other problem in AI learning research. Slightly more complex are
tasks involving multiple concepts. An example is the problem of predicting
which bonds of an organic molecule will be broken in the mass spectrometer;
the DENDRAL prediction program employs a set of cleavage rules to perform
this task. The most complex tasks for which learning systems have been
developed are small planning tasks in which a set of rules must be applied in
sequence. Symbolic integration, for example, is a task that requires chaining
together several integration rules to obtain a solution. The articles on learning
from examples consider these three classes of performance tasks and their
corresponding learning methods.

As the performance task becomes more complex and the knowledge base
grows in size, the problems of integrating new rules and diagnosing incorrect

rules become more complicated. The integration problem — that is, the prob-
lem of integrating a new rule into an existing set of rules — is difficult, because

the learning system must consider possible interactions between the new rule
and the previous rules. During the construction of the MYCIN system, for
example, there were several cases in which a new rule caused existing rules to

be applied incorrectly or to cease being applied altogether (see Article VIII.Bl).

The problem of diagnosing incorrect rules — also known as the credit-

assignment problem (Minsky, 1963) — can be very difficult in systems that
perform a sequence of actions before receiving any feedback. Consider, for
example, the problem of learning to play chess by first playing a complete
game, then determining who won and lost, and finally updating the knowledge

base accordingly. The credit-assignment problem is the problem of assigning
credit or blame to the individual decisions that led to some overall result — in
this case, the individual chess moves that contributed most to the win or loss.

The second important issue related to the performance task is the role of
the performance element in providing feedback to the learning element. All
learning systems must have some way of evaluating the hypotheses that have
been proposed by the learning element. Some programs have a separate body
of knowledge for such evaluation. The AM program, for example, has many
heuristic rules that assess the interestingness of the new concepts developed by
the learning element. A more frequently used technique, however, is to have
the environment, often a teacher, provide an external performance standard.

332 Learning and Inductive Inference XIV

Then, by observing how well the performance element is doing relative to this
standard, the system can evaluate its current store of hypotheses.

In systems that learn a single concept from training instances, the per-
formance standard is the correct classification of each training instance (as to

whether it is, or is not, an instance of the concept to be learned). In most
systems, the training instances are preclassified by a reliable teacher. In the

Meta-DENDRAL system (see Article XIV.D4b), the performance standard is
the actual mass spectrum produced when a molecule of known structure is
placed in the mass spectrometer.

The third issue regarding the performance task is the transparency of the
performance element. For the learning element to assign credit or blame to
individual rules in the knowledge base, it is useful for the learning element
to have access to the internal actions of the performance element. Consider
again the problem of learning how to play chess. If the learning element
is given a trace of all the moves that were considered by the performance

element (rather than only those moves that were actually chosen), the credit-
assignment problem is easier to solve.

Overview of the Chapter

In the previous section, we discussed the interaction between the infor-
mation provided by the environment and the problems that are presented

to the learning element. From this analysis, four learning situations could
be discerned. In this section, we discuss these four situations in detail and
give an example of a learning problem in each situation. The remainder of
this chapter is organized around these four situations, with a separate set of
articles devoted to each.

Rote learning. The simplest learning situation is one in which the
environment supplies knowledge in a form that can be used directly by the
performance element. The learning system does not need to do any processing
to understand or interpret the information supplied by the environment. All
it must do is memorize the incoming information for later use. This is a form

of rote learning — if it is considered learning at all. Virtually every computer
system can be said to do rote learning insofar as it stores instructions for
performing a task.

An important AI study of rote learning was undertaken by Samuel (1959,

1967). He developed a checkers-playing program that was able to improve
its performance by memorizing every board position that it evaluated. The

program used a standard minimax look-ahead search (see Chap. II, in Vol. I)
that evaluated potential future board positions. A simple polynomial evalua-

tion function measured board properties such as center control, fork threats,

and possible exchanges. In terms of our primitive learning-system model, the

look-ahead search portion of Samuel's program served as the "environment."
It supplied the learning element with board positions and their backed-up

A Overview 333

minimax values. The learning element simply stored these board positions

and indexed them for rapid retrieval. Interestingly, the look- ahead search

portion of Samuel's program also served as part of the performance element
that played a game of checkers against an opponent. It used the previously

memorized board positions to improve the speed and depth of its look-ahead
search during subsequent games.

Learning by being told — Advice-taking. When a system is given
vague, general-purpose knowledge or advice, it must transform this high-level
knowledge into a form that can be used readily by the performance element.
This transformation is called operationalization. The system must understand

and interpret the high-level knowledge and relate it to what it already knows.
Operationalization is an active process that can involve such activities as
deducing the consequences of what it has been told, making assumptions and

"filling in the details," and deciding when to ask for more advice. McCarthy's
(1958) proposal for an "advice taker" was the first description of a system that
could learn by being told. More recent work in the area of learning by being

told includes the TEIRESIAS program (Davis, 1976) and Mostow's program
FOO (Mostow and Hayes-Roth, 1979; Mostow, 1981).

FOO, for example, is told the rules of the game of Hearts and is given vague

strategic advice such as "Avoid taking points." It operationalizes this advice
into specific strategies such as "Play lower than the highest card so far in the
suit led." This kind of operationalization is similar to the kind of processing
performed by ordinary language compilers that convert unexecutable high-
level languages into directly interpretable machine code. In the same trivial
sense that every computer system can be said to do rote learning, every

system can also be said to learn by being told: Advice in the form of a high-
level language program is compiled and assembled into an executable object
program.

Learning from examples — Induction. One way to teach a system
how to perform a task is to present it with examples of how it should behave.
The system must then generalize these examples to find higher level rules that
can be applied to guide the performance element. Examples can be viewed as
being pieces of very specific knowledge that cannot be used efficiently by the
performance element. These are transformed into more general, higher level
pieces of knowledge that can be used effectively.

For example, consider the problem of teaching a program to recognize
poker hands that contain a pair. The program would be presented with sample
hands that, it is told, contain pairs. Here is such a training instance:

4 of clubs, 4 of spades, 5 of diamonds, 6 of hearts, jack of diamonds.

This training example is a very specific piece of knowledge. If the program
merely memorized it (by rote learning), it would now know that the hand

4 of clubs, 4 of spades, 5 of diamonds, 6 of hearts, jack of diamonds

334 Learning and Inductive Inference XIV

contains a pair. It would not know that the hand

4 of clubs, 4 of spades, 5 of diamonds, 6 of hearts, 8 of diamonds

also contains a pair, since the program has not generalized its knowledge. To
recognize all possible pair hands, the program needs to discover that the hand
must contain two cards of the same rank and that the remaining cards are
irrelevant. The generalization of knowledge to make it apply to a broader
class of situations is the key inference process in learning from examples.

Learning by analogy. If a system has available to it a knowledge base
for a related performance task, it may be able to improve its own performance
by recognizing analogies and transferring the relevant knowledge from the
other knowledge base. Thus far, however, very little work has been done
in this area. Some of the open research questions are: What exactly is an
analogy? How are analogies recognized? How is the relevant knowledge
transferred from the analogous knowledge base and applied to accomplish
the desired tasks?

Suppose, for example, that a program has available to it a knowledge
base describing how to diagnose diseases in human beings and someone wants

to use the same program to diagnose computer-system failures. By finding
the proper analogies, the program can develop classes of computer failures

("diseases") and possible solutions ("therapies"). Diagnostic procedures can
be transferred as the analogy is developed (e.g., x-rays can be analogized to
core dumps).

We do not include in this chapter any articles discussing learning by
analogy, since this area has not received much attention.

Conclusion

This introduction has surveyed AI research on learning and presented a
simple model of AI learning systems. The model has been used to discuss the
factors that bear upon the design of the learning element. These include the
level and quality of the information provided by the environment, the form
and content of the knowledge base, and the complexity and transparency of
the performance element. Of these factors, the most important is the level of
the information provided by the environment. This has been used to develop
the simple taxonomy of four learning situations that provides an organization
for the remainder of this chapter.

References

Buchanan et al. (1977) survey several systems and present a general

model of learning systems. See also Lenat, Hayes-Roth, and Klahr (1979)
and Dietterich and Michalski (1979).

B. ROTE LEARNING

Bl. Issues

ROTE LEARNING is memorization; it is saving new knowledge so that when
it is needed again, the only problem will be retrieval, rather than a repeated
computation, inference, or query. Two extreme perspectives on rote learning
are possible. One view says that memorization is such a basic necessity for any
intelligent program that it cannot be considered a separate learning process
at all. An alternate view regards memorization as a complex subject that
is vital to any effective cognitive system and well worth study and modeling
on its own. This article takes a less extreme perspective, partly because the
former viewpoint leaves nothing to say about rote learning and the latter
would require more than is appropriate here. (See Chap. XI for a discussion
of AI investigations into human memory processes.)

Rote memorization can be seen as an elementary learning process, not

powerful enough to accomplish intelligent learning on its own (because not

everything that needs to be known in any nontrivial domain can be memo-
rized), but an inherent and important part of any learning system. All learning

systems must remember the knowledge that they have acquired so that it can

be applied in the future. In a rote-learning system, the knowledge has already
been gained by some method and is in a directly usable form. Other, more
sophisticated learning systems first acquire the knowledge from examples or
from advice and then memorize it. Thus, all learning systems are built on

a rote-learning process that stores, maintains, and retrieves knowledge in a
knowledge base.

Rote learning works by taking problems that the performance element
has solved and memorizing the problem and its solution. Viewed abstractly,
the performance element can be thought of as some function, /, that takes an

input pattern (Xi , . . . , Xn) and computes an output value (Yi, . . . ,YP). A rote
memory for / simply stores the associated pair [(Xi, . . . , Xn), (Yi, . . . , Yp)] in
memory. During subsequent computations of f{X\, . . . , Xn), the performance

element can simply retrieve (Yi, . . . ,YP) from memory rather than recom-
puting it. This simple model of rote learning is depicted in Figure Bl-1.

Consider, for example, an automobile insurance program that determines

the cost of repairs for damaged automobiles. The input pattern is a descrip-
tion of the damaged automobile, including make and year, and a list of the

damaged portions of the car. The output value is the estimated cost of the
repairs. The system has only a rote memory. To estimate the cost of repairs,
it looks in its memory for a previous automobile of the same make, model,

335

336 Learning and Inductive Inference XTV

/ store

(Xi, ...,xn) -+ (Yi, ...,rp) -+ [(x1,...,xn),(y1,...,yp)]
Input Performance Output value Associated

pattern function of computation pair

Figure Bl-1. Simple model of rote learning.

and damage description and retrieves the corresponding cost. If it cannot
find such an automobile, it uses a set of rules (published by a consortium
of insurance companies) to guess the cost of the repairs and then saves its
estimate for future use. This computed estimate, along with the description
of the damaged automobile, forms the associated pair that is memorized.

Lenat, Hayes-Roth, and Klahr (1979) provide an interesting perspective

on rote learning. They point out that rote learning (or "caching") can be
viewed as the lowest level of a hierarchy of data reductions. The reductions
are analogous to computer language compilation: The purpose is to refine the
original information down to the essentials for performance. In rote learning,
we generally attempt to save the input/output details of some calculation and
so bypass a future need for the intermediate computation process. Thus, a
calculation task, if valuable and stable enough to be remembered, is reduced

to an access task (see Fig. Bl-2, below).
Just as calculations can be reduced to retrievals by caching, so can other

inferential processes be reduced to simpler tasks. For instance, deductions can
be reduced to calculations. The first time we are asked to solve a quadratic
equation, for example, we must follow lengthy deductive chains to find the
quadratic formula. Subsequently, we can simply compute the roots of a
quadratic equation directly from the formula. We have distilled the results
of a deductive search and summarized them as an efficient algorithm. Going
one step further, the process of induction can convert a huge body of training
instances into a single heuristic rule. Once again, the primary gain is in
efficiency: It is no longer necessary to consult a huge body of examples to find
out how to behave in a new situation.

ACCESS ► CALCULATE ► DEDUCE ► INDUCE

Cache Algorithm Heuristic

(Rote) or Theorem Rule

Figure Bl-2. Spectrum of data reductions (from Lenat et al., 1979).

Bl Issues 337

Issues in the Design of Rote-learning Systems

There are three important issues relevant to rote-learning systems: mem-
ory organization, stability, and the store-versus-compute trade-off.
Memory organization. Rote learning is useful only if it takes less time

to retrieve the desired item than it does to recompute it. Retrieval can be

made very rapid by properly organizing memory. Consequently, indexing,
sorting, and hashing techniques have been thoroughly studied in the computer
science subfields of data structures (Aho, Hopcroft, and Ullman, 1974) and
database systems (Wiederhold, 1977; Date, 1977; Ullman, 1980).

Stability of the environment and the frame problem. Rote learn-
ing is not very helpful or effective in a rapidly changing environment. One

important assumption underlying rote learning is that information stored at

one time will still be valid later. If, however, the information changes fre-
quently, this assumption can be violated. Consider, for example, information

gathered about automobile repair costs during the early 1950s. Such informa-
tion would be of little value for estimating automobile repair costs in the 1980s

because the world has changed in critical ways: The makes and models of
cars presently manufactured did not exist in the 1950s; furthermore, inflation

has made the direct comparison of dollar costs impossible. A rote-learning
system must be able to detect when the world has changed in such a way as
to make stored information invalid. This is an instance of the frame problem

(see Chap. Ill, in Vol. i).
Some solutions to this problem have been developed. One approach is to

monitor every change to the world and keep the stored information always
up to date. Thus, when an old model of automobile is discontinued, all
information about that model could be removed from the knowledge base.
This approach requires that the relevant aspects of the world be continually
monitored.

A second approach to solving the frame problem is to check, when the
information is retrieved for use, that it is still valid. Typically, this requires
storing, along with the information itself, some additional data about the
state of the world at the time the information was memorized. When the

information is retrieved, the stored state can be compared to the current
state, and the system can determine whether or not the information is still
valid. This approach requires that the relevant aspects of the world (such as
the current value of the dollar) be anticipated and stored with the data.

Many other approaches are possible. If the system can determine how

the world has changed (e.g., by knowing the inflation rate), it may be able
to make appropriate modifications to restore the validity of the memorized
information (e.g., by converting the 1950 prices into 1980 equivalents).

Store-versus-compute trade-off. Since the primary goal of rote learn-
ing is to improve the overall performance of the system, it is important that

the rote-learning process itself does not decrease the efficiency of the system.

338 Learning and Inductive Inference XTV

It is conceivable, for instance, that the cost of storing and retrieving the
memorized information is greater than the cost of recomputing it. This is

certainly the case with the multiplication of two numbers; virtually all com-
puters recompute the product of two numbers rather than store a large mul-

tiplication table.

There are two basic approaches to resolving the store-versus-compute
trade-off. One is to decide at the time the information is first available

whether or not it should be stored for later use. A cost-benefit analysis
can be performed that weighs the amount of storage space consumed by
the information and the cost of recomputing it against the likelihood that
the information will be needed in the future. A second approach is to go
ahead and store the information and later decide whether or not to forget
it. This procedure, called selective forgetting, allows the system to determine
empirically which items of information are most frequently reused.

One of the most common selective-forgetting techniques is called the least
recently used (LRU) replacement algorithm. Each item stored in memory
is tagged with the time when it was last retrieved. Every time an item

is retrieved, its "time of last use" is updated. When a new item is to be
memorized, the least recently used item is forgotten and replaced by the new
one. Variations on this scheme take into consideration the amount of storage
required for the item, the cost of recomputing the item, and so on.

References

Lenat, Hayes-Roth, and Klahr (1979) provide an excellent discussion of
various learning methods, including rote learning. Samuel (1959) remains the
best example of research into rote processes.

B2. Rote Learning in Samuel's Checkers Player

SAMUEL conducted a series of studies (1959, 1967) on how to get a com-
puter to learn to play checkers. Among the earliest investigations of machine

learning, they remain some of the most successful both in terms of improved

performance (i.e., demonstrated improvements in the performance element)

and in terms of lessons for AI. His experiments with three different learn-

ing methods— rote learning, polynomial evaluation functions, and signature
tables — showed that significant improvement in playing checkers could be
obtained. This article focuses on his thorough analysis of the question of how

much rote learning alone can contribute to expertise and improved perfor-

mance. Other aspects of Samuel's work are discussed later in Article XIV.D4a.

The Game of Checkers as a Performance Task

Checkers is a difficult game to play well. It is estimated that a full explo-

ration of all possible moves in checkers would require roughly 1040 moves.

Samuel's program was provided with procedures for playing the game cor-
rectly; that is, the rules of checkers were incorporated into the program. He

sought to have the program learn to play well by having it memorize and
recall board positions that it had encountered in previous games.

At each turn, Samuel's program chose its move by conducting a minimax
game-tree search (see Articles II.B3 and II.C5, in Vol. i). In principle, of course,
a program could try all possible moves and all possible consequences of each

move and thereby search the entire checkers game-tree. Such a calculation —
which is equivalent to playing every possible game of checkers — is not feasible
because the search space is too large. Every potential move by one player
generally leads to many possible counter moves, each of which has still more
possible responses. The resulting combinatorial explosion (see Article II.A, in
Vol. i) prevents any program from searching the whole tree.

Consequently, the standard approach to conducting a game-tree search is
to search only a few moves (and countermoves) into the future and then apply
a static evaluation function to estimate which side is winning. The program
then chooses the move that leads to the best estimated position.

Suppose, for example, that at some board position, A, it is the program's
turn to move (see Fig. B2-1). The program searches ahead three moves
by considering first all possible moves that it could make, then all possible
countermoves available to its opponent, and finally all possible replies to those
countermoves. At this point, the program applies a static evaluation function
to estimate its net advantage at each of the board positions shown on the

right in the figure. These values are then "backed up" by assuming that

339

340 Learning and Inductive Inference

XIV

Figure B2-1. An example of a minimax game-tree search.

the opponent will always take the move that is worst for the computer (and
vice versa). Thus, the best move for the program is the one that leads to
position B. The program expects that the opponent will countermove to C,
to which the program can reply with D. The static evaluation function has

estimated the value of D to be 8, so this is the backed-up value of position A.

Improving the Performance of the Checkers Player

There are two basic ways to improve the performance of a game-tree
search. One method is to search farther into the future and thus better

approximate a full search of the tree. This is known as improving the look-
ahead power of the program. The other method is to improve the static

B2
Rote Learning in Samuel's Checkers Player 341

evaluation function, so that the estimated value of each board position is more

accurate. Samuel's rote-learning studies aimed at improving the look- ahead
power by memorizing the backed-up values of board positions. The techniques
discussed in Article XIV.D5a address the problem of improving the evaluation
function.

The rote-learning approach employed by Samuel saved every board posi-
tion encountered during play, along with its backed-up value. In the situation

shown in Figure B2-1, for instance, Samuel's program would memorize the
description of board position A and its backed-up value of 8 as an associated
pair, [A, 8]. When position A is encountered in subsequent games, its evalua-

tion score is retrieved from memory rather than recomputed. This makes the
program more efficient, because it does not have to compute the value for A
with the static evalution function.

There is a more important benefit of retrieving the backed-up value of
A from memory, however. The memorized value of A is more accurate than

the static value of A, because it is based on a look- ahead search. Thus,

the look-ahead power of the program is improved. Figure B2-2 shows an
example of this improvement. The program is considering which move to
make at position E. It searches ahead three moves and then applies the static
evaluation function. For position A, however, the program is able to retrieve
the memorized value based on the previous search to position D.

This approach improves the effective search depth for E. As more and
more positions are memorized, the effective search depth improves from its

Figure B2-2. Improving look-ahead power by rote learning.

342 Learning and Inductive Inference XTV

original value of 3 moves, up to 6, then to 9, and so on. Rote learning is thus

used in Samuel's program to save the results of previous partial game- tree
searches, so that they can gradually be extended and deepened. Rote learning
converts a computation (tree search) into a retrieval from memory.

Memory Organization

Samuel employed several clever techniques to store the evaluated board
positions, so that they took up little space and could be retrieved rapidly. To
store the positions compactly, Samuel took advantage of several symmetries

(e.g., positions in which it was Red's turn to move were converted into the
corresponding Black-to-move positions; king positions are symmetric in two
ways). Efficient retrieval was accomplished by indexing the boards according
to many different characteristics (including the number of pieces on the board,
presence or absence of kings, and piece advantage) and writing them onto
a tape in the order they would most likely be needed during a game. The
use of magnetic tape was necessary because the program was running on a

relatively small IBM-704 computer, and only a few board positions could be

kept in the computer's core memory. During rote learning, the program would
accumulate a number of board positions before reading, sorting, and rewriting
them onto the memory tape.

Samuel resolved the store-versus-compute trade-off with a variation of
least recently used (LRU) replacement. Each board position was given an age.
Whenever a position was retrieved from memory, its age was divided by 2.
When the memory tape was rewritten, the ages of all stored positions were

increased by 1, and very old positions were forgotten — that is, not written
back onto tape.

Results

The program was trained in several ways: by playing against itself, by
playing against people (including some checkers masters), and by following

published games between master players (so-called book games). After train-
ing, the memory tape contained roughly 53,000 positions. As the program

learned more, it improved slowly but steadily, becoming, in Samuel's words, a
"rather better-than-average novice, but definitely not ... an expert" (Samuel,
1959, p. 218). Success in learning varied markedly depending on the phase of
the game. The program became capable of playing a very good opening game,
since the number of board variations is relatively small near the start of the
game. Performance during the midgame, with its far greater range of possible
configurations, did not greatly improve with rote learning. During the end
game, the program became able to recognize winning and losing positions well
in advance, but it needed some improvement before it was able to force the
game to a successful conclusion (see below).

B2 Rote Learning in Samuel's Checkers Player 343

On the whole, Samuel's experiments demonstrated that significant and
measurable learning can result from rote processes alone, but that on its own,
rote learning is limited in several ways. The first and most obvious limitation
is in storage space and retrieval. One question that interested Samuel is the
following: If rote learning produces steady improvement of performance as
it gathers new positions (up to a limit determined by available space and
the efficiency of indexing algorithms), could it ever reach a performance level
considered expert before exceeding the storage and indexing limits? If so, how
much data would it need to remember, and how long would it take to gather
the data?

Samuel estimated that his program would need to memorize about one
million positions to approximate a master level of checkers play. Unfortunately,
even a system with sufficient storage capacity and rapid retrieval methods
would require an impractical amount of machine playing in order to gather a

million useful positions. However, Samuel suggests that even this long acqui-
sition period would be shorter than the time taken by humans to improve

from complete beginners to masters.
The inability of the program actually to effect a win once it had a winning

position was a curious problem. It was caused by the mesa effect (Minsky,

1963) — that is, once the program has found a winning position, all moves
look equally good, and the program tends to wander aimlessly. Samuel solved
the problem by storing, along with each board position and value, the length

of the search path that was used to compute the board value. The move-
selection procedure was modified to select the best move that also had the
shortest associated search distance. This change gave the program a sense of
direction, so that it was able to press forward to win the game (or stall as
much as possible to avoid losing a game).

Another interesting problem arose when Samuel attempted to combine

rote learning with learning techniques that modified the static evaluation func-
tion. Unfortunately, changes to the evaluation function tended to invalidate

previously memorized positions (see Article XIV.B1, on the frame problem).

Samuel's solution was to avoid this problem by postponing rote learning until
the evaluation function had been effectively learned.

Conclusion

Besides showing that real improvement of performance could be gained

by the conceptually simplest form of learning — rote memorization — Samuel
identified and elaborated several issues that need to be handled if rote is

to offer significant gains. In general, the value of rote learning is to gain

problem-solving power in the form of speed. By retrieving the stored results
of extensive computations, the program can proceed deeper in its reasoning.
The price is storage space, access time, and effort in organizing the stored
knowledge.

344 Learning and Inductive Inference XTV

Samuel found that for rote learning to be effective, knowledge had to
be carefully organized for efficient retrieval, stabilized to avoid using values

whose meanings had changed, augmented with search-depth information, and
selectively forgotten so that only the most useful information would tend to

be saved. In the case of Samuel's checkers player, rote learning may have had
enough power on its own to lead eventually to expert performance, but the
time and space required for that much improvement were beyond the available
resources.

References

Samuel (1959) describes the rote-learning research in detail.

C. LEARNING BY TAKING ADVICE

CI. Issues

IN ONE of the earliest AI papers on learning, McCarthy (1958) proposed the

creation of an advice-taking system that could accept advice and make use
of it to plan and execute actions in the world. Until the late 1970s, however,
there were very few attempts to write programs that could learn by taking
advice. The recent emphasis in AI on expert systems has focused new attention

on the problem of converting expert advice into expert performance (see Barr,
Bennett, and Clancey, 1979).

Research on advice-taking systems has followed two major paths. One
approach has been to develop systems that accept abstract, high-level advice
and convert it into rules that can effectively guide the performance element.

This research seeks to automate all phases of the advice-taking process. The
other approach has been to develop sophisticated tools — such as knowledge-

base editing and debugging aids — that make it easier for the expert to trans-
form his own abstract expertise into detailed rules. In this second approach,

the expert is an integral part of the learning system, detecting and diagnosing
bugs and repairing and refining the knowledge base. The former approach
shows promise of eventually developing completely instructable systems, while

the latter approach has proved invaluable for creating knowledge- based expert
systems. This article describes both of these research paths. We will discuss
the more highly automated approach first and return later to the research on

knowledge-base editing and debugging aids.

Steps for Automatic Advice-taking

Hayes-Roth, Klahr, and Mostow (1980, 1981) provide an outline of the
processes required to convert expert advice into program performance. This
outline can be summarized as follows:

1. Request — request advice from expert,

2. Interpret — assimilate into internal representation,

3. Operationalize — convert into usable form,

4. Integrate — integrate into knowledge base,

5. Evaluate — evaluate resulting actions of performance element.

Request. The first step is for the program to request advice from the

expert. The request can be simple — just asking the expert to give some

345

346 Learning and Inductive Inference XTV

general advice — or it can be sophisticated — identifying a shortcoming in the
knowledge base and asking the expert how to repair it. Some systems are
completely passive and simply wait for the expert to interrupt them and
provide advice, while others are very careful to focus the attention of the
expert on a particular problem.

Interpret. The next step in advice-taking is to accept the advice and
represent it internally. McCarthy (1958) points out that in order for a program

to accept advice, the program must have an epistemologically adequate repre-
sentation for the advice (see Article III.Cl, in Vol. i), that is, a representation

that is capable of expressing the advice without losing any information. This

interpretation step can be very difficult if the advice is given in a natural lan-
guage. The program must understand the natural language sufficiently well

to convert it into an unambiguous internal representation. See Chapter IV,

in Volume I, for a detailed survey of AI research into natural-language under-
standing.

Operationalize. Once the advice has been accepted and interpreted into
an unambiguous representation, it still may not be directly executable by the

performance element. The third step — operationalization — seeks to bridge the
gap between the level at which the advice is provided and the level at which
the performance element can apply it.

Mostow's (1981) program FOO, for example, accepts advice about how to
play the card game of Hearts. English-language advice, such as "Avoid taking
points," is interpreted by FOO's human user and given to the program as
the lambda-calculus statement (AVOID (TAKE-POINTS ME) (CURRENT TRICK)).
However, even though this advice has been interpreted into an unambiguous
internal representation, it is still not operational since FOO has no procedures
or methods to avoid taking points. FOO does have methods for selecting and
playing cards, however. Thus, the advice must be converted into a form, such

as [ACHIEVE (LOW (CARD-OF ME))] (i.e., "Play a low card"), that requires only
these operations.

FOO accomplishes this task by applying many different operationalization

methods (see Article XIV.C2). It tries to re-express the advice, using known
relationships, until it can recognize that one of its operationalization methods
is applicable. These methods then allow it to develop a procedure for carrying

out all or part of the advice. The steps of reformulating the advice and apply-
ing operationalization methods are repeated until the advice is completely

executable.

This process is similar to the approach taken by automatic-programming
systems that convert high-level program specifications into efficient implemen-

tations (see Chap. X, in Vol. i). However, unlike those systems, which seek to
create provably correct programs, FOO is not foolproof. The gap between the

advice and the performance element is usually too wide, and the operationali-
zation methods are usually too weak, to permit error-free operationalization.

CI Issues 347

For example, it is often necessary for FOO to make assumptions and approx-
imations in order to transform the advice. FOO cannot always successfully

"avoid taking points" in Hearts, since it is impossible for the program to know
the contents of its opponents' hands. Instead, FOO applies heuristic methods
to reduce the likelihood that points will be taken. Its strategy of playing low
cards is, consequently, a tentative hypothesis about how to avoid taking points.
The tentative hypotheses developed by operationalization must be tested and
debugged before they can be accepted.

Integrate. When knowledge is added to the knowledge base, care must
be taken to see that it is properly integrated (see Article XTV.A). New advice
can result in new mistakes if it takes precedence over previous knowledge in
situations in which the old knowledge is still correct. Yet the new advice must
take precedence in the intended situations. The learning program must know
enough about how the performance element applies the knowledge to be able

to anticipate and avoid any bad side-effects that could result from adding the
knowledge to the knowledge base.

Two common problems of integration are (a) overlapping applicability
and (b) contradictory recommendations. Consider an expert system, such as
MYCIN, whose knowledge base is represented as a set of production rules.

When a new rule is added, its left-hand side (or condition part) may be overly
general, causing it to trigger in situations in which some other rule is properly
applicable. One solution to this problem is to specialize the rules, so that this

overlap of applicability no longer occurs. Another approach — the meta-rule

approach — is to add ordering rules (meta-rules) that explicitly indicate which
regular rules should be applied before others.

When the right-hand sides (or action parts) of two production rules recom-
mend inconsistent actions in the same situation, the problem of contradictory

recommendations arises. Again, either the right-hand sides can be modified
to remove the contradiction or a meta-rule can be added to indicate which
action should take precedence. There are many other integration problems
aside from these two typical ones.

Evaluate. Since the new knowledge received from the expert is only

tentative — that is, it is the result of interpretation, operationalization, and
integration — it must be evaluated somehow. The learning system may be able
to recognize some errors and inconsistencies in the advice when it integrates
the advice into the knowledge base. More frequently, however, it is necessary
to test the advice empirically by actually employing it to perform some task
and then assessing whether the system is working properly.

Evaluation requires some performance standard against which the actual
behavior of the system can be compared. In some domains, the performance

standard can be built into the program. Game-playing programs, for example,
can tell if the system is doing well by whether or not the system wins the game.
In other domains, however, the system needs to set up detailed expectations

348 Learning and Inductive Inference XTV

about how the new knowledge will affect the performance of the system. These
expectations allow the program to detect and locate bugs in the knowledge

Evaluation can naturally feed back into the request step (the first of
these five steps). When the program detects that the performance element
is not functioning properly, it can announce this to the expert and request
additional advice. A more sophisticated approach is for the program to do

credit assignment — that is, to determine which parts of the knowledge base
are incorrect. Once the bug has been located, the advice-taking system can
ask the expert to tell it how to repair the particular piece of knowledge that
is incorrect.

Now that we have discussed the five basic steps in an advice-taking sys-
tem, we describe some systems that have been developed as aids for creating,

modifying, and debugging large knowledge bases.

Aids for Knowledge-base Maintenance

Instead of fully automating these five steps, many researchers working

on expert systems have built tools for assisting in the development and main-
tenance of expert knowledge bases. EMYCIN (van Melle, 1980; Davis, 1976),

AGE (Nii and Aiello, 1979), and KAS (Reboh, 1981), for example, all provide
certain functions to assist a domain expert or knowledge engineer in carrying
out these five steps. Particular assistance has been provided for integrating

new knowledge into the knowledge base (intelligent editors, flexible repre-
sentation languages) and for evaluating and debugging the knowledge base

(explanation and tracing facilities). This semiautomated approach to advice-
taking places the knowledge engineer in the role of requesting, interpreting,

and operationalizing the expert's advice.
To assist the knowledge engineer, these systems must be able to com-

municate effectively. It is particularly important for the engineer to get good
feedback from the system during testing and debugging. Thus, a great deal
of effort has been expended on the development of tracing and explanation

facilities for expert systems (see Article VII.B, in Vol. II; Davis, 1976).

Conclusion

Research on advice-taking systems is still in its infancy, although impor-
tant ideas and methods are available from the related areas of natural-language

understanding and automatic programming. Present research is advancing
along two paths: the theoretical path of automatic operationalization of expert
advice and the practical path of providing aids to help knowledge engineers
build and debug expert systems. The development of fully automatic systems
remains an active research area.

CI Issues 349

A few AI systems have been developed that perform some kind of advice-

taking. Mostow's FOO system is described in Article XIV.C2. The reader
is also directed to the articles on TEIRESIAS (Article VII.B, in Vol. Il) and on

Waterman's poker player (Article XIV.D5b) for other examples of advice-taking
systems.

References

Davis's work (1976, 1978) describes pioneering efforts in interactive advice-
taking. Hayes-Roth, Klahr, and Mostow (1981) and Mostow and Hayes-Roth
(1979) present the most comprehensive analyses of advice- taking as a whole.

C2. Mostow's Operationalizer

A GROUP of researchers at the Rand Corporation, Carnegie-Mellon University,
and Stanford University has recently been developing the machine- aided
heuristic programming methodology in which a computer would be instructed

to perform a new task in much the same way that a person is taught (see Hayes-
Roth, Klahr, Burge, and Mostow, 1978; Hayes-Roth, Klahr, and Mostow,
1981). A central effort in this project is understanding the problem of opera-

tionalization (see Article XIV.Cl). Mostow's program FOO (First Operational
Operationalizer) is one of the first results of this work. It investigates prin-

ciples, problems, and methods involved in converting high-level advice into
effective, executable procedures.

Accepting Advice About the Game of Hearts

Mostow, in his research with FOO, has dealt primarily with operationaliza-
tion problems taken from the card game of Hearts. The game is played as a

sequence of tricks. In each trick, one player — who is said to have the lead —
starts the trick by playing a card and each of the other players continues the
trick by playing a card during his (or her) turn. If he can, each player must
follow suit, that is, play a card of the same suit as the suit led. The player
who played the highest valued card in the suit led takes the trick and any
point cards contained in it. Every heart counts as one point, and the queen
of spades is worth 13 points. The goal of the game is to avoid taking points.

Hayes-Roth et al. (1978) provide a more complete explanation of the game.
Hearts is a game of partial information, with no known algorithm for win-

ning. Although the possible situations in the game are extremely numerous,

beginning players often hear general advice such as "Avoid taking points,"
"Don't lead a high card in a suit in which an opponent is void," and "If an
opponent has the queen of spades, try to flush it." The task of the FOO
program is to take such general advice and render it directly applicable by a
performance program. This task can be viewed as a kind of planning task.

A piece of advice, such as "Avoid taking points," can be viewed as a goal.
The operationalization program must develop an executable plan for achiev-

ing that goal. What makes this advice difficult to operationalize, however,

is that the goal can be ill-defined and unattainable. It is impossible, for
example, always to avoid taking points. Instead, the program must develop

approximate strategies. The advice-giver intends the goal to suggest, but not
specify, the desired behavior.

FOO is not able to accomplish this advice-taking task unaided. First,
it does not perform the interpretation step at all but, instead, relies on the

350

C2 Mostow's Operationalizer 351

user to translate the English form of the advice into an unambiguous lambda-
calculus representation. Second, FOO cannot perform the operationalization
step without human assistance. Although FOO has a large knowledge base
of transformation rules and an interpreter for applying those rules, it must
be told by the user which rules to apply. The user must operate FOO by
repeatedly selecting an appropriate rule and indicating which expression or
subexpression should be transformed. Finally, FOO does not integrate the
operational knowledge it develops into a knowledge base that could drive a

Hearts-playing program. No performance element has been developed that
could provide an empirical test of the operationalized knowledge. Despite

these shortcomings, Mostow's work on FOO provides an in-depth analysis of
the techniques required to perform operationalization.

The primary way in which advice is operationalized in FOO is by applying
operationalization methods, such as heuristic search, the pigeonhole principle,
and finding necessary or sufficient conditions. Mostow claims that this is
precisely what knowledge engineers and AI researchers do when they are
faced with a new problem to solve: They look in their bag of tricks for

a method, such as worst-case analysis, that allows them to construct an
effective, but inefficient, program. This program can then be further refined

by applying other knowledge and advice. Mostow's work can thus be viewed
as formalizing the knowledge and techniques used by AI researchers to do
heuristic programming.

The most sophisticated of FOO's operationalization methods is the
heuristic- search method. When FOO needs to evaluate a predicate, such as
(TAKE-POINTS ME), over a sequence, such as the sequence of cards in a trick,
it is able to reformulate this problem as a heuristic search of the space of all

possible tricks. FOO starts with a basic generate- and-test algorithm (discussed
in Article II. A, in Vol. i) and refines it into a heuristic search by improving the
ways the algorithm (a) selects the next node to expand, (b) selects possible
expansions of the node to apply, (c) prunes nodes from the search tree, and
(d) prunes possible expansions prior to applying them. The overall effect of
these refinements is to move constraints from the test portion of the algorithm,
that is, the step that checks to see whether the goal has been achieved, into
the generate portion of the algorithm, that is, the step that chooses which

nodes to expand and how they should be expanded. Some refinements actu-
ally move constraints out of the search altogether by precompiling them into

tables or by modifying the algorithm to search a smaller space.

In the "Avoid taking points" problem, for example, FOO starts with a
simple generate-and-test algorithm that generates all possible tricks and tests

to see if ME (FOO's performance persona) takes any points. This is gradually
converted into a heuristic search in which the only tricks considered are those
in which ME plays a card higher than any card played so far in the suit
led. Additional heuristics, such as generating tricks that contain points first
and pruning tricks in which the opponents play cards higher than ME, are

352 Learning and Inductive Inference XIV

extracted from the test and applied earlier in the search to order and prune
the search tree.

Underlying all of FOO's operationalization methods is its basic ability to
reformulate an expression in many different ways. For example, in order to
evaluate (VOID Pi SI) (i.e., player Pi is void in suit Si), FOO must reformulate
VOID in terms of observable variables such as the number of cards already

played in the suit S\. In order for FOO to recognize that an operationaliza-
tion method is applicable, it must often do some reformulations. Then, in

order actually to apply the method, FOO may need to do some further refor-
mulations. The heuristic search method, for instance, is applicable only to

a problem that is expressed as a search through some space. Consequently,

in order to use heuristic search to operationalize the "Avoid taking points"
advice, FOO must first reformulate the advice as a predicate over the search
space of all possible tricks. The heuristic search can then search this space
for those tricks that do not contain points.

The reformulation and operationalization process is accomplished by ap-
proximately 200 transformation rules (Mostow, in press). These rules employ

analysis techniques and domain knowledge to successively reformulate the

advice into an operational form. In this article, we trace a portion of FOO's
operationalization of the "Avoid taking points" advice to show how these
reformulation techniques are applied. Before doing this, however, we describe
the knowledge that FOO has initially and how it is represented.

FOO's Initial Knowledge Base

FOO's performance knowledge is made up of domain concepts, plus rules
and heuristics that are composed in terms of these concepts. The advice

offered to the program likewise consists of domain concepts, plus composi-
tions of concepts. So as long as these compositions of basic concepts can

be described in general ways, both the performance knowledge and the ad-
vice for building and improving it can be used and manipulated by domain-

independent methods (see Hayes-Roth et al., 1981, for further discussion).
For example, in the domain of the card game Hearts, basic concepts

include:

deck, hand, card, suit, spades, deal, round, trick, avoid, point,
player, play, take, lead, win, follow suit.

Examples of advice in the form of behavioral constraints include:

The lead of the first trick is by the player with the 2C.
Each player must follow suit if possible.
The player of the highest card in the suit led wins the trick.
The winner of a trick leads the next trick.

Advice in the form of heuristics includes:

C2 Mostow's Operationalizer 353

If the queen of spades has not been played, then flush it out.
Take all the points in a round.

If you can't take all the points in a round, then take as few
as possible.

If necessary, take a point to prevent someone else from taking
them all.

A constraint such as "The lead of the first trick is by the player with the 2C"
is represented as a composition, using domain-independent concepts like first
and with and domain-dependent concepts like lead, trick, player, and 2C.

An Example: Operationalizing "Avoid Taking Points"

After advice has been interpreted into an internal representation that is
precise and unambiguous, it might be in an operational form, for example,

"Play a low card." On the other hand, it may be far more general: "Avoid
taking points." Experienced Hearts players will recognize that the first,
specific piece of advice is a possible strategy for carrying out the latter, general
advice. But it is a rather simplistic strategy, more appropriate for the later
stages of a game than for the beginning. Furthermore, repeated attempts
to play low cards will sometimes conflict with other advice. For purposes of
illustration, however, operationalizing even a quite simple goal can require a

wide range of knowledge and methods (see Mostow, 1981; Hayes-Roth et al.,
1981). For the remainder of this article, several of the methods and problems
of operationalization will be illustrated by showing how advice such as this
can be converted into directly executable procedures.

First, consider how a person might handle advice such as "Avoid taking
points." He might apply it to a specific situation by reasoning as follows:

1. To avoid taking points in general, I should avoid taking any points in the
current trick (a single round in which one card is played by each player).

2. Thus, if the trick contains points (either a heart or the queen of spades),
I should try not to win it.

3. I can do this by trying not to play the winning card.

4. That can be done by my playing a card lower than some other card
played in the suit led.

Each step above is an attempt to implement the previous statement as closely
as possible by restatement in successively more specific, operational terms.
Some restatements may fully preserve the truth or accuracy of the previous

one, while others may be very suppositional (i.e., valid given certain assump-
tions) or more restrictive (i.e., valid only in certain situations). The final

statement above is not a very sophisticated plan, but it is at least a reasonable
operationalization of the initial advice, and it represents a kind of process

that seems very common in human learning. A problem-reduction strategy is
employed until the advice can be applied directly in the given situation.

354 Learning and Inductive Inference XTV

Now that we have a sense of how a person might operationalize "Avoid

taking points," we trace the methods applied by FOO to accomplish this task.
The following example is based on Derivation 6 in Mostow (1981) in which

he guided FOO to reformulate "Avoid taking points" as "Play a low card."
This particular trace shows the use of several simple operationalization and

reformulation methods but does not show the application of the heuristic-
search method discussed above.

To begin with, the advice must be interpreted into a tractable repre-
sentational form, such as:

(avoid (take-points me) (trick))

That is, "Avoid the event in which ME takes points during the current trick."
In FOO, this is done manually by the advice-giver.

A useful beginning in operationalization is to elaborate the original advice

by expanding definitions (first of "avoid" and then of "trick"). The point is to
unfold high-level terms so that the expression can be more easily manipulated.
The results are

[achieve (not (during (trick) (take-points me)))]
and

(achieve (not (during [scenario

(each p (players) (play-card p))
(take-trick (trick-winner))]

(take-points me)))).

The advice in this form is still not operational, since it depends on the

outcome of the trick, which is not generally knowable at the time ME needs

to choose an action in accordance with the advice. Therefore, a case analysis

is done on the subexpression (during . . .) . The idea is to reformulate a single

concept as several disjoint expressions that can be evaluated separately. To

this end, the single (during . . .) expression is split into two expressions that

depend on alternative assumptions. Here, taking points during the two-part

"scenario" above can be considered as either of two possible cases: that taking
points occurs during (a) the playing of cards or (b) the taking of the trick.
The transformation results in:

(achieve (not (or [during (each p (players) (play-card p))
(take-points me)]

[during (take-trick (trick-winner))
(take-points me)]))).

The next transformation eliminates impossible cases. When expressions

cannot be achieved because of impossible conditions, the learner should recog-
nize this and drop them from consideration. Here, the first case can be ignored

because there is no way to take points during the play of the cards (it is

possible only after all players have played, when the trick is taken). FOO

recognizes this by an intersection search. It searches through the knowledge

C2 Mostow's Operationalizer 355

base of defined concepts for a common subevent of the two events (each p

(players) (play-card p)) and (take-points me). Since no common subevent
is found for these two, FOO concludes that the situation is an impossible one

and eliminates it. (For the second case, take-trick and take-points have a

common sub-event, take .) The advice now is:

(achieve (not [during (take-trick (trick-winner))
(take-points me)])).

The advice is still far from operational. One difficulty is that neither

take-trick nor trick-winner is immediately evaluable at the time a card must
be chosen for play. At this point, the problem can be reduced by reexpressing

different concepts in common terms. This is possible here by again elaborating

definitions and restructuring the subexpressions. Since take-points occurs

during take-trick, the expression can be reformulated as:

(achieve (not [exists cl (cards-played)

(exists c2 (point-cards)

(during (take (trick-winner) cl)
(take me c2)))])) .

This says, "Make sure the situation does not happen where ME takes a point

card (c2) during the time that the winner of the trick takes the cards played."
A process of partial matching recognizes that the two events in the during

subexpression are closely related and thus are candidates for simplification,

depending on the constraints of the during predicate. Using domain knowl-
edge of relationships among the concepts, the terms can be combined and the

subexpression made less complex. Instead of the complicated relation during,

the events become joined by the far simpler predicates = and and. We now
have:

(achieve (not (exists cl (cards-played)

(exists c2 (point-cards)
[and (= (trick-winner) me) (= cl c2)])))).

Further analysis at this point shows that simplification of some forms is

possible. The central purpose of searching for simplifications is to restructure

expressions to make them more amenable to further analysis. Examples of

simplifying methods are deleting null clauses from a disjunction, transforming

an expression into a constant (by evaluation), applying logical transformations

(such as De Morgan's laws), or removing quantifiers when possible. The last
of these methods is appropriate here, since cl and c2 denote the same object:

a point card. Thus with some reformulation employing domain knowledge,

one variable can be replaced by the other, and the condition that they be

equal can be dropped. The expression is transformed into:

(achieve (not [and (= (trick-winner) me)

(exists cl (cards-played)
(in cl (point-cards)))])).

356 Learning and Inductive Inference XIV

Another kind of pattern-matching can accomplish another kind of sim-
plification: By looking for canonical constructions, the operationalizer can

recognize known concepts. If the form of a lower level expression fits the

definition of a higher level concept, the former can be replaced by its simpler

equivalent. (Note that this is the inverse of the first transformation mentioned

above: expanding definitions.) In this case, the last two lines of the above

expression match the definition of trick-has -points. This is analogous to the
psychological process of chunking. In addition to all the analytical advantages

gained by simplification, the recognition of known concepts can also enable

the application of previously learned knowledge about them (e.g., ways to

predict the likelihood that a trick will have points in it). Our expression is

now reduced to not winning a trick that has points:

(achieve (not (and (= (trick-winner) me) [trick-has-points]))) .

The expression is still not operational, since trick-winner is not generally

knowable at the time of choosing which card to play. The concept of trick-

winner is further analyzed, and, in fact, it takes about 20 further transforma-

tions to reformulate the above expression, "Try not to win a trick that has

points," into "If you're following suit in a trick with points, try to play lower

than some other card played in the suit led." Symbolically, this looks like:

(achieve (=> [and (in-suit-led (card-of me))

(trick-has-points)]
[lower (card-of me)

(find-element (cards-played-in-suit-led))])) .

But this still is not operational, since in general the set cards-played-in-

suit-led is not fully known at the time that ME must choose a card. Since
Hearts is a game of imperfect information, this set cannot generally be known,

but the data available (cards already played) can be used to approximate the

result. Here, the binary relation lower is approximated by the unary predicate

low. In other words, in the absence of complete information for evaluating a

comparative predicate (lower xl x2), use instead an estimating function (low

xl) that may not be exact but can produce a result from the available data.

The approximation is:

(achieve (=> (and (in-suit-led (card-of me))

(trick-has-points))
[low (card-of me)])).

This is now very close to being operational. Low is an imprecise term but

can be treated as a fuzzy predicate (see Zadeh, 1979) — that is, it could be

used to order potential candidates for the choice variable, card-of me.

The only remaining barrier to full operationality is the predicate (trick-

has-points). This also is not always knowable at the time of choosing a
card to play. However, further analysis leads to application of a rule that

formulates an assertion as possible (effectively assuming it to be true) in the

C2 Mostow's Operationalizer 357

absence of any knowledge to the contrary. Even when a predicate p is not
evaluable, (possible p) will be.

Thus, the fully operational (though approximate) reformulation of the

original "Avoid taking points" is "If following suit in a trick that may have
points, play a low card." Again, the result may not always be the most effective
action and may be in conflict with other advice. These are issues to be decided
by the evaluating module of the learning element and by the performance
element of the program. The symbolic form of the operationalized advice is:

(achieve (=> [and (in-suit-led (card-of me))

[possible (trick-has-points)]]
[low (card-of me)])) .

Conclusion

The example given above is a useful one because of the diversity of its
reformulations, not because of any completeness. Among the most useful
contributions of this research has been an introduction to the considerable

complexity of operationalizing advice. Of the 13 examples of operationalized

advice given in Mostow's thesis (1981), a couple required only a handful of
transformations (a minimum of 8), but several required over 100. About 10

domain-independent transformational rules were mentioned in the example
above, but over 200 such rules have been formulated and included in the sys-

tem. Mostow (1981) gives a taxonomy of operationalization methods accord-
ing to their purpose, scope, and accuracy. This taxonomy is outlined in

Figure C2-1; each category is illustrated by one or more methods.
The greatest shortcoming of the work on FOO is the lack of a control

structure that could apply these operationalization methods automatically.
The development of such a control regime may be quite difficult. Mostow

suggests using means-ends analysis (see Article II.D2, in Vol. i) and describes
how his execution of rules often conformed to the following pattern:

1. Reformulate an expression until it is possible to

2. recognize that the method is applicable and decide to apply it, so

3. reformulate the expression to match the method problem statement and

4. fill in additional information required by the method; then

5. refine the instantiated method by applying additional domain knowledge.

A second shortcoming of FOO is that its methods are quite specific to the

game of Hearts and similar tasks. The development of a general-purpose
operationalization program will require the explication of many more opera-

tionalization methods. Still, these first steps in operationalization should

prove valuable either for the overall project of machine-aided heuristic pro-
gramming (see the beginning of this article) or for future efforts at implement-

ing advice-taking systems.

358 Learning and Inductive Inference XIV

1. Methods for evaluating an expression

a. Procedures that always produce a result (assuming their inputs
are available)

"Pigeonhole principle"
"Historical reasoning"
"Heuristic search"

b. Procedures that sometimes produce a result

"Check a necessary or sufficient condition"
"Make a simplifying assumption that restricts the scope

of applicability"
c. Procedures that produce an approximate result

"Apply formula for probability that randomly chosen

subsets overlap"
"Characterize a quantity as an increasing or decreasing

function of some variable"

"Use an untested simplifying assumption"
"Predict others' choices pessimistically"

2. Methods for achieving a goal

a. Sound methods (introduce no errors) — execution of plan (when
feasible) will achieve goal

"To empty a set, remove one element at a time"
"Find a sufficient condition and achieve it"

"Restrict a choice to satisfy the goal"

"Modify a plan for one goal to achieve an additional goal"
"To achieve a goal with a future deadline, satisfy it now

and then avoid violating it"

b. Heuristic methods — execution of plan may not always
achieve goal

"Simplify the goal by arbitrarily choosing a value for
one of its variables"

"Find a necessary condition and achieve it"
"Order choice set with respect to goal"

Figure C2-1. Taxonomy of operationalization methods.

C2 Mostow's Operationalizer 359

References

Mostow (1981) is the most comprehensive description of FOO. The arti-
cles by Hayes-Roth, Klahr, and Mostow (1980, 1981) and by Hayes-Roth,

Klahr, Burge, and Mostow (1978) provide a good overview of the idea of

machine-aided heuristic programming. Mostow (in press) describes the work
on heuristic search.

D. LEARNING FROM EXAMPLES

Dl. Issues

THE PROSPECT of creating a program that can learn from examples has
attracted the attention of AI researchers since the 1950s. McCarthy (1958,

p. 78) said, "Our ultimate objective is to make programs that learn from their
experience as effectively as humans do." Of course, the attainment of this goal
still lies in the distant future. The area of learning from examples is, however,
the best understood aspect of learning.

A program that learns from examples must reason from specific instances
to general rules that can be used to guide the actions of the performance
element. The learning element is presented with very low level information,

in the form of a specific situation and the appropriate behavior for the per-
formance element in that situation, and it is expected to generalize this infor-

mation to obtain general rules of behavior.
Consider, for example, a program that is learning to play checkers. One

way to train the program is to present it with particular checkers-board
situations and tell it what the best moves are. The program must generalize
from these particular moves to discover strategies for good play. Similarly, if
we are teaching a program the concept of a dog, for example, we might present
the program with various animals (and other things) and tell it whether or
not they are dogs. The program must develop general rules for recognizing
dogs and distinguishing them from everything else in the world.

Simon and Lea (1974), in an important early paper on induction, describe
the problem of learning from examples as the problem of using training
instances, selected from some space of possible instances, to guide a search for
general rules. They call the space of possible training instances the instance
space and the space of possible general rules the rule space. Furthermore,
Simon and Lea point out that an intelligent program might select its own
training instances by actively searching the instance space in order to resolve
some ambiguity about the rules in the rule space. Thus, if the program were
unsure whether all dogs have four legs, it might search the instance space for
animals with different numbers of legs to see which ones are dogs. Simon and
Lea view a learning system as moving back and forth between an instance
space and a rule space until it has converged on the desired rule.

This two-space view of learning from examples as a simultaneous, coopera-
tive search of the instance space and the rule space is a good perspective for

organizing this article. We will use the terms instance space and rule space
even in situations where the rule space does not contain rules but, instead,

360

Dl Issues 361

Experiment Planning

Instance Selection

Interpretation

Figure Dl-1. The two-space model of learning from examples.

contains some other high-level descriptions of the knowledge needed by the
performance element.

Figure Dl-1 shows a schematic diagram of the two-space model of learning
from examples. In addition to the instance space and the rule space, the
processes of interpretation and experiment planning are depicted. In some
learning situations, the training instances are provided in a form far removed
from the form of the rules in the rule space. As a result, when the program
moves from the instance space to the rule space, special processes are needed
to interpret the raw training instances so that they can guide the search of the
rule space. Similarly, when the program needs to gather some new training

instances, special experiment-planning routines are needed so that the current
high-level hypotheses can guide the search of the instance space.

As an example of the two-space model, consider the problem of teaching
a computer program the concept of a flush in poker (i.e., a hand in which all
five cards have the same suit). The instance space in this learning problem is
the space of all possible poker hands. We can represent an individual point
in this space as a set of five ordered pairs, for example,

{(2, clubs), (3, clubs), (5, clubs), (jack,clubs), (king, clubs)}.

Each ordered pair specifies the rank and suit of one of the cards in the hand.

The entire instance space is the space of all such five-card sets.
The rule space in this problem could be the space of all predicate calculus

expressions composed of the predicates SUIT and RANK; the variables c\, C2,
c3> C4, C5 for the cards; any necessary free variables; the constant values
of clubs, diamonds, hearts, spades, ace, 2, 3, 4> 5, 6> 7> 8, 9, 10, jack,
queen, and king; the conjunction operator (A); and the existential quantifier
(3). This rule space includes concepts such as contains at least three cards of
the same rank:

362 Learning and Inductive Inference XIV

3 ci , c2 , c3 : RANK(ci , x) A RANK(c2 , x) A RANK(c3 , x) ,

and also the desired concept of a flush:

3 Ci,C2,C3,c4,c5 : SUIT(ci,x) A SUIT(c2,z) A SUIT(c3,x) A

SUIT(c4,x) A SUIT(c5,x).

Note that this rule space does not contain the concept of a straight.

A learning program for searching these two spaces might operate as

follows. First, the program selects a training instance from the instance

space and asks the teacher whether it is an instance of the desired concept.

This information (the instance and its classification) is converted by the

interpretation procedures into a form that can help guide the search of the

rule space. When some plausible candidate concepts are found in the rule

space, experiment-planning routines decide which training instances should
be examined next. If the learning program works properly, it will eventually

choose, as its best candidate concept, the flush concept shown above.

Learning systems that employ the two-space approach are making use

of the closed-world assumption, that is, the assumption that the rule space

contains the desired concept. The closed-world assumption allows programs
to locate the desired concept by progressively excluding candidate concepts
that are known to be incorrect.

This two-space view of learning from examples helps to elucidate many of

the design issues for learning systems. In this article, we follow this two-space
model full circle. We examine, in turn, the issues concerning the instance

space, the interpretation process, the rule space, and the experiment-planning

process.

Instance Space

The first issue involving the instance space is the quality of the train-

ing instances. High-quality training instances are unambiguous and thus

provide reliable guidance to the search of the rule space. Low-quality train-
ing instances invite multiple, conflicting interpretations and, consequently,

provide only tentative guidance to the rule-space search.
Consider again the problem of teaching a program the concept of a flush.

There are several sources of ambiguity that could make it difficult for the

program to discover the concept from training instances.

First, the instances may contain errors. If the descriptions of the in-
stances are incorrect, for example, if a 2 of clubs is incorrectly observed to be

a 2 of spades, the error is a measurement error. If, on the other hand, the

classification of the hand (as being a flush or not being a flush) is incorrect,

the error is a classification error. Two kinds of classification errors can occur.

The program can be told that a sample hand is a flush when in fact it is

Dl Issues 363

not — a false positive instance — or that it is not a flush when in fact it is — a
false negative instance.

A second source of ambiguity arises if the program must learn from

unclassified training instances. In these so-called unsupervised learning situa-
tions, the program is given heuristic information that it must use to classify

the training instances itself. If this heuristic knowledge is weak and imper-
fect, the rule-space search must treat the resulting classifications as being

potentially incorrect.
A third factor relating to the quality of the training instances is the

order in which they are presented. A good training sequence systematically
varies the relevant features to determine which features are important. When
a program is selecting training instances, it attempts to construct a good
training sequence for itself. The task of learning is made much easier if there
is a teacher who can be counted on to perform this function. In such cases,

a program can reason about a puzzling instance by trying to infer "what the
teacher was getting at" in presenting the example.

The main point, then, is that high-quality training instances are unam-
biguous. Under such favorable conditions, the program can be designed to

embody a whole set of constraining assumptions about the examples that

permit it to locate rapidly the appropriate high-level rules in the rule space.
Low-quality instances, again, are ambiguous, because the program must con-

sider a much larger space of hypotheses. Thus, if it is possible that the training
instances contain errors, the program must consider the hypothesis that any
given instance is incorrect due to either measurement error or classification
error. In general, the more constraints a program can assume about the data,
the more easily it can learn from them.

The second design issue concerning the instance space is the question of
how it should be searched. This issue has not received much attention in AI

research, since most work has assumed either that the instances are presented
all at once or else that the program has no control over their selection. (See,
however, Rissland and Soloway, 1980, for recent work on instance selection.)
Programs that can update their hypotheses as additional training instances
are selected (or are made available by the environment) are said to perform
incremental learning. Programs that explicitly search the instance space are
said to perform active instance selection.

Most methods of searching the instance space make use of a set, H, of
hypotheses in the rule space that are currently believed by the program to be
most plausible. One approach is to try to discriminate as much as possible
among the alternatives within H. A training instance can be chosen that

"splits H in half," so that half of the hypotheses can be ruled out when
the new instance is obtained. Another approach is to choose the most likely
hypothesis in i/and try to confirm it by checking additional training instances
(particularly instances with extreme characteristics). Using a confirmatory
strategy, the learning system can determine the limits of applicability of the

364 Learning and Inductive Inference XTV

hypothesis under consideration. A third approach, called expectation-based
filtering, selects training instances that contradict the hypotheses in H (see

Lenat, Hayes-Roth, and Klahr, 1979). The hypotheses in H are used to
filter out those instances that are expected to be true (i.e., those that are
consistent with H), so that the learning program can focus its attention
on those instances in which its current hypotheses break down. Finally, an
important consideration may be the size of H, or other computational costs
associated with the learning process. In such cases, new instances may be
selected to minimize these computational costs. For example, the program
might try to rule out only one factor at a time in order to reduce the cost of
comparing a drastically different training instance with each hypothesis in H.

Interpretation Processes

Once the training instances have been selected, they may need to be
transformed before they can be used to guide the search of the rule space. This
transformation process can be quite difficult, especially in perceptual learning
tasks. Suppose, for example, that we wish to train a computer to recognize
the concept of an arch constructed from toy blocks. The program will be
presented with a line drawing of a scene involving a structure of blocks and

told whether or not the scene contains an arch. Winston's (1970) program that
solves this learning task (see Article XIV.D3a) makes extensive use of "blocks-
world knowledge" to interpret the line drawing and extract a relational graph
structure that indicates which blocks are resting on top of which other blocks,
which blocks are touching, and so forth. These are the relations needed to
express the concept of an arch.

Another learning program that performs extensive interpretation of the

training instances is Soloway's (1978) BASEBALL system. The raw training
instances are roughly 2,000 noise- free "snapshots" of a baseball game. The
snapshots give the locations of the nine players on the two teams (e.g., (AT PI

FIRST-BASE)), the location of the ball, and the state of the scoreboard. The
program is composed of a sequence of nine steps that employ various kinds of
knowledge to interpret and generalize the training instances. The first three
steps apply general knowledge about games to filter out periods of inactivity
and focus on cycles of high activity. The next three steps apply knowledge
about physics and about competition and cooperation to interpret these cycles
of activity as competitive or cooperative episodes. To identify these episodes,

the program must assign goals to the different players (e.g., (WANT-TO-EXECUTE
(AT PI FIRST-BASE))). It also guesses that the overall goal of an episode is
that of the last action taken by a player. The final three steps search the
rule space to discover generalized episodes and episode goals such as hit and
out. These concepts are far removed from the original training instances,
but because the previous steps have properly interpreted the data in terms of

goals and actions, this rule-space search is easily accomplished.

Dl Issues 365

The basic purpose of interpreting the training instances is to extract
information that is useful for guiding the search of the rule space. This usually
involves converting the raw training instances into a representational form

that allows syntactic generalization to be easily accomplished (see below).

Rule Space

Two main issues are related to the rule space of high-level knowledge:
What is the space, and how can it be searched? The rule space is usually
defined by specifying the kinds of operators and terms that can be used to
represent a rule. The designer of a learning system seeks to choose a rule
space that is easy to search and that contains the desired rule or rules. In the
sections that follow, we first discuss two factors that influence the choice of a
representation language for the rule space: the kinds of inference supported

by the representation and the single-representation trick. Then we survey
the four methods for searching the rule space. We conclude the discussion of

rule-space issues by examining problems that arise when the representation is
found to be inadequate for expressing the desired rule or rules.

Syntactic rules of inference. Both the expressiveness of a repre-
sentation and the ease of searching the rule space depend on the kind and

complexity of the inferences supported by the representation. The most com-
mon inference process needed for learning from examples is generalization.

We say that one description, A, is more general than another description, B,
if A applies in all of the situations in which B applies and then some more.
Thus, the set of situations in which A is relevant is a superset of the set of
situations in which B is relevant. For example, the rule that All ravens are

black is more general than the rule that All one-eyed ravens are black, since
the set of all ravens strictly includes the set of one-eyed ravens. Often, a
description A is more general than a description B because A places fewer

constraints on any relevant situations. The all ravens rule omits the one-eyed
constraint and, hence, is more general.

It is important to choose a representation for the rule space in which gen-
eralization can be accomplished by inexpensive syntactic operations. Predicate

calculus, for example, is quite amenable to certain kinds of syntactic gen-
eralization. Below are some examples of syntactic rules of inference that

accomplish generalization in predicate calculus. Some recent work in learning

(Larson, 1977; Larson and Michalski, 1977; Michalski, 1980) has sought to
identify rules of inference that are particularly useful in learning systems. It

is important to note that these rules of inference do not preserve truth — the
rules are inductive.

1. Turning constants to variables. Suppose we want a program to
discover the concept of a flush in poker. We might give some training
instances of the form:

366 Learning and Inductive Inference XTV

Instance 1. SUIT {a, clubs) A SUIT(c2, clubs) A
SUIT(c3, clubs) A SUIT(c4, clubs) A

SUIT(c5, clubs) => FLUSH(ci,C2,c3,C4,c5).

Instance 2. SUIT(ci, spades) A SUIT(c2, spades) A
SUIT(c3, spades) A SUIT(c4, spades) A

SUIT(c5, spaces) =» FLUSH(ci, c2, c3, c4, c5) .

From these, the program could hypothesize the rule

Rule 1. SUIT(ci, x) A SUIT(c2, x) A SUIT(c3, re) A SUIT(c4, x) A

SUIT(c5,:r) =► FLUSH(ci, c2, c3, c4,c5) .

by replacing the atomic constants of clubs and spades by the variable x

(where x stands for any suit).

2. Dropping conditions. Suppose again that we are teaching a program
the concept of a flush, but now we present instances of the form:

Instance 1. SUITfci, clubs) A RANK(ci,3) A
SUIT(c2, clubs) A RANK(c2, 5) A

SUIT(c3, clubs) A RANK(c3, 7) A
SUIT(c4, clubs) A RANK(c4, 10) A
SUIT(c5, clubs) A RANK(c5, king)

=> FLUSH(ci, c2,c3,c4,c5).

In order to discover rule 1, the program must not only turn constants

into variables, but it must also "forget" all of the RANK predicates, since
rank is irrelevant. This can be accomplished by dropping conditions. Any
conjunction can be generalized by dropping one of its conditions. We can
view a conjunctive condition as a constraint on the set of possible instances

that could satisfy the description. By dropping a condition, we are removing
a constraint and generalizing the rule.

3. Adding options. A further way to generalize a rule is to add another
option to the rule so that more instances may conceivably satisfy it. Suppose

we are trying to teach a program the concept of a face card (i.e., jack, queen,

or king). We might give examples of the form:

Instance 1. RANK(ci, jack) =» FACE(ci).
Instance 2. RANK(ci, queen) =► FACE(ci).
Instance 3. RANK(ci,A;ma) =* FACE(ci).

The program can discover the rule by forming the disjunction of the pos-
sibilities:

Rule 2. RANK(ci, jack) V RANK(cx, queen) V RANK(ci, king)
=> FACE(ci).

Notice that this decision to add options is a less drastic generalization than

that of turning the jack, queen, and king constants into a single variable to

get
Rule 3 (wrong). RANK(ci,y) => FACE(ci).

Dl Issues 367

An alternative to ordinary disjunction is what Michalski (1980) terms an

internal disjunction. If we allow sets and set membership in our repre-
sentation, we can express our instances as

Instance l'. RANK(ci) <E {jack} => FACE(ci).
Instance 2'. RANK(ci) £ {queen} =* FACE(ci).
Instance 3'. RANK(ci) 6 {king} =» FACE(ci).

The generalization can then be expressed as

Rule 2'. RANK(ci) € {jack, queen, king} => FACE(ci).

This latter representation is more compact.

Similar rules of generalization can be defined for numerical representa-
tions that use a linear combination of features, as follows:

4. Curve fitting. Suppose a program is attempting to discover how the

output, z, of a system is related to two inputs, x and y. The program is

provided with training instances in the form of (x, y, z) triples that show
the output of the system for particular values of the inputs:

Instance 1. (0,2,7).

Instance 2. (6,-1,10).
Instance 3. (—1, —5, —16) .

By a curve-fitting technique, such as least-squares regression, the program
fits the line

Rule 1. z = 2z + 33/ + l,

or, alternately, the ordered triple (x,y,2x + Sy + 1), to these data. This
generalizes the relationship, so that it holds for many more (x, y, z) triples
than just the three training instances. The program can now predict the z
output for any values of the x and y inputs. This process is analogous to

the turning-constants-into-variables generalization rule.

5. Zeroing a coefficient. The program can further generalize this relation-
ship by zeroing the y coefficient and fitting a plane to the three training

instances. In this case, it obtains

Rule 2. z = 2.59x - 3.99 .

Alternately, the ordered triple is (x, y, 2.59x — 3.99). (The y coordinate can
be anything.) By giving y the coefficient of zero, the program has dropped it

as a condition and reduced the dimensionality of the function z = F(x, y) to

make it z = G(x). The program has decided that y is irrelevant to the value
of z. The relationship now holds for an even larger set of (x, y, z) triples.

This rule is analogous to the dropping-condition rule of generalization.

Notice that these rules of inference correspond to particular features of

the representation language. For example, the method of turning constants

368 Learning and Inductive Inference XTV

into variables makes use of free variables, the method of adding options uses

the disjunction operator, and the coefficient- zeroing technique makes use of
the multiplication operator. To the extent that the representation language

has fewer of these features, fewer inference rules will be applicable and,

consequently, the search of the rule space will be easier to accomplish. But

since each of these language features contributes to the expressiveness of the

representation, the designer of a learning system faces a trade-off between the
increased expressiveness of the representation and the increased difficulty of

searching the rule space.

The single-representation trick. Another factor relating to the dif-
ficulty of searching the rule space (and the instance space) is the difference

between the representation used for rules and the representation used for

the training instances. If the representations for the rule space and the

instance space are far removed from each other, then the searches of the

two spaces must be coordinated by complex interpretation and experiment-
planning procedures. One trick commonly used to avoid this problem is to

choose the same representation for both spaces. Training instances are viewed

literally as highly specific pieces of acquired knowledge. Suppose, for example,

that we are trying to teach a program the concept of a pair in poker. We

want the program to learn the rule

Rule 4. 3 cardi,card2 : RANK(cardi, x) A RANK(card2, x) => PAIR .

(This is only an approximate definition of PAIR. An exact definition would

require a more complex representation involving equality.)

As was shown above, specific hands could be represented "naturally" as
sets of five ordered pairs — the rank and suit of each of the cards. With such
a representation for the hand made up of the 2 of clubs, 3 of diamonds, 2 of

hearts, 6 of spades, and king of hearts, we would obtain

Instance 1. {(2, clubs), (3, diamonds), (2, hearts), (6, spades), (king, hearts)}
=> PAIR.

But this representation makes it difficult to discover the concept of a pair in

poker with the syntactic rules of inference described above. A less natural, but

more useful, representation would describe the hand in predicate calculus —
the same representation that we will eventually need for the acquired concept

(rule 4). Thus, we would say of our hand

Instance l'. 3 C\, c2,cz, c\, C5 : RANK(ci,2) A SUIT (ci, clubs) A
RANK(c2, 3) A SUIT(c2, diamonds) A
RANK(c3, 2) A SUIT(c3, hearts) A
RANK(c4, 6) A SUIT(c4, spades) A

RANK(c5 , K) A SUIT(c5 , hearts) => PAIR .

Now the process of generalization merely involves dropping the SUIT condi-
tions and replacing the constant 2 by a variable x. Of course, there are many

other possible generalizations of instance 1', and the search of the rule space

Dl Issues 369

would still be nontrivial. The advantage of using the single-representation
trick is that we have chosen a representation that allows this search to be
accomplished by simple syntactic processes.

The problems of interpretation and experiment planning are eased when

the single-representation trick is used. Many learning programs sidestep these
problems completely by assuming that the training instances are provided by
the environment in the same representation as used for the rule space. In

more practical situations, the interpretation and experiment-planning routines
serve to translate between the raw instances (as they are received from the
environment) and the derived instances (after they have been interpreted as
specific points in the rule space).

Methods of searching the rule space. Now that we have discussed
the issue of how to represent the rule space, we can turn our attention to the
four main methods that have been used to search the rule space. All of these
methods maintain a set, H, of the currently most plausible rules. They differ
primarily in how they refine the set H so that it eventually includes the desired
points in the rule space. A useful classification of search methods distinguishes
methods in which the presentation of the training instances drives the search

(so-called data-driven methods) from those methods in which an a priori model
guides the search (so-called model-driven methods).

The first data-driven method is the version-space method (and several
related techniques). This approach uses the single-representation trick to
represent training instances as very specific points in the rule space. The
set H is initialized to contain all hypotheses consistent with the first positive
training instance. New training instances are examined one at a time and

pattern-matched against H to determine whether the hypotheses in H should
be generalized or specialized.

The second method, also a data-driven method, does not use the single-
representation trick. Instead, special procedures (or production rules) examine
the set of training instances and decide how to refine the current set, H,

of hypotheses. The program can be viewed as having a set of hypothesis-
refinement operators. In each cycle, it uses the data to choose one of these

operators and then applies it. Lenat's (1976) AM system is an example of this
approach.

The third approach is model- driven generate and test. This method
repeatedly generates and tests hypotheses from the rule space against the

training instances. Model-based knowledge is used to constrain the hypothesis
generator to generate only plausible hypotheses. The Meta-DENDRAL pro-

gram is the best example of this approach (see Buchanan and Mitchell, 1978).

Finally, the fourth approach is model-driven schema instantiation. It uses
a set of rule schemas to provide general constraints on the form of plausible
rules. The method attempts to instantiate these schemas from the current
set of training instances. The instantiated schema that best fits the training

instances is considered the most plausible rule. Dietterich's SPARC program

370 Learning and Inductive Inference XIV

(Dietterich, 1979; Dietterich and Michalski, in press), which discovers secret

rules in the card game Eleusis, applies the schema-instantiation method.
Data-driven techniques generally have the advantage of supporting incre-

mental learning. A feature of the version space method, in particular, is
that the H set can easily be modified to account for new training instances

without any backtracking by the learning program. In contrast, model-driven
methods, which test and reject hypotheses based on an examination of the
whole body of data, are difficult to use in incremental learning situations.

When new training instances become available, model-driven methods must
either backtrack or search the rule space again, because the criteria by which
hypotheses were originally tested (or schemas instantiated) have changed.

A strength of model-driven methods, on the other hand, is that they
tend to have good noise immunity. When a set of hypotheses, H, is tested

against noisy training instances, the model-driven methods need not reject a
hypothesis on the basis of one or two counterexamples. Since the whole set of
training instances is available, the program can use statistical measures of how

well a proposed hypothesis accounts for the data. In data-driven methods, H is
revised each time on the basis of the current training instance. Consequently,
a single erroneous instance can cause a large perturbation in H (from which

it may never recover). One approach that allows data-driven methods to
handle noise is to make very slight, conservative changes in H in response to
each training instance. This minimizes the effect of any erroneous training
instances, but it causes the learning system to learn much more slowly.

The problem of new terms. In some learning problems, the program
can assume that the desired rule or rules exist somewhere in the rule space.

Consequently, the search has a well-defined goal. In many situations, however,
there is no such guarantee, and the learning program must confront the
possibility that its representation of the rule space is inadequate and should
be expanded. This is called the problem of new terms.

One approach to expanding the rule space is to add new terms to the
representation. Consider again the problem of teaching a program the concept
of a pair in poker. In the section above, the program was able to represent the

pair concept by using a predicate-calculus representation with the suit and
rank terms. Such a representation would not permit the program to discover
the concept of a straight, however. One way to represent the straight concept
would be to create a new term called SUCC(x, y), which is true if and only if

x = y + 1. Now the straight concept can be represented as:

RANK(ci, ri) A RANK(c2, r2) A RANK(c3, r3) A RANK(c4, r4) A RANK(c5, r5) A

SUCC(ri,r2) A SUCC(r2,r3) A SUCC(r3,r4) A SUCC(r4,r5).

The problem of defining new terms is quite difficult to solve. An advantage

of the hypothesis-refinement operator approach to searching the rule space is
that it is fairly easy to incorporate operators that create new terms. The

Dl Issues 371

BACON (Langley, 1980) and AM programs both have operators that create
new terms by combining and refining existing terms.

Experiment Planning

Once the learning element has searched the rule space and developed
a set, H, of plausible hypotheses, the program may need to gather more
training instances to test and refine them. When the instance space and the
rule space are represented in very different ways, the process of determining
which training instances are needed and how they can be obtained can be
quite involved. Suppose, for example, that a genetics learning program is

attempting to discover which portions of DNA are important. To test a high-
level hypothesis (or several hypotheses), it may be necessary to plan a very
involved experiment to synthesize a particular strand of DNA and insert it
into the appropriate bacterial cells to observe the resulting behavior of the

cells. -
The AM program is an example of an AI learning program that performs

some experiment planning. After one of AM's refinement operators creates
a new concept, AM must gather examples of that concept to evaluate and
refine it. Several techniques are used to generate good training instances,

for example, by symbolically instantiating the concept definition or by inher-
iting examples from more general or more specific concepts. AM has a spe-

cial body of heuristics for locating positive and negative boundary examples

(i.e., examples that barely succeed, or barely fail, to be instances of the con-
cept).

Taxonomy of Work in Learning from Examples

Now that we have described the two-space model, we present a rough
taxonomy of work in the area of learning from examples. Several subareas
of research have developed within this area, ranging from philosophically

oriented inductive learning to highly engineering-oriented pattern-classification
work. These different areas can be characterized by two components of the

simple learning model presented in Article XIV.A: the representation used in
the knowledge base and the task that the performance element carries out.
In the remainder of this chapter, a separate article is devoted to each of these
subareas.

Systems that use numerical representations. Researchers in electri-
cal engineering and systems theory have developed learning methods that

represent acquired knowledge in the form of polynomials and matrices. The

performance elements of these learning systems, which are usually called adap-
tive systems, typically perform tasks such as pattern classification, adaptive

control, and adaptive filtering. The strengths of these adaptive methods are
that they can be used in noisy environments, in environments whose properties

372 Learning and Inductive Inference XTV

are changing rapidly, and in situations where analytic solutions based on clas-
sical systems theory are unavailable. We include an article on this subject

because of its historical relationship to AI and because of the possibility that

useful hybrid systems may be constructed in the future.

Systems that use symbolic representations. Most AI work on learn-

ing has used symbolic representations such as feature vectors, first-order predi-
cate calculus, and production rules to represent the knowledge acquired by the

learning element. It is useful to classify this work according to the complexity

of the task being performed by the learning system:

1 . Learning single concepts. The simplest performance task is to classify new
instances according to whether they are instances of a single concept.
The problem of learning single concepts has received a lot of attention
and is probably the best understood learning task in AI.

2. Learning multiple concepts. Many performance tasks involve the use of
a set of concepts that operate independently. Disease diagnosis, for
example, is a task in which the program seeks to assign one or more
disease classes to a patient. The problem of learning a set of concepts

has received some attention in AI. The Meta-DENDRAL and AM systems,
for example, discover many concepts in order to describe their training
instances and guide the performance element.

3. Learning to perform multiple-step tasks. The most complex performance
tasks for which learning techniques have been developed are relatively

simple planning tasks that require the performance element to apply
a sequence of operators to perform the task. Unlike the multiple, but

independent, concepts used in Meta-DENDRAL and AM, the rules in
these systems must be chained together into a sequence. Consequently,

many difficult problems of integration and credit-assignment arise.

References

Simon and Lea (1974) describe the two-space model of rule induction.
Dietterich and Michalski (1981) provide some perspectives on systems that

learn from examples. See also Buchanan, Mitchell, Smith, and Johnson (1977).

D2. Learning in Control and Pattern Recognition Systems

THERE ARE many applications in engineering and science for which learning
systems have been developed. These systems, usually called adaptive systems,
are useful when classical systems techniques cannot be applied because of
insufficient knowledge about the underlying system. Such situations often
arise in extremely noisy and rapidly changing environments.

Classical systems theory addresses itself to problems in the design and
analysis of systems, where a system is viewed abstractly as an operator that

maps a vector of inputs, x, to a vector of outputs, y. Two important engineer-
ing problems for which learning systems have been developed are control and

pattern recognition.

Consider the control problem shown in Figure D2-1. The system is an
automobile engine. The inputs — in this case, control inputs — are the amount
of gasoline and the setting of the spark-plug advance. The single output is
the speed of the engine. The control problem is to determine the settings
of the inputs over time, so that the output follows a particular curve. We
want the speed of the engine to track the desired speed as commanded by the

driver of the automobile. If we have a mathematical model of the engine — say,
as a set of differential equations relating x\ and £2 to y — we can often solve
this control problem. To obtain the model, we can usually inspect the system

directly and apply the laws of physics. But in complex, time-varying systems,
such an approach may be impossible. Instead, it may be necessary to identify

the system — that is, construct a model by observing the system in operation
and finding an empirical relationship between the inputs and the outputs.

Pattern recognition — the other task for which adaptive learning is useful —
also can be viewed as a system-identification problem. The pattern-classifi-

cation system shown in Figure D2-2 takes an input object — represented as
a vector, x, of features — and maps it into one of m pattern classes. The

Desired

Speed
Controller

x\ : Gas Flow
Automobile
Engine /

£2 : Spark Advance

Actual

Speed of
Engine

f(xi,x2) = y

Figure D2-1. A simple control problem.

373

374 Learning and Inductive Inference
XIV

Input
Image

Character Recognizer

(person)

Character Class

{A,B, ...,£,1,2, ...,9, ...}

Figure D2-2. A simple pattern-classification problem.

archetypal pattern-classification problem is optical character recognition, in
which the inputs are images of handwritten or printed characters and the
output is a classification of each image as one of the letters, numerals, or
punctuation symbols. Suppose we want to build a computer system that can

recognize characters. We have available an unknown system — in this case, a
person — that can perform the task reliably. If we can identify the system, we
will then have a computer model that can recognize handwritten characters.

Figure D2-3 illustrates the general setup for adaptive system identifica-
tion. The unknown system and the model are configured in parallel. Their

outputs — the true output, y, and the estimated output, y — are compared,
and the error, e, is fed back to the learning element, which then modifies the

model appropriately. In the terminology of our simple learning-system model,
the unknown system is the environment. It provides training instances, in the

form of (x, y) pairs, to the learning element. The learning element modifies
certain parts of the model (i.e., the knowledge base), so that the model system
(i.e., the performance element) more accurately models the unknown system.

Conceptually, therefore, adaptive system identification, adaptive control,
and pattern recognition are all problems of learning from examples. The

Unknown

System +

t
{ ̂) e

\^J

Model /
System /

y Y

t
Learning

Element

Figure D2-3. Adaptive system identification.

D2 Learning in Control and Pattern Recognition Systems 375

unknown system provides the training instances and the performance stan-
dard (i.e., the true y values).

In this article, we discuss the methods that have been used to accomplish
this learning. We have divided the methods into four groups according to the
representations that are used to model the unknown system:

1. Statistical algorithms, which employ probability density functions to create
a Bayesian decision procedure;

2. Parameter learning, which uses a vector of parameters and a linear model;

3. Automata learning, which uses stochastic and fuzzy automata (discussed
below) to model the unknown system; and

4. Structural learning, which uses pattern grammars and graphs to represent
classes of objects for pattern classification.

Statistical Learning Algorithms

In pattern recognition (and sometimes in control), it is possible to view
the unknown system as making a decision to assign the input, x, to one
class, y, out of m classes. By defining a loss function that penalizes incorrect

decisions (i.e., decisions in which y differs from y), a minimum- average-loss
Bayes classifier can be used to model the unknown system. The problem of
identifying the unknown system then reduces to the problem of estimating a
set of parameters for certain probability density functions. These parameters,

such as the mean vector and the variance-covariance matrix, can be estimated
from the training instances in a fairly straightforward fashion (see Duda and

Hart, 1973).

In the terminology of Simon and Lea (1974), the set of all possible x vec-
tors forms the instance space, and the set of possible values for the parameters

of the probability distributions forms the rule space. The rule space is searched
by direct calculation from the training instances. The instance space is not
actively searched.

Unfortunately, these methods rely on assuming a particular form (e.g.,
multivariate normal) for the probability distributions in the model. These

assumptions frequently do not hold in real-world problems. Furthermore, the
computational costs of the estimation may be very high when there are many
features.

Parameter Learning

In parameter learning, a fixed functional form is assumed for the unknown
system. This functional form has a vector of parameters, w, that must be
determined from the training instances. Unlike the statistical methods, there
is little or no probabilistic interpretation for the unknown parameters and,

376 Learning and Inductive Inference XTV

consequently, probability theory provides no guidance for estimating them
from the data. Instead, some sort of criterion, usually the squared error

(y — y)2 averaged over all training instances, is minimized. The rule space
is thus a space of possible parameter vectors, and it is searched by hill-
climbing (also called gradient descent) to find the point that minimizes the
error between the model and the unknown system.

The most popular form assumed for the unknown system is a linear
functional:

y = WX = ̂2 WiXi

The output is assumed to be a linear combination of the input feature vector,
x, with a weight vector, w. The elements of the weight vector are the unknown
parameters. The rule space is thus the space of all possible weight vectors,
known as the weight space.

An important special case arises when the unknown system is a binary
pattern classification system similar to the system shown earlier in Figure

D2-2. In binary pattern classification, the classifier must indicate in which
of the two pattern classes the input pattern, x, belongs. This is typically
accomplished by taking the output, y, of a linear functional and comparing
it to a threshold, b:

If y > b, then x is in class 1.
If y < b, then x is in class 2.

Usually, the instance space is normalized, so that the threshold b is zero. This

linear- discriminant function can be thought of as a hyperplane that splits the
instance space into two regions (class 1 and class 2). For example, if x =

(xi,X2) is a two-dimensional feature vector and w = (—1,2), the instance
space is split as shown in Figure D2-4.

The learning problem of finding w can thus be viewed as the problem
of finding a hyperplane that separates training instances of class 1 from
training instances in class 2. When it is possible to find such a hyperplane,
the training instances are said to be linearly separable. Often, however, the
training instances are not linearly separable. In such cases, we must either use
a more complex functional form, such as a quadratic function, or else settle
for the hyperplane that makes the fewest errors on the average.

How can the desired hyperplane, or, equivalently, the desired weight
vector, be found? We describe three basic algorithms for computing the weight

vector. The first two algorithms are hill-climbing methods that process the
training instances one at a time. After each training instance, x/c, the weight

vector, Wfc, is updated to give w^+i-

The first algorithm, called the fixed-increment perceptron algorithm, seeks
to minimize the classification errors made by the model. If x^ is an instance

of class 1 and y = w^x/c is less than 0, instead of greater than 0, an error

D2 Learning in Control and Pattern Recognition Systems 377

Class 1 1 k

+ ̂ X^
^

X\

Class 2

4- : Instance of class 1

— : Instance of class 2

Figure D2-4. An example of a linear-discriminant function.

has been made. The magnitude of this error is e = 0 — w^x/c, that is, the
difference between the desired value for the output of the system (y = 0) and
the value computed by the model (y = w^Xfe). This is usually written as the
perceptron criterion,

Jp = -W/cXfc ,

and the goal of learning is to minimize Jp. The fixed-increment algorithm
updates w^ whenever Jp > 0 according to

Wfc+i =Wfc+Xfc. (1)

We can think of Jp as a surface over the weight space, the space of possible

values for the weight vector w (see Fig. D2-5). Mathematical analysis shows
that x can be viewed as a vector in this weight space (as well as in instance

space) pointing in the direction of steepest descent for Jp. Thus, this algorithm

takes a fixed-size step in the direction of steepest descent.
Similarly, if x& is in class 2 and w^x/c > 0, an error has been made. The

solution is to adjust w as

Wfc+l = Wfc -Xfc.

Equivalently, all training instances in class 2 can be replaced by their nega-
tives, and all instances can be processed as though they were in class 1.

Equation (1) can then be used to perform the entire learning process.

The fixed-increment algorithm converges in a finite number of steps if the
training instances are linearly separable. It has been shown for the two-class
case that the number of training instances should be at least twice the number

of features in the instance space (see Nilsson, 1965).

378 Learning and Inductive Inference
XIV

weight space

Figure D2-5. A schematic diagram of the perceptron algorithm.

Historically, the fixed-increment algorithm is associated with Rosenblatt's
(1957, 1962) perceptron, which was developed within the study of bionics and

neural mechanisms. The simplest perceptron, shown in Figure D2-6, is a
device that assigns patterns to one of two classes. It consists of an array
of sensory units connected in a random way to an array of unmodifiable
threshold units, each of which computes some desired feature of the sensory

array and produces a +1 or —1 output, depending on whether the feature
is present or absent. The outputs of these feature-extraction units are then
connected to a modifiable unit that weights each input and sums the result

(i.e., computes wx). The resulting value is compared with a threshold, and the
perceptron produces an output of +1 if wx is greater than the threshold and

—1 otherwise. Thus, the simplest perceptron implements a linear-discriminant
function. The original publication of the perceptron model sparked a large

Sensory Fixed
Inputs Feature

Extractors

Adjustable
Linear Threshold

Device

Figure D2-6. The simplest form of perceptron.

D2 Learning in Control and Pattern Recognition Systems 379

amount of research, and a fair amount of speculation, concerning the potential

for building intelligent machines from perceptions. Minsky and Papert (1969)
attempted to quiet this speculation by proving several theorems about the

limits of perceptron-based learning. The introduction to their book provides
several criticisms of AI learning research that remain valid today.

The fixed-increment perceptron algorithm can be improved in several ways
by choosing how far in the direction of the gradient to go at each step. The

LMS (least-mean-square) algorithm (Widrow and Hoff, 1960), for example,
updates w according to

wfc+i = wfc +/oefcxfc,

where p is a positive value and e^ is the magnitude of the error, that is,

— WfcXfc. This algorithm tends to minimize the mean-squared error

J5 = ̂2 (WfcXfc)'

even when the classes are not linearly separable. The algorithm is also very
easy to implement.

More robust, but harder to compute, algorithms are based on tradi-

tional linear-regression and linear-programming techniques (see Duda and
Hart, 1973). Given a set of training instances, linear regression can be used
to minimize Js. The weight vector is computed from the data as

w = (XTX)-1XTy,

where y is the true output of the unknown system and X is a matrix of train-
ing instances, one instance in each row. Unfortunately, this method requires

computing the pseudo- inverse (XTX)-1XT of X, which is an expensive step.
Less costly recursive algorithms have been developed that can compute w

incrementally as the training instances become available, rather than collect-
ing all of the instances and computing w once and for all (Goodwin and Payne,

1977).

Linear-programming techniques can be used to minimize the perceptron

criterion, Jp. These methods also conduct a hill-climbing search of the weight
space. Further details are available in Duda and Hart (1973).

Some of these linear-discriminant algorithms can be modified slightly to
put them on sound statistical foundations. The regression techniques, for

example, can be adjusted to converge in the limit to an optimum Bayes clas-
sifier. Their rate of convergence is slower than the unmodified algorithms.

Consequently, the simpler, faster algorithms shown above are often chosen in
favor of the statistically more rigorous methods.

All of these methods for finding discriminant functions can be general-
ized to handle classification problems for more than two classes. Typically,

380 Learning and Inductive Inference XTV

a separate discrimination function is learned for each of m classes, and x is

classified to that class i for which the value of the discriminant function /;(x)

is largest. Another approach to multiple-class problems is to perform a multi-
stage classification in which x is first classified into one of a few classes and

then each of these is in turn split into subclasses until x is properly classified.
By decomposing the classification problem into subproblems, other a priori

knowledge about different classes — and the features relevant to those classes —
can be incorporated into the system. Most large, multicategory problems do

not lend themselves to straightforward general solutions. Instead, the struc-
ture and organization of the classification strategy are usually highly depen-
dent on the particular problem and domain-specific knowledge. Consequently,

many of these classification problems overlap problems in AI.

Learning Automata

An alternate representation for an unknown system is as a finite-state

automaton (Fu, 1970b). The goal is to find a finite-state automaton whose
behavior imitates that of the unknown system. Two quite similar approaches

have been pursued. One models the unknown system as a deterministic finite-
state machine with randomly perturbed inputs. The learning program is
given an initial state transition probability matrix, M, which tells overall for

each state, <?;, what the probability is that the next state will be qj. From
M, an equivalent deterministic machine can be derived, and the probability
distribution of the input symbols can be determined. This approach requires
that the internal states of the unknown system can be precisely observed and
measured.

A second approach models the unknown system as a stochastic machine

with a random transition matrix for each possible input symbol. Reinforce-
ment techniques are applied to adjust the transition probabilities. Unfortu-

nately, this requires a large amount of training information in order to exercise
all possible transitions. As with the first approach, assumptions about the
observability of all internal states must be made.

Fuzzy automata based on Zadeh's fuzzy set concept provide an alternate,
but similar, approach to that used with stochastic automata (Wee and Fu,

1969). Set-membership criteria are applied, rather than probabilistic con-
straints, in the selection of transitions and outputs. Fuzzy automata are also

able to make higher order transitions than stochastic automata and, conse-
quently, they can usually learn faster.

The basic ideas of automata learning have been extended to take into

account the interactions of a number of automata operating in the same envi-
ronment. Such automata may interact in either cooperative or competitive

modes. This has led to the formulation and study of automata games (Fu,
1970b).

D2 Learning in Control and Pattern Recognition Systems 381

Automata methods have the advantage over parameter-learning methods
in that they do not require that there be a performance criterion with a unique

minimum point. Furthermore, automata provide a more expressive repre-
sentation for describing the unknown system. The principal disadvantage

of automata learning methods is that they are relatively slow compared to
parameter learning techniques. In addition, they are usually suitable only for

application in stationary (i.e., non-time- varying) environments. Consequently,
automata methods have not yet seen much practical application.

Structural Learning

Structural learning techniques have been used primarily in situations in

which the objects to be classified have important substructure (Fu, 1974). The

parametric linear-discriminant approaches described above can represent only
the global features of objects. By employing pattern graphs and grammars,
important substructures, such as the pen strokes that make up a character
and the phonemes that make up a spoken word, can be represented along with
their interrelationships. A first step in setting up a structural learning scheme
involves identifying a set of primitive structural elements associated with the
problem. These primitives may be thought of as the alphabet for describing
all possible patterns associated with the application. They need to be higher
level objects than simple scalar measurements (e.g., characters, shapes, and
phonemes instead of height, width, and curvature). Legal and recognizable
patterns are formed from combinations of the primitives according to certain

syntactic rules.

Formal language theory provides a theoretical framework that accom-
modates the structural or descriptive formulation of pattern recognition. Here,

the alphabet corresponds to the set of structural primitives. A number of for-
malisms have been used to express structural descriptions. In linguistic terms,

a pattern may be thought of as a string or sentence, and a grammar may be
associated with each pattern class. The grammar controls the structure of

the language in such a way that the sentences (patterns) produced belong
exclusively to a particular pattern class; a grammar is therefore needed for
each pattern class. Parsing techniques can help determine whether a sentence
(pattern) is grammatically correct for a given language. Both deterministic
and stochastic grammars have been employed in pattern classification. (See

Article XIII.E3 for a discussion of grammatical approaches to image under-
standing.)

Stochastic grammars (see Article XTV.D5e) have been used in an attempt

to accommodate the possibilities of ambiguity and error in pattern descrip-
tion. These grammars make it possible for probabilistic assignments to be

made. Before such a grammar can be used for classification, the production

probabilities must be determined, for example, by "learning" them from a set
of training examples.

382 Learning and Inductive Inference XTV

There are still several difficulties associated with the structural approach
to pattern classification. In contrast to the statistical and parameter learning
methods, very few practical structural training algorithms have presently been
proposed. The problem of learning a grammar from training instances is
called grammatical inference. Article XIV.D5e describes the current state of
work in that area. In addition to the problem of learning the grammar, the
steps of segmentation into primitives and formation of structural descriptions
are only partly solved.

Relevance for Artificial Intelligence

This survey of learning systems in engineering shows that many of the
problems addressed are analogous to those encountered in the design of AI

learning systems. Engineering systems are particularly adept at handling

noisy training instances — a problem that few AI systems have addressed. It
has also been possible to develop detailed analyses of these learning algo-

rithms, including convergence proofs and investigations of their statistical
foundations.

The primary drawback of these methods is their reliance on simple feature-
vector representations. Although there are many practical applications for

which these representations suffice, most problems of interest to AI research-
ers require more expressive representations. The more recent attempts to use

automata and pattern-grammar representations are much more relevant to AI
research.

Some aspects of the work in engineering may be important for AI research-
ers. In addition to work on the problem of noise, some progress has been

made on solving the problem of choosing a good set of features with which to
perform the learning process. One approach is to estimate the discriminatory

ability of each feature given choices of the other features. Dynamic-program-
ming techniques can help determine a good ordering of the features (from

most relevant to least relevant). A second interesting approach — called dimen-
sionality reduction — is to take a large set of features and compute a new,

smaller set by forming linear combinations of the old features. The Karhunen-
Loeve expansion can be used to create such derived features (see Fu, 1970a,
and Article XIII.C5).

References

A very readable introduction to linear-discriminant functions can be found
in Nilsson (1965). Duda and Hart (1973) provide an excellent survey of pattern
recognition techniques. Tsypkin (1973) develops a formal, unified treatment
of learning methods in engineering.

D3. Learning Single Concepts

MANY PROGRAMS have been developed that are able to learn a single concept

from training instances. This article describes the single-concept learning
problem and discusses a few, selected learning programs that give a sense of
the techniques that have been applied to this problem.

What does it mean to learn a concept from training instances? The term
concept is used quite loosely in the AI literature. In this article, we take
a concept to be a predicate, expressed in some description language, that
is TRUE when applied to a positive instance and FALSE when applied to a
negative instance of the concept. A concept is thus a predicate that partitions
the instance space into positive and negative subsets. For example, the concept
of straight can be thought of as a predicate that indicates, for any poker hand,
whether or not that hand is a straight.

The single-concept learning problem is the problem of discovering such a
concept predicate from training instances — that is, from a sample of positive
and negative instances in the instance space. The standard solution to this
problem is to provide the learning program with a space of possible concept
descriptions that the learning program searches to find the desired concept
description (see Article XIV.Dl).

Formally, the single-concept learning problem can be stated as follows:

Given: (1) A representation language for concepts. This implicitly
defines the rule space: the space of all concepts repre-
sentable in the language.

(2) A set of positive (and usually negative) training instances.
In most work to date, these training instances are noise free
and classified in advance by the teacher.

Find: The unique concept in the rule space that best covers all of
the positive and none of the negative instances. Most work

to date assumes that if enough instances are presented, ex-
actly one concept exists that is consistent with the training

instances.

To gain insight into the origin of the single-concept learning problem, it
is useful to examine the performance tasks that make use of the concept once
it is learned. The standard performance task is classification; the system is
presented with new unknowns and is asked to classify them as positive or
negative instances of a concept. Another common task is prediction; if the
training instances are successive elements of a sequence, the system is asked to
predict future elements in the sequence. A third task is data compression; the

system is given all possible instances (the full instance space) and is asked to

383

384 Learning and Inductive Inference XTV

find a concept that compactly describes them. The concept-classification and
sequence-prediction tasks both arose as laboratory paradigms within cognitive
psychology (see Hunt, Marin, and Stone, 1966). Sequence extrapolation is also
a paradigm example of induction as discussed by philosophers (Carnap, 1950).
Data compression is of practical value for storage and classification.

The two key assumptions made in all of this work are (a) that the train-
ing instances are all examples (or counterexamples) of a single concept and

(b) that that concept can be represented by a point in the given rule space.
When the first assumption is violated, it is necessary to find a set of concepts
that account for the training instances. The systems described in the article
on multiple concepts (Article XIV.D4) address this problem. When the second
assumption is violated, it is necessary to alter the rule space so that it does

contain the desired concept. Very little attention has been given to this prob-
lem in single-concept learning. The BACON program employs some simple

methods to alter the rule space by adding new terms to the representation

language (see Article XTV.D3b).

Approaches to Solving the Single-concept Learning Problem

In Article XIV.Dl, we described four basic techniques — version spaces,
refinement operators, generate and test, and schema instantiation — that are
used to search the rule space. Each of these search methods has been applied

to the single-concept learning problem. The remainder of this article is divided
into four subarticles — one devoted to each method. The first two subarticles

describe data-driven methods. Mitchell's version-space method is discussed
first. It provides a useful framework for describing several related systems

developed by Hayes-Roth, Vere, and Winston. Then two refinement-operator
systems, BACON and CLS/ID3, are presented. The second pair of subarticles

describes model-driven methods: a generate-and-test method developed by
Dietterich and Michalski (1981) and a schema-instantiation method, SPARC,
that plays the card game Eleusis.

References

See Mitchell (1978, 1979).

D3a. Version Space

RECENT WORK by Mitchell (1977, 1979) provides a unified framework for

describing systems that use a data-driven, single-representation approach to
concept learning. Mitchell has noted that, in all representation languages, the
sentences can be placed in a partial order according to the generality of each

sentence. Figure D3a-1 illustrates this general-to-specific ordering with a few
sentences in predicate calculus containing the predicates RED and BLACK. The

concept 3 c\ : RED(ci), for example, describes the set S of all poker hands
that contain at least one red card. This concept is more general than the

concept 3 C\C2 '• RED(ci) A RED(c2) that describes the set T of all poker hands
containing at least two red cards, since the set S strictly contains the set T.

The set of cards described by 3 c\ c2 c3 : RED(ci) A RED(c2) A BLACK(c3)
is smaller still and, thus, is even more specific than the 3 C\ c2 : RED(ci) A
RED(c2) concept.

It should be evident that the syntactic rules of generalization described in
Article XIV.D1 can be used to generate this partial ordering. In this example,

the dropping- conditions rule of generalization was applied to the three most
specific concepts to generate the others. In general, any rule space can be

partially ordered according to the general-to-specific ordering.
The most general point in the rule space is usually the null description

(in which all conditions have been dropped), which places no constraints
on the training instances and thus describes anything. The most specific

points in the rule space correspond to the training instances themselves —
represented in the same representation language as that used for the rule space

(see Fig. D3a-2).

3 Ci : RED(ci)

3 cxc2 : RED(ci) A RED(c2) 3 C|C2 : RED(c,) A BLACK(c2)

3 C1C2C3 : RED(fi) A RED(c2) A RED(c3) \ / 3 CiC2C3 : RED(ci) A BLACK(c2) A BLACK(c3)

3 c\c2cj, : RED(ci) A RED(c2) A BLACK(c3)

Figure D3a-1. A small rule space and its general-to-specific ordering.

385

386 Learning and Inductive Inference
XIV

null description more general
i a

training instances more specific

Figure D3a-2. A schematic diagram of the rule space.

Mitchell has pointed out that programs can take advantage of this partial
ordering to represent the set H of plausible hypotheses very compactly. A set
of points in a partially ordered set can be represented by its most general

and most specific elements. Thus, as shown in Figure D3a-3, the set H of
plausible hypotheses can be represented by two subsets: the set of most general
elements in H (called the G set) and the set of most specific elements in H
(called the S set). Once H has been represented in this manner, the rules of
generalization must be used to fill in the subspace between the G set and the
S set whenever the full H set is needed.

The Candidate- elimination Learning Algorithm

Mitchell's learning algorithm, called the candidate- elimination algorithm,
takes advantage of the boundary-set representation for the set H of plausible

more general
i \

more specific

Figure D3a-3. Using the boundary sets to represent a subspace of the
rule space.

D3a Version Space 387

hypotheses. Mitchell defines a plausible hypothesis as any hypothesis that has
not yet been ruled out by the data. The set H of all plausible hypotheses is
called the version space. Thus, the version space, H, is the set of all concept
descriptions that are consistent with all of the training instances seen so far.

Initially, the version space is the complete rule space of possible concepts.
Then, as training instances are presented to the program, candidate concepts
are eliminated from the version space. When it contains only one candidate

concept, the desired concept has been found. The candidate-elimination

algorithm is a least- commitment algorithm, since it does not modify the set
H until it is forced to do so by the training information. Positive instances

force the program to generalize — thus, very specific concept descriptions are
removed from the H set. Conversely, negative instances force the program
to specialize, so very general concept descriptions are removed from the H
set. The version space gradually shrinks in this manner until only the desired
concept description remains.

To see how training instances force the version space to shrink, consider
once again the problem of teaching a program the flush concept in poker.
Suppose the program has already seen the positive training instance

{(2, clubs), (5, clubs), (7, clubs), (jack, clubs), (queen, clubs)} =► FLUSH .

Since the candidate-elimination algorithm is a least-commitment algorithm, it
makes the most specific possible assumption about the flush concept. Namely,
it sets up the S set to contain

S = {suiT(ci, clubs) A RANK(ci, 2) A

SUIT(c2, clubs) A RANK(c2, 5) A

SUIT(c3, clubs) A RANK(c3, 7) A

SUIT(c4, clubs) A RANK(c4, jack) A

SUIT(c5, clubs) A RANK(c5, queen)} .

This hypothesis is very specific indeed. It says that there is only one hand

that could possibly be a flush. At the same time, however, the candidate-
elimination algorithm makes the most general possible assumption, namely,
that every possible hand is a flush. The G set contains the null description.

This means that the version space — the H set — of all plausible hypotheses
contains S, G, and every hypothesis in between.

Now, suppose the positive training instance

{(3, clubs), (8, clubs), (10, clubs), (king, clubs), (ace, clubs)} =► FLUSH

is presented. The candidate-elimination algorithm realizes that its initial
assumption for the S set was too specific — there are other hands that can be

388 Learning and Inductive Inference XTV

flushes. Thus, it is forced to generalize S to contain, among other hypotheses,
the rule

S = {suIT(ci, clubs) A SUIT(c2, clubs) A SUIT(c3, clubs) A

SUIT(c4, clubs) A SUIT(c5, clubs)} .

The G set does not change. Suppose, however, that a negative training
instance

{(3, spades), (8, clubs), (10, clubs), (king, clubs), (ace, clubs)} => ̂ FLUSH

is presented. This forces the candidate-elimination algorithm to realize that
its assumption for the G set, that any hand could be a flush, was wrong. It

must specialize the G set in some way, so that it does not wrongly classify

this hand as a flush.

In full detail, the candidate-elimination algorithm proceeds as follows:

Step 1. Initialize H to be the whole space. Thus, the G set contains only
the null description, and the S set contains all of the most specific

concepts in the space. (In practice, this is not actually done due to
the huge size of S. Instead, the S set is initialized to contain only
the first positive example. Conceptually, however, H starts out as
the whole space.)

Step 2. Accept a new training instance. If the instance is a positive exam-
ple, first remove from G all concepts that do not cover the new

example. Then update S to contain all of the maximally specific

common generalizations of the new instance and the previous ele-
ments in S. In other words, generalize the elements in S as little as

possible, so that they will cover this new positive example. This is

called the Update-S routine.

If the instance is a negative example, first remove from S all con-
cepts that cover this counterexample. Then update the G set to

contain all of the maximally general, common specializations of
the new instance and the previous elements in G. In other words,
specialize the elements in G as little as possible so that they will

not cover this new negative example. This is called the Update-G
routine.

Step 3. Repeat step 2 until G = S and this is a singleton set. When this
occurs, H has collapsed to include only a single concept.

Step 4. Output H (i.e., either G or S).

Here is an example of a complete run of the candidate-elimination algo-

rithm. Suppose we have the following feature- vector representation language:

The instance space is a set of objects, each object having two features — size
and shape. The size of an object can be small or large, and the shape of an

D3a Version Space 389

(xy)

(am. y) (lg. y) (x square) (x circle) (x triangle)

(sm. square) (lg. square) (sm. circle) (lg. circle) (sm. triangle) (lg. triangle)

Figure D3a-4. The initial version space and the general-to-specific
partial order.

object can be circle, square, or triangle. Figure D3a-4 shows the entire rule
space for this representation language.

Each point in the rule space specifies either a variable or a value for both
of the features. If a feature is specified by a variable, then any value of that
feature can be applied.

Suppose we want to teach the program the concept of a circle. This is
represented as (x circle) where x represents any size. First we initialize the
H set to be the entire rule space. This means that the G set is

G = {(xy)},

representing the most general possible concept, and the S set is

S = { (small square) (large square) (small circle) (large circle)

(small triangle) (large triangle) } .

Now we present the first training instance: a positive example of the

concept, a small circle. The Update-S algorithm is applied in step 2 to yield:
G = {(xy)}

S = { (small circle) } .

Figure D3a-5 shows the resulting version space. Solid lines connect con-
cepts that are still in the version space. In practical implementations of the

candidate-elimination algorithm, the version space is usually initialized at this
point rather than explicitly listing the entire instance space as in the step
above.

The second training instance is (large triangle) — a negative example of
the concept. This forces the G set to be specialized. Update-G is applied to
produce

G = { (x circle) (small y) }

S = {(small circle)}.

Figure D3a-6 shows the resulting version space.

390 Learning and Inductive Inference XTV

jxy) (sm. y) (lg. y) (x square) (x circle) (x triangle)

(sm. square) (lg. square) (sm. circle) (lg. circle) (sm. triangle) (lg. triangle)

Figure D3a-5. The version space after the first training instance.

Notice how the (x y) description was specialized in two distinct ways, so
that it no longer covered the negative example (large triangle). A third
possible specialization (x square) is not considered, since it was removed
from the version space during the previous training instance. Of course,
further specializations such as (small circle) are not considered because the

Update-G algorithm specializes as little as possible.
In this case, the G set grew larger as a result of the specialization. The

Update-G and Update-S algorithms often expand the size of the G and S
sets. It is the size of these sets that limits the practical application of this

algorithm.
Finally, we present the algorithm with another positive example: (large

circle). Update-S first prunes G to eliminate (small y), since it does not
cover (large circle) . Then S is generalized as necessary:

G = {(x circle)}

S = { (x circle)} .

Since G = S, the algorithm halts and prints (x circle) as the concept.
It is possible to give intuitive interpretations of the G and S sets. The

set S is the set of sufficient conditions for a new example to be an instance

(xy)

(sm. y) (lg. y) (x square) (x circle) (x triangle)

(sm. square) (lg. square) (sm. circle) (lg. circle) (sm. triangle) (lg. triangle)

Figure D3a-6. The version space after two training instances.

D3a Version Space 391

of the concept. Thus, after the second training instance, we know that if
the new example is a (small circle) , it is an instance of the concept; (small
circle) is a sufficient condition for positive classification. The set G is the set
of necessary conditions. After the second training instance, we know that an
object either must be a circle or must be small in order to be an instance of the
concept. Neither of these conditions is sufficient. The algorithm terminates

when the necessary conditions are equal to the sufficient conditions — that is,
the algorithm has found a necessary and sufficient condition.

It is important to note that the candidate-elimination algorithm conducts
an exhaustive, breadth-first search of the given rule space, guided only by
the training instances. This makes the algorithm infeasibly slow for large rule

spaces. The efficiency of the algorithm can be improved (at the cost of possibly
failing to find the desired concept) by employing heuristics to prune the S and
G sets. We postpone further discussion of the strengths and weaknesses of

the candidate-elimination algorithm until after we have discussed the related
methods developed by Hayes-Roth, Vere, and Winston.

Methods Related to the Version-space Approach

Two learning methods similar to the Update-S procedure of the version-
space algorithm were developed prior to it. One method, termed interference

matching, was developed by Hayes-Roth and McDermott (1977, 1978). The
other method, the maximal unifying generalization method, was developed by
Vere (1975, 1978). These methods can both be viewed as implementations

of the Update-S procedure with respect to slightly different representation
languages in that they learn from positive training instances only.

Interference matching was developed to discover concepts expressed in

Hayes-Roth's Parameterized Structural Representation (PSR), which is roughly
equivalent to an existentially quantified conjunctive statement in predicate

calculus. Recall that Update-S seeks to generalize the descriptions in S
as little as possible in order to cover each new positive training instance.
When the descriptions are represented as predicate calculus expressions, this
is equivalent to finding the largest common subexpressions, because the largest
common subexpression is that subexpression for which the fewest conjunctive
conditions need to be dropped. As an example, suppose that the set S contains
the description

S = {BLOCK(x) A BLOCK(t/) A RECTANGLE(x) A ONTOP(x, y) A SQUARE(?/)}

and the next positive training instance (I\) is

h = BLOCK(w) A BLOCKS) A SQUARE(w) A ONTOP(w, v) A RECTANGLE(v) .

Update-S will produce the following common subexpressions:

392 Learning and Inductive Inference XTV

where Si = BLOCK(a) A BLOCK(fc) A SQUARE(a) A RECTANGLE(6), and s2 =
BLOCK(c) A BLOCK(d) A ONTOP(c, d) .

The Si description corresponds to the hypothesis that the ONTOP rela-
tion is irrelevant to the concept. The 52 description, on the other hand,

corresponds to the hypothesis that the shapes of the objects involved are

irrelevant. Notice that there is no consistent way to match I\ to S that

preserves a one-to-one correspondence of the variables x and y with w and v;
either the rectangle and square predicates conflict (e.g., when x is matched

with w) or else the order of the arguments to ONTOP conflict (e.g., when x is

matched to v).

The interference-matching algorithm starts out as a breadth-first search
of all possible matchings of one PSR with another. The search proceeds by

"growing" common subexpressions until a space limit is reached. Unpromising
matches are then pruned with a heuristic utility function, and the growing

process continues in a more depth-first fashion. The utility of a partial match
is equal to the number of predicates matched less the number of variables

matched. If the space limit is approximately the same as the largest com-

mon subexpression, the algorithm becomes truly depth-first, since only one

subexpression "fits" within the space limit. Thus, the interference-matching
algorithm tends to find one good common subexpression rather than finding

all maximal common subexpressions (as in the Update-S algorithm).

Vere's algorithm for finding the maximal unifying generalization of two
first-order predicate-calculus descriptions is very similar to the interference-
matching algorithm. The representation language used by Vere, however,

permits a many- to-one binding of parameters during the matching process

(Vere, 1975). Vere's method also conducts a breadth-first search of possible
matchings but does not do any pruning of this search.

Winston's Work on Learning Structural Descriptions from Examples

Winston's (1970) influential work on structural learning served as a precur-
sor to the other learning methods described above. The method has the

same basic data-driven approach as in the version-space and related algo-
rithms: Training instances are accepted one at a time and matched against

the concept descriptions in the set H. Unlike those breadth-first algorithms

(e.g., Update-S and Update-G), however, Winston's system conducts a depth-
first search of the concept space. Instead of maintaining a set of plausible

hypotheses, Winston's program uses the training instances to update a single

current concept description. This description contains all of the program's
knowledge about the concept being learned.

The task of the program is to learn concept descriptions that charac-

terize simple toy-block constructions. The toy-block assemblies are initially

presented to the computer as line drawings. A knowledge-based interpretation

program converts these line drawings into a semantic-network description.

D3a Version Space 393

Winston also uses this semantic-network representation to describe the cur-
rent concept and some background knowledge about toy blocks.

Figure D3a-7 shows a line drawing of an arch and the corresponding

semantic network. The network is roughly equivalent to the predicate-calculus
expression

ONE-PART-IS(arch, a) A ONE-PART-IS(arch, b) A

ONE-PART-IS(arch, c) A HAS-PROPERTY-OF(o, lying) A

A-KIND-OF(a, object) A MUST-BE-SUPPORTED-BY(a, b) A

MUST-BE-SUPPORTED-BY(a, c) A MUST-NOT-ABUT(&, c) A

MUST-NOT-ABUT(c, 6) A LEFT-OF(6, c) A RIGHT-OF(c, b) A

HAS-PROPERTY-OF(6, standing) A HAS-PROPERTY-OF(c, standing) A

A-KIND-OF(6, brick) A A-KIND-OF(c, brick) ,

along with statements of blocks- world knowledge such as

A-KIND-OF(6n'cA:, object)

A-KlND-OF(standing, property)

and statements relating different predicates in the representation language,
such as

OPPOSITES(MUST-ABUT, MUST-NOT-ABUT)

MUST-FORM-OF(lS-SUPPORTED-BY, MUST-BE-SUPPORTED-BY) .

A distinctive aspect of Winston's concept representation is that it allows
necessary conditions to be represented explicitly. For example, the condition

that in an arch the posts must not touch can be directly represented by a

MUST-NOT-ABUT link. This allows Winston's program to express necessary
and sufficient conditions in one combined network structure.

Winston's learning algorithm works as follows:

Step 1. Initialize the current concept description, H, to be the network
corresponding to the first positive training instance.

Step 2. Accept a new line drawing and convert it into a semantic-network
representation.

Step 3. Match the training instance with H (using a graph-matching algo-
rithm) to obtain the common skeleton. The skeleton is a maximal

common subgraph of the two graphs. Annotate the skeleton by
attaching comments indicating those nodes and links that did not
match.

Step 4. Use the annotated skeleton to decide how to modify the current
concept description H.

394 Learning and Inductive Inference
XIV

ARCH

Figure D3a-7. A training instance and its internal representation.

D3a Version Space 395

If the new instance is a positive example of the concept, then
generalize H as necessary. The algorithm generalizes either by

dropping nodes and links or by replacing one node (e.g., cube) by a
more general node (e.g., brick). In some cases, the algorithm must
choose between these two generalization techniques. The program
chooses the less drastic method (node replacement) and places the
other choice on a backtrack list.

If the new instance is a negative example of the concept, a necessary

condition (represented by a must-link) is added to H. If there are
several differences between the negative training instance and H,
the algorithm applies some ad hoc rules to choose one difference

to "blame" for causing the instance to be a negative instance.
This difference is converted into a necessary condition. The other
differences are ignored.

Repeat steps 2, 3, and 4 until the teacher halts the program.

Since the algorithm searches in depth-first fashion, it is possible for con-
tradictions to arise in step 4. For example, after seeing a negative training

instance such as shown in Figure D3a-8, the algorithm might assume in step 4
that the reason this is not an arch is the triangular lintel rather than the fact

that the posts are touching. Subsequently, when the program sees the positive

instance shown in Figure D3a-9, a contradiction arises. When this happens,
the system backtracks to the last point at which a choice was made, and the

algorithm makes a new choice.

This learning algorithm is somewhat weak and ad hoc, since it does not

concern itself either with the possibility that the training instance matches

H in multiple ways or with the problem that there are multiple ways of

generalizing or specializing H. Winston makes two important assumptions

that allow this algorithm to ignore these problems. First, it is assumed

that the training instances are presented in good pedagogical order, so that

contradictions and choice-points are unlikely to arise; the teacher is assumed
to have chosen the examples so as to vary only one aspect of the concept in

each example. The second assumption is that the negative training instances

=> -ARCH

Figure D3a-8. A near-miss negative example of an ARCH.

396 Learning and Inductive Inference
XIV

ARCH

Figure D3a-9. A positive example of an ARCH.

are all near misses, that is, instances that just barely fail to be examples of
the concept in question. These two assumptions permit the learning system

to perform fairly well in the domain of toy-block concepts.

Weaknesses of the Version-space Approach (and Related Approaches)

There are several weaknesses in these methods that limit their practi-
cal application. This section discusses these problems and examines some

proposed solutions.

Noisy training instances. As with all data-driven algorithms, these
methods have difficulty with noisy training instances. Since these algorithms

seek to find a concept description that is consistent with all of the train-
ing instances, any single bad instance (i.e., a false positive or false negative

instance) can have a big effect. When the candidate-elimination algorithm is
given a false positive instance, for example, the S set becomes overly general-

ized. Similarly, a false negative instance causes the G set to become overly
specialized. Eventually, noisy training instances can lead to a situation in
which there are no concept descriptions that are consistent with all of the

training instances. In such cases, the G set "passes" the S set, and the ver-
sion space of consistent concept descriptions becomes empty. The methods

of Hayes-Roth, Vere, and Winston also overgeneralize in the presence of false
positive training instances.

In order to learn in the presence of noise, it is necessary to relax the
condition that the concept descriptions be consistent with all of the training

instances. One solution, proposed by Mitchell (1978), is to maintain several S
and G sets of varying consistency. The set So, for example, is consistent with
all of the positive examples, and the set S\ is consistent with all but one of
the positive examples. In general, each description in the set Si is consistent
with all but i of the positive training instances. Similarly, each description
in the set G{ is consistent with all but i of the negative training instances.

Figure D3a-10 gives a schematic diagram of these sets. Mitchell provides a
fairly efficient algorithm for updating these multiple boundary sets.

D3a Version Space 397

more specific

Figure D3a-10. The multiple-boundary set technique.

When Go crosses So, the algorithm can conclude that no concept in the
rule space is consistent with all of the training instances. The algorithm can
recover and try to find a concept that is consistent with all but one of the
training instances. If that fails, it can look for a concept consistent with
all but two instances, and so forth. This approach to error recovery works
for learning problems containing a few erroneous training instances, but it
requires a large amount of memory to store all of the S and G boundary sets.

Disjunctive concepts. A second, important weakness of these data-
driven algorithms is their inability to discover disjunctive concepts. Many
concepts have a disjunctive form. For instance, an uncle is either the brother
of a parent or the spouse of a sister of a parent:

UNCLE(x) = BROTHER(PARENT(x)) V

uncle(x) = spouse(sister(parent(x))) .

Parent itself might be expressed disjunctively as PARENT(x) = FATHER(x) V
PARENT(x) = MOTHER(x). However, if disjunctions of arbitrary length are
permitted in the representation language, the data-driven algorithms described
above never generalize. In the candidate-elimination algorithm, for example,
the S set will always contain a single disjunction of all of the positive train-

ing instances seen so far. This is because the least generalization of a new
training instance and the current S set is simply the disjunction of the new
instance with the S set. Similarly, the G set will contain the disjunction of
the negation of each of the negative training instances. Unlimited disjunction

allows the partially ordered rule space to become infinitely "branchy."

398 Learning and Inductive Inference XIV

The basic difficulty is that all of these algorithms are least-commitment
algorithms that generalize only when they are forced to. Disjunction provides

a way of avoiding any generalization at all — so the algorithms are never forced
to generalize. In order to develop a useful technique for learning disjunctive
concepts, some method must be found for controlling the introduction of
disjunctions. The learning algorithms must be guided toward generalizing in
certain ways to exclude the trivial disjunction.

One solution (proposed in different forms by Michalski, 1969, and by
Mitchell, 1978) is to employ a representation language that does not contain

a disjunction operator and to perform repeated candidate-elimination runs
to find several conjunctive descriptions that together cover all of the train-

ing instances. We repeatedly find a conjunctive concept description that is

consistent with some of the positive training instances and all of the nega-
tive training instances. The positive instances that have been accounted for

are removed from further consideration, and the process is repeated until all
positive instances have been covered:

Step 1. Initialize the S set to contain one positive training instance. G is

initialized to the null description — the most general concept.

Step 2. For each negative training instance, apply the Update- G algorithm
toG.

Step 3. Choose a description g from G as one conjunction for the solution
set. Since Update-G has been applied using all of the negative
instances, g covers no negative instances. However, g may cover

several of the positive instances. Remove from further considera-
tion all positive training instances that are more specific than g.

Step 4. Repeat steps 1 through 3 until all positive training instances are
covered.

This process builds a disjunction of descriptions that covers all of the data.
It tends to find a disjunction containing only a few conjunctive terms.

Figure D3a-ll is a schematic diagram of how this process works.
The point s\ is the first positive training instance selected in step 1. After

all of the negative instances have been processed with Update-G, g\ is selected
from the G set in step 3. Notice that g\ covers several positive instances in
addition to S\, but that not all positive instances are yet covered. The point 52

is then chosen and g<i is developed. Similarly, 53 is chosen and gs is developed.
As the figure shows, the conjunctive concepts, #;, need not be disjoint. Also,
the set of concepts gi that is obtained by this procedure varies depending on
the order in which the positive training instances are selected in step 1.

An algorithm very similar to this, called the Aq algorithm, was developed
by Michalski (1969, 1975) for use with an extended propositional calculus

representation. The Aq algorithm makes use of an additional heuristic in

D3a Version Space 399

Instance Space

(+ +

4y

\02

/It) ?\
[Sl 4

~y<z±j^

\ -

 iJl

- (S3 4-
4

4)

J 93
-

4- : Positive Instance Negative Instance

Figure D3a-ll. Schematic diagram of an iterative version-space algorithm
for finding disjunctive concepts.

step 1. It selects as a "seed" positive training instance one that has not
been covered by any description in any previous G set. This has the effect

of choosing training instances that are "far apart" in the instance space.
Larson (1977) elaborated Aq to apply it to an extended predicate-calculus
representation.

The effect of this iterative version-space approach is to find a description

with virtually the fewest number of disjunctive terms. Finding such a descrip-
tion is not always desirable. Programs searching for symmetrical descriptions,

for example, may hypothesize a disjunctive term for which there is, as yet, no

evidence. Consider how a program would learn the direction of wind rotation

about a weather system. After seeing the following two training instances

Instance 1.

Instance 2.

HEMISPHERE =
=» ROTATION

HEMISPHERE =
=» ROTATION

north A PRESSURE = high
= clockwise

south A PRESSURE = high
= counterclockwise,

the program might hypothesize that

HEMISPHERE = north A PRESSURE = high V

HEMISPHERE = south A PRESSURE = low

=4 ROTATION = clockwise ,

even though the simplest hypothesis would be

HEMISPHERE = north ROTATION = clockwise .

The problem of learning disjunctive concepts is still largely unexamined

by AI researchers.

400 Learning and Inductive Inference XIV

References

Mitchell (1977, 1979) provides good descriptions of the version-space ap-
proach. Hayes-Roth and McDermott (1978), Vere (1975), and Winston (1970)

present detailed descriptions of their methods. See Dietterich and Michalski

(1981) for a critical comparison of these methods.

D3b. Data-driven Rule-space Operators

THE SECOND FAMILY of data-driven methods does not employ partial match-
ing to search the rule space. Instead, these methods develop a set of hypotheses

in a rule space that is separate from the instance space (i.e., the single-
representation trick is not used). The hypotheses are modified by refinement
operators, which are selected by heuristics that inspect the training instances.

The following is a general outline of these operator-based algorithms:

Step 1. Gather some training instances.

Step 2. Analyze the instances to decide which rule-space operator to apply.

Step 3. Apply the operator to make some change in the current set, H, of

hypotheses.
Repeat steps 1 through 3 until satisfactory hypotheses are obtained.

In this article, two systems are described that use this technique: BACON and
CLS.

BACON

BACON is a set of concept-learning programs developed by Pat Langley

(1977, 1980). These programs solve a variety of single-concept learning tasks,

including "rediscovering" such classical scientific laws as Ohm's law, Newton's
law of universal gravitation, and Kepler's law. The programs are also capable
of using the learned concepts to predict future training instances.

The idea underlying BACON is simple: The program repeatedly exam-
ines the data and applies its refinement operators to create new terms. This

continues until it finds that one of these terms is always constant. A single

concept is thus represented in the form term = constant value.
BACON uses a feature-vector representation to describe each training

instance. A distinguishing aspect is that the features may take on continuous
real values as well as discrete symbolic or numeric values. For example,

suppose we want BACON to discover Kepler's law: The period of a planet's
revolution around the sun, p, is related to its distance from the sun, d, as

d3/p2 = k, for some constant k. First, BACON is supplied with training
instances of the form:

Features

dance Planet P d

h
h
h

Mercury

Venus
Earth

1
8

27

1
4
9

401

402 Learning and Inductive Inference XIV

BACON is told that p and d are dependent on the value of the planet
variable. Once BACON has gathered a few training instances, it examines

them to see if any of its rule-space operators are triggered. In this case, since
p and d are both increasing and are not linearly related, an operator that

creates the new term d/p is triggered. This rule-space operator is executed,
and the training instances are reformulated to give:

Features
•dance

Planet P d

d/p

h
h
h

Mercury

Venus
Earth

1
8 27

1
4
9

1.0 .5

.33

Again, BACON checks to see if any of its rule-space operators are trig-
gered. This time, the product operator is executed to create the term (d/p)d,

since d and d/p are varying inversely. The data are reformulated to give:

Features

Instance Planet P d

d/p

d2/p

h Mercury 1 1 1.0
1.0

h Venus 8 4

.5

2.0

h Earth
27

9 .33
3.0

On the third iteration, BACON again checks to see if any operators apply.

The product operator is again triggered to create the term (d/p)(d2/p). The
data are reformulated to give:

Features

Instance Planet P d

d/p

d2/p

W
h Mercury 1 1

1.0 1.0 1.0

h Venus 8 4

.5
2.0 1.0

h Earth
27

9
.33

3.0
1.0

BACON examines these data, and its constancy operator is triggered to

create the hypothesis that the d3/p2 term is constant. BACON then gathers
more data to test this hypothesis before it halts.

BACON's Rule-space Operators

The various BACON programs have different rule-space operators. Each
operator is stored as a production rule, of which the left-hand side performs
extensive tests to search for possible patterns in the data and the right-hand
side creates the new terms. Here is a brief survey of the operators implemented
in the BACON. 1 program:

D3b Data-driven Rule-space Operators 403

1. Constancy detection. This operator is triggered when some dependent
variable takes on the same value, v, at least two times. It creates the

hypothesis that this variable is always constant with value v.

2. Specialization. This operator is triggered when a previously created
hypothesis is contradicted by the data. It specializes the hypothesis by
adding a conjunctive condition.

3. Slope and intercept term creation. This operator detects that two variables
are varying together linearly and creates new terms for the slope and
intercept of this linear relation.

4. Product creation. This operator detects that two variables are varying
inversely without a constant slope. It creates a new term that is the
product of the two variables.

5. Quotient creation. This operator detects that two variables are vary-
ing monotonically (increasing or decreasing) without constant slope. It

creates a new term that is the quotient of the two variables.

6. Modulo-n term creation. This operator notices that one variable, v\ , takes
on a constant value whenever an independent variable, t>2, has a certain

value modulo n. The new term v^-modulo-n is created. Only small values
of n are considered.

Extensions to BACON

BACON. 2 is an extended version of BACON. 1 that includes two additional

operators for detecting recurring sequences and for creating polynomial terms

by calculating repeated differences. BACON. 2 can solve a larger class of

sequence extrapolation tasks as a result.

BACON. 3 is another extension of BACON. 1 that uses hypotheses proposed

by the constancy-detection operators to reformulate the training instances.
For BACON.3 to discover the ideal gas law (PV/NT is equal to a constant),

for example, it is given the following training instances:

Features

tance V P T N

h .0083200 300,000 300 1
h .0062400 400,000 300 1
h .0049920 500,000 300 1
h .0085973 300,000 310 1
h .0064480 400,000 310 1
h .0051584 500,000 310 1
h .0088747 300,000 320 1
h .0066560 400,000 320 1
h .0053248 500,000 320 1

404 Learning and Inductive Inference XTV

Features

Instance V P T N

725 .0266240 300,000 320 3
J26 .0199680 400,000 320 3
hi .0159740 500,000 320 3

By applying the product-creation operator followed by the constancy-
detection operator, BACON develops the hypothesis that PV is constant for
particular values of N and T. This hypothesis, which BACON must rediscover
for each particular value of N and T, is used to recast the data to give the
following derived training instances:

Features

tance PV T N

i'i
2,496

300 1

ra

2,579.1999 310 1 I's
2,662.3999 320 1

Ft

4,991.9999 300 2

F*

5,158.3999 310 2

F6

5,324.7999 320 2

F7

7,488
300 3

F8

7,737.5999 310 3

F9

7,987.2
320 3

Each of these derived instances results from collapsing three of the original

training instances. Thus, I\ is derived by noticing that PV takes on the

constant value 2,496 in h, h, and I3. By applying the slope-intercept operator
to these derived instances, BACON develops the hypothesis that PV/T is
constant for particular values of TV. It uses this hypothesis to recast the
training instances into the following form:

Features

tance
PV/T N

F{

8.32 1

n 16.64 2

F{

24.95 3

By applying the slope-intercept operator to these doubly derived instances,
BACON develops the hypothesis that PV/ NT is constant and, thus, posits the
ideal gas law.

D3b Data-driven Rule-space Operators 405

BACON's Rule Space

What is the rule space that BACON is searching? BACON expresses
hypotheses as feature vectors, some of whose values are omitted (i.e., turned

to variables). For example, Kepler's law is expressed as

Features: Planet p d d/p d2/p d3/p2
Values: 1.0

Thus, the rule space is the space of such feature vectors whose features are
any terms that BACON can create with its operators.

BACON conducts a sort of depth-first search through this space. The
conditions under which the operators are triggered are quite specialized. The

constancy-detection operator, for example, only checks the values of the
most recently created dependent variable against the most recently varied
independent variable. Most of the other operators are invoked under similarly
constrained conditions.

Strengths and Weaknesses of BACON

BACON's primary strength is its ability to discover simple laws relating
real-valued variables. Also of interest is BACON's use of rule-space operators
to create new terms as combinations of existing terms. Further, the BACON. 3
strategy of reformulating the training instances when partial regularities are
discovered may be important for future learning programs. Simon (1979) has

discussed BACON as a model of data-driven theory formation in science.
There are some difficulties with the present BACON programs, however.

First, the fact that the operators are evoked only under highly specialized
conditions causes the program to be sensitive to the order of the variables and
to the particular values chosen for the training instances. For some sets of

training instances, for example, BACON is unable to discover Ohm's law (see
Langley, 1980, p. 104). It is necessary to adjust the order of the variables and
the particular training instances to get BACON to discover concepts efficiently.
For example, when BACON is discovering the pendulum law, 40% more time
is required if the variables are poorly ordered. Similarly, it cannot handle
irrelevant variables well.

Second, BACON is unable to handle noisy training instances. The trig-
gering of the constancy detectors, for example, is based on the near equality

of the values seen in as few as two training instances. Such calculations are
highly sensitive to noise. The slope detectors are similarly sensitive.

Third, BACON can handle only relatively simple concept-formation tasks
involving nonnumeric variables. The program cannot, for example, discover
concepts that involve internal disjunction (such as the concept of a red or
green cube). It is also unable to discover the simple concept underlying the

406 Learning and Inductive Inference XTV

letter sequence ABTCDSEFR . . . and similar sequences appearing in Kotovsky
and Simon (1973).

In summary, BACON is interesting primarily for its use of rule-space
operators to create product, quotient, slope, and intercept terms and for its
ability to recast the training instances on the basis of developed hypotheses.

CLS/ID8

CLS (Concept Learning System) is a learning algorithm devised by Earl

Hunt (see Hunt, Marin, and Stone, 1966). It is intended to solve single-
concept learning tasks and uses the learned concepts to classify new instances.
A more recent version of the CLS algorithm, ID3, was developed by Ross

Quinlan (1979, in press). In this article, we discuss the ID3 algorithm and its
application to data compression and concept formation.

Like BACON, ID3 uses a feature-vector representation to describe the
training instances. The features must each have only a small number of pos-

sible discrete values. Concepts are represented as decision trees. For example,

if the features of size (small, large), shape (circle, square, and triangle), and
color (red, blue) are used to represent the training instances, the concept of a

red circle (of any size) could be represented as the tree shown in Figure D3b-1.
An instance is classified by starting at the root of the tree and making

tests and following branches until a node is arrived at that indicates the class
as YES or NO (see Article XI.D). For example, the instance (large, circle, blue)
is classified as follows. Starting with the root node (shape), we follow the
circle branch to the color node. From the color node we take the blue branch

to a NO node indicating that this instance is not an instance of the concept
of a red circle.

Decision trees are inherently disjunctive, since each branch leaving a deci-
sion node corresponds to a separate disjunctive case. The tree in Figure D3b-1,

blue

YES NO

Figure D3b-1. Decision tree for the concept of a red circle.

D3b Data-driven Rule-space Operators
407

for example, is equivalent to the predicate calculus expression:

->SHAPE(x, triangle) V ̂ SHAPE(x, square) V

SHAPE(x, circle) A [COLOR(x, red) V ~-COLOR(x, blue)] .

Consequently, decision trees can be used to represent disjunctive concepts

such as large circle or small square (see Fig. D3b-2).

A drawback of decision trees is that there are many possible trees cor-
responding to any single concept. This lack of a unique concept representation

makes it difficult to check that two decision trees are equivalent.

The CLS Learning Algorithm (as Used in IDS)

The CLS algorithm starts with an empty decision tree and gradually

refines it, by adding decision nodes, until the tree correctly classifies all of the

training instances. The algorithm operates over a set of training instances, C,
as follows:

Step 1. If all instances in C are positive, then create a YES node and halt.
If all instances in C are negative, create a NO node and halt.

Otherwise, select (using some heuristic criterion) a feature, F, with
values vi , ...,vn and create the decision node:

Step 2. Partition the training instances in C into subsets C\,C2, . . . , Cn
according to the values of V.

Step 3. Apply the algorithm recursively to each of the sets d.

YES NO NO

small

YES

Figure D3b-2. Decision tree for a disjunctive concept.

408 Learning and Inductive Inference XTV

The criterion used in step 1 by ID3 is to choose the feature that best dis-
criminates between positive and negative instances. Hunt et al. (1966) describe

several methods for estimating which feature is the most discriminatory.

Quinlan chooses the feature that leads to the greatest reduction in the esti-
mated entropy of information of the training instances in C. The exact crite-

rion is to choose the feature F (with values V\,V2, . . . , vn) that minimizes

?h+iog2(v^)-Friog2(^%L
where Vf is the number of positive instances in C with F = V{, and V~ is
the number of negative instances in C with F = V{.

This CLS algorithm can be viewed as a refinement-operator algorithm
with only one operator:

Specialize the current hypothesis by adding a new condition (a new
decision node).

The CLS algorithm repeatedly examines the data during step 1 to decide
which new condition should be added. The final decision tree developed by
CLS is a generalization of the training instances, because in most cases not
all features present in the training instances need to be tested in the tree.
Thus, CLS begins with a very general hypothesis and gradually specializes it,
by adding conditions, until a consistent tree is found.

The IDS Learning Algorithm

The CLS algorithm requires that all of the training instances be available

on a random-access basis during step 1. This places a practical limit on the size
of the learning problems that it can solve. The ID3 algorithm (Quinlan, 1979,

in press) is an extension to CLS designed to solve extremely large concept-
learning problems. It uses an active experiment-planning approach to select
a good subset of the training instances and requires only sequential access to
the whole set of training instances. Here is an outline of the ID3 algorithm:

Step 1. Select a random subset of size W of the whole set of training
instances (W is called the window size, and the subset is called the
window).

Step 2. Use the CLS algorithm to form a rule to explain the current window.

Step 3. Scan through all of the training instances serially to find exceptions
to the current rule.

Step 4. Form a new window by combining some of the training instances
from the current window with some of the exceptions obtained in
step 3.

Repeat steps 2 through 4 until there are no exceptions to the rule.

D3b Data-driven Rule-space Operators
409

Quinlan has experimented with two different strategies for building the

new window in step 4. One strategy is to retain all of the instances from the

old window and add a user-specified number of the exceptions obtained from
step 3. This gradually expands the window. The second strategy is to retain

one training instance corresponding to each leaf node in the current decision

tree. The remaining training instances are discarded from the window and

replaced by exceptions. Both methods work quite well, although the second

method may not converge if the concept is so complex that it cannot be

discovered with any window of fixed size W.

Application of the IDS Algorithm

The ID3 algorithm has been applied to the problem of learning classifi-

cation rules for part of a chess end-game in which the only pieces remaining
are a white king and rook and a black king and knight. ID3 has discovered

rules to describe the concept of "knight's side lost (in at most) n moves" for
n = 2 and n = 3. Table D3b-1 shows the results of these processes.

The features describing the board positions have been chosen to capture

patterns believed to be relevant to the concept of lost in n moves. The actual

raw data for the lost in 2 moves concept comprise 1.8 million distinct board

positions. By choosing appropriate features, Quinlan was able to compress

these into 428 distinct feature vectors. This is an excellent example of the

importance to concept learning of good representation and of knowledge-based
interpretation of the raw data. Quinlan (in press) points out that an important

task for future learning research is to develop a program that can discover a

good set of features.

Strengths and Weaknesses of CLS and IDS

The ID3 and CLS programs with their very simple representations and

straightforward learning algorithms perform impressively on the single-concept

Table D3b-i

The Application of ID3 to a Chess End-game

Concept
Number of

training instances

Number of

features

Size of

decision tree

Solution

time

Lost in 2 moves

Lost in 2 moves

Lost in 3 moves

30,000
428

715

25
23

39

334 nodes

83 nodes

177 nodes
144 seconds0

3 seconds0
34 seconds6

° Using PASCAL implementation on a DEC KL-10.

bUsing PASCAL implementation on a CDC CYBER 72.

410 Learning and Inductive Inference XIV

learning problem. Much of the power of the ID3 algorithm derives from its
sophisticated selection of training instances. This form of instance selection

has been termed expectation-based filtering by Lenat, Hayes-Roth, and Klahr
(1979). The basic value of expectation-based filtering is that it focuses the
attention of the program on those training instances that violate its expec-

tations. These are precisely the training instances needed to improve the

program's representation of the concept being learned. Even this simple form
of experiment planning allows ID3 to solve large learning problems efficiently.

One of the chief difficulties of the CLS/ID3 method is that the repre-
sentation for learned concepts is a decision tree, and decision trees are difficult

to check for equivalence. What is more important, it is difficult for people to
understand the learned concept when it is expressed as a large decision tree.

References

The best discussion of BACON is Langley (1980). The ID3 algorithm is
well described in Quinlan (in press).

D3c. Concept Learning by Generating and

Testing Plausible Hypotheses

THE two model-driven approaches discussed in Article XTV.Dl on issues —
generate-and-test and schema instantiation — have received little attention
from people doing learning research. This article describes one method,
developed by Dietterich and Michalski, that discovers a single concept from

examples by model-driven generate and test. In spite of using only a very
simple model, this method exhibits the strengths and weaknesses that are

typical of model-driven methods: It is quite immune to noise but cannot
incrementally modify its concept description as new training instances become
available.

The INDUCE 1.2 Algorithm

Dietterich and Michalski (1981) address the problem of learning a single
concept from positive training instances only. Their program, INDUCE 1.2,

is intended to be applied in structural-learning situations, that is, situations

in which each training instance has some internal structure. Winston's toy-
block constructions, for example, are structural training instances; a toy-block
construction is represented as a set of nodes connected by structural relations

like ONTOP, TOUCH, and SUPPORTS (see Article XIV.D3a). Dietterich and

Michalski's model, which guides the search for generalizations, expects the
learned concept to be a conjunction involving both structural relations and
ordinary features.

INDUCE 1.2 seeks to find a few concepts in the rule space, each of which
covers all of the training instances while remaining as specific as possible.
This learning problem is similar to the problem of finding the S set in the

candidate-elimination algorithm. INDUCE 1.2, however, applies some model-
based heuristics to drastically prune the S set so that only a few generaliza-

tions are discovered.

The program assumes that the training instances have been transformed
so that they can be viewed as very specific points in the rule space (i.e., it uses

the single-representation trick). A random sample of the training instances
is chosen. These points in rule space serve as the starting points for a beam

search upward through the rule space, that is, from the very specific train-
ing instances toward more general concepts. The concept descriptions are

generalized by dropping conjunctive conditions and adding internal disjunc-
tive options until they cover all of the training instances. By starting at the

most specific points in the rule space and stopping as soon as it finds concepts
that cover all of the training instances, INDUCE 1.2 is guaranteed to find the
most specific concepts that cover the data.

411

412 Learning and Inductive Inference
XIV

The beam-search process has the following steps:

Step 1. Initialize. Set H to contain a randomly chosen subset of size W of

the training instances (W is a constant called the beam width).

Step 2. Generate. Generalize each concept in H by dropping single condi-
tions in all possible ways. This produces all the concept descrip-
tions that are minimally more general than those in H. These form

the new H.

Step 3. Prune implausible hypotheses. Remove all but W of the concept

descriptions from H. The pruning is based on syntactic characteris-
tics of the concept description, such as the number of terms and

the user-defined cost of the terms. Another criterion is to maximize
the number of training instances covered by each element of H.

Step 4. Test. Check each concept description in H to see if it covers all of
the training instances. (This information was obtained previously

in step 3.) If any concept does, remove it from H and place it in a
set C of output concepts.

Repeat steps 2, 3, and 4 until C reaches a prespecified size limit or H
becomes empty.

A schematic diagram of the beam-search process is shown in Figure D3c-1.

Extensions to the Basic Algorithm

Structural learning problems of the kind INDUCE 1.2 was designed to

attack require binary (and higher order) predicates to represent the desired

more general

Pruned

Not Pruned

Placed in C

v
more specific

Figure D3c-1. A schematic diagram of INDUCE 1.2's beam search.

D3c Concept Learning by Generating and Testing Plausible Hypotheses 413

concepts. The binary predicates are needed to express relationships among

the parts (e.g., toy blocks) that make up each training instance. In Winston's
arch training instances, for example, binary predicates could be used to rep-

resent the fact that two blocks are touching — TOUCH(a, 6) — or that one block
is supporting another — SUPPORTS(a, 6). Unary predicates and functions are,
of course, still needed as well. Typically, they represent the attributes of

the parts of an instance. In Winston's arches, for example, unary predicates
could represent the size and shape of each block. The syntactic distinction

between unary and binary predicates thus corresponds to a semantic distinc-
tion between feature values and binary relationships.
Although it is possible to represent structural relationships using only

unary predicates or functions, such a representation is cumbersome and un-
natural. Consequently, this distinction — by which binary and higher order

predicates correspond to structural relationships and unary predicates and

functions correspond to feature values — holds in most structural learning
situations.

Dietterich and Michalski take advantage of this dichotomy to improve

the efficiency of INDUCE 1.2's rule-space search. Two separate rule spaces
are used. The first rule space, called the structure-only space, is the space of
all concepts expressible using only the binary (and higher order) terms in the
representation language. The training instances are abstracted into this space

(by dropping all unary predicates and functions), and then the generate- and-
test beam search is applied to this abstract rule space.

Once the set, C, of candidate structure-only concepts is obtained, each
concept, C{, in C is used to define a new rule space, consisting of all concepts

expressible in terms of the attributes of the subobjects (e.g., blocks) referred

to in C{. This space can be represented with a simple feature- vector repre-
sentation. The training instances are transformed into very specific points in

this space, and another beam search is conducted to find a set, C, of plausible
concept descriptions. The descriptions in C specify the attributes for the
subobjects referred to in C{. Taken together, one concept in C combined
with Ci provides a complete concept description.

As an example of this two-space approach, consider the two positive
training instances depicted below:

Instance 1. /^"*\ 3 u, v : LARGE(u) A CIRCLE(w) A
LARGE(v) A CIRCLE(v) A ONTOP(w, v) .

414 Learning and Inductive Inference
XIV

Instance 2. O 3 w, x, y : SMALL(w) A CIRCLE(w) A
LARGE(z) A SQUARE(x) A
LARGEfe) A SQUARE^) A
ONTOP(w, x) A ONTOP(z, y) .

When these two training instances are translated into the structure-only rule
space, the following abstract training instances are obtained:

Instance l'. 3 u,v : ONTOP(u, v) .

Instance 2'. 3 w,x,y : ONTOPfw, x) A ONTOP(x, y) .

The INDUCE 1.2 beam search discovers that C = {ONTOP(u, v)} is the only,

least general, structure-only concept consistent with the training instances.

Now a new attribute-vector rule space is developed with the features of u
and v:

(SIZE(u), SHAPE(u), SIZE(v), SHAPE(v)) .

The training instances are translated to obtain:

Instance l" . (large, circle, large, circle) .

Instance 2.1". (small, circle, large, square).

Instance 2.2". (large, square, large, square).

Notice that two alternative training instances are obtained from instance 2',
since ONTOP(it, v) can match instance 2 in two possible ways (u bound to w, v

bound to x; or u bound to x, v bound to y). During the beam search, only one

of these two instances, 2.1" and 2.2", need be covered by a concept description
for that description to be consistent.

The second beam search is conducted in this feature-vector space, and the

concepts (large, *, large, *) and (*, circle, large, *) are found to be the least

general concepts that cover all of the training instances ("*" indicates that the
corresponding feature is irrelevant). By combining each of these feature-only

concepts with the structure-only concept ONTOP(w, v), two overall consistent
concept descriptions are obtained:

Ci : 3 u,v : ONTOP(w, v) A LARGE(u) A LARGE(v) ,

C2: 3 U, V : ONTOP(u, v) A CIRCLE(u) A LARGE(v) .

These correspond to the observations that in both instance 1 and instance 2

there are (Ci) "always a large object on top of another large object" and (C2)

"always a circle on top of a large object."

D3c Concept Learning by Generating and Testing Plausible Hypotheses 415

Strengths and Weaknesses of the INDUCE 1.2 Approach

The basic algorithm suffers from the absence of a strong model to guide
the pruning of descriptions in step 3 and the termination of the search in
step 4. The present syntactic criteria, of minimizing the number of terms in

a proposed concept, minimizing the user-defined cost of the terms, and max-
imizing the number of training instances covered, are very weak. Dietterich

and Michalski claim that domain-specific information could easily be applied
at this point to improve the model-based pruning.

A second weakness is that step 2 involves exhaustive enumeration of all

possible single-step generalizations of the hypotheses in H. This can be very
costly in a large rule space. The method of plausible generate and test works
best if the generator can be constrained to generate only plausible hypotheses.
The generator in INDUCE 1.2 relies on a subsequent pruning step, which is
quite costly.

A third weakness of the method is that, because it prunes its search, it is

incomplete (see Dietterich and Michalski, 1981). It does not find all minimally
general concepts in the rule space that cover all of the training instances.

As with all model-driven methods, this approach does not work well in
incremental learning situations. All of the training instances must be available
to the learning algorithm simultaneously.

The advantages of the algorithm are that it is faster and uses less memory

than the full version-space approach. As with all model-based methods,
INDUCE 1.2 has good noise immunity. In particular, if INDUCE 1.2 is to be
given noisy training instances, then step 4 can be modified to include in C
the concepts that cover most, rather than all, of the training instances.

References

Dietterich and Michalski (1981) describe INDUCE 1.2.

D3d. Schema Instantiation

SCHEMA-INSTANTIATION techniques have been used in many AI systems
that perform comprehension tasks such as image interpretation, natural-
language understanding, and speech understanding. Few learning systems

have employed schema-instantiation methods, however. These methods are
useful when a system has a substantial number of constraints that can be
grouped together to form a schema, an abstract skeletal rule. The search of
the rule space can then be guided to only those portions of the space that fit
one of the available schemas. In this section, we describe one learning system,
SPARC, that uses schema instantiation to discover single concepts.

Discovering Rules in Eleusis with SPARC

Dietterich's (1979) SPARC system attempts to solve a learning problem
that arises in the card game Eleusis. Eleusis (developed by Robert Abbott,
1977; see also Gardner, 1977) is a card game in which players attempt to
discover a secret rule invented by the dealer. The secret rule describes a linear
sequence of cards. In their turns, the players attempt to extend this sequence
by playing additional cards from their hands. The dealer gives no information
aside from indicating whether or not each play is consistent with the secret
rule. Players are penalized for incorrect plays by having cards added to their
hands. The game ends when a player empties his hand.

A record of the play is maintained as a layout (see Fig. D3d-1) in which the
top row, or main line, contains all of the correctly played cards in sequence.

Incorrect cards are placed in side lines below the main-line card that they
follow. In the layout shown in Figure D3d-1, the first card correctly played
was the 3 of hearts (3H). This was followed by another correct play, the 9 of
spades (9S). Following the 9, two incorrect plays were made (JD and 5D) before
the next correct card (4C) was played successfully.

Main line: 3H 9S 4C 9D 2C 10D 8H 7H 2C 5H
Side lines: JD AH AS 10H

5D 8H 10S

QD

// the last card is odd, play black; if the last card is even, play red.

Figure D3d-1. An Eleusis layout and the corresponding
secret rule.

416

D3d Schema Instantiation 417

The scoring in Eleusis encourages the dealer to choose rules of inter-

mediate difficulty. The dealer's score is determined by the difference between
the highest and lowest scores of the players. Thus, a good rule is one that is

easy for some players and hard for others.

Schemas in Eleusis

In ordinary play of Eleusis, certain classes of rules have been observed.

Dietterich has identified three rule classes and developed a parameterized
schema for each:

1. Periodic rules. A periodic rule describes the layout as a sequence of
repeating features. For example, the rule Play alternating red and black

cards is a periodic rule. Dietterich's rule schema for this class can be
described as an TV-tuple of conjunctive descriptions:

(Ci,C2, . . . ,Cn) •

The parameter N is the length of the period (the number of cards before

the period starts to repeat). The above-mentioned periodic rule would
be represented as a 2-tuple:

(RED(cardi), BLACK(cardi)) .

More complex periodic rules may refer to the previous periods. Thus,
the rule

(RANK(cardi) > RANK(canfc_i), RANK(cardi) < RANK(carcfc_i))

describes a layout composed of alternating ascending and descending

sequences of cards.

2. Decomposition rules. A decomposition rule describes the layout by a

set of if-then rules. For example, the rule // the last card is odd, play black;
if the last card is even, play red is a decomposition rule. The rule schema

for this class requires that the set of if-then rules have single conjunctions
for the if and then parts of each rule. The if parts must be mutually

exclusive, and they must span all possibilities. The above-mentioned rule
can be written as:

ODD(cardi-i) => BLACK(cardi) V
EVEN(cardi-i) => RED(cara\) .

3. Disjunctive rules. The third class of rules includes any rules that can

be represented by a single disjunction of conjunctions (i.e., an expression
in disjunctive normal form, or DNF). For example, the rule Play a card
of the same rank or the same suit as the preceding card is a DNF rule. This
is represented as:

RANK(cardi) = RANK(cardi-i) V SUIT(car<£) = SUIT(car<fc_i) .

418 Learning and Inductive Inference XTV

Each schema has a few parameters that control its application. The N

(length of period) parameter of the period schema has already been described.

Each schema also has a parameter L, called the lookback parameter, that

indicates how many cards back into the past the rule may consider. Thus,

when L = 0, no preceding cards are examined. When L = 1, the features of
the current card are compared with the previous card, and expressions such

as RANK(cardi) > RANK(carck-i) are permitted. Larger values of L provide
for even further lookback.

Searching the Rule Space Using Schemas

Each schema can be viewed as having its own rule space — the set of all
rules that can be obtained by instantiating that schema. SPARC uses the

single-representation trick to reformulate the layout as a set of very specific

rules for each of the schema-specific rule spaces. The overall algorithm works
as follows:

Step 1. Parameterize a schema. SPARC chooses a schema and selects par-
ticular values for the parameters of that schema.

Step 2. Interpret the training instances. Transform the training instances

(i.e., the cards in the layout) into very specific rules that fit the
chosen schema.

Step 3. Instantiate the schema. Generalize the transformed training instances

to fit the schema. SPARC uses a schema-specific algorithm to
accomplish this step.

Step 4. Evaluate the instantiated schema. Determine how well the schema fits

the data. Poorly fitting rules are discarded.

SPARC conducts a depth-first search of the space of all parameterizations

of all schemas up to a user-specified limit on the magnitudes of the parameters.
Notice that a separate interpretation step is required for each parameterized
schema.

When these steps are applied to the game shown in Figure D3d-1, for

example, step 1 eventually chooses the decomposition schema with L = 1.

Step 2 then converts the training instances into very specific rules in the cor-
responding rule space. In this case, the first five cards produce the training

instances shown below. The instances are represented by the feature vec-
tor (RANK, SUIT, COLOR, PARITY) to

D3d Schema Instantiation 419

Step 3 produces the following instantiated schema (with irrelevant features

indicated by *):

(*,*,*, odd) => (*, *, black, *) V (*,*,*, even) =► (*, *, red, *) .

Step 4 determines that this rule is entirely consistent with the training in-
stances and is syntactically simple. Consequently, the rule is accepted as a

hypothesis for the dealer's secret rule.
The schema-instantiation method works well when step 3, the schema-

instantiation step, is easy to accomplish. A good schema provides many
constraints that limit the size of its rule space. In SPARC, for example, the
periodic and decomposition schemas require that their rules be made up of
single conjuncts only. This is a strong constraint that can be incorporated into

the model-fitting algorithm. On the other hand, the DNF schema provides
few constraints and, consequently, an efficient instantiation algorithm could

not be written. The general-purpose Aq algorithm (see Article XIV.D3a) was
used instead.

Strengths and Weaknesses of SPARC

The schema-instantiation method used in SPARC was able to find plausible
Eleusis rules very quickly. This is the primary advantage of the schema-
instantiation approach — large rule spaces can be searched quickly. A second
advantage of this approach is that it has good noise immunity. The schema-
instantiation process has access to the full set of training instances, and, thus,
it can use statistical measures to guide the search of rule space.

There are three important disadvantages of the schema-instantiation
method as used in SPARC. First, it is difficult to isolate a group of con-

straints and combine them to form a schema. The three schemas in SPARC,

although they cover most "secret rules" pretty well, are known to miss some
important rules. The task of coming up with new schemas, however, is par-

ticularly difficult. A second problem with the schema-instantiation approach
is that special schema-instantiation algorithms must be developed for each
schema. This makes it difficult to apply the approach in new domains. The

third disadvantage is that separate interpretation methods need to be devel-
oped for each schema. This was less of a problem in the Eleusis domain, be-
cause the interpretation processes for the different schemas were very similar.

References

Dietterich (1979) is the original description of the SPARC program. Diet-
terich (1980) is a more accessible source. See also Dietterich and Michalski

(in press).

D4. Learning Multiple Concepts

A FEW AI learning systems have been developed that discover a set of con-
cepts from training instances. These systems perform tasks, such as disease

diagnosis and mass-spectrometer simulation, for which a single concept or
classification rule is not sufficient.

To understand the problems of learning multiple concepts, it is helpful

to review single-concept learning. In single-concept learning (see Sec. XIV.D3),
the learning element is presented with positive and negative instances of some
concept, and it must find a concept description that effectively partitions the
space of all instances into two regions: positive and negative. All instances in
the positive region are believed by the learning system to be examples of the

single concept (see Fig. D4-1).
In multiple-concept learning, the situation is slightly more complicated.

The learning element is presented with training instances that are instances
of several concepts, and it must find several concept descriptions. For each
concept description, there is a corresponding region in the instance space (see

Fig. D4-2). An important multiple-concept learning problem is the problem
of discovering disease-diagnosis rules from training instances. The learning
element is presented with training instances that each contain a description

of a patient's symptoms and the proper diagnosis as determined by a doctor.
The program must discover a set of rules of the form:

(description of symptoms for disease A) => Disease is A ,

(description of symptoms for disease B) => Disease is B ,

(description of symptoms for disease N) => Disease is N

Instance Space

Negative Region

Figure D4-1. A single concept viewed as a region
of the instance space.

420

D4 Learning Multiple Concepts 421

Instance Space

Figure D4-2. Regions of the instance space corre-
sponding to different rules.

The left-hand side of each rule is a concept description that corresponds to

a region in the instance space of all possible symptoms (see Fig. D4-2). Any
patient whose symptoms fall in region A, for example, will be diagnosed as
having disease A.

An important issue arising in multiple-concept learning is the problem
of overlapping concept descriptions — that is, overlapping left-hand sides of

diagnosis rules. In Figure D4-2, for example, when a patient's symptoms fall
in the area where regions A and B overlap, the system will diagnose the patient
as having both diseases A and B. This overlap may be correct, since there
are often cases in which a patient has more than one disease simultaneously.

On the other hand, it is often the case in multiple-concept problems that
the various classes are intended to be mutually exclusive. For example, if,
instead of diagnosing diseases, the performance task is to classify images of
handwritten characters, it is important that the system arrive at a unique
classification for each character.

The problem of overlap among multiple concepts can lead to integration
problems, as described in Article XIV.A. When a new rule or concept is added

to the knowledge base in a multiple-concept system, it may be necessary to
modify the left-hand sides of existing rules, particularly if the concept classes
are intended to be mutually exclusive.

The systems described in this section differ from those described in the

Section XIV.D5 on multiple-step tasks in that the performance tasks dis-
cussed here can all be accomplished in a single step. The various disease-

classification rules, for example, can be applied simultaneously to classify a

patient's symptoms. Tasks for which this is not the case — like playing check-
ers or solving symbolic integration problems — are discussed in Section XTV.D5.
We first discuss the work of Michalski and his colleagues on the AQ11

program, which learns a set of classification rules for the diagnosis of soybean

422 Learning and Inductive Inference XIV

diseases. Second, we describe the Meta-DENDRAL system, which learns a set
of cleavage rules that describe the operation of a chemical instrument called
the mass spectrometer. Finally, the AM system, which discovers new concepts
in mathematics, is discussed in some detail. Since these systems do not all
address the same learning problem, we begin each article with a description of
the particular learning problem being attacked and then discuss the methods
employed to accomplish the learning.

D4a. AQ11

MlCHALSKI and his colleagues (Michalski and Larson, 1978; Michalski and

Chilausky, 1980) have developed several techniques for learning a set of classi-
fication rules. The performance element that applies these rules is a pattern

classifier that takes an unknown pattern and classifies it into one of n classes

(see Fig. D4a-1). Many performance tasks, such as optical character recogni-
tion and disease diagnosis, have this form.
The classification rules are learned from training instances consisting of

sample patterns and their correct classifications. For the classifier to be as
efficient as possible, the classification rules should test as few features of the
input pattern as necessary to classify it reliably. This is particularly relevant in
areas like medicine, where the measurement of each additional feature of the

input pattern may be very costly and dangerous. Consequently, Michalski's
learning program AQll (Michalski and Larson, 1978) seeks to find the most
general rule in the rule space that discriminates training instances in class c;

from all training instances in all other classes Cj (i 7^ j). Dietterich and
Michalski (1981) call these discriminant descriptions or discrimination rules,
since their purpose is to discriminate one class from a predetermined set of
other classes.

Using the Aq Algorithm to Find Discrimination Rules

The representation language used by Michalski to represent discrimina-
tion rules is VLi , an extension of the propositional calculus. VLi is a fairly rich

Output Classification
Input Pattern ► Classifier ► {ci, . . . , cn}

Figure D4a-1. The n-category classification task.

423

424 Learning and Inductive Inference XIV

language that includes conjunction, disjunction, and set-membership opera-
tors. Consequently, the rule space of all possible VLi discrimination rules is

quite large. To search this rule space, AQll uses the Aq algorithm, which
is nearly equivalent to the repeated application of the candidate-elimination
algorithm (see Article XIV.D3a). AQll converts the problem of learning dis-

crimination rules into a series of single-concept learning problems. To find a
rule for class Ci, it considers all of the known instances in class c; as positive
instances and all other training instances in all of the remaining classes as

negative instances. The Aq algorithm is then applied to find a description
that covers all of the positive instances without covering any of the negative
instances. AQll seeks the most general such description, which corresponds

to a necessary condition for class membership. Figure D4a-2 shows schemati-
cally how this works. The dots represent known training instances, and the

circle represents the set of possible training instances that are covered by the
description of class C\ .

For each class Cj, such a "concept" is discovered. The result is shown
schematically in Figure D4a-3.

Note that the discrimination rules may overlap in regions of the instance
space that have not yet been observed. This overlap is useful because it
allows the performance element to be somewhat conservative. In the areas in

which the discrimination rules are ambiguous (i.e., overlap), the performance
element can report this to the user rather than assign the unknown instance
to one arbitrarily chosen class.

AQll also has a method for finding a nonoverlapping set of classification

rules. Since the Aq algorithm uses the single-representation trick, it can accept
not only single points in the instance space (as represented by very specific

points in the rule space) but also generalized "instances" that are conjuncts

Instance Space

Figure D4a-2. Learning c\ by treating all other classes
as negative instances.

D4a AQ11
425

Instance Space

Figure D4a-3. Finding single concepts for each class.

in the rule space corresponding to sets of training instances. This allows AQll
to treat the concept descriptions themselves as negative examples when it is
learning the concept description for a subsequent class. Thus, in order to
obtain a nonoverlapping set of discrimination rules, AQll takes as its positive
instances all known instances in c; and as its negative instances all known

instances in Cj (j 7^ i) plus all conjuncts that make up the discrimination
rules for previously processed classes Ck (k < i). The resulting disjoint rules

are shown schematically in Figure D4a-4 (assuming the classes were processed
in the order Ci, C2, C3).

The rules that are developed split up the unobserved part of the instance
space in such a way that c\ gets the largest share, C2 covers any space not
covered by ci, C3 covers any space not covered by c\ or C2, and so on. The way
in which the space is divided up depends on the order in which the classes are

Instance Space

Figure D4a-4. Finding nonoverlapping classification rules.

426 Learning and Inductive Inference
XIV

processed. A performance element that uses such a disjoint set of concepts
will be reckless in the sense that it will assign an unknown instance to an
arbitrary class. The classifier arbitrarily prefers C\ to C2, C2 to C3, and so on.

The discrimination rules developed by AQll correspond (roughly) to the

set of most general descriptions consistent with the training instances — the
G set in the candidate-elimination algorithm (see Sec. XIV.D3). In many
situations, it is also good to develop, for each class ct, the most specific (S-set)
description of that class. This permits very explicit handling of the unobserved

portions of the space. Figure D4a-5 shows such a set of descriptions.
When S and G sets are both available, the performance element can

choose among definite classification (the instance is covered by the S set),
probable classification (the instance is covered by only one G set), and multiple
classification (the instance is covered by several G sets). AQll has the ability
to calculate an approximate S set for each class. When the description of the
class is disjunctive, the S set is also disjunctive.

Applications of AQll

The AQll program has been applied to the problem of discovering disease-
diagnosis rules for 15 soybean diseases (Michalski and Chilausky, 1980). Here
is an example of a classification rule for the disease Rhizoctonia root rot

obtained by the overlapping-concept approach discussed above:

leaves £ {normal} A stem £ {abnormal} A
stem cankers £ {below soil line} A canker lesion color £ {brown} V

leaf malformation £ {absent} A stem £ {abnormal} A
stem cankers £ {below soil line} A canker lesion color £ {brown}
=» Rhizoctonia root rot .

Instance Space

(\ • m*J 1
#\ \

KC2

•/ /

w S2 /

g*\^^. ^02

~7^%

<s3

[•C3* 7

/ 93

^-Os^ ̂ >-

Figure D4a-5. Learning both the G and S set descriptions
for each class.

D4a AQ11 427

An interesting experiment was conducted as part of the soybean disease
project. The goal was to compare the quality of rules obtained through
consultation with expert plant pathologists with rules developed by learning
from examples. Descriptions of 630 diseased soybean plants were entered into

the computer (as feature vectors involving 35 features) along with an expert's
diagnosis of each plant. A special instance-selection program, ESEL, was used
to select 290 of the sample plants as training instances. ESEL attempts to

select training instances that are quite different from one another — instances

that are "far apart" in the instance space. The remaining 340 instances
were set aside to serve as a testing set for comparing the performance of the

machine-derived rules with the performance of the expert-derived rules.
AQ11 was then run on the 290 training instances to develop overlapping

rules such as the rule above. Simultaneously, the researchers consulted with
the plant pathologist to obtain a set of rules. They adopted the standard

knowledge-engineering approach of interviewing the expert and translating
his expertise into diagnosis rules. The expert insisted on using a description
language that was somewhat more expressive than the language used by AQ11.

The expert's rules, for example, listed some features as necessary and other
features as confirmatory; AQ11 was unable to make such a distinction.

As a consequence of the differing description languages, slightly differing
performance elements had to be developed to apply the two sets of rules, and
each performance element was adjusted to get the best performance from its

classification rules. Surprisingly, the computer-generated rules outperformed
the expert-derived rules. Despite the fact that the expert-derived rules were
expressed in a more powerful language, the machine-generated rules gave the
correct disease top ranking 97.6% of the time, compared to only 71.8% for the

expert-derived rules. Overall, the machine-generated rules listed the correct
disease among the possible diagnoses 100% of the time, in contrast to 96.9%

for the expert's rules. Furthermore, the computer-derived rules tended to
list fewer alternative diagnoses. The conclusion of the experiment was that
automatic rule induction can, in some situations, lead to more reliable and

more precise diagnosis rules than those obtained by consultation with the
expert.

References

Michalski and Larson (1978) describe the AQ11 and ESEL programs in
detail. The soybean work is described in Michalski and Chilausky (1980).

D4b. Meta-DENDRAL

META-DENDRAL (Buchanan and Mitchell, 1978) is a program that discovers
rules describing the operation of a chemical instrument called a mass spec-

trometer. The mass spectrometer is a device that bombards small chemical
samples with accelerated electrons, causing the molecules of the sample to
break apart into many charged fragments. The masses of these fragments can

then be measured to produce a mass spectrum— & histogram of the number
of fragments (also called the intensity) plotted against their mass-to-charge
ratio (see Fig. D4b-1).

An analytic chemist can infer the molecular structure of the sample
chemical through careful inspection of the mass spectrum. The Heuristic

DENDRAL program (see Sec. VII.C2, in Vol. Il) is able to perform this task
automatically. It is supplied with the chemical formula (but not the structure)
of the sample and its mass spectrum. Heuristic DENDRAL first examines the
spectrum to obtain a set of constraints. These constraints are then supplied
to CONGEN, a program that can generate all possible chemical structures
satisfying the constraints. Finally, each of these generated structures is tested

by running it through a mass-spectrometer simulator. The simulator applies
a set of cleavage rules to predict which bonds in the proposed structure will
be broken. The result is a simulated mass spectrum for each candidate
structure. The simulated spectra are compared with the actual spectrum, and
the structure whose simulated spectrum best matches the actual spectrum is
ranked as the most likely structure for the unknown sample.

Intensity

I 111! il

I »

Mass-to-chargc ratio

Figure D4b-1. A mass spectrum.

428

D4b Meta-DENDRAL
429

The Learning Problem

Meta-DENDRAL was designed to serve as the learning element for Heu-
ristic DENDRAL. (For an alternate view of Meta-DENDRAL as an expert

system, see Article VII.C2c, in Vol. II.) Its purpose is to discover new cleavage

rules for DENDRAL 's mass-spectrometer simulator. These rules are grouped
according to structural families. Chemists have noted that molecules that
share the same structural skeleton behave in similar ways inside the mass
spectrometer. Conversely, molecules with vastly different structures behave
in vastly different ways. Thus, no single set of cleavage rules can accurately
describe the behavior of all molecules in the mass spectrometer.

Figure D4b-2 shows an example of a structural skeleton for the family
of monoketoandrostanes. Particular molecules in this family are constructed

by attaching keto groups (OH) to any of the available carbon atoms in the
skeleton.

The learning problem addressed by Meta-DENDRAL is to discover the
cleavage rules for a particular structural family. The problem can be stated
as follows:

Given: (a) A representation language for describing molecular structures
and substructures; and

(b) A training set of known molecules, chosen from a single struc-
tural family, along with their structures and their mass spec- tra;

Find: A set of cleavage rules that characterize the behavior of this struc-
tural family in the mass spectrometer.

This learning problem is difficult because it contains two sources of ambiguity.

First, the mass spectra of the training molecules are noise-ridden. There may
be falsely observed fragments (false positives) and important fragments that
may not have been observed (false negatives). Second, the cleavage rules need

Figure D4b-2. The structural skeleton for the monoketo-
androstane family.

430 Learning and Inductive Inference XTV

not be entirely consistent with the training instances. A rule that correctly
predicts a cleavage in more than half of the molecules can be considered to

be acceptable; the rules need not be cautious. It is safer — from the point of

view of DENDRAL's simulation task — to predict cleavages that do not occur
than it is to fail to predict cleavages that do occur.

Meta-DENDRAL's representation language corresponds to the ball-and-
stick models used by chemists. The molecule is represented as an undirected

graph in which nodes denote atoms and edges denote chemical bonds. Hydro-
gen atoms are not included in the graph. Each atom can have four features:

(a) the atom type (e.g., carbon, nitrogen), (b) the number of nonhydrogen
neighbors, (c) the number of hydrogen atoms that are bonded to the atom, and
(d) the number of double bonds in which the atom participates. A cleavage

rule is expressed in terms of a bond environment — a portion of the molecular
structure surrounding a particular bond. The bond environment makes up
the condition part of a cleavage rule. The action part of the rule specifies

that the designated bond will cleave in the mass spectrometer. Figure D4b-3
shows a typical cleavage rule.

The performance element (the simulator) applies the production rule by

matching the left-hand-side bond environment to the molecular structure that
is undergoing simulated bombardment. Whenever the left-hand-side pattern
is matched, the right-hand-side predicts that the bond designated by * will
break.

The Interpretation Problem and the Subprogram INTSUM

Meta-DENDRAL employs the method of model-driven generate-and-test
to search the rule space of possible cleavage rules. Before it can carry out
this search, however, it must first interpret the training instances and convert

them into very specific points in the rule space (i.e., into very specific cleavage
rules).

x — y — z — w =► x — y * z — w

Node Atom type Neighbors H-neighbors Double bonds

x carbon 3 1 0

y carbon 2 2 0
z nitrogen 2 1 0
w carbon 2 2 0

Figure D4b-3. A typical cleavage rule.

D4b Meta-DENDRAL 431

The interpretation process is accomplished by the subprogram INTSUM

(INTerpretation and SUMmary). Recall that the training instances have the
form:

(whole molecular structure) => (mass spectrum) .

INTSUM seeks to develop a set of very specific cleavage rules of the form:

(whole molecular structure) => (one designated broken bond) .

To make this conversion, INTSUM must hypothesize which bonds were

broken to produce which peaks in the spectrum. It accomplishes this by means

of a "dumb" version of the DENDRAL mass-spectrometer simulator. Since
Meta-DENDRAL is attempting to discover cleavage rules for this particular

structural class, it cannot use those same cleavage rules to drive the simula-

tion. Instead, a simple half- order theory of mass spectrometry is adopted.

The half-order theory describes the action of the mass spectrometer as
a sequence of complete fragmentations of the molecule. One fragmentation

slices the molecule into two pieces. A subsequent fragmentation may further

split one of those two pieces to create two smaller pieces, and so on. After

each fragmentation, some atoms from one piece of the molecule may migrate

to the other piece (or be lost altogether). The half-order theory places certain

constraints on this split- and- migrate process. It says that all bonds will break
in the molecule except the following:

1. Double and triple bonds do not break;

2. Bonds in aromatic rings do not break;

3. Two bonds involving the same atom do not break simultaneously;

4. No more than three bonds break simultaneously;

5. At most, only two fragmentations occur (one after the other);

6. No more than two rings can be split as the result of both of the frag-
mentations.

Constraints are also placed on the kinds of migrations that can occur:

1. No more than two hydrogen atoms migrate after a fragmentation;

2. At most, one H2O is lost;

3. At most, one CO is lost.

The parameters of the theory are flexible and can be adjusted by the user of

Meta-DENDRAL.

Based on this theory, INTSUM simulates the bombarding and cleaving of

the molecular structures provided in the training instances. The result is a

simulated spectrum in which each simulated peak has an associated record

of the bond cleavages that caused that peak to appear. Each simulated

peak is compared with the actual observed peaks. If their masses match,

432 Learning and Inductive Inference XIV

then INTSUM infers that the "cause" of the simulated peak is a plausible
explanation of the observed peak. If a simulated peak finds no matching
observed peak, it is ignored. If an observed peak remains unexplained, it is
also ignored. However, unexplained peaks are reported to the chemist. A large

proportion of unexplained peaks would indicate that the half-order theory was
inadequate to explain the operation of the mass spectrometer in this training
instance.

The half-order theory contributes another source of ambiguity to the
learning problem. The interpreted set of training instances can easily contain

erroneous instances. INTSUM's half-order theory tends to predict cleavages
that did not, in fact, occur. It is also not unusual for the half-order theory
to fail to predict cleavages that did occur. Thus, the training instances that
guide the rule space search are very noisy indeed.

The Search of the Rule Space

Meta-DENDRAL searches the rule space in two phases. First, a model-

driven generate-and-test search is conducted by the RULEGEN subprogram.
This is a fairly coarse search from which redundant and approximate rules
may result. The second phase of the search is conducted by the RULEMOD
subprogram, which cleans up the rules developed by RULEGEN to make them
more precise and less redundant.

RULEGEN. This subprogram searches the rule space of bond environ-
ments in order from most general to most specific. The algorithm repeatedly

generates a new set of hypotheses, H, and tests it against the (positive) train-
ing instances developed by INTSUM, as follows:

Step 1. Initialize H to contain the most general bond environment

x*y

Node Atom type Neighbors
H-neighbors

Double bonds
x any

any
any

any
y any any any any

This bond environment matches every bond in the molecule and

thus predicts that every bond will break. Since the most useful

(i.e., most accurate) bond environment lies somewhere between this

overly general environment (a; * y) and the overly specific, complete
molecular structure (with specified bonds breaking), the program
generates refined environments by successively specializing the H
set.

Step 2. Generate a new set of hypotheses. Specialize the set H by making
a change to all atoms at a specified distance (radius) from the

* bond — the bond designated to break. The change can involve
either adding new neighbor atoms or specifying an atom feature.
All possible specializations are made for which there is supporting

D4b Meta-DENDRAL
433

evidence. The technique of modifying all atoms at a particular
radius causes the RULEGEN search to be coarse.

Step 3. Test the hypotheses against the training instances. The bond environ-
ments in H are examined to determine how much evidence there

is for each environment. An improvement criterion is computed for
each environment that states whether the environment is more

plausible than the parent environment from which it was obtained
by specialization. Environments that are determined to be more
plausible than their parents are retained. The others are pruned
from the H set. If all specializations of a parent environment are
determined to be less plausible than their parent, the parent is
output as a new cleavage rule and is removed from H.

Repeat steps 2 and 3 until H is empty.

Figure D4b-4 shows a portion of the RULEGEN search tree. Horizontal

levels in the tree correspond to the contents of the H set after each itera-

tion. Starting with the root pattern, So, the number- of -neighbors attribute
is specialized (i.e., the pattern graph is expanded) for each atom at distance

zero from (adjacent to) the break to give pattern Si. The atom type is then

specified for atoms adjacent to the break in S2 and for atoms one bond

removed from the break in S3. At each step, there are many other pos-
sible successors corresponding to assignments of other values to these same

attributes or to other attributes.

The improvement criterion used in step 3 states that a daughter environ-
ment graph is more plausible than its parent graph if:

1. It predicts fewer fragmentations per molecule (i.e., it is more specific);

X*X(S0)

X-X*X-X (S.)

c*c-c(s,)

Figure D4b-4. A portion of the RULEGEN search tree.

434 Learning and Inductive Inference XIV

2. It still predicts fragmentations for at least half of all of the molecules

(i.e., it is sufficiently general);

3. It predicts fragmentations for as many molecules as its parent — unless

the parent graph was "too general" in the sense that the parent predicts
more than 2 fragmentations in some single molecule or on the average

it predicts more than 1.5 fragmentations per molecule.

This algorithm assumes that the improvement criterion increases mono

tonically to a single maximum value (i.e., it is unimodal). This is usually true

for the mass-spectrometry learning task. RULEGEN can thus be viewed as
following monotonically increasing paths down through the partial order of

the rule space until the criterion attains a local maximum value.

RULEMOD. The rules produced by RULEGEN are very approximate and

have not been tested against negative evidence. RULEMOD improves these

rules by conducting fine hill-climbing searches in the portions of the rule space
near the rules located by RULEGEN. The subprogram RULEMOD proceeds

in four steps:

Step 1 . Select a subset of important rules. RULEGEN can produce rules that
are different from one another but that explain many of the same

data points. RULEMOD attempts to find a small set of rules that
account for all of the data. Negative evidence is gathered for

each rule by re-invoking the mass-spectrometer simulator. Each
candidate rule is tested to see how many incorrect predictions are
made as well as how many correct predictions. The rules are ranked

according to a scoring function (/ X (P + U — 2N), where J is the
average intensity of the positively predicted peaks, P is the number
of correctly predicted peaks, U is the number of correct peaks
predicted uniquely by this rule and no other, and N is the number

of incorrectly predicted peaks). The top-ranked rule is selected.
All evidence peaks explained by that rule are removed, and the
ranking and selection process is repeated until all positive evidence
is explained or until the scores fall below a specified threshold.

Step 2. Specialize rules to exclude negative evidence. RULEMOD attempts to
specialize the rules in order to exclude some negative evidence while
retaining the positive evidence. For each candidate rule, RULEMOD
attempts to fill in additional values for features that were left
unspecified by RULEGEN. RULEMOD first examines all of the
positive instances predicted by the candidate rule and obtains a list
of all possible feature values that are common to all of the positive
instances. Each of these feature values could individually be added

to the rule without excluding any positive instances. RULEMOD
attempts to select a mutually compatible set of values that will
exclude a large amount of negative evidence.

D4b Meta-DENDRAL 435

The selection process uses a hill-climbing search. The feature value
that excludes the largest number of negative instances is chosen
and added to the candidate rule. Incompatible feature values are
pruned from the list of possible refinements, and the process is
repeated until further refinement is not possible or all negative
evidence has been excluded.

Step 3. Generalize rules to include positive evidence. RULEMOD attempts
to generalize the rules in order to include some positive evidence
without including any new negative evidence. This is accomplished
by relaxing the legal values for atom features that were specified by
RULEGEN. RULEMOD examines each atom in the bond environ-

ment of the rule, starting with the atoms most distant from the *
bond. It first checks to see if the whole atom can be removed from

the graph without introducing any negative evidence. If it cannot,

then a hill-climbing search is performed that iteratively removes
the one atom feature that allows the rule to include the largest
amount of new positive evidence without introducing any negative
evidence. When the outermost atoms have been generalized as
much as possible, RULEGEN examines the set of atoms that are
one bond closer to the fragmentation site. This search continues
until all possible changes have been made.

Step 4. Select the final subset of rules. The procedure used in step 1 is re-
applied to select the final set of rules.

The key assumption made by RULEMOD is that RULEGEN has located rules

that are approximately correct. RULEGEN points out the regions of the rule

space in which detailed searches are needed.

Notice that RULEMOD must frequently invoke the mass-spectrometer
simulator to assess the negative (incorrect) predictions of a proposed rule.

INTSUM provides only positive training instances to RULEGEN. Negative

instances are not provided to RULEGEN directly because there are many

more negative instances than there are positive instances. This is a problem

that frequently arises in systems that are attempting to explain why some

particular set of events took place. Negative information must indicate every-
thing that did not occur.

All three of Meta-DENDRAL's subprograms make use of some form of
the mass-spectrometer simulator. These versions of the simulator are flexible
and transparent. They allow the learning element to interpret the training

instances and to reason about the performance of a hypothetical modification

to the cleavage rules. Similar transparent performance elements are used in

systems that learn to perform multiple-step tasks (see Sec. XIV.D5).

Experiment planning and the search of the instance space. Meta-
DENDRAL does not conduct a search of the instance space. Such a search

would require that Meta-DENDRAL select a molecular structure and ask
the chemists to synthesize it and obtain its mass spectrum. To choose an

436 Learning and Inductive Inference XTV

appropriate molecule, Meta-DENDRAL would need to invert the INTSUM
process. Given a set of possible bond cleavages that it wanted to verify, Meta-
DENDRAL would need to determine a molecule in which those bonds would

cleave. Once the molecule was chosen, existing organic-synthesis programs
could be used to plan the synthesis process (see Article VII. C4, in Vol. n). The

chosen molecule might be difficult or impossible to synthesize. Instance-space
searching was not incorporated into Meta-DENDRAL because of the complex
and time-consuming nature of these procedures.

Another View of the Meta-DENDRAL Learning Algorithm

In the previous section, we discussed the RULEGEN/RULEMOD pair of
subprograms as a coarse search followed by a fine search. Another view of

this process is that RULEGEN converts a multiple-concept learning problem
into a set of single-concept learning problems. This view regards the output
of RULEGEN not as a set of rules but as a clustering of the training instances.
Once RULEGEN has completed its search, the program knows approximately
which training instances belong together as instances of a single cleavage rule.

At this point, a single-concept learning algorithm could be applied to discover
this rule directly from the RULEGEN-supplied cluster of training instances
rather than by incremental modifications of the RULEGEN-supplied rule.

As part of his thesis work, Mitchell (1978) applied the candidate-
elimination algorithm to this learning problem. Each approximate rule devel-

oped by RULEGEN was used to build a set of positive and negative training

instances that were then processed by the version-space approach. This
technique resulted in a better set of cleavage rules than those developed

with RULEMOD. The version-space approach has the advantage of support-

ing incremental learning, so Mitchell's system can incorporate new training
instances as they become available.

Strengths and Weaknesses of the Meta-DENDRAL System

Meta-DENDRAL is an effective learning system applied to a real-world
domain. Meta-DENDRAL has discovered cleavage rules for five structural
families of molecules. The system provides solutions to the problem of inter-

preting training instances and to the problem of learning in the presence of
certain kinds of noise. These solutions are based on the incorporation into

the program of a large amount of domain-specific knowledge. This knowledge
enters the system in the form of the half-order theory of mass spectrometry
(to guide interpretation) and in the use of a model-directed search of rule
space.

The two-phase search of the rule space provides an efficient method for
searching a large space and also suggests how a multiple-concept learning
problem can be converted into a set of single-concept learning problems.

D4b Meta-DENDRAL 437

Among the weaknesses of the system are its domain-specific representation
and the fact that much of the domain knowledge is buried in the code rather
than represented as an explicit knowledge base.

References

Lindsay, Buchanan, Feigenbaum, and Lederberg (1980) present a com-
prehensive survey of the many programs developed during the DENDRAL

project. Buchanan and Mitchell (1978) describe Meta-DENDRAL as an AI
learning system. Mitchell (1978) discusses the application of the candidate-
elimination algorithm to Meta-DENDRAL.

D4c. AM

AM is a computer program written by Douglas Lenat (1976) that discovers
concepts in elementary mathematics and set theory. Unlike most of the
learning systems described in this chapter, AM does not learn concepts for
use in some performance task. Instead, it seeks simply to define and evaluate
interesting concepts on the basis of a knowledge of mathematical aesthetics.

It employs a refinement-operator approach (see Article XIV.Dl) to conduct a
heuristic search of a space of mathematical concepts.

AM starts with a substantial knowledge base of 115 concepts selected from
finite set theory. As AM runs, it collects examples of these concepts, creates
new concepts, and hypothesizes conjectures relating the concepts to each

other. During one typical run of a few CPU hours' duration, AM defined about
200 new concepts, half of which were quite well known in mathematics. One
of the synthesized concepts was equivalent to the concept of natural numbers.

AM's knowledge of mathematical aesthetics led it to pursue this concept in
depth, and it spent much time developing elementary number theory, includ-

ing conjecturing the fundamental theorem of arithmetic (i.e., every number
has a unique prime factorization). This impressive performance can be traced

to AM's large body of knowledge about mathematics and its ability to apply
this knowledge to discover new concepts and conjectures.

In this article, we first describe AM's architecture in terms of its repre-
sentation for concepts and its control structure for deciding what tasks to

perform. Then we change our perspective and show how AM can be viewed as

searching an instance space and a concept space by the refinement-operator

method. Third, we examine the initial contents of AM's knowledge base and
review briefly the concepts that it discovered. Finally, we attempt to sum-

marize the strengths and weaknesses of AM's approach to concept discovery.

AM's Architecture

AM is a blend of three powerful methods: frame representation, production

systems, and heuristically guided best-first search. We discuss each of these
in turn.

Frame representation. The concepts that AM discovers and manipu-
lates are represented as frames (see Article III.C7, in Vol. i), each containing

the same fixed set of slots. Each concept has slots for its definition, for known

positive and negative examples, for links to other concepts that are specializa-
tions and generalizations of the concept, for telling the worth of the concept,

and for several other things. Figure D4c-1 shows the frame representation of
the PRIMES concept after it has been discovered and filled in by AM.

438

D4c AM 439

NAME: Prime Numbers

DEFINITIONS:

ORIGIN: Number-of-divisors-of (x) = 2

PREDICATE-CALCULUS : Prime (x) == (Vz) (z|x=>z = 10z = x)

ITERATIVE: (for x > 1) : For i from 2 to sqrt(x) , -i(i | x)

EXAMPLES: 2, 3, 5, 7, 11, 13, 17

BOUNDARY: 2, 3

BOUNDARY-FAILURES: 0, 1

FAILURES: 12

GENERALIZATIONS: Nos . , Nos . with an even no. of divisors,

Nos. with a prime no. of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables

CONJECTURES: Unique factorization, Goldbach's conjecture,
Extremes of Number-of-divisors-of

ANALOGIES :

Maximally divisible numbers are converse extremes of

Number-of-divisors-of ,

Factor a nonsimple group into simple groups

INTEREST: Conjectures associating Primes with TIMES

and with Divisors-of

WORTH: 800

Figure D4c-1. AM's frame representation of the PRIMES concept.

The DEFINITIONS slot is the most important. It provides one or more LISP
predicates that can be applied to determine whether something is an example
of the concept. AM knows a concept when it has a definition for it. However,
the frame representation allows AM to represent more knowledge about a
concept than just its definition. The CONJECTURES, SPECIALIZATIONS, and
GENERALIZATIONS slots, for example, all describe different ways in which
concepts are related to each other. Furthermore, attached to each slot in a

concept are heuristic rules (not shown in the figure) that can be executed to
fill in the contents of a slot or to check the contents to see if they are correct.
These heuristic rules form a production system that carries out the actual
discovery process.

440 Learning and Inductive Inference XIV

Production systems. AM operates as a modified production system.

Each of the 242 heuristic rules attached to the concept slots of AM's knowledge
base is written, as in all production systems, as a condition part and an
action part. The condition part tells under what conditions the rule should
be executed, and the action part carries out some task such as creating a new

concept or finding examples of an existing concept. For instance, the following
heuristic rule is attached to the EXAMPLES slot of the ANY-CONCEPT frame:

If: The current task is "Fill in examples of X"
and X is a specialization of some concept Y,

Then: Apply the definition of X to each of the examples of Y
and retain those that satisfy the definition.

The main difference between AM's production-system architecture and
the standard recognize- act cycle is the way rules are selected for execution.
Recall that in an ordinary production system, the condition part of each
rule is compared to the contents of a working memory, and all rules that
match are executed. In contrast, AM is much more selective about which

rules it executes. It operates from an agenda of tasks of the form "Fill in (or
check) slot S of concept C" Each task has a numeric "interestingness" rating.
AM repeatedly selects the most interesting task from the agenda, gathers all
heuristic rules relevant to performing that task, and executes those rules that
are actually applicable.

To locate those heuristics that are relevant to the task "Fill in (or check)
slot S of concept C," AM looks at slot S of concept C to see if it has any
attached heuristics. If it does, those heuristics are executed. If not, AM
examines relatives of concept C to see if any of them have heuristics that can
be inherited by C and applied. For example, when AM is looking for rules

relevant to the task "Fill in examples of sets," it finds no heuristics attached
to the EXAMPLES slot of SETS. Consequently, it looks at concepts such as
ANYCONCEPT, which are more general than SETS. The EXAMPLES slot of
ANYCONCEPT has an attached heuristic that says:

If: The current task is "Fill in examples of X"
and X has a recursive definition,

Then: Instantiate the base step of the recursion to get
a boundary example.

When AM applies this heuristic rule, it creates the null set as a boundary
EXAMPLE of SETS. Heuristics that are closely related to C are executed before
heuristics of distant relatives.

A heuristic rule can do one or more of the following:

1 . Fill in slot S of some concept C. This covers many activities, including
finding new examples for a concept, proposing conjectures, and providing
guidance for the search by modifying the WORTH slot of a concept.

D4c AM 441

2. Check slot S of concept C. The process of checking a slot involves verifying
that the contents of the slot are correct and noticing interesting facts
about a slot. Often, a rule will check a slot and notice that some new

task should be performed as a result. For example, one rule notices that
all of the examples of one concept, X, are also examples of a more specific
concept, Y. It conjectures that X and Y are equivalent and proposes

the task "Check examples of Yn to see if Y is actually equivalent to an
even more specific concept, Z.

3. Create new concepts. New concepts are created by adding a new frame
to the knowledge base and filling in the DEFINITIONS slot of the frame.
Usually the WORTH slot is filled in as well.

4. Add new tasks to the agenda. Often, a rule will propose that a new task
be added to the agenda. For example, a rule that creates a new concept,

X, will propose the new task "Fill in examples of X." Most rules that
generate examples of X will propose the task "Check examples of X."

5. Modify the interestingness of a task on the agenda. The numerical interest-

ingness of a task is computed from a list of "reasons" for performing
the task. Thus, a rule can add a new reason to an existing task. This
is another way of providing guidance in the search for concepts and

conjectures.

Best- first search. The procedure of always choosing the most interest-

ing task from the agenda gives AM the flavor of best-first search. This search is
well guided by heuristics that modify the INTERESTINGNESS and WORTH slots

of concepts and that propose and justify agenda tasks. AM has 59 heuristics

for assessing the interestingness of concepts and tasks. One rule, for example,

says that a concept is interesting if each of its examples accidentally satisfies

an otherwise rarely satisfied predicate P. (The satisfaction is accidental if the

concept was not deliberately defined as the set of things satisfying P.)

Without heuristic guidance and the agenda mechanism, AM would be

swamped by a combinatorial explosion of new concepts. However, the fact

that it creates only 200 new concepts and that half of them are acceptable to

a mathematician shows that its search is quite restrained. AM is an excellent

example of the power of well-informed best-first search.

AM and the Two-space View of Learning

Thus far, we have discussed the architecture of AM. We now turn our

attention to how this architecture is used to accomplish learning. Although

its 242 heuristic rules are extremely varied and can perform many diverse

functions, AM tends to behave as if it were executing the following loop:

Repeat-

Step 1. Select a concept to evaluate and generate examples of it.

442 Learning and Inductive Inference XIV

Step 2. Check these examples looking for regularities. Based on the regu-
larities,

(a) update the assessment of the interestingness of the concept,

(b) create new concepts, and

(c) create new conjectures.

Step 3. Propagate the knowledge gained (especially from new conjectures)
to other concepts in the system.

In terms of the two-space view of learning, step 1 searches a space of instances,
step 2 examines these instances and searches the space of concepts (the rule

space) and conjectures, and step 3 performs bookkeeping to maintain the

consistency and integration of the knowledge base. We examine each of these

steps in more detail.

Searching the instance space. When a concept is created, AM knows

very little about that concept aside from its LISP definition. In fact, when

AM is first started up, none of its 115 initial concept frames has any examples

filled in. Thus, one of the first tasks it must perform — in order to assess the

value of the concepts and develop conjectures — is to gather examples (and
negative examples) of its concepts. AM has more than 30 heuristic rules to

guide this example-generating process. Here are some of the techniques they
use:

1 . Symbolic instantiation of definitions. Symbolic instantiation converts the

definition of a concept into an example. Typically, each concept has,
as one of its definitions, a recursive LISP predicate. The base step of
this recursion can be instantiated to give an instance that satisfies the
definition. For example, one of the definitions of the SET concept is:

(lambda (s)

(or (= s {})

(set. definition (remove (any-member s) s)))) .

Since the first thing this definition checks is to see if s is the null set,
we can conclude that the null set is an example of a set. Similarly, AM

knows that removing is the opposite of inserting, so it can deduce that

{{}} is also a set by inserting {} into itself.

2. Generate and test. Another approach used by the program is to generate
examples and test them against the concept definition. In order to

generate examples of some concept C, the program looks at "nearby"
concepts in the knowledge base. For example, AM may look at generaliza-

tions of C (concepts more general than C), operations that have C in
their range, cousins of C (concepts that share a common generalization
or specialization with C), and even random LISP atoms from various
internal lists inside AM (such as the list of users of the system).

3. Inheritance of examples. If concept C has other concepts that are more
specialized than it, any example satisfying these more specialized concept

definitions will satisfy C. Examples can thus be inherited "up" the

D4c AM 443

generalization hierarchy. Similarly, negative examples can be inherited

"down" the generalization hierarchy.

4. Applying the algorithm of the concept. So-called active concepts (i.e., opera-
tors such as SET-UNION) have algorithms that compute an element in

the range of the concept when given valid arguments from the domain.

Thus, by randomly selecting domain items and applying these algo-
rithms, AM can produce new examples. For instance, if {A} and {B}

are sets, then SET-UNION. ALGORITHMS produces {A,B}, and the list
({A}, {B}, {A,B}) forms a positive example of SET-UNION.

5. Reasoning by views or by analogy. The VIEWS slot of a concept provides
an algorithm for converting instances of one concept into instances of
another. The ANALOGY slot gives less precise information about how
instances of one concept are related to instances of another concept. AM
can use these two slots to map existing examples into examples of the
concept under construction.

When AM needs to fill in examples of a concept, it attempts to apply these

methods until it has developed 26 examples of the concept (or until it has

exhausted its time or space quota for the current task).

A particularly interesting feature of AM is its ability to locate the bound-
ary of a concept. Examples of a concept are classified according to whether

they are:

1. Normal positive examples,

2. Boundary positive examples,

3. Boundary negative examples (i.e., what Winston, 1970, calls near misses),

4. Normal negative examples, or

5. Just plain weird (i.e., have the wrong data structure).

Most examples produced by the above-mentioned techniques will turn out to
be normal positive examples (or normal negative examples, if they do not

satisfy the concept definition). Some of the example-generation techniques,
however, are faulty. They can accidentally generate negative examples. A

particular case is the VIEW slot of SETS that tells AM that it can view a bag

as a set by changing the [] brackets (that represent a bag) to { } braces. This

does not always work (e.g., when the bag [a, b, a] is viewed as that set {a, b, a}

which contains an impermissible duplicate element). When AM checks these

examples against the definition of a set, it discovers that they fail. Such

negative examples are classified as boundary negative examples.

Boundary positive examples can be found by such techniques as instan-
tiating the base case of a recursion (which almost always produces a boundary

case) or by taking boundary non-examples of more specialized concepts and
determining that they satisfy the concept definition. Another technique is to

take a normal positive example and progressively modify it until it fails to

satisfy the definition. This isolates the boundary of the concept quite well.

444 Learning and Inductive Inference XIV

By applying all of these techniques, AM is able to gather a good set
of examples that can be used for analysis and generalization. AM can also
assess how much effort was expended to obtain these examples. Thus, it can

conclude that a predicate is "rarely satisfied" or "easily satisfied." All of these
empirical data are used to drive the search of the rule space and the search
for interesting conjectures.

Searching the rule space. The rule space for AM is the space of
all possible instantiations of its concept frame. This is indeed an immense

space. To search it, AM applies a refinement-operator method similar to the
techniques employed by BACON and ID3 (see Article XIV.D3b). The current

set of concept frames can be thought of as AM's current set of hypotheses.
These hypotheses are repeatedly refined and extended by applying operators
(i.e., heuristics) that create new concepts and conjectures.

AM has roughly 40 heuristics that create new concepts. These can be
broken into two sets. One set of heuristics is general and can be applied to
virtually any concept in AM. The second set is applicable only to functions

and relations — active concepts that can be viewed as mapping elements from
some domain set into some range set. The general methods are:

1. Generalization. AM implements, in some form, virtually all rules of

generalization that have appeared in other AI programs. The dropping-

condition, adding-option, and turning-constants-to-variables rules are
all used. Also implemented is the technique of specializing a negative

conjunct (e.g., A A ->B is generalized to A A ->Bf, where B' is more
specific than B). AM can generalize expressions involving quantification,

for example, converting 3x £ S : P(x) to 3x G S' : P(x), where S'
is a larger set than S. Since the definitions of concepts are typically
recursive LISP functions, AM contains many rules of generalization that
are applicable to recursion. For instance, a definition can be generalized
by eliminating one of a conjoined pair of recursive calls or by disjoining
a new recursive call. In particular, AM knows that if one recursive call

involves CAR (or CDR), the other recursive call should use CDR (or CAR,
respectively).

2. Specialization. AM also implements a wide variety of rules of specializa-
tion. These are the reversals of the rules of generalization mentioned

above.

3. Handling exceptions. When a concept has a lot of exceptions (negative

boundary examples), a new concept can be created whose instances
are these negative examples. Also, AM can create the concept whose
instances are those positive examples, but not boundary examples, of
the original concept. This allows AM to represent the conjecture that

all prime numbers are odd — except the number 2.

4. Reasoning by analogy. If J is a conjecture and J' is an analogous conjec-
ture, then AM can create the concept {bf | J'(b')} and also the concept

D4c AM 445

{&' | -*J'(bf)}, that is, the set of objects for which J' is true and the set
of objects for which J' is false.

AM's concept-creation methods that apply to active concepts (mappings)
usually produce new active concepts. New concepts can be created by the

following:

1. Generalization. The domain and range of an existing concept can be
expanded.

2. Specialization. The domain and range of an existing concept can be
contracted (restricted).

3. Inversion. The inverse of an existing relation can be created. AM can also

create interesting concepts such as the inverse image of an interesting
subset of the range and the inverse image of an interesting value in the
range.

4. Composition. Two functions F(x) and G(y) can be composed to obtain
the new functions F(G(y)) and G(F(x)).

5. Projection. An existing multiple-argument function F can be projected
onto a subset of its arguments. For example, Proj2(F(z, y)) is just y.

6. Coalesce. The arguments of F(x, y) can be coalesced to produce a new

function, G(x) = F(x, x).

7. Canonization. This method takes two predicates, P\ and P2, and

defines a function, F, and a set, the range of F, such that Pi(x,y) =
P2(F(x), F(y)). If x and y are instances of concept C, then F maps C to
the set of canonical C. Thus, P2 applied to canonical C is the same as

Pi applied to C. AM uses this operation to invent NUMBERS by taking

SAME-SIZE(z, y) as Pi, and EQUAL(x, y) as P2, and applying them to
bags to create the canonizing function SIZE-OF(x) and the concept of
CANONICAL-BAGS (i.e., bags that contain only T). CANONICAL-BAGS
can be interpreted as numbers.

8. Parallel-replace and parallel- join. These concept-creation operators come
in many varieties and are used to create new concepts by repeated
application of old concepts. Multiplication, for example, can be created

by repeated addition (with the parallel-replace method).

9. Permutation. The arguments of a function or relation can be permuted
to give a new function or relation.

10. Cartesian product A new concept can be obtained by taking the Cartesian
product of existing concepts.

Many of the refinement operators in this group (e.g., COALESCE, COMPOSI-
TION) are also concepts defined in AM. It is perhaps only in mathematics that

the means of study are also the objects of study.

446 Learning and Inductive Inference XIV

Representing and proposing conjectures. Roughly 30 of AM's rules
also propose conjectures based upon examination of the empirical data. Con-

jectures take one of the following forms:

1 . Ci is an example of Ci ;

2. C\ is a specialization (generalization) of Ci;

3. Ci is equivalent to Ci;

4. Ci is related by X to Ci (where X is some predicate);

5. Operation C\ has domain D or range R.

Most of these conjectures are discovered by performing rough statistical
comparisons of examples. If all of the examples of C\ are also examples of
C2, then AM conjectures that C\ is a specialization of C2. If AM is unable
to find negative examples of C\, it conjectures that C\ is trivially true. If
all examples of elements in the range of C\ seem to be numbers, then AM
conjectures that C\ has numbers as its range. If all of the range elements of
C\ are equal to corresponding domain elements, then perhaps C\ is the same
as the identity function.

Conjectures, once proposed, are believed completely by AM. The relevant
slots are changed, and the changes are propagated throughout the knowledge
base. If two concepts are conjectured to be equivalent, they are merged and
the space occupied by one is released. AM can also modify the LISP definitions
to take advantage of new conjectures.

Propagating acquired knowledge. Several heuristics (including those

that locate and generate examples) serve to propagate new information through-

out the network of frames that constitutes AM's knowledge base. These are
fairly straightforward and make heavy use of the three sets of inheritance

links (IS-AN-EXAMPLE-OF/EXAMPLES, SPECIALIZATIONS/GENERALIZATIONS,
DOMAIN/RANGE).

To complete our review of AM from the perspective of the two-space
view of learning, we note that, although the example-generation tech-

niques discussed above perform sophisticated instance selection, there is no
corresponding need for complex interpretation routines like those found in

Meta-DENDRAL. On the contrary, since mathematical objects are easily rep-
resented and manipulated in LISP, there is no need to convert them to some

alternate representation. More sophisticated instance selection and inter-
pretation routines would probably be needed for nonmathematical domains.

AM's Initial Knowledge Base

We now turn our attention to AM's actual performance. First we describe
the knowledge that it started with, and then we give a summary of the
concepts and conjectures it found.

D4c AM 447

AM's initial knowledge base contains the basic concept hierarchy shown
in Figure D4c-2. In addition, beneath the concept of STRUCTURE are many
important data structures: SETS, ORDERED SETS, BAGS, LISTS (i.e., ordered
BAGS), and ORDERED PAIRS. Under the ACTIVITY concept are many opera-

tions such as SET-INTERSECT, SET-UNION, SET-DIFFERENCE, and SET-
DELETION (and analogous operations for BAGS, ORDERED SETS, and LISTS).
Also, several of the concept-creation operators such as PARALLEL- JOIN,
RESTRICT, PROJECTION, and so forth, are included here. Under PREDICATES

are the constant predicates TRUE and FALSE, as well as the concept of EQUAL-
ITY. Finally, the most important part of the initial knowledge base is the body

of 242 heuristic rules attached to various concepts in this tree. Most of these
were summarized above.

Results: AM as a Mathematician

Now we review the mathematics that AM explored. Throughout, AM
acted alone, with a human user watching it and occasionally renaming some
concepts for his (or her) own benefit. Like a contemporary historian sum-

marizing the work of the Babylonian mathematicians, we will use present-day

terms to describe AM's concepts, and we will criticize its behavior in light of
our current knowledge of mathematics.

ANYTHING

OPERATION PREDICATE RELATION ATOM CONJECTURE STRUCTURE

Figure D4c-2. AM's initial concept tree (partially shown).

448 Learning and Inductive Inference XIV

AM began its investigations with scanty knowledge of a few set-theoretic

concepts. Most of the obvious set-theoretical relations (e.g., de Morgan's
laws) were eventually uncovered; since AM never fully understood abstract
algebra, the statement and verification of each of these was quite obscure. AM
never derived a formal notion of infinity, but it naively established conjectures

like "A set can never be a member of itself" and procedures for making
chains of new sets ("Insert a set into itself"). No sophisticated set theory
(e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that "equality" was
worth generalizing and thereby discovered the relation "same size as." Natural
numbers were based on this discovery, and, soon after, most simple arithmetic
operations were defined.

Since addition arose as an analogue to union, and multiplication as a
repeated substitution, it came as quite a surprise when AM noticed that they

were related (namely, N + N = 2 X N). AM later rediscovered multiplication
in three other ways: as repeated addition, as the numeric analogue of the
Cartesian product of sets, and using the cardinality of the power set of the
union of two sets.

Raising to fourth-powers and taking fourth-roots were discovered at this
time. Perfect squares and perfect fourth- powers were isolated. Many other
numeric operations and kinds of numbers were found to be of interest: odds,
evens, doubling, halving, integer square root, and so on. Although it isolated
the set of numbers that had no square roots, AM was never close to discovering

rationals, let alone irrationals. No notion of "closure" was provided to — or
discovered by — AM.

The associativity and commutativity of multiplication indicated to AM
that it could accept a bag of numbers as its argument. When AM defined

the inverse operation corresponding to "times," this property allowed the
definition to be: "any bag of numbers greater than 1 whose product is x." This
was just the notion of factoring a number x. Minimally factorable numbers
turned out to be what we call primes. (Maximally factorable numbers were
also thought to be interesting.)

Prime pairs were discovered in a bizarre way: by restricting the domain

and range of addition to primes (i.e., solutions of p + q = r in primes).
AM conjectured the fundamental theorem of arithmetic (unique factoriza-

tion into primes) and Goldbach's conjecture (every even number greater than
2 is the sum of two primes) in a surprisingly symmetric way. The unary
representation of numbers gave way to a representation as a bag of primes

(based on unique factorization), but AM never came up with exponential nota-
tion. Since the key concepts of remainder, greater than, greatest common

denominator, and exponentiation were never mastered, progress in number
theory was arrested.

When a new base of geometric concepts was added, AM began finding
some more general associations. In place of the strict definitions for the

D4c AM 449

equality of lines, angles, and triangles came new definitions of concepts com-
parable to parallel, equal measure, similar, congruent, translation, and rota-

tion, together with many that have no common name (e.g., the relationship
of two triangles sharing a common angle). A clever geometric interpreta-

tion of Goldbach's conjecture was found: Given all angles of a prime num-
ber of degrees (0°, 1°, 2°, 3°, 5°, 7°, 11°, ...,179°), any angle between 0 and

180 degrees can be approximated (to within 1°) as the sum of two of those
angles. Lacking a geometry "model" (an analogical representation like the
one Gelernter, 1963, employed; see Article II.D3, in Vol. i), AM was doomed to
propose many implausible geometric conjectures (see Article III.C5, in Vol. I).

Perhaps a full appreciation for the depth of AM's search of the concept
space can be gained by examining Figure D4c-3, which shows the derivation
path for prime numbers. It is eight levels deep and requires 14 concept-
creation operations. This derivation is quite impressive, both because of its
depth, and because the final concept is so far removed semantically from
the initial concepts. Note, in particular, the fascinating way in which a new
concept, SELF-COMPOSE, is used as a new operator to derive TIMES21 and
TIMES22. AM is able to search in a highly directed, rational fashion.

Evaluating AM

It is important to ask how general the AM program is: Is the knowledge

base "just right" (i.e., finely tuned to elicit this one chain of behaviors)? The answer is no: The whole point of this project was to show that a rela-
tively small set of general heuristics can guide a nontrivial discovery process.

Keeping the program general and not finely tuned was a key objective. Each

activity or task was proposed by some heuristic rule (like "Look for extreme
cases of X") that was used time and time again, in many situations. It was
not considered fair to insert heuristics that provide guidance in only a single
situation. For example, the same heuristics that lead AM to decompose num-

bers (using TIMES-inverse) and thereby discover unique factorization, also lead
to decomposing numbers (using ADD-inverse) and the discovery of Goldbach's
conjecture.

AM does, however, have some weaknesses. Although AM was able to
discover and refine many interesting new concepts, it had no way of improving
its stock of heuristic rules. Consequently, as AM ran longer and longer, the
concepts it defined were further and further from the primitives it began
with, and the efficacy of its fixed set of heuristics gradually declined. Lenat
(1980) has proposed a solution to this problem. He advocates turning each
heuristic rule into a concept and developing additional operators for creating
new heuristics. The EURISKO project is presently pursuing this research.

A deeper problem has to do with some of the characteristics of the domain

of mathematics that may not hold in other domains. One important fact
about elementary mathematics is that the density of interesting concepts

450 Learning and Inductive Inference
XIV

PRIMES

restrict domain and range

DIVISORS-OF

compose

T)OUBLETONSj

specialize range

f G-UNION J

parallel-join 2

STRUCTURES PROJ1

SET-INSERT

invert specialize examples

TIMES J (INT-SETS

merge specialize interest

C TIMES 21^ C TIMES 22 J

\\ IT
self-compose self-compose

SETS

TIMES 2

parallel-join 2

coalesce

COMPOSE

(NUMBERS)

canonize-op

PROJ2

BAGS / (SAME-SIZE

generalize- recursive

I
EQUAL

Key:

All concepts are in SMALL CAPITALS
All concepts invented by AM are circled
All concept-creation operators are in lower case

Figure D4c-3. The derivation tree for PRIMES.

D4c AM 451

is quite high. AM relies on the ability to build up complex concepts from

more primitive concepts in a step-by-step fashion. At each step, the partial
concepts must appear to AM to be interesting. In many domains, however,
it is not possible to assess the interestingness of partial solutions. Consider,
for example, the problem of credit assignment in a game such as chess. For a

novice chess player, it is necessary to play an entire game before receiving any
feedback on the quality of individual moves. Even as a player becomes expert,
it is still necessary to search several moves in advance in order to evaluate a

particular choice. Future efforts to develop AM-style discovery systems in
other domains may face difficulties in evaluating the worth of concepts. More
sophisticated interestingness heuristics may need to be developed. Work on
the EURISKO project may provide some answers to these questions.

Conclusion

AM is a powerful discovery system that investigates and refines concepts
in elementary set and number theory. It begins with a large body of knowledge
about what kinds of concepts are mathematically interesting and how they
can be synthesized from existing concepts. This knowledge can then carry
AM far beyond its initial store of concepts to discover prime numbers and the
fundamental theorem of arithmetic.

References

Lenat (1976) provides complete details on AM; see also Lenat (1977).
Lenat (1980) describes the EURISKO project.

D5. Learning to Perform Multiple-step Tasks

MOST of the learning programs discussed so far in this chapter were designed

to learn how to perform single-step tasks — that is, tasks in which one rule, or a
set of independent rules, can be applied in one step to accomplish the perfor-

mance task. In pattern classification (Article XTV.D2) and single-concept learn-
ing (Sec. XTV.D3), the performance element takes an unknown object or pattern

and assigns it to one of two classes (e.g., an arch or a "nonarch"). These sys-
tems apply a single classification rule, or concept, to perform the classification.

Even the sequence-extrapolation problems addressed by BACON (Article
XIV.D3b) and SPARC (Article XTV.D3d) involve applying a single rule to predict
the next item in the sequence from the previous items. Similarly, in the

multiple-rule tasks of soybean- disease diagnosis (Article XIV.D4a) and mass-
spectrometry simulation (Article XIV.D4b), several rules are applied in parallel
to determine the unknown disease or to predict how the unknown molecule
will break apart.

Multiple- step Tasks

In contrast, this section surveys a few learning systems that learn how

to perform multiple- step tasks — that is, tasks in which several rules must be
chained together into a sequence. Examples of multiple-step tasks include
the game of checkers, in which rules for making individual moves must be
chained together to play a whole game, and symbolic integration, in which
several rules of integration must be applied sequentially to solve each integral.
The goal of the learning system is to acquire a good set of rules for performing
these tasks.

Multiple-step tasks are essentially planning tasks in which the perfor-
mance element must find a sequence of operators to get from some starting

state (e.g., the opening position in checkers) to some goal state (e.g., a won
game). The chapters on search (Chap. II, in Vol. i) and planning (Chap. XV)

describe various methods that have been used to accomplish this state-space

search (see Article II.C3, in Vol. I). So far, AI learning systems have been devel-
oped only for simple, forward-chaining planning programs. No attempts have

been made to learn how to perform hierarchical or constraint-based planning.

Viewing the Performance Element as a Production System

The first four systems described in this section — Samuel's (1959) checkers
player, Waterman's (1970) poker player, Sussman's (1975) HACKER planning
system, and Mitchell's LEX system for symbolic integration (Mitchell, Utgoff,

452

D5 Learning to Perform Multiple-step Tasks 453

and Banerji, in press) — are all simple, forward-chaining problem solvers and,

thus, can be viewed as simple production systems. The grammatical-inference

systems discussed in the fifth article (Article XIV.D5e) employ context-free
grammars, which can also be considered production systems. The knowledge

base for each of these systems contains a set of production rules of the form:

(situation i) => (action i)

(situation) => (action)

(situationn) =► (actionn) .

The performance element repeatedly selects a rule whose situation part (left-
hand side) matches the current state and applies the rule by performing the

action indicated (right-hand side). The action usually has the effect of moving
the performance element to a new state, closer to the goal.

For most of the programs discussed in this section, the possible actions

are provided in advance. The problem addressed by the learning element is to

determine under what situations the actions should be applied. This learning

problem is similar in many ways to the problems addressed in Section XTV.D4

on learning multiple concepts.

However, two factors make this learning problem more difficult. First,

because the rules must be chained together, the learning element has to

consider possible interactions among the rules when it modifies the knowledge

base. In LEX, for example, the learning element might decide that in any

integral of the form

/ cf(x) dx

the constant c should always be factored out. This is expressed in LEX as the

production rule

If the integral has the form J cf(x) dx, then apply OP03 ,

where OP03 converts / cf(x) dx to c f f(x) dx. Unfortunately, if the constant

c is 0 or 1, this is not an advisable step. Instead, OP08 (convert 1 • f(x) to f{x))

or OP 15 (convert 0 • f(x) to 0) should be applied. When LEX is learning the
production rule for OP03, it must take into account these possible interactions

with OP08 and OP 15. In fact, LEX's goal is to discover the best operator to
apply in every situation. Thus, any time more than one operator is applicable

because of overlapping left-hand sides, LEX must eliminate the overlap. In
this case, the appropriate rule for OP03 is:

If the integral has the form J cf(x) (ii A c 7^ 0 A c ̂ 1, then apply OP03 .

This is a particular instance of the general problem of incorporating new

knowledge into the knowledge base (see Article XIV. A).

454 Learning and Inductive Inference XTV

The second difficult aspect of multiple-step tasks is the problem of credit
assignment. In single-step tasks, the system has available a performance
standard that can be employed immediately after a rule is applied to deter-

mine whether or not the rule is correct. In disease diagnosis, for example,
the learning element receives the correct disease classification along with each
training instance. The performance element can apply its diagnosis rules and

receive immediate feedback on the correctness of those rules. The perfor-
mance standard can even be incorporated directly into the learning process

as in the version-space method, in which the correct classification determines
how the version space is updated.

In multiple-step tasks, however, feedback from the performance standard
is not usually available until the game is completed or the problem is solved.
The program can determine only whether the entire sequence of rules was

good or bad. The credit-assignment problem is the problem of converting this
overall performance standard into a performance standard for each rule. The
overall credit or blame must be parceled out somehow among the individual
rules that were applied.

The Importance of a Transparent Performance Element

To solve these problems of integration and credit assignment, it is criti-
cally important for the performance element to be transparent. A transparent

performance element can provide the learning element with a trace of all
actions that it considered, as well as those it actually performed. This allows

the learning element to determine all of the rules that might have been appli-
cable at each step of the problem-solving process. Such information makes it

easier to solve the problem of integrating new rules into the knowledge base.

A complete performance trace also aids the credit- assignment task. During
credit assignment, it is very useful to know why the performance element

chose the rules that it did and what it expected those rules to do. By compar-
ing the goals and expectations of the performance element with what really

transpired, credit and blame can be assigned to individual decisions.

Extracting Local Training Instances from the Performance Trace

When the learning system for a multiple-step task is presented with a
training instance — such as a board position in checkers and knowledge of
which side can win from that position — it cannot immediately learn from the
training instance. Instead, it must actually perform the task — that is, play
out the checkers game — and compare the result with the information supplied
by the performance standard — that is, which side should have won. During
credit assignment, it can actually decide which individual decisions were good
and which bad, and these evaluated decisions can serve as training instances

for learning the left-hand sides of the production rules in the knowledge base.

D5 Learning to Perform Multiple-step Tasks 455

By performing the task and assigning credit and blame, the "global" training
instances can be converted into "local" training instances.

For example, in LEX, a global training instance consists of an integral
such as

/
2x2dx

along with knowledge of whether or not the integral can be solved. The

solution trace (see Fig. D5-1) shows that OP 12 should not have been applied,
since it leads to a complicated expression that requires several more steps to
solve, but that OP03 and OP02 were used correctly.

Thus, three local training instances can be extracted:

2x2 dx =► OP 12 (negative) /

/ 2x2 dx => OP03 (positive).

2 / x2 dx => OP02 (positive).

Once local training instances have been extracted, the techniques for
doing concept learning discussed in Sections XTV.D3 and XIV.D4 can be applied

to learn the left-hand sides of the production rules in the knowledge base.
Figure D5-2 shows a slight perturbation of the simple learning-system model
presented in Article XTV.A. The model now contains a loop in which the
performance trace is analyzed by the learning element to extract local training
instances. Global training instances are still supplied by the environment.

f2x2dx
OP12 ̂ ^^ \v OP03

2x4-f42dx 2fx2dx

Figure D5-1. A sample performance trace.

456 Learning and Inductive Inference
XIV

Performance

Element

Learning

Element

Figure D5-2. A modified model of learning systems.

Outline of This Section

The five systems presented in this section all perform multiple-step tasks
and, consequently, must address problems of integrating new rules and assign-

ing credit and blame. Waterman, and to some extent Samuel, simplifies

the credit-assignment problem by obtaining a move-by-move performance
standard from the environment. Furthermore, all of the systems, except

Waterman's poker system, ignore the problem of integrating new rules into the
knowledge base. Work in this area is still in its infancy, and more sophisticated

learning systems for multiple-step tasks can be expected in the future.

References

Buchanan, Mitchell, Smith, and Johnson (1977) provide another perspec-
tive on the use of feedback in learning systems.

D5a. Samuel's Checkers Player

FROM 1947 to 1967, Arthur Samuel conducted a continuing research project

aimed at developing a checkers-playing program that was able to learn from
experience. Samuel investigated three different representations for checkers

knowledge — memorized moves, polynomial evaluation functions, and signa-
ture tables — and two different training methods— self-play and book-move

learning. The work on rote learning of checkers moves is discussed in Article

XTV.B2. The present article discusses two specific learning situations: (a) self-
play as it was used to learn a polynomial evaluation function and (b) book-
move training as it was used to learn a set of signature tables. Samuel

experimented with several other combinations of training methods and repre-
sentations (for more details, see Samuel, 1959, 1967).

Tne performance element in all of Samuel's systems employs a look-ahead,
game-tree search to determine which moves to make (see Articles II.B3 and
n.C5, in Vol. I). The performance element uses a static evaluation function
(Article II.C5) to evaluate possible future positions in the game and applies

alpha-beta minimaxing to determine the best move to make. The goal of the
learning process is to establish and improve this static evaluation function
through experience.

Learning a Polynomial Evaluation Function Through Self-play

The first static evaluation function investigated by Samuel was a poly-
nomial of the form

value = y^Wjfj,

where fa are board features and W{ are real- valued weights (coefficients). For

most of Samuel's experiments, a polynomial with 16 features was employed.
Each board feature provides a numerical measure of some aspect of the board
position under evaluation. For example, the EXCH feature measures the

relative exchange advantage of the player whose turn it is to move. EXCH
is computed by taking Tcurrent, the total number of squares into which the
player to move may advance a piece, and in so doing force an exchange, and

subtracting Tprevjous, the corresponding quantity for the previous move by the
opposing player.

Samuel's program faced two tasks in attempting to learn such a poly-
nomial evaluation function: (a) discovering which features to use in the func-

tion and (b) developing appropriate weights for combining the various features

to obtain a value for the board position. We describe the weight-learning task
first and later return to the problem of discovering which features to use.

457

458 Learning and Inductive Inference XTV

In the self-play mode of training, the checkers program learns by playing
a copy of itself. The version of the program that is doing the learning is

referred to as Alpha, while the copy that serves as an opponent is called

Beta. The learning procedure employed by Alpha is to compare at each turn

its estimate of the value for the current board position with a performance

standard that provides a more accurate estimate of that value. The difference

between these two estimates controls the adjustment of the weights in the

evaluation function. Alpha's estimate is developed by conducting a shallow
minimax search applying the evaluation polynomial to tip board positions

and backing up these values (see Article II.C5a, in Vol. i). The performance

standard is obtained by conducting a deeper minimax search into future board

positions using the same evaluation function as in the shallow search. Samuel

takes advantage of the fact that a deep search is usually more accurate than
a shallow one.

How does Alpha use this move-by-move performance standard to guide
its search for proper weighting coefficients? First, the difference, A, between

the performance standard and Alpha's estimate is computed. If A is negative,

Alpha's polynomial is overestimating the value of the position. If A is positive,
Alpha is underestimating it. For each board feature, a count is kept of the

times that the sign of that feature agrees or disagrees with the sign of A. From

these tallies, a correlation coefficient is developed that indicates the degree

to which that feature predicts A. The goal of the learning procedure is to

minimize A (so that Alpha is duplicating the evaluations of the performance

standard). The weights of the polynomial are determined by scaling the

correlation coefficients onto the range — 218 to 218. Large positive coefficients
are given to features that strongly predict positive values of A and vice versa,

so that the polynomial will tend to "follow" A and thus reduce it.
The overall effect of this scheme is to independently assign blame for

Alpha's estimation errors to the individual features. This is sensible, since
the features are combined independently (i.e., by addition, without any inter-

action terms) to form the polynomial.

Alpha can be viewed as conducting a hill-climbing search through the

"rule space" — the space of possible weights. Each move in the checkers
game serves as a training instance to guide this search. The correlation

coefficients summarize the entire body of training instances and indicate in
which direction the search must move in order to minimize A.

Hill-climbing is known to have many drawbacks, including convergence
to local maxima. Samuel addresses this problem as follows. When Alpha and

Beta commence play, they are identical. However, while Alpha proceeds to

search the rule space, Beta does not change. As Alpha improves, it begins to

defeat Beta regularly. When Alpha has won a majority of the games played,

Beta adopts Alpha's improved evaluation function, and the count of games

won and lost is started again from zero. Beta is thus used to "remember" a
good point in the rule space. If Alpha is at a local maximum, however, its

D5a Samuel's Checkers Player 459

performance will tend to worsen whenever it makes a minor modification to its

polynomial. To prevent a local maximum from halting Alpha's improvement,
an arbitrary change is made to Alpha's scoring polynomial whenever Alpha
loses three games to Beta. The largest weight in Alpha's polynomial is set at
zero to jump Alpha to some new point in the rule space.

Now that we have seen how Samuel's program determines the weights
for the evaluation polynomial, we turn our attention to the first learning

problem — determining what features should be used to evaluate a board posi-
tion. This is a variant of the problem of new terms (see Article XIV.Dl): How

can a learning program discover the appropriate terms for representing its
acquired knowledge? Samuel offers a partial solution to this problem, namely,
term selection. The learning program is provided with a list of 38 possible
terms. Its learning task is to select a subset of 16 of these terms to include in
the evaluation polynomial.

The selection process is quite straightforward. The program starts with
a random sample of 16 features. For each feature in the polynomial, a count
is kept of how many times that feature has had the lowest weight (i.e., the
weight nearest zero). This count is incremented after each move by Alpha.
When the count for some feature exceeds 32, that feature is removed from the
polynomial and replaced by a new term. At all times, 16 features are included
in the polynomial, and the remaining 22 features form a reserve queue. New
features are selected from the top of the queue, while features removed from
the polynomial are placed at the end of the queue. Viewed in the context of

credit assignment, Samuel's program assigns blame to features whose weights
have values near zero, since those features are making no contribution to the
evaluation function.

Samuel (1959) was dissatisfied with this term-selection approach to the
new-term problem. He writes:

It might be argued that this procedure of having the program select new
terms for the evaluation polynomial from a supplied list is much too simple
and that the program should generate terms for itself. Unfortunately, no
satisfactory scheme for doing this has yet been devised, (p. 220)

The feature-selection and weight- adjustment learning processes take place

concurrently. In Samuel's experiment with these learning methods, the set of
selected features and their weights started to stabilize after roughly 32 games

of self-play. The resulting program was able to play a "better-than-average"
game of checkers (Samuel, 1959, p. 222).

Learning a Signature Table by Book Training

The second kind of static evaluation function investigated by Samuel was

a system of signature tables. A signature table is an n-dimensional array. Each
dimension of the array corresponds to one of the measured board features.

460 Learning and Inductive Inference
XIV

To obtain the estimated value of a board position, we measure each of the

board features and index these values into the signature-table array. The
contents of each cell in the table is a number that gives the value of the
corresponding board position. In a sense, the signature table maps all possible

board positions into a small n-dimensional feature space. Every point in that
feature space is represented as a cell in the signature table that gives the value
of all board positions mapped to that point.

Suppose, for example, that we had only three features: KCENT (king

center control), MOB (total mobility), and GUARD (back-row control). The
cube shown in Figure D5a-1 is a schematic diagram of the resulting signature
table. Notice that KCENT and GUARD take on only the values —1, 0, and 1,
while MOB is allowed to take on values from —2 to 4-2. If we have a board
position for which KCENT = 1, GUARD = 0, and MOB = 2, then we look into
the signature table at the cell addressed by (1,0, 2) to obtain the value: .8.

It is possible to view this signature table as a set of 3 X 3 X 5 =
45 production rules. There is one rule for every possible combination of

features — every cell — in the table. The rule for the situation illustrated in
Figure D5a-1 could be stated as

If: KCENT = 1 A GUARD

Then: Value of position = .8 .

0 A MOB

Signature tables are more expressive than linear polynomials because they
can capture interactions among all of the features. Their main drawbacks,
however, are their large size and related problems with learnability. A full
signature table for the entire set of 24 terms used by Samuel would contain

roughly 6 X 1012 cells — far too large to be stored or effectively learned. Two
techniques were applied to overcome these problems. First, the number of
possible values for each feature was substantially reduced. Most features were

restricted to three values: +1 (if the position is good for the program), 0 (if

the position is even), and —1 (if the position is bad for the program). Second,

KCENT n V / / / /
V////

-l X X / / / j

GUARD

-1

0

1

1 0 1
MOB

Figure D5a-1. A three-dimensional signature table.

D5a Samuel's Checkers Player 461

First
Range of level
values tables

68
Entries

Range of
values

Second

\. 1 level

N^ 5

5 125
Entries

68
Entries

Range of

5^

_ Third

\ ♦ table

5 68
Entries

\ 15

15

225

Entries

68
Entries

\ 5

5
125

Entries

68

Entries

5,

68
Entries

3

Figure D5a-2. Three-level hierarchy of signature tables
(from Samuel, 1967).

instead of one giant signature table, Samuel adopted the three-level hierarchy
shown in Figure D5a-2.

The 24 board features are partitioned into six important subgroups, and
a separate signature table is developed for each group. The outputs of the

six first- level signature tables are values between —2 and +2 that are used as
indexes to two second-level signature tables. The second-level tables produce
values between —7 and +7 that are used as indexes to the final signature
table to obtain the estimated value of the board position. This hierarchical
system was found to be expressive enough to support excellent checkers play
and small enough to be learnable.

The program learns the values for the cells in these tables by following

"book games" played between two master checkers-players. Approximately
250,000 board situations of master play were presented to the program. Most
of these moves were selected from games ending in a draw. The program
operates as follows. Each cell in the signature table is associated with two

counts, called A (agree) and D (differ). Initially, A and D are zero for each
cell. At each move, the program is faced with a set of alternative moves, one

462 Learning and Inductive Inference XTV

of which is the book-designated move. Each of these possible moves can be
mapped into one cell in each signature table. The program adds a one to the

D count of each cell whose corresponding move was not the book-preferred
move. A total of n (where n is the number of nonbook moves) is added to the

A count of each cell corresponding to the book-preferred move. Periodically,

the contents of the signature-table cells themselves are updated to reflect the
A and D counts. Each cell is given the value

r_(A-D)

C-(A + D)'

which is a rough correlation coefficient indicating the extent to which the

board positions mapped to that cell are the book-preferred moves. The

correlation coefficients are then scaled into the —2 to 4-2 (or —7 to +7) range.
This learning process can be viewed as a technique of learning from

examples. Each move provides a training instance that is used to update

several signature-table entries. Credit assignment is easy, because the book
provides a fairly reliable performance standard on a move-by-move basis.
Credit is assigned to the signature-table cell corresponding to the book move,
and blame is allotted to all cells corresponding to rejected alternative moves.

It is the learning-by-doing approach that allows the program to determine
which moves are the alternative moves.

The second- and third-level tables are trained at the same time, and by
the same techniques, as the first-level tables. The current contents of the
signature tables are used to determine which second- and third-level cells
correspond to the alternative moves under consideration, and their A and D
totals are updated during each move. The learning process is quite erratic

at the start, since most of the first-level signature-table cells contain zeros
initially. Thus, incorrect second- and third-level cells are selected during the
early stages of learning. As learning progresses, these errors are overcome.

To make the tables more reliable during the early stages of training,
some smoothing is done to fill in cells for which the A and D counts are still
near zero. Smoothing is a form of generalization involving interpolating and
extrapolating from surrounding cells in the table. The smoothing has no effect

on the A and D counts — these are used later to replace the interpolated values
with more accurate, induced values.

One other refinement of the signature-table system is to break the game
of checkers into seven chronological phases and to use a different signature
table for each phase. Samuel reasoned that the board features relevant to
determining good moves during the opening of the game are unlikely to be the

same as those used during the ends of games. The seven-phase approach leads
to an increase in the number of cells, thus making the tables more difficult to
learn. However, Samuel was able to fill in empty cells by smoothing from the
tables of adjacent phases.

D5a Samuel's Checkers Player 463

Results

Samuel's signature- table system was much more effective as a checkers
player than any of the other configurations he tested. To assess the goodness of
play, Samuel tested the program on 895 book moves that were not used during
the training. A count was made of the number of times that the program

rated 0, 1, 2, etc., moves as equal to or better than the book-recommended
move. After training on 173,989 book moves, the test gave the results shown

in Table D5a-1. By summing the first two columns, we see that the program
chooses the best move or the second-best move, as defined by the book,
64% of the time. These ratings are made without employing any forward

search. Minimax look-ahead search improves the performance of the program
substantially.

Despite this impressive level of performance, champion checkers players
are still able to beat the program. In 1965, the world champion, W. F. Hellman
won all four correspondence games played against the program. He drew with

the program during one "hurriedly played cross-board game" (Samuel, 1967,
p. 601, n. 2).

Comparison of the Signature-table and Polynomial Methods

The signature-table method substantially outperformed the polynomial-
evaluation- function approach. Even when both methods were trained by
following book moves, the moves chosen by the polynomial evaluation function

correlated with the book-indicated moves only half as well as the moves chosen
by the signature tables. This difference is due to the improved representational
power of the signature tables. The signature table can represent nonlinear
relationships among the various terms, since there is a different table cell
for each possible combination of terms. In the polynomial representation,
only linear relationships are possible. Such a representation assumes that
each term contributes independently to the value of a board position. This
assumption is evidently incorrect for checkers.

Conclusion

Samuel developed and tested several different representations and training
techniques for teaching a program to play checkers. Among the contributions

Table D5a-i
Evaluation of Signature-table Performance

Number of moves rated
as better than or

equal to book move 0 1 2 3 4 5 6

Relative proportion 38% 26% 16% 10% 6% 3%

1%

464 Learning and Inductive Inference XIV

of this work are (a) the demonstration that machine-learning techniques can
be highly successful, (b) the technique of using a deeper search and book-
supplied moves to solve the credit-assignment problem, (c) the term-selection
methods for determining which features to include in the polynomial evalua-

tion function, and (d) the demonstration that signature tables provide a much

more effective representation for checkers knowledge than either the linear-

polynomial or the rote-learning techniques.

References

All of this work is discussed in Samuel (1959, 1967). See Buchanan,

Mitchell, Smith, and Johnson (1977) for a discussion of Samuel's term-selection
technique as an instance of a layered learning system.

D5b. Waterman's Poker Player

As PART of his thesis project, Donald Waterman (1968) developed a computer
program that learns to play draw poker. Draw poker is a game of imperfect

information in which psychological factors, such as how easily one's opponent
is bluffed, become important. Minimax look-ahead search is not possible
because the overall state of the game (i.e., the contents of all the hands)
is not completely known. Instead, approximate heuristic methods must be
used. Waterman developed a production system (see Article III.C4, in Vol. i) to
encode a set of heuristics for poker, and he sought to have his program discover
these production rules through experience. In this article, we first describe

Waterman's production-rule knowledge representation and its application in
the poker-playing performance element; we then discuss in detail the methods
used in the learning element to acquire and refine these production rules.

Waterman 's Performance Element for Draw Poker

Each game of draw poker is divided into five stages. First, each player
is dealt five cards. This is followed by a betting stage in which the players

alternately choose to place a bet larger than the opponent's bet (RAISE), place
a bet equal to the opponent's bet (CALL), or give up (DROP) the hand; a CALL
or DROP action ends this stage. In the third stage, each player has the option
of replacing up to three of his (or her) cards with new cards drawn from the
deck. This is followed by another betting stage like the first. Finally, the

hands are compared (except in a DROP), and the player with the best hand
wins the game.

Waterman's performance element has built-in routines for carrying out
the deal, the draw, and the final comparison of hands. The two betting
stages, however, are performed by a modifiable production system. It is the
production rules making up this production system that the program attempts
to learn and improve.

The production system developed by Waterman contains two basic kinds
of rules: interpretation rules that compute important features of the game
situation and action rules that decide which action (CALL, DROP, or RAISE)
to take.

The action rules make their decisions based on the values of seven key

variables that make up the so-called dynamic state vector:

(VDHAND, POT, LASTBET, BLUFFO, POTBET, ORP, 0 STYLE) .

VDHAND, for example, is a measure of the value of the program's hand, POT is
the current amount of money in the pot, and BLUFFO is an estimate of the

opponent's "bluffability."

465

466 Learning and Inductive Inference XTV

The interpretation rules compute the values of these seven variables from
directly observable quantities. To compute the value of BLUFFO, for example,
features such as OBLUFFS (the number of times the opponent has been caught

bluffing) and OCORREL (the correlation between the opponent's hands and his
bets) are examined. Once numeric values for the seven variables have been
computed, they are converted into symbolic values that describe important
subranges of values. For example, the rule

If POT > 50, then POT = BIGPOT .

gives POT the symbolic value BIGPOT whenever POT is larger than 50.
The action rules are stated solely in terms of these symbolic values. A

typical action rule is

(SUREWIN, BIGPOT, POSITIVEBET, *, *, *, *)

=> (*, POT + (2XLASTBET), 0, *, *, *, *) CALL,

which can be paraphrased as

If: VDHAND = SUREWIN

and POT = BIGPOT

and LASTBET = POSITIVEBET,

Then: POT := POT + (2 X LASTBET)

LASTBET := 0

CALL.

The condition and action parts of the rule have the same form as the state

vector. The left-hand side of the rule is a pattern that is matched against
the state vector to determine whether the rule should be executed. The right-
hand side of the rule indicates which action to take and provides instructions
for modifying the value of the state vector.

These production rules are applied by the performance element as follows.
First, all of the interpretation rules are used to analyze the current game
situation in order to develop the dynamic state vector. Next, the action
rules are examined one by one in a fixed order until a rule is found whose
condition pattern matches the state vector. That rule is executed to make

the program's move. This fixed ordering for the production rules serves as
a conflict-resolution technique (see Article III.C4, in Vol. i). If more than one
rule is applicable in a given situation, only the first rule in the list is executed.
Hence, when new rules are acquired or old rules are modified, the order of the
rules must be carefully considered.

There are two basic ways to generalize the left-hand side of an action rule.
One method is to drop a condition by replacing one of the symbolic values

on the left-hand side (e.g., BIGPOT) by *, which matches any value. The other
method is to modify the interpretation rule that defines a symbolic value so
that it includes a larger set of underlying numeric values (e.g., changing BIGPOT

D5b Waterman's Poker Player 467

to be any POT > 40). This is the same as Michalski's method of generalizing
by internal disjunction (see Article XIV.Di). We will see below how Waterman
makes use of these two generalization methods.

Learning to Play Poker

Waterman sought to have the program learn the interpretation rules, the
action rules, and the ordering of the action rules by playing poker games
against an expert opponent. As the poker games proceed, the learning element

analyzes each of the decisions of the performance element and extracts train-
ing instances. Each training instance is in the form of a training rule, that is,

a specific production rule that would have made the correct decision had it
been chosen and executed. The training rules guide the learning element as
it determines which production rules to generalize and specialize.

The task of extracting a training rule is quite difficult, because the envi-
ronment provides very little information that could serve as a performance

standard. Unlike deterministic games such as checkers or chess that have
no chance element, poker is probabilistic. Even an expert player will lose
from time to time. Thus, the program must play several hands before it can
assess the quality of the production rules in its knowledge base. As discussed
in the introduction to this section (Article XIV.D5), however, even when a

reliable performance standard is available on a full-game basis, the problem
of assigning credit or blame to individual moves in that game is still very
difficult. Consequently, Waterman sought to provide the program with some

form of move- by-move performance standard. Three different techniques were
developed: advice-taking, automatic training, and analytic training.

In advice-taking, the program plays a series of poker games against a
human expert. After each turn by the performance element, the learning ele-

ment asks the expert whether the performance-element action is correct. The
expert responds either with (OK) or with some advice such as (CALL BECAUSE

YOUR HAND IS FAIR, THE POT IS LARGE, AND THE LASTBET IS LARGE). This ad-
vice provides the training rule directly.

In the automatic- training approach, an expert program serves as the
opponent and advice-giver. The expert program uses a knowledge base of
production rules developed by Waterman himself to determine, at each move,
what action to take. During play against the learning program, the expert
program compares each move made by the learning program with the move
it would have made and provides advice exactly as a human expert would.

Finally, the most interesting method of instruction, the analytic method,

involves no advice-taking whatsoever. After each full round of play (i.e., each

single hand), the learning element analyzes the moves made by the perfor-
mance element and attempts to deduce which moves were incorrect. In

place of an externally supplied performance standard, the learning element is

provided with a predicate-calculus axiomatization of the rules of poker. From

468 Learning and Inductive Inference XTV

these axioms, the program is able to deduce, after the hand is over, what the

correct decisions would have been, thus providing the learning element with

a performance standard.

Once the learning element has a move- by- move performance standard, it
can extract a training rule and modify the production system. The modifica-

tion process works by first locating the production rule that made the incorrect

decision and then examining the list of production rules for a rule before or

after the error-causing rule that could have made the correct decision. If
such a rule is found, generalization and specialization techniques are applied

to modify the production rules so that the proper rule would have been exe-
cuted. If no such rule is found, the training rule itself is inserted into the

production-rule list immediately in front of the error-causing rule.
In the remainder of this article, we discuss how each of these three training

techniques allows the learning element to develop a training rule. For the

advice-taking and automatic-training methods, this is straightforward. In the

analytic approach, however, a series of credit- assignment problems must be

solved. We describe Waterman's solutions in detail. Finally, we describe how
the training rule acquired by any one of these methods is used to modify the

current set of production rules in the knowledge base.

Advice-taking and Automatic Training

In the advice-taking and automatic-training methods, the program is
supplied after each move with advice such as:

(CALL BECAUSE YOUR HAND IS FAIR, THE POT IS LARGE,

AND THE LASTBET IS LARGE) .

This advice provides the training rule directly. The proper action (i.e., the

right-hand side of the training rule), CALL, is indicated along with the relevant
variables and their values. This advice is equivalent to the production rule:

(FAIR, LARGE, LARGE, *, *, *, *)

=► (*, POT + (2 X LASTBET), 0, *, *, *, *) CALL.

The details of the right-hand side of the rule can be filled in automatically
for each action from knowledge of the rules of the game. In this case, for

example, CALL requires the program to match its opponent's bet, and thus the
POT must increase by twice LASTBET, once for the opponent's bet and again

for the program's reply. The other possibilities, DROP and RAISE, are handled
similarly.

It is interesting to note that Waterman's program accepts fairly low-level
advice. The expert's advice can easily be interpreted in terms of the present
game situation, so there is no need to interpret or operationalize the advice

(see Article XJV.Ci). Waterman's advice-taking research concentrates, instead,

D5b Waterman's Poker Player 469

on the problem of integrating this advice into the current knowledge base.
We describe how this happens after we discuss the methods employed during
analytic training to obtain the training rule.

Learning by the Analytic Technique

The main difficulty facing Waterman's program during analytic training
is credit assignment. The learning element has to deal with a pair of credit-
assignment problems. The first problem is determining the quality of a round
of play. As we mentioned above, the probabilistic nature of draw poker makes
this difficult, since the loss of a single hand does not necessarily indicate that
the program is playing poorly. Furthermore, the fact that poker is a game
of imperfect information leads to difficulties. If, for example, the program

"drops" its bid (i.e., folds its hand and gives in to the other player), the
contents of the opponent's hand are never known. The program solves this
first credit- assignment problem by always "calling" the bid (i.e., meeting the
opponent's bet and requesting to see his hand), instead of dropping, and by
applying its knowledge of the rules of poker to deduce whether the program
could have improved its play within the round.

If the program could have done better, it turns its attention to the second

credit- assignment problem — determining which individual moves were poor.
During the round of play, a complete trace of the actions of the performance

element is kept. To solve the second credit-assignment problem, the learning
element applies its axiomatization of the rules of poker to evaluate each move
in detail. The rules of poker are axiomatized in predicate calculus as a set of
implications such as:

ACTION (CALL) A HIGHER (YOURHAND, OPPHAND)

D ADDCLASTBET, POT) A ADD (POT , YOURSCORE) .

These statements define the effects of each of four possible actions: BET HIGH,
BET LOW, CALL, and DROP. To evaluate a particular move in the game, the
learning element takes the value of the dynamic state vector at that point and
uses it to determine the truth value of certain predicates in this axiom system

(e.g., GOOD(OPPHAND) , HIGHER (OPPHAND, YOURHAND)). Then it tries to prove the
statement

MAXIMIZE (YOURSCORE)

by backward-chaining through the axiom system (see Article III.C4, in Vol. i).
The resulting proof indicates the action that should have been performed and

provides the move-by-move performance standard. When the performance
standard differs from the move made by the program, blame is assigned to
that move, and the learning element builds a training rule.

The correct decision, obtained from the performance standard, forms the

right-hand side (action part) of the training rule. Waterman axiomatized the

470 Learning and Inductive Inference XTV

RAISE action as two possible subactions, BET HIGH and BET LOW, so that the

program would not have to learn how big a bet to make. For BET HIGH, the

performance element chooses a random bet between 10 and 20. Similarly, a
BET LOW action leads to a random bet between 1 and 9. Thus, the performance

standard provides the complete right-hand side of the training rule.
The left-hand side of the training rule is obtained by examining a table

called the decision matrix. The decision matrix contains four abstract rules,

one for each possible action. These rules tell which values of the seven
state variables are relevant for the indicated action. The exact values of the

variables are not given — only a general indication of whether the values should
be large or small. For instance, the abstract rule for the DROP action is

(CURRENT, LARGE, LARGE, SMALL, SMALL, CURRENT, LARGE) =► DROP,

or more clearly,

If: VDHAND = (current symbolic value of VDHAND)
and POT = LARGE

and LASTBET — LARGE
and BLUFFO = SMALL
and POTBET = SMALL
and ORP = (current symbolic value of ORP)
and OSTYLE = LARGE ,
Then: DROP.

Once the learning element has deduced from the axioms that the proper
action would have been DROP, it takes the corresponding rule from the decision
matrix and uses it as the training rule. Notice that the level of abstraction of
the rules in the decision matrix is the same as the level of abstraction of the

advice supplied by the human expert or expert program.
It could be argued that the use of the decision matrix is improper, since

it provides the learning element with essential information that a person who

was learning to play poker would have to discover himself. Waterman (1968)
suggests some methods by which the decision matrix could be learned from
experience, but none of these was implemented.

Using the Training Rule to Modify the Knowledge Base

Once the training rule is obtained, whether by advice from a person, by
advice from the expert program, or by analysis, it must be used to modify
t he production rules in the knowledge base. The training rule is first used

to modify the interpretation rules. The left-hand side of the training rule is
compared with the state vector computed by the interpretation rules. LARGE
matches symbolic values that correspond to large values of the underlying
variable. Similarly, SMALL matches small values. If a symbol does not match,

D5b Waterman's Poker Player 471

the interpretation rules that computed that symbol are assigned blame. They
are then either modified or augmented to include a new interpretation rule.

Suppose, for example, that the state vector listed POT as having the value
P3, where P3 is derived by the interpretation rule:

If POT > 20, then POT = P3 .

Furthermore, suppose that the value of POT in the game situation being ana-
lyzed is 45. By comparing P3 with LARGE, the learning element determines that

this interpretation rule is incorrect (since P3 can refer to very small values of
POT). The learning element can either modify the rule (by substituting 44 for

20) or create a new rule. A user-supplied parameter, KK, specifies the largest
allowable change that can be made to a numeric value in an interpretation
rule. In this case, we will assume that the learning element creates the new
rule

If POT > 44, then POT = P4 .

and modifies the state vector so that POT has the value P4.

Once the interpretation rules have been checked and modified, the up-
dated state vector is matched against the action rules to find the rule that

made the incorrect decision. This rule is called the error- causing rule. The
training rule is then used to locate a production rule that could have made
the correct decision had it been executed. This is accomplished by comparing

the right-hand side of the training rule with each production rule in the rule
base.

Waterman's program classifies action rules as either recently hypothesized
or accepted. A recently hypothesized rule is one that was recently added to the
knowledge base, whereas an accepted rule is one that the program believes to
be nearly correct. The learning element follows a strategy of first attempting
to make minor changes in accepted rules and then, if minor changes do not
suffice, attempting to make major changes in recently hypothesized rules.
Finally, if a suitable recently hypothesized rule cannot be found, the training
rule is added to the rule base and is labeled as recently hypothesized.

The learning element searches upward ahead of the error-causing rule
for an accepted rule that would have made the correct decision. If such a

rule is found, it is checked to see if the pattern of its left-hand side can be
generalized to match the current state vector. Only minor generalizations —
that is, changes to the interpretation rules — are considered. No conditions
are dropped (i.e., replaced by *).

If no accepted rule can be found, the learning element again searches

upward before the error-causing rule, this time looking for a recently hypothe-
sized rule that would have made the correct decision. If such a rule is

found, major changes — including both dropping conditions and modifying
interpretation rules — are made in the left-hand-side pattern so that it matches
the state vector.

472 Learning and Inductive Inference XIV

If no suitable rules can be found before the error-causing rule, the learning
element searches for an accepted rule after the error-causing rule. If an

appropriate rule is found there, the error-causing rule and all intervening
rules must be specialized so that they will not match the state vector, and

the target rule must be generalized — by changing the interpretation rules — so
that it will match the state vector.

Finally, if no rules can be found that could be generalized to make the
correct decision, the training rule is inserted into the ordered list of production

rules immediately in front of the error-causing rule. The training rule is
marked as being recently hypothesized. Figure D5b-1 depicts this four-step
process of modifying the rule base.

This four-step process combines the task of integrating new knowledge
into the knowledge base with the task of generalizing the training rule. Notice
that the integration process must have knowledge about how the performance
element chooses which rule to execute, so that it can decide how to update the
rule base. The generalization process is fairly ad hoc. For example, recently
hypothesized rules become accepted when enough conditions are dropped from

the left-hand side so that only N conditions remain (N is a parameter given
to the program). This is a very weak technique for preventing rules from
becoming overgeneralized.

Results

Waterman's poker program learned to play a fairly good game of poker.
Separate tests were conducted with each of the three training techniques. In

each case, the program started with only one rule: "In all situations, make a
random decision." For advice- taking from a human expert and for learning

Ri flj Search for "accepted rule"

#2

(2) Search for "recently-hypothesized" rule

t ©-
Re error-causing rule

Insert training rule

Rn (3) Search for "accepted rule"

Figure D5b-1. The four steps to modifying the production-rule base.

D5b Waterman's Poker Player 473

from the expert program, training was continued until the program played
one complete game of five hands without once making an incorrect decision

(as judged by the expert). For the analytic method, the program continued to

play games until the original "random decision" production rule was executed
only b% of the time. The results are shown in Table D5b-1.

The rightmost column shows the results of a proficiency test in which the
program and a human expert played two sets of 25 hands. During the first
set of 25 hands, the cards were drawn at random from a shuffled deck as in

ordinary play. However, during the second set of 25 hands, the same hands
were used as in the first set, except that the program received the hands
originally dealt to the person and vice versa. At the end, the cumulative
winnings of the program and person were compared.

The results show that in all three training methods, performance improved

markedly. The automatic training provided the best performance improve-
ment, perhaps because the automated expert played more consistently than

the human expert. Although the analytic method performed the poorest, the
results are not strictly comparable, since the axiom set provided it with only

four possible actions, whereas the advice-based methods were given eight pos-
sible actions. Consequently, the analytic method may not actually be inferior

to the two advice-taking methods.

Conclusion

Waterman's poker-playing program faces a very difficult learning problem.
Poker is a multiple-step task that provides very little feedback to the learning
program. For the two advice-taking methods, this problem is sidestepped
by allowing the program to accept a training rule directly from an expert.

However, for the analytic method, two credit-assignment problems must be
solved: evaluating a round of play and evaluating a particular move. To solve
these problems, the program modifies its betting strategy (to call instead

Table D5b-i
Comparison of Three Training Methods (from Waterman, 1970)

™ . ,, , Number of Final number Percent difference
Training method . . . , r , . a

training trials oi rules in winnings

Before training 0 1

-71.0

Advice- taking 38
26

-6.8

Automatic training
29 19

-1.9

Analytic method 57 14

-13.0

a These percentages are computed by subtracting the amount of money won
by the opponent from the amount of money won by the program and dividing by
the amount of money won by the opponent. In all cases, the program won less

than the opponent and, hence, the percentages are all negative.

474 Learning and Inductive Inference XTV

of dropping) and applies knowledge available from the axiom set and from

the decision matrix. This permits the credit-assignment process to extract a
training rule from the trace of decisions taken by the performance element.

Once the training rule is acquired by any of these three methods, it is used

to guide the generalization and specialization of the production rules in the

knowledge base. Since only positive training instances are available, the

program must make use of arbitrary constraints to prevent overgeneralization.

References

Waterman (1970) describes this work in detail.

D5c. HACKER

HACKER is a learning system developed by Gerald Sussman (1975) to model
the process of acquiring programming skills. HACKER's performance task is
to plan the actions of a hypothetical one-armed robot that manipulates stacks
of toy blocks. This planning task is described in detail in Article XV.C.

HACKER learns by doing. It develops plans and simulates their execution.
The plan and the trace of the execution are examined by HACKER to acquire
two kinds of knowledge: generalized subroutines and generalized bugs. A gen-

eralized subroutine is similar to a STRIPS macro operator (see Article II.D5, in
Vol. I), in that it provides a sequence of actions for achieving a general goal.
A generalized bug is a demon that inspects new plans to see if they contain
an instance of the bug and provides an appropriate bug fix.

An example of a generalized subroutine is the following procedure for
stacking one block on top of another:

(TO (MAKE (ON a b))
(HPROG

(UNTIL (y) (CANNOT (ASSIGN (y) (ON y a)))
(MAKE (NOT (ON y a)))

(PUTON a b))) .

The goal of this procedure is (MAKE (ON a b)): The procedure changes the
world so that (ON a b) is true. This subroutine is general and works for any
two blocks a and b (a and b are variables that are bound to particular blocks —
denoted by capital letters — when the subroutine is invoked). The procedure
removes everything that is on a and then picks up a and puts it on b.

Viewed as a production rule, this procedure could be written as:

(MAKE (ON a b)) => (HPROG
(UNTIL (y) (CANNOT (ASSIGN (y) (ON y a)))

(MAKE (NOT (ON y a)))
(PUTON a b)) .

From this perspective, we see that when HACKER learns a generalized sub-
routine, it is learning both a generalized left-hand side, the goal, and a general-

ized right-hand side, the plan. As we will see below, the left-hand sides of the
production rules are generalized by turning constants into variables, while the
right-hand sides are developed by concatenating subplans and ordering them
properly to form macro operators.

An example of the other kind of knowledge gained by HACKER— a general-
ized bug — is the demon:

(WATCH-FOR (ORDER (PURPOSE lline (ACHIEVE (ON a b)))
(PURPOSE 21ine (ACHIEVE (ON b c))))

(PREREQUISITE-CLOBBERS-BROTHER-GOAL
current-prog lline 21ine
(CLEARTOP b))) .

475

476 Learning and Inductive Inference XTV

It tells HACKER to watch for plans in which one step, lline, has the goal

of achieving (ON a b) and a subsequent step, 21ine, has the goal of achieving

(ON be). In such cases, the prerequisite of the second step — that b have

a clear top — requires undoing the goal of the first step. When this demon

detects such bugs, it invokes the PREREQUISITE-CLOBBERS-BROTHER-GOAL repair
procedure to fix them.

Generalized bugs can also be viewed as production rules. This particular

bug demon could be written as:

(ORDER (PURPOSE lline (ACHIEVE (ON a b)))
(PURPOSE 21ine (ACHIEVE (ON b c)))) =>

(PREREQUISITE-CLOBBERS-BROTHER-GOAL

current-prog lline 21ine
(CLEARTOP b)) .

HACKER learns both the left- and the right-hand sides of these bug demons.

HACKER's Architecture

HACKER is a complex program that contains several interleaved com-

ponents (see Fig. D5c-1). These include:

1. The planner, which develops plans by pattern-directed expansion of plan-
ning operators;

2. The critics' gallery, which inspects the plans for known generalized bugs;

3. The simulator, which simulates the execution of the plans and checks for
errors;

4. The debugger and generalizer, which locate and repair bugs in the plans

for later use by the critics' gallery; and

5. The generalizer and subroutinizer, which generalize plans and install them

in HACKER's knowledge base.

The first two components comprise the performance element, which develops

block-stacking plans. The simulator creates a performance trace of the simu-
lated execution of the plan. The last two components perform the actual

process of learning generalized subroutines and generalized bugs.

These components interact continually. As the planner is developing the

plan, for example, the critics' gallery is interrupting to repair known bugs
and the simulator is symbolically executing the evolving plan. The debugger

may step in to fix a new bug and then resume the planning process. In this

article, however, we describe each of these components separately and pretend

that the plan is first developed in its entirety and then successively criticized,

simulated, debugged, and generalized. This false architecture corresponds

fairly closely to our simple model of learning multiple-step tasks. There are

two learning elements, however: one for developing generalized subroutines

D5c HACKER
477

and one for developing generalized bugs. Figure D5c-1 summarizes this false
architecture. We will explain the operation of HACKER by following the flow
through this model.

HACKER 's Performance Element:

The Planner and the Critics ' Gallery

HACKER employs a simple problem-reduction planner (Chap. XV; see also
Article II.B2, in Vol. i), which is presented with an initial situation and a goal
block-structure to create. Figure D5c-2 shows a sample situation and goal.

The goal is matched against HACKER 's knowledge base of known plans,
subroutines, and refinement rules. If a known plan or subroutine is found that

Performance Element

Critics' Gallery

Bug Learning Element

Figure D5c-1. A simplified architecture for HACKER.

478 Learning and Inductive Inference
XIV

Goal: (ACHIEVE (AND (ON A B) (ON C A)))

Figure D5c-2. A sample situation and goal.

can accomplish the goal, it is used. Otherwise, a refinement rule is applied
to reformulate the goal as a set of subgoals. These subgoals, in turn, are
matched against the knowledge base to locate known methods for achieving
them. The expansion into subgoals proceeds until HACKER finds existing
plans or primitive operators that can achieve each of the subgoals.

HACKER is noted for its linearity assumption. Whenever the planner is
faced with the problem of achieving a pair of conjunctive subgoals, it assumes
that they can be achieved independently. This assumption is represented in
the AND rule for refining a conjunctive goal:

(TO (ACHIEVE (AND a b))
(AND (ACHIEVE a)

(ACHIEVE b))) .

This says "To achieve goals a and b, first achieve a and then achieve 6." As
a result of this linearity assumption, the plan developed by the planner is a
naive plan that may not work (see Article XV.C).

The naive plan is criticized by the critics in the critics' gallery, which
attempt to find instances of the generalized bugs kept in the bug library.

When a bug is found, the associated bug fix is applied to improve the plan —
usually by rearranging plan steps. The result of this criticism is a plan that

reflects all of HACKER's past experience but still may not be correct.

HACKER's Performance Trace:
Plans and Simulation

HACKER's plans contain a large amount of information about the plan-
ning process itself. Each step of a plan is justified by giving the purpose of the

step — the subgoal it is intended to achieve. There are two fundamental kinds
of steps: main steps and prerequisite steps. Main steps are directed at goals
relating to the goals of the overall plan. Prerequisite steps are computations

D5c HACKER 479

needed to establish preconditions for the main steps. For example, the plan

for the problem of Figure D5c-2 contains three steps:

Step 1. (PUTON C TABLE) [purpose: (CLEARTOP A) span: step 2] .

Step 2. (PUTON A B) [purpose: (ON A B) span: full plan] .

Step 3. (PUTON C A) [purpose: (ON C A) span: full plan] .

Steps 2 and 3 are main steps, while step 1 is a prerequisite step needed to
clear off the top of A so that the robot can move A. As HACKER simulates the
execution of the plan, it verifies that the goal of each step has been attained.

Each step in the plan also includes an indication of the time span of the

goal it is attaining. The purpose of a step may be to accomplish something
that will remain true for only a short time. In this example, (CLEARTOP A) will
be true only until step 3. For HACKER to know that this is not a bug, step 1

includes a time-span indication that its goal is intended to be true only until
the end of step 2.

The criticized plan is simulated to verify that it works properly. The
simulator detects bugs in three forms: illegal operations, failed steps, and
unaesthetic actions. An illegal operation is one that is considered impossible
in the hypothetical blocks world. For instance, it is illegal to pick up a
block unless it has a clear top. A failed step is one that does not achieve its
goal for the designated time span. The simulator uses the goal information
attached to each plan step to verify that at all times the goals intended by the
planner have actually been met. Lastly, an unaesthetic action is a situation
in which the robot moves the same block two times in succession without

any intervening actions. These three methods for detecting bugs provide a
performance standard for HACKER, which states that a plan must execute
legally, achieve all intended goals and subgoals, and also be aesthetically
correct. The simulation halts whenever one of these problems is identified,
and a trace of the simulation is provided to the bug learning element.

HACKER's Learning Elements:
The Subroutine Learning Element and the Bug Learning Element

As mentioned above, there are two learning elements in HACKER. One,
the subroutine learning element, inspects the criticized plan and simulation
trace to identify possible subroutines. The other, the bug learning element,
examines the performance trace to diagnose and correct bugs uncovered by
the simulation.

The subroutine learning element attempts to detect when two subgoals
in the plan are sufficiently similar to allow a single subroutine to accomplish
both. The trace of the planning and simulation processes indicates which

constants in a goal or subgoal — for example, the constants A and B in the
goal (ON A B) — can be generalized. A constant cannot be generalized if the

480 Learning and Inductive Inference XIV

plan somehow refers to that constant explicitly (e.g., the constant TABLE has
special status). HACKER generalizes each subgoal in the plan by turning
all generalizable constants into variables. The generalized subgoal is then
compared with all other goals in the program. Any two subgoals found to have
an allowable common generalization are replaced by calls to a parameterized
procedure. This generalization process is similar to the technique used in
STRIPS to generalize macro operators.

As an example, consider the block-stacking task of Figure D5c-2. The ini-
tial plan involves separate steps for achieving (ON A B) and (ON C A) . However,

traces of the planning and simulation processes indicate that the code for
(ON A B) will work for any variables u and v. The generalized goal (ON u v)

is checked against other goals in the plan and found to match the sub-
goal (ON C A). As a result, HACKER formulates a generalized subroutine,

(MAKE-ON u v) , and replaces the subplans for steps 2 and 3 with calls to MAKE-
ON. The MAKE-ON subroutine is placed in the knowledge base for use in future
plans as well.

The subroutine learning element can be regarded as learning from exam-
ples. The goals and subgoals in a particular plan form the training instances,

which are generalized by turning constants into variables. The distinctive

aspect of the HACKER approach is that the search of the rule space is accom-
plished very directly. HACKER (and its predecessor, STRIPS) is able to reason

about how the different steps in the plan depend on particular values for the
arguments of the goal statement. From this dependency analysis, the correct
generalization can be deduced directly. HACKER thus differs from most of
the other learning methods described in this chapter in that it is able to use
the meanings of its operators to guide the generalization process.

The bug learning element faces a much more difficult learning task. It
must determine why the plan failed and repair the plan. Then it must attempt
to generalize the discovered bug and create a bug critic that will prevent

the bug from reappearing in future plans. The first task — determining why
the plan failed — is the problem of credit assignment. The traditional credit-
assignment problem is to determine which rule, used in the performance

element, led to the mistake. In HACKER's case, there is one fundamental
source of error: the linearity assumption as implemented by the AND rule.

HACKER's credit assignment, instead, involves determining how the current
planning task violates this linearity assumption — that is, how do the subplans
in this problem interact?

HACKER's solution to the credit-assignment problem is to compare the
intentions and expectations of the performance element with what actually
happened. This approach again relies on knowledge of the semantics of the
operators to assign blame to individual steps. This is more direct than the
weaker, more empirical approach of comparing many possible plans obtained

through a more widespread search, as in Samuel's checkers program and the
LEX system.

D5c HACKER 481

Figure D5c-3. The PREREQUISITE-CLOBBERS-BROTHER-GOAL
bug schema.

HACKER has a small library of schemas that describe possible subgoal
interactions. Credit assignment is accomplished by matching these schemas
to the goal structure of the current plan and performance trace. For example,

one class of interactions, the PREREQUISITE-CLOBBERS-BROTHER-GOAL, involves
the goal structure depicted in Figure D5c-3.

The prerequisite step of goal 2 somehow makes goal 1 no longer true. For
example, if the overall goal is (ACHIEVE (AND (ON A B) (ON B C))), we have

the subgoal structure shown in Figure D5c-4.

(AND (ON A B) (ON B O)

(ON A B) (ON B C)

(CLEARTOP B)

Figure D5c-4. A subgoal structure that matches the bug schema

of Figure D5c-3.

482 Learning and Inductive Inference XTV

HACKER simulates this plan by first placing block A on block B, then

clearing off B so that it can place B on C. The clearing-off process makes

(ON A B) false — the prerequisite of goal 2 has clobbered goal 1. (This is
detected by the simulator when it checks the time span of each subgoal.)

Each of HACKER's bug schemas describes some general goal structure
that can be matched to the goal structure of the current plan. The matching

process is implemented in an ad hoc fashion as a series of six questions that the

debugger asks of the performance trace. As a result of the matching process,

the bug is ignored as innocuous, is properly classified, or is found to be too

difficult to repair.

The process of repairing the plan is straightforward. Each bug schema

contains instructions on how to repair the bug. These can involve reorder-
ing plan steps, creating new subplans that establish prerequisite conditions,

and even removing unnecessary plan steps. The resulting repaired plan is

simulated again to detect further bugs.

The process of generalizing the bug is also easily accomplished. Each bug

schema contains instructions regarding which components of the goal struc-
ture can be generalized by turning constants into variables. For instance, the

bug schema for PREREQUISITE-CLOBBERS-BROTHER-GOAL contains the instructions

(CSETQ goall (VARIABLIZE (GOAL linel))
goal2 (VARIABLIZE (GOAL line2))
prereq (VARIABLIZE pre)) ,

where linel refers to the first goal (whose prerequisite was clobbered), line2
refers to the search goal, and prereq refers to the prerequisite that did the
clobbering. These instuctions tell HACKER to analyze the dependencies in
the performance trace and generalize all three of these goal expressions. The

resulting generalized goal structure shown in Figure D5c-5 is compiled into a
demon and added to the bug library for use in subsequent criticism of naive

plans.

The bug learning element can be regarded as learning by schema instan-
tiation. Over time, HACKER discovers new situations in which particular

kinds of subgoal interactions occur, generalizes these situations, and watches
for them in future plans. It does not tackle the problem of discovering these
classes of bugs in the first place, nor does it address the problem of discovering
techniques for fixing bugs.

Conclusion

HACKER is a system that learns to develop plans for manipulating toy

blocks. It acquires two kinds of knowledge — generalized subroutines and

generalized bugs. Both of HACKER's learning elements make extensive use of
the performance trace, which consists of the plan (annotated with goal infor-

mation) and a trace of the simulated execution of the plan. The subroutine

D5c HACKER 483

(AND (ON x y) (ON y z))

(CLEARTOP y)

Figure D5c-5. A generalized goal structure.

learning element generalizes by analyzing the goal structure in the perfor-
mance trace to determine which constants can be turned into variables. The

bug learning element accomplishes credit assignment by instantiating schemas

that describe bug-inducing goal structures. The schemas provide guidance

for bug repair and generalization. Much of HACKER's impressive behavior
derives from its ability to reason about the semantics of its task. The value of
a transparent performance element for credit assignment and generalization
is very evident in HACKER.

References

HACKER is described in Sussman's (1973) thesis. Doyle (1980) describes
a formalization of the concepts of goal and intention as used by HACKER. An
alternative to the linearity assumption is described in Article XV.Dl.

D5d. LEX

LEX, a system designed by Thomas Mitchell (see Mitchell, Utgoff, and Banerji,
in press; Mitchell, Utgoff, Nudel, and Banerji, 1981), learns to solve simple
symbolic integration problems from experience. LEX is provided with an
initial knowledge base of roughly 50 integration and simplification operators,

some of which are shown in Table D5d-1. The goal of LEX is to discover
heuristics for when to apply these operators. That is, LEX seeks to develop
production rules of the form

(situation) =► Apply operator OPi,

where (situation) is a pattern that is matched against the current integration
problem. The situations are expressed in a generalization language of possible
patterns. For instance, a heuristic rule for operator OP 12 might be:

/ f(x) transc (x) dx =>• Apply OP12 with u = f(x) and dv = transc (x) dx .

This tells the LEX performance element that if it sees any problem whose

integrand is the product of any function, f(x), with a transcendental function,
transc (x), then it should apply OP 12 with u bound to f(x) and dv bound to
transc (x) dx. The concepts of f(x) and transc (x) are part of the generalization

language (illustrated later in Fig. D5d-4).
Mitchell calls these production rules heuristics because they provide heuris-

tic guidance to LEX's performance element, which is a simple, forward-chaining
production system (see Sec. II.B, in Vol. i). Without any heuristic rules, the

performance element conducts a blind uniform-cost search (see Article II.Cl, in
Vol. I) of the space of all legal sequences of operator applications. Consider the
problem of integrating / 3x cos x dx. Without any heuristics, LEX produces

the rather large search tree shown in Figure D5d-1. It is no surprise that

TABLE D5d-1

Selected Integration Operators in LEX

OP02 convert / xr dx to xr+l/(r + l]
OP03 convert frf(x)dx to r f f(x)

OP06 convert fsinxdx to — cosz
OP08 convert 1 ■ f(x) to f(x)
OP10 convert Jcosxdx to sin x

OP 12 convert Judv to uv — fvdu
OP15 convert 0 • f(x) to 0

(power rule)
(factor out a real constant)

(integration by parts)

484

D5d LEX 485

/ 3x cos x dx

OP03 OP12

3 / x cos x dx • • • 3x sin x — f 3 sin x dx

\ OP 12 OP03

T
S(x sin x — f sin x dx) 3[(^- cos x) — /(—%■ sin x) dx] 3xsinx — 3/sinx dx

OP06 OP06

3(xsinx — (— cosx)) "• 3xsinx — 3(— cosx)

Figure D5d-1. Partial search tree for f 3xcosxdx without heuristics.

when LEX has no heuristics, it often cannot solve integration problems before

exhausting the time and space available to it.

The task of learning the left-hand sides of heuristic rules can be thought

of as a set of concept-learning tasks. LEX tries to discover, for each operator
OPi, the definition of the concept situations in which OPi should be used. It

accomplishes this by gathering positive and negative training instances of the

use of the operator. By analyzing a trace of the actions taken by the perfor-
mance element, LEX is able to find cases of appropriate and inappropriate

application of the operators. These training instances guide the search of

a rule space of possible left-hand-side patterns. The candidate-elimination

algorithm (see Article XTV.D3a) is employed to search the rule space, and par-

tially learned heuristics, for which the candidate-elimination algorithm has

not found a unique left-hand-side pattern, are stored as version spaces of
possible patterns. Thus, the general form of a heuristic rule in LEX is:

(version space represented as £ and G sets) =>• Apply OPz.

For example, after a few training instances, LEX might have the following

partially learned heuristic for the integration- by-parts heuristic, OP12:

Version space for OP12:

G = Jf(x)g(x)dx

S = J 3x cos x dx

OP12, with u = f(x) and dv = g(x) dx ;

OP12, with u = 3x and dv = cosxdx .

486 Learning and Inductive Inference
XIV

This heuristic tells LEX to apply OP 12 in any situation in which the integral

has the form / f(x)g(x)dx. It also indicates that the correct left-hand-side
pattern lies somewhere between the overly specific S pattern, / Sxcosxdx,

and the overly general G pattern, / f(x)g(x)dx. Below, we show how this
partially learned heuristic was discovered by LEX.

LEX's Architecture

LEX is organized as a system of four interacting programs (see Fig. D5d-2)
that correspond closely to our modified model of learning for multiple-step
tasks. The problem solver is the performance element. It solves symbolic inte-

gration problems by applying the current set of operators and their heuristics.
When the problem solver succeeds in solving an integral, a detailed trace of
its performance is provided to the critic, which examines the trace to assign
credit and blame to the individual decisions made by the problem solver.

Once credit assignment is completed, the critic extracts positive (and negative)
instances of the proper (and improper) application of particular operators.
These training instances are used by the generalizer to guide the search for
proper heuristics for the operators involved. Finally, the problem generator
inspects the current contents of the knowledge base (i.e., the operators and
their heuristics) and chooses a new problem to present to the problem solver.

LEX thus incorporates all four components of our simple model: the
knowledge base (of operators and heuristics), the performance element, the
performance trace, and the learning element (composed of the critic and the
generalizer). Furthermore, LEX is one of the few AI learning systems to include

an experiment planner — the problem generator.
In this article, we first present an example of how LEX solves problems

and refines the version spaces of its heuristics. Then we describe each of LEX's
components in detail and discuss some open research problems.

Problem

Solver

r~

* N

' f

Critic
Problem
Generator

i i

V Generalizer _J

Figure D5d-2. LEX's architecture.

D5d LEX 487

An Example

To show how LEX works, suppose that the problem generator has chosen
the problem / 3x cos x dx and the problem solver has produced the trace shown

earlier in Figure D5d-1. The critic analyzes the trace and extracts several
training instances, including:

/ 3x cos xdx => OP12, with u = 3x and dv = cosxdx (positive) .

Ssinxdx =4 OP03, with r = 3 and f(x) = sin x (positive) .

/ sin x dx => OP06 (positive) .

We will watch how the generalizer handles the training instance for OP 12.
Let us assume that this is the first training instance that has been found for
this operator, so the knowledge base does not yet contain any heuristics for
when to use it. Consequently, the generalizer will create and initialize a new

OP 12 heuristic. The left-hand side of the heuristic is a version space of the
form:

Version space for OP 12:

G = J f(x)g(x) dx => OP12, with u = f(x) and dv = g(x) dx ;

S = J Sx cos x dx =» OP12, with u = 3x and dv = cos x dx .

Notice that S is a copy of the training instance and G is the most general
pattern for which OP 12 is legal. This heuristic will recommend that OP 12

be applied in any problem whose integrand is less general than / f(x)g(x) dx.
This is not a highly refined heuristic.

To see how LEX refines this heuristic, let us assume that the other training
instances shown above have been processed. At this point, the problem

generator chooses the problem / 5x sin x dx to solve. The problem solver will
apply OP 12, since the G set of the heuristic matches the integrand. Figure

D5d-3 shows a portion of the solution tree.
Some of the training instances extracted by the critic are:

/

/

/

Sx sin x dx =* OP12, with u = 5x and dv = sin x dx (positive) .

5 cos xdx =$ OP03, with r = 5 and f(x) = cos x (positive) .

cos xdx =► OP 10 (positive) .

5x sin x dx => OP 12, with u = sin x and dv = bx dx (negative) .

/

488 Learning and Inductive Inference XIV

/ 5x sin x dx

0P12 ̂ ^^^-^ 0P12

| x2 sin x — f | x2 cos x dx — 5x cos x + / 5 cos x dx

OP03 1
5x cos x + 5/ cos x dx

OP10 I
— 5xcosx 4- 5sinx

Figure D5d-3. The solution tree for /5xsinxdx.

The generalizer updates the version space for OP 12 to contain:

G = {0i,02>, where
<7i : J polynom (x)0(x) dx => OP12,

with u = polynom (x) and dv = g(x) dx ;

02: J /(x) transc (x) dx =► OP12,
with u = /(x) and dv = transc(x) dx ;

5 = {si}, where
81: / /ex trig (x) dx =» OP12,

with u = kx and dv = trig (x) dx .

The positive training instance forces the constants 3 and 5 to be general-

ized to k, which represents any integer constant, and "sin" and "cos" to be
generalized to "trig," which represents any trigonometric function, as shown in
3 1 . Similarly, the negative training instance leads to two alternative specializa-

tions. In 01, / was specialized to "polynom" to avoid u = sinx, and in 02,
0 was specialized to "transc" to avoid dv = bxdx. These two specializations
no longer cover the negative training instance. With a few more training
instances, the heuristic for OP 12 converges to the form shown at the start of

this article, that is, / f(x) transc (x) dx. The concepts "fc," "trig," "polynom,"
and so on, are all part of the generalization language known to LEX from the

start (see Fig. D5d-4, shown later).
Now that we have seen an example of LEX in action, we describe each of

the four components of LEX in turn.

D5d LEX 489

The Problem Solver

As discussed above, the problem solver conducts a forward search of
possible operator applications in an attempt to solve the given integration
problem. Initially, this search is blind. However, as the heuristics for the
operators are refined, the search becomes more focused.

The problem solver conducts a uniform- cost search. At each step, it
chooses the one expansion of the search tree that has the smallest estimated

cost. The search tree is maintained as a list of open nodes — that is, nodes
to which not all legal integration operators have been applied. The cost of
an open node is measured by summing the cost of each search step (for both
time and space) back to the root of the search tree. In addition, the cost of a
proposed expansion is weighted to reflect the strength of the heuristic advice
available. In detail, the problem solver chooses an expansion as follows:

Step 1. For each open node and each legal operator, compute the "degree
of match" according to the formula:

0 if no heuristic recommends this operator for this node;

m/n if there is a heuristic, and m out of the n patterns in the
boundary sets of the version space (i.e., the S and G sets)
match the current situation.

Step 2. Choose the expansion that has the lowest weighted cost, computed
as:

(1.5 — degree of match) X (cost so far + estimated expansion cost) .

The effect of the (1.5 — degree of match) weight on the cost is to emphasize
the cost of the path when little heuristic guidance is available but to ignore
cost considerations as the heuristic recommendation becomes stronger.

The problem solver continues to select nodes and apply operators until
the integral is solved. Notice that, in LEX, a simple performance standard
is available: solution of the integral. This is a substantially simpler situation

than that faced by Waterman's poker player, which needs to play several
hands to evaluate how well it is doing. LEX knows when it is doing well.
LEX also knows when it is doing poorly. For each integration problem, the
problem solver is given a time and space limit. If it runs out of time or space
before solving the problem, it gives up and the problem generator selects a
new problem to solve.

The Critic

The problem solver provides the critic with a detailed trace of each suc-

cessfully solved problem. The critic's task is to extract positive and negative
training instances from this trace by assigning credit and blame to individual

490 Learning and Inductive Inference XIV

decisions made by the problem solver. The critic solves the credit- assignment
problem as follows:

1. Every search step along the minimum-cost solution path found by the
problem solver is a positive instance;

2. Every step that (a) leads from a node on the minimum-cost path to a
node not on this path and (b) leads to a solution path whose length is

greater than or equal to 1.15 times the length of the minimum-cost path
is a negative instance.

These criteria are intended to produce applicability heuristics that guide

the performance element to minimum- cost solutions. To evaluate these criteria

(especially 2b), the critic must re-invoke the problem solver to follow out
paths that appear to be bad. This deeper search is in some ways analogous

to the deep search Samuel used in his checkers-playing program for solving
the credit-assignment problem. The criterion of minimum-cost solution is
convenient because it can be measured by the computer itself — by its own
experience in attempting to solve the problem.

The critic is fairly conservative. It provides the generalizer only with the
training instances that can be most reliably credited or blamed. However,
the critic is not infallible. It can produce false positive and false negative
training instances when the knowledge base contains incorrect heuristics.
Since the problem solver follows the guidance provided by the heuristics in
the knowledge base, it may believe it has found the lowest cost solution when
in fact, the heuristics have led it astray. Since LEX does not conduct an
exhaustive search of the space, it will not always detect this fact. As a result,
the critic may create false positive and false negative instances. Its reliability

can be improved by increasing the safety factor (normally 1.15) when the

problem solver is re-invoked by the critic. This causes the problem solver
to search more deeply along alternative paths and improves the chances of

finding the true minimum-cost path.

The Generalizer

The generalizer simply applies the candidate-elimination algorithm to
process each of the training instances provided by the critic and to refine the

version spaces of each of the operators. The multiple-boundary-set form of
the algorithm (see Article XTV.D3a) was adopted to handle erroneous training
instances.

The generalizer is able to learn disjunctions in certain cases. During
generalization based on a positive training instance, for example, if the version
space would normally be forced to collapse because no consistent rule exists,
a second version space is created instead. This second version space contains
the patterns that are consistent with all of the negative instances and the
single new positive instance. As additional positive instances are received,

D5d LEX 491

they are processed against any version space whose G set covers them. When
more than one heuristic rule is created for a single operator, the effect is the
same as if a single disjunctive heuristic had been developed.

The generalization language (and, thus, the rule space) in LEX is based

on the tree of functions shown in Figure D5d-4. The most general pattern
is f(x), that is, any real function. The most specific functions are integer
and real constants, sine, cosine, tangent, and so on. This language is known
to have shortcomings (e.g., it cannot describe the class of twice continuously

differentiable functions), but it is adequate for expressing some of the heuris-
tics useful in the domain of symbolic integration.
LEX relies entirely on syntactic generalization methods. It cannot, for

example, analyze the solution of fSxcosxdx and realize that, since OP03
requires only a real constant r, the particular constant 3 can be generalized
to any real constant. This kind of analysis, based on the semantics of the

operators, is done in STRIPS and HACKER. The advantage of LEX's syntactic
approach is that it is general — it can be applied to any generalization language.

The Problem Generator

The purpose of the problem generator is to select a set of integration
problems that form a good teaching sequence (see Article XIV. A). This portion
of LEX is still under development, so only some strategies that have been
proposed for the design of the problem generator are discussed here.

One strategy for selecting a new problem is to find an operator whose

version space is still unrefined and select a problem that "splits" the version
space — that is, an integral that matches only half of the patterns in the S
and G sets. If the problem solver can solve such a problem, LEX will be able
to refine the version space for that operator.

TRIG EXPON MONOM [+ MONOM, MONOM2 MONOMt

EXP LN ID R

• R • IDK))

Figure D5d-4. Function hierarchy used in LEX's generalization language.

492 Learning and Inductive Inference XTV

A second, related strategy is to take a problem that LEX has already

solved and modify it in some way. For instance, having solved the integral

/ Sxsinxdx, LEX could consider attempting the integral / bxsinxdx. This
would force it to generalize its version space to indicate that any constant

could appear (not just 5 or 3). The generalization hierarchy in Figure D5d-4
can be used to create such training problems.

A third strategy is to look for overlaps in the knowledge base. If there
are two operators whose version spaces overlap, the problem generator can
choose a problem for which both operators are believed to be applicable.
The resulting attempt to solve the problem may show that only one of the
operators should be used in such situations.

Finally, when LEX is just beginning to learn, it may be necessary to apply
the inverses of the integration operators to create problems of known difficulty
for the problem solver to solve. This is analogous to the technique of providing

students in chemistry courses with an "unknown" that is, in fact, deliberately
synthesized by the professor. LEX must learn how to control its search so that
it can solve the training problem without being overwhelmed by combinatorial

explosion.
The problem generator, more than any other component of the LEX

system, must have meta-knowledge of what LEX already knows and where its
weaknesses are. It must keep a history of previous problem-solving attempts,
so that it does not repeatedly propose unsolvable or uninformative problems.
The design of the problem generator is, in fact, the most difficult part of the
LEX project.

Conclusion

LEX learns when to apply the standard operators of symbolic integra-
tion. For each integration operator, the system learns a heuristic pattern.

The problem solver matches these patterns against the expression being inte-
grated to determine which operators should be applied. LEX obtains train-

ing instances by observing its own attempts to solve integration problems.
Similarly, LEX obtains its performance standard by computing the cost of
the shortest solution path that it found when it tried to solve the problem.

The credit-assignment problem is solved by conducting a deeper search and
crediting those decisions that led to the minimum-cost solution. Decisions that

caused the problem solver to depart from the minimum-cost path are blamed.
Positive and negative training instances are thus extracted and processed by
the generalizer to update the version spaces of the integration operators.

Experiment planning is implemented in LEX by the problem generator,
which employs a variety of strategies to select problems that will help the
other components of the system refine the knowledge base.

The primary weakness of LEX, and a source of its generality, is that
it employs only syntactic methods of generalization. It is unable to reason

D5d LEX 493

about the meanings of its operators, and thus it cannot use knowledge about
dependencies among operators to determine how the heuristics should be
generalized.

LEX does not attack the problems of learning new operators (i.e., right-
hand sides of heuristic rules) or learning operator sequences (i.e., macros).
To learn a new integration operator, LEX would need much more knowledge
about mathematics and the goals of integration. This is a very difficult
learning problem. The problem of learning macro operators (i.e., useful
sequences of operators) and their applicability conditions has been addressed
in HACKER and STRIPS. Further work on LEX may include the learning of
such operators.

References

Mitchell, Utgoff, and Banerji (in press) and Mitchell, Utgoff, Nudel, and
Banerji (1981) provide descriptions of LEX.

D5e. Grammatical Inference

MOST AI RESEARCHERS employ numerical or logical representations in their

learning systems. In work on adaptive systems, for example, the concept to be
learned is often represented as a vector of numerical weights. Most of the other

systems described in this chapter represent their knowledge in logic-based
description languages (e.g., predicate calculus, semantic nets, feature vectors).
A number of researchers, however, have developed systems that employ formal
grammars to represent the learned concepts. This article discusses the body
of work, known as grammatical inference, that seeks to learn a grammar from
a set of training instances.

The primary interest in grammar learning can be traced to the use of for-
mal grammars for modeling the structure of natural language (see Chomsky,

1957, 1965). The question of how people learn to speak and understand lan-
guage led to studies of language acquisition; interest in modeling the lan-

guages of other cultures encouraged the development of computer programs
to help field researchers construct grammars for unfamiliar languages (Klein
and Kuppin, 1970); and recent attempts by pattern recognition researchers to

use grammars to describe handwritten characters, visual scenes, and cloud-
chamber tracks have created a need for grammatical-inference techniques.
Thus, all of these researchers are interested in methods for learning a gram-

mar from a set of training instances.
A grammar is a system of rules describing a language and telling which

sentences are allowed in the language (see Article rv.Cl, in Vol. i). Grammars

can describe natural languages — that is, languages spoken by people — and for-
mal languages — that is, simple languages amenable to mathematical analysis.

In natural languages, grammar rules indicate the generally accepted ways of
constructing sentences. In formal languages, however, grammars are applied
much more strictly. A formal grammar for a language, L, can be viewed as a

predicate that tells, for any sentence, whether it is grammatical, that is, "in"
the language L, or ungrammatical, that is, not a legal sentence in L. From
this formal perspective, a language is simply a potentially infinite set of all
legal sentences, and a grammar is simply a description of that set.

One might expect the task of learning a grammar to be the same as the
task of learning a single concept (see Sec. XIV.D3), since a single concept can
also be viewed as a predicate describing some set of objects. Usually, however,
this is not the case. Most formal languages are too complex to be described
by a single concept or rule. Instead, a grammar is usually written as a set
of rules that describe the phrase structure of the language. For example, we
might have one rule that says: A sentence is an article followed by a noun
phrase followed by a verb phrase. This could be written as the grammar rule:

494

D5e Grammatical Inference 495

(sentence) — ► (article) (noun phrase) (verb phase) .

This rule describes the overall structure of a sentence. Of course, there are
many different kinds of noun and verb phrases. These can also be described

by phrase-structure rules. We might, for example, write another rule

(verb phrase) — > (verb)

for the simplest case in which the verb phrase is just a single word, as in The
boy cried. A more complex verb phrase could be written as

(verb phrase) — ► (verb) (article) (noun phrase)

for sentences like The program learned the grammar.

A grammar can thus be built out of a set of phrase-structure rules (also
called productions). These rules break the problem of determining whether
a sentence is grammatical into the subproblems of determining whether it is
composed, for example, of a grammatical article followed by a grammatical
noun phrase followed by a grammatical verb phrase. In this way, the single
concept grammatical sentence is broken into the subconcepts of noun phrase
and verb phrase. Moreover, such subconcepts are not independent but interact
according to the grammar rules. Thus, determining whether a sentence is

grammatical is a multiple-step task involving the sequential application of
phrase-structure rules. It is for this reason that we include grammatical
inference in our survey of systems that learn to perform multiple-step tasks.

In this article, we first introduce formal grammars and their uses and
then discuss the theoretical limits of grammatical inference. The problem
of learning a grammar from training instances has received a fair amount of
mathematical analysis. We describe the principal results of this work along
with their relevance for practical learning systems. Finally, we present the
four major methods that have been developed for learning grammars.

Grammars and Their Uses

In the theory of formal languages, a language is defined as a set of strings,
where each string is a finite sequence of symbols chosen from some finite
vocabulary. In natural languages, the strings are sentences, and the sentences
are sequences of words chosen from some vocabulary of possible words. To

describe languages, Chomsky (1957, 1965) introduced a hierarchy of classes
of languages based on the complexity of their underlying grammars. We will

focus primarily on the context-free languages (and grammars).
A context-free language is defined by the following:

1. A terminal vocabulary of symbols — the words of the language;

2. A nonterminal vocabulary of symbols — the syntactic categories (e.g., "noun,"
"verb") of the language;

496 Learning and Inductive Inference

XIV

3. A set of productions — the phrase-structure rules of the language; and

4. The start symbol.

The best way to understand these definitions is by considering an example.

Examine the following context-free grammar, G, with

(a) the terminal vocabulary {a, the, boy, girl, petted, held, puppy, kitten,
wall, hill, by, on, with} ;

(b) the nonterminal vocabulary {Z, S, V, A, P, W, O, X} ;

(c) the productions
Z -> ASV,

v— jr, v^xao, v-+vp,
P — WAS, P -* WAO,
A — ► a, A—* the,

S -* boy, S -» girl,

W -> by, W -► on, W -► with,
0 — ► puppy, 0 — ► kitten, 0 — ► hill, 0 — ► wall,
X— ► petted, X— ► held; and

(d) the start symbol, Z.

This grammar, G, describes a language of simple sentences such as The boy

held the puppy and The girl on the hill held a kitten. It describes a sentence

by deriving it from the start symbol. We start with the symbol Z and

choose a production that has Z as the left-hand side. There is only one

such rule in G: Z — ► ASV. We apply this rule by rewriting Z as the string
ASV. Now we choose one of the nonterminals, A, S, or V, and find a rule

that can be used to rewrite it. If we choose the rule V — ► XAO, our current
sentence becomes ASXAO. We continue rewriting nonterminals (according to

the production rules) until the sentence contains only terminal symbols. A

complete derivation for the sentence The boy held the puppy is as follows:

Current sentence

Z

ASV

ASXAO

the 5X40

the boy XAO

the boy held AO

the boy held the 0

The boy held the puppy

Chosen production rule

(Z->ASV)

(V^XAO)

(A -► the)

(S- boy)

(JT-+ held)

(A -► the)

(0-+ puppy)

D5e Grammatical Inference 497

the boy held the puppy

Figure D5e-1. Derivation tree for the sentence The boy held the puppy.

This is usually depicted as a derivation tree (see Fig. D5e-1).
Depending on which rules we choose during the rewriting process, we get

different sentences. If we choose "0 — ► kitten" instead of "O — ► puppy," we
get the sentence The boy held the kitten. The context-free language described
by G is the set of all possible sentences that can be derived from Z by the
rewrite rules in G. Notice that we can also start our derivation with some

symbol other than Z. If we start with the nonterminal V, for example, we
generate the sublanguage of all verb phrases in G. Each nonterminal has a
sublanguage. Thus, each nonterminal represents a subconcept, such as noun
phrase (S) or verb phrase (V), of the overall concept of grammatical sentence

(Z).
In pattern recognition and language understanding, the performance task

facing a computer program is not the generation of grammatical sentences but
their recognition. Given a sentence, the problem of determining whether it

is grammatical — that is, of finding a derivation for the sentence — is called
parsing. Many efficient algorithms have been developed for parsing sentences

in context-free languages (see Article IV.D, in Vol. I; Hopcroft and Ullman,
1969).

Extensions to Context-free Grammars

Context-free grammars are able to capture much of the structure of
natural and artificial languages, especially computer programming languages.

However, many problems require extensions to the basic context-free grammar
framework.

Transformational grammars. Some characteristics of natural lan-
guage cannot be modeled with context-free grammars. One example that is

frequently cited is the "respectively" construction in sentences such as The

498 Learning and Inductive Inference XTV

boy and the girl held the puppy and the kitten, respectively. Other examples
include the conversion of sentences from active to passive voice and discon-

tinuous constituents like throw out in the sentence He threw the junk out In

response to these shortcomings of context-free grammars, Chomsky (1965) de-
veloped the theory of transformational grammar (see Article IV.C2, in Vol. i),

in which a sentence is first derived as a so-called deep structure, then manipu-
lated by transformation rules, and finally converted into surface form by

phonological rules. The deep structure, which corresponds to the basic de-
clarative meaning of the sentence, is derived by a context-free grammar. The

transformation rules can modify the structure — but not the meaning — by al-
tering the derivation tree. For example, a transformation rule can convert a

declarative sentence into a question by flipping branches of the tree to change

the word order. Under such a transformation, the sentence The boy is hold-
ing the dog becomes the question Is the boy holding the dog? Some methods

have been developed for learning transformation rules, as well as context-free
grammars, from examples. Particular attention has been given to learning
these rules under conditions believed to be similar to those under which a

child learns a language.

Stochastic grammars. Although context-free grammars (and transfor-
mational grammars) can represent the phrase structure of a language, they

tell nothing about the relative frequency or likelihood of appearance of a given

sentence. It is common, for instance, in context-free grammars to use recur-
sive productions to represent repetition. In our sample grammar above, the

production V — ► VP is recursive. If we apply it over and over again, we can
generate sentences like The boy held the puppy on the wall by the hill with the
kitten . . . Although the sentence is technically grammatical, it would be nice
to represent the degree of acceptability of such a sentence.

Stochastic grammars provide one approach to this problem. Each produc-
tion in a stochastic grammar is assigned a probability of selection — that is, a

number between zero and one. During the derivation process, productions are
selected for rewriting according to their assigned probabilities. Consequently,
each string in the language has a probability of occurrence computed as the
product of the probabilities of the rules in its derivation. If we took our
sample grammar, for instance, and assigned probabilities of .5 to all of the

rules except X — ► ASV (probability 1.0) and V — ► XAO (probability .33), the

string "The boy held the puppy" has probability 1(.33)(.5)(.5)(.5)(.5)(.5) =
.01, while the string "The boy held the puppy on the wall by the hill with the

kitten" has probability 1.58944 X 10-7. This expresses the intuition that the
second sentence is very unlikely to be considered acceptable.

Stochastic grammars have been employed by pattern recognition research-
ers in noisy and uncertain environments where it is better to have an in-

dication of the degree of grammaticality of a sentence than a single yes-no
decision. Stochastic grammars also allow grammatical-inference programs to

D5e Grammatical Inference 499

represent uncertainty about the true language when noisy and unreliable
training instances are presented.

Graph grammars. In syntactic pattern-recognition problems, it is often

important to represent the two- or three-dimensional structure of "sentences"
in the language. Traditional context-free grammars, however, generate only
one-dimensional strings. Context-free graph grammars have been developed
that construct a graph of terminal nodes instead of a string of terminal symbols
(see Article XIII. E3). Rewrite rules in the grammar describe how a nonterminal
node can be replaced by a subgraph. Evans (1971) employs a set of graph
grammars to describe visual scenes. Other researchers have applied graph

grammars to the pattern recognition of handwritten characters and cloud-
chamber tracks. This latter use of grammars is especially appropriate in
that the rewrite rules in the grammar directly correspond to properties of
the pattern. For example, subatomic particles decay into other particles
only in certain ways, and these decay events can be modeled naturally with

productions whose left-hand sides have the decaying particles and whose right-
hand sides state the corresponding particles into which they decay.

Theoretical Limitations of Grammatical Inference

Now that we have reviewed some of the important kinds of formal lan-
guages and grammars, we turn our attention to the problem of learning these

formal languages from examples. As with other forms of learning from exam-
ples, it is profitable to view grammatical inference as a search through a

rule space of all possible context-free grammars for a grammar that is consis-
tent with the training instances chosen from an instance space. In language

learning, the training instances are usually sample sentences that have been
classified by a teacher to indicate whether or not they are grammatical. The

goal of the grammatical-inference program is to find a grammar for the "true"
language that underlies the training instances.

Under what conditions is it possible to learn the correct context-free
language from a set of training instances? This question has received a fair
amount of study, and several results have been obtained. The most important

result is that it is impossible to learn the correct language (or the correct single
concept) from positive examples alone. Gold (1967) proved that if a program

is given an infinite sequence of positive examples — that is, sentences known

to be "in" the language — the program cannot determine a grammar for the
correct context-free language in any finite time. To see why this is so, consider
that at some point the program has received k strings {si, S2, . . . , Sfc}- There
are many possible languages that are consistent with these examples. The
most general, universal language, which contains all possible strings of the
terminal symbols, certainly contains all of the strings in the sample. Similarly,

the trivial language L = {s\, S2, . . • , Sfc} is the most specific language that

500 Learning and Inductive Inference XTV

contains all of the strings in the sample. There are many possible languages
between these two extremes. No finite sample will allow the learning program
to choose the correct language from these various possibilities.

Fortunately, in most learning situations, additional information is avail-
able that can help constrain the choices of the learning program so that a

reasonable language, and its grammar, can be found. Let us examine possible
sources of this additional information.

Negative examples. Negative training instances allow the program to

eliminate grammars that are too general (see Article XIV.D3a, on the candidate-
elimination algorithm). Gold (1967) showed that if the learning program could
pose questions to an informant, that is, ask a person whether or not a given
string was grammatical, the true language could be learned. The informant
could be used to obtain complete positive and negative examples and thus

determine exactly the true language. Gold called this learning situation infor-
mant presentation.

Stochastic presentation. When a program is trying to learn a stochas-
tic context-free grammar, learning is also possible if the training instances are

presented to the program repeatedly, with a frequency proportional to their

probability of being in the language. In this stochastic-presentation method,
the program can estimate the probability of a given string by measuring its

frequency of occurrence in the finite sample. In the limit, stochastic presen-
tation gives as much information as informant presentation of positive and

negative examples: Ungrammatical strings have zero probability, and gram-
matical strings have positive probability.

Prior distributions. As we have seen above, even after a set of positive
instances has been processed, there are still many possible languages, and
hence many possible grammars, for the learning program to choose from.
Furthermore, even when a unique language has been determined, as with
informant presentation, there may be several different grammars that all
generate the same language. One way to tell a program how to choose the right
grammar is to define a prior probability (or desirability) distribution over all
possible grammars. The program can then choose the most probable grammar

that is consistent with the training instances. Horning (1969) employs a
prior distribution that makes simple grammars more likely than complex
ones, where simple grammars are those that have fewer nonterminals, fewer

productions, shorter right-hand sides, and so on.
Semantics. According to cognitive psychologists, children receive little

negative feedback when they are learning a language. Consequently, we
are faced with the puzzle of how people are able to learn natural language
almost entirely from positive training instances. One important source of
information for children may be the meaning of the sentences they hear. A few

psychological theories, and some computer programs (see below), have been
developed that incorporate semantic constraints as a source of information.
These theories basically claim that the grammatical structure of a language

D5e Grammatical Inference 501

parallels the semantic structure of the internal representation that people
employ.

Structural presentation. One technique employed by pattern recog-
nition researchers to aid grammatical inference is structural presentation, in

which the program is given some information about the derivation tree of

the sample sentences. This is similar to the use of book training in Samuel's
checkers program. The derivation tree provides a move-by-move (or, in this
case, a rule-by-rule) performance standard along with each training instance.

Grammar restriction. One final way to get around Gold's results is
to learn only special subclasses of the context-free languages. In particular,
grammatical inference is much easier for regular and delimited languages,

which, though not as powerful as the context-free languages, have important
practical applications.

In summary, then, although Gold's theorems show that the formal prob-
lem of learning a context-free grammar from positive instances alone is impos-

sible, there are many alternative sources of information that allow programs,
and presumably people, to learn language.

Methods of Grammatical Inference

In this section, we survey four basic techniques that have been used to

learn context-free grammars from training instances. The various methods,
some of which parallel the basic learning methods discussed in Article XIV.Dl,
differ primarily in the way that they search the rule space and the kinds of
information that they use to guide that search.

The first approach we discuss is enumeration. Enumerative, or generate-
and-test, methods propose possible grammars and then test them against
the data. The second basic grammatical-inference technique is construction.
Constructive methods usually learn from positive examples only. They collect
information about the structure of the sample strings and use it to build a

grammar reflecting that structure. Refinement methods form a third impor-
tant class of grammatical-inference techniques. They start with a hypothesis

grammar and gradually improve it by means of various heuristics based on

additional training instances. Finally, semantics-based methods employ knowl-
edge of the meanings of the sample sentences to decide how to search the

rule space. Most semantics-based methods have been developed to model how
children learn natural languages.

Rules of generalization and specialization for grammars. Before

describing these learning methods in more detail, we first discuss three meth-
ods for the syntactic generalization and specialization of grammars:

1. Merging. A context-free grammar can be generalized by an operation
called merging. Suppose the grammar G contains two nonterminals, A

502 Learning and Inductive Inference XIV

and B. We can modify G to obtain a more general grammar by merg-

ing A and B — that is, by creating a new nonterminal, Q, and replacing
all occurrences of A and B by Q. This has the effect of pooling the

sublanguages of A and B to create a new sublanguage, Q, whose strings
may appear anywhere that either the strings of A or the strings of B
could have appeared. Suppose, for example, that in our sample grammar
discussed above, we merged S (subjects) and O (objects) to obtain Q. The

productions of the grammar G become:

Z-+AQV

V-+X, V-^XAQ, V-+VP,
P^ WAQ,

A — > a, A—* the,
W^by, W^on, W^with,

Q -► puppy, Q -+ kitten, Q -» hill, Q -+ wall,
Q -* boy, Q -> girl,

X^ petted, X->held.

Previously ungrammatical sentences like 77ie puppy petted the boy are now
allowed. The language is thus larger and, consequently, more general.

2. Splitting. The inverse of merging is a specialization process called split-
ting. We can specialize a grammar by splitting the sublanguage of one

nonterminal, N, into two smaller sublanguages, N\ and N2. This is

accomplished by replacing some occurrences of N in the grammar by 7V*i
and others by N2. In the grammar above, for instance, we could split
the A (article) nonterminal into Ai and A2 to obtain the grammar:

Z-^AxQV,

V-+X, V-+XA2Q, V^VP,
p^ WA2Q,

Ai — ► a, A2 — ► the,
tt^by, W-on, W^with,

Q -► puppy, Q -+ kitten, Q -> hill, Q -* wall,
Q -»- boy, Q -» girl,

X— >• petted, X— >• held .

Now all sentences must begin with "a," and all prepositional phrases and
object phrases must use "the." The previously grammatical sentence
The boy petted the puppy is now illegal. This language is therefore more
specialized.

3. Disjunction. One operation that is similar to merging is called disjunc-
tion. In disjunction, we choose two strings, si and S2, and create a new

nonterminal, D, whereby the rules D — ► si and D — ► 32 are added to the
grammar. Every occurrence of the strings s\ and 82 in existing produc-

tions is replaced by D. For example, we could disjoin AO and AS in our

sample grammar to create the new nonterminal, iV (noun phrase). The
grammar then becomes:

D5e Grammatical Inference 503

Z-+NV,

V->X, V^XN, V^VP,
P^ WN,

N-+AS, N^AO,
A — ► a, A — > the,
S -> boy, S - girl,
W-^by, W-^on, W -> with,
0 — > puppy, 0 — ► kitten, 0 — ► hill, 0 — > wall,
X^ petted, X^held.

This operation is similar to merging, except that it can be applied to
strings of terminals and nonterminals. If both of Si and S2 are simple
nonterminal symbols, disjunction has the same effect as merging. If only
one of si or «2 is a nonterminal, the operation is called substitution.

These rules of generalization can be applied to move from one point in
the rule space (i.e., one grammar) to another. We now turn our attention to
the four basic methods of grammatical inference and show how they apply

these operations to search the space of possible context-free grammars.

Enumerative Methods

Enumerative methods generate grammars one by one and test each to

determine how well it accounts for the training instances. The first enumera-
tive method we consider is that of Horning (1969), who developed a procedure

for finding the most plausible stochastic grammar consistent with a set of

stochastically presented training instances. The general idea behind Homing's
method is to enumerate all possible grammars in order of simplicity and choose

the first grammar that is consistent with the training data. The actual algo-
rithm is somewhat more complicated, however, since Horning seeks the most

likely stochastic grammar, that is, the grammar G that is most likely to have
generated the observed set S of sample strings. This is expressed formally as

the grammar G that maximizes P(G | S), that is, the probability of G given S.
Unfortunately, it is difficult to compute P(G \ S) directly from the training

instances. Bayes' theorem, however, provides a way of computing P(G | S)
from three other quantities, P{G), P(S | G), and P(S):

p(r , Q* P(G) X P(S 1 G)

where P(G) is the a priori probability that G is the "true" grammar, P(S)
is the a priori probability of observing the particular sample S, and P(S \ G)

is the probability of observing S given the grammar G. Since P{S) is inde-
pendent of G, we can maximize P(G \ S) by just maximizing the numerator

P'(G | S) = P{G) X P{S | G). The probabilities P(G) and P(S | G) can be
computed for any particular grammar G

504 Learning and Inductive Inference XTV

The probability P(S \ G) that the training instances S will be generated
by the stochastic grammar G can be computed directly from G by parsing
each sentence in S. The problem of computing P{G) is more difficult, however.
Horning sought to have the a priori probability of G reflect the complexity
of the grammar G Simple grammars should be highly probable; complex
grammars should be improbable. Consequently, he developed the idea of a

grammar-grammar, that is, a stochastic grammar that generates a stochastic
grammar as its terminal string. Such a grammar-grammar can be constructed
from a terminal vocabulary of symbols such as A, B, C, Z, — ►, etc. Since, as
we have seen above, a stochastic grammar generates short strings with a much

higher probability than it does long strings, the grammar-grammar generates
simple grammars with a much higher probability than it does complex ones. In

particular, the probability P(G) is the probability that the grammar-grammar
would generate G.

Since we can compute P{G) and P(S \ G), we can use Bayes' theorem
to compute P'(G \ S). Therefore, if we compute P'{G \ S) for all possible
grammars, G, we can find the grammar that most likely generated 5. Such
a procedure is impossibly inefficient, however. Instead, Horning used the
following technique. First, he developed a procedure that could enumerate
all possible stochastic grammars starting with the most likely grammar, G\,
and continuing on in order of decreasing probability P(Gi). Next, he noticed

that P'(Gi | S) did not have to be computed for all grammars but only for
those grammars whose probability P{G{) was greater than P'{G\ \ S). This
is because once P(G{) falls below P'{G\ \ S), there is no way that multiplying
by P(S | Gi) will ever exceed P'{G\ \ S), since P(S | Gi) is always less than
or equal to 1.

Consequently, Homing's method enumerates all grammars G{ starting
with Gi and continuing until P(Gt) < P*(Gi \ S). The probability P'(G; | S)
is computed for each grammar Gi, and the grammar that maximizes P'(G{ \ S)
is output as the grammar most likely to have produced the set of examples, S.

The algorithm is theoretically correct — it always finds the best grammar —
but it is still too inefficient for all but the smallest grammars. Therefore,
Horning modified the grammar generator to generate only grammars that
were deductively acceptable (DA). A grammar is deductively acceptable if it
generates every string in the sample, S, and if every production in G is used
to derive at least one of the training instances. In other words, a DA grammar
must be consistent with the training instances and must not be overly specific
or cluttered by useless productions. It can be shown that all DA grammars
with k + 1 nonterminals can be obtained by splitting DA grammars with k

nonterminals. Furthermore, once a grammar ceases to be deductively accept-
able, no further splits will make it deductively acceptable, since it is already

overly specific.

These facts were used by Horning to organize the rule-space search.
Starting with the most general (and most likely) DA grammars, repeated splits

D5e Grammatical Inference 505

are made until either the grammars cease to be deductively acceptable or their

a priori probability P{G{) falls below the bound P'(G\ \ S). The probability
P'(Gi | S) is computed for all of the generated grammars, and the grammar
that maximizes Pf{Gi \ S) is selected. This procedure, although more efficient
than the first one, is still of theoretical interest only.

A second enumerative method makes use of training instances to guide
the enumeration of plausible grammars. Pao (1969) describes an approach to

grammatical inference that resembles the plan-generate-test paradigm of the
DENDRAL program (see Sec. VII.C2, in Vol. II). In the initial planning phase,

Pao's algorithm analyzes the (positive) training instances and constructs a
trivial grammar — that is, a very specific grammar that generates only the
training examples. A partially ordered set (actually, a lattice) of plausible

grammars can be generated by merging nonterminals from this trivial gram-

mar. During the generate-and-test phase, Pao's algorithm enumerates all of
these grammars in order, from most specific to most general, and tests them
by consulting an informant.

Pao's algorithm generates two grammars at a time, G and H, and uses
an informant to eliminate one of the two. The informant is presented with
a new sentence, s, that is generated by G but not by H. If the informant

says s is in the "true" language, then H and all grammars more specific than
H are removed from further consideration. Also, the set of grammars more
general than H (but not more general than G) is searched in order from
general to specific, and grammars that do not generate s are discarded. If,

on the other hand, the informant says that 5 is not in the "true" language,
then G and all grammars more general than G are removed from further
consideration. The generating and testing of possible grammars continues
until only one possible grammar remains. This search through the partially

ordered set of all possible grammars is similar to Mitchell's (1978) candidate-
elimination algorithm (see Article XIY.D3a). In Pao's program, though, an
active experimentation approach is employed to search the space rather than
waiting for new training instances to drive the search.

Unfortunately, this method does not work for general context-free gram-
mars. The basic algorithm works only for regular grammars — that is, gram-

mars whose productions all have the form N — ► tM or TV — ► t for t, a single
terminal symbol, and M, a single nonterminal symbol. In regular languages,

there is no difficulty finding a test sentence s to distinguish between two gram-
mars G and H. Unfortunately, this cannot be done for general context-free

languages. Pao has extended the method to handle delimited grammars —
a somewhat larger class of grammars than the regular grammars.

Constructive Methods

Constructive methods attempt to build a plausible grammar using only

the information from a positive sample with no informant. From Gold's

506 Learning and Inductive Inference XIV

theorems, it is clear that this problem is ill-formed, since no unique language
is determined by a set of positive instances. However, various heuristics have
been developed for constructing simple, fairly general grammars from positive
instances only.

One important set of heuristics is based on the idea of the distribution

of substrings in the language. In context-free languages, certain classes of
strings, such as noun phrases and prepositional phrases, tend to appear in
the same contexts in different sentences. This suggests that we might be able
to discover interesting classes of strings by looking at their surroundings in
the set of sample sentences. For instance, the words a and the both tend
to occur at the beginnings of sentences, so perhaps they should be grouped
together to form the class of articles. This is done by creating a nonterminal

A and inventing the production rules "A — ► a" and "A — * the." Distributional
analysis has been employed by Harris (1964), Fu (1975), Kelley (1967), and
Klein and Kuppin (1970).

For regular grammars, Fu (1975) has applied a particular kind of distribu-
tional analysis based on the idea of the formal derivative of a string. The

formal derivative of a string s is the set of strings

D3L= {t | the string st is in the language L} ,

that is, all of the strings t that follow s in the given language L in sentences
where 5 is at the beginning of the sentence.

Formal derivatives can be employed to construct regular grammars in a
straightforward way. Imagine that we have a grammar G, and we are in the
process of generating a sentence. Suppose that, so far, we have generated the
string s U, where U is a nonterminal and s is a terminal string. If we take
formal derivatives for every string sa that appears in the sample (where a is
a single terminal symbol), we can create new nonterminals for each distinct
formal derivative. We can add the productions

U->aVi

U^bV2

U-+mVk

to the grammar, G, where V\, V2, . . . , Vk correspond to the formal derivatives
of sa, sb, . . . , sm . The effect of this construction is to group together all of
the strings in the formal derivative of sa, for example, and place them in
the sublanguage for V\. We can construct the entire grammar G by initially
taking s to be the null string and f/to be the start symbol.

The chief difficulty of distributional methods is that some definition of
similar contexts is needed so that strings that appear in similar contexts can
be grouped into the sublanguage for a new nonterminal symbol. Problems

D5e Grammatical Inference 507

can also arise when one string is in two different sublanguages and therefore
appears in different contexts. The word program, for example, can be both a
noun and a verb.

Another approach to constructive inference of grammars is to look for
repetition in the sample and model it as a recursive production. This method
is rarely sufficient in itself to construct the whole grammar, but it can be used
in combination with other methods. Consider, for example, the set of training
instances {a, aaa, aaaa}. A reasonable grammar to infer has the productions

S — ► a and S — ► Sa and generates all possible strings of repeated as.
To employ this repetition heuristic, it is helpful to know the properties of

repetition for different kinds of grammars. For regular grammars, iteration
always takes the form of repeated choice of a string without reference to

any other strings. However, for context-free languages, repetition can be
more complicated. One important theorem about context-free languages
(called the uvxyz theorem) states that if a sufficiently long string uvxyz

is in the language, then so is the string uvkxykz as well; that is, v and
y are repeated an equal number of times. This can be represented by a

self- embedding production of the form X — ► VXY. Solomonoff (1964) and
Maryanski (1974) describe inference methods based on searching for double

cycles of the uvkxykz variety. Once a possible cycle is found, it can be tested
by consulting an informant.

Refinement Methods

Refinement methods formulate a hypothesis grammar and then refine it
by applying simplification heuristics or by gathering new training instances.
Knobe and Knobe (1977), for example, present an algorithm that creates
an initial hypothesis grammar, G, and then enters a refinement cycle in
which it repeatedly accepts a new grammatical string, refines G to include
the string, and generalizes and simplifies G The initial grammar includes a
distinct nonterminal for each of the terminal symbols. In the course of the

algorithm, these nonterminals are generalized by merging. The basic learning
cycle proceeds as follows:

Step 1. Accept a grammatical string (i.e., a positive training instance) and
attempt to parse the string with the current grammar, G. If the
parse succeeds, repeat step 1; otherwise, go to step 2.

Step 2. Compute a list of partial parses and sort it according to generality.
(A partial parse is a string of terminals and nonterminals in which
parts of the original training string have been partly parsed into
nonterminals; the more general partial parses are shorter, since
most of the sentence has been successfully parsed.) Hypothesize

the production S — ► P, where S is the start symbol and P is the
most general partial parse. (This allows the training instance to be
parsed successfully.) Use the modified grammar to generate a test

508 Learning and Inductive Inference XIV

sentence, and ask the informant if the test sentence is grammatical.

If it is, go to step 3; otherwise, try the next most general partial
parse, and repeat until a sufficiently specific production has been
found.

Step 3. Generalize and simplify the grammar by applying some of the
merging and substitution heuristics described below.

The third step of generalization and simplification is important, because

it is in this step that the new production S — ► P is integrated into the grammar
and connected to existing production rules. Many different simplification and

generalization techniques have been developed by various researchers. We

survey a number of these here.

Generalization by disjunction. One important simplification tech-
nique is to apply disjunction (see above) to replace two similar strings s and t,

which appear on the right-hand sides of productions, by a single nonterminal.

There are two basic heuristics for deciding whether s and t are similar: inter-

nal similarity and external similarity. The internal-similarity heuristic com-
pares the sublanguages generated by s and t. If the sublanguages are similar,

the heuristic proposes that s and t are similar and should be disjoined. The

external-similarity heuristic, on the other hand, compares the contexts in
which s and t appear. As in the constructive technique of distributional

analysis, if 5 and t appear in similar contexts, the heuristic recommends that

they be disjoined. There are many important special cases of these heuristics:

1 . Heuristics based on internal similarity. The first internal-similarity heuris-
tic is subsumption. If the language generated by s is a superset of the

language generated by t, then s and t should be disjoined. This often

occurs when s is a single nonterminal, X, and the rule X — ► t is among
the productions for X in the grammar.

If s and t are both single nonterminals, X and Y, a second internal

heuristic can be applied. This heuristic compares the right-hand sides,

u and v, of production rules of the form X — ► u and Y — > v, to see if
they are similar. If they are, Xand Fcan be merged.

A third internal-similarity heuristic is k-tail equivalence. Two strings s
and t are k-tail equivalent, for some nonnegative integer k, if the sets of
strings of length k or less that they generate are the same. Thus, s and

t are judged similar if the short strings that they generate are the same.
This heuristic can be applied by choosing a value for k and merging

groups of nonterminals that are /c-tail equivalent. As k gets small, this
heuristic causes more generalization.

2. Heuristics based on external similarity. The one heuristic for external

similarity is to look at productions in which s and t appear on the right-
hand side of productions. If s and t appear in similar contexts within

the productions, they can be disjoined. Various special cases of this
heuristic have been used, including the case in which s and t are both
single nonterminals.

D5e Grammatical Inference 509

Hypothesizing iteration. As with constructive methods, if productions

such as X — ► a and X — > aa are present, a recursive production X — ► Xa can
be introduced.

Shorthand substitution. When a string s appears many times on the

right-hand side of productions, it is often good to create a new nonterminal,
A, replace all occurrences of s by A, and add the production A — ► s to the
grammar. This simplifies the grammar without modifying the language that
it generates. The advantage of the simplification is that it is easier to apply
the various merging heuristics to a simplified grammar.

The A:- tail heuristic was employed by Biermann and Feldman (1970) in the
inference of regular grammars. Various of the other heuristics are employed

by Klein and Kuppin (1970), Evans (1971), Knobe and Knobe (1977), and
Cook and Rosenfeld (1976). Cook and Rosenfeld are concerned with stochastic

grammars and use their heuristics to simplify grammars with a hill-climbing
procedure based on a numerical-complexity measure.

Semantics-based Methods

The fourth basic approach to grammatical inference employs semantic
constraints to guide the search for plausible grammars. Most of this work
has centered on language acquisition by children. The child is given positive
examples of sentences and is assumed to know the meanings of individual
words in isolation. Furthermore, the situation in which the sentence was
uttered, and, thus, some idea about its overall meaning, is assumed to be
known by the child. In most work, no negative examples are provided,
nor is an informant available. This is because most research in psychology

(e.g., Brown and Hanlon, 1970) has found that children receive little or no
feedback concerning the grammaticality of the sentences they utter. Pinker
(1979) discusses the work of several researchers who have studied grammatical
inference under these assumptions, including Anderson (1977) and Hamburger
and Wexler (1975).

Anderson's Language Acquisition System (LAS) attempts to learn a context-
free grammar for English from training instances that include a representation
of the meaning of each sentence. The Human Associative Memory (HAM;
Article XI.E2) network notation is used to represent these sentence meanings.
Learning proceeds in a cycle similar to that of Knobe and Knobe (1977): A
sentence and its meaning are input, and LAS attempts to parse the sentence.
If the parse fails, the grammar is extended according to some refinement
heuristics so that the training sentence can be parsed and assigned the correct

meaning. One such heuristic adds a word to a sublanguage — for example, it
adds chair to the sublanguage for (noun) — when the word is located at a place
in the HAM net similar to the place of other words in the sublanguage. This
is a special case of the general heuristic that the structure of the semantic
representation is reflected in the structure of the syntax of the language. A

510 Learning and Inductive Inference XIV

more sophisticated version of this heuristic is the graph deformation condition,
which states that branches in the HAM represention of the sample sentence
are not allowed to cross. This heuristic rules out certain parses that would

result in an ill-formed HAM structure. Anderson also employs one syntactic
heuristic: Two nonterminals are merged if they have similar sublanguages.

The work of Hamburger and Wexler (1975) is more theoretical in nature
and is concerned with showing that transformational grammars (see Chomsky,
1965) are learnable. In their model, the learner is repeatedly given a sentence

and its meaning, where the meaning is represented as a deep-structure parse
tree (based on a deep-structure context-free grammar). The learner must
find a set of transformation rules that succeed, for each sample sentence,
in converting the deep structure into the given sentence. Hamburger and

Wexler are proponents of Chomsky's nativist theory of language acquisition,
which asserts that people have built-in limits and biases that provide essential
constraints for the language-learning process. Consequently, their model of
language learning includes several factors that limit the complexity of possible
transformations.

Given these limits, Hamburger and Wexler show that the desired set of
transformations can be learned by a program as follows. As each training
instance (a sentence and its deep structure) is received, the learner tries to
transform the deep structure into the surface sentence by applying its current
set of transformations. If this succeeds, the learner goes on to the next input
example. If not, the learner randomly adds, deletes, or alters a transformation
and goes on. This method will work as long as the learner does not repeat
transformation rules known to be incorrect. Plainly, this learning procedure
is not practical, but it does demonstrate that learning transformation rules
under these assumptions is possible.

Conclusion

The expressiveness of grammars for use in AI knowledge representation

is somewhat limited, so interest in the difficult problem of grammatical infer-
ence is also correspondingly limited in the AI community. This is especially

so because of the impractical nature of many of the grammatical-inference
systems developed thus far. However, future work on the problem may yield
more powerful inference systems, and an understanding of past work may well
be helpful in research on related learning problems.

References

We have surveyed here the motivations, limitations, and methods of gram-
matical inference. More detailed surveys of grammatical inference in the con-

text of cognitive psychology are given in Pinker (1979) and Reeker (1976).

D5e Grammatical Inference 511

Surveys of grammatical inference for use in syntactic pattern recognition are
given in Fu (1974, 1975), Biermann and Feldman (1972), and Gonzalez and
Thompson (1978).

Chapter XV

Planning and Problem Solving

CHAPTER XV: PLANNING AND PROBLEM SOLVING

A. Overview / 515
B. STRIPS and ABSTRIPS / 523
C. Nonhierarchical planning / 531
D. Hierarchical planners / 541

1. NOAH / 541
2. MOLGEN / 551

E. Refinement of skeletal plans / 557

A. OVERVIEW

PROBLEM SOLVING is the process of developing a sequence of actions to

achieve a goal. This broad definition admits all goal-directed AI programs
to the ranks of problem solvers; for example, MYCIN (see Article VIII. Bl,
in Vol. Il) solves the problem of determining a bacteremia infection, HARPY
(Article V.C2, in Vol. i) solves the problem of understanding speech signals, and
AM (Article XIV.D4c) solves the problem of filling in slots in its representations

of concepts. It follows that this chapter is not about problem solvers — the
entire Handbook is about problem solvers. This chapter, like the chapter on

search (Chap. II, in Vol. i), is about problem-solving techniques. In particular,
it is about planning.

In everyday terms, planning means deciding on a course of action before
acting. This definition accurately describes the planning systems of this
chapter, so we will adopt it. A plan is, thus, a representation of a course
of action. It can be an unordered list of goals, such as a grocery list, but
usually a plan has an implicit ordering of its goals; for example, most people
plan to get dressed to go to the theater, not the other way around. Many
plans include steps that are vague and require further specification. These
serve as placeholders in a plan; for example, a daily plan includes the goal

eat-lunch, although the details — where to eat, what to eat, when to leave — are
not specified. The detailed plan associated with eating lunch is a subplan of
the overall daily plan. Most plans have a rich subplan structure; each goal in
a plan can be replaced by a more detailed subplan to achieve it. Although

a finished plan is a linear or partial ordering of problem-solving operators,
the goals achieved by the operators often have a hierarchical structure (see

Fig. A-l). This aspect of plans prompted one of the earliest definitions:

A Plan is any hierarchical process in the organism that can control the order
in which a sequence of operations is to be performed. (Miller, Galanter, and
Pribram, 1960, p. 16)

Planning and Problem Solving

Failure to plan can result in less than optimal problem solving; one may
go to the library twice, for example, having failed to plan to borrow a book
and return another at the same time. Moreover, in cases where goals are not
independent, failing to plan before acting may actually preclude a solution to
the problem. For example, the goal of building a house includes the subgoals
of installing a dry wall and installing electrical wiring, but these goals are not
independent. The wiring must be installed first; otherwise, the dry wall will
be in the way.

515

516 Planning and Problem Solving
XV

Plans can be used to monitor progress during problem solving and to

catch errors before they do too much harm. This is especially important if the

problem solver is not the only actor in the problem solver's environment and
if the environment can change in unpredictable ways. Consider the example

of a roving vehicle on a distant planet: It must be able to plan a route

and then replan if it finds that the state of the world is not as it expected.

Feedback about the state of the world is compared with what is predicted by

the plan, which can then be modified in the event of discrepancies. This topic

is discussed more fully in Sacerdoti (1975). The benefits of planning can be

summarized as reducing search, resolving goal conflicts, and providing a basis

for error recovery. These will be discussed in detail in the remainder of this

chapter.

Approaches to Planning

Four distinct approaches to planning are discussed in this volume. They

are nonhierarchical planning, hierarchical planning, script-based planning,
and opportunistic planning. Here we must resolve a confusing ambiguity

in the word hierarchical. The vast majority of plans have nested subgoal

structures — hierarchical structures — as shown in Figure A-l. However, the

word has another interpretation, one that provides the basis for distinguish-

ing hierarchical from nonhierarchical planning. The distinction is that hierar-
chical planners generate a hierarchy of representations of a plan in which

the highest is a simplification, or abstraction, of the plan and the lowest

Plan for the day

morning subplan lunch subplan afternoon subplan

go to work read article eat sandwich read write go home

buy

gas

drive find quiet

place to work

buy sandwich

get
paper

find
a free

terminal

drive

get cash

go to bank

Figure A-l. Plan for a day, illustrating the hierarchical structure of sub-

plans.

A Overview 517

is a detailed plan, sufficient to solve the problem. In contrast, nonhierar-
chical planners have only one representation of a plan. Both kinds of plan-

ners generate plans with hierarchical subgoal structures, but only hierarchical
planners utilize a hierarchy of representations of the plan. This distinction is

discussed further in Article XV.B, in which STRIPS (a nonhierarchical planner)
and ABSTRIPS (the hierarchical extension of STRIPS) are compared.

Nonhierarchical planning corresponds roughly to the colloquial meaning

of planning; that is, a nonhierarchical planner develops a sequence of problem-
solving actions to achieve each of its goals. It may reduce goals to simpler

ones, or it may use means-ends analysis to reduce the differences between
the current state of the world and that would hold after the problem has

been solved. Examples of nonhierarchical planners are STRIPS (Article XV.B),
HACKER (Article XV.C), and INTERPLAN (also in Article XV.C).

The major disadvantage of nonhierarchical planning is that it does not

distinguish between problem-solving actions that are critical to the success
of a plan and those that are simply details. As a result, plans developed by
nonhierarchical planners get bogged down in unimportant details. In any plan
there are levels of detail that are too picky or too vague and a level of detail

that is appropriate for the problem; for example, a too-detailed plan for dinner
starts with Go to the table, sit down, unfold the napkin, pour a glass of water,

find matches, light the candles ... A too- vague plan is Sit down somewhere,
have food. Planning with too many details is a waste of effort, but plans that

are too vague do not specify which problem-solving operators should be used;
a balance between these extremes is necessary for efficient planning.

To this end, the method of hierarchical planning has been implemented
in a number of planning systems. The method is first to sketch a plan
that is complete but too vague and then to refine the vague parts of the
plan into more detailed subplans until finally the plan has been refined to a

complete sequence of detailed problem-solving operators. The advantage of
this approach is that the plan is first developed at a level at which the details
are not computationally overwhelming.

Hierarchical planning also takes several forms in these systems. One

approach, typified by the ABSTRIPS program (Article II.D6, in Vol. I), is to
determine which subgoals are critical to the success of the plan and to ignore,
at least initially, all others. (In ABSTRIPS, a detail is a subgoal for which a
subplan can be found if plans have been found to accomplish goals that are
not details.) For example, the problem of buying a piano cannot be solved
unless two subgoals are accomplished, namely, Locate piano and Get money.
Thus, an initial plan for buying a piano might simply be Locate piano, get
money, buy piano. Subsequently, this plan can be refined with inessential
details, such as Drive to the store and Select piano. ABSTRIPS plans in a
hierarchy of abstraction spaces, the highest of which contains a plan devoid
of all unimportant details and the lowest of which contains a complete and

detailed sequence of problem-solving operators. The advantage of considering

518 Planning and Problem Solving XV

the critical subgoals before the details is that it reduces search: By ignoring
details, one effectively reduces the number of subgoals to be accomplished in
any given abstraction space.

Hierarchical planning was implemented in its earliest form by Newell and

Simon (1972, pp. 429-435) in their GPS model of theorem proving in logic. The
GPS approach was slightly different from that of ABSTRIPS. In ABSTRIPS,
a hierarchy of abstraction spaces is defined by treating some goals as more
important than others, while in GPS there was a single abstraction space
defined by treating one representation of the problem as more general than
others. GPS planned in an abstraction space defined by replacing all logical
connectives by a single abstract symbol. The original problem space defined

four logical connectives, but many problem-solving operators were applicable
to any connective. Thus, it could be treated as a detail and abstracted out of
the formulation of the problem. A problem could be solved in the abstraction

space, the space with only one connective, and the solution could be mapped

back into the original four-connective space.
Subsequent implementations of the hierarchical planning approach such

as NOAH (Article XV.Dl) and MOLGEN (Article XV.D2) are, again, slightly
different from either ABSTRIPS or GPS. ABSTRIPS abstracted critical goals,

and GPS abstracted a more general representation of an aspect of its prob-

lem space. NOAH abstracts problem-solving operators; it plans initially with
generalized operators that it later refines to problem-solving operators given
in its problem space. MOLGEN goes one step further, abstracting both the

operators and the objects in its problem space. In all cases, however, hierar-
chical planning involves defining and planning in one or more abstraction

spaces. A plan is first generated in the highest, most abstract space. This
constitutes the skeleton onto which details are fleshed out in lower abstraction

spaces. Hierarchical planning provides a means of ignoring the details that
obscure or complicate a solution to a problem.

A third approach to planning also makes use of skeleton plans but, un-
like hierarchical planning, these skeletons are recalled from a store of plans

instead of generated. This approach was adopted in one of the MOLGEN sys-
tems (Article XV.E). The stored plans contain the outlines for solving many

different kinds of problems. They range in detail from extremely specific plans
for common problems to very general plans for broad classes of problems.
The planning process proceeds in two steps: First a skeleton plan is found
that is applicable to the given problem and then the abstract steps in the

plan are filled in with problem-solving operators from the particular problem
context. This instantiation process involves large amounts of domain-specific

knowledge, often working through several levels of generality until a problem-
solving operator is found to accomplish each skeleton-plan step. If a suitable
instantiation is found for each abstracted step, the plan as a whole will be
successful.

A Overview 519

This approach has much in common with that of Schank and his col-

leagues (see Article IV.F6, in Vol. i). Their approach to natural-language
understanding is to use stored scripts (and other, more sophisticated struc-

tures) to provide top-down expectations about the course of a story.
A fourth approach to planning has been found by Hayes-Roth and Hayes-

Roth in human planning (see Article XI.C). It is described as opportunistic
and is characterized by a more flexible control strategy than is found in

the other approaches. The Hayes-Roths have adopted a blackboard control

structure to model human planning. The blackboard is a "clearinghouse"
for suggestions about plan steps, suggestions that are made by planning
specialists. Each specialist is designed to make a particular kind of planning
decision. Specialists do not operate in any particular order; the asynchrony
of planning decisions that are made only when there is reason to do so gives

rise to the term opportunistic. In the Hayes-Roths' model, and apparently
in human planning, the ordering of operators that characterizes a plan is

developed piecewise — the plan "grows out" from concrete clusters of problem-
solving operators.

Opportunistic planning includes a bottom-up component, since it is driven
by opportunities to include detailed problem-solving actions in the develop-

ing plan. It contrasts with the top-down refinement process characteristic
of hierarchical planning, in which detailed problem-solving actions are not
decided until the last possible moment in developing the plan. Another
difference between opportunistic planning and other forms is that it can

develop islands of planning actions — parts of a plan — independently, while
hierarchical planners try to develop an entire plan at each level of abstrac-

tion. (See Chap. V, in Vol. I, for a discussion of island driving in speech
understanding.)

The Hayes-Roths' model is discussed in Chapter XI, on models of cogni-
tion, since it is intended as a model of human planning abilities.

Search and the Problem of Interacting Subproblems

Two major, interrelated issues will keep reappearing in this chapter. They
are the problem of limiting search and the problem of interacting subproblems.

The problem of search is to find an ordering of problem-solving actions that
will achieve a goal when there are a huge number of orderings possible, most
of which will not achieve the goal. This problem has been called combinatorial

explosion, since the number of combinations of problem-solving operators
increases exponentially with the number of operators (see Chap. II, in Vol. i).
The problem of interacting subproblems arises whenever a problem has a
conjunctive goal, that is, more than one condition to be satisfied. The order
in which conjunctive goals are to be achieved is sometimes not specified in the
problem, but it can be critical to finding a solution. Sometimes interactions

520 Planning and Problem Solving XV

of this sort prevent any solution; for example, if a conjunctive goal is to paint
a ladder and paint a ceiling, the second goal must be achieved before the

first, because one cannot stand on a freshly painted ladder to paint a ceiling.
Unfortunately, this information is sometimes not given in the problem but
must be inferred.

The problem of search is related to the problem of interacting subproblems

because additional search results from premature commitment to an arbitrary

ordering of interacting subgoals. In the ladder example, a planner that arbi-
trarily decided to paint the ladder first would need to backtrack and change its

plan when it discovered it could not paint the ceiling. Backtracking involves
replanning from the choice point that failed, in this case, the choice between

painting the ceiling and painting the ladder. Backtracking can be very costly.
Interactions between subgoals have been called constraints (Stefik, 1980;

see also Article XV.D2). They can be inferred from the preconditions of
operators if the preconditions are explicit. For example, if the operator Paint
ceiling has several preconditions such as Have paint, Have brush, and Have
ladder, an intelligent planner will infer from these that painting the ladder
cannot precede painting the ceiling. A less intelligent planner may construct
a plan to paint the ladder first and then realize that it cannot continue; it
may then attempt to reorder its actions.

Some of the earliest planners generated initial plans that violated ordering
constraints and then tried to go back and fix the plan. They include HACKER,

INTERPLAN, and Waldinger's system, all discussed in Article XV. C. These
systems applied a powerful heuristic called the linear assumption, namely,
that

subgoals are independent and thus can be sequentially achieved in an arbi-
trary order. (Sussman, 1973, p. 59)

In a historical perspective, this can be seen to be an important heuristic.

The number of orderings of problem-solving operators is the factorial of the
number of operators, so it is obvious that a problem solver cannot successfully
examine all orderings in the hope of finding one that does not fail because of
interacting operators. The linear assumption says that in the absence of any
knowledge about orderings of operators, assume that one ordering is as good
as any other and then fix any interactions that emerge. The three programs
mentioned above all fix plans by reordering the component operators.

The linear assumption is used in cases where there is no a priori reason to
order one operator ahead of another. An alternative assumption is that it is
better not to order operators than to order them arbitrarily. This assumption

arises in slightly different forms in the NOAH planning system (Article XV.Dl)
and one of the MOLGEN systems (Article XV.D2). NOAH establishes partial

orders of problem-solving operators by considering their preconditions. For
example, it may know that the goal of buying coffee beans has the subgoals
Go to coffee store and Get money, but initially it does not commit itself to an

A Overview 521

ordering of these operators. However, when it expands each of these goals, it
notices that a precondition of getting money, Be at bank, interferes with the
goal of being at the coffee store; thus, it decides to get money before it goes
to the coffee store. NOAH orders operators only to eliminate problems that
might arise from picking an arbitrary ordering. MOLGEN also will not order
operators until constraints are available to guide it; furthermore, MOLGEN
avoids committing itself to using operators or objects without constraints
because premature commitment may conflict with other parts of its plan.

The least- commitment approach of NOAH and MOLGEN contrasts with
the linear assumption, which says, Commit yourself to any order of operators
and then fix it. This approach works because NOAH and MOLGEN are able
to infer constraints that hold between operators. An important aspect of the

approach is that it is constructive; since planning decisions are made only
when the planner is sure they will not interfere with past or future decisions,
the planner need never backtrack and undo a bad decision. In fact, both
of these planners do make bad decisions and can backtrack, but the major
research effort has been to avoid backtracking.

Interestingly, human planners do not always use the least-commitment
strategy and, consequently, they must sometimes backtrack. Humans oppor-

tunistically plan to execute an operator when it is convenient to do so. For
example, a human may plan to pick up groceries on the way to a football
game because it is convenient to do so. Later he (or she) will realize that the
groceries will wilt during the game and he will have to replan to avoid this.

Conclusion

We have discussed the structure of plans, concentrating especially on
the hierarchical relation between goals and subgoals. When problem solving
is discussed in terms of search, it becomes evident that, although finished

plans are usually linear or partial orders of problem- solving operators, the
search spaces in which the plans are developed are hierarchical. This is

because problem-solving operators have preconditions that are subproblems
with preconditions of their own, and so on. The term hierarchical was shown
to refer to two related concepts: Most plans have a hierarchical structure, but

only hierarchical planners use a hierarchy of abstraction spaces to develop a

plan.

We have introduced four approaches to planning: nonhierarchical plan-
ning as practiced by STRIPS and HACKER; hierarchical planning of the sort

done by ABSTRIPS, NOAH, and MOLGEN; script-based planning; and oppor-
tunistic planning. Most will be discussed in subsequent articles, although

opportunistic planning is covered in Chapter XI, on models of cognition.
Nonhierarchical planners are discussed in Article XV.C after a comparison
of hierarchical and nonhierarchical planning illustrated by ABSTRIPS and

522 Planning and Problem Solving XV

STRIPS in Article XV.B; NOAH is discussed in Article XV.D1; and the last two

articles are devoted to the MOLGEN systems (Articles XV.D2 and XV.E).
The major issue for any planning system is reducing search; instrumental

in this are methods for minimizing the effects of interacting subproblems.

In particular, the least-commitment approach that derives from hierarchical
planning is constructive, that is, it requires little or no backtracking.

References

Sacerdoti (1979) is an interesting overview and attempt to taxonomize

planning methods. Stefik's (1980) doctoral thesis discusses and compares
many planning systems and methods. The references mentioned in this article

are representative of the planning literature and provide a readable histori-
cal background; one important reference that was not mentioned earlier is

Bobrow and Raphael's (1974) review of AI programming languages. Planning
has received some attention in cognitive science, and human planning has been

examined in AI. References include Schank and Abelson's (1977) book on
scripts and plans, Feitelson and Stefik's (1977) study of human experiment-
planning, Friedland's (1979) doctoral dissertation on script-based planning,
and the research of Barbara and Frederick Hayes-Roth on opportunistic plan-

ning (Hayes-Roth, 1980).

B. STRIPS AND ABSTRIPS

HIERARCHICAL PLANNING in the context of the STRIPS and ABSTRIPS

planners is the subject of this article (see also Fikes and Nilsson, 1971; Fikes,
Hart, and Nilsson, 1972; Sacerdoti, 1974; Articles II.D5 and II.D6, in Vol. i).
The two systems are virtually identical except that STRIPS plans in a single
abstraction space while ABSTRIPS plans in a hierarchy of them. We present

here a single problem — getting a cup of coffee — and show how each of the
systems would solve it.

Let us first characterize a problem solver as a program that explores

the states that arise from the application of problem-solving operators in
search of one that qualifies as a solution to the problem. (Other characteriza-

tions of search in problem solving are possible; see Articles II.Bl and II.B2, in

Vol. I, for a discussion of state-space and problem-reduction search.) The first
state examined by a problem solver is the starting state, and if the problem
solver is successful, the last state examined will be the goal state.

Problem solvers have available a set of problem-solving operators and
objects. When problem-solving operators are executed, they bring about
changes in the state of the world. Consider now the problem of getting a
cup of coffee. You go to the kitchen and if coffee is made, you pour some. If
not, you make some or go out to buy some. If you decide to make some, but
there are no coffee beans or ground coffee, you go to the store to get some.
If you have no money, you go to the bank first. The relevant operators and
objects are:

Operator Object

Boil water boiling water
Pour X kitchen

Buy X coffee-bean store
Make coffee coffee beans

Go to X brewed-coffee store
Get money bank money

Each operator has preconditions that must be true before that operator can

be executed — for example, if there is no coffee to pour, you must make some.

Making a precondition true is a subproblem. Because problem- solving oper-
ators usually have preconditions, a developing plan usually has a hierarchical

structure.

The operators for this problem can be represented in such a way that
their preconditions and effects are explicit:

523

524 Planning and Problem Solving
XV

Operator

Pour coffee

Make coffee

Buy something

Go someplace

Get money

Boil water

Precondition

Have brewed coffee

Have beans

Have grinder
Have boiling water
Be in the kitchen

Be at store
Have money

Place exists

Be at bank

Be in the kitchen

Effect Problem solved

Have brewed coffee

Have something

Be at place
Not at any other place
Have money

Have boiling water

The starting state and goal state of the problem can be expressed in these
terms also:

Starting state

Not have brewed coffee
In kitchen

Have grinder
Have money

Have boiling water

Goal state

Have brewed coffee
In kitchen

Have grinder
Have money

Have boiling water

If a problem solver knows how each problem-solving operator changes the
state of the world and knows the preconditions for an operator to be executed,

it can apply a technique called means- ends analysis to solve problems (see
Article II.D2, in Vol. I, and Article XI.B). Briefly, this technique involves looking

for a difference between the current state of the world and a desired state and

trying to find a problem-solving operator that will reduce the difference. This
continues recursively until the desired state of the world has been achieved.

STRIPS and ABSTRIPS, and most other planners, use means-ends analysis.
The next few paragraphs illustrate how STRIPS might solve the problem

of getting a cup of coffee. First, it compares the starting state and the goal

state and immediately finds a difference: Have brewed coffee. So it looks for

an operator that has Have brewed coffee in its list of effects. It finds two: Make

coffee and Buy something, where something is instantiated with brewed coffee.

STRIPS must choose one of them; choosing the first makes the example more

interesting, so we will assume it does that.

To make coffee, the four preconditions of the Make coffee operator must

be fulfilled. STRIPS compares the current state of the world (the starting

state) with the first precondition and immediately finds a difference, Have

beans. Consequently, it goes back and tries to eliminate this difference by

searching for an operator that has as its effect Has beans. Only one operator

B STRIPS and ABSTRIPS 525

applies, namely, Buy something, where something is instantiated with beans.

Once again, STRIPS compares the preconditions of the proposed operator
with the current state of the world. It notes that the condition Be at store is

not satisfied, so it must repeat the search once again and find an operator that
will get it to the store. There is such an operator, Go to someplace, with the
single precondition that the place exist; since the store is one of the objects
available to STRIPS, the operator can be executed.

At this point, a plan for solving the problem would have the following
hierarchical structure:

(Pour coffee)

Preconditions :

Have brewed coffee

or

(Make coffee)

Preconditions :

Have beans , . . .

(Buy beans)
Preconditions :

Be at store, . . .

(Go to store)

Preconditions :

Store exists

True in world model

(Buy brewed coffee)
Preconditions :

Note that executing the operator Go to store changes one aspect of the state
of the world. The starting state is In the kitchen, but Go to store changes
this to At the store. This change satisfies one of the preconditions of the Buy
beans operator; STRIPS checks the other precondition, Have money. Since this
precondition is true in the current state of the world, STRIPS is free to execute

the Buy beans operator. Its execution fulfills the first precondition of the
Make coffee operator. Furthermore, STRIPS finds the next two preconditions,
Have grinder and Have boiling water, true in the current state of the world.
However, the last precondition, Be in kitchen, has been made false by going
to the store, so before making coffee, STRIPS must find an operator with
the effect of making Be in kitchen true again. This is simply Go to kitchen,

526 Planning and Problem Solving XV

and since it has no preconditions it is immediately applicable. Its execution
fulfills all the preconditions of Make coffee; consequently, that operator can
be executed, fulfilling the single precondition of Pour coffee and solving the

problem.
The final plan for getting coffee is, thus, Go to the store, buy beans, go to

the kitchen, make coffee, pour coffee.

Means-ends analysis is a powerful problem-solving method because it
reduces the amount of search done by a problem solver. At any point prior to

solving a problem, one or more goals must be satisfied. Means-ends analysis
recognizes only one type of goal, namely, to reduce a difference between

two states. Moreover, an assumption of the method is that problem- solving
operators can be classified according to the kinds of differences they reduce.
Consequently, only a fraction of the available operators will be applicable to
any given goal, and search among the operators for an applicable one will be
reduced.

Search and Backtracking

One difficulty with means-ends analysis is that it can still develop large
search spaces. Although it restricts the number of operators that apply to a
goal, there may still be several applicable operators and no a priori basis for
selecting one. Moreover, there is no way of knowing whether the subgoals of
an operator can be satisfied or whether their evaluation may eventually lead
to a dead end, that is, to a subgoal that cannot be satisfied. For example, if
the Go to someplace operator had a precondition Have car but no car existed,
all of the processing that led to that operator would have been in vain and
the problem solver would have had to backtrack to find an alternate path. In
the example above, the only other path involves trying to Buy brewed coffee,
and it, too, will fail for the same reason. In more complicated problems, one
might expect to find several alternative paths that might accomplish a given
subgoal, and a substantial amount of backtracking may be needed to solve
the problem. Backtracking can be very expensive, so recent planners have
been designed to avoid it as much as possible.

Backtracking arises from premature commitment to a problem-solving
path. As an illustration, consider again the problem of getting coffee. Assume
for a moment that the objects that are available to STRIPS are kitchen, bank,

coffee-bean store, brewed- coffee store. The grinder and the grinder store are
missing. To solve the problem, STRIPS builds a search tree, as shown in

Figure B-l.
Briefly, STRIPS would reason that to pour coffee, it must make some or

buy some. It opts to make some. To do so, it needs beans, for which it needs
money and a bean store. To get money, it must get to a bank, for which a
bank must exist. Since a bank does exist, STRIPS plans to go there and get
money. It then explores the possibility of going to a bean store; since such

STRIPS and ABSTRIPS 527

(Pour coffee)

Preconditions :

Have brewed coffee

or

(Make coffee)

Preconditions :

Have beans, Have grinder,

(Buy brewed coffee)
Preconditions :

(Buy beans)

Preconditions :

Have money, At bean store

(Buy grinder)
Preconditions :

Have money, At grinder store

(Get money)

Preconditions :

At bank

(Go to store)

Preconditions

Store exists

TRUE (Go to store)

Preconditions

Store exists

(Go to bank)

Preconditions

Bank exists

TRUE FALSE

TRUE

Figure B-l. A search tree for the problem of pouring coffee.

a store exists, STRIPS can go there. Both preconditions for buying beans
are fulfilled, so it plans to buy them and then goes on to consider the next
precondition of making coffee, which is having a grinder. Since it does not

! have one, it decides to buy one, for which the preconditions are having money
and being at a grinder store. It has money from its previous visit to the bank,

I so it plans to go to the grinder store. Unfortunately, no such store exists.

All of this processing has been in vain — STRIPS cannot possibly make coffee.
Its only option is to backtrack to a choice point in the plan and try another
path. In this case, it can try to buy some brewed coffee. This part of the plan

is not illustrated, but it will succeed since a brewed-coffee store exists.
Part of the expense of backtracking in the previous example derives from

planning several operations that are actually unimportant details. Intuitively,
one would expect STRIPS to have checked much earlier in the plan to see
whether a grinder store existed. Similarly, if STRIPS knew that certain stores

528 Planning and Problem Solving XV

existed, it should not have worried about how to get to them until later in
the plan; getting to places seems like a detail. One would expect a planner
first to plan to do all the important steps in a plan and then to fill in the
less important ones after it has sketched out the others. In fact, this method
is called hierarchical planning; the first planner to use it was an extension of
STRIPS called ABSTRIPS. We will now briefly describe how it works.

ABSTRIPS plans in a hierarchy of abstraction spaces. An ABSTRIPS
abstraction space contains all of the objects and operators given in the initial

specification of the problem (called the ground space), but some preconditions
of some operators are judged to be more important than others. For example,
Have boiling water seems like an unimportant precondition of making coffee
because it is so easy to accomplish. Other preconditions such as Grinder
store exists seem very important, because if they are not true in the ground
space, there is no operator that the problem solver can execute to make them
true. Preconditions are assigned importance levels, called criticalities. When
ABSTRIPS starts planning, it plans to achieve only those preconditions that

have the maximum criticality — just those preconditions that are critical to
the success of the plan. It plans in the highest abstraction space. Next, it

plans to achieve the preconditions of the steps in its high-level plan that have
the next criticality level, and so on, until all the preconditions in a plan have
been achieved.

The first step in this process is assigning criticalities. The method used
in ABSTRIPS is for a human to draw up a partial ordering of preconditions

by intuitively judging their importance; then ABSTRIPS follows an algorithm
to adjust the criticalities further. One might guess that the most important
precondition is that a place exist, since if it does not, operators that depend
on its existence cannot be used in a plan. One might judge having something
as the next most important precondition and being somewhere the least
important:

Precondition Intuitive criticality

Place exists 3
Have something 2
Be somewhere 1

ABSTRIPS adjusts these criticalities as follows: All preconditions whose

truth values cannot be changed by any operator are given a maximum criti-
cality. For each of the other preconditions, if a short plan can be found to

achieve it — assuming the previous preconditions are true — it is assumed to be
a detail and is given a criticality equal to that specified in the partial ordering.
If no such plan can be found, it is given a criticality greater than the highest
one in the partial order.

The preconditions Bank exists, Bean store exists, and Brewed-coffee store
exists are all assigned a maximum value, say, 5, because their truth cannot be

B STRIPS and ABSTRIPS 529

changed by any operator. The four Have something preconditions are Have
beans, Have grinder, Have boiling water, and Have money; three of them
can be achieved by a short plan, given that the previous preconditions are
true. For example, given that the bank exists, a short plan can be found to
achieve the precondition Have money. These three preconditions are therefore

assigned their partial-order rank of 2, and the fourth, Have grinder, which
cannot be achieved by a simple plan because no grinder store exists, is given

the rank of 4, higher than any partial-order rank. Lastly, the Be somewhere
preconditions are ranked, and since they can all be achieved by simple plans,

they are assigned their partial-order rank of 1:

Precondition Criticality

Bean store exists 5
Brewed- coffee store exists 5
Bank exists 5
Have grinder 4
Have beans, boiling water, money 2
Be at brewed-coffee store, bean store, bank 1

ABSTRIPS now formulates a plan in an abstraction space of critical-
ity 5. This means that at this level, any precondition of an operator that has

a smaller criticality value is assumed to be true. At this level, ABSTRIPS finds
two plans to get coffee: Make coffee and Buy brewed coffee. It then expands
the Make coffee plan in an abstraction space of criticality 4, since the Have
grinder precondition emerges at this level. ABSTRIPS tries to find a subplan
for getting a grinder but cannot. Consequently, it recognizes immediately
that its level 5 plan to make coffee will fail. It backs up to level 5 again, picks

the alternative plan to buy brewed coffee, and pursues it. Figure B-2 shows
a trace of its operation in the five abstraction spaces.

In this trace, ABSTRIPS first plans to make coffee, but this plan fails in
the abstraction space of level 4. Thus, it backtracks to level 5 and plans to
buy brewed coffee. This plan is not expanded further until level 2, when the
precondition of having money becomes apparent. At level 1, a precondition
of getting money is found, namely, Be at bank, and a precondition of buying
coffee is found, namely, Be at store. ABSTRIPS plans to go to these places;
its final plan is Go to bank, get money, go to coffee store, buy brewed coffee.

ABSTRIPS solves problems with much less searching and backtracking
than STRIPS because it is a hierarchical planner. It generates a hierarchy

of plans in which the highest level plans are very sketchy and the lowest
level plans are detailed. Since a complete plan is formulated at each level
of abstraction before the next level is considered, ABSTRIPS can find dead

ends early, as it did with the problem of finding a coffee grinder. The details
of the other parts of the plan to make coffee, for example, boiling water and

530 Planning and Problem Solving

XV

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

(Make coffee)

No preconditions
of criticality 5

Preconditions :

Have grinder

(Buy grinder)
Preconditions :

Be at grinder store

(Go to grinder store)
Preconditions :

Grinder store exists

FALSE: return to level 5

(Get money)

Preconditions

Be at bank

(Go to bank)

(Buy brewed coffee)

No preconditions
of criticality 5

No preconditions
of criticality 4

No preconditions
of criticality 3

Preconditions :
Have money.

Be at coffee store

(Go to store)

Figure B-2. A trace of ABSTRIPS in five abstraction spaces.

buying beans, were never considered because ABSTRIPS quickly detected that
an important precondition of making coffee could not be satisfied.

References

STRIPS is discussed in Fikes and Nilsson (1971); in Fikes, Hart, and
Nilsson (1972); and in Article II.D5 in Volume I of the Handbook. ABSTRIPS
is discussed in Sacerdoti (1974) and in Article II. D6 (also in Vol. i).

C. NONHIERARCHICAL PLANNING

NONHIERARCHICAL approaches to planning order operations at a single level
of abstraction, in contrast to hierarchical planners, which develop entire plans
at multiple levels of abstraction. A nonhierarchical planner typically develops
a hierarchy of subgoals, but they are all at the same level of abstraction.

The systems discussed in this article are HACKER, INTERPLAN, and
the planner developed by Waldinger. They are three attempts to solve the

difficult planning task of achieving conjunctive subgoals that are not indepen-
dent. Many problems are formulated as a conjunction of goals; for example,

spring cleaning may involve sweeping, washing the floor, washing the windows,
beating the rug, and so on. However, these goals are not independent; they
cannot be achieved in an arbitrary order. Washing the floor before sweeping
is a doomed and grubby operation; a precondition of washing the floor is that
it be swept clean of loose dirt. Similarly, one should not beat the rug after
sweeping, because dragging a dusty rug outside will make the floor dirty and
ruin the effect of sweeping. In the terminology of this chapter, beating the rug
after sweeping would constitute a violation of a protected goal, the goal being
a freshly swept house. Similarly, achieving some goals can actually prevent
the accomplishment of others, as when washing the floor prevents one from
walking across it or using it for any other purpose until it is dry. To any
person with minimal housecleaning experience, it will be obvious how and

why spring-cleaning tasks must be ordered to avoid their mutual interference,
but simple planning programs do not have a priori knowledge about the order
in which goals should be accomplished. The problem for these planners is
to construct, in the absence of this knowledge, an efficient plan for achieving
conjunctive goals that are not independent.

The approach taken by HACKER and INTERPLAN is to formulate plans
that are flawed by interferences between subgoals and then to fix them by

reordering problem-solving operations in the plan. Waldinger 's system is more
constructive: Instead of reordering operations in a flawed plan, it develops
the plan by inserting operations one by one, checking each for potential
interference with established operations.

HACKER and INTERPLAN apply a simplifying heuristic called the linear
assumption to restrict the number of goal orderings that it considers. It was
originally formulated by Sussman (1973) in these terms:

Subgoals are independent and thus can be sequentially achieved in an arbi-
trary order, (p. 59)

531

532 Planning and Problem Solving XV

Of course, this assumption is false for many problems, but it does avoid
the problem of searching for an ordering of subgoals in which none interferes.

The search space of orderings can be enormous, since it grows with the fac-
torial of the number of subgoals in a plan; for example, there are over 3 million

distinct orders in which 10 conjunctive subgoals can be achieved. The linear
assumption commits the planner to an arbitrary ordering of subgoals rather

than searching for an optimal one and, in the event that the ordering is sub-

optimal, the planner tries to fix it. (For an alternative, least- commitment,
approach, see the following two articles.)

HACKER

HACKER was developed as a model of skill acquisition by Gerald Sussman
at M.I.T. Sussman defines skill as a set of procedures, each of which solves
a certain kind of problem from the domain of the skill. If a skill does not
include a procedure to solve a problem, a new procedure must be designed.
Typically, it implements old procedures as a means of achieving subgoals of

the new problem. New procedures can turn out to have "bugs" and not work
in all the situations for which they are designed, in which case they can be
patched to make them work. Often, bugs can be abstracted; that is, within
the domain of a skill there are common bugs that show up in many procedures.
One very general bug, the one addressed by all the systems in this article, is
found in cases in which conjunctive subgoals are to be achieved: Achieving one
subgoal may prevent the accomplishment of another. Sussman reasons that
this bug (and others) is so common that a model of skill acquisition should
know how to debug the procedures it designs. HACKER is able to do so in
many cases.

Although HACKER was designed as a model of skill acquisition, it is
interesting in the context of planning because the procedures it develops for
solving problems are plans and because the debugging of plans was considered

a useful problem-solving technique. For the purposes of this chapter, we will
ignore what HACKER contributes to the subject of learning (for this, see
Article XTV\D5c) and concentrate on those aspects of skill acquisition that are
relevant to planning.

HACKER was written at a time when procedural representations of knowl-
edge were popular (see Chap. Ill, in Vol. I, on knowledge representation). One

result of this is that HACKER's various functions are difficult to separate.
Rather than explain their extensive interactions, the functions and the knowl-

edge that supports them are described here in general terms. Those of

immediate interest are the answer library, which contains problem-solving
procedures; the knowledge library, which contains facts about the domain;

the programming-techniques library, which is used to propose problem-solving
procedures when appropriate ones are not found in the answer library; and
several libraries of bugs and appropriate patches.

Nonhierarchical Planning 533

Problem solving in HACKER would be much like that in PLANNER (see
Article VIA, in Vol. Il) were it not for the need to debug plans. PLANNER had
only one mechanism for recovering from a flawed plan, namely, backtracking.
This was very expensive in terms of search time. In contrast, HACKER
proposes a plan and then corrects errors in it with programs that are experts
in debugging, rather than by backtracking to the point of failure in a plan

and blindly trying another problem-solving operation.
The bug that concerns us here is called prerequisite-clobbers-brother-goal

by Sussman; it arises from the linearity assumption. There are often interac-
tions between goals such that achieving the prerequisites for one goal prevents

the accomplishment of another. HACKER can solve some of these interaction

problems, but sometimes the solution is not optimal. A popular problem for

planners is shown in Figure C-l.
HACKER attempts to solve this problem by finding a procedure in its

answer library that matches the pattern of the goal: (MAKE (ON B C)) . It finds
a procedure that says,

(TO (MAKE (ON X Y))
(PUTON (X Y))) ;

that is, to get block B on block C, execute the simple procedure PUTON with
B and C as arguments. When it simulates the execution of this program, it
discovers that it fails, because A is on B. A bug in the proposed plan has been
found; HACKER now attempts to patch it up. First, a library of types of bugs

is consulted, from which HACKER concludes that the bug is a PREREQUISITE-
MISSING type. We will not go into the details of this classification. HACKER
knows that a prerequisite to one of its planned actions is missing, but it
does not know which prerequisite. In its knowledge library it finds several
potentially pertinent facts. One is

(FACT (PREREQUISITE (PUTON (X Y) (PLACE-FOR X Y)))) .

B

B

C

Figure C-l. A planning problem: Get block B from under A
and put it on block C.

534 Planning and Problem Solving
XV

That is, to put X on Y there must be a place on Y for X to rest. It
checks to see whether there is a place on C for B; since there is, this is not
the missing prerequisite. The next fact is more enlightening:

(FACT (PREREQUISITE (EXPRESSION (CLEARTOP OBJECT))
(HAVE 0 (MOVES EXPRESSION OBJECT)))) .

It says that a prerequisite for moving an object is that the object have a clear
top. Since A is stacked on B, this prerequisite is not met for B.

HACKER has discovered the identity of the bug that spoiled its initial
plan for getting B on C. It now uses this information to modify the plan,
applying general methods for fixing bugs that it has encountered before. One

such method says that, to patch a PREREQUISITE-MISSING bug, a procedure
for attaining the prerequisite should be inserted into the plan before the pre-

requisite is needed. The prerequisite to be achieved is (CLEARTOP B). HACKER

treats this as a subgoal and returns to the beginning of its problem-solving
cycle; it looks in the answer library for a procedure that will achieve the pre-

requisite. We will assume that this procedure exists; if it did not, HACKER

would construct it with the help of its programming-techniques library.
To summarize, HACKER solves problems by searching for a procedure

known to be appropriate for such problems. If it finds one but the procedure
does not achieve the goal as expected, the reasons for the failure are formalized
as bugs. Efforts are then initiated to debug the procedure. At any time during
problem solving, HACKER may be required to write procedures to achieve
certain goals. These are then tested and debugged exactly like procedures
found in the answer library.

There are problems for which HACKER cannot generate an optimal plan.

One such problem is shown in Figure C-2 and is discussed in the "Anomalous
Situations" chapter of Sussman's thesis (1973).

B

Figure C-2. A problem for which HACKER cannot provide
an optimal solution. The proper goal sequence is
(CLEAR A) , (ON B C) , (ON A B) .

C Nonhierarchical Planning 535

HACKER knows from previous experience that it is wise to build from the

ground up; therefore, for the problem in Figure C-2, it constructs a plan to

((ACHIEVE (ON B O)
(ACHIEVE (ON A B)))

But when it simulates execution of this plan, it notices that, after putting
B on C, it must take it off again, and take C off A, in order to clear A for
putting A on B. This constitutes a protection violation of the previously
achieved goal, namely, (ON B C). HACKER treats protection violations as
bugs; unfortunately, this one cannot be fixed simply by reordering its goals. If
HACKER tries to solve the problem by achieving (ON A B) and then (ON B C) ,
it finds that, after achieving (ON A B), another protection violation results
from trying to (CLEAR B) to put it on C. Regardless of the order in which
HACKER attempts to achieve the goals of the problem, a protection violation

occurs. The only alternative is suboptimal — to permit the violation and then
to achieve the violated goal again at a later time, for example, by putting
B on C, then taking it off again, taking C off A, putting B back on C, and

finally putting A on top.
When HACKER discovers a protection violation, it tries to reorder the

operations in its plan. However, it is limited to reordering operations at
one particular level of the plan; in the previous example it tried to reorder
the initial goals. To solve the problem, it is necessary to reorder goals at
different levels of the plan. HACKER need not reorder the goals (ON B C) and

(ON A B) , but it must achieve a subgoal of (ON A B) , namely, (CLEAR A) , before
it achieves (ON A B) . This kind of reordering of levels of goals is too subtle
for HACKER. However, another program called INTERPLAN does consider
these more complex reorderings.

INTERPLAN

INTERPLAN was developed by Austin Tate at the University of Edinburgh
in 1974. It employs a convenient declarative representation called a tick list
to allow protection violations to be detected easily and to give the system the
relevant information for recovery (Tate, 1975a). In the event of a protection
violation, INTERPLAN first tries the same reorderings as HACKER; namely,
goals are reordered at a single level of the subgoal hierarchy. But if this fails,
it considers more general reorderings. In particular, the subgoal at which
failure occurred is promoted, that is, moved before its superordinate goal, and
possibly before other goals as well.

The space of goal orderings considered by INTERPLAN is thus larger than
that considered by HACKER, but for this added effort it gains the ability to
optimize plans that HACKER could not optimize.

536 Planning and Problem Solving

XV

Consider the problem from Figure C-2. INTERPLAN initially proceeds
like HACKER:

Goal or action State

1.

2.

3.

4.
with st

1.

5.

6.

C

ACHIEVE (ON A B)
A B

ACHIEVE (CL A)

APPLY (Clear A)
C A B

A

APPLY (Puton A B)
C B

ACHIEVE (ON B C)

ACHIEVE (CL B)

APPLY (Clear B)
A B C

* (1) Protection violation ,ate 3 : Reorder

c

ACHIEVE (ON B C)
A B

B

C

APPLY (Puton B C)
A

ACHIEVE (ON A B)

ACHIEVE (CL A)

APPLY (Clear A)
A B C

* (2) Protection violation with state 5:

At this point in the problem, HACKER resigns itself to a suboptimal plan.
It has tried the two possible orderings of the goals (ON A B) and (ON B C),
and neither of them produces plans free of protection violations. In order to
solve the problem, a subgoal of one of the main goals must be achieved before

Nonhierarchical Planning 537

either of the main goals. HACKER is not capable of reordering goals between
levels, but INTERPLAN is. It decides to promote the subgoal that caused
the protection violation; it returns to the starting state of the problem and
immediately tries to achieve (CL A) :

Goal or action State

PROMOTE (CL A)

ACHIEVE (CL A) 1.
B

APPLY (Clear A)
A B C

ACHIEVE (ON B C)

APPLY (Puton B C)

B

ACHIEVE (ON A B)

APPLY (Puton A B)

* (3) Goal achieved

Subgoal promotion is thus a useful method for reordering goals when they
interfere with each other. The method and the tick-list data-structure that

facilitates it are discussed in detail in Tate (1975b).

Goal Regression

HACKER and INTERPLAN backtrack when they find a protection viola-
tion; they reorder a couple of goals and then start planning to achieve them

in the new order. For simple problems like the previous example, this method
will suffice, but if there are several conjunctive goals, and many or most
goal orderings produce subgoal interactions, the method is very inefficient.
Moreover, when these planners reorder their goals, all goals affected by the
reordering must be achieved again. This can lead to the same solution being

achieved for a subgoal a number of times because superordinate goals inter-
acted with each other.

538 Planning and Problem Solving
XV

An alternative approach is to construct a plan by solving one conjunctive
subgoal at a time, checking that each solution does not interfere with other
goals that have already been achieved and moving the offending goal to a
different place in the plan if it does. A planner that works this way was
developed by Richard Waldinger (1977). He introduced the concept of goal
regression to handle interference between goals.

At any point in a plan a goal may have been achieved, but after another
step it may have been violated. This was illustrated earlier in the problem

in Figure C-2; after (ON B C) had been achieved, it was violated to achieve
(CLEAR A) . Waldinger noted that for any goal G and operation 0, there is no

guarantee that G will be true after 0, but that a new goal G' can be found
such that if G' holds before 0, G will hold after O. Finding this new goal G'
is goal regression, or passing the goal back over the operator. Goal regression
can be used to guarantee that goals that have been achieved are not violated
by subsequent operations. The basic planning algorithm is to achieve the
first of the conjunctive subgoals of the problem and then expand the plan by
regressing subsequent subgoals from the end of the plan to a point in the plan
where their accomplishment will not violate those previously achieved.

Consider again the three-blocks problem. Waldinger's system can solve
the problem regardless of the order in which it approaches the subgoals, but
we will illustrate it planning to achieve (ON A B) before (ON B C) . First, the
system removes block C from atop A in order to clear A. The plan looks like
this:

Goal or action State

1.
A B

ACHIEVE (ON A B)

(Clear A) 2.
c A B

Now the system puts A on B:

(Put A on B)

3.

C B

The plan consists of two actions, (Clear A) , (Put A on B) . The system
now attempts its second goal, appending it to the end of the plan. However, it
finds that achieving one of its preconditions, (Clear B) , violates the protected
relation A is on B. Rather than reordering the conjunctive goals of the plan,

Nonhierarchical Planning 539

as HACKER and INTERPLAN do, the system simply passes the offending goal
back over previously achieved subgoals until it finds a place in the plan where
the goal will not interfere with any others. In this case, the goal (ON B C) is
moved in front of the action (Put A on B) . The plan now looks like this:

Goal or action State

ACHIEVE (ON A B)

(Clear A)

ACHIEVE (ON B C)

(Put B on C)

1.

2.

3.

c

A B

C A B

B

C A

A

B

C
(Put A on B)

When a proposed operator causes a protection violation, an attempt is
made to insert it at earlier points in the plan, checking to see whether the
interaction is avoided and to see that no new protection violations occur.

However, the choice of where to insert the new operator is not guided by
any information. It involves simply searching back in the plan and checking

at each position to see if it is suitable. Waldinger's system does not check
whether a later step is made redundant by the insertion of the operator, so a
less than optimal plan may be produced.

The main advantage of Waldinger's approach is that it is constructive:
Plan steps are added one by one, and the only difficulty is finding out where
they should go in the plan. This can involve a considerable amount of
searching, but it avoids the inefficient repeated achieving of subgoals that
HACKER and INTERPLAN must do after reordering.

Conclusion

We have discussed here three nonhierarchical approaches to planning:

HACKER, INTERPLAN, and Waldinger's system. Each suffers from interacting

540 Planning and Problem Solving XV

subproblems; the first two systems are forced to backtrack and reorder sub-

goals, and Waldinger's system, though it avoids backtracking by constructive
goal regression, must evaluate the consequences of putting a subgoal at a
proposed place in a plan. In the remaining articles of this chapter, we will

consider hierarchical and script-based planning as alternatives to nonhierar-
chical planning.

References

HACKER is discussed in Sussman's doctoral thesis (1973; also Sussman,
1975). INTERPLAN is discussed in Tate's thesis (1975b), although his IJCAI
article (1975a) is more accessible. See Waldinger (1977) for a presentation of
his system.

D. HIERARCHICAL PLANNERS

Dl. NOAH

IN NOAH, Earl Sacerdoti made some significant advances in problem solving
and planning. NOAH (Nets of Action Hierarchies) was designed as part of the

Computer-based Consultant project at SRI International, Inc., around 1975
(see Article VII.D2, in Vol. II). It uses a representation for plans called the
procedural net, which has a richer structure than previous problem solvers. In
contrast to these earlier efforts, the procedural net represents both procedural
and declarative knowledge about problem solving. The procedural knowledge
(also called domain knowledge) includes functions that expand statements of
goals into subgoals and that simulate the actions of operators that transform
one state into another. Declarative, or plan, knowledge represents the effects
of executing these functions; for example, if a procedure is executed that puts
one block on top of another, NOAH records that the supporting block no
longer has a clear top surface. Because the effects of actions are represented
explicitly, NOAH can reason about them. In fact, NOAH employs a set of
procedures called critics that are sensitive to those effects of actions that
would jeopardize the success of the plan. Critics are used to detect and correct
interactions, eliminate redundant operations, and so forth.

Problem solving in NOAH is accomplished by developing the procedural
net. From a single node that represents the goal to be achieved, a hierarchy
of nodes is developed that represents levels of subgoals to be achieved before
the original goal can be accomplished. The original goal node contains a
pointer to a set of functions that expand goals into subgoals. When one
or more of these functions are executed, subgoal nodes are added to the

procedural net. They are linked to the original goal — their parent — and to
each other, and, like their parent, they contain pointers to functions that
expand goals to subgoals. In addition, the nodes representing the subgoals
include a declarative representation of the effects, if any, of executing the
functions.

After the original goal node has been expanded, there are two levels of
representation of the problem, the first of which is the goal node. The second
is a series of subgoals that, when achieved, will have the effect of achieving
the original goal. These nodes are themselves expanded as their parent was.
NOAH continues to add nodes to the procedural net that are more specific
versions of the goals represented by their parents. Eventually, the original goal
of the problem is replaced by several levels of more detailed goals and, finally,

541

542 Planning and Problem Solving XV

by a level of goals that can be immediately attained by simple problem-solving
operators.

Thus, NOAH plans by developing a hierarchy of subgoals. These will

sometimes be called abstract operators. A distinction is made here, as else-

where in this chapter, between the simple problem-solving operators specified
in the problem space and abstract operators that will eventually be expanded

to problem-solving operators. Abstract operators are goals, and their expan-
sions are subgoals, in the sense that such operators specify abstract actions

that the planner would like to execute but that it cannot execute until they

are expanded to subgoals attainable by problem-solving operators.
In addition to abstract and problem-solving operators, NOAH has plan-
ning actions. These include the functions that expand goals into subgoals and

the actions of various critics. They are not part of the emerging plan but,
rather, are the actions by which NOAH develops the plan.

Note that whenever NOAH expands a goal to subgoals, it runs the risk
of creating interacting subproblems (see Article XV.C). This problem arises
when a planner commits itself to an arbitrary order for achieving conjunctive
goals. NOAH avoids the problem in two ways: first, by not ordering subgoals
until there is some reason to do so and, second, by continually examining
the developing plan for potential subgoal interactions and correcting them

before they arise. This allows NOAH to solve interaction problems construc-
tively: Operators are not ordered until a potential interaction is detected, and

then they are ordered to avoid the interaction. This contrasts with the plan-
ners in the previous article; those planners ordered operators arbitrarily, and,

if an interaction emerged, they backtracked and replanned to try to avoid

the interaction. These planners are said to overconstrain a plan by commit-
ting themselves to orderings arbitrarily; NOAH is said to under constrain a

developing plan by not committing itself to any orderings except to avoid an
interaction.

Application

NOAH was applied in the domain of assembly tasks, and it proved useful
and powerful. It provided instructions to a human apprentice, who then

carried out NOAH's plan. The procedural net was well suited to this task,
because it allowed a plan to be specified at any of several levels of detail;
for example, NOAH could instruct a trained engineer to bolt the mounting

bracket to the frame — a high-level instruction — but it could tell a novice how
to accomplish this goal in detail if necessary. The procedural net also made it
easier to monitor the execution of the plan. If an unexpected situation arose,
NOAH could replan by patching the procedural net. The building of the plan
was kept distinct from its execution, but control could pass from the planner
to the execution monitor at any stage.

Dl NOAH 543

The Structure of the Procedural Net

The procedural net contains several levels of representation of a plan, each
level more detailed than the previous one. Each consists of a partially ordered
sequence of nodes that represent goals at some level of abstraction. To avoid
overconstraining the order in which goals are achieved, NOAH assumes they
can be attained in parallel until it has some reason to put one before or after
another.

Each node in the procedural net is attached to its more detailed expansion
in the next level; for example, the node representing the abstract goal Make
coffee may be expanded to a handful of more detailed goals, such as Grind
coffee, Boil water, Put the coffee in a filter, Pour the water through it NOAH
will not commit itself to any particular ordering of these operators until it
has reason to do so.

The statement of the problem goal is the top-level node, representing a
plan at a very high level. A simple example of the structure of the net with

two levels is given in Figure Dl-1. The S and J nodes represent split and join,
respectively; they are dummy nodes that bound actions that are assumed to
be executable in parallel. NOAH uses this formalism to represent operations
for which it has not chosen an ordering.

NOAH expands a single goal node in the procedural net into a hierarchy
of plans at various levels of abstraction. To do this, it uses procedures that
expand abstract operators into more detailed ones. Much domain knowledge
is implicit in these procedures; for example, one such procedure might be:

// the abstract operator is (MAKE COFFEE) ,
then expand it to the operators (BOIL WATER) , (GRIND COFFEE) ,

(PUT COFFEE IN FILTER), (POUR WATER THROUGH).

The problem that NOAH is to solve determines what knowledge will be
represented in these procedures; the preceding procedure may be appropriate

Level 1: Achieve (ON A B)

(CLEAR A)

1 L
Level 2:

A T
Put A on B

(CLEAR B)

Figure Dl-1. An action hierarchy (in a blocks world).

544 Planning and Problem Solving XV

for the coffee domain but not for any other. Since these procedures contain so
much knowledge about the problem domain, they are called SOUP functions,
for Semantics of User Problem. They are written in an extension of QLISP.

Expanding the Procedural Net with SOUP Functions

Consider again the simple blocks- world action hierarchy in Figure Dl-1.
To achieve it, and to solve simple blocks problems, two SOUP functions are

required. One, shown in Figure Dl-2, expands any goal of the form (ACHIEVE
(ON X Y)) , and the other expands any goal of the form (CLEAR X) (these are
the only functions required). The main goal of the problem is associated with
both functions, since at the outset of the problem it is not known which will
apply. However, only (PUTON X Y) matches the pattern of the main goal, so

only it is applied. (See Article VI.A, in Vol. II, for a discussion of pattern-
directed invocation of procedures in PLANNER.)

Applying (PUTON X Y) to the main goal of the problem generates three
subgoals. The PGOAL forms the basis for constructing subgoals; when a PGOAL
is activated, a new node is generated at the next level in the net whose name

is the PGOAL's first argument, for example, (CLEAR X). The three PGOALs in
PUTON create the nodes (CLEAR A) , (CLEAR B) , and (Put A on B) . The first two

are conjunctive, as is specified by the "AND" in the function. NOAH does not
choose an order to attain them but assumes they may be attained in parallel
and thus surrounds them with split and join nodes.

The function (PUTON X Y) also specifies the effects of achieving these sub-
goals. The effects of applying CLEAR to X or Y is to assert CLEARTOP for that

(PUTON

(QLAMBDA (ON <-X <-Y)

(PAND
(PGOAL (Clear X)

(CLEARTOP X)
APPLY
(CLEAR))

(PGOAL (Clear Y)

(CLEARTOP Y)
APPLY
(CLEAR)))

(PGOAL (Put X on top of Y)
(ON X Y)
APPLY NIL)

(PDENY (CLEARTOP Y))))

Figure Dl-2. SOUP code for the blocks problem.

Dl NOAH 545

block, and the effect of putting X on Y is to DENY the assertion of (CLEARTOP Y) .
These effects are represented declaratively in the add list and delete list of a

node. The add list is a list of propositions that become true after the goal
is achieved, and the delete list represents the propositions that are no longer
true after the goal is achieved.

Finally, the SOUP function specifies which other SOUP functions should

be applied to expand the subgoals it has just created. It suggests that the
appropriate function for the subgoal of clearing A or B is CLEAR. It makes no
such suggestion for the third subgoal, Put A on B, because this goal can be

accomplished by a single problem-solving operator and need not be further
expanded. This mechanism increases the efficiency of problem solving and
helps to avoid backtracking. Several SOUP functions might apply to a node
in the procedural net, but the parent of the node can specify, at the time
the node is created, which function is to be used to expand it. This reduces
search. (However, the user may explicitly cause NOAH to consider alternatives
by using a POR function inside a SOUP procedure. In this case, alternative
expansions are generated in parallel until one is seen to be simpler than the
other.)

The Concept of "State" in NOAH

Problem solvers are typically regarded as searching through a space of
states for one that qualifies as a solution. One conception of a state in problem
solvers like STRIPS and GPS is that a state is a collection of propositions. New
states are generated from old ones by the application of operators; that is,
operators make some old propositions false and add new true propositions.
Eventually, and depending on the power of the problem solver, a state will be
generated that includes just the propositions required for the problem to be
solved.

NOAH can also be characterized in this way, but the knowledge that makes

up a state in NOAH is quite distributed. Some knowledge — that which will
never have its truth value changed — is represented in a world model. This
includes the state of the world that holds when problem solving starts. When
some aspect of that state is changed, the proposition describing it is removed
from the world model. The changed state of the world is represented by the
propositions added to the add list or delete list of the operator that changed

the state. Thus, NOAH knows which aspects of its world have not changed —
they are represented in the world model — and it distributes its records of
changes throughout the procedural net.

Changes are summarized at each level in the net by a table of multiple

effects (TOME), which contains an entry for every proposition that was asserted
or denied by more than one node at that level in the net. TOMEs are used
to check for interactions between goals; if a single proposition has its value
changed by more than one action in a plan, there is a possibility of interference
between the actions.

546 Planning and Problem Solving XV

NOAH uses programs called critics to check for interferences. A critic
simply checks a TOME for the kinds of conflicts it is designed to correct.

When a conflict is found, the critic has a limited number (usually only one)
of corrective actions it can take. If all of the critics can successfully eliminate
any conflicts found, the next level is expanded. There is presently only a
limited ability to backtrack on failure. Three critics are described here.

The RESOLVE-CONFLICTS critic. This examines conjunctive goals
that are to be achieved in parallel. If an action taken to achieve one goal
removes a precondition of an action in the other, the critic attempts to order
the actions so that neither violates a precondition of the other. This critic

is similar to the debugging procedure in HACKER for reordering conflicting
goals. The important difference is that HACKER backtracks and reorders
arbitrarily ordered operations, while this critic constructively orders goals
that were previously unordered.

The ELIMINATE-REDUNDANT-PRECONDITIONS critic. Sometimes
during planning, the same operation gets specified twice when it need be done
only once. This critic fixes the problem.

The USE-EXISTING-OBJECTS critic. Formal objects, essentially place-
holders, are used whenever there is not a clear choice of what value to give

a variable. This critic will substitute a value when a clear choice becomes

possible at a lower level of planning.
There are other critics in the system; some have a general purpose like

those above, while others are specifically designed for a given domain. More
can be added at any time. The critics described here are sufficient for the
following example.

Planning in NOAH

The planning algorithm of NOAH operates repeatedly on the current
lowest level of the procedural net. Initially, a node is constructed for the
goal NOAH is given as its task. All SOUP procedures are available to expand
this node; expanded nodes are associated with a much smaller set of SOUP
procedures by the procedure that generated them. Once all the nodes in the
current level have been expanded to produce a new level, critics check for
interactions before another level of expansion is tried.

An Example

This example shows NOAH solving the three-blocks problem that was so
difficult for the planners in the previous article.

NOAH's world model contains the propositions:
(ON C A)

(CLEARTOP B)

(CLEARTOP C)

Dl NOAH 547

This constitutes the starting state of the problem. The goal is also written as
a proposition:

(AND (ON A B) (ON B C)) .

Graphically, the starting state and the goal look like this:

C

B

The PUTON and CLEAR functions discussed earlier are used in this problem.
The first node in the procedural net is:

Level 1 : Achieve (AND (ON A B) (ON B C))

This is expanded to two parallel actions by merit of NOAH's policy about
conjunctive goals: They are not ordered until there is some reason to do so.

Level 2:

Achieve (ON A B)

Achieve (ON B C)

This is a simple expansion; the critics can find nothing to criticize about it.
The PUTON function is now used to expand each of the nodes at level 2. (Refer

back to Figs. Dl-1 and Dl-2 for an explanation of how this works.) The
result is shown in Figure Dl-3.

The RESOLVE-CONFLICTS critic notices that node 3 will delete a precon-
dition of node 6, namely, that B is clear (node 4), because node 3 adds a

statement to its delete list that DENYs (CLEARTOP B) . When a table of multiple
effects is compiled for this level, NOAH notices that (CLEARTOP B) is implicated
in the effects of both nodes 4 and 6. Since NOAH has not committed itself

to achieving any of its goals in a particular order, it need not backtrack to
modify its plan in any destructive way. Instead, it uses this conflict as an
opportunity to introduce constructively a partial ordering of goals: It decides

548 Planning and Problem Solving

XV

1 (CLEAR A)

2 (CLEAR B)

(CLEAR B)

(CLEAR C)

Put A on B

3

J Put B on C

Figure Dl-3. Level 3 before criticism, with nodes numbered for reference.

to accomplish node 3 after it has done everything else. Figure Dl-4 shows
this reordering.

Next, the REDUNDANT-PRECONDITIONS critic observes that nodes 2 and
4 are redundant and eliminates node 2. This step is shown in Figure Dl-5.

NOAH next expands the (CLEAR A) goal at level 3. Actually, that is the
only goal that remains to be expanded, since B and C have been clear from
the start of the problem, and the (Put X on Y) goals are achieved by simple

problem-solving operators. To achieve (CLEAR A), NOAH needs to move C
off of it and put C someplace; it does not know where, so it makes up a
placeholder. Block C cannot be moved unless it is clear, so the final sequence

1 (CLEAR A)

(CLEAR B)

4 (CLEAR B)

5 (CLEAR C)

Put A on B

Put B on C

Figure Dl-4. Level 3 after the RESOLVE-CONFLICTS criticism.

Dl NOAH 549

Figure Dl-5. Level 3 after all criticism.

that NOAH plans in order to clear A is (CLEAR C), (Put C on Objectl). This

is illustrated in Figure Dl-6.
NOAH notices that node 6 may interfere with its latest goal, so the

RESOLVE-CONFLICTS critic decides to order node 6 after it has achieved

(Put C on Objectl). See Figure Dl-7.
Finally, the ELIMINATE-REDUNDANT-PRECONDITIONS critic notices that

(CLEAR C) is mentioned twice in the plan. It eliminates one of the nodes. The

final plan is shown in Figure Dl-8.

Figure Dl-6. Level 4 before criticism.

550 Planning and Problem Solving

XV

Figure Dl-7. Level 4 after the RESOLVE-CONFLICTS criticism.

Conclusion

NOAH plans with a combination of procedural and declarative knowledge.

Initially, all NOAH's knowledge is in procedural form — local domain knowl-
edge in the SOUP code and global knowledge in the critics. At the outset of

planning, NOAH is given a world model and a goal that it develops into a

hierarchical procedural net. As it plans, it records in a declarative form — in
add lists and delete lists — knowledge to help it avoid interaction problems.
To reason about interactions and possible orderings of goals, this information
is summarized in a table of multiple effects. Critics consult these tables after
each level has been expanded; they order and alter the plan constructively.

References

NOAH is discussed in detail in Sacerdoti's doctoral dissertation (printed
as an SRI technical note, 1975). NOAH has been extended by Tate (1976), and
a distributed implementation is discussed by Corkill (1979).

(CLEAR C)
Put C on

Objectl

s J Put B on C Put Aon B

(CLEAR B)

Figure Dl-8. Level 4, final plan.

D2. MOLGEN

THE PREVIOUS articles have demonstrated the utility of problem-reduction

in planning — dividing a problem into subproblems that are more easily solved.
But problem reduction has an associated liability, namely, that subproblems
are rarely independent. Solving one may prevent solving another. A number
of approaches to this problem have been presented in the previous articles.

HACKER and INTERPLAN used destructive reordering of subgoals; Walding-

er's system employed a more constructive goal-regression method (see Article
XV.C). In NOAH (Article XV.Di), the conceptual leap was to avoid linear
orderings of subproblems as long as possible and to plan initially with abstract
goals that were refined in such a way as to avoid subproblem interactions.

In this article, we discuss the MOLGEN system — a knowledge- based pro-
gram that assists molecular geneticists in planning experiments. There are

actually two MOLGEN planners, one developed by Friedland (1979; see also

Article XV.E) and another, the one this article is about, by Stefik (1980).

MOLGEN extends the work on hierarchical planning to include a layered con-
trol structure for meta- planning. Plans are constructed in one layer, deci-

sions about the design of the plan are made in a higher layer, and strategies
that dictate the design decisions are made at a still higher level. A key idea
in MOLGEN is to represent the interactions between subproblems explicitly
and declaratively, so that MOLGEN can reason about them and use them to
guide its planning. The structure that represents an interaction is called a
constraint.

Levels of Planning

Control of planning in MOLGEN switches between three layers, or spaces.
The lowest layer, called the planning space, contains a hierarchy of operations

and objects typical in a gene-splicing experiment. At the lowest level of this
layer are bacteria, drugs, and laboratory operations, which are represented
by knowledge structures called units (Stefik, 1979); generalizations of these
include the general objects gene, organism, and plasmid and the general
laboratory operations merging, amplifying, reacting, and sorting. Initially,
MOLGEN plans experiments with these abstract objects and operators. As it
chooses specific operators or objects to replace the abstract ones, it introduces
constraints into its plan. For example, it plans at an abstract level to sort
two kinds of bacteria. At a later time, sort is replaced by screen, which sorts

bacteria by killing one group of them with an antibiotic. This decision results
in the constraint that the antibiotic be potent against one kind of bacterium
but not the other.

551

552 Planning and Problem Solving XV

The utility of hierarchical planning is illustrated by the preceding exam-
ple. It shows that although a planning decision to use a particular operation

affects later decisions about the kinds of objects to use, this interaction is
absent as long as the plan is formulated at an abstract level. Using hierarchical
planning, a complete, abstract plan is constructed without attention to these
interactions. Then, as steps in the plan are refined, the interactions that
arise are explicitly represented as constraints and are resolved. The act of
refining plan steps involves replacing an abstract operator with a more specific
one or replacing an abstract object with a more specific one. If hierarchical
planning were not used, every planning decision would introduce interactions;
each decision would affect the decisions following it. Early planners like
those discussed in Article XV.C produced initial plans that were crippled
by interactions and then attempted to reorder planning steps to alleviate
them. These planners were said to overconstrain their plans; in contrast,
MOLGEN and NOAH (see Article XV.Dl) produce under constrained plans and
add constraints constructively.

The middle layer at which MOLGEN plans is called the design space. At
this level, MOLGEN makes decisions about how its plan is to develop. The
operators of the design space dictate steps taken in the design of a plan, for
example, proposing a goal or refining an operator. The objects in this space
include goals and constraints. MOLGEN reasons about plans with the objects
and operators in the design space, just as it reasons about molecular genetics
with the objects and operators in the planning space.

The top layer of planning for MOLGEN, the strategy space, includes four
very general operators that dictate planning strategy. These are FOCUS and
RESUME, which together propose new planning steps and reactivate old ones

that have been "put on hold," and GUESS and UNDO, which make planning
decisions heuristically when there is not sufficient information to focus or to
resume. UNDO is a backtracking operator that undoes decisions that have
over constrained a plan. Much of the research effort in MOLGEN has gone
into avoiding backtracking by developing underconstrained plans, but in the
rare cases where a guess must be made about a plan step (e.g., choosing the
identity of a bacterium), the unforeseen constraints introduced by the choice
may force backtracking and a different choice.

Of the three layers of planning in MOLGEN, only the planning space is
unique to a domain, in this case, molecular genetics. The design and strategy
spaces contain objects and operators that apply to planning in any domain.

Control of Planning in MOLGEN

The three layers discussed above constitute a hierarchically organized con-
trol structure for MOLGEN. At the highest level, the strategy space, decisions

are made about the style of planning. Two styles are available, least com-
mitment and heuristic. During the least-commitment cycle, MOLGEN sends

D2 MOLGEN 553

a message to the design operators in the design space asking whether they
can suggest any tasks to do. Tasks include proposing a goal (after noticing
a difference between the current state and the goal state), refining an object
or an operator, and formulating a constraint. MOLGEN may fail to find a
task for which it has the constraints to proceed successfully; for example, it

may propose to refine an object — a bacterium — to a particular species of bac-
terium, but it may lack the guarantee that this refinement will not interfere

with later steps in the plan. In this case, it will suspend this step and look for
another. If MOLGEN cannot find any design steps to execute immediately, it
checks whether any previously suspended steps can be executed; information

may have become available since their suspension that justifies their reactiva-

tion. The least-commitment cycle oscillates between finding a planning step
to execute and reactivating suspended steps in the light of new information.
It is called least commitment because it will not commit itself to a plan step
that might have to be abandoned at some later point in the development of
the plan. If MOLGEN cannot find a plan step that satisfies the requirements

of the least-commitment cycle, it switches to the heuristic cycle in which it
guesses a plan step.

MOLGEN uses three kinds of operations on constraints. The first, called
constraint formulation, involves identifying interactions between solutions for
goals. Often the goals are to refine abstract objects or operators; for example,
the goal of sorting two kinds of bacteria is achieved by screening one of them
with an antibiotic. When this solution is proposed, a constraint is formulated,
saying that the choice of bacterium and antibiotic is now constrained by the
requirement that one kind of bacterium should be susceptible to the antibiotic.

The second operation with constraints is called constraint propagation.
This is the creation of new constraints from old ones, which helps refine
abstract parts of a plan. For example, the single constraint described above
reduces the number of bacteria or antibiotics that MOLGEN is considering,

because not all bacteria are susceptible to all antibiotics. Constraint propaga-
tion collects other constraints on the bacterium and antibiotic, formulated

perhaps in other parts of the plan. As a result of constraint propagation,

abstract plan steps that might have been refined in dozens of ways are con-
strained to have a relatively small number of potential refinements. Often,

individual subproblems are constrained to some extent, but not enough to nar-
row down the space of solutions significantly. However, when the individual

constraints on individual subproblems are propagated, the sum of the con-
straints often eliminates one or more solutions. For example, during a day,

a person may have two goals: to get some exercise and to get to school in a
short time for a class. The first problem, to get exercise, is constrained only
by the requirement that it is energetic; the second problem, to get to school,
is constrained only by the requirement that it take a short time. Propagating
these constraints leads to the obvious solution that one should run or ride a
bike to school.

554 Planning and Problem Solving XV

Following constraint formulation and propagation, MOLGEN seeks to
satisfy constraints. In the domain of molecular genetics, this often involves
replacing an abstract object with a particular one that satisfies the constraints
put on it. For example, it may involve replacing the object bacterium with
e. coli and replacing the object antibiotic with tetracycline. Whatever the
results of constraint satisfaction, it is facilitated by constraint formulation
and propagation, which together narrow down the space of refinements that
is considered for each subproblem.

The formulation-propagation-satisfaction cycle is a constructive process;
abstract parts of plans usually are refined only when there are constraints
specifying the refinement. The antithesis of this constructive cycle is found
in rare cases in which MOLGEN lacks the constraints needed to refine a plan
step. It guesses a refinement that may be shown at a later time to interfere
with other parts of the plan, in which case the refinement is abandoned for
another. This process is destructive, since it may involve throwing away old
planning decisions.

An Example

MOLGEN has been used to find plans for the rat-insulin experiment
(Stefik, 1980). Many organisms produce insulin that is biologically active
in humans but can sometimes cause allergic reactions. An alternative to
extracting insulin from the pancreas of animals is to design a bacterium that
produces insulin. No bacteria are known to produce insulin naturally, so one
must be created. To do this, the gene coding for insulin production in rats was
spliced into bacteria, altering the genetic makeup of the bacteria and causing
them to produce insulin. This experiment was done in 1977; it was selected
as a test case for MOLGEN, which successfully designed four different plans
for the experiment.

The major steps in the experiment involved finding a medium in which to
embed the insulin gene, allowing some bacteria to absorb this medium, killing
off the bacteria that did not absorb the medium, and growing the culture of

those that did. The plan is simple at this abstract level — that is the advantage
of hierarchical planning. The complete plan is actually quite complicated and
involves many constraints.

MOLGEN represents the goal of the experiment using the most abstract
objects it knows of. The goal is to obtain a culture with

ORGANISMS = (A Bacterium with

EX0S0MES = (A Vector with

GENES = (RAT-INSULIN))).

Planning in MOLGEN is driven by means-ends analysis, which is to say
that, at each step of the planning process, MOLGEN seeks operators that will

D2 MOLGEN 555

reduce the differences between the current state of the plan and its goal.
In this case, MOLGEN makes a very abstract plan to build, from available
objects, the organism specified in the goal. It plans two merges of objects

to achieve its goal. The first merge involves the insulin gene and a vector (a
medium for carrying the gene into the body of a bacterium), and the second
merge involves the results of the first merge and the bacterium:

Plasmid (a Vector) Rat-Insulin Gene

Merge

Bacterium (Object 1)

Merge

(Goal)

Next, MOLGEN refines the two abstract merges to more specific operations.
The second merge, by which a bacterium absorbs a plasmid carrying new
genes, corresponds to a laboratory step called a transformation. But MOLGEN
knows that not all plasmids are absorbed by all bacteria, so it formulates the
constraint that they be compatible. MOLGEN also knows that transformation
operators work by mixing plasmids and bacteria together in a solution and
that some bacteria will not absorb the plasmid. This leads to a difference
between the goal of the experiment and the state resulting from the plan: The
goal is to have a single culture of bacteria carrying a particular gene, but the
plan results in a culture of bacteria in which some bacteria do not carry the

gene.
Since planning is driven by differences between the current state and the

goal, MOLGEN tries to solve the problem of getting rid of the unwanted
bacteria. To do this, it proposes to sort the culture. Sort is an abstract
operator that is next refined to screening the bacteria with an antibiotic. Note
that the antibiotic is not specified because the bacterium is not. However, the
refinement of sort to screen results in two constraints: that the bacteria that

absorb the plasmid should resist the antibiotic and that the bacteria that do
not absorb the plasmid should perish from the antibiotic.

At this point, MOLGEN propagates the constraints about antibiotic resis-
tance. The result of the propagation is that both constraints on the bacteria

are replaced by a single constraint on the plasmid itself. The reasoning is
that, since the only difference between the two kinds of bacteria is that one
carries the plasmid, the plasmid itself must confer immunity to the antibiotic.
Notice that this reasoning does not change any of the plan steps that have

556 Planning and Problem Solving XV

already taken place, but it does constrain MOLGEN to include a resistance
gene for an antibiotic in the plasmid.

So far, MOLGEN has done a little bit of planning at an abstract level
and a lot of reasoning about how to refine the abstract plan into a detailed
one. It has proposed a merge of a gene and a plasmid, a transformation
of that result into two bacteria, and a screening of the bacteria to obtain
the desired one. The identities of the bacteria, the screening agent, the
resistance gene, and the plasmid that will carry the genes are unknown, but
MOLGEN knows some things about these objects in the form of constraints.
For example, the resistance gene and the antibiotic must be compatible, and
the plasmid must be compatible with the bacterium. As MOLGEN continues
to plan, particularly to plan how to insert the desired genes in a plasmid,
other constraints will be formulated.

Eventually, MOLGEN will be able to satisfy constraints. By then, it will
have refined the plan to a point where the only bacterium that it knows
will satisfy all the constraints is e. coli. Similarly, it will have found just
one method of inserting genes into a plasmid (though this was not done
through constraint propagation but because MOLGEN knows of only one such

method). It will have found two antibiotics — tetracycline and ampicillin — and
four plasmids that satisfy the constraints. Thus, it finds four solutions to the

rat-insulin problem.

MOLGEN's solution to the rat-insulin experiment was more complex than
the abbreviated version presented here. In all, a dozen constraints emerged
during the planning process. The development of the plan was complex,
requiring about 30 pages of printout to document.

Conclusion

We have seen that MOLGEN can develop a complex plan without ever

undoing a planning decision. Its least- commitment strategy dictates that it
defer decisions for which it lacks constraints, and, thus, it rarely commits
itself to a decision that it must later undo.

MOLGEN plans at different levels of abstraction, and it also works at

three levels of planning actions to accomplish meta- planning: At the highest
level it makes strategy decisions, at the middle level it makes design decisions,
and at the lowest level it decides how to instantiate its design.

References

Stefik's MOLGEN system is discussed in his doctoral dissertation (1980).

E. REFINEMENT OF SKELETAL PLANS

ONE WAY to develop methods for AI systems is to observe the methods
that humans use. Such an approach is typically taken by cognitive scien-

tists (see Chap. Xl) to develop models of cognition. This article describes a
molecular genetics (MOLGEN) planning system developed by Peter Friedland

after studying human experiment-planning behavior. The major observation
of the study was that scientists rarely invent from scratch the plan for an
experiment. Most often, they begin with an abstract, or skeletal, plan that
contains the basic steps. Then they instantiate each of the plan steps by
a method that will work within the environment of the particular problem.
Skeletal plans range from general to specific, depending on the experimenter
and the problem. This MOLGEN system is one of two such systems devel-

oped at Stanford University; the other, by Mark Stefik, is discussed in Article
XV.D2.

This article gives an example of skeletal plans in the laboratory and
discusses the implementation of the method in the MOLGEN system for the
design of experiments in molecular biology.

Two Examples of Analysis Experiments

As an introduction to the skeletal-plan method, two simplified and related
examples of analysis experiments in molecular biology are presented, namely,

DNA sequencing and restriction-site mapping. Both experiments involve simi-
lar sequences of actions; consequently, they are discussed as variants of a single

skeletal plan.

DNA sequencing: The problem. DNA is composed of a linear string
of molecules called bases. There are four possible bases, adenine, cytosine,
guanine, and thymine, usually abbreviated A, C, G, and T. The goal of a
sequencing experiment is to determine which of the four bases is present at
each position on the molecule. The base sequence is extremely important in
determining both the biological function and the physical structure of the
entire DNA molecule.

DNA sequencing: The solution. One of the best current experimental

plans for DNA sequencing, known as Maxam-Gilbert sequencing (Maxam and
Gilbert, 1974), is as follows:

1. Label one end of the molecule with radioactive phosphorus. This gives

the experimenter a "handle" for later locating pieces of the molecule
attached to the radioactive end. Radioactive-phosphorus labeling is the
current method of choice for end-labeling of DNA.

557

558 Planning and Problem Solving XV

2. Divide the sample into four portions. For each portion, apply a hydrazine-
based chemical reaction that cuts the molecule at a particular base.
Control the reaction so that, on the average, one base is cut per molecule.
Each of the four samples will then contain a population of molecules of
lengths determined by the base that was cut in that sample.

3. Determine the lengths of the molecules in each population with a labeled

end. This is done by a technique called acrylamide gel electrophoresis,

which is currently the most accurate method for the separation of mole-
cules by length.

For example, suppose the starting sequence was AGTTCGA. The sample
for which the molecule was cut at the A base would show labeled molecules

of lengths 0 and 6, the C sample would show molecules of length 4, the G

sample would show molecules of lengths 1 and 5, and the T sample would

show molecules of lengths 2 and 3. The sequence can now be "read" directly
from these lengths.

Restriction-site mapping: The problem. Restriction enzymes are
used to cut DNA molecules at specific locations. The locations are specified

by a pattern of four, five, or six bases called a restriction site. The goal of a

mapping experiment is to find all of the restriction sites for common enzymes

on a molecule. This information tells the molecular geneticist which enzymes

to use or not to use in a future experiment that requires restriction cutting.

Restriction- site mapping: The solution. One of the best current
methods (Smith and Birnsteil, 1976) is as follows:

1. Label the end with radioactive phosphorus as above.

2. Divide the sample into as many new samples as restriction enzymes for

which a map is desired. Then, for each sample, do a "partial digest" with
one restriction enzyme. This means to control the laboratory conditions

(temperature, pH, time of application) so that only one or two sites are
cut on the average molecule. As above, a population of molecules will
exist in each sample.

3. Determine the length of the labeled molecules by means of electrophore-
sis, as above. The length measurements will locate each of the restriction

sites for each enzyme tested.

The Skeletal Plan Refinement Method

Clearly, the two experiments described above are closely related. Each

had the goal of locating the position of a specific site — either a single base or

a string of bases — on the molecule. Each had the same design; they differed
only in the middle, cutting step. Both experiments sprang from the same
basic idea:

E Refinement of Skeletal Plans 559

1. Label one end of the molecule;

2. Cut with an agent that makes an average of one cut per molecule at the
sites that are being mapped;

3. Determine the length of the labeled fragments.

This is an abstracted or skeletal plan that is useful for locating any type of
site for which there is a suitable cutting agent.

The plan is transformed into an actual design for an experiment by

refining each step in the plan — by instantiating it with a method that will
actually work in the laboratory. The first and third steps of the experiments —

phosphorus labeling and gel electrophoresis — were chosen because they were
the best methods available. The choice of the second step was directed by the
specific choice of site to be mapped.

The idea here, again, is that scientists rarely invent an experimental
design from scratch. They find a strategy, a skeletal plan, that was useful
for some related experimental goal and then instantiate it with the proper
laboratory methods for their specific goal and laboratory conditions. The
skeletal plan may be very specific if the goal is similar to one for which a very
good experiment has already been designed. It may also be extremely general,
as was the plan in the example above.

Implementation in MOLGEN

The skeletal plan method is used successfully in the MOLGEN system.

Since the method depends heavily on domain knowledge, a well-organized,
expert knowledge base is the central part of the system. The Unit package

(Stefik, 1979) is used by domain experts to construct a knowledge base con-
taining both a selection of skeletal plans and the objective and procedural

knowledge necessary to instantiate the plans competently. The Unit package
permits the domain experts to describe such information in a language natural
to them as molecular biologists.

The two major steps in planning by incremental refinement of skele-
tal plans — plan selection and plan-step refinement — are described separately

below.

Choosing a skeletal plan. Skeletal plans are specified at many levels of
generality. At the most general level, there are only a few basic plans. These
are used as fallbacks when plans that are easier to refine and that are more
specific cannot be found. The problem is not just one of finding a plan that
might provide a satisfactory solution, but of finding a plan that will require
the least refinement work. Skeletal plan finding reduces to a simple lookup
when exactly the same problem has been solved before (even if this were done
with a completely different set of laboratory and molecular conditions), but
it becomes more difficult when only related problems have been solved. Then

560 Planning and Problem Solving XV

the task may be to decide whether to choose a detailed plan for a related
problem or to choose a more general plan for a class of problems.

The MOLGEN work has only begun to treat these problems of plan
selection. Plans are classified according to their perceived utility by molecular
geneticists. The specificity of the utilities (any given skeletal plan could have
many) is totally up to the experts. The knowledge base contains also a
taxonomy of goals in molecular biology. When a problem is described to the

planning system, a search is made of the skeletal-plan utilities to see if any
exactly match the experimental design goal. If several do, all are tried; if
none does, a more general goal is chosen from the taxonomy and the process
is repeated.

Refining the skeletal plan. Refinement of the skeletal plan is the

process of selecting an appropriate ground-level instantiation for each step
in the abstract plan. In the example above, the ground-level instantiation
of labeling was radioactive phosphorus. This refinement process is usually
hierarchical; a scientist might decide first on the method of cutting, then on
a cutting enzyme, and finally on a specific enzyme.

Knowledge about laboratory techniques is organized hierarchically in
MOLGEN. There were several broad classes of techniques, with as many
subclasses as are deemed natural by the domain experts. In all, about 400
different techniques are described in the knowledge base.

The MOLGEN system proceeds linearly through the steps of a selected
skeletal plan. The steps are matched to the techniques in the knowledge base

by name, synonym, or function of the step. A specific technique — as specific
as can be directly determined from the plan step — is chosen, and then the
instantiation process begins.

The knowledge to do the instantiation is stored in the form of an English-
like procedural language within the knowledge base. This knowledge repre-

sents three major criteria for plan-step instantiation. In order of priority of
application they are:

1. Will the technique, if successfully applied, carry out the specific goal of
the step; for example, will a separatory method not just do some sort of
separation, but also separate all circular DNA from all linear DNA?

2. If the technique satisfies the first criterion, can it be successfully applied
to the given molecule under the given laboratory conditions?

3. Is the technique the "best" of those that passed the first two tests?
This choice point, while in some sense the least important (since all
techniques that make it to this point will work), seems to be the hardest
for scientists to define. All the scientists studied gave somewhat different

metrics involving reliability, convenience, accuracy, cost, and time to
carry out the technique. The heuristic chosen as most representative

gave greatest weight to four-point scales of convenience and reliability
as an initial filter.

E Refinement of Skeletal Plans 561

This knowledge is used to proceed down a level in the technique hierarchy;
the process is repeated until an actual instance of a technique is chosen. At
higher levels of the hierarchy (i.e., with less refined plans), a premium is set
on achieving goals; but at lower levels of the hierarchy, a premium is set on
making plans efficient and elegant.

This strategy-finding process is common to many disciplines. In his

book How to Solve It, Polya (1957) describes "mobilizing" problem-solving
knowledge:

Many of these questions and suggestions aim directly at mobilization of our
formerly acquired knowledge: Have you seen it before? Or have you seen the
same problem in a slightly different form? Do you know a related problem? Do

you know a theorem that could be useful? (p. 159; italics in original)

The idea is to avoid reinventing general strategies and to use plan outlines
that have worked in the past on related problems.

Related Work

The concept of a skeletal plan for experimental design has a direct prece-

dent in Schank and Abelson's work in natural-language understanding (see
Article IV.F6, in Vol. i). They introduce scripts, declarative representations
of ordered sequences of events. The detailed knowledge contained in scripts
is used to understand, predict, and participate in events one has encountered
previously.

Schank and Abelson also introduce generalized scripts, called plans, that
explain events related to, but not exactly like, those the user has seen before.

"Plans are where scripts come from. . . . The difference is that scripts are

specific and plans are general" (Schank and Abelson, 1977, p. 72). In fact,
there is a continuum between scripts and plans in Schank and Abelson's
work: "There is a fine line between the point where scripts leave off and
plans begin When a script is available for satisfying a goal, it is chosen.

Otherwise a plan is chosen" (p. 77; see also Article IV.F6, in Vol. i).
The idea of abstracted plans is found also in the STRIPS planner (Fikes,

Hart, and Nilsson, 1972; see also Article II.D5, in Vol. i). This system param-
eterized successful plans in order to generalize them. The generalized plans

were called MACROPs (for macro-operators).
There are several distinctions between skeletal plan refinement and some

of the other methods discussed in this chapter — for example, Stefik's parallel
work on planning in molecular biology (see Article XV.D2). Other methods
emphasize building the initial abstract plan; this method assumes the initial
plan is already known and emphasizes the plan selection and instantiation
process. Other methods concentrate on the interaction of plan steps; this

method, in large part, considers plan steps to be sufficiently independent
that conflicts can be resolved by relatively minor subplans. Finally, other

562 Planning and Problem Solving XV

methods place relatively little emphasis on domain-specific expertise, whereas
such expertise is the heart of this planning method.

Conclusion

The reader may be surprised by the simplicity of the method of skeletal

plan refinement but should remember that it attempts to produce competent —

rather than wildly innovative — plans. It is based on the observation that
human scientists who know a lot about their domains, and who have flexible

cross-associations for choosing steps in an experiment, are usually good at
experimental design. There are very few totally new plan outlines discovered,
but many new plan instantiations.

References

A source for this article and a good discussion of this implementation of

MOLGEN is Friedland's doctoral dissertation (1979).

Bibliography

List of Abbreviations

AAAI American Association for Artificial Intelligence
ACM Association for Computing Machinery
AFEPS American Federation of Information Processing Societies
AMS American Mathematical Society

CACM Communications of the Association for Computing Machinery
IEEE Institute for Electrical and Electronic Engineers
IJCAI International Joint Conferences on AI

IJCPR International Joint Conferences on Pattern Recognition
IRE WESCON Western Conference of the Institute for Radio Engineers
SIGART ACM Special Interest Group on AI
SIGPLAN ACM Special Interest Group on Programming Languages

SPIE Society of Photo-Optical Instrumentation Engineers
TINLAP Workshops on Theoretical Issues in Natural Language Processing

BIBLIOGRAPHY

Abbott, R. 1977. The new Eleusis. Available from author: Box 1175, General Post
Office, New York, NY 10116.

Abelson, R. P. 1973. The structure of belief systems. In R. C. Schank and K. M.

Colby (Eds.), Computer models of thought and language. San Francisco: Freeman.

Abelson, R. P. 1979. Differences between belief and knowledge systems. Cognitive
Science 3:355-366.

Abelson, R. P., and Reich, C. M. 1969. Implicational molecules: A method for

extracting meaning from input sentences. IJCAI 1, 647-748.

Aggarwal, J. K., and Badler, N. 1980. Special issue on motion and time- varying
imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-
2:495-588.

Aggarwal, J. K., and Duda, R. O. 1975. Computer analysis of moving polygonal

images. IEEE Transactions on Computers C-24:966-976.

Agin, G. J., and Binford, T. O. 1973. Computer description of curved objects.

IJCAI 8, 629-640.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1974. The design and analysis of

computer algorithms. Reading, Mass.: Addison- Wesley.

Altschuler, M. D., Altschuler, T. B., and Taboada, J. 1981. A laser electro-optic

system for rapid 3-D topographic mapping of surface. MIPG51, Computer Science
Dept., State University of New York, Buffalo.

Amarel, S. 1968. On representations of problems of reasoning about actions. In

D. Michie (Ed.), Machine intelligence 3. New York: American Elsevier, 131-171.
Anderson, J. R. 1976. Language, memory, and thought. Hillsdale, N.J.: Lawrence

Erlbaum.

Anderson, J. R. 1977. Induction of augmented transition networks. Cognitive Science
1:125-157.

Anderson, J. R. 1980. On the merits of ACT and information-processing psychology:

A response to Wexler's review. Cognition 8:73-88.
Anderson, J. R., and Bower, G. H. 1973. Human associative memory. Washington,

D.C.: Winston.

Arnold, D. 1978. Local context in matching edges for stereo vision. Proceedings of

the Image Understanding Workshop, 65-72.

Baddeley, A. D. 1976. The psychology of memory. New York: Basic Books.

Badler, N. 1975. Temporal scene analysis: Conceptual descriptions of objects' move-
ments. Doctoral dissertation, Computer Science Dept., University of Toronto.

Badler, N., and Bajcsy, R. 1978. 3-D representations of computer graphics and

computer vision. Computer Graphics 12:153-160.

Badler, N., O'Rourke, J., and Tolzis, H. 1979. A spherical representation of a
human body for visualizing movement. Proceedings of the IEEE 67:1397-1403.

565

566 Bibliography

Baird, M. L. 1978. SIGHT-I: A computer vision system for automated chip manufac-

ture. IEEE Transactions on Systems, Man, and Cybernetics SMC-8(2): 133-139.

Bajcsy, R. 1973. Computer descriptions of textured surfaces. IJCAI S, 572-579.

Baker, H. 1980. Edge-based stereo correlation. Proceedings of the Image Understand-

ing Workshop, 168-175.
Ballantyne, A. M., and Bennett, W. 1973. Graphing methods for topological proofs.

Memo ATP-7, Mathematics Dept., University of Texas, Austin.

Ballantyne, A. M., and Bledsoe, W. W. 1975. Automatic proofs of theorems in

analysis using non-standard techniques. Memo ATP-23, Mathematics Dept., Uni-
versity of Texas, Austin. (Also in J. ACM, July, 1977.)

Ballantyne, A. M., and Lankford, D. 1979. New decision algorithms for finitely

presented commutative semigroups. Memo MTP-4, Mathematics Dept., Louisiana
Tech University.

Ballard, D. H. 1981. Parameter networks: Towards a theory of low-level vision.

IJCAI 7, 1068-1078.

Ballard, D. H., and Brown, C. M. 1982. Computer vision. Englewood Cliffs, N.J.:
Prentice-Hall.

Ballard, D. H., Brown, C. M., and Feldman, J. A. 1978. An approach to knowledge-
directed image analysis. In A. R. Hanson and E. M. Riseman (Eds.), Computer

vision systems. New York: Academic Press, 271-281.

Barnard, S. T., and Fischler, M. A. 1981. Computational stereo from an IU perspec-

tive. In Proceedings of the Image Understanding Workshop, 157-167.
Barnea, D. I., and Silverman, H. F. 1972. A class of algorithms for fast digital image

registration. IEEE Transactions on Computers C-21(12): 179-186.

Barr, A., Bennett, J., and Clancey, W. 1979. Transfer of expertise: A theme for

AI research. Rep. No. HPP-79-11, Heuristic Programming Project, Stanford Uni-
versity.

Barrow, H. G., et al. 1977. Interactive aids for cartography and photo interpreta-
tion. Proceedings of the Image Understanding Workshop, 111-127.

Barrow, H. G., and Popplestone, P. J. 1971. Relational descriptions in picture

processing. In B. Meltzer and D. Michie (Eds.), Machine intelligence 6. New York:

Elsevier, 377-396.

Barrow, H. G., and Tenenbaum, J. M. 1978. Recovering intrinsic scene characteris-
tics from images. In A. R. Hanson and E. M. Riseman (Eds.), Computer vision

systems. New York: Academic Press, 3-26.

Barrow, H. G., and Tenenbaum, J. M. 1979. Reconstructing smooth surfaces from

partial, noisy information. Proceedings of the Image Understanding Workshop, 76-86.

Bibel, W., and Schreiber, J. 1974. Proof search in a Gentzen-like system of first
order logic. Bericht Nr. 7412, Technische Universitat, Munich.

Biermann, A., and Feldman, J. 1970. On the synthesis of finite-state acceptors. AI
Memo 114, Computer Science Dept., Stanford University.

Biermann, A., and Feldman, J. 1972. A survey of results in grammatical inference.

In S. Watanabe (Ed.), Frontiers of pattern recognition. New York: Academic Press.

Black, F. 1968. A deductive question-answering system. In M. Minsky (Ed.), Seman-
tic information processing. Cambridge, Mass.: MIT Press, 354-402.

Bibliography 567

Bledsoe, W. W. 1971. Splitting and reduction heuristics in automatic theorem prov-
ing. Artificial Intelligence 2:55-77.

Bledsoe, W. W. 1974. The sup-inf method in Presburger arithmetic. Memo
ATP-18, Mathematics Dept., University of Texas, Austin.

Bledsoe, W. W. 1975. A new method for proving certain Presburger formulas.
IJCAIl 15-21.

Bledsoe, W. W. 1977. Non-resolution theorem proving. Artificial Intelligence 9:1-35.
Bledsoe, W. W., and Ballantyne, A. M. 1979. On automatic generation of counter-

examples, Memo ATP-44A, Mathematics Dept., University of Texas, Austin.
Bledsoe, W. W., Bruell, P., and Shostak, R. 1979. A prover for general inequalities.
Memo TPP-40A, Mathematics Dept., University of Texas, Austin.

Bledsoe, W. W., and Tyson, M. 1975. The UT interactive theorem prover. Memo

ATP-17, Mathematics Dept., University of Texas, Austin.

Bobrow, D. G. (Ed.). 1980. Special issue on non-monotonic logic. Artificial Intelli-
gence 13(1,2).

Bobrow, D. G., and Collins, A. 1975. Representation and understanding. New York:
Academic Press.

Bobrow, D. G., and Raphael, B. 1974. New programming languages for artificial
intelligence. Computing Surveys 6.

Bolles, R. C., et al. 1978. The SRI Road Expert. Proceedings of the Image Understand-
ing Workshop, 163-174.

Bolles, R. C., Kremers, J. H., and Cain, R. A. 1981. A simple sensor to gather

three-dimensional data. Tech. Note 249, SRI International, Inc., Menlo Park,
Calif.

Bourne, D. A. 1981. On automatically generating a program for real time computer
vision. IJCPR 5:759-764.

Bower, G. H. 1981. Mood and memory. American Psychologist 36:129-148.

Boyer, R. S. 1971. Locking: A restriction of resolution. Doctoral dissertation, Univer-
sity of Texas, Austin.

Boyer, R. S., and Moore, J. S. 1979. A computational logic. New York: Academic
Press.

Brachman, R. J. 1978. On the epistemological status of semantic networks. BBN
Rep. No. 3807, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Brice, C. R., and Fennema, C. L. 1970. Scene analysis using regions. Artificial

Intelligence 1:205-226.
Brodatz, P. 1966. Textures. New York: Dover.

Brooks, R. A. 1981a. Model-based three dimensional interpretations of two dimen-

sional images. IJCAI 7, 619-624.

Brooks, R. A. 1981b. Symbolic reasoning among 3-d objects and 2-d models. AI
Journal 16:285-348.

Brooks, R. A., Greiner, R., and Binford, T. 1978. Progress report on a model-based
vision system. In L. S. Baumann (Ed.), Proceedings of the Image Understanding

Workshop, 145-151.
Brown, R., and Hanlon, C. 1970. Derivational complexity and order of acquisition

in child speech. In J. Hayes (Ed.), Cognition and the development of language. New

York: Wiley, 11-53.

568 Bibliography

Buchanan, B. G., and Mitchell, T. M. 1978. Model-directed learning of production

rules. In D. A. Waterman and F. Hayes-Roth (Eds.), Pattern- directed inference
systems. New York: Academic Press, 297-312.

Buchanan, B. G., Mitchell, T. M., Smith, R. G., and Johnson, C. R., Jr. 1977.

Models of learning systems. In J. Belzer, A. G. Holzman, and A. Kent (Eds.),
Encyclopedia of computer science and technology (Vol. 11). New York: Marcel Dekker,
24-51.

Burstall, R. 1969. Proving properties of programs by structural induction. Computer

Journal 12(l):41-48.
Carnap, R. 1950. Logical foundations of probability. Chicago: University of Chicago

Press.

Chang, C, and Lee, R. C. 1973. Symbolic logic and mechanical theorem proving. New
York: Academic Press.

Cherry, C. 1970. On human communication. Cambridge, Mass.: MIT Press.

Chien, Y. P., and Fu, K. S. 1974. A decision function method for boundary detec-

tion. Computer Graphics and Image Processing 3:125-140.
Chomsky, N. 1957. Syntactic structures. The Hague: Mouton.

Chomsky, N. 1965. Aspects of the theory of syntax. Cambridge, Mass.: MIT Press.

Chow, W. K., and Aggarwal, J. K. 1977. Computer analysis of planar curvilinear

moving images. IEEE Transactions on Computers C-26: 179-185.

Clowes, M. B. 1971. On seeing things. Artificial Intelligence 2:79-116.
Colby, K. M. 1975. Artificial paranoia. New York: Pergamon.

Coleman, G. B., and Andrews, H. C. 1979. Image segmentation by clustering. Pro-

ceedings of the IEEE 67(5):773-785.

Collins, A. M. 1978. Fragments of a theory of human plausible reasoning. TINLAP-2,
194-201.

Collins, A. M., and Quillian, M. R. 1969. Retrieval time from semantic memory.

Journal of Verbal Learning and Verbal Behavior 8:240-247.
Collins, A. M., and Quillian, M. R. 1972. How to make a language user. In

E. Tulving and W. Donaldson (Eds.), Organization and memory. New York: Aca-
demic Press.

Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P. 1973. Un systeme de

communication homme-machine en francais. In Rapport, Groupe dlntelligence Arti-
ficielle, Universite dAix- Marseille, Luminy, France.

Conrad, C. 1972. Cognitive economy in semantic memory. Journal of Experimental

Psychology 92:149-154.
Cook, C. M., and Rosenfeld, A. 1976. Some experiments in grammatical inference.

In J. C. Simon (Ed.), Proceedings of the NATO Advanced Study Institute on Computer
Oriented Learning Processes. Leyden, The Netherlands: Noordhoff.

Corkill, D. D. 1979. Hierarchical planning in a distributed environment. IJCAI 6,
168-175.

Crowder, R. G. 1976. Principles of learning and memory. Hillsdale, N.J.: Lawrence
Erlbaum.

Dacey, R. 1978. A theory of conclusions. Philosophy of Science 45:563-574.

Date, C. J. 1977. An introduction to database systems (2nd ed.). Reading, Mass.:

Addison- Wesley.

Bibliography 569

Davis, L. S. 1975. A survey of edge detection techniques. Computer Graphics and
Image Processing 4:248-270.

Davis, L. S. 1976. Shape matching using relaxation techniques. Tech. Rep. TR-480,
Computer Science Center, University of Maryland.

Davis, R. 1976. Applications of meta level knowledge to the construction, main-

tenance, and use of large knowledge bases. Rep. No. STAN-CS-76-564, Computer
Science Dept., Stanford University. (Doctoral dissertation. Reprinted in R. Davis
and D. B. Lenat (Eds.). 1980. Knowledge based systems in artificial intelligence. New
York: McGraw-Hill.)

Davis, R. 1978. Knowledge acquisition in rule-based systems: Knowledge about
representations as a basis for system construction and maintenance. In D. A.

Waterman and F. Hayes-Roth (Eds.), Pattern- directed inference systems. New York:
Academic Press, 99-134.

de Kleer, J., et al. 1979. Explicit control of reasoning. In P. H. Winston and R. H.

Brown (Eds.), Artificial intelligence: An MIT perspective (Vol. 1). Cambridge, Mass.:
MIT Press, 93-116.

Dietterich, T. G. 1979. The methodology of knowledge layers for inducing descrip-

tions of sequentially ordered events. Rep. No. UIUC-DCS-80-1024, Computer
Science Dept., University of Illinois, Urbana.

Dietterich, T. G. 1980. Applying general induction methods to the card game
Eleusis. AAAI 1, 218-220.

Dietterich, T. G., and Michalski, R. S. 1979. Learning and generalization of charac-
teristic descriptions: Evaluation criteria and comparative review of selected meth-

ods. IJCAI6, 223-231.

Dietterich, T. G., and Michalski, R. S. 1981. Inductive learning of structural
descriptions: Evaluation criteria and comparative review of selected methods.

Artificial Intelligence 16:257-294.
Dietterich, T. G., and Michalski, R. S. In press. Discovering sequence generating

rules.

Dodd, G. G., and Rossel, L. (Eds.). 1979. Computer vision and sensor-based robots.
New York: Plenum.

Doyle, J. 1979. A truth maintenance system. Artificial Intelligence 12:231-272.
Doyle, J. 1980. A model for deliberation, action, and introspection. Tech. Rep.

AI-TR-581, AI Laboratory, Massachusetts Institute of Technology. (Doctoral
dissertation.)

Doyle, J., and London, P. 1980. A selected descriptor-induced bibliography to the
literature on belief revision. SIGART Newsletter 71:7-23.

Druffel, L. 1981. Summary of DARPA image understanding program. Proceedings of

SPIE — The International Society for Optical Engineering 281:2-10.
Duda, R. O., and Hart, P. E. 1973. Pattern classification and scene analysis. New

York: Wiley.

Duda, R. O., Nitzan, D., and Barrett, P. 1979. Use of range and reflectance data
to find planar surface regions. IEEE Transactions on Pattern Analysis and Machine

Intelligence PAMI-1: 259-271.
Ejiri, M., Uno, T., Mese, M., and Ikeda, S. 1973. 1973. A process for detecting

defects in complicated patterns. Computer Graphics and Image Processing 2:326-
339.

570 Bibliography

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. 1980. The
HEARSAY-II speech-understanding system: Integrating knowledge to resolve un-

certainty. Computing Surveys 12:2.

Ernst, G. W. 1971. The utility of independent subgoals in theorem proving. Infor-
mation and Control 18:237-252.

Ernst, G. W. 1973. A definition-driven theorem prover. IJCAI 3.

Evans, T. G. 1971. Grammatical inference techniques in pattern analysis. In J. T.

Tou (Ed.), Software engineering (Vol. 2). New York: Academic Press, 183-202.

Falk, G. 1972. Interpretation of imperfect line data as a three-dimensional scene.

Artificial Intelligence 3:101-144.
Faught, W. S. 1975. Affect as motivation for cognitive and conative processes.

IJCAI 4, 893-899.
Faught, W. S., Colby, K. M., and Parkinson, R. 1974. The interaction of inferences,

affects, and intentions, in a model of paranoia. Memo AIM 253, AI Laboratory,
Stanford University.

Feigenbaum, E. A. 1963. The simulation of verbal learning behaviour. In E. A.

Feigenbaum and J. Feldman (Eds.), Computers and thought. New York: McGraw-
Hill, 297-309.

Feigenbaum, E. A., and Simon H. A. 1962. A theory of the serial position effect.

British Journal of Psychology 53:307-320.

Feitelson, J., and Stefik, M. 1977. A case study of the reasoning in a genetics

experiment. Rep. No. HPP-77-18, Heuristic Programming Project, Computer
Science Dept., Stanford University.

Fikes, R. E., Hart, P. E., and Nilsson, N. J. 1972. Learning and executing general-

ized robot plans. Artificial Intelligence 3:251-288.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to the application

of theorem proving to problem solving. Artificial Intelligence 2:189-208.

Fogel, L. J., Owens, A. J., and Walsh, M. J. 1966. Artificial intelligence through
simulated evolution. New York: Wiley.

Friedberg, R. M. 1958. A learning machine: Part I. IBM J. Research and Development
2:2-13.

Friedberg, R. M., Dunham, B., and North, J. H. 1959. A learning machine: Part II.

IBM J. Research and Development 3:282-287.

Friedland, P. E. 1979. Knowledge-based experiment design in molecular genetics.

Rep. No. 79-771, Computer Science Dept., Stanford University. (Doctoral disser-
tation.)

Fu, K. S. 1970a. Statistical pattern recognition. In J. M. Mendel and K. S. Fu

(Eds.), Adaptive, learning, and pattern recognition systems. New York: Academic

Press, 35-80.

Fu, K. S. 1970b. Stochastic automata as models of learning systems. In J. M.

Mendel and K. S. Fu (Eds.), Adaptive, learning, and pattern recognition systems. New

York: Academic Press, 393-432.

Fu, K. S. 1974. Syntactic methods in pattern recognition. New York: Academic Press.

Fu, K. S. 1975. Grammatical inference: Introduction and survey. IEEE Transactions

on Systems, Man, and Cybernetics SMC-5:95-lll, 409-423.

Bibliography 571

Gardner, M. 1977. On playing the new Eleusis, the game that simulates the search
for truth. Scientific American 237:18-25.

Gelernter, H. 1959. Realization of a geometry theorem-proving machine. Proceed-
ings of an International Conference on Information Processing. Paris: UNESCO House,

273-282.

Gelernter, H. 1963. Realization of a geometry theorem proving machine. In E. A.
Feigenbaum and J. Feldman (Eds.), Computers and thought. New York: McGraw-
Hill, 134-152.

Gennery, D. B. 1979. Stereo-camera calibration. In Proceedings of the Image Under-
standing Workshop, 101-107.

Gibson, J. J. 1950. The perception of the visual world. Boston: Houghton-Mifflin.

Gips, J. 1974. Shape grammars and their uses. Rep. No. CS-74-413, Computer
Science Dept., Stanford University.

Gleason, G. J., and Agin, G. J. 1979. A modular system for sensor-controlled
manipulation and inspection. Proceedings of the Ninth International Symposium of
Industrial Robots. Society of Manufacturing Engineers and Robot Institute of America,
Washington, D.C., 57-70.

Gold, E. 1967. Language identification in the limit. Information and Control 16:447-
474.

Gonzalez, R. C, and Thompson, M. G. 1978. Syntactic pattern recognition. Reading,
Mass.: Addison- Wesley.

Goodwin, G. C, and Payne, R. L. 1977. Dynamic system identification: Experiment
design and analysis. New York: Academic Press.

Green, C. 1969. Theorem-proving by resolution as a basis for question-answering
systems. In B. Meltzer and D. Michie (Eds.), Machine intelligence 4- New York:

American Elsevier, 183-205.

Greiner, R. 1980. RLL-1: A representation language language. Rep. No. HPP-80-9.
Heuristic Programming Project, Computer Science Dept., Stanford University.

Greiner, R., and Lenat, D. B. 1980. A representation language language. AAAI 1,
165-169.

Grimson, W. E. L. 1980. Aspects of a computational theory of human stereo vision.

Proceedings of the Image Understanding Workshop, 128-149.
Gumb, R. D. 1978. Summary of research on computational aspects of evolving

theories. SIGART Newsletter 67:13.

Gumb, R. D. 1979. Evolving theories. New York: Haven.

Guzman, A. 1968a. Computer recognition of three-dimensional objects in a visual
scene. Tech. Rep. MAC-TR-59, AI Laboratory, Massachusetts Institute of Tech-
nology.

Guzman, A. 1968b. Decomposition of a visual scene into three-dimensional bodies.

AFIPS Fall Joint Conferences 33:291-304.

Hamburger, H., and Wexler, K. 1975. A mathematical theory of learning transfor-
mational grammar. J. Mathematical Psychology 12:137-177.

Hannah, M. J. 1980. Bootstrap stereo. Proceedings of the Image Understanding Work-
shop, 201-208.

Hanson, A. R., and Riseman, E. M. (Eds.). 1978a. Computer vision systems. New
York: Academic Press.

572 Bibliography

Hanson, A. R., and Riseman, E. M. 1978b. Segmentation of natural scenes. In A. R.

Hanson and E. M. Riseman (Eds.), Computer vision systems. New York: Academic

Press, 129-163.
Haralick, R. M. 1978. A statistical and structural approach to texture. IJCPR

4:45-49.

Haralick, R. M., Shanmugam, K., and Dinstein, I. 1973. Textual features for image

classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-3:6 10-621.

Harlow, C. A. 1973. Image analysis and graphs. Computer Graphics and Image Pro-

cessing 2:60-82.

Harris, Z. 1964. Distributional structure. In J. Fodor and J. Katz (Eds.), The

structure of language. Englewood Cliffs: Prentice Hall, 33-49.

Hayes, P. J. 1973. Computation and deduction. Symposium on the Mathematical

Foundations of Computer Science, Czechslovakia Academy of Science, 105-116.

Hayes-Roth, B. 1980. Human planning processes. Rep. No. R-2670-ONR, Rand
Corp., Santa Monica, Calif.

Hayes-Roth, B., and Hayes-Roth, F. 1978. Cognitive processes in planning. Rep.
No. R-2366-ONR, Rand Corp., Santa Monica, Calif.

Hayes-Roth, F., Klahr, P., Burge, J., and Mostow, D. 1978. Machine methods for

acquiring, learning, and applying knowledge. Rand Paper P-6241, Rand Corp.,
Santa Monica, Calif.

Hayes-Roth, F., Klahr, P., and Mostow, D. 1980. Knowledge acquisition, knowledge

programming, and knowledge refinement. Rand Paper R-2540-NSF, Rand Corp.,
Santa Monica, Calif.

Hayes-Roth, F., Klahr, P., and Mostow, D. 1981. Advice-taking and knowledge re-
finement: An iterative view of skill acquisition. In J. R. Anderson (Ed.), Cognitive

skills and their acquisition. Hillsdale, N.J.: Lawrence Erlbaum, 231-253. (Also in
Rand Paper P-6517, Rand Corp., Santa Monica, Calif., 1980.)

Hayes-Roth, F., and McDermott, J. 1977. Knowledge acquisition from structural

descriptions. IJCAI 5, 356-362.

Hayes-Roth, F., and McDermott, J. 1978. An interference matching technique for

inducing abstractions. CACM 26:401-410.

Henderson, R. L., Miller, W. J., and Grosch, C. B. 1979. Automatic stereo recog-
nition of man-made targets. Society of Photo-Optical Instrumentation Engineers

186:240-248.

Hewitt, C. 1971. Description and theoretical analysis (using schemata) of PLANNER:
A language for proving theorems and manipulating models in a robot. Rep. No.

AI-TR-258, AI Laboratory, Massachusetts Institute of Technology. (Doctoral dis-
sertation.)

Hewitt, C. 1975. How to use what you know. IJCAI 4, 189-198.

Hewitt, C, et al. 1973. A universal modular actor formalism for artificial intel-
ligence. IJCAI 3, 235-245.

Hintikka, J. 1971. Semantics for propositional attitudes. In L. Linsky (Ed.), Refer-
ence and modality. London: Oxford University Press, 145-167.

Hintzman, D. L. 1968. Explorations with a discrimination net model for paired-
associate learning. Journal of Mathematical Psychology 5:123-162.

Bibliography 573

Holland, S. W., Rossol, L., and Ward, M. R. 1979. CONSIGHT-I: A vision-controlled

robot system for transferring parts from belt conveyors. In G. G. Dodd and
L. Rossol (Eds.), Computer vision and sensor based robots. New York: Plenum,
81-100.

Hopcroft, J. E., and Ullman, J. D. 1969. Formal languages and their relation to autom-

ata. Reading, Mass.: Addison- Wesley.

Horn, B. K. P. 1975. Obtaining shape from shading information. In P. H. Winston

(Ed.), The psychology of computer vision. New York: McGraw-Hill.

Horn, B. K. P. 1977. Understanding image intensities. Artificial Intelligence
8:201-231.

Horn, B. K. P. 1979. Hill-shading and the reflectance map. Proceedings of the Image
Understanding Workshop, 79-120.

Horn, B. K. P., and Schunck, B. G. 1980. Determining optical flow. AI Memo 572,
AI Laboratory, Massachusetts Institute of Technology.

Horning, J. J. 1969. A study of grammatical inference. Rep. No. CS-139, Computer
Science Dept., Stanford University.

Huang, T. S. (Ed.). 1981. Image sequence analysis. New York: Springer- Verlag.
Hueckel, A. 1971. An operator which locates edges in digital pictures. J. ACM

20:113-125.

Hueckel, A. 1973. A local visual operator which recognizes edges and lines. J. ACM
20:634-647.

Huet, G. 1972. Constrained resolution: A complete method for higher order logic.
Rep. No. 1117, Jennings Computing Center, Case Western Reserve University.

(Doctoral dissertation.)

Huet, G. 1975. A unification algorithm for typed lambda calculus. Theoretical Com-
puter Science 1:27-57.

Huffman, D. A. 1971. Impossible objects as nonsense sentences. In R. Meltzer and

D. Michie (Eds.), Machine intelligence 6. New York: Elsevier, 295-323.
Huffman, D. A. 1977. Realizable configurations of lines in pictures of polyhedra. In

E. W. Elcock and D. Michie (Eds.), Machine intelligence 8. Edinburgh: Edinburgh

University Press, 493-509.
Hunt, E. B., Marin, J., and Stone, P. J. 1966. Experiments in induction. New York:
Academic Press.

Ikeuchi, K. 1980a. Numerical shape from shading and occluding contours in a single
view. AI Memo 566, AI Laboratory, Massachusetts Institute of Technology.

Ikeuchi, K. 1980b. Shape from regular patterns. AI Memo 567, AI Laboratory,
Massachusetts Institute of Technology.

Jain, R., and Nagel, H. H. 1979. On the analysis of accumulative difference pictures
from image sequences of real world scenes. IEEE Transactions on Pattern Analysis

and Machine Intelligence PAMI-1:206-213.

Johnston, A. R. 1973. Infrared laser rangefinder. Rep. No. NPO-13460, Jet Propul-
sion Laboratory, Pasadena, Calif.

Judd, D. B., and Wyszecki, G. 1975. Color in business, science, and industry (3rd ed.).
New York: Wiley.

Julesz, B. 1975. Experiments in the visual perception of texture. Scientific American
232:24-43.

574 Bibliography

Kanade, T. 1977. Model representations and control structures in image under-

standing. IJCAI 5, 1074-1082.

Kanade, T. 1979. Recovery of the three-dimensional shape of an object from a

single view. Rep. No. CMU-CS-79-153, Computer Science Dept., Carnegie-Mellon
University. (Also in Artificial Intelligence 17:409-460, 1981.)

Kanade, T. 1980a. Region segmentation: Signal vs. semantics. Computer Graphics

and Image Processing 13:279-297.

Kanade, T. 1980b. A theory of Origami world. Artificial Intelligence 13:279-311.

Kanade, T., and Asada, H. 1981. Noncontact visual 3-D sensing devices. SPIE

Technical Symposium, East '81, 3-D, on Machine Perception, 283.
Kanade, T., and Kender, J. 1980. Skewed symmetry: Mapping image regularities

into shape. CMU-CS-80-133, Computer Science Dept., Carnegie-Mellon Univer-
sity.

Kashioka, S., Ejiri, M., and Sakamoto, Y. 1976. A transistor wire-bonding system
utilizing multiple local pattern matching techniques. IEEE Transactions on Systems,

Man, and Cybernetics SMC-6(8):562-569.

Kelley, K. 1967. Early syntax acquisition. Rep. No. P-3719, Rand Corp., Santa
Monica, Calif.

Kelly, M. D. 1970. Visual identification of people by computer. Memo AI-130, AI
Project, Stanford University.

Kelly, M. D. 1971. Edge detection in pictures by computers using planning. In

R. Meltzer and D. Michie (Eds.), Machine intelligence 6. New York: Elsevier,
379-409.

Kender, J. R. 1977. Instabilities in color transformations. IEEE Conference on

Pattern Recognition and Image Processing, Rensselaer Polytechnical Institute, Troy,

N.Y., 266-274.
Kender, J. R. 1979. Shape from texture: An aggregation transform that maps a

class of textures into surface orientation. IJCAI 6, 475-480.
Kender, J. R. 1980. Shape from texture. Doctoral dissertation, Computer Science

Dept., Carnegie-Mellon University.
Kender, J. R., and Kanade, T. 1980. Mapping image properties into shape

constraints: Skewed symmetry, affine transformable patterns, and the shape-from-
texture paradigm. AAAI 1, 4-6.

Klein, S., and Kuppin, M. 1970. An interactive heuristic program for learning

transformational grammars. Computer Studies in the Humanities and Verbal Behavior
3:144-162.

Kling, R. 1971. A paradigm for reasoning by analogy. Artificial Intelligence
2:147-178.

Klotz, I. M. 1980. The N-ray affair. Scientific American 242:168-176.

Knobe, B., and Knobe, K. 1977. A method for inferring context-free grammars.

Information and Control 31:129-146.

Knuth, D. E., and Bendix, P. 1970. Simple word problems in universal algebras.

In J. Leech (Ed.), Computational problems in abstract algebra. Oxford, England:
Pergamon Press.

Kotovsky, K., and Simon, H. A. 1973. Empirical tests of a theory of human

acquisition of concepts for sequential patterns. Cognitive Psychology 4:399-424.

Bibliography 575

Kowalski, R. 1974. Predicate logic as a programming language. In J. L. Rosenfeld
(Ed.), Information processing 7f Amsterdam: North-Holland, 569-574.

Kowalski, R. 1979. Logic for problem solving. New York: American Elsevier.

Kowalski, R., and Kuchner, D. 1971. Linear resolution with selector function. Arti-

ficial Intelligence 2:227-260.

Kripke, S. A. 1971. Semantical considerations on modal logic. In L. Linsky (Ed.),
Reference and modality. London: Oxford University Press, 63-72.

Langley, P. W. 1977. Rediscovering physics with BACON.3. IJCAI 6, 505-507.

Langley, P. W. 1980. Descriptive discovery processes: Experiments in Baconian

science. Rep. No. CS-80-121, Computer Science Dept., Carnegie-Mellon Univer-
sity. (Doctoral dissertation.)

Lankford, D. S. 1975. Complete sets of reductions for computational logic. Memo

ATP-25, Mathematics Dept., University of Texas, Austin.

Lankford, D. S., and Ballantyne, A. M. 1977. Decision procedures for simple equa-
tional theories with commutative axioms: Complete sets of commutative reduc-

tions. Memo ATP-35, Mathematics Dept., University of Texas, Austin.

Larson, J. 1977. Inductive inference in the variable valued predicate logic system
VL21: Methodology and computer implementation. Rep. No. 869, Computer
Science Dept., University of Illinois, Urbana.

Larson, J., and Michalski, R. S. 1977. Inductive inference of VL decision rules.

SIGART Newsletter 63:38-44.

Leese, J. A., Novak, C. S., and Clark, B. B. 1971. An automated technique for
obtaining cloud motion from geosynchronous satellite data using cross correlation.

Journal of Applied Meteorology 10:118-132.

Lenat, D. B. 1976. AM: An artificial intelligence approach to discovery in mathe-
matics as heuristic search. Rep. No. STAN-CS-76-570. Computer Science Dept.,

Stanford University. (Doctoral dissertation. Reprinted in R. Davis and D. B.

Lenat. 1980. Knowledge-based systems in artificial intelligence. New York: McGraw-
Hill.)

Lenat, D. B. 1977. On automated scientific theory formation: A case study using

the AM program. In J. E. Hayes, D. Michie, and L. I. Mikulich (Eds.), Machine

intelligence 9. New York: Halsted Press, 251-286.

Lenat, D. B. 1980. The nature of heuristics. Rep. No. HPP-80-26. Heuristic Pro-
gramming Project, Computer Science Dept., Stanford University.

Lenat, D. B., Hayes-Roth, F., and Klahr, P. 1979. Cognitive economy in artificial

intelligence systems. IJCAI 6, 531-536. (Extended version available as Rep. No.
HPP-79-15, Heuristic Programming Project, Computer Science Dept., Stanford
University.)

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. 1980.

Applications of artificial intelligence for organic chemistry: The DENDRAL project. New
York: McGraw-Hill.

Loveland, D. 1978. Automatic theorem proving: A logical basis. Amsterdam: North-
Holland.

Loveland, D., and Stickel, M. 1973. A hole in goal trees: Some guidance from

resolution theory. IJCAI 3, 153-161.

576 Bibliography

Lucas, B. D., and Kanade, T. 1981. An iterative image registration technique with

an application to stereo vision. Proceedings of the Image Understanding Workshop,
121-130.

Mackworth, A. K. 1973. Interpreting pictures of polyhedral scenes. Artificial Intel-

ligence 4:121-137.

Mackworth, A. K. 1974. On the interpretation of drawings as three-dimensional scenes.
Doctoral dissertation, Laboratory of Experimental Psychology, University of
Sussex.

Mackworth, A. K. 1977a. Consistency in networks of relations. Artificial Intelligence
8:99-118.

Mackworth, A. K. 1977b. How to see a simple world: An exegis of some computer

programs for scene analysis. In E. W. Elcock and D. Michie (Eds.), Machine intel-

ligence 8, 510-537.
Mandler, G. 1975. Mind and emotion. New York: Wiley.

Marr, D. 1976. Early processing of visual information. Philosophical Transactions of

the Royal Society of London (Series B) 275:483-524.
Marr, D. 1978. Representing visual information. In A. R. Hanson and E. M.

Riseman (Eds.), Computer vision systems. New York: Academic Press, 61-80.
Marr, D., and Hildreth, E. 1980. Theory of edge detection. Proceedings of the Royal

Society of London (Series B) 207:187-217.
Marr, D., and Nishihara, H. K. 1978. Representation and recognition of the spatial

organisation of three-dimensional structure. Proceedings of the Royal Society of

London (Series B) 200:269-294.
Marr, D., and Poggio, T. 1976. Cooperative computation of stereo disparity. Science

194:283-287.

Marr, D., and Poggio, T. 1977. A theory of human stereo vision. AI Memo 451, AI
Laboratory, Massachusetts Institute of Technology.

Martelli, A. 1976. An application of heuristic search methods to edge and contour

detection. CACM 19:73-83.

Maryanski, F. J. 1974. Inference of probabilistic grammars. Doctoral dissertation,
Electrical Engineering and Computer Science Dept., University of Connecticut.

Maxam, A., and Gilbert, W. 1974. A new method for sequencing DNA. Proceedings

of the National Academy of Sciences 74(2):560-564.
McCarthy, J. 1958. Programs with common sense. In Proceedings of the Symposium

on the Mechanization of Thought Processes, National Physical Laboratory 1:77-84. (Re-
printed in M. L. Minsky (Ed.). 1968. Semantic information processing. Cambridge,

Mass.: MIT Press, 403-409.)
McCarthy, J. 1963. A basis for a mathematical theory of computation. In

P. Braffort and D. Hirschberg (Eds.), Computer programming and formal systems.
Amsterdam: North- Holland.

McCarthy, J. 1968. Programs with common sense. In M. Minsky (Ed.), Semantic

information processing. Cambridge, Mass.: MIT Press, 403-409.

McCarthy, J. 1980. Circumscription — A form of non-monotonic reasoning. Artifi-
cial Intelligence 13:27-39.

McCorduck, P. 1979. Machines who think. San Francisco: Freeman.

McDermott, D. 1978. Planning and acting. Cognitive Science 2:71-109.

Bibliography 577

McDermott, D. 1980. Non-monotonic logic II: Non-monotonic modal theories. Rep.
No. 174, Computer Science Dept., Yale University.

McDermott, D., and Doyle, J. 1980. Non-monotonic logic I. Artificial Intelligence
13:41-72.

McKeown, D. M., and Kanade, T. 1981. Database support for automated photo

interpretation. Proceedings of the Image Understanding Workshop, 7-13.

Mese, M., Miyatake, T., Kashioka, S., Ejiri, M., Yamazaki, I., and Hamada, T. 1977.

An automatic position recognition technique for LSI assembly. IJCAI 5, 685-693.

Michalski, R. S. 1969. On the quasi-minimal solution of the general covering prob-
lem. Proceedings of the Fifth International Federation on Automatic Control 27:109-

129.

Michalski, R. S. 1975. Variable-valued logic and its applications to pattern recogni-
tion and machine learning. In D. C. Rine (Ed.), Computer science and multiple-valued

logic theory and applications. Amsterdam: North-Holland, 506-534.

Michalski, R. S. 1980. Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-2: 349-361.

Michalski, R. S., and Chilausky, R. L. 1980. Learning by being told and learning
from examples: An experimental comparison of the two methods of knowledge

acquisition in the context of developing an expert system for soybean disease

diagnosis. International Journal of Policy Analysis and Information Systems 4: 125-161 .

Michalski, R. S., and Larson, J. B. 1978. Selection of most representative train-
ing examples and incremental generation of VL1 hypotheses: The underlying

methodology and the description of programs ESEL and AQll. Rep. No. 867.
Computer Science Dept., University of Illinois, Urbana.

Milgram, D. L., and Kahl, D. J. 1979. Recursive region extraction. Computer

Graphics and Image Processing 9:82-88.
Miller, G. A. 1956. The magical number seven, plus or minus two: Some limits of

our capacity for processing information. Psychological Review 63:81-97.
Miller, G. A., Galanter, E., and Pribram, K. H. 1960. Plans and the structure of

behavior. New York: Holt.

Miller, L. 1978. Has artificial intelligence contributed to an understanding of the

human mind? A critique of arguments for and against. Cognitive Science 2:111—
127.

Minsky, M. 1963. Steps toward artificial intelligence. In E. A. Feigenbaum, and

J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill, 406-450.
Minsky, M. L. (Ed.). 1968. Semantic information processing. Cambridge, Mass.: MIT

Press.

Minsky, M. 1975. A framework for representing knowledge. In P. H. Winston (Ed.),

The psychology of computer vision. New York: McGraw-Hill, 211-277.

Minsky, M. 1980. A framework for representing knowledge. In J. Haugeland (Ed.),

Mind design: Philosophy, psychology, and artificial intelligence. Montgomery, Vt.:
Bradford Books.

Minsky, M. L., and Papert, S. 1969. Perceptrons; an introduction to computational

geometry. Cambridge, Mass.: MIT Press.

Mitchell, T. M. 1977. Version spaces: A candidate elmination approach to rule

learning. IJCAI 5, 305-310.

578 Bibliography

Mitchell, T. M. 1978. Version spaces: An approach to concept learning. Rep.

No. STAN-CS-78-711, Computer Science Dept., Stanford University. (Doctoral
dissertation.)

Mitchell, T. M. 1979. An analysis of generalization as a search problem. IJCAI 6,
577-582.

Mitchell, T. M., Utgoff, P. E., and Banerji, R. B. In press. Learning problem-solving
heuristics by experimentation. In R. S. Michalski, T. M Mitchell, and J. Carbonell

(Eds.), Machine learning. Palo Alto, Calif.: Tioga.

Mitchell, T. M., Utgoff, P. E., Nudel, B., and Banerji, R. B. 1981. Learning problem-

solving heuristics through practice. IJCAI 7, 127-134.

Montanari, U. 1971. On the optimal detection of curves in noisy pictures. CACM
14:335-345.

Moore, R. C. 1980a. Reasoning from incomplete knowledge in a procedural deduction
system. New York: Garland.

Moore, R. C. 1980b. Reasoning about knowledge and action. Tech. Note 191, AI
Center, SRI International, Inc., Menlo Park, Calif.

Moravec, H. P. 1979. Visual mapping by a robot rover. IJCAI 6, 598-600.

Moravec, H. P. 1980. Obstacle avoidance and navigation in the real world by a

seeing robot rover. Tech. Rep. CMU-RI-TR-3, Robotics Institute, Carnegie-Mellon
University.

Mori, K., Kidode, M., and Asada, H. 1973. An iterative prediction and correction
method for automatic stereocomparison. Computer Graphics and Image Processing
2:393-401.

Mostow, D. J. 1981. Mechanical transformation of task heuristics into operational

procedures. Rep. No. CS-81-113, Computer Science Dept., Carnegie-Mellon Uni-
versity. (Doctoral dissertation.)

Mostow, D. J. In press. Using the heuristic search method. In R. S. Michalski, T. M.

Mitchell, and J. Carbonell (Eds.), Machine learning. Palo Alto, Calif.: Tioga.

Mostow, D. J., and Hayes-Roth, F. 1979a. Machine- aided heuristic programming:

A paradigm for knowledge engineering. Rep. No. Rand N-1007-NSF, Rand Corp.,
Santa Monica, Calif.

Mostow, D. J., and Hayes-Roth, F. 1979b. Operationalizing heuristics: Some AI

methods for assisting AI programming. IJCAI 6, 601-609.

Nagao, M., Matsuyama, T., and Ikeda, Y. 1978. Region extraction and shape anal-
ysis of aerial photographs. IJCPR 4, 620-628.

Nagao, M., Matsuyama, T., and Ikeda, Y. 1979. Structural analysis of complex

aerial photographs. IJCAI 6, 610-616.

Nagin, P. A., Hanson, A. R., and Riseman, E. M. 1977. Region extraction and

description through planning. COINS Tech. Rep. 77-8, Computer and Information
Sciences Dept., University of Massachusetts, Amherst.

Naruse, M., Miyazaki, S., Yamada, T., and Igarashi, K. 1979. Fully automated
integrated circuit wire bonding system. Ninth International Symposium on Industrial

Robots, 87-97.

Neisser, U. 1976. Cognition and reality. San Francisco: Freeman.

Bibliography 579

Nelson, C. G., and Oppen, D. 1978. Efficient decision procedures based on con-

gruence closure. Memo AIM-309 (CS-646), Computer Science Dept., Stanford
University.

Nevatia, R. 1976. A color edge detector. JCPR 8, 829-832.
Nevatia, R., and Babu, K. R. 1981. Linear feature extraction and description.

IJCAI 6, 639-641.
Nevatia, R., and Binford, T. O. 1973. Structured descriptions of complex objects.

IJCAI 3, 641-647.
Nevins, A. J. 1974. A human oriented logic for automatic theorem proving. J. ACM

21:606-621.

Nevins, A. J. 1975. Plane geometry theorem proving using forward chaining. Arti-

ficial Intelligence 6:1-23.
Newell, A. 1970. Remarks on the relationship between artificial intelligence and

cognitive psychology. In R. B. Banerji and M. D. Mearovic (Eds.), Theoretical

approaches to non-numerical problem solving. Berlin: Springer- Verlag.
Newell, A., and Simon, H. A. 1956. The logic theory machine. IRE Transactions on

Information Theory 2:61-79.
Newell, A., and Simon, H. A. 1963. Computers in psychology. In R. D. Luce, R. R.

Bush, and E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 1). New

York: Wiley, 361-428.
Newell, A., and Simon, H. A. 1972. Human problem solving. Englewood Cliffs, N.J.:

Prentice-Hall.

Nii, H. P., and Aiello, N. 1979. AGE (Attempt to Generalize): A knowledge-based

program for building knowledge-based programs. IJCAI 6, 645-655.

Nii, H. P., and Feigenbaum, E. A. 1978. Rule-based understanding of signals. In
D. A. Waterman and F. Hayes-Roth (Eds.), Pattern- directed inference systems. New
York: Academic Press, 483-501.

Nilsson, N. J. 1965. Learning machines. New York: McGraw-Hill.
Nilsson, N. J. 1971. Problem solving methods in artificial intelligence. New York:

McGraw-Hill.

Nilsson, N. J. 1980. Principles of artificial intelligence. Palo Alto, Calif.: Tioga.

Nitzan, D., Brain, A. E., and Duda, R. O. 1977. The measurement and use of

registered reflectance and range data in scene analysis. Proceedings of the IEEE
65:2.

Norman, D. A. 1980. Twelve issues for cognitive science. Cognitive Science 4:1-32.
Norman, D. A., Rumelhart, D. E., and the LNR Research Group. 1975. Explorations

in cognition. San Francisco: Freeman.

Ohlander, R. B. 1975. Analysis of natural scenes. Doctoral dissertation, Computer

Science Dept., Carnegie- Mellon University.

Ohlander, R. B., Price, K., and Reddy, D. R. 1978. Picture segmentation using a

recursive region splitting method. Computer Graphics and Image Processing 8:313-
333. (Doctoral dissertation.)

Ohta, Y. 1980. A region- oriented image- analysis system by computer. Doctoral disser-
tation, Information Science Dept., Kyoto University.

Ohta, Y., Kanade, T., and Sakai, T. 1980. Color information for region segmenta-

tion. Computer Graphics and Image Processing 13:222-241.

580 Bibliography

O'Rourke, J. 1980. Image analysis of human motion. Doctoral dissertation, Moore
School of Electrical Engineering, University of Pennsylvania.

Oshima, M., and Shirai, Y. 1979. A scene description method using three-

dimensional information. Pattern Recognition 11:9-17.

Pao, T. W. 1969. A solution of the syntactical induction-inference problem for
a non-trivial subset of context-free languages. Interim Rep. No. 69-19, Moore
School of Electrical Engineering, University of Pennsylvania.

Pavlidis, T. 1977. Structural pattern recognition. Berlin: Springer- Verlag.
Peterson, G. E., and Stickel, M. 1977. Complete sets of reductions for equational

theories with complete unification algorithms. Memo, Computer Sciences Dept.,
University of Arizona.

Pinker, S. 1979. Formal models of language learning. Cognition 7:217-283.
Polya, G. 1957. How to solve it. New York: Doubleday Anchor Books.

Popplestone, R. J., Brown, C. M., Ambler, A. P., and Crawford, G. F. 1975. Forming

models of plane-and-cylinder faceted bodies from light stripes. IJCAI 4-

Pratt, W. K., Faugeras, O. D., and Gagalowicz, A. 1978. Visual discrimination of

stochastic texture field. IEEE Transactions on Systems, Man, and Cybernetics SMC-
8:796-804.

Presburger, M. 1930. Uber die Vollstandigkeit eins gewissen Systems der Arithmetik

ganzer Zahlen in welchem die Addition als einzige Operation hervortritt. Spra-

wozdanie z i kongresu matematykow krajow slowianskich, Warszawa (Comptes-rendus du

I congres des mathematiciens des pays slaves), 92-101.
Prewitt, J. W. S. 1970. Object enhancement and extraction. In B. Lipkin and

A. Rosenfeld (Eds.), Picture processing and psychopictorics. New York: Academic

Press, 75-149.
Quillian, M. R. 1968. Semantic Memory. In M. Minsky (Ed.), Semantic information

processing. Cambridge, Mass.: MIT Press, 216-270.

Quine, W. V., and Ullian, J. S. 1978. The web of belief '(2nd ed.). New York: Random House.

Quinlan, J. R. 1979. Induction over large data bases. Rep. No. HPP-79-14, Heuris-
tic Programming Project, Computer Science Dept., Stanford University.

Quinlan, J. R. In press. Inductive inference as a tool for the construction of high-
performance programs. In R. S. Michalski, T. M. Mitchell, and J. Carbonell
(Eds.), Machine learning. Palo Alto, Calif.: Tioga.

Reboh, R. 1981. Knowledge engineering techniques and tools in the PROSPECTOR
environment. Rep. No. 243. AI Center, SRI International, Inc., Menlo Park, Calif.

Reeker, L. H. 1976. The computational study of language acquisition. In

M. Rubinoff and M. C. Yovits (Eds.), Advances in computers (Vol. 15). New York:

Academic Press, 181-237.

Reiter, R. 1976. A semantically guided deductive system for automatic theorem

proving. IEEE Transactions on Computers C-25.

Reiter, R. 1980. A logic for default reasoning. Artificial Intelligence 13:81-132.
Risch, R. 1969. The problem of integration in finite terms. Transactions of the AMS

139:167-189.

Riseman, E. M., and Arbib, M. A. 1977. Segmentation of static scenes. Computer

Graphics and Image Processing 6:221-276.

Bibliography 581

Rissland, E. L., and Soloway, E. M. 1980. Overview of an example generation

system. AAAI 1, 256-258.

Roberts, L. 1965. Machine perception of three-dimensional solids. In J. Tippett

(Ed.), Optical and electro- optical information processing. Cambridge, Mass.: MIT
Press, 159-197.

Robertson, T. V., Swain, P. H., and Pu, K. S. 1973. Multispectral image par-

titioning. Tech. Rep. TR-EE-73-26, School of Electrical Engineering, Purdue
University.

Robinson, G. A., and Wos, L. 1969. Paramodulation and theorem-proving in first
order theories with equality. In D. Michie (Ed.), Machine intelligence 4- Edinburgh:
Edinburgh University Press.

Robinson, J. A. 1965a. Automatic deduction with hyper-resolution. International
J. Computational Mathematics 1:227-234.

Robinson, J. A. 1965b. A machine-oriented logic based on the resolution principle.
/. AQM 12:23-41.

Robinson, J. A., and Sibert, E. E. 1980. Logic programming in LISP. School of
Computer and Information Science, Syracuse University.

Roecker, F., and Kiessling, A. 1975. Methods for analyzing three dimensional
scenes. IJCAI 4-

Rosenblatt, F. 1957. The perceptron: A perceiving and recognizing automaton.

Rep. No. 85-460-1, Project PARA, Cornell Aeronautical Laboratory.
Rosenblatt, F. 1962. Principles of neurodynamics: Perceptrons and the theory of brain

mechanisms. Washington, D.C.: Spartan Books.

Rosenfeld, A. 1969. Picture processing by computer. New York: Academic Press.

Rosenfeld, A. 1978. Some recent results using relaxation- like processes. Proceedings

of the Image Understanding Workshop, 100-104.
Rosenfeld, A. 1979. Picture languages: Formal models for picture recognition. New

York: Academic Press.

Rosenfeld, A., and Kak, A. C. 1976. Digital picture processing. New York: Academic
Press.

Rosenfeld, A., and Lipkin, B. S. 1970. Texture synthesis. In B. C. Lipkin and

A. Rosenfeld (Eds.), Processing and psychopictorics. New York: Academic Press,
309-345.

Rosenfeld, A., and Thurston, M. 1971. Edge and curve detection for visual scene

analysis. IEEE Transactions on Computers C-20:562-569.

Rubin, S. 1978. The ARGOS image understanding system. Doctoral dissertation, Com-
puter Science Dept., Carnegie-Mellon University.

Rumelhart, D. E., Lindsay, P. H., and Norman, D. A. 1972. A process model for

long-term memory. In E. Tulving and W. Donaldson (Eds.), Organization and

memory. New York: Academic Press, 198-246.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5:115-135.
Sacerdoti, E. D. 1975. A structure for plans and behavior. Tech. Note 109, AI

Center, SRI International, Inc., Menlo Park, Calif. (Doctoral dissertation.)

Sacerdoti, E. D. 1979. Problem solving tactics. Tech. Note 189, SRI International,
Inc., Menlo Park, Calif.

582 Bibliography

Samuel, A. L. 1959. Some studies in machine learning using the game of checkers.

IBM J. Research and Development 3:210-229. (Reprinted in E. A. Feigenbaum,
and J. Feldman (Eds.). 1963. Computers and thought. New York: McGraw-Hill,
71-105.)

Samuel, A. L. 1967. Some studies in machine learning using the game of checkers.

II — Recent progress. IBM J. Research and Development 11:601-617.
Schachter, G. J., Rosenfeld, A., and Davis, L. S. 1978. Random mosaic models for

textures. IEEE Transactions on Systems, Man, and Cybernetics SMC-8:694-702.

Schank, R. C., and Abelson, R. P. 1977. Scripts, plans, goals, and understanding.
Hillsdale, N.J.: Lawrence Erlbaum.

Schatz, B. R. 1977. Computation of immediate texture discrimination. IJCAI 5,
708.

Shafer, S. A. 1980. MOOSE: User's manual, implementation guide, evaluation.
Tech. Rep. No. HH-B-70, Fachbereich Informatik, University of Hamburg.

Shannon, C. E., and Weaver, W. 1963. The mathematical theory of communication.
Urbana: University of Illinois Press.

Shirai, Y. 1973. A context sensitive line finder for recognition of polyhedra. Artificial

Intelligence 4:95-119.

Shirai, Y. 1978. Recognition of real-world objects using edge cues. In A. R. Hanson
and E. M. Riseman (Eds.), Computer vision systems. New York: Academic Press,
353-362.

Shirai, Y., and Suwa, M. 1971. Recognition of polyhedrons with a rangefinder.

IJCAI 2, 80-87.

Shortliffe, E. H. 1976. Computer-based medical consultations: MYCIN. New York:
American Elsevier.

Shostak, R. S. 1975. On the completeness of the sup-inf method. SRI International,
Inc., Menlo Park, Calif.

Simon, H. A. 1969. Sciences of the artificial. Cambridge, Mass.: MIT Press.

Simon, H. A. 1979a. Artificial intelligence research strategies in the light of AI

models of scientific discovery. IJCAI 6, 1086-1094.
Simon, H. A. 1979b. Models of thought. New Haven, Conn.: Yale University Press.

Simon, H. A. In press. Why should machines learn? In R. S. Michalski, T. M.
Mitchell, and J. Carbonell (Eds.), Machine learning. Palo Alto, Calif.: Tioga.

Simon, H. A., and Feigenbaum, E. A. 1964. An information-processing theory of
some effects of similarity, familiarization, and meaningfulness in verbal learning.

Journal of Verbal Learning and Verbal Behavior 3:385-396.
Simon, H. A., and Lea, G. 1974. Problem solving and rule induction: A unified view.

In L. Gregg (Ed.), Knowledge and cognition. Hillsdale, N.J.: Lawrence Erlbaum,
105-127.

Skinner, B. F. 1976. About behaviorism. New York: Vintage Books.

Skolem, T. 1967. The foundations of elementary arithmetic established by means of
the recursive mode of thought, without the use of apparent variables ranging over
infinite domains. In From Frege to Goedel. Cambridge, Mass.: Harvard University
Press.

Smith, W., and Birnstein, M. 1976. A simple method for DNA restriction site

mapping. Nucleic Acids Research 3:2387-2398.

Bibliography 583

Solomonoff, R. 1964. A formal theory of inductive inference. Information and Control
7:1-22, 224-254.

Soloway, E. 1978. Learning = interpretation + generalization: A case study in
knowledge-directed learning. Rep. No. COINS-TR-78-13, Computer and Informa-

tion Sciences Dept., University of Massachusetts, Amherst. (Doctoral disserta-
tion.)

Soroka, B. I. 1980. Debugging manipulator programs with a simulator. Autofact
West Conference, Society of Manufacturing Engineers, Anaheim, Calif

Stefik, M. J. 1979. An examination of a frame-structured representation system.
IJCAI 6, 845-852.

Stefik, M. J. 1980. Planning with constraints. Rep. No. 80-784, Computer Science
Dept., Stanford University. (Doctoral dissertation.)

Sternberg, S. 1969. Memory-scanning: Mental processes revealed by reaction time
experiments. American Scientist 57:421-457.

Stevens, K. 1980. Surface perception by local analysis of texture and contour. AI

Memo 512, AI Laboratory, Massachusetts Institute of Technology.

Sugihara, K. 1979. Range-data analysis guided by a junction dictionary. Artificial
Intelligence 12:41-69.

Sussman, G. J. 1973. A computational model of skill acquisition. AI Tech. Rep. 297,

AI Laboratory, Massachusetts Institute of Technology. (Doctoral dissertation.)

Sussman, G. J. 1975. A computer model of skill acquisition. New York: American
Elsevier.

Tamura, H., Mori, S., and Yamawaki, T. 1978. Textural features corresponding to

visual perceptions. IEEE Transactions on Systems, Man, and Cybernetics SMC-8:460-
473.

Tanimoto, S., and Klinger, A. (Eds.). 1980. Structured computer vision: Machine per-
ception through hierarchical computation structures. New York: Academic Press.

Tanimoto, S., and Pavlidis, T. 1975. A hierarchical data structure for picture

processing. Computer Graphics and Image Processing 4:104-119.

Tate, A. 1975a. Interacting goals and their use. IJCAI 4, 215-218.

Tate, A. 1975b. Using goal structure to direct search in a problem solver. Doctoral dis-
sertation, University of Edinburgh.

Tate, A. 1976. Project planning using a hierarchic non linear planner. Rep. No. 25,

AI Research Dept., University of Edinburgh.

Tenenbaum, J. M., and Barrow, H. G. 1976a. Experiments in interpretation-guided

segmentation. Artificial Intelligence 8:241-274.
Tenenbaum, J. M., and Barrow, H. G. 1976b. IGS: A paradigm for integrating image

segmentation and interpretations. IJCPR S, 504-513.
Tenenbaum, J. M., Fischler, M. A., and Barrow, H. G. 1980. Scene modeling: A

structural basis for image description. Computer Graphics and Image Processing
12:407-425.

Thompson, W. B. (Ed.). 1980. Machine perception. Computer 13:7-63.

Thorpe, C. E. 1981. Sonar image processing — An application of template matching
through relaxation. Tech. Rep. CMU-RI-TR-81-6, Robotics Institute, Carnegie-
Mellon University.

584 Bibliography

Tomita, F., and Tsuji, S. 1977. Extraction of multiple regions by smoothing in
selected neighborhoods. IEEE Transactions on Systems, Man, and Cybernetics SMC-
7:107-109.

Tomita, F., Yachida, M., and Tsuji, S. 1973. Detection of homogeneous regions by

structural analysis. IJCAI 3, 564-571.

Tsuji, S., and Tomita, F. 1973. A structural analyzer for a class of textures. Com-

puter Graphics and Image Processing 2:216-231.

Tsypkin, Y. Z. (Z. J. Nikolic, Trans.). 1973. Foundations of the theory of learning
systems. New York: Academic Press.

Tukey, J. W. 1960. Conclusions vs. decisions. Technometrics 2:423-433.

Turner, K. J. 1974. Computer perception of curved objects using a television camera.
Doctoral dissertation, School of Artificial Intelligence, Edinburgh University.

Tversky, A., and Kahneman, D. 1974. Judgement under uncertainty: Heuristics
and biases. Science 185:1124-1131.

Ullman, J. D. 1980. Principles of database systems. Potomac, Md.: Computer Science
Press.

Ullman, S. 1979. The interpretation of visual motion. Cambridge, Mass.: MIT Press.

Uno, T., Ejiri, M., and Tokunaga, T. 1976. A method of real-time recognition of
moving objects and its application. Pattern Recognition.

Uno, T., Ikeda, S., Ueda, H., and Ejiri, M. 1979. An industrial eye that recognizes
hole positions in a water pump testing process. G. G. Dodd and L. Rossol (Eds.),

Computer vision and sensor based robots. New York: Plenum, 101-114.

van Melle, W. 1980. A domain-independent system that aids in constructing
knowledge based consultation programs. Rep. No. 820, Computer Science Dept.,
Stanford University. (Doctoral dissertation.)

Vanderbrug, G. J., Albus, J. S., and Borkmeyer, E. 1979. A vision system for

real-time control of robots. Proceedings of the Ninth International Symposium and
Exposition on Industrial Robots, 213-231.

Vere, S. A. 1975. Induction of concepts in the predicate calculus. IJCAI 4, 281-287.

Vere, S. A. 1978. Inductive learning of relational productions. In D. A. Waterman

and F. Hayes-Roth (Eds.), Pattern- directed inference systems. New York: Academic
Press, 281-296.

Waldinger, R. 1977. Achieving several goals simultaneously. In E. W. Elcock and

D. Michie (Eds.), Machine intelligence 8. New York: Halstead/Wiley.

Wallach, H., and O'Connell, D. N. 1953. The kinetic depth effect. Journal of Exper-
imental Psychology 45:205-217.

Waltz, D. 1972. Generating semantic descriptions from drawings of scenes with

shadows. AI-TR-271, Project MAC, Massachusetts Institute of Technology. (Re-
printed in P. Winston (Ed.). 1975. The psychology of computer vision. McGraw-Hill,

New York, 19-92.)

Wang, H. 1960. Toward mechanical mathematics. IBM J. Research and Development
4:2-22.

Warren, D. H. D. 1974. WARPLAN: A system for generating plans. Memo 76,

Computational Logic Dept., School of Artificial Intelligence, University of Edin-
burgh.

Bibliography 585

Warren, D. H. D. 1981. Efficient processing of interactive relational database queries
expressed in logic. Proceedings of the Conference on Very Large Databases, Cannes,
France, 272-281.

Warren, D. H. D., Pereira, L. M., and Pereira, F. 1977. PROLOG— The language and
its implementation compared with LISP. Proceedings of the Symposium on Artificial
Intelligence and Programming Languages (ACM); SIGPLAN Notices 12(8); and SIGART
Newsletter 64:109-115.

Wason, P. C, and Johnson-Laird, P. N. 1972. Psychology of reasoning: Structure and
content. Cambridge, Mass.: Harvard University Press.

Waterman, D. A. 1968. Machine learning of heuristics. Rep. No. STAN-CS-68-118,
Computer Science Dept., Stanford University. (Doctoral dissertation.)

Waterman, D. A. 1970. Generalization learning techniques for automating the
learning of heuristics. Artificial Intelligence 1:121-170.

Wee, W. G., and Fu, K. S. 1969. A formulation of fuzzy automata and its applica-
tion as a model of learning systems. IEEE Transactions on System Science and

Cybernetics 5:215-223.

Weszka, J. S. 1978. A survey of threshold selection techniques. Computer Graphics

and Image Processing 7:259-265.

Weszka, J. S., Dyer, C. R., and Rosenfeld, A. 1976. A comparative study of tex-
ture measures for terrain classification. IEEE Transactions on Systems, Man, and

Cybernetics SMC-6:269-285.

Wexler, K. 1978. A review of John R. Anderson's language, memory, and thought.
Cognition 6:327-351

Weyhrauch, R. W. 1980. Prolegomena to a theory of mechanized formal reasoning.

Artificial Intelligence 13:133-170.

Widrow, B., and Hoff, M. E. 1960. Adaptive switching circuits. In 1960 IRE WESCON
Convention Records 4:96-104.

Wiederhold, G. 1977. Database design. New York: McGraw-Hill.
Winston, P. H. 1970. Learning structural descriptions from examples. Rep. No.

TR-231, AI Laboratory, Massachusetts Institute of Technology. (Reprinted in
P. H. Winston (Ed.). 1975. The psychology of computer vision. New York: McGraw-
Hill, 157-209.)

Winston, P. H. (Ed.). 1975. The psychology of computer vision. New York: McGraw-
Hill.

Winston, P. H. 1977. Artificial intelligence. New York: Addison- Wesley.
Witkin, A. P. 1980. A statistical technique for recovering surface orientation from

texture in natural imagery. AAAI 1, 1-3.
Woodham, R. J. 1978. Reflectance map technique for analyzing surface defects

in metal castings. AI Memo 457, AI Laboratory, Massachusetts Institute of

Technology. (Doctoral dissertation.)

Wos, L., Robinson, G. A., and Carson, D. F. 1965. Efficiency and completeness of

the set of support strategy in theorem proving. J. ACM 12:536-541.
Yachida, M., and Tsuji, S. 1971. Application of color information to recognition of

3-dimensional objects. Pattern Recognition 3(3):307-323.

Yakimovsky, Y., and Feldman, J. A. 1973. A semantics-based decision theory region
analyzer. IJCAI 3, 580-588.

586 Bibliography

Yovits, M. C, Jacobi, G. T., and Goldstein, G. D. (Eds.). 1962. Self- organizing
systems 1962. Washington, D.C.: Spartan Books.

Zadeh, L.A. 1979. Approximate reasoning based on fuzzy logic. IJCAI 6, 1004-1010.

Zucker, S. W. 1976a. Region growing: Childhood and adolescence. Computer Graph-

ics and Image Processing 5:382-399.
Zucker, S. W. 1976b. Toward a model of texture. Computer Graphics and Image

Processing 5:109-202.
Zucker, S. W., Hummel, R., and Rosenfeld, A. 1977. An application of relaxa-

tion labeling to line and curve enhancement. IEEE Transactions on Computers

C-26(4):394-403.

Cumulative Indexes

NAME INDEX FOR VOLUMES I, II, AND III

Pages on which an author's work is discussed are italicized.

Abbott, R., Ill: 416, 565

Abelson, R. P., I: 15, 149, 212-215, 216,
217, 219, 221, 222, 232, 255, 300-302,

305, 806, 308-310, 313-315, 365, 383;

II: 225, 291, 294, 383; III: 10, 65-70, 74,
552, 561, 565, 582

Abrahams, P. W., II: 33, 395

Adelson-Velskiy, G. M., I: 95, 96, 99, 102,
103, 104, 108, 365

Adlercreutz, H., II: 110, 399

Agarival, K. K., II: 139, 140, 142, 390

Aggarwal, J. K., Ill: 246, 248, 565, 568

Agin, G. J., Ill: 132, 258, 269, 272, 273-274,
804, 565, 571

Aho, A. V., I: 68, 71, 365; III: 337, 565

Aiello, N., II: 84, 126, 396; III: 348, 579

Aikins, J. S., I: 217, 220, 365; II: 182, 383

Akmajian, A., I: 248, 365, 369

Albus, J. S., Ill: 258, 584

Allen, J., I: 16, 365; II: 29, 383

Altschuler, M. D., Ill: 258, 565

Altschuler, T. B., Ill: 258, 565

Amarel, S., I: 27, 30, 365; II: 325, 383, 401;
III: 26, 565

Ambler, A. P., Ill: 274, 580

Anderson, J. R., I: 15, 180, 185, 189, 193,

195, 365; III: 5-6, 9, 34, 35, 42-49, 50-

54, 55, 509-510, 565
Andose, J. D., II: 142, 391

Andrews, H. C, III: 228, 568

Angebranndt, S., II: 335, 391

Appelt, D. E., I: 232, 280, 365, 381

Arbib, M. A., Ill: 229, 580

Arbuckle, T., I: 99, 105, 108, 366

Arlazarov, V. L., I: 96, 99, 102-104, 108, 365
Arnold, D., Ill: 253, 565

Arnold, R. S., II: 167, 383, 387

Artsouni, G. B., I: 288

Asada, H., Ill: 252, 253, 257, 268, 574, 578

Ashton-Warner, S., II: 291, 383
Atkin, L. R., I: 95, 96, 99, 100, 102, 103, 108,

384

Atkinson, R. C, II: 226, 228, 280, 344, 383,

384, 394
Austin, H., II: 293, 383

Babu, K. R., Ill: 224, 318, 579
Backus, J. W., II: 6, 297, 383

Baddeley, A. D., Ill: 28, 565

Badler, N., Ill: 246, 248, 278, 290, 565
Bahl, L. R., I: 329, 365

Baird, M. L., Ill: 302, 305, 566

Bajcsy, R., Ill: 281, 278, 565, 566
Baker, H., Ill: 253, 566

Baker, J. K., I: 329, 849, 365, 366
Baker, R., I: 204, 366

Ballantyne, A. M., Ill: 99, 100, 566, 567, 575

Ballard, D. H., Ill: 138, 810-312, 566
Ballard, J. P., II: 84, 392

Balzer, R. M., II: 298, 305, 886-342, 383
Bamberger, J., II: 294, 383

Banerji, R. B., Ill: 452-458, 484-493, 578
Bar-Hillel, Y., I: 283, 236, 238, 366
Barnard, S. T., Ill: 253, 566

Barnea, D. I., Ill: 252, 566

Barnett, J., I: 327, 333, 358, 366, 379

Baron, R. V., II: 864-369, 384
Barr, A., II: 89, 226, 228, 230, 384; III: 354,

566
Barrett, P., II: 155, 162, 389; III: 268, £77-

278, 569
Barrow, H. G., I: 318, 321, 366; III: 182-184,

135, 238-242, 243, 285, 295-297, 566,
583

Barstow, D. R., I: 16, 194, 366; II: 305, 307,

380, 335, 350-354, 379, 384, 391
Bartlett, F. C., I: 216, 307, 315, 366

Barton, D., II: 147-148
Baudet, G. M., I: 91, 93, 366

Bauer, M., II: 319, 325, 384

Bayes, T., II: 90
Beard, M, II: 230, 384

Beasley, C., I: 195, 365
Bell, A. G., II: 229, 253, 385

Belsky, M. A., I: 99, 105, 108, 366

589

590 Name Index for Volumes I, II, and HI

Bendix, P., Ill: 98, 99, 100, 574

Bennett, J. S., II: 84, 384; III: 99, 345, 566

Bennett, W., Ill: 566

Berliner, H. J., I: 95, 96, 98, 99-100, 102,

103, 104, 106-107, 108, 366
Bernstein, A., I: 99, 105, 108, 366

Bernstein, M. I., I: 198, 333, 358, 366, 367

Bernstein, P. A., II: 172, 396

Bibel, W., Ill: 98, 566

Biermann, A. W., II: 298, 305, 311, 818-319,
322, 325, 384, 396; III: 509, 511, 566

Biggerstaff, T. J., II: 316, 325, 384

Binford, T. O., Ill: 132, 258, 269, 271, 273-
274, 275, 290, 565, 567, 579

Birnstein, M, III: 558, 582
Bischoff, M. B., II: 180, 398

Black, F., Ill: 78, 85, 566

Blaine, L. H., II: 284, 290, 384, 399

Bledsoe, W. W., Ill: 97, 99, 100, 101, 102,

112, 314, 566, 567
Bloom, S., I: 127, 377
Blount, S. E., II: 227, 283, 394

Blum, R. L., II: 180, 303-307, 384
Bobrow, D. G., I: 15, 147, 148, 152, 158, 217,

219, 220-221, 222, 231, 232, 267, 284,
367; II: 45, 64, 385; III: 9, 78, 84, 522,
567

Boden, ML, I: 15, 152, 232, 287, 299, 367

Boivie, R. H., II: 139, 140, 142, 390
Bolles, R. C, I: 318, 321, 366; III: 135, 259,

567

Booth, A. D., I: 231, 234, 238, 367, 376

Borgida, A., I: 186, 378
Borkmeyer, E., Ill: 258, 584

Borning, A., II: 293, 385
Bott, M. F., I: 226, 367
Bourne, D. A., Ill: 291, 567

Bower, G. H., I: 15, 180, 185, 189, 193, 365;

III: 5-6, 9, 34, 35, 42-49, 66, 67, 74, 565,
567

Boyer, R. S., Ill: 93, 102-108, 108, 111, 113,
567

Brachman, R. J., I: 147, 152, 184, 217, 221,

222, 367; III: 41, 567

Brain, A. E., Ill: 255, 259, 579

Bratko, I., I: 95, 103, 107, 108, 367, 378
Braun, H., II: 138, 142, 402
Bresnan, J., I: 248, 367

Brice, C. R., Ill: 130, 226, 567
Britten, D. H. V., I: 234

Brodatz, P., Ill: 237, 567
Brooks, R., I: 367; II: 84, 392; III: 132, 135,

269, 271, 290, 318-321, 567
Brown, C. M., Ill: 138, 274, 810-312, 566,

580

Brown, G. P., II: 227, 233, 385

Brown, H., II: 103, 111, 115, 385, 387

Brown, J. S., I: 368; II: 144, 227, 228,

231, 283, 234, 235, 247-253, 254
279-282, 385, 386, 390, 399

Brown, R. H., I: 16, 387; III: 509, 567

Bruce, B., I: 254, 255, 367

Bruell, P., Ill: 97, 567

Buchanan, B. G., I: 16, 151, 195, 369,
II: 101, 108, 109, 110, 115, 120,

182, 183, 192, 386, 388, 389, 394,

399; III: 334, 369, 372, 428-437,
464, 568, 575

Buchs, A., II: 109, 115, 386, 398

Bullwinkle, C., I: 221, 367

Burge, J., Ill: 350, 359, 572

Burger, J. F., I: 228, 384
Burstall, R. M., II: 7, 310, 314, 315, 325,

388; III: 102, 568
Burton, R. R., I: 818, 367, 368; II: 227,

229, 231, 238, 234, 235, 247-253,
260, 279-282, 385, 386, 390

-260,

376; 123,

398,

456,

386,

254-
Cadiou, J. M., II: 167, 387

Cain, R. A., Ill: 259, 567

Campbell, A. B., II: 180, 398
Carbonell, J. R., I: 186, 368; II: 226, 227,

229, 286-241, 386, 387
Carhart, R. E., II: 109, 110, 111, 112, 114,

115, 387, 395, 399, 401

Carnap, R., Ill: 384, 568

Carr, B. P., II: 281, 288-284, 261-266, 387, 400

Carson, D. F., Ill: 93, 585

Chafe, W. L., I: 368

Chang, C. L., I: 80, 81, 83, 368; II: 167, 173,
387; III: 91, 93, 568

Charness, N., I: 95, 108, 368

Charniak, E., I: 15, 222, 232, 248, 255, 262,

291, 299, 368, 385; II: 10, 14, 387, 400
Cherry, C, III: 5, 9, 568
Chien, Y. P., Ill: 221, 568

Chilausky, R. L., Ill: 428, 426-427, 577
Chomsky, C, I: 282, 372

Chomsky, N., I: 227, 229, 287, 289, 243, 244,

245, 247, 248, 368; III: 494-498, 510,
568

Choplin, J. M., II: 138, 142, 402
Chow, W. K., Ill: 246, 568

Church, A., II: 21, 387

Clancey, W. J., II: 191, 228, 229, 235, 267-
278, 387; III: 345, 566

Clark, B. B., Ill: 246, 575

Clark, K., II: 138, 312, 325, 387

Name Index for Volumes I, II, and III
591

Clippinger, J. H., Jr., I: 279, 368
Clocksin, W. F., II: 13, 387

Clowes, M. B., Ill: 132-133, 146, 155-161,
164, 568

Codd, E. F., I: 292, 369; II: 167, 387

Cohen, P. R., I: 186, 232, 280, 369, 378
Cohen, P. S., I: 329, 365

Colby, K. M, I: 15, 257, 369, 383; III: 70-74,
568, 570

Cole, A, G., I: 329, 365

Cole, R. A., I: 331, 369

Coleman, G. B., Ill: 228, 568

Collins, A. M, I: 15, 147, 152, 186, 232, 367,

368, 372; II: 7, 227, 229-230, 231, 233,

234, 235, 236-241, 242-246, 274, 386,
387, 388, 400; III: 9, 38, 39, 40, 119,
567, 568

Collins, J. S., II: 7, 386

Colmerauer, A., Ill: 123, 568

Conrad, C, III: 40, 41, 568

Conway, M. E., I: 267, 369

Cook, C. M., Ill: 509, 568

Corey, E. J., II: 134-138, 142, 388
Corkill, D. D., Ill: 550, 568

Crawford, G. F., Ill: 274, 580
Creary, L. A., II: 84, 384

Crocker, S. D., I: 95, 100, 101, 104, 108, 372
Croft, J., II: 179, 388

Crowder, N. A., II: 226, 388

Crowder, R. G., Ill: 10, 51, 568

Culicover, P. W., I: 248, 369

Dacey, R., Ill: 118, 119, 568

Damerau, F. J., II: 165, 388

Darlington, J., II: 310, 314, 315, 325, 386,
388

Date, C. J., Ill: 337, 568

Davies, A., II: 12, 53, 388

Davies, D. J. M., I: 176, 369

Davis, L. S., Ill: 224, 234, 284, 569, 582

Davis, R., I: 16, 147, 151, 194, 195, 197, 198,

199, 369; II: 46, 57, 87-101, 115, 130,
182, 192, 388; III: 330, 333, 348, 349,
569

de Champeaux, D., I: 73, 369

de Kleer, J., II: 76, 253, 385, 388; III: 82, 569

Delfino, A. B., II: 109, 115, 386, 398

Deo, N., I: 64, 66, 381

Derkson, J. A., I: 176, 382; II: 11-12, 397
Desforges, J., II: 180, 398

Dietterich, T. G., Ill: 334, 370, 372, 384, 400,

411-415, 416-419, 423, 569
Dijkstra, E. W., I: 64, 66, 369

Dinstein, I., Ill: 231, 572

diSessa, A., II: 225, 291, 294, 383

Dixon, J. K., I: 91, 93, 98, 102, 108, 384

Djerassi, C, II: 109, 110, 111, 114-115, 386,
387, 389, 398, 399, 401

Dodd, G. G., Ill: 138, 569

Donskoy, M. V., I: 96, 99, 102-104, 108, 365
Doran, J. E., I: 60, 63, 67, 71, 369, 370

Doyle, J., I: 178, 377; II: 74, 75, 76, 388;
III: 78, 117, 119, 483, 569, 577

Dreyfus, H. L., I: 370
Druffel, L., Ill: 135, 569

Duda, R. O., I: 196, 197, 370; II: 86, 155-162,
389; III: 138, 195, 198, 202, 215, 221,

225, 246, 253, 255, 259, 268, 277-278,
286, 292, 375, 379, 382, 565, 569, 579

Duffield, A. M., II: 109, 110, 115, 389, 398,
399

Dugdale, S., II: 255, 389
Dunham, B., Ill: 325, 570

Dyer, C. R., Ill: 231, 585

Eastlake, D. E., I: 95, 100, 101, 104, 108,

372
Eastman, C. M, I: 202, 370

Ebbinghaus, H., Ill: 28
Edwards, D. J., II: 33, 395

Ejiri, M., Ill: 301, 302-303, 305, 569, 574,
577, 584

Elcock, E. W., I: 122, 370

Elschlager, R., II: 307, 391

Engelman, E., I: 127, 377

Engelmore, R. S., II: 84, 110, 124, 126, 133,

389, 399

Engleman, C, II: 143-149
Erman, L. D., I: 196, 197, 331, 336, 342, 343,

345, 348, 370, 381; III: 309, 570
Ernst, G. W., I: 30, 63, 113, 117, 118, 370,

379; III: 98, 570

Evans, T. G., Ill: 499, 509, 570

Fagan, L., II: 180, 182, 192, 206, 389
Fahlman, S. E., I: 204, 222, 370; II: 146, 389

Fain, J., II: 84, 389

Falk, G., Ill: 131, 147-154, 570
Fateman, R. J., II: 144, 389

Faugeras, O. D., Ill: 234, 580

Faught, W. S., Ill: 66, 74, 570
Feigenbaum, E. A., I: 14, 16, 29, 30, 63, 198,

232, 287, 336, 343, 370, 376, 380; II: 5,

84, 86, 108, 109, 110, 115, 120, 122, 123,
124, 126, 133, 183, 389, 394, 398, 399;

III: 8, 25, 28-35, 437, 570, 575, 579, 582
Feinstein, A., II: 178, 389

Feitelson, J., Ill: 522, 570

592 Name Index for Volumes I, II, and DI

Feldman, J. A., I: 14, 29, 30, 232, 287, 370;

A., II: 5, 11, 41, 52, 818, 325, 384, 389,

390; III: 132, 226, 310-312, 509, 511,
566, 585

Fennell, R. D., I: 336, 343, 345, 370, 381

Fennema, C. L., Ill: 130, 226, 567

Fikes, R. E., I: 42, 128, 134, 169, 176, 188,

370, 381; II: 5, 64, 69, 73, 390, 398;
III: 522, 523, 530, 561, 570

Fillmore, C, I: 252, 255, 371

Filman, R. E., I: 169, 170, 205, 371

Findler, N. V., I: 16, 152, 189, 371

Fischler, M. A., Ill: 238, 253, 566, 583

Fisher, G., II: 254, 390

Flanagan, J., I: 325, 371
Flavell, J. H., I: 145, 147, 371

Fletcher, J. D., II: 226, 390

Floyd, R. W., II: 811, 390

Fogel, L. J., Ill: 325, 570

Forgie, J., I: 327, 379

Forgy, C, I: 197, 371, 377; II: 84, 390
Fox, M., I: 348, 371

Fraser, B., I: 267, 367

Frege, G., I: 200
Frey, P. W., I: 95, 102, 104, 108, 371

Friedberg, R. M., Ill: 325, 570

Friedland, P. E., Ill: 522, 551, 551-562, 570
Friedman, D. P., II: 29, 390

Friedman, J., I: 268, 273, 371

Fu, K. S., Ill: 221, 227, 291, 380, 381, 382,

506, 511, 568, 570, 581, 585

Fuller, S. H., I: 91, 93, 371

Funt, B. V., I: 203, 205, 206, 371

Furakawa, K., II: 170, 173, 390

Furbach, U., II: 310, 398

Gabriel, R. P., II: 329, 335, 390

Gagalowicz, A., Ill: 234, 580

Gaines, B. R., II: 13, 392

Galanter, E., Ill: 515, 577

Galen, R. S., II: 222, 402
Gardner, M, III: 416, 571

Garvey, T. D., I: 129, 134, 318, 321, 366,
372

Gaschnig, J. G., I: 59, 63, 91, 93, 371, 372;
II: 86, 162, 155, 389

Gelernter, H. L., I: 119, 122, 201, 372;

II: 135-136, 189-142, 390; III: 77, 100,
449, 571

Gelperin, D., I: 65, 66, 372

Genesereth, M. R., II: 146, 147, 232, 390

Gennery, D. B., Ill: 253, 571

Gentner, D. R., I: 147, 372; II: 234, 396
Gerberich, C. L., I: 122, 372

Gibson, J. J., Ill: 230, 571

Gilbert, W., Ill: 557-558, 576
Gillman, R., I: 333, 358, 366

Gillogly, J. J., I: 91, 93, 97, 98, 99, 102, 103,

108, 371, 372
Gilmore, P. C., I: 122, 372

Ginsparg, J. M, II: 827, 829, 390

Gips, J., II: 318, 325, 390; III: 291, 571
Gleason, G. J., Ill: 304, 571

Gold, E., Ill: 499-500, 501, 505-506, 571
Goldberg, A., II: 228, 293, 390, 393

Goldin, S., II: 234, 242, 246, 400

Goldman, N., I: 278, 279, 304, 305, 372, 383;
II: 336-342, 383

Goldstein, G. D., Ill: 325, 586

Goldstein, I. P., I: 217, 221, 372; II: 228,

229-234, 235, 254, 260, 261-266, 288,
293, 385, 386, 387, 390, 391, 395, 400

Gonzalez, R. C., Ill: 511, 571

Good, I. J., I: 27, 30, 372

Goodwin, G. C., Ill: 379, 571

Gorlin, D., II: 84, 389, 392

Gorry, G. A., II: 202, 205, 206-211, 391, 396
Gosper, R. W., II: 144, 391
Gould, L., II: 286, 241, 391

Graves, W. H., II: 284, 290, 399

Gray, N., II: 114
Green, B. F., I: Jr., 282, 372

Green, C. C„ I: 155, 168, 170, 327, 372, 379;

II: 11, 305, 307, 311, 312, 313, 816, 319,

325, 326-385, 350, 391; III: 78, 85, 102,

571
Greenblatt, R. D., I: 95, 100, 101, 104, 108,

372
Greiner, R., Ill: 269, 271, 290, 330, 567, 571
Griffith, A. K., I: 97, 108, 372

Grignetti, M. C., II: 236, 241, 391
Grimson, W. E. L., Ill: 135, 251, 571

Grishman, R., I: 262, 372

Gritter, R. J., II: 122, 386

Grosch, C. B., Ill: 253, 572
Grossman, R., II: 146, 391

Grosz, B. J., I: 232, 373, 381

Gumb, R. D., Ill: 119, 571

Gund, P., II: 142, 391

Gupta, M. M., II: IS, 392

Guzman, A., Ill: 180-131, 143-146, 149, 571

Haas, N., II: 169, 392

Hall, P. A. V., I: 64, 66, 373

Halliday, M. A. K., I: 249, 251, 373, 378
Hamada, T., Ill: 303, 305, 577

Hamburger, H., Ill: 509, 510, 571
Hammer, M., II: 172, 298, 305, 369, 392

Name Index for Volumes I, II, and III 593

Hanlon, C, III: 509, 567

Hannah, M. J., Ill: 253, 571

Hansen, J. R., I: 122, 372

Hanson, A. R., I: 16, 336, 343, 373; III: 138,

229, 309-810, 571, 572, 578
Haralick, R. M., Ill: 231, 237, 572

Hardy, S., II: 319, 325, 392
Harlow, C. A., Ill: 226, 572

Harman, G., I: 248, 373

Harris, G., II: 234, 385

Harris, L. R., I: 69, 71, 97, 100, 102, 108,

232, 373; II: 164, 392

Harris, Z., Ill: 506, 572

Hart, P. E., I: 61 66, 134, 169, 196, 197,

370, 373; II: 152, 153-154, 155, 160,
162, 389, 392; III: 138, 195, 198, 202,
215, 221, 253, 286, 292, 375, 379, 382,

522, 530, 561, 569, 570

Hart, T. P., II: 33, 395

Hausmann, C. L., II: 236, 241, 279, 282, 386,
391

Hawkinson, L. B., I: 217, 220, 385

Hayes, P. J., I: 148, 170-171, 172, 175, 177,
179, 186, 200, 201, 373, 374, 377; II: 73,

392; III: 82, 572

Hayes, S. P., II: 222, 394

Hayes-Roth, B., I: 336, 343, 374; III: 7, 22-
27, 519, 522, 572

Hayes-Roth, F., I: 16, 199, 331, 336, 343,
345, 348, 370, 374, 385; II: 9, 57, 84, 86,

389, 392, 401; III: 7, 22-27, 309, 333,

334, 886, 338, 345-348, 349, 350, 353,

359, 364, 391-892, 400, 410, 519, 570,
572, 575, 578

Hays, D. G., I: 238, 374; II: 146, 392
Hearst, E., I: 96, 108, 374

Heathcock, C. H., II: 138, 391

Hedrick, C, I: 195, 374

Heidorn, G. E., I: 374; II: 298, 305, 311, 870-
374, 392

Heiser, J. F., II: 84, 180, 392

Hellman, W. F, III: 463

Hemphill, L., II: 284, 402

Henderson, R. L., Ill: 253, 572

Hendrix, G. G., I: 184, 186, 188, 232, 816,

318, 321, 370, 374, 381; II: 166, 169,
173, 390, 392

Heny, F., I: 248, 365

Herrik, H., II: 297, 383

Herskovits, A., I: 289, 291, 387

Hewitt, C, I: 172, 175, 176, 178, 179, 374;

II: 9-10, 85, 46, 393; III: 78, 99, 572
Hildreth, E., Ill: 135, 218, 576

Hilf, F., I: 257, 369

Hillier, F. S., I: 64, 66, 374

Hintikka, J., Ill: 84, 572

Hintzman, D. L., Ill: 84, 572

Hjelmeland, L., II: 115, 385
Hoff, M. E., Ill: 879, 585

Hofstadter, D., I: 4, 15, 374

Holland, S. W., Ill: 301, 303-304, 305, 573
Holt, J., II: 291, 393

Hopcroft, J. E., I: 68, 71, 241, 244, 365, 374;
III: 337, 497, 565, 573

Horn, B. K. P., Ill: 184, 238, 241, 242, 243,
245, 260, 262, 267, 573

Horn, P. K. F., II: 14, 29, 402

Horning, J. J., II: 318, 325, 390; III: 503-505,

573
Howe, J. A. M., II: 225, 293, 393

Huang, T. S., Ill: 248, 573
Hudson, R. A., I: 251, 374

Hueckel, A., Ill: 218, 573

Huet, G., Ill: 83, 100, 573

Huffman, D. A., Ill: 132-183, 146, 155-161,
178, 181, 573

Huggins, B., II: 282, 386

Hummel, R., Ill: 298-800, 586
Hunt, E. B., II: 228, 393

Hunt, E., Ill: 384, 406-408, 573

Igarashi, K., Ill: 303, 578
Ikeda, S., Ill: 305, 569, 584

Ikeda, Y., Ill: 305, 306-808, 578
Ikeuchi, K., Ill: 264, 265, 573

Illich, I., II: 291-292, 393
Inhelder, B., II: 291, 397

Jackendoff, R., I: 207, 374, 375

Jackson, P. C., I: 15, 30, 42, 375

Jacobi, G. T., Ill: 325, 586

Jacobs, C. D., II: 180, 398

Jacquez, J. A., II: 177, 393
Jain, R., Ill: 247, 573

Jakobovits, L., I: 248, 384

Jelinek, F., I: 329, 365

Jelliffe, R. W., II: 206, 393

Johnson, C. K., II: 124, 133, 389

Johnson, C. R., Jr., IE: 334, 372, 456, 464,

568
Johnson-Laird, P. N., I: 207, 378; III: 119,

585

Johnston, A. R., in: 255, 573

Josselson, H. H., I: 238, 375

Judd, D. B., Ill: 205, 573

Julesz, B., Ill: 281, 573

Jurs, P. C., II: 118, 393

594 Name Index for Volumes I, II, and IH

Kadane, J. B., I: 59, 63, 68, 71, 384

Kahl, D. J., Ill: 229, 577

Kahn, K., II: 62, 293, 393

Kahneman, D., Ill: 67, 584

Kak, A. C, III: 138, 215, 224, 237, 581

Kameny, I., I: 333, 358, 366

Kanade, T., Ill: 133, 134, 136, 138, 183-194,
228, 229, 252, 257, 265, 268, 312, 574,
576, 577, 579

Kanoui, H., Ill: 123, 568

Kant, E., II: 330, 335, 351, 354, 375-379, 383,
393

Kaplan, R. M, I: 219, 221, 232, 260, 261,

267, 268, 272, 293, 294, 367, 375, 388

Kaplan, S. J., I: 232, 375; II: 167, 393

Karp, R. M., I: 69, 71, 375

Kashioka, S., Ill: 301, 302-303, 305, 574, 577
Kassirer, A., II: 202, 205, 396

Katz, J., I: 248, 375

Kay, A., II: 293, 393

Kay, M., I: 219, 221, 232, 268, 272, 367, 375
Kedzierski, B., II: 335, 393

Kelley, K., Ill: 279, 506, 574

Kellogg, C, I: 228, 375; II: 173, 393

Kelly, M. D., Ill: 279, 306, 574
Kender, J. R., Ill: 133, 134, 188, 194, 203,

204, 228, 242, 264, 265, 267, 574
Kibbey, D., II: 255, 389

Kidode, M., Ill: 252, 253, 578

Kiessling, A., Ill: 257, 581

Kimball, R. B., II: 226, 393

King, J. J., I: 194, 197, 199, 369; II: 170, 171,
173, 394

Kingsland, L. C, II: 222, 394

Kister, J., I: 99, 103, 108, 375

Klahr, P., II: 173, 393; III: 334, 336, 338,

345-348, 349, 350, 352, 353, 359, 364,
410, 572, 575

Klatt, D. H., I: 326, 327, 330, 375, 379

Klein, S., I: 274, 275, 375, 384; III: 494, 506,

509, 574

Kline, P., I: 195, 365

Kling, R., I: 129, 134, 372; III: 112, 574
Klinger, A., Ill: 112, 282, 583
Klotz, I. M, III: 66, 574

Knobe, B., Ill: 507-508, 509, 574

Knobe, K., Ill: 507-508, 509, 574
Knuth, D. E., I: 86, 87, 89, 90, 91, 93, 269,

375; III: 98, 99, 100, 574

Koffman, E. B., II: 227, 230, 233, 394

Konolige, K., II: 155, 162, 389

Kopec, D., I: 95, 107, 108, 367
Kornfeld, W. A., II: 46, 394

Kotok, A., I: 104, 108, 375

Kotovsky, K., Ill: 406, 574

Kowalski, R., I: 25, 30, 73, 74, 81, 83, 175,
375; II: 312, 325, 394; III: 78, 81, 82, 93,
112, 123, 574

Kremers, J. H., I: 318, 321, 366; III: 259, 567

Kripke, S. A., Ill: 84, 574

Krishnaswamy, R., II: 318-319, 384
Kuchner, D., Ill: 93, 574

Kuipers, B., I: 222, 376

Kulikowski, C. A., II: 179, 180, 193-196, 212-
216, 217-222, 396, 401, 402

Kulikowski, C. W., II: 179, 396

Kunz, J., II: 180, 394

Kuppin, M, III: 494, 506, 509, 574

Landsbergen, S. P. J., I: 232, 376

Langley, P. W., Ill: 371, 401-406, 410, 575
Lankford, D. S., Ill: 98, 99, 100, 566, 575

Lantz, K., I: 318, 321, 366

Larkin, K. M., II: 279-282, 385
Larsen, D. L., II: 139, 140, 142, 390

Larson, J. B., Ill: 365-367, 398, 423-426, 427,
575, 577

Laubsch, J. H., H: 227, 229, 231, 394

Laughery, K., I: 282, 372
Lawler, E. W., I: 64, 66, 376

Le Faivre, R., II: 13, 394

Lea, G., Ill: 860-361, 372, 375, 582

Lea, W., I: 16, 232, 325, 326, 329-331, 335,
344, 348, 376

Lederberg, J., I: 16, 376; II: 103, 106-110,
120, 122, 123, 386, 389, 394, 398, 399;
III: 437, 575

Ledley, R., II: 177, 394
Lee, R. C, III: 91, 93, 568

Leese, J. A., Ill: 246, 575

Lehnert, W. C, I: 16, 212, 376

Lenat, D. B., I: 16, 194, 195, 196, 197, 369,

376; II: 86, 307, 316, 318, 325, 391, 392,
394; III: 101, 330, 334, 336, 338, 364,

369, 410, 438-451, 571, 575
Lesser, V. R., I: 196, 197, 331, 336, 342, 845,

348, 370, 376; III: 309, 570

Letsinger, R., II: 228, 277, 278, 387
Levi, G., I: 81, 83, 376

Levin, M. I., II: 33, 395

Levine, M. D., I: 336, 343, 376

Levinson, S., I: 325, 371

Levitt, K., II: 812, 325, 401

Levy, D., I: 101, 108, 376
Lewis, B. L., I: 329, 365

Lewis, V. E., II: 147, 394

Lewis, W. H., II: 147, 166, 392

Licklider, J. C. R., I: 327, 379

Name Index for Volumes I, II, and III 595

Lieberman, G. J., I: 64, 66, 374

Lindberg, D. A. B., II: 222, 394

Lindsay, P. H., Ill: 8, 56-64, 581
Lindsay, R. K., I: 16, 281, 282, 376; II: 110,

123, 394; III: 437, 575

Lipkin, B. S., Ill: 217, 234, 581

Liskov, B. H., II: 848-844, 394
Locke, W. N., I: 238, 376

London, P. E, II: 74, 76, 389, 394; III: 119,
569

Long, R. E., I: 228, 384

Long, W., II: 207-211, 395
Loveland, D. W., I: 122, 372; III: 93, 97, 575

Low, J. R., II: 11, 41, 52, 317, 325, 390, 395

Lowerre, B., I: 342, 849, 352, 377

Lucas, B. D., Ill: 252, 576

Lusted, L., II: 177, 394

Lyons, J., I: 243, 244, 248, 377

Mackworth, A. K., Ill: 183, 138, 173-182,
300, 576

Mandler, G., Ill: 74, 576

Mann, W., I: 280, 377

Manna, Z., I: 171, 377; II: 308, 355-368, 395
Manove, M., I: 127, 377

Marcus, M. P., I: 16, 230, 262, 377

Marin, J., Ill: 384, 406, 408, 573

Marinov, V. V., II: 284, 290, 399

Marr, D., Ill: 134-135, 138, 218, 231, 232,
238, 242, 243, 251-252, 269, 271, 290,
576

Martelli, A., I: 66, 74, 83, 377; in: 221, 576

Martin, W. A., I: 217, 220, 385; II: 143-149,

316, 325, 864-369, 395
Maryanski, F. J., Ill: 507, 576

Masinter, L., II: 67, 103, 111, 115, 385, 390,
400

Mathias, J., I: 238, 374

Matsuyama, T., Ill: 306-808, 578
Matuzceck, D., I: 267, 377

Maxam, A., Ill: 557-558, 576
McCarthy, J., I: 148, 170, 177, 201, 377;

II: 5, 6, 7, 15, 29, 33, 395; III: 78, 85,
118, 122, 332, 345, 346, 860, 576

McConlogue, K., I: 384

McCord, M., I: 251, 377

McCorduck, P., I: 5, 14, 15, 377; HI: 77, 576

McCune, B., II: 800, 307, 829-380, 335, 391,
395

McDermott, D. V., I: 15, 175, 176, 178, 368,

377, 384; II: 10, 14, 29, 35, 56, 387, 395,
400; III: 78, 82, 117, 119, 576, 577

McDermott, J., I: 194, 197, 371, 376, 377;

II: 84, 390; III: 391-392, 400, 572

McDonald, D., I: 280, 378

Mcintosh, A., I: 251, 378

McKeown, D. M., Ill: 136, 577

McKeown, K., I: 280, 378

McLeod, D., II: 172, 392

Mellish, C. S., II: 13, 387

Melosh, R. E., II: 84, 384

Mercer, R. L., I: 329, 365

Mese, M., Ill: 303, 305, 569, 577

Michalski, R. S., Ill: 334, 365-367, 370, 372,

384, 398-899, 400, 411-415, 419, 423-
427, 569, 575, 577

Michie, D., I: 59, 63, 67, 71, 95, 103, 107-
108, 367, 370, 378

Milgram, D. L., Ill: 229, hll

Miller, G. A., I: 207, 378; III: 5, 6, 515, 577

Miller, L., Ill: 6, 577

Miller, M. L., II: 229, 232-233, 282, 293, 386,

395
Miller, W. J., Ill: 253, 572

Minker, J., I: 31, 385; II: 173, 395

Minsky, M., L., I: 14, 29, 30, 159, 216, 217,
220, 222, 231, 232, 287, 307, 315, 378;

III: 6, 41, 77, 78, 84, 310, 325, 326, 331,

343, 57.9, 577
Mitchell, T. M., II: 110, 120, 121, 123, 395,

396; III: 334, 369, 372, 384, 385-891,
896-398, 400, 428, 484-436, 437, 452-

458, 456, 464, 484-493, 505, 568, 577,
578

Mittman, B., I: 96, 108, 378

Miyatake, T., Ill: 303, 305, 577

Miyazaki, S., Ill: 303, 578

Mont-Reynaud, B., II: 335, 391
Montanari, U., I: 74, 83, 377; III: 221, 578
Moore, E. F., I: 64, 66, 378

Moore, J. S., I: 197, 280, 377; III: 102-103,
108, 111, 113, 567

Moore, R. C., I: 178-179, 378; III: 78, 81, 84,
578

Moore, R. W., I: 86, 87, 89, 90, 91, 93, 375

Moravec, H. P., Ill: 250-251, 253, 578

Morgenstern, M., II: 364-369, 395, 396
Mori, K., Ill: 252, 253, 578

Mori, S., Ill: 231, 583

Moses, J., I: 125, 127, 378; II: 143-149, 396

Mostow, D. J., Ill: 333, 345-848, 349, 850-
859, 572, 578

Munson, J., I: 327, 379

Musser, D. R., II: 144, 396

Myers, J., II: 197-201
Mylopolous, J., II: 172, 396

Myopolous, J., I: 186, 378

596 Name Index for Volumes I, II, and IE

Nagao, M., Ill: 306-308, 578
Nagel, H. H., Ill: 247, 573

Nagin, P. A., Ill: 229, 578

Naruse, M., Ill: 303, 578

Nash-Webber, B. L., I: 293, 294, 326, 378,
379, 388

Neely, R., I: 343, 381
Neisser, U., Ill: 6, 578

Nelson, C. G., Ill: 100, 579

Nevatia, R, III: 220, 224, 274, 275, 318, 579

Nevins, A. J., Ill: 98, 99, 579

Newborn, M, I: 91, 93, 96, 101, 108, 379

Newell, A., I: 4, 14, 29-31, 63, 98, 100, 105,
106, 108, 109, 111, 112, 113, 117, 118,
121, 157, 169, 193, 197, 327, 331, 335,

351, 370, 377, 379; II: 4, 396; III: 3, 5,

6, 9, 11-21, 11, 518, 579
Nievergelt, J., I: 64, 66, 381

Nii, H. P., I: 336, 343, 380; II: 84, 126, 133,

389, 396; III: 25, 348, 579

Nilsson, N. J., I: 7, 15, SO, 31, 35, 38, 42, 45,

51, 53, 56, 57, 58, 60, 63, 64, 65, 66, 71,

75, 78, 83, 87, 93, 102, 108, 128, 134,
169, 171, 197, 370, 373, 380; II: 102,
154, 160, 389, 396; III: 78, 85, 87, 91,

93, 377, 382, 522, 523, 530, 561, 570,
579

Nishihara, H. K., Ill: 135, 269, 271, 290, 576

Nitzan, D., Ill: 255, 259, 268, 277-278, 569,
579

Nordyke, R., II: 179, 396

Norman, A. C, II: 144, 396

Norman, D. A., I: 15, 149, 180, 185, 189,

207, 215, 219, 221, 232, 255, 367, 380;

II: 234, 396; III: 8, 10, 56-64, 326, 579,
581

North, J. H., Ill: 325, 570

Nourse, J., II: 113

Novak, C. S., Ill: 246, 575

Novak, G. S., I: 221, 380

Nudel, B., Ill: 484, 493, 578

O'Connell, D. N, III: 244, 584
Oettinger, A. G., I: 235, 238, 380

Ohlander, R. B., Ill: 227, 228, 579

Ohta, Y., Ill: 228, 312, 579

Oppen, D., Ill: 100, 579

O'Rourke, J., Ill: 290, 291, 565, 580

O'Shea, T., II: 293, 393
Oshima, M, III: 276-277, 580
Owens, A. J., Ill: 325, 570

Paige, J. M, I: 285, 380
Pao, T. W., Ill: 505, 580

Papert, S., II: 225, 291-294, 396, 399; III: 325,
379, 511

Parkinson, R., Ill: 74, 570

Pasero, R., Ill: 123, 568
Passafiume, J. J., II: 237, 388

Pauker, S. G., II: 180, 202-205, 206-211, 391,
396, 400

Pavlidis, T., Ill: 279, 291, 580, 583

Paxton, W. H., I: 361, 380

Payne, R. L., Ill: 379, 571
Pereira, F., II: IS, 401; III: 82, 123, 585

Pereira, L. M., II: 13, 401; III: 82, 123, 585

Perrault, C. R., I: 232, 369

Peterson, G. E., Ill: 99, 100, 580

Petrick, S. R., I: 260, 380

Petry, F. E., II: 322, 325, 396
Phillips, J., II: 319, 822, 324, 325, 329, 335,

391, 397

Piaget, J., II: 291, 397
Pinker, S., Ill: 509, 510, 580

Pitrat, J., I: 107, 108, 380

Plath, W., I: 380

Poggio, T., Ill: 135, 242, 251-252, 576
Pohl, I., I: 24, 51, 52, 53, 59, 63, 67, 69, 71,

72, 73, 380
Polya, G., I: 29, 31, 381; II: 294, 397; III: 561,

580

Pople, H., II: 180, 197-201, 397
Popplestone, P. J., Ill: 285, 566

Popplestone, R. J., II: 7, 12, 397; III: 274,

285, 580
Post, E., I: 190, 381

Postal, P., I: 243-244, 248, 375, 381
Pratt, V. R., II: 29, 397

Pratt, W. K., Ill: 234, 580

Prawitz, D., I: 169, 381

Presburger, M., Ill: 100, 580

Pressburger, T., II: 385, 391

Preston, K., II: 177, 397

Prewitt, J. W. S., Ill: 227, 580
Pribram, K. H., Ill: 515, 511

Price, K., Ill: 227, 579

Propp, V., I: 307, 315, 381

Pylyshyn, Z., I: 201, 206, 381

Quillian, M. R., I: 156, 180, 185, 228, 230,

275, 276, 381; II: 5; III: 8, 36-41, 568,
580

Quine, W. V., Ill: 119, 580

Quinlan, J. R., Ill: 406, 408-410, 580

Rabiner, L., I: 325, 371

Raphael, B., I: 15, 27, 31, 64, 66, 178, 185,

228, 283, 373, 381; II: 11; III: 522, 567

Name Index for Volumes I, II, and DI 597

Reboh, R., I: 176, 381; II: 64, 69, 155, 160,

162, 389, 398; III: 348, 580

Reddy, D. R., I: 327, 331, 336, 342, 343,
345, 348, 349, 352, 370, 377, 379, 381;
III: 227, 309, 570, 579

Reder, S., II: 318, 325, 390

Reeker, L. H., Ill: 510, 580

Reich, C. M., Ill: 68, 565

Reiner, E., I: 235

Reingold, E. M, I: 64, 66, 381
Reiser, J. F., II: 11, 70, 397

Reiter, R., I: 176, 381; II: 172, 173, 239, 397;
III: 98, 100, 117, 580

Rhodes, J. B., II: 142, 391

Rich, C, II: 343-349, 397
Richens, R. H., I: 234

Rieger, C, I: SOS, 305, 381, 383; II: 14, 397

Riesbeck, C. K., I: 15, 196, 261, 262, 303,

305, 306, 315, 368, 381, 383; II: 14, 29,
33, 387, 398

Rinehart, A. R., II: 141

Risch, R., II: 82, 144, 397; III: 100, 580

Riseman, E. M, I: 16, 336, 343, 373; III: 138,

229, 309-810, 571, 572, 578, 580
Rissland, E. L., Ill: 363, 581

Roberts, L. G., HI: 129-130, 139-148, 147,
150, 216, 581

Roberts, M. de V., I: 99, 105, 108, 366

Roberts, R. B., I: 217, 221, 372

Robertson, A. V., II: 109, 389

Robertson, T. V., Ill: 227, 581

Robinson, A. E., I: 232, 381

Robinson, G. A., Ill: 93, 581, 585

Robinson, J. A., Ill: 77-78, 86, 91, 93, 121,
123, 581

Robinson, J. J., I: 232, 359, 381, 382
Rochester, N., I: 122, 372

Roecker, F., Ill: 257, 581

Rosenberg, A., I: 325, 371

Rosenberg, L., II: 14, 397

Rosenberg, R. S., I: 254, 255, 385

Rosenblatt, F., Ill: 325, 878-379, 581
Rosenfeld, A., Ill: 138, 215, 217, 224, 229,

231, 233, 234, 237, 291, 298-800, 509,
568, 581, 582, 585, 586

Rosenschein, S., II: 84, 389, 392
Ross, R., I: 59, 63, 378

Rossol, L., Ill: 138, 301, 803-804, 305, 569,
573

Rothschild, L., II: 144, 401

Rothstein, M., II: 144, 397

Roussel, P., Ill: 123, 568

Roussopoulos, N. D., II: 167, 171-172, 387,
397

Rovner, P. D., II: 11, 381

Rowe, N., II: 293, 397

Rubensteinr R., II: 247, 248, 252, 253, 385

Rubin, S., Ill: 312, 581

Rulifson, J. F., I: 176, 382; II: 11-12, 397
Rumelhart, D. E., I: 15, 149, 180, 185, 189,

207, 215, 255, 306, 307, 315, 336, 343,

380, 382; III: 8, 10, 56-64, 579, 581
Russell, B., I: 111, 112, 386

Russell, S. W., I: 212, 382. See also S. Weber.
Rustin, R., I: 232, 382

Ruth, G., II: 298, 305, 364-369, 392, 397
Rychener, M. D., I: 193, 195, 196, 382

Sacerdoti, E. D., I: 185, 139, 176, 318, 321,

374, 381, 382; II: 64, 69, 164, 173, 280,

392, 398; III: 516, 522, 523, 530, 541-
550, 581

Safir, A., II: 180, 198-196, 222, 402
Safrans, C., II: 180, 397

Sagalowicz, D., I: 176, 318, 321, 374, 381;
II: 64, 69, 398

Sakai, T., Ill: 228, 579

Sakamoto, Y., Ill: 301, 302-303, 305, 574
Samet, H., II: 14, 397

Samlowski, W., I: 255, 382

Samuel, A. L., I: 27, 31, 45, 95, 97, 102, 104,

108, 382; HI: 382, 338, 839-344, 452,

457-464, 582
Sanders, A. F., II: 139, 140, 142, 390

Sandewall, E. J., I: 63, 382; II: 65-66, 67, 398
Saridis, G. N., II: IS, 392

Scha, R. J. H., I: 382
Schachter, G. J., Ill: 234, 582

Schaffert, C., II: 344, 394

Schank, R. C., I: 14, 15, 149, 211, 212-215,
216, 217, 219, 220, 221, 222, 231, 232,

237, 238, 254, 255, 278, 291, 300, 301-
303, 305, 306, 309, 310, 313-315, 382,
383; II: 14, 29, 33, 398; III: 10, 70, 74,

519, 522, 561, 582
Schatz, B. R., Ill: 232, 582
Schmidt, C. F., II: IS, 398

Schreiber, J. F., II: 310, 398; III: 98, 566

Schroll, G., II: 109, 398

Schubert, L. K., I: 383

Schunck, B. G., Ill: 242, 245, 573

Schwarcz, R. M., I: 384

Schwartz, W., II: 202, 205, 396
Schwenzer, G. M, II: 110, 121, 396

Scott, A. C., II: 180, 398

Searle, J. R., I: 7, 383

Searleman, J. E., II: 139, 140, 142, 390

Self, J. A., I: 251, 383; II: 229, 235, 398

598 Name Index for Volumes I, EL and EQ

Shafer, S. A., Ill: 228, 582

Shanmugam, K., Ill: 231, 231, 572

Shannon, C. E., I: 27, 31, 94-99, 103, 108,
383; III: 5, 582

Sharp, G. C, II: 222, 394
Shaw, D. E., II: 172, 307, 319, 325, 391, 398

Shaw, J. C, I: 29, 30, 98, 105, 108, 109, 111,

112, 113, 118, 379; II: 4, 396; III: 6

Sheikh, Y. M, II: 115, 398

Shirai, Y., Ill: 132, 168-172, 221, 258, 272-

273, 276-277, 312, 580, 582
Shortliffe, E. H., I: 195, 197, 369, 383; II: 180,

183, 184-192, 398; III: 331, 582
Shostak, R. S., Ill: 97, 100, 567, 582

Shoup, J., I: 329, 330, 333, 344, 376, 383

Shrobe, H. E., II: 343-349, 387, 398
Sibel, W., II: 310, 398

Sibert, E. E., Ill: 123, 581

Sickel, S., II: 312, 325, 387

Sieber, W., II: 138, 142, 402

Siklossy, L., I: 16, 383; II: 29, 319, 325, 398,
399

Silverman, H. F., II: 180, 206-211, 391, 398;
III: 252, 566

Simmons, R. F., I: 182, 186, 189, 228, 254,

256, 274, 277, 287, 375, 383, 384, 387

Simon, H. A., I: 4, 14, 15, 29-30, 31, 59, 63,
68, 71, 98, 100, 105, 106, 108, 109, 111,

112, 113, 118, 121, 149, 157, 169, 285,

379, 380, 384; II: 4, 317, 325, 396, 399;

III: 3, 5, 6, 9, 11-21, 26, 28-29, 35, 77,

326, 327, 360-361, 372, 375, 405, 518,
570, 574, 579, 582

Sint, L., I: 73, 369

Sirovich, F., I: 81, 83, 376

Skinner, B. F., Ill: 4, 582

Skolem, T., Ill: 102, 582

Slagle, J. R., I: 80, 81, 83, 87, 91, 93, 98,
102, 108, 123, 127, 368, 384

Slate, D. J., I: 95, 96, 99, 100, 102, 103, 108,
384

Sleeman, D., II: 228, 399

Slocum, J., I: 182, 186, 277, 318, 321, 374,
384; II: 155, 160, 162, 389

Sloman, A., I: 200, 205, 206, 384

Smirnov-Troyansky, P. P., I: 233
Smith, B. C, I: 152, 367

Smith, D. H., II: 109, 110, 111, 112, 114-115,
387, 398, 399, 401

Smith, G., II: 138, 142, 402

Smith, R. G., II: 46, 399; III: 334, 372, 456,
464, 568

Smith, R. L., II: 228, 284, 290, 384, 399

Smith, W., Ill: 558, 582

Snape, K., II: 125, 399

Snyder, A., II: 344, 394
Solomon, C, II: 293, 399

Solomonoff, R., Ill: 507, 583

Soloway, E., Ill: 363, 364, 581, 583

Soroka, B. I., Ill: 316, 583

Sowa, J. F., II: 171-172, 399
Sowizral, H., II: 84, 389, 392

Sridharan, N. S., II: 13, 86, 111, 115, UO,

183, 395, 399

Stallman, R. M., II: 75-7^, 400
Stansfield, J. L., II: 261, 266, 400

Steel, J., II: 76, 388

Stefik, M. J., I: 184, 217, 221, 384; II: 84,

400; III: 520, 522, 551-557, 559, 561,
570, 583

Stein, P., I: 99, 103, 108, 375

Steinberg, L., II: 307, 329, 391, 400

Steinberg, S., I: 248, 384

Sternberg, S., Ill: 50, 583

Stevens, A., II: 229-230, 234, 242-246, 274,
396, 400

Stevens, K., Ill: 242, 265, 583

Stickel, M., Ill: 97, 99, 100, 575, 580

Stone, P. J., Ill: 384, 406, 408, 573

Sugar, L., I: 186, 378

Sugihara, K., Ill: 274-275, 276, 583
Summers, P. D., II: 325, 400

Suppes, P., I: 171, 384; II: 227, 283-290, 400
Sussman, G. J., I: 175, 176, 299, 384, 385;

II: 10, 56, 73-74, 76, 316, 317-318, 325,

361, 388, 400; III: 452, 475-483, 520,
531-535, 540, 583

Sutherland, G. L., I: 197, 370; II: 108, 109,

110, 115, 160, 162, 389, 398

Suwa, M, III: 258, 272-273, 582
Swain, P. H., Ill: 227, 581

Swartout, W., II: 91, 180, 182, 206-211, 319,
325, 398, 400

Swinehart, D. C, II: 11, 41, 52, 390

Sykes, D., II: 319, 325, 399

Szolovits, P., II: 180, 183, 202-205, 206, 400
Szolovitz, P., I: 217, 229, 385

Taboada, J., Ill: 258, 565

Tamura, H., Ill: 231, 583

Tanimoto, S., Ill: 279, 282, 583

Tappel, S., II: 335, 391

Tate, A., Ill: 535-537, 540, 550, 583
Taylor, B., I: 254, 255, 385

Taylor, R. H., II: 11, 41, 52, 390
Teitelman, W., II: 8, 400

Tenenbaum, J. M., I: 318, 321, 366; III: 182,

134, 238-242, 243, 295-297, 566, 583

Name Index for Volumes I, II, and EI 599

Terry, A., II: 133, 389, 401

Thompson, C, I: 374

Thompson, F. B., I: 228, 385

Thompson, H., I: 219, 221, 232, 367

Thompson, M. G., Ill: 511, 571

Thompson, W. B., Ill: 305, 583

Thorndyke, P. W., I: 306, 315, 385

Thorp, E., I: 103, 108, 385

Thorpe, C. E., Ill: 284, 583

Thurston, M., IE: 217, 233, 581

Tokunaga, T., Ill: 305, 584
Tolzis, H., Ill: 290, 565

Tomita, F., Ill: 227, 283-234, 235, 236, 584
Trager, B. M., II: 144, 401

Traub, J. F., II: 144, 385

Travis, L., II: 173, 393

Trigoboff, M., II: 180, 212-216, 401
Tsichlis, P., II: 180, 398

Tsuji, S., ffi: 219, 227, 233-234, 235, 236,
584, 585

Tsypkin, Y. Z., Ill: 382, 584

Tukey, J. W., Ill: 119, 584

Turing, A. M., I: 4, 99, 103, 108, 385

Turner, K. J., Ill: 222, 291, 584

Tversky, A., Ill: 67, 584

Tyson, M., Ill: 101, 567

Ueda, H., Ill: 305, 584

Ulam, S., I: 99, 103, 108, 375

Ullian, J. S., Ill: 119, 580

Ullman, J. D., I: 68, 71, 241, 244, 365, 374;
III: 135, 245, 247, 337, 565, 573, 584

Ullman, S., Ill: 247, 497, 584

Uno, T., Ill: 305, 569, 584

Utgoff, P. E., Ill: 452-453, 484~498, 578

VanLehn, K., II: 282, 386

Vanderbrug, G. J., I: 31, 385; III: 258, 584

van Melle, W., II: 84, 180, 276, 398, 401;
III: 348, 584

Varkony, T. H., II: 109, 110, 114-115, 401
Vere, S. A., I: 195, 385; III: 391, 892, 400,

584

Vincens, P., I: 325, 385

von Neumann, J., II: 6

Wahlster, W., II: 18, 401

Walden, W. E., I: 99, 103, 108, 375, 385

Waldinger, R. J., I: 176, 381, 382; II: 11, 12,

64, 69, 307, 808, 312, 325, 355-868, 391,
395, 398, 401; III: 587-540, 584

Walker, D. E., I: 186, 361, 385

Wallach, H., Ill: 244, 584

Walsh, M. J., Ill: 325, 570

Waltz, D. L., I: 232, 385; II: 164, 401; III: 138,

146, 161-167, 292, 295, 300, 584
Wang, H., Ill: 77, 584

Wang, P., II: 144, 401

Ward, M. R., Ill: 301, 803-804, 305, 573
Warnock, E. H., II: 237, 388

Warren, D. H. D., II: 13, 401; III: 82, 123,
584, 585

Wason, P. C, III: 119, 585

Wasow, T., I: 248, 369

Waterman, D. A., I: 16, 195, 199, 385; II: 9,

57, 84, 86, 389, 392, 401; III: 331, 452,

465-474, 585
Waters, R. C, II: 848-349, 401
Weaver, W., I: 226, 284, 237, 238, 288, 304,

385; III: 5, 582

Weber, S., I: 257, 369; See also S. W. Russell.

Wee, W. G., Ill: 880, 585

Wegbreit, B., II: 45, 315, 325, 384, 401

Weiss, S. M., II: 180, 193-196, 217-222, 394,
402

Weissmann, C, II: 29, 402

Weizenbaum, J., I: 228, 285, 286, 386

Welin, C. W., I: 255, 386

Wells, M, I: 99, 103, 108, 375
Wescourt, K., II: 284, 402

Westfold, S., II: 335, 391

Weszka, J. S., Ill: 229, 231, 585

Wexler, J. D., II: 227, 402

Wexler, K., Ill: 55, 509, 510, 571, 585

Weyhrauch, R. W., I: 169-171, 371, 386;
II: 13, 402; III: 82, 119, 585

White, W. C, II: 122, 386

Whitehead, A. N., I: 111, 112, 386

Widrow, B., Ill: 379, 585

Wiederhold, G., II: 303-307, 384; III: 337,

585
Wilber, M., I: 176, 381; II: 64, 69, 398, 402

Wile, D., II: 836-342, 383
Wilensky, R., I: 232, 813, 314, 315, 386

Wilkins, D., I: 95, 107, 108, 386

Wilks, Y., I: 149, 207, 209, 210, 215, 232,

287, 238, 248, 254, 255, 262, 279, 288,
289, 291, 299, 368, 386, 387

Williams, C, II: 386-342
Wilson, H. A., II: 226, 383

Winograd, T., I: 9, 14, 31, 147, 150-152, 156,
158, 159, 173, 176, 177, 179, 189, 199,

207, 215, 217, 219, 221, 222, 227, 230-
232, 244, 251, 260, 261, 262, 267, 276,

287, 291, 295, 296, 298, 299, 319, 367,

385, 387; II: 10, 64, 383, 400
Winston, P. H., I: 15, 16, 87, 90, 93, 199,

387; II: 14, 29, 86, 380-382, 402; III: 138,

600 Name Index for Volumes I, II, and IE

Winston, P. H. (continued)
160, 161, 162, 163, 167, 286, 326, 364,

892-396, 400, 443, 585

Wipke, W. T., II: 134-139, 142, 388, 402
Witkin, A. P., Ill: 265, 585

Wolf, A. K., I: 282, 372

Wolf, H. C, I: 318, 321, 366

Wolf, J., I: 329, 342, 353, 354, 356, 357, 387

Wong, H. K., I: 278, 387; II: 172, 396

Wood, D. E., I: 64, 66, 376

Woodham, R. J., Ill: 260, 263, 585

Woods, W., I: 173, 184, 186, 230, 260, 261,

263, 266, 267, 292, 293, 294, 327, 329,

342, 353, 354, 356, 357, 379, 387, 388

Wos, L., ni: 93, 581, 585

Wyszecki, G., Ill: 205, 573

Yachida, M., Ill: 219, 234, 235, 236, 584,
585

Yakimovsky, Y., Ill: 132, 226, 585

Yamada, T., Ill: 303, 578
Yamawaki, T., Ill: 231, 583

Yamazaki, I., Ill: 303, 305, 577

Yeo, A., II: 110, 399

Yngve, V., I: 233, 273, 275, 388

Yob, G., II: 261, 402
Yovits, M. C, III: 325, 586

Yu, V., II: 182, 192, 267, 402

Yun, D. Y., II: 144, 396

Zadeh, L., II: IS, 402; III: 356, 586

Ziles, L. A., II: 343-344, 402

Zippel, R., II: 144, 402
Zucker, S. W., Ill: 229, 234, 298-300, 586

SUBJECT INDEX FOR VOLUMES I, II, AND III

Ablation studies of HARPY, I: 335

Abstract operators in NOAH, III: 542

Abstraction space, III: 516-518

in ABSTRIPS, I: 136; III: 528-530

ABSTRIPS, I: 22, 28, 134, 135-139, 169;
III: 517-518, 523-530

Acceptance of expert systems, II: 89

Acoustics, I: 343. See also Speech signal.

Acquisition of knowledge. See Knowledge

acquisition; Learning; Transfer of ex-

pertise.

ACRONYM, III: 132, 137, 313-321

generalized cylinders in, III: 314-316

interpretation in, III: 319-320

modeling classes of objects in, III: 314-316
predicting relations in, III: 317

predicting shapes in, III: 316-317
ACT, I: 195; III: 9, 50-54
Action clause of production rule, II: 188

Actional predicates, III: 58

Active instance selection, III: 363. See also

Instance space, search of.

Active structural network, I: 185; III: 56-64.
See also Semantic network.

Acyclic molecular structures, II: 106, 111

Ad hoc knowledge representation, I: 227
Ad hoc parsers, I: 287

Adaptive learning. See Adaptive systems.

Adaptive production system, I: 195

Adaptive systems, III: 325, 371, 373-382
ADD list, II: 73

in ABSTRIPS, I: 135

in NOAH, III: 544-545, 550

in STRIPS, I: 128-134
Admissibility

of A*, I: 65
of ordered search, I: 80, 83

of shortfall density strategy, I: 341, 356
Admissibility condition, I: 65, 67, 73

Advice Taker, III: 78

Advice-taking, III: 328, 333, 345-359, 427,
467-468. See also Learning situations.

Advisor in MACSYMA, II: 147

Aerial photograph interpretation, III: 306-
308, 319-320

AGE, II: 84; III: 348

use of, in CRYSALIS, II: 126

Agenda, I: 338, 356, 360. See also Control
structures and strategies,

in AM, III: 440
in SCHOLAR, II: 239

Agreement in natural language, I: 263

Agricultural pest-management systems,
II: 154

AI programming, II: 30-32
AI programming languages, I: 10, 172, 175;

II: 3-76. See also Knowledge representa-
tion languages.

ALGOL, I: 237; II: 6, 11

CONNrS^ER, I: 175, 176; II: 4, 8-10, 38-

39, 50-51, 56, 60-61, 68, 146, 202
context mechanisms in, II: 10, 35-37, 39,

44, 46, 73

control structures in, II: 31-32, 45-57

data structures in, II: 30-31, 34-44
database facilities in, II: 44

features of, II: 30-71
FOL, II: 13

FUZZY, II: 13, 43, 53-55, 63-64
INTERLISP, I: 320; II: 8, 67-68, 70-71,

212, 362

IPL, II: 4
IPL-V, I: 281-282; III: 29
LEAP, II: 11, 41, 317

list processing in, I: 227, 281-287
LISP, I: 15, 173, 237, 283, 295, 303; II: 4,

5-9, 15-29, 37, 46-47, 59, 66-68, 187,

298, 300, 312-314, 355; III: 103, 120- 123

MACLISP, II: 8, 202, 206, 369

MICRO-PLANNER, I: 295-297; II: 10

pattern matching in, II: 32, 58-64
PLANNER, I: 151, 155, 171, 175-178,

295-297; II: 8-10, 38, 47-50, 56, 60, 68,
74, 79; III: 82, 121, 533

POP-2, II: 7, 12, 42, 53, 63, 70
POPLER, I: 176; II: 12

programming environment of, II: 3-4, 7-9,

32, 65-71
PROLOG, II: 13; III: 82, 123-124
QA3, I: 129, 168, 169; III: 78

QA4, I: 176; II: 11, 79

601

602 Subject Index for Volumes I, II, and HI

AI programming languages (continued)

QLISP, I: 176; II: 12, 39-41, 51-52, 61-62,
69, 362; III: 543

SAIL, II: 11, 41-42, 52-53, 62-63, 69-70,
317

SLIP, I: 286

AIMDS/BELIEVER, II: 13
Albedo map, III: 238

ALCHEM in SECS, II: 137

Algebraic manipulation, II: 143. See also
MACSYMA.

ALGOL, I: 237; II: 6, 11

A* algorithm, I: 64-73, 80
Aliphatic amines, II: 117

Allocation of storage. See Variable scoping.

Allophone, I: 333, 337, 349. See also Speech

pattern.

Alpha-beta pruning of game trees, I: 88-93,
94, 101

Alternative dialogues in GUIDON, II: 272.

AM, I: 157, 195-197; III: 100, 326, 330, 370,

371, 372, 422, 438-451
best-first search in, III: 438, 441

performance of, III: 447-451
reasoning about boundary examples in,

III: 443-444

refinement operators in, III: 444-445
representation of mathematical concepts

in, III: 438

searching instance space in, III: 442-444

searching rule space in, III: 444-445
Ambiguity

in natural language, I: 208-211

in program specification, II: 336-337

in speech, I: 325-327
Analogical knowledge representation. See

Direct (analogical) knowledge represen-
tation.

Analogical reasoning, I: 146

as a method of learning, III: 328, 334, 443-
445

Analytic chemistry, II: 102-133; III: 428
Anaphoric reference, I: 293, 358; II: 250

AND/OR graph, I: 26, 38-40, 43, 74, 113,
119, 124. See also Problem representa-
tion,

generalized, I: 82

search of, I: 54-57, 74-83
AND/OR tree, I: 39, 56, 94, 268; II: 90, 95,

134, 190, 270, 375. See also Problem

representation,
context tree, I: 197

degree of, I: 91

game tree, I: 25, 43-45, 84

solution tree, I: 40, 75, 77-79

transition tree, I: 316-317
Androstanes, II: 122

Antecedent reasoning. See Bottom-up rea-
soning; Control structures and strate-

gies; Reasoning.
Antecedent theorem

in logic programming, III: 120-123
in PLANNER, II: 38, 48, 73

Antimicrobial therapy, II: 184

AP2 in SAFE, II: 337

APL, II: 6

Application language in LIFER, I: 316

Applications of AI. See also Expert systems;

Games; Puzzles,
document retrieval, I: 328, 351

industrial vision systems, III: 301-305
information retrieval, I: 22, 282, 283, 292,

316, 318

machine translation, I: 207-213, 225, 226,

233-238, 273, 274, 279, 281, 288-291

paraphrasing, I: 149, 211, 255, 274, 302-
304, 321

question answering, I: 168-169, 173, 185-
186, 281, 295, 302; III: 63, 78

space planning, I: 202
story understanding, I: 231, 300, 306

travel budget manager, I: 353
voice chess, I: 328, 334, 344

Applicative style of programming, II: 6-7,
15, 17

Apprentice for MACSYMA, II: 148

A? algorithm, III: 398, 419, 423-427

AQ11, III: 421, 423-427
Areal features, III: 251

Arithmetic skills, II: 279-282
ARPA speech understanding research (SUR),

I: 327, 353

Articulate expert. See also Explanation,

in ICAI systems, II: 230
in SOPHIE, II: 252

Askable vs. unaskable hypotheses, II: 161

Assembly, III: 542

automation of, in SRI computer-based

consultant, II: 150-154
Assertion, II: 38

Assignment statement, II: 19

Associated pair, III: 335. See also Paired-
associate learning.

Associations. See also LEAP; Property lists,
in AI programming languages, II: 4
in LISP, II: 7

in SAIL, II: 41
Associative triple

Subject Index for Volumes I, II, and EH 603

in MYCIN, II: 188

in SAIL, II: 41

Atom in LISP, II: 7, 16

Atom migration in mass spectroscopy,

II: 117; III: 430-434

Attribute-object-value triple. See Associa-
tive triple.

Augmented links in IRIS, II: 212

Augmented transition network (ATN),

I: 186, 230, 261, 263-267; III: 56. See
also Grammar; Parsing,

in GSP, I: 268, 271

in LIFER, I: 316

in LUNAR, I: 292-294
in MARGIE, I: 303, 304

in MEMOD, III: 56

in speech-understanding systems, I: 350,
355

in text-generation systems, I: 277-279

Automata as objects of learning, III: 380-
381

Automatic backtracking. See Backtracking.

Automatic coding, II: 299. See also Auto-
matic programming.

Automatic deduction, III: 76-123. See also
Logic; Theorem proving.

Boyer- Moore theorem prover, III: 102-113
circumscription in, III: 116

and commonsense reasoning, III: 78

control strategies in, III: 80-82

decision procedures in, III: 99-100
deduction contrasted with evaluation in,

III: 79

default reasoning in, I: 176-177; II: 239;
III: 115-116, 119

with examples, III: 100

heuristics for, III: 91-92, 98-100

IMPLY, III: 95-96, 98

and induction, III: 109-110

logic programming, II: 13; III: 77, 82, 120-
121, 123

Logic Theorist (LT), I: 24, 109-112, 113,
116, 119; II: 4, 79; III: 3, 77

and natural deduction, I: 163-164, 169,

175; II: 283, 285-286; III: 94-95, 101

and nonmonotonic logic, II: 74-75;
III: 114-119

and nonresolution theorem proving,

III: 94-102

and reduction, III: 98-99
resolution method in, I: 168, 175; II: 11,

313; III: 77-78, 86-87, 91-94, 97

and unification, II: 61-62; III: 89-90, 91,
96, 120, 121

Automatic derivation of NL front end,
II: 166

Automatic programming (AP), I: 9; II: 297-
379. See also Program specification,

approaches to, II: 301, 312-325
automatic data-structure selection,

II: 316-317

of data-processing systems, II: 364-369
definition of, II: 297-298

efficiency of synthesized code in, II: 302-

303, 317, 327, 365, 375-379
issues in, II: 301-303
and learning, II: 297-298, 318
and LISP, II: 27

planning in, II: 339-340
in PECOS, II: 350-354

program-specification methods for, II: 297,
299-300, 306-311, 336-337

program synthesis, II: 313
program understanding, II: 303, 305, 343,

364-369

in PSI, II: 330

representation of knowledge in. II: 315-
316

representation of programs in, II: 319,

327, 329-330, 343-348, 375
and self-reflective programs, II: 297-298,

318

of simulation programs in NLPQ, II: 370-

374
symbolic execution in, II: 323, 336, 339-

340

systems- design issues in, II: 327-328
target language in, II: 28, 300, 355, 370
verification of synthesized code, II: 320,

344-347, 355

Automatic programming approaches, II: 301,

312-325

induction, II: 319-325
knowledge engineering, II: 301, 315-316,

350-354, 375-379

problem solving, II: 301, 317-318, 321,
324-325

program transformation, II: 301, 302, 304,

309, 314-315, 350-354, 355-363, 370-

374, 375-379
program understanding, II: 303, 305, 343,

364-369

theorem proving, II: 301, 308-309, 312-

314
Automatic theory formation, II: 116. See

also Hypothesis, formation of; Learn- ing.

Average branching factor. See Branching
factor.

604 Subject Index for Volumes I, II, and III

Axiomatic system, I: 165; See also Automatic
deduction.

Axiomatization of operations, II: 319

BABEL, I: 278

Backed-up values, in game trees, I: 87. See
also Minimax.

Backgammon, I: 103

Backtracking, I: 23, 138, 203, 258, 266, 271,
298, 339, 341, 351; II: 121, 336, 339;

III: 24, 120, 121, 293-295, 520-521,

526-530, 537, 542, 545, 547, 552. See
also Planning,

automatic, II: 9

chronological, II: 50, 72

in CONN1YER, II: 50

dependency-directed, II: 73
in the General Space Planner, I: 203

in the General Syntactic Processor, I: 271

in HARPY, I: 341

in logic programming, III: 120-121
and parallel processing, I: 258, 266
in PROGRAMMAR, I: 298

after protection violation, III: 531-537

and relaxation, III: 293-295
in STRIPS and ABSTRIPS, I: 138;

III: 526-530

Backward chaining, I: 23-25, 36, 51, 56, 74,
110, 111, 196, 198; II: 83, 87, 93, 136;

III: 80, 95, 97. See also Control struc-

tures and strategies; Reasoning; Top-
down processing,

as depth-first search, II: 189
in IMPLY, III: 95, 97

in MYCIN, I: 196, 198; II: 189-191

in PROSPECTOR, II: 156, 160-161

BACON, III: 370, 384, 401-406, 444, 452

refinement operators in, III: 401-403
BADLIST, II: 107

Bag in QLISP, II: 34, 39-41
BAIL in SAIL, II: 70

Bandpass filtering, III: 212-215
Bandwidth condition, I: 69

Bandwidth search, I: 60, 69-71
Bare template, I: 288, 290
BASEBALL

Green's program, I: 227, 237, 282

Soloway's program, III: 364
Bayes theorem, See also Probabilistic reason-

ing,

in grammatical inference, III: 503

in medical diagnosis, II: 179, 267

Beam search, I: 337, 341, 350, 356; III: 411-
415

Behavioral specification of programs, II: 336-

338, 343

Belief revision, II: 72-76

Belief systems, III: 9, 65-74
Beliefs contrasted with facts, III: 65-68

Best-first search, I: 59, 60, 102, 360; II: 141;
III: 252, 438, 441

Bidirectional search, I: 24, 51-53, 72-73, 74
Binary images, III: 214

Binocular vision, III: 249-253, 254. .See also
Stereo vision.

BIP, II: 230, 234

Blackboard, I: 197, 331, 336, 343-346; II: 31,

104, 126, 342; III: 519. See also Con-
trol structures and strategies; Knowl-

edge source,

in CRYSALIS, II: 126-127
in HEARSAY, I: 343-346; II: 31

in integrated vision systems, III: 306-310

as a model of planning, III: 25-27, 519

Blind search, I: 21, 29-30, 46-57. See also
Combinatorial explosion,

bidirectional, I: 72

and heuristic search, I: 58

in Logic Theorist, I: 111

and ordered search, I: 61-62

Blocks world, I: 276; III: 136, 139-194
Bond environment, III: 430

Bottom-up processing, I: 23-24, 51, 56, 74,
198, 220, 259, 270, 326, 334, 338, 358;

II: 129, 196, 199-201, 214, 257; III: 129,

288-290, 306. See also Control struc-
tures and strategies; Forward chaining,

in CASNET, II: 196

definition of, I: 23-24
in grammatical approaches to vision,

III: 288-290

in INTERNIST, II: 199-200, 201
in IRIS, II: 214

in natural-language parsing, I: 259, 270
in production systems, I: 198

in speech understanding, I: 326, 334, 338,
358

in vision systems, III: 129, 306

Boyer-Moore theorem prover, III: 100, 102- 113

Branch-and-bound, I: 64
Branching factor

average, in speech-system grammars,
I: 328-329

of a search tree, I: 91, 98

Breadth-first search, I: 47-48, 56-57, 61, 68,
73, 111; III: 39. See also Search.

British Museum Algorithm, II: 35

Subject Index for Volumes I, II, and EI 605

BUGGY, II: 231, 279-282, 292
evaluation of, II: 280

sample protocol from, II: 281-282
Bugs. See Generalized bugs.

Caching, III: 336

Calling hierarchy, II: 31

Camera-centered representation, III: 272

Camera model, III: 195-199
for stereo vision, III: 253

Camera. See also Imaging devices,

calibration, III: 198

CCD, III: 200, 255

pinhole, III: 195
Vidicon, III: 200

Candidate-elimination algorithm, III: 386-

391y 396-399, 436, 484, 487-488, 490,
505

G set (of most general hypotheses) in,
III: 386, 424, 426

learning disjunctions using, III: 490-491

multiple boundary-set extension, III: 396,
490

S set (of most specific hypotheses) in,
III: 386, 411, 426

Update-G routine, III: 388-391

Update-S routine, III: 388-392
version space (set of plausible hypotheses)

in, II: 121; III: 387

CAPS, I: 106, 196

CAR in LISP, II: 16

Case ambiguity, I: 291

Case analysis, III: 354

Case frame, I: 182, 186, 231, 253; III: 59, 63

Case grammar, I: 229, 249, 252-255, 277;
II: 238

Case-method tutor, II: 235, 242

CASNET, II: 160, 180, 181, 182, 193-196,
215, 221

Categorical reasoning, II: 205

Category-size effect, III: 8
Causal chain, I: 301

Causal disease model in CASNET, II: 180-

181, 193-195
Causality, III: 44, 60

Causative predicates, III: 58

CDR in LISP, II: 16

Cell in LISP, II: 4, 16-17
CENTAUR, II: 182

Central projection, III: 195

Certainty in probabilistic relaxation,

III: 297-298. See also Uncertainty.

Certainty factor (CF), II: 13, 271, 277.
See also Uncertainty.

in CASNET, II: 193, 195-196
in CRYSALIS, II: 131
in EXPERT, II: 221

in IRIS, II: 215

in MYCIN, II: 180, 188-191; III: 67
Chain rule, III: 86

Change predicates, III: 57

Chart, I: 260, 268-271, 354

Checkers, I: 26, 43, 44, 95, 97; III: 332-333,

339-344, 457-464
Chemistry, I: 168

analysis in, II: 102-133; III: 428

synthesis in, II: 102, 134-142
Chess, I: 6, 22, 23, 26, 43, 94-108, 205, 334,

351; II: 4, 72; III: 11

CHI, II: 326, 333-335
Chief complaint, II: 202

Chronological backtracking, II: 9, 50, 72.
See also Backtracking.

Chunk, III: 5

Circumscription, III: 115-116, 118, 119. See
also Default reasoning.

Classification

for multiple classes, III: 423-427
of patterns, III: 127
as a performance task, III: 331, 383

Classification systems, II: 217

Classification tables in CASNET, II: 194- 196

Clause form, III: 87, 89-91, 92, 94
Cleavage rules, III: 428, 430

Clinical reasoning. See Diagnosis; Medical

diagnosis.
CLISP in INTERLISP, II: 8, 68

Closed-world assumption, III: 115, 360
in SCHOLAR, II: 240

CLS, III: 384, 406-408
refinement operator, III: 408

Clustering, III: 227-228. See also Region
splitting.

Co-occurrence matrix, III: 230

Co- routining, I: 271. See also Control struc-
tures and strategies; Parallel process- ing.

COBOL, II: 3

Code generation in automatic programming.

See Program synthesis.
Codification of programming knowledge. See

Representation of programming knowl-
edge.

Cognitive science, HI: 4. See also Memory
models; Psychology.

Cohesiveness, III: 252

Cold war ideologue, III: 68, 69

606 Subject Index for Volumes I, II, and III

Color, III: 203-205

in edge detection, III: 219-220

features, III: 203-205

spaces, III: 203-205
Combinatorial explosion, I: 27, 28, 58, 98,

99, 154, 155, 168, 260, 339, 356; II: 79,

134, 136, 140, 303, 313, 368; III: 78,
519. See also Search.

Commonsense reasoning, III: 84

Competence vs. performance, I: 245

Compiled knowledge, I: 336-337, 349
Compiler, II: 3, 297

compared to AP system, II: 302

Completeness, of a knowledge representa-
tion, I: 178; III: 79

in logic, III: 91

Completeness of program specification,
II: 300, 308

Composition of substitutions, III: 96

Computational linguistics, I: 226, 229, 233,
304

Computer- assisted instruction (CAI),
I: 186; II: 225-294. See also Intelligent

computer-assisted instruction,

environmental approach in, II: 291-294
learning by doing, II: 291

learning resources in, II: 292-293

nontutorial, II: 291-294
teacherless learning, II: 293

Computer-based consultant (CBC), II: 177;
III: 541. See also Expert systems.

Advisor for MACSYMA, II: 147

for air-compressor assembly system (SRI),
II: 150-154; III: 541

communication skills of, II: 150

definition of, II: 150

Computer coach in ICAI systems, II: 231,

234, 254-255, 257-259, 261-266. See
also Tutoring strategies in ICAI.

Computer games in ICAI systems, II: 234,

252, 254, 261-266

Concavity and gradients, III: 176-178, 185-
186

in the Origami world, III: 188-194

Concept formation. See Hypothesis, forma-
tion of; Learning, multiple concepts;

Learning, single concepts.

Conceptual analyzer in MARGIE, I: 303

Conceptual bugs, II: 279-280. See also Diag-
nosis of student misconceptions.

Conceptual dependency theory (CD), III: 69

in MARGIE, I: 300-303
in SAM and PAM, I: 306

and semantic primitives, I: 211-215, 231

and text generation, I: 278-279
Conceptualization, I: 213
Concordance, I: 226

Conditional-formation principle, II: 357
Conditional statements, II: 31

Confidence measure. See Certainty factor.
Conflict resolution

in PECOS, II: 350

in production systems, I: 192, 197

Conflicting subgoals. See Subgoals, interact- ing.

CONGEN, II: 106, 111-115; III: 429. See
also DENDRAL.

status of, II: 110, 113-115
use of constraints in, II: 112
user interface in, II: 112

Conjunctive subgoals. See Subgoals, con-

junctive.
CONNIVER, I: 175-176; II: 4, 8-10, 146,

202

backtracking in, II: 50

control structures in, II: 50-51

data structures in, II: 38-39

CONS cell in LISP, II: 4, 16-17
Consequent reasoning. See also Backward

chaining.

in logic programming, III: 120
in PLANNER, II: 9, 12, 48

in PROSPECTOR, II: 156, 160-161

CONSIGHT-I, III: 303-305

Consistency. See also Constraint satisfac-
tion; Relaxation.

of a knowledge representation, I: 178
in nonmonotonic logics, III: 116

in picture interpretation, III: 157

of program specifications, II: 302
Consistency assumption in search algorithms,

I: 66, 69, 73

Constancy in visual perception, III: 240

Constraint, I: 344; II: 146; III: 133, 292-300,
520-521

on bond fragmentations, II: 106, 111

continuity, III: 264, 271

formulation, III: 553-556

generator, II: 106
local, III: 300

in MOLGEN, III: 551-556

on operator ordering, III: 520-521

propagation, II: 146; III: 553-556
semantic, II: 118

in shape-from methods, III: 262-267
in structure elucidation, II: 103

uniqueness, III: 264, 270-271
Constraint satisfaction, II: 102; III: 292-300,

553-556. See also Relaxation.

Subject Index for Volumes I, II, and HI
607

in CONGEN, II: 112

continuous, III: 292, 297-300
in CRYSALIS, II: 124, 128

in DENDRAL, II: 107-108

discrete, III: 292-297

in Meta-DENDRAL, II: 118

in program specification, II: 302, 336, 338-
340

in the Waltz algorithm, III: 164

Constraint-structured planning, I: 203
Constrictor relation in INTERNIST, II: 200

Construction in geometry, I: 121

Constructive bugs, II: 234, 254. See also

Tutoring strategies in ICAI.

Consultation, II: 81, 82, 177. See also

Computer-based consultant; Expert
systems,

in medical diagnosis, II: 178

model in EXPERT, II: 218

Content addressing, II: 58
Context

in dialogue, II: 270

in production systems, I: 190, 197

in speech understanding, I: 333

Context-free grammar. See also Phrase-
structure grammar,

definition of, I: 242-243
in grammatical inference, III: 495

in parsing, I: 260, 263

in text generation, I: 273-274
in transformational grammar, I: 247

Context mechanisms, II: 10, 35-37, 39, 44,
46, 73

Context-sensitive grammar, I: 241-242. See

also Phrase-structure grammar.
Context tree in MYCIN, I: 197

Contrast in vision, III: 304. See also Prepro-
cessing.

Control

of deductive inference, III: 80-82

in integrated vision systems, III: 306-312
of physical systems, III: 373

Control structures and strategies. See also

Problem solving; Reasoning; Search al-
gorithms,

agenda, I: 338, 356, 360; II: 239; III: 440

of AI programming languages, II: 9, 31-
32, 45-57

backtracking, I: 23, 138, 203, 258, 266,
271, 298, 339, 341, 351; II: 121, 336,

339; III: 24, 120, 121, 293-295, 520-521,
526-530, 537, 542, 545, 547, 552

backward chaining, I: 196, 198; II: 83, 87,
93, 136; ffl: 80, 95, 97

blackboard, I: 197, 331, 336, 343-346;

II: 31, 104, 126-127, 342; III: 25-27,
306-310, 519

bottom-up, I: 23-24, 51, 56, 74, 198, 220,
259, 270, 326, 334, 338, 358; II: 129,

196, 199-201, 214, 257; III: 129, 288-
290, 306

coroutining, I: 271

consequent reasoning, II: 156, 160-161
conflict resolution, I: 192, 197

definition of, I: 22

demons, I: 303; II: 38, 46, 52; III: 99

dependency-directed backtracking, II: 73
event queue, I: 356

focus of attention, I: 190, 197, 338, 340,

347, 356, 360; II: 351, 376 III: 53, 279

forward chaining, I: 23-25, 51, 56, 74, 198,

220; II: 214 II: 129, 257; III: 19, 80, 99-
100, 129, 306, 452.

generate-and-test, I: 30; II: 106-109;

III: 351, 369, 411-415, 430

hill climbing, II: 145, 317; III: 252, 375-
380, 434, 458

hybrid, I: 340, 356

hypothesis posting, I: 336, 338, 354
island driving, I: 259, 337, 339, 346, 356,

361; III: 23, 519

means-ends analysis, I: 24, 59, 113, 117,
126, 129, 135, 169; II: 139, 317; III: 3,

7, 14-15, 517, 524-530, 554-556

opportunism, II: 129; III: 7, 22-27, 516-
519, 521

parallel processing, I: 179, 230, 258-259,
265, 271, 298, 336; II: 146; III: 48

procedural attachment, I: 156, 158, 179,

218-221
and procedural knowledge representation,

I: 174

in production systems, I: 194, 197-198
relaxation, III: 292-300
scheduler, I: 347, 356

in speech systems, I: 336-342, 347, 350-

351, 355-357, 359-360
top-down, I: 24, 183, 198, 216-218, 232,

259, 326, 334, 336, 338, 344, 355, 358,

359; II: 201; III: 129, 131-133, 168, 169,

269-278, 283-286, 288-290, 306, 314-
316

Conversational LISP (CLISP), II: 8, 68

CONVERSE, I: 228
Convexity

and gradients, III: 176-178, 185-186

in the Origami world, III: 188-194
COOP, II: 167

608 Subject Index for Volumes I, II, and III

Cooperative responses in DBMS, II: 167

Coroutining, II: 45. See also Control struc-

tures and strategies, parallel process-
ing; Multiprocessing.

in CONNIVER, II: 51

in SAIL, II: 53

Correspondence problem

finding features, III: 250-251

matching features, III: 251-253

in motion, III: 244-246

in stereo vision, III: 249-253
Cost

in search, I: 75-77; II: 140

of tests in diagnosis, II: 193-194, 199

Counterexamples, III: 100-101. See also
Examples.

Courseware, II: 226, 240. See also Computer-
assisted instruction.

CPM in MACSYMA, II: 146

Cracks, III: 161. See also Lines.

Credit assignment, II: 72, 88, 121

in ICAI student models, II: 232

Credit-assignment problem, III: 331, 348,
454-456, 459

solved by analysis of goals and intentions,
III: 480

solved by asking expert, III: 467

solved by deeper search, III: 457

solved by post-game analysis, III: 467-470
solved by wider search, III: 489

Critical node, in a game tree, I: 91

Criticality value, in ABSTRIPS, I: 136;

III: 528-530

Critics, III: 541, 546-550

in HACKER, III: 477-478
in ICAI student models, II: 233

in NOAH, III: 546-550

Cross-correlation, III: 283
Cryptarithmetic, III: 11, 13

CRYSALIS, I: 336, II: 104, 124-133

sample protocol from, II: 130-133
status of, II: 133

Cumulative frequency distribution (CFD),
III: 209

Cut set of lines, III: 181

Cybernetics, I: 4, 233; III: 6

Cyclic molecules, II: 111

Data abstraction, II: 172, 344

Data-driven processing. See Bottom-up pro-
cessing; Forward chaining.

Data-manipulation language, II: 163

Data-processing systems, synthesis of,
II: 364-369

Data-reduction task, III: 383

Data structure, II: 30-31, 34-44, 308, 350
automatic selection of, in AP, II: 316-317

Data types, II: 34, 39-41, 43-44
Database, I: 22, 328. See also Information

retrieval,

facilities in AI programming languages,
II: 44

relational, in MACSYMA, II: 146

schema, II: 163, 171-172
Database management systems (DBMS),

II: 163-173
cooperative responses in, II: 167
data independence II: 163, 164

data model, II: 171-172
incremental query formulation, II: 167

logic in, II: 172-173
NL front ends, II: 164-170

query optimization in, II: 170-171
DEACON, I: 228

Dead position in a game, I: 87, 99

Debugging. See also Diagnosis of student
misconceptions,

in Programmer's Apprentice, II: 344-347
in TEIRESIAS, II: 192

Decision

criteria in PIP, II: 203

procedures in theorem proving, III: 99-100
rules in EXPERT, II: 218-220

tables in IRIS, II: 214-215

tree representation of concepts, III: 406-
407

Declarative knowledge representation vs.

procedural knowledge representation,

I: 151, 172, 219, 230; III: 120
in MEMOD, III: 56

DEDALUS, II: 12, 302, 304, 355-363
Deduction, natural. See Natural deduction.

Deductive inference, I: 146, 205; III: 76-
123. See also Automatic deduction; In-

ference; Reasoning,

control, III: 80-82
search, III: 80

Deep structure in language, I: 247, 266

Default reasoning, I: 176-177; II: 239;

III: 115-116, 119. See also Circumscrip-
tion; Nonmonotonic reasoning.

Default values, I: 183, 216-220
Degree of a tree, I: 91; See also Branching

factor.

Delete list, II: 73

in ABSTRIPS, I: 135

in STRIPS, I: 128

in NOAH, III: 544-545, 550

Subject Index for Volumes I, II, and EI

Delimited languages, III: 501, 505

Demon, I: 303; II: 46; III: 99. See also Con-
trol structures and strategies.

as antecedent theorems in PLANNER,
II: 38

in SAIL, II: 52

DENDRAL, I: 60, 157, 198; II: 79, 82, 103,

104, 106-123; III: 331, 429

plan-generate-test cycle in, II: 106-109

status of, II: 109-110

use of constraints in, II: 107-108
Denotative knowledge representation, I: 200

Dependencies and assumptions, II: 72-76

Dependency-directed backtracking, II: 73
Dependency grammar, I: 274

Depth bound, I: 49, 57, 99, 115

Depth-first search, I: 49-51, 57, 60, 61, 101,

113, 138, 203; II: 50, 189-190
Depth map, III: 254, 256, 258

Depth measurement, III: 141, 268-278. See
also Range data analysis; Range finders;

Support hypothesis.

with laser light, III: 254-255
with light spot, III: 257

with light stripe, III: 258

with multiple stripes, III: 257

resolution, III: 254-255
with sound, III: 254

by stereo vision, III: 249-253

by time of flight, III: 254-255

by triangulation, III: 255-259
Depth of a node, I: 49

Derivation tree, I: 229, 242, 246, 256, 266,

273, 281, 293, 296, 302; III: 497

Design notebook in Programmer's Appren-
tice, II: 348

Design space, ill: 552

Diagnosis, II: 177-179, 274. See also Medical
diagnosis systems.

cost of tests in, II: 193-194, 199

decision-theoretic approaches to, II: 179
differential, II: 204

errors in, II: 177

hypothesis confirmation in, II: 204-205

as hypothesis formation, II: 179-180

in INTERNIST, II: 197, 199-201

in PIP, II: 202, 204-205

propagation in, in IRIS, II: 212-215
as search, II: 179

sequential, II: 179

statistical approaches to, II: 179

teaching strategies for, II: 247-253, 267-
278

thresholding in, II: 181

Diagnosis of student misconceptions, II: 226,

254. See also Intelligent computer-
assisted instruction; Plan recognition;
Student model,

conceptual bugs, II: 279-280
diagnostic model for, II: 233, 279-280

differential modeling in, II: 255-256
partial solutions in, II: 273
in SCHOLAR, II: 239

in WHY, II: 245

Diagram, reasoning from, I: 201
Dialectical argumentation, II: 74

Dialogue. See Discourse.

Dialogue management, II: 259. See also

Mixed-initiative dialogue; Natural lan-
guage; Tutoring strategies in ICAI.

agenda in SCHOLAR, II: 239

alternative dialogues, II: 272

askable vs. unaskable hypotheses in PROS-
PECTOR, II: 161

context, II: 270

dialectical argumentation, II: 74
discourse model, II: 150, 238, 259, 263, 266

discourse procedure, II: 272-273

explicating in GUIDON, II: 235, 267, 272- 273

focus of attention, II: 351, 376

in PSI, II: 329

rules, II: 268

Socratic tutoring method, II: 242-246
via tutorial goals, II: 244

in WUSOR, II: 263

Dictionary, for machine translation, I: 234

Difference. See also Means-ends analysis,
in GPS, I: 113; III: 116

in means-ends anaylsis, I: 24
in STRIPS, I: 129

Difference measures, II: 320

Differential diagnosis, II: 204

Differential modeling, II: 255-256. See also
Diagnosis of student misconceptions;
Student model.

Digitalis Therapy Advisor, II: 206-211

sample protocol from, II: 208-211
status of, II: 211

validation of, II: 211

Digitization, III: 202

Direct (analogical) knowledge representation,

I: 158, 177, 200-206
and parallel processing, I: 204

vs. propositional knowledge representa-
tion, I: 200

Direct modeling of distortion, III: 207-208.
See also Preprocessing.

610 Subject Index for Volumes I, II, and III

Directedness of reasoning, I: 151, 174-177,
185, 188, 193, 219

Direction of reasoning. See Backward chain-
ing; Forward chaining; Reasoning.

DIRECTOR, II: 293

Discourse, I: 339, 358

dialogue, I: 220
extended, I: 279

pragmatics, I: 249, 327, 332, 334, 359
Discourse model, II: 150, 238, 259, 263, 266,

272-273. See also Dialogue manage-
ment.

Discovery by AM, I: 196, III: 438-451

Discovery learning. See Learning, by dis-
covery.

Discrimination

in ACT, III: 54

network, I: 158, 278, 304; III: 29-35

rules, III: 423-427
Discussion agenda in SCHOLAR, II: 239

Disease area in INTERNIST, II: 198, 200

Disease category in CAS NET, II: 193

Disease hypothesis in INTERNIST, II: 197
Disease model in INTERNIST, II: 199

Disease process. See Monitoring dynamic

processes.
Disease tree in INTERNIST, II: 198

Distortion model, III: 206-208
direct modeling, III: 207

indirect modeling, III: 208

linear and bilinear models, III: 207

Distributed processing, I: 336. See also

Coroutining; Multiprocessing; Parallel

processing,
in PUP, II: 318

Distributional analysis, III: 506

Divide-and-conquer. See Problem reduc-
tion.

DNA sequencing, III: 557

Document retrieval task, I: 328, 351

Domain independence, II: 276. See also Tools

for building expert systems.

and constraint propagation, II: 146
and rules, II: 84

Domain model in SAFE, II: 339

Domain-specific knowledge, I: 151, 176, 220;

II: 79, 129; III: 541, 543-545. See also
Heuristic; Knowledge.

Dotted pair, II: 312

DRAGON, I: 328-329, 337

Drug-preference categories in MYCIN,
II: 191

DWIM in INTERLISP, II: 68

Dynamic

allocation, II: 33. See also Variable scop- ing.

lists, II: 53

ordering, I: 102

weighting, I: 69
Dynamic processes. See Monitoring dynamic

processes.
Dynamic programming, I: 351

in Protosystem I, II: 368

Dynamic range, III: 199. See also Imaging
devices.

Dynamic scoping, II: 18, 33. See also Vari-
able scoping.

Early processing, III: 128, 130. See also Pre-
processing.

Economy principle, III: 39-41 Edge

bounding, III: 161

concave, III: 161

connect, III: 178-180

Hueckel's, III: 218
ideal, III: 216

noise-contaminated, III: 216

in the "Play-Doh" domain, III: 240
separable, III: 161

Edge detection, III: 130-131, 216-224, 250.
See also Line finding.

color in, III: 219

noise in, III: 130

pattern-matching in, III: 218

and pyramids, III: 281-282
segmentation in, III: 221-223
spatial differentiation in, III: 216-218

EDITSTRUC in CONGEN, II: 112

Education. See also Computer-assisted in-

struction; Intelligent computer- assisted
instruction; Tutoring strategies in ICAI.

applications of AI in, I: 186; II: 225-294
environmental approach to, II: 225, 291-

294

learning by discovery, II: 254

learning by doing, II: 291

learning environment in, II: 292

learning resources in, II: 292-293
LOGO lab, II: 225

nontutorial CAI, II: 291-294

pedagogical style in, II: 275-276
Efficiency of synthesized programs, II: 327

in automatic programming systems,

II: 302-303, 317

by eliminating redundant computations,
II: 314

estimation of, II: 375-378

Subject Index for Volumes I, II, and HT 611

in LIBRA, II: 330, 351, 375-379
in Protosystem I, II: 368

8-puzzle, I: 32, 51, 62, 67, 68
Electron density map interpretation, II: 124
Electron trees, II: 115

Elementary information processes (EIP),
in.- 12-13

Eleusis, III: 416-419
Elimination rule in logic, I: 163, 164, 169

ELIZA, I: 227, 257, 260, 285-287
Ellipsis in natural language, I: 320, 358;

II: 165, 250

Embedding in natural language, I: 263

Emotion, III: 67, 72-74
EMYCIN, II: 84, 183, 276; III: 348

English. See Natural language.

Enhancement, III: 206. See also Prepro-
cessing,

of lines and curves, III: 298-300
Ensemble averaging, III: 214

Environment, III: 327

errors in training instances, III: 362-363,
370, 396-397, 429, 432, 490

programming, II: 3-4, 7, 28, 32, 65-71,
230, 232, 234

providing the performance standard,
III: 331, 454

providing the training instances, III: 328-

329, 455-456

role of, in learning, III: 328-329
runtime, II: 3, 9

stability of, over time, III: 337

Environmental approach to CAI, II: 291-294

EPAM, I: 158, 196; II: 5; III: 8, 28-35

Epipolar line, III: 250, 252-253. See also
Stereo vision.

Episodes, in memory, III: 60

Epistemological adequacy, III: 290, 346

Epistemology, I: 151, 153, 170

Equality in logic, III: 93

Errors in training instances, III: 362-363,
370, 396-397, 429, 432, 490

ESEL, III: 427

Etiology of a disease, II: 179
EURISKO, III: 449

Evaluation of expert systems. See Valida-
tion, of expert systems.

Evaluation of ICAI systems. See Validation,
of ICAI systems.

Evaluation function, I: 60, 61-62, 64, 67-73,
77, 78, 80, 83, 97; II: 3, 27. See also

Interpreter; Static evaluation function.
EVAL in LISP, II: 15, 17, 28
in search, II: 141

Evaluation, as opposed to deduction, III: 79-
80

Event-driven processing. See Bottom-up
processing; Forward chaining.

Event list in CRYSALIS, II: 128

Event queue, I: 356
Evidence, II: 120
Examples

in automatic deduction, III: 100-101

in learning, III: 328, 333-334, 360-511

generic, II: 307

program specification from, II: 300, 306-

308, 318-325
in PSI, II: 329

traces, II: 307-308, 321-325

EXCHECK, II: 227, 283-290
explanation in, II: 97

sample protocol from, II: 284-285
Exhaustive search, III: 14

Existential quantification, III: 88-89, 91
Expanding procedure calls, II: 315
Expansion of a node, I: 46, 55

Expectation-based filtering, III: 364. See also
Top-down processing.

Expectation-driven processing. See Back-
ward chaining; Top-down processing.

Experiment planning. See also Instance

space, search of.
in MOLGEN, 551-562

EXPERT, II: 180, 217-222
status of, II: 222

Expert systems, I: 9; II: 9, 79-294; III: 345,
348, 427. See also Knowledge engineer- ing,

acceptance of, II: 89

for agricultural pest management, II: 154

chemical analysis, II: 102-133; III: 428

chemical synthesis, II: 102, 134-142
in chemistry, I: 168

for classification, II: 217

as consultation system, II: 81-82

for database management, II: 163-173
debugging of, in TEIRESIAS, II: 192

for digitalis administration, II: 206-211
in education, I: 186; H: 225-294
for electromechanical assembly, II: 150-

154
exhaustive solutions in, II: 177, 190

explanation by, I: 9, 195, 198-199

for glaucoma, II: 193-196, 215-216

history of, II: 79-80
in internal medicine, II: 197-201
knowledge- based system in, I: 227, 229

for mathematics, I: 195; II: 143-154

612 Subject Index for Volumes I, II, and III

Expert systems (continued)

for medical diagnosis, II: 177-222

for mineral exploration, II: 154, 155-162

for renal disease, II: 202-205
in rheumatology, II: 222
size of, II: 85, 159

sociological considerations concerning,
II: 177

status of, II: 83-85
in stereochemistry, II: 113

tools for building, II: 84, 126, 183, 212-
216, 217-222, 267-278

for treatment regimen, II: 206-211

tutorial, II: 267-278
validation of, II: 182, 192, 211, 267

Expert-systems-building tools. See Tools for
building expert systems.

Expertise, II: 80. See also Knowledge

acquisition.
in automatic programming, II: 315

interactive transfer of, I: 199; II: 72, 80-

83, 88-89, 116

Expertise module of ICAI systems, II: 229-
231

and simulation, II: 229-230, 245-246, 251
in WEST, II: 256

in WUSOR, II: 263-264
Experts in PSI, II: 326. See also Knowledge

sources.

Explanation, II: 6, 72, 81-83, 89-91, 120
and acceptance of expert systems, II: 89

by articulate expert, II: 252

by computer coaches, II: 257-259
for debugging, II: 89, 192

in Digitalis Therapy Advisor, II: 206, 211

in EXCHECK, II: 97, 287-289

by expert systems, I: 9, 195, 198-199
in ICAI systems, II: 97, 228, 229

for justification of conclusions, II: 89

in medical consultation systems, II: 182

in production systems, II: 187-188

in Programmer's Apprentice, II: 348
in PROSPECTOR, II: 155

in PSI, II: 329

and self-reflective programs, II: 6-7, 89
in TEIRESIAS, II: 95-97
of therapy selection in MYCIN, II: 191

in WUSOR, II: 263, 266

Explicit vs. implicit knowledge representa-
tion, I: 150, 172

Extended discourse, I: 279

Extended grammar, I: 245-255
parsers, I: 260

Extended inference, I: 176

Extensibility, II: 69

Fan effect, III: 48, 50-53
Fan-out, III: 48, 50-53

Features of images, III: 250-253
areal, III: 251
difference measures, III: 251

lineal, III: 251

matching, III: 251-253
Feedback in learning, III: 331. See also

Performance standard.

15-puzzle, I: 68, 73 Filtering

high-pass, III: 212-213
low-pass, III: 214-215

Finding in medical diagnosis, II: 178

in EXPERT, II: 218-220
in PIP, II: 202

Finite-state automata, III: 380

Finite-state grammar, I: 337. See also Reg-
ular grammar.

Finite-state transition diagram (FSTD),

I: 263-264
Finite termination property, III: 99

First-order logic. See Logic, first order.
Fixed ordering of nodes in search, I: 90, 101

Flexibility. See also Self-reflective programs.
of knowledge representation, II: 130

and meta-knowledge, II: 89, 267
of a model, II: 118

of production rules, II: 228

Focus of attention. See also Selective atten-
tion; Control structures and strategies.

in ACT, III: 53
in LIBRA, II: 376

in PECOS, II: 351

FOL, I: 169, 171, 205; II: 13

FOO, III: 333, 346-347, 349, 350-359

Forgetting, III: 33-34, 44, 48, 49, 338, 342
Formal derivatives, III: 506

Formal language, I: 239-244, 263. See also

Context-free languages; Delimited lan-

guages; Regular grammar.

in automatic programming, II: 301, 312-

314

in grammatical inference, III: 494-497
in structural learning, III: 381-382

Formal program specifications. See also In-
formality; Program specification;

Very high level language.
in DEDALUS, II: 355

definition of, II: 300

vs. informal, II: 326, 336

Formal reasoning, I: 146

Subject Index for Volumes I, II, and IE
613

Formula in preference semantics, I: 288-289
FORTRAN, II: 3, 5, 217, 297, 299

Forward chaining, I: 23-25, 51, 56, 74, 198,
220; II: 129, 136, 214, 257; III: 19, 80,

99-100, 129, 306, 452. See also Back-

ward chaining; Bottom-up processing;
Control structures and strategies.

Forward pruning of game trees, I: 104

Fragmentation in mass spectrometry, II: 104,

106, 111, 116-117; III: 430-434
Frame knowledge representation, I: 149, 156,

158-159, 216-222, 334-335. See also
Script knowledge representation,

in automatic programming systems,
II: 316

and case frames, I: 183, 254

for concepts, III: 438-439

in IRIS, II: 212-213
matching in, I: 159

in PIP, II: 181, 202-204

for plans, III: 557-562
and preference semantics, I: 208, 229, 231

and semantic networks, I: 183, 186, 189

Frame-oriented CAI, II: 226, 231
Frame problem, I: 177, 201, III: 337, 343

Fregean knowledge representation. See

Propositional knowledge representation.

Frequency domain contrasted with the spa-
tial domain, III: 206

FRL-0, I: 221

Full-width search, I: 103
FUNARG, II: 46

Function, I: 165; II: 34

in the Boyer-Moore Theorem Prover,
III: 104

in logic, I: 165; III: 88-89, 91
Functional Description Compiler, II: 317

Functional relationships, II: 245-246
FUZZY, II: 13

control structures in, II: 53-55
data structures in, II: 43

pattern matching in, II: 63-64
Fuzzy automata, III: 380

Fuzzy set, II: 13

G set (of most general hypotheses), III: 386,
424, 426

Game tree, I: 25, 43-45, 84
random, I: 92

totally dependent, I: 92

uniform, I: 91-93

Game-tree search, I: 84-108; III: 339-342.
See also Search algorithms; AND/OR
tree.

alpha-beta, I: 88-93, 94, 101
backed-up values, I: 87
dead position, I: 87, 99

forward, I: 104
horizon effect, I: 99

killer heuristic, I: 102

live position, I: 87

method of analogies, I: 104

minimax, I: 84-87, 88, 90, 91, 94, 98;
III: 339-342, 465

negmax, I: 86-87, 89
plausible-move generation, I: 104

quiescence, I: 99-100, 103
refutation move, I: 102

secondary search, I: 100

static evaluation function, I: 87, 96-97, 100

tapered forward, I: 104

Games, I: 153. See also Puzzles,

backgammon, I: 103

checkers, I: 26, 43, 44, 95, 97; III: 332-333,

339-344, 457-464

chess, I: 6, 22, 23, 26, 43, 94-108, 205,
334, 351; II: 4, 72; III: 11

Eleusis, III: 416-419
Go, I: 103
Hearts, III: 350

poker, III: 331, 465-474
tic-tac-toe, I: 43, 94

voice chess, I: 328, 334, 344

Garbage collection, II: 4, 18

General Problem Solver (GPS), I: 113-118,
129, 135, 169, 196; II: 4, 47, 79, III: 3,

7, 11-21. See also Means-ends analysis.

General Space Planner, I: 202-203
General-to-specific ordering, III: 385

General Syntactic Processor (GSP), I: 268-
272

Generality of rules for molecular processes,
II: 120

Generality vs. power, I: 335
Generalization

in ACT, III: 54

in the Boyer-Moore Theorem Prover,
III: 108

in learning programs, III: 360, 365-368,
385

response, III: 28-35
stimulus, III: 28-35

Generalization methods

by adding options, III: 366, 411, 444, 502

by climbing concept tree, III: 395, 487, 491

by curve-fitting, III: 367, 376-380, 401-
405, 457

614 Subject Index for Volumes I, II, and EQ

Generalization methods (continued)

by dependency analysis, III: 480, 492

by disjunction, III: 366-367, 397
by dropping conditions, III: 366, 385, 391,

393, 411, 435, 444, 466

by internal disjunction, III: 367, 411, 466-
467

by merging nonterminals, III: 501

by partial matching, III: 487

by turning constants to variables, III: 365-
366, 387, 388-390, 391, 414, 444, 482

by zeroing a coefficient, III: 367

Generalization principle in DEDALUS,

II: 360-361

Generalized bugs, III: 475-476, 480-482,
532-535

Generalized cylinders, 411: 132-133, 137, 269,
273-274, 290

Generalized AND/OR graph, I: 82

Generalized subroutines, III: 475, 479-480

Generate-and-test, I: 30. See Plan-generate-
test.

operationalization method, III: 351

for searching rule space, III: 369, 411-415,
430

Generative CAI, II: 227, 229

Generative grammar, I: 229, 245, 247

Generative semantics, I: 248

Generator, II: 4, 45

Generic examples for program specification,
II: 307

Generic traces for program specification,
II: 307

Geography tutor, II: 236-241
Geological data models, II: 155

Geometrical correction, III: 206-208. See
also Preprocessing.

Geometry and physics in vision, III: 133-134

Geometry Theorem Prover, I: 119-122, 201-
202

Glaucoma consultation system, II: 193-196,
215-216

Go, I: 103

Goal, I: 22, 33, 36, 105, 114, 306, 308, 310-
311; II: 90, 95; III: 12, 523, 541. See

also Problem reduction; Problem solv-
ing; Subgoal.

Goal-directed reasoning. See Backward
chaining; Control strategy;

Expectation-driven processing;
Top-down reasoning.

Goal-directed theorem proving. See Natural
deduction.

Goal reduction. See Problem reduction.

Goal regression, III: 537-540

Gold's theorems, III: 499
GOLUX, I: 171, 175

GOODLIST, II: 107, 113

Goodness of fit in PIP, II: 202
GPS. See General Problem Solver.

GPSS, II: 303, 370-374
Graceful degradation, I: 336

Gradient-descent, III: 375-380. See also Hill-
climbing. ,

Gradient space, III: 133, 173-182, 185-194,

216, 238, 261-267
unique determination of gradients in,

III: 190-194
Gradual refinement, II: 350

Grain size of a knowledge representation,
I: 147

Grammar. See also Natural language under-
standing,

array, III: 287
augmented transition network (ATN) for,

I: 186, 230, 261, 263-267, 268, 271,
277-279, 292-294, 303, 304, 316; III: 56.

automatic derivation of, in TED, II: 166

average branching factor of, I: 328, 329

case, I: 229, 249, 252-255, 277; II: 238;
III: 59, 63

context-free, I: 242-243, 245, 247, 260,
263, 273, 274

context-sensitive, I: 241-242, 245

in DBMS, II: 164-165
definition of, I: 225, 229

dependency, I: 274

extended, I: 260-261
finite-state, I: 337

formal, I: 239-244
generative, I: 229, 245, 247

graph, III: 499
habitability of, I: 328

mood system of, I: 249

obligatory and optional transformations

in, I: 246-247
parsing, I: 225, 229, 239-240, 256-272;

II: 293; III: 497

performance, I: 245, 261, 335, 355, 359

phrase-structure, I: 240-246, 260, 262

regular, I: 243, 245, 263; III: 501, 505-507,
509

semantic, I: 229, 261, 318, 320, 335, 355,

359; II: 160, 250-251
in speech systems, I: 326, 332, 349

story, I: 221, 231, 300, 306

systemic, I: 229, 249-251, 297

Subject Index for Volumes I, II, and EI
615

transformational, I: 229, 233, 237, 245-

248, 249, 251, 252; III: 497-498, 510

transition tree in LIFER, I: 316-317,
II: 165-166

transitivity system of, I: 249

tree, HI: 287

in vision systems, III: 287

web, III: 287

Grammar less parsers, I: 260-261
Grammatical inference, II: 116, 318; III: 381,

453, 494-510

by construction, III: 505-507

by enumeration, III: 503-505

by generate-and-test, III: 503-505

guided by semantics, III: 509-510

by refinement, III: 507-509

refinement operators, III: 508-509
Graph deformation condition, III: 510

Graph grammars, III: 499

Graph Traverser, I: 67

Graphics, II: 293

Gray scale, III: 199

histogram flattening, III: 209

modification, III: 208-209
Ground restriction, III: 99

Ground space, III: 528-530
in ABSTRIPS, I: 135

GSP. See General Syntactic Processor.

GUIDON, II: 6, 228, 230, 235, 243, 267-278,
292

alternative dialogues in, II: 272

domain independence in, II: 276

sample protocol from, II: 268-270

status of, II: 276-278
GUS, I: 220, 231

Habitability of a language, I: 328

HACKER, II: 10, 315, 317-318, 361; III: 452,

475-483, 491, 493, 531-535, 546
performance element, III: 477

Half-order theory of mass spectrometry,

II: 118-119; III: 428, 431-432, 436
HAM. See Human Associative Memory.

HAM-RPM, II: 13
HARPY, I: 328, 329, 335, 337, 339, 344, 346,

349-352, 356
HAWKEYE, I: 318

HEADMED, II: 180

HEARSAY, I: 196-197, 336, 338, 343-348;
II: 31-32, 126, 342

HEARSAY-I, I: 328, 334, 335, 343

HEARSAY-n, I: 328, 345
Hearts, III: 350

Heuristic, I: 21, 64, 66, 74, 78, 94, 119, 151,
168, 174, 177, 188, 201, 220, 228, 258,
277, 282, 284, 293, 296, 298, 299, 335;

II: 81, 140, 313; III: 11. -See also Exper-
tise; Heuristic search; Knowledge,

definitions of, I: 28-30, 58, 109
killer, in game playing, I: 102

phagocyte, III: 226
weakness, III: 226

Heuristic Compiler, II: 317
Heuristic DENDRAL. See DENDRAL.

Heuristic Path Algorithm, I: 67

Heuristic problem solving. See Expert sys-
tems; Problem solving.

Heuristic search, I: 28, 29-30, 46, 58-83, 94-
108, 117, 350, 356

operationalization method, III: 351
Hierarchical

memory, III: 39-41. See also Fan effect,

planning, I: 135, III: 516-518, 528-530,
541-556

search, I: 135

Hierarchical representations

of image data, III: 269, 279-282
of knowledge in SCHOLAR, II: 237

Hierarchy. See also Inheritance,

of abstraction spaces, III: 528-530
of procedural knowledge, II: 151

High-emphasis frequency filtering, III: 212- 213

Hill climbing, II: 145, 317; HI: 252, 375-380,
434, 458

Histogram

in contrast adjustments, III: 209

in region splitting, III: 226-227, 234-235
HODGKINS, II: 180

Homogeneous coordinates, III: 197-199
Horizon effect, in game-tree search, I: 99
Horn clause, III: 121

Hough transform, III: 222-223, 277
How the West Was Won, H: 254, 255

Hueckel operator, HI: 218-220

Huffman's 0(0)' -point test, ELI: 181
Human Associative Memory (HAM), I: 185,

m: 9, 42-49, 509-510
Human engineering, I: 319; II: 84. See also

User interface.

Human memory. See also Memory, models

of.
associative, III: 8, 9, 36

episodic, III: 8, 60

long-term, III: 42-49, 50, 52, 56-64
recall, III: 36

recognition, III: 36

616 Subject Index for Volumes I, II, and EQ

Human memory (continued)

semantic, III: 8, 9, 36-37, 41-42
short-term, III: 28

strategy-free, III: 9, 42-49

working, III: 50-54
Human problem solving, I: 6-7, 14, 285;

III: 11-21. See also Problem solving.

Humiliation theory, III: 71-74

HWIM, I: 267, 292, 328, 337, 339, 353-357
Hybrid control strategy, I: 340, 356

Hypothesis. See also Control structures and
strategies.

askable vs. unaskable, II: 161

confirmation, II: 202, 204-205

in EXPERT, II: 218-220

formation of, II: 84, 116, 124-125
in INTERNIST, II: 197

in medical reasoning, II: 179-180
posting, I: 336, 338, 354

propagation in PROSPECTOR, II: 160

scoring, I: 340-341, 346, 347, 351, 355, 356
status of, in CAS NET, II: 195

Hypothesize-and-test. See Generate-and-
test.

Hypothetical worlds, I: 360

Iconic representation, III: 238

ID3, III: 384, 407-410
Ideational function of language, I: 249

Image domain. See Picture domain.

Image enhancement. See Enhancement; Pre-
processing.

Image features, III: 132

contrasted with scene features, III: 134-
137, 155, 238

Image understanding, III: 127-138. See also
Shape recovery.

The Image Understanding Program, III: 135

Imaging devices, III: 199-201. See also Cam-
era.

Imaging geometry, III: 173-176. See also
Projections.

Imbedding algorithm, II: 111

Implicational molecules, III: 68-69
Implicit knowledge, I: 150, 172; II: 277

IMPLY, III: 95-96, 98. See also Natural
deduction.

IMPORT property in INTERNIST, II: 199
Importance tags in SCHOLAR, II: 237

Impossible objects, III: 158

Incomplete knowledge, II: 240. See also Un-
certainty.

Incremental compiler, II: 70, 300

Incremental query formulation, II: 167

Incremental simulation, in HWIM, I: 341

Indeterminacy of knowledge representations,
I: 148

Individualization of instruction, II: 226

INDUCE 1.2, III: 411-415
attribute-only rule space, III: 413

structure-only rule space, III: 413

Induction, III: 100, 112, 327, 333-334. See
also Learning situations, from examples,

in the Boyer-Moore Theorem Prover,

III: 102, 109-110
Induction axioms, II: 313

Induction/inference in mass-spectral pro-
cesses, II: 116

Induction of programs. See also Automatic

programming; Examples, program spec-
ification from; Traces,

as approach to AP, II: 318-325
axiomatization of operations in, II: 319

from examples, II: 318-325
and grammatical inference, II: 318

program schemas in, II: 319

from protocols, II: 322-325

traces, II: 321-325
Induction templates, III: 109-110, 111

Industrial vision systems, III: 301-305

Inexact knowledge, II: 79, 81. See also Un-
certainty,

in medical reasoning, II: 179

Inexact reasoning, I: 195

Infectious-disease consultant system. See
MYCIN

Inference, I: 146, 154, 155, 160, 162-165,

168, 175, 188, 213, 228, 231, 236-237,

255, 276, 303-304; II: 90, 146, 158, 188-
189, 239, 251-252; III: 39, 41. See also
Control structures and strategies; Rea- soning.

Informality

human, studies of, II: 337

in mathematical reasoning, II: 283-290

of program specifications, II: 326, 336-338
Informant presentation, III: 500

Information-processing psychology, III: 3-
74. See also Psychology.

Information- processing system (IPS), III: 11-
21

Information retrieval, I: 22, 145, 282-283,

292, 316, 318. See Database manage-
ment systems.

Informedness of an algorithm, I: 65

Infrared image, III: 204
Inheritance

hierarchy, I: 156, 181, 218

Subject Index for Volumes I, II, and DI
617

of properties, I: 156, 181-184, 216, 218
Initial states, I: 33

Instance, in semantic networks, I: 182

Instance selection. See Instance space,
search of.

Instance space, III: 360-365
presentation order of instances, III: 363

quality of training instances, III: 362-363,

370, 396-397, 429, 432, 490

search of, III: 363, 371, 408, 435-436, 441-

444, 491-492
Instructional programming environment

BIP, II: 230, 234

SPADE, II: 232

Instructional strategy. See Tutoring strate-
gies in ICAI.

Insulin, III: 554

Integration. See Symbolic integration.

Integration problem, III: 331, 347, 421, 453,
456

Intelligent computer-assisted instruction

(ICAI), II: 225-294. See also Computer-
assisted instruction,

in arithmetic skills, II: 279-282

case-method tutor, II: 235, 242

computer coach, II: 231, 234, 254-255,
257-259, 261-266

computer games, II: 234, 252, 254, 261-
266

diagnosis of student misconceptions in,

II: 226, 233, 239, 245, 254, 273, 279-280

in electronics troubleshooting, II: 247-253

geography tutor, II: 236-241
in informal mathematical reasoning,

II: 283-290

in logic, II: 283-290

in medical diagnosis, II: 267-278
pedagogical style in, II: 275

in proof theory, II: 283-290

in set theory, II: 283-290
Socratic method in, II: 234

survey of, II: 225-228

tutoring module, II: 233-235
tutoring strategies in, II: 228, 233, 237

Intensional operators, III: 84

Interacting subgoals. See Subgoals, interact-
ing.

Interactive dialogue. See Mixed-initiative
dialogue.

Interactive knowledge acquisition. See

Knowledge acquisition; Transfer of ex-
pertise.

Interactive LISP. See INTERLISP.

Interactive program specification, II: 300,

302, 303, 310-311. See also Mixed-
initiative dialogue; Natural language;

Program specification,

in NLPQ, II: 370-374

in Programmer's Apprentice, II: 345, 348
in PSI, II: 327, 330-332

in SAFE, II: 337-338
Interactive transfer of expertise. See Knowl-

edge acquisition; Transfer of expertise.

Interdependent subproblems, I: 56, 81-83.

See also Planning; Subgoals, interact- ing.

Interest operator, III: 250

Interestingness, II: 119, 134, 135

Interference matching, III: 391-392

Interlingua, I: 234-235, 237, 288, 300, 303,
304

INTERLISP, I: 320; II: 8, 212, 362

CLISP, II: 68
DWIM, II: 68

programmer's assistant for, II: 68
programming environment of, II: 67-68,

70-71
Intermediate OR node, I: 39, 56, 57

Internal medicine, II: 197-201
Internal Problem Description (IPD) in NLPQ,

II: 372-373

INTERNIST, II: 83, 180, 181, 182, 197-201,
205, 215

Interpersonal function, of language, I: 249.
280

INTERPLAN, III: 535-537

INTERPRET, III: 147-154
Interpretation

in advice-taking, III: 354

of training instances, III: 364-365

Interpreter, II: 3. See also Evaluation func-
tion.

EVAL in LISP, II: 15, 17, 28

of a production system, I: 190-192
Interpretive semantics, I: 248
Intersection search in SCHOLAR,

II: 239-240
Intonation in speech signal, I: 333

Intrinsic images, HI: 134, 137, 238-242
Introduction rule, in logic, I: 163, 164, 169

Introspection, III: 4
Intrusions, III: 34

INTSUM, III: 430-432
in Meta-DENDRAL, II: 119

IPL, II: 4
IPL-V, I: 281-282; III: 29

IRIS, II: 84, 160, 180, 181, 212-216

618 Subject Index for Volumes I, II, and HI

Island-driving control strategy, I: 259, 337,
339, 346, 356, 361; III: 23, 519. See also
Control structures and strategies.

Iso-intensity contours, III: 262-264
Isolated-word recognition of speech, I: 325,

333, 349
Isomers, II: 108

ISPEC in IRIS, II: 212-214
Issues-and-examples tutoring strategy,

II: 256

issue evaluators in, II: 257

issue recognizers in, II: 257

Items in SAIL, II: 41

Iterative deepening search, I: 100-101
Iterative endpoint fit, III: 221

JCL, II: 365

Judgmental knowledge, II: 277. See also Un-
certainty.

Junction types, III: 163-164
impossible, III: 275

in the Origami world, III: 184-186

in SEE, III: 144-147
Juncture rules, in speech understanding,

I: 330, 350, 354

Justification. See also Explanation.

for beliefs, II: 74; III: 65-68
in medical consultation systems, II: 182

KAS, III: 348

Killer heuristic, I: 102

Kinetic depth effect, III: 244

Kinship relations, I: 281
Kitchenworld, III: 63

KLAUS, II: 169-170

sample protocol from, II: 169-170
KLONE, I: 221

Knowledge, I: 144. See also Heuristic; Repre-
sentation of knowledge,

compiled, I: 336, 337, 349

constraining, I: 344

domain-specific, I: 151, 176, 220
explicit vs. implicit, I: 150, 172

world, I: 226, 230

Knowledge acquisition, I: 145, 194, 195, 198;

II: 79, 80-83, 87, 91-92, 116; III: 326.
See also Expert systems; Learning;
Transfer of expertise,

by automatic theory formation, II: 116

interactive, in SECS, II: 137

in medical consultation systems, II: 182

in Meta-DENDRAL, II: 116-123

REACT, in CONGEN, II: 114-115
in TEIRESIAS, II: 97-101, 191-192

transfer of expertise, I: 199; II: 72, 80, 81-

83, 88-89, 116; III: 345-348
Knowledge base, II: 34, 80

Knowledge-based system, I: 227, 229;
II: 326. See also Expert systems.

Knowledge engineering, I: 9, 198; II: 326;

III: 427. See also Expert systems; Knowl-

edge acquisition,

as approach to AP, II: 301, 315-316, 350-

354, 375-379
definition of, II: 84

in PECOS, II: 350-354
Knowledge needed for learning, III: 326, 330,

446-447

Knowledge, opacity of, II: 82, 89-90
Knowledge representation. See AI program-

ming languages; Knowledge representa-
tion languages; Representation of

knowledge.

Knowledge-representation languages. See
also AI programming languages.

FRL-0, I: 221

KLONE, I: 221

KRL, I: 158, 221, 231

UNITS, I: 221
Knowledge source, I: 257, 298, 326, 336,

343-348, 353; II: 125, 126; III: 25-27.
See also Blackboard,

ablation studies of, I: 335

experts in PSI, II: 326

in Programmer's Apprentice, II: 348
response frame of, I: 345, 347

in SAFE, II: 342

stimulus frame of, I: 345

KRL, I: 158, 221, 231

LADDER, I: 318; II: 164-166

sample protocol from, II: 165-166
Language definition system, I: 316, 359

Language, formal. See Formal language.

Language understanding. See Natural lan-
guage understanding.

Laplacian image, III: 212, 250

Laplacian operator, III: 211-212, 218, 264

LAS, III: 509-510
Laser pointer for a computer-based consul-

tant, II: 150
LEAP in SAIL, II: 11, 41, 317

Learning, I: 9, 97, 128, 145, 157, 193, 195;

II: 6-7, 72, 88, 116, 293, 317; III: 325-
512. See also Education; Knowledge

acquisition,
in ACT, III: 53

by debugging, II: 318

Subject Index for Volumes I, II, and HI
619

by discovery, II: 254

by doing, II: 291

environment, II: 292; III: 328-329

in HACKER, II: 318; III: 452, 475-483,
491, 493

history of, III: 325-326
incremental, III: 363, 370

Meta-DENDRAL, II: 119; III: 326, 332,
369, 372, 422, 428-436

multiple-concepts in, III: 331, 420-451

paired-associate, III: 28-35

resources, II: 292-293

role of the environment in, III: 328-329
role of knowledge representation in,

IU: 329-330

role of performance task in, III: 330-332

rules for multiple-step tasks in, III: 331,
421, 452-511

and self-reflective programs, II: 6-7, 89,
318

single concepts in, III: 331, 383-419, 420-
422, 436

statistical, in DENDRAL, II: 118

training instances for, in DENDRAL,
II: 117

unsupervised, III: 363

verbal, III: 28, 33-35

Learning element, III: 327-328. See also
Learning.

Learning methods. See Operationalization

methods; Rule-space search.

Learning, object of, III: 371-372
automata, III: 380, 381

cleavage rules, III: 428, 430

context-free grammars, III: 453, 495

decision trees, III: 406-407
delimited languages, III: 501, 505

discrimination rules, III: 423-427

finite-state automata, III: 380. See also
Regular grammars.

frames, III: 438-439
fuzzy automata, III: 380

generalized bugs, III: 475-476, 480-482

generalized subroutines, III: 475, 479-480
graph grammars, III: 499

linear-discriminant functions, III: 376-380

macro-operators, III: 475, 493

parameters, III: 375-380

polynomial evaluation functions, III: 457-
459, 463

production rules, III: 452-455, 465-474
regular grammars, III: 501, 505, 506, 507,

509

signature tables, III: 459-464

stochastic automata, III: 380

stochastic grammars, III: 381, 498-499

structural descriptions, III: 381-382, 392-
396, 411, 412

transformational grammars, III: 497-498,
510

Learning problems

closed-world assumption, III: 362. See also
New-term problem,

credit-assignment problem, III: 331, 348,
454-456, 459, 467-468, 480, 489

disjunctive concepts, III: 397-399, 406-
407, 490

errors in training instances, III: 362-363,
370, 396-397, 429, 432, 490

frame problem, III: 337, 343

integrating new knowledge, III: 331, 347,
421, 453, 456

interpretation of training instances,

ni: 354, 364-365
new terms, III: 370-371, 405, 459

Learning situations

by analogy, III: 328, 334, 443-445

by being told, III: 345-359. See also
Advice-taking,

from examples, III: 328, 333-334, 360-511

by rote, HI: 328, 332-333, 335-344
by taking advice, III: 328, 333, 345-359,

427, 467-468
Learning systems. See also individual entries

for each system named.

AGE, III: 348

AM, III: 326, 330, 370-372, 422, 438-451

AQ11, III: 421, 423-427
BACON, III: 370, 384, 401-406, 444, 452
BASEBALL, III: 364

CLS, III: 384, 406-408
EMYCIN, III: 348
EURISKO, ni: 449

FOO, III: 333, 346-347, 349, 350-359
HACKER, III: 452, 475-483, 491, 493

ID3, ni: 384, 407-410
INDUCE 1.2, ffl: 411-415
KAS, III: 348

LAS, III: 509-510
LEX, HI: 452-453, 455, 484-493
Meta-DENDRAL, III: 326, 332, 369, 372,

422, 428-436
model of, III: 327

modified model for multiple-step tasks,
III: 455-456, 476-477, 486

Samuel's checkers player, III: 332-333,
339-344, 452, 457-464

simple model of, III: 327

620 Subject Index for Volumes I, II, and EQ

Learning systems (continued)

SPARC, III: 369-370, 384, 416-419, 452
STRIPS, III: 475, 491, 493

TEIRESIAS, III: 333, 348, 349

Waterman's poker player, III: 331, 349,
452, 456, 465-474, 489

Least- commitment algorithms, III: 387

Least-commitment planning, III: 24-25, 552-
556

Least recently used (LRU) algorithm,
III: 338, 342

Legal-move generator, I: 153, 334, 344

Length- first search, I: 138

LEX, in: 452, 453, 455, 484-493
Lexicon, I: 247, 333, 346, 354

LHASA, II: 104, 134-142

LIBRA, II: 302, 304, 305, 330, 351, 375-379

LIFER, I: 231, 232, 261, 316-321, 360;
II: 165-166

interface for PROSPECTOR, II: 160

Light spot, III: 254, 257-259

Light stripe, HI: 254, 258-259, 272-278
Limited inference algorithm (CPM) in

MACSYMA, II: 146

Limited-logic natural language systems,
I: 228

Line completion, III: 152

Line finding, III: 130-131, 216-224. See also
Edge detection,

heuristics for, III: 169-171

Hough transform, III: 222-223.

in Shirai's Semantic Line Finder, III: 168-
172

tracking in, III: 220-223
Line junctions. See Junction types.
Lineal features, III: 251

Linear-discriminant functions, III: 376-380
Linear input form, III: 91

Linear programming, III: 379
Linear regression, III: 379

Linear separability, III: 376

Linear systems theory, III: 325

Linearity assumption, III: 478, 520-521, 531,
533

Lines

boundary, III: 168-172
contour, III: 168-172

internal, III: 168-172

Linguistics, computational. See Computa-
tional linguistics.

Link types, II: 212

LISP, I: 15, 173, 237, 283, 295, 303, II: 5-9,

15-29, 187, III: 103, 120, 121, 122-123
and automatic programming, II: 27

cell, II: 4

control structures, II: 46-47
data structures, II: 37

disadvantages of, II: 28-29
dotted pair, II: 312

formal axioms for, II: 312-314
INTERLISP, II: 8

language primitives, II: 19-21
machines, II: 9

MACLISP, II: 8

pattern matching, II: 59

programming environment, II: 66-67

programs as data, II: 26-28, 298
self-reflective programs in, II: 6-7, 27, 298

syntax of, II: 18
as target language, II: 28, 300, 355

List processing, I: 227, 281-287; II: 15. See
also LISP.

List structure, II: 4, 15-17
Live position in a game, I: 87

LMS (least-mean-square) algorithm, III: 379
Local averaging, III: 214

Logic, I: 4, 8, 146, 148, 151, 154-155, 160-
171, 172, 174; II: 283-290, 312; III: 15,
77-122

completeness and consistency of, I: 178

in DBMS, II: 172

extensional, III: 84

first-order, I: 165; III: 80, 88-89, 91
functions in, I: 165

higher order, III: 82-84
intensional, III: 84

introduction rule in, I: 163-164, 169
natural deduction in, I: 163, 164, 169, 175

nonmonotonic, III: 84, 114-119

nonstandard, III: 77, 82-84

predicate, III: 88-89, 91
predicate calculus, I: 128, 163, 200, 292,

297, 299

predicates in, I: 163, 182

propositional, III: 77, 88

propositional calculus, I: 109, 116, 118,
160-163

quantification in, I: 151, 164, 360

resolution method in, I: 168, 175

Logic programming, II: 13; III: 77, 82, 120-
121, 123

Logic Theorist (LT), I: 24, 109-112, 113,
116, 119, III: 3, 77; II: 4, 79

Logical decision criteria in PIP, II: 203

LOGO, II: 225, 232, 291-294
Look-ahead power, III: 340. See Minimax

look-ahead search.

Subject Index for Volumes I, II, and m 621

Low-emphasis filtering, III: 214-215. See
also Preprocessing.

LRU, III: 338, 342

LUNAR, I: 230, 267, 292-294, 353

Machine-aided heuristic programming,
III: 350, 357

Machine translation

current status of, I: 237-238

early AI work in, I: 226, 233-237

and semantic primitives, I: 207-213

and text generation, I: 273-274, 279, 289,
291

Wilks's system, I: 288-291
Machinese. See Interlingua.

MACLISP, II: 8, 202, 206, 369

Macro-operators, I: 28; III: 475, 493
MACROP, I: 133

MACSYMA, II: 8, 29, 79, 82, 85, 143-154;
III: 99

Advisor, II: 232

Apprentice, II: 148

current status of, II: 147-149
Man-machine interaction. See User inter-

face.

Manageability of production systems, I: 193,
198

Manifestations

in INTERNIST, II: 197-198
in medical diagnosis, II: 178

MARGIE, I: 149, 211, 231, 278, 300-305,
306, 334

Marr's theory of vision, III: 134-135
Mars Explorer robot, III: 254

Mass spectrometry, II: 104, 106, 111, 116

half-order theory of, II: 118-119; III: 428,
431-436

zero-order theory of, II: 118
Master script, III: 68, 70, 73

Masterscope in INTERLISP, II: 8

Matching. See also Control structures and

strategies; Pattern matching.
of frames, I: 159

goodness of fit in, II: 202

in HAM, III: 48-49
in PIP, D: 202

programs to schemas, II: 319-320
of semantic network fragments, I: 187;

III: 48-49

Mathematics, I: 195; II: 143

Mathlab 68, II: 143

Max cost. See Cost, in search algorithms.

Maxam-Gilbert sequencing, III: 557

Maximally general common specialization,
III: 388. See also G Set; S Set.

Means-ends analysis, I: 24, 59, 113, 117, 126,
129, 135, 169; II: 139, 317; III: 517.

in the General Problem Solver, III: 3, 7,
14-15

in MOLGEN, III: 554-556

in STRIPS and ABSTRIPS, III: 524-530
Mechanical translation. See Machine trans-

lation.

Medical diagnosis. See Diagnosis.

Medical diagnosis systems, I: 195, 220; II: 80,

81, 177-222. See also Expert systems,
exhaustive solutions in, II: 177, 190

history of, II: 179-180

status of, II: 180-183

x-ray and ultrasound image analysis,
U: 177

Memo function in POP-2, II: 53

MEMOD, I: 215, III: 8, 56-64

Memory models, III: 8-9, 28-56. See also
Psychology; Semantic network.

ACT, I: 195; HI: 9, 50-54
associative, I: 230

EPAM, HI: 28-36

HAM, in: 42-50
MEMOD, UI: 8, 56-65

Quillian's spreading activation system,
III: 36-42

Memory organization, in: 337, 342

Memory scanning task, HI: 50-53
Mesa effect, III: 343, 458

Meta-DENDRAL, n: 84, 104, 106, 116-123;

m: 326, 332, 369, 372, 422, 428-436

learning multiple concepts, III: 428-436
learning a set of single concepts, III: 436

searching instance space, III: 435

searching rule space, III: 432-435

status of, II: 121-122
Meta-evaluation in SAFE, II: 340

Meta-knowledge, I: 144, 147; H: 85, 89, 91,
240-241, 267; EI: 330

for control of inference, HI: 82

Meta-planning, IH: 551

Meta-rules, II: 88, 92, 130; HI: 347

Method of analogies, in game-tree search,

I: 104; H: 50. See also Analogical rea- soning,

pattern matching in, II: 60-61
programming environment of, n: 68
vs. PLANNER, n: 56

Methods in CONNIVER, H: 50

MICRO-PLANNER, I: 295-297; II: 10

622 Subject Index for Volumes I, II, and III

Middle-out search strategy. See Island-
driving control strategy.

Migration, II: 104
MIND, I: 268, 272

Mineral-exploration systems, II: 154, 155-
162

Minimax look-ahead search in game trees,

I: 84-87, 88, 90, 91, 94, 98; III: 339-342,
465

Missionaries and Cannibals puzzle, II: 79

Mixed-initiative dialogue, II: 160, 234, 236-
238, 247, 259, 272, 368. See also Natural

language,

in GUIDON, II: 267

in NLPQ, II: 370-374
for program specification, II: 311

in PSI, II: 326, 329-332
Socratic, II: 242

Mnemonics, III: 42

Mode method of region splitting, III: 227.

See also Region splitting.

Model building

in PROSPECTOR, II: 155, 161

in SECS, II: 139

Model of learning systems, III: 327

modified for multiple-step tasks, III: 455-

456, 476-477, 486

two-space view, III: 360-372, 383, 411

Models of cognition, III: 4-74

Models in vision systems, III: 129, 131-133,

168, 139, 269-278, 283-286, 306, 314-
316. See also Top-down processing,

in INTERPRET, III: 147-154
Modularity

in CRYSALIS, II: 125

in knowledge representation, I: 149, 157,
170, 178, 193, 198, 336, 343; II: 83, 155,
263

of productions, II: 376

in programs, II: 65

Modus ponens, I: 162, III: 86

Moire patterns in vision, III: 258

Molecular fragmentation, II: 111, 116

Molecular structures, analysis of, II: 102-
133

MOLGEN, III: 24-25, 518, 551-556, 557-562
Monitoring dynamic processes

in CASNET, II: 193-194, 196
in Digitalis Therapy Advisor and VM,

II: 206

Mood system, of a grammar, I: 249

Morphemics

in speech understanding, I: 332-333
in transformational grammar, I: 246

Motion, III: 244-248
parallax, III: 250

Multiple representations of knowledge,
II: 229

Multiple sources of knowledge. See Knowl-

edge source.
Multiple-step tasks, III: 452-456, 495
Multiprocessing, II: 45. See also Coroutin-

ing; Parallel processing,
in SAIL, II: 52

Mutilated chessboard problem, I: 27

MYCIN, I: 151, 157, 195-199; II: 82-83, 84,

87, 90, 92, 180, 181, 182, 184-192, 205,
215, 235, 267-278, 288; III: 331, 347

NEOMYCIN, II: 205, 228, 277

reasoning in, II: 189-191

sample protocol from, II: 184-187
validation of, II: 267

Named plan in PAM, I: 313

Natural deduction, I: 163-164, 169, 175;

II: 283, 285-286; III: 94-95, 101
Natural interpretation of images, III: 183,

187-194
Natural language (NL)

agreement in, I: 263

ambiguity of, I: 208-211
anaphoric reference in, I: 293, 358; II: 250

ellipsis in, I: 230, 358; II: 165, 250

embedding in, I: 263
in EXCHECK, II: 283

front end, automatic derivation of, II: 166
habitability, I: 328

in ICAI systems, II: 227
interface, II: 150

LIFER, II: 165-166
mixed-initiative dialogue, II: 311
in MYCIN, II: 192

in NLPQ, II: 370-374
program specification, II: 300, 302, 303,

310-311, 337-338

in Programmer's Apprentice, II: 345, 348
in PSI, II: 327, 330-332
in SCHOLAR, II: 238-239
semantic grammar, I: 229, 261, 318, 320,

335, 355, 359; II: 250-251
in SOPHIE, II: 250-251
speech acts, I: 280

in TED, II: 166-167
Natural-language understanding, I: 3, 8,

225-321, 358-359. See also Speech un-
derstanding.

competence vs. performance in, I: 245

early research, I: 227-229, 237, 257, 260,
281-287

Subject Index for Volumes I, II, and EI 623

information retrieval, I: 22, 145, 282, 283,

292, 316, 318

machine translation, I: 207-213, 225, 226,

233-238, 273, 274, 279, 281, 288-291

paraphrasing, I: 149, 211, 255, 274, 302-
304, 321

question answering, I: 168-169, 173, 185-
186, 281, 295, 302

and semantic primitives, I: 149, 207-214
story understanding, I: 221, 231, 300, 306

Near-miss training instance, III: 395
Negative evidence, II: 120

Negmax formalism for game- tree search,
I: 86-87, 89

NEOMYCIN, II: 205, 228, 277

Network representation. See also Repre-

sentation of knowledge; Semantic net-
work,

active structural network, I: 185; III: 56-
64.

ATN, I: 186, 230, 233, 261, 263-267, 268,
271, 277-279, 292-294, 303, 304, 316;
III: 56

discrimination network, I: 158, 278, 304;

in: 29-35

Finite-state transition diagram, I: 263-
264

partitioning, I: 186

procedural, III: 541-550
pronunciation graphs, I: 330

RTN, I: 264-266
segmented lattice, I: 330, 337, 353, 356

in speech systems, I: 330, 337

spelling graph, I: 330, 337, 346

transition tree, I: 316-317

New- term problem, HI: 370-371, 405, 459

NLPQ, II: 301, 302, 303, 311, 370-374

sample protocol from, II: 370-372
status of, II: 374

NLS-SCHOLAR, II: 236

NOAH, II: 12; HI: 24-25, 518, 541-550
Node

critical, I: 91

depth of, I: 49

expansion of, I: 46, 55

intermediate, I: 39, 56, 57

solvable, I: 40

successor, I: 26, 33, 46
terminal, I: 38, 43

tip, I: 80, 87
unsolvable, I: 40, 55

Noise. See also Preprocessing,

additive, IE: 213

in edge detection, III: 130

effects on line tracking, III: 220-221

in line finding, III: 168-172

reduction by smoothing, III: 213-215

in region segmentation, III: 147-154, 225
in speech signal, I: 343
in student model, II: 260

in training instances, III: 362-363, 370,
396-397, 429, 432, 490.

Nonterminal symbols of a grammar,
HI: 495

Nonalgorithmic procedures, II: 144
Nondeterminism. See Parsing.

Nonmonotonic reasoning, II: 74-75; III: 114- 119

Nonresolution theorem proving, III: 94-102.
See also Natural deduction.

Nonsense syllables, III: 28

Nonterminal symbols of a grammar, I: 239

Nontutorial CAI, II: 291-294
NP-complete problems, I: 68, 69

Nuclear-magnetic resonance (NMR) spec-
troscopy, II: 122

NUDGE, I: 221

Numerical problems, II: 143

Object-centered representation, III: 272
Obligatory transformation in a grammar,

I: 247

ONCOCIN, II: 180

Opacity, III: 252

of knowledge, II: 82, 89-90
of reasoning, II: 230

Open sets, II: 240

Open world, II: 240
Operationalization methods III: 333, 346,

350-359

approximation, III: 355
case analysis, III: 354

expanding definitions, III: 354

expressing in common terms, III: 355
finding necessary and sufficient conditions,

HI: 351

generate- and- test, III: 351
heuristic search, III: 351

intersection search, III: 354

partial matching, III: 355

pigeonhole principle, III: 351
recognizing known concepts, III: 355

simplification, III: 355
taxonomy of, III: 358

Operator schemata, I: 33

Operators
Hueckel, III: 218-220
interest, HI: 250

624 Subject Index for Volumes I, II, and EI

Operators (continued)

Laplacian, III: 211-212, 218, 264
noise immunity of, III: 214, 217

in problem solving, I: 22, 32, 36, 74, 110,

113, 119, 123, 128, 135
Roberts cross, III: 216

Sobel, III: 217
windows, III: 217

Opportunistic problem solving, II: 129

Opportunistic tutoring in GUIDON, II: 275

OPS, II: 84

Optimal solution in search, I: 28, 62, 74

Optimality of search algorithm, I: 65-67, 80,
83

Optimization of code. See Efficiency of syn-
thesized programs.

Optional transformation in a grammar,
I: 247

Ordered search, I: 59-62, 64, 72, 77-81, 82,
102, 124

Organic synthesis, II: 105, 134-142
Organization of knowledge, I: 336

Origami World, III: 183-194
Orthographic projection, III: 176

Oscillation, III: 28-35
Overlapping concept descriptions, III: 421,

434

Overlay model, II: 231, 256, 261, 270, 282

OWL, II: 182

Paired- associate learning, III: 28-35

PAM, I: 300, 306, 313-314
Pan, III: 198. See also Camera model.

Parallel-line heuristic, III: 187-194
Parallel processing, I: 258, 265, 298; II: 146

coroutining, I: 271

and direct knowledge representation,
I: 204

distributed, I: 336

Parallel search, III: 48

Parameter learning, III: 375-380

Paranoia, III: 71-74

Paraphrasing, I: 149, 211, 255, 274, 302-304,
321

Paraplate in preference semantics, I: 279,
291

PARRY, I: 257; III: 70-74
Parse tree, III: 497

PARSIFAL, I: 230

Parsing, I: 225, 229, 239-240, 256-272;
II: 293; III: 497. See also Grammar;

Natural language understanding,
ad hoc, I: 287

with an ATN, I: 263-267, 293, 349, 355

with charts, I: 260, 268-271, 354

control strategies, I: 230, 258-259

in DBMS, II: 164-165
derivation tree, I: 229, 242, 246, 256, 266,

273, 281, 293, 296, 302

with extended grammars, I: 260

grammarless parsers, I: 260, 261

images, III: 287-291
in LIFER, I: 316-318

by MARGIE's conceptual analyzer, I: 302-
303

nondeterminism, I: 265

in SAFE, II: 339

by SHRDLU's PROGRAMMAR, I: 297- 298

in speech understanding, I: 327, 359

template matching, I: 260

with a transformational grammar, I: 260

Partial development in search, I: 59, 114

Partial functions, operators viewed as, I: 33
Partial match

to an image, III: 283

to an input sentence, III: 47

Partial program specification, II: 301, 307,

313, 348-349
by humans, II: 337

in NLPQ, II: 370-374
in PSI, II: 326

in SAFE, II: 337-338, 341
Partial solutions, II: 273

Partitioned semantic network, I: 186, 360;
II: 159

Pathogenesis of a disease, II: 178

Pathway in CASNET, H: 196

Patient management. See Monitoring dy-
namic processes.

Patient-specific model, II: 208-211
Pattern-directed invocation, II: 9, 11, 32, 46,

58

Pattern matching, I: 123, 256, 260, 283-287;
II: 32, 58-64, 286; in: 121. See also
Matching; Template matching,

in ICAI, II: 231

network matching, II: 160

in PROSPECTOR, II: 155, 160

in SECS, II: 137

semantic, II: 144-145
Pattern recognition, III: 127, 283-291, 373-

382, 497. See also Template matching.
Pattern variables, II: 58

PECOS, II: 302, 304, 305, 330, 350-354, 375,
379

status of, II: 353-354
Pedagogy. See Education.

Subject Index for Volumes I, II, and HI
625

Perceptron algorithms, III: 376-380

Perceptrons, III: 325, 376-380
Perceptual primitives in WHISPER, I: 204

Perceptual skills of a computer-based con-
sultant, II: 150

Performance element of learning systems,

III: 327, 452-453. See also Performance
tasks; Performance trace,

implications for the learning system,

III: 330-332, 372
importance of transparency, III: 435, 454,

482

role in providing feedback, III: 333, 374,
454-455

Performance evaluation of speech systems,
I: 329

Performance grammar, I: 261, 335, 349, 355,

359; II: 160, 250-251. See also Semantic
grammar.

Performance standard, III: 331, 347, 454,

457, 458, 462, 467-468, 479, 492, 501
Performance tasks for learning systems. See

also Performance element of learning

systems,

classification, III: 331, 383, 423-427
control of physical systems, III: 373

data reduction, III: 383

diagnosing soybean diseases, III: 426-427
expert systems, III: 345, 348, 427

mass spectrometry, III: 428

multiple-step tasks, III: 452-456, 495
parsing, III: 497

pattern recognition, III: 373-382, 497

planning, III: 452, 475-479

playing Eleusis, III: 416-419
playing Hearts, III: 350

playing poker, III: 331, 465-474
prediction, III: 383

single-step tasks, III: 452

Performance trace, III: 454-455, 469, 475-

477, 478-479, 482-483, 486-487, 489

Perspective projection, III: 139, 197-199,
206, 265

Perspective transform, III: 197-199
PHLIQA1, I: 232
Phonemics

in speech understanding, I: 327, 332-333
in transformational grammar, I: 246

Phonetics, I: 327, 332-333, 343

Phonological component of a transforma-
tional grammar, I: 248

Photometric stereo, III: 134

Photometry, HI: 241, 242

Phrase marker in a transformational gram-
mar, I: 246, 273

Phrase-structure grammar, I: 240-246
compared with transformation grammar,

I: 245

definition of, I: 243

in parsing, I: 260, 262
Picture domain contrasted with scene do-

main, III: 131-135
Picture grammar, III: 287-291

Picture interpretation. See also Image un-
derstanding; Shape recovery.

natural interpretations, III: 187-194
Pixel, III: 127

PL/1, II: 365
Plan-generate-test, II: 131

in DENDRAL, II: 106-109
in Meta-DENDRAL, II: 120

Plan in Programmer's Apprentice, II: 303,
305, 343, 344, 348

Plan recognition, II: 147, 149, 232

for cooperative responses, II: 167

in Programmer's Apprentice, II: 303
Plane, in semantic memory, III: 36-39
PLANES, II: 164

Planes of knowledge in CASNET, II: 193

PLANNER, I: 151, 155, 171, 175-178, 295-
297; II: 8-10, 74, 79; III: 82, 121, 533

antecedent theorems in, II: 38, 48, 73

chronological backtracking in, II: 50

consequent theorems in, II: 48

control structures in, II: 47-50
data structures in, II: 38

MICRO-PLANNER, II: 10

pattern matching in, II: 60

programming environment of, II: 68
vs. CONNIVER, II: 56

Planning, I: 22, 28, 169; III: 69, 70, 350, 452,

475-479. See also Means-ends analysis;
Problem solving; Reasoning.

constraint-structured, I: 203

constructive, III: 522, 539, 552-556

generalized, in STRIPS, I: 131-134
in GPS, ffi: 518

hierarchical, III: 24-25, 516-518, 523-530,
541-556

hierarchical, in ABSTRIPS, I: 135

least-commitment, III: 24-25, 520-521,
552-556

meta-planning, III: 551

multidirectional, III: 22-27

nonhierarchical, m: 26, 516-517, 531-540

opportunistic, III: 7, 22-27, 516-519, 521
over constrained, III: 542, 552

626 Subject Index for Volumes I, II, and III

Planning (continued)

in problem solving, I: 107, 128, 131, 137

of program synthesis in SAFE, II: 339-340

script-based, III: 516-519

by skeletal plan refinement, III: 557-562
in the SRI computer-based consultant,

II: 151-152
in story understanding, I: 306, 309, 310
underconstrained, III: 542, 552

Planning space, III: 551

Planning systems. See also individual entries

for each system.

ABSTRIPS, III: 523-530

HACKER, III: 452, 475-483, 491, 493,
531-535, 546

INTERPLAN, III: 535-537

MOLGEN, III: 551-562

NOAH, III: 24-25, 541-550

STRIPS, III: 475, 491, 493, 523-530
PLATO Project, II: 255

Plausible-move generation, in game-tree
search, I: 104

Plausible reasoning, I: 177; II: 158, 179, 199,

201, 236, 239, 241

Ply in game trees, I: 99

Poker, III: 331, 465-474

POLY, III: 133, 178-182
Polynomial evaluation function, III: 457, 463.

See also Static evaluation function.

POP-2, II: 7, 12
control structures, II: 53

data structures, II: 42

dynamic lists, II: 53

pattern matching, II: 63

programming environment, II: 70
POPLER, I: 176, II: 12

Positive evidence, II: 120

Possibility list in CONNIVER, II: 38

Possible-world semantics, III: 84
Postprocessing

to eliminate noise regions, III: 228-229
with relaxation algorithm, III: 229

by thresholding, III: 229

Potential solution, in heuristic search, I: 77-
79, 80, 82

Pragmatics, in discourse, I: 249, 327, 332,
334, 359

Preconditions of an operator, III: 523. See

also Means-ends analysis.

in ABSTRIPS, I: 136; III: 523-530

in NOAH, III: 546-550

prerequisites in HACKER, III: 533-534
in STRIPS, I: 128, 131, 135; III: 523-530

Predicate abstraction, III: 83

Predicate calculus, I: 128, 163, 200, 292, 297,

299; II: 301; III: 77, 88-89, 121-122. See
also Logic.

Predicate function, II: 188

Predicate in logic, I: 163, 182, III: 88-89, 91
Prediction task, III: 383

Preference semantics, I: 208, 279, 288-291
Premise clause of a production rule, II: 188

Preprocessing, III: 137, 206-215
distortion model, III: 206

ensemble averaging, III: 214

geometrical correction, III: 206

gray-scale transformation, III: 208-209
resampling, III: 208

sharpening, III: 209-213
smoothing, III: 214

Prerequisite-clobbers-brother-goal, III: 533
Presburger arithmetic, III: 99

Present Illness Program (PIP), II: 83, 180,

181, 202-205
Primal sketch, III: 135, 232. See also Intrin-

sic image.

Primitive problem, I: 36, 38, 74, 121
Primitives

perceptual, in WHISPER, I: 204

semantic, I: 148-149, 183, 198, 207-215,

231, 237, 278, 288-291, 300-303, 306
Proactive inhibition, III: 34

Probabilistic reasoning. See Certainty; Cer-
tainty factor; Uncertainty.

Probes of memory, III: 46, 51

Problem area in automatic programming,

II: 300-301
Problem-behavior graph, III: 18

Problem reduction, I: 7, 25, 36-42, 54, 74,
113, 114, 119, 201; II: 317; HI: 477, 551.

See also Subgoals; Means-ends analysis.

Problem representation, I: 8, 22-28, 32-
45. See also Problem reduction; State

space, game tree, I: 25, 43-45, 84
AND/OR graph, I: 26, 38-40, 43, 74, 113,

119, 124

for robots, I: 122, 128-139
theorem-proving, I: 25

Problem solving, I: 7, 21, 58, 74, 109, 113,

119, 123, 128, 135, 153, 284, 296;

II: 9, 79; III: 7, 8, 11-21. See also Con-
trol structures and strategies; Expert

system; Planning; Reasoning; Theorem

proving,
approach to automatic programming,

II: 301, 317-318, 321, 324-325

automatic, III: 77-78

Subject Index for Volumes I, II, and EQ 627

generate-and-test, I: 30; II: 131

human, I: 285; III: 7, 8, 11-21

interdependent subproblems, I: 56, 81-83;

III: 520, 542, 531-540
means-ends analysis, I: 24, 59, 113, 117,

126, 129, 135, 169; II: 139, 317; III: 3,

7, 14-15, 517, 524-530, 554-556
operators, I: 22, 32, 36, 74, 110, 113, 119,

123, 128, 135

optimal solution, I: 28, 62, 74

plan-generate-test strategy in, II: 131
primitive problem, I: 36, 38, 74, 121

problem reduction, I: 7, 114, 119, 201;
III: 477, 551

state-space search, I: 30, 35, 46-53, 55,
58-73, 77, 80, 111, 153, 195

Problem-solving expertise, II: 247, 256, 263.
See also Expertise.

Problem-solving grammar, II: 229, 232

Problem space, II: 140; III: 13-14, 15-17. See
also State space.

Procedural attachment, I: 156, 158, 179,

218-221; II: 59

Procedural-declarative controversy, I: 151,
230

Procedural knowledge representation, I: 146,

149-150, 155-156, 172-179, 193, 198,

219-220, 230, 289, 295-297; II: 9, 73,

151-152, 229, 261; III: 63, 532. See also
Declarative representation of knowledge.

Procedural network in NOAH, II: 151, 280;

III: 541-550

Procedural semantics, I: 229-230

Procedure-formation principle, II: 359
Process. See Coroutining; Multiprocessing.
Process control. See Control structures and

strategies.

Production rule, I: 157, 190, 239, 303; II: 83,

87, 128, 129-130, 136, 212, 228, 235,
261-263; III: 452-455, 465-474

in EXPERT, II: 218-220
flexibility, II: 228, 267

in ICAI systems, II: 229

in mass spectrometry, II: 106, 116, 117—
118

Production systems, I: 157, 190-199, III: 50-
54, 438, 452-455. See also Program

transformation as approach to auto-
matic programming,

adaptive, I: 195
conflict resolution in, I: 192, 197

context, I: 190, 197

conflict resolution in, II: 350

focus of attention in, II: 351

interpreter, I: 190-192

IRIS, II: 212-213
LIBRA, II: 375-379
manageability of, I: 193, 198

modularity of, in LIBRA, II: 376

MYCIN, II: 187-188
in NLPQ, II: 370

PECOS, II: 350

refinement rules in, II: 350-351
in SAFE, II: 339

Program model
in LIBRA, II: 375

in PSI, II: 327, 329-330, 333
Program net in PSI, II: 327, 329, 330, 332

Program representation. See Representation

of programs in AP systems.
Program schemas, II: 319

Program specification, II: 297, 299-300, 306-
311. See also Automatic programming,

ambiguity of, II: 336-337
AP2 in SAFE, II: 337

behavioral, II: 336-338, 343
completeness of, II: 300
consistency of, II: 302

constraints in, II: 302, 336, 338-340
efficiency of, II: 336

by example, II: 300, 306-308, 318-325, 329
executability of, II: 336

formal, II: 300, 308-310, 355

by generic examples, II: 307
human, studies of, II: 337
informality of, II: 326, 336

interactive, II: 300

methods of, II: 306-311
mixed-initiative dialogue in, II: 311, 326,

329-333, 370-374

natural-language, II: 300, 302, 310-311,
327, 330-332, 337-338, 341, 345, 348,

370-374

partial, II: 301, 307, 313, 326, 337-338,

341, 348-349, 370-374
protocols for, II: 308

in PSI, II: 326-332
SSL in Protosystem I, II: 364-369

by traces, II: 300, 307-308, 321-325, 329
unambiguous, in DEDALUS, II: 355
V in CHI, II: 334

very high level language, II: 309, 315, 326,

355-363, 364-369
vocabulary of, II: 336

Program synthesis, II: 313. See also Auto-
matic programming,

in PECOS, II: 350-354
in PSI, II: 330

628 Subject Index for Volumes I, II, and III

Program transformation as approach to AP,
II: 301, 302, 304, 309

conditional-formation principle, II: 357

in DEDALUS, II: 355-363
by eliminating redundant computations,

II: 314

by expanding procedure calls, II: 315

generalization principle, II: 360-361
by gradual refinement, II: 350

in LIBRA, II: 375-379

in NLPQ, II: 370-374
in PECOS, II: 330, 350-354

procedure-formation principle, II: 359-360

recursion-formation principle, II: 358
by recursion removal, II: 314
refinement rules in, II: 316

refinement tree in, II: 375

simultaneous goals in, II: 361-362
Program understanding, II: 303, 305, 343,

364-369

PROGRAMMAR, I: 297, 319

Programmer's Apprentice, II: 303, 305, 343-
349

sample protocol from, II: 344-347
status of, II: 349

Programmer's assistant in INTERLISP,
II: 8, 68

Programming environment, II: 3-4, 32, 65-
71, 299

BIP, II: 230

CHI, II: 326, 333-335
for instruction, II: 230, 232, 234
interactive, II: 28

LISP, II: 7

Programmer's Apprentice, II: 343-349
SPADE, II: 232

Programming. See also Automatic program-

ming; Programming environment; Pro-
gramming languages; Representation

of programming knowledge.

applicative style of, II: 6-7
codification of programming knowledge in

PECOS, II: 350-354
current problems in, and AP, II: 299

debugging in Programmer's Apprentice,
II: 344-347

definition of, II: 297

documentation in Programmer's Appren-
tice, II: 344-347

in logic, II: 13; III: 77, 82, 120-123

modification management in Program-

mer's Apprentice, II: 344-347
pattern-directed invocation in, II: 9
recursion in, II: 6

verification in Programmer's Apprentice,
II: 344-347

Programming knowledge. See Representa-
tion of programming knowledge.

Programming languages. See also AI pro-
gramming languages.

ALGOL, II: 6

APL, II: 6

COBOL, II: 3
FORTRAN, II: 3, 5

very high level, II: 309, 315, 326, 355-363,
364-369

Programs as data, II: 7, 15, 26-28. See also
Self-reflective programs,

for explanation, II: 6

for learning, II: 6-7

Projections
central, III: 195

orthographic, III: 176

perspective, III: 139, 197-199, 206, 265

PROLOG, II: 13, III: 82, 123-124
Pronunciation graph, I: 330

Proof checking, II: 283

Proof by contradiction, III: 86-87, 93. See
also Resolution rule of inference.

Proof procedure

natural deduction, III: 94-95, 101

resolution, III: 86-87, 93
Proof summarization in EXCHECK, II: 283,

287-289

Proof theory, II: 283-290
Propagation, II: 212

of constraints, III: 553, 556

in IRIS, II: 213-215
of probabilistic hypotheses, II: 160

Property inheritance. See Inheritance.

Property lists, II: 7, 31

Propositional calculus, I: 109, 116, 118, 160-
163; III: 77, 88. See also Logic.

Propositional (Fregean) knowledge represen-
tation, I: 200

Prosodies in speech understanding, I: 327,
332-334, 359

PROSPECTOR, I: 157, 181, 196, 198; II: 82,

85, 155-162
natural-language interface, II: 160

sample protocol from, II: 155-158

status of, II: 161-162
Protection mechanism for simultaneous sub-

goals, II: 361
Protection violation in HACKER, III: 535

Protein x-ray crystallography, II: 124

Subject Index for Volumes I, n, and EI
629

Protocol analysis, II: 237; III: 18, 22. See also

General Problem Solver (GPS); Human

problem solving.

Protocols for program specification. See
Traces.

PROTOSYNTHEX, I: 228

Protosystem I, II: 302, 304, 364-369
status of, II: 369

Provability in nonmonotonic logics, III: 116

Pruning, I: 59, 60, 121, 129, 201; II: 114. See
also Game- tree search.

Pseudo-language, I: 233

PSI, II: 301, 302, 303-304, 311, 319, 326-
335, 350, 375

PECOS and LIBRA, II: 375, 379

sample protocol from, II: 330-331

Psychology, I: 157, 180, 193, 201; III: 3-74.
See also Human memory; Information-
processing psychology; Memory models,

behaviorist, III: 4

cognitive, III: 4

human problem-solving, I: 6-7, 14, 285;
III: 11-21

memory, I: 180, 187, 201, 230

PUFF, II: 180, 182-183
PUP, II: 318
Puzzles. See also Games,

blocks world, I: 276

8-puzzle, I: 32, 51, 62, 67, 68

15-puzzle, I: 68, 73
mutilated chessboard, I: 27

Tower of Hanoi, I: 36-38, 42, 160, 165
traveling-salesman problem, I: 21, 34, 48,

62, 69, 70-71
Pyramid, III: 137, 279-282, 309

QA3, I: 129, 168-169; III: 78
QA4, I: 176; II: 11, 79

QLISP, I: 176, II: 12, 362; III: 543

control structures in, II: 51-52

data structures in, II: 39-41

pattern matching in, II: 61-62
programming environment of, II: 69
segment variables in, II: 61

unification in, II: 61-62
Quad tree, III: 137, 279, 282

Quantification, I: 151, 164, 360

existential, III: 88-89, 91
in higher order logics, III: 83

universal, III: 88-89, 91
Quantitative shape recovery, III: 133, 173,

187-194

Query language, I: 292

Query optimization in QUIST, II: 170-171

Question answering, I: 168-169, 173, 185-
186, 281, 295, 302; III: 63, 78

Quiescence in game-tree search, I: 99-100,
103

QUIST, H: 170-171

Random- access devices, III: 199. See also

Imaging devices.
Random text generation, I: 233, 273

Range data analysis. See Depth measure-
ment; Range finders.

Range finders, III: 254-259, 268, 272-278
Raster-scan devices, III: 199. See also Imag-

ing devices.
Rat-insulin experiment, III: 554

REACT in CONGEN, II: 114-115
Reaction time, III: 40

Reactive learning environment, II: 227, 247,
283

Reasoning. See also Control structures and

strategies; Planning; Problem solving,

about programs in automatic program-

ming, II: 298
analogical, I: 146; III: 328, 334, 443-445
backward, I: 23-25, 36, 51, 56, 74, 110,

111, 196, 198; II: 83, 87, 93, 136;
III: 80, 95, 97

bottom-up, I: 23-24, 51, 56, 74, 198, 220,
259, 270, 326, 334, 338, 358; II: 129,

196, 199-201, 214, 257; III: 129, 288-
290, 306

in CASNET, II: 195-196
categorical, II: 205

consequent, II: 156, 160-161
data- or event-driven processing. See also

Bottom-up processing,

deductive inference, I: 146, 205; III: 76- 123

default, I: 176-177; II: 239; III: 115-116, 119

dependency-directed backtracking, II: 73
from a diagram, I: 201

directedness of, I: 151, 174-177, 185, 188,

193, 219

direction of, I: 23-24, 198

expectation- or goal-driven, I: 23-24, 183,
197, 216-218, 232, 326, 334, 336, 344 .
See also top-down processing.

in EXPERT, II: 220-222
extended inference in, I: 176

formal, I: 146

forward chaining, I: 23-25, 51, 56, 74, 198,

220; II: 129, 214, 257; III: 19, 80, 99-
100, 129, 306, 452.

630 Subject Index for Volumes I, II, and III

Reasoning (continued)
heuristic, I: 21, 64, 66, 74, 78, 94, 119,

151, 168, 174, 177, 188, 201, 220, 228,

258, 277, 282, 284, 293, 296, 298, 299,

335; II: 81, 140, 313; III: 11

hill-climbing, II: 145, 317; III: 252, 375-
380, 434, 458

from incomplete knowledge, II: 236, 240
inexact, I: 195; II: 79, 81

informal, II: 283-290
in INTERNIST, II: 199-201

intersection search, II: 239-240
means-ends analysis, I: 24, 59, 113, 117,

126, 129, 135, 169; II: 139, 317; III: 517

in MYCIN, II: 189-191
plausible, I: 177; II: 158, 179, 199, 201,

236, 239, 241

probabilistic, II: 155, 158-160, 205
spreading activation, I: 185, 187, 189

schema matching, II: 319-320
in SCHOLAR, II: 239-241

top-down, I: 24, 183, 198, 216-218, 232,
259, 326, 334, 336, 338, 344, 355, 358,

359; II: 201; III: 129, 131-133, 168, 139,

269-278, 283-286, 288-290, 306, 314-
316

Recency effect, III: 48
Record, II: 34

Recursion, II: 6, 15, 18

Recursion-formation principle, II: 358
Recursion removal, II: 314

Recursive function theory, III: 102

Recursive pattern matcher, I: 256

Recursive transition networks (RTN), I: 264-
266

REDUCE, II: 146

Reducers, III: 98-99
complete set, III: 99
immediate reduction, III: 98

REF-ARF, II: 5, 79
Referencing problem, III: 112

Refinement-operator method for searching

rule space, III: 369, 401-410, 440, 507-
509

Refinement of plan steps, III: 552, 555-556,
558-562

Refinement of program specification,

II: 350. See also Program transforma-
tion as approach to AP.

in PECOS, II: 350-351
rules for, II: 375

Reflectance map, III: 262

Refutation move in game playing, I: 102

Region analysis, III: 130-131, 143-147, 150,
225-229

Region boundary, III: 226

Region growing, III: 225-226. See also Seg-
mentation.

phagocyte heuristic, III: 226

with texture, III: 233-236

thresholding, III: 225-226
weakness heuristic, III: 226

Region splitting, III: 225, 226-229. See also

Segmentation.
with clustering, III: 227-228
with color features, III: 228

with histograms, III: 226-227, 234-235
intensity measures, III: 228

Regions
atomic, III: 225-226
noise, III: 225, 228

Regular grammars, I: 243, 245, 263; III: 501,

505, 506, 507, 509. See also Finite-state

grammar. Reinforcement in ACT, III: 54

Relational database in MACSYMA, II: 146

Relations, III: 38, 44

Relaxation algorithms, III: 292-300
compatibility functions, III: 299

probabilistic, III: 297-300

sequential, III: 292-297
Relaxation. See also Consistency; Constraint

satisfaction.

for intensity measures, III: 264

on intrinsic characteristics, III: 241-242

for region interpretation, III: 295-297
for region postprocessing, III: 229
in stereo vision, III: 252

RENDEZVOUS, II: 167-169
Representation of algebraic expressions,

II: 147

Representation of knowledge, I: 143-222,
226, 229-232; II: 7, 9, 79

about disease progression, II: 196

about functional relationships, II: 245-246

about mass spectrometry, II: 116-117
ad hoc, I: 227

articulate expert, II: 230

associative triple, II: 188

in automatic programming, II: 315-316
blackboard architecture, II: 126

causal model, II: 193-195
closed-world assumption, II: 240; III: 36,

115

completeness of, I: 178; III: 79
consistency of, I: 178

in DBMS, II: 171-173
decision rules, II: 218-220

decision tables, II: 214-215

Subject Index for Volumes I, II, and IE 631

declarative, I: 151, 172, 219, 230; III: 56,
120

denotative, I: 200

direct (analogical), I: 158, 177, 200-206
disease model, II: 199

in EXPERT, II: 218-220
expertise, II: 80

explicit vs. implicit, I: 150, 172

facts, algorithms, and heuristics, II: 128

findings, II: 219

flexibility of, II: 89, 130, 228, 267
formal vs. informal, II: 128

frame. See Frame knowledge representa-
tion,

hierarchical, II: 237

homomorphic, I: 200

of hypotheses, II: 220

in ICAI systems, II: 227, 229

indeterminacy of, I: 148

with inexact knowledge, II: 180

inference network, II: 158

inference rules, II: 159

in INTERNIST, II: 198-199, 200-201

in IRIS, H: 212-213

ISPEC, II: 212-214
issues in, I: 145, 152

knowledge sources in, I: 257, 298, 326,

336, 343-348, 353; II: 125, 126, 326,
342, 348

logic in DBMS, II: 172-173

in logic programming, III: 121-122

in medical diagnosis systems, II: 177, 180-
181, 212, 216

meta-knowledge in, I: 144, 147; II: 85, 89,

91, 240-241, 267, 269; III: 82, 330
modularity of, I: 149, 157, 170, 178, 193,

198, 336, 343; II: 83, 125-129, 155, 263
multiple, II: 229

organization of, I: 336

partitioned semantic net, I: 186, 360;
II: 159

problem-solving grammars, II: 229, 232

procedural, 1: 146, 149-150, 155-156, 172-

179, 219-220, 230, 289, 295-297; II: 9,
151-152, 229, 261; m: 532

procedural vs. declarative controversy,

I: 151, 230; III: 120

procedural net, II: 151, 280

production rules, I: 157, 190, 239, 303;

II: 83, 87, 128, 187-188, 212-213, 229,
261-263; III: 452-455, 465-474

program schema, II: 319

propositional (Fregean), I: 200

in PROSPECTOR, II: 158-160

in SCHOLAR, II: 236-237
scope of, I: 147

script, I: 216-222, 231, 300-309, 311, 334;
II: 243

semantic network. See Semantic network,

semantic primitive in MYCIN, II: 187

spaces in partitioned semantic nets, I: 186,

360; II: 159

for synthetic chemistry, II: 134-138
taxonomic network, II: 159

uncertainty in, II: 180-181, 188-189, 193,
215, 221

Representation of programming knowledge.
See also Knowledge engineering,

conditional-formation principle, II: 357

in DEDALUS, II: 355-363

design notebook in Programmer's Appren-
tice, II: 348

generalization principle, II: 360-361
Internal problem description (IPD) in

NLPQ, II: 372-373
in LIBRA, II: 376-378

in PECOS, II: 350-353

plan library in Programmer's Apprentice,
II: 343, 344, 348

procedure-formation principle, II 359-360
recursion-formation principle, II: 358

Representation of programs in AP systems.
See also Program specification,

program model, II: 327, 329-330, 333, 375
program net, II: 327, 329, 330, 332

program schema, II: 319
in PSI, II: 327

Resampling, HI: 206, 208
Resolution

of depth, III: 254-255
in depth maps, III: 252

levels of, in vision, III: 279-282

of visual sensor, III: 199-200
Resolution rule of inference, I: 168, 175;

III: 86-87, 93, 94, 97

Resolution theorem proving, II: 11, 313;

HI: 77-78. See also Nonresolution the-
orem proving,

strategies to improve efficiency, III: 91-92
Resolvents, III: 86, 87-88, 93
Response frame of a knowledge source,

I: 345, 347

Response generalization, III: 28-35
Restriction-site mapping, III: 558

Retroactive inhibition, III: 28-35
Reverse chemical reactions, II: 136

Revision procedure, II: 74

632 Subject Index for Volumes I, II, and III

Rewrite rules, I: 239, 261, 316. See also

Grammar; Production rule.

Rheumatology consultation system, II: 222

Risch algorithm, II: 82

RLL, III: 330

Roberts Cross Operator, III: 216

ROBOT, I: 232, II: 164

Robot problem solving, I: 22, 128-139; II: 73
Robot vision, III: 132, 137-138, 301-305
Robotics, I: 10

Roll, III: 198
Root structure in INTERNIST, II: 201

ROSIE, II: 84
Rule

of inference, I: 146, 154-155, 160, 162-
165, 168, 175

production, I: 157, 190, 239, 303
rewrite, I: 239, 261, 316

Rule base, of a production system, I: 190

Rule-based system. See Production system.

Rule model, II: 91, 97-101

Rule space, III: 360, 365-371. See also Gram-
matical inference; Specialization,

representation of, III: 365-369
rules of inference, III: 365. See also Gener-

alization,

search of, III: 369-370. See also Rule-space
search algorithms.

Rule-space search algorithms. See also Gen-
eralization; Grammatical inference;

Specialization.

A<* algorithm, III: 398, 419, 423-427
beam search, III: 411-415
best-first search, III: 438, 441

candidate-elimination algorithm, III: 386-
391, 396-399, 436, 484, 487-488, 490,
505

distributional analysis, III: 506
formal derivatives, III: 506

generate- and- test, III: 369, 411-415, 430

hill-climbing, III: 375-380, 434, 458

interference matching, III: 391-392
linear programming, III: 379
linear regression, III: 379

LMS (least-mean-square) algorithm,
III: 379

perceptron algorithms, III: 376-380

refinement operators, III: 369, 401-410,

440, 507-509
schema-instantiation, III: 369, 416-419,

481

version-space method, III: 369, 385-400

RULEGEN, III: 432-435
in Meta-DENDRAL, II: 120

RULEMOD, III: 434-435
in Meta-DENDRAL, II: 120

Rules of generalization. See Generalization.

Rules of inference. See Generalization;
Grammatical inference;

Specialization.
Run-length coding, III: 304
Run-time environment, II: 3, 9

RX, II: 180

S set (set of most specific hypotheses),
III: 386, 411, 426

SAD-SAM, I: 158, 227, 237, 260, 281-282;
II: 4

SAFE, II: 301, 302, 304, 310, 336-342

status of, II: 341-342
SAIL, II: 11, 317

associations in, II: 41

BAIL, II: 70

control structures in, II: 52-53
coroutining in, II: 53

data structures in, II: 41-42
demons in, II: 52

items in, II: 41

multiprocessing in, II: 52

pattern matching in, II: 62-63

programming environment of, II: 69-70

SAINT, I: 123-127
SAL, III: 34

SAM, I: 211, 216, 220, 231, 300, 306, 311-
313, 334

Samuel's checkers player, III: 332-333, 339-

344, 452, 457-464
rule-space search, III: 458, 461-462

Satisficing, III: 26

Scene analysis, III: 127-138
Scene domain, III: 155

contrasted with picture domain, III: 131—
135

Scene features, III: 131, 132, 133. See also
Intrinsic images,

contrasted with image features, III: 134-
137, 155, 238

distance, III: 238
incident illumination, III: 238
orientation, III: 238

reflectance, III: 238

Scheduler, I: 347, 356

Schema-instantiation method for searching

rule space, III: 369, 416-419, 481
Schema, II: 91, 319. See Frame knowledge

representation.

SCHOLAR, I: 186; II: 227, 229, 232, 236-
241, 242, 246, 267, 292

Subject Index for Volumes I, EI, and IQ
633

NLS-SCHOLAR, II: 236
sample protocol, II: 238

Scientific applications of AI, I: 221

Scope of knowledge representation, I: 147

Scope of variables. See Variable scoping.

Scoring of hypotheses, II: 200

Script knowledge representation, I: 216-222,
231, 300, 306, 307-309, 311, 334;
III: 69-70, 561. See also Frame knowl-

edge representation,
and skeletal plan refinement, III: 561

in WHY, II: 243

SCSIMP, II: 145

SDC speech system, I: 337
SDM, II: 172

Search, I: 6, 7, 21, 25, 330, 337, 338, 339,

343, 344; II: 72. See also Combinatorial

explosion; Control structures and strat-
egies; Pruning; Reasoning,

best-first, II: 141

breadth-first, III: 39

depth-first, II: 50, 189-190
heuristics to limit, II: 313

methods, II: 39

in SYNCHEM, II: 141

Search algorithms. See also Game-tree
search.

A* algorithm, I: 64-73, 80
alpha-beta pruning, I: 88-93, 94, 101
bandwidth, I: 60, 69-71
beam, I: 337, 341, 350, 356

best-first, I: 59, 60, 102, 360

bidirectional, I: 24, 51-53, 72-73, 74

blind, I: 21, 29-30, 46-57, 58, 61-62, 72,
111

breadth-first, I: 47-48, 56-57, 61, 68, 73,
111

depth-first, I: 49-51, 57, 60, 61, 101, 113,
138, 203

fixed-ordering, I: 90, 101
full-width, I: 103

generate-and-test, I: 30

AND/OR graph search, I: 54-57, 74-83
heuristic, I: 21, 28, 29-30, 46, 58-83, 117,

119, 350

Heuristic Path Algorithm, I: 67
hierarchical, I: 135

intersection, II: 239-240

iterative deepening, I: 100-101
length-first, I: 138
minimax, I: 84-87, 88, 90, 91, 94, 98

negmax, I: 86-87, 89
optimality, I: 65, 66, 67, 80, 83

ordered, I: 59-62, 64, 72, 77-81, 82, 124

ordered depth-first, I: 60, 102

in speech systems, I: 339-340
uniform-cost, I: 48-49, 51, 61, 65, 73

Search graph, I: 26

Search space, I: 26-28, 58, 94, 339, 343
Secondary search in game trees, I: 100

SECS, II: 105, 134-142
SEE, III: 143-147, 149
Segment variable, II: 61

Segmentation, III: 128, 149-150, 238-242.
See also Region analysis; Region seg-
mentation,

by texture, III: 233-236
Segmented lattice, I: 330, 337, 353, 356

Selection sort, II: 352

Selective attention, III: 279

Selective forgetting, III: 338, 342

Self-description of CHI, II: 334-335
Self-organizing systems, III: 325
Self- reflective programs, II: 27. See also

Flexibility of production rules; Pro-

grams as data,
and automatic programming, II: 297-298,

318

and explanation, II: 6-7, 89
FOL, II: 13
HACKER, II: 318

and learning, II: 6-7, 89, 318

in LISP, II: 6-7, 298

and meta-knowledge in production sys-
tems, II: 89, 267

in TEIRESIAS, II: 89

Semantic ambiguity, III: 38

Semantic analysis in natural language un-
derstanding, I: 228, 230

Semantic component, of a transformational

grammar, I: 248
Semantic data model (SDM), II: 172

Semantic decomposition. See Semantic prim-
itives.

Semantic density in preference semantics,
I: 290

Semantic grammar, I: 229, 261, 318, 320,

335, 355, 359; II: 160, 250-251. See also
Performance grammar.

Semantic interpretation function in knowl-
edge representation, I: 200

Semantic marker, I: 297

Semantic memory, III: 36-37, 41-42. See
also Human memory; Memory models.

Semantic model, II: 118

in FOL, I: 205

Semantic network, I: 156, 172, 180-189, 193,
197, 208, 218, 229, 230, 254, 276, 277,

634 Subject Index for Volumes I, II, and III

Semantic network (continued)

303, 330, 355, 360; II: 30, 32, 146, 212-
213, 229, 231, 238, 316, 323, 372;

III: 36-41, 42-49, 50-54, 56-64
active structural network, I: 185

fragment matching in, I: 187

intersection search in, II: 239-240
partitioning of, I: 186, 360

partitioned, in PROSPECTOR, II: 159

in SCHOLAR, II: 236-237
spreading activation in, I: 185, 187, 189

Semantic pattern matching, II: 144-145
Semantic primitives, I: 148, 149, 183, 198,

207-215, 231, 237, 254, 278, 288, 300,
306

in MEMOD, III: 57-59, 63
in MYCIN, II: 187

in syntactic approaches to vision, III: 287,
290

Semantic query optimization, II: 171

Semantics, I: 184, 186, 189, 225, 235, 287,

316, 326, 327, 332, 334, 344

generative, I: 248

interpretive, I: 248

preference, I: 208

procedural, I: 229, 230

Sensing, III: 301

Sentential connectives, in logic, I: 161

Sequence extrapolation, II: 116

Sequential diagnosis, II: 179

Sequential processing, II: 200

Serial scanning model, III: 51

Set, II: 34

Set theory, II: 283-290
Set of support, III: 91

Shading, III: 134

Shadow, III: 162-163, 304

Shape description, III: 268-272
by generalized cylinder, III: 269

by surface, III: 268

by vertex and edge, III: 268

by volume, III: 269

Shape-from methods, III: 260-267
Shape recovery

from light-stripe information, III: 272-278

quantitative, III: 133, 173, 187-194

from shading information, III: 262-264
from texture information, III: 264-267

Shape from shading, III: 260-264

Shape from texture, III: 264-267

Sharpening, III: 209-213. See also Preproces-
sing.

by high-emphasis frequency filtering,
III: 212-213

by spatial differentiation, III: 211-212
Shelf in INTERNIST, II: 199

Shell mechanism, III: 104-105, 110

Short-term memory buffer, in production
systems. See Context.

Shortfall density strategy for hypothesis

scoring in HWIM, I: 341, 356

SHRDLU, I: 151, 176, 196, 230, 251, 257,

260, 276, 295-299, 319; II: 10, 60

Signal-to-noise (S/N) ratio, III: 199
Signal processing, III: 127

Signature tables, III: 459-464
Simplex algorithm, III: 99

Simplification

in the Boyer-Moore Theorem Prover,
III: 106

of expressions, II: 144

Simulation, III: 63. See also Expertise module

of ICAI systems.

in ICAI, II: 229-230, 245-246, 251
of laboratory reactions, II: 114

Simulation programs, automated synthesis

of, in NLPQ, II: 370-374
Simulation structure, in FOL, I: 205

Simultaneous goals, II: 361. See also Sub-
goals, interacting.

SIN, I: 125-127, II: 143

Single-concept learning, III: 331, 383-419,
420-422, 436

Single-representation trick, III: 368-369, 411,

418, 424-425
Single-step tasks, III: 452

SIR, I: 158, 173, 185, 228, 237, 260, 283-284;
II: 11

Skeletal plans, III: 558-562. See also Scripts.

Skewed-symmetry heuristic, III: 187-194
Skill acquisition, III: 326, 532. See also

HACKER; Learning.

Skolem function, III: 89-91. See also Clause
form.

Skolemization, III: 95

SLIP, I: 286
Slot of a frame, I: 158, 216

SMALLTALK, II: 293

Smoothing, III: 213-215. See also Preprocess- ing,

by ensemble averaging, III: 214

by local averaging, III: 214

to reduce noise, III: 213-215
of texture edges, III: 233

SNIFFER, I: 188

Sobel Operators, III: 217

Socratic tutoring method, II: 237, 242-246
tutorial goals of, II: 244

Subject Index for Volumes I, II, and HI 635

in WHY, II: 234, 242-243
Software, II: 299. See also Programming.

SOLDIER, I: 125
Solution

graph, I: 40, 55
in problem solving, I: 33

tree, I: 40, 75, 77-79
Solvable node, I: 40

SOPHIE, I: 257, 261, II: 227, 230, 231, 247-

253, 292-293

sample dialogue of, II: 248-250
SOPHIE-I, II: 230, 247-250

SOPHIE-II, II: 252
Sort in logic, I: 163, 166
Soundness in logic, III: 91

SOUP functions, III: 543-550

Soybean diseases, III: 426-427

Space-planning task, I: 202
Spaces in partitioned semantic nets, II: 159
SPADE, II: 232

Spaghetti stack
in CONNIVER, II: 10

in QLISP, II: 12

SPARC, III: 369-370, 384, 416-419, 452

searching rule space, III: 418-419

Spatial differ entation, III: 211-212, 216-217
Spatial domain contrasted with frequency

domain, III: 206

Specialization, III: 444

by adding conditions, III: 408, 432, 434

by splitting nonterminals, III: 502

Specialization of fragmentation rules, II: 120

Specification of programs. See Program

specification.

Spectroscopy, II: 104

Speech acts, I: 280

Speech recognition, I: 325, 326, 333, 349
Speech signal, I: 332

acoustics, I: 343

allophone, I: 333, 337, 349
intonation, I: 333

noise, I: 343

stress, I: 333

syllable, I: 333, 343

Speech understanding, I: 158, 186, 226, 231,

257, 259, 267, 292, 325-361; II: 31, 150
connected speech, I: 326

evaluation of system performance, I: 329

isolated-word recognition, I: 325, 333, 349
juncture rules, I: 330, 350, 354

morphemics, I: 332-333
network representations in, I: 330, 337

phonemics, I: 327, 332-333

prosodies, I: 327, 332-334, 359

vs. speech recognition, I: 326
SPEECHLIS, I: 328, 353

Spelling correction, I: 320; II: 164

Spelling graph, I: 330, 337, 346
Spreading activation,

in semantic networks, I: 185, 187, 189

in ACT, III: 50-54
SRI computer-based consultant (CBC),

II: 150-154

sample dialogue from, II: 153-154

SRI speech system, I: 339, 358-361
SRI Vision Module, III: 304

SSL in Protosystem I, II: 364-369
Stability in the learning environment,

III: 337

Stack frames, II: 45

Start symbol, III: 496

of a grammar, I: 240
Starting state, III: 12, 523

State Description Compiler, II: 317

State space, I: 26, 33, 195

graph, I: 25, 33-34, 43, 46, 61, 64, 74
representation, I: 24, 32-35, 36, 40-42, 46,

74, 113, 129; III: 12-21
search, I: 30, 35, 46-53, 55, 58-73, 77, 80,

111, 153, 195; III: 452
Static evaluation function, III: 339, 457,

459-464

in game-tree search, I: 87, 96-97, 100
Statistical learning algorithms, II: 118;

ni: 375

Stative predicates, III: 57

Status of hypothesis in CASNET, II: 195

Stereo vision, III: 249-253, 254. See also
Binocular vision.

Stereochemistry, II: 113, 140

Stereotypes in preference semantics, I: 289
Stimulus frame of a knowledge source,

I: 345

Stimulus generalization, III: 28-35
Stochastic automata, III: 380

Stochastic grammars, ID: 381, 498-499
Stochastic learning models, II: 231

Stochastic presentation, III: 500

Storage allocation, II: 18. See also Variable
scoping.

Store- versus-compute trade-off, III: 337-338,
342

Story understanding, I: 231, 300,

grammar, I: 306
Strategy for control. See Control structures

and strategies; Reasoning.

Strategy-free memory, III: 42-49
Strategy space, III: 552

636 Subject Index for Volumes I, EI, and EI

Strengthening in ACT, III: 54

Stress in speech understanding, I: 333

STRIPS, I: 22, 28, 42, 82, 128-134, 135, 138-
139, 169; H: 11, 73; III: 475, 491, 493,
523-530

STRIPS assumption, III: 115. See also

Closed- world assumption.
Structural descriptions. See Structural

Learning.

Structural family of molecules, III: 429

Structural learning, III: 381-382, 392-396,
411, 412

Structural presentation, III: 501
Structure

determination, II: 102

elucidation, II: 102, 111

Structure-generation algorithm, II: 106, 111

Structure-from-motion theorem, III: 246-
247

Structured growth as programming regimen,
II: 65

Structured programming, II: 66

STUDENT, I: 196, 227, 237, 260, 284-285
Student model, II: 225, 229, 235, 265. See

also Diagnosis of student misconcep-
tions,

as bugs, II: 231-233

conceptual bug in, II: 279-280
constructive bug in, II: 234

critic in, II: 233

diagnostic, II: 233, 279-280
differential modeling of, II: 255-256

in GUIDON, II: 270-271

in ICAI systems, II: 231-233
in the MACSYMA Advisor, II: 232

noise in, II: 260

overlay model of, II: 231, 256, 261, 270,
282

plan recognition in, II: 232

problem-solving grammar in, II: 232
procedural net in, II: 280
sources of information for, II: 232

in SPADE, II: 232

and stochastic learning models, II: 231

Stylistics in text generation, I: 279

Subgoals
in backward chaining, II: 190

in conflict resolution, II: 361

conjunctive, I: 111, 119

interacting, I: 56, 81-83; III: 520, 531-540,
542

in human problem-solving, III: 12, 17
promotion, III: 537
selection function for, II: 141

Subgraph, II: 130
isomorphism, II: 32

Subproblems, interdependent, I: 56, 81-83.
See also Problem solving; Subgoals.

Substitution, III: 95

in the Boyer-Moore Theorem Prover,
III: 107

Substitution instance, III: 90

Substructure II: 112, 114, 137
Successor node, I: 26, 33, 46

Sum cost. See Cost, in search algorithms.
Summarization of proofs in EXCHECK,

II: 283, 287-289
Super atoms, II: 111

Support hypothesis, III: 141, 150

Support relations, III: 150
Surface structure of a natural language,

I: 247, 252, 273, 274, 277. See also

Syntax. Syllable in speech understanding, I: 333, 343

Syllabus in WUMPUS, II: 230

Symbol manipulation, II: 3-5, 15
Symbolic algorithms, II: 144

Symbolic execution, II: 323

in SAFE, II: 336, 339-340

Symbolic integration, I: 21, 22, 24, 118, 123-
127

Symbolic reasoning, II: 79, 82

Symptom in medical diagnosis, II: 178

SYNCHEM, II: 85, 105, 134-142
SYNCHEM2, II: 137, 140

SYNCOM, II: 138

Syntactic analysis in natural language un-
derstanding, I: 230

Syntactic categories of a grammar, I: 239

Syntactic component of a transformational

grammar, I: 247
Syntactic methods in vision, III: 287-291.

See also Grammar in vision,

bottom-up parsing, III: 288-290

phrase-structure rules, III: 287-291

top-down parsing, III: 288-290
Syntactic query optimization, II: 171

Syntactic symmetry in the Geometry The-
orem Prover, I: 120

Syntax, I: 155, 225, 326, 327, 332, 334, 344,
346

Synthesis of molecular structures, II: 102,
134-142

synthesis routes, II: 134

synthesis tree, II: 134

Synthetic chemistry, II: 105, 134-142

System identification, III: 373-375
Systemic grammar, I: 229, 249-251, 297

Subject Index for Volumes I, II, and EI 637

Systems architecture, for speech understand-

ing, I: 332-342, 353

Table of Connections in GPS, I: 115

Tags in CONNIVER, II: 38

Tapered forward pruning, I: 104

Target language for automatic

programming, II: 300
GPSS, in NLPQ, II: 370
LISP, II: 28, 355

Target structure of synthesis process, II: 134,
136

Tautology, I: 162; III: 92
TAXIS, II: 172

Taxonomic net, II: 159

Taxonomy, I: 181. See also Inheritance.

Teachable Language Comprehender (TLC),
I: 185, 228

Teacherless learning, II: 293

Team of procedures in QLISP, II: 12

TED, II: 166-167, 170

TEIRESIAS, I: 145, 195-199; II: 57, 84, 85,

87-101, 130, 182, 191-192; III: 333, 348,
349

sample protocol from, II: 92-101
Template

bare, I: 288, 290

in case grammars, I: 253

flexible, III: 283-285

high-level, III: 285-286
low-level, III: 283-285

matching, I: 260; III: 283-286

partial, III: 283-285

piece, III: 283-285
in preference semantics, I: 279, 288-291
in speech recognition, I: 333, 337, 340, 349

total, in: 283-285
word, I: 349

Term selection, III: 459

Terminal node of an AND/OR graph, I: 38,
43

Terminal symbol, III: 495

in a grammar, I: 239
Texel, III: 265

Text-based NL systems, I: 228

Text generation, I: 273-280, II: 239
and machine translation, I: 273-274, 279,

289, 291
in MARGIE, I: 304

random, I: 233, 273

Textual function of language, I: 249

Texture, III: 134, 230-237, 264-267.
edges, ffl: 233

features, III: 230-233

gradient, III: 264

regions, III: 233-236
Theme, III: 69-70

in story understanding, I: 306, 310-311,
313

Theorem in PLANNER, II: 9, 38, 48, 73

Theorem proving, I: 22, 23, 26, 62, 74, 109,

116, 118, 119, 129, 151, 155, 168, 171,

175, 188, 297; II: 62; III: 76-123 See also
Automatic deduction,

as approach to AP, II: 301, 308-309, 312-
314

goal-directed, III: 94-95
natural-deduction, III: 94-95, 101

nonresolution, III: 94-95, 101
representation, I: 25

resolution, II: 313; III: 86-94
Theory of computation, II: 15

Theory of conclusions, III: 118-119
Theory formation, II: 84; III: 327 See also

Hypothesis; Learning.
Therapy selection

drug-preference categories, II: 191
in MYCIN, II: 184, 191

THINGLAB, II: 293

THNOT, I: 176; II: 74

3-D sketch, III: 135
Thresholding,

in medical decision making, II: 181

in vision, III: 217-218
Tic-tac-toe, I: 43, 94

Tick list, III: 535

Tilt, III: 174, 198. See also Camera model.

Time of flight, III: 254-255. See also Range
finders.

Tip node of an AND/OR graph, I: 80, 87

TOME (Table of Multiple Effects), III: 545-
550

Tools for building expert systems, II: 84

AGE, II: 84, 126

EMYCIN, II: 84, 183, 276

EXPERT, H: 217-222
GUIDON, II: 267-278

IRIS, II: 212-216
Top-down processing, I: 24, 183, 198, 216-

218, 232, 259, 326, 334, 336, 338, 344,

355, 358, 359; II: 91-92, 97-101, 201;
III: 129, 131-133, 168, 139, 269-278,
283-286, 288-290, 306, 314-316. See
also Backward chaining; Consequent

reasoning; Control structures and strat-
egies; Reasoning.

Top-down vs. bottom-up reasoning, I: 198.
TORUS, I: 186

638 Subject Index for Volumes I, II, and EQ

Totally dependent game tree, I: 92

Tower of Hanoi puzzle, I: 36-38, 42, 160,

165; II: 22-24, 79
TQA, II: 165
Traces

completeness of, II: 308

generic, II: 308

problem-solver generated, II: 324-325

protocols from, II: 308, 322-325

in PSI, II: 329, 330-334
Tracking

in edge detection, III: 220-221

moving objects, III: 246-248

Training instances, III: 454, 328-329, 362-
364. See also Instance space,

in DENDRAL, II: 117

global, III: 454-455

local, III: 454-455
Transfer of expertise, I: 199; II: 72, 80,

81-83, 88-89, 116; III: 345, 348. See

also Expert systems; Knowledge ac-
quisition; Knowledge engineering.

Transfer function, III: 213

Transformation of programs. See Automatic

programming; Production systems;
Program transformation as approach
to AP.

Transformational grammar, I: 229, 237, 245-

248, 249, 251, 252; III: 497-498, 510
parsers, I: 260

Transformations, obligatory and optional,

I: 246-247
Transforms in synthetic chemistry, II: 136

Transition operator. See Legal-move gen-
erator.

Transition-tree grammar in LIFER, I: 316-
317

Transitivity system of a grammar, I: 249

Transparency of reasoning, II: 89. See also

Opacity.
Travel budget manager task, I: 353

Traveling-salesman problem, I: 21, 34, 48,

62, 69, 70-71
Treatment-regimen system, II: 206

Tree. See Grammar; Parsing; Problem rep-
resentation.

Triangle table in STRIPS, I: 131-132

Triangulation, III: 255-259. See also Range
finders.

Trigger. See Procedural attachment.

Trihedral world, III: 136, 155-182. See also
Blocks world.

Trivial disjunction, III: 398

Trivial grammar, III: 499

Troubleshooting, II: 247-253. See also Diag-
nosis.

Truth maintenance, II: 72-76

Truth values, in logic, I: 161-162

Tuple in QLISP, II: 34, 39-41
Turing machine, I: 4, 241, 266

Turtle geometry, II: 291-292
Tutor module of ICAI system, II: 263, 266

Tutorial dialogue. See Dialogue manage-

ment; Intelligent computer-assisted in-
struction; Tutoring strategies in

ICAI.

Tutorial goals, II: 244

Tutorial programs, II: 225-294
Tutorial rule, II: 267, 272

Tutoring module of ICAI systems, II: 233- 235

Tutoring strategies in ICAI, II: 227-228, 233,

237. See also Diagnosis of student mis-
conceptions; Dialogue management,

case-method tutor, II: 235, 242

computer coach, II: 231, 234, 254-255,
257-259, 261-266

computer gaming, II: 234, 252, 254, 261- 266

constructive bug, II: 234, 254

in GUIDON, II: 272-273
issues and examples, II: 256

opportunistic, II: 275-276

pedagogical style in, II: 275-276
principles of, II: 259

in SCHOLAR, II: 237-238
Socratic method, II: 234

tutorial goals in, II: 244

TV signals, III: 201. See also Imaging devices.

2 1/2 - D sketch, III: 135, 239, 243

Two-space model of learning, III: 360-372,

383, 441
TYPE property, II: 199

Type- token distinction, III: 37

Ultrasound image analysis, II: 177

Uncertainty, II: 188-191, 215, 271, 277, 195-
196, 221, 131. See also Certainty,

in CASNET, II: 193

in FUZZY, II: 13

in INTERNIST, II: 197

representation of, II: 180

Understandability of knowledge representa-
tions, I: 150, 156-157, 174, 193

Unification, II: 61-62; III: 89-90, 91, 96, 120,
121

Uniform-cost search, I: 48-49, 51, 61, 65, 73;
III: 484, 489

Subject Index for Volumes I, II, and EI
639

Uniform game tree, I: 91-93
Uniform scoring policy of hypotheses in

HWIM, I: 340

Unique termination property, III: 99
Unit Package, I: 221; EI: 551, 559

Unity path in MYCIN, II: 191
Universal grammar, III: 499

Universal quantification, III: 88-89, 91
Universal specialization in logic, I: 164

Unsolvable node of an AND/OR graph,
I: 40, 55

Update~G routine, III: 388-391. See also
Candidate-elimination algorithm.

Update-S routine, III: 388-392. See also
Candidate-elimination algorithm.

User education in MACSYMA, II: 144, 146-
14S

User interface, II: 81. See also Dialogue man-
agement,

computer-generated speech in EXCHECK,
II: 283

in CONGEN, II: 112

cooperative responses in COOP, II: 167

User model, II: 150. See also Plan recogni-
tion; Student model.

V in CHI, II: 334
Validation

of AP systems. See Verification of syn-
thesized code.

of expert systems, II: 182, 192, 211, 267
of ICAI systems, II: 280

Variable domain array in the General Space
Planner, I: 202

Variable in logic, I: 164, III: 88-89, 91

Variable scoping, II: 18, 32-33
Verbal learning, III: 8, 28, 33-35
Verification of synthesized code

in DEDALUS, II: 355

in Programmer's Apprentice, II: 344-347
of synthesized program in AP, II: 320

Verification trees in EXCHECK, II: 289

Version space, II: 121; III: 387. See also

Candidate-elimination algorithm.

Version-space method for searching rule

space, III: 369, 385-400
Vertex types, III: 155-157. See also Junction

types.
Very high level language, II: 315

AP2, II: 337

in DEDALUS, II: 355

for program specification, II: 300, 309
in PSI, II: 326

SSL in Protosystem I, II: 364-369

Viewpoints, III: 141-142
Vision, I: 10, 330, 334; III: 125-322

in industry, III: 301-305
real-time, III: 301-303

in the SRI computer-based consultant,
II: 153

VISIONS, III: 309-310

VLi, III: 423
VM, II: 180, 206
Voice chess, I: 328, 334, 344

Waltz filtering, III: 137, 164-167, 184, 186,

292, 295. See also Constraint satisfac-
tion; Relaxation.

Waterman's poker player, III: 331, 349, 452,
456, 465-474, 489

Weight space, III: 376

Well-formed formula in logic, I: 164

Well-formed programs in SAFE, II: 338-340
Well-founded relation, III: 104, 109

WEST, II: 232, 234, 254-260, 261, 267, 292
evaluation of, II: 260

WEST-I, II: 230, 231
WHISPER, I: 203

WHY, II: 229, 234, 235, 241, 242-246, 267

sample dialogue from, II: 243-244
Windows

fixed and variable-sized, III: 217

representing operators, III: 217

Winston's ARCH program, III: 326, 364,

384, 392-396
Word island in HWIM, I: 353

Word senses, III: 36, 38-39
Word template, I: 349

World coordinates, III: 198-199
World knowledge, I: 226, 230. See also

Domain-specific knowledge; Heuristic.
World model, I: 22, 128, 135

WUMPUS, II: 230, 234, 261-266, 267, 288,
292

WUSOR, II: 261-266, 292

sample protocol from, II: 264-265

X-ray image analysis, II: 177

Zero crossing, III: 218, 250

Zero-order theory of mass spectrometry,
II: 118

ABOUT THIS BOOK

The Handbook of Artificial Intelligence was designed and edited by Dianne
Kanerva, who also established the production procedures and managed the
production team that typeset the volumes.

The Handbook is unusual in that, from the soliciting and writing of

manuscripts through the production of camera-ready copy, it was prepared
entirely through the facilities of the three computer systems (SUMEX, SCORE,

and SAIL) available to the Heuristic Programming Project at Stanford Univer-
ity. Volumes II and III were typeset at the Department of Computer Science

using Donald Knuth's Tau Epsilon Chi (T^X), a computer-based typesetting
system designed for mathematical text. The text of the volumes is set in

the Computer Modern family of fonts designed by Knuth with his META-
FONT system. Intermediate copy was produced with a Xerox Dover laser

printer; final camera-ready copy was produced with an Alphatype CRS photo-
typesetter.

Jose L. Gonzalez was responsible for tailoring and implementing a TgX
macro package designed by Max Diaz to the requirements of the Handbook.

Gonzalez prepared the camera-ready copy of Volumes II and III of the Hand-
book and participated in editing. Dikran Karagueuzian prepared and typeset

the bibliographies and name indexes of these last two volumes. The other
individuals who participated in typesetting the Handbook were David Eppstein
(especially the design of macros for the figures in Chap. XV and for the
indexes), Jonni Kanerva (especially the layout and typesetting of Chap. XIIl),
and Janet Feigenbaum and Barbara Laddaga (especially the initial application
of TeX to the task). Karagueuzian and Christopher Tucci operated the
Alphatype CRS phototypesetter.

Printing, binding, jacket design, and artwork are by the publisher, William
Kaufmann, Inc.

The Handbook of Artificial Intelligence

Volumes I and II by Avron Barr and Edward A. Feigenbaum

Volume III by Paul R. Cohen and Edward A. Feigenbaum

VOLUME I

Introduction

A. Artificial Intelligence
B. The AI Handbook
C. The AI literature

Search
A. Overview

B. Problem representation

1. State-space representation
2. Problem-reduction representation
3. Game trees
Search methods C

1. Blind state-space search
2. Blind AND/OR graph search

3. Heuristic state-space search
a. Basic concepts in heuristic search

b. A* — Optimal search for an optimal solution
c. Relaxing the optimality requirement
d. Bidirectional search

4. Heuristic search of an AND/OR graph
5. Game tree search

a. Minimax procedure

b. Alpha-beta pruning
c. Heuristics in game tree search

D. Sample search programs
1. Logic Theorist
2. General Problem Solver

3. Gelernter's geometry theorem-proving machine
4. Symbolic integration programs
5. STRIPS
6. ABSTRIPS

HI. Knowledge Representation
A. Overview

B. Survey of representation techniques
C. Representation schemes

1. Logic

2. Procedural representations
3. Semantic networks

4. Production systems

5. Direct (analogical) representations
6. Semantic primitives
7. Frames and scripts

rV. Understanding Natural Language
A. Overview

B. Machine translation
C. Grammars

1. Formal grammars
2. Transformational grammars
A. Systemic grammar
4. Case grammars

l> I'arsing
1. Overview of parsing techniques
2. Augmented transition networks

3. The General Syntactic Processor
E. Text generation
F. Natural language processing systems

1. Early natural language systems

2. Wilks's machine translation system
3. LUNAR

4. SHRDLU

5. MARGIE
6. SAM and PAM
7. LIFER

Understanding Spoken Language
A. Overview

B. Systems architecture
C. The ARPA SUR projects

1. HEARSAY
2. HARPY

3. HWIM

4. The SRI/SDC speech systems

VOLUME n

VI. Programming Languages for AI Research
A. Overview
B. LISP

C. AI programming-language features
1. Overview

2. Data structures
3. Control structures
4. Pattern matching

5. Programming environment
D. Dependencies and assumptions

VH. Applications-oriented AI Research: Science
A. Overview
B. TEIRESIAS

C. Applications in chemistry
1. Chemical analysis

2. The DENDRAL programs
a. Heuristic DENDRAL

b. CONGEN and its extensions

c. Meta-DENDRAL
3. CRYSALIS

4. Applications in organic synthesis
D. Other scientific applications

1. MACSYMA

2. The SRI Computer-based Consultant
3. PROSPECTOR

4. Artificial Intelligence in database management

Vm. Applications-oriented AI Research: Medicine,
A. Overview

B. Medical systems
1. MYCIN

2. CASNET

3. INTERNIST

4. Present Illness Program
5. Digitalis Therapy Advisor
6. IRIS
7. EXPERT

IX. Applications-oriented AI Research: Education
A. Overview

B. ICAI systems design
C. Intelligent CAI systems

1. SCHOLAR
2. WHY
3. SOPHIE
4. WEST
5. WUMPUS
6. GUIDON
7. BUGGY
8. EXCHECK

D. Other applications of AI to education

X. Automatic Programming
A. Overview

B. Methods of program specification
C. Basic approaches
D. Automatic programming systems

1. PSI and CHI
2. SAFE

3. The Programmer's Apprentice
4. PECOS
5. DEDALUS

6. Protosystem I
7. NLPQ
8. LIBRA

volume m

XI. Models of Cognition
A. Overview
B. General Problem Solver

C. Opportunistic problem solving
D. EPAM

E. Semantic network models of memory

1. Quillian's semantic memory system
2. HAM
3. ACT
4. MEMOD

F. Belief systems

XH. Automatic Deduction
A. Overview
B. The resolution rule of inference

C. Nonresolution theorem proving

D. The Boyer-Moore Theorem Prover
E. Nonmonotonic logics
F. Logic programming

Xm. Vision
A. Overview

B. Blocks-world understanding
1. Roberts
2. Guzman
3. Falk

4. Huffman-Clowes

Paul Cohen is an

interdisciplinary grad-
uate student in the

Departments of Com-
puter Science and

Psychology at Stan-
ford University. He

has worked on the
Handbook project
since 1979, and is

managing editor of
Volume III. His doc-

toral research involves modeling experts' use
of evidence in reasoning about uncertain

events, in the domains of portfolio manage-
ment and medical diagnosis.

I
Edward Feigenbaum joined the Stanford

University faculty in 1965. Professor Feigen-

baum's interests include the applications of ar-
tificial intelligence methods to science and

medicine and have led to the formation of the

Stanford Heuristic Programming Project, the

world's best-known center for the applications
of Artificial Intelligence. Chairman of the
Computer Science Department since 1976,
Professor Feigenbaum also heads the national

computer facility for applications of Artificial
Intelligence to Medicine and Biology known as

the SUMEX-AIM facility, established by NIH
at Stanford University.

Jacket design by Hans-J. Wacker

"As to artificial intelligence, we have hardly begun to under-
stand what this abundant and cheap intellectual power will do to

our lives. It has already started to change physically the research
laboratories and the manufacturing plants. It is difficult for the
mind to grasp the ultimate consequences for man and

society . . . " —Jean Riboud, Chairman and President
Schlumberger Limited

What is a "heuristic problem-solving program?" How do com-
puters understand English? What are "semantic nets" or

"frames?" Can computer programs outperform human ex-
perts? Such questions — asked by scientists, engineers, students,

and hobbyists encountering Artificial Intelligence for the first
time — can now be readily answered by The Handbook of
Artificial Intelligence, a work which makes the full scope of im-

portant techniques and concepts of AI available for the first
time to the rapidly expanding world of computer technologists
and users.

The scope of this handbook is broad: over two hundred short ar-
ticles covering all of the important ideas, techniques, and

systems developed during twenty-five years of research in the AI
field. The articles are written for people with no background in
AI. Some articles serve as overviews, discussing the various
approaches within a subfield, the issues, and the problems. The

handbook is a reference work, a textbook, a guide to program-
ming techniques and to the extensive literature of the field, and a

book for intellectual browsing. Jargon has been eliminated in
each of the short, penetrating articles, and the hierarchical
organization of the book allows readers to choose how deeply
they wish to delve into a particular subject.

Conceived and produced at Stanford University's Department
of Computer Science, with contributions from universities and
laboratories across the nation, The Handbook of Artificial
Intelligence promises to become the standard reference work in
the rapidly growing AI field.

ISBN 0-86576-007-1

William Kaufmann, Inc. • 95 First Street • Los Altos, California

